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Abstract

Least Squares Filtering and Testing for Geodetic Navigation Applications

This thesis deals with the data processing, testing, and design procedures for use in
dynamic systems, particularly integrated navigation systems, and provides a unified
theoretical framework for these procedures. The data processing procedure — the
Kalman filter — is analysed from a least squares point of view as this method provides
a better understanding of some aspects of the Kalman filter, especially the cases where
correlation between the observables is present and for non-linear filtering.

The testing procedure is derived from the theory of hypothesis testing in linear
models and is based on generalized likelihood ratio tests, which are shown to be optimal
within a certain class of tests. The testing procedure is especially suited for additive
model errors in the functional model, and consists of three parts, namely detection,
identification, and adaptation (DIA). In the detection step the overall validity of the
model is checked and possible model errors are identified in the identification phase.
The adaptation step is required to maintain the optimality of the real-time filter in
the presence of model errors. The detection and identification steps correspond to the
testing procedure used in geodetic network analysis. The DIA procedure allows local
and global (covering several epochs) testing and can be implemented recursively, and
consequently very efficiently. The DIA procedure constitutes the quality-control step
in an overall data processing strategy for dynamic systems.

A design study in which the quality of the system is quantified should precede the
implementation of the DIA procedure. In the design procedure the important aspects to
consider are the quality of the estimation result under nominal conditions (described by
the precision) and the sensitivity of the estimation result to undetected model errors
(called the reliability). Reliability of the dynamic system is directly related to the
implemented testing procedure. Measures for precision and reliability are discussed.
The optimization of the design has to be performed with respect to the precision and
reliability, and some suggestions for a design procedure for use in dynamic systems are
made.

The DIA and design procedures are validated in an extensive simulation study
based on a simple linear model and a (hydrographic) navigation system. This study
shows that the quality of the system mainly depends on the precision of the observables
and the level of integration in the dynamic system. The quality of a system can be
improved by using more precise observables and by increasing the level of integration.
Based on the design study recommendations on the window lengths of the tests can
be given. It is shown that tests for slips require longer window lengths than tests
for outliers. The detection and identification steps of the DIA procedure work very
well, even in the presence of multiple errors. The adaptation procedure is validated
for local tests. Adaptation works well for outliers, but an adaptation procedure for
slips should be implemented with care. The testing and design studies show that the
correct specification of likely model errors by means of alternative hypotheses is a
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crucial element in model validation techniques for dynamic systems.

The least squares (Kalman) filter and the DIA procedure with its associated design
procedure are important building blocks of a real-time data processing and quality
assurance procedure for dynamic systems.
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Chapter 1

Introduction

This thesis deals with various aspects of high-precision real-time dynamic positioning.
Particular attention is paid to the data processing algorithms for real-time position
determination and aspects of quality assurance of dynamic positioning. In the following
we will introduce the problem definition and will successively discuss the historical
context of the current research, the elements of geodetic and navigational methodologies
which are at the basis of the research, and the main points of our investigations.

Problem Definition

In society there exists an increasing demand for the real-time accurate determination
of position and velocity. Although this trend is partly technology driven, demanding
positioning requirements exist in the fields of traffic management (think of the growing
traffic densities at sea, on land, and in the air) and in the (more geodesy oriented) fields
of photogrammetry, satellite positioning, and resource exploration. The general trend
is that the position and velocity not only have to be determined precisely, but also
that the quality of the estimation process to obtain position estimates is assured. One
of the research objectives at the Delft Geodetic Computing Centre is the development
of a real-time data processing procedure for geodetic positioning systems. The data
processing covers the estimation of the unknown parameters and the quality assurance
of the estimation process. The task we face is the development of a real-time, optimal
estimation and testing procedure for use in geodetic, dynamic positioning systems.
The optimization of such a procedure is based on a design procedure which will also
be considered herein. The procedure is based on a unified framework of the theory of
least squares and hypothesis testing in linear models.

Context of the Current Research

This research should be seen in the context of three professional activities, namely land
surveying, hydrography, and navigation, all of which are concerned with the determi-
nation of position. Position determination can be considered as a process of taking
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measurements and computing one’s position. Thereupon the land surveyor and hydro-
grapher may use these positions for mapping purposes, whereas the navigator is gener-
ally interested in where he is going. Until recently the three professional communities
had largely different working methods. The land surveyor and hydrographer, however,
shared their methodologies of data processing (by means of least squares adjustment)
and quality control. The hydrographer and navigator both worked in a dynamic en-
vironment and often used the same positioning systems, and the land surveyor and
the navigator, finally, were hardly aware of each other’s existence. In the past twenty
years this situation has gradually changed because land surveyors, hydrographers, and
navigators have had to face similar problems. Land surveying has become much more
‘dynamic’ and faces a growing demand for (nearly) real-time results. Navigation, at the
other end of the spectrum, has to face rapidly increasing accuracy requirements, which
have long been a primary concern in land surveying and hydrography. Last but not
least, all communities are increasingly relying on the same positioning system, namely
the Global Positioning System (GPS). In short land surveyors, hydrographers, and
navigators are all becoming, in part, precise positioning specialists. One has now ar-
rived at a point where land surveying, hydrography, and navigation share the following
problems:

- The dynamics of the measurement process (even static satellite positioning relies
on moving satellites).

- The availablity of a large, continuous stream of data.

The requirement of real-time quality control.
- The trend towards fully automated data processing.

Considering the problem definition our research is primarily related to the aspects of
data processing and quality control.

The Synergism of Geodetic Adjustment Theory, Quality Control and
Navigation Techniques

We have seen that precise positioning problems in dynamic environments can be ap-
proached from two sides. Firstly one can start from the techniques used in land survey-
ing and adapt them to a dynamic environment. Secondly one can extend the navigation
methodologies with the adjustment and testing procedures of land surveying. In this
thesis we will use elements of both disciplines. Our starting point is the adjustment
and testing procedure of (mathematical) geodesy.

In land surveying it is common practice to work with redundant measurement se-
tups. Surveyors have long been aware that precise measurements do not automatically
provide accurate estimation results if errors in the data or other model misspecifications
are not detected. Redundant data allow the testing for possible model misspecifica-
tions. Besides it is often not possible to reoccupy a measurement station. To obtain
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consistent results from a redundant measurement setup surveyors use the least-squares
adjustment procedure. BAARDA [1968] was the first to introduce a systematic testing
procedure in geodesy, namely the B-method of testing. In the B-method tests of vari-
ous dimensions, encompassing the same alternative hypothesis, have an equal detection
power for that specific alternative hypothesis. Closely related to testing is the concept
of reliability. Reliability describes the sensitivity of the estimation result to errors that
have not been identified by the testing procedure, and can thus be considered as a
measure of the quality under the alternative hypothesis. Geodetic measurements are
expensive, and consequently design procedures have been developed to optimize the
estimation procedure with respect to precision and reliability. The simultaneous opti-
mization (or design) with respect to quality (quality comprises precision and reliability)
is part of a larger quality assurance cycle, which also includes quality control (gener-
ally implemented by means of a testing procedure) and validation of the adjustment
results. In the following we will frequently use elements of geodetic adjustment and
testing theory. The reader interested in the ideas underlying geodetic adjustment and
testing theory is referred to [BAARDA, 1967, 1968, 1977] and [KocH, 1988].

From the navigation community we ‘borrow’ the experience of data processing in
real-time and more specifically the Kalman filter [KALMAN, 1960]. The Kalman filter
is an estimation (or rather adjustment) procedure to recursively estimate the state (pa-
rameters) of a dynamic system. Although the filter has not been developed especially
for navigation purposes, it has found its widest use in the navigation environment.
The Kalman filter is a well documented estimation algorithm and is covered by numer-
ous textbooks (we refer, for example, to [JAZWINSKI, 1970; GELB, 1974; MAYBECK,
1979,1982]). Developments in the field of navigation have been recorded by KayTon
[1990].

With the Kalman filter, the B-method of testing and its associated design procedure
we have available the tools to develop our data processing and design methodology for
dynamic systems.

On the Adjustment and Testing for Dynamic Systems

We begin our investigations by considering the optimal estimation procedure for dy-
namic systems. In our effort to provide a unified framework for the data processing of
dynamic systems we consider the recursive estimation of parameters from the viewpoint
of least squares. For linear models the least squares adjustment provides us with the
best estimators within the class of linear unbiased estimators (see, e.g., [KocH, 1988]).
Best means that one obtains estimators with minimum variance. We will show that
the Kalman filter (and many other results that are known from filter theory) can be
derived by the method of least squares directly. Under the working (or null) hypothesis
the Kalman filter thus constitutes an optimal estimation procedure. We do not de-
rive new filter algorithms, but show that the filter results can be obtained by a simple
methodology familiar to surveyors.

After the data processing algorithm (i.e. the Kalman filter as based on the least
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squares adjustment) has been established, we consider the operation of the data pro-
cessing scheme in the presence of model misspecifications, that is under an alternative
hypothesis (model misspecifications are specified as alternative hypotheses). Tests to
detect and identify model errors will be derived using the theory of hypothesis testing
in linear models. Generally one will strive for the most powerful testing method, that
is for tests which give the best reliability. For the cases we consider most powerful
tests do not exist; a useful subset is however provided by the class of uniformly most
powerful invariant (UMPI) tests. It can be shown that the generalized likelihood ra-
tio tests which are used in geodetic testing procedures are UMPI-tests. Our testing
procedure also includes the adaptation for model errors. The estimation of the model
errors can be derived from the least squares procedure applied to the model under the
alternative hypothesis. After adaptation one can often revert to the processing under
the null hypothesis.

The implementation of the optimal estimation and the most powerful (under certain
conditions) testing procedure in a dynamic system requires a careful design with respect
to the precision and reliability criteria. A design study is necessary to give a qualitative
description of the system.

Contribution of this Report

This report provides a unified framework for the adjustment and testing procedures
for (geodetic) navigation systems based on the theory of least squares and hypothesis
testing in linear models. The detection, identification, and adaptation (DIA) procedure
is derived and especially the aspect of adaptation is closely investigated. The design
procedure for dynamic systems is extended with the aspect of reliability and we will
provide a first step towards the generalization of the design procedure for geodetic
networks to geodetic navigation systems. A systematic design study for an integrated
navigation system based on the measures of precision and reliability is presented. This
analysis helps to understand the properties of the various design measures we use and
demonstrates how they can be used in (navigation) system design. We extensively
investigate the performance of the (local) adaptation procedure and establish its use-
fulness. Part of the work presented herein has been reported previously in [TEUNISSEN
AND SALZMANN, 1988, 1989; TEUNISSEN 1990a, 1990b; SALzZMANN 1990, 1991].

Outline of this Report

In CHAPTER 2 we investigate the Kalman filter in the context of least squares adjust-
ment. The chapter deals with the data processing under the null hypothesis. Using
the least squares approach many well-known results in filter theory can be derived in
a unified manner. The Kalman filter is the data processing algorithm that is used
throughout our research. CHAPTER 3 is devoted to the derivation of the DIA proce-
dure. Based on the theory of hypothesis testing in linear models a testing strategy for
model misspecifications in the functional model is investigated. We pay much attention
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to the adaptation step of the procedure. In CHAPTER 3 we actually consider the data
processing under an alternative hypothesis. Quality assurance of dynamic systems is
discussed in CHAPTER 4, where the design of dynamic systems with respect to precision
and reliability is considered. The concept of reliability is closely related to the test-
ing procedure implemented parallel to the filter. The design methodology proposed in
CHAPTER 4 is subsequently applied to a simple linear model and an integrated naviga-
tion system in CHAPTER 5. The simple linear model primarily serves to explain certain
phenomena that are found in the analysis of the more sophisticated navigation model.
In a simulation study in CHAPTER 6 we then apply the DIA procedure to datasets
related to the aforementioned linear and navigation models. We discuss the detection
and identification phases separately from the adaptation procedure. The conclusions
and recommendations resulting from our research are given in CHAPTER 7.






Chapter 2

A Least Squares Approach to
Kalman Filtering

2.1 Introduction

In this chapter we consider algorithms for the real-time estimation of parameters in
dynamic systems and especially the Kalman filter. The introduction of the Kalman
filter [KALMAN, 1960] was an important event in the development of estimation theory.
Basically the Kalman filter facilitates the recursive estimation of the parameters (or
states) of linear, time-varying systems. Like many estimation methods the Kalman
filter can be derived from various points of view. SORENSEN [1970a] has given a lucid
account of the historical development of the Kalman filter in the context of least squares
estimation. In this chapter we will pursue this least squares approach to Kalman
filtering and the reasons for this are twofold. Firstly surveyors are very familiar with
least squares estimation in general. Secondly, and more importantly, we believe that
the principle of least squares constitutes a framework for a unified, comprehensive, and
self-contained treatment of filtering problems. Moreover the least squares estimators
are the best estimators within the class of linear unbiased estimators. In the following
we will show that the least squares approach leads to major results in filtering theory,
known from the literature, directly.

Filter algorithms can be derived using probabilistic and deterministic methods (for
a discussion the reader is referred to SORENSON [1970b] and MELSA AND COHN [1978]).
Tt is well known that in case one considers linear time-varying systems, the least squares,
maximum likelihood, minimum mean square error, and maximum a posteriori estima-
tion principles all lead to the same estimator, if the observables are Gaussian. SWER-
LING [1971] demonstrated that to obtain the Kalman filter the Gaussian assumption
does not necessarily have to be made in every step in the derivations. In our least
squares approach the stochastic model of the observables is characterized by their first
and second (central) moments. Although the careful reader might argue that a deriva-
tion of the filter algorithms based on such a limited stochastic model is of little use,
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we think that in practice the specification of the first two moments is already difficult
enough. If actually the observables can be assumed to be Gaussian (as is often done
in the literature), the least squares estimators are equivalent to the ‘classical’ Kalman
filter estimators.

In case the time-varying system under consideration is nonlinear, different estima-
tion principles result in different estimation procedures. Since the theory of nonlinear
least squares adjustment is quite well developed, we opt to follow the least squares
approach for nonlinear problems as well. The application of nonlinear least squares
theory leads to nonlinear filter solutions in a very straightforward manner. Besides one
circumvents the cumbersome, nonlinear propagation of probability density functions
(see, e.g., [SORENSON, 1970b]).

We will limit ourselves to models formulated in discrete-ttme. In practice the sys-
tem model, which consists of a dynamic and a measurement model, may be given in
continuous-time. Our investigations are based on sampled data systems and thus the
continuous to discrete-time conversion of the measurement model does not need to
be considered. For the conversion of continuous-time dynamic models into equivalent
discrete-time models we refer to [MAYBECK, 1979] or [DECARLO, 1989].

2.1.1 Overview of this Chapter

In Section 2.2 we give an outline of the (linear) dynamic and measurement models and
the ‘classical’ Kalman filter, which is the algorithm commonly used in practice. At
this point we introduce the least squares representation of the model and we will pay
particular attention to the description of the system noise. In Section 2.3 we give an
introductory overview of least squares adjustment. A first derivation of the Kalman
filter based on the model with observation equations is given in Section 2.4. Next an
alternative derivation, based on the model with condition equations is presented in
Section 2.5. In Sections 2.4 and 2.5 we also consider cases related to multiple epochs
to provide a link with smoothing. The impact of various stochastic models of the
observables is investigated in Section 2.6. In Section 2.7 nonlinearities in the model
underlying the Kalman filter and iterative solution strategies are considered. Finally
some concluding remarks are given in Section 2.8.

2.2 The System Model and the Linear Kalman Filter

Before the least squares approach to Kalman filtering is discussed, we briefly outline the
linear Kalman filter and the model it is based on. We then introduce the system model
on which we base our least squares approach and we indicate how in our least-squares
approach the system noise (or disturbance) can be looked upon as a discrete-time
observable.
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2.2.1 The Kalman Filter

We assume that the discrete time dynamic model can be described by the following
difference equation
zp = Prp-12pq Wy (2.1)

where an underscore indicates that a quantity is a random variable and with

k — 1,k time indices with £ = 1,2,3,...

z n X 1 vector of state variables
®rr—1 n X n state transition matrix
wy n X 1 vector of system noise.

(In the literature the contribution of the system noise
is sometimes given as wy_;.)

The measurement model is given by the following equation:

¥, = Arzp + e (2.2)

where

Y, ™Mk X 1 vector of observables
Ar  my X n design matrix

e my X 1 vector of measurement noise.

Observations are not necessarily available at equidistant time intervals and furthermore
the number of observations (my) may vary with time.

Also the stochastic part of the model has to be specified and at this point we make
the customary assumptions that the initial state z, is distributed as N(zo, Py) and
is uncorrelated with w, and e, for all k. w, is distributed as N(0,Q) and w is
uncorrelated with w, for k # [; e, is distributed as N(0, Rt) and e, is uncorrelated
with ¢; for k # [; and w, is uncorrelated with ¢; for all k, {. The matrices Py and Ry
are positive definite; @ is positive semi-definite.

Depending on the application one has in mind, one might wish to obtain an estimate
of the state at a certain time k, which depends on all observations taken up to and
including time k& + I. If I < 0 the estimation process is called prediction. The state
estimate then depends on the observations taken prior to the desired time of estimation.
If | = 0 the process is called filtering and in this case the state estimate depends on all
the observations prior to and at time k. Finally, if l > 0 the process is called smoothing
and the state estimate depends on the observations taken prior to, at, and after time
k.

Since we have primarily real time applications in mind, we shall restrict ourselves
in this section to recursive prediction and filtering. The problem we are faced with is
to estimate the state at time k using a linear estimator based on all observations up
to and including time k. Furthermore the estimate must be ‘best’ in a certain sense.
KALMAN [1960] was the first to solve this problem for the model given by (2.1) and
(2.2) using the minimum mean square error criterion.
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The (recursive) Kalman filter basically consists of two parts: the time update and
the measurement update. The time update of the state estimate and its associated error
covariance matrix are given as:

Erk—1 = Prh-18k—1jk—1 (2.3)
Pijp—1 = Qk,k—lpk—1|k—l‘}lr£,k—l+Qk' (2.4)

Equation (2.3) gives the estimate of the state at time k using all observations prior to
time k. The time update equation is also known as the one-step prediction equation.
In [KALMAN, 1960] the predicted state is interpreted as the conditional mean of z; =
@k k-12Z5_1 + wy based on the observables y,, fori = 1,...,k — 1, and z,. Since the
system noise is assumed to be independent of Y, (for all I) and z, its conditional mean
equals its unconditional mean, which was assumed to be zero, and thus the time update
of the state estimate reads £ix_y = ®xk-125_1|k—1- The measurement update of the
state estimate and its associated error covariance matrix are given as:

Epe = Expor + Ki(yr — Arre—) -

Puyr = (I~ KeAe)Prpg—r (2.6)
where

Ki = Py Af (Ri + AgPrje—1 AL) ™! (2.7)

is the so-called Kalman gain matrix. The measurement update equation is also known
as the filter equation. Equations (2.3) to (2.7) constitute the well-known Kalman filter.

An important role in the filter process is played by the so-called predicted residual.
The predicted residual is defined as the difference between the actual system output
and the predicted output based on the predicted state:

Y =Y, — Akik;/c—1 . (2-8)

The predicted residual represents the new information brought in by the latest observ-
able y, . (Therefore the predicted residuals are also called innovations in the literature.)
Under the working hypothesis that the mathematical model is specified correctly, the
predicted residual has well defined statistical properties, viz:

v, ~ N(0,Q,,) , (2.9)

where

Qu, = (Ri + AxPr—1 AL) . (2.10)

Note that the predicted residual and its covariance matrix are available during each
measurement update.
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2.2.2 The System Model in the Least Squares Approach

In the following sections and chapters we will use a model definition which differs
slightly from the one given above. We will use the following measurement model:

E{y.} = Aszx ;5 D{y.}= R, (2.11)

with k = 1,2, ..., and where E{.} and D{.} are the operators of mathematical expec-
tation and dispersion. Note that in (2.11)  is a vector of unknown parameters. The
observation equation of the initial state is given as:

B{zo} =20 ; D{zo}=Fo. (2.12)

We thus only explicitely model the first and second (central) order moments of the
observables z; and y,. The system noise vector wy was used in (2.1) to model the un-
certainty in the state transition and thus constitutes a disturbance to the deterministic
part of the dynamic model. If we assume that the system noise, which from now on we
will denote as the disturbance d;, is an observable quantity, it follows from (2.1) that
we can formulate the observation equation of the disturbances as

E{d.} =2r — ®rp-126—1 ;5 D{dp} =0Qx - (2.13)

In practice the vector d is not observable. The disturbance can be modelled as a
random function, that on the average is zero-mean (otherwise the propagation of the
state vector in time would not lead to unbiased predictions). We therefore interpret the
zero-mean value of the disturbance d; as the sample value di. In the models (2.11) to
(2.13) the system state is considered as a deterministic parameter as a result of which
(2.13) can also be interpreted as an observation equation. With equations (2.11) to
(2.13) we have now specified a discrete-time model which can be tackled by the least
squares method. Because we define the state as a vector of unknown parameters, the
matrices Pgx_; and Pyj; have to be interpreted as covariance matrices of the predicted
and filtered state and not as error covariance matrices.

Note that the model given by (2.11) to (2.13) is equivalent to the description given by
(2.1) and (2.2) ify, and d;, are Gaussian and are distributed as N (Axz, Rt} and N(zx—
®r k—1Tk—1,Qk) Tespectively; d;. and y, are mutually uncorrelated; d;. is uncorrelated
with d; for k # I; y, is uncorrelated with y, for k # [; and z, is distributed as N(zo, Po).

2.3 Least Squares Adjustment

In this section a synopsis of least squares adjustment will be given. This section serves to
introduce the least squares algorithms of interest and to familiarize the reader with the
notation we will use in the sequel. We consider least squares adjustment for models with
observation equations and models with condition equations. We furthermore discuss
the concept of yf-variates. The notational conventions introduced in the previous
section are maintained.
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2.3.1 Model with Observation Equations

The model with observation equations is given as

E{y} =4z ; D{y}=Q,, (2.14)

where y is a m X 1 vector of observables; z is a n X 1 vector of unknowns; AisamXxn
design matrix of rank n; and @, is a m X m covariance matrix of the observables of rank
m. In the sequel we will often use the shorthand notation E{y} = Az ; @, instead
of (2.14). The observables are written as functions of the unknowns by means of the
observation equations. In practice a sample y of the observable y is given, and one
estimates the unknown vector . The least squares estimation proczdure for the model
with observation equations is summarized in Table 2.1.

normal equations

(ATQJIA)Q — ATQ;ly
estimators

g = (4TQ,'4)7'4TQ;'y
y = Pay

¢ = Py

covariance matrices

Qi — (ATQJIA)_I
Qy = PaQuP}

= PaQy= QyP;lr
Qé = PALQyPALT

- P/Jny:QnyJfT

orthogonal projectors

P, A(ATQy_lA)_lATle
P} = I-A(ATQ,'4)1ATQ;!

Table 2.1: Estimation procedure for the model with observation equations.

In many cases the observation equations are nonlinear, i.e.:

E{y}=A(z) ; D{yg}=Qy, (2.15)

where A(.) is a map of R"™ into R™. Generally this nonlinear model is approximated
using a first order Taylor expansion for the observation equations evaluated at an
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approximate value z¢ of z:
A(z) = A(zo) + 0:A(z0)Az + of|| Az |) ,

where Az = ¢ — 2o and 8, A(zg) is the Jacobian of A(.) evaluated at z,. Using this ap-
proximation (we do not go into the discussion on the justification of this approximation
at this point) one obtains an estimation procedure for a model with linearized observa-
tion equations, if one substitutes 0, A(z¢) for A, Az for z, and Ay = y — A(zo) for y in
the equations given in Table 2.1. Estimators of the parameters z and the observations
y are then obtained as & = Ty + Az and 9 = A(zo) +Z_\y_. To obtain improved estimates
the estimation procedure may be iterated, using the latest parameter estimates as new
approximate values.

2.3.2 Model with Condition Equations

An equivalent (or dual) representation of the model with observation equations can be
given by the model with condition equations, where one has to specify the conditions
the observables have to fulfill. The model with condition equations is given as

BTE{y} =0 ; D{y}=0Q,, (2.16)

where BT is a b x m matrix of condition coefficients of rank b. The number of condition
equations b is equal to the number of redundant observations m — n. Instead of (2.16)
we often use the shorthand notation BTE{E} =0; @,. Due to the stochastic nature
of the observables (as described by the covariance matrix @,) the condition equations
are usually not fulfilled. This is described by the b x 1 vector of misclosurest which is
defined as

t=B"y ; Q@ =BTQ,B. (2.17)

The covariance matrix of the misclosures follows directly from applying the error prop-
agation law. The least squares estimation procedure for the model with condition
equations is summarized in Table 2.2.

In practice one often has to deal with nonlinear condition equations

BT(E{y})=0 ; D{y}=Q,, (2.18)

where BT(.) is a map of R™ into R®. If we approximate the nonlinear condition
equations by a first order Taylor expansion at yo (the best value for y, being the
observation y itself), we obtain the linearized model with observation equations

8yB T (yo)E{Ay} =0 ; D{Ay}=Q,,

where Ay = y — yo and 8,BT(yo) is the Jacobian of BT(.) evaluated at yo. The
estimation procedure given in Table 2.2 can be used for the model with linearized
condition equations by substituting 8, BT (y,) for BT and Ay for y. The estimator for
the observations y then reads § = yo + &

The connection of the models with observation equations and condition equations
is given in Table 2.3. In the nonlinear case it holds that BT(A(z)) = 0.
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estimators
] Py,8Y
e = Py,By

covariance matrices

Qy = PQinQyPéyTB i
= PQyBQy = QyPQyB
Qé = PQyBQyngB

Py, pQy = QyngB

orthogonal projectors

PQyB = QyB(BTQyB)_lBT
Py.p I1-Q,B(BTQ,B)'BT

Il

Table 2.2: Estimation procedure for the model with condition equations.

rank(4) = =n
rank(BT) = b
b = m-n
BT 4 = 0
bxm mxn bxmn
P.A = PéyB
P{ = Py

Table 2.3: Relation between models with observation and condition equations.

2.3.3 y"-Variates

Now the least squares estimators based on the models with observation and condition
equations have been derived, we introduce an important concept in adjustment theory,
namely the yf-variates [BAARDA, 1967]. y-Variates are observables that are either
stochastica]l; or functionally related to another set of observables y. In practice one
makes a distinction between the following types of gR-variates: f;ee variates which
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are correlated with y-variates; derived variates which are functions of y-variates; and
constituent variates, variates of which the y-variates are functions. In the sequel we are
mainly concerned with constituent variates. In the notation associated with QR-variates
the functional relationship between the y-variates and the constituent yR-variates is
given as:

y=AyP . (2.19)

The least squares estimators of the corrections of the y- and gR-variates are related by
the well-known formula

et = QryQ;'¢ . (2.20)

Equation (2.20) is valid for all three types of y®-variates, but is derived here for the case
of constituent variates. Application of the propagation laws of variance and covariance
to (2.19) gives

Qy = AQrAT and Qg, = QrAT.

The model with condition equations (2.16) can, using (2.19), also be written as
BTAE{y"} = 0; D{y"}=Qr,

which, by applying the least squares estimation procedure for models with condition
equations, leads to the following least squares estimator of the corrections:

¢f = QrATB(BTAQRATB) ' BTAyR .

Noting that QrAT = Qgry, B(BTAQrATB)~'BT = B(BTQ,B)~'BT = Q;'Py,s,
and Ay® =y, (2.20) follows immediately.

2.4 The Linear Kalman Filter — A derivation based on
least squares for a model with observation equations

The objective of this and the succeeding section is to show that the prediction, filtering,
and smoothing formulas found in the literature can easily be derived using the least
squares approach. First we present the model we use for our derivations. This model
takes into account the system state at times k£ —1 and k and is a model with observation
equations. The Kalman filter model is expressed in state-space and the states coincide
with the parameters of a model with observation equations.

The linear model of observation equations from which the linear Kalman filter can
be derived is given as!

Ep_1je—1 I 0
Th_
E{ d, Y=| —®pxy I ( :k‘ ) : (2.21)
Yy 0 Ak

!whenever matrices appear with missing elements, then those elements are zero
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Pr_qjk—1
Qk )
R,

which is of the form E{y} = Az ; Q,. The following derivation is closely patterned
after [TEUNISSEN AND SALZMANN, 1988].
Prediction

For prediction one considers the estimation of the state without the use of the observ-
ables y,. Then (2.21) reduces to

(o pe () () (0] e

Equation (2.22) can be solved immediately as there is no redundancy in this model.
Hence the available estimate £;_;;_; of zx_; cannot be improved upon. The least
squares estimator of z, which is denoted by &, follows directly from inverting the
design matrix of (2.22). The inverse of the design matrix is:

I o\ (1 o0
—®pr 1 Prr_1 1

Hence we obtain the estimator of the predicted state
k-1 = Phk-18k_1k—1 + g - (2.23)

As we take the sample value di of the disturbance d; to be equal to zero the least
squares estimate of the predicted state is

Erik—1 = Phh—18k_1jk=1 - (2.24)

The covariance matrix of the estimator of the predicted state is obtained by application
of the error propagation law

Pipe-1 = b1 Pooip1®h iy +Qk - (2.25)
Equations (2.24) and (2.25) constitute the time update (or prediction) equations of the
Kalman filter (cf. egs. 2.3 and 2.4).
Filtering

If we include the observables at time & in the estimation process we obtain the estimator
of the filtered state. This leads to the following model with observation equations:

E{( ék;c-l )} _ ( ,ik )zk; ( Pyjk-1 R, ) . (2.26)
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Straightforward application of the least squares algorithm (cf. Section 2.3) gives for
the estimator of the state at time k and its covariance matrix

G = (Pgioy + ALRS AR) 7 (P &k + AL RY'y,) (2.27)
Pue = (Pga_y + ALRT AT (2.28)

Application of the matrix inversion lemma
(Pie_y + ATR AR)™ = Poeoy — Pupo1 AR (R + AcPrpe—1 AL )7 AcPrje—1

to (2.27) and (2.28) gives after some rearrangements the measurement update (or filter)
equations (2.5) to (2.7). We thus derived the Kalman filter algorithm using standard
least squares methods.

In the literature also an alternative form of the Kalman gain matrix is given. Al-
though this alternative form is identical to (2.7), we will nevertheless briefly indicate
how it can be derived directly using the least squares approach. If one inserts (2.28)
into (2.27) one obtains

N -1 Tp-1
Egk = PrpPrp_rZre—1 + Pre A By,
which can be rearranged as

Eee = Pop(Pop_y + ALR ARy + Pup AL R (3, — Akrpo)
= g1+ PkucAER;l(gk — AkZ_y)
so that the alternative form of the gain matrix is (cf. eq. 2.7):

Ky = Py AL R;' . (2.29)

Smoothing

In the derivations above we separately derived the time and measurement update equa-
tions of the Kalman filter. It is, however, also possible to consider model (2.21) as a
single adjustment problem. The estimator of the filtered state (&) will be identical
to the form given by (2.27), but an estimator of the smoothed state at time k — 1 is
obtained, because we also take information after time k — 1 into account.

At this point two angles of attack are possible to obtain an estimator of the smoothed
state at time k—1. The direct approach is to start from (2.21) and to derive the normal
equations from the observation equations

Pl T 801 Qi  Bhp-1 —B 6, QF Zry |
—Q7 Pk -1 Q7' + AF R Ay 2y

( Pk_—ll|k—1i’€—]|k—1 + Qgsk—lQ’:ldk ) (2.30)

Qr'de + ALR. 'y,
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By solving the normal equations (which requires some lengthly algebraic manipulations,
including repeated use of the matrix inversion lemma) one obtains the estimator of the
one-step delayed smoothed state and its covariance matrix as

ek = Zro1k—1 T Jk—1(Zxp — Ekjk—1) (2.31)
Digr 1w} = Prcijpor + Joc1(Pepk — Prp—1)Ti-1 (2.32)

with Ji_1 = Py_qk— @E,k_lPkT,:_l. The estimator of the smoothed state and its covari-
ance matrix are equivalent to the forms found in the literature for a one-step delayed
smoothed solution. The direct least squares approach via the normal equations makes
additionaly available the covariance between the estimator of the filtered state and the
estimator of the smoothed state. A drawback of the derivation via the normal equations
is that explicit use is made of the inverse of the covariance matrix of the disturbances
(Qx). This inverse does not necessarily exist as Q4 is only required to be positive
semi-definite. Therefore we look for an alternative derivation which avoids the explicit
computation of the inverse of Q.

This alternative, more elegant, derivation is obtained using the QR-variates. In the
case of smoothing we have to deal with so-called constituent variates. From equation
(2.23) it follows that £;_;|,_; and dy are the constituent variates of £;;_;, or

. Ep1|k-
Thlk—1 = ( ek I) ( kdlllck ! ) . (2.33)

In the notation associated with gR-variates (2.33) can be written as y = AyR. After the
least squares estimator of the corrections to the gk-variates is obtained, the estimator
of the smoothed state follows automatically. The estimator of the corrections is given
by (2.20):

~R _ —1a

e = QRyQy e ,

where
Qy = Prp_q (cf. eq. 2.25)
_ Peijk—1®8] 4y
Qry = ( Qk
€ = Zpp_1 — Lk s
and thus

1o

T ~1
R _ ( Pr1jk-184 k-1 k|k—1
= -1
QkPk]k~1

If we restrict ourselves to the estimator of the correction to the yR-variate 2 1|k-1 ONeE
obtains as the estimator for the smoothed state at time k — 1:

) (Zkjk—1 — Zkk) -

- . T _ . R
Ep 1k = Bx-1jk-1 + Pro1jh-1 Bk p—1 Pjp_y (Eiik — Zkie—1) (2.34)
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which is identical to (2.31).

In this section it was demonstrated that the recursive prediction, filter, and (one-
step) smoothing equations can be derived using a least squares approach based on model
(2.21). If, however, model (2.21) is extended to multiple epochs, derivations based on
the least squares approach do not result automatically in convenient recursive formula-
tions of the prediction, filtering, and smoothing problems anymore. A drawback of the
derivation based on models with observation equations is that analytic solutions are
hard to obtain if many epochs are considered simultaneously, because every additional
epoch increases the dimension of the normal matrix (which is usually a completely full
matrix and has to be inverted) by the dimension of the state vector. Therefore we also
investigate an alternative approach based on the model with condition equations.

2.5 The Linear Kalman Filter — A derivation based on
least squares for a model with condition equations

In Section 2.3 it was stated that for a model with observation equations an equivalent
model with condition equations can be found. The derivation of the Kalman filter based
on a model with condition equations provides us with an alternative to the approach
with observation equations, which becomes rather intractable for more than two epochs.

Prediction

To obtain the prediction formula we start from (2.22). For the prediction case one
cannot obtain a model with only condition equations because not all unknowns can be
eliminated. After eliminating z;_; one obtains

(( ekt I )E{( Zk-1le-1 )}: zk (2.35)
» dk
which leads directly to the prediction formula (2.23).

Filtering

If the observations at time k are included in the estimation process one obtains from
(2.26), after eliminating the unknown z:

(-4 1) E{( ek )} =0 (2.36)

Y,

which is of the form BT E{y} = 0, and where BT is a coefficient matrix of dimension
my, X (n+my). It can easily be verified that the property BT A = 0 holds. Application of
the least squares algorithm for a model with condition equations gives for the estimators
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of the corrections

_ T Ty-1
( ) _ ( Pr—1Ap (Be + AxPri_1 AL) ) (v, — Arie_1) (2.37)

Ri(Ri + AxPrp1 AL ) !
and thus for the filtered state estimator (cf. eq. 2.5):

Jé\) LN>

Eip = Zxp1 + Puppo1 AR (Ri + AePrpo1 AL) (3, — Akigpor)
= Zpp-1 + Ki(y, — Aeip—1) - (2.38)

Smoothing

If one starts from model (2.21) a model with condition equations can be obtained
by subsequent elimination of zx (via y' = yr — Axdi) and z4_, (via y’ = y —
Ap®r k121 |k~1), as follows:

T k-1 Pr_1jk-1
(—Acepr -4 T)E{| 4 |}=0; Qx . (2.39)
Yy Ry

where BT is of dimension my X (2n + my). One can easily verify that the property
BT A = 0 holds. If one follows a direct approach based on the least squares algorithm
given in Section 2.3, one obtains the estimator (2.31) for the state at time k — 1 after
some algebraic manipulations.

Here we use the alternative solution based on y®-variates (we repeat the derivation,
because in the model based on condition equations the estimators of the least squares
corrections are given in a somewhat different form). The constituent variates can be
described by (2.33). For the model with condition equations it follows from (2.37) with

éR = QRng;l_é. )
where @), and Q) g, are as defined before, but

. T _ .
& = —Puu_1AL(Re + AkPoi 1 AL) (3, — Akgper)
= —Ki(y, — AcZgp-1)
that the estimator of the corrections to the QR-variate Lh_1jk—1 18

R
€y

—Pk_1|k_1‘I’E,k_lp,c],i_]Kk(yk — ArZgpp—1)

—Pk-1|k—1’I’E,k_lPIJ;l_l(iklk — Zgjk-1) -
This results in an estimator identical to (2.31) and (2.34), namely

Zp_qk = Epoqpk—r + Pk—1|k—1‘§g,k_1pk_|;l_1(ik|k — Zplk-1) - (2.40)
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2.5.1 Multiple epoch solutions

We now try to expand our derivation of the Kalman filter to more than two epochs
using the model with condition equations. If one is able to find an analytic form valid
for any number of epochs this will greatly facilitate all subsequent derivations. The
model with condition equations is basically non-parametric and hence a link with the
parametric state-space concept of the Kalman filter might cause some problems.

If we expand model (2.21) to, for example, three epochs, one obtains:

Zg_1)k-1 In, 0 0
d —Pr k1 I, 0 Tr_1
E{ Y. } = 0 A 0 i ;
ik+1 0 “‘fk+1,k I, TE41
gk+l 0 0 Ak.+_1
Py k1
Qk
Ry : (2.41)
Qk+1

Rgqq

In order to write model (2.41) as a model with condition equations we have to eliminate
the parameters. We begin by eliminating z4_, and z44, so that (2.41) reduces to:

dr + Brk-125_1 k-1 I,
E{ gk } = Ak Tk .
Yipr — Akt1desy App1®pq1k

By eliminating  one then arrives at the familiar model BT E{y} = 0, where

pr [ A —A Lm0 0
A1 ®rpik1 —Ar 1@k 0 Ak Iy, )

where my and my,, are the number of observations at time k and k + 1 respectively,
and ’
ST T T 4T T T
y= (:_E_k——1|k——1 ) .‘_ik N 74k+1vyk+1)
For an arbitrary number of epochs (starting at time k — 1) the model with condition
equations can be written as:

BTE(g} = 0; Q,, (2.42)
where
—Ap®p —Ag I, 0
BT — ~Akr1®ht1h-1 Akt 1®k41x 0 —Ag T

— Ak 2®hiok1 —Arp2®riox 0 —Ap2®ryoksr 0 - ’
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AT T . T 4T T T
¥y= (—k—llk—l’dk’yk’dk+1vﬂk+]a“')
and
Pr_1jk-1
Qk
Q, = Ry
Qk+1
The vector of misclosures t is defined as:
t=BTy , (2.43)
where the elements of the closure vector ¢ are:
e = ¥ A(de + Brp-18k1k-1)
b1 = Ypyy — Aknidin — Ak @epikde — Aer1 Brtrk-185-1 k-1
Yerr — Arr1(disr + Peyip(de + Rrp-125_11k-1))
by = Ypyo — Akta(drrz T Brazkri(digr + Brprk(de + Bok-126-11k-1)))

(ete.)

Model (2.42), together with (2.43), gives a complete description of the multiple epoch
filtering and smoothing problem. However, the structure of the misclosure vector ¢
does not immediately lead to major simplifications in the (analytic) solution of the
adjustment problem, because the matrix BTQyB which has to be inverted is completely
full. Therefore it is required that this model is further developed. It can be seen
from (2.43) that the misclosure vector at time k is equivalent to the predicted residual
Y% (= ¥, — AkZgje—1)- In the Kalman filter the predicted residuals and their covariance
matrix are readily available. So if we are able to express all elements of the misclosure
vector as functions of the predicted residuals this might lead to major simplifications.
In the sequel we will show that the vector of misclosures can indeed be written as a
function of the predicted residuals.

In order to write the misclosure vector as a function of the predicted residuals, we
start with rewriting the misclosure vector as:

L =
tee1 = Vkpr T A1 (Zregak — Brg1je—1)
teyr = Ukgpo T Akto(Bhyoker — Shyok—1)

(ete.)

or

Ly =y
terr = kgt + A1k k(Eapk — Zepp-1)
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tevz = Vppo + Ak ®rp2k1 (Begikrt — Ekgppe—1)
Uhpa T Akt Bri2k01(Zrtaikitr — Begk + Ehprpk — Ert1je-1)
= gyt Ar2Bri2 k1 ((Bes1ker — Zogile) + Brr16(Zrpp — Zhjk—1))
(ete.)

which can be verified by simple substitution. Recalling that (cf. eq. 2.5)
Zii = 2,1 + Kiv;

the elements of the misclosure vector ¢ can then be written as

e = %
byt = Uyt Aen Ben o Ky
thee = Veyo t Appo®riok1 Kep1Ug + Akpo g2k Koy
(ete.)
We can thus express the misclosure vector as a linear function of the predicted residuals:
where
I, 0 0
I Ap1Pry1 k Ki I, ., 0
Ap+2®k126 Kk AkpoPrroki1 Kit1 Imyy, -0 | ?
and

v= (EE, E;g+1’2;£+2’ .. ')T
The matrix L is a lower triangular matrix of full rank, and consequently its inverse can
be computed in a straightforward manner. Hence the predicted residuals can also be
expressed as a linear function of the misclosures

v = L_]E ’ (2'45)
where
I, 0 0
—App1K k41 Imiyr 0
L' = —Ak+2Fk+2Kﬁ1 “Ak+2KI12 Imkﬂ ,
—Ap3F aFep oKk —AgysFrpsKero —App3Kpys
with

®;i1(J - K;,_14,1)

F;
K, ¢, 1K,

I
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Applying the estimation procedure from Table 2.2 to the model with condition
equations (2.42) and using the linear relationship between the misclosure vector and
the predicted residuals gives for the least squares estimator of the corrections:

e = QyB(BTQyB)_lBTE
= Q,BL (L7'BTQ,BL ")'L 'Ly
= Q,BL (L 'BTQ,BL ") 'v. (2.46)
The problem of inverting the matrix BTQ,B has been replaced by the problem of

inverting the matrix L='BTQ,BL-T. The form of this matrix does not immediately

suggest that a major simplification is now possible. However, using the fact that
E{tt"} = BTQ,B and the linear relation (2.44) between the predicted residuals and
misclosure vector, it follows that

E{Lw'L"} = BTQ,B
E{w'} = L'BYQ,BL™ T, (2.47)

where the matrix L~'BTQ,BL~T is the covariance matrix of the predicted residuals.
It is well-known (for a proof see Appendix A) that

E{v[} =0, k#1, (2.48)
and consequently we arrive at the important result that
L7'BTQ,BL™T = diag(Qu,, Quy1»---) - (2.49)

This matrix can easily be inverted and is a function of covariance matrices of the
predicted residuals only. We now have available a least squares description for the
prediction, filtering, and smoothing problem, which renders analytical solutions feasible.

To demonstrate the usefulness of the batch solution in terms of a model with condi-
tion equations, we consider the following example. Say, for example, we want to derive
the estimator of the state at time k — 1 at time I (£;_,;), with I = k,k + 1,..., using
all observables in the time interval [k, !]. The least squares estimator of the smoothed
state at time [ is obtained by:

Zh-1ll = Zhk—1k—1 ~ Exp_yppor *

For the estimator of the least squares corrections (cf. eq. 2.46) we need the first row of
the matrix Q,BL~T. From (2.42), (2.45), and (2.46) it follows by simple substitution
that

ATQn.  (250)

I ;
. s T T
)t = Zh—1jk-1 T Pro1jk—1Bh k1 Z l H F;
i=k | j=k+1

Using the definitions of the measurement update (2.5) and the gain matrix (2.7), it
immediately follows that

ATQ v, = Py,

i1 (Eili — &4jic1)
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and inserting this result in (2.50) gives for [ = k

N oA T —1 . N
Tr_1jk = Zk-1]k-1 + Pk—1|k—1 ‘I’k,k—lpk|k_1(£k|k - £k|k—1) ’

which is identical to the one-step smoothed solutions found before. If we now assume
that (2.50) holds for | = m — 1, and use the identity (I — K;4;) = P,-|,~P._1 1» it follows

1)i—
from

m
. _ A T T| 4T -1
Ek-1|m—£k—1|m—1+Pk—1|k—1‘1’k,k—1 H F; AnQ., Um
J=k+1
that
ik—1|m = ik—l|m—l +
m
T . R -1 T| p-1 - A
Pk-1|k—1q’k,k-1 H (QJ,J—lpJ—”]—le—],j—?) Pm[m—l(?—"ﬂm i"—mlm—l)
j=k+1

and thus (2.50) can be written as

m

T -1
II Pic1jia @520 Py
ik

ik—1|m = ik—1|m—1 + (.:i_’mlm - imlm—l) . (251)

Equation (2.51) corresponds with the so-called fixed-point smoother [MEDITCH, 1969)].

2.6 Alternative Noise Models

In the previous sections we assumed that the measurements and disturbances were
mutually uncorrelated and uncorrelated in time. In practice it is likely that correlation
is present. In this section we will consider the following types of correlation:

A. Correlation between the disturbances (system noise) over a sample period and
the measurements at the end of that interval

E{(dy ~ E{d})(y; - E{g,N"} = { ) j 2 ;

B. Correlation between the measurements and the disturbances (system noise) over
the ensuing sample period

E{(Ej - E{Qj})(i‘lkﬂ ~E{de1})"} = { gk i ; :

C. Correlation between the measurement noise at successive epochs.

D. Correlation between the disturbances at successive epochs.
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This list is not exhaustive, but in general it will be quite difficult to specify more
detailed models for various types of correlation. Correlation between noise sources at
successive epochs is also called coloured noise or sequentially time correlated noise.

In practice cases C and D will prevail. Due to the approximation of the ‘real
world’ by a dynamic model some correlation between disturbances at successive epochs
will always be present. Also time correlated measurements (measurement noise) occur
quite frequently in practice. This type of correlation is often due to the internal data
processing in the measurement systems (e.g. receivers of radiopositioning systems) or
mechanical damping of the measurement devices (e.g. conventional gyros). Cases C
and D are often specified as exponentially time correlated noise because other, more
sophisticated, noise models are difficult to derive. Cases A and B cover the correlation
between disturbances and measurements and are formulated in a somewhat restricted
manner. It is likely that disturbances will have some impact on the measurements
(consider, for example, a ship subject to pitch, roll, and heave that is equipped with
a satellite antenna installed in top of a (sweeping) mast) and besides this type of
correlation will probably not be limited to a single epoch. Tractable, general solutions
for models which incorporate correlations between disturbances and measurements for
longer time spans are, however, not available. Closed form solutions can be found for
cases A and B and therefore these cases are considered.

The objective of this section is to demonstrate that the least squares approach leads
to solutions for some of these cases directly. Solutions can be derived in a straightfor-
ward manner for cases A and B. Time correlated measurements and disturbances (cases
C and D) can be tackled by orthogonalization methods (which constitute differencing
schemes between correlated observables to obtain derived observables which are uncor-
related) or state augmentation procedures, in which the correlated noise is modelled
in state-space. Both approaches are demonstrated and their relation is shown for time
correlated measurements. The results obtained in this section are compared with the
solutions found in the literature.

2.6.1 Correlation between Measurements and Disturbances — Case A

If one considers correlation between the disturbances over the sample period and the
measurements at the end of that interval, the model with observation equations reads:

i1k I 0
sl o 2| -s I Tr-1 | 2.52
{ L2735 } - k,k-1 s ) ( . )
gk 0 Ak
Pr k=1
Qk Sk )

ST Ry
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where Sg is a n X my matrix. This model is equivalent to the following model with
condition equations (cf. Section 2.5):

(-4 1 )E{(i’“;’:l )}:o; (P’g’lfc;l ;’;) , (2.53)

from which the least squares estimators follow directly as

z P T
L I B B o L ST 2.54
( 9y ) ( ¥, ) ( STAl — Ry Q5 (3, kZkjk-1) 5 (2.54)
where
Qv = (AkPyk-1 A + Rk — AxSk — STAL)

If no correlation is present this form reduces to the standard Kalman filter solution.
The variance of the least squares estimators follows from applying the error propagation
law to (2.54):

Pk = Prjeo1 — (Pupk—1 AF — Sk)Q5 " (AkPrj—1 — SF) (2.55)
The time update equations remain unchanged.

2.6.2 Correlation between Measurements and Disturbances — Case B

In case one considers correlation between the measurements and the disturbances over
the ensuing sample period, the model with observation equations can be written as:

Eplk-r I 0 -
B wme b= a4 o | ], (2.56)
i1 @1k 1 *
Prik-
Rk Slc )
ST Qe

where Si is a my X n matrix. By orthogonalization of di,; with respect to y, one
obtains a model equivalent to (2.56), but with uncorrelated observations:

Zilk-1 I 0
E{ ¥ }= Ay 0 ( ok ) . (257)
diyr — S{ Ry, (=Bk+1k — SERAR) T k!
Prik-
Ry 0
0 Qi1 — SER'Sk
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From (2.57) it can be seen that the estimator of the filtered state at time k remains
unchanged, so that one obtains:

Ty ik _ I 0 zy,
E _ = _ ; 2.58
{( diy1 — SRy, )} ( (—Bky1h — S{RAL) T ) ( Tk ) (2.58)

Pk|k 0 .
0  Qk+1— STR;'Sk

Equation (2.58) can be solved immediately as there is no redundancy in the model.
The estimator of the predicted state at time k + 1 reads

Serie = (Brerk + SERTTAR)Es + diyr — SE R 'y,
= Prirkip t+dpyq — SkTREl(yk — AkZg)k)
= Ppr1 kB + digr — SkTR}{l(gk — Akzpip—r — AKi(y, — AkZip-1))
= Prr1 ki + digr — SER;(I - ArKi)(y, — Axijk—1)
= rirhdep + D1 — Sp R [Ri(AcPrp—1 Af + Ri)™(y, — Akgpe—1)]
= Bir1hip + dipr — Sk (AcPrp—1Af + Be) (3, — Akppor) - (2.59)

For the estimate of the predicted state the sample of d, , | is taken equal to zero. The
covariance matrix of the predicted state is obtained by applying the error propagation
law to (2.59)

Povik = et kPep®lix + Qe
—Sp (AkPuk—1Af + Ri) 'Sk + ®pp16 K Sk + S{KR &L, 4 - (2.60)

If no correlation is present this form reduces to the standard Kalman filter (prediction)
solution.

Comparison with Solutions found in the Literature

The reader can compare the results we have found for cases A and B with the solutions
given in literature (e.g. JAZWINSKI [1970]). The solutions given here differ slightly
in the parts containing the correlation terms S; and S,;r (note the sign changes in
comparison with [ibid., pp.209-212]). This difference is due to our definition of the
disturbance d;. In our model description the matrices S model the correlation between
the observables y and d, where E{d; } is defined as z; — ®4 t—12x—1. In most textbooks
on Kalman filtering the matrices § model the correlation between quantities e and
w, where w is the so-called system noise (cf. Section 2.2). If one inserts (2.1) in our
definition of the disturbance vector d; one obtains d; = z, — ®¢r_124_1 — Wy, where
the disturbance d;. and the system noise vector w; have opposite signs. This explains
the sign changes in our formulas (2.54), (2.55), (2.59), and (2.60) as compared with
[ibid.].
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2.6.3 Time Correlated Measurements

Time correlated measurement noise can be handled using the concepts of orthogonal-
ization or state augmentation. We start our discussion on time-correlated measurement

noise by considering a vector of observables y = (g;f, EE+1’ ...)T of which the covariance
matrix is specified as:

Ry Rk‘I’E+1 Rk‘I’I?H‘I’EH
Y1 Ry (i1 Re®L ) + Nitr) (Y1 Rl + N1,

Uy po(Pep1 ReVL +

L JUTL JHRY . 78 ‘I’k+2(‘1’k+1Rk‘I’;cr+1 + Nk41) Nk+1)‘I’E + Niis
+2

(2.61)
where the matrices ¥; and N, (which remain unspecified for the moment) model the

correlation of the measurements and a contribution of white noise at time ¢ respectively.
If one premultiplies the vector y by the square and full-rank matrix

I 0 0
= I 0 ...
P = 0 By I e | (2.62)

one can easily verify that the derived observables Py are uncorrelated, that is the
elements of y can be orthogonalized by means of the matrix P. In principle this or-
thogona.]jzati)n procedure can be used to derive a filter algorithm for time correlated
measurements. It is self evident, however, that the algorithms derived using the or-
thogonalization approach will be rather involved compared with the ‘classical’ Kalman
filter algorithm. The structure of the orthogonalization matrix (2.62) inevitably results
in algorithms in which the estimator of the state at time k also depends on the mea-
surements at time k + 1, and thus recursiveness is lost. We demonstrate this by an
example. If we assume, for example, that the first observation is processed at time k,
the model with observation equations for four epochs can be written as

Eh_1)k-1 I 0 0 0
dy —Ph k-1 I 0 0 i
Y, 0 Ak 0 0 ;“
E{| du |}= 0 N I 0 z’“ ; (2.63)
Yyoir 0 0 A 0 e
diyr 0 0 ~®piopn 1 ki
Yirs 0 0 0 Apio
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Pr_qk-1
Qk
Rk 0 Rk\I’E—}—l 0 Rk‘I’kT+1\I’;;F+2
0 Qrk+1 0 0 0
Ve Ry ¥T,  + (x4 ReY, +
il R 0 (Trr1Re¥py 0 +1 E+1
k+155k Nk+1) Nk+1)‘1’2+2
0 0 Qk+1 0 0
‘I/k+2X T
ppo (Ve R TT, 4
¥ v R 0 N R.UT 0 k+2\¥ k41 00k ¥y
k+2¥k+1 10k ( k+.;Vk:1)k+1+ Nes1)¥ o + Niga
Specifying the matrix P as
I D 0 0 0 0 0
0 I 0 0 0 00
00 I 0 0 00
P=|00 0 I 0 0 0], (2.64)
0 0 —%4yy O I 00
0 0 0 0 0 I o
00 0 0 —Vyyo 0 I

a derived model with uncorrelated observables can be obtained frorn model (2.63) as
follows:

PE{y} = PAz ; D{Py}=PQ,P", (2.65)
where
Ze_11k-1 I 0 0 0
C_lk —‘bk,k_l I 0 0
Y, 0 A 0 0
PE{g} =E{ 4k+1 }i PA= 0 — P,k I 0
Yepr — Y1y, 0 ~Pi 14k Ap41 0
s 0 0 ~Pr 2 k41 I
Yeur — Yrt2¥, 0 0 —Vii2Ars1 Arg2

PQ,PT = diag(Py_1j-1, @k, Ri» Qkt1, Nkt 1, Qiv2, Nij2) -

To establish a link with the literature we will now consider a special case of model (2.65)
covering three epochs (viz. k — 1,k and £ + 1). Since all observables are uncorrelated,
the estimator of the filtered state at time k can be obtained in the usual way, and hence
model (2.65) can be reduced to

Ty |k I 0 i Pyik
E{ [ Y= ~®kpx I ( - § ) ; Qrk+1
Yprr — Yhr1Y, U1 Ar Ak kel Ni1
(2.66)
It follows from (2.66) that one obtains an estimator of the smoothed state at time k.

We first eliminate the parameters zx and z44; to arrive at an equivalent model with
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condition equations, namely

Tp)k
( (k14— Akp1®ey1k) —Aepr T ) Ef dyi }=0. (267
Y1 ~ Thr1Yy

The estimator of the state at time k can be found by straightforward application of
the least squares estimation procedure for models with condition equations. Denoting
(ng —Qk+‘l_y_k) asy, . and (Pi41Ak— Aky1®k+1.4) as Hiyq one finds for the estimator
of the state at time k:

Ziprr = Zxp — PopeH o (Hop P HL | + Ak1 Qa1 Afy + Niepr) ™' X
(T + Hir1Zkk — Aks18k11) - (2.68)

If one considers Ak+1Qk+1AE +1 T Nk41 as a single new covariance matrix and recalls
that the samples of d; are chosen equal to zero, this form is very similar (but not
identical) to the ‘classical’ Kalman filter measurement update. From (2.67) one can
also derive the estimator of the disturbances at time k41 (to obtain an actual estimate
di+1 is set to zero)

dept = digr + Qe Ap gy (Hip 1 P HE 4 Ak 1 Q1 ALy + Nipr) ™! X
(Tepr T Her1Zepe — Arprdicyy) - (2.69)

The least squares estimator of the filtered state at time k + 1 is finally obtained as

Erptpkrt = Brprhipes + iy - (2.70)

Equations (2.68) to (2.70) can be compared with the solutions given by BRYSoN AND
HENRIKSON [1968]. Except for some minor differences in notation (our matrix Hyyq
corresponds to —Hj in [ibid.]), the main difference of our results and those in [ibid.]
is that we arrive at our algorithm in a straightforward manner using the principle of
least squares. In comparing our results with [ibid.] it can be seen that BRYSON AND
HENRIKSON explicitely interpret the matrix ¥5,; from the outset as a state transition
matrix, whereas in our derivation the matrix ¥, remains largely unspecified (¥4
only has to be chosen in such a way that the matrix P in (2.64) is of full rank).
Furthermore we can avoid the somewhat artificial discussion on the interpretation of
the estimators Zy |t and Zi4 k41, as in our approach they can simply be interpreted
as least squares estimators of the smoothed state at time k and the filtered state at
time k + 1 respectively.

A second approach to deal with time correlated measurement noise is given by the
method of state augmentation. In order to follow this approach one has to assume that
the time correlated measurement noise can be modelled using a state-space approach.
As a consequence the time correlated measurement noise is modelled using a fized
number of additional states. Including these additional states in the functional model
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then automatically leads to state augmentation. Instead of using the model given by
(2.61) the time correlated measurement noise is now described as:

E{di} =ex — Yik-1ek-1 ; D{di} = Ny , (2.71)

with
E{y} =41z (ory, = Aizi+e) ;5 D{y}=R ,

where ¥y 11 is a m X m state transition matrix of the measurement noise. (For the
sake of simplicity we assume that all m observables y are time-correlated; in practice
the number of time-correlated observables may lie in the range 1 to m, but this does not
affect the following derivations.) Analogous to the reasoning in Section 2.2 the vector
dj is considered as an observable, random disturbance vector of which the sample values
df are chosen equal to zero. Using equation (2.71) one can for k = 3,4,... define the
augmented system model as:

E{d,} =%k — St p—1Tk-1 ; Yk = ArTk , (2.72)
where _
d = (df &£ )T (n+m)x1
Tk = (zf )T (n+m)x1
= Pr k-1 0
Prr1 = ' n+m)X(n+m
e = (R0 ) memx
A = (Ak I) m X (n+m)
1 _ Qr 0
pig} - ( o (n+m) x (n+m)
with starting values

zy I 0 0 ¢

dy @10 I 0 0 zo

31 _ 0 A] 0 0 1

E{ 42 } a 0 *(}2’1 I 0 E ) !
ds+ 919 0 V04, 0 I ey
Y2 0 0 A, T
Py
@1
R,
Q2
N,
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This is a very straightforward procedure which can be implemented using standard
Kalman filter software, apart from the fact that the measurement model contains
noise-free observations. Therefore care has to exercised, as this approach might lead
to numerical ill-conditioning of the covariance matrix of the (augmented) predicted
state, thus leading to difficulties in the computation of the covariance matrix of the
(augmented) filtered state. Due to the noise free measurement model the rank of the
covariance matrix of the estimator of the filtered augmented state (with dimension

n + m) is merely n.

Comparison of Orthogonalization and Augmentation

It remains to be shown at this point that the orthogonalization and the state augmen-
tation approach lead to identical results for the estimators of the system state. If we
assume that the first observation is processed at time k and we consider four epochs,
the augmented state model can also be formulated as:

E{y} = Az ; BTz =¢; D{y}=Qy, (2.73)
where
y = (if_uk_udf,gz,dﬂn(diﬁ+‘I’k+1,kyk)T,df+z,di+Tz)T
I 0 0 0 0 0
—®p k1 I 0 0 0 0
0 Ay 0 0 0 0
A = 0 —@k.;_]'k I 0 0 0
0 Vi1 kA 0 I 0 0
0 0 —Prya k1 0 10
0 O U —\I’k+2,k+1 0 I
BT — 0 0 Ak+1 I 0 0
00 0 0 Agyo I
T = (ZE_l,zE,zEH,eﬂﬂﬁz,eﬂz)T
¢ = (yl;r+1,?/;cr+2)T

Qy = diag(Pe_1jk—1>Qrs Bk Qrs1, Nig1, Qry2, Niy2).

Equation (2.73) is given in a so-called mixed model representation, which is in the
form of observation equations with conditions on the parameter vector z. We use the
condition equations to eliminate the state variables ex;; and ex; o from the state vector
z. Noting that ex11 = yr+1 — Akr12Zhk+1 and exy2 = Yry2 — Apt2@kt2, model (2.73)
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can also be written as

Zr_1lk-1
dr

Yy

E{ dk+1 } =
ii1 — Ykt1 T Cht1,6Yk
diyo

divo — Ykro + Yrpokr1¥kn

I 1] 0 0
—®p k1 I 0 0 :r,
0 Ap 0 0 :“
0 . T I 0 =, (2.74)
0 Vi kA —Aks1 0 2“]
0 0 —Priokt1 1 kt2
0 0 Vitokt1 A1 —Aryo

with @, as in (2.73). From (2.71) it follows that df —y; + ¥;;,_1y;—1 is identical to —(gi —
¥,i-1y;_,) and thus to —g.. If furthermore the matrices ¥; in (2.61) correspond to
the state transition matrices ¥, ,_; in (2.71), the equivalence of the state augmentation
approach (resulting in (2.74)) and the orthogonalization approach (2.65) is established.

The main difference between the solutions based on orthogonalization and state
augmentation is that for the solution based on orthogonalization the matrices ¥; not
necessarily have to be state transition matrices. In the orthogonalization approach the
condition imposed on the matrices ¥; is that the transformation matrix P in model
(2.64) is of full rank. A difference in the actual application of the orthogonalization and
state augmentation algorithms is that with the former approach one obtains estimators
Zkjk+1 and 2y |k41, Whereas with the latter approach, due to the use of the standard
Kalman filter algorithm, one only obtains the estimator & k41

Summarizing, two strategies can be followed in case of time correlated measurements
that result in identical estimators of the filtered state. The orthogonalization approach
is based on the differencing of correlated observables. The differencing scheme leads to
a somewhat involved filter algorithm, which automatically makes available a one-step
smoothed estimate of the state. The dimension of the state vector remains unchanged.
The state augmentation approach is based on the fact that one assumes that the time
correlated measurement noise can be modelled in state-space. Because exponentially
correlated noise can very easily be modelled in state-space, the state augmentation
approach is tailored for this type of noise. A drawback is that the dimension of the
state vector is increased to n + m, but an advantage is that the standard Kalman filter
algorithm can be used.
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2.6.4 Time Correlated Disturbances

If a complete description of the dynamic behaviour can be given for a certain system,
the description of the dynamic model by a state transition only disturbed by white noise
is probably adequate. In practice, however, it is rather unlikely that such a model is
completely correct, because

- A model description that takes all disturbances into account can seldom be given
(such a model requires complete knowledge of the system dynamics).

- Even if the system can be adequately modelled, a reduced system model is some-
times preferred for computational reasons.

Imperfect modelling is often compensated by increasing the variances of the distur-
bances leading to so-called sub-optimal filter designs. In practice this procedure often
works quite well, but its application actually requires a careful sensitivity analysis (see,
e.g., GELB [1974]). It has to be kept in mind, however, that time correlated distur-
bances are generally due to imperfect modelling of the system dynamics and hence the
most obvious approach is to enhance the system model.

If the disturbances are time correlated, the system model can be given as (if one
assumes the first observation is processed at time k):

Ek_1k—1 I 0 0
dy ~@ipr 10 e
k
Bl wo = 0 4 o NN LD
- 0 ~®rpe I - )
Pr_1jk—1 .
Qk 0 QkWIH_]
0 Ry 0

U 1@k 0 ey 1Qr¥L | + Niy

In the case of time correlated measurements we considered two solution methods,
namely orthogonalization and state augmentation. In this section we proceed along
similar lines and start with the orthogonalization approach.

Specifying an orthogonalization matrix in an analogous manner to (2.64) and con-
sidering three epochs we arrive at a derived model of the form

PE{y} = PAz ; D{Py}= PQ,PT, (2.76)
where
Zp_1)k-1 I 0 0
d — @k k-1 I 0
PE = E =k 3 PA = ’ :
{y} = E{ , } 0 A 0
div1 — Yiy1ds Uer1®reh—1 —(Pryrh + Yry1) I
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PQ,P" = diag(Pi_1k-1) @k, Rk, Nks1) -

Since all observables are uncorrelated we can first compute the estimators of the states
zr—1 and z; taking into account the observables &;_,x_, di, and y,. This boils down
to the computation of the estimator of the filtered state at time k and the estimator of
the of the one-step smoothed state at time k — 1 (cf. Sections 2.4 and 2.5). Inserting
these estimators into (2.76) results in the model

ik—1|k I 0 0 Tr-1
E{ &4k } = 0 I 0 ze | ;

diy1 — ¥rtrdy U1 Prk-1 —(Bryrk + Yr41) 1 Thit

(2.77)
Peyg Je—rBrp 0
Pepdi_y Py 0 ,
0 0 Nt
where Ji_; = Pk_1|k_1<I>E‘k_1Pk_|,:_1. Model (2.77) is not overdetermined and hence the
estimator of the predicted state at time k + 1 follows directly as:

ek = —Yr1Prhk1Zho1pk + (Brr1k + Cohr1)Zepe + it — Phprdy - (2.78)

The covariance matrix of the estimator can be obtained by application of the error
propagation law. Equation (2.78) reduces to the standard Kalman filter prediction
solution if ¥ = 0.

State augmentation provides a second method to deal with time correlated distur-
bances. The description of time correlated disturbances in state-space results in a fixed
number of additional states (namely n). Using state augmentation one tries to model
time correlated disturbances as state variables of a fictitious linear dynamic system
which is itself excited by white noise. We assume that the time correlated disturbances
for £ = 3,4,... can be modelled as

dd d Uyk-1 0 dr—1 . dg _{ Nt N,
E{(dg)}:(zz)_(‘l’:zq ‘h,kq)(r,l:-l)’D{(dg)}_(Nz NI,:)
(2.79)

with
E{d\} =21 - %1020 ; D{di} =

Model (2.79) is the discrete-time equivalent of the models provided in the literature
for the continuous time case with time-correlated disturbances (cf., e.g., [MAYBECK,
1979, Ch.4]). The covariance matrix of the ‘extended’ vector of disturbances is singular.
The vector df is considered as an observable, random disturbance vector of which the
sample values df are taken equal to zero. Using equation (2.79) one can for k = 3,4, ...
define the augmented system model as:

E{EJC} =Tk — gk,k—lfk—l ; E{gk} = ALZx R (2.80)
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where

Ek = (ddeiT)T 2n x 1

Tk = (df 2{)7 2n x 1

F Y Ui k-1 0

Prh-1 = ! 2n X 2n

R ( Tih-1 Prk— )
4 = (0 4) My X 2n
_ Ni N
D{d,} = ( N, N ) 2n X 2n
D{Ek} = Ry mg X my
with starting values
Zo I 0 0 0
dl —@1,0 I 0 0 zo
y 0 Al 0 0 T
E =1 =
{ C_lg } ¥y1®10 -V, I 0 d, !
dg ‘1’2,1(1’1,0 —(‘1’2,1 +¢2,1) 0 I Ty
Y, 0 0 0 A,
Py
@1
R;
N, N,
Ny, N,
R,

Estimators of the predicted and filtered augmented state can be obtained by means of
the standard Kalman filter algorithm. The equivalence between the orthogonalization
and state augmentation approaches can be proven along similar lines as was done for
time-correlated measurement noise in the previous section. The proof is trivial once
one sees that model (2.79) can be transformed into the following model:

d? _f dk Ui k1 0 dr1 Y . di _{ N:e O
E{(dk)}_(mk)_( 0 P k1 Tr_1 3 DY di b= 0 0/ °
(2.81)
If one deletes the parameter di from the augmented state model (which can be done

using the condition dy = 24 — ®4 k—124—1 in (2.81)) one finally obtains a model identical
to (2.76).
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2.6.5 Summary

In this section we considered four possible types of correlation and their impact on
the filter solutions from a least squares point of view. We showed that for the cases
with mutually correlated measurements and disturbances results could be obtained in a
straightforward manner. The cases of time correlated measurements and disturbances
could be tackled by means of state augmentation and orthogonalization. For the case of
time correlated measurements we explicitely demonstrated that the orthogonalization
and augmentation approach lead to identical results. State augmentation results in
a larger dimension of the system state, but facilitates the use of standard Kalman
filter software as it leaves the model underlying the Kalman filter basically unchanged.
Orthogonalization corresponds to the differencing of successive (correlated) observables.
Using such differencing schemes, however, requires alternative filter algorithms, which
have been derived in this section.

2.7 Model Nonlinearities

The Kalman filter and the equivalent least squares solutions are all based on linear
models. In the well-known formulation of KALMAN [1960] this implies that both the
dynamic model and the measurement model are linear. In the least squares approach
this means that the observation equations or the condition equations are linear. In
practice we often have to deal with nonlinear functional relations, for example:

E{dy} = zx — dkh—1(zr-1)

and
E{y,} = Ax(zi)

where it is assumed that the noise enters in an additive fashion. For many applications
the dynamic model is approximated by a linearized model. If one assumes that the
state trajectory is rather smooth, one can, by choosing a suitably small update interval,
approximate a nonlinear dynamic model by a linear model. Most geodetic measurement
models, on the contrary, are nonlinear. It is therefore important to have methods to
assess the amount of nonlinearity in nonlinear models. Besides it is useful if one can
proof that a linearized model is a sufficient approximation (in that case we can use the
estimation procedures for the linearized observation and condition equations).

In this section we first briefly consider the impact of nonlinearities on least squares
estimators and discuss the Gauss-Newton iteration scheme. Then nonlinearities in the
Kalman filter are discussed starting with nonlinearities in the measurement model.
Also the case of a nonlinear dynamic model is briefly discussed. Finally, the case with
a combined nonlinear measurement and dynamic model is discussed. The section is
concluded with some remarks on the practical aspects of dealing with nonlinearities in
the filter models and a brief summary.
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2.7.1 Nonlinearity and Least Squares

For models with nonlinear observation equations of the form E{y} = A(z), one can
make a distinction between two types of nonlinearity [TEUNISSEN, 1989a]. Firstly
one has the nonlinearity related to the chosen parametrization, that is the nonlinearity
which is notinvariant under a change of variables in A(z). If one considers, for example,
the tracking of a survey vessel with a tachymeter, and the position of the vessel is
expressed in polar coordinates relative to the tachymeter, the measurement model
is linear. A position expressed in rectangular coordinates will inevitably result in a
nonlinear measurement model. Secondly, nonlinearity can be due to intrinsic properties
of the map A(z), that is the n-dimensional manifold (described by the map A(z) for
various ) embedded in the dataspace R™ is nonlinear.

In most practical cases it is impossible to find exact nonlinear equations for nonlin-
ear least squares problems. There exist, however, useful approximations that describe
the biases (due to nonlinearity) in the least squares estimators. These biases for mod-
els based on observation equations and condition equations are given in [TEUNISSEN,
1989a] and [TEUNISSEN AND KNICKMEYER, 1988] respectively. The importance of
these measures, which can be analysed in the design phase, is that one can assess the
amount of non-linearity in the least-squares estimators. TEUNISSEN AND KNICKMEYER
[1988] also provide an approximation of the covariance matrix of the (non-linear) least
squares estimator.

2.7.2 The Gauss-Newton Iteration Scheme

For practical applications we must now define a processing strategy. If the bias due
to nonlinearities is significant, one has to be careful in applying the linearized least
squares approach. Because the models are usually approximated by a first order Taylor
expansion, iterations are necessary to obtain less biased estimates. Iterations for least
squares problems for models specified in terms of observation equations are generally
performed using the Gauss-Newton iteration scheme

41 = Z;+
(0:A(2:)7Q, 18- A(2:)) ' 8. A(2:)1Q; " (v — A(4:)) (2.82)
forz:=1,2,...,

where 7 denotes the iteration step and 0, A(Z,) is the Jacobian of A(.) evaluated at Z,.
For a discussion on other iteration schemes see [TEUNISSEN, 1989b]. To test whether
the iteration should be continued or not one needs a termination criterion. A criterion
for the Gauss-Newton method, which is invariant to a change of variables, is

|Zi1 — illg, < €, (2.83)

with ||2,41 ~ &il|g, = \/(:i,'+1 - 2)TQ7"(#;41 — &;) and where ¢ is a preset tolerance
level.
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Some additional remarks concerning nonlinearities in least squares problems can
be made. Firstly, TEUNISSEN [1985; 1989b] has given a geometric interpretation of
nonlinear least squares problems. Secondly, a large drawback of iterative schemes is
that the computational load of the algorithms cannot be predicted. Therefore it might
be necessary to specify a maximum number of iterations as an additional termination
criterion for the iterations. Thirdly, one can approximate nonlinear models by higher
order Taylor expansions, but then the estimation procedures have to be adapted. A
disadvantage of higher order approximations is, in general, the large computational
burden associated with them.

2.7.3 Nonlinear Models in Kalman Filtering

The aspects of nonlinearity discussed so far pertain to least squares problems in general.
In this section nonlinearity is discussed for filtering problems. Although in the strict
sense Kalman filters are by definition based on linear models, the term Kalman filtering
will also be maintained in the case of nonlinear models. We will first consider the case
of a nonlinear measurement model. In geodetic practice a nonlinear measurement
model is the rule rather than the exception. Then we consider a possible nonlinear
dynamic model and finally the situation where both measurement and dynamic model
are nonlinear is considered. It will be shown that the methods we discussed for nonlinear
least squares problems in general, lead to solutions for the nonlinear filtering problems
directly.

Nonlinear Measurement Model

We consider the following model with non-linear observation equations (cf. eq. 2.26):

(5 () ()

which is of the form E{y} = A(z). If the estimator of the predicted state is based
on measurements prior to time k, the matrix Py_; is an approximation (due to the
non-linearity) of the actual covariance matrix of the estimator of the predicted state.
Estimates of the system state can be obtained by the straightforward application of
the Gauss-Newton iteration scheme (2.82):

Thikitr = Tikit
Pepe i Pin_y (8kik—1 = 8ii) + O Ar(Eries) "By (9h — Ar(@riks)]

for i = 1,2,..., where Pk|k,i = (P;l_l + azAk(:lA?Hk,,')TR;lazAk(in’i))‘l and with

. [£
Li|k,0 = Zk|k—1- After some rearrangements one finds that

Zilkit1 = Shje—1 + Kiat1 (U — Ak(Zeips) — 0o Ak(Zkin,i)(Zkk—1 — Zkiki)) »  (2.85)
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where Ky ;11 = Prji—10:Ar(Erpk,i) " (Ri + O Ak (E4k,:) Prjk—1 0o Ar(Erpk,:)T) ! The co-
variance matrix of the estimator of the filtered state at the (7 4+ 1)th iteration step is
approximated by

Prikiv1 = (I — Kiiy10: Ar(@kik,i)) Prjk—1 - (2.86)

The time update equations of the Kalman filter remain unchanged. Note that, except
for the update of the filtered state (2.85), the formulas of the measurement update
of the linear filter can be used with the design matrix A; replaced by the Jacobian
0; Ak (.). The recursive scheme (2.85) is also obtained if one starts from the model with
condition equations (cf. eq. 2.36)

(-1 I)E{( Ar (i) )} =0. (2.87)
Yy

If no iterations are performed (i = 0 in eq. 2.85) and & s = £kk—1, the result is
called an eztended Kalman filter (EKF). If no iterations are performed and & ¢ = Zk,
with Zj; some externally provided (approximate) state trajectory, the result is called a
linearized Kalman filter (LKF). If iterations are performed (¢ = 0,1,2,... in eq. 2.85)
and k0 = k1 the result is called an iterated extended Kalman filter (IEKF).

In general it is difficult to predict the number of iteration steps that is necessary to
comply with the convergence test (2.83). As the IEKF follows from the Gauss-Newton
method it also has the (local) convergency characteristics of the Gauss-Newton method.
TEUNISSEN [1991] has shown that the IEKF has a local linear rate of convergence and
derives an upperbound of the linear convergency factor for the IEKF. This upperbound
can be evaluated in the design phase of the filter and allows the prediction of the number
of required iteration steps.

Nonlinear Dynamic Model

For many applications the dynamic model is approximated by a linear model. This is
possible if the state trajectory is smooth enough and a suitably small update interval is
chosen. In practice the system noise is often used as a useful, although artificial, method
of accounting for (among other things) neglected nonlinearities. In general the dynamic
model can be derived from some continuous time model, which models the dynamic
behaviour of the system under consideration. Dynamic models often are nonlinear, as
forces often act in a nonlinear manner on systems. In this section we assume that an
equivalent (nonlinear) representation in discrete-time is available, that is the dynamic
model is characterized by nonlinear difference equations. Although the discretization of
the system dynamics might be troublesome due to the nonlinearities, this approach is
followed in order to maintain our description of the Kalman filter in discrete-time. For
some applications the use of so-called continuous-discrete filters, where the dynamic
model is given in continuous time (i.e. by differential equations) and measurements are
available at discrete-time instants, is to be preferred, for instance when the force model
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governing the system is available, but for these type of filters the reader is referred to
the literature. We thus assume that the dynamic model can be described as:

E{d;} = = — prh-1(2k-1)- (2.88)

From (2.88) the following estimator of the predicted state can be derived

Zik-1 = Pk k—1(Zpoqk-1) + i - (2.89)

This estimator is not unbiased because E{¢ k- 1(Zx-1k-1)} # Pkh-1(E{Zx_1jt—1})-
An approximation of the covariance matrix of the estimator of the predicted state is
given by:

Prk—1 = Ok k—1(Zk-11k-1) Pr—1jk—10z Pk k-1 (ik_ljkq)T + Qk (2.90)

where 0,k k1 (ik—1|k—1) is the Jacobian of the n-dimensional function ¢(z) evaluated
at £x_jk—;- The solution given above is quite simple, because we assumed the noise
enters in an additive fashion. If the nonlinear dynamic model is expanded to, say,

E{d,} = ¢k,k—1($k,$k—1) ’
also the nonlinear propagation of the noise has to be considered.

Combined Nonlinear Dynamic and Measurement Model

We considered the cases of nonlinear measurement and dynamic models separately. In
practice it might occur that both models are nonlinear, that is

Th_1 k-1 Th 1 Py _1jk-1
E{ di =1 2k — dpp—1(zk-1) | ; Qx . (2.91)
Y Ag(zx) Ry

which is of the form E{y} = F(z). For this model we can partly proceed in the same
way as we did for the linear case, namely by executing the time and measurement
updates separately. The estimator of the predicted state and its covariance matrix are
obtained by application of (2.89) and (2.90) respectively. Based on the estimator of the
predicted state one can then apply the Gauss-Newton iteration scheme to model (2.84).
An alternative approach is to apply to Gauss-Newton iteration scheme to model (2.91)
directly. One then not only improves the nonlinear measurement update (as with the
IEKF), but one also improves the time update. (One thereby obtains an estimator
of the smoothed state at time k — 1.) The application of the Gauss-Newton iteration
scheme to (2.91) leads to an algorithm identical to the so-called Iterated Linear Filter-
Smoother [JAZWINSKI, 1970]. The iteration scheme can be given as (the derivation will
not be given here):
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Srk-14 = H(Zp—1jkio1) +
Or Bk k-1 (Zk—11k,i-1)(Bk-1]k=1 — Th—1]k,i=1) (2.92)
Shiki = Trk—1,i + Kealve — Ae(Zpipior) =
Oz Ak (Zkik—1,i)(Bkjk—1,i — Tklk,i-1)] (2.93)
Ee_1ki = Te—1jk—1 + Je-1:(Bkjki — Erlk—1,i) (2.94)
fori=1,2,...

with

Kii = Pip_100Ac(Ekpo1.)  (Ri + 00 Ak(kik—1 i) Prpp—1.4 00 Ak (Zap—1,) 1) ™"

Pipori = Ootrh—1(Zro1jbio1)Pecijp—10:Gkk—1(Fk_1jkiz1) " + Qi1
Jeo1i = Pk-]|k—1az¢k,k-1(ik—1|k,i—1)P;J;l_l,,-

Prk—10 = P

Tro1ik,0 = Th—ilk—1
Eriko = Ep—1je—1 T O(Er—1jk-1) -

The covariance matrix of the estimator of the filtered state is given by (2.86) and
only has to be computed once the iteration process is terminated. Furthermore the
covariance matrix of the smoothed state at time k — 1 does not have to be computed
explicitely. The slight difference with the algorithm given in [ibid.| is due to the fact
that we assumed a discretized, nonlinear dynamic model. Note the resemblance of
(2.93) with (2.85), and of (2.94) with the smoothing formula given in Section 2.4.

2.7.4 Practical Considerations

Working with nonlinear models also requires the assessment of the amount of nonlin-
earity. It is, however, very difficult to give general guidelines to judge to what extent
linearized models are adequate for Kalman filter applications. TEUNISSEN [1989a] shows
that the amount of bias in the estimators is a function of the precision of the observables
(as given by 02@Q,), and the parametrization and nonlinearity of the maps A(.), BT(.),
or F(.). In [ibid.] measures for diagnosing nonlinearity are given. These measures can
be computed in the design phase of a filter. The biases of the estimators can often be
decreased by the choice of a suitable parametrization, high measurement precision, and
low system noise.

KRrEBS [1980] gives an extensive overview of nonlinear filtering, also covering, among
other things, higher order filters. The decision which order of approximation is to be
used or which other solution may be more appropriate can usually only be determined
by extensive simulations. The same holds for the decision whether iterated or non-
iterated strategies are to be preferred. Examples of simulations are given in [KREBS,
1980] and [JAzwINsKI, 1970]. In the case the nonlinearity in the measurement model
is predominant, these simulations indicate that the iterated extended Kalman filter
(IEKF) is usually the best solution. Good approximate values are available by means
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of the estimates of the predicted state. Combined with the (local) linear rate of con-
vergence of the IEKF, the number of iterations will be small.

2.7.5 Summary

The purpose of this section was to show how nonlinearities in the (discrete-time)
Kalman filter could be dealt with. The Gauss-Newton iteration scheme is used to obtain
actual least squares estimates. The impact of nonlinearities on the iteration schemes
for so-called extended Kalman filters was examined more closely for three cases, namely
a nonlinear measurement model, a nonlinear dynamic model, and a combined nonlin-
ear dynamic and measurement model. It was shown that the direct application of the
Gauss-Newton method resulted in the iterated solution schemes presented in the liter-
ature. Also some remarks concerning the evaluation of the biases in the resulting least
squares estimators were made. The actual evaluation of biases is, however, to a large
extent problem dependent. In this section we limited ourselves to first order approxi-
mations of the model nonlinearities. Higher order approximations were not discussed.
The decision if such filters are more adequate than the filters presented in this section
can only be based on extensive simulations for the problem at hand. For additional
information on this topic the reader is referred to the references.

2.8 Concluding Remarks

With the least squares method one has available a powerful tool to deal with prediction,
filtering, and smoothing problems. The least squares approach provides us with a
unified and simple methodology for filtering problems. Except for the mean and the
dispersion of the observables no assumptions concerning their distributional properties
have to be made in the derivations. Consequently we can only derive the mean and
dispersion of the least squares estimators of the predicted, filtered, and smoothed state.
The somewhat limiting assumption of normally distributed observables does not have
to be made.

The derivations presented in this chapter are valid for measurement and dynamic
models formulated in discrete time. In practice most observations will be available at
discrete instants, thereby leading to measurement models formulated in discrete time.
The dynamic model is, however, sometimes formulated in continuous time. To apply
the algorithms derived in this chapter the dynamic model then has to be discretized,
which can be easily achieved for many applications in surveying. Furthermore we did
not discuss various filter mechanizations. (A filter mechanization is nothing but a
specific form of a filter algorithm.) Various mechanizations have been derived for nu-
merical reasons and the optimization of the computational efficiency. Mechanizations
are generally defined independently of the way the filter algorithms are derived, al-
though many mechanizations can be directly derived using the least squares approach.
For computational aspects of Kalman filtering the reader is referred to BIERMAN [1977]
and CHIN [1983].



2.8  Concluding Remarks 45

Especially in the cases of correlation between observables (Section 2.6) and non-
linearities in the dynamic and/or measurement models (Section 2.7) we feel that the
interpretation of the state estimators as least squares estimators gives a better under-
standing of the derived results. For these cases the link with least squares is rarely
made in the literature. A further major advantage of the least squares approach is
that the dual, equivalent formulations of models with observation equations and mod-
els with condition equations facilitate the derivation of filter and smoothing results,
as one can choose between different least squares estimation procedures (cf. Section
2.3). If one, for example, considers multiple epochs, it is shown in Section 2.5 that
an analytical solution of the smoothing problem can be found based on a model with
condition equations, whereas a solution based on the model with observation equations
is intractable. We do not claim that the derivation is extremely simple, but still the
results follow from a straightforward application of the least squares algorithm. In later
chapters it will be seen that this form, covering multiple epochs, is very useful.






Chapter 3

A Testing Procedure for Use in
Dynamic Systems

3.1 Introduction

In the previous chapter we have shown how the real-time estimation of parameters in
dynamic systems can be executed in a least squares framework. Based on the principles
of least squares we arrived at the well-known Kalman filter algorithm. The estimation
results are optimal if all assumptions underlying the mathematical model hold. Mis-
specifications in the model will invalidate the results of the estimation procedure and
thus also any conclusion based on them. In practice model misspecifications may occur
frequently, and hence the estimation procedure should be supported by a model val-
idation technique. Model misspecifications may be due to erroneous observation and
dynamic models (i.e. the functional model is not designed properly), errors in the ob-
servables (e.g. blunders in sensor outputs), or an incorrectly specified stochastic model
(e.g. the covariance matrices of the observables are not correct). In this chapter we will
develop an efficient model validation procedure for misspecifications of the functional
part of the filter model, and especially errors that can be modelled as additive effects
(generally denoted as slips). In addition to misspecifications in the stochastic model,
slip-type model errors constitute the most frequently occurring type of model error in
geodetic practice. We assume that the structure of the observation and dynamic model
is correct. Methods that deal with the estimation of parts of the functional model
(usually denoted system identification methods in the literature) are e.g. discussed in
[GooDWIN AND PAYNE, 1977]. The analysis of model misspecifications in the stochas-
tic model fits in the framework of the theory of variance component estimation and
is often classified as ‘adaptive filtering’ (see, e.g., [CHIN, 1979]). In the literature the
terminology is somewhat ambiguous as the terms system identification and adaptive
filtering are sometimes used interchangeably.

Real-time estimation requires a real-time testing procedure, which can detect and
isolate model misspecifications and can be used in conjunction with the Kalman filter.

47
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We will focus on tests related to slips in the functional model, i.e. so-called slippage
tests. The testing procedure will consist of three steps, namely detection, identification,
and adaptation and consequently it is called the DIA procedure. The detection and
identification steps were introduced into geodetic testing theory by TEUNISSEN AND
SALZMANN [1988;1989] and subsequently extended with the adaptation step by TEuU-
NISSEN [1990a;1990b]. Although we strive for a real-time testing procedure, it will be
obvious that certain model errors can only be detected with a certain delay (e.g. ‘soft’
failures). Therefore we consider the concepts of local and global testing. Local tests
only take one epoch of the dynamic system into account and are thus genuinly real-
time, whereas global tests take several epochs into account. The DIA procedure can be
implemented in recursive form and thereby global tests can efficiently be accomodated
in the procedure.

All results are presented within the framework of the theory of hypothesis testing
in linear models (see, e.g., [KocH, 1988]). This approach facilitates the derivation
of the testing procedure using generalized likelihood ratio tests and provides a link
with the testing procedure for geodetic networks (the so-called B-method) developed
by BAARDA [1968]. Furthermore the testing procedure will serve as the basis of the
reliability description of dynamic systems in the next chapter. The DIA procedure will
be based on the sequence of predicted residuals (innovations), which have well defined
statistical properties if the Kalman filter operates at an optimum.

3.1.1 Overview of this Chapter

We begin by reviewing the concept of hypothesis testing in Section 3.2, where we also
discuss some aspects of the optimality of the generalized likelihood ratio tests we use
in the sequel. We then specialize these findings to the filter model in Section 3.3 where
we also discuss the concepts of local and global testing. Detection, Identification, and
Adaptation are discussed in Sections 3.4, 3.5, and 3.6 respectively. The feasibility of the
B-method of testing for dynamic systems is considered in Section 3.7, and an overview
of the DIA procedure is given in Section 3.8. A brief review of and comparison with
related testing procedures found in the literature is given in Section 3.9. Finally some
concluding remarks are given in Section 3.10.

3.2 Hypothesis Testing

The testing procedure for dynamic systems we will discuss in this chapter is based on
the theory of hypothesis testing, which is described in, for instance, [MELSA AND COHN,
1978; KocH, 1988; CASELLA AND BERGER, 1990]. The objective of hypothesis testing
is to decide, based on the actual observations (or, in statistical terms, a sample from
the population), which of two complementary hypotheses (generally called the null (or
working) hypothesis (Hy) and the alternative hypothesis (H4)) is true. A hypothesis
is a statement about a population parameter and we will limit ourselves to hypotheses
related to the mean of random variables.
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In testing hypotheses one can make two types of errors. Firstly, one can reject the
null hypothesis when in fact it is true; this is called an error of the first kind and its
probability (a) is often denoted as the false alarm probability. The test is then said
to have a level of significance or size a. Secondly, one can accept the null hypothesis
when in fact it is false; this is a so-called error of the second kind and its probability
is sometimes called the probability of missed detection. In statistics one rather works
with the probability that the null hypothesis is rejected correctly with a certain test,
and the probability of correctly rejecting Hy is called the power of the test. A test
can be optimized with respect to the level of significance or the power of the test, but
unfortunately not simultaneously to both. Our testing procedure will be based on the
well-known Neyman-Pearson principle (see, e.g., [MELsA AND CoHN, 1978]), which
states that for a test with a fized level of significance, one should maximize the power
of the test. Actually we try to find the most powerful (MP) test within the class of
tests with a certain level of significance.

For simple hypotheses (which means that the distribution parameters are completely
specified under Hy and H,), it follows from the Neyman-Pearson theorem that the
so-called likelihood ratio (LR)-test is a MP test. Although we consider cases based
on composite hypotheses, it is worth investigating whether likelihood ratio tests for
composite hypotheses (usually denoted generalized likelihood ratio (GLR) tests) are
MP-tests within a certain class of tests as well. The generalized likelihood ratio test
statistic is defined as (see, e.g., [CASELLA AND BERGER, 1990]):

max

Py(yl0)
My)=—2E%0 (3.1)
pco Pulylf)

where p,(y|0) is the probability density function of the observable y given the parameter-
(-vector) 0, and where ® and ©( denote the entire parameter space and the parameter
space under Hj respectively. From (3.1) follows that A(y) is in the closed interval [0, 1].

Based on the GLR-test statistic the GLR-test is then defined as:
reject Hy if A(y) < a ; accept Hy if A(y) > a, (3.2)

with 0 < a < 1. If a GLR-test is most powerful for all § € O, then the test is called
uniformly most powerful (UMP). In the cited references it is stated that in general the
GLR-test is a good test, but it is not necessarily UMP. For the cases we will consider
the GLR-test is optimal within a certain class of tests, which will be discussed shortly,
and can generally be specified and evaluated in a straightforward manner. Therefore
we will restrict ourselves to testing procedures based on GLR-tests.

A consequence of the use of likelihood ratio tests is that we have to specify the
distribution of the observables, whereas in the previous chapter we could limit ourselves
to the specification of the mean and dispersion of the observables. In the following we
will assume that the observables are normally distributed, an assumption which is often
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adequate in geodetic practice, and in that case the linear least squares estimators we
derived for the predicted, filtered, and smoothed state are also maximum likelihood
estimators.

In the following we will establish some properties of the GLR-tests and we will show
under which conditions they are optimal. Unfortunately the GLR-tests we consider are
not UMP. In practice often no UMP tests of a certain size a exist within the class of
all tests for composite hypothesis testing problems. Therefore we restrict the class of
tests to be considered by means of the concept of invariance and try to find a UMP size
a test for this restricted class. Then for the cases that fulfill the invariance conditions,
the test is called a uniformly most powerful invariant (UMPI) size a test. ARNOLD
[1981; Ch7 and Chl13] has proven that the GLR-tests used in this report (all of which
are tests about the mean) are actually UMPI size o tests. His proof is, however, very
technical and requires mathematics beyond the scope of this report. Therefore we will
try in the following to make plausible, rather than prove, that the GLR-tests we use
are actually UMPL

3.2.1 On Properties of the Generalized Likelihood Ratio Tests

This section serves to illustrate that the GLR-tests we use in this report are uniformly
most powerful invariant (UMPI) tests. We will begin with a very simple example and we
will then successively address the concept of invariance, hypotheses related to subsets
of the parameter vector, and sufficiency. Finally, we will arrive at the tests familiar
from geodetic testing theory. In the following we assume that the size of the tests has
been fixed and consequently all tests are tests with size a.
We begin by considering an m X 1 vector of observables y that is distributed as
follows: -
y~ N(B{g}, oI}, (3.3)

with ¢2 known and

Hy:E{y}=0; Hy: E{y} #0. (3.4)

For (3.4) no UMP test exists (see, e.g., [CASELLA AND BERGER, 1990; Ch8]), and
by restricting the class of tests by the principle of invariance, we try to find a UMP
test in this restricted class. We consider three types of invariance, namely distribution
invariance, testing procedure invariance and invariance of the hypothesis problem. If
we consider, for example, the transformation

¥ =Ry, (3.5)

where R is an orthogonal matrix (i.e. RT R = I), then the problem is said to be distri-
bution invariant if the form of the distribution is invariant under the transformation.
The transformed observable y’ is distributed as N(E{y'}, 0%I), which is indeed of the
same form as (3.3). After the transformation (3.5) the null and alternative hypothesis
read Hy: E{y'} = 0and H, : E{y'} # 0 and are similar to (3.4), so that the hypothesis
problem is also invariant under (3.5). Finally the testing procedure is said to be testing
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procedure invariant if for any sample of y that leads to rejection of Hy also the sample
of y' leads to rejection of Hy and vice versa. The test must therefore be invariant
under orthogonal transformations and consequently the critical region of the test must
be (hyper-)spherical with its centre at the origin (we already saw that an orthogonal
transformation maintains the distribution and hypothesis problem invariance). Such a
critical region can be obtained if we consider test statistics of the form T (y) = (y'y)/o?
and we will consider optimality properties of this test statistic. -
If y is distributed according to (3.3), then T(y) = y'y/0o? is distributed as

(s} E{y}

o?

T(y) ~ x*(m,A) with A =

In [ARNOLD, 1981] and [CASELLA AND BERGER, 1990] it is stated that if the ratio

pT(g)(T(y)p‘A)

priy(T®)Ao) (3.6)

is an increasing function of T'(y) for A4 > Ao, the test that rejects Hy if T(y) > ka
(where k, is the critical value of the test and is a function of the size a) is UMP
for testing Hy : A = Xg versus H4 : A4 > Ag. Inserting T(y) in (3.6) and using the
definition of the x2-probability density function, it can be seen that the ratio

Prw@WA) o (38) Trn)

Prw(T@I) exp(7)§) 52T + 4)

(3.7)

(where I'(.) denotes the gamma-function) is an increasing function of T'(y) for all A4 >
0. In our particular example (3.4) corresponds to Hy: A = 0and H, : A > 0, and thus
the test

y'y y'y
reject Ho if T(y) = ==~ > ko ; accept Ho if T(y) = =~ < ka , (3.8)

o o
is indeed a UMP test. Having asserted that (3.8) is a UMP test for the case Hy: A =0
versus H 4 : A > 0, this means that (3.8) is a UMPI-test for (3.4), and is invariant under
the orthogonal transformation (3.5). We will now show that (3.8) is also a GLR-test.
Based on (3.4) and the fact that y is normally distributed, the GLR test statistic (3.1)

is
9 _m PAPERLY D U

A(y) — ( 7l') 2 (U ) :1 exp( m202y y) — eXp(—L
() F(o7) 7 207

The GLR-test (3.2) directly follows from (3.9), and can be written as

y'y). (3.9)

y'y y'y
reject Ho if = > Ina~? ; accept H, if — < Ina™?, (3.10)
o o

and is identical to the UMPI-test (3.8).
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We thus have shown that the test we have derived using the invariance restrictions
coincides with the GLR-test, and with (3.6) the GLR-test is also shown to be UMPI
for (3.4). In the subsequent discussions we will assume that o2 is known and is equal
to one, and we will now consider some more general cases.

In the testing problems we will consider the specification of the hypotheses is usually
related to subsets of the parameter vector. Assume, for example, that the vector y can
be partitioned in two subsets and is distributed as

¥ o E{y,} I 0
(3 )5 )-(0 7

Ho: E{y,}=0; Ha:E{y,} #0. (3.12)

If we consider a transformation of the form g’ =Ry+r (where R is an orthogonal
matrix and r is an m X 1 vector) then g’ is distributed as:

b RiE{y,} + Bi2E{y,} + I0
( gll ) ) N(( Ry1E{y,} + RnE{y,} + ) ’ ( 0 I )) (3.13)

If Ry = 0, 7 = 0, and R, is orthogonal, it follows that the hypothesis problem is

with

invariant, because then (cf. eq. 3.12)
Hy:E{y,}=0; Hy: E{y,} #0. (3.14)

The observables y| and y/, are uncorrelated and hence T(y)) = y.'y) is also a GLR
test statistic, because with (3.14) the maximization of the likelihood ratio over all
parameters (cf. eq. 3.1), is identical to the maximization over the parameters E{y.}.

Based on (3.10) the GLR test

y/Ty/ y/Ty/
reject Hy if 2—22 >Ina=? ; accept Hy if 2 5 2<Ina?, (3.15)
o o

is a UMPI test for (3.12), and is invariant under the transformation (3.13) with the
conditions given above. Besides it is apparent that the testing procedure is invariant
under a wide range of transformations related to E{y, }.

Next we consider the case where additional parameters E{ls} are part of the model

y, | ~N(| E{g,} |, |0 T 0[) (3.16)
Ys E{&} 0 0 I

with

Ho: E{y,} =0and E{y,} =0; Hs:E{y,} # 0 and E{y,} = 0. (3.17)
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In this case model (3.16) can be reduced to model (3.11) by sufficiency, because the
parameters contained in E{y,} have no impact on the testing problem at hand. Con-
sequently the UMPI test for (3.17) is identical to the GLR test (3.15).

Finally we will consider the case generally encountered in geodetic practice, where
the m-dimensional vector of observables y is distributed as

y~ N(E{y},Qy) , (3.18)

with
Hy:E{y} € R(A); Hy: E{y} € R(A:C), (3.19)

and where R(4) C R(A:C) C R™ and we assume that dim R(4) = n and dim R(C) =
b with n+b < m (R(X) denotes the range space of the matrix X ). Based on the findings
given above we will indicate how a UMPI test for (3.19) can be found. The basis vectors
of the spaces R(A), R(C), and R(A : C)* span R™. The range spaces R(A4) and R(C)
which span R(A : C) are not necessarily orthogonal. By means of the transformation
C = P{C, where P is the orthogonal projector onto R(4)*, the range space R(A : C)
can also be thought to consist of the subsets R(4) and R(C) with R(A) LR(C). Given
these definitions one can now consider a matrix in R™, say, R for which holds that
RTQ!'I']R = I and that can be partitioned as (R, Rz, R3), where each R; has the
property that R Q_'R; = I. The columns of Ry, Ry, R lie in the spaces R(4), R(C),
and R(A : C)* respectively. One can then consider the transformation

¥y =R'Q;'y, (3.20)

where the vector y is distributed as (cf. eq. 3.18):

¥ E{y} I00
¥, | ~ N( E{g’z} , ] 0 I 01) (3.21)
Yy E{gf}} 0 0 I
The null and alternative hypotheses are now specified as (cf. eq. 3.19):
Ho:E{y,} =0and E{y;} =0; Hs: E{y,} #0and E{y}} =0. (3.22)

This testing problem is similar to (3.17) and can be reduced by sufficiency to (3.14),
for which the GLR test statistic (of the UMPI test) was shown tobe T = ElzTﬂlz' Using
(3.20) and the fact that R(R;)LR(R;) for ¢,5 = 1,2,3 with ¢ # j, it follows that

_ AN
T = y,9,
= y'Q,'R:R]Q,"y . (3.23)

Taking into account the facts that R(C) = R(R;) and that R]Q; 'R, = I, it follows
that R,R] Q"' can be written as Ry(R]Q;'R,)"'RIQ", which corresponds to the
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definition of the projector Pg, (cf. Section 2.3) and thus to the projector Pg. Inserting
the definition of Ps = 6(UTQ;15)‘1—C—'TQ;1 with C = P+C in (3.23), one obtains

T=y"Q;'PtC(CTPITQ; ' PLC) ' CTPITQ 1y,
which, using the results given in Table 2.1, can also be written as
T=2"Q,'C(C"Q,;'Q:Q,'C)™'C"Q;'¢. (3.24)

Equation 3.24 is the well-known test statistic for #-dimensional hypotheses based on
the model of observation equations (see, e.g., [Kok, 1984]). Using the results of Sec-
tion 2.3, the test statistic (3.24) formulated in terms of the equivalent model of condition
equations is:

T=t'Q;'B"C(CTBQ;'B"C)"'C"BQ; 't . (3.25)

With (3.24) and (3.25) we have available the GLR test statistics of the UMPI test for
(3.19). In the next section we will specialize this result to the Kalman filter model.

3.3 A Testing Procedure

The purpose of this section is to introduce the concepts of a testing procedure for use
in dynamic systems and to apply the results of the previous section to the Kalman
filter model. We start by discussing the concepts of local and global testing. We then
discuss the specification of the alternative hypotheses in terms of predicted residuals.
As stated in Section 3.1 we are primarily interested in model errors that can be classified
as slips. We will see that the Kalman filter provides a linear relationship between the
predicted residuals and slip-type errors. The straightforward specification of model
errors in terms of the predicted residuals combined with the well defined statistical
properties of the predicted residuals (cf. eq. 2.9 and Appendix A) render the predicted
residuals extremely suitable for model validation purposes. Moreover the predicted
residuals (and their covariance matrices) are readily available from the Kalman filter.
The GLR-tests are based on the predicted residuals and correspond to the GLR-tests
which were described in the previous section.

3.3.1 Local and Global Model Testing

In the class of slippage tests we make a distinction between local model testing and
global model testing. We speak of local model testing when the tests performed at time
k only depend on the predicted state at time k and the observations at time k. If the
test takes more than one epoch into account we speak of global model testing. The
difference between local and global testing is depicted in Fig. 3.1. From the definition
it follows that in contrast with the global tests, the local tests can be executed in real-
time. One way to perform global tests is to apply a batch type solution for a batch
of collected data. Better results than for local tests can be expected as smoothing is
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Figure 3.1: Local (top) and Global (bottom) test statistics.

involved. The disadvantage of batch solutions is however, that the test statistics are
only available with a delay, and more importantly, the recursiveness, which makes the
Kalman filter algorithm so attractive is lost. In the sequel we will show that the global
tests can also be executed in recursive form. Besides we think that a small delay in
detection and identification is acceptable, because after all it may be more important
in practice to detect a possible misspecification with a delay, than not to detect it at

all.

3.3.2 Specification of Alternative Hypotheses

If we limit ourselves for the moment to a batch of observables in the time interval from

[ to k, we will consider model errors of additive nature to the vector of observables
yl = (éﬁ,_l,y}‘,dfﬂ,gfﬂ,...,QE,QE)T. An outlier in a single observable y. (with

l_g i < k), for example, can be parametrized as
E{Ez} = A,’IE,‘ -+ Cyv s

where ¢, is a m; X1 vector and V is an unknown parameter. In general terms a slip type
error in the observables in the time interval [I,..., k] can be parametrized as follows:

Vy = c, V

2
SE(ntm)x1 T (ntm)xb bx1 (3.26)

with the full rank matrix C, known, the b-vector V unknown, and 1 < b < %, (n+m,).
Based on (3.26) one can specify the null and alternative hypotheses as (cf. eq. 3.19):

H; - ~ N(Az,Q,)

=2

(3.27)

H,: ~ N(Az+ Vy,Q,).

2
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Note that we assume that the observables are normally distributed. In the previous
section we have seen that the appropriate test statistics for (3.27) are given by (3.24)
or (3.25). The latter form is obtained if we assume that the Kalman filter has been
derived from a (linear) model of condition equations, viz:

B'E{y} =0 ; D{y}=Q,. (3.28)

This shows that if the model error Vy is an element of the null-space of BT (i.e.
Vy € N(BT)) the testing procedure cannot detect slips in the observables, because
then BT(E{y} +Vy) = 0, and therefore we assume in the sequel that Vy is not an
element of N(BT). (This is in accordance with the specification of the alternative
hypothesis in (3.19).) Instead of directly using the test statistics (3.24) or (3.25), we
will first show how the model error defined by (3.26) can be written in terms of the
predicted residuals.
From (3.28) follows that (3.27) can also be written as:

Hy: t=Bly ~ N(0,BTQ,B)
(3.29)

H‘.q! _t:BT(g-FCyV) ~ N(BTCyVaBTQyB)7

where ¢t is the M x 1 (with M = Y% ;m;) vector of misclosures and BTC, is a known
M x b matrix. In Section 2.5.1 we established the one-to-one relationship between the
predicted residuals and the vector of misclosures, namely

t=Lv, (3.30)

with L a square and full-rank matrix. Equation (3.30) enables us to specify the hypo-
theses (3.29) as function of predicted residuals, viz:

Hy: v ~ N(Oan)
(3.31)
Hy: v ~ N(Vva Qv) 3

where Q, = L7'BTQ,BL-T = diag(Q.,,...,Q.,), and the M x 1 vector Vv can be
parametrized as

Vv =C,V, (3.32)

with
c,=L"'B'c,. (3.33)

The (M x b) matrix C, can be partitioned as

Co =(CosCoits- -, Co)T

y Yo

and is assumed to be known and of full rank b. In Section 3.5 we will show how the
matrices C,; can be computed efficiently in a recursive manner. The hypotheses (3.31)
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cover the time interval [I,..., k] and are called global hypotheses. If the hypotheses are
limited to a single epoch k, the hypotheses (3.31) reduce to the local hypotheses:

Hy, : v, ~ N(OaQuk)

k"

(3.34)
HAk: YV ~ N(V‘Uk,ka),

where Vv can be parametrized as C,, V.

3.3.3 Test Statistics for Use in Dynamic Models

With (3.31) and (3.34) we have specified the null and alternative hypotheses in terms of
the predicted residuals, and we now introduce the test statistics of the DIA procedure.
Using the relation between the misclosure vector and the predicted residuals (3.30), we
can write the GLR test statistic (3.25) of the UMPI tests for (3.31) and (3.34) as:

T=v"'Q;'L'BTC,(C/BL™TQ;'L'BC,)"'C/BL™ Qv . (3.35)
By thereupon inserting (3.33) in (3.35) the GLR test statistic can be written as:
T=2'Q;'Co(C,/Q;C.)'C Q) w, (3.36)

and consequently the UMPI (GLR) test for testing H, against H 4 reads:

Reject Hy in favour of Hy if v7Q;'C,(CYQ;'C)ICIQ v > ko, (3.37)

where k, is the critical value. The critical value of the test can be derived from the
distribution of the test statistic (3.36). From (3.31) and (3.36) it follows that T is

distributed as:
HO : I ~ Xz(b, O)

(3.38)
Hy: T ~ Xz(baA)
with 1 < b < M. The non-centrality parameter
A=vViclg;'ce,v, (3.39)

is obtained by substituting C,V for v in (3.36).
The GLR test (3.37) could also have been obtained by inserting the likelihood
functions of the predicted residuals under Hy and H4 (cf. eq. 3.31)

Ho: py(v) = (27)"M72Q,7 2 exp{~3v7Q; v}
(3.40)
Ha: py(v|V) = (27)™M2Q,17 P exp{-§(v - C,V)TQ; (v - C,V)},
in (3.1) and (3.2), where (3.1) has been replaced by the likelihood ratio
A(v) = Pu(v) _ (3.41)

max

Ve Rb pz(v|V)
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With
ma

v e PvlY) = pu(el¥), (3.42)

where

vV =(CrQ;'C,)'CrQ (3.43)

is the maximum likelihood estimator of V (which because of the assumption of normally
distributed observables is also the least squares estimator), the GLR test given by (3.2)
can then be written as:

Reject Ho if v' Qv — (v - C,V)TQ; (v - C,V) > Ina™?, (3.44)

which after inserting (3.43) in (3.44) is identical to (3.37).

Figure 3.2: Predicted residual space with metric ¢! and the two hypotheses Hy and
H,.

If one assumes that in RM the inner product is defined by @', the test statistic T
(given by eq. 3.36) can be interpreted geometrically (cf. Fig. 3.2) as the square of the
length of the vector that follows from projecting v orthogonally on the range space of
C,, viz:

T =||Pc,o|”, (3.45)

where we have used the definition of the orthogonal projector
Pe, = C,(CyQ7'Cy)'C Q7"

If C, is square and of full rank (i.e. rank(C,) = M), (3.45) reduces to T = ||y||2.
The likelihood ratio test (3.37) is based on the fact that the complete covariance
matrix @, is known. In the case the covariance matrix @, is known up to an unknown

scale factor (i.e. @, can be written as 02Q, with @, known), one can still compute the
likelihood ratio (although the likelihood functions under Hy and H 4 (cf. eq. 3.40) are



3.3 A Testing Procedure 59

not valid anymore). Instead the following test statistic [TEUNISSEN, 1990b] has to be
used (cf. Fig. 3.2):

QTQ;lcv(CvTQ;] Cv)_]CuTQ;lQ
vTQ5 v '

Under the null and alternative hypothesis the test statistic sin® ¢ is distributed as

sin? Q =

(3.46)

Hy: sin’¢ ~ B(b,M,0)
(3.47)
Hy: sin2¢ ~ B(b,M,))

where B(f1, f2,A) is the Beta-distribution with f;, f, degrees of freedom and non-
centrality parameter A. The corresponding test reads:

Reject Hy in favour of H, if sin? ¢ > B, (b, M, 0). (3.48)

Instead of the test statistic sin® ¢ one may also take cos? ¢ or tan? ¢ as test statistic.
Because of their functional depenaency, they will give identical outcomes for the testing.
It should be noted that since sin? ¢ = 1 for b = M(= 35, m,;) (cf. eq. 3.45 and Fig. 3.2),
the test statistic sin? ¢ is only aplﬁjcable for 1 < b < M. In the following we will assume
the complete covariance matrix ¢, is known.

Figure 3.3: Predicted residual space with metric @, ' and the two hypotheses Hy and
H,4 with V known.

In our derivations so far the vector V was assumed to be unknown under H4. A
special case occurs if besides the matrix C, also the vector V is known under H 4. In this
case the problem reduces to one of discriminant analysis. A geometric interpretation is
given in Fig. 3.3. If V is known the generalized likelihood ratio test reduces to a simple
likelihood ratio test of the following form (cf. eq. 3.44):

Reject Hy if v1Q;'v — (v — C,V)TQ;' (v = C,V) > Ina~2, (3.49)
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where a is a positive constant. After some rearrangements one arrives at the following
test

Reject Hy in favour of H , if VTCUTQJI(v - %C,)V) > Ilna”'. (3.50)

The test statistic .
T=vTClQ:'(v- 5CvV) (3.51)

is a linear function of v and consequently T is distributed as:

Hy: T ~ N(-iVIClQ;'C,v,VIClQ;1C,V)

(3.52)
Hy: T ~ N(+iv'clQ;'c,v,vTiCcrQ;'C,v).

If both hypotheses are equally likely, a is chosen equal to one, which corresponds to
the case that Hy is rejected if ||v|[sing < 1||Vv|| (cf. Fig. 3.3). The decision rule for
discriminating between Hy and H 4 then becomes:

1
Accept Hy if VolQ; (v — EVv) < 0 ;accept H4 otherwise. (3.53)

Although this test is conceptually very simple, the possibility of two fully specified
hypotheses Hy and H 4 very rarely occurs in practical applications.

Local and Global GLR Tests

Now the generalized likelihood ratio test has been derived we reconsider the local and
global tests. The test statistic for the local test at time & follows from (3.36) as:

T* = v{Q;Cu.(C) Q) Co ) CLQ vk (3.54)
The local test of size @ is now as follows:
Reject Ho, if and only if T > x2(b,0) , (3.55)

where x?2 (b, 0) is the upper a probability point of the central x?-distribution with by
degrees of freedom, with 1 < b, < my.
The appropriate global test statistic for testing the two (global) hypotheses given
by (3.31) is
TH = 47Q;1C,(C1Q;1C.) " CT Q5 (3.56)

and the global test of size « is as follows:
Reject Hy if and only if T"F > x2(b,0), (3.57)

with 1 < b < M(= Ef:, m;). The test statistic (3.56) is not yet in a form which
is suitable for real-time applications. From the fact that the predicted residuals of
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different epochs are uncorrelated (cf. Appendix A) it follows that (3.56) can also be
written as:

k k k
T =) CrQu'ul [ Cr@u Col D Cr @il uil - (3.58)
=l 1= =l

It will be seen that this simplification is essential and facilitates the derivation of global
test statistics with batch type properties in recursive form.

In the following section we will develop local and global test statistics for certain
classes of alternative hypotheses. For most practical applications two particular forms
of T* and T"* are of special importance. Overall model tests correspond to the case
that by = my in (3.55) or b = 2%, m; in (3.57). Slippage tests for identification
purposes are often related to one-dimensional hypotheses, i.e. by =1 or b = 1 in (3.55)
and (3.57) respectively.

3.4 Detection

In the detection step of the DIA procedure one checks the overall validity of the null
hypothesis. Therefore the tests associated with this phase are called overall model tests,
and are used for detecting possible unspecified model errors in Hy.

We first consider local overall model (LOM) tests. If by is chosen to be equal to
my, the vector Vuy of (3.34) remains completely unspecified. The matrix C,, becomes
a square, non singular (and thus invertible) matrix and can be eliminated from (3.54).
Consequently the LOM test statistic becomes

T* = o] Qy vy - (3.59)

The local overall model (LOM) test for testing the hypothesis Hy, versus H 4, is:

Reject Hy, if and only if TF = vEQ;kl vk > x2(mg,0) . (3.60)

In a similar fashion the global overall model (GOM) test can be derived. If b is
chosen equal to 3>, m; the matrix C, in (3.32) becomes square and invertible and can
thus be eliminated from (3.56). Using the property that the predicted residuals are
uncorrelated between epochs the test statistic (3.56) can be written as:

k
T =3 ol Q. (3.61)
1=l

which under Hy and H 4 is distributed as given in (3.38). From (3.61) it follows that
the GOM test statistic can also be computed recursively as:

Il,lc — Zl,k——l T+ Ik . (362)
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The GOM test statistic reduces to the LOM test statistic (3.59) for | = k. The test
statistic covers the complete mathematical model up to k if [ is chosen equal to one.
The global overall model (GOM) test for testing the hypothesis Hy versus H 4 is:

k k
Reject Hy if and only if T'* = ZviTQ;‘.]v,- > xi(z m;,0) . (3.63)
=l 1=l

3.4.1 Practical Considerations

Although the global detection test statistics can be computed efficiently in real-time
(the predicted residual v, and its covariance matrix @,, are readily available during
each measurement update), there may still be the practical problem of a delay in time
of detection. Besides the detection test statistics cannot be directly compared.

k — k —
l Tl,l T1,2 T],S T1,4 l Tl,l T1,2 ° °
l T2,2 TQ,.’} T2,4 l T2,2 T2‘3 °
TB,.’} T3,4 T3,3 T3,4
T4,4 T4,4

(a) (5)

Figure 3.4: The detection test statistic 7"* with (a) no window, (b) a moving window
with N = 2.

From a practical point of view it is impossible to compute all detection test statistics
TL* starting at [ = 1 for all k > [. This situation is shown in Fig. 3.4a. In order to
reduce the number of computations and the delay time of detection, it is worthwhile
to introduce a moving window of length N by constraining [ to k — N +1 <[ < k.
This is shown in Fig. 3.4b. With this window the delay time of detection is at the most
equal to N — 1. When choosing N one of course has to make sure that the detection
power of the test statistic 75~ N+1* is still sufficient. This is typically a problem one
should take into consideration when designing the filter. The choice of windows for the
detection tests has to be in accordance with those of the identification tests, which are
discussed in the next section.

Once a window for the detection tests has been chosen one has to be careful in
drawing conclusions from the test results. First of all it is impossible to specify the
type of model error which caused the rejection of the null hypothesis. Furthermore it
is difficult to infer at which epoch the model error occurred, i.e. the ttme of occurence
l. Under the null hypothesis the test statistics T"* with ! in the interval & — N + 1 <
I < k are all distributed as x2(5,0), but the degrees of freedom b are different for each
overall model test and consequently the test statistics cannot be directly compared. A
comparison can be made if one normalizes the test statistics with respect to the critical
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values of the associated test. For each test the critical value k, can be computed
from the central x2-distribution with b degrees of freedom. The ‘largest’ detection test
statistic T4 is the one for which holds that

Tl,k Tl,k
me s i Vie[k-N+1<I<H. (3.64)

The choice of the size a of the tests (3.60) and (3.63) has not been discussed yet.
For the moment we assume we follow the B-method of testing [BAARDA, 1968], which
will be discussed in Section 3.7.

3.5 Identification

In the detection phase of the DIA-procedure we test if the null hypothesis is valid
without specifying a particular alternative hypothesis. If the null hypothesis has been
rejected one has to search for possible model misspecifications. In the identification
phase one must specify alternative hypotheses which could account for the rejection of
the null hypothesis by the overall model tests. The specification of possible alternative
hypotheses is application dependent and is one of the most difficult tasks in hypothesis
testing. One must consider which types of model errors are likely to occur and also
if local identification test statistics are sufficiently powerful to identify the relevant,
likely hypothesis. It is self-evident that the identification of certain types of model
errors, e.g. ‘soft’ sensor failures, requires global tests. In the following we will discuss
local and global test statistics for identification purposes. It will be shown how the
global test statistics can be computed recursively. We then discuss the identification
test procedure. Because it is very difficult to specify generally useful multi-dimensional
alternative hypotheses, we limit ourselves to one-dimensional alternative hypotheses.
It should be noted that all one-dimensional test statistics (unless indicated otherwise)
can be (based on eq. 3.58) generalized to multi-dimensional test statistics.

3.5.1 Identification Test Statistics

If by is chosen equal to 1, the matrix C,, of (3.54) reduces to a vector, which will be
denoted by c,, , and the vector V reduces to a scalar. In this case the localtest statistic
can be written as:

Ik = (ék)2 ’ (3'65)

with!

T -1
th = A (3.66)

= b
v cng;k] cvk
which under Hj, is distributed as N(0,1). This local test statistic can be used to
identify particular one-dimensional misspecifications in Hj,, such as a slippage in the

!The lower case kernel letter ¢ will be used for one-dimensional slippage test statistics.
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mean of the predicted state, a slippage in the mean of the observables, or a slippage in
the mean of a combination of the observables and the predicted state. Hence we call
(3.66) a local slippage (LS) test statistic. If one, for instance, suspects sensor failures
or outlying observations one can follow the datasnooping approach [BAARDA, 1968] by
choosing my number of vectors ¢, of the form

¢ = 0 --- 1 ... 0)F

mg X 1 1 ) my (3‘67)

forz=1,...,my.

If b is chosen equal to one in (3.56) one obtains the global one-dimensional identifi-
cation test statistic. The matrices C,,, with 7 = [,..., k, reduce to vectors, which are
denoted as c,;. The corresponding one-dimensional global slippage (GS) test statistic
reads (cf. eq. 3.58):

k
T -1
PRI P

l,k_ 1=l

k= / , (3.68)
(DcoQulen)V?
i:lv

which under Hy is distributed as N(0,1). Note that this test statistic reduces to the one-
dimensional LS test statistic (3.66) for | = k. The one-dimensional global slippage test
statistic t'* can be used to identify particular one-dimensional global misspecifications
in Hy. In order to be able to use the test statistic t'* in real-time we need a recursive
scheme for updating the vectors ¢,,, ¢ = [, ..., k. Various cases, depending on the choice
of alternative hypothesis, can be considered. We will consider the following four cases:

a) A jump in the state vector at time [.
b) A permanent slip in the state vector that starts at time [.
¢) A single slip (outlier) in the vector of observables at time .

d) A sensor slip that starts at time [.

We use the one-dimensional vector c, to specify the type of model error in the dy-
namic model (cases a and b) and similarly the vector ¢, for the specification of model
errors in the observations (cases ¢ and d). The choice of the vector ¢, is often rather
straightforward, whereas the choice of the vector ¢, is dependent on the specification
of the state vector. By combining the time and measurement update equations of the
Kalman filter, recursive schemes for the vectors ¢,;, ¢ = {,..., k corresponding to cases
a) to d) can be derived.

The recursive scheme one obtains for a jump in the state vector (which at time [
manifests itself as a disturbance d; # 0) reads

Co; = “AXy, i=1,...,k

Xi-}—l,l = @i+l,i(I — KiAi)Xi,l; Xl,l =c, (3-69)
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The recursive scheme for a permanent slip in the state vector (which after time !
manifests itself as a systematic disturbance d; # 0) reads

Cy: = —-A,X;y, i=1,...,k
! ' 3.70
Xit1y = co+ Qi - KiADX ;s Xiy=c, (3.70)
The recursive scheme for an outlier in the vector of observables at time ! reads
. _ Cy fori=1
vi a —A,‘X,',l fori=1+1,...,k (3.71)
Xiv1y = Pip14( X+ Kiey,); X1y =10

The vector ¢, is not specified explicitely here, but can, e.g., be chosen as in (3.67).
Finally the recursive scheme for a slip in the j!* sensor reads

Cy; = ¢;—-AXi, i=1...,k

Xiy1iy = P Xig+ Kiey,); X1y =0 (3.72)

where
¢c; = (0 -~ 1 .. o)T
J
The matrices X;; (here n X 1 vectors), with ¢ > [, in (3.69) to (3.72) describe the
response of a model error on the predicted state &;;_;. With eqs. 3.69 to 3.72 we are
now able to compute the one-dimensional global test statistic (3.68) recursively.

It will be clear that our global recursive test statistics are more sensitive to global
model errors than the local test statistics. The difference in detection power between
the local and global one-dimensional slippage tests for a particular model error follows
when one compares the noncentrality parameters Vt* and Vt':* of the two test statistics.
For the local test statistic (3.66) we have (cf. eq. 3.39)

vtk = (el Q)¢ )7V, (3.73)

Vi

and for our global test statistic (3.68) we have
Vit = Zc Q;le,)V?V . (3.74)

Since the matrices Q,,, i = [,...,k are positive definite, this result shows that Vt\*
is an increasing function of k and that Vt'* > Vtk for k£ > I. Hence, with increasing
k the detection power of the global test increases and is never less than the detection
power of the local test.



66 A Testing Procedure for Use in Dynamic Systems

3.5.2 Identification Procedure

After detection the most likely model error has to be identified. If more than one alter-
native hypothesis is specified, one has to determine the fype and the time of occurence
of the model error. Because we only consider one-dimensional alternative hypotheses it
is possible to compare the test statistics directly. The most likely model error is the one
corresponding to the largest test statistic. If the largest test statistic is larger than the
critical value of the test, the corresponding alternative hypothesis is declared valid. In
the next step one can estimate the model error related to the identified alternative hy-
pothesis. Estimation of the model error is discussed in the next section on adaptation.
Summarizing, the identification procedure consists of three steps:

1. A search for the largest test statistic among all specified alternative hypotheses.
2. A check if the largest test statistic is larger than the critical value of the test.

3. If a particular H, is declared valid the associated model error is estimated.

In a more formal manner the procedure can be given as (assuming only one-dimensional
alternative hypotheses are specified):

max |th¥|

N —
1. |t |max_ k_(Nmax_]_)Slgk—Lmin

2. If |thF| pax > N,/2(0,1) declare the corresponding H4 valid

3. If H,4 is valid then estimate V!* associated with [t"*|max (cf. Section 3.6),
(3.75)

where (Npax —1) and Lyy;, are the maximum delay and minimal lag of the test statistics

respectively.

3.5.3 Practical Considerations

From a computational point of view it is impossible to compute all test statistics starting
at [ =1 (cf. Fig. 3.5a). In order to reduce the number of computations and the delay
time of detection, it is worthwhile to consider introducing a moving window of length N
by constraining [ to k — N + 1 <1 < k (the delay time of detection is then at the most
equal to N — 1 (cf. Fig. 3.5b)). Finally, the test statistic t** may be too insensitive for
identifying model errors if [ > k — L. One then can limit oneself to the computation
of the test statistics with delay N — 1 and lag L {<f. Fig. 3.5¢). The design procedure
(cf. Chapter 4) will provide information on the actual detection power of the envisaged
tests, and is a useful tool in choosing the window size of the tests.

By limiting the computation of the test statistics to a certain window the additional
computational load associated with the identification procedure is limited. The addi-
tional computations required for the identification step are basically given by the recur-
sive schemes of (3.69) to (3.72), but all the quantities required for these computations
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Figure 3.5: The one-dimensional recursive identification test statistic t* with (a) no
window, (b) a moving window with N = 3,L = 0, and (c) a moving window with
N=3L=1.

are provided by the filter. The number of operations related to eqs. 3.69-3.72 grows
linearly with the window lengths of the tests and the number of different alternative
hypotheses considered. If one limits oneself to local identification the computational
costs are almost negligible compared with those of the filter operations.

In practice we have to deal with different types of alternative hypotheses. Therefore
it seems unlikely that the delay and lag of all identification tests are chosen identical.
In general one will try to design the testing procedure in such a way that real-time
corrective action remains as much as possible. Consequently the testing procedure will
usually also be based on local tests, even if the detection power of the local tests is
small.

The detection tests (cf. Section 3.4) were also based on windows. The DIA proce-
dure is based on the fact that identification takes place after a model error has been
detected. Therefore the largest delay of the detection tests (cf. Fig. 3.4) should be
chosen at least as large as the largest delay for the identification tests.

The identification procedure as given by (3.75) should be used with care. If, for
example, frequently a model error is detected and simultaneously no specific model
error can be identified, one should reconsider the choice of alternative hypotheses. If
besides the actual model error cannot be specified as a model error of additive nature,
it cannot be identified in an optimal manner by our slippage tests. The identification
procedure is based on the assumption that model errors are sufficiently separated in
time to allow for individual detection and identification. If it is likely that model errors
can occur (nearly) simultaneously the procedure given by (3.75) has to be refined.
Furthermore we tacitly assumed that the testing parameters for every identification
test (the size a and the power ) are identical. The choice of the testing parameters
will be considered in more detail in Section 3.7, where we discuss the application of the
B-method of testing. Finally the comparison of the various test statistics is not that
straightforward if one also considers multi-dimensional alternative hypotheses.
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3.6 Adaptation

The final step in the DIA procedure is adaptation and is needed to eliminate the bias
in the filtered state. The moment a model error is detected and identified, the real-
time operation of the Kalman filter requires that corrective action is taken immediately.
Herein lies the major difference with the testing procedures for geodetic networks, where
adaptation is generally performed off-line. The requirement of real-time operation
necessitates that an automatic adaptation procedure is devised, which maintains, as
much as possible, the optimality of the Kalman filter. After detection of a model error
using local tests, real-time adaptation is possible. In many cases, however, a model
error will be identified with a certain delay of detection (this is a direct consequence
of the concept of global testing). In the event of delayed detection at time k the state
estimate is biased in the time interval [ (the time of occurence of the model error) to k.
We have to find a strategy for handling the delayed detection of a slip, but in practice
we will often opt for a simple approach that resets the filter at time k, leaving the state
estimates biased in the time interval [ to k. The rationale of this approach, which will
also be followed here, is that for real-time applications we are primarily interested in the
present estimate of the state. Besides the bias in the state estimate is probably small
as the model error cannot be detected until time k. It will be clear that optimal results
are obtained if one is able to design a filter that is capable of following the correct
alternative hypothesis at the correct time of occurence. Such an approach requires a
whole bank of filters, each one taylored for a particular alternative hypothesis. The
efficiency of the DIA-procedure is largely due to the implementation of a detection and
identification procedure parallel to a single filter. We will therefore restrict ourselves
to adaptation strategies that also operate parallel to a single filter.

We will first consider the estimation of model errors after identification and show
how the biased state can be adapted. We will then discuss the optimal adaptation pro-
cedure, which requires a continuous updating of the filtered state. We will show that
the adaptation for outliers can also be performed in an optimum manner by perform-
ing the adaptation step only once and reverting to the filter under the null hypothesis.
For slips such a simple, optimal adaptation procedure is only possible for the so-called
partially constant state space models [TEUNISSEN, 1992]. If one wants to continue the
filter under the null hypothesis after a single adaptation step for slips, generally only
approximate (suboptimal) solutions are available. We assume that adaptation is per-
formed for one-dimensional alternative hypotheses only, and hence scalar model errors
V are considered. The generalization to b-dimensional error vectors is straightforward.
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3.6.1 Estimation of Model Errors

At time k the estimator of the mode! error V with a time of occurence [ reads:

ZC v, v;
— k ,

T -1
Zcu;Qv; Co;

1=l

v (3.76)

with

Qs = Zc Qulen)

where the vectors c,, are computed according to (3.69) to (3.72). Note the close rela-
tionship with the test statistic (3.68). The estimator (3.76) follows from (3.43) directly
if we take the uncorrelatedness of the predicted residuals between epochs into account,
and is equivalent to the least squares estimator based on the following mode! of obser-
vation equations:

Y Cy; Qvl
v Cy Q.

E(| 7 y=) v A . (3
Uy Coy ka

From (3.77) it can be easily seen that the estimator of the model error can be computed
in a recursive manner. At epoch [ the recursive bias estimator is initialized as:

V= (1Q5 ) ey (3.78)

with
Qe = (e, @5 o))" - (3.79)

After initialization the estimator V 1, with [ < i < k, and its covariance matrix are
computed recursively as:

V=T 4 G - e VT (3.80)
Qoii = (I - Gicy,)Q¢1im (3.81)

where
Gi = Qfﬂ,i—l C;{;(Qv,‘ + cviQﬁl,i—l Cgi)_l ) (382)

is the 1 X m,; gain vector.
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It can be shown that the estimator of the bias and the estimator of the state vector
under H,, are uncorrelated?

E{(¥" - B{¥"" (& - E{ed 1)} = 0. (3.83)

This important relationship will not be proven here. If one, however, recalls that
the Kalman filter can be written as a least-squares adjustment problem and the error
estimators are a function of the least-squares residuals, which are uncorrelated with
the least-squares estimators of the unknowns, it follows intuitively that (3.83) is true.

3.6.2 Optimal Adaptation

With the recursive schemes (3.69) to (3.72) we have available the ‘response’ matrices
X, (in our situation of one-dimensional model errors the matrices X;; reduce ton X 1
vectors), which describe the response to a model error (starting) at epoch [ on the
estimator of the predicted state at epoch ¢, viz. &;;_;. The ‘response’ matrix of the

model error on the filtered state estimator Z;; at epoch i is given as
Xii=®i i1 X1, (3.84)

where X is obtained through (3.69), (3.71) or (3.72). If the model error is associated
with a slip in the state vector (cf. eq. 3.70), one obtains

yi,l = @i,H—l(XH-lJ — Cx) . (385)

At and after the time of identification k, the filtered state can be updated as

2 = &)~ XV 1, (3.86)

L2

with ¢ > k, where the estimator j”i is computed with (3.76) or (3.80). Error propaga-
tion applied to (3.86) yields for ¢ > k:

= pP¢

t]e

P,'a,‘ + Yz,lel,i_X-Il
(3.87)

P,

‘ x>

o= ~XiiQgu,

i]d

2l

where use has been made of the fact that Q?Ii and V

are uncorrelated. Equations
(3.86) and (3.87) constitute the optimal adaptation equations for the model errors
described by (3.69) to (3.72).

Actually the estimators obtained by the Kalman filter operating under Hy when

combined with the recursive bias estimator given by (3.78) to (3.82) and the update

2The superscripts 0 and a indicate that an estimate is obtained under Hy, and H 4 respectively.
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equations (3.86) and (3.87) are identical to the estimators that would have been ob-
tained by the filter operating under H 4. FRIEDLAND [1968] was the first to show that
the approach based on the filter operating under the null-hypothesis and a parallel bias
filter is equivalent to an augmented filter based on the extended model:

E{d;} = 2z — Frp—12k—1 ; E{y} = dpzi , (3.88)
with

$...1 B 3 0 7
() s (%50 1) otin= (3 )k @)

If one considers slips in the state vector By = ¢, and C, — 0, whereas for a slip in
observation j By = 0 and Cy = c¢;. The (minor) difference between the error estimation
in the DIA procedure and FRIEDLAND’S estimator lies in the fact that we do not assume
the bias is present from the outset. The separated-bias approach clearly shows that
one can actually filter under the null hypothesis and simultaneously estimate possible
model errors, i.e. explicit filtering under the alternative hypothesis using an augmented
filter is not necessary.

3.6.3 Adaptation for Outliers

Although it may not be directly apparent from (3.86), the adaptation procedure for
outliers is also optimal for the estimator of the state if adaptation is performed only once
and after that one reverts to the filter under Hy. This result follows immediately if one
formulates the filtering problem as a batch-type least-squares adjustment problem with
observation equations. If one considers an outlier at epoch I, the unknown parameter
V appears only in a single observation equation®

E{y}=Aizi+¢,V; D{y} =R .

After adaptation at time k one obtains the following set of observation equations (cf.
eqs. 3.86 and 3.87):

A I 0 0 .

vad 0 0 1 .

- k

E{| dp1 |}=| ~ B0k T 0 :+1 ; (3-89)

Yt 0 Ak 0 V
Py, Py oo 0 0
Pos, Quu 0 0
0 0 Qk+1 0

0 0 0 Rk+]

3The same holds if one considers a jump in the state vector.
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It can be seen from (3.89) that the parameter V is present in a single observation
equation only and can thus be considered as a free y/-variate (cf. Section 2.3.3). One
can thus revert to the filter under Hy, because a better estimator of V for 7 > k will
have no impact on the state estimators £,;. This means that at the time of adaptation
Zj |k is taken as the new initial state (with covariance matrix I?|k) and the ‘standard’
Kalman filter can be used for all following epochs. This is of course very convenient
from a computational point of view, because neither the bias filter (cf. eqs. 3.78 to 3.82)

. . . R
nor the adaptation steps (3.86) and (3.87) have to be continued. The estimator V™ can
still be improved as a y®-variate (because of the correlation between the observables

Ziy, and jl'k in (3.89)) and will be identical to the estimator given by (3.80).

In the following we will illustrate that the results of the optimal adaptation proce-
dure and the filter reverted to Hy after adaptation are identical by showing that the
estimators for the bias at epoch k + 1 are the same whether one adapts for an outlier
at epoch kor at & + 1.

If one assumes adaptation has taken place at epoch k and the one-step prediction
to epoch k + 1 is performed, one obtains the following model of observation equations
for the measurement update at k + 1:

~a na - .
Q’kaVC I 0 z ka+1|k P’”huk'V
=1, k+1
E{ Vv = 0 1 Vi ’ P@- 74 Q@z,k 0 ’
A 0 Ttttk
Y1 k+1 0 0 Ry
(3.90)
where
o - 3 0 X VY4 d
Tk — k+1,k(£k|k ~ Xk dV7) + dieya
. Lk
~0 )
= Tk T Xk+‘1,lz
0 bd 1 \gT
Plow = Brwrk(Prepe + Xt Qo X e )Begpr ke + Qi
_ 0 R T
= P+ Xer11QoueXiy1y
P . = Qe X P
Vi QorrX g1 Ritik
_ T
= —QuxXppry -

. =Lk . . . . o -
In equation (3.90) V. is a free y"-variate and using the relation é% = Qr, Q¢ (cf.

eq. 2.20) the estimator of the bias at epoch k + 1 is obtained as

o Lkt Lk
_V_ = Z T EGLE
_ gl P p? —15
=V - @,ii ( k+1|k) Q-ik+1|k ’ (391)
+1]k
where
. _ X T 0 T -1 2 Lk
gi‘k+1 k —_PI:'H“C Ak+1(ka+1 + cUk,-H Q@l,kcuk+l ) (Ek+] - c”k+1 Z )
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follows directly from solving model (3.90) for 44, using the method of condition equa-

tions. Inserting é; . in (3.91) and using the matrix inversion lemma finally yields:

Lk+1 -1k - Lk

j = y_ + Gk+1(2’c+] - cvk+lz ' ) y

which is identical to (3.80). In a similar way one can show (after some lengthly algebraic
manipulations) that

~a _ ~a -
Lptilk+1 = Zep1)k — Edppipe
— s Lk+1
_ 0 :
= Tiiilk+1 Xe+1uV ’

which indeed corresponds with the optimal estimator of the adapted state (cf. eq. 3.86).

3.6.4 Adaptation for Slips

For slips we cannot revert to the filter under Hy and obtain optimal estimators of the
filtered states after a single adaptation step. If we consider, for example, slips in the
observations, the observation equations (after adaptation at time k) are:

izl,i I 0o .- 0 .

-1 k

Y 0 ; ! Zk+1

E{| d+1 |} = —<I>16+1,k AI e 0 : , (3.92)
yk.+1 : k:+1 Cly V

and now the parameter V appears in every observation equation of y,, with z > k.

Therefore ﬁl’k cannot be treated as a free y/*-variate any longer, and we cannot revert
to filtering under Hy in an optimal way. A notable exception exists for slips in the
so-called partially constant state-space model, where filtering under Hy after a single
adaptation step is possible.

3.6.5 Adaptation for Slips in the Partially Constant State Space Model

Assume that under the null hypothesis the observables (at an epoch 7) are related to a
constant bias z as follows:

E{y} = Awi+Ciz; D{y.} = R; (3.93)

where z is a vector of parameters with 1 < dim(z) < m*. The (m; X dim(z))-matrix C;
indicates which observables are related to the constant bias state z. TEUNISSEN [1992]
was the first to consider the adaptation for slips for models given by (3.93), which he
calls partially constant state space (PCSS) models, which are of special importance in

*This means that not every observable Y, is necessarily related to a bias state z.
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GPS data processing. In the following we will follow TEUNISSEN’s derivation (based
on a batch type least-squares adjustment problem) and show how one can revert to the
filter under Hj after a single adaptation step for a slip in an observable y.. We consider
the case where a slip occurs at time [ in observation j (cf. eq. 3.72):

E{y} = Aizi +Ciz+¢;V; D{y} = R . (3.94)

After adaptation at time k one obtains the following set of observation equations (cf.
egs. 3.89 and 3.92):

ik I o ..l 0 o
o 24
Zk|k 0 0 ---| I 0 .
jl,k 0 0 0 1 k.+1

B dit1 }= —Prirk I 0 0 ; (3.95)
ka 0 Ak+1 Ck+1 cy VZ

0 0
P,, P, Py 0 0
' 0 0o ---
0 0 0 Qisr 0 )
0o 0 0 0 Rk

where P,, P, ,, P, v etc. are shorthand notations for P;. , P;

K|k’
(cf. eq. 3.86)
. -0 <z
(%M):(%W _(iy)z“. (3.96)
Zk|k Zk|k X
After adaptation for the slip at time k we are (considering model (3.93)) not so much

interested in the adapted bias estimate 2z}, as well as in the ‘new’ bias state which is
corrected for the slip and which can be obtained by the following full rank transforma-

tion:
Fi ICJ' z
(v)-(a %)) 047

Inserting the inverse transform

(7]

ARE I P‘izlk‘v, and with

0 1 (3.98)
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(which does not affect the covariance matrix of the observables) into the observation

equations (3.95) yields:

_112|k T 0 0 0 . s
zzl“z 0 0 I —c T
z’ 0 0 0 1 .
Bl g, P ~®e I | 0 0 S (3.99)
Yer 0 Agyy - | Cryr O -
. . . . : v

The parameter V now only appears in the observation equations of the observables 2,

and jl’k. Performing the full-rank transformation

o S =5 5 ) g ) (3100

finally reduces the observation equations (3.95) to:

ke I 0 0 0 o
~a
Zkk 0 0 T 0 Thy
vt 0 0o -] 0 1 :
Bt A1 =l —@is I ] 00 — (3.101)
yk-H 0 Ak-H e Ck+1 0 =
Px P.r,z +Pz,vc;»r PI,V 0 0
Pz,x +CjPV,z P, +szvc]T —f—Cij‘z +C]'Pvc;r Pz,V +CJ'PV 0 0
Py, Pe ., + Pvc’]l‘ Py 0 0
0 0 0 Qk+l 0 ’
0 0 0 0 Rk+]

where the state vector element Z contains the original bias and the contribution of the
slip. In model (3.101) jl‘k has become a free y’-variate (corresponding to the situation
of the adaptation for outliers) and thus has no impact on the state estimators &,, and
Zh» for i > k. We can thus revert to the filter model under H, after a single adaptation
step. As we proceed with the filter procedure with the ‘new’ bias vector z, care has
to be taken that the adaptation step is executed correctly. Starting from (3.96) and

applying the transformation (3.100) yields:

va ) e

Z Tk X Lk

-a = 0 — _— v, 3.102
(ék ) (éiuc) (Xk,l_cj) (3.102)
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The covariance matrix of the adapted state follows from (3.102) as

p: p? Py PY X X !
( y s ) h ( { Ibz ) ' ( X E ) Qvl ’ ( Xk’l )
a a C z . , —z .
PE,T, P? K|k PZ,JT PZ k|k Xk\l ¢ (Xk,l - Cj)T

(3.103)

Summarizing, we have shown that for the particular case of the partially constant
state space mode] and slips modelled according to (3.94), one can revert to the filter
under H, after a single adaptation step has been performed. The practical importance
of the PCSS model is its applicability to GPS, where the measured phase observables
are available up to a constant, unknown bias (called ambiguity). Furthermore GPS
phase observables may be contaminated by slips (called cycle slips) due to receiver
tracking errors, atmospheric disturbances, and signal interruptions.

3.6.6 Adaptation for Slips; A Suboptimal Solution

We have shown that it is impossible to revert to the filter under Hy in case of slips
in the observables (except in the important case of the partially constant state space
model). If one nevertheless wants to continue the operation of the filter under the null
hypothesis, one has to resort to suboptimal filter solutions. For practical applications
the following ad-hoc strategy can be useful. After the identification of a slip at time
k one takes Zj, (which at time k is unbiased) with its covariance matrix P, as the
new initial state and proceeds with filtering under the null hypothesis. This method

neglects the correlation between Ziik and Szl’k and is based on the assumption that the
bias is estimated well enough at time k. To prevent the accumulation of bias in the
state estimator one has to correct the observables from time k onwards. For a slip in
the state vector or a slip in an observation channel the observables with their covariance
matrices have to be corrected as follows:

\ slip in state (cf. eq. 3.70) | slip in observations (cf. eq. 3.72)

' \
under Hj, d Q I‘ :_'/_ E
i

after adaptation | d — czzl'k Q + Qg ch y—cy R+ cva,ykcg
(3.104)

~ Lk
Note that the sample values of d — ¢,V = are not zero.

3.6.7 Practical Considerations

In this section we consider a number of practical aspects related to the adaptation
procedure and we will briefly discuss the computational load of the (optimal) adaptation
procedure and the biasedness of the test statistics after adaptation.
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Computational Load

The additional computational load caused by the adaptation procedure is rather lim-
ited. The close relationship between the test statistics and the error estimates (cf.
eqs. 3.68 and 3.76 and note that the terms in the numerator and denominator are iden-
tical) makes the latter ones available at a very low computational cost. The response
matrix of the model error on the filtered state is computed using (3.84), and is closely
related to the response matrix for the predicted state, which is computed recursively
in the identification procedure.

If one uses the optimal adaptation procedure as given by (3.86) and (3.87), one ac-
tually switches to a filter operating under the alternative hypothesis using the recursive
bias estimation scheme given by (3.80) to (3.82). A drawback of the optimal method is
that the memory of the bias filter grows while the window length of the tests remains
fixed. Furthermore a separate bias filter has to be implemented parallel to the Kalman
filter, and only one model error at a time can be conveniently handled. Compared
to the exact procedure the approximate adaptation procedure for slips (described in
Section 3.6.6) is computationally very attractive, although one has to take care that
at every time update corrections to the disturbances are applied and that likewise
the measurements are corrected at measurement updates. Overall the computational
requirements of the adaptation procedure do not seem to be prohibitive.

Biasedness of Test Statistics

After adaptation one has to remove the bias from the test statistics (or the predicted
residuals on which they are based), in order to allow the identification strategy to
proceed automatically. Those test statistics that are (partly) based on the predicted
residuals in the time interval [ to k will be biased. After the adaptation step the
identification test statistics can be adjusted for the model error as follows:

Lk t?k - piiti"

Ladjusted,; = (L= 22 (3.105)
Jt

where p;; (cf. Chapter 4) is the correlation coefficient between ti’k (the test statistic
associated with the most likely H i) and each other test statistic denoted symbolically
as t*. The correlation coefficient pji cannot be easily computed in a recursive manner
and hence (3.105) is of limited practical use if the time of occurence ! and the time of
detection k£ do not coincide for both hypotheses. We therefore suggest to reinitialize
the testing procedure after adaptation with local tests (i.e. tests with a window length
of one). This strategy backfires if model errors occur (nearly) simultaneously and
should thus be implemented with care. The major drawback of the strategy is that
it is rather heuristic than theoretically sound. From (3.105) it is apparent that it is
impossible to devise a testing procedure which can cope with slips and outliers for a
single observation type simultaneously using local tests only; in that case the absolute
value of the correlation coefficient is always equal to one, that is the outlier and slip
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hypothesis cannot be separated. If only local tests are implemented, one can cope with
simultaneous errors using an iterated approach (cf. [TEUNISSEN, 1990b]) which takes
the correlation between the test statistics into account.

3.6.8 Alternative Approaches to Adaptation

We have discussed solutions (some exact, some suboptimal) to the adaptation prob-
lem. In addition to the discussed procedures some other adaptation schemes might be
considered, which only require a single additional filter at most. We will briefly discuss
two approaches which will not be pursued any further, but are included for the sake of
completeness.

Parallel (lagged) Kalman Filter

If the main objective of the filter procedure is to obtain a dataset free of errors in the
observations, one can follow a simple approach. Assume one can ascertain that all likely
model errors can be identified and removed with a delay N — 1 (which corresponds
to a window length of N). Then a parallel filter operating with a delay N, using
information provided by the real-time filter and operating on the original (temporarily
stored) data, leads to optimal results. The real-time filter has to operate in conjunction
with detection and identification tests and the data in the time interval [k — N + 1, k|
have to be stored. The method seems particularly suited if only model errors in the
observations are expected and no real-time solutions are required. The lagged filter can
operate without a full detection and identification test procedure. The main advantage
of the lagged filter is its simplicity. A possible application of the method would be
the elimination of outliers from the original dataset. Drawbacks are that no real-time
estimates are available and errors in the dynamic model cannot be handled easily (a
jump in the state vector, for example, cannot be resolved by deleting an observation
from the dataset).

Backward Filtering

Instead of opting to use a lagged filter, one can also implement an algorithm that filters
‘backwards’ once a model error has been identified, removes the model error, and filters
‘forward’ to obtain a better real-time solution. Although this method is theoretically
feasible, the computational load of the backward filter strategy cannot be predicted
and hence the method is deemed unpractical for real-time applications.

3.6.9 Summary

In this section we have developed a real-time adaptation procedure, which maintains
the optimality of the estimators. Computational considerations ruled out the imple-
mentation of bank of Kalman filters, each one taylored for a particular hypothesis. The
adaptation procedure given by (3.86) and (3.87) is optimal for both outliers and slips
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(we conciously neglected the bias in the state estimators in the time interval [ to k —1}.
For outliers it was shown that one can revert to filtering under the null hypothesis after
adaptation, while maintaining the optimality of the state estimators. For slips such an
approach is only feasible for the partially constant state space model. In all other cases
of the adaptation for slips reverting to filters under the null hypothesis will result in
suboptimal solutions. Practical considerations showed that the adaptation strategies,
which are based on resetting the window lengths of the tests, will be hampered if model
errors occur (nearly) simultaneously. In case the model errors occur separated in time
it is to be expected the proposed procedures operate well.

3.7 The B-method of Testing

This section is meant to provide a link with the testing procedure for geodetic networks
developed by BAARDA [1968]. This so-called B-method has been used very successfully
in network applications and therefore one should consider if it can also be implemented
for dynamic systems.

The essential element of the B-method of testing is that an error related to a particu-
lar alternative hypothesis should be detected with equal probability by all tests, which
encompass that particular alternative hypothesis. This means that the non-centrality
parameter A is equal for all tests. BAARDA suggested to fix A by specifying the level
of significance a and the power of the test 4 for one-dimensional tests. One keeps the
power of the test fixed at -y, for all tests, because one is interested in the model error
that can be detected with a probability vy. This line of thought implies that the level of
significance a of a multi-dimensional test is computed from the level of significance ay
of the one-dimensional tests. If one fixes the level of significance of the one-dimensional
test, the level of significance of the multi-dimensional test can be computed from the
inverted power function:

A = /\(ao,‘)’(), 1) = )\(a,'y(,, b) s (3106)

where b is the dimension of the multi-dimensional test.

Up to this point we tacitly assumed that the DIA procedure is based on the B-
method. It has been indicated at the end of Section 3.4 that the level of significance
of the overall model tests is based on the level of significance of the one-dimensional
tests via the B-method of testing, and thus an error with a magnitude related to the
noncentrality parameter Ay = A(ag,Yo,1) is detected with equal probability (namely
¥0) by all tests. The size of a model error associated with A is called minimal detectable
bias and is a measure of the detectability of a one-dimensional hypothesis. The minimal
detectable bias is further discussed in Chapter 4.

Following the reasoning of the B-method we assume that identification is only per-
formed after a model error has been detected. In the implementation of the DIA
procedure one has to take care that the method is implemented correctly. If, for exam-
ple, the identification of a model error with a delay of four coincides with the detection
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of some model error with a delay of two, the detection test does not encompass the
identification test. In practice such a mismatch will most likely occur for model errors
that are about the size of the minimal detectable bias.

Theoretically the coupling given by (3.106) is strictly valid for model errors of the
size of the minimal detectable biases. If one, for instance, considers model errors consid-
erably larger than the minimal detectable biases, the probability of identification of the
model error is larger than the probability of detection, but because large model errors
are always detected, the B-method is still valid. The point we want to stress is that
the coupling of the one- and multi-dimensional tests is not generally valid and should,
depending on the application at hand, not be applied blindfoldedly. These remarks
do not limit the usefulness of the B-method in the DIA procedure, and experience has
shown that in general it works well. In practice difficulties due the direct link between
detection and identification can be expected if the model errors are smaller than the
minimal detectable biases (but if one wants to detect such errors the testing procedure
should be reconsidered anyway). Also in cases where a certain model error is incorpo-
rated in, for example, one-, two-, and, three-dimensional hypotheses the comparison of
the various identification test statistics might be difficult.

A more serious problem is that the B-method of testing is based on the assumption
that the level of significance of all one-dimensional tests is identical. The actual choice
of the level of significance is discussed in Section 3.7.1. If the level of significance is not
identical, we suggest to base the B-method on the largest level of significance of all one-
dimensional hypotheses considered. This may result in a large level of significance of
the overall model tests, but we think it is better to use the B-method in a conservative
manner and rather allow false alarms than missed detections.

Despite its limitations we think that the use of the B-method for testing procedures
in dynamic systems can be justified. The DIA procedure enables the realization of an
automatic model validation technique and any implementation of an automatic strategy
requires a decision mechanism. We think the B-method is a useful tool to implement
such a decision mechanism in the transition of the detection to identification phase
of the DIA procedure. To what extent the B-method provides the ultimate solution
cannot be determined yet and should be based on further experiments.

3.7.1 Choice of the Level of Significance

The B-method assumes that the level of significance ay for all one-dimensional tests
is equal. Such an assumption can readily be made for testing procedures in geodetic
network adjustments. Conventional control networks are usually designed in such a
way that the direction and distance measurements have an approximately equivalent
contribution to the final network solution. In GPS networks baseline components are
needed in all three (cartesian) coordinate directions. Therefore there is no reason to
test the separate components with different levels of significance.

The sensor suite of an integrated navigation system, on the other hand, may consist
of a range of different sensor types. Furthermore it is likely that different types of
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model errors are specified (for example slips and outliers). The magnitude of the level
of significance for each test is of course application dependent and is not necessarily
identical for all tests. A vehicle location system, for example, is generally based on a
digital map (which can be considered as a sensor type with a low measurement rate
and a low suspectibility to model errors) and a magnetic compass (a sensor with a high
measurement rate and high error rate). For this particular case it does not seem proper
to test a single reading of both ‘sensors’ with the same level of significance. Generally
sensors with high measurement rates allow one to discard measurements more easily
(which amounts to testing with a large level of significance (e.g. ay = 0.05 instead of
the ay = 0.001 used in control network adjustments). The actual choice of the level
of significance and power of the tests should take the characteristics of the sensors and
the impact of undetected errors into account. The testing parameters should be chosen
based on a trade-off between the costs of missed detection and false alarm.

3.8 Recapitulation of the DIA Procedure

To facilitate further reading we summarize the findings of the previous sections. One
of the most difficult tasks in designing a testing procedure is the specification of likely
model misspecifications. The choice of alternative hypotheses is application dependent.
One has to ascertain if the likely model misspecifications can really be modelled as
additive effects (slips) in the functional model. If, for example, the stochastic model is
specified incorrectly, one has to recourse to adaptive filtering techniques. Even if the
model misspecifications can be modelled as slips, one has to decide which alternative
hypotheses have to be specified. Also the choice of the level of significance and the power
of the test depends on the application. The performance of the testing procedure can be
analysed using the design procedure discussed in the next chapter, and this procedure
should be used to determine the window lengths and testing parameters of the tests.
We assume that in the design phase the testing parameters, the window lengths of
the tests and the alternative hypotheses have been specified. The DIA procedure is
summarized in Table 3.1.

We assume that the detection and identification steps are coupled via the B-method
of testing, which was discussed in Section 3.7. If the frequent detection of model errors
does not coincide with subsequent identifications, one should seriously consider other
types of mismodelling, such as an incorrectly specified stochastic model or an under-
parametrized dynamic model. The estimation of the model error can be considered
as a part of either the identification or the adaptation procedure. After adaptation
for outliers one can revert to the filter under Hy. Adaptation for slips can be imple-
mented using the exact procedure given by (3.86) and (3.87), or by an approximate,
sub-optimal procedure (cf. eq. 3.104).
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‘ L Local Testing ‘ W Global Testing ‘
Local Overall Model Global Overall Model
DETECTION (LOM) Test(-statistic) (GOM) Test(-statistic)
(3.59) Test statistic (3.61)
(3.60) Test (3.63)
‘ Local Slippage Global Slippage
IDENTIFICATION | (LS) Test(-statistic) (GS) Test(-statistic)
(3.66) Test statistic (3.68)
Determine most likely model error via
the identification procedure (3.75)
‘ Estimation of model error (3.76) or (3.80)

‘ ADAPTATION T Adaptation procedure (3.86) and (3.87)

Table 3.1: Overview of the DIA procedure

3.9 Other Techniques for Model Validation

The purpose of this section is to provide a link between the DIA-methodology presented
in this chapter and other model validation techniques. The DIA procedure has been
developed along the line of hypothesis testing in linear models (cf., e.g., [KocH, 1988]).
It has been shown that the alternative hypotheses can be specified in terms of predicted
residuals and that all test statistics can be computed recursively.

Since the early seventies numerous investigations have been performed under the
headings ‘Failure Detection Identification and Recovery’ (FDIR) and ‘Robust Kalman
Filtering’. The presentation in this section is not meant to be (and cannot be) exhaus-
tive as the literature abounds with model validation techniques. It should, however,
provide the reader an entry to the relevant literature. General overviews of model val-
idation techniques are given by, e.g., WILLSKY [1976] and BASSEVILLE [1988]. We will
limit ourselves to methods that deal with model errors of additive nature (slips) and
techniques that are closely related from an algorithmic point of view. We will briefly
discuss the use of the predicted residual in model validation techniques, the GLR ap-
proach, a multiple model approach based on parallel filters, the impact of decentralized
models on model validation, and ‘robust’ Kalman filtering.

3.9.1 The Use of the Predicted Residual

The predicted residual naturally presents itself as a tool for model validation of Kalman
filters due to its well defined statistical properties under the null hypothesis.” The local
and global detection tests ((3.60) and (3.63) respectively) are functions of the predicted
residuals, and are frequently encountered in the literature on FDIR.

The use of predicted residuals for performance analysis of Kalman filters was in-
troduced by MEHRA AND PEsScHON [1971]. Their methodology focusses on the overall
performance analysis of the Kalman filter and basically consists of a monitoring proce-
dure for the predicted residuals.
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3.9.2 The GLR Approach

The GLR (Generalized Likelihood Ratio) approach is a systematic methodology to de-
tect, identify, and adapt for slip-type model errors and is closely related to the DIA
procedure. The GLR approach was developed in the seventies by a group of researchers
at MIT [WILLSKY, 1976; WILLSKY AND JONES, 1976; CHANG AND DUNN, 1979]. The
algorithm of the DIA procedure itself is almost identical to the (recursive) Failure
Detection Identification and Recovery (FDIR) methods based on the Generalized Like-
lihood Ratio approach derived by the MIT-group. WILLSKY [1976] notes that ”GLR
performance [is] quite outstanding for failures that can be modelled as additive effects.”
The aforementioned researchers also provide a link between the error (or bias) estima-
tion procedure and the separate bias estimation concept of FRIEDLAND [1968], which
was further elaborated by IcNAGNI [1981;1990]. Also FRIEDLAND [1983] acknowledges
the link of the bias estimation procedures with the FDIR methods. Although the DIA
algorithm is to a large extent identical to that of the FDIR GLR procedure, there exist
a number of important differences. Firstly, the GLR method was never extended with a
comprehensive design procedure (although some preliminary results on the detectabil-
ity and separability of alternative hypotheses are provided by [BuENO ET AL, 1976]).
Secondly, the detection and identification steps are not coupled and hence detection
and identification can occur independently. Finally, the adaptation (recovery) step is
not really well documented.

3.9.3 Multiple Model Approach

The multiple model approach (see, e.g., [WILLSKY, 1986; BRowN AND HwaNG, 1987])
is based on the assumption that for every alternative hypothesis a Kalman filter solution
is computed. At every filter cycle one then chooses the most likely filter solution. One
thus operates a bank of Kalman filters. Such an approach can be very useful if one, for
example, operates one filter under the null hypothesis of a constant velocity dynamic
model and one filter under the alternative hypothesis of a constant acceleration dynamic
model. As soon as an acceleration is detected one can switch to the filter operating
under the alternative hypothesis. An advantage of the multiple model approach is that
no model degradation occurs if one switches from one filter mode to the other. A
possible disadvantage is the heavy computational load, especially if one has to check
for many model misspecifications in the observation model.

3.9.4 Decentralized Quality Control

The present testing procedure is based on the premise that the data processing is
done by means of a single Kalman filter. If a navigation system consists of many
subsystems it may be advantageous (or even necessary) to process the data of each
sensor separately and to obtain an overall solution by merging the results of each
subset. One then uses the concept of ‘federated’ or ‘decentralized’ filters, which was
developed by CARLSON [1988; 1990]. In a decentralized setup it is possible to perform
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so-called local quality control (i.e. one implements a DIA procedure for each separate
(or local) filter). The advantage of such an approach is that model misspecifications are
limited to the local filter model and hence smearing effects are limited. A disadvantage
is that the redundancy of the local filters is generally quite low. Decentralized quality
control is discussed by KERR [1987] and LooMmIs ET AL. [1988]. A theoretical problem
arises if one wants to implement a DIA procedure for the overall filter which merges
the output of the local filters, because one should take into account the results of the
local testing procedures. The situation is similar to the testing procedure in a second
phase network adjustment, when the original observations are not available anymore.

3.9.5 Robust Filtering

Some authors (e.g. BORUTTA [1988]) have investigated the use of robust estimation
techniques for geodetic applications. An introduction to robust estimation techniques
is given by HAMPEL ET AL., [1986]. One could also consider to ‘robustify’ the Kalman
filter for model misspecifications. Investigations dealing with ‘robust’ Kalman filters are
reported by, among others, MASRELIEZ AND MARTIN [1977] and PENA AND GUTTMAN
(1988, 1989]. Robust filter algorithms have been derived primarily for additive model
errors in the observables (which usually are modelled by assuming a mixed distribution
for the observables using a so-called variance inflation model). We do not consider
robust estimation, but a Kalman filter combined with the DIA procedure can also be
considered a ‘robust’ filter. To illustrate the performance of a robust filter and a DIA
supported Kalman filter, we compare results obtained by the DIA approach with results
obtained by the robust filter developed by PENA AND GUTTMAN [1988]. In [ibid.] a
one-dimensional state space model with a scalar observation equation E{y, } = @ for
31 epochs and two simulated outliers is considered. In Fig. 3.6 we have reproduced (on
the left) the true state used for the simulation (solid line), the simulated data (dots)
and the estimates obtained by the standard Kalman filter (dashed line). On the right
we have depicted the true state (solid line), the robust filter estimate (dotted line), and
the filter estimate after adaptation for outliers (dashed line). All filters are based on
the system model given in [ibid.]. Although the results for this single case presented in
Fig. 3.6 by no means constitute the equivalence of the robust and DIA based filter, it
can be seen that the performance of both methods is comparable.

3.9.6 Discussion

In the geodetic and navigation practice model errors can often be modelled as slips
in the functional model. We have developed a procedure to cope with such errors
automatically. The recursive DIA method seems to be very suited for (almost) real-
time model validation and adaptation purposes. It is based on a single Kalman filter
with a parallel operating DIA procedure. Its low computational cost and its sound
theoretical base render the DIA procedure a very attractive model validation technique
for slip-type model errors.
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Figure 3.6: Comparison of the estimates of the Kalman filter, the robust filter, and the
DIA supported Kalman filter for the example in PENA AND GUTTMAN [1988].

Of the alternative methods the GLR approach is the most closely related to the
DIA procedure. A major difference is that the DIA procedure is based on a unified
procedure in which detection, identification, and adaptation are coupled. Particularly
the link between detection and identification by means of the B-method has never been
applied (to our knowledge) in testing procedures for dynarmic systems. Furthermore we
think that the implementation of any model validation technique should be preceded by
an extensive design procedure. As such the design procedure (discussed in Chapter 4)
should be considered to be part of the DIA methodology.

3.10 Concluding Remarks

The optimal properties of the filter estimators can only be guaranteed in real-time if a
testing procedure is operating synchronously with the filter. We have derived such a
testing procedure based on the theory of hypothesis testing, and we demonstrated some
optimality properties of the generalized likelihood ratio tests on which the procedure is
based. The testing procedure is optimized for model misspecifications that can be mod-
elled as additive effects (or slips), and allows local and global testing. Local tests are
genuinly real-time and are based on a single epoch, whereas global tests operate with
a (small) delay, but cover a number of epochs. The testing procedure consists of three
steps, namely detection, identification, and adaptation (DIA). The DIA procedure can
be implemented recursively and is thus very efficient. In the identification step not only
the type of model misspecification, but also the time of its occurence is determined.
We suggested to couple the detection and identification step of the procedure by means
of the B-method, but the implementation of this coupling will require some further
investigations. The choice of the testing parameters for each specific alternative hypo-
thesis will have to be established partly by measurement experiments, and will depend
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on, among other things, the costs associated with type one and type two errors and
the error rate of the sensor suite in question. After a model error has been identified,
the state has to be adapted to maintain the optimality of the real-time filter results.
Adaptation for outliers is very simple and requires only a single adaptation step, after
which one can revert to the filter under the null hypothesis. Exact adaptation for slips,
on the other hand, generally cannot be implemented that easily, because it requires
continuous adaptation after identification. Approximate adaptation schemes for slips
can be devised but their suboptimality has to be established in a design study for each
particular case. A drawback of the current implementation of the DIA procedure is
that during adaptation the detection and identification test statistics are biased (due
to the model error), and therefore an efficient methodology to remove the bias in the
predicted residuals has to be found. Despite this drawback the DIA procedure is a very
efficient testing procedure for slip-type model errors and will be used throughout this
report. The DIA procedure is summarized in Section 3.8.

In the next chapter we will consider (based on the Kalman filter and the DIA
procedure) how the design of a dynamic system can be optimized. An important
design aspect will be reliability, which describes the sensitivity of the estimation result
to model misspecifications. We will see that the reliability of a system depends on the
testing procedure that is implemented.



Chapter 4

Design of Dynamic Systems

4.1 Introduction

In the present chapter we try to develop a methodology for the optimization of dynamic
systems. With optimization of a dynamic system is meant the design of a dynamic sys-
tem subject to quality criteria determined by the purpose of the system. Optimization
is part of the quality assurance of a dynamic system. After the design of a system
has been completed, it has to be ascertained that the performance of the system under
operational conditions is in accordance with the description of the quality of the sys-
tem design. Real-time model validation or quality control is implemented by means of
the DIA-procedure, which was discussed in the previous chapter. Finally the quality
of the estimation result should be compared with the quality requirements. Quality
assurance thus encompasses the steps of design, control, and validation with respect to
the quality of the system, which are respectively related to the a priori, real-time, and
a posteriori phases of the operation of a dynamic system. In this chapter we will focus
on the design of dynamic systems and especially integrated navigation systems.

The concept of quality comprises precision and reliability. In the design phase of
a system the precision and reliability requirements have to be reconciled with limit-
ing conditions such as cost, available hardware, computer power, personnel, and time
schedules. Our optimization procedure is limited to aspects of precision and reliability,
because the other design aspects are too application dependent to be put in a general,
practical framework.

Traditionally the performance of dynamic systems (and of integrated navigation
systems in particular) is specified in terms of precision: how accurately can certain
parameters (e.g. position, velocity) be estimated. The currently emerging demand for
(real-time) quality control necessitates that also reliability is taken into account, i.e.
the effect that possible model misspecifications have on the estimation results. The
concept of reliability is closely related to the testing procedure that is implemented in
the dynamic system, and has hitherto received little consideration. The measures of
precision and reliability are mathematically tractable and are therefore very useful to
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judge the performance of any system. The quality measures are independent of actual
measurements and thus the quality of a dynamic system can indeed be analysed in the
design phase.

The design procedure presented here can be considered as a generalization of the
optimization technique for geodetic networks as has been developed by BAARDA [1968,
1973, 1977]. A first step towards a design procedure for dynamic systems was presented
by TEUNISSEN [1990a, 1990b].

4.1.1 Overview of this Chapter

In Section 4.2 we will discuss a general framework for the design of dynamic systems
and the concept of quality assurance. We will pay attention to quality criteria, quality
measures, and design parameters of dynamic systems. The measures of precision and
reliability are considered in Sections 4.3 and 4.4 respectively. The findings of Section 4.4
are directly related to the DIA testing procedure. In Section 4.5 we tentatively propose
a design procedure for integrated navigation systems. In Section 4.6 we consider an
example and compare our reliability description with a particular one found in the
literature. Some concluding remarks are given in Section 4.7.

4.2 Design and Quality Assurance

In the introduction we have discussed the concept of quality assurance. In the design
phase of a dynamic system one wants to assure that the results of the estimation
procedure meet the preset quality requirements. We will not go into the specification
of these requirements, and will assume quality requirements have been set. Once a
particular design has been implemented and the system is operational, one has to assure
that the quality of the estimation result is in accordance with the quality requirements
set in the design phase. We will consider the following quality criteria:

precision What is the precision of the state estimators under the working hypothesis?
internal reliability

detectability How well can certain model errors be detected and identified?
separability How well can one make a distinction between different model er-
rors?
external reliability
bias in state estimator What is the impact of (undetected) model errors on
the estimation results?

significance of bias How significant are the biases in the state vector caused
by (undetected) model errors?
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The description of the precision is only valid under the null hypothesis. In Chapter 3
we have discussed the DIA procedure that is used, among other things, to validate this
assumption. The reliability of the system depends on the tests that are executed with
the DIA procedure (actually reliability is only defined if one tests for model misspec-
ifications), and consequently the reliability of the system design has to be analysed,
even if only precision requirements have to be met. The setup of the testing procedure
should be derived from a design procedure in which the type, window length, and test-
ing parameters of the tests are determined. The design procedure can then be regarded
as an intrinsic part of the DIA procedure.
The design procedure will be based on quality measures for:

precision In general the precision of a dynamic system should be analysed by consid-
ering the complete covariance matrix of the state estimator covering all epochs.
In the current chapter we will limit the analysis to (elements of) the covariance
matrices of the predicted and filtered state, because we are primarily interested
in the real-time quality of the dynamic system. The precision of the state vector
elements related to position is visualised by point standard ellipses.

internal reliability Internal reliability is analysed using the so-called Minimal De-
tectable Biases (MDBs). The MDBs can be used as a measure of detectability
and separability.

external reliability We analyse (functions of) biases in the filtered state estimator
caused by models errors of the size of the MDBs. The direct analysis of the biases
is quite laborious and therefore we primarily consider the significance of the bias
in the state vector. A measure of significance is the Bias to Noise Ratio (BNR).

The assessment of the overall quality of a particular design is dependent on all
quality criteria. Only if all quality criteria are taken into account simultaneously the
quality of the estimators of a dynamic system can be assured. Depending on the
application at hand the designer may decide that a certain quality criterium outweighs
the others. If the quality requirements cannot be met, one can consider the following
design options (or design parameters), that consist of changes in the:

functional model The functional model consists of the measurement model and the
dynamic model. The measurement model may be changed by increasing the num-
ber of observations, introducing other types of measurement systems, changing
measurement sampling rates, or by modification of the geometry in the measure-
ment setup. The actual dynamics (or kinematics) of the system underlie the
dynamic model, and hence this model cannot be changed at will. It seems nat-
ural, however, to choose the dynamic model as simple as possible on condition
that the dynamics are properly described.

stochastic model The stochastic model is given by the covariance matrices of the ob-
servations and disturbances. Changes in the stochastic model of the observations
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are directly related to changes in the precision of the measurements (by, for exam-
ple, replacing a system with a similar system of a better precision). Furthermore
a change in the sensor suite will result in a change of the stochastic model of the
observations. The stochastic model of the disturbances strongly depends on the
sophistication of the dynamic model and the (unmodelled) dynamics which the
system is subjected to.

testing procedure In the design phase the parameters of the testing procedure only
have an impact on the reliability description of the system. The testing parame-
ters are the type of model errors one considers, the window lengths of the tests,
and the size and power of the tests.

Changes in the functional and stochastic model have an impact on both the precision
and reliability description of the system. It may be obvious that in practice certain
model parameters cannot be changed (e.g. due to the limited availability of measure-
ment systems). In the optimization procedure one should aim at a system design which
meets, but not exceeds, the quality requirements. Furthermore the conclusion of the
optimization procedure may be that it is impossible to design a system which meets
the quality requirements under the given constraints.
The design procedure should finally provide the user with a description of the:

system rmodel A description of the functional and stochastic model which meets the
quality requirements.

quality of the system design A quantification of the precision and (internal and
external) reliability of the system design.

testing procedure The parameters of the testing procedure which are to be imple-
mented in the system, namely the type of model errors considered, the window
lengths of the tests, and the size and power of the tests.

In the current context we focus on the description of the quality of the system and
the design of a testing strategy. The results of the design procedure are evidently
application dependent (our examples are related to precise positioning applications).
The design procedure itself, however, is generally applicable.

Quality assurance is not realized by merely optimizing the design of the dynamic
system. Omne will actually have to implement the proposed system model and equip the
filter with the chosen testing strategy. During operation the quality of the system is
monitored by the DIA-procedure. After the operation of the system has been completed
one has to characterize the quality of the estimation result and has to demonstrate that
the preset quality requirements have been met. Only if all steps have been completed
the quality of the estimation result is assured. We assume the quality of the estimation
result is described by the same quality measures which are used for the design of the
system. As a consequence we will make no further distinction between the a priori and
a posteriori quality assessment, and will only consider the design of dynamic systems.
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It is very important to realize, however, that the quality of the design is independent
of actual data, whereas the quality of the estimation result is not.

4.3 Precision

The best known and most widely used quality criterion in navigation is doubtless
precision. The performance of navigation systems is at least always specified in terms
of precision by their manufacturers. Generally the integrated navigation system has to
meet certain well defined precision requirements imposed by the application at hand.
The Kalman filter automatically provides the following (local) measures of precision,
viz:
covariance matrix of the estimator of the predicted state at time k: Py
(4.1)

covariance matrix of the estimator of the filtered state at time k: Py

One can thus readily derive the precision (of functions) of estimators of the state vector.
The covariance matrices (4.1) describe the random nature of the state estimators under
the null hypothesis.

Precision is commonly described by the following measures:

- Standard deviation of elements of the state vector. If one considers the ith element
of the filtered state vector, its standard deviation is given as o; = /(Pyjx)si-
Often one is also interested in the precision of certain linear functions of the state
vector. If we consider the linear function § = aTin of the filtered state vector

(with a € R™), the standard deviation of § is given as o; = ,/aTPHka.

- Point standard ellipse (or ellipsoid) for the description of the precision of position
for two- or three-dimensional applications. If we denote the part of the covariance
matrix of the filtered state related to position as P,flzs, the direction and length
of the principal axes of the point standard ellipsoid are given by the eigenvectors
and square root of the eigenvalues of the matrix P:ﬁ: respectively.

The precision measures are dependent on the following design parameters:

- Stochastic model of the observables. It follows directly from the Kalman filter
algorithm that the precision of the state estimator is a direct derivative of the
covariance matrices of the observables y (R) and the disturbances d (@), and a
possible correlation between the observations and disturbances. Improving the
precision of the observations and/or disturbances results in an enhanced precision
of the (filtered and predicted) state estimators.

- Measurement model. The geometry of the measurement setup and the redun-
dancy of the system have a direct impact on the precision of the state estimators.
Increasing, for example, the redundancy (by, e.g., enlarging the number of obser-
vations or adding an additional measurement system) leads to a better precision.
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- Dynamic model. Changes in the dynamic model (which generally also encom-
pass changes in the stochastic model of the disturbances) have an impact on the
precision, especially for the estimator of the predicted state.

It is difficult to quantify the improvement in precision caused by changes in the mea-
surement and dynamic models.

4,3.1 Precision Criteria

The precision requirements for geodetic navigation applications are quite well docu-
mented and in Table 4.1 we provide an overview of precision requirements for some
applications.

Application Precision in RMS required for
position [m] | velocity [cm/s]
gravity (sea) 20 <10
gravity (land, air) 1 (height) < 0.01
gravity gradiometry (air) 20 < 10
relative geoid 1 10
3D-seismic (land,sea) 1-3 50
aeromagnetics 1 30
resource mapping (photogrammetry)
1:50,000 2 100
1:20,000 0.5 25
1:10,000 0.1 5

Table 4.1: Precision requirements for geodetic and high precision navigation applica-
tions (from [SCHWARZ ET AL., 1989]).

In Table 4.1 the precision requirements are specified as RMS errors of the posi-
tion and velocity states. If, for example, position in the plane is given in Easting
(E) and Northing (N) coordinates, the RMS horizontal position error is defined as
RMS = /(0% + 0%/)/2. Because the objectives of dynamic surveys are usually well de-
fined, the precision requirements for (geodetic) navigation applications can be clearly
specified. The specification of precision requirements, however, is far from standardized.
In geodetic practice usually standard deviations or criterion (covariance) matrices are
used to quantify precision. In the navigation community measures such as RMS, DMRS
(measures based on the covariance matrix), CEP (2-D), and SEP (3-D) (radial precision
measures) are commonplace. A review of these measures and their relationship is given
by MERTIKAS ET AL. [1985]. We propose to specify the precision requirements based
on measures that can be derived from the covariance matrices of the state estimators
such as standard deviations or point standard ellipsoids. One has to keep in mind that
for the two-dimensional case the standard ellipse merely corresponds to a 39% confi-
dence region and in the three-dimensional case the standard ellipsoid represents only a
20% confidence region.
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4.3.2 Precision Testing

Given the criteria for precision we want to know if our design can meet the given
requirements. It was seen that for precise positioning purposes the criteria are well
known and therefore (the elements of ) the covariance matrices of the state estimators
can often be directly compared with the requirements. The analysis of precision in
geodetic network design is largely based on the criterion matrix theory developed by
BaaRrDA [1973]. For general purpose networks suitable criterion matrices have been
developed. The variety of applications (and thus realizations) of integrated navigation
systems limit the usefulness of a criterion theory for dynamic systems. We therefore
propose to analyse the precision with measures that are based on the covariance matrix
of the state estimator and can be directly compared with the requirements as specified
in Table 4.1.

4.4 Reliability

In this section we deal with the reliability of dynamic systems. The section is meant to
provide a general overview of the reliability aspects of dynamic system design. Relia-
bility is discussed in [BAARDA, 1977; Kok, 1984] in the context of network design and
for integrated navigation systems in [TEUNISSEN, 1990a]. Internal reliability describes
the model misspecifications which can be detected by the statistical tests with a certain
probability, that is internal reliability provides measures for the detectability of model
errors. The separability between various alternative hypotheses is usually considered
part of the internal reliability description as well. External reliability describes the
influence of model misspecifications on the state estimators.

We begin this section on reliability with the concept of internal reliability and
establish a link with the testing procedure discussed in Chapter 3. Internal reliability
can be analysed by the minimal detectable bias (MDB), and we will use the MDB
primarily as a measure of detectability. It will be indicated how the MDB can be used
in the design procedure and how it is affected by various model and testing parameters.
We then proceed with a discussion of external reliability and show how the MDBs are
propagated as biases into the state estimators. A measure of significance of this bias is
the bias to noise ratio (BNR) and we will show how the BNR can be used in the design
procedure.

4.4.1 Internal Reliability

In general one will try to devise a testing procedure that gives a reasonable protection
against type I (false alarm) and type II (missed detection) errors. Therefore one usually
fixes the size and power of the test. In geodetic practice, however, one is more interested
in the model error that can be detected with a certain probability than in the power
of the test itself (cf. the discussion in Chapter 3). By fixing the size a and power v of
the one-dimensional test one fixes the non-centrality parameter Ag. Assuming we use
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the B-method of testing A is fixed for tests of arbitrary dimension. One can then solve
the b-dimensional model error V from the equation of the non-centrality parameter (cf.
eq. 3.39):

X =Viclg;le,v, (4.2)

which can also be interpreted geometrically as (with metric @ 1!):
X =||IC,V))? . (4.3)

The bx 1 vector V is a measure of the bias one can detect with a prefixed probability v,
i.e. V is a measure of detectability. The quadratic form (4.2) represents the equation
for a b-dimensional (hyper- )ellipsoid. To obtain a convenient description we choose to
parametrize the b x 1 vector V as (cf. [TEUNISSEN ET AL., 1987]):

v =|vid, (4.4)
where d is a b x 1 unit vector. Inserting (4.4) in (4.2) it follows via

Xo = d"CIQ;CLd ||V, (4.5)

Ao
=20 4. 4.6
v dTCTQ;'C,d (46)

If one lets d scan the unit (hyper-)sphere the b x 1 vector V describes the (hyper-
Jellipsoidal boundary region of biases. Note that if the test is based on a window from
time I to k, CTQ'C, can be computed as 3.5, C;{.Q;l.l Cy;. The biases related to the
principal axes of the (hyper-)ellipsoid given by (4.2) can be computed as

that

Ao

3
for j = 1,...,b, where A, and d; are one of the b number of eigenvalues and associated
normalized eigenvectors of the matrix CJ Q;!C,. The least detectable bias is connected
with the smallest eigenvalue. If one considers one-dimensional hypotheses the matrix

C, reduces to a vector ¢, and (4.6) reduces to

Ao
V=//——. 4.8
\ cTQi'e, (48)

Up to this point we considered the non-centrality parameter of a test associated
with its corresponding alternative hypothesis. Tt is, however, well known that the test
statistics are mutually correlated and hence one can also consider the non-centrality
parameter of tests which do not correspond with the actual model error. The non-
centrality parameter then provides information on how model errors affect other test
statistics. If we assume the true alternative hypothesis is parametrized as

HY“ .y ~ N(C,V,Q.), (4.9)
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it follows from the definition of the test statistic
T =v7Q;'Co(C/Q,'C.)1C Q5
that the non-centrality parameter is given as:
A=VTC,Q;'C,(ClQ;'C,)'CQ; T,V . (4.10)

Note that (4.10) indeed reduces to (4.2) if C, = C,. The non-centrality parameter
(4.10) can also be interpreted in geometric terms (cf. Fig. 4.1) as:

A = ||P;C,V|? (4.11)

A = ||CuVY|?cos? ¢, (4.12)

where Pg, is the orthogonal projector that projects onto the range space R(C,). The
angle ¢ between C, and the range space R(C,) is a measure of the separability between
the alternative hypothesis associated with the executed test and the true alternative
hypothesis. If the angle ¢ is small it is difficult to distinguish between H4 and HY"c.
From (4.3) and (4.12) it follows that A < Ag; in other words the detection power of all
tests which do not correspond with H%"® are smaller than that of the optimal test.

C"V” ‘ HAW

R(Cv)

Figure 4.1: Predicted residual space with metric ;! and the two hypotheses H4 and
H‘t4rue.

If one considers one-dimensional hypotheses the matrices C, and C, reduce to
the vectors ¢, and ¢, respectively. The test associated with HY"® has non-centrality
parameter

Xo =2 Qe V? (4.13)
whereas all other one-dimensional tests have non-centrality parameter (cf. eq. 4.10):
A= (EIQJICvP 2

= ve, 4.14
CElecv ( )
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which using (4.12) can be written as:
= (cfQ;'¢,)V?cos? ¢, (4.15)

with
(€ Q5'cv)’

(EIQJIEU)(CIQJI%) ‘
From (4.16) it follows that if one considers one-dimensional tests, cos? ¢ represents
the square of the correlation coefficient between the test statistics. The correspondence
between cos? ¢ and the correlation coefficient cannot be generalized in a straightforward
manner to multi-dimensional test statistics. Let us (for the sake of completeness)
consider two multi-dimensional alternative hypotheses (not necessarily of the same
dimension) parametrized as

cos’ ¢ = (4.16)

Haiv ~ N(CyV,Qy); Ha;:v ~ N(Cy;V,Qy). (4.17)
FORSTNER [1983] has shown that
max cos? ¢;; = max A(M;;), (4.18)

with
Mij = (C;r;QJICvj)(C;l;Q;]Cvj)_1(Cz};QJICw)(CﬁQ;lCW)_] 3

where max A(M;;) is the largest eigenvalue of M;; and ¢;; is the angle between any pair
of column vectors of which one is contained in the range space R(C,,) and one in the
range space R(C,,) respectively.

4.4.2 The Minimal Detectable Bias

The Minimal Detectable Bias (MDB) is defined as the size of the model error that can
be detected by a one-ditmensional test. The non-centrality parameter has been fixed at
Ao. We start with the most general definition of the MDB and we consider the following
two one-dimensional alternative hypotheses (not necessarily related to the same type
of model error):

Hy :v ~ N(c,,V,Qu) ;Ha,:v ~ N(cy,V,Q0) (4.19)

1

where the model misspecifications related to H,4, and H 4, start at ; and [/, respectively.
If we assume HY"® = H,, the MDB related to the test associated with H4, at time k
is (cf. egs. 4.12, 4.14, and 4.16):

Vi (4.20)

\/(C Q! Cuz)COS2 P12

e
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The scalars (¢.Q;'¢,;) can be computed as (Elrc—max(ll,lz) v!'Qv' cy;, ) With 4,5 = 1,2.
The MDB associated with a test not corresponding to H'"® is always larger than the
MDB for the test corresponding to H'® (this is in agreement with the remarks made
in connection with eq. 4.12). The smallest MDB at time k is obtained if H,, and Hy,
relate to the same model error and Iy = I; (i.e. H4, = Hy,). This follows directly
from (4.20) because only then cos? ¢ is equal to one. The generality of the definitions
(4.20) (or alternatively (4.21)) allows the use of the MDB as a measure of detectability
and separability. An illustration of the use of the MDB as a measure of detectability
and separability in analytical form is given by TEUNISSEN [1990a, 1990b].

We will use the MDB as a measure of detectability. Therefore we limit ourselves
to the case that Iy = I, = [ and we assume the test is performed for the actual model
error. The MDB associated with a test at time k for a model misspecification with
time of occurence ! (denoted as |V/*|) is then given as (cf. eq. 4.20):

Ve = ) 4.22
v \/2 rh (4.22)

Note that the MDBs are not dimensionless; the units of a particular MDB correspond
with those of the related alternative hypothesis (the MDB of an outlier or slip in
a range observation, for example, is specified in metres). The summation operation
in the denominator of (4.22) causes the MDB to decrease with increasing window
length (k — 1 + 1) of the test. All subsequent derivations and computations will be
based on (4.22). The separability of one-dimensional alternative hypotheses will be
analysed using the correlation coefficient \/cos? ¢ (cf. eq. 4.16). If we consider the two
hypotheses given by (4.19) the correlation coefficient can be computed as:

k
T A~-
X ; Q. Cvz;
y= (S}
P12 = . j=max(i, ly) - ] (4.23)
T A- T A-

(Zt cvleuj]cvlj)l/z(; cvzj ij]cv2j)]/2
Ji=h J=l2

4.4.3 The Minimal Detectable Bias as a Design Tool

Minimal detectable biases are a convenient design tool because they can be easily
interpreted. The designer of an integrated navigation system will generally have some
knowledge of the type and magnitude of the model errors that are likely to occur. By
means of the MDBs the designer can judge if these biases can really be detected by the
proposed testing procedure. In the design procedure the MDB can be used to:

1. Verify the chosen testing strategy. The design of the integrated navigation sys-
tem should be improved if the MDB computations reveal that certain biases are
poorly detectable. If one knows from experience that a particular bias has little
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impact on the estimation result and is not likely to occur, the corresponding test
statistic may be deleted. More often, however, the effect of an actual bias may be
detrimental to (part of) the estimation result. Then the design of the integrated
navigation system has to be reconsidered (by, for example, adding additional sen-
sors), or the testing parameters have to be adjusted (by, for example, increasing
the window length of the tests).

. Determine the delays and lags of the tests. The MDB provides a useful tool

for the choice of the delays and lags of the tests for various types of alternative
hypotheses (cf. Section 3.5.3). If, for example, the detection power of the local
test is too small (i.e. a particular MDB is larger than the size of the likely model
error), one may use tests with a certain delay of detection (from (4.22) follows
that the MDB decreases with increasing window length). If the detection power
of the local test is insufficient one could even consider not to execute the local
test (one then introduces a certain lag). We still suggest to choose the lag of the
tests equal to zero, because then real-time identification of model errors remains
possible (a somewhat less likely model error could be larger than the MDB). The
general idea of choosing an appropriate delay is illustrated in Fig. 4.2, where the
delay of the test is determined by the point at which no significant decrease of
the MDB occurs.

. Compute measures of external reliability. In Sections 4.4.4 and 4.4.5 we will show

how the bias in the state estimator due to an model error with the size of the
MDB can be computed and analyzed in a straightforward manner.

The minimal detectable biases are at the base of the description of the internal and
external reliability, and as such they are pivotal in reliability theory.

l

k — k - k —

0 1 2 3 4 5 ! 83 59 55 54 54 54 l z ¢ =2 — - -
0 1 2 3 4 83 59 55 54 54 l T ¢ T — -
01 2 3 83 59 55 54 T z = -
01 2 8.3 59 5.5 T T =
01 8.3 5.9 z =z
0 8.3 x

(a) (®) (©)

Figure 4.2: Use of the MDB to determine the delay of the tests; (a) Delay (k — ) in
computing test statistics for [ < k, with k time of testing and [ time of occurence model
misspecification; (b) MDB-matrix |[V'*| for a hypothetical test; (c) Test statistics t':
computed (z) with delay k — ! = 2 (or window length k — I+ 1 = 3).

The size of the MDB is influenced by the following design parameters:



4.4

Reliability 99

Measurement model. If more sensors are integrated into the navigation system
the MDBs will generally decrease as the redundancy of the model is increased.
How much the MDBs decrease depends mainly on the type, number and precision
of the additional sensors. With each additional observation the number of MDBs
to be evaluated increases.

Measurement geometry. The geometry is an aspect in case land or space-based
radiopositioning systems are part of the sensor set. In case, for example, only
one (radio-)positioning system is used the size of the MDBs depends to a large
extent on the transmitter geometry relative to the sensor position.

Sample rate of sensors. Increasing the measurement sample rate results in a
smaller contribution of the system noise between measurement updates and hence

in smaller MDBs.

Choice of the state-space model. If more sensors are integrated into the navigation
system, the state space model can (or has to) be expanded by additional states
(e.g. instrumental biases). The impact of changes in the dynamic model (usually

accompanied by changes in the covariance matrix of the disturbances) on the
MDBs is difficult to predict.

Stochastic model of the observations. The covariance matrix of the observations
(R) enters the definition of the MDBs directly via the covariance matrix of the
predicted residuals (Q,,) and indirectly via the vectors c,;. Improvement of the
measurement precision results in smaller MDBs.

Stochastic model of the disturbances. The covariance matrix of the disturbances
(Q) enters the covariance matrix of predicted residuals (Q,;) via the variance of
the predicted observations and indirectly via the vectors c,;. Lower system noise
leads to smaller MDBs.

Filter concept. The data processing may be performed using one central filter or
be based on a decentralized filter approach [CARLSON, 1988]. The data processing
scheme has an impact on the testing strategy and thus on the MDBs.

Testing parameters. The MDBs are a function of the non-centrality parameter Ag,
which in its turn is a monotonic decreasing function of the level of significance ag
of the test (for a fixed power) and a monotonic increasing function of the power
vo (for a fixed level of significance) of the test. Increasing the window length
(k — 1+ 1) results in smaller MDBs.

For most practical applications, it is difficult to quantify the actual effect of the design
parameters on the MDBs. For a simple case we can, however, demonstrate the prop-
erties of the MDB by an analytical example. We consider the following model with
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one-dimensional state and observation vector (i.e. m =1 and n = 1):

E{dc} = 2k — 241 D{d} = qAT?
(4.24)
E{y,} == Dy }=r,

where AT is the (constant) sample interval. If we assume that the filter for model
(4.24) is in steady state, it can be shown that the MDB associated with the local test
for an outlier in an observation can be written as:

v \//\O[qATZ(l +w + /1 + 2w)] 2r (4.25)

with w = ——

2 qAT? "’

where w > 0 because r and ¢ are variances. Equation (4.25) can be derived by solving
for the steady state variance of the predicted state analogously to FRIEDLAND [1973],
who considers a two-dimensional state space model. From (4.25) it can be seen that:

- The MDB increases if the system noise ¢ increases.

The MDB increases if the measurement noise r increases.

The MDB increases if the sample interval AT increases.
- The MDB increases if the non-centrality parameter A increases.

These findings are in accordance with the general properties of the MDB listed above.

4.4.4 External Reliability

Undetected model errors have an impact on the state estimates. It is of interest to
analyse how particular model errors are propagated as biases in the state vector or
functions thereof. The effect of model errors on the filtered state follows directly from
the filter algorithm. For a slip (of the size of the MDB) in observation ¢ starting at
time ! (¢; = ¢; V j > 1) the bias in the filtered state at time k is

k k
V‘ik|k = ®p k+1 (Z{ H [Q,‘_H,,'(I — K,'A,')]} §j+1,1KjCj) Vé’k, (4.26)

1=l 1=3+1

where Vo* is the MDB associated with the test statistic t¥. The bias in the filtered
state at time k due to an outlier in o