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Summary

Regional gravity field modeling using airborne gravimetry data

Airborne gravimetry is the most efficient technique to provide accurate high-resolution
gravity data in regions that lack good data coverage and that are difficult to access oth-
erwise. With current airborne gravimetry systems gravity can be obtained at a spatial
resolution of 2 km with an accuracy of 1-2 mGal. It is therefore an ideal technique to
complement ongoing satellite gravity missions and establish the basis for many applica-
tions of regional gravity field modeling.

Gravity field determination using airborne gravity data can be divided in two major
steps. The first step comprises the pre-processing of raw in-flight gravity sensor mea-
surements to obtain gravity disturbances at flight level and the second step consists of
the inversion of these observations into gravity functionals at ground level. The pre-
processing of airborne gravity data consists of several independent steps such as low-pass
filtering, a cross-over adjustment to minimize misfits at cross-overs of intersecting lines,
and gridding. Each of these steps may introduce errors that accumulate in the course of
processing, which can limit the accuracy and the resolution of the resulting gravity field.

For the inversion of the airborne gravity data at flight level into gravity functionals at
the Earth’s surface, several approaches can be used. Methods that have been successfully
applied to airborne gravity data are integral methods and least-squares collocation, but
both methods have some disadvantages. Integral methods require that the data are availa-
ble in a much larger area than for which the gravity functionals are computed. A large
cap size is required to reduce edge effects that result from missing data outside the target
area. Least-squares collocation suffers much less from these errors and can yield accurate
results, provided that the auto-covariance function gives a good representation of data
in- and outside the area. However, the number of base functions equals the number of
observations, which makes least-squares collocation numerically less efficient.

In this thesis a new methodology for processing airborne gravity data is proposed. It
combines separate pre-processing steps with the estimation of gravity field parameters in
one algorithm. Importantly, the concept of low-pass filtering is replaced by a frequency-
dependent data weighting to handle the strong colored noise in the data. Frequencies
at which the noise level is high get a lower weight than frequencies at which the noise
level is low. Furthermore, bias parameters are estimated jointly with gravity field param-
eters instead of applying a cross-over adjustment. To parameterize the gravity potential a
spectral representation is used, which means that the estimation results in a set of coeffi-
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Summary

cients. These coefficients are used to compute gravity functionals at any location on the
Earth’s surface within the survey area. The advantage of the developed approach is that
it requires a minimum of pre-processing and that all data can be used as obtained at the
locations where they are observed.

The performance of the developed methodology is tested using simulated data and
data acquired in airborne gravimetry surveys. The goal of the simulations is to test the
approach in a controlled environment and to make optimal choices for the processing
of real data. For the numerical studies with simulated data, the new methodology out-
performs the more traditional approaches for airborne gravity data processing. For the
application of the developed methodology to real data, three data sets are used. The first
data set comprises airborne gravity measurements over the Skagerrak area, obtained as
part of a joint project between several European institutions in 1996. This survey pro-
vided accurate airborne gravity data, and because good surface gravity data are available
within the area, the data set is very useful to test the performance of the approach. The
second data set was obtained by the GeoForschungsZentrum Potsdam during a survey off
the coast of Chile in 2002. This data set, which has a lower accuracy than the first data
set, is used to investigate the estimation of non-gravitational parameters such as biases
and scaling factors. The final data set that is used consists of airborne gravity data ac-
quired by Sander Geophysics Limited in 2003. The survey area is located near Timmins,
Ontario and is much smaller than the area of the other data sets. The small size of the
area and the high accuracy of the data make it a challenging data set for regional gravity
modeling.

The computational experiments with real data show that the performance of the de-
veloped methodology is at the same level as traditional methods in terms of gravity field
errors. However, it provides a more flexible and powerful approach to airborne gravity
data processing. It requires a minimum of pre-processing and all observations are used
in the determination of a regional gravity field. The frequency-dependent data weighting
is successfully applied to each data set. The approach provides a statistically optimal so-
lution and is a formalized way to handle colored noise. A noise model can be estimated
from a posteriori least-squares residuals in an iterative way. The procedure is purely data-
driven and, unlike low-pass filtering, does not depend on previous experience of the user.
The developed methodology allows for the simultaneous estimation of non-gravitational
parameters with the gravity field parameters. A testing procedure should be applied,
however, to avoid insignificant estimations and high correlations. For the Chile data set
a significant improvement of the estimated gravity field is obtained when bias and scale
factors are estimated from the observations. The results of the computations with the real
data sets show the high potential of using airborne gravimetry to obtain accurate gravity
for geodetic and geophysical applications.
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Samenvatting

Regionale zwaartekrachtveldmodellering met behulp van vliegtuiggravime-
triegegevens

Vliegtuiggravimetrie is een van de meest efficiénte technieken om nauwkeurige zwaarte-
krachtgegevens in te winnen met een hoge resolutie in regio’s waar een goede dekking
van deze gegevens ontbreekt en die op een andere manier moeilijk te bereiken zijn. Met
de huidige vliegtuiggravimetriesystemen kunnen zwaartekrachtgegevens met een ruimte-
lijke resolutie van 2 km en een nauwkeurigheid van 1-2 mGal worden verkregen. Het
is dus een ideale techniek om huidige satellietzwaartekrachtmissies aan te vullen en de
basis te vormen voor regionale zwaartekrachtveldmodellering.

Zwaartekrachtveldbepaling met behulp van vliegtuiggravimetriegegevens kan wor-
den onderverdeeld in twee stappen. De eerste stap bestaat uit de voorbewerking van
de ruwe data, gemeten met de zwaartekrachtsensoren, wat resulteert in zwaartekracht-
anomalieén op vlieghoogte. De voorbewerking van vliegtuiggravimetriegegevens bestaat
uit verschillende onafhankelijke stappen zoals laagdoorlaatfilteren, een cross-overver-
effening om misfits op kruispunten van profielen te minimaliseren, en gridden. Elk van
deze stappen kan fouten introduceren die accumuleren in de loop van de gegevensver-
werking, wat de nauwkeurigheid en resolutie van het resulterende zwaartekrachtveld kan
beperken.

De tweede stap bestaat uit de omrekening van de waarnemingen op vlieghoogte in
zwaartekrachtwaarden op het aardoppervlak. Voor deze omrekening kunnen verschil-
lende methoden worden gebruikt. Methoden die met succes zijn toegepast op vliegtuig-
gravimetriegegevens zijn integraalmethoden en kleinstekwadratencollocatie, maar beide
methoden hebben een aantal nadelen. Integraalmethoden vereisen dat de gegevens in
een veel groter gebied beschikbaar zijn dan waarvoor de zwaartekrachtwaarden worden
berekend. Een grote blokgrootte is nodig om randeffecten als gevolg van ontbrekende
gegevens buiten het doelgebied te verminderen. Kleinstekwadratencollocatie lijdt veel
minder onder deze fouten en kan nauwkeurige resultaten opleveren, op voorwaarde dat
de auto-covariantiefunctie een goede weergave geeft van de gegevens in en buiten het ge-
bied. Daarentegen is het aantal basisfuncties gelijk aan het aantal waarnemingen, waar-
door kleinstekwadratencollocatie numeriek minder efficiént is.

In dit proefschrift wordt een nieuwe methode voor de verwerking van vliegtuig-
gravimetriegegevens voorgesteld. De methode combineert verschillende voorbewerkings-
stappen met de schatting van de zwaartekrachtveldparameters in één algoritme. Daar-
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Samenvating

naast wordt het concept van laagdoorlaatfilteren vervangen door een frequentie-athanke-
lijke weging van waarnemingen om de invloed van dominante, gekleurde ruis te vermin-
deren. Frequenties waarop de ruis groot is krijgen een lager gewicht dan de frequen-
ties waarop de ruis laag is. Bovendien worden systematische fouten gezamenlijk met
de zwaartekrachtveldparameters geschat in plaats van een cross-oververeffening toe te
passen. Om de zwaartekrachtpotentiaal te parametriseren wordt een spectrale represen-
tatie gebruikt, hetgeen betekent dat de schatting resulteert in een set van coéfficiénten.
Deze worden gebruikt om zwaartekrachtwaarden te berekenen op vooraf bepaalde lo-
caties op het aardoppervlak binnen het gebied. Het voordeel van de ontwikkelde methode
is dat het een minimum van voorbewerkingsstappen vereist en dat alle gegevens kunnen
worden gebruikt zoals ze verkregen zijn in de waarnemingspunten.

De prestaties van de ontwikkelde methode zijn getest met gesimuleerde data en data
verkregen in vliegtuiggravimetriemeetcampagnes. Het doel van de simulaties is om de
methode te testen in een gecontroleerde omgeving en om optimale keuzes te maken voor
de verwerking van echte data. Voor de numerieke studies met gesimuleerde data presteert
de ontwikkelde methode beter dan de meer traditionele methoden voor de verwerking van
vliegtuiggravimetriegegevens. De ontwikkelde methode is tevens toegepast op drie echte
datasets. De eerste dataset bestaat uit vliegtuiggravimetriemetingen in de Skagerrak,
gemeten in 1996 als onderdeel van een gezamenlijk project van verscheidene Europese
instellingen. Omdat deze meetcampagne nauwkeurige zwaartekrachtmetingen opleverde
en omdat goede oppervlaktezwaartekrachtgegevens beschikbaar zijn in dit gebied, is deze
dataset zeer geschikt voor het testen van de ontwikkelde methode. De tweede dataset is
gemeten door het GeoForschungsZentrum Potsdam in 2002 tijdens een meetcampagne
buiten de kust van Chili. Deze gegevens, die een lagere nauwkeurigheid hebben dan
de eerste dataset, zijn gebruikt om de schatting van niet-gravitationele parameters zoals
systematische fouten en schaalfactoren te testen. De laatste dataset die is gebruikt bestaat
uit de vliegtuiggravimetriegegevens verworven door Sander Geophysics Limited in 2003.
Het gebied waar de meetcampagne is uitgevoerd ligt nabij Timmins, Ontario en is veel
kleiner dan de meetgebieden van de andere twee datasets. De kleine omvang van het
gebied en de hoge nauwkeurigheid van de gegevens maken het een uitdagende dataset
voor regionale zwaartekrachtveldmodellering.

Uit de berekeningen met echte data blijkt dat de prestaties van de ontwikkelde me-
thode vergelijkbaar zijn met traditionele methoden met betrekking tot fouten in de bere-
kende zwaartekrachtwaarden. De methode biedt echter een meer flexibele en effectieve
aanpak voor de verwerking van vliegtuiggravimetriegegevens. Er is een minimum aan
voorbewerking vereist en alle waarnemingen worden gebruikt voor de schatting van een
regionaal zwaartekrachtveld. De frequentie-afthankelijke weging van metingen is met
succes toegepast op elke dataset. Er wordt een statistisch optimale oplossing verkregen
en de methode biedt een formele benadering voor het verwerken van gekleurde ruis. Een
ruismodel kan worden geschat op iteratieve wijze met behulp van a posteriori residuen
uit een kleinstekwadratenvereffening. De procedure wordt geheel door data gedreven en
hangt in tegenstelling tot laagdoorlaatfilters niet af van de expertise van de gebruiker. De
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ontwikkelde methode maakt het mogelijk om niet-gravitationele parameters gelijktijdig
te schatten met zwaartekrachtveldparameters. Een testprocedure moet echter worden
toegepast om niet-significante schattingen en hoge correlaties te voorkomen. Voor de
Chili-dataset kan een belangrijke verbetering van het geschatte zwaartekrachtveld wor-
den verkregen als systematische fouten en schaalfactoren worden geschat op basis van de
waarnemingen. De resultaten van de berekeningen met echte data tonen het grote poten-
tieel aan van het gebruik van vliegtuiggravimetrie voor het verkrijgen van nauwkeurige
zwaartekrachtgegevens voor geodetische en geofysische toepassingen.
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Introduction

1.1 Background

Airborne gravimetry has developed into a technique that is capable of providing accurate
gravity data at a high spatial resolution of 2 km or better. Airborne gravity measurements
can be obtained in regions that lack good data coverage and which are difficult to access
otherwise, such as mountainous areas, rain forests, and the polar regions. It is therefore
an ideal technique to complement satellite-only gravity models which are limited to full
wavelengths of approximately 150 km, and to provide the basis for regional gravity field
modeling. Furthermore, airborne gravity can be used to validate existing data sets, such
as marine surveys, and it is the only efficient tool to provide a seamless transition between
terrestrial and marine gravity data.

The idea to use aircraft for gravity measurements is not new. Already in the late 1950s
it was recognized that if the appropriate level of accuracy could be achieved airborne
gravimetry would be vastly superior in economy and efficiency to point-wise terrestrial
gravimetry. Although the first experiments gave promising results, it did not develop
into a major tool for gravity field mapping for the following thirty years, due to the
lack of accurate navigation data. This changed in the late eighties and early nineties
when carrier phase Differential Global Positioning System (DGPS) became available.
Since then many wide-area airborne gravity surveys have been performed with increasing
resolution and accuracy.

In principle, gravimeters are highly sensitive accelerometers. If an accelerometer is
put stationary on the surface of the Earth and it is level (i.e. the sensitive axis coincides
with the direction of the gravity vector), the magnitude of gravity can be determined. For
airborne gravimetry, the situation becomes more complex because the accelerometer is
moving. Both aircraft and gravitational accelerations are sensed and the instrument is
not easily kept level. Therefore, an airborne gravity system requires several components:
an accelerometer for measuring what is called the specific force, a system to keep the
accelerometer level (or for computing its attitude) and a system that measures the iner-
tial acceleration of the aircraft. Since the improvement in GPS-technology, all airborne
gravity systems nowadays depend on DGPS to determine the latter acceleration. By dif-
ferencing the acceleration outputs of the two systems (accelerometer and GPS), common
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accelerations are eliminated and gravity and the effect of system errors remain.

Attitude stabilization is traditionally done with damped two-axes platform systems.
A gravity sensor, often a modified shipborne gravimeter, is mounted on the platform,
which is mechanically stabilized using accelerometers and gyros. Over the years these
systems have been improved and due to the excellent results that have been reported with
these systems, they have become the established technique for airborne gravimetry. An
alternative to a stabilized platform system is a strapdown inertial navigation system (INS).
A comparison with the traditional system has shown that a strapdown system can reach
the same level of accuracy. The advantage of a strapdown INS is that the full gravity
vector can be determined and that it has the potential to increase the spatial resolution,
whereas the platform systems usually have a better long-term stability.

Because airborne measurements are taken in a very dynamic environment, the noise
in the data is extremely large. Typically, noise-to-signal ratios of 1000 or more are ob-
served. To extract the signal from such noise is one of the major challenges in gravity
field modeling from airborne gravity measurements. Fortunately, the largest contribution
to the noise consists of high frequency noise, caused by aircraft vibration and the ampli-
fication of noise in the GPS positions when computing accelerations. The most common
approach to remove these noise effects is to apply a low-pass filter. However, such a
filtering deteriorates the gravity signal and limits the resolution that can be obtained.

In geodesy, one of the main applications of airborne gravity data is local geoid deter-
mination. The geoid can be defined as the equipotential surface of the gravity field that
corresponds most closely to mean sea level. It is used as a reference surface for heights.
Combined with the accurate low-frequency information from satellite gravity models,
the geoid can be determined from airborne gravimetry data with decimeter-level accu-
racy or better. In the field of geophysics, airborne gravimetry is mainly used for regional
geological studies and resource exploration, but the required resolution and accuracy can
only just be met.

The resolution and accuracy of airborne gravimetry may be improved in two ways:
by improvement of the sensors and by developing improved methodologies for the pro-
cessing of airborne gravity data. The research presented in this thesis is focused on the
latter.

1.2 Objectives

Traditionally, the pre-processing of airborne gravity data consists of various indepen-
dent steps, such as low-pass filtering and the adjustment of data by minimizing misfits
at cross-over points. The result of data pre-processing is generally a set of gravity field
values along profiles at flight level, which is used as input for the inversion into gravity
functionals of interest at ground level. The objective of this thesis is to develop a new
technique that combines separate data processing steps with the estimation of gravity pa-
rameters in one algorithm. Importantly, a frequency-dependent data weighting to handle
colored noise is applied instead of the traditional filtering. The developed methodology
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is compared with established methods for airborne gravity data processing.
The following topics related to the general objective are addressed in this study:

Representation of the gravity field

A suitable representation of the disturbing potential for airborne gravity field determina-
tion must be chosen. In this thesis, a spectral representation of the gravity field is used, i.e
the disturbing potential 7'(x) is expressed as a linear combination of harmonic functions

P(x):
T(x) =Y arpr(x), (1.1)

where ay, are the coefficients to be determined. The explicit expressions of the base func-
tions ¢(x) can be chosen depending on the coordinate system under consideration. For a
Cartesian coordinate system they are given as a product of trigonometric and exponential
functions, which are fundamental solutions of Laplace’s equation in Cartesian coordi-
nates. The application of such a representation to airborne gravity data is investigated.

Regularization

For the computation of an accurate gravity field solution, regularization is needed since
the goal is to determine the gravity field on or near the Earth’s surface, not at aircraft
altitude. Without regularization the estimation of a gravity field solution may become er-
roneous because data errors and unmodeled signal get amplified in the process of down-
ward continuation. The issue of optimal regularization is an important part of this study.
Various ways to define the regularization matrix and algorithms for the automatic selec-
tion of the regularization parameter will be considered.

Frequency-dependent data weighting

The standard approach to handle colored noise in airborne gravity measurements is to
apply a low-pass filter. Such a filter, however, deteriorates the signal. A filter of a suffi-
ciently large length reduces the noise in the obtained data, but the signal gets attenuated
as well. As such, the results may be distorted even at frequencies where the noise is
small. In this research the concept of filtering is replaced by the concept of frequency-
dependent data weighting. Frequencies at which the noise is large get less weight than
frequencies at which the noise is small. This approach to handle noise has already been
applied successfully in gravity field modeling from satellite data, but is new in airborne
gravity field determination. Essential in this procedure is the estimation of a noise model
for which several strategies will be explored.

Bias and drift handling

The traditional approach of airborne gravity data processing often includes a cross-over
adjustment to estimate bias and/or drift parameters. This method of adjustment of cross-
over misfits has several disadvantages such as the requirement of a close coincidence of
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measurement points at crossing lines, the low redundancy in the estimation, the necessity
to interpolate data, and the possible aliasing of random errors into the solution. In this
thesis an alternative method is derived, which combines the handling of bias parameters
with the estimation of gravity field parameters. Its performance is compared with the
traditional method of cross-over adjustment.

Comparison and validation

The developed methodology is tested and compared with traditional methods using simu-
lated and real data sets. The goal of the simulation study is to analyze and optimize the
performance of the developed methodology in a controlled environment. The results of
real data processing are compared and validated using results from traditional algorithms
and available surface gravity data.

1.3 Outline

The outline of this thesis is as follows. In chapter 2 the principle of airborne gravimetry is
described. The various system concepts are discussed as well as the general measurement
model and error model of airborne gravimetry. Furthermore, a historical overview is
given and the most important applications of airborne gravity measurements are outlined.

The processing of airborne gravity data is discussed in chapter 3. The processing con-
sists of two steps; the pre-processing, which generally results in a set of filtered observa-
tions at flight level; and the inversion of airborne gravity data into gravity functionals at
the Earth’s surface. For the latter several methods are summarized that have been success-
fully applied to airborne gravity data, such as integral methods, least-squares collocation
and least-squares adjustment using radial base functions.

In chapter 4 a new methodology for the processing of airborne gravity data is pro-
posed. The approach combines several pre-processing steps with the estimation of grav-
ity field parameters. The base functions that are used to represent the disturbing potential
are the fundamental solutions of Laplace’s equation in Cartesian coordinates. Frequency-
dependent data weighting to handle colored noise in the observations is introduced, as
well as regularization methods to obtain a stable solution. This chapter forms the theo-
retical framework for the computations and analyses in the remainder of the thesis.

The developed methodology is tested and compared with traditional methods using
simulated data sets. The results of these computations are presented in chapter 5. The
goal of this chapter is to determine the optimal strategy for airborne gravity data process-
ing. Tests are performed with noise free data as well as with data corrupted by white
noise and colored noise.

Chapter 6 describes the application of the optimal strategy to real airborne gravimetric
survey data. Several data sets are used. The first data set consists of airborne gravity
measurements acquired in 1996 during a survey over the Skagerrak area. For this region
good ground truth data is available, which is used to derive a noise model and to validate
the results. The second data set was obtained during a campaign off the coast of Chile in
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2002. The last data set that is used in this chapter is a geophysical data set from a survey
flown over a relatively small area in Ontario, Canada in 2003.
Finally, the conclusions and recommendations are given in chapter 7.
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This chapter provides an introduction to airborne gravimetry. First, a historical overview
is given, starting from the first ideas in the late 1950s and concluding with the latest de-
velopments in this field. The general principle is discussed in section 2.2, focusing on
sensor orientation and separation of kinematic and gravitational accelerations. Further-
more, an overview of techniques that are used to measure gravity from aircraft is given.
The mathematical concept of both the measurement and the error model is explained in
section 2.3.1, resulting in the fundamental equations for airborne gravity pre-processing
and the most important error sources that affect airborne gravity measurements. The
chapter concludes with a discussion of geodetic and geophysical applications of airborne
gravimetry and opportunities for future developments.

2.1 Historical overview

Already in the 1950s, both geophysicists and geodesists were looking for solutions to
measure gravity from the air. The first reported test of airborne gravity measurements
is described in Lundberg (1957), where a system based on the principle of gradiome-
try was used. However, Lundberg’s test was received with general skepticism in the
exploration industry (Hammer, 1983). Following the successful use of a gravity meter
aboard submarines and ships in the 1950s, the Air Force Cambridge Research Center
initiated a program to develop an airborne gravity meter system. The first test was per-
formed in 1958 by the U.S. Air Force, using a LaCoste and Romberg gimbal-supported
sea gravimeter (S5), with navigation data provided by a Doppler system on the aircraft
and a camera tracking range on the ground (Thompson and LaCoste, 1960). Shortly af-
ter this test a second test was done by Fairchild Aerial Surveys (Nettleton et al., 1960).
The gravimeter used was again a LaCoste and Romberg instrument, but the aircraft was
equipped with a mapping camera for positioning and a radar altimeter and hypsometer to
determine the altitude.

The main problems for airborne gravimetry at the time were the navigation of the
aircraft, including velocity, elevation and space positioning, the E6tvos effect, in-flight
accelerations of the aircraft, and the lack of a gravimeter able to work in a dynamic
environment (Thompson and LaCoste, 1960). However, it appeared that a relatively
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low accuracy of about 10 mGal could be obtained using existing navigation systems,
complemented by accurate ground control techniques, such as optical and radar tracking
ranges.Furthermore, experience with large aircraft at high altitudes indicated that smooth
flight conditions could be obtained, thus reducing large accelerations. The Eotvos effect,
which is directly related to the aircraft velocity, was considered to be a major problem
for gravity measurements in an aircraft. However, with proper flight programming, accu-
rate E6tvos corrections could be made. As mentioned above, the gravimeters used in the
first tests were modified sea gravimeters using a gimbal suspension to handle horizontal
accelerations. This system had been developed and tested by LaCoste and Romberg for
use at sea. Later, these systems were replaced by stabilized platform systems (cf. figure
2.1), which performed much better (LaCoste, 1967).

Figure 2.1: Stabilized platform gravity meter (LaCoste et al., 1967).

The tests in the beginning of the 1960s were performed with gravity meters installed
in fixed-wing aircraft. The first successful measurement of gravity from a helicopter was
performed in 1965 by the U.S. Naval Oceanographic Office, using a gimbal-suspended
LaCoste and Romberg Sea Gravimeter (Gumert and Cobb, 1970; Gumert, 1998). A more
thorough test followed in 1966, providing gravity data with accuracies of about 3 mGal,
leading to the development of a complete helicopter gravity measuring system (HGMS),
described in Gumert and Cobb (1970). The instrumentation consisted of a LaCoste and
Romberg stable-platform gravity meter, a laser altimeter, a camera and a HIRAN nav-
igation system. The advantages of a helicopter over fixed-wing aircraft are the better
terrain-following capability, the increased spatial resolution resulting from flying at lower
altitude and lower speed and the fact that a helicopter is less affected by turbulent condi-
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tions than most other types of aircraft (Lee et al., 2006). Its only disadvantage may be a
somewhat smaller range.

Despite improvements in scalar gravity system design, and the development of high
resolution radar altimeters for vertical acceleration determination in the eighties (see e.g.
Brozena (1984)), airborne gravimetry did not become fully operational until the intro-
duction of GPS. Especially the use of carrier phase measurements and Differential GPS
(DGPS) opened new ways to resolve navigational problems (see e.g. Brozena et al.
(1989), Schwarz et al. (1989), Kleusberg et al. (1990)). The impact of the new posi-
tioning technology led to two important developments in airborne gravimetry (Schwarz
and Li, 1997). The first one was the perfection of existing scalar gravimeter systems,
which could be used, on the one hand, for geophysical exploration and, on the other
hand, for large regional surveys as required by geodesy. The second development was
the combination of GPS with inertial measuring units (IMU) for sensor stabilization and
gravity vector determination.

One of the first large-scale airborne gravity surveys was the campaign over Greenland
in 1991 and 1992, performed by the U.S. Naval Research Laboratory (NRL) in coopera-
tion with the Danish National Survey and Cadastre (KMS) (currently part of the TU Den-
mark (DTU Space)), which proved the suitability of airborne gravimetry for gravity field
mapping (see Brozena (1992), Brozena and Peters (1994), Forsberg and Kenyon (1994)).
Other examples of wide-area surveys are the gravity survey of Switzerland, a joint project
between the Swiss Federal Institute of Technology and LaCoste and Romberg Gravity
Meters Inc. in 1992 (Klingelé et al., 1995), the AGMASCO project over the Skagerrak
(1996) and the Azores (1997) conducted by a joint program of various European institutes
(Forsberg et al. (1997), Hehl et al. (1997)) and the gravity surveys over the West Antarctic
ice sheet (1991-1997) flown by the Lamont-Doherty Earth Observatory in collaboration
with the Institute for Geophysics of the University of Texas (Bell et al., 1999). Recent
major projects are the nationwide geoid and regional surveys of Malaysia (2002-2003),
Mongolia (2004-2005) and Ethiopia (2006-2007) performed by DNSC (Olesen and Fors-
berg, 2007b), and the survey of Taiwan (Hwang et al., 2007). The reported accuracies of
these campaigns were 1.5-2 mGal at 5-6 km spatial resolution.

In the nineties, several alternative system concepts were developed, based on the
combination of inertial technology and DGPS. The Inertial Technology Center (ITC) in
Moscow implemented and tested an inertially stabilized platform system in cooperation
with the University of Calgary and Canagrav Research Ltd. in Calgary. For details of
this test see Salychev et al. (1994). A similar system, called AIRGrav, was developed
by Sander Geophysics Ltd. (Ferguson and Hammada, 2001). Both systems have been
demonstrated to yield medium and high resolution estimates of the gravity field with an
accuracy of 0.5-1.5 mGal (Bruton, 2000).

The use of a strapdown Inertial Navigation System (SINS) for airborne gravimetry
was pioneered at the University of Calgary (see e.g. Schwarz et al. (1991)), where de-
velopment and testing continued until the beginning of this decade. The advantage of
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such a system is its smaller size and relatively low costs. Results of the first airborne test
in 1995, using a Honeywell LASEREF III inertial system, showed that relative gravity
can be obtained with an accuracy of 2-3 mGal at a half-wavelength resolution of 5 km
(Wei and Schwarz, 1998). A side-by-side comparison of a strapdown INS system with
a LaCoste and Romberg stable platform gravimeter, described by Glennie and Schwarz
(1999), demonstrated that both systems performed equally well in terms of RMS er-
rors, but the LCR system showed a better long-term stability. Later, Bruton et al. (2002)
showed that with the same SINS system, the strapdown approach can yield accuracies
of 1.5 mGal at a half-wavelength of 2 km and 2.5 mGal at a half-wavelength of 1.4
km, demonstrating the potential of this approach for high-resolution applications. The
SINS approach also allows for the determination of the gravity vector, but in that case
the system requirements are more stringent, as discussed by Schwarz et al. (1991) and
Jekeli (1994). Nevertheless, Jekeli and Kwon (1999) obtained the full gravity vector at
an accuracy level of 7-8 mGal for the horizontal component and 3 mGal for the vertical
component, using the same data as Wei and Schwarz (1998).

2.2 The principle of airborne gravimetry

In principle, gravimeters are highly sensitive accelerometers. If an accelerometer is put
stationary on the Earth’s surface and it is level (i.e. the sensitive axis coincides with
the direction of the gravity vector), the magnitude of gravity can be determined directly.
However, the situation becomes much more complex when the accelerometer is moving,
since an accelerometer cannot distinguish between kinematic and gravitational accelera-
tions and because the instrument is not easily kept level. Thus, in airborne gravimetry,
the solution of the following two problems is fundamental (Schwarz and Li, 1997):

1. Sensor orientation or stabilization under aircraft dynamics.
2. Separation of gravitational and non-gravitational acceleration.

There are a number of possible ways to solve the first problem. The use of a damped two-
axes platform system, such as the LaCoste & Romberg Air-Sea gravimeter, is the most
established method for attitude stabilization. The platform is mechanically stabilized by
using gyros and accelerometers in a feedback loop. The damping period of the platform
is typically chosen at 4 minutes for airborne applications. This means that horizontal ac-
celerations with a longer period, as in long turns, are regarded by the system as changes of
the vertical. In theory, the effect of horizontal accelerations is completely eliminated by
using a Schuler-tuned platform with a damping period of 84.4 minutes (Schuler period).
However, such a long period requires extremely accurate gyros and accelerometers that
have virtually no errors or drifts within this time range (Meyer et al., 2003). Example of
systems that use a Schuler-tuned three-axes inertial platform are the GT-1A gravimeter,
developed by Joint Stock Company Gravimetric Technologies in the Russian Federa-
tion and made available for commercial use by Canadian Micro Gravity Pty Ltd (Gabell
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et al., 2004) and the Airborne Inertially Referenced Gravimeter (AIRGrav) developed by
Sander Geophysics Limited (Sander et al., 2004). An alternative to a stabilized platform
system is a Strapdown Inertial Navigation System (SINS) that consists of three orthogo-
nal accelerometers and a set of three gyroscopes. In that case the mechanical stabilization
is replaced by computing the rotation matrix between the body frame and the local-level
frame. The approaches for attitude stabilization are schematically shown in figure 2.2.

The separation of gravitational and inertial acceleration is possible by computing the
difference between the specific force measured by an accelerometer and the output of
a system that provides the inertial acceleration. This process is also known as motion
compensation. Since the introduction of GPS, all airborne systems use carrier phase
DGPS positioning to determine aircraft motion. However, a laser-altimeter or radar-
altimeter can also be used if only the vertical aircraft acceleration is required.

Which system concept should be used depends on the quantity to be measured and on
the application the measurements are used for. The following classification is generally
used for airborne gravimetry (e.g. Schwarz and Li (1997), Wei (1999)):

e Scalar gravimetry
e Vector gravimetry
e Gravity gradiometry

In scalar gravimetry the magnitude of the gravity (disturbance) vector is determined. This
can be implemented using a stable platform system or by using a strapdown system. The
latter case is often referred to as Strapdown INS Scalar Gravimetry (SISG), in which case
only the vertical component of the gravity vector is of interest. An alternative concept
is to use a triad of three orthogonal accelerometers to obtain the magnitude of gravity
from the difference between the specific force vector and the aircraft acceleration vector.
Because the absolute orientation of the accelerometers with respect to the local vertical
is not needed in this case, this approach is called Rotation Invariant Scalar Gravimetry
(RISG). This approach was first explored by Czompo (1994) and later compared with
SISG by Wei and Schwarz (1997).

In vector gravimetry all three components of the gravity vector are determined. This
can only be done with systems that make use of inertial technology, i.e. SINS and inertial
platform systems. The horizontal components are generally of much poorer accuracy
than the vertical component due to attitude errors caused by gyro drifts (Bruton, 2000).
Good results for the estimation of the full gravity vector have been obtained by Jekeli and
Kwon (1999).

In airborne gravity gradiometry the second derivatives of the gravity potential are ob-
served. In the last decade, several operational gradiometer systems capable of rapidly
measuring all components of the gravity gradient tensor have been developed. Examples
are the FALCON gravity gradiometer of BHP Billiton (Lee, 2001) and the Air-FTG gra-
diometer system operated by Bell Geospace (Murphy, 2004). The standard gradiometer
concept is based on a design that uses opposing pairs of accelerometers on a rotating
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Figure 2.2: Attitude stabilization and sensor orientation for airborne gravimetry (after Schwarz
and Li (1997)).
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disk. The input axes of the accelerometer pair point in opposite directions so that the
common mode acceleration is canceled out when their signals are summed. As a result,
gradiometer systems are much less sensitive to GPS positioning errors and results can be
obtained with higher accuracy and resolution compared to scalar and vector gravimetry.
This technique is therefore particularly interesting for the mining and oil industry. For an
overview of the characteristics of gravity gradiometry, see Bell et al. (1997).

2.3 Mathematical models

2.3.1 Measurement model

The principle of airborne gravimetry is based on Newton’s second law of motion. Rear-
ranged with respect to gravity it is

gl =% —f, (2.1

where g’ is gravity, X' is the inertial acceleration and f’ is the specific force measured
by an inertial system, where the superscript ¢ refers to the inertial frame. Usually, air-
borne gravimetry measurements are expressed in the local-level frame (/), which is a
local Cartesian reference frame with the origin on the ellipsoid. The z-axis is aligned
with the local ellipsoidal normal, the x-axis points towards the ellipsoidal east and the
y-axis towards the ellipsoidal north, thus forming a North-East-Up frame. Equation (2.1)
written in the local-level frame is

gh=x'—f'+ (20, +Q!)%, (2.2)

where %! is the aircraft acceleration, f* is the specific force, x! is the aircraft velocity, and
Q. and Q. are skew-symmetric matrices due to the Earth rotation w;, and aircraft rate,

respectively:

0 —Wje SIN @ Wie COS (P
QL = | wiesing 0 0
Wie COS 0 0
and . .
0 —Asingp  Acosy
Q= Asin 0 @ :
Acos —¢ 0

where \ and ¢ denote longitude and latitude rate. The gravity vector can be written as
the sum of the normal gravity vector v and the gravity disturbance vector dg, e.g.

g="~+0g.

The gravity disturbance is the observable that is generally used in airborne gravimetry.
The measurement model for airborne gravimetry is given as

dgh =x — £ + (20, + QL)% —+". (2.3)
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In case of strapdown airborne gravimetry, accelerometer and gyro measurements are
obtained in the body frame (b). The body frame generally refers to the vehicle to be
navigated. The x-axis is defined along the forward direction of the aircraft (longitudinal
axis) the y-axis towards the right (lateral axis) and the z-axis points downwards (through-
the-floor). For strapdown gravimetry Eq. (2.3) becomes

ogl =x' — Rif* + (209, + QL)% — 4, (2.4)

where R} is the transformation matrix which rotates the accelerometer measurements f*
to the local-level frame. It can be obtained by integrating the measured angular velocities
w’, between the body frame and the inertial frame.

For scalar gravimetry only the third component of Eq. (2.4) is of interest. When
written explicitly it is
v2

N J—
Ry + h YU,

dgu = Ty — fu — ( Uk + 2w;, COS g0> Vg — 2.5

Ri+h
where subscripts £, NV, U stand for East, North, Up in a local-level ellipsoidal frame, and
R, and R, are the prime vertical and meridian radii of curvature. The sum of the third
and fourth terms is also called the E6tvos correction.

In principle, Eq. (2.5) is also valid for stable-platform gravimetry. However, attitude
control and the measurement of the specific force is different. As a result, two additional
corrections need to be applied: the cross-coupling correction and the tilt correction. The
cross-coupling correction is applied to account for horizontal accelerations experienced
by the platform, that cross-couple into the vertical acceleration output whenever the beam
is not in the null position. The formula for this correction is given in Valliant (1992) as
(see also Eq. (A.4) in appendix A)

e = 1B+ co(f,B) + cs(fo B) + ca(f, B) + c5(f2B), (2.6)

where ¢y, ¢, . . ., c5 are statistically or empirically determined coefficients, B is the beam
velocity, B is the beam position, and f, and f, are the horizontal accelerometer measure-
ments. The tilt correction can be estimated from the horizontal accelerometer output and
DGPS-determined horizontal accelerations as (Olesen et al., 1997)

2+ fp —ap —aj
29

where az and a are the kinematic aircraft accelerations in the east and north directions,
and g is the magnitude of gravity.

, Q2.7)

€tilt =

2.3.2 Error model

The general error model of airborne gravimetry can be obtained by linearizing Eq. (2.3)
for a stable platform system or Eq. (2.4) for strapdown INS, as shown by Schwarz and
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Wei (1995). For strapdown inertial vector gravimetry it is:

dog' = Fle' — RLdf* + dx' + (20, + QL))dx' — V!(2dw!, + dw'))
—dy' + (RU® + RLEH)AT, (2.8)

where €’ denotes the attitude errors due to initial misalignment and gyro measurement
noise, df? represents accelerometer noise, dx! and dx! are aircraft acceleration and ve-
locity errors, dw!, and dw!, are errors in angular velocity, dv' denotes the errors in the
computation of normal gravity, and F! and V' are skew-symmetric matrices containing
the components of the specific force vector and the velocity vector, i.e.

0 —fu fn 0 —w N
F'=1| fu 0 —fe |, Vi=| w 0 —vg
—fn fE 0 —UN Up 0

The term d7" is added to account for the time synchronization error between the two mea-
surement systems, GPS and INS. Assuming that positions and velocities can be obtained
using GPS with standard deviations of 0, = 20cm and o, = Scm /s, respectively, the
fourth, fifth and sixth terms in Eq. (2.8) can be safely neglected since their contribution
to the total error budget is less than 0.5 mGal (Schwarz and Wei, 1995). Then, the most
significant errors affecting the gravity disturbance vector are given by

dog' = Fle' — Ridf* + dx' + (RLF* + RLfY)dT. (2.9)
For scalar gravimetry using INS the error model reads (Glennie et al., 2000)
ddg = fren — fnep — Af — diy + (Af* + Af*)dT, (2.10)
where A and A are row vectors of the form

A= [— cosfsing sinf cosf)cosqﬁ] ,
A= [9sin0sin¢ - chos@cosqb 6 cos —9sin9cos¢ - écos@singzﬁ] ;o (21D
with ¢ and 6 the roll and pitch angles of the transformation from the body frame to the

local-level frame. Because the roll angle and the quantities 0 and ¢ are generally small
values, Eq. (2.10) can be simplified as

dog = fren — fnep — dfy + div + fudT. (2.12)
A good understanding of the errors affecting airborne gravimetry is of great importance

for system design and filtering. The error characteristics are briefly discussed and com-
pared below for the various approaches to airborne scalar gravimetry.
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In order to compare the error sources for stable platform gravimetry and SINS, Glen-
nie et al. (2000) performed a first-order error linearization of Egs. (2.5), (2.6) and (2.7),
resulting in

fa

dég = dfy —diy + dfr fyde —dap — —daN
g g

(ch + 20rf$ )dfz (ch + c4B)dfy
+ (2¢1B + c3fu + cafy + e f2)dB + (cof,)dB
— B%de; + f,Bdcy + f,Bdes + f,Bdes + f2Bdcs, (2.13)

where dcq, dcs, ..., dcs are errors in the cross-coupling coefficients, dB is the beam ve-
locity error, and d B is the beam position error. From Eq. (2.12) and Eq. (2.13) it is clear
that for both cases DGPS vertical acceleration errors %y have an identical effect on the
gravity estimates. The remaining errors in the first line of Eq. (2.13) are similar to those
for the RISG approach to airborne gravimetry, of which the error model is given as (Wei
and Schwarz, 1998)

;z df, + jj:y ;Z df, — f_d E— fg day — day + fydT. (2.14)
Because the RISG approach does not require attitude determination for the airborne grav-
ity sensor, it can be applied to all airborne gravity systems with an orthogonal accelerom-
eter triad.

When applied to a strapdown INS system, the RISG approach is shown to have a
similar error behavior as the SINS approach (SISG) to airborne scalar gravimetry deter-
mination. Glennie et al. (2000) therefore state that the first line of Eq. (2.13) will give
similar error characteristics as the first four terms of Eq. (2.12). However, the error in
the specific force dfy or df, depends on the system used. In case of stable platform
systems it is derived from beam velocities and spring tension measurements, whereas for
strapdown INS systems it is the z-component of the accelerometer output, which may
be affected by an unknown bias. Furthermore, the horizontal accelerometers of the plat-
form system are of lower quality than the vertical gravimeter, and therefore the horizontal
acceleration errors are a significant error source for stable platform systems such as the
LCR gravimeter system. It should be noted that a time synchronization error term has not
been included in Eq. (2.13), but this term is identical to the one in the SINS approach.

ddg af, +

2.4 Applications and opportunities

Airborne gravity measurements are used for a number of applications in geodesy and
geophysics. Although airborne campaigns may serve more than one goal, the survey de-
sign largely depends on the application under consideration. The design of a campaign
comprises the type of observation and accuracy that is required, the resolution, area cov-
erage, flight path, and choice of platform. Several applications are discussed below. For a

16



Applications and opportunities

more detailed discussion of airborne gravity applications and related research see Bruton
(2000).

Geodetic applications

In geodesy, one of the main applications of airborne gravimetry is local geoid determina-
tion. The geoid, defined as the equipotential surface of the gravity field at mean sea level,
is used as a reference surface for heights. Geoid determination from airborne gravity data
includes the representation of airborne data on a level surface through downward contin-
uation and using these data in combination with other sources of gravity to estimate the
geoid. When combined with accurate low-frequency information from satellite gravity
models, the geoid can be determined from airborne gravimetry with an accuracy of 2-5
cm at a spatial resolution of 5-10 km (Bruton, 2000). Examples of large-scale campaigns
where airborne gravimetry has successfully been applied are the campaigns in Greenland
by the Naval Research Laboratory (NRL) (Brozena et al., 1997) and the recent airborne
gravity survey over Taiwan by a cooperation of Taiwanese universities and the Danish
National Space Center in 2004 and 2005 (Hwang et al., 2007). Another application is
the filling of the polar gaps and other remote areas that lack accurate gravity data, for the
compilation of high-resolution Earth gravity models, such as the EIGEN-GL04c model
(Forste et al., 2008) and the recently published EGM2008 model (Pavlis et al., 2008).

Geodetic airborne campaigns are characterized by a relatively large flight track spac-
ing and relatively high flight velocities to cover large areas, as well as a high flight al-
titude to minimize effects of turbulence. The instrumentation used in geodetic surveys
consists mostly of traditional scalar gravimetry systems such as the LCR spring type
air-sea gravimeter combined with DGPS.

Geophysical applications

In the field of geophysics, airborne gravimetry is mainly used for regional geological
studies and resource exploration. The requirements for geophysical applications are
listed in table 2.1. With the current accuracy and resolution of airborne gravimetry at
the level of 1-2 mGal at 3-5 km, scalar airborne gravimetry meets the requirements for
regional geological studies, but its use for exploration of mineral deposits is limited (see
also Bruton (2000)). This is also shown in figure 2.3, from which it is clear that even a
ten-fold improvement in terms of GPS acceleration noise would not be sufficient to re-
cover most of the orebodies (for more details see Van Kann (2004)). In comparison with
scalar or vector gravimetry, the application of airborne gravity gradiometry is much more
promising because gravity gradiometry anomalies reflect the edges and shapes of sources
rather than just mass distributions. Furthermore, it is less sensitive to GPS positioning
errors as already mentioned in section 2.2. Figure 2.4 demonstrates that the noise of a
gradiometer system should be about 1 Eotvos RMS for wavelengths of 50-100 m. Ob-
taining such an accuracy and resolution is a challenging problem, but laboratory tests of
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Table 2.1: Required gravity accuracy and resolution for solid Earth science (NRC, 1995).

Feature Accuracy Resolution
(mGal) (km)

Plate boundaries and deformation:

Large-scale flexure 5 50
Rifts 3 10
Diffuse extension 2 5
Mountains 3 5
Sub-ice topography 2 10
Volcanology:

Volcano morphology 1 10
Volcano dynamics 0.5

Mineral exploration:

Sedimentary basins 1 3
Salt domes 0.5 1
Mineral prospects 0.1-2.0 1-10

several instruments under development have shown that this may be feasible in the near
future (Van Kann, 2004).

Geophysical surveys for mineral exploration are generally flown at speeds as low as
possible within small areas, and the track spacing is, as a result, usually much denser than
for regional surveys. Air-FTG surveys are for instance typically flown with line spacings
from 50 to 2000 m at a terrain clearance as low as 80 m for small survey targets, using a
fixed-wing aircraft (Murphy, 2004).

Opportunities

The application of airborne gravimetry for acquiring gravity information routinely is lim-
ited due to the availability and costs of the instrumentation (aircraft and gravimeter) and
manpower, which add up to the overall costs of airborne gravity campaigns. A large-scale
airborne survey for gravity field determination such as the campaign in Taiwan can take
more than 200 flight hours to complete. Even though this is still much more efficient than
terrestrial measurement techniques, there are several opportunities to reduce the time and
costs of airborne gravity surveys.

First of all, there is a renewed interest in the use of strapdown INS for gravity field
mapping. These systems are much cheaper than stable platform systems, and with in-
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Figure 2.3: Plot of vertical gravity response against wavelength showing signals for selected
orebodies. The noise levels for various airborne systems are shown (i.e., Carson helicopter system
in November 1996, Carson fixed-wing system in July 1995, LCT fixed-wing system in March
1996, Sander Geophysics fixed-wing system in 2003). Also shown are lines corresponding to
GPS-related acceleration noise ('Limit at 1¢’, ’Limit at 3¢°, and 'Limit at 1o assuming 10-fold
improvement’) (modified from Van Kann, 2004).
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creased accuracy of accelerometers and gyros, the performance is expected to match
that of stable platform systems. Examples of such projects are the Strapdown Airborne
Gravimetry System SAGS4 by the Bavarian Academy of Sciences in Munich (Boedecker
and Stiirze, 2006), the strapdown system being developed for vector gravimetry by the
Institute of Geodesy and Navigation in Munich (Kreye et al., 2006), and the Gravimetry
using Airborne Inertial Navigation (GAIN) project by the Delft University of Technology
(Alberts et al., 2008).

The most promising solution for cost and time reduction is the use of Unmanned
Airborne Vehicles (UAV) equipped with a gravimeter or SINS and GPS. UAVs have
already been successfully applied in other research fields, such as atmospheric science,
remote sensing and hazard monitoring (Clarke, 2002). For accurate airborne gravity
measurements a stable platform is required. In case of a UAV, this means that airships
are the best option, especially if they are provided with solar panels for power supply. An
airborne gravimetry campaign could then consist of one or more UAV's that autonomously
map large parts of the Earth, such as oceans or the polar areas.
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The processing procedure of airborne gravity data can be divided in two steps: pre-
processing and inversion. The pre-processing procedure follows the basic equations
given in section 2.3.1 and includes a number of steps and corrections that are described
in Appendix A. The outcome of data pre-processing is a set of gravity disturbances at
flight level, that are downward continued to ground level and used for the computation
of other gravity functionals. An important part of the pre-processing is the handling of
noise in the data. Usually this includes a low-pass filtering to suppress high-frequency
noise and a cross-over adjustment to eliminate bias and drift terms. Both techniques are
discussed in section 3.1.

For the inversion of airborne gravity measurements into gravity functionals on the
Earth’s surface or on the geoid, many methods have been proposed in literature. Among
the most popular ones in practical applications are integral methods based on the theory
of boundary value problems for the Laplace equation, and least-squares collocation. A
different approach that is used in regional gravity field determination makes use of radial
base functions for the representation of the disturbing potential. The inversion of airborne
gravity data using these methodologies is discussed in section 3.2. The chapter concludes
with a comparison of the different approaches.

3.1 Pre-processing

3.1.1 Low-pass filtering

Airborne gravity measurements are made in a very dynamic environment, resulting in
extremely large noise in the data. Typically, noise-to-signal ratios of 1000 or more can
be observed (Schwarz and Li, 1997). Figure (3.1) shows the ‘raw’ gravity signal, which
varies by about 5000 mGal, and the target gravity signal at flight level, which shows a
variation of about 20 mGal. Extracting the gravity signal from measurements contami-
nated by such strong noise is one of the major challenges in airborne gravimetry.

The largest contribution consists of high frequency noise, caused by the effect of
aircraft vibrations on the gravimeter system and the amplification of GPS system noise
when computing accelerations. To reduce these effects, a filtering technique can be ap-
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Figure 3.1: "Raw’ gravity measurements (top) and the target gravity signal at flight level (bottom).

plied to the airborne gravity data. Because in the low-frequency part of the spectrum
the noise level is below the level of the gravity signal, the most commonly used filters
are low-pass filters, although some alternative model-based approaches have been pro-
posed (Hammada and Schwarz, 1997). When a low-pass filter is used, the filter passes
low-frequency signals, but attenuates any signal above the cut-off frequency.

In general, there are two classes of low-pass filters: finite impulse response (FIR) and
infinite impulse response (IIR) filters. The impulse response of a filter is the output se-
quence from the filter when a unit impulse is applied as its input. The term IIR, however,
is not very accurate, since the actual impulse responses of nearly all IIR filters virtually
reduce to zero in a finite time. Therefore, the terms non-recursive and recursive filters are
often used instead. Both types of low-pass filters have been used for airborne gravity data
processing. The FIR filter for instance has been used by the University of Calgary (Wei
and Schwarz, 1998) for the processing of SINS data and by Brozena and Peters (1988),
who combined it with a resistor-capacitor (RC) filter to sharpen the frequency roll-off.
An example of an IIR filter is the Butterworth filter, which has been used by Forsberg
et al. (1999) and Meyer et al. (2003).

An advantage of using a low-pass filter is its easy implementation. However, even
though both signal and noise are attenuated in the high-frequency band, some noise will
remain in the pass-band, reducing the accuracy of the gravity data. The accuracy may be
improved by using a larger filter length, but this reduces the resolution of the data. Instead
of low-pass filtering, a few model-based approaches have been used, mainly applied to
SINS data. One example is Kalman filtering with a shaping filter as the stochastic model
for the gravity disturbance (Eisfeller and Spietz, 1989; Hammada and Schwarz, 1997).
Another approach is based on the wave filtering concept, where a deterministic model
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Figure 3.2: The frequency magnitude response of a first-, second-, and third-order Butterworth
filter versus an ideal low-pass filter (Hy = 1,w. = 1 rad/s).

filtering is used that approximates the gravity disturbance by a simple function or a ramp
(see e.g. Salychev et al., 1994). Hammada and Schwarz (1997) compared the model-
based filtering approaches with low-pass filtering, and concluded that a low-pass filter
performs systematically better.

The design of a low-pass filter comprises the choice of several parameters, including
the order of the filter and the filter length. The latter is chosen according to the flight
speed and the minimum wavelength to be resolved. The filter design can be analyzed
using the transfer function H(z), which gives the ratio of the output of a filter over the
input of the filter

3.1

where X (2) is the z-transform (z = €/“7) of the input signal and Y () is the z-transform
of the filter output signal. From the transfer function the filter’s frequency magnitude
response | H (¢7“T)| and phase response / H (e/“T) can be computed. One of the most
popular recursive filter designs is the Butterworth filter. Figure 3.2 shows the frequency
magnitude response of a Butterworth filter for different orders compared to the ideal
low-pass filter design. In this thesis a 2nd-order Butterworth filter is used to analyze and
compare the performance of the filtering strategy developed in the next chapter. The filter
is the same as used by Olesen (2003) and Meyer et al. (2003). Because Butterworth filters
introduce a phase shift between the input and output signals (Hamming, 1989), the filter
is implemented as a two-way (i.e. forward/backward) filter, which removes the phase
shift.
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3.1.2 Cross-over adjustment

After the computation of gravity disturbances at flight level according to Eq. (2.5) and the
application of a low-pass filter, often a cross-over adjustment is applied. This operation
aims at minimizing the misfits at locations of crossing flight lines, by estimating biases,
and optionally a drift, for each profile.

Assuming that airborne gravity measurements are corrupted by a drift d and a bias b
per profile, the observed gravity disturbance dg can be written as

6§ = 0g + dAt +b, (3.2)

where ¢ is the true gravity disturbance. Then, at the cross-over of intersecting lines, the
difference between two measurements reads (e.g. Glennie and Schwarz (1997), Hwang
et al. (2006))

ASGyj = diNt; — d; Aty + b — by, (3.3)

where d;, d;, b; and b; are the drifts and biases of lines 4 and j, respectively, and At; and
At; are the time differences between the start of the flight line and the current crossing
point. The bias and drift parameters are obtained by applying a least-squares adjustment
to the measurement model of Eq. (3.3). Because the model has a rank-defect, at least one
survey line must be held fixed in the adjustment by adding constraints to the functional
model. It means that the bias and drift parameters are estimated relative to the fixed line.

The cross-over adjustment procedure as described here has several disadvantages.
Firstly, the location of the measurements does, in general, not match the exact cross-over
point of two lines. This means that interpolation is required to find the position and to
obtain gravity values g; and g; at the cross-over point. For an accurate interpolation,
a constant flight level is needed. Secondly, the misfits at cross-over points may be the
result of random noise, for instance caused by turbulence. If that is the case, a cross-over
adjustment can in fact degrade the accuracy of the data, as an estimated bias or drift can
corrupt other parts of the profile. Furthermore, lines that have only one cross-over point
are usually not adjusted as the cross-over difference directly translates into a bias for
this line. Finally, the redundancy in a cross-over adjustment is typically small. If only a
few crossing lines are available, the number of cross-overs is only slightly more than the
number of bias and drift parameters to be estimated.

That the misfits at the cross-over points can be very large has for example been shown
by Bell et al. (1999). Because large cross-over misfits indicate data segments of low
quality, they removed these parts of the flight tracks, until an RMS of less than 3 mGal
was achieved for the cross-over differences. Then, the data were corrected for biases and
drifts, which were obtained in a cross-over adjustment. Other examples where a cross-
over adjustment has been applied as part of the pre-processing are found in (Glennie and
Schwarz, 1997) and (Hwang et al., 2007).

Several authors (e.g. Olesen (2003), Forsberg et al. (2007)) do not apply a cross-over
adjustment as such a procedure may be a source of aliasing, and is not required due to the
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excellent stability of the LCR gravimeter they use. In such a case, an analysis of cross-
over differences may be performed to check the internal consistency of the data. Olesen
and Forsberg (2007a) report an RMS cross-over misfit of 2.5-3.0 mGal for a large number
of surveys performed with the LCR gravimeter. Assuming that noise is uncorrelated
between the profiles, the noise level is estimated as o, = 0,/ V/2, indicating a noise level
of 1.8-2.1 mGal for the airborne data. They claim that a cross-over adjustment would
lower the RMS of the misfits, but the derived error estimates would be too optimistic and
no longer reflect the real noise level.

3.2 Inversion of airborne gravity data

3.2.1 Remove-estore technique

The goal of this section is to discuss the determination of the disturbing potential or geoid
from airborne gravity measurements. The geoid is an equipotential surface of the gravity
potential W that (approximately) coincides with the mean ocean surface (see figure 3.3).
This equipotential surface is defined as

W (x,y, z) = Wy = constant. (3.4)
The disturbing or anomalous potential 7" at point P is defined as the difference
T(P)=W(P)—-U(P), (3.5)

where U(P) is the normal potential of the reference ellipsoid at point P. The gravity
vector g is the gradient of W and its magnitude (called gravity), which is a measurable
quantity, is denoted by g. Then, analogous to Eq. (3.5) the gravity disturbance is defined
as

69(P) = g(P) —~(P), (3.6)

ellipsoid

Figure 3.3: Geometry of the geoid.
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where (P) is normal gravity. In spherical approximation, the gravity disturbance is
related to the disturbing potential by the simple relation
aT
0g = —— 3.7

g o (3.7
where 7 is the radial distance. The gravity disturbance is the observation that is generally
used in airborne gravity field determination. In classical geoid determination, the gravity
anomaly is used, which is defined as

Ag(P) = g(P) = 7(Q)- 3.8)
In spherical approximation, the gravity anomaly is related to 7" as
T 2
Ag— -1 _2p (3.9)
or r

If g or Ag is known at the geoid, it is possible to solve the boundary value problem for T
and obtain the geoid height [V above the reference ellipsoid by means of Bruns’ formula

(Heiskanen and Moritz, 1967)

T
N=2=. (3.10)
v

As part of the processing of airborne gravity data, the remove-compute-restore tech-
nique (e.g. Rapp and Rummel, 1975) (or remove-restore in short) is usually applied.
Because airborne gravimetry provides regional data sets, wavelengths longer than twice
the size of the area cannot be resolved, but are modeled using a global geopotential model
and removed from the data. Furthermore, the accuracy of downward continuation can be
further improved by removing the effect of the terrain, which results in a smoother signal
at flight level.

In the remove-restore technique, the geoid height is written as (Forsberg and Tsch-
erning, 1981)

N:NGGM+Ntopo+Nresa (3.11)

where Ny, 18 the contribution from the global geopotential model, Ny, is the part
that describes the terrain effect from topographic masses, and N,..; is the residual geoid,
which is modeled from residual gravity observations. To obtain residual gravity obser-
vations, the gravity disturbance (or anomaly) is split into the same contributions as in
Eq. (3.11) and the computed quantities 0 g, and dgop, are removed from the observed
gravity disturbances. As such, the residual gravity disturbances are given as

5gres = 50 - 69(;(;1\1 - 691&0})0- (3.12)

When the residual geoid has been computed, the contributions Ny, and NV, are restored
to yield the complete geoid height N. Methods for the inversion of gravity disturbances
d¢g obtained at flight level into the disturbing potential 7" are discussed in the following
sections, where it is assumed that residual quantities are being used.
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3.2.2 Integral methods

The downward continuation and geoid computation based on airborne gravity data using
integral equations has been discussed by several authors (e.g. Novdk and Heck (2002),
Alberts and Klees (2004)). Various approaches have been proposed to solve the inte-
gral equations based on the theory of boundary value problems. The transformation of
gravity disturbances into geoid heights can be performed in two steps; the downward
continuation of a harmonic function as the inverse solution of the Dirichlet problem and
the integration of gravity disturbances by means of the Hotine integral. These steps may
be applied in arbitrary order. Alternatively, the solution can be computed directly from
the mathematical model that is obtained by applying the radial derivative to the Poisson
integral.

The approximation procedure used in this thesis is based on the Runge-Krarup theo-
rem (Krarup, 1969; Moritz, 1980):

Any harmonic function ¢, regular outside the Earth’s surface, may be uniformly
approximated by harmonic functions ¢, regular outside an arbitrarily given sphere
inside the Earth, in the sense that for any given € > 0, the relation |¢ — ng5| < e
holds everywhere outside and on (any closed surface completely surrounding) the
Earth’s surface.

The value of € may be arbitrarily small. Thus, the disturbing potential is approximated
by a harmonic function, but for simplicity no distinction is made between this function
and the true disturbing potential. The sphere completely embedded inside the Earth is
called the Bjerhammar sphere (see figure 3.4) and serves as the boundary surface of the
harmonic domain of ¢. For the determination of the disturbing potential on the Earth’s
topography S, alternative formulations are given in Alberts and Klees (2004).

Two-step approach

In this section two approaches are formulated for the transformation of airborne gravity
measurements into the disturbing potential on the Bjerhammar sphere. In the first ap-
proach, denoted as approach A in Novék (2003b) and method A in Alberts and Klees
(2004), the disturbing potential is first computed at flight level from the observed gravity
disturbances. Subsequently, the obtained disturbing potential is downward continued to
the Bjerhammar sphere. Alternatively, these steps may be reversed, i.e. the gravity dis-
turbances are first downward continued to the Bjerhammar sphere and then transformed
into the disturbing potential. The latter approach is identical to approach B in Novik
(2003b) or method B in Alberts and Klees (2004).

For the first approach (method A), the solution of the first step is obtained by the
numerical evaluation of the Hotine integral (Hotine, 1969), which is the space-domain
representation of the solution of the Neumann boundary value problem for a spherical
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Figure 3.4: Geometry of the downward continuation to the Bjerhammar sphere o g.

surface. The Hotine integral is given as

T(P) = R+h / 09(Q) H(Vpq) dorin(Q), P € Opyn, (3.13)

TR+h

where R is the radius of the Bjerhammar sphere, A is the height above R, and dogy, =
(R + h)? cos pdpdA (cf. figure 3.4). ‘H is the spherical Hotine function

=2+ 1
H(tr) = 3~ Palcostivg)
n=0

= cosec 1/12 — In(1 + cosec ¢;Q ), (3.14)

with ¢, the angular distance between P and (), so that
COS PYpg = Sin @p sin @ + €S Yp €S Yp €oS(Ag — Ap). (3.15)

The second step requires the downward continuation of the disturbing potential to the
Bjerhammar sphere by inversion of the Poisson integral, which represents the solution of
the Dirichlet boundary value problem for a spherical surface. The Poisson integral reads

47TR2 // wPQ’arP)dO'R(Q/)7 P S O'R+hv (316)

withr, = R+ h,ro = R and dog = R? cos pdedA. The values T(P), P € og, are
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the solution of the first step. P is the spherical Poisson kernel (Kellogg, 1929)

[es} R n+1
PR ) = Y20+ 1) (5) Pcosvna)
2 2
_pr— R (3.17)

where [ is the spatial distance between the computation point P and the integration point

Q/

l= \/Tg, + 12 = 2rpTgr COS Ppg- (3.18)

The disturbing potential 7" on the Bjerhammar sphere is the inverse solution of Eq. (3.16),
which can be computed after discretization of the integral formulas and solving the ob-
tained linear system using least-squares techniques.

The two computation steps described above can also be applied in reverse order. In
that case, the first step uses the formula for the upward continuation of a harmonic func-
tion r - dg, which is given by the Poisson integral as

rp - 0g(P = //R 89(Q")P(R, Ypg,7p)dor(Q")

& 0g(P) R, Vpo,mp)dor(Q'), (3.19)

with P € opy. The gravity disturbances are obtained on the Bjerhammar sphere oy as
the inverse solution of Eq. (3.19). In the second step the disturbing potential is obtained at
or from the resulting gravity disturbances by numerical evaluation of the Hotine integral
as

/ [ 53(@ Hibwe) do(@), P < on (3.20)

An alternative method, which is similar to the latter approach (method B), is given in
Alberts and Klees (2004). It uses a single-layer representation of the disturbing potential.
The advantage of this formulation is that it does not require a spherical boundary surface.
The results obtained with this approach were almost identical to method B (see Alberts
and Klees (2004) for more details).

Single-step approach

Instead of a two-step approach, as discussed in the previous section, the disturbing poten-
tial can be computed directly on the sphere o from gravity disturbances at flight level.
The functional model is easily found when the radial-derivative operator is applied to the
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Poisson integral (3.16). For P € og4s, the following expression is obtained (Novék,
2003a; Alberts and Klees, 2004)

or _ P(R, wPQ/77nP)
or P_ o9(P T 4rR? // o

pr’ rp)
S 09(P) =~ / / or

The derivative of the Poisson kernel is given as

dor(Q'),

dog(Q). (3.21)

P

aP(R7 7/}PQ’? TP)
or

o) R n+2
Z (n+1)( 2n+1)( ) P, (cos ¥per)
Tp
=0

_ R [27“}3 3(r2 — R*)(2rp — 2RCOS?/JPQ/):| ‘

:U \

P

;3 20

(3.22)

The disturbing potential at points on oy is obtained as the inverse solution of the integral
equation (3.21) for T(Q'), Q' € ogr. The major advantage of this approach over the
two-step approaches is that for the same data coverage at flight altitude, the disturbing
potential can be determined in a larger area on the Bjerhammar sphere than for the other
methods (see e.g. Novak, 2003a; Alberts and Klees, 2004). As shown by Alberts and
Klees (2004), a spherical cap size of 1.5° is sufficient to reduce edge effects, whereas the
combination of the Poisson and the Hotine integral requires typically a cap size of 5°,
making the single-step approach much more efficient.

Practical considerations

Kernel modification

The integral equations must be integrated over the full spatial angle, but data are gener-
ally only available in a local area. Therefore, the integration is limited to a spherical cap
centered at the computation point, and the data are combined with a global geopotential
model, which largely represents the contribution of the area outside the spherical cap.
The truncation error introduced by limiting the integration to a spherical cap centered at
the computation point can be reduced by a modification of the kernel function. In liter-
ature many modifications have been proposed, see e.g. Molodenskii et al. (1962), Wong
and Gore (1969), Meissl (1971b), Heck and Griininger (1987), Vanicek and Kleusberg
(1987), Featherstone et al. (1998). An alternative approach for the computation of grav-
ity functionals when data are only available in a local area is given in Prutkin and Klees
(2007).

Integration and interpolation errors
The evaluation of the integral formulas and the solution of the integral equations require
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the numerical computation of surface integrals, which is done using numerical integra-
tion. The surface o is usually decomposed into a sum of patches o and the integral is
evaluated as a weighted sum of function values at a limited number of points, called the
‘nodes’ of the integration formula. Mathematically this can be written as

// K(P,Q)dow(@ Zg K (P, Qi)w, (3.23)

where (); are the nodes and w; are the weights. The integral methods discussed in this
section involve the evaluation of weakly singular integrals with O(1/1)(I — 0) kernel
functions at the center of the patch o,. Standard integration formulas require a large
number of nodes M to reduce the integration error introduced in Eq. (3.23). The accuracy
of the integration can be improved when a suitable parameter transformation is applied
before numerical integration (Klees, 1996). The Jacobian of such a transformation is zero
at the computation point and the product of the Jacobian with the kernel function behaves
smoothly.

The nodes @), are irregularly distributed over each patch o}, and usually not identical
to the points where the data are given. Therefore, the data have to be interpolated at the
nodes of the integral formula, which in turn introduces interpolation errors. As an alter-
native, the contribution of a patch to the surface integral can be computed using the data
at the observation points, often reduced to a block mean value, as the only node, which
corresponds to the application of the composed one-point Newton-Cotes integration for-
mula (see e.g. Novdk et al., 2000; Novédk and Heck, 2002). To minimize integration
and interpolation errors, Alberts and Klees (2004) use modified polar coordinates as in-
troduced by Klees (1996) in combination with least-squares prediction to obtain gravity
values at the nodes. This approach improved the performance of the integral-based meth-
ods considerably.

3.2.3 Least-squares collocation

Least-squares collocation (LSC) is often used for the downward continuation of airborne
gravity data and the inversion into gravity functionals at ground level. Examples are
given in Forsberg and Kenyon (1994), Marchenko et al. (2001) and Forsberg (2002).
LSC is an optimal linear estimation method for gravity modeling. For the derivation,
two fundamentally different viewpoints have been derived; the deterministic approach
and the probabilistic (or statistical) approach. Both approaches have certain advantages
and drawbacks (see e.g. Kotsakis and Sideris (1999) for a discussion). The deterministic
viewpoint, first introduced by Krarup (1969), considers the unknown disturbing potential
as an individual element in a reproducing kernel Hilbert Space (RKHS) JH, which is
modeled from observations belonging to a dual Hilbert space JH* of H (see appendix C
for the definition of a Hilbert space and some of its properties). The optimal solution is
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then defined as the smoothest function that satisfies the given observations. This approach
suffers from two important problems: the norm choice (or equivalently, the choice of the
reproducing kernel) and the lack of efficient measures to evaluate the accuracy of the
approximation.

The probabilistic approach models the unknown disturbing potential as a zero-mean
stochastic process and the available observations are considered as zero-mean random
variables. The optimal solution is then defined as the one with the smallest mean square
error (MSE) and should be an unbiased estimator, which is linearly related to the available
discrete data. The underlying framework is known as the Wiener-Kolmogorov theory,
which was introduced in gravity modeling by Moritz (1962). The main drawback of
this viewpoint is that the gravity field is not a stochastic phenomenon, since repetitive
gravity measurements should always provide the same result (excluding time-dependent
variations and measurement errors).

Both viewpoints provide identical solutions if the reproducing kernel function of the
deterministic approach is combined with the covariance function used in the probabilistic
approach. This leads to an intermediate viewpoint, which was first proposed by Heiska-
nen and Moritz (1967) and rigorously worked out by Sanso (1980). This viewpoint uses
spatial statistical measures to describe the disturbing potential and its accuracy and the
covariance function is defined as a purely deterministic quantity using a spatial averaging
operator M. The solution still satisfies the minimum MSE principle. In this way, it can
be regarded as a minimum-norm solution in an RKHS with the reproducing kernel equal
to the deterministic covariance function.

Pure least-squares collocation

This section describes ’pure’ collocation without noise and systematic parameters. The
derivation of the expressions within the concept of Hilbert spaces with a reproducing
kernel function is discussed in detail in appendix C. The mathematical concept of a
Hilbert space is the natural generalization to an infinite number of dimensions of the
Euclidean space R". A Hilbert space is an inner product space which, as a metric space,
is complete. The advantage of working in a Hilbert space is that the norm in the Hilbert
space is associated with a quadratic expression, so that the process of minimization leads
to linear problems.

Suppose for an unknown function f € JH, n observations [; = L;f are available. In
gravity field modeling, the unknown function f is often the disturbing potential 7" and the
observations /; are linear functionals of 7', e.g. gravity disturbances. When the dimension
of the Hilbert space J{ is larger then n, the function f is not uniquely determined. Among
all approximate solutions f that are compatible with the observations [;, there is one, f ,
for which the norm is minimum (Moritz, 1980):

171 = 11 £1l- (3.24)

The solution f is the orthogonal projection of f onto a subspace of H. It is precisely the
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solution given by least-squares collocation, which reads (see appendix C)
f=LE)" (LK), (3.25)

where K = K (P, () is the reproducing kernel.
With the notation Cy; := (LK)T and C;; := L(LK)” the LSC solution f takes the
usual Wiener-Kolmogorov form

f=CuC;M (3.26)

Instead of least-squares collocation, the method of determining f as outlined here is also
called least-norm collocation, because the norm || f||? is minimized.

Least-squares collocation in the presence of noise

In the previous section it was assumed that the observations /; were noise-free, but in
practice gravity measurements always contain measurement errors. Then the observation
model of least-squares collocation becomes

Li=Lif+e, i=1...,n, (3.27)
where ¢; is the error in the observation /;. In matrix notation this is written as
l=Lf+e.
The least-squares estimator of f for this case is given as (Moritz, 1980)
f= QLK) (LILEK)" +C.,) 1. (3.28)

where C,. is the variance-covariance matrix of the noise. Using again the notation Cy; :=
(LK)T and C; := L(LK)?, this equation can be written in the well known form for LSC
with noise

f=CulCy+Ce) 'L (3.29)

The latter expression is equivalent to Tikhonov regularization with signal constraint, with
the regularization parameter equal to 1, as will be shown in section 4.3.3. As a conse-
quence, LSC provides a stable solution for the generally ill-posed problem of gravity
field determination.

The model for least-squares collocation may be further extended to incorporate the
estimation of additional parameters, such as datum parameters. For the derivation of the
solution in the presence of additional parameters, see Moritz (1980).
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The covariance function

The application of LSC requires the determination of the kernel function K (P, @), which
is identified with the covariance function of the disturbing potential. The function K (P, Q) =
K (1pg) can be expanded in a series of spherical harmonics as (see appendix C)

0 R2 n+1
K(pg) = ch ( B > P, (costpq), (3.30)

2 rpTQ

where 1) pq is the spherical distance between P and (), ¢, is the signal degree variance
and Rjp is the radius of the Bjerhammar sphere. The function K (P, ()) defined this way
expresses the spatial covariance function of f, often denoted by C(1)pg). Similarly, the
matrix Cy; defined in Eq. (3.26) is called auto-covariance matrix of the observations 1
and the matrix Cy; is called the cross-covariance matrix between f and /.

When the remove-restore procedure is applied, a long-wavelength model is subtracted
from the observations, as described in section 3.2.1. Then, the covariance-function is
given as

N R2 \ "1
CYpg) = Zﬁn < £ ) P, (costpg)

n=2 TPTQ
00 R2B n+1
+ 0y C"(rprQ> P (costbpg). (3.31)
n=N+1

where NV is the maximum degree of the global gravity field model (GGM) that has been
subtracted and e, is the error degree variance related to the GGM.

The degree variances are expressed by Eq. (C.21) in terms of spherical harmonic
coefficients, which are generally not available for n > N. In practice, an analytical model
is often fitted to an empirically derived covariance function. A degree variance model that
has been used in many applications is the Tscherning and Rapp model (Tscherning and
Rapp, 1974), which is given in terms of degree variances of the disturbing potential as

A
(n—1)(n—2)(n+ B)’

(T, T) = (3.32)
where A is a constant in units of (m/s)* and the integer B is typically put equal to a
small number (e.g. B = 4) if a gravity model has been subtracted from the data. To fit
the covariance function to the empirically derived function, both A and Rp need to be
estimated.

For local and regional gravity field modeling, a covariance function is determined us-
ing available gravity functionals within the area of interest. For airborne gravimetry this
means that the covariance function is computed from gravity disturbances, and in a sec-
ond step related to the disturbing potential using the law of covariance propagation. The
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relation between the degree variances of the disturbing potential and the degree variance
models associated with the auto- and cross-covariance functions of gravity disturbances
are given as

2
en(6g,59) = L0 ) (3.33)
TPTQ
en(T, 5g) = (l: Vo1, (3.34)
Q

For other functionals, the relations are easily obtained by applying the corresponding
linear operators to the degree variances of the disturbing potential (see e.g. (Meissl,
1971a) for the functional relations).

An alternative analytical covariance function for airborne gravimetry was derived by
(Forsberg, 1987), who uses a planar approximation of the Earth’s surface. The derived
planar attenuated logarithmic covariance model for gravity disturbances at flight level is

3
C, Z a;log(z; + 1)

Clxp = Tg, Yr — Yor 2p + 2g) = ——— , (3.35)

> ailog(2D; + 4h)

=0

where C}, is the variance of gravity disturbances at flight level h. The parameters «;, 2;
and r; are given as

Qg = 1, Q) = —3, Qg = 3, 3 = —1,

zi =zp + 2q + D,

T = \/(xP —20)? + (Yr — Yo)? + 2,
with
D; =D +1iT,
where D is the high-frequency attenuation parameter and 7" the low-frequency attenua-
tion parameter. See (Forsberg, 1987) for more details. The model represents the planar

equivalent of the Tscherning-Rapp model and is especially suitable for local and regional
applications such as airborne gravimetry and airborne gradiometry.

3.2.4 Sequential multipole analysis

The representation of the disturbing potential by potentials of radial multipoles was de-
veloped by Marchenko (1998). This method has been applied to airborne gravity data
acquired during the AGMASCO campaign by Marchenko et al. (2001) for the Skagerrak
area and by Marchenko et al. (2004) for the Azores region. A multipole represents a point
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object at a point P; inside the Bjerhammar sphere (cf. fig. 3.5). The potential of a radial
multipole is characterized by the degree n; and its coordinates d;, ¢;, \; for geocentric
distance, latitude and longitude, respectively.

The disturbing potential can be represented at any point P outside the Bjerhammar
sphere by a convergent series of K non-orthogonal harmonic functions as

GM K R n+1 ‘
r(p)= N u?( ) wi(P) (3.36)

- r
=1

where ;7 are the dimensionless multipole moments (or coefficients) and v?, is the dimen-
sionless potential function of the radial multipole of degree n. The function v’ is defined

. 10" /1
v (P)= =~ ), (3.37)
nl os? \ ¢
with s; = d;/r and ¢; = r;/r, where r; is the distance between the radial multipole and
point P,

ro= 2 & 2rd;cos i, (3.38)

where 1); = 1, is the spherical distance between P and F;, computed from Eq. (3.15).
Following the derivation in Marchenko et al. (2001) the potential of radial multipoles can
be expressed in terms of Legendre polynomials as

) r n+1
v, = <> P,(cosb;), (3.39)
Tq
with
COS 92 = (’I'C()Swi — dz)/’z (340)

Figure 3.5: Location of a radial multipole (F;) inside the Bjerhammar sphere.
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It can be shown that the recursion formula for Legendre polynomials (Heiskanen and
Moritz, 1967) can be used for the straightforward computation of the functions v/, as
well, resulting in the recursion formula (Marchenko, 1998)

|

vy = —

0 qi

. CoOSY; — S;

vi = DSV s (3.41)

4q;
ngiv, = (2n — 1)(cos v — s;)vy,_1 — (n — 1)u;,_,.

The expression for the gravity disturbance in terms of the potential of radial multi-
poles can be found by applying the radial derivative operator to Eq. (3.36) as

T GM <~ 0 ((R\"™ .
so(P) =~ = g i, (() vn<P>>

GM S (R\""
= T 2 (7) 9 (P), (3.42)

i=1
where the functions ¢/, (P) are given as (Marchenko et al., 2004)
9n(P) = =(n+1)(v(P) + siv7,11(P))- (3.43)

For the gravity anomaly a similar expression can be found using the fundamental equation
of physical geodesy. Denoting the potential functions by g, they read (Marchenko et al.,
2001)

G- (P) = (n+1)s;v'.(P) + (n — 1)v,(P). (3.44)

A practical application of the expressions derived above requires the solution of the
inverse problem. That is, based on the observations, an appropriate finite set of radial
multipoles, i.e. values of the moments (coefficients), locations and degrees, must be de-
termined to approximate the disturbing potential. Within the sequential multipole analy-
sis (SMA) algorithm the solution is obtained in several steps, which may be summarized
as (Marchenko et al., 2001)

1. Input of the initial data set;

2. Find the largest absolute value of the gravity data; postulate this extremum as the
epicenter E of the i-th radial multipole with coordinates (p;, \;); estimate the em-
pirical isotropic function;

3. Determine the multipole parameters s;, n and p';

4. Compute the transformed data by removing the contribution of the potential of the
i-th multipole from the data;
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5. Return to step 2 if the desired accuracy is not achieved.

The determination of the relative distance s;, the degree n and the moment 47, in
step 3, is done on the basis of the empirical isotropic function (EIF) determined in step
2. The EIF is characterized by three parameters: the magnitude of v/, at the epicenter, the
decreasing length and the curvature. The definition of these parameters is identical to the
definition of those that describe the signal auto-covariance function (i.e. the variance, the
correlation length and the curvature) used in LSC. The optimal degree n, the parameters
s; and p7', and the location of the radial multipole can be determined by a non-linear
fitting of the EIF to the analytical isotropic function given by the function g’ (1), or
from the closest approximation of the gravity data locally. See Marchenko et al. (2001)
for more details. After all radial multipoles have been selected, the multipole moments
uy are re-adjusted by a least-squares estimation.

3.3 Discussion

This chapter gives an overview of the procedures used for the processing of airborne
gravity data, which consists of pre-processing and inversion. The pre-processing con-
sists of several independent steps, such as low-pass filtering, an adjustment of cross-over
misfits, and gridding or interpolation. Each of these steps may introduce errors that ac-
cumulate in the course of processing or limit the resolution of the resulting gravity field.
Therefore, in the next chapter several alternative strategies will be proposed, that replace
the steps of filtering and cross-over adjustment by combining them with the estimation
of gravity field parameters.

For the inversion of airborne gravity data into gravity functionals at ground level, a
number of methods that are used in practice have been outlined, namely integral meth-
ods, least-squares collocation and sequential multipole analysis. Several authors have
compared the performance of the approaches, especially in terms of geoid height er-
rors. Alberts and Klees (2004) investigated the accuracy of the integral methods and
compared them with LSC. They found that least-squares collocation performed slightly
better, but differences between the outcomes were small. A study by Marchenko et al.
(2001) showed that the SMA approach and LSC yield comparable results, which was
confirmed by Klees et al. (2005) who used a simulated data set for the comparison be-
tween the methods.

From these studies it can be concluded that if a proper comparison is made between
the approaches, they yield similar results in terms of geoid height and gravity disturbance
errors at ground level. However, the methods may differ significantly with respect to the
numerical complexity, stability and the extend to which they can be applied in practice.
For instance, the integral methods require the computation of block mean values or in-
terpolation of the data to the integration nodes. Furthermore, the data must be provided
in an area that is much larger than the region for which the gravity functionals are com-
puted. This is especially the case for the two-step integral approaches due to the large
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integration cap size of the Hotine kernel, for which typically a value of 5 degrees is cho-
sen to reduce the far-zone effect. The single-step integral approach is more efficient, but
still a cap size of 1.5-2 degrees is required to obtain accurate results.

The inversion methods differ with respect to the number of base functions that are
required to represent the data and determine the disturbing potential. For LSC the num-
ber of base functions equals the number of observations, which means that the signal-
covariance matrix is generally very large and not easy to invert. In practice, LSC is often
applied block-wise, or data are left out or gridded. When spherical base functions are
used in combination with the application of a data-adaptive algorithm such as the SMA
approach, the number of base functions can be reduced significantly without corrupting
the quality of the solution. The SMA approach depends, however, on a pre-defined level
of accuracy in the iteration scheme. Both LSC and the SMA algorithm do not require
regularization, but the actual noise level may be underestimated.

In the following chapter a different representation of the disturbing potential will be
used. It is based on a linear combination of harmonic functions that are the fundamental
solutions of Laplace’s equation in Cartesian coordinates. The advantages of this ap-
proach are the simple implementation and the fact that the number of base functions only
depends on the resolution that is required. Furthermore, techniques to handle colored
noise that have been developed for satellite gravimetry can be applied directly.
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This chapter gives the theoretical outline of the developed methodology that is applied to
simulated and real data in the following chapters. The approach was first introduced by
Alberts et al. (2005) and further investigated in Alberts et al. (2007a,b). It combines the
processing steps that were discussed in the previous chapter with the estimation of gravity
field parameters in one algorithm. The main advantage of the developed methodology
is that it requires a minimum of pre-processing. The traditional low-pass filtering is
replaced by a frequency-dependent data weighting; frequencies where the noise is high
get a lower weight and vice versa. Furthermore, bias and drift parameters are included
in the functional model, and the data are not gridded but used at the locations where they
have been acquired.

In the first section a suitable gravity field representation is introduced. The disturb-
ing potential is parameterized as a linear combination of harmonic functions that are the
fundamental solutions of Laplace’s equation in Cartesian coordinates. The parameters
of this representation are estimated using least-squares techniques, which are discussed
in section 4.2. Because the inversion of airborne gravity data is an ill-posed problem, a
regularization is applied, which is the topic of section 4.3. Here, Tikhonov regularization
is used, which requires two choices to be made; the choice of the regularization matrix
and the choice of the regularization parameter which determines the weight of the regu-
larization matrix. Section 4.4 describes the frequency-dependent data weighting scheme
to properly take colored noise into account. The approach uses an ARMA model of the
colored noise within a pre-conditioned conjugate gradients (PCCG) scheme. The advan-
tage of this approach is that the variance-covariance matrix of the observations does not
need to be inverted. Other error types such as biases and drifts are treated in section 4.5.
Bias and drift parameters, but also other parameters such as instrument scale factors can
be estimated by including them in the functional model. The chosen representation of
the disturbing potential, described in the first section, implicitly assumes periodicity of
the gravity signal, which results in strong oscillations at the borders of the area. Several
methods are discussed in section 4.6 for the reduction of these edge effects. Finally, sec-
tion 4.7 shows how errors at low frequencies can be reduced by adding prior information
or constraints to the functional model.
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4.1 Gravity field representation

In global gravity field modeling the most frequently used functions to represent the gravi-
tational potential are spherical harmonics, because they are orthogonal on a sphere, which
is an advantage for global gravity field modeling. These functions are obtained as general
solutions of Laplace’s equation in spherical coordinates, using the technique of separa-
tion of variables (see e.g. Heiskanen and Moritz, 1967). However, spherical harmonics
are not convenient for regional applications. Firstly because the number of base functions
would be very large to obtain a high-resolution gravity field solution and, more important,
because it would require data to be available over the whole sphere, which is obviously
not the case for airborne gravimetry.

A more suitable choice of a coordinate system for regional applications is a local
Cartesian reference frame. For Cartesian coordinates the expression of the gravitational
potential is obtained in the same way as for spherical harmonics, by solving Laplace’s
equation. Laplace’s equation in Cartesian coordinates is given as

PV 9PV 9PV

- 42" L . 4.1
Ox? + Oy? + 022 0 @D

AV (z,y, z)

The transformation from traditionally used ellipsoidal coordinates {, A, h} to local Carte-
sian coordinates {z,y, z} is given in appendix B. After separating the variables z, y, z
by writing the potential as

V(z,y,2) = f(z)g(y)h(z), 4.2)

and inserting this expression in Eq. (4.1), the following solution for Laplace’s equation
in Cartesian coordinates is obtained

V(z,y,2) = > > Cimeu(x) pmly) e, (4.3)
l=—00 m=—o00

where Cj,,, are coefficients of degree [ and order m, and ¢;(x) and ¢,,(y) are harmonic
base functions defined as

_ f cosoyz, 1>0 _f cosBny, m=>0
pil) = { sinogz, <0 Pm(y) = { sin By, m <0 @5

with

27|l _ 2m|m]|
D, " D,
To fulfill the condition of harmonicity (AV = 0), v, is given by definition as

1 \? m\?
m = Jai + 52, =2 () +<) . (4.6)
Vi ai + 7T\/ D, D,

4.5)

6%}
Yy
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survey area
.

-

r=R+h

Figure 4.1: Geometry of the representation in a local Cartesian reference frame.

The parameters D, and D, denote the size of the computation domain in the = and y
directions (see figure 4.1). The gravitational potential is thus expressed as a linear combi-
nation of harmonic functions, that are the fundamental solutions of Laplace’s equation in
Cartesian coordinates. The same representation was already used by Tsuboi and Fuchida
(1938) to transform gravity field data from one elevation to another. Note that this rep-
resentation of the disturbing potential is not a planar approximation. Data are used at
the locations where they are observed and their coordinates are transformed to a local
Cartesian coordinate frame, as shown in appendix B for ellipsoidal coordinates.

The longest wavelength that can be represented by Eq. (4.3) is equal to the size
of the area, fixed by D, and D,. This requires the application of the remove-restore
technique as described in section 3.2.1, where a long-wavelength model (for instance a
GGM) is subtracted and only the residual field is expressed using Eq. (4.3). Furthermore,
for practical applications the series Eq. (4.3) is truncated at a maximum degree L and
order M. Then, the disturbing potential is represented by a series of harmonic functions,
expressed in Cartesian coordinates, as

L M
T(x,y,2) =Y > Ciri(x) om(y) e ", 4.7)

l=—Lm=—M

The minimum wavelength that is represented by this series can be computed from L and

M as
D, D,

L’ Ay = M’
with A, and ), the wavelength in the x and y directions. Instead of minimum wavelength,
the term spatial resolution is often used, which is characterized in terms of the half-
wavelength that can be resolved. The resolution in x and y direction is A, /2 and A, /2,
respectively.

Ay = (4.8)
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The coefficients C},,, are unknown, i.e. they must be determined from measured grav-
ity functionals. As mentioned in section 2.3.1, the commonly used observables in air-
borne gravimetry are gravity disturbances, which are related to the disturbing potential
as 0g = —0T'/Or. Approximating the radial derivative by the derivative in the vertical
direction, 0T'/0r ~ 0T/ 0z, the relation between observed gravity disturbances, denoted
by T, and the unknown coefficients is found by applying the z-derivative operator to Eq.
(4.7). The error introduced by this approximation can be written as

5g /= 0g — dg cos d 4.9)

R?
where d is the dista