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Abstract 
Advances in technologies to collect elevation data are far superior to the advances to store and 
process the resulting point clouds. This paper investigates the use of a DBMS to store and man-
age not only the points coming from massive point-based datasets, but also a TIN of these 
points. TINs are used as a support structure to implement processing and manipulation opera-
tors. I discuss in the paper why storing efficiently a TIN in a DBMS is a complex task, and I 
propose a new solution. It does not store explicitly triangles, as only the star of each point is 
stored. The details of the data structure are discussed and compared with other solutions cur-
rently available. 
 
1. Introduction 
New technologies such as airborne altimetric LiDAR (Light Detection and Ranging) or multi-
beam echosounders permit us to collect millions – and even billions – of elevation points (sam-
ples) for a given area, and that very quickly and with great accuracy. One example of the use of 
that technology in the Netherlands is the efforts by Rijkswaterstaat to build an accurate digital 
terrain model (DTM) of the whole country containing as much as 10 samples per m2 (the AHN2 
dataset, www.ahn.nl). Such datasets have attracted a lot of attention because of all their possible 
applications, e.g. flood modelling, monitoring of dikes, forest mapping, generation of 3D city 
models, etc. 
 
The main problems with massive point cloud datasets is that while they provide us with un-
precedented precision, computers have great many problems dealing with very large datasets 
that exceed the capacity of their main memory. The result is that they cannot efficiently display 
all the information, let alone process them. Examples of point cloud processes useful for many 
applications are: derivation of slope/aspect, conversion to a grid format, control of double 
points, calculations of area/volumes, viewshed analysis, creation of simplified DTM, extraction 
of bassins, etc. Advances in technologies to collect data are basically superior to our ability to 
process data. 
 
LiDAR or multi-beam datasets are formed by scattered points in 3D space, which are – in sev-
eral cases – the samples of a surface that can be projected on the horizontal plane (a so called 
“2.5D surface”), see Figure 1a. This is of course not always the case but for several situations 
2.5D is enough and it is therefore worth developing specific tools to handle this case since they 
can be highly optimised. While simply storing millions of unconnected points in a DBMS is no 
problem, the processing of LiDAR datasets needs more: we must be able to reconstruct the sur-
face represented by the points, and we must also be able to access this surface to manipulate it 
(e.g. adding/removing new samples), and also to derive values from it. The surface gives us the 
spatial relationships between unconnected points in 3D space, which is required if processing on 
the surface is wanted. The best way to reconstruct such a surface is arguably with a triangulated 
irregular network (TIN) respecting the Delaunay criterion (Wang et al., 2001). As shown in Fig-
ure 1b, a TIN subdivides the space covered by the points into non-overlapping triangles, and 
these can be used to reconstruct the surface and answer neighbourhood queries (“which points 
are close to x and surround it?”). In Figure 1b, the vertex x has for instance 7 well-defined 
neighbours. 
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Figure 1. (a) A 2D surface obtained from a set of points in the plane having a height as an at-
tribute. (b) A triangulation of a set of points in the plane. The vertex v has 7 neighbours. 
 
This paper investigates the use of a DBMS to store and manage not only the points coming from 
a very large LiDAR dataset, but also the TIN of these points. DBMSs are investigated since 
they are arguably the best tool to store and manage very large datasets (of any kind). The paper 
briefly discusses in Sections 2 and 3 current solutions for storing and processing point clouds, 
and then proposes in Section 4 an alternative which could have several benefits. This proposed 
solution goes beyond the usual “store points and edges and triangles” described in Section 2, 
and use recent advances in the compression of graphs. 
 
2. Current solutions for storing and processing point clouds 
Many companies offer solutions for the storage and processing of LiDAR data, and the problem 
is also being tackled in the academia. What follow is a short overview of the most interesting 
solutions, and does not claim to be a thorough review of all the possibilities. These were 
choosen because they are, as far as I know, the most used by practitioners and the tools that of-
fer the most functionalities to handle massive point clouds. 
 
2.1 Commercial software 
The company Terrasolid offers several useful tools for the processing of LiDAR data. The 
main problem here is that, as is the case with many other tools, the size of your computer’s main 
memory decides how many points can be processed. Basically, once the memory is full, transfer 
of data between the disk and the memory starts, and if this happens too much, the computations 
might simply stop (called trashing). The first solution that Terrasolid and others provide is tiling 
a big dataset into smaller parts that all fit into memory, and working on one given part at a time. 
While this solution is viable in some cases, for any processing that goes across a “seam” this 
can be problematic, e.g. calculation of areas/volumes of features, simplification often need a 
global view of the dataset, flow modelling, etc. The second solution is thinning, which means 
that when reading the input file, the algorithm will only read every 500th point for example. 
While it permits the user to visualise and process the data, it somehow destroys the idea of 
working with high-resolution altimetry data in the first place. 
 
Since version 9.2, ArcGIS also provides a new type for the storage of very large TINs. In a nut-
shell, the Terrain type stores all the points in a DBMS, but the triangles are not explicitly stored. 
The user must select so-called “vertical indexes” so that a hierarchy of TINs is created. For each 
level in the hierarchy, ArcGIS selects representative points to form the TIN (the method used is 
clear, it appears that they are randomly selected). Because each TIN is small in size when com-
pared to the original dataset, one can use the usual processing for TINs as available in ArcGIS 
(see Peng et al. (2004) for more details). However, this solution suffers from the same problem 

 



47Management of massive point cloud data: wet and dry 

 
Figure 1. (a) A 2D surface obtained from a set of points in the plane having a height as an at-
tribute. (b) A triangulation of a set of points in the plane. The vertex v has 7 neighbours. 
 
This paper investigates the use of a DBMS to store and manage not only the points coming from 
a very large LiDAR dataset, but also the TIN of these points. DBMSs are investigated since 
they are arguably the best tool to store and manage very large datasets (of any kind). The paper 
briefly discusses in Sections 2 and 3 current solutions for storing and processing point clouds, 
and then proposes in Section 4 an alternative which could have several benefits. This proposed 
solution goes beyond the usual “store points and edges and triangles” described in Section 2, 
and use recent advances in the compression of graphs. 
 
2. Current solutions for storing and processing point clouds 
Many companies offer solutions for the storage and processing of LiDAR data, and the problem 
is also being tackled in the academia. What follow is a short overview of the most interesting 
solutions, and does not claim to be a thorough review of all the possibilities. These were 
choosen because they are, as far as I know, the most used by practitioners and the tools that of-
fer the most functionalities to handle massive point clouds. 
 
2.1 Commercial software 
The company Terrasolid offers several useful tools for the processing of LiDAR data. The 
main problem here is that, as is the case with many other tools, the size of your computer’s main 
memory decides how many points can be processed. Basically, once the memory is full, transfer 
of data between the disk and the memory starts, and if this happens too much, the computations 
might simply stop (called trashing). The first solution that Terrasolid and others provide is tiling 
a big dataset into smaller parts that all fit into memory, and working on one given part at a time. 
While this solution is viable in some cases, for any processing that goes across a “seam” this 
can be problematic, e.g. calculation of areas/volumes of features, simplification often need a 
global view of the dataset, flow modelling, etc. The second solution is thinning, which means 
that when reading the input file, the algorithm will only read every 500th point for example. 
While it permits the user to visualise and process the data, it somehow destroys the idea of 
working with high-resolution altimetry data in the first place. 
 
Since version 9.2, ArcGIS also provides a new type for the storage of very large TINs. In a nut-
shell, the Terrain type stores all the points in a DBMS, but the triangles are not explicitly stored. 
The user must select so-called “vertical indexes” so that a hierarchy of TINs is created. For each 
level in the hierarchy, ArcGIS selects representative points to form the TIN (the method used is 
clear, it appears that they are randomly selected). Because each TIN is small in size when com-
pared to the original dataset, one can use the usual processing for TINs as available in ArcGIS 
(see Peng et al. (2004) for more details). However, this solution suffers from the same problem 

 

as Terrasolid, that is if the TIN created is larger than the memory there is no guarantee that the 
processing operations will terminate. For instance, if one wants to create a high-resolution grid 
from a TIN with all the input points, then if the TIN size (points + triangles + topological links) 
is too big then it will simply not work. 
 
Oracle Spatial, since version 11g, also provides new types for the storage of LiDAR datasets: a 
Point Cloud type and a TIN type, which are similar. For building a Point Cloud, first the input 
points are “bucketed” into cells containing a given maximum of points (let us say 2500), then a 
spatial index (a R-tree) is constructed, and finally each point within a cell is also indexed (for 
TINs, the triangle are simply defined by a reference to 3 vertices, and are also indexed within 
one cell). Preliminary tests at GDMC/TUDelft have shown that many intermediate results are 
stored to build the spatial indexes, and these use a lot of memory (Tijssen, 2009). Also, the TIN 
type does not store the topological relationships between triangles (simply the 3 vertices), which 
means that these types are probably more targeted towards the storage of very large datasets, 
and that the manipulation of the surface is limited (to the best of my knowledge Oracle Spatial 
does not offer any functions to manipulate or analyse the surface at this moment). 
 
2.2 Academia 
To deal with massive datasets, one can also design external memory algorithms (Vitter, 2001). 
These basically use disks to store temporarily files that do not fit in memory, and instead of us-
ing the mechanism of the operating system, design explicit rules for the swapping between the 
disk and the memory. These are an alternative to using a DBMS, and have been used for a few 
LiDAR processing problems, see for instance Agarwal et al. (2006) and Arge et al. (2006). The 
drawback is that the design of such algorithms is rather complex, and for different problems 
different solutions have to be designed. 
 
An alternative solution is the streaming approach of Isenburg et al. (2006a, 2006b), which mixes 
ideas from external memory algorithms with different ways to keep the memory footprint very 
low. The input points are processed in a certain order, and removed from memory when they are 
not needed anymore. The idea was applied to create a billion-triangle TIN, and they succeeded 
in under one hour with a conventional laptop (Isenburg et al., 2006b), which improved by a fac-
tor of 12 the fastest existing, that of Agarwal et al. (2005). The streaming ideas are very useful 
for certain local problems (e.g. interpolation), but unfortunately cannot be used (or it would be 
extremely challenging) for global processes such as simplification or flow modelling. 
 
3. Storing TINs in a DBMS 
The simplest way to store a TIN in a DBMS is to define a new datatype Triangle which contains 
either the coordinates or the IDs of three points in the point cloud (a polygon could also be 
used). As mentioned previously, that permits us to store the triangle, but topological relation-
ships between the triangles have to be computed (an expensive operation) if analysis of the sur-
face is wished, and it required spatially indexing massive amount of triangles. 
An alternative is to implement in a DBMS the triangle-based data structure used by most trian-
gulation libraries, e.g. that of CGAL (Boissonnat et al., 2002). As shown in Figure 2, it consid-
ers the triangle its atom and stores each triangle with three pointers to its vertices and three 
pointers to its adjacent triangles. The vertices and edges of each triangle must be oriented con-
sistently (e.g. counterclockwise) if we want to manipulate or perform some operations on a tri-
angulation. This structure stores topological relationships between triangles, but increases the 
storage space required and at least two tables (points + triangles) have to be maintained when 
the structure is updated. 
 
More complex data structures for planar subdivisions could be also used (e.g. the DCEL (Muller 
and Preparata, 1978), the half-edge (Mäntylä, 1988)) or the Generalized Maps (G-Maps) (Ber-
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trand et al., 1993, Lienhardt, 1994)), but they are very verbose (several primitives are stored and 
these are linked by several pointers) and would most likely not be optimal in a DBMS. 

 
Figure 2. With the triangle-based data structure, the triangle T has 3 pointers to its 3 vertices a, 
b and c; and to its 3 neighbouring triangles A, B and C. The pair vertex-triangle is organised in 
such a way that for instance a is ‘opposite’ to A. 
 
4. A star-based data structure 
The approach I propose in this paper to store and process massive point clouds is storing the 
whole TIN in a DBMS (the points, the triangles and their topological relationships), and rely on 
the DBMS for memory management. Since the whole TIN is available (and does not need to be 
recomputed), one can readily query it and manipulate it. The processing operations would then 
be built over the database without designing special memory management methods. This solu-
tion will most likely be a bit slower than solutions working with main memory, but once the 
data structure is working and efficient, the benefits of a DBMS should compensate for the lack 
of speed. 

 
Figure 3. A triangulation with the stars of vertices 1 (light grey with dashed lines) and 4 (darker 
grey with dotted lines) shown. 
 
The data structure proposed uses recent advances in the compression of graphs, particularly the 
“star-based” structure of Blandford et al. (2005), which was developed for main memory. It 
does not store triangles explicitly, instead the star of every vertex is stored. As shown in Figure 
3, the star of a given vertex v, denoted star(v), consists of all the triangles that contain v; it 
forms a star-shaped polygon. The star of a vertex can be simply represented as an ordered list of 
the IDs of the vertices on the star; a triangle is formed by the centre of the star plus 2 consecu-
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tive vertices in the star list. If the star of every vertex in a dataset is stored (thus each star over-
laps several other stars), then we can implicitly store not only the triangles of the TIN, but also 
all their topological relationships. Adjacency between triangles are stored, but also incidence 
relationships between vertices and edges and triangles (so one can for instance navigate coun-
terclockwise through all the triangles incident to a given vertex). Observe that each triangle is 
present in exactly 3 stars and each edge in 2 stars (in Figure 3 the edge (1, 3) is represented in 
the stars of vertices 4 and 2, in the opposite direction). The data structure is therefore also akin 
to the the half-edge (Mäntylä, 1988) where each edge is stored twice, one for each direction. 

 
Figure 4. One example of a table to store the star of each point. 
 
As shown in Figure 4, implementing this data structure in a DBMS is straightforward: only one 
table with 5 attributes (id, x, y, z, start) is needed; star is an array of IDs. Perhaps the main ad-
vantage of such a structure is that the use of a separate spatial index is not necessary. Indeed, we 
can rely on the topological relationships between the triangles to perform typical queries such 
as: (i) given a location (x, y), which triangle contains it? ; (ii) range queries: return all the trian-
gles contained in a rectangle; (iii) obtain the triangles adjacent to a given one; etc. Functions 
have to be implemented inside the DBMS (server-side programming), and only a standard index 
on the ID column is needed because several SQL queries will be have to be made. An example 
of such a function is the walking in the triangulation (see Figure 5 for an example) where adja-
cency relationships are used to navigate inside a TIN (see Mücke et al. (1999) for a detailed ex-
planation). Using SQL queries to perform such a walk is usually problematic, but with server-
side functions this is possible. 

 
Figure 5. The WALK algorithm for a triangulation. 
 
5. Discussion 
The proposed star-based data structure is significantly different from what is usually available in 
a DBMS (i.e. each element (point and/or triangle) is stored independently and a spatial index is 
used for queries). It permits us to bypass the use of a spatial index at the cost of possible slower 
answers to queries. However, it is space efficient compared to other solutions described in this 
paper and the topological relationships between the triangles are explicitly stored, which permits 
us to process and manipulate the structure. With solutions where the triangles are stored inde-
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pendently, the reconstruction of these relationships is necessary each time an operation needs to 
be performed.  
 
Furthermore, the structure permits dynamic updates (addition and removal of triangles and/or 
vertices are possible, with local updates (Blandford et al., 2005)), and these could be imple-
mented directly in the DBMS. The GISt group at the Delft University of Technologies is cur-
rently working on implementing and optimising this structure, with basic functions such as in-
terpolation in TINs, slope/aspect derivation and conversion to grids. 
 
The solution proposed is valid not for 2.5D models but also for any boundary representations 
that can be triangulation (also for closed volumes), and the ideas are readily extensible to higher 
dimensions. As a consequence, the idea of storing stars of edges in 3D would permit us to effi-
ciently store tetrahedra, and would offer an alternative to the structure of Penninga (2008). 
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