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Summary

Regional gravity field modeling using airborne gravimetry data

Airborne gravimetry is the most efficient technique to provide accurate high-resolution
gravity data in regions that lack good data coverage and that are difficult to access oth-
erwise. With current airborne gravimetry systems gravity can be obtained at a spatial
resolution of 2 km with an accuracy of 1-2 mGal. It is therefore an ideal technique to
complement ongoing satellite gravity missions and establish the basis for many applica-
tions of regional gravity field modeling.

Gravity field determination using airborne gravity data can be divided in two major
steps. The first step comprises the pre-processing of raw in-flight gravity sensor mea-
surements to obtain gravity disturbances at flight level and the second step consists of
the inversion of these observations into gravity functionals at ground level. The pre-
processing of airborne gravity data consists of several independent steps such as low-pass
filtering, a cross-over adjustment to minimize misfits at cross-overs of intersecting lines,
and gridding. Each of these steps may introduce errors that accumulate in the course of
processing, which can limit the accuracy and the resolution of the resulting gravity field.

For the inversion of the airborne gravity data at flight level into gravity functionals at
the Earth’s surface, several approaches can be used. Methods that have been successfully
applied to airborne gravity data are integral methods and least-squares collocation, but
both methods have some disadvantages. Integral methods require that the data are availa-
ble in a much larger area than for which the gravity functionals are computed. A large
cap size is required to reduce edge effects that result from missing data outside the target
area. Least-squares collocation suffers much less from these errors and can yield accurate
results, provided that the auto-covariance function gives a good representation of data
in- and outside the area. However, the number of base functions equals the number of
observations, which makes least-squares collocation numerically less efficient.

In this thesis a new methodology for processing airborne gravity data is proposed. It
combines separate pre-processing steps with the estimation of gravity field parameters in
one algorithm. Importantly, the concept of low-pass filtering is replaced by a frequency-
dependent data weighting to handle the strong colored noise in the data. Frequencies
at which the noise level is high get a lower weight than frequencies at which the noise
level is low. Furthermore, bias parameters are estimated jointly with gravity field param-
eters instead of applying a cross-over adjustment. To parameterize the gravity potential a
spectral representation is used, which means that the estimation results in a set of coeffi-
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cients. These coefficients are used to compute gravity functionals at any location on the
Earth’s surface within the survey area. The advantage of the developed approach is that
it requires a minimum of pre-processing and that all data can be used as obtained at the
locations where they are observed.

The performance of the developed methodology is tested using simulated data and
data acquired in airborne gravimetry surveys. The goal of the simulations is to test the
approach in a controlled environment and to make optimal choices for the processing
of real data. For the numerical studies with simulated data, the new methodology out-
performs the more traditional approaches for airborne gravity data processing. For the
application of the developed methodology to real data, three data sets are used. The first
data set comprises airborne gravity measurements over the Skagerrak area, obtained as
part of a joint project between several European institutions in 1996. This survey pro-
vided accurate airborne gravity data, and because good surface gravity data are available
within the area, the data set is very useful to test the performance of the approach. The
second data set was obtained by the GeoForschungsZentrum Potsdam during a survey off
the coast of Chile in 2002. This data set, which has a lower accuracy than the first data
set, is used to investigate the estimation of non-gravitational parameters such as biases
and scaling factors. The final data set that is used consists of airborne gravity data ac-
quired by Sander Geophysics Limited in 2003. The survey area is located near Timmins,
Ontario and is much smaller than the area of the other data sets. The small size of the
area and the high accuracy of the data make it a challenging data set for regional gravity
modeling.

The computational experiments with real data show that the performance of the de-
veloped methodology is at the same level as traditional methods in terms of gravity field
errors. However, it provides a more flexible and powerful approach to airborne gravity
data processing. It requires a minimum of pre-processing and all observations are used
in the determination of a regional gravity field. The frequency-dependent data weighting
is successfully applied to each data set. The approach provides a statistically optimal so-
lution and is a formalized way to handle colored noise. A noise model can be estimated
from a posteriori least-squares residuals in an iterative way. The procedure is purely data-
driven and, unlike low-pass filtering, does not depend on previous experience of the user.
The developed methodology allows for the simultaneous estimation of non-gravitational
parameters with the gravity field parameters. A testing procedure should be applied,
however, to avoid insignificant estimations and high correlations. For the Chile data set
a significant improvement of the estimated gravity field is obtained when bias and scale
factors are estimated from the observations. The results of the computations with the real
data sets show the high potential of using airborne gravimetry to obtain accurate gravity
for geodetic and geophysical applications.
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Samenvatting

Regionale zwaartekrachtveldmodellering met behulp van vliegtuiggravime−
triegegevens

Vliegtuiggravimetrie is een van de meest efficiënte technieken om nauwkeurige zwaarte-
krachtgegevens in te winnen met een hoge resolutie in regio’s waar een goede dekking
van deze gegevens ontbreekt en die op een andere manier moeilijk te bereiken zijn. Met
de huidige vliegtuiggravimetriesystemen kunnen zwaartekrachtgegevens met een ruimte-
lijke resolutie van 2 km en een nauwkeurigheid van 1-2 mGal worden verkregen. Het
is dus een ideale techniek om huidige satellietzwaartekrachtmissies aan te vullen en de
basis te vormen voor regionale zwaartekrachtveldmodellering.

Zwaartekrachtveldbepaling met behulp van vliegtuiggravimetriegegevens kan wor-
den onderverdeeld in twee stappen. De eerste stap bestaat uit de voorbewerking van
de ruwe data, gemeten met de zwaartekrachtsensoren, wat resulteert in zwaartekracht-
anomalieën op vlieghoogte. De voorbewerking van vliegtuiggravimetriegegevens bestaat
uit verschillende onafhankelijke stappen zoals laagdoorlaatfilteren, een cross-overver-
effening om misfits op kruispunten van profielen te minimaliseren, en gridden. Elk van
deze stappen kan fouten introduceren die accumuleren in de loop van de gegevensver-
werking, wat de nauwkeurigheid en resolutie van het resulterende zwaartekrachtveld kan
beperken.

De tweede stap bestaat uit de omrekening van de waarnemingen op vlieghoogte in
zwaartekrachtwaarden op het aardoppervlak. Voor deze omrekening kunnen verschil-
lende methoden worden gebruikt. Methoden die met succes zijn toegepast op vliegtuig-
gravimetriegegevens zijn integraalmethoden en kleinstekwadratencollocatie, maar beide
methoden hebben een aantal nadelen. Integraalmethoden vereisen dat de gegevens in
een veel groter gebied beschikbaar zijn dan waarvoor de zwaartekrachtwaarden worden
berekend. Een grote blokgrootte is nodig om randeffecten als gevolg van ontbrekende
gegevens buiten het doelgebied te verminderen. Kleinstekwadratencollocatie lijdt veel
minder onder deze fouten en kan nauwkeurige resultaten opleveren, op voorwaarde dat
de auto-covariantiefunctie een goede weergave geeft van de gegevens in en buiten het ge-
bied. Daarentegen is het aantal basisfuncties gelijk aan het aantal waarnemingen, waar-
door kleinstekwadratencollocatie numeriek minder efficiënt is.

In dit proefschrift wordt een nieuwe methode voor de verwerking van vliegtuig-
gravimetriegegevens voorgesteld. Demethode combineert verschillende voorbewerkings-
stappen met de schatting van de zwaartekrachtveldparameters in één algoritme. Daar-
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naast wordt het concept van laagdoorlaatfilteren vervangen door een frequentie-afhanke-
lijke weging van waarnemingen om de invloed van dominante, gekleurde ruis te vermin-
deren. Frequenties waarop de ruis groot is krijgen een lager gewicht dan de frequen-
ties waarop de ruis laag is. Bovendien worden systematische fouten gezamenlijk met
de zwaartekrachtveldparameters geschat in plaats van een cross-oververeffening toe te
passen. Om de zwaartekrachtpotentiaal te parametriseren wordt een spectrale represen-
tatie gebruikt, hetgeen betekent dat de schatting resulteert in een set van coëfficiënten.
Deze worden gebruikt om zwaartekrachtwaarden te berekenen op vooraf bepaalde lo-
caties op het aardoppervlak binnen het gebied. Het voordeel van de ontwikkelde methode
is dat het een minimum van voorbewerkingsstappen vereist en dat alle gegevens kunnen
worden gebruikt zoals ze verkregen zijn in de waarnemingspunten.

De prestaties van de ontwikkelde methode zijn getest met gesimuleerde data en data
verkregen in vliegtuiggravimetriemeetcampagnes. Het doel van de simulaties is om de
methode te testen in een gecontroleerde omgeving en om optimale keuzes te maken voor
de verwerking van echte data. Voor de numerieke studies met gesimuleerde data presteert
de ontwikkeldemethode beter dan de meer traditionele methoden voor de verwerking van
vliegtuiggravimetriegegevens. De ontwikkelde methode is tevens toegepast op drie echte
datasets. De eerste dataset bestaat uit vliegtuiggravimetriemetingen in de Skagerrak,
gemeten in 1996 als onderdeel van een gezamenlijk project van verscheidene Europese
instellingen. Omdat deze meetcampagne nauwkeurige zwaartekrachtmetingen opleverde
en omdat goede oppervlaktezwaartekrachtgegevens beschikbaar zijn in dit gebied, is deze
dataset zeer geschikt voor het testen van de ontwikkelde methode. De tweede dataset is
gemeten door het GeoForschungsZentrum Potsdam in 2002 tijdens een meetcampagne
buiten de kust van Chili. Deze gegevens, die een lagere nauwkeurigheid hebben dan
de eerste dataset, zijn gebruikt om de schatting van niet-gravitationele parameters zoals
systematische fouten en schaalfactoren te testen. De laatste dataset die is gebruikt bestaat
uit de vliegtuiggravimetriegegevens verworven door Sander Geophysics Limited in 2003.
Het gebied waar de meetcampagne is uitgevoerd ligt nabij Timmins, Ontario en is veel
kleiner dan de meetgebieden van de andere twee datasets. De kleine omvang van het
gebied en de hoge nauwkeurigheid van de gegevens maken het een uitdagende dataset
voor regionale zwaartekrachtveldmodellering.

Uit de berekeningen met echte data blijkt dat de prestaties van de ontwikkelde me-
thode vergelijkbaar zijn met traditionele methoden met betrekking tot fouten in de bere-
kende zwaartekrachtwaarden. De methode biedt echter een meer flexibele en effectieve
aanpak voor de verwerking van vliegtuiggravimetriegegevens. Er is een minimum aan
voorbewerking vereist en alle waarnemingen worden gebruikt voor de schatting van een
regionaal zwaartekrachtveld. De frequentie-afhankelijke weging van metingen is met
succes toegepast op elke dataset. Er wordt een statistisch optimale oplossing verkregen
en de methode biedt een formele benadering voor het verwerken van gekleurde ruis. Een
ruismodel kan worden geschat op iteratieve wijze met behulp van a posteriori residuen
uit een kleinstekwadratenvereffening. De procedure wordt geheel door data gedreven en
hangt in tegenstelling tot laagdoorlaatfilters niet af van de expertise van de gebruiker. De
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ontwikkelde methode maakt het mogelijk om niet-gravitationele parameters gelijktijdig
te schatten met zwaartekrachtveldparameters. Een testprocedure moet echter worden
toegepast om niet-significante schattingen en hoge correlaties te voorkomen. Voor de
Chili-dataset kan een belangrijke verbetering van het geschatte zwaartekrachtveld wor-
den verkregen als systematische fouten en schaalfactoren worden geschat op basis van de
waarnemingen. De resultaten van de berekeningen met echte data tonen het grote poten-
tieel aan van het gebruik van vliegtuiggravimetrie voor het verkrijgen van nauwkeurige
zwaartekrachtgegevens voor geodetische en geofysische toepassingen.
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b bias
B beam position
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Introduction 1
1.1 Background

Airborne gravimetry has developed into a technique that is capable of providing accurate
gravity data at a high spatial resolution of 2 km or better. Airborne gravity measurements
can be obtained in regions that lack good data coverage and which are difficult to access
otherwise, such as mountainous areas, rain forests, and the polar regions. It is therefore
an ideal technique to complement satellite-only gravity models which are limited to full
wavelengths of approximately 150 km, and to provide the basis for regional gravity field
modeling. Furthermore, airborne gravity can be used to validate existing data sets, such
as marine surveys, and it is the only efficient tool to provide a seamless transition between
terrestrial and marine gravity data.

The idea to use aircraft for gravity measurements is not new. Already in the late 1950s
it was recognized that if the appropriate level of accuracy could be achieved airborne
gravimetry would be vastly superior in economy and efficiency to point-wise terrestrial
gravimetry. Although the first experiments gave promising results, it did not develop
into a major tool for gravity field mapping for the following thirty years, due to the
lack of accurate navigation data. This changed in the late eighties and early nineties
when carrier phase Differential Global Positioning System (DGPS) became available.
Since then many wide-area airborne gravity surveys have been performed with increasing
resolution and accuracy.

In principle, gravimeters are highly sensitive accelerometers. If an accelerometer is
put stationary on the surface of the Earth and it is level (i.e. the sensitive axis coincides
with the direction of the gravity vector), the magnitude of gravity can be determined. For
airborne gravimetry, the situation becomes more complex because the accelerometer is
moving. Both aircraft and gravitational accelerations are sensed and the instrument is
not easily kept level. Therefore, an airborne gravity system requires several components:
an accelerometer for measuring what is called the specific force, a system to keep the
accelerometer level (or for computing its attitude) and a system that measures the iner-
tial acceleration of the aircraft. Since the improvement in GPS-technology, all airborne
gravity systems nowadays depend on DGPS to determine the latter acceleration. By dif-
ferencing the acceleration outputs of the two systems (accelerometer and GPS), common
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accelerations are eliminated and gravity and the effect of system errors remain.
Attitude stabilization is traditionally done with damped two-axes platform systems.

A gravity sensor, often a modified shipborne gravimeter, is mounted on the platform,
which is mechanically stabilized using accelerometers and gyros. Over the years these
systems have been improved and due to the excellent results that have been reported with
these systems, they have become the established technique for airborne gravimetry. An
alternative to a stabilized platform system is a strapdown inertial navigation system (INS).
A comparison with the traditional system has shown that a strapdown system can reach
the same level of accuracy. The advantage of a strapdown INS is that the full gravity
vector can be determined and that it has the potential to increase the spatial resolution,
whereas the platform systems usually have a better long-term stability.

Because airborne measurements are taken in a very dynamic environment, the noise
in the data is extremely large. Typically, noise-to-signal ratios of 1000 or more are ob-
served. To extract the signal from such noise is one of the major challenges in gravity
field modeling from airborne gravity measurements. Fortunately, the largest contribution
to the noise consists of high frequency noise, caused by aircraft vibration and the ampli-
fication of noise in the GPS positions when computing accelerations. The most common
approach to remove these noise effects is to apply a low-pass filter. However, such a
filtering deteriorates the gravity signal and limits the resolution that can be obtained.

In geodesy, one of the main applications of airborne gravity data is local geoid deter-
mination. The geoid can be defined as the equipotential surface of the gravity field that
corresponds most closely to mean sea level. It is used as a reference surface for heights.
Combined with the accurate low-frequency information from satellite gravity models,
the geoid can be determined from airborne gravimetry data with decimeter-level accu-
racy or better. In the field of geophysics, airborne gravimetry is mainly used for regional
geological studies and resource exploration, but the required resolution and accuracy can
only just be met.

The resolution and accuracy of airborne gravimetry may be improved in two ways:
by improvement of the sensors and by developing improved methodologies for the pro-
cessing of airborne gravity data. The research presented in this thesis is focused on the
latter.

1.2 Objectives

Traditionally, the pre-processing of airborne gravity data consists of various indepen-
dent steps, such as low-pass filtering and the adjustment of data by minimizing misfits
at cross-over points. The result of data pre-processing is generally a set of gravity field
values along profiles at flight level, which is used as input for the inversion into gravity
functionals of interest at ground level. The objective of this thesis is to develop a new
technique that combines separate data processing steps with the estimation of gravity pa-
rameters in one algorithm. Importantly, a frequency-dependent data weighting to handle
colored noise is applied instead of the traditional filtering. The developed methodology
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is compared with established methods for airborne gravity data processing.

The following topics related to the general objective are addressed in this study:

Representation of the gravity field
A suitable representation of the disturbing potential for airborne gravity field determina-
tion must be chosen. In this thesis, a spectral representation of the gravity field is used, i.e
the disturbing potential T (x) is expressed as a linear combination of harmonic functions
ϕ(x):

T (x) =
∑

k

akϕk(x), (1.1)

where ak are the coefficients to be determined. The explicit expressions of the base func-
tions ϕ(x) can be chosen depending on the coordinate system under consideration. For a
Cartesian coordinate system they are given as a product of trigonometric and exponential
functions, which are fundamental solutions of Laplace’s equation in Cartesian coordi-
nates. The application of such a representation to airborne gravity data is investigated.

Regularization
For the computation of an accurate gravity field solution, regularization is needed since
the goal is to determine the gravity field on or near the Earth’s surface, not at aircraft
altitude. Without regularization the estimation of a gravity field solution may become er-
roneous because data errors and unmodeled signal get amplified in the process of down-
ward continuation. The issue of optimal regularization is an important part of this study.
Various ways to define the regularization matrix and algorithms for the automatic selec-
tion of the regularization parameter will be considered.

Frequency-dependent data weighting
The standard approach to handle colored noise in airborne gravity measurements is to
apply a low-pass filter. Such a filter, however, deteriorates the signal. A filter of a suffi-
ciently large length reduces the noise in the obtained data, but the signal gets attenuated
as well. As such, the results may be distorted even at frequencies where the noise is
small. In this research the concept of filtering is replaced by the concept of frequency-
dependent data weighting. Frequencies at which the noise is large get less weight than
frequencies at which the noise is small. This approach to handle noise has already been
applied successfully in gravity field modeling from satellite data, but is new in airborne
gravity field determination. Essential in this procedure is the estimation of a noise model
for which several strategies will be explored.

Bias and drift handling
The traditional approach of airborne gravity data processing often includes a cross-over
adjustment to estimate bias and/or drift parameters. This method of adjustment of cross-
over misfits has several disadvantages such as the requirement of a close coincidence of

3



Introduction

measurement points at crossing lines, the low redundancy in the estimation, the necessity
to interpolate data, and the possible aliasing of random errors into the solution. In this
thesis an alternative method is derived, which combines the handling of bias parameters
with the estimation of gravity field parameters. Its performance is compared with the
traditional method of cross-over adjustment.

Comparison and validation
The developed methodology is tested and compared with traditional methods using simu-
lated and real data sets. The goal of the simulation study is to analyze and optimize the
performance of the developed methodology in a controlled environment. The results of
real data processing are compared and validated using results from traditional algorithms
and available surface gravity data.

1.3 Outline

The outline of this thesis is as follows. In chapter 2 the principle of airborne gravimetry is
described. The various system concepts are discussed as well as the general measurement
model and error model of airborne gravimetry. Furthermore, a historical overview is
given and the most important applications of airborne gravity measurements are outlined.

The processing of airborne gravity data is discussed in chapter 3. The processing con-
sists of two steps; the pre-processing, which generally results in a set of filtered observa-
tions at flight level; and the inversion of airborne gravity data into gravity functionals at
the Earth’s surface. For the latter several methods are summarized that have been success-
fully applied to airborne gravity data, such as integral methods, least-squares collocation
and least-squares adjustment using radial base functions.

In chapter 4 a new methodology for the processing of airborne gravity data is pro-
posed. The approach combines several pre-processing steps with the estimation of grav-
ity field parameters. The base functions that are used to represent the disturbing potential
are the fundamental solutions of Laplace’s equation in Cartesian coordinates. Frequency-
dependent data weighting to handle colored noise in the observations is introduced, as
well as regularization methods to obtain a stable solution. This chapter forms the theo-
retical framework for the computations and analyses in the remainder of the thesis.

The developed methodology is tested and compared with traditional methods using
simulated data sets. The results of these computations are presented in chapter 5. The
goal of this chapter is to determine the optimal strategy for airborne gravity data process-
ing. Tests are performed with noise free data as well as with data corrupted by white
noise and colored noise.

Chapter 6 describes the application of the optimal strategy to real airborne gravimetric
survey data. Several data sets are used. The first data set consists of airborne gravity
measurements acquired in 1996 during a survey over the Skagerrak area. For this region
good ground truth data is available, which is used to derive a noise model and to validate
the results. The second data set was obtained during a campaign off the coast of Chile in
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2002. The last data set that is used in this chapter is a geophysical data set from a survey
flown over a relatively small area in Ontario, Canada in 2003.

Finally, the conclusions and recommendations are given in chapter 7.
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Airborne gravimetry 2
This chapter provides an introduction to airborne gravimetry. First, a historical overview
is given, starting from the first ideas in the late 1950s and concluding with the latest de-
velopments in this field. The general principle is discussed in section 2.2, focusing on
sensor orientation and separation of kinematic and gravitational accelerations. Further-
more, an overview of techniques that are used to measure gravity from aircraft is given.
The mathematical concept of both the measurement and the error model is explained in
section 2.3.1, resulting in the fundamental equations for airborne gravity pre-processing
and the most important error sources that affect airborne gravity measurements. The
chapter concludes with a discussion of geodetic and geophysical applications of airborne
gravimetry and opportunities for future developments.

2.1 Historical overview

Already in the 1950s, both geophysicists and geodesists were looking for solutions to
measure gravity from the air. The first reported test of airborne gravity measurements
is described in Lundberg (1957), where a system based on the principle of gradiome-
try was used. However, Lundberg’s test was received with general skepticism in the
exploration industry (Hammer, 1983). Following the successful use of a gravity meter
aboard submarines and ships in the 1950s, the Air Force Cambridge Research Center
initiated a program to develop an airborne gravity meter system. The first test was per-
formed in 1958 by the U.S. Air Force, using a LaCoste and Romberg gimbal-supported
sea gravimeter (S5), with navigation data provided by a Doppler system on the aircraft
and a camera tracking range on the ground (Thompson and LaCoste, 1960). Shortly af-
ter this test a second test was done by Fairchild Aerial Surveys (Nettleton et al., 1960).
The gravimeter used was again a LaCoste and Romberg instrument, but the aircraft was
equipped with a mapping camera for positioning and a radar altimeter and hypsometer to
determine the altitude.

The main problems for airborne gravimetry at the time were the navigation of the
aircraft, including velocity, elevation and space positioning, the Eötvös effect, in-flight
accelerations of the aircraft, and the lack of a gravimeter able to work in a dynamic
environment (Thompson and LaCoste, 1960). However, it appeared that a relatively
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low accuracy of about 10 mGal could be obtained using existing navigation systems,
complemented by accurate ground control techniques, such as optical and radar tracking
ranges.Furthermore, experience with large aircraft at high altitudes indicated that smooth
flight conditions could be obtained, thus reducing large accelerations. The Eötvös effect,
which is directly related to the aircraft velocity, was considered to be a major problem
for gravity measurements in an aircraft. However, with proper flight programming, accu-
rate Eötvös corrections could be made. As mentioned above, the gravimeters used in the
first tests were modified sea gravimeters using a gimbal suspension to handle horizontal
accelerations. This system had been developed and tested by LaCoste and Romberg for
use at sea. Later, these systems were replaced by stabilized platform systems (cf. figure
2.1), which performed much better (LaCoste, 1967).

Figure 2.1: Stabilized platform gravity meter (LaCoste et al., 1967).

The tests in the beginning of the 1960s were performed with gravity meters installed
in fixed-wing aircraft. The first successful measurement of gravity from a helicopter was
performed in 1965 by the U.S. Naval Oceanographic Office, using a gimbal-suspended
LaCoste and Romberg Sea Gravimeter (Gumert and Cobb, 1970; Gumert, 1998). A more
thorough test followed in 1966, providing gravity data with accuracies of about 3 mGal,
leading to the development of a complete helicopter gravity measuring system (HGMS),
described in Gumert and Cobb (1970). The instrumentation consisted of a LaCoste and
Romberg stable-platform gravity meter, a laser altimeter, a camera and a HIRAN nav-
igation system. The advantages of a helicopter over fixed-wing aircraft are the better
terrain-following capability, the increased spatial resolution resulting from flying at lower
altitude and lower speed and the fact that a helicopter is less affected by turbulent condi-
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tions than most other types of aircraft (Lee et al., 2006). Its only disadvantage may be a
somewhat smaller range.

Despite improvements in scalar gravity system design, and the development of high
resolution radar altimeters for vertical acceleration determination in the eighties (see e.g.
Brozena (1984)), airborne gravimetry did not become fully operational until the intro-
duction of GPS. Especially the use of carrier phase measurements and Differential GPS
(DGPS) opened new ways to resolve navigational problems (see e.g. Brozena et al.
(1989), Schwarz et al. (1989), Kleusberg et al. (1990)). The impact of the new posi-
tioning technology led to two important developments in airborne gravimetry (Schwarz
and Li, 1997). The first one was the perfection of existing scalar gravimeter systems,
which could be used, on the one hand, for geophysical exploration and, on the other
hand, for large regional surveys as required by geodesy. The second development was
the combination of GPS with inertial measuring units (IMU) for sensor stabilization and
gravity vector determination.

One of the first large-scale airborne gravity surveys was the campaign over Greenland
in 1991 and 1992, performed by the U.S. Naval Research Laboratory (NRL) in coopera-
tion with the Danish National Survey and Cadastre (KMS) (currently part of the TU Den-
mark (DTU Space)), which proved the suitability of airborne gravimetry for gravity field
mapping (see Brozena (1992), Brozena and Peters (1994), Forsberg and Kenyon (1994)).
Other examples of wide-area surveys are the gravity survey of Switzerland, a joint project
between the Swiss Federal Institute of Technology and LaCoste and Romberg Gravity
Meters Inc. in 1992 (Klingelé et al., 1995), the AGMASCO project over the Skagerrak
(1996) and the Azores (1997) conducted by a joint program of various European institutes
(Forsberg et al. (1997), Hehl et al. (1997)) and the gravity surveys over theWest Antarctic
ice sheet (1991-1997) flown by the Lamont-Doherty Earth Observatory in collaboration
with the Institute for Geophysics of the University of Texas (Bell et al., 1999). Recent
major projects are the nationwide geoid and regional surveys of Malaysia (2002-2003),
Mongolia (2004-2005) and Ethiopia (2006-2007) performed by DNSC (Olesen and Fors-
berg, 2007b), and the survey of Taiwan (Hwang et al., 2007). The reported accuracies of
these campaigns were 1.5-2 mGal at 5-6 km spatial resolution.

In the nineties, several alternative system concepts were developed, based on the
combination of inertial technology and DGPS. The Inertial Technology Center (ITC) in
Moscow implemented and tested an inertially stabilized platform system in cooperation
with the University of Calgary and Canagrav Research Ltd. in Calgary. For details of
this test see Salychev et al. (1994). A similar system, called AIRGrav, was developed
by Sander Geophysics Ltd. (Ferguson and Hammada, 2001). Both systems have been
demonstrated to yield medium and high resolution estimates of the gravity field with an
accuracy of 0.5-1.5 mGal (Bruton, 2000).

The use of a strapdown Inertial Navigation System (SINS) for airborne gravimetry
was pioneered at the University of Calgary (see e.g. Schwarz et al. (1991)), where de-
velopment and testing continued until the beginning of this decade. The advantage of
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such a system is its smaller size and relatively low costs. Results of the first airborne test
in 1995, using a Honeywell LASEREF III inertial system, showed that relative gravity
can be obtained with an accuracy of 2-3 mGal at a half-wavelength resolution of 5 km
(Wei and Schwarz, 1998). A side-by-side comparison of a strapdown INS system with
a LaCoste and Romberg stable platform gravimeter, described by Glennie and Schwarz
(1999), demonstrated that both systems performed equally well in terms of RMS er-
rors, but the LCR system showed a better long-term stability. Later, Bruton et al. (2002)
showed that with the same SINS system, the strapdown approach can yield accuracies
of 1.5 mGal at a half-wavelength of 2 km and 2.5 mGal at a half-wavelength of 1.4
km, demonstrating the potential of this approach for high-resolution applications. The
SINS approach also allows for the determination of the gravity vector, but in that case
the system requirements are more stringent, as discussed by Schwarz et al. (1991) and
Jekeli (1994). Nevertheless, Jekeli and Kwon (1999) obtained the full gravity vector at
an accuracy level of 7-8 mGal for the horizontal component and 3 mGal for the vertical
component, using the same data as Wei and Schwarz (1998).

2.2 The principle of airborne gravimetry

In principle, gravimeters are highly sensitive accelerometers. If an accelerometer is put
stationary on the Earth’s surface and it is level (i.e. the sensitive axis coincides with
the direction of the gravity vector), the magnitude of gravity can be determined directly.
However, the situation becomes much more complex when the accelerometer is moving,
since an accelerometer cannot distinguish between kinematic and gravitational accelera-
tions and because the instrument is not easily kept level. Thus, in airborne gravimetry,
the solution of the following two problems is fundamental (Schwarz and Li, 1997):

1. Sensor orientation or stabilization under aircraft dynamics.

2. Separation of gravitational and non-gravitational acceleration.

There are a number of possible ways to solve the first problem. The use of a damped two-
axes platform system, such as the LaCoste & Romberg Air-Sea gravimeter, is the most
established method for attitude stabilization. The platform is mechanically stabilized by
using gyros and accelerometers in a feedback loop. The damping period of the platform
is typically chosen at 4 minutes for airborne applications. This means that horizontal ac-
celerations with a longer period, as in long turns, are regarded by the system as changes of
the vertical. In theory, the effect of horizontal accelerations is completely eliminated by
using a Schuler-tuned platform with a damping period of 84.4 minutes (Schuler period).
However, such a long period requires extremely accurate gyros and accelerometers that
have virtually no errors or drifts within this time range (Meyer et al., 2003). Example of
systems that use a Schuler-tuned three-axes inertial platform are the GT-1A gravimeter,
developed by Joint Stock Company Gravimetric Technologies in the Russian Federa-
tion and made available for commercial use by Canadian Micro Gravity Pty Ltd (Gabell
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et al., 2004) and the Airborne Inertially Referenced Gravimeter (AIRGrav) developed by
Sander Geophysics Limited (Sander et al., 2004). An alternative to a stabilized platform
system is a Strapdown Inertial Navigation System (SINS) that consists of three orthogo-
nal accelerometers and a set of three gyroscopes. In that case the mechanical stabilization
is replaced by computing the rotation matrix between the body frame and the local-level
frame. The approaches for attitude stabilization are schematically shown in figure 2.2.

The separation of gravitational and inertial acceleration is possible by computing the
difference between the specific force measured by an accelerometer and the output of
a system that provides the inertial acceleration. This process is also known as motion
compensation. Since the introduction of GPS, all airborne systems use carrier phase
DGPS positioning to determine aircraft motion. However, a laser-altimeter or radar-
altimeter can also be used if only the vertical aircraft acceleration is required.

Which system concept should be used depends on the quantity to be measured and on
the application the measurements are used for. The following classification is generally
used for airborne gravimetry (e.g. Schwarz and Li (1997), Wei (1999)):

• Scalar gravimetry

• Vector gravimetry

• Gravity gradiometry

In scalar gravimetry the magnitude of the gravity (disturbance) vector is determined. This
can be implemented using a stable platform system or by using a strapdown system. The
latter case is often referred to as Strapdown INS Scalar Gravimetry (SISG), in which case
only the vertical component of the gravity vector is of interest. An alternative concept
is to use a triad of three orthogonal accelerometers to obtain the magnitude of gravity
from the difference between the specific force vector and the aircraft acceleration vector.
Because the absolute orientation of the accelerometers with respect to the local vertical
is not needed in this case, this approach is called Rotation Invariant Scalar Gravimetry
(RISG). This approach was first explored by Czompo (1994) and later compared with
SISG by Wei and Schwarz (1997).

In vector gravimetry all three components of the gravity vector are determined. This
can only be done with systems that make use of inertial technology, i.e. SINS and inertial
platform systems. The horizontal components are generally of much poorer accuracy
than the vertical component due to attitude errors caused by gyro drifts (Bruton, 2000).
Good results for the estimation of the full gravity vector have been obtained by Jekeli and
Kwon (1999).

In airborne gravity gradiometry the second derivatives of the gravity potential are ob-
served. In the last decade, several operational gradiometer systems capable of rapidly
measuring all components of the gravity gradient tensor have been developed. Examples
are the FALCON gravity gradiometer of BHP Billiton (Lee, 2001) and the Air-FTG gra-
diometer system operated by Bell Geospace (Murphy, 2004). The standard gradiometer
concept is based on a design that uses opposing pairs of accelerometers on a rotating
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Figure 2.2: Attitude stabilization and sensor orientation for airborne gravimetry (after Schwarz
and Li (1997)).
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disk. The input axes of the accelerometer pair point in opposite directions so that the
common mode acceleration is canceled out when their signals are summed. As a result,
gradiometer systems are much less sensitive to GPS positioning errors and results can be
obtained with higher accuracy and resolution compared to scalar and vector gravimetry.
This technique is therefore particularly interesting for the mining and oil industry. For an
overview of the characteristics of gravity gradiometry, see Bell et al. (1997).

2.3 Mathematical models

2.3.1 Measurement model

The principle of airborne gravimetry is based on Newton’s second law of motion. Rear-
ranged with respect to gravity it is

gi = ẍi − f i, (2.1)

where gi is gravity, ẍi is the inertial acceleration and f i is the specific force measured
by an inertial system, where the superscript i refers to the inertial frame. Usually, air-
borne gravimetry measurements are expressed in the local-level frame (l), which is a
local Cartesian reference frame with the origin on the ellipsoid. The z-axis is aligned
with the local ellipsoidal normal, the x-axis points towards the ellipsoidal east and the
y-axis towards the ellipsoidal north, thus forming a North-East-Up frame. Equation (2.1)
written in the local-level frame is

gl = ẍl − f l + (2Ωl
ie + Ωl

el)ẋ
l, (2.2)

where ẍl is the aircraft acceleration, f l is the specific force, ẋl is the aircraft velocity, and
Ωl

ie and Ωl
el are skew-symmetric matrices due to the Earth rotation ωie and aircraft rate,

respectively:

Ωl
ie =

⎡
⎣ 0 −ωie sinϕ ωie cosϕ
ωie sinϕ 0 0
ωie cosϕ 0 0

⎤
⎦

and

Ωl
el =

⎡
⎣ 0 −λ̇ sinϕ λ̇ cosϕ

λ̇ sinϕ 0 ϕ̇

λ̇ cosϕ −ϕ̇ 0

⎤
⎦ ,

where λ̇ and ϕ̇ denote longitude and latitude rate. The gravity vector can be written as
the sum of the normal gravity vector γ and the gravity disturbance vector δg, e.g.

g = γ + δg.

The gravity disturbance is the observable that is generally used in airborne gravimetry.
The measurement model for airborne gravimetry is given as

δgl = ẍl − f l + (2Ωl
ie + Ωl

el)ẋ
l − γl. (2.3)
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In case of strapdown airborne gravimetry, accelerometer and gyro measurements are
obtained in the body frame (b). The body frame generally refers to the vehicle to be
navigated. The x-axis is defined along the forward direction of the aircraft (longitudinal
axis) the y-axis towards the right (lateral axis) and the z-axis points downwards (through-
the-floor). For strapdown gravimetry Eq. (2.3) becomes

δgl = ẍl −Rl
bf

b + (2Ωl
ie + Ωl

el)ẋ
l − γl, (2.4)

where Rl
b is the transformation matrix which rotates the accelerometer measurements f b

to the local-level frame. It can be obtained by integrating the measured angular velocities
ωb

ib between the body frame and the inertial frame.
For scalar gravimetry only the third component of Eq. (2.4) is of interest. When

written explicitly it is

δgU = ẍU − fU −
(

vE

R1 + h
+ 2ωie cosϕ

)
vE − v2

N

R2 + h
− γU , (2.5)

where subscriptsE,N, U stand for East, North, Up in a local-level ellipsoidal frame, and
R1 and R2 are the prime vertical and meridian radii of curvature. The sum of the third
and fourth terms is also called the Eötvös correction.

In principle, Eq. (2.5) is also valid for stable-platform gravimetry. However, attitude
control and the measurement of the specific force is different. As a result, two additional
corrections need to be applied: the cross-coupling correction and the tilt correction. The
cross-coupling correction is applied to account for horizontal accelerations experienced
by the platform, that cross-couple into the vertical acceleration output whenever the beam
is not in the null position. The formula for this correction is given in Valliant (1992) as
(see also Eq. (A.4) in appendix A)

εcc = c1Ḃ
2 + c2(fyB) + c3(fxḂ) + c4(fyḂ) + c5(f

2
xḂ), (2.6)

where c1, c2, . . . , c5 are statistically or empirically determined coefficients, Ḃ is the beam
velocity,B is the beam position, and fx and fy are the horizontal accelerometer measure-
ments. The tilt correction can be estimated from the horizontal accelerometer output and
DGPS-determined horizontal accelerations as (Olesen et al., 1997)

εtilt =
f 2

x + f 2
y − a2

E − a2
N

2g
, (2.7)

where aE and aN are the kinematic aircraft accelerations in the east and north directions,
and g is the magnitude of gravity.

2.3.2 Error model

The general error model of airborne gravimetry can be obtained by linearizing Eq. (2.3)
for a stable platform system or Eq. (2.4) for strapdown INS, as shown by Schwarz and
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Wei (1995). For strapdown inertial vector gravimetry it is:

dδgl = Flεl −Rl
bdf

b + dẍl + (2Ωl
ie + Ωl

el)dẋ
l −Vl(2dωl

ie + dωl
el)

− dγ l + (Ṙl
bf

b + Rl
bḟ

b)dT, (2.8)

where εl denotes the attitude errors due to initial misalignment and gyro measurement
noise, df b represents accelerometer noise, dẍl and dẋl are aircraft acceleration and ve-
locity errors, dωl

ie and dωl
el are errors in angular velocity, dγl denotes the errors in the

computation of normal gravity, and Fl and Vl are skew-symmetric matrices containing
the components of the specific force vector and the velocity vector, i.e.

Fl =

⎡
⎣ 0 −fU fN

fU 0 −fE

−fN fE 0

⎤
⎦ , Vl =

⎡
⎣ 0 −vU vN

vU 0 −vE

−vN vE 0

⎤
⎦ .

The term dT is added to account for the time synchronization error between the two mea-
surement systems, GPS and INS. Assuming that positions and velocities can be obtained
using GPS with standard deviations of σp = 20cm and σv = 5cm/s, respectively, the
fourth, fifth and sixth terms in Eq. (2.8) can be safely neglected since their contribution
to the total error budget is less than 0.5 mGal (Schwarz and Wei, 1995). Then, the most
significant errors affecting the gravity disturbance vector are given by

dδgl = Flεl −Rl
bdf

b + dẍl + (Ṙl
bf

b + Rl
bḟ

b)dT. (2.9)

For scalar gravimetry using INS the error model reads (Glennie et al., 2000)

dδg = fEεN − fNεE −Af b − dẍU + (Ȧf b + Aḟ b)dT, (2.10)

where A and Ȧ are row vectors of the form

A =
[− cos θ sin φ sin θ cos θ cosφ

]
,

Ȧ =
[
θ̇ sin θ sinφ− φ̇ cos θ cosφ θ̇ cos θ −θ̇ sin θ cosφ− φ̇ cos θ sinφ

]
, (2.11)

with φ and θ the roll and pitch angles of the transformation from the body frame to the
local-level frame. Because the roll angle and the quantities θ̇ and φ̇ are generally small
values, Eq. (2.10) can be simplified as

dδg = fEεN − fNεE − dfU + dẍU + ḟUdT. (2.12)

A good understanding of the errors affecting airborne gravimetry is of great importance
for system design and filtering. The error characteristics are briefly discussed and com-
pared below for the various approaches to airborne scalar gravimetry.
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In order to compare the error sources for stable platform gravimetry and SINS, Glen-
nie et al. (2000) performed a first-order error linearization of Eqs. (2.5), (2.6) and (2.7),
resulting in

dδg = dfU − dẍU +
fx

g
dfx +

fy

g
dfy − aE

g
daE − aN

g
daN

+ (c3Ḃ + 2c5fxḂ)dfx + (c2B + c4Ḃ)dfy

+ (2c1Ḃ + c3fx + c4fy + c5f
2
x)dḂ + (c2fy)dB

− Ḃ2dc1 + fyBdc2 + fxḂdc3 + fyḂdc4 + f 2
xḂdc5, (2.13)

where dc1, dc2, . . . , dc5 are errors in the cross-coupling coefficients, dḂ is the beam ve-
locity error, and dB is the beam position error. From Eq. (2.12) and Eq. (2.13) it is clear
that for both cases DGPS vertical acceleration errors ẍU have an identical effect on the
gravity estimates. The remaining errors in the first line of Eq. (2.13) are similar to those
for the RISG approach to airborne gravimetry, of which the error model is given as (Wei
and Schwarz, 1998)

dδg =
fx

fU

dfx +
fy

fU

dfy +
fz

fU

dfz − aE

fU

daE − aN

fU

daN − daU + ḟUdT. (2.14)

Because the RISG approach does not require attitude determination for the airborne grav-
ity sensor, it can be applied to all airborne gravity systems with an orthogonal accelerom-
eter triad.

When applied to a strapdown INS system, the RISG approach is shown to have a
similar error behavior as the SINS approach (SISG) to airborne scalar gravimetry deter-
mination. Glennie et al. (2000) therefore state that the first line of Eq. (2.13) will give
similar error characteristics as the first four terms of Eq. (2.12). However, the error in
the specific force dfU or dfx depends on the system used. In case of stable platform
systems it is derived from beam velocities and spring tension measurements, whereas for
strapdown INS systems it is the z-component of the accelerometer output, which may
be affected by an unknown bias. Furthermore, the horizontal accelerometers of the plat-
form system are of lower quality than the vertical gravimeter, and therefore the horizontal
acceleration errors are a significant error source for stable platform systems such as the
LCR gravimeter system. It should be noted that a time synchronization error term has not
been included in Eq. (2.13), but this term is identical to the one in the SINS approach.

2.4 Applications and opportunities

Airborne gravity measurements are used for a number of applications in geodesy and
geophysics. Although airborne campaigns may serve more than one goal, the survey de-
sign largely depends on the application under consideration. The design of a campaign
comprises the type of observation and accuracy that is required, the resolution, area cov-
erage, flight path, and choice of platform. Several applications are discussed below. For a
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more detailed discussion of airborne gravity applications and related research see Bruton
(2000).

Geodetic applications

In geodesy, one of the main applications of airborne gravimetry is local geoid determina-
tion. The geoid, defined as the equipotential surface of the gravity field at mean sea level,
is used as a reference surface for heights. Geoid determination from airborne gravity data
includes the representation of airborne data on a level surface through downward contin-
uation and using these data in combination with other sources of gravity to estimate the
geoid. When combined with accurate low-frequency information from satellite gravity
models, the geoid can be determined from airborne gravimetry with an accuracy of 2-5
cm at a spatial resolution of 5-10 km (Bruton, 2000). Examples of large-scale campaigns
where airborne gravimetry has successfully been applied are the campaigns in Greenland
by the Naval Research Laboratory (NRL) (Brozena et al., 1997) and the recent airborne
gravity survey over Taiwan by a cooperation of Taiwanese universities and the Danish
National Space Center in 2004 and 2005 (Hwang et al., 2007). Another application is
the filling of the polar gaps and other remote areas that lack accurate gravity data, for the
compilation of high-resolution Earth gravity models, such as the EIGEN-GL04c model
(Förste et al., 2008) and the recently published EGM2008 model (Pavlis et al., 2008).

Geodetic airborne campaigns are characterized by a relatively large flight track spac-
ing and relatively high flight velocities to cover large areas, as well as a high flight al-
titude to minimize effects of turbulence. The instrumentation used in geodetic surveys
consists mostly of traditional scalar gravimetry systems such as the LCR spring type
air-sea gravimeter combined with DGPS.

Geophysical applications

In the field of geophysics, airborne gravimetry is mainly used for regional geological
studies and resource exploration. The requirements for geophysical applications are
listed in table 2.1. With the current accuracy and resolution of airborne gravimetry at
the level of 1-2 mGal at 3-5 km, scalar airborne gravimetry meets the requirements for
regional geological studies, but its use for exploration of mineral deposits is limited (see
also Bruton (2000)). This is also shown in figure 2.3, from which it is clear that even a
ten-fold improvement in terms of GPS acceleration noise would not be sufficient to re-
cover most of the orebodies (for more details see Van Kann (2004)). In comparison with
scalar or vector gravimetry, the application of airborne gravity gradiometry is much more
promising because gravity gradiometry anomalies reflect the edges and shapes of sources
rather than just mass distributions. Furthermore, it is less sensitive to GPS positioning
errors as already mentioned in section 2.2. Figure 2.4 demonstrates that the noise of a
gradiometer system should be about 1 Eötvös RMS for wavelengths of 50-100 m. Ob-
taining such an accuracy and resolution is a challenging problem, but laboratory tests of
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Table 2.1: Required gravity accuracy and resolution for solid Earth science (NRC, 1995).

Feature Accuracy Resolution
(mGal) (km)

Plate boundaries and deformation:
Large-scale flexure 5 50
Rifts 3 10
Diffuse extension 2 5
Mountains 3 5
Sub-ice topography 2 10

Volcanology:
Volcano morphology 1 10
Volcano dynamics 0.5 5

Mineral exploration:
Sedimentary basins 1 3
Salt domes 0.5 1
Mineral prospects 0.1-2.0 1-10

several instruments under development have shown that this may be feasible in the near
future (Van Kann, 2004).

Geophysical surveys for mineral exploration are generally flown at speeds as low as
possible within small areas, and the track spacing is, as a result, usually much denser than
for regional surveys. Air-FTG surveys are for instance typically flown with line spacings
from 50 to 2000 m at a terrain clearance as low as 80 m for small survey targets, using a
fixed-wing aircraft (Murphy, 2004).

Opportunities

The application of airborne gravimetry for acquiring gravity information routinely is lim-
ited due to the availability and costs of the instrumentation (aircraft and gravimeter) and
manpower, which add up to the overall costs of airborne gravity campaigns. A large-scale
airborne survey for gravity field determination such as the campaign in Taiwan can take
more than 200 flight hours to complete. Even though this is still much more efficient than
terrestrial measurement techniques, there are several opportunities to reduce the time and
costs of airborne gravity surveys.

First of all, there is a renewed interest in the use of strapdown INS for gravity field
mapping. These systems are much cheaper than stable platform systems, and with in-
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creased accuracy of accelerometers and gyros, the performance is expected to match
that of stable platform systems. Examples of such projects are the Strapdown Airborne
Gravimetry System SAGS4 by the Bavarian Academy of Sciences in Munich (Boedecker
and Stürze, 2006), the strapdown system being developed for vector gravimetry by the
Institute of Geodesy and Navigation in Munich (Kreye et al., 2006), and the Gravimetry
using Airborne Inertial Navigation (GAIN) project by the Delft University of Technology
(Alberts et al., 2008).

The most promising solution for cost and time reduction is the use of Unmanned
Airborne Vehicles (UAV) equipped with a gravimeter or SINS and GPS. UAVs have
already been successfully applied in other research fields, such as atmospheric science,
remote sensing and hazard monitoring (Clarke, 2002). For accurate airborne gravity
measurements a stable platform is required. In case of a UAV, this means that airships
are the best option, especially if they are provided with solar panels for power supply. An
airborne gravimetry campaign could then consist of one or more UAVs that autonomously
map large parts of the Earth, such as oceans or the polar areas.
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Processing of airborne gravity data 3
The processing procedure of airborne gravity data can be divided in two steps: pre-
processing and inversion. The pre-processing procedure follows the basic equations
given in section 2.3.1 and includes a number of steps and corrections that are described
in Appendix A. The outcome of data pre-processing is a set of gravity disturbances at
flight level, that are downward continued to ground level and used for the computation
of other gravity functionals. An important part of the pre-processing is the handling of
noise in the data. Usually this includes a low-pass filtering to suppress high-frequency
noise and a cross-over adjustment to eliminate bias and drift terms. Both techniques are
discussed in section 3.1.

For the inversion of airborne gravity measurements into gravity functionals on the
Earth’s surface or on the geoid, many methods have been proposed in literature. Among
the most popular ones in practical applications are integral methods based on the theory
of boundary value problems for the Laplace equation, and least-squares collocation. A
different approach that is used in regional gravity field determination makes use of radial
base functions for the representation of the disturbing potential. The inversion of airborne
gravity data using these methodologies is discussed in section 3.2. The chapter concludes
with a comparison of the different approaches.

3.1 Pre−processing

3.1.1 Low−pass filtering

Airborne gravity measurements are made in a very dynamic environment, resulting in
extremely large noise in the data. Typically, noise-to-signal ratios of 1000 or more can
be observed (Schwarz and Li, 1997). Figure (3.1) shows the ’raw’ gravity signal, which
varies by about 5000 mGal, and the target gravity signal at flight level, which shows a
variation of about 20 mGal. Extracting the gravity signal from measurements contami-
nated by such strong noise is one of the major challenges in airborne gravimetry.

The largest contribution consists of high frequency noise, caused by the effect of
aircraft vibrations on the gravimeter system and the amplification of GPS system noise
when computing accelerations. To reduce these effects, a filtering technique can be ap-
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Figure 3.1: ’Raw’ gravity measurements (top) and the target gravity signal at flight level (bottom).

plied to the airborne gravity data. Because in the low-frequency part of the spectrum
the noise level is below the level of the gravity signal, the most commonly used filters
are low-pass filters, although some alternative model-based approaches have been pro-
posed (Hammada and Schwarz, 1997). When a low-pass filter is used, the filter passes
low-frequency signals, but attenuates any signal above the cut-off frequency.

In general, there are two classes of low-pass filters: finite impulse response (FIR) and
infinite impulse response (IIR) filters. The impulse response of a filter is the output se-
quence from the filter when a unit impulse is applied as its input. The term IIR, however,
is not very accurate, since the actual impulse responses of nearly all IIR filters virtually
reduce to zero in a finite time. Therefore, the terms non-recursive and recursive filters are
often used instead. Both types of low-pass filters have been used for airborne gravity data
processing. The FIR filter for instance has been used by the University of Calgary (Wei
and Schwarz, 1998) for the processing of SINS data and by Brozena and Peters (1988),
who combined it with a resistor-capacitor (RC) filter to sharpen the frequency roll-off.
An example of an IIR filter is the Butterworth filter, which has been used by Forsberg
et al. (1999) and Meyer et al. (2003).

An advantage of using a low-pass filter is its easy implementation. However, even
though both signal and noise are attenuated in the high-frequency band, some noise will
remain in the pass-band, reducing the accuracy of the gravity data. The accuracy may be
improved by using a larger filter length, but this reduces the resolution of the data. Instead
of low-pass filtering, a few model-based approaches have been used, mainly applied to
SINS data. One example is Kalman filtering with a shaping filter as the stochastic model
for the gravity disturbance (Eisfeller and Spietz, 1989; Hammada and Schwarz, 1997).
Another approach is based on the wave filtering concept, where a deterministic model
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filtering is used that approximates the gravity disturbance by a simple function or a ramp
(see e.g. Salychev et al., 1994). Hammada and Schwarz (1997) compared the model-
based filtering approaches with low-pass filtering, and concluded that a low-pass filter
performs systematically better.

The design of a low-pass filter comprises the choice of several parameters, including
the order of the filter and the filter length. The latter is chosen according to the flight
speed and the minimum wavelength to be resolved. The filter design can be analyzed
using the transfer function H(z), which gives the ratio of the output of a filter over the
input of the filter

H(z) =
Y (z)

X(z)
, (3.1)

where X(z) is the z-transform (z = ejωT ) of the input signal and Y (z) is the z-transform
of the filter output signal. From the transfer function the filter’s frequency magnitude
response |H(ejωT )| and phase response ∠H(ejωT ) can be computed. One of the most
popular recursive filter designs is the Butterworth filter. Figure 3.2 shows the frequency
magnitude response of a Butterworth filter for different orders compared to the ideal
low-pass filter design. In this thesis a 2nd-order Butterworth filter is used to analyze and
compare the performance of the filtering strategy developed in the next chapter. The filter
is the same as used by Olesen (2003) andMeyer et al. (2003). Because Butterworth filters
introduce a phase shift between the input and output signals (Hamming, 1989), the filter
is implemented as a two-way (i.e. forward/backward) filter, which removes the phase
shift.
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3.1.2 Cross−over adjustment

After the computation of gravity disturbances at flight level according to Eq. (2.5) and the
application of a low-pass filter, often a cross-over adjustment is applied. This operation
aims at minimizing the misfits at locations of crossing flight lines, by estimating biases,
and optionally a drift, for each profile.

Assuming that airborne gravity measurements are corrupted by a drift d and a bias b
per profile, the observed gravity disturbance δg̃ can be written as

δg̃ = δg + dΔt+ b, (3.2)

where δg is the true gravity disturbance. Then, at the cross-over of intersecting lines, the
difference between two measurements reads (e.g. Glennie and Schwarz (1997), Hwang
et al. (2006))

Δδg̃ij = diΔti − djΔtj + bi − bj , (3.3)

where di, dj, bi and bj are the drifts and biases of lines i and j, respectively, and Δti and
Δtj are the time differences between the start of the flight line and the current crossing
point. The bias and drift parameters are obtained by applying a least-squares adjustment
to the measurement model of Eq. (3.3). Because the model has a rank-defect, at least one
survey line must be held fixed in the adjustment by adding constraints to the functional
model. It means that the bias and drift parameters are estimated relative to the fixed line.

The cross-over adjustment procedure as described here has several disadvantages.
Firstly, the location of the measurements does, in general, not match the exact cross-over
point of two lines. This means that interpolation is required to find the position and to
obtain gravity values gi and gj at the cross-over point. For an accurate interpolation,
a constant flight level is needed. Secondly, the misfits at cross-over points may be the
result of random noise, for instance caused by turbulence. If that is the case, a cross-over
adjustment can in fact degrade the accuracy of the data, as an estimated bias or drift can
corrupt other parts of the profile. Furthermore, lines that have only one cross-over point
are usually not adjusted as the cross-over difference directly translates into a bias for
this line. Finally, the redundancy in a cross-over adjustment is typically small. If only a
few crossing lines are available, the number of cross-overs is only slightly more than the
number of bias and drift parameters to be estimated.

That the misfits at the cross-over points can be very large has for example been shown
by Bell et al. (1999). Because large cross-over misfits indicate data segments of low
quality, they removed these parts of the flight tracks, until an RMS of less than 3 mGal
was achieved for the cross-over differences. Then, the data were corrected for biases and
drifts, which were obtained in a cross-over adjustment. Other examples where a cross-
over adjustment has been applied as part of the pre-processing are found in (Glennie and
Schwarz, 1997) and (Hwang et al., 2007).

Several authors (e.g. Olesen (2003), Forsberg et al. (2007)) do not apply a cross-over
adjustment as such a procedure may be a source of aliasing, and is not required due to the
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excellent stability of the LCR gravimeter they use. In such a case, an analysis of cross-
over differences may be performed to check the internal consistency of the data. Olesen
and Forsberg (2007a) report an RMS cross-over misfit of 2.5-3.0mGal for a large number
of surveys performed with the LCR gravimeter. Assuming that noise is uncorrelated
between the profiles, the noise level is estimated as σe = σx/

√
2, indicating a noise level

of 1.8-2.1 mGal for the airborne data. They claim that a cross-over adjustment would
lower the RMS of the misfits, but the derived error estimates would be too optimistic and
no longer reflect the real noise level.

3.2 Inversion of airborne gravity data

3.2.1 Remove−restore technique

The goal of this section is to discuss the determination of the disturbing potential or geoid
from airborne gravity measurements. The geoid is an equipotential surface of the gravity
potentialW that (approximately) coincides with the mean ocean surface (see figure 3.3).
This equipotential surface is defined as

W (x, y, z) = W0 = constant. (3.4)

The disturbing or anomalous potential T at point P is defined as the difference

T (P ) = W (P )− U(P ), (3.5)

where U(P ) is the normal potential of the reference ellipsoid at point P . The gravity
vector g is the gradient of W and its magnitude (called gravity), which is a measurable
quantity, is denoted by g. Then, analogous to Eq. (3.5) the gravity disturbance is defined
as

δg(P ) = g(P )− γ(P ), (3.6)

W=W
N

Q

P

geoid

ellipsoid

topography

0

P’

Figure 3.3: Geometry of the geoid.

25



Processing of airborne gravity data

where γ(P ) is normal gravity. In spherical approximation, the gravity disturbance is
related to the disturbing potential by the simple relation

δg = −∂T
∂r

, (3.7)

where r is the radial distance. The gravity disturbance is the observation that is generally
used in airborne gravity field determination. In classical geoid determination, the gravity
anomaly is used, which is defined as

Δg(P ) = g(P )− γ(Q). (3.8)

In spherical approximation, the gravity anomaly is related to T as

Δg = −∂T
∂r
− 2

r
T. (3.9)

If δg or Δg is known at the geoid, it is possible to solve the boundary value problem for T
and obtain the geoid height N above the reference ellipsoid by means of Bruns’ formula
(Heiskanen and Moritz, 1967)

N =
T

γ
. (3.10)

As part of the processing of airborne gravity data, the remove-compute-restore tech-
nique (e.g. Rapp and Rummel, 1975) (or remove-restore in short) is usually applied.
Because airborne gravimetry provides regional data sets, wavelengths longer than twice
the size of the area cannot be resolved, but are modeled using a global geopotential model
and removed from the data. Furthermore, the accuracy of downward continuation can be
further improved by removing the effect of the terrain, which results in a smoother signal
at flight level.

In the remove-restore technique, the geoid height is written as (Forsberg and Tsch-
erning, 1981)

N = NGGM +Ntopo +Nres, (3.11)

where NGGM is the contribution from the global geopotential model, Ntopo is the part
that describes the terrain effect from topographic masses, and Nres is the residual geoid,
which is modeled from residual gravity observations. To obtain residual gravity obser-
vations, the gravity disturbance (or anomaly) is split into the same contributions as in
Eq. (3.11) and the computed quantities δgGGM and δgtopo are removed from the observed
gravity disturbances. As such, the residual gravity disturbances are given as

δgres = δg − δgGGM − δgtopo. (3.12)

When the residual geoid has been computed, the contributionsNtopo andNres are restored
to yield the complete geoid height N . Methods for the inversion of gravity disturbances
δg obtained at flight level into the disturbing potential T are discussed in the following
sections, where it is assumed that residual quantities are being used.

26



Inversion of airborne gravity data

3.2.2 Integral methods

The downward continuation and geoid computation based on airborne gravity data using
integral equations has been discussed by several authors (e.g. Novák and Heck (2002),
Alberts and Klees (2004)). Various approaches have been proposed to solve the inte-
gral equations based on the theory of boundary value problems. The transformation of
gravity disturbances into geoid heights can be performed in two steps; the downward
continuation of a harmonic function as the inverse solution of the Dirichlet problem and
the integration of gravity disturbances by means of the Hotine integral. These steps may
be applied in arbitrary order. Alternatively, the solution can be computed directly from
the mathematical model that is obtained by applying the radial derivative to the Poisson
integral.

The approximation procedure used in this thesis is based on the Runge-Krarup theo-
rem (Krarup, 1969; Moritz, 1980):

Any harmonic function φ, regular outside the Earth’s surface, may be uniformly
approximated by harmonic functions φ̄, regular outside an arbitrarily given sphere
inside the Earth, in the sense that for any given ε > 0, the relation |φ − φ̄| < ε
holds everywhere outside and on (any closed surface completely surrounding) the
Earth’s surface.

The value of ε may be arbitrarily small. Thus, the disturbing potential is approximated
by a harmonic function, but for simplicity no distinction is made between this function
and the true disturbing potential. The sphere completely embedded inside the Earth is
called the Bjerhammar sphere (see figure 3.4) and serves as the boundary surface of the
harmonic domain of φ̄. For the determination of the disturbing potential on the Earth’s
topography S, alternative formulations are given in Alberts and Klees (2004).

Two-step approach

In this section two approaches are formulated for the transformation of airborne gravity
measurements into the disturbing potential on the Bjerhammar sphere. In the first ap-
proach, denoted as approach A in Novák (2003b) and method A in Alberts and Klees
(2004), the disturbing potential is first computed at flight level from the observed gravity
disturbances. Subsequently, the obtained disturbing potential is downward continued to
the Bjerhammar sphere. Alternatively, these steps may be reversed, i.e. the gravity dis-
turbances are first downward continued to the Bjerhammar sphere and then transformed
into the disturbing potential. The latter approach is identical to approach B in Novák
(2003b) or method B in Alberts and Klees (2004).

For the first approach (method A), the solution of the first step is obtained by the
numerical evaluation of the Hotine integral (Hotine, 1969), which is the space-domain
representation of the solution of the Neumann boundary value problem for a spherical
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surface. The Hotine integral is given as

T (P ) =
1

4π(R + h)

∫∫
σR+h

δg(Q)H(ψPQ) dσR+h(Q), P ∈ σR+h, (3.13)

where R is the radius of the Bjerhammar sphere, h is the height above R, and dσR+h =
(R + h)2 cosϕdϕdλ (cf. figure 3.4). H is the spherical Hotine function

H(ψPQ) =

∞∑
n=0

2n+ 1

n + 1
Pn(cosψPQ)

= cosec
ψPQ

2
− ln(1 + cosec

ψPQ

2
), (3.14)

with ψPQ the angular distance between P and Q, so that

cosψPQ = sinϕP sinϕQ + cosϕP cosϕP cos(λQ − λP ). (3.15)

The second step requires the downward continuation of the disturbing potential to the
Bjerhammar sphere by inversion of the Poisson integral, which represents the solution of
the Dirichlet boundary value problem for a spherical surface. The Poisson integral reads

T (P ) =
1

4πR2

∫∫
σR

T (Q′)P(R,ψPQ′, rP )dσR(Q′), P ∈ σR+h, (3.16)

with rP = R+ h, rQ′ = R and dσR = R2 cosϕdϕdλ. The values T (P ), P ∈ σR+h, are
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the solution of the first step. P is the spherical Poisson kernel (Kellogg, 1929)

P(R,ψPQ′ , rP ) =
∞∑

n=0

(2n+ 1)

(
R

rP

)n+1

Pn(cosψPQ′)

= R
r2

P
− R2

l3
, (3.17)

where l is the spatial distance between the computation point P and the integration point
Q′

l =
√
r2

P
+ r2

Q′ − 2rPrQ′ cosψPQ′ . (3.18)

The disturbing potential T on the Bjerhammar sphere is the inverse solution of Eq. (3.16),
which can be computed after discretization of the integral formulas and solving the ob-
tained linear system using least-squares techniques.

The two computation steps described above can also be applied in reverse order. In
that case, the first step uses the formula for the upward continuation of a harmonic func-
tion r · δg, which is given by the Poisson integral as

rP · δg(P ) =
1

4πR2

∫∫
σR

R · δg(Q′)P(R,ψPQ′ , rP )dσR(Q′)

⇔ δg(P ) =
1

4πR rP

∫∫
σR

δg(Q′)P(R,ψPQ′ , rP )dσR(Q′), (3.19)

with P ∈ σR+h. The gravity disturbances are obtained on the Bjerhammar sphere σR as
the inverse solution of Eq. (3.19). In the second step the disturbing potential is obtained at
σR from the resulting gravity disturbances by numerical evaluation of the Hotine integral
as

T (P ′) =
1

4πR

∫∫
σR

δg(Q′)H(ψP ′Q′) dσR(Q′), P ′ ∈ σR. (3.20)

An alternative method, which is similar to the latter approach (method B), is given in
Alberts and Klees (2004). It uses a single-layer representation of the disturbing potential.
The advantage of this formulation is that it does not require a spherical boundary surface.
The results obtained with this approach were almost identical to method B (see Alberts
and Klees (2004) for more details).

Single-step approach

Instead of a two-step approach, as discussed in the previous section, the disturbing poten-
tial can be computed directly on the sphere σR from gravity disturbances at flight level.
The functional model is easily found when the radial-derivative operator is applied to the
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Poisson integral (3.16). For P ∈ σR+h, the following expression is obtained (Novák,
2003a; Alberts and Klees, 2004)

∂T

∂r

∣∣∣∣
P

= −δg(P ) =
1

4πR2

∫∫
σR

T (Q′)
∂P(R,ψPQ′ , rP)

∂r

∣∣∣∣
P

dσR(Q′),

⇔ δg(P ) = − 1

4πR2

∫∫
σR

T (Q′)
∂P(R,ψPQ′ , rP )

∂r

∣∣∣∣
P

dσR(Q′). (3.21)

The derivative of the Poisson kernel is given as

∂P(R,ψPQ′ , rP )

∂r

∣∣∣∣
P

= − 1

R

∞∑
n=0

(n+ 1)(2n+ 1)

(
R

rP

)n+2

Pn(cosψPQ′)

= R

[
2 rP

l3
− 3(r2

P
−R2)(2rP − 2R cosψPQ′)

2l5

]
. (3.22)

The disturbing potential at points on σR is obtained as the inverse solution of the integral
equation (3.21) for T (Q′), Q′ ∈ σR. The major advantage of this approach over the
two-step approaches is that for the same data coverage at flight altitude, the disturbing
potential can be determined in a larger area on the Bjerhammar sphere than for the other
methods (see e.g. Novák, 2003a; Alberts and Klees, 2004). As shown by Alberts and
Klees (2004), a spherical cap size of 1.5◦ is sufficient to reduce edge effects, whereas the
combination of the Poisson and the Hotine integral requires typically a cap size of 5◦,
making the single-step approach much more efficient.

Practical considerations

Kernel modification
The integral equations must be integrated over the full spatial angle, but data are gener-
ally only available in a local area. Therefore, the integration is limited to a spherical cap
centered at the computation point, and the data are combined with a global geopotential
model, which largely represents the contribution of the area outside the spherical cap.
The truncation error introduced by limiting the integration to a spherical cap centered at
the computation point can be reduced by a modification of the kernel function. In liter-
ature many modifications have been proposed, see e.g. Molodenskii et al. (1962), Wong
and Gore (1969), Meissl (1971b), Heck and Grüninger (1987), Vanı́ček and Kleusberg
(1987), Featherstone et al. (1998). An alternative approach for the computation of grav-
ity functionals when data are only available in a local area is given in Prutkin and Klees
(2007).

Integration and interpolation errors
The evaluation of the integral formulas and the solution of the integral equations require
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Figure 6.30: Difference between ground Bouguer gravity anomalies and downward continued
AIRGrav Bouguer gravity using low-pass filtering.
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Figure 6.31: Difference between ground Bouguer gravity anomalies and downward continued
AIRGrav Bouguer gravity using frequency-dependent data weighting.
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Table 6.5: Statistics for the difference between ground Bouguer gravity anomalies and down-
ward continued AIRGrav Bouguer gravity computed [mGal] using low-pass filtering (LPF) and
frequency-dependent data weighting (FDW). Bias estimation is not applied. The results in brack-
ets denote the statistics for the inner area.

LPF FDW
Min 0.06 (0.06) -3.108 (-0.25)
Max 11.63 (4.57) 17.391 (4.93)
Mean 2.37 (2.04) 2.850 (1.97)
STD 1.25 (0.81) 2.016 (0.87)
RMS 2.68 (2.20) 3.491 (2.15)

6.3.5 Conclusions

The area used in this section is considerably smaller than the Skagerrak and Chile regions.
Furthermore, the gravity field is determined with a much higher resolution, which is
possible due to line spacing of 500 m. Similar to the Chile data set, a noise model
could be estimated using the whole data set. The approach of noise model estimation
from a posteriori LS residuals is validated by comparing the obtained model to a model
estimated from signal removed by the low-pass filter. Differences between the solutions
obtained with both noise models are smaller than 0.1 mGal.

Contrary to the computations for the Skagerrak and Chile data sets, the small size of
the area shows some limitations of the developed methodology. The periodicity of the
base functions causes edge effects when frequency-dependent data weighting is applied
instead of low-pass filtering, even when controlled area extension is applied. The latter
does prevent the propagation of these effects into the area, but extremely large extensions
are needed which increases the ill-conditioning of the normal equations. Furthermore,
edge effects corrupt the estimated bias parameters, especially for profiles near the edges
of the area. Nevertheless, the estimated accuracy of the gravity field solution after down-
ward continuation is at the level of 1 mGal, when compared to ground truth data.

6.4 Summary and discussion

The developed methodology is successfully applied to real airborne gravimetric survey
data. The gravity field solutions obtained with frequency-dependent data weighting are
comparable to those obtained with low-pass filtering. The resolution of the estimated
gravity field solutions, defined by L and M , was based on the track spacing of the air-
borne data and at these frequencies the noise is well below the frequency where the noise
dominates the signal. As such, a low-pass filter does not attenuate much of the signal
in the frequency band of interest. However, the advantage of the frequency-dependent
data weighting scheme is that it is completely data-driven and as such does not depend
on pre-defined parameters such as the filter length in case of low-pass filtering.
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For each data set an accurate noise model could be estimated from a posteriori resid-
uals of a preliminary LS adjustment. No more than three iterations were required for the
Skagerrak and Timmins data set and only two for the Chile data set. The results obtained
with the estimated noise models were at the same accuracy level as those obtained with
a noise model from ground truth data or using low-pass filtered data.

To stabilize the computation and reduce the influence of remaining noise in the data,
regularization is applied. Based on a comparison with available ground truth data, FOT
regularization provided more accurate results than ZOT regularization. In case of the ap-
plication of frequency-dependent data weighting, the regularization parameter could be
estimated using VCE, but for the computations with low-pass filtered data this was not
the case. The assumption that noise is white in the filtered data is not correct, since corre-
lations in the remaining noise result in divergence of the estimated variance components.
For the computations, described within this chapter, using low-pass filtered data the reg-
ularization parameter was chosen as the one that provides the best RMS fit with ground
truth data. However, this gives a very optimistic choice, which makes the comparison
with FDW less fair.

For the Skagerrak region the computed gravity anomaly solution using FDW shows
a good agreement with the surface gravity anomalies. The estimated accuracy is at the
level of 3 mGal. From the airborne gravity data a local geoid solution has been computed
for both FDW and LSC. Although the most important features of the gravity field are
well recovered, the result shows that the accuracy of a geoid obtained from airborne
gravity data is limited due to lack of data outside the computation area. Nevertheless,
the geoid can be determined at decimeter level for a small area such as the Skagerrak. A
comparison between the approaches shows that LSC seems less affected by edge effects
resulting from missing data outside the area, and the results were slightly better than the
ones obtained with FDW. However, for the computation of the LSC solution much more
base functions were used to represent the gravity field.

For the Chile data set, the internal consistency of the data was lower than for the
other data sets. To improve the gravity solution, scale factors and bias parameters were
estimated simultaneously with the gravity field parameters. It was found that the corre-
lation between bias parameters and the spring tension scale factors was very high, which
implies that the biases in the data are purely driven by variations in the spring tension
observations. A comparison with satellite altimetry derived gravity anomalies yields an
estimated accuracy of 10 mGal for this data set.

The results obtained from the Timmins data set in the last section confirm the ex-
cellent quality of the gravity data and the AIRGrav system. Furthermore, the results
demonstrate the feasibility of applying the developed methodology to a small geophysi-
cal airborne gravity survey. An accurate noise model can be obtained and, although the
area is small, the fundamental solutions of Laplace’s equation form a suitable representa-
tion of the gravity field. The errors after downward continuation of the observations are
below 1 mGal.
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7.1 Conclusions

A new strategy for the processing airborne gravity data has been developed. The ap-
proach combines several independent steps, such as low-pass filtering and cross-over
adjustment, with the estimation of gravity field parameters. The concept of low-pass
filtering is replaced by a frequency-dependent data weighting and non-gravitational pa-
rameters are estimated by adding them to the functional model. The performance of the
developed methodology is at the same level as traditional methods in terms of gravity
field errors, but provides a more flexible and powerful approach to airborne gravity data
processing. It requires a minimum of pre-processing and all observations are used for the
determination of the gravity field.

The conclusions are presented below by addressing the items listed in section 1.2:

Representation of the gravity field
The fundamental solutions of Laplace’s equation form a valid and suitable set of base
functions to represent the disturbing potential. Coefficients of the representation can be
estimated with LS techniques and be used to compute gravity functionals on or near
the Earth’s surface at any location in the computation area. Edge effects related to the
periodicity of the base functions can effectively be reduced by applying controlled area
extension, which is a simple modification to the base functions. In practical applications
only few base functions are required to obtain an accurate gravity field solution from
airborne gravity measurements.

The drawback of this representation is that edge effects due to periodicity of the base
functions can still be significantly large, even when controlled are extension is applied.
Especially if the area is small (e.g. less than 50 km wide) the processing of data contam-
inated with colored noise can lead to less accurate results than when low-pass filtering
is applied. Furthermore, the representation is not very suitable if the measurements are
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irregularly distributed, because the resolution of the estimated gravity field depends on
the average spacing of the observations in the x and y directions.

Regularization
Among the investigated regularization methods, first-order Tikhonov regularization gen-
erally provides the best results to obtain a stable solution. Especially for the down-
ward continuation of gravity disturbances the method performs better than zero-order
Tikhonov regularization. Nevertheless, the choice of the regularization matrix depends
on the signal spectrum. For a narrow spectrum ZOT regularization can provide more
accurate results as was shown for the simulated data.

An advantage of using frequency-dependent data weighting over low-pass filtering is
that the use of proper covariance matrix in the LS adjustment allows an optimal estima-
tion of the regularization parameter with VCE. The estimated regularization parameters
are close to the empirically derived ones. For low-pass filtering the variance components
do not converge because correlations in the low-pass filtered signal are not correctly de-
scribed by the scaled unity covariance matrix. VCE does not provide an estimate of
the regularization parameter in case of low-pass filtering instead of frequency-dependent
data weighting. Since the noise covariance matrix in that case is a scaled unity matrix,
remaining correlated noise in the signal is not correctly described which leads to diver-
gence of the variance components.

Frequency-dependent data weighting
Frequency-dependent data weighting provides a good alternative to low-pass filtering. A
statistically optimal solution is obtained and it provides a formalized approach for the
handling of colored noise. The procedure depends, unlike low-pass filtering, purely on
the input data and not on previous experience of the user. A posteriori residuals, obtained
from a preliminary LS estimation, can be used to derive the noise model, for which only
few iterations are required. The procedure of noise model estimation is robust against
the initial choice of the regularization parameter used for computing the preliminary LS
solution. Furthermore, the use of a proper noise model allows the estimation of the
regularization parameter with VCE.

The limitation of frequency-dependent data weighting is the lower performance in
case of data gaps introduced by outlier detection. The removal of a single outlier affects
a number of observations before and after the detected outlier, which has a negative effect
on the accuracy of the gravity field solution. This effect is larger than the accuracy gained
from removing a large error from the data. Therefore, other techniques for the treatment
of outliers should be used.

Bias and drift handling
Non-gravitational parameters, such as biases, drifts and scale factors, can be estimated
simultaneously with gravity field parameters. Because the estimated bias parameters ab-
sorb the mean value of the local gravity field, a constraint that the sum of the biases is
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zero should be added to the functional model. In that case bias parameters can be de-
termined accurately, since all measurements are used for the estimations. The developed
methodology outperforms the method of cross-over adjustment for the estimation of bias
parameters, but short-period errors such as edge effects or errors due to turbulence, may
still be distributed into along-track corrections. The estimation of instrument related scal-
ing factors can significantly improve the gravity field solution and provide information
on the performance of the gravimeter system. However, a testing procedure should be
applied to avoid statistically insignificant estimations as the estimated parameters can be
highly correlated with each other.

Comparison and validation
Tests with simulated gravity data showed that the developedmethodology performs better
than traditional methods in terms of RMS gravity disturbance and disturbing potential er-
rors. Furthermore, the simulation study led to an optimized strategy for the application of
the developed approach to real airborne gravimetric survey data. From the real data sets
accurate gravity field solutions were computed, which were validated using available sur-
face gravity data. The downward continuation error was small for all data sets, partially
due to the low flight altitudes. Furthermore, the tests described in chapter 6 demonstrate
the potential of employing airborne gravimetry data to obtain accurate gravity data which
can be used in geodetic and geophysical applications.

7.2 Recommendations

To improve upon the developed methodology a number of recommendations are given
for further research.

• In this thesis the disturbing potential is represented using fundamental solutions of
Laplace’s equation in Cartesian coordinates. This method is especially suitable for
areas of rectangular shape and evenly distributed observations. For areas which con-
tain irregularly distributed observations or large areas, other representations should be
considered. A good alternative is to make use of spherical radial base functions to rep-
resent of the disturbing potential, especially if use is made of data-adaptive algorithms
as described by Klees and Wittwer (2007). In that case the locations of the base func-
tions are derived from the data, which leads to a smaller number of functions needed
to determine the gravity field. Besides, these functions do not suffer from the Gibbs
effect at the edges as the Laplace’s solutions due to periodicity of the base functions.
Furthermore, spherical radial base functions are suited for global and local gravity field
modeling and they allow for local refinements of spherical harmonic representation of
the gravity field. As such, it is recommended to apply these functions as part of the
developed methodology for airborne gravity data processing.

• The developed approach provides opportunities for the joint processing of airborne
gravity data with other data types, such as terrestrial, marine or satellite gravity data.
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Because the quality and the spectral content of the various data types can be very
different, the development of such an approach is a challenging task that deserves
further investigation. The goal of the joint processing could be to obtain a united
high-resolution representation of the regional gravity field, for instance using spheri-
cal radial base functions, or in case of global gravity field modeling, in terms of spher-
ical harmonics. Alternatively, the airborne gravity data can be processed separately
into a gridded set of gravity anomalies at ground level and then combined with other
data types. In that case the optimal combination of the airborne gravity solution with
other solutions should be derived, especially for the combination with long wavelength
satellite models.

• To improve upon the application of the noise model in the frequency-dependent data
weighting, several strategies have been explored. One method uses VCE for the
weighting of the profiles as different data groups using one ARMA model to describe
the covariance matrix, but convergence of the variance components could not be ob-
tained. In principle, if the structure of the covariance matrix can be determined more
accurately, its weight in the adjustment can be determined by VCE. ARMA models,
for instance derived from estimated noise PSDs for each profile separately, can pro-
vide such a description of the noise covariance matrix. However, for some profiles
it may not be possible to obtain an accurate noise PSD due to the presence of gaps,
non-stationary noise or the relatively short length of some profiles. In that case other
strategies should be explored to improve the estimation of the noise model.

• The developed approach for frequency-dependent data weighting should be tested for
strapdown INS data processing. The data sets used in this thesis were all acquired
using a stabilized platform and are less affected by low-frequency noise. The noise
characteristics of SINS data may be the same in the high-frequency part of the spec-
trum but drifts in the accelerometers and gyroscopes can result in large low-frequency
errors. It should be tested whether the procedure of noise model estimation based on
residuals also works for such a noise spectrum. More information on the spectrum
of SINS observations is found in Bruton (2000). The derived spectra therein may be
useful for the determination of ARMA models to be used for the processing of SINS
airborne gravity data processing.

• In this thesis gravitational effects of the topography and bathymetry, that are the main
source for local gravity variations have not been considered. The application of terrain
corrections to the airborne gravity data can result in a smoother residual signal at flight
level. Generally, a smoother signal can be represented more accurately by a small
number of base functions, which can improve the result of the inversion into gravity
functionals on or near the Earth’s surface. Not only for mountainous areas, but also for
areas with large bathymetric features, such as the Chile data set described in chapter
6, such a correction should be considered.
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• Finally a general recommendation on airborne gravimetry research is made. First of
all, the use of SINS/GPS gravimeter systems should be further explored, since these
systems have several advantages when compared to stable platform gravimeters such
as power consumption and costs. Improvement in accuracy can be made by opti-
mizing the design of SINS/GPS systems and by developing new processing strate-
gies. Furthermore, with the development of improved gravimeter systems for airborne
gravimetry, the main limitation to the accuracy of airborne gravity measurements is
the determination of accelerations from GPS positions. Optimization of the derivation
of accelerations from GPS positions or Doppler-derived velocities is therefore recom-
mended.
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Pre−processing of airborne gravity data A
A.1 GPS processing

For the surveys described in chapter 6, the processing of the GPS data was performed
with KSGSoft (Kinematic/Static GPS Software) (Xu et al., 1998). This software was
developed in 1994 to fulfill the needs of precise GPS navigation for airborne gravime-
try. Some results of GPS kinematic processing with KSGSoft are described in Xu et al.
(1994) and Xu et al. (1997). The main characteristics of the software are that KSGSoft
can perform a combined adjustment of data of multiple kinematic/static stations. Fur-
thermore, the software can provide carrier phase independent velocity solutions from
instantaneous Doppler shift observations, provided the latter are available.

A.2 Gravity processing

The gravity processing has been performed with AGS (Airborne Gravity Software) ver-
sion 4.5 (Meyer, 2004). The software is based on the initial software written for the
AGMASCO project (Olesen et al., 1997), which was modified to fit the requirements
of the ANGEL (Airborne Navigation and Gravimetry Ensemble & Laboratory) equip-
ment of GFZ Potsdam (Meyer et al., 2003). The main steps applied with this software
to process raw in-flight gravity sensor measurements to gravity disturbances of gravity
anomalies, are described below.

Stable platform airborne gravimetry

The expression for the determination of gravity disturbances at flight level using a stabi-
lized platform system is given in chapter 2 as

δg = gm − z̈ + εEot + εtilt − gm0 + ga − γh, (A.1)

where gm is the vertical acceleration of the gravimeter, which is also called the specific
force, z̈ is the vertical aircraft acceleration, εEot is th Eötvös correction, εtilt is the tilt
correction, gm0 is the gravimeter still reading, ga is the absolute gravity value, and γh is
the normal gravity.
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Figure A.1: Overview of input data, processing steps and output data of the AGS software, mod-
ified from Meyer (2004). Input from laser altimetry and INS is optional.

Vertical acceleration of the gravity sensor

The gravimeter acceleration gm is modeled as

gm = s(S + kḂ + εcc), (A.2)

where s is a scale factor to convert counter units of the gravimeter to units of mGal, S
is the spring tension, k is the beam scale factor (often referred to as k-factor), Ḃ is the
beam velocity, obtained by numerical differentiation of the beam positions, and εcc is the
cross-coupling correction. The latter is defined as

εcc = a1ẍ
2 + a2ÿ

2 + a3z̈
2 + a8ÿż + a9ẍz̈ + a10ÿz̈ + . . .+ anẍ

2z̈ + . . . (A.3)

The first two terms are platform leveling errors and are not included in the cross-coupling
correction.

In Valliant (1992) the following expression is given for the cross-coupling correction

εcc = c1Ḃ
2 + c2(fyB) + c3(fxḂ) + c4(fyḂ) + c5(f

2
xḂ), (A.4)

where c1, c2, . . . , c5 are the cross-coupling coefficients, Ḃ is the beam velocity, B is the
beam position, and fx and fy are the horizontal accelerometer measurements.
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Time synchronization

The time synchronization between GPS and gravimeter data (or data from additional
sensors) is established by computing the correlation coefficient between the two data
series. The correlation coefficient for two series x and y is defined as

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

√
n∑

i=1

(xi − x̄)2

√
n∑

i=1

(yi − ȳ)2

. (A.5)

The time series are synchronized when the correlation coefficient is maximum.

Eötvös correction

The Eötvös effect is caused by the motion of a moving platform over a curved rotating
Earth, which results in a centripetal acceleration. A correction for this motion, simply
called Eötvös correction, was derived by Harlan (1968) and is given as

E =
v2

a

(
1− h

a
− ε

(
1− cos2 ϕ

(
3− 2 sin2 α

)))
+ 2vωe cosϕ sinα, (A.6)

with

ε =
v2

a
sin2 ϕ+ 4vωe

and v = vE + vN , where vE and vN are the easterly and northerly components of the
speed of the aircraft. In Eq. (A.6) the parameter a is the semi-major axis of the Earth, h
is the altitude of the aircraft, ωe is the angular velocity, and ϕ and α are the latitude and
azimuth of the aircraft. From Eq. (A.6) it can be seen that navigation errors have a large
impact on the computation of the Eötvös correction.

Tilt correction

Exact correction
A misalignment of the platform results in errors due to horizontal accelerations. To
account for this effect a tilt correction is applied. It is computed as

εtiltg =
√
g2

m + A2 − a2 − gm, (A.7)

with A2 = (A2
X + A2

L), where AX and AL are the accelerometer outputs along the cross
and long axis and with a2 = (a2

E + a2
N), where aE and aN are horizontal kinematic ac-

celerations in the east and north directions derived from navigational data, and gm is the
gravity meter reading as defined in Eq. (A.2).
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Approximate correction
In Valliant (1992) an approximation to Eq. (A.7) is given. Observing that A2 and a2 are
small compared to g2

m. The tilt correction is then:

εtiltg =
A2 − a2

2gm

≈ εtiltg =
A2 − a2

2g
. (A.8)

Tilt angle modeling
The tilt correction as derived above is computed by squaring of two noisy signals, which
means that zero-mean noise in A or a may introduces a bias in the gravity estimates.
Olesen (2003) derived an alternative expression for the tilt correction which is free of
such a bias. For small tilt angles the following approximations hold for one axis

fx = qx sinφxfz ≈ qx + φxfz ≈ qx + φxg, (A.9)

which can be rewritten with respect to the angle φx as

φx ≈ fx − qx
g

(A.10)

In that case the tilt correction is computed as a linear combination of three acceleration
components:

εtiltg = sin φxfx + cosφx sinφyfy + (1− cos φx cosφy)fz. (A.11)

This method for correcting platform tilts is not implemented in AGS 4.5.

Swain correction
(Swain, 1996) proposed an alternative correction for the tilt by applying a filter that re-
moves the error caused by a tilt. This error is given in LaCoste (1967) as

eg = −ẍθ − gθ2/2 (A.12)

where ẍ is the x-component of horizontal acceleration and θ is the off-level error (tilt), or

eg = −ẍα− ÿβ − g(α2 + β2)/2, (A.13)

when the tilt is composed of angles α and β in the x-z and x-y planes. The tilt is estimated
from horizontal accelerations using a filter with input p (accelerations) and output q (tilt)
(Swain, 1996):

qj = c0pj + c1pj−1 + c2pj−2 + d1qj−1 + d2qj−2 (A.14)
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with

c0 = (a + b)/(4 + a+ b)

c1 = 2b/(4 + a + b)

c2 = (b− 1)/(4 + a+ b)

d1 = (8− 2b)/(4 + a+ b)

d2 = (a− b− 4)/(4 + a+ b)

where a = 4fω0Δt and b = (ω0Δt)
2.

Lever arm effect

A horizontal offset in between the locations of the GPS antenna and the gravimeter causes
a so-called lever arm effect, i.e. the vertical acceleration experienced by the GPS antenna
differs from accelerations observed by the gravimeter due to aircraft attitude variations.
The effect can be modeled if aircraft attitude information is available from INS or may
be neglected if the offset between the GPS antenna and gravimeter is small. According
to Olesen (2003), the effect can be safely neglected for offsets less than 1 meter, in case
of scalar gravimetry. For vector gravimetry the lever arm effect should be modeled more
accurately, as was shown by De Saint-Jean et al. (2007). Similar to the lever arms of
the GPS antennas, the AGS software adjusts for lever arms of the INS and altimeter
instruments, if present. All adjustments are made to the location of the gravimeter, which
should be located close to the center of gravity of the aircraft.

Low-pass filtering

The final step in gravity pre-processing consists usually of applying a low-pas filter to
reduce the extreme high noise level of the airborne gravity data. In the AGS software two
filters are implemented; a 1st-order RC-filter and a 2nd-order Butterworth filter. Both
filters are implemented as a forward-backward filter to remove the phase shift. For the
pre-processing of the data sets used in sections 6.1 and 6.2, the Butterworth filter was
used with a filter length of 180 seconds.

Processing example

An example of the output of AGS 4.5 is shown for a profile of the Skagerrak data set (see
section 6.1) in figure A.2.
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Pre-processing of airborne gravity data
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Figure A.2: AGS processing example for an airborne gravity profile from the Skagerrak survey.
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Coordinate transformation B
The base functions used in this thesis (Eq. (4.3)) require the coordinates to be given in
a local Cartesian reference frame. This appendix gives the definitions of the considered
coordinate systems and the transformations that were applied.

λ

ϕ

X

Y

Z

x

y
z

O

N

a

Figure B.1: Graphical representation of the coordinate systems.

The transformation from ellipsoidal coordinates {ϕ, λ, h} to geocentric coordinates {X, Y, Z}
is given as

X = (N + h) cosϕ cosλ
Y = (N + h) cosϕ sinλ
Z = (N(1− e2) + h) sinϕ,

(B.1)

with N the normal radius of curvature: N = a/W , where a is the semi-major axis and
W is the latitude function defined as

W =

√
1− e2 sin2 ϕ.

In Eq. (B.1) e is the first eccentricity of the ellipsoid used for the definition of the el-
lipsoidal coordinate system. For spherical coordinates the same transformation formulas
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Coordinate transformation

can be used, setting e2 = 0.

The transformation from geocentric coordinates {X, Y, Z} to local Cartesian coordinates
{x, y, z} is given as⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ − sinλc cosλc 0
− sinϕc cos λc − sinϕc sinλc cosϕc

cosϕc cosλc cosϕc sin λc sinϕc

⎤
⎦
⎡
⎣ X
Y
Z

⎤
⎦+

⎡
⎣ tx
ty
tz

⎤
⎦ , (B.2)

with {ϕc, λc} the coordinate center of the area considered and {tx, ty, tz} are translations
in the corresponding directions. If the general direction of the area is not north-south,
the x,y-plane may be rotated about the z-axis by multiplying the obtained coordinates
[x, y, z]T with the rotation matrix

Rz =

⎡
⎣ cosα sinα 0
− sinα cosα 0

0 0 1

⎤
⎦ , (B.3)

where α is a clockwise rotation about the z-axis.
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Least−squares collocation and Hilbert spaces C
This appendix gives a derivation of LSC as minimum norm solution in a reproducing
kernel Hilbert space (RKHS). The first part is a summary of an article on Hilbert spaces
by Meissl (1976). Hilbert spaces are an important type of function spaces in functional
analysis. They represent the logical generalization to functions of n-dimensional vector
spaces. The section describing LSC is based on (Moritz, 1980).

C.1 Definition of a Hilbert space and some properties

Linear space: a set of elements such that for any finite subset f1, f2, . . . , fn, the lin-
ear combination α1f1 + α2f2 + . . . + αnfn is also a member of the linear space. The
constants α1, α2, . . . , αn are real numbers. The elements f1, f2, . . . , fn are linearly in-
dependent if there exist no set of α1, α2, . . . , αn (not all of them being zero) such that
α1f1 + α2f2 + . . .+ αnfn = 0.

Normed linear space: A linear space that assigns to any of its elements f a non-negative
number ‖f‖, called the norm of f , with

‖f‖ > 0 for f �= 0

‖αf‖ = |α|‖f‖
‖f + g‖ ≤ ‖f‖+ ‖g‖.

The norm can be used to define a distance between two elements f and g: |f −g‖, which
can be used to define convergence:

1. Convergence to a limit element: A sequence f1, f2, . . . converges to the limit ele-
ment f if

lim
n→∞

‖f − fn‖ = 0.

This type of convergence is called norm convergence.

2. Convergence in the sense of Cauchy: A sequence f1, f2, . . . is called a Cauchy
convergent if

lim
n,m→∞

‖fn − fm‖ = 0.
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Least-squares collocation and Hilbert spaces

The sequence is then called a Cauchy sequence.

Complete normed linear space: A normed linear space is complete if any Cauchy se-
quence automatically possesses a limit element. They are also called Banach spaces.

Inner product space: A linear space with an inner product 〈f, g〉 with the properties:

〈f, g〉 = 〈g, f〉
〈αf, g〉 = α〈f, g〉
〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉
〈f, f〉 > 0 for f �= 0

Hilbert space: An inner product space that is complete. For examples of Hilbert spaces
see e.g. Meissl (1976).

Linear operators in Hilbert spaces: An operator A is a mapping which assigns to
any element f out of the operators domain space D an image element A(f) out of the
operators range space R. An operator is linear if it maps a linear combination onto the
linear combination of the individual image elements with the same coefficients:

A(α1f1 + . . .+ αnfn) = α1A(f1) + . . .+ αnA(fn).

For linear operators often the notation Af is used instead of A(f).
An operator is continuous if it maps a sequence converging to a limit element onto

an image sequence converging to the image of the limit element. A is called bounded
if there exists a non-negative number β such that ‖A(f)‖ ≤ β‖f‖. The smallest β for
which this relation holds is called the norm of A.

Linear functionals: An important special case of a linear operator is a linear functional.
Its domain is a Hilbert space H, its range is R. Hence, a linear functional L assigns a real
number Lf to any element of H. A bounded linear functional fulfills

|Lf | ≤ ‖L‖‖f‖,
with ‖L‖ the norm of the linear functional.

The Riesz-representation theorem states that any linear functional L operating on a
Hilbert space can be represented by an inner product with suitable element gL:

Lf = 〈f, gL〉, ‖L‖ = ‖gL‖.
The element gL ∈ H is called the representer of L. A special linear functional is the
evaluation functional, Lf = f(Q). Hilbert spaces where the evaluation functional is
continuous (i.e. bounded) for all locations, posses a reproducing kernel. They are called
reproducing kernel Hilbert spaces.
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Reproducing kernel Hilbert spaces

C.2 Reproducing kernel Hilbert spaces

A functionK(P,Q) is called a reproducing kernel belonging to a Hilbert space H if:

a. K(P,Q) ∈ H for Q fixed,

b. f(Q) = 〈f(P ), K(P,Q)〉P for any f ∈ H.

The second relation is called the reproducing property. The notation 〈 , 〉P indicates that
both functions in the inner product are functions of P and that Q is held fixed.

Other properties may be deduced from the properties listed above:

c. K(P, P ) ≥ 0,

d. K(P,Q) = K(Q,P ), i.e. the reproducing kernel is a symmetric function,

e. For arbitrary constants λj and n fixed points Pj the following relation holds:

n∑
j=1

n∑
k=1

λjλkK(Pj, Pk) ≥ 0,

f. K(P,Q) is unique,

g. For any pair of points P,Q the functionK(P,Q) is finite.

Properties (c) to (e) state that the kernel function is symmetric and positive definite.

C.3 Least−squares collocation

Pure least-squares collocation

Suppose for an unknown function f ∈ H, n observations li = Lif are available. If
ri ∈ H is the representer of Li in H, the observations li can be written as

li = Lif = 〈f, ri〉. (C.1)

When the dimension of H is larger then n, the function f is not uniquely determined.
Among all approximate solutions f̄ that are compatible with the observations li (and
therefore satisfy the system (C.1)), there is one, f̂ , for which the norm is minimum
(Moritz, 1980):

‖f̄‖ ≥ ‖f̂‖. (C.2)

The solution f̂ is the orthogonal projection of f onto a subspace of H spanned by ri. It
is precisely the solution given by least-squares collocation, which is shown below.
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Least-squares collocation and Hilbert spaces

The approximation f̂ can be expressed as a linear combination of the base functions
ri as

f̂ =

n∑
i=1

biri, (C.3)

where bi are unknown coefficients to be determined from the data. Substituting Eq. (C.3)
into Eq. (C.1) gives the observation equations as

li = Lif = Lif̂ =
n∑

j=1

bjLirj =
n∑

j=1

bj〈rj, ri〉, i = 1, . . . , n, (C.4)

or in matrix-vector notation
l = Rb,

with matrix

R =

⎡
⎢⎢⎢⎣
〈r1, r1〉 〈r1, r2〉 · · · 〈r1, rn〉
〈r2, r1〉 〈r2, r2〉 · · · 〈r2, rn〉

...
...

. . .
...

〈rn, r1〉 〈rn, r2〉 · · · 〈rn, rn〉

⎤
⎥⎥⎥⎦ .

If the set of representers ri is linearly independent, the approximation f̂ is obtained nu-
merically from the coefficients b

b = R−1l (C.5)

as
f̂ = rTb = rTR−1l. (C.6)

In a reproducing kernel Hilbert space H, the representers ri are simply given as

ri = LQ
i K(P,Q) = K(P, Li), (C.7)

where K(P,Q) is the reproducing kernel evaluated at the data points Q = Qi. Then,
with the following expressions

r = LK, R = L(LK)T , (C.8)

where
L =

[
L1 L2 · · · Ln

]T
(C.9)

and

LK =

⎡
⎢⎢⎢⎣
K(P, L1)
K(P, L2)

...
K(P, Ln)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
LQ

1 K(P,Q)

LQ
2 K(P,Q)

...
LQ

nK(P,Q)

⎤
⎥⎥⎥⎦ , (C.10)

the least-squares collocation solution of Eq. (C.6) can be written as

f̂ = (LK)T (L(LK)T )−1l. (C.11)

158



Least-squares collocation

For the norm of the LSC solution f̂ , the following expression is obtained (Moritz, 1980)

‖f̂‖2 = 〈f̂ , f̂〉 = 〈f̂(P ),
n∑

i=1

biL
Q
i k(P,Q)〉P

=

n∑
i=1

biL
Q
i 〈f̂(P ), K(P,Q)〉P

=
n∑

i=1

biL
Q
i f̂(Q) =

n∑
i=1

biL
Q
i

n∑
j=1

bjL
R
j K(Q,R)

=

n∑
i=1

n∑
j=1

bibjL
Q
i L

R
j K(Q,R) = bT (L(LK)T )b. (C.12)

Using expression (C.5), this can be written in terms of observations li as

‖f̂‖2 = lT (L(LK)T )−1l = lTC−1
ll l. (C.13)

Instead of least-squares collocation, the method of determining f̂ as outlined here is also
called least-norm collocation, because the norm ‖f̂‖2 is minimized.

LSC in the presence of noise

The observation model of least-squares collocation in the presence of noise is given as

li = Lif + ei, i = 1, . . . , n, (C.14)

where ei is the error in the observation li. In matrix notation this is written as

l = Lf + e.

The noise e is a genuine random (stochastic) quantity with expectation E{e} = 0. De-
noting the variance-covariance matrix of the noise by Cee, the error norm reads

‖e‖2 = eTC−1
ee e. (C.15)

With the norm for f , which is a norm in a Hilbert space with reproducing kernelK(P,Q),
i.e. ‖f‖2 = 〈f, f〉, the quadratic functional to be minimized is

Φ = ‖f‖2 + ‖e‖2 = 〈f, f〉+ eTC−1
ee e. (C.16)

Then, the least-squares estimator of f is given as (Moritz, 1980)

f̂ = (LK)T (L(LK)T + Cee)
−1l. (C.17)
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Definition of the reproducing kernel

Let f(P ) be a function harmonic outside the Bjerhammar sphere and regular at infinity,
i.e. f(x) → 0, |x| → ∞. Then, the reproducing kernel K(P,Q) is defined as

K(P,Q) = M{f(P ), f(Q)}, (C.18)

whereM{·} is a suitable averaging operator. Following the definition in Heiskanen and
Moritz (1967), the meanM is the average over the whole sphere and over all azimuths.
Since the operator M is homogeneous and isotropic (i.e. independent of the absolute
location and azimuth), the function K(P,Q) is a function only of the spherical distance
ψPQ between P and Q:

K(P,Q) = K(ψPQ) = M{f(P ), f(Q)}

=
1

8π2R2

∫∫
σR

2π∫
αPQ=0

f(P )f(Q)dαPQdσR(P ), (C.19)

with ψPQ given by Eq. (3.15).
The function K(P,Q) can be expanded in a series of spherical harmonics. For K

restricted to σR the expansion is given as

K(ψPQ) =

∞∑
n=2

cnPn(cosψPQ), (C.20)

where Pn(cosψ) are the Legendre polynomials. The coefficients cn can be expressed in
terms of fully normalized spherical harmonic coefficients ānm and b̄nm by

cn =
n∑

m=0

(ā2
nm + b̄2nm). (C.21)

The reproducing kernel in the Hilbert space of regular functions in the exterior of σR

reads

K(ψPQ) =
∞∑

n=2

cn

(
R2

B

rP rQ

)n+1

Pn(cosψPQ), (C.22)

where RB is the radius of the Bjerhammar sphere.
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Derivation of the ZOT regularization matrix D
The zero-order Tikhonov regularization functional is given as

ΦZOT =

∫∫
D

T 2(x, y, z)dx dy, (D.1)

where the disturbing potential T is defined by Eq (4.7). Inserting Eq. (4.7) into Eq. (D.1),
the regularization functional reads

ΦZOT =

∫∫
D

(
L∑

l=−L

M∑
m=−M

Clmϕl(x)ϕm(y)e−γlmz)2dx dy

=

∫∫
D

∑
l1

∑
m1

∑
l2

∑
m2

(Cl1m1ϕl1(x)ϕm1(y)Cl1m2ϕl2(x)ϕm2(y))

× e−(γl1m1
+γl2m2

)zdx dy. (D.2)

Interchanging summation and integration gives

ΦZOT =
∑
l1

∑
m1

∑
l2

∑
m2

(
Cl1m1Cl1m2

∫ Dx

0

ϕl1(x)ϕl2(x)dx

∫ Dy

0

ϕm1(y)ϕm2(y)dy

)

× e−(γl1m1
+γl2m2

)z. (D.3)

The products of the base functions, ϕl1(x)ϕl2(x) (or ϕm1(y)ϕm2(y), are products of sine
and cosine functions that have the following properties:

∫ L

−L

cos
lπx

L
cos

mπx

L
dx =

⎧⎨
⎩

0 if l �= m
2L if l = m = 0
L if l = m �= 0

(D.4)

∫ L

−L

sin
lπx

L
sin

mπx

L
dx =

{
0 if l �= m
L if l = m �= 0

(D.5)

∫ L

−L

sin
lπx

L
sin

mπx

L
dx = 0. (D.6)
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Derivation of the ZOT regularization matrix

For the base functions defined by Eq. (4.4) this means

∫ Dx

0

ϕl1(x)ϕl2(x)dx =

⎧⎨
⎩

0 if l1 �= l2
Dx if l1 = l2 = 0
Dx/2 if l1 = l2 �= 0

(D.7)

Using these properties the regularization functional can be written as

ΦZOT =
DxDy

4
xTRZOTx, (D.8)

where the entries of RZOT are given as

RZOT
ij =

⎧⎨
⎩

4 δij e
−2γlimi

z, if li = mi = 0
2 δij e

−2γlimi
z, if li = 0 ormi = 0

δij e
−2γlimi

z, otherwise.
(D.9)
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Modification of the base functions E
The disturbing potential is expressed by a series of base functions that are the fundamen-
tal solutions of Laplace’s equation in Cartesian coordinates as (see Eq. (4.7))

T (x, y, z) =

L∑
l=−L

M∑
m=−M

Clm ϕl(x)ϕm(y) e−γlmz, (E.1)

where

ϕl(x) =

{
cos 2π|l|

Dx
x, l ≥ 0

sin 2π|l|
Dx

x, l < 0
ϕm(y) =

{
cos 2π|m|

Dy
y, m ≥ 0

sin 2π|m|
Dy

y, m < 0
(E.2)

and

γlm :=
√
α2

l + β2
m = 2π

√(
l

Dx

)2

+

(
m

Dy

)2

. (E.3)

Because the base functions are periodic but the signal is not, the following base functions
that are periodic on a larger domain are introduced (see section 4.5):

ϕl(x) =

⎧⎪⎨
⎪⎩

cos
πx

Dx

, l = L+ 1

sin
πx

Dx

, l = −L− 1
, ϕm(y) =

⎧⎪⎨
⎪⎩

cos
πy

Dy

, m = M + 1

sin
πy

Dy

, m = −M − 1
(E.4)

Then for l = ±(L+ 1),−M ≤ m ≤M the expression for γ±(L+1),m is obtained using

Δ
(
ϕ±(L+1)(x)ϕm(y)eγ±(L+1),mz

)
= −

(
π

Dx

)2

−
(

2πm

Dy

)2

+ γ2
±(L+1),m = 0, (E.5)

which results in

γ±(L+1),m = π

√(
1

Dx

)2

+

(
2m

Dy

)2

. (E.6)
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Similarly, the expressions for γl,±(M+1) and γ±(L+1),±(M+1) are obtained as

γl,±(M+1) = π

√(
2l

Dx

)2

+

(
1

Dy

)2

(E.7)

γ±(L+1),±(M+1) = π

√(
1

Dx

)2

+

(
1

Dy

)2

. (E.8)
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