
45Management of massive point cloud data: wet and dry

Storage and analysis of massive TINs in a DBMS

H. Ledoux
TU Delft, GIS technology group, the Netherlands

Abstract
Advances in technologies to collect elevation data are far superior to the advances to store and
process the resulting point clouds. This paper investigates the use of a DBMS to store and man-
age not only the points coming from massive point-based datasets, but also a TIN of these
points. TINs are used as a support structure to implement processing and manipulation opera-
tors. I discuss in the paper why storing efficiently a TIN in a DBMS is a complex task, and I
propose a new solution. It does not store explicitly triangles, as only the star of each point is
stored. The details of the data structure are discussed and compared with other solutions cur-
rently available.

1. Introduction
New technologies such as airborne altimetric LiDAR (Light Detection and Ranging) or multi-
beam echosounders permit us to collect millions – and even billions – of elevation points (sam-
ples) for a given area, and that very quickly and with great accuracy. One example of the use of
that technology in the Netherlands is the efforts by Rijkswaterstaat to build an accurate digital
terrain model (DTM) of the whole country containing as much as 10 samples per m2 (the AHN2
dataset, www.ahn.nl). Such datasets have attracted a lot of attention because of all their possible
applications, e.g. flood modelling, monitoring of dikes, forest mapping, generation of 3D city
models, etc.

The main problems with massive point cloud datasets is that while they provide us with un-
precedented precision, computers have great many problems dealing with very large datasets
that exceed the capacity of their main memory. The result is that they cannot efficiently display
all the information, let alone process them. Examples of point cloud processes useful for many
applications are: derivation of slope/aspect, conversion to a grid format, control of double
points, calculations of area/volumes, viewshed analysis, creation of simplified DTM, extraction
of bassins, etc. Advances in technologies to collect data are basically superior to our ability to
process data.

LiDAR or multi-beam datasets are formed by scattered points in 3D space, which are – in sev-
eral cases – the samples of a surface that can be projected on the horizontal plane (a so called
“2.5D surface”), see Figure 1a. This is of course not always the case but for several situations
2.5D is enough and it is therefore worth developing specific tools to handle this case since they
can be highly optimised. While simply storing millions of unconnected points in a DBMS is no
problem, the processing of LiDAR datasets needs more: we must be able to reconstruct the sur-
face represented by the points, and we must also be able to access this surface to manipulate it
(e.g. adding/removing new samples), and also to derive values from it. The surface gives us the
spatial relationships between unconnected points in 3D space, which is required if processing on
the surface is wanted. The best way to reconstruct such a surface is arguably with a triangulated
irregular network (TIN) respecting the Delaunay criterion (Wang et al., 2001). As shown in Fig-
ure 1b, a TIN subdivides the space covered by the points into non-overlapping triangles, and
these can be used to reconstruct the surface and answer neighbourhood queries (“which points
are close to x and surround it?”). In Figure 1b, the vertex x has for instance 7 well-defined
neighbours.

46 Management of massive point cloud data: wet and dry

Figure 1. (a) A 2D surface obtained from a set of points in the plane having a height as an at-
tribute. (b) A triangulation of a set of points in the plane. The vertex v has 7 neighbours.

This paper investigates the use of a DBMS to store and manage not only the points coming from
a very large LiDAR dataset, but also the TIN of these points. DBMSs are investigated since
they are arguably the best tool to store and manage very large datasets (of any kind). The paper
briefly discusses in Sections 2 and 3 current solutions for storing and processing point clouds,
and then proposes in Section 4 an alternative which could have several benefits. This proposed
solution goes beyond the usual “store points and edges and triangles” described in Section 2,
and use recent advances in the compression of graphs.

2. Current solutions for storing and processing point clouds
Many companies offer solutions for the storage and processing of LiDAR data, and the problem
is also being tackled in the academia. What follow is a short overview of the most interesting
solutions, and does not claim to be a thorough review of all the possibilities. These were
choosen because they are, as far as I know, the most used by practitioners and the tools that of-
fer the most functionalities to handle massive point clouds.

2.1 Commercial software
The company Terrasolid offers several useful tools for the processing of LiDAR data. The
main problem here is that, as is the case with many other tools, the size of your computer’s main
memory decides how many points can be processed. Basically, once the memory is full, transfer
of data between the disk and the memory starts, and if this happens too much, the computations
might simply stop (called trashing). The first solution that Terrasolid and others provide is tiling
a big dataset into smaller parts that all fit into memory, and working on one given part at a time.
While this solution is viable in some cases, for any processing that goes across a “seam” this
can be problematic, e.g. calculation of areas/volumes of features, simplification often need a
global view of the dataset, flow modelling, etc. The second solution is thinning, which means
that when reading the input file, the algorithm will only read every 500th point for example.
While it permits the user to visualise and process the data, it somehow destroys the idea of
working with high-resolution altimetry data in the first place.

Since version 9.2, ArcGIS also provides a new type for the storage of very large TINs. In a nut-
shell, the Terrain type stores all the points in a DBMS, but the triangles are not explicitly stored.
The user must select so-called “vertical indexes” so that a hierarchy of TINs is created. For each
level in the hierarchy, ArcGIS selects representative points to form the TIN (the method used is
clear, it appears that they are randomly selected). Because each TIN is small in size when com-
pared to the original dataset, one can use the usual processing for TINs as available in ArcGIS
(see Peng et al. (2004) for more details). However, this solution suffers from the same problem

47Management of massive point cloud data: wet and dry

Figure 1. (a) A 2D surface obtained from a set of points in the plane having a height as an at-
tribute. (b) A triangulation of a set of points in the plane. The vertex v has 7 neighbours.

This paper investigates the use of a DBMS to store and manage not only the points coming from
a very large LiDAR dataset, but also the TIN of these points. DBMSs are investigated since
they are arguably the best tool to store and manage very large datasets (of any kind). The paper
briefly discusses in Sections 2 and 3 current solutions for storing and processing point clouds,
and then proposes in Section 4 an alternative which could have several benefits. This proposed
solution goes beyond the usual “store points and edges and triangles” described in Section 2,
and use recent advances in the compression of graphs.

2. Current solutions for storing and processing point clouds
Many companies offer solutions for the storage and processing of LiDAR data, and the problem
is also being tackled in the academia. What follow is a short overview of the most interesting
solutions, and does not claim to be a thorough review of all the possibilities. These were
choosen because they are, as far as I know, the most used by practitioners and the tools that of-
fer the most functionalities to handle massive point clouds.

2.1 Commercial software
The company Terrasolid offers several useful tools for the processing of LiDAR data. The
main problem here is that, as is the case with many other tools, the size of your computer’s main
memory decides how many points can be processed. Basically, once the memory is full, transfer
of data between the disk and the memory starts, and if this happens too much, the computations
might simply stop (called trashing). The first solution that Terrasolid and others provide is tiling
a big dataset into smaller parts that all fit into memory, and working on one given part at a time.
While this solution is viable in some cases, for any processing that goes across a “seam” this
can be problematic, e.g. calculation of areas/volumes of features, simplification often need a
global view of the dataset, flow modelling, etc. The second solution is thinning, which means
that when reading the input file, the algorithm will only read every 500th point for example.
While it permits the user to visualise and process the data, it somehow destroys the idea of
working with high-resolution altimetry data in the first place.

Since version 9.2, ArcGIS also provides a new type for the storage of very large TINs. In a nut-
shell, the Terrain type stores all the points in a DBMS, but the triangles are not explicitly stored.
The user must select so-called “vertical indexes” so that a hierarchy of TINs is created. For each
level in the hierarchy, ArcGIS selects representative points to form the TIN (the method used is
clear, it appears that they are randomly selected). Because each TIN is small in size when com-
pared to the original dataset, one can use the usual processing for TINs as available in ArcGIS
(see Peng et al. (2004) for more details). However, this solution suffers from the same problem

as Terrasolid, that is if the TIN created is larger than the memory there is no guarantee that the
processing operations will terminate. For instance, if one wants to create a high-resolution grid
from a TIN with all the input points, then if the TIN size (points + triangles + topological links)
is too big then it will simply not work.

Oracle Spatial, since version 11g, also provides new types for the storage of LiDAR datasets: a
Point Cloud type and a TIN type, which are similar. For building a Point Cloud, first the input
points are “bucketed” into cells containing a given maximum of points (let us say 2500), then a
spatial index (a R-tree) is constructed, and finally each point within a cell is also indexed (for
TINs, the triangle are simply defined by a reference to 3 vertices, and are also indexed within
one cell). Preliminary tests at GDMC/TUDelft have shown that many intermediate results are
stored to build the spatial indexes, and these use a lot of memory (Tijssen, 2009). Also, the TIN
type does not store the topological relationships between triangles (simply the 3 vertices), which
means that these types are probably more targeted towards the storage of very large datasets,
and that the manipulation of the surface is limited (to the best of my knowledge Oracle Spatial
does not offer any functions to manipulate or analyse the surface at this moment).

2.2 Academia
To deal with massive datasets, one can also design external memory algorithms (Vitter, 2001).
These basically use disks to store temporarily files that do not fit in memory, and instead of us-
ing the mechanism of the operating system, design explicit rules for the swapping between the
disk and the memory. These are an alternative to using a DBMS, and have been used for a few
LiDAR processing problems, see for instance Agarwal et al. (2006) and Arge et al. (2006). The
drawback is that the design of such algorithms is rather complex, and for different problems
different solutions have to be designed.

An alternative solution is the streaming approach of Isenburg et al. (2006a, 2006b), which mixes
ideas from external memory algorithms with different ways to keep the memory footprint very
low. The input points are processed in a certain order, and removed from memory when they are
not needed anymore. The idea was applied to create a billion-triangle TIN, and they succeeded
in under one hour with a conventional laptop (Isenburg et al., 2006b), which improved by a fac-
tor of 12 the fastest existing, that of Agarwal et al. (2005). The streaming ideas are very useful
for certain local problems (e.g. interpolation), but unfortunately cannot be used (or it would be
extremely challenging) for global processes such as simplification or flow modelling.

3. Storing TINs in a DBMS
The simplest way to store a TIN in a DBMS is to define a new datatype Triangle which contains
either the coordinates or the IDs of three points in the point cloud (a polygon could also be
used). As mentioned previously, that permits us to store the triangle, but topological relation-
ships between the triangles have to be computed (an expensive operation) if analysis of the sur-
face is wished, and it required spatially indexing massive amount of triangles.
An alternative is to implement in a DBMS the triangle-based data structure used by most trian-
gulation libraries, e.g. that of CGAL (Boissonnat et al., 2002). As shown in Figure 2, it consid-
ers the triangle its atom and stores each triangle with three pointers to its vertices and three
pointers to its adjacent triangles. The vertices and edges of each triangle must be oriented con-
sistently (e.g. counterclockwise) if we want to manipulate or perform some operations on a tri-
angulation. This structure stores topological relationships between triangles, but increases the
storage space required and at least two tables (points + triangles) have to be maintained when
the structure is updated.

More complex data structures for planar subdivisions could be also used (e.g. the DCEL (Muller
and Preparata, 1978), the half-edge (Mäntylä, 1988)) or the Generalized Maps (G-Maps) (Ber-

48 Management of massive point cloud data: wet and dry

trand et al., 1993, Lienhardt, 1994)), but they are very verbose (several primitives are stored and
these are linked by several pointers) and would most likely not be optimal in a DBMS.

Figure 2. With the triangle-based data structure, the triangle T has 3 pointers to its 3 vertices a,
b and c; and to its 3 neighbouring triangles A, B and C. The pair vertex-triangle is organised in
such a way that for instance a is ‘opposite’ to A.

4. A star-based data structure
The approach I propose in this paper to store and process massive point clouds is storing the
whole TIN in a DBMS (the points, the triangles and their topological relationships), and rely on
the DBMS for memory management. Since the whole TIN is available (and does not need to be
recomputed), one can readily query it and manipulate it. The processing operations would then
be built over the database without designing special memory management methods. This solu-
tion will most likely be a bit slower than solutions working with main memory, but once the
data structure is working and efficient, the benefits of a DBMS should compensate for the lack
of speed.

Figure 3. A triangulation with the stars of vertices 1 (light grey with dashed lines) and 4 (darker
grey with dotted lines) shown.

The data structure proposed uses recent advances in the compression of graphs, particularly the
“star-based” structure of Blandford et al. (2005), which was developed for main memory. It
does not store triangles explicitly, instead the star of every vertex is stored. As shown in Figure
3, the star of a given vertex v, denoted star(v), consists of all the triangles that contain v; it
forms a star-shaped polygon. The star of a vertex can be simply represented as an ordered list of
the IDs of the vertices on the star; a triangle is formed by the centre of the star plus 2 consecu-

49Management of massive point cloud data: wet and dry

trand et al., 1993, Lienhardt, 1994)), but they are very verbose (several primitives are stored and
these are linked by several pointers) and would most likely not be optimal in a DBMS.

Figure 2. With the triangle-based data structure, the triangle T has 3 pointers to its 3 vertices a,
b and c; and to its 3 neighbouring triangles A, B and C. The pair vertex-triangle is organised in
such a way that for instance a is ‘opposite’ to A.

4. A star-based data structure
The approach I propose in this paper to store and process massive point clouds is storing the
whole TIN in a DBMS (the points, the triangles and their topological relationships), and rely on
the DBMS for memory management. Since the whole TIN is available (and does not need to be
recomputed), one can readily query it and manipulate it. The processing operations would then
be built over the database without designing special memory management methods. This solu-
tion will most likely be a bit slower than solutions working with main memory, but once the
data structure is working and efficient, the benefits of a DBMS should compensate for the lack
of speed.

Figure 3. A triangulation with the stars of vertices 1 (light grey with dashed lines) and 4 (darker
grey with dotted lines) shown.

The data structure proposed uses recent advances in the compression of graphs, particularly the
“star-based” structure of Blandford et al. (2005), which was developed for main memory. It
does not store triangles explicitly, instead the star of every vertex is stored. As shown in Figure
3, the star of a given vertex v, denoted star(v), consists of all the triangles that contain v; it
forms a star-shaped polygon. The star of a vertex can be simply represented as an ordered list of
the IDs of the vertices on the star; a triangle is formed by the centre of the star plus 2 consecu-

tive vertices in the star list. If the star of every vertex in a dataset is stored (thus each star over-
laps several other stars), then we can implicitly store not only the triangles of the TIN, but also
all their topological relationships. Adjacency between triangles are stored, but also incidence
relationships between vertices and edges and triangles (so one can for instance navigate coun-
terclockwise through all the triangles incident to a given vertex). Observe that each triangle is
present in exactly 3 stars and each edge in 2 stars (in Figure 3 the edge (1, 3) is represented in
the stars of vertices 4 and 2, in the opposite direction). The data structure is therefore also akin
to the the half-edge (Mäntylä, 1988) where each edge is stored twice, one for each direction.

Figure 4. One example of a table to store the star of each point.

As shown in Figure 4, implementing this data structure in a DBMS is straightforward: only one
table with 5 attributes (id, x, y, z, start) is needed; star is an array of IDs. Perhaps the main ad-
vantage of such a structure is that the use of a separate spatial index is not necessary. Indeed, we
can rely on the topological relationships between the triangles to perform typical queries such
as: (i) given a location (x, y), which triangle contains it? ; (ii) range queries: return all the trian-
gles contained in a rectangle; (iii) obtain the triangles adjacent to a given one; etc. Functions
have to be implemented inside the DBMS (server-side programming), and only a standard index
on the ID column is needed because several SQL queries will be have to be made. An example
of such a function is the walking in the triangulation (see Figure 5 for an example) where adja-
cency relationships are used to navigate inside a TIN (see Mücke et al. (1999) for a detailed ex-
planation). Using SQL queries to perform such a walk is usually problematic, but with server-
side functions this is possible.

Figure 5. The WALK algorithm for a triangulation.

5. Discussion
The proposed star-based data structure is significantly different from what is usually available in
a DBMS (i.e. each element (point and/or triangle) is stored independently and a spatial index is
used for queries). It permits us to bypass the use of a spatial index at the cost of possible slower
answers to queries. However, it is space efficient compared to other solutions described in this
paper and the topological relationships between the triangles are explicitly stored, which permits
us to process and manipulate the structure. With solutions where the triangles are stored inde-

50 Management of massive point cloud data: wet and dry

pendently, the reconstruction of these relationships is necessary each time an operation needs to
be performed.

Furthermore, the structure permits dynamic updates (addition and removal of triangles and/or
vertices are possible, with local updates (Blandford et al., 2005)), and these could be imple-
mented directly in the DBMS. The GISt group at the Delft University of Technologies is cur-
rently working on implementing and optimising this structure, with basic functions such as in-
terpolation in TINs, slope/aspect derivation and conversion to grids.

The solution proposed is valid not for 2.5D models but also for any boundary representations
that can be triangulation (also for closed volumes), and the ideas are readily extensible to higher
dimensions. As a consequence, the idea of storing stars of edges in 3D would permit us to effi-
ciently store tetrahedra, and would offer an alternative to the structure of Penninga (2008).

References
P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient construction of constrained Delaunay triangula-
tion. In Proceedings 13th European Symposium on Algorithms, pages 355-366, 2005.
P. K. Agarwal, L. Arge, and A. Danner. From point cloud to grid DEM: A scalable approach. In
A. Reidl, W. Kainz, and G. Elmes, editors, Progress in Spatial Data Handling – 12th Interna-
tional Symposium on Spatial Data Handling. Springer, 2006.
L. Arge, A. Danner, H. Haverkort, and N. Zeh. I/O-efficient hierarchical watershed decomposi-
tion of grid terrain models. In A. Reidl, W. Kainz, and G. Elmes, editors, Progress in Spatial
Data Handling – 12th International Symposium on Spatial Data Handling, pages 825–844.
Springer-Verlag, 2006.
Y. Bertrand, J. F. Dufourd, J. Françon, and Pascal Lienhardt. Algebraic specification and devel-
opment in geometric modeling. In Proceedings TAPSOFT’93, volume 668 of Lecture Notes in
Computer Science, pages 75–89, Orsay, France, 1993.
Daniel K. Blandford, Guy E. Blelloch, David E. Cardoze, and Clemens Kadow. Compact repre-
sentations of simplicial meshes in two and three dimensions. International Journal of Computa-
tional Geometry and Applications, 15(1): 3-24, 2005.
Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, and Mariette
Yvinec. Triangulations in CGAL. Computational Geometry – Theory and Applications, 22: 5-
19, 2002.
Martin Isenburg, Yuanxin Liu, Jonathan Richard Shewchuk, and Jack Snoeyink. Streaming
computation of Delaunay triangulations. ACM Transactions on Graphics, 25(3): 1049-1056,
2006a.
Martin Isenburg, Yuanxin Liu, Jonathan Richard Shewchuk, Jack Snoeyink, and Tim Thirion.
Generating raster DEM from mass points via TIN streaming. In Geographic Information Sci-
ence – GIScience 2006, volume 4197 of Lecture Notes in Computer Science, pages 186-198,
Münster, Germany, 2006b.
Pascal Lienhardt. N-dimensional generalized combinatorial maps and cellular quasi-manifolds.
International Journal of Computational Geometry and Applications, 4(3): 275-324, 1994.
Martti Mäntylä. An introduction to solid modeling. Computer Science Press, New York, USA,
1988.
Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point location without preproc-
essing in two- and three-dimensional Delaunay triangulations. Computational Geometry – The-
ory and Applications, 12: 63–83, 1999.

51Management of massive point cloud data: wet and dry

D. E. Muller and Franco P. Preparata. Finding the intersection of two convex polyhedra. Theo-
retical Computer Science, 7: 217–236, 1978.
Wanning Peng, Dragan Petrovic, and Clayton Crawford. Handling large terrain data in GIS. In
ISPRS 2004—XXth Congress, volume IV, pages 281–286, Istanbul, Turkey, 2004.
Friso Penninga. 3D Topography: A Simplicial Complex-based Solution in a Spatial DBMS. PhD
thesis, Delft University of Technology, Delft, the Netherlands, 2008.
Theo Tijssen. Puntenwolken in Orable RDBMS (in dutch). Internal report, GDMC, Delft Uni-
versity of Technology, 2009.
Jeffrey Scott Vitter. External memory algorithms and data structures: dealing with massive data.
ACM Computing Surveys, 33(2): 209–271, 2001.
Kai Wang, Chor-pang Lo, George A. Brook, and Hamid R. Arabnia. Comparison of existing
triangulation methods for regularly and irregularly spaced height fields. International Journal of
Geographical Information Science, 15(8): 743–762, 2001.

52 Management of massive point cloud data: wet and dry

