Scalable Visualization of Massive Point Clouds

Dr. Ir. Gerwin de Haan

About me

- TUDelft Computer Graphics & CAD/
- Msc (2002), Visualization in Virtual
- PhD (2004 September 2009)
- PostDoc

Techniques and Architectures for 3D Interaction

PointClouds: 2008 RGI 3DTOPO (TuDelft GIS

Why Visualize Point Clouds ?

• Because we can !

Because we need to:

Visual inspection of "raw" measurements

Visualization: **"From numbers to insight"**

Scalable Visualization?

- From bigger (?) data to bigger insights ?
 - Too big for one graphics card
 - Too big for one machine
 - Too big to see on one screen
 - Too big for one person to comprehend
 - Too big to physically distribute
- Rendering >> Visualization >> Interaction

Our Tools of Choice

- OpenSceneGraph
 - Most popular FOSS scene graph engine
 - Integration, Compatibility, File Formats
 - Based on Flight-simulator software (not GIS)

- OpenSceneGraph-based VRMeer software
- Python abstraction layers

5

Real-Time Terrain Rendering

- OpenSceneGraph + VirtualPlanetBuilder
 - **TIN** generation, Level-Of-Detail, Tiling
 - Paged file-based access, also from network

From Terrain ...

• AHN2 "raw" DEM 0,5m grid size, RGB "raw" photos

... to Point Clouds

• ~2 million points at interactive rates, but which ones ?

8

Our Current System

Point Cloud Datastructure

- Discrete LOD, Tile-based, Quad-Tree,
- Simple sampling , no duplication

Point Cloud Visualization

Point Cloud Rendering Issues

- Sampling vs. Density (what is important?)
- Rendering Scalable Enough? (It depends!)

Importance Sampling

- 10%, Random vs. Metric (e.g. Surface-ness)
- Pre-processing, region/case-specific metric

Scalable Comprehension: Display

- Correct view
 - 3D Perspective setup / head tracking
 - Stereoscopic display!
- Planar, Powerwall, Workbench, PDRIVE (CAVE)

Scalable Comprehension: Interaction

- 3D Interaction modelling + prototyping
 - Mouse-based, animated 3D navigation
 - Simple Sketching on models
 - Space-mouse, Wii balance board interaction

November

Application: Flooding

- Hoogheemraadschap Delfland
 - Fast, High Accuracy Flooding Simulation
 - High Fidelity Visualization
 - Communication to general public (color, please)
- [video]

State of the Art (Academic)

- Much "Point-based Graphics", but Single Object focus
- [Wand 2008] Point Cloud Rendering & Editing
 - Demonstrated 63GB, limited by disk space
- [Kreylos 2008] VR pointcloud editor, shape matching

Future Scalable Approaches

- Continuous Level-of-Detail from Geo Databases
 - Balance bandwidth + memory vs. visual quality
- Service-based Visualization (& processing)
 - Data locality & security
 - Integration with "legacy" GIS apps
 - Tile-server for Web-based Maps (Bing, Gmaps)
 - Mobile Front-end
- From Rendering to Visual Data Analysis

19

Visual Data Analysis

- Urban Change Visualization [Butkiewicz 2008]
- Linking Abstract Views with Spatial Views

OpenSceneGraph leverage ...

- Integration, Compatibility, File Formats
- GIS: GDAL, COLLADA, etc.
- From high-end <-> mobile

Software, Videos or Demos ?

- E-mail: gdehaan@tudelft.nl
- Web: graphics.tudelft.nl/GerwinDeHaan
- Datasets and cases are welcome !

(minor 3D Virtual Earth)

November 26th, 2009

22

Additional Slides

November 26th, 2009

23

Agenda

- Why
- Current system
- Data structures
- Results and Videos
- State of the Art
- Future Directions

Terrain Rendering

- AHN2 Test Dataset
 - "Raw" pointcloud

25