The innovation for life

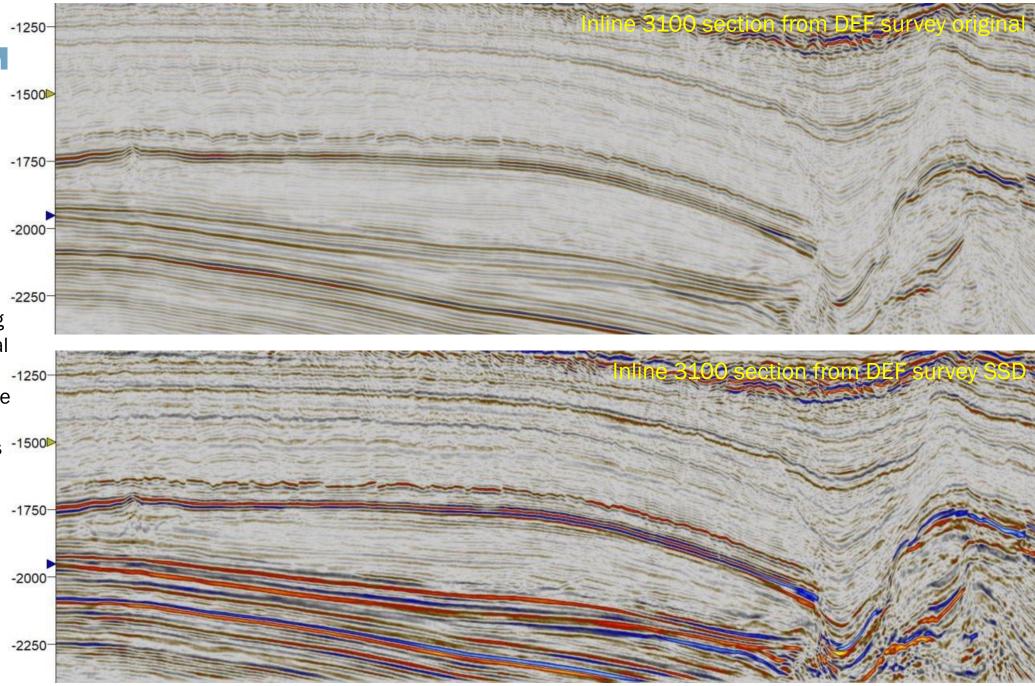
SEISMIC DATA CONDITIONING, PROCESSING AND INTERPRETATION USING THE GENERATIVE AND ACCELERATIVE POWER OF MACHINE LEARNING NCG STUDIEDAG 2023 [DR. S.F.A. CARPENTIER, TNO

MIMIC – MACHINE INTELLIGENCE FOR MULTI-GEOPHYSICAL INTENSIVE COMPUTING

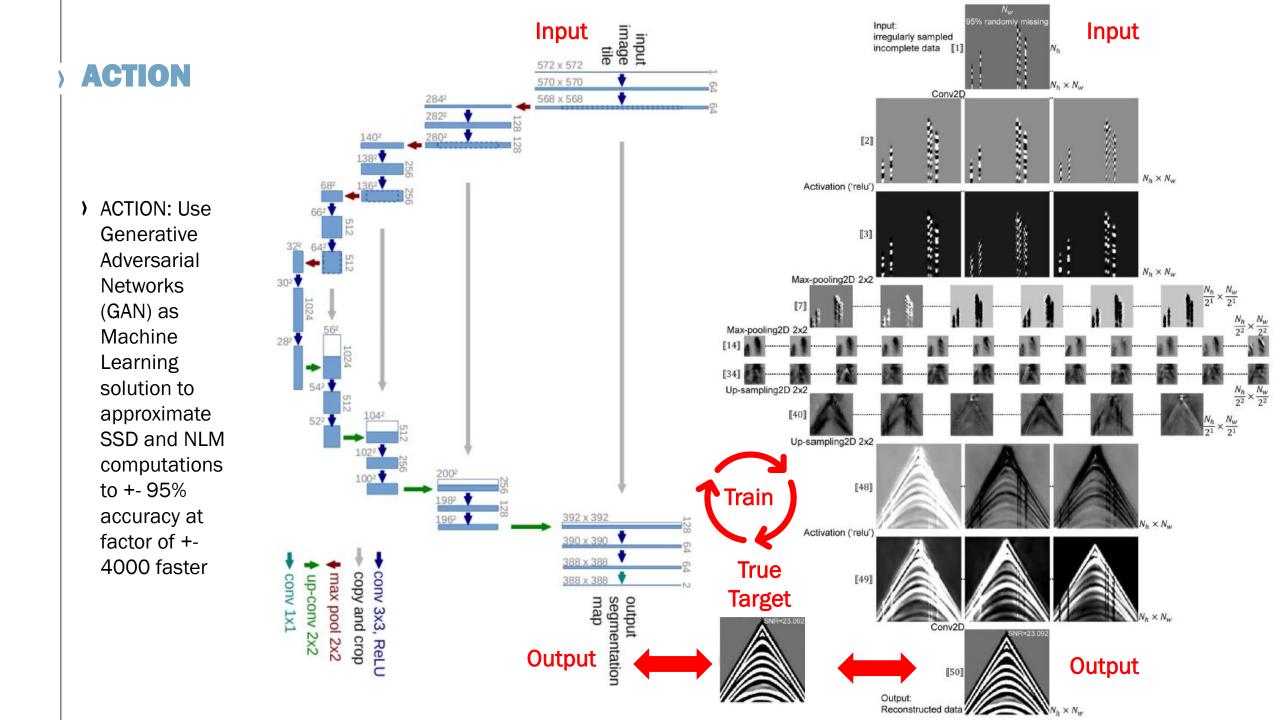
- A common problem these days in geological exploration, geophysical monitoring and derisking of sustainable energy applications like geothermal, CCS, hydrogen and storage is that it requires evermore intensive data surveying, data processing and data interpretation
- > The computational power cannot keep up with the data volumes, until better software solutions arrive like improved parallelization, reservoir computing or better hardware like quantum computing. These solutions take long and the problem is now
- Y To tackle this problem, we can use for geophysical purposes cross-domain techniques from the Machine Learning (ML) realm as used in the multimedia and medical domain
- Al algorithms like GAN's (Generative Adversarial Networks) can mimic physics-based processing and simulation tools up to 99% accuracy, at a fraction of the computational power once trained
- We have set up a GAN tool which generates tremendously accelerated attributes and broadbanded and denoised seismic data for faster decision making in energy studies

PROBLEM

PROBLEM: Diffraction imaging (DI), Sparse Spike Decon (SSD) -2250broadbanding and Non Local Means (NLM) -1250denoising take too long in computations -1500



CREST report 2021



ACTION

In simple words, the idea behind GANs can be summarized like this:

- Two Convolutional Neural Networks are involved.
- ACTION: Use Generative **Adversarial** Networks (GAN) as Machine Learning solution to approximate SSD and NLM computations to +- 95% accuracy at factor of +-4000 faster
- One of the networks, the Generator, starts off with a random data distribution and tries to replicate a particular type of distribution conditioned by a target.
- The other network, the Discriminator, through subsequent training, gets better at classifying a fake distribution from a real one.
- Both of these networks play a min-max game where one is trying to outsmart the other.
- ➤ GANs are generative models that learn a mapping from random noise vector z to output image y, G : z → y . In contrast, conditional GANs learn a mapping from observed image x and random noise vector z, to y, G : {x, z} → y.
- The generator G is trained to produce outputs that cannot be distinguished from "real" images by an adversarially trained discriminator, D, which is trained to do as well as possible at detecting the generator's "fakes".

Input winter image

Al-generated summer image

ACTION

Non-Conditional GAN (https://github.com/ junyanz/CycleGAN)

) ACTION: Use Generative **Adversarial** Networks (GAN) as Machine Learning solution to approximate SSD and NLM computations to +- 95% accuracy at factor of +-4000 faster

Input sunny image

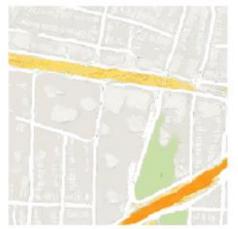
Al-generated rainy image

ACTION

Conditional GAN

) ACTION: Use Generative Adversarial Networks (GAN) as Machine Learning solution to approximate SSD and NLM computations to +- 95% accuracy at factor of +-4000 faster

Generated

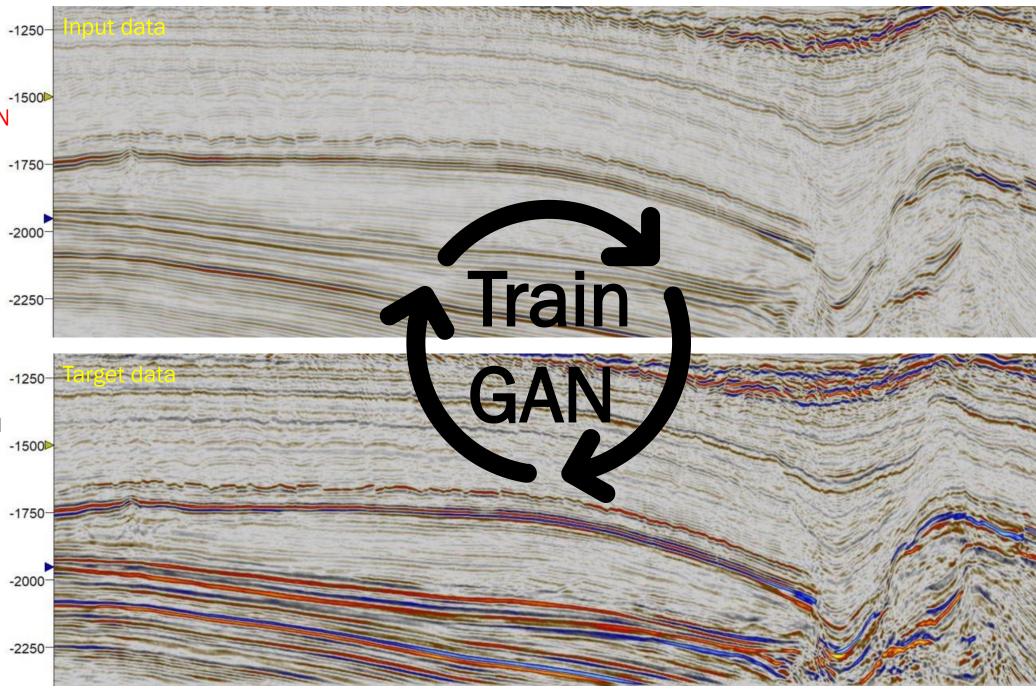


Expected

ACTION

Conditional GAN

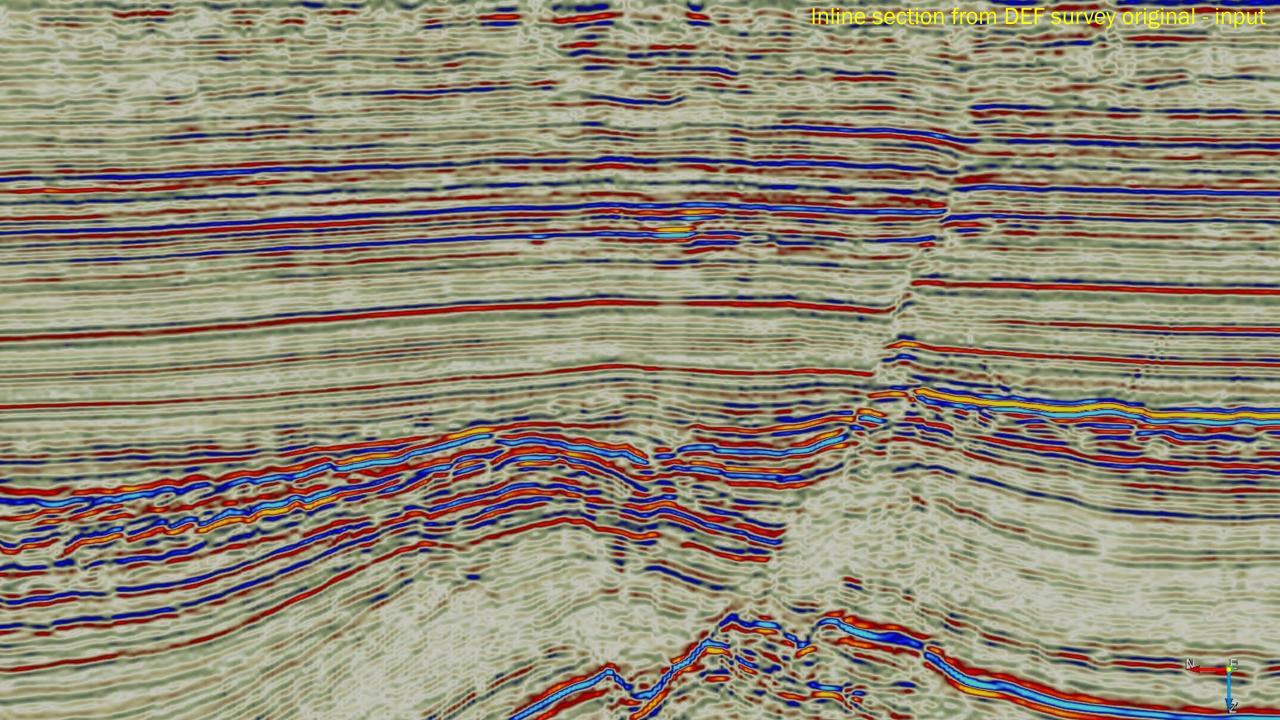
) ACTION: Use Generative **Adversarial** Networks (GAN) as Machine Learning solution to approximate SSD and NLM computations -1500 to +- 95% accuracy at factor of +-4000 faster

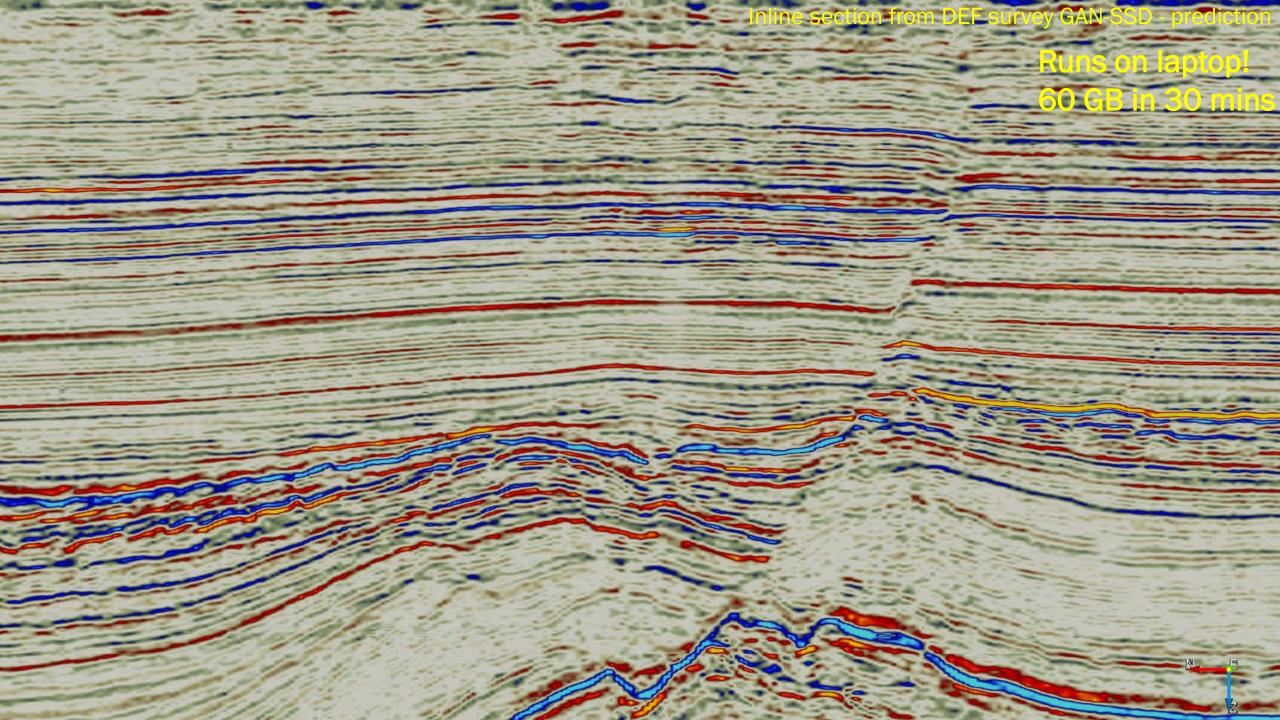


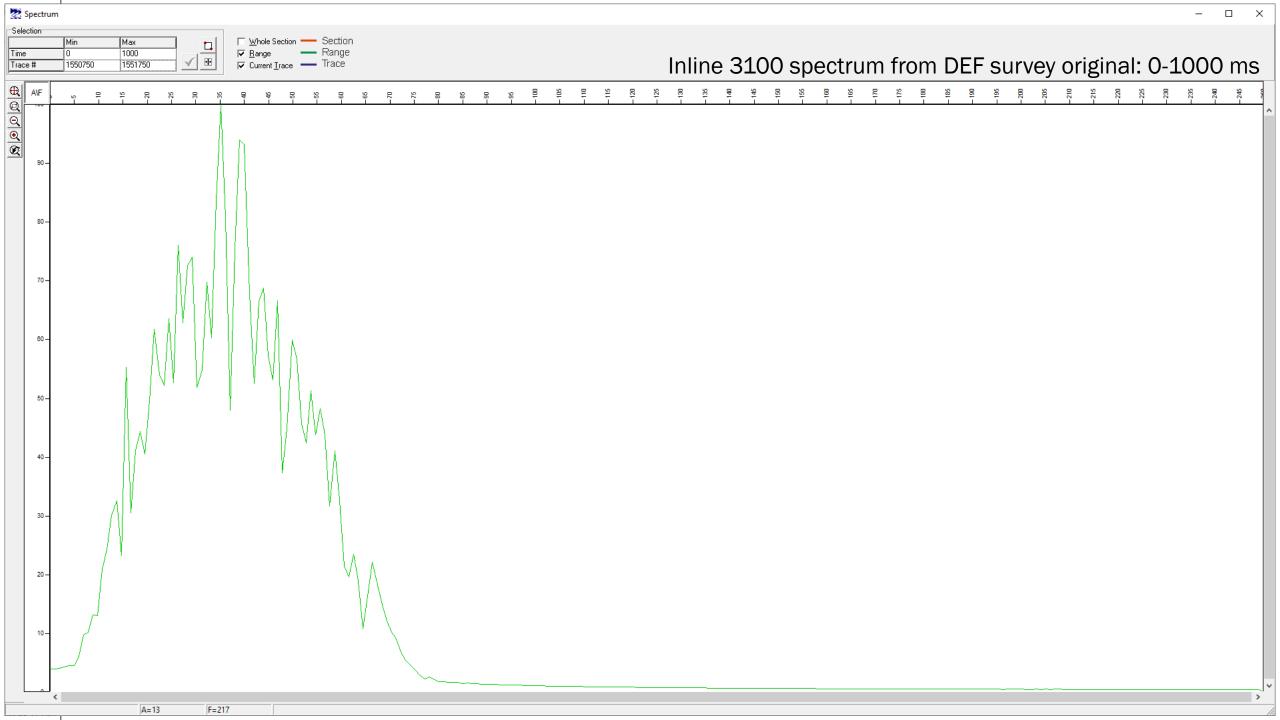
RESULT: GAN ON BROADBANDING – SPARSE SPIKE DECON (SSD)

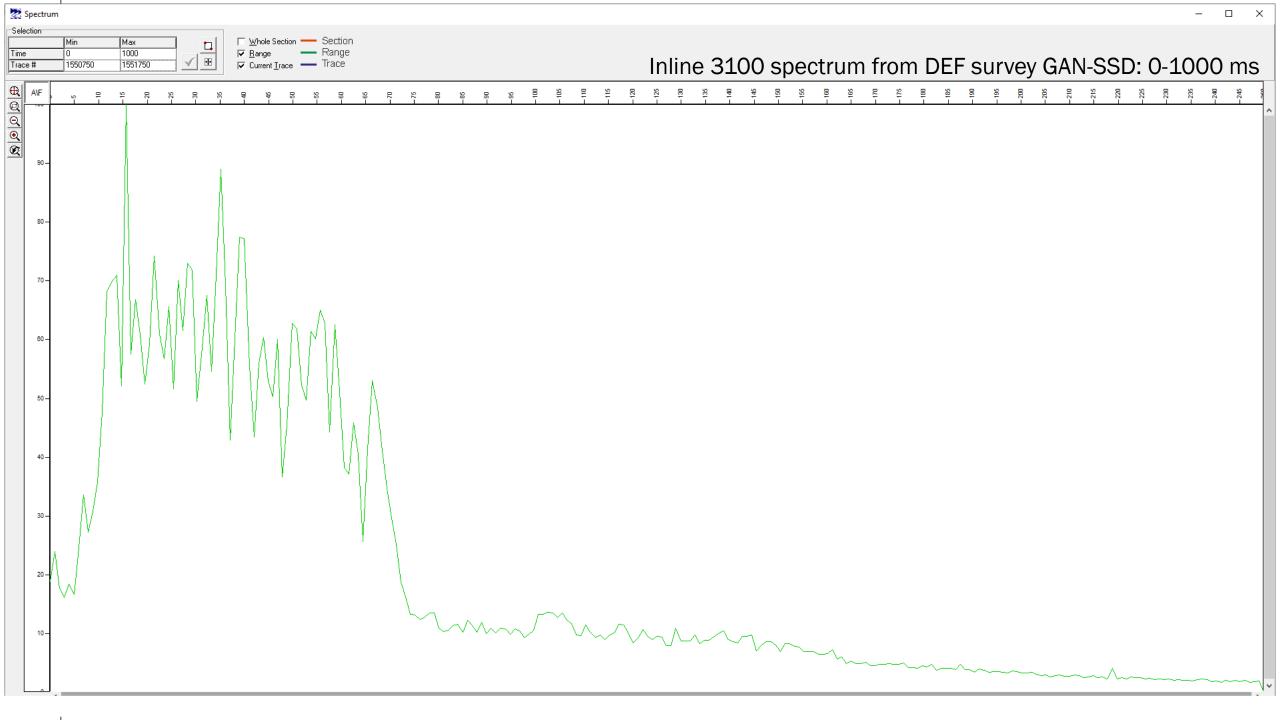
> RESULT: GAN application on broadbanding – sparse spike decon (SSD)

• Effectively: superresolution!





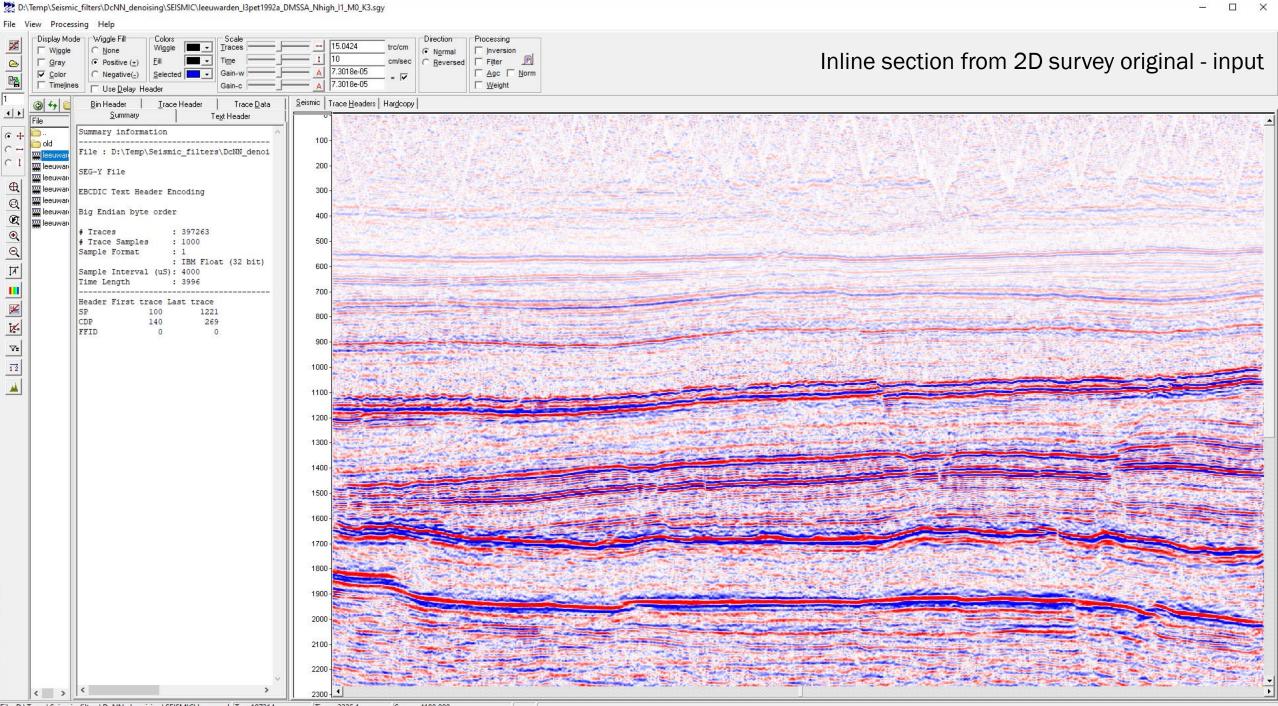




RESULT: GAN ON DENOISING NON-LOCAL MEANS (NLM)

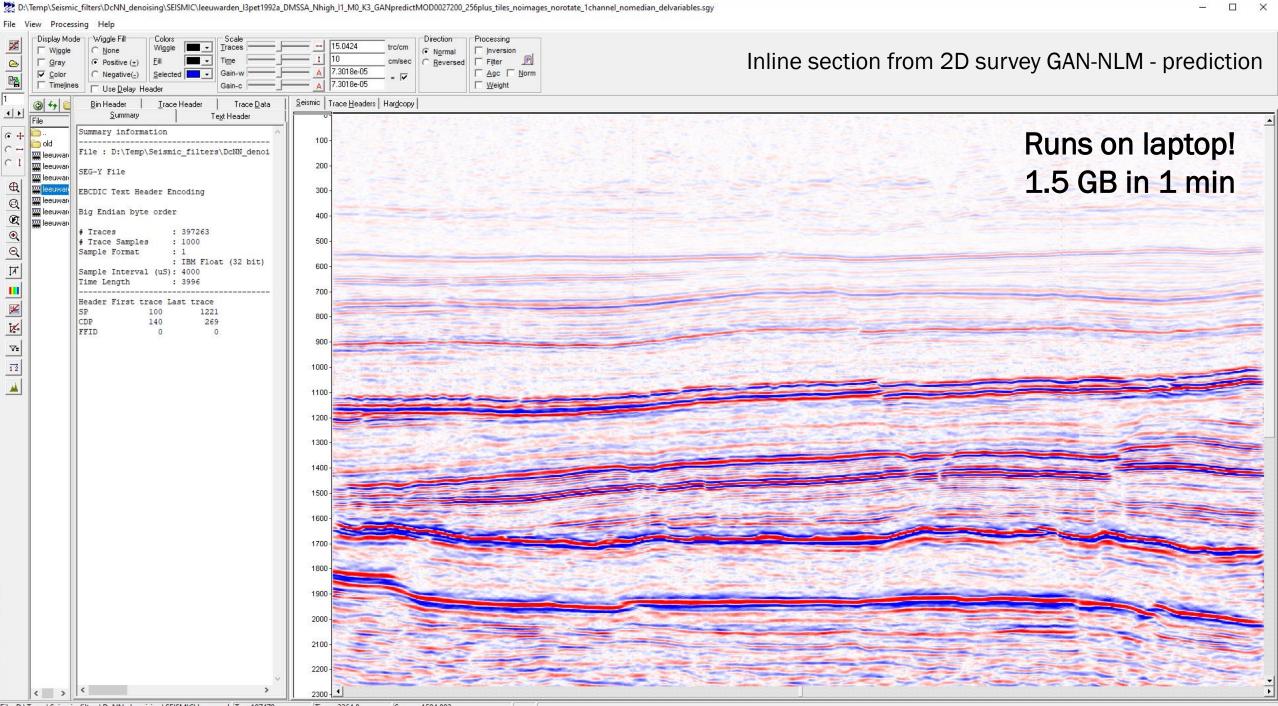
> RESULT: GAN application on denoising non-local means (NLM)

> Effectively: cleaning data!



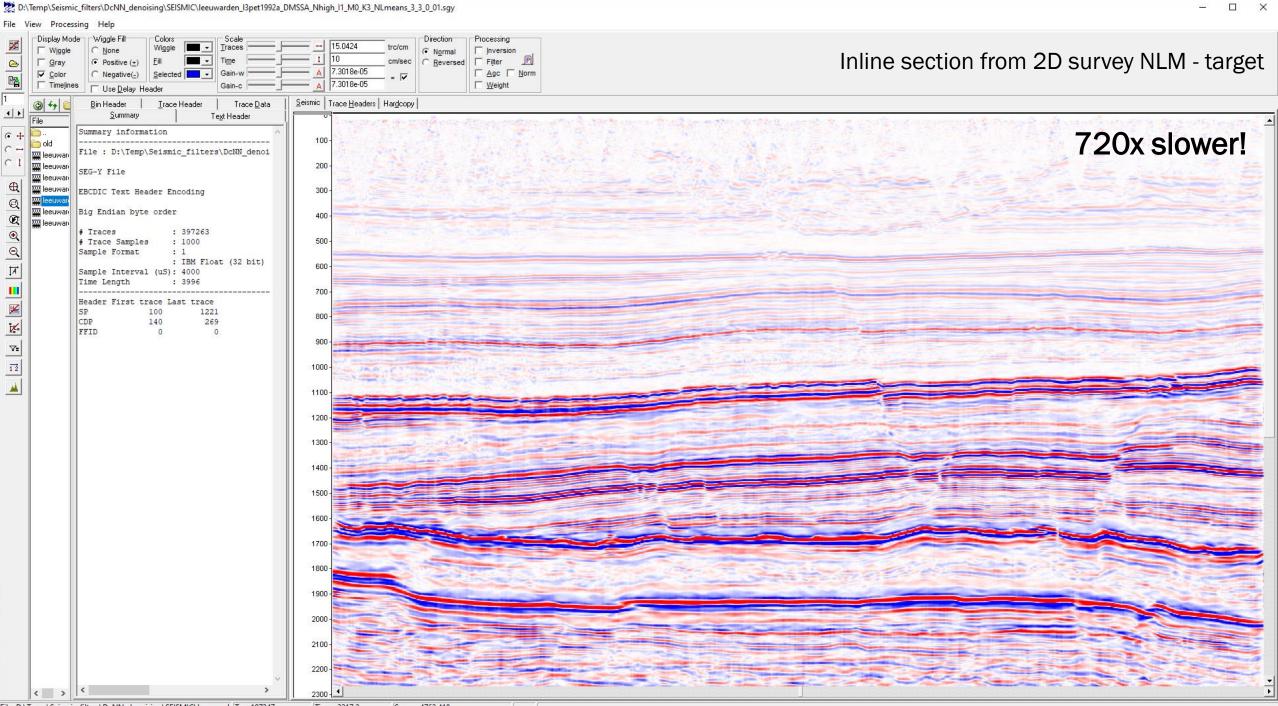
File: D:\Temp\Seismic_filters\DcNN_denoising\SEISMIC\leeuward+[Trc=197314 || Time=2225.1 || Smp=-4'

Smp= 4180.000



Smp= -1594.802 File: D:\Temp\Seismic_filters\DcNN_denoising\SEISMIC\leeuwarde Trc=197479 Time=2264.8

X



File: D:\Temp\Seismic_filters\DcNN_denoising\SEISMIC\leeuwardt Trc=197347 Time=2217.2 Smp= 4762.418

ML INTERPOLATION OF SPARSE 3D SEISMIC DATA USING GAN

- Big Data in Offshore Windfarms:
 - Research question: is it possible to generate a 3D dip volume in a given survey area from 2D sparse seismic data?
 - Answer: yes, we think it is possible. We will use the Ten Noorden van Wadden Windfarm 2D HRS seismic dataset to attempt:
 - 1) gridding an arbitrary set of 2D lines onto a 3D grid based on coordinates
 - 2) bin and stack the seismic traces into a sparse 3D volume
 - 3) interpolate the sparse 3D data into a dense 3D volume using state-of-the-art Machine Learning: MDA GAN

ML DATA INTERPOLATION: MDA GAN (MULTI-DIMENSIONAL ADVERSARIAL)

innovation for life

3

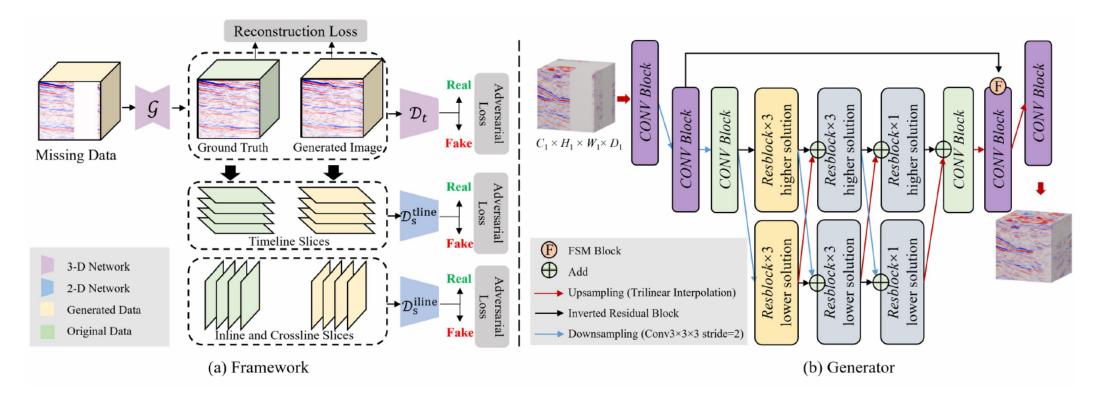
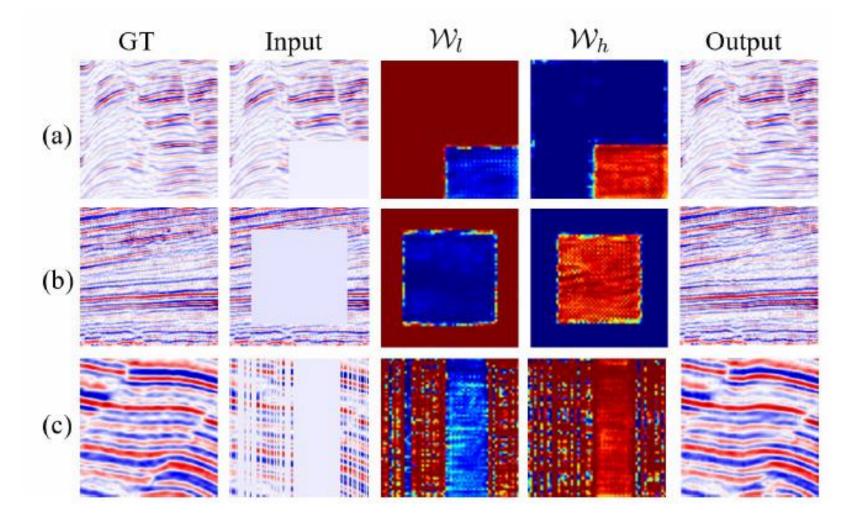


Fig. 1. In (a), the framework consists of one 3-D generator, one 3-D discriminator and two 2-D discriminators. For training, the input to the 3D network is data of size $128 \times 128 \times 128 \times 128$, and the batch size is *b*. To conserve the RAM, the 2D discriminator randomly draws 8 slices of $128 \times 128 \times 128$ in the 3D data along the corresponding direction as input, and the batch size is $8 \times b$. While for inference, the input to the generator can be any size as allowed by the hardware. (b) is the detailed structure of the generator in the framework, and the discriminator follows the standard encoder structure. The CONV block consists of a 3×3 convolution, a normalization layer and a LeakyReLU activation function, Resblock was proposed by He et al [40].

ML DATA INTERPOLATION: MDA GAN PRINCIPLE



o innovation for life

Fig. 3. The figure is shown as 2-D slices of 128^2 in 3-D volumes of 128^3 , displaying the missing of the five modes. The FSM generates mask-like heatmaps without any mask supervision information.

ML DATA INTERPOLATION: MDA GAN APPLIED ON F3 3D DATA

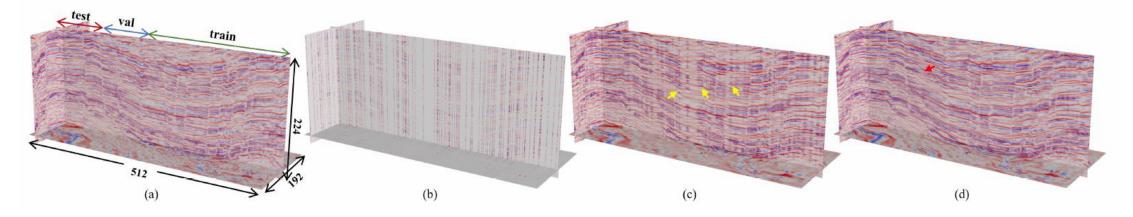


Fig. 12. (a) New Zealand Kerry original data, (b) 80% traces loss in both inline and crossline directions, (c) UNet interpolation results, (d) MDA GAN interpolation results.

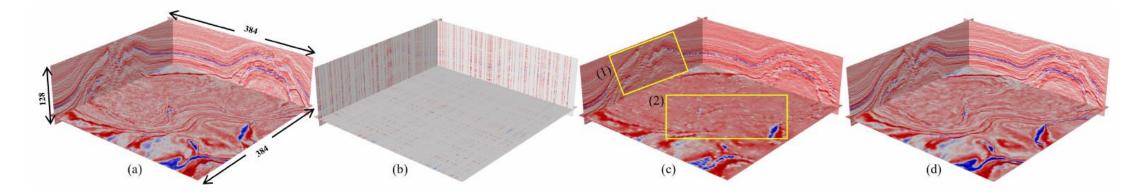


Fig. 13. (a) F3 Netherlands original data, (b) 80% traces loss in both inline and crossline directions, (c) UNet interpolation results, (d) MDA GAN interpolation results.

TNW 2D DATA EAST-WEST LINES

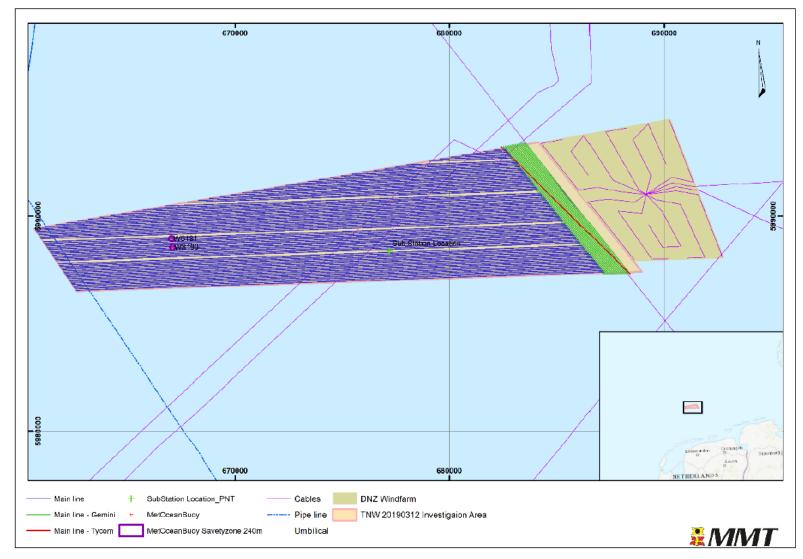


Figure 5 Line plan – main lines TNW-A (blue) and TNW-B (green) Gaps in the line plan are where the reference lines were acquired

TNW 2D DATA NORTH-SOUTH LINES

Gaps in the line plan are where the reference lines were acquired

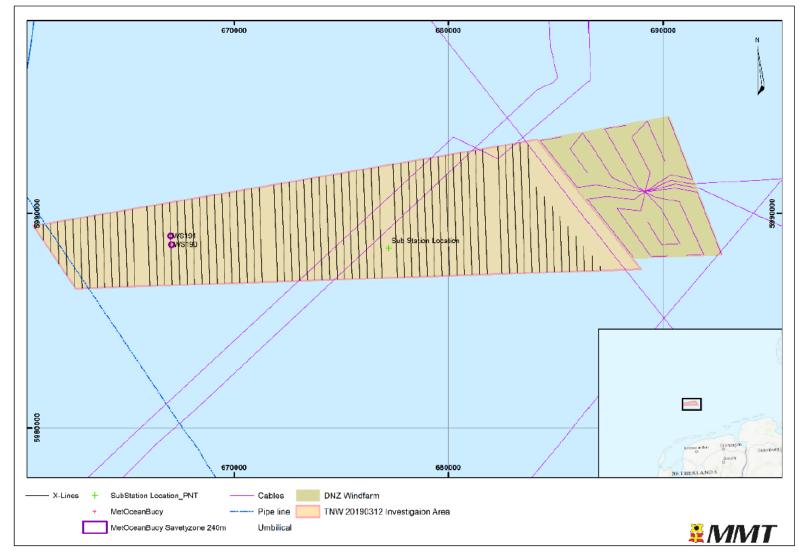
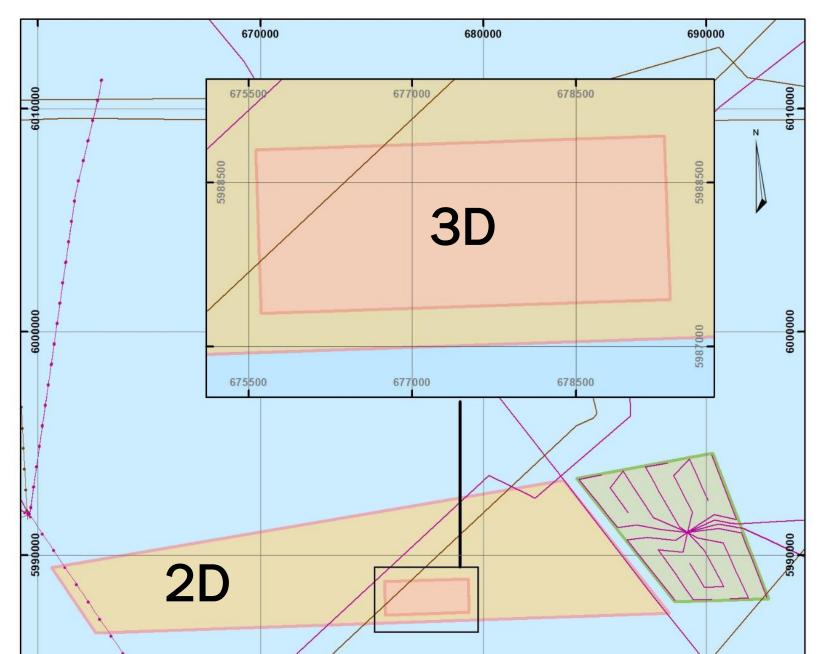


Figure 6 Line plan – cross lines TNW-A (black) Gaps in the line plan are where the reference lines were acquired

TNW 3D HIGH-RES DATA



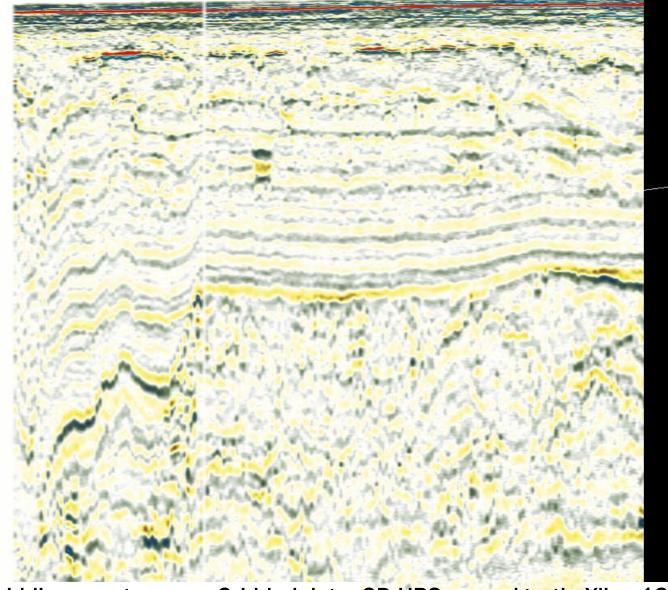
MDA GAN ON TNW 2D-3D DATA: ORG 83% sparse data!

Finest grid of seismic, 12.5x12.5 m, 2D to 3D gridding, most sparse, Gridded data, original, Xline 124, TNW 2D subarea

MDA GAN ON TNW 2D-3D DATA: MDA Very dense data!

Finest grid of seismic, 12.5x12.5 m, 2D to 3D gridding, most sparse, Gridded data, ML interpolated steep, Xline 124, TNW

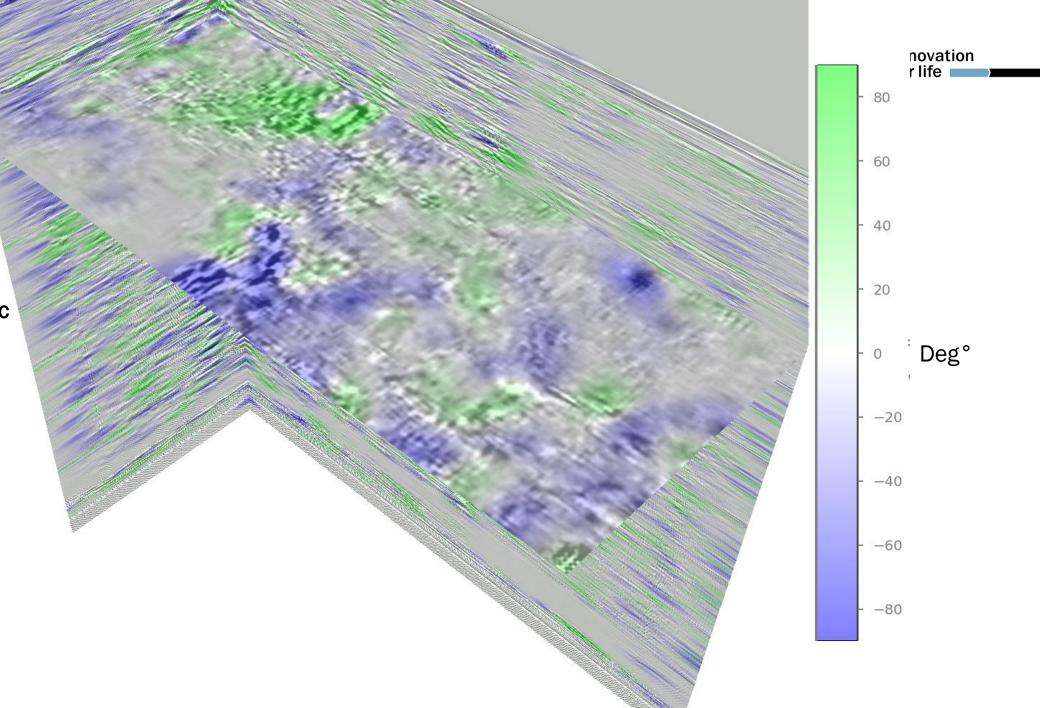
MDA GAN ON TNW 2D-3D DATA: 3D TRUTH



Finest grid of seismic, 12.5x12.5 m, 2D to 3D gridding, most sparse, Gridded data, 3D HRS ground truth, Xline 124, TNW

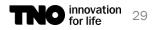
3D dipscan of TNW superposed on seismic

2D migrated gridded interpolated data TNW 3D subarea



CONCLUSIONS

- The 'MIMIC' approach to approximate high-standard but expensive geophysical algorithms by Machine Learning routines appears to be promising
-) +-95 % quality reproductions of geophysical algorithms at a speedup factor of +-1000 for diffractions, 720 for denoising and +- 30.000(!) for broadbanding. GAN interpolation on a typical 3D cube costs some minutes on a heavy laptop and GPU
- ML and GAN's are promising departure point for seismic data conditioning, attributes, prestack processing and quantitative interpretation. The GAN's already proved themselves in several TNO projects. Future is Diffusion Probabilistic Models
-) Improvements: smarter subset training of GAN's, transfer learning, active learning



THANK YOU FOR YOUR TIME

