NETHERLANDS GEODETIG COMMISSION
 publications on geodesy
 NEW SERIES
 NUMBER 2

THE MODIFIED ASTROMETRIC PROCEDURE OF SATELLITE PLATE REDUCTION AS APPLIED AT THE KOOTWIJK OBSERVATORY OF THE DELFT GEODETIC INSTITUTE

A description with some results for SAOP
by
D. L. F. VAN LOON and T. J. POELSTRA

CONTENTS

Summary 4
1 Introduction 5
2 Some technical details 5
3 Time reduction 8
4 Position reduction 9
5 Conversion to fixed-Earth reference 12
6 Quality assessment by means of curve-fitting 16
7 Reporting for SAOP 18
8 Results 18
References 21
Tables I-V Observations from Ypenburg-site 22
Table VI Observations from Kootwijk Observatory 28

The camera station of the Geodetic Institute of Delft University of Technology has participated in a number of internationally coordinated geodetic satellite observation programmes. In a previous publication [1] contributions to several international observation programmes were discussed. The present publication concentrates on the methods and formulas applied for the reduction of observations made for the European Short Arc Observation Programme (SAOP). These photographic satellite observations have been made at two observing-sites i.e. Delft-Ypenburg and Kootwijk, in the period April 1971-April 1974.

Some results of observations and computations are given.

THE MODIFIED ASTROMETRIC PROCEDURE OF SATELLITE
 PLATE REDUCTION, AS APPLIED AT THE KOOTWIJK OBSERVATORY OF THE DELFT GEODETIC INSTITUTE

1 Introduction

This publication was already announced in [1]. It is a follow-up of [1]; special attention will now be given to the system of modified reduction formulas by means of which the initial information of photographs taken for the current European Short Arc Observation Programme (SAOP) are reduced. The photographs referred to are those taken with the equatorially mounted TA-120 concentric-mirror type camera (Bouwers-Maksutov).

The correction-formulas, used in connection with the reduction-formulas (section 5) are to a great extent those used by Schürer [2]. The precision aimed at is better than $0^{\prime \prime} .1$ in directions and better than $0^{s} .0001$ in time. For this reason the precision in computation is better than $0^{\prime \prime} .01$.
The observations have been made from two different observing-sites:

- DELFT, YPENBURG, until 1st December 1973;
- KOOTWIJK (Fig. 1), from 1st December 1973 onwards.

For the correct location data, see [3].
In this publication the parts dealing with the reduction methods are similar to those given in [1]; nevertheless for convenience of the reader these parts are repeated here. Quite different compared to [1] are the sections 5,7 and 8 ; here the formulas for conversion to fixed-Earth reference, as used for SAOP, and results are discussed. Just like [1], the present publication must be considered as an account of work; in this case covering the period April 1971-April 1974.

2 Some technical details

An astrometric (short-Turner) method is applied to reduce stellar oriented photographic satellite plates to fixed-earth station-to-satellite directions. The plates considered are those taken with the TA-120 camera in use by the Delft Geodetic Institute.
The relevant optical features of the TA- 120 camera are:

optics:	Bouwers-Maksutov concentric mirror
focal length:	120 cm
effective aperture:	21 cm
field:	$5^{\circ} \times 5^{\circ}$ spherical.

Fig. 2 Camera dome of Kootwijk Observatory

The camera operates on 5 inches wide roll-film (currently Kodak 2475 Estar Base), each frame before exposure being pressed to assume a spherical shape with about 240 cm radius of curvature.

The camera is mounted equatorially and driven at the sidereal rate.
With optically passive satellites, timing of satellite images is achieved by means of a focal plane chopper of special design. The essential point here is that during the exposure of the satellite trail two narrow strips of light weight material (about 2 cm wide), mutually separated by about 0.5 cm between the strips, periodically chop the light beam from the satellite just before it could reach the focal plane. This produces each time a satellite image in the center of a trail interruption. Time control of the chopper is obtained by recording photo-electronically the instants that the twin-strips assume four selected and equally spaced calibration positions, known geometrically with respect to the camera's fiducial marks. Finally numerical interpolation yields for each satellite image the time instant at which the chopper occupied the position in which it produced that image.

Each successful film frame is copied onto a glass plate, which is subsequently measured on a Mann 422F XY-comparator. A plate is measured in two positions, mutually rotated over about 180°. For each satellite image six reference stars are selected, evenly distributed with respect to the satellite image and as close to it as is practical. Throughout the measurements and the subsequent calculations each satellite image with its reference stars is treated individually. However, it proved inevitable to assign identical reference stars to adjacent satellite images. The sequence of measurement is as follows: satellite image-reference starsreference stars in reversed order-satellite image. This cycle is repeated once, before the
operator proceeds to the next satellite image. When all satellite images have been treated in this way the entire procedure is performed with the plate rotated through about 180°.

Reference star positions are taken from a magnetic tape version of the SAO star catalog by means of a computer search programme.
The computational part of the plate reduction is performed in three computer programmes briefly indicated by:

1. "Time reduction"
2. "Position reduction"
3. "Conversion to fixed-Earth reference".

In the following three sections these programmes are described consecutively, giving details of the formula's used.

3 Time reduction

This programme reduces the chopper-time records to time instants related to the satellite positions recorded on the photographic plate. Corrections are applied for receiver delay, propagation time of the 75 kHz HBG time signal from Neuchâtel to Delft and for the time difference between UTC and the HBG emission.

Suppose the chopper traverses the rectangular coordinate system defined by the fiducial marks in x-direction and specify the calibration positions by $x^{1}, x^{2}, x^{3}, x^{4}$ respectively.

Denote the instants recorded for these positions and for satellite image sub. i (approximate coordinates x_{i}, y_{i}) by respectively:

$$
t_{0}+\Delta t_{i}^{1}, t_{0}+\Delta t_{i}^{2}, t_{0}+\Delta t_{i}^{3}, t_{0}+\Delta t_{i}^{4}
$$

Then, disregarding receiver delay and emission and propagation corrections, a provisional time instant \boldsymbol{T}_{i} for the recording of image sub. i is obtained from:

$$
\begin{equation*}
t_{i}=t_{0}+\Delta t_{i} \tag{3.1}
\end{equation*}
$$

in which:

$$
\begin{equation*}
\Delta t_{i}=\left(\left(x_{i}\right)^{2}, x_{i}, 1\right) \cdot \underline{a} \tag{3.2}
\end{equation*}
$$

with:

$$
\begin{equation*}
\underline{a}=\left(M^{*} \cdot M\right)^{-1} \cdot M^{*} \cdot \underline{t} . \tag{3.3}
\end{equation*}
$$

if:

$$
M=\left(\begin{array}{lll}
\left(x^{1}\right)^{2} & x^{1} & 1 \tag{3.4}\\
\left(x^{2}\right)^{2} & x^{2} & 1 \\
\left(x^{3}\right)^{2} & x^{3} & 1 \\
\left(x^{4}\right)^{2} & x^{4} & 1
\end{array}\right) \quad \text { and } \quad t=\left(\begin{array}{c}
\Delta t_{i}^{1} \\
\Delta t_{i}^{2} \\
\Delta t_{i}^{3} \\
\Delta t_{i}^{4}
\end{array}\right) .
$$

Until 1st May 1972 a local time standard was, by means of a variable delay, brought in temporary synchronism with the received HBG time signals, just before a satellite observation.

[^0]Hence until that date, in order to relate the satellite image recording instants to $U T C$, $\boldsymbol{f}_{\boldsymbol{i}}$ had to be corrected as follows:

$$
\begin{equation*}
t_{i}=\tilde{t}_{i}+\Delta_{d}+\Delta_{p}+E \tag{3.5}
\end{equation*}
$$

in which:
$\Delta_{d}=$ receiver delay $=1.5 \mathrm{~ms}$
$\Delta_{p}=$ propagation correction $=2.2 \mathrm{~ms}$
$E=$ "UTC-signal" as published by BIH in circular D.

Since 1 st May 1972 a rubidium time and frequency standard (HP 5065 A) is used to keep $U T C$ between periodic flying clock visits. This technique meets the needs of satellite photography to an extent that corrections from t_{i} to t_{i} could be omitted since that date.

4 Position reduction

This programme reduces plate measurements of satellite and star images to provisional topocentric geometric satellite directions referred to the astrometric system adopted for the SAO catalog (equinox 1950.0, system FK4). The directions are provisional in that no corrections will be applied for annual aberration, diurnal aberration, light travel time, parallactic refraction and satellite phase.

Denote plate measurement positions by I and II respectively.
Denote arithmetic means over all four satellite and star image measurements-expressed in mm and after division by the focal length $(1200 \mathrm{~mm})$ as follows:
satellite image sub. i :

$$
\bar{X}_{i}^{\mathrm{I}}, \bar{Y}_{i}^{\mathrm{I}} ; \quad \bar{X}_{i}^{\mathrm{II}}, \bar{Y}_{i}^{\mathrm{II}}
$$

image star sub. k as related to satellite image sub. i :

$$
\bar{x}_{i, k}^{\mathrm{I}}, \bar{y}_{i, k}^{\mathrm{I}} ; \quad \bar{x}_{i, k}^{\mathrm{II}}, \bar{y}_{i, k}^{\mathrm{II}}
$$

If $M J D$ is the Modified Julian Date of observation (integer number), then stellar positions updated for proper motion are:

$$
\left.\begin{array}{l}
\alpha_{k}=\alpha_{1950, k}+\tau \mu_{k} \tag{4.1}\\
\delta_{k}=\delta_{1950, k}+\tau \mu_{k}^{\prime}
\end{array}\right\}
$$

where (omitting subscript k) $\alpha_{1950}, \delta_{1950}$ and μ, μ^{\prime} are taken from the SAO catalog, and:

$$
\begin{equation*}
\tau=\frac{M J D-33282}{365.24} \tag{4.2}
\end{equation*}
$$

Adopt approximate right ascension A_{i} and approximate declination D_{i} for the direction associated with satellite image sub. i.

Then solve standard coordinates $\xi_{i, k}, \eta_{i, k}$ from:

$$
\left(\begin{array}{l}
\cos \eta_{i, k} \cos \xi_{i, k} \tag{4.3}\\
\cos \eta_{i, k} \sin \xi_{i, k} \\
\sin \eta_{i, k}
\end{array}\right)=T_{i} \cdot\left(\begin{array}{l}
\cos \delta_{k} \cos \alpha_{k} \\
\cos \delta_{k} \sin \alpha_{k} \\
\sin \delta_{k}
\end{array}\right)
$$

with:

$$
T_{i}=\left(\begin{array}{rrc}
\cos D_{i} \cos A_{i} & \cos D_{i} \sin A_{i} & \sin D_{i} \tag{4.4}\\
-\sin A_{i} & \cos A_{i} & 0 \\
-\sin D_{i} \cos A_{i} & -\sin D_{i} \sin A_{i} & \cos D_{i}
\end{array}\right)
$$

Now, for both plate measurement positions, form:

$$
\underline{l}_{i}=\left(\begin{array}{cc}
\vdots & \vdots \tag{4.5}\\
\xi_{i, k}-\bar{x}_{i, k} \\
\vdots & \vdots \\
\eta_{i, k}-\bar{y}_{i, k} \\
\vdots & \vdots
\end{array}\right)
$$

and:

$$
M_{i}=\left(\begin{array}{ccc:ccc}
\vdots & \vdots & \vdots & & & \tag{4.6}\\
\overline{\bar{x}}_{i, k} & \bar{y}_{i, k} & 1 & & 0 & \\
\vdots & \vdots & \vdots & & & \\
\hdashline & & & \vdots & \vdots & \vdots \\
& 0 & & \bar{x}_{i, k} & \bar{y}_{i, k} & 1 \\
& & & \vdots & \vdots & \vdots
\end{array}\right)
$$

Then, assuming a Gaussian (normal) probability distribution for the components of \underline{l}_{i}, with correlation freedom and constant variance, the most probable \underline{a}_{i} of linear plate constants is obtained independently for both plate measurement positions:

$$
\begin{equation*}
\underline{a}_{i}=V\left\{\underline{a}_{i}\right\} \cdot M_{i}^{*} \cdot \underline{l}_{i} \tag{4.7}
\end{equation*}
$$

with:

$$
\begin{equation*}
V\left\{\underline{a}_{i}\right\}=\left(M_{i}^{*} \cdot M_{i}\right)^{-1} \tag{4.8}
\end{equation*}
$$

The standard coordinates for the station-to-satellite direction become:

$$
\begin{equation*}
\binom{\xi_{i}}{\eta_{i}}=B_{i} \cdot \underline{a}_{i}+\binom{\bar{X}_{i}}{\bar{Y}_{i}} . \tag{4.9}
\end{equation*}
$$

for both plate measurement positions independently, if:

$$
B_{i}=\left(\begin{array}{cccccc}
\bar{X}_{i} & \bar{Y}_{i} & 1 & 0 & 0 & 0 \tag{4.10}\\
0 & 0 & 0 & \bar{X}_{i} & \bar{Y}_{i} & 1
\end{array}\right)
$$

Unit weight variance in (seconds of arc) ${ }^{2}$ is estimated from:

$$
\begin{equation*}
\hat{\sigma}_{i}^{2}=\frac{\underline{v}_{i}^{*} \cdot \underline{v}_{i}}{2 s_{i}-6} \cdot(206265)^{2} \tag{4.11}
\end{equation*}
$$

where s_{i} is the number of reference stars used (usually six) and the correction vector \underline{v}_{i} is obtained from:

$$
\begin{equation*}
\underline{v}_{i}=\underline{l}_{i}-M_{i} \cdot \underline{a}_{i} \tag{4.12}
\end{equation*}
$$

Standard coordinates from both plate measurement positions are combined to mean values:

$$
\begin{equation*}
\xi_{i}=\frac{\xi_{i}^{\mathrm{I}}+\xi_{i}^{\mathrm{II}}}{2} ; \quad \eta_{i}=\frac{\eta_{i}^{\mathrm{I}}+\eta_{i}^{\mathrm{II}}}{2} \tag{4.13}
\end{equation*}
$$

These are transformed into right ascension and declination by solving α_{i}, δ_{i} from:

$$
\left(\begin{array}{l}
\cos \delta_{i} \cos \alpha_{i} \tag{4.14}\\
\cos \delta_{i} \sin \alpha_{i} \\
\sin \delta_{i}
\end{array}\right)=T_{i}^{*} \cdot\left(\begin{array}{l}
\cos \eta_{i} \cos \xi_{i} \\
\cos \eta_{i} \sin \xi_{i} \\
\sin \eta_{i}
\end{array}\right)
$$

Now suppose the satellite trail makes an angle ψ with the positive declination axis and moreover suppose that along trail comparator measurements have a standard deviation g times that of across trail measurements, then the variance-covariance matrix of the mean standard coordinates will be:

$$
V\left\{\begin{array}{l}
\xi_{i} \tag{4.15}\\
\eta_{i}
\end{array}\right\}=\frac{4}{4}\left(\hat{\sigma}_{i}^{\mathrm{I}}\right)^{2} B_{i}^{\mathrm{I}} \cdot V\left\{\underline{a}_{i}^{\mathrm{I}}\right\} \cdot\left(B_{i}^{\mathrm{I}}\right)^{*}+\frac{1}{4}\left(\hat{\sigma}_{i}^{\mathrm{II}}\right)^{2} B_{i}^{\mathrm{II}} \cdot V\left\{\underline{a}_{i}^{\mathrm{II}}\right\} \cdot\left(B_{i}^{\mathrm{II}}\right)^{*}+\frac{1}{2} \sigma^{2} R \cdot\left(\begin{array}{ll}
g^{2} & 0 \\
0 & 1
\end{array}\right) \cdot R^{*}
$$

if:

$$
R=\left(\begin{array}{lr}
\sin \psi & -\cos \psi \tag{4.16}\\
\cos \psi & \sin \psi
\end{array}\right)
$$

and σ is the standard deviation of across trail comparator measurements, expressed in seconds of arc.

Defining

$$
E=\left(\begin{array}{cc}
\sec D_{i} & 0 \tag{4.17}\\
0 & 1
\end{array}\right)
$$

the variance-covariance matrix of α_{i}, δ_{i} becomes:

$$
V\left\{\begin{array}{c}
\alpha_{i} \tag{4.18}\\
\delta_{i}
\end{array}\right\}=\left(\begin{array}{cc}
\sigma_{\alpha_{i}}^{2} & \sigma_{a_{i} \delta_{i}} \\
\sigma_{\delta_{i} a_{i}} & \sigma_{\delta_{i}}^{2}
\end{array}\right)=E \cdot V\left\{\begin{array}{c}
\xi_{i} \\
\eta_{i}
\end{array}\right\} \cdot E
$$

Because of the simplifying assumptions as regards the statistical properties of the components of \underline{l}_{i}, the off-diagonal elements of both

$$
V\left\{\begin{array}{l}
\xi_{i} \\
\eta_{i}
\end{array}\right\} \text { and } V\left\{\begin{array}{c}
\alpha_{i} \\
\delta_{i}
\end{array}\right\}
$$

should be zero.

The essential output of this programme consists of

$$
\alpha_{i}, \delta_{i} \text { and } \sigma_{\alpha_{i}}, \sigma_{\delta_{i}}
$$

α_{i}, δ_{i} should be interpreted as indicated in the beginning of this section.

5 Conversion to fixed-Earth reference

This programme transforms the station-to-satellite directions as derived in the previous section to a fixed-Earth reference frame and also applies corrections for annual aberration, diurnal aberration, light travel time, parallactic refraction and satellite phase.

Time instants t_{i} as obtained from programme "time reduction" are converted into MJD, taking the observation date into account. This yields (MJD/station) ${ }_{i}$.

The correction for light travel time is applied to form (MJD/satellite) ${ }_{i}$:

$$
\begin{equation*}
(M J D / \text { satellite })_{i}=(M J D / \text { station })_{i}-\frac{r_{i}}{2.5902072 \times 10^{10}} . \tag{5.1}
\end{equation*}
$$

where r_{i} stands for the estimated station-to-satellite range at t_{i} in km .
(MJD/satellite) ${ }_{i}$ will be abbreviated to $M J D$.
$M J D$, which was calculated in terms of $U T C$ is reduced to MJD1 in terms of $U T 1$, by application of differences $U T 1-U T C$ obtained from a linear interpolation in the smoothed values as listed in circular D issued by the BIH.

Next define:

$$
\begin{equation*}
T=M J D 1-33282.0 \tag{5.2}
\end{equation*}
$$

Precession is taken into account by matrix:
$P=\left(\begin{array}{ccc}-\sin x \sin \omega+\cos x \cos \omega \cos v & -\cos x \sin \omega-\sin x \cos \omega \cos v & -\cos \omega \sin v \\ +\sin x \cos \omega+\cos x \sin \omega \cos v & +\cos x \cos \omega-\sin x \sin \omega \cos v & -\sin \omega \sin v \\ \cos x \sin v & -\sin x \sin v & +\cos v\end{array}\right)$
in which:

$$
\begin{aligned}
& x=2.3436 \cdot 10^{-8}+3.05953200167 \cdot 10^{-7} \cdot T+0.109 \cdot 10^{-14} \cdot T^{2} \\
& \omega=2.3436 \cdot 10^{-8}+3.05953200607 \cdot 10^{-7} \cdot T+0.396 \cdot 10^{-14} \cdot T^{2} \\
& v=2.0379 \cdot 10^{-8}+2.66039999761 \cdot 10^{-7} \cdot T-0.156 \cdot 10^{-14} \cdot T^{2}
\end{aligned}
$$

Nutation is accounted for by:

$$
N=\left(\begin{array}{ccc}
1 & -\Delta \mu & -\Delta v \tag{5.4}\\
\Delta \mu & 1 & -\Delta \varepsilon \\
\Delta v & \Delta \varepsilon & 1
\end{array}\right)
$$

with:

$$
\begin{aligned}
& \Delta \mu=\cos \varepsilon \cdot \Delta \psi \\
& \Delta v=\sin \varepsilon \cdot \Delta \psi
\end{aligned}
$$

with:

$$
\varepsilon=23^{\circ} .44578-3^{\circ} .5627 \cdot 10^{-7} \cdot T
$$

and:

$$
\begin{aligned}
\varrho^{\prime \prime} . \Delta \psi= & -17^{\prime \prime} .2445 \sin \Omega-1.2730 \sin (2 F-2 D+2 \Omega)+0.2088 \sin 2 \Omega-0.2037 \sin (2 F+2 \Omega) \\
& +0.1259 \sin L^{\prime}+0.0675 \sin L-0.0496 \sin \left(L^{\prime}+2 F-2 D+2 \Omega\right)-0.0342 \sin (2 F+\Omega) \\
& -0.0261 \sin (L+2 F+2 \Omega)+0.0214 \sin \left(-L^{\prime}+2 F-2 D+2 \Omega\right)-0.0149 \sin (L-2 D) \\
& +0.0124 \sin (2 F-2 D+\Omega)+0.0114 \sin (-L+2 F+2 \Omega)+0.0060 \sin 2 D \\
& +0.0058 \sin (L+\Omega)-0.0057 \sin (-L+\Omega)-0.0052 \sin (-L+2 F+2 D+2 \Omega) \\
& +0.0045 \sin (2 L-2 D)+0.0045 \sin (-2 L+2 F+\Omega)-0.0044 \sin (L+2 F+2 \Omega)
\end{aligned}
$$

$$
\begin{aligned}
\varrho^{\prime \prime} . \Delta \varepsilon= & 9^{\prime \prime} .2106 \cos \Omega+0.5520 \cos (2 F-2 D+2 \Omega)-0.0904 \cos 2 \Omega+0.0884 \cos (2 F+2 \Omega) \\
& +0.0216 \cos \left(L^{\prime}+2 F-2 D+2 \Omega\right)+0.0183 \cos (2 F+\Omega)+0.0113 \cos (L+2 F+2 \Omega) \\
& -0.0093 \cos \left(-L^{\prime}+2 F-2 D+2 \Omega\right)-0.0066 \cos (2 F-2 D+\Omega)- \\
& -0.0050 \cos (-L+2 F+2 \Omega)
\end{aligned}
$$

in which:

$$
\begin{aligned}
& L=215^{\circ} .52915+13^{\circ} .0649924465 \cdot T \\
& L^{\prime}=358^{\circ} .00067+0^{\circ} .9856002669 \cdot T \\
& F=52^{\circ} .26346+13^{\circ} .2293504490 \cdot T \\
& D=144^{\circ} .29461+12^{\circ} .1907491914 \cdot T \\
& \Omega=12^{\circ} .11282-0^{\circ} .0529538652 \cdot T+0^{\circ} .156 \cdot 10^{-11} \cdot T^{2}
\end{aligned}
$$

The α, δ-output of the programme "position reduction" (section 4) defined in unit-vector form gives:

$$
\underline{z}=\left(\begin{array}{l}
\cos \delta \cos \alpha \tag{5.5}\\
\cos \delta \sin \alpha \\
\sin \delta
\end{array}\right) .
$$

The resultant rotation due to precession and nutation is applied to vector \underline{z} to give direction \underline{x} :

$$
\begin{equation*}
\underline{x}=N \cdot P \cdot \underline{z} \tag{5.6}
\end{equation*}
$$

Now, solve $\bar{\alpha}, \delta$ from:

$$
\left(\begin{array}{l}
\cos \bar{\delta} \cos \bar{\alpha} \tag{5.7}\\
\cos \delta \sin \bar{\alpha} \\
\sin \bar{\delta}
\end{array}\right)=\underline{x}
$$

where $\bar{\alpha}$ and $\bar{\delta}$ are the direction components of the directions to the satellite in the true sidereal system, starting from the 1950.0 SAO mean celestial system. The following corrections are applied to the values ($\bar{\alpha}, \delta$).

Annual aberration is corrected for by adding corrections $\Delta_{1} \alpha, \Delta_{1} \delta$:
$\left.\begin{array}{l}\Delta_{1} \alpha=\frac{-20^{\prime \prime} .50\left(\sin \bar{\alpha} \sin \lambda_{\mathrm{O}}+\cos \varepsilon \cos \bar{\alpha} \cos \lambda_{\mathrm{O}}\right)}{\cos \bar{\delta}} \\ \Delta_{1} \delta=-20^{\prime \prime} .50\left(\cos \bar{\alpha} \sin \delta \sin \lambda_{\mathrm{O}}-\cos \lambda_{\mathrm{O}} \sin \bar{\alpha} \sin \bar{\delta} \cos \varepsilon+\cos \lambda_{\mathrm{O}} \cos \bar{\delta} \sin \varepsilon\right)\end{array}\right\}$
where λ_{0} is the true longitude of the sun.
If:

$$
\begin{aligned}
& g=358^{\circ} .001479+0^{\circ} .9856003 \cdot T \\
& e=0.01673011-1.1478 \cdot 10^{-9} \cdot T-9.4 \cdot 10^{-17} \cdot T^{2} \\
& L_{\bigcirc}=(\text { mean longitude })=280^{\circ} .081216+0^{\circ} .9856473437 \cdot T+2.267 \cdot 10^{-13} \cdot T^{2}
\end{aligned}
$$

then:

$$
\lambda_{\mathrm{O}}=L_{\mathrm{O}}+\frac{1}{4}\left(8 e-e^{3}\right) \sin g+\frac{5}{4} e^{2} \sin 2 g+\frac{13}{12} e^{3} \sin 3 g
$$

Corrections for diurnal aberration are [4]:

$$
\left.\begin{array}{l}
\Delta_{2} \alpha=0^{\prime \prime} .32 \cos \varphi \cos h \sec \bar{\delta} \tag{5.9}\\
\Delta_{2} \delta=0^{\prime \prime} .32 \cos \varphi \sin h \sin \bar{\delta}
\end{array}\right\}
$$

where φ is the latitude of the station,

$$
\left.\begin{array}{l}
h=\theta+\lambda-\bar{\alpha} \\
\lambda=\text { the east-longitude and } \tag{5.10}\\
\theta=100^{\circ} .0755410+360.9856473459 \cdot T+0^{\circ} .2902 \cdot 10^{-12} \cdot T^{2}+\Delta \mu \ldots .
\end{array}\right\}
$$

The correction for parallactic refraction is calculated as follows (see [2] and [6])

$$
\begin{align*}
& \cos z=\sin \varphi \sin \bar{\delta}+\cos \varphi \cos \bar{\delta} \cos h \\
& \sin z=\sqrt{1-\cos ^{2} z} \\
& \sin q=\frac{\sin h \cos \varphi}{\sin z} \\
& \cos q=\frac{\sin \varphi-\sin \bar{\delta} \cos z}{\cos \bar{\delta} \sin z} \\
& \Delta R=-483^{\prime \prime} .8 \frac{\sin z}{\cos ^{2} z} \cdot \frac{1}{r}\left\{1-0.00126 \frac{2+\sin ^{2} z}{\cos ^{2} z}\right\} \frac{B}{B_{0}} \tag{5.11}
\end{align*}
$$

with:
$B=$ the barometric pressure in mm Hg
$B_{0}=$ the barometric pressure at mean sealevel (here 760 mm Hg).

$$
\left.\begin{array}{l}
\Delta_{3} \alpha=-\Delta R^{\prime \prime} \cdot \sec \delta \sin q \\
\Delta_{3} \delta=-\Delta R^{\prime \prime} \cdot \cos q \tag{5.12}
\end{array}\right\}
$$

Incidentally, z stands for the zenith-angle of the station-to-satellite direction.
Satellite phase is corrected for as follows:

$$
\left.\begin{array}{l}
\Delta_{4} \alpha=\frac{206^{\prime \prime} .265 \varrho \cos \frac{1}{2} u \sin v}{r \cos \delta} \tag{5.13}\\
\Delta_{4} \delta=\frac{206^{\prime \prime} .265 \varrho \cos \frac{1}{2} u \cos v}{r}
\end{array}\right\}
$$

Here ϱ is the radius of the satellite in metres, and u and v are to be solved from:

$$
\begin{aligned}
\sin u \cos v & =\sin \delta\left(\cos \lambda_{O} \cos \bar{\alpha}+\cos \varepsilon \sin \lambda_{0} \sin \bar{\alpha}\right)-\cos \delta \sin \varepsilon \sin \lambda_{O} \\
\sin u \sin v & =\sin \bar{\alpha} \cos \lambda_{O}-\cos \bar{\alpha} \cos \varepsilon \sin \lambda_{O} \\
\cos u & =\cos \bar{\delta}\left(\cos \lambda_{0} \cos \bar{\alpha}+\cos \varepsilon \sin \lambda_{0} \sin \bar{\alpha}\right)+\sin \delta \sin \varepsilon \sin \lambda_{O}
\end{aligned}
$$

With:

$$
\left.\begin{array}{l}
{[\alpha]=\bar{\alpha}+\Delta_{1} \alpha+\Delta_{2} \alpha+\Delta_{3} \alpha+\Delta_{4} \alpha} \tag{5.14}\\
{[\delta]=\bar{\delta}+\Delta_{1} \delta+\Delta_{2} \delta+\Delta_{3} \delta+\Delta_{4} \delta}
\end{array}\right\}
$$

the corrected direction components \underline{x}^{\prime} of the directions to the satellite in the true sidereal system are determined:

$$
\underline{x}^{\prime}=\left(\begin{array}{l}
\cos [\delta] \cos [\alpha] \tag{5.15}\\
\cos [\delta] \sin [\alpha] \\
\sin [\delta]
\end{array}\right)
$$

Now, a final rotation due to earth rotation and polar motion can be applied to unit-vector \underline{x}^{\prime} to give fixed-Earth direction y :

$$
\begin{equation*}
y=S \cdot R \cdot \underline{x}^{\prime} \tag{5.16}
\end{equation*}
$$

Earth rotation is expressed by:

$$
R=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \tag{5.17}\\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Polar motion components x, y are taken from the smoothed values listed in circular D issued by BIH by means of a linear interpolation.

The polar motion matrix used in 5.16 is:

$$
S=\left(\begin{array}{rrr}
1 & 0 & +x \tag{5.18}\\
0 & 1 & -y \\
-x & +y & 1
\end{array}\right)
$$

Now, solve $\bar{\alpha}, \bar{\delta}$ from:

$$
\left(\begin{array}{l}
\cos \bar{\delta} \cos \bar{\alpha} \tag{5.19}\\
\cos \bar{\delta} \sin \bar{\alpha} \\
\sin \bar{\delta}
\end{array}\right)=y
$$

where $\bar{\alpha}$ and $\bar{\delta}$ are the direction components of the directions to the satellite in the fixedEarth (Greenwich) system.

The procedure contained in most of the formulas of this section follows [2] and [5].
The variance-covariance matrix of y is estimated as:

$$
V\{y\}=G \cdot V\left\{\begin{array}{l}
\alpha \tag{5.20}\\
\delta
\end{array}\right\} \cdot G^{*} .
$$

in which:

$$
G=\left(\begin{array}{cc}
-\cos [\delta] \sin [\alpha] & -\sin [\delta] \cos [\alpha] \tag{5.21}\\
+\cos [\delta] \cos [\alpha] & -\sin [\delta] \sin [\alpha] \\
0 & \cos [\delta]
\end{array}\right)
$$

and where

$$
V\left\{\begin{array}{l}
\alpha \\
\delta
\end{array}\right\}
$$

is taken from the output of programme "position reduction" (see section 4).

6 Quality assessment by means of curve-fitting

The combined "observations" t_{i} from (3.5) and α_{i}, δ_{i} from (4.14) are being checked on their internal precision by means of a curve fitting procedure.

Define:

$$
\underline{v}_{i}=\left(\begin{array}{l}
\cos \delta_{i} \cos \alpha_{i} \tag{6.1}\\
\cos \delta_{i} \sin \alpha_{i} \\
\sin \delta_{i}
\end{array}\right)
$$

The direction cosines from (6.1) are referenced to a right-handed rectangular Cartesian frame which is defined by the first and the last directions observed on one plate, as follows:

$$
\left.\begin{array}{l}
\underline{x} \equiv \underline{v}_{1} \\
\underline{z}=\frac{\underline{v}_{1} \times \underline{v}_{n}}{\left|\underline{v}_{1} \times \underline{v}_{n}\right|} \\
y=\underline{z} \times \underline{x}
\end{array}\right\}, \begin{aligned}
& \underline{x}^{*} \\
& \underline{v}_{i}^{\prime}=\binom{y_{*}^{*}}{\underline{z}^{*}} \cdot \underline{v}_{i} \tag{6.3}
\end{aligned}
$$

Determine spherical coordinates along track and across track ξ_{i} and η_{i} from:

$$
\begin{gather*}
\left(\begin{array}{l}
\cos \eta_{i} \cos \xi_{i} \\
\cos \eta_{i} \sin \xi_{i} \\
\sin \eta_{i}
\end{array}\right)=v_{i}^{\prime} \tag{6.4}\\
0 \leqslant \xi_{i}<360^{\circ} \\
-90^{\circ} \leqslant \eta_{i} \leqslant+90^{\circ}
\end{gather*}
$$

Now, to ξ_{i}, η_{i} together with the t_{i} a curve fitting procedure is applied, as follows:

Define:

$$
T_{k}=\left(\begin{array}{ccccc}
1 & \tau_{1} & \tau_{1}^{2} & \tau_{1}^{3} \ldots \tau_{1}^{k} \tag{6.6}\\
1 & \tau_{2} & \tau_{2}^{2} & \tau_{2}^{3} \ldots \tau_{2}^{k} \\
1 & \tau_{3} & \tau_{3}^{2} & \tau_{3}^{3} \ldots \tau_{3}^{k} \\
\vdots & & & \\
1 & \tau_{i} & \tau_{i}^{2} & \tau_{i}^{3} \ldots \tau_{i}^{k} \\
\vdots & & & \\
1 & \tau_{n} & \tau_{n}^{2} & \tau_{n}^{3} \ldots \tau_{n}^{k}
\end{array}\right) .
$$

Then, assuming correlation freedom and unit weight within both observation vectors:

$$
\xi=\left(\begin{array}{c}
\xi_{1} \tag{6.7}\\
\xi_{2} \\
\vdots \\
\xi_{n}
\end{array}\right) ; \quad \eta=\left(\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\vdots \\
\eta_{n}
\end{array}\right)
$$

least squares solutions for the coefficient-vectors \underline{a} and \underline{b} are obtained from:

$$
\left.\begin{array}{l}
\underline{a}=Q_{k} \cdot T_{k}^{*} \cdot \xi \tag{6.8}\\
\underline{b}=Q_{k} \cdot T_{k}^{*} \cdot \underline{\eta}
\end{array}\right\}
$$

in which:

$$
\begin{equation*}
Q_{k}=\left(T_{k}^{*} \cdot T_{k}\right)^{-1} \tag{6.9}
\end{equation*}
$$

The correction vectors are:

$$
\left.\begin{array}{l}
\varepsilon_{\xi}=T_{k} \cdot \underline{a}-\xi \tag{6.10}\\
\underline{\varepsilon}_{\eta}=T_{k} \cdot \underline{b}-\eta
\end{array}\right\}
$$

Here it has been tacitly assumed that the t_{i} are non-stochastic quantities.
Finally

$$
\left.\begin{array}{l}
\hat{\sigma}_{\xi}^{2}=\frac{\dot{\varepsilon}_{\xi}^{*} \cdot \underline{\varepsilon}_{\xi}}{n-k-1} \\
\hat{\sigma}_{\eta}^{2}=\frac{\dot{\varepsilon}_{\eta}^{*} \cdot \underline{\varepsilon}_{\eta}}{n-k-1} \tag{6.11}
\end{array}\right\}
$$

where n stands for the number of reduced satellite images and k for the degree of the polynomial applied.

The estimates $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}$ are used for judging the "quality" of the photographic observations on each individual plate.

Noticing the small camerafield $k=2$ was adopted invariably.

7 Reporting for SAOP

In Fig. 3 a number of computation steps in the programme "conversion to fixed-Earth reference" are explicitly mentioned.

At a meeting in Bern, Switzerland, in October 1972, it was agreed that stations participating in the SAOP-campaigns would report the so-called geometric directions 1950.0, corrected for: annual aberration, diurnal aberration, parallactic refraction and satellite phase. Hence (see Fig. 3):

$$
\begin{aligned}
& (\mathrm{A})+(3)+(4)+(5)+(6), \text { and seperately: } \\
& (3),(4),(5),(6)
\end{aligned}
$$

The corresponding time instants are in $U T C$, and corrected for light travel time.

8 Results

All plates contributed to SAOP have been listed in tables I through V (station YPENBURG) and table VI (station KOOTWIJK). Simultaneous observations for geometric network computations are indicated with "gm"; observations for geocentric network computations (using the short-arc method [7]) are indicated with "gc" (column 9).

Also given are $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}$ (colums 6 and 7) for each individual plate, together with the number n of individual satellite images from which $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}$ have been calculated.
$\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}$ are taken as indicators of gross-errors either in the observations or in their reduction. Experience has suggested that observations with either $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}>1^{\prime \prime}$ should be suspected. Adopting this rather arbitrary criterion it is meaningful to consider the percentage of observations (plates) with $\hat{\sigma}_{\xi}$ and/or $\hat{\sigma}_{\eta}<1^{\prime \prime}$. The following conclusions are then to be drawn (see figs. 4, 5, 6 and 7):

1. The fraction of observations (in the SAOP-programme all made on PAGEOS) with $\hat{\sigma}_{\eta}<1^{\prime \prime}$ does not exceed that with $\hat{\sigma}_{\xi}<1^{\prime \prime}$. So the difference between the mentioned fractions is here less evident than in [1]. This may be due to the improved timing equipment.
2. The fraction of observations with both $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}<1^{\prime \prime}$ is $\approx 80 \%$. This is, for observations on PAGEOS, a confirmation of the results published in [1].

> Output of programme "position reduction"
> $(\alpha, \delta)_{1950.0}$, catalogue mean places, SAOsystem, corrected for proper motion (z)
(A)
(1) precession

$$
\begin{aligned}
& \text { true places }(\bar{\alpha}, \bar{\delta}), \\
& x \text {-system }
\end{aligned}
$$

(3) annual aberration ($\left.\Delta_{1} \alpha, \Delta_{1} \delta\right)$

$$
\begin{aligned}
& \text { apparent places } \\
& \left(\bar{\alpha}+\Delta_{1} \alpha, \bar{\delta}+\Delta_{1} \delta\right)
\end{aligned}
$$

(4) diurnal aberration $\left(\Delta_{2} \alpha, \Delta_{2} \delta\right)$
(5) (parallactic) refraction $\left(\Delta_{3} \alpha, \Delta_{3} \delta\right)$

$$
\begin{align*}
& \text { observed places } \tag{E}\\
& \left(\bar{\alpha}+\Delta_{1} \alpha+\Delta_{2} \alpha+\Delta_{3} \alpha, \delta+\Delta_{1} \delta+\Delta_{2} \delta+\Delta_{3} \delta\right)
\end{align*}
$$

(6) satellite phase $\left(\Delta_{4} \alpha, \Delta_{4} \delta\right)$

$$
\begin{align*}
& \text { observed places, corrected for phase } \tag{F}\\
& \left(\bar{\alpha}+\Delta_{1} \alpha+\Delta_{2} \alpha+\Delta_{3} \alpha+\Delta_{4} \alpha, \delta+\Delta_{1} \delta+\Delta_{2} \delta+\Delta_{3} \delta+\Delta_{4} \delta\right)
\end{align*}
$$

Fig. 3. Reduction/correction scheme.

References

[1] L. Aardoom, D. L. F. van Loon and T. J. Poelstra - The astrometric procedure of satellite plate reduction as applied at the Delft Geodetic Institute. A description with some results for WEST, NGSP and ISAGEX. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 5, No. 4. Delft, 1975.
[2] M. Schürer - Internal publications and private communication:
a. Notizen zu einer Vorlesung über Satellitengeodäsie, gehalten im Sommersemester 1971 an der ETH Zürich;
b. Plate-reduction at Zimmerwald, October 1972;
c. Die parallaktische Refraktion, October 1972.
[3] NASA directory of observing station locations, third ed., 1973.
[4] Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. London, 1961.
[5] G. Veis - Precise aspects of terrestrial and celestial reference frames. In: The use of artificial satellites for geodesy. (ed. G. Veis). North-Holland Publishing Co., Amsterdam, 1963, pp. 201-216.
[6] G. Veis - Geodetic uses of artificial satellites. Smithsonian Contributions to Astrophysics, Vol. 3, No. 9, 1960.
[7] E. Tengström - Über das Short-Arc-satelliten-beobachtungsvorhaben im Bereich des "Europäischen Datums". Mitteilungen aus dem Institut für theoretische Geodäsie der Universität Bonn, No. 16, Bonn, 1973.

Table I. Station: Ypenburg Covering period: April 1971
Campaign no.: 1
Satellite:
Pageos

revolution no.	frame no.	observation			$\begin{aligned} & \hat{\sigma}_{\zeta} \\ & \text { in }^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hat{\sigma}_{\eta} \\ & \text { in }^{\prime \prime} \end{aligned}$	n	use
			time					
		date	from	to				
14033	01	710415	00h32m59s	00h34m45s	0.7	0.9	9	gc, gm
	02		003703	003834	0.6	0.5	10	gc
	03		004115	004235	0.4	0.3	10	gc, gm
	04		004518	004617	0.5	0.5	8	gc
	05		004845	005001	0.3	0.7	10	ge, gm
	06		005234	005356	0.7	0.5	11	gc
	07		005634	005752	0.4	0.5	10	gc
	08		010025	010143	0.8	0.4	10	gc
	09		010419	010543	0.4	0.4	11	gc
14081	01	710421	003450	003631	0.6	0.5	9	gc
	02		004214	004353	0.8	0.9	8	gc
	03		005008	005131	0.8	0.6	10	gc
	04		005802	005905	0.6	0.6	10	gc, gm
	05		010154	010305	0.6	0.4	11	gc
	06		011323	011452	0.7	0.8	7	gc
14089	01	710422	003711	003853	0.5	0.5	10	gc
	02		004110	004245	0.7	0.8	10	gc
	03		004526	004638	0.5	0.7	9	gc
	04		005304	005424	0.3	0.5	13	gc
	05		005709	005803	0.2	0.3	6	gc. gm
	06		010055	010203	1.1	0.9	11	gc
	07		010443	010555	1.1	0.9	12	gc
	08		010838	010957	1.4	1.3	10	gc, gm
	09		011229	011358	1.1	1.3	8	gc, gm

Table II. Station: Ypenburg
Campaign no.: 3
Covering period: April-May 1972
Satellite:
Pageos

revolution no.	frame no.	observation			$\begin{aligned} & \hat{\sigma}_{\xi}^{\prime \prime} \\ & \text { in }^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hat{\sigma}_{\eta} \\ & \text { in }^{\prime \prime} \end{aligned}$	n	use
		date	time					
			from	to				
16947	02	720415	01h29m22s	01h30m05s	1.2	1.0	7	gm
17097	01	720502	204440	204608	0.8	0.9	11	gc
	02		204900	204945	0.8	0.8	8	gc
	03		205235	205326	1.0	0.8	7	gc
	04		205621	205722	0.6	0.9	9	gc, gm
	05		210107	$2101 \quad 15$	-	-	3	gc
	06		210358	210510	1.8	1.0	9	gc
	07		210745	210905	0.6	0.7	13	gc
17098	01	720502	234659	234756	0.9	0.7	6	gc
	02		235036	235151	0.9	0.8	10	gc
	03		235428	235535	0.9	0.8	10	gc
	04	720503	000211	000308	0.8	0.8	8	gc, gm
	05		000615	000723	1.5	1.7	8	gc

Table III. (continued)

Table IV.	on: paign n	Ypenburg 5			ring pe lite:	riod:	$\operatorname{arch}-A$ geos	1973		
		observat								
volution	frame		time							
no.	no.	date	from		to		in'	in"	n	use
19627	01	730315	00h00m	m01s	00h01	n08s	0.9	0.9	11	gm
19682	03	730322	2136	43	2137	03	0.4	0.7	8	gm
19690	01	730323	2119	00	2120	02	0.8	1.1	10	gm
	02		2122	31	2123	30	0.9	0.4	10	gm
	03		2126	48	2127	11	0.6	0.5	5	gm
	04		2130	45	2131	07	1.1	1.3	5	gm
	05		2134	35	2135	23	0.6	0.9	10	gm
	06		2138	19	2139	06	0.3	0.7	10	gm
19706	01	730325	2136	34	2137	22	0.6	0.4	10	gm
19738	02	730329	2158	46	2159	41	0.6	0.6	9	gm
19802	02	730406	2202	29	2202	55	1.1	0.9	6	gm
	03		2209	48	2210	20	0.4	0.9	7	gm
19834	03	730410	2226	38	2227	26	0.6	0.8	10	gm

Table V. (continued)

revolution no.	frame no.	observation				$\begin{aligned} & \hat{\sigma}_{\zeta} \\ & \text { in }^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hat{\sigma}_{\eta} \\ & \text { in }^{\prime \prime} \end{aligned}$	n	use
			time						
			from	to					
21248	01	731005	20 h 31 ml 8 s	20h32m	12 s	0.9	0.9	7	gc
	02		203525	2036	32	0.7	0.7	9	gc, gm
	03		203825	2039	24	0.5	0.5	10	ge
	04		204240	2043	26	0.1	0.5	8	gc, gm
	05		204625	2047	17	0.4	0.5	9	gc, gm
	06		205026	2051	15	0.9	0.5	9	gc, gm
	07		205426	2055	11	0.4	0.3	8	gc, gm
	08		205841	2059	35	0.6	0.4	8	gc, gm
	09		210242	2103	40	0.3	0.4	8	gc, gm
21304	01	731011	203734	2038	38	1.0	0.5	8	gc
	02		204133	2042	33	0.9	1.2	8	gc
	03		204651	2047	31	0.9	0.6	7	gc, gm
	04		204945	2050	39	0.6	0.6	9	gc, gm
	05		205355	2054	53	1.0	0.7	10	gc
	06		205805	2059	07	0.6	0.5	10	gc
	07		$\begin{array}{ll}21 & 0219\end{array}$	2103	17	0.5	0.9	10	gc
21312	01	731012	204156	2043	11	1.3	1.0	9	gc, gm
	02		204610	2047	12	0.7	1.0	10	gc, gm
	03		205016	2051	17	1.1	0.9	10	gc, gm
	04		205421	2055	23	1.2	0.9	10	gc, gm
	05		205829		31	0.6	0.6	10	
	06		210237	2103	39	0.9	0.9	10	gc, gm
	07		210657	2107	58	0.6	0.6	8	gc, gm
21416	01	731025	205059	2052	17	0.7	0.6	10	gc
	02		205448	2056	07	0.8	0.8	10	gc
	03		205927	2100	36	0.5	0.8	9	gc
	04		210337		55	0.7	0.5	10	
	05		210752	2109	10	0.5	0.6	10	gc, gm
	06		211145	2113	03	0.5	0.5	10	gc, gm
21423	01	731026	174142	1743	03	1.3	0.8	10	gc
	02		174541	1746	59	1.0	0.9	10	gc
	03		174948	1751	06	0.7	0.8	10	gc
	04		175350		09	0.4	0.7	10	gc
	05		175757	1758	58	0.9	0.4	10	gc
	06		180210	1803	11	0.7	0.8	10	gc
	07		180605	1807	24	1.0	0.6	10	gc
	08		$\begin{array}{ll}18 & 10 \quad 27\end{array}$	1811	46	0.8	0.7	10	gc
21424	01	731026	$2051 \quad 16$	2052	18	0.7	0.5	8	gc
	02		205453	2056	12	0.6	0.6	10	gc

Table VI. S	on: paign n	Kootwijk 7		ering per llite:	riod:	$\begin{aligned} & \text { arch } 1 \\ & \text { geos } \end{aligned}$			
		observat							
			time						
no.	no.	date	from	to		in' ${ }^{\prime \prime}$	in"	n	use
22567	01	740318	20h00m25s	20h00m	m58s	0.7	0.5	9	gc, gm
	02		200413	2004	49	0.2	0.5	8	gc, gm
	03		201138	2012	40	1.0	0.7	10	gc, gm
	04		$\begin{array}{llll}20 & 15 & 14\end{array}$	2016	35	0.7	1.3	10	gc, gm
22575	04	740319	200931	2010	33	0.5	0.5	10	gm
22591	01	740321	195947	2000	21	1.1	1.2	8	gc, gm
	02		200728	2008	29	0.6	0.7	10	gc, gm
	03		201106	2011	51	0.5	0.7	8	gc
22623	01	740325	194654	1947	39	1.3	0.8	8	gc
	02		195059	1951	37	0.7	0.3	8	gc, gm
	03		195501	1955	37	0.7	0.4	8	gc, gm
	04		$1958 \quad 55$	1959	31	0.4	0.4	8	gc, gm
	05		200300	2003	45	0.4	0.8	8	gc, gm
	06		200718	2008	11	0.6	0.7	9	gc, gm
	07		$20 \quad 10 \quad 59$	2012	00	0.8	1.0	10	gc
22631	01	740326	194735	1948	21	0.8	0.4	8	gc
	02		195132	1952	17	1.0	0.9	8	gc, gm
	03		195541	1956	17	0.6	0.7	8	gc
	04		200006	2000	48	1.0	0.8	9	gc, gm
	05		200349	2004	37	0.7	0.7	8	gc, gm
	06		200718	2008	18	0.9	0.7	10	gc, gm
	07		201103	2011	49	0.7	0.8	7	gc
22639	01	740327	194656	1947	56	1.1	1.1	10	gc
	02		$19 \quad 54 \quad 59$	1955	33	0.8	0.3	8	gc, gm
	03		195933	2000	10	0.7	0.6	8	gc
	04		200401	2004	43	0.6	1.3	9	gc, gm
	05		200724	2008	16	1.2	0.8	9	gc, gm
22647	01	740328	195058	1951	38	0.8	0.6	7	gc, gm
	02		195519	1955	53	1.1	0.9	8	
	03		$1958 \quad 57$	1959	36	0.6	1.1	9	gc
	04		200246	2003	31	0.9	0.8	8	gc, gm
	05		200611	2007	10	1.4	1.1	10	gc, gm
22655	03	740329	195934	2000	16	0.6	0.7	9	gm
	04		200336	2004	28	0.3	0.1	9	gm

[^0]: * Indicating transposition.

