Smart Point Clouds for information modelling: application in Cultural Heritage

R. Billen, F. Poux & M. Van Ruymbeke Geomatics Unit, University of Liège

Introduction

Teaching

- GIS Mapping
- Surveying Laserscanning
- Geodesy GNSS
- Remote Sensing Photogrammetry

RB's Research Group

SI Theory

■ 3D GIS

3D Reality Capture / 3D Data processing

RB's Research Group

SI Theory

■ 3D GIS

3D Reality Capture / 3D Data processing

RB's Research Group

SI Theory

• 3D GIS

3D Reality Capture / 3D Data processing

Digital (Built) Cultural Heritage

For Tourism: Video / VR and AR

https://youtu.be/71vbCPE2w1o

Digital (Built) Cultural Heritage

For fun ... multi-scale experience ... Creating new space

https://youtu.be/QNRoYLWBjw8

Digital (Built) Cultural Heritage

CH information system: CH researches, CH building management ... dealing with all the complexity of CH information

https://youtu.be/bWHC0kwEtx8

CH Information system R&D issues

- How to manage multiple needs?
- How to deal with multiple data sources?
- Which data models should be used?
- Do they encompass the whole CH information complexity?
- Etc.

Our researches in Digital (Built) Cultural Heritage

- SI Theory
- **3D GIS**
- 3D Reality Capture / 3D Data processing

Smart Point Cloud

Our researches in Digital (Built) Cultural Heritage

Multiple Interpretation Data Model

- SI Theory
- 3D GIS
- 3D Reality Capture / 3D Data processing

Smart Point Cloud

A direct path from 3D Perception to Cognitive Decision

Semantics & Knowledge Integration

Conceptual SPC Model Overview

Level-0 SPC Meta-Model

Level-1: SPC CL Meta-Model

Level-2 SPC Domain Adaptation

SPC application to CH

Device knowledge

TLS DATA

DENSE-IMAGE MATCHING DATA

Colour point cloud

Device knowledge

- Amplitude of the spatial error between TLS and NURBS
- TLS signal is influenced by the material, the error issued from the material reflectance can be used as a semantic information to help tat he classification process.

Analytical knowledge

Type	Point Features	Range	Explanation	
Sensor desc.	X, Y, Z	Bounding-box Limits the study of points to the zone of interest		
	R, G, B ¹	Material Colour	Limited to the colour range that domain knowledge specifies	
-	I		Clear noise and weight low intensity values for signal representativity	
Shape desc.	RANSAC ²	-	- Used to provide estimator of planarity	
Local desc.	Nx, Ny, Nz ³	[-1, 1]	Normalized normal to provide insight on point and object orientation	
	Density ⁴	-	Used to provide insights on noise level and point grouping into one object	
	Curvature	[0, 1]	Used to provide insight for edge extraction and break lines	
	KB ⁵ Distance map		Amplitude of the spatial error between the raw measurements and the final dataset	
Structure desc. ⁶	Voxels	-	Used to infer initial spatial connectivity	

Domain knowledge

Domain knowledge

Sample		Available knowledge				
	Surface (in cm²)	Approx. Geometry	Reflectance (at 1.55 μm)	Date		
Gold	~ 1 cm²	~ square	H. Reflective	XIX		
Gold	< 1 cm ²	irregular	~ Mat	<		
Faience	~ 20 cm²	tear, diamond	Reflective	XIX		
Silver	~ 1 cm²	~ square	H. Reflective	XIX		
C. glass	~ 1 cm²	irregular	~ Reflective	<		
C. glass	~ 1 cm²	irregular	~ Absorbent	<		
C. glass	~ 1 cm²	irregular	Reflective	<		
C. glass	~ 1 cm²	irregular	Reflective	<		
C. glass	~ 1 cm²	irregular	~ Mat	<		

Reasoning

Language	RDF Triple Store	Effect	
SPARQL	PREFIX rdf: <http: 02="" 1999="" 22-rdf-syntax-ns#="" www.w3.org=""> PREFIX npt: <http: nyspoux="" www.geo.ulg.ac.be=""></http:> SELECT ?ind WHERE { ?ind rdf:type npt:AltoMedievalTessera } ORDER BY ?ind</http:>	Return all alto-medieval tesserae (regarding initial data input)	
SQL	SELECT name, area FROM worldObject WHERE ST_3DIntersects(geomWo::geometry, polygonZ::geometry);	Return all tesserae which are comprised in the region defined by a selection polygon and gives their area	
SPARQL & SQL	SELECT geomWo FROM worldObject WHERE ST_3DIntersects(geomWo::geometry, polygon2Z::geometry) AND area > 0,0001; PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# PREFIX npt: http://www.geo.ulg.ac.be/nyspoux/ SELECT ?ind WHERE { ?ind rdf:type npt: XIXCentTessera } ORDER BY ?ind	Return all renovated tesserae in the region 2 where the area is superior to 1 cm ²	

Semantic integration by user / training platform

Multiple Interpretation Data Model

CIDOC-CRM MDIM extension

Multiple Interpretation Data Model
We aimed at developing a model handling ...

- Complex nature of CH information and its inherent imperfection
- Events

Multiple interpretation

Peculiarities of archaeological Data

Multiple Interpretation Data Model
We aimed at developing a model handling ...

- Complex nature of CH information and its inherent imperfection
- Events

Multiple interpretation

MIDM - Example

 Record of two Episodes (version) about the Church of Theux

EP-V1
Church with Tower

1175

Gothic choir 1520

Multiple Interpretation Data Model
We aimed at developing a model handling ...

- Complex nature of CH information and its inherent imperfection
- Events

Multiple interpretation

Record of one Interpretative Sequence by author 1

Life Map of the Church of Theux

EP-V1

Church with Tower 1175

EP-V2

Gothic choir 1520

Record of new Episodes (version and event) about the Church of Theux

EP-V3.1 House 5th c AD

P. Of Worship 5th c AD EP-V4
extension
6th – 7th c AD

EP-E1

Relics's acquisition
860

EP-V5 Church End of 9th c. EP-V6 Church 1091

Church with tower

EP-V1

EP-V2 Gothic choir 1520

EP-E2

Norman's destruction 881

Record of one Interpretative Sequence by author 2

Record of a second Interpretative Sequence by author 2

Record of new Episodes (version and event) about the Church of Theux

EP-V3.1 House 5th c AD

> P. Of Worship 5th c AD

EP-V4
extension
6th – 7th c AD

EP-E1

Relics's acquisition
860

EP-V5 Church End of 9th c. EP-V6 Church 1091

EP-V3.3 House End of 7th c.

P. Of Worship End of 7th c. EP-V4.1
extension
End of 8th – Beg of
9th c.

EP-E2 Norman's destruction 881 EP-V1
Church with tower 1175

Gothic choir 1520

Record of one Interpretative Sequence by author 3

New Life Map of the Church of Theux

MIDM Future

- MIDM first version has been mapped to CityGML
 - Chaturvedi K., Smyth C.S., Gesquière G., Kutzner T., Kolbe T.H. (2017)
 Managing Versions and History Within Semantic 3D City Models for the Next Generation of CityGML. In: Abdul-Rahman A. (eds) Advances in 3D Geoinformation. Lecture Notes in Geoinformation and Cartography.
 Springer, Cham

MIDM last version has been mapped to CIDOC CRM

Is MIDM just for CH and history?

Conclusions

- SPC is a new way to use point cloud as structural spatial elements carrying semantic information
- SPC is obviously not limited to CH application... can be plugged to other domains

- MIDM is a new way to encompass complexity of CH information and variability of experts' interpratations
- MIDM not only model the past but could be used to model the uncertainty of the future

These papers can interest you (SPC):

- Poux, F., Hallot, P., Neuville, R., Billen, R., 2016. SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. IV-2/W1, 119–127. doi:10.5194/isprs-annals-IV-2-W1-119-2016
- Poux, F., Neuville, R., Billen, R., 2017a. POINT CLOUD CLASSIFICATION OF TESSERAE FROM TERRESTRIAL LASER DATA COMBINED WITH DENSE IMAGE MATCHING FOR ARCHAEOLOGICAL INFORMATION EXTRACTION. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. IV-2/W2, 203–211. doi:10.5194/isprs-annals-IV-2-W2-203-2017
- Poux, F., Neuville, R., Hallot, P., Billen, R., 2017b. MODEL FOR REASONING FROM SEMANTICALLY RICH POINT CLOUD DATA. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. in press.
- Poux, F., Neuville, R., Wersch, L. Van, Nys, G.-A., Billen, R., 2017c. 3D Point Clouds in Archaeology: Advances in Acquisition, Processing and Knowledge Integration Applied to Quasi-Planar Objects. Geosci. 2017, Vol. 7, Page 96 7, 96. doi:10.3390/GEOSCIENCES7040096

These papers can interest you (MIDM):

- Pfeiffer, M., Carré, C., Delfosse, V., Hallot, P., & Billen, R. (2013). Virtual Leodium: from an historical 3D city scale model to an archaeological information system. *ISPRS Annals–Volume II-5/W1*, 2013.
- Van Ruymbeke, M., Carré, C., Delfosse, V., Pfeiffer, M., & Billen, R. (2015). Towards an Archaeological Information System: improving the core data model. In CAA 2014 21st century Archaeology: Concepts methods and tools: Proceedings of the 42nd Annual Conference on Computer Applications and Quantitative Methods in Archaeology (pp. 245-253). Archaeopress.
- Van Ruymbeke, M, Hallot, P. & Billen, R. (2017). Enhancing CIDOC CRM and compatible models with the concept of multiple interpretation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-2/W2, 287-294.
- Van Ruymbeke, M, Hallot, P. & Billen, R. (Forthcoming) IMPLEMENTATION OF MULTIPLE INTERPRETATION CONCEPT IN CIDOC-CRM AND COMPATIBLE MODELS, Virtual Archaeology Review

Thank you!

fpoux@uliege.be, rbillen@uliege.be

geomatics.uliege.be (soon;-))

geomatics.ulg.ac.be (temporary)

