Innin

Robust Shape Reconstruction from Point Clouds

Pierre Alliez

Inria Sophia Antipolis – Méditerranée TITANE team: https://team.inria.fr/titane/ pierre.alliez@inria.fr

Problem Statement

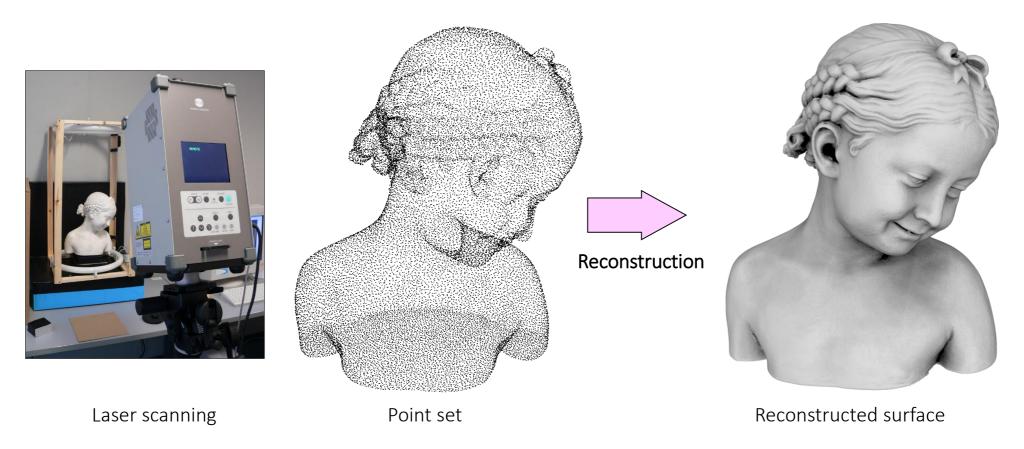
Input:

Ínría

Dense point set *P* sampled over surface *S*

Output:

Surface: Approximation of S in terms of topology and geometry



Real-World Problems

<u>Input</u>:

Dense point set *P* sampled over surface *S*:

- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty

Ínría

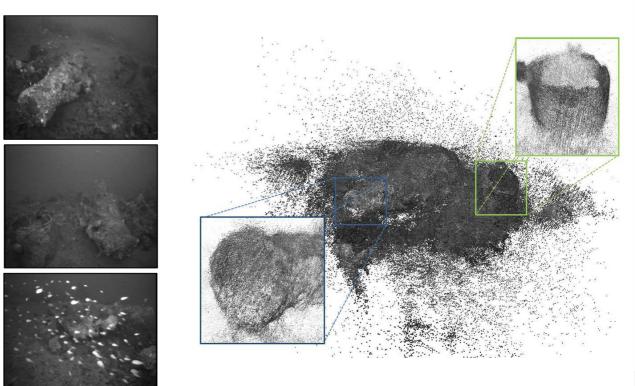
• Noise

Real-World Problems

Input:

Dense point set *P* sampled over surface *S*:

- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty
 - Noise
 - Outliers



"La lune": Data from Dassault Systèmes. Sun King's flagship, sank off the Toulon coastline in 1664.

Real-World Problems

Input:

Point set *P* sampled over surface *S*:

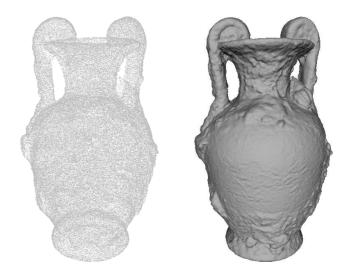
- Imperfect sampling
 - Non-uniform
 - Anisotropic
 - Missing data (holes)
- Uncertainty
 - Noise
 - Outliers

Output:

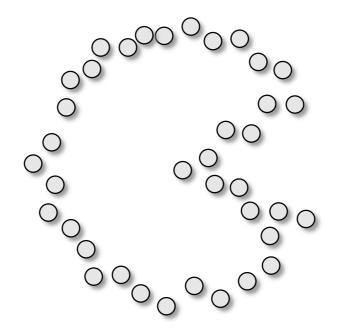
Surface: Approximation of S in terms of topology and geometry

Desired properties:

- Watertight
- Intersection free
- Data fitting vs smoothness

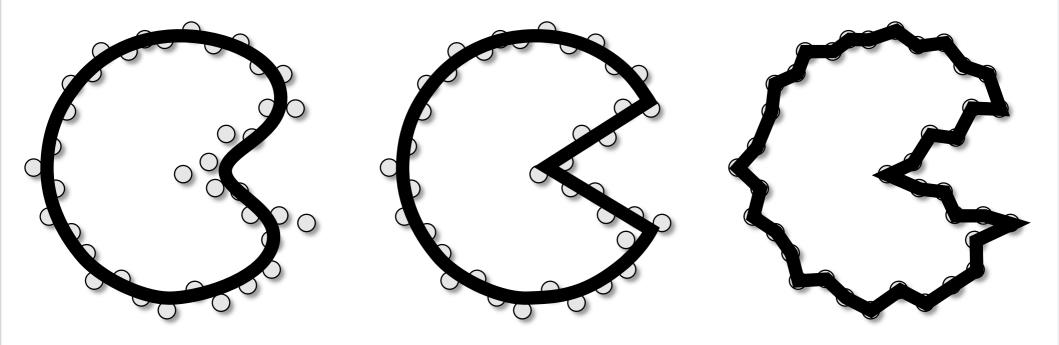


Ill-posed Problem



Many candidate shapes for the reconstruction problem.

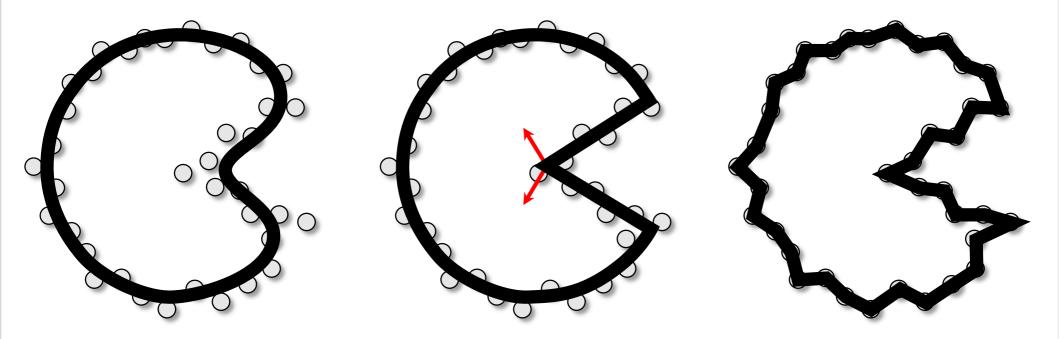
Ill-posed Problem



Many candidate shapes for the reconstruction problem.

MAIN APPROACHES

Priors



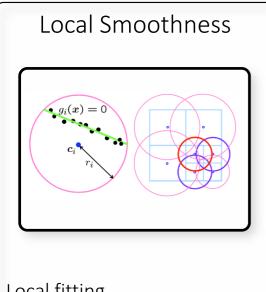
Smooth

Piecewise Smooth

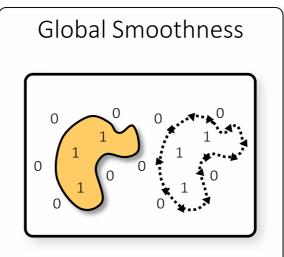
"Simple"

Ínría

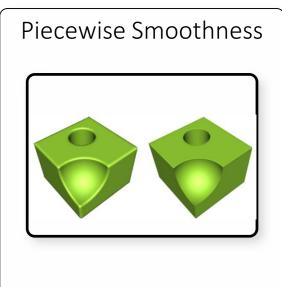
Surface Smoothness Priors



Local fitting No control away from data Solution by interpolation



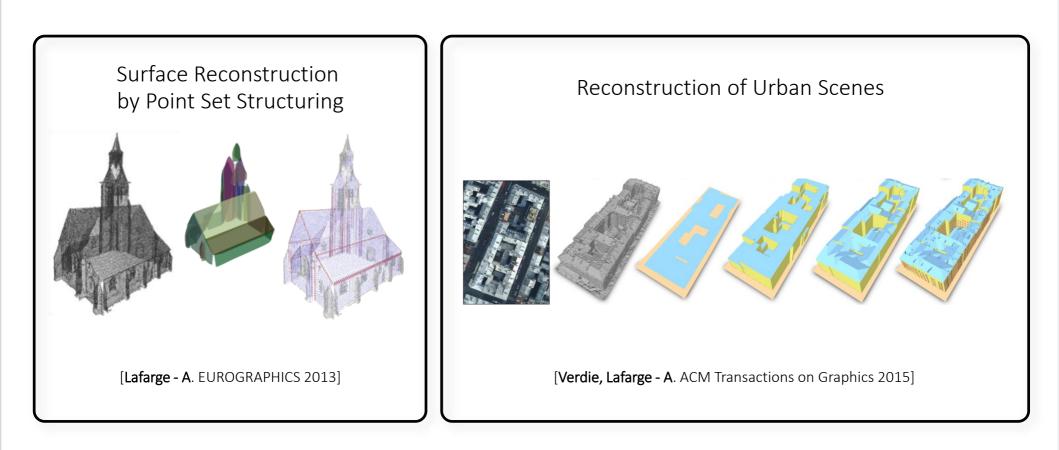
Global: linear, eigen, graph cut, ... Robustness to missing data



Sharp near features Smooth away from features

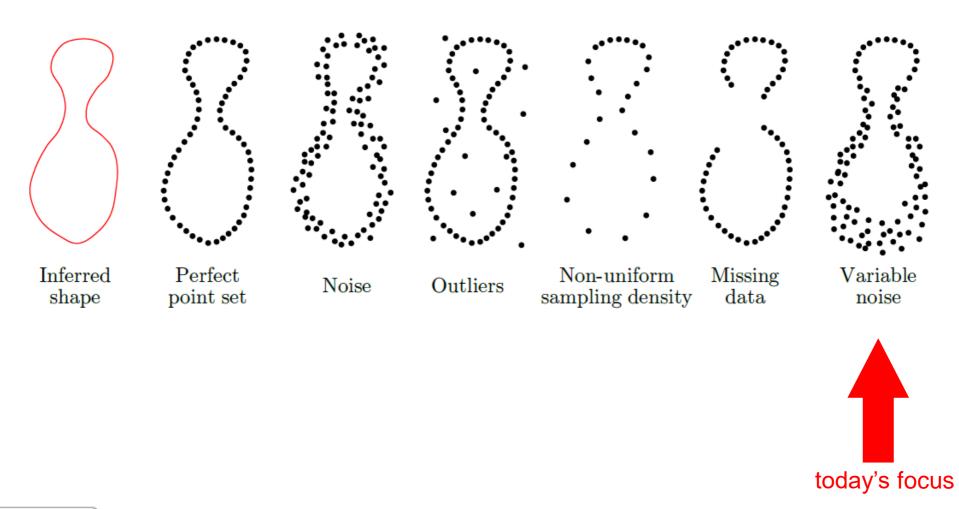
Ínría

Domain-Specific Priors



Ínría

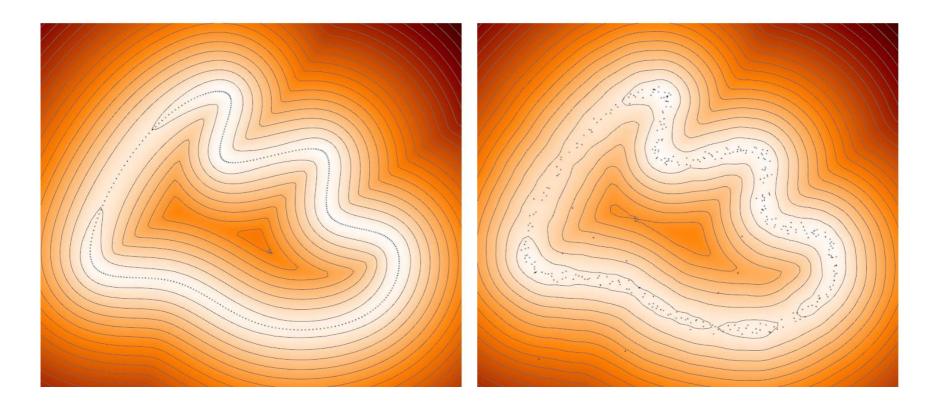
Quest for Robustness



Ínría

RECONSTRUCTION

Robust Distance Function



[Chazal, Cohen-Steiner, Mérigot 11] Outlier and noise robust. Based on optimal transport distance between geometric measures (W₂ Wasserstein distance, stable)

Ínría

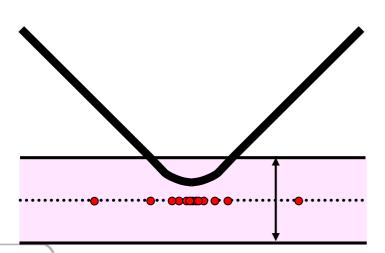
Robust Distance Function

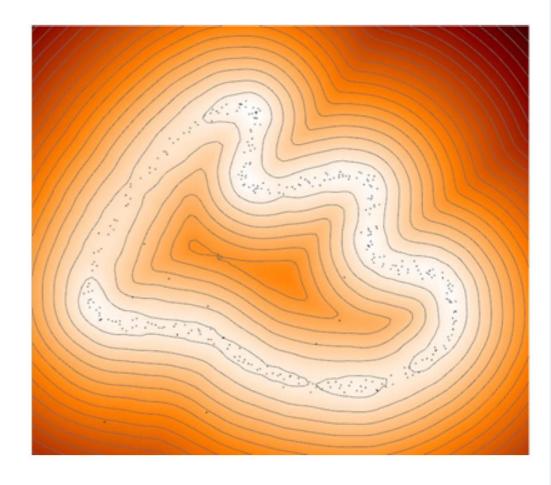
Pros

- Noise and outlier robust
- Efficient evaluation

Cons

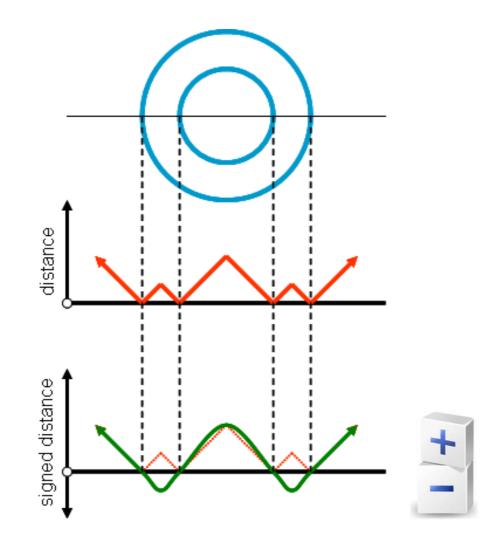
- Sensitive to variable sampling
- Inaccurate at inferred surface
- Does not reach zero





Inría

Signing an Unsigned Distance Function?

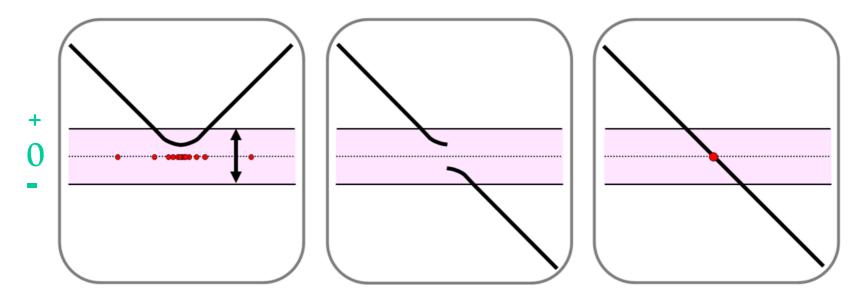


Robust Approach

Signing an unsigned distance function

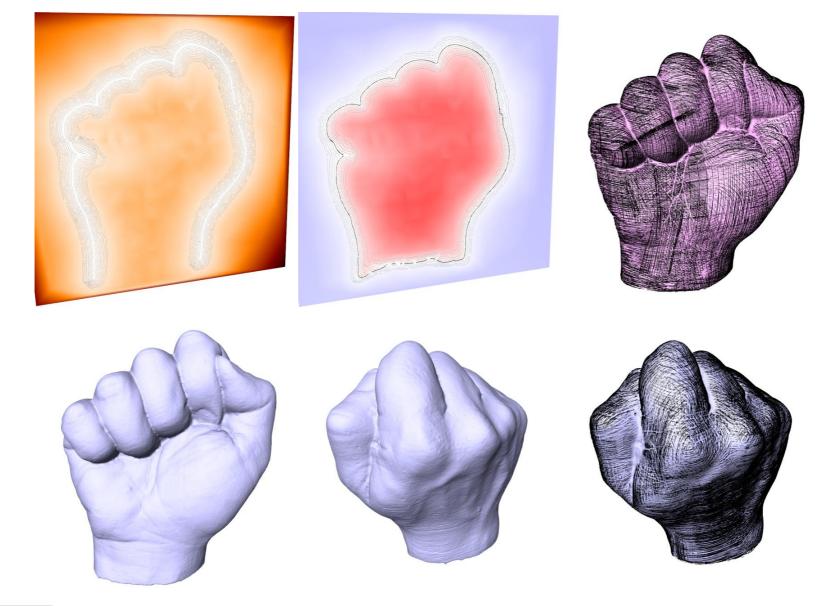
signed functions are smoother

closed surfaces



Signing the Unsigned: Robust Surface Reconstruction from Raw Pointsets. Mullen, de Goes, Cohen-Steiner, A., Desbrun SGP 2010.

Holes

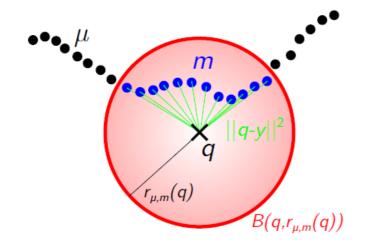


Ínría-

Robust Distance Function

Unsigned distance function to a measure [Chazal et al., 2011]

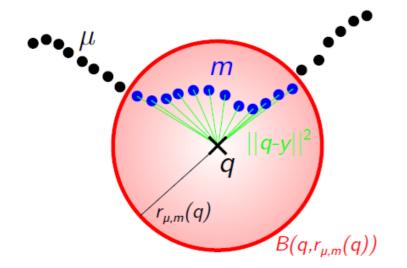
$$d^2_{\mu,m}: \mathbb{R}^n \to \mathbb{R}, \ q \mapsto \frac{1}{m} \int_{B(q,r_{\mu,m}(q))} \|q-y\|^2 \mathrm{d}\mu(y)$$



Robust Distance Function

Unsigned distance function to a measure [Chazal et al., 2011]

$$d^2_{\mu,m}: \mathbb{R}^n \to \mathbb{R}, \ q \mapsto \frac{1}{m} \int_{B(q,r_{\mu,m}(q))} \|q-y\|^2 \mathrm{d}\mu(y)$$

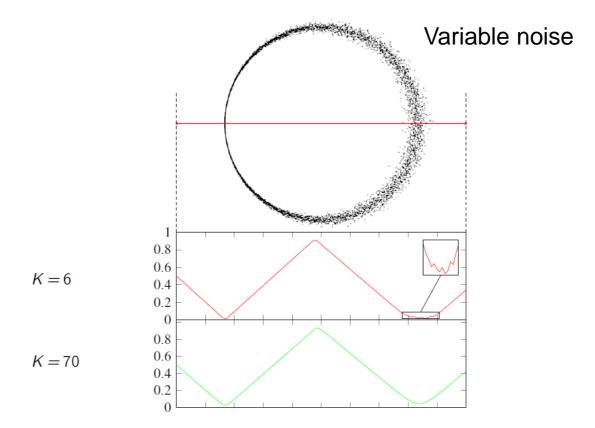


Note: scale parameter *m*

- User-specified
- Depends on point set properties
- Global: not noise-adaptive

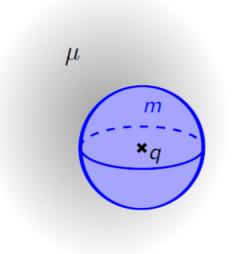
nría

Non-adaptive Distance Function



Case of Ambient Noise

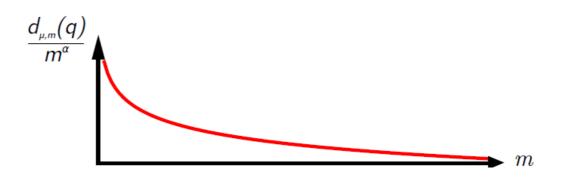
Uniform measure in *d*-dimensional space



$$d^2_{\mu,m}(q) = c \cdot m^{rac{2}{d}}$$

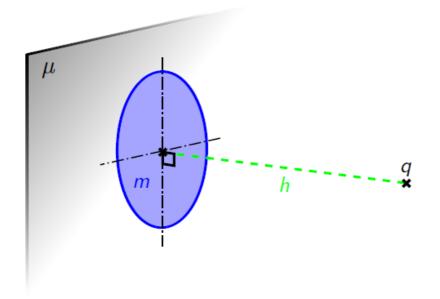
 $d_{\mu,m}(q) \propto m^{rac{1}{d}}$ for q fixed

 $\frac{d_{\mu,m}(q)}{m^{\alpha}}$ decreasing for $\alpha > \frac{1}{d}$



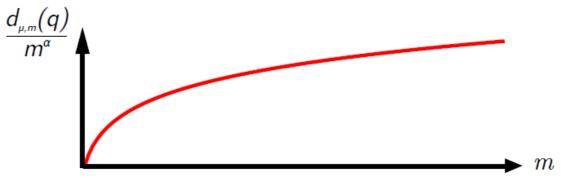
Case of Submanifold

Uniform measure on k-submanifold



$$d^2_{\mu,m}(q) = c \cdot m^{rac{2}{k}} + h^2$$

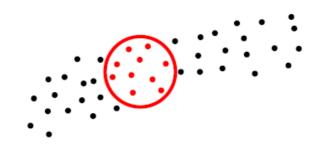
 $d_{\mu,m}(q) \propto m^{rac{1}{k}}$ for q fixed
 $rac{d_{\mu,m}(q)}{m^{lpha}}$ increasing for $lpha < rac{1}{k}$

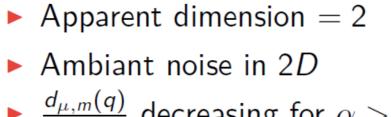


Noisy Case

m

Scale m = 10 nearest neighbors

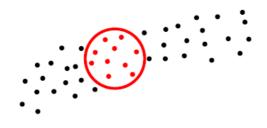




$$\frac{d_{\mu,m}(q)}{m^{\alpha}}$$
 decreasing for $\alpha > \frac{1}{2}$
 $\frac{d_{\mu,m}(q)}{m^{\alpha}}$

Noisy Case

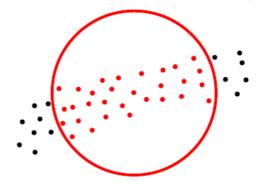
Scale m = 10 nearest neighbors Scale m = 30 nearest neighbors



- Apparent dimension = 2
- Ambiant noise in 2D
- $\frac{d_{\mu,m}(q)}{m^{\alpha}}$ decreasing for $\alpha > \frac{1}{2}$

 $\frac{d_{\mu,m}(q)}{m^{\alpha}}$

 $\delta_{\mu}(q)$



Apparent dimension = 1

m

- ▶ 1-submanifold in 2D
- $\frac{d_{\mu,m}(q)}{m^{\alpha}}$ increasing for $\alpha < 1$

Noise-adaptive Distance Function

Assumption

Dimension prior

Inferred shape is a submanifold of known dimension For a *k*-submanifold in *d*-dimensional space:

$$\delta_{\mu} = \inf_{m>0} \frac{d_{\mu,m}}{m^{\alpha}},$$

with $\alpha \in \left[\frac{1}{d}; \frac{1}{k}\right]$

Noise-adaptive Distance Function

$$\delta_{\mu} = \inf_{m>0} \frac{d_{\mu,m}}{m^{\alpha}}$$

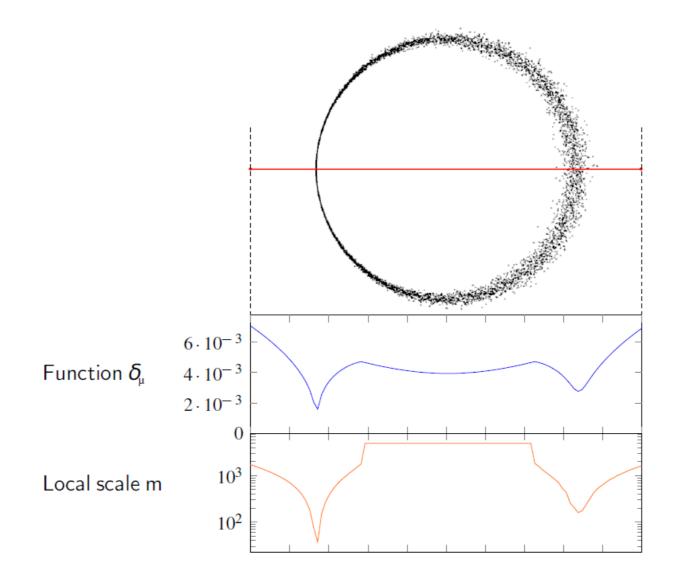
Infimum:

- 1. *m* as small as possible \rightarrow no oversmoothing
- 2. *m* large enough \rightarrow point subset appears as *k*-submanifold

Setting α ($\alpha \in \left[\frac{1}{d}; \frac{1}{k}\right]$)

- Curve in 2D: $\alpha = \frac{3}{4}$ to satisfy $\alpha \in [\frac{1}{2}; 1]$
- Surface in 3D: $\alpha = \frac{5}{12}$ to satisfy $\alpha \in [\frac{1}{3}; \frac{1}{2}]$

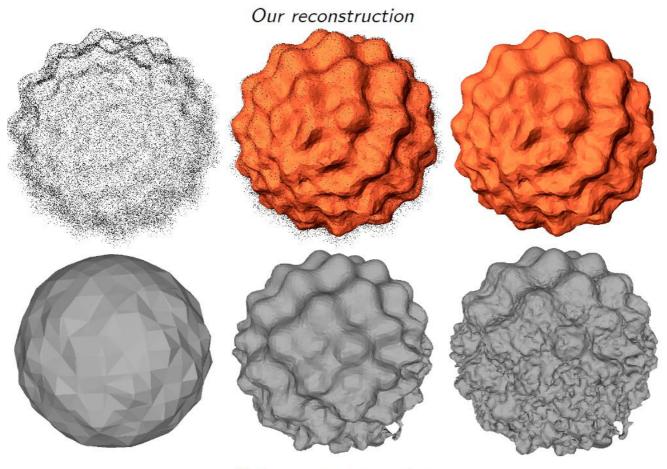
Noise-adaptive Distance Function



(nría_

Result

Noise-Adaptive Shape Reconstruction from Raw Point Sets. EUROGRAPHICS Symposium on Geometry Processing 2013. Giraudot, Cohen-Steiner, A.



Poisson reconstruction

RECENT WORK?

Kinetic Shape Reconstruction

Kinetic Shape Reconstruction Jean-Philippe Bauchet and Florent Lafarge ACM Transactions on Graphics, 2020

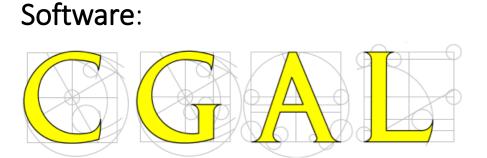
presented at

nría

Thank you.

Survey:

A Survey of Surface Reconstruction from Point Clouds. Berger, Tagliasacchi, Seversky, Alliez, Guennebaud, Levine, Sharf and Silva. Computer Graphics Forum, 2016.



https://www.cgal.org/

"IRON" CoG 2011-2015 Robust Geometry Processing "TITANIUM" PoC 2017-2018 Software Components for Robust Geometry Processing

nnía