Marine High Density Data Management and Visualization

Mark Masry
R&D Manager
CARIS
Point Clouds

• True 3D volume

• Randomly distributed (X,Y,Z) points

• Applications
 – Modeling vertical surfaces (walls, cliffs)
 – Multibeam
 – LiDAR
 – Laserscan
Our Design Goals

• 3D representation
 – Billions of points
 – High precision
 – Multiple Attributes per point

• Visualization
 – Fast 2D/3D Visualization

• Modifiable
 – Add new points or edit existing ones

• Complex Queries
 – Spatial, attribution
Data Structure

- **Point structure**
 - Double precision spatial position
 - Multiple flags per point
 - Multiple returns per point supported (LiDAR)

- **Multiple levels of resolution**
 - No duplicates

- **Multiple Attributes per point**
 - Attributes grouped into *bands*
 - Bands stored independently to minimize IO for unneeded data
Data Storage

- Implemented using CARIS CSAR system
 - huge data sets (>1 TB)
 - Flexible client-side caching, threaded IO
 - Consistent internal representation
 - Translation to different storage systems
 - Bathy Database proprietary
 - RDBMS tables
 - Oracle Spatial Point Cloud

![Dataflow Diagram]

www.caris.com
Performance test

• **Example**
 – Import bathymetric multibeam from GSF (100s of files)
 – Merge into a single cloud
 – 3 attributes per point

• **Stats**
 – 1.2 Billion points in single cloud
 – 30 GB data file
 – Initial 2D/3D overview: <1.0 sec
Editing and Querying

• Cloud can be modified
 – New points added after initial construction
 – Points can be edited

• Queries using
 – Spatial volumes, Resolution constraints, Attribution
 – Efficient use of spatial organization in cloud

• Selection/Classification using flag word
 – Multiple flags per point
Visualization

Video
Point Cloud Workflows

GSF
LAS
ASCII XYZ
ESRI Arc
Grid
PFM

Contours, Surfaces, Products

Editing/Processing

Grid\TIN

Editing/Processing

Editing/ Processing
Grid and Cloud Processing

- **Cloud Processing**
 - Merge, extract, shift, create TIN, CUBE, Gridding tools

- **Grid Processing**
 - Stored using CSAR framework (50+ billion nodes)
 - Multiple attributes per node
 - Multiple resolution levels
 - Combine, filter, extract, reproject, shift, contour, generate isolines
 - On-the-fly reprojection and resampling of multiple grids
CARIS Bathy Database

- Visualize or process Grids or Point Clouds from database
 - Efficient client-side caching, processing and visualization
 - Data loaded from database to client on-demand, files don’t have to be exported
 - Suitable for low-bandwidth connections

- Version 2.3 (available now)
 - File based storage

- Version 3.0 (Q2 2010)
 - RDBMS/Oracle Spatial storage
 - Will store data as Oracle Spatial GeoRaster, Point Cloud (now being prototyped)
Upcoming work

• Speed Improvements
 – Faster construction
 – Better memory management

• Automatic analysis tools
 – Generate polygons from spatial characteristics
 – Polygon boundary extraction

• Visualization
 – Improve FPS
 – Exploit sub-trees for smooth blending
 – Texture draping