
Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Managing	Point	Clouds	in	Oracle	
Databases	
NCG/OGh	Point	Cloud	Seminar	
December	8	2015	

Albert	Godfrind	
Oracle	CorporaEon	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Safe	Harbor	Statement	

The	following	is	intended	to	outline	our	general	product	direcEon.	It	is	intended	for	
informaEon	purposes	only,	and	may	not	be	incorporated	into	any	contract.	It	is	not	a	
commitment	to	deliver	any	material,	code,	or	funcEonality,	and	should	not	be	relied	upon	
in	making	purchasing	decisions.	The	development,	release,	and	Eming	of	any	features	or	
funcEonality	described	for	Oracle’s	products	remains	at	the	sole	discreEon	of	Oracle.	

2	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Overview	
•  Some	Background	…	

• Oracle	Data	Models	for	Point	Clouds	
– Blocked	(R-tree,	Hilbert),	flat,	hybrid	

•  Loading	Point	Clouds	
– Create,	load,	block,	pyramid	

• Processing	Point	Clouds	
– Clip	and	filter,	nearest	neighbor,	contours	

• Conclusions	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Some	Background	…	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Requirements	for	Managing	3D	Point	Data	at	NaEonal	Level	

Image	courtesy	of:	IQso],	Austria	

Im
ag
e	
co
ur
te
sy
	o
f:	
PD

O
K,
	N
L	

Screenshot	courtesy	of	Rico	Richter,	HPI	

Screenshot	courtesy	of	Rico	Richter,	HPI	

Integra
Bon	of

	

large	d
ata	set

s	

from	divers
e	

source
s	&	for

mats	

City	Models	
Data	intensive	processing	

Large	user	community	

Large	data	sets	

SpaBal	DB	

Open	
Standards	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Example	Dataset:		
Actual	Height	Model	of	the	Netherlands	(AHN2)	

Tested	with	Peter	v.	Oosterom,	TU	Del],	NLeSC	(Netherlands	eScience	Center),	Fugro	

•  Covering	surface	of	the	enEre	country	

•  6	-10	pts/m2	!	640	billion	pts	

•  60,185	LAZ	files,	987	GB	in	total,		
11.64	TB	uncompressed	

•  (X,	Y,	Z)	only	

•  Future	plans	
–  AHN3	at	even	higher	resoluEon	
–  Cyclorama-based	photogrammetric	

datasets	(50x		AHN2,	and	with	RGB)		

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Introducing	Oracle	Exadata	Database	Machine	

"  Standard	Database	Servers	
–  8x		2-socket	servers	 	!	192	cores,	2TB	DRAM	
	or	

–  2x		8-socket	servers	 	!	160	cores,	4TB	DRAM	

"  Unified	Ultra-Fast	Network	
–  40	Gb	InfiniBand	internal	connecEvity	

–  10	Gb	or	1	Gb	Ethernet	data	center	connecEvity	

"  Scale-out	Intelligent	Storage	Servers	
–  14x		2-socket	servers 	!		168	cores	in	storage	

–  168	SAS	disk	drives			 	!		672	TB	HC	or	200	TB	HP	

–  56	Flash	PCI	cards				 	!	44	TB	Flash	+	compression	
Fully	Redundant	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Key	Exadata	InnovaEons	

•  Intelligent storage
–  Smart Scan query offload
–  Scale-out storage

+	 +	+	

•  Hybrid Columnar Compression
–  10x compression for warehouses
–  15x compression for archives

Compressed	

primary	

standby	

test	

dev’t	

backup	

Uncompressed	

•  Smart Flash Cache
–  Accelerates random I/O up to 30x
–  Doubles data scan rate

Data	remains	
compressed	for	
scans	and	in	Flash	

Benefits	
MulEply	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Start	Small	and	Grow	

Half	Rack	
96	cores	

Full	Rack	
192	cores	

Quarter	Rack	
48	cores	

Eighth	Rack	
24	cores	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Managing	3D	objects	in	databases	

•  Simple	Surfaces	
– Face	=	3D	Polygon		

•  Composite	Surface	
– MulEple	connected	faces	

•  Simple	Solid	
– Closed	composite	surface	

•  Composite	Solid	
– MulEple	connected	simple	
solids	

•  Extrusion	
– GeneraEng	solids	from	2D	
polygons	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Managing	3D	objects	in	databases	
• Other	3D	Data	types:	

– Point	Clouds	
– Triangulated	Irregular	Networks	(TINs)	
– Geo-referenced	gridded	data	(DEMs)	

•  Storage	Model	
– One	logical	object,	containing	all	anributes	and	metadata	
– Many	physical	storage	blocks	which	can	be	managed	individually	

•  Examples	of	in-database	processing	
– Pyramiding	for	efficient	visualizaEon	
– Point	cloud	to	contour	line	conversion		

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

3D	Processing	Workflows	

Query	and	Clip	
Convert	to	
Geometries	

ElevaEon	
Contour	Lines	

LiDAR	Files	

Load	

LiDAR	Files	LiDAR	Files	

Flat	files	

Point	Cloud	
tables	

Flat	files	Flat	files	

Load	/	Create	PC	

Create	TIN	

Raster	DEM	

Query	and	Clip	

Convert	to	
Geometries	

Generate	DEM	

Project	2D	
geometry	on	TIN	

TIN	tables	

Geometries	
(Buildings)	

Change	
DetecEon	
(Buildings,	
VegetaEon)	

Viewer	
(pyramiding)	

DistribuEon.	

ClassificaEon	

Data	
ConflaEon	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Oracle	Point	Cloud	Models	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

How	To	Manage	Large	Point	Sets	in	Databases	?	

Principle:	SpaEal	ParEEoning	

• Create:	
– SpaEally	parEEon	the	points	into	“blocks”		

• Query:	
– Find	candidate	blocks	
– Test	points	within	candidates	
– Very	scalable	

Query	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Oracle	Storage	Models		
•  Blocked	(SpaEal	ParEEoning	&	BLOB	encoding)	

–  R-tree	
–  Hilbert	R-tree	
…	However:	parBBoning	expensive;	is	it	even	required	w/	query	offload?	

•  Flat	(Non-SpaEal	ParEEoning	on	flat	tables)	
–  B-tree	
–  Exadata:	no	index	/	query	offload	/	compression	

–  Range	ParEEoning	
…	However:	blocked	model	scaled	beIer,	on	non-Exadata	

•  Hybrid	(SpaEal	ParEEoning	via	Index	Organized	Table)	
–  Hilbert	R-tree	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Pro’s	and	Con’s	of	each	Model	

Storage	model	 Pro	 Con	

Blocked	 • 	Storage	(compression)	
• 	Scaling	
• 	Indexing	
• 	DB	funcEonaliEes	
• 	Complex	queries		

• 	Loading	(create	blocks)	
• 	Block	overhead	in	queries	
(noEceable	in	simple	queries)	

Flat	 • 	Faster	loading	
• 	DB	funcEonaliEes	
• 	Dynamic	schema	(#	blocked)	
• 	Simple	queries	

• 	Storage	(except	Exadata)	
• 	Limits	to	scaling	(except	Exadata)	
• 	Indexing	(except	Exadata)	

Hybrid	 • Faster	queries	(#	blocked)	
• More	scalable	queries	(#	flat)	
• Dynamic	schema	(#	blocked)	

• 	No	compression	(no	HCC	with	IOT)	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“Blocked”	Model	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Use	SpaBal	ParEEoning	with	binary	blocks	

BLOB	Encoding	
–  64bit	IEEE	double	(for	each	dimension)	

–  4-byte	big-endian	int	(Block	ID)	
–  4-byte	big-endian	int	(Pt	ID)	Query	 Query	

RTREE	 HILBERT	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Object-based	Storage	Model:	the	SDO_PC	data	type	

19	

Logical	structures	
Contains	point	cloud		
metadata	and	footprint	

Also	contains	a	pointers	to	
one	or	more	block	tables	

Physical	structures	
Point	cloud	block	tables	
Contain	the	points	

Can	be	very	large	
Could	be	parEEoned	
Add	new	tables	as	
necessary	pc	1	

pc	2	
pc	3	
pc	4	
pc	5	
pc	6	

	pc	1	blocks	
	pc	2	blocks	
	pc	3	blocks	
	pc	4	blocks	
	pc	5	blocks	
	pc	6	blocks	

CREATE TABLE point_clouds (
 id NUMBER,
 capture_ts TIMESTAMP,
 point_cloud SDO_PC
);

CREATE TABLE pc_blocks
OF SDO_PC_BLK (
 PRIMARY KEY (
 obj_id, blk_id
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Workflow	for	Blocked	Model	

Point Cloud
blocks Direct	load	from	

LAS	files	

Flat files Flat files LiDAR files LiDAR loader

Point tables

LiDAR Files Point loader LiDAR Files Flat Files

Load	flat	ASCII	files	
into	point	tables	…	

…	then	build	the	point	
cloud	from	the	point	tables	

Build from point
tables

Query and Clip Convert to
Geometries

Generate
Elevation

Contour Lines

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Workflow	for	Blocked	Model	

Point Cloud
blocks Direct	load	from	

LAS	files	

Flat files Flat files LiDAR files LiDAR loader

Point tables

LiDAR Files Point loader LiDAR Files Flat Files

Load	flat	ASCII	files	
into	point	tables	…	

…	then	build	the	point	
cloud	from	the	point	tables	

Build from point
tables

Query and Clip Convert to
Geometries

Generate
Elevation

Contour Lines

SQL*Loader

PDAL

INIT()
CREATE()

CLIP_PC()
SDO_PC_NN()

CREATE_CONTOUR
_GEOMETRIES()

TO_GEOME
TRY()

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Loading	(1/3):	Load	the	Flat	File	into	a	Point	Table	

• Input	is	a	csv	text	file	
• Load	using	SQL*Loader	

CREATE TABLE input_points (
 rid VARCHAR2(40),
 val_d1 NUMBER,
 val_d2 NUMBER,
 val_d3 NUMBER
)

-73.999922, 40.000002, 74
-73.999921, 40.000002, 27
-73.999920, 40.000002, 76
-73.999919, 40.000002, 72
-73.999918, 40.000002, 91
-73.999917, 40.000002, 96

LOAD DATA
 TRUNCATE
 INTO TABLE input_points
 FIELDS TERMINATED BY ',' (
 rid sequence,
 val_d1,
 val_d2,
 val_d3
)

sqlldr scott/tiger
 control=point_table.ctl
 data=input_points.dat
 direct=true
 columnarrayrows=20000
 streamsize=2560000
 multithreading=true

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Loading	(2/3):	IniEalize	the	Point	Cloud	

•  Define	the	structure	and	organizaBon	
of	the	point	cloud	
–  ResoluEon,	dimensions,	extent	

–  Block	capacity	

•  Specify	the	locaBon	of	the	blocks	for	
each	point	cloud	
–  Name	of	the	point	blocks	table	

•  The	unique	idenEfier	of	the	point	
cloud	is	automaEcally	generated.	

•  Use	default	spaEal	parEEoning	
(RTREE)	

INSERT INTO pcs (ID, POINT_CLOUD)
VALUES (
 1001,
 sdo_pc_pkg.init(
 basetable => 'PCS',
 basecol => 'PC',
 blktable => 'BLOCKS',
 ptn_params =>
 'blk_capacity=10000',
 pc_extent =>
 sdo_geometry(2003, null, null,
 sdo_elem_info_array(1,1003,3),
 sdo_ordinate_array(
 289020.90, 4320942.61,
 290106.02, 4323641.57
)
),
 pc_tol => 0.05,
 pc_tot_dimensions => 3,
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

IniEalize	the	Point	Cloud	for	Hilbert	SpaEal	ParEEoning	
sdo_pc_pkg.init(
 basetable => 'PCS',
 basecol => 'PC',
 blktable => 'BLOCKS',
 ptn_params => 'blk_capacity=10000',
 pc_extent =>
 sdo_geometry(2003, null, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(289020.90, 4320942.61, 290106.02, 4323641.57)
),
 pc_tol => 0.05,
 pc_tot_dimensions => 3,
 pc_domain => null,
 pc_val_attr_tables => null,
 pc_other_attrs => xmltype(
 '<opc:sdoPcObjectMetadata
 xmlns:opc="http://xmlns.oracle.com/spatial/vis3d/2011/sdovis3d.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 blockingMethod="Hilbert R-tree">
 </opc:sdoPcObjectMetadata>')
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

	Loading	(3/3):	Create	the	Point	Cloud	from	the	Point	Table	

• Read	the	points	from	the	point	
table	

•  SpaBally	cluster	the	points	as	
specified	during	iniEalizaEon	
(RTREE	or	HILBERT)	

• Generate	and	fill	the	PC	blocks	
• Also	creates	the	spaEal	index	
over	the	block	extents.	

DECLARE
 PC SDO_PC;
BEGIN
 SELECT POINT_CLOUD INTO PC
 FROM PCS WHERE ID = 1001;
 SDO_PC_PKG.CREATE_PC (
 PC,
 'INPUT_POINTS’
);
END;
/

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Incremental	Loading	

$JAVA_HOME/bin/java -Xms2048m
 -classpath /…/ojdbc6.jar:/…/sdoutl.jar
oracle.spatial.util.Las2SqlLdrIndep

 1
 BLOCKS
 BLOCK_ID_SEQ
 /…/ahn_bench023090_01.las
 10000
 jdbc:oracle:thin:@//host:port/service
 largepc
 largepc
 100000000

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Connecting to jdbc:oracle:thin:@//host:port/sid...
Reading 100,000,000 points... 23.324 s. Sorting: 65.362 s. Writing: 164.608 s
Reading 99,995,084 points... 28.793 s. Sorting: 63.231 s. Writing: 187.621 s
Reading 99,997,274 points... 38.275 s. Sorting: 138.074 s. Writing: 216.841 s
Reading 99,991,996 points... 50.051 s. Sorting: 141.184 s. Writing: 236.634 s
Reading 99,990,636 points... 54.492 s. Sorting: 161.936 s. Writing: 240.436 s
Reading 99,990,636 points... 58.812 s. Sorting: 149.797 s. Writing: 244.515 s
Reading 99,990,637 points... 58.353 s. Sorting: 148.561 s. Writing: 242.785 s
Reading 99,990,638 points... 60.001 s. Sorting: 151.770 s. Writing: 242.187 s
Reading 99,990,639 points... 61.795 s. Sorting: 153.668 s. Writing: 243.461 s
Reading 99,990,640 points... 60.733 s. Sorting: 150.150 s. Writing: 243.077 s
Reading 99,990,641 points... 60.419 s. Sorting: 151.012 s. Writing: 244.065 s
Reading 99,999,834 points... 62.434 s. Sorting: 151.908 s. Writing: 246.490 s
Reading 99,990,124 points... 58.342 s. Sorting: 152.249 s. Writing: 245.693 s
Reading 99,999,835 points... 57.816 s. Sorting: 151.361 s. Writing: 244.788 s
Reading 99,990,145 points... 56.882 s. Sorting: 153.129 s. Writing: 245.248 s
Reading 99,997,246 points... 56.489 s. Sorting: 152.962 s. Writing: 244.226 s
Reading 99,992,320 points... 58.604 s. Sorting: 150.968 s. Writing: 253.848 s
Reading 99,990,606 points... 59.011 s. Sorting: 162.808 s. Writing: 253.697 s
Reading 99,990,607 points... 56.012 s. Sorting: 151.588 s. Writing: 255.625 s
Reading 99,990,608 points... 57.417 s. Sorting: 152.561 s. Writing: 256.142 s
Reading 139,854 points... 0.110 s. Sorting: 0.097 s. Writing: 0.375 s
--
Read 2,000,000,000 points...1,078.165 s. Sorting:2,854.376 s. Writing:4,752.362 s
Time elapsed......................... 8,708.131 s

2	Billion	points	loaded	in	just	about	2.5	hours	@	230,000	points/second	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying:	CLIP_PC	

• Returns	the	blocks	that	match	the	query	window	

• Blocks	only	contain	the	points	that	match	the	window	

select *
from table(
 sdo_pc_pkg.clip_pc(
 inp => (select pc from pcs where id = 1),
 ind_dim_qry => sdo_geometry(2003, null, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(10, 10, 14, 14)
),
 other_dim_qry => null,
 qry_min_res => null,
 qry_max_res => null
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Return	Individual	Points	
select query_points.x, query_points.y, query_points.z
from table (
 sdo_pc_pkg.clip_pc(
 inp => (select pc from pcs where id = 1),
 ind_dim_qry => sdo_geometry(2003, null, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(10, 10, 14, 14)
),
 other_dim_qry => null,
 qry_min_res => null,
 qry_max_res => null)
) query_blocks,
 table (
 sdo_util.getvertices(
 sdo_pc_pkg.to_geometry(
 pts => query_blocks.points,
 num_pts => query_blocks.num_points,
 pc_tot_dim => 3,
 srid => null
)
)
) query_points;

•  Convert	each	block	into	
a	SDO_GEOMETRY	
object		

•  Extract	points	from	that	
object	into	a	stream	of	
X,	Y,	Z	columns	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Filter	on	addiEonal	dimensions	(Z	and	Intensity)	
select query_points.x, query_points.y, query_points.z, query_points.w intensity
from table(
 sdo_pc_pkg.clip_pc(
 inp => (select pc from pcs where id = 1),
 ind_dim_qry => sdo_geometry(2003, null, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(10, 10, 14, 14)
),
 other_dim_qry => sdo_mbr(
 lower_left => sdo_vpoint_type(123, 1),
 upper_right => sdo_vpoint_type(123, 1000)),
 qry_min_res => null,
 qry_max_res => null
) query_blocks,
 table(
 sdo_util.getvertices(
 sdo_pc_pkg.to_geometry(
 pts => query_blocks.points,
 num_pts => query_blocks.num_points,
 pc_tot_dim => 4,
 srid => null
)
)
) query_points;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Filter	on	Non-Blocked	Dimensions	
select query_points.x, query_points.y, query_points.z, query_points.w Intensity, -- followed by v5 - v11
 out.non_blocked_dim
from
 table(
 sdo_pc_pkg.clip_pc(
 inp => (select pc from pcs where id = 1),
 ind_dim_qry => sdo_geometry(
 2003,
 null,
 null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(10, 10, 14, 14)),
 other_dim_qry => sdo_mbr(
 lower_left => sdo_vpoint_type(123, 1),
 upper_right => sdo_vpoint_type(123, 1000)),
 qry_min_res => 1,
 qry_max_res => 1)) query_blocks,
 table(
 sdo_util.getvertices(
 geometry => sdo_pc_pkg.to_geometry(
 pts => query_blocks.points,
 num_pts => query_blocks.num_points,
 pc_tot_dim => 4,
 srid => null ,
 get_ids => 1))) query_points ,
 pcs_out out
where
 out.ptn_id = query_points.v5 and -- v5 is blk_id, v6 is pt_id
 out.point_id = query_points.v6;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying	in	parallel	(mulEple	windows):	CLIP_PC_PARALLEL	

with candidates AS (
 select blocks.blk_id, subqueries.ind_dim_qry, subqueries.other_dim_qry
 from
 pc_blocks blocks,
 (
 select 1 min_res, 1 max_res, :window ind_dim_qry, cast(null as sdo_mbr) other_dim_qry from dual
 union all
 select 2 min_res, 5 max_res, :window ind_dim_qry, cast(null as sdo_mbr) other_dim_qry from dual
) subqueries
 where
 blocks.obj_id = 1 and
 blocks.pcblk_min_res between min_res and max_res and
 SDO_ANYINTERACT(blocks.blk_extent, subqueries.ind_dim_qry) = 'TRUE'
)
select /*+ parallel(32) */ *
from table (
 sdo_pc_pkg.clip_pc_parallel(
 blocks => cursor(select * from candidates),
 inp => (select pc from pcs where id = 1)
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Finding	Nearest	Points:	SDO_PC_NN	
select rownum pt_pos,
 sdo_geometry (3001, null, sdo_point_type(x, y, z), null, null) pts
from table (
 sdo_util.getvertices(
 sdo_pc_pkg.to_geometry(
 pts => sdo_pc_pkg.sdo_pc_nn(
 pc => (select pc from pcs where pc_id = 1),
 center => sdo_geometry(3001, null,
 sdo_point_type(15, 15, 30), null, null),
 n => 3200
),
 num_pts => 3200,
 pc_tot_dim => 3,
 srid => null,
 blk_domain => null,
 get_ids => 1
)
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Finding	Nearest	Points:	SDO_PC_NN_FOR_EACH	
with candidates AS (
 select
 blocks.blk_id,
 SDO_GEOM.SDO_INTERSECTION(subqueries.ind_dim_qry, blocks.blk_extent, 0.05),
 subqueries.other_dim_qry
 from
 blocks blocks,
 (
 select 1 min_res, 1 max_res, :window ind_dim_qry, cast(null as sdo_mbr) other_dim_qry from dual
 union all
 select 2 min_res, 5 max_res, :window ind_dim_qry, cast(null as sdo_mbr) other_dim_qry from dual
) subqueries
 where
 blocks.obj_id = 1 and
 blocks.pcblk_min_res between min_res and max_res and
 SDO_ANYINTERACT(blocks.blk_extent, subqueries.ind_dim_qry) = 'TRUE'
)
select /*+ parallel (2) */ *
from table(
 sdo_pc_pkg.sdo_pc_nn_for_each(
 blocks => cursor(select * from candidates),
 pc => (select pc from pcs where id = 1),
 n => 10,
 max_dist => 10,
 qry_min_res => 1,
 qry_max_res => 1
)
)
order by obj_id, blk_id, pt_id, neighbor_rank;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“Flat”	Model	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  “Back	to	basics…”	a	simple	flat	
relaBonal	model	

• X,	Y,	Z	and	other	anributes	stored	
as	ordinary	columns	

• No	index	needed	on	Exadata	
• Can	parEEon	on	X,	Y	,Z		

36	

Flat	Storage	Model:	Simple	Point	Tables	
CREATE TABLE points (
 x NUMBER,
 y NUMBER,
 z NUMBER,
 intensity NUMBER,
 returnval NUMBER,
 red NUMBER,
 green NUMBER,
 blue NUMBER
);

•  HCC	compression,	for	extremely	high	compression	rates	

•  Parallel	Enabled	Smart	Scan	for	extreme	performance,	including	spaEal	queries.	

Takes	advantage	of	intelligent	Exadata	storage	servers	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Workflow	for	Flat	Model	

Query and Clip Convert to
Geometries

LiDAR Files

Copy

LiDAR Files Flat Files

Flat files

Point table

Flat files LiDAR files

Copy

Direct	load	from	
LAS	files	

Direct	load	from	
flat	ASCII	files	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Workflow	for	Flat	Model	

Query and Clip Convert to
Geometries

LiDAR Files

Copy

LiDAR Files Flat Files

Flat files

Point table

Flat files LiDAR files

Copy

Direct	load	from	
LAS	files	

Direct	load	from	
flat	ASCII	files	

External Table

External Table

SDO_PC_PKG.
CLIP_PC_FLAT()

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Loading:	Simple	and	Direct	

• Define	flat	files	and	LAS	files	as	external	tables	
• Pre-processor	extracts	points	from	LAS	files	

•  Loading	is	a	simple	data	copy	from	the	external	table	
to	the	point	table	

39	

LiDAR Files

Copy

LiDAR Files Flat Files

Flat files

Point table

Flat files LiDAR files

Copy CREATE TABLE points AS
SELECT ...
FROM ...

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Loading	from	Flat	
CSV	File(s)			

40	

CREATE TABLE points_csv_ext (
 x NUMBER,
 y NUMBER,
 z NUMBER,
 intensity NUMBER,
 returnval NUMBER,
 red NUMBER,
 green NUMBER,
 blue NUMBER
)
ORGANIZATION EXTERNAL (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY las_data_dir
 ACCESS PARAMETERS (
 RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ",")
 LOCATION (
 'lidar_data_01.dat',
 'lidar_data_02.dat’
)
)
REJECT LIMIT UNLIMITED
PARALLEL;

Any	number	
of	input	
files	

External	table	for	CSV	files	

LiDAR Files

Copy

LiDAR Files Flat Files

Point table

CREATE TABLE points
 NOLOGGING
 COMPRESS FOR QUERY HIGH

 PARALLEL 96
AS
SELECT x,y,z, intensity,
returnval, red, green, blue

FROM points_las_ext;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Loading	from	LAS	
File(s)			

41	

External	table	for	LAS	files	
CREATE TABLE points_las_ext (
 x NUMBER,
 y NUMBER,
 z NUMBER,
 intensity NUMBER,
 returnval NUMBER,
 red NUMBER,
 green NUMBER,
 blue NUMBER
)
ORGANIZATION EXTERNAL (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY las_data_dir
 ACCESS PARAMETERS (
 PREPROCESSOR 'preprocessor.sh'
 RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ",")
 LOCATION (
 'lidar_data_01.las',
 'lidar_data_02.las’
)
)
REJECT LIMIT UNLIMITED
PARALLEL;

Flat files

Point table

Flat files LiDAR files

Copy

Filter	for	
LAS	data	

CREATE TABLE points
 NOLOGGING
 COMPRESS FOR QUERY HIGH

 PARALLEL 96
AS
SELECT x,y,z, intensity,
returnval, red, green, blue

FROM points_las_ext;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

preprocessor..sh	

The	Pre-processor	DirecEve	

• Read	and	decode	the	LAS	file	
• Write	output	as	simple	CSV	format	

• Can	also	use	las2txt	or	a	PDAL	workyow	

42	

#!/bin/bash
$JAVA_HOME/bin/java -classpath $ORACLE_HOME/md/jlib/sdoutl.jar \
oracle.spatial.util.Las2SqlLdr $1

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying:	Direct	Filtering	

• Returns	the	points	that	match	the	query	window	

•  Simple	box	queries	

•  Include	also	any	anribute	filtering		

select *
from points
where x between 0 and 2047
and y between 0 and 2047;

select *
from points
where x between 0 and 2047
and y between 0 and 2047
and intensity > 1.5;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying:	CLIP_PC_FLAT	

• Returns	the	points	that	match	a	geometric	query	window	
select *
from table (
 SDO_PC_PKG.CLIP_PC_FLAT(
 geometry =>
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(0,0,2047,2047)
),
 table_name => ’POINTS',
 tolerance => 0.05,
 other_dim_qry => null,
 mask => null
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying:	SDO_PointInPolygon	

• Returns	the	points	that	match	a	geometric	query	window	
select *
from table (
 sdo_PointInPolygon(
 CURSOR(
 select x, y, z from points
),
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3),
 SDO_ORDINATE_ARRAY(0,0,2047,2047)
),
 0.05
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying:	SDO_PointInPolygon	

• Returns	the	points	that	match	the	query	window	(a	circle)	
select *
from table (
 sdo_PointInPolygon(
 CURSOR(
 select x, y, z from points
),
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1003, 4),
 SDO_ORDINATE_ARRAY(10, 12, 12, 10, 14, 12)
),
 0.05
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying:	SDO_PointInPolygon	

•  Include	any	addiEonal	filtering	
SELECT x, y, z
FROM TABLE(
 sdo_PointInPolygon(

 CURSOR(
 select x, y, z from points
 where x between 10 and 14
 and y between 10 and 14
),

 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1003, 4),
 SDO_ORDINATE_ARRAY(10, 12, 12, 10, 14, 12)
),
 0.05

)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	“Hybrid”	Model	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Index-Organized	Table	(IOT)	with	SpaEal	Ordering	
• MoEvaEon:	

– Blocked	model	scalability	on	non-Exadata	

•  SpaEal	ParEEoning	
– IOT,	by	Hilbert	

• No	BLOB	Encoding	
Query	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Workflow	for	Hybrid	Model	

Query
and
Clip

Convert to
Geometries

LiDAR Files

Copy

LiDAR Files Flat Files

Flat files

Point table

Flat files LiDAR files

Copy

Direct	load	from	
LAS	files	

Direct	load	from	
flat	ASCII	files	

Indexed
Point table

Hilbert,
pyramid,

index

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Loading	Process	
Assume	flat	input	table	

1)  Generate	Hilbert	values,	if	necessary	
2)  Add	block	id,	point	id,	pyramid	level	

3)  Create	block	extent	table	
4)  Index	block	extent	table	

Point table

Add block, point
and pyramid

Generate Hilbert
values

Hilbert values

Final point table

Create block extents

Block extents

CREATE TABLE input_points (
 rid VARCHAR2(40),
 val_d1 NUMBER,
 val_d2 NUMBER,
 val_d3 NUMBER,
 ...
)

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

(1/4)	Generate	Hilbert	Values	

CREATE TABLE points$hilbert (
 rid,
 d,
 CONSTRAINT pk_points$hilbert PRIMARY KEY (d))
 ORGANIZATION INDEX
as
select *
from
 table(
 sdo_pc_pkg.generate_hilbert_vals(
 id_xy => cursor(select rowid, val_d1, val_d2 from points)
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

(2/4)	Generate	Blocking	&	Pyramiding	Info	
CREATE TABLE points$final (
 blk_id, pt_id, d, p,
 val_d1, val_d2, val_d3,
 CONSTRAINT pk_points$final PRIMARY KEY (p, blk_id, pt_id))
 ORGANIZATION INDEX
as
select
 t1.blk_id, t1.pt_id, t1.hilbert, t1.p,
 t2.val_d1, t2.val_d2, t2.val_d3
from
 table(
 sdo_pc_pkg.generate_hbp_vals(
 id_hilbert => cursor(select rid, d from points$hilbert),
 blk_capacity => 10000)
) t1,
 points t2
where t2.rowid = t1.rid;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

(3/4)	Generate	Block	MBRs	
create table points$blocks (
 p, blk_id, num_points, max_d, blk_extent,
 CONSTRAINT pk_points$blocks PRIMARY KEY (p, max_d))
as
select
 p, blk_id, count(*), max(d),
 SDO_GEOMETRY(
 2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1003, 3),
 SDO_ORDINATE_ARRAY(min(val_d1),min(val_d2),max(val_d1),max(val_d2))
)
from points$final
group by p, blk_id;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

(4/4)	Create	SpaEal	Index	
INSERT INTO USER_SDO_GEOM_METADATA VALUES (
 ’POINTS$BLOCKS',
 'BLK_EXTENT',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', 0, 100000, 0.05),
 SDO_DIM_ELEMENT('Y', 0, 100000, 0.05)),
 null
);

create index sdo_idx_points$blocks on points$blocks(blk_extent)
indextype is mdsys.spatial_index;

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying:	Use	the	Block	Extents			
• Use	a	spaEal	query	against	the	block	extents	
select *
from points$final
where blk_id in (
 select blk_id
 from points$blocks
 where sdo_anyinteract (
 blk_extent,
 SDO_GEOMETRY(2003, NULL, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1003, 3),
 SDO_ORDINATE_ARRAY(0, 0, 2047, 2047)
)
) = 'TRUE'
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Querying:	Use	SDO_PointInPolygon	for	finer	filtering	
with p as (
 select *
 from points$final p, points$blocks b
 where p.blk_id = b.block_id
 and sdo_anyinteract (b.blk_extent, :query_window) = 'TRUE’
)
select *
from table (
 sdo_PointInPolygon(
 CURSOR(select * from p),
 :query_window,
 0.05
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Generate	Contour	Lines	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Generate	Contour	Lines	on	blocked	model		
• Returns	a	list	of	geometry	objects	(SDO_GEOMETRY_ARRAY)	

59	

select *
from table (
 sdo_pc_pkg.create_contour_geometries(
 pc => (select pc from pcs where id = 1),
 sampling_resolution => 10,
 elevations => sdo_ordinate_array(100, 200, 300),
 region => sdo_geometry(2003, null, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(0, 0, 999, 999)
)
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Generate	Contour	Lines	on	flat	model		
• Returns	a	list	of	geometry	objects	(SDO_GEOMETRY_ARRAY)	

60	

select *
from table (
 sdo_pc_pkg.create_contour_geometries(
 pc_flat_table => 'POINTS',
 srid => null,
 sampling_resolution => 10,
 elevations => sdo_ordinate_array(100,200,300),
 region => sdo_geometry(2003, null, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(0, 0, 999, 999)
)
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Generate	Contour	Lines	on	hybrid	model		
• Returns	a	list	of	geometry	objects	(SDO_GEOMETRY_ARRAY)	

61	

select *
from table (
 sdo_pc_pkg.create_contour_geometries(
 pc_flat_table => 'POINTS$FINAL',
 srid => null,
 sampling_resolution => 10,
 elevations => sdo_ordinate_array(100),
 region => sdo_geometry(2003, null, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(0, 0, 999, 999)
)
)
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Generate	and	Save	Contour	Lines		

62	

declare
 contours sdo_geometry_array;
 elevations sdo_ordinate_array :=
 sdo_ordinate_array(
 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000);
begin
 contours :=
 sdo_pc_pkg.create_contour_geometries(
 pc_flat_table => (‘POINTS’),
 sampling_resolution => 10,
 elevations => elevations,
 region =>
 sdo_geometry(2003, null, null,
 sdo_elem_info_array(1, 1003, 3),
 sdo_ordinate_array(-1000, -1000, 999, 999)
)
);
 for i in 1..elevations.count loop
 insert into contours (id, elevation, geom)
 values (i, elevations(i), contours(i));
 end loop;
end;
/

create table contours (
 id number,
 elevation number,
 geom sdo_geometry
);

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	of	Loading	Processes	

LAZ

LAS

CSV

Flat table

SDO_PC

LASzip	

SqlLoader		

CREATE_PC	

las2
txt	/

	pre
proc

esso
r	

Direct	loading		

SqlLoader	&	preprocessor	
Hybrid

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Conclusions	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Performance	of	Point	Cloud	Loading/CreaEon	

65	

Blocked	R-tree	(1)	 ~	O(n3/2)	

Blocked	Hilbert	(2)	 Scales	bener:	Near	linear	(except	for	Hilbert	sorEng	component	
O(nlogn))	

Blocked	Hilbert	JDBC	Client	(3)	 Faster:	Lower	overhead,	due	to	limited	batch	size…	(1Mpts/s)	

Flat	Exadata	(4)	 Fastest:	Approx.	linear,	lower	overhead,	no	indexing…	(640Bpts	LAZ	in	
4:39h	on	Exadata	X4-2	Full	Rack)	

Flat	Others	(5)	 O(nlogn)	((x,	y)	sorEng)	

Hybrid	Hilbert	(6)	 Similar	to	blocked	(2)	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Load	Performance	

66	

Compression CSV	File	
2,835,027,995	Rows

1000	LAS	Files	
3,265,110,000	Rows

Query	Low 1	min	20	sec	
35,662,849	rows/sec

5	min	27	sec	
9,985,045	rows/sec

Query	High 2	min	2	sec	
23,385,475	rows/sec

6	min	41	sec	
9,547,105	rows/sec

Archive	Low	 2	min	3	sec	
23,008,290	rows/sec

7	min	49	sec	
6,961,855	rows/sec

Archive	High 2	min	26	sec	
19,408,353	rows/sec

14	min	36	sec	
3,723,044	rows/sec

EXADATA X4-2 Half Rack
96 cores	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Performance	of	Point	Cloud	Queries	

67	

Blocked	(7)	 Great	Scalability:	~	O(#	touched	blocks)	

Flat	Exadata	(8)	 Great	Scalability:	~	O(#	Pts	in	query	MBR)	

Flat	Others	(9)	 Similar	to	(8),	except,	needs	a	B-tree	

Hybrid	Hilbert	(10)	 Faster:	Similar	to	(7),	except	lower	overhead,	due	to	no	decoding	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Query	Performance	
• Random	box	queries	on	a	data	set	of	2.9	billion	points	

68	

Query	ID	 Rows	
Returned	

Query	Low		
Rows/Sec	

Query	High	
Rows/Sec	

Archive	Low	
Rows/Sec	

Archive	High		
Rows/Sec	

1 100,234 75,934 56,951 58,961 21,648
2 101,914 76,627 56,935 57,578 19,944
3 107,318 96,682 58,965	 58,009 14,046
4 1,013,301 858,729 509,196	 484,833 125,563
5 1,044,341 976,019 561,473 558,471 133,547
6 1,080,314 871,220 534,808 524.424 145,398
7 10,053,844 2,072,240 2,047,626 2,171,456 1,180,028
8 10,085,246 2,136,704 2,041,547 2,178,238 1,097,415
9 101,757,599 2,351,146 2,220,327 2,302,279 2,344,645

EXADATA X4-2 Half Rack
96 cores	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Compression	and	Point	Cloud	Models	
• Blocked	

– Secure	File	Compression:	HIGH,	MEDIUM,	LOW	

•  Flat	
– HCC	(Exadata)	

• Hybrid	
– “Exadata	Hybrid	Columnar	Compression	(EHCC)	is	not	allowed	on	Index	Organized	
Tables	(IOT)”	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Impact	of	Compression	

70	

Compression Rows Size	GB Compression	
RaBo						

No	Compression 2,853,027,995 285.80 --

Query	Low 2,853,027,995	 36.9 		7.74	x

Query	High 2,853,027,995	 12.67 22.55	x

Archive	Low	 2,853,027,995	 12.65 22.59	x

Archive	High 2,853,027,995	 9.28 30.79	x

Using EXADATA HCC
(Hybrid Columnar Compression)	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Pro’s	and	Con’s	of	each	Model	

Storage	model	 Pro	 Con	

Blocked	 • 	Storage	(compression)	
• 	Scaling	
• 	Indexing	
• 	DB	funcEonaliEes	
• 	Complex	queries		

• 	Loading	(create	blocks)	
• 	Block	overhead	in	queries	
(noEceable	in	simple	queries)	

Flat	 • 	Faster	loading	
• 	DB	funcEonaliEes	
• 	Dynamic	schema	(#	blocked)	
• 	Simple	queries	

• 	Storage	(except	Exadata)	
• 	Limits	to	scaling	(except	Exadata)	
• 	Indexing	(except	Exadata)	

Hybrid	 • Faster	queries	(#	blocked)	
• More	scalable	queries	(#	flat)	
• Dynamic	schema	(#	blocked)	

• 	No	compression	(no	HCC	with	IOT)	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Where	do	we	go	from	here	?	
• DerivaEon	of	3D	models	

– ClassificaEon,	conflaEon	with	data	from	other	sources	

• Web-based	or	service-based	rendering	
– Visual	inspecEon,	etc.	
– Using	the	full	resoluEon	of	the	dataset	or	parts	thereof	(pyramiding)	

•  SelecEve	data	disseminaEon	
– Extract	subsets	for	analysis	by	external	tools	

•  In-database	processing	and	analyEcs	
– Change	detecEon	in	mulE-temporal	point	clouds	(buildings,	vegetaEon,	...)	

72	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	Need	for	Interoperability	
• Data	distribuEon	/	file	structures:		

– LAS	and	LAZ	
• ApplicaEon	and	tools:		

– PDAL	
• Web	Services:		

– OGC	standard	proposed:	Web	Point	Cloud	Service	(WPCS)	

73	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

To	find	out	more	…	

74	

Examples,	white	papers,	downloads,	discussion	forum,	
sample	data	

Oracle	Technology	Network	
www.oracle.com/goto/spaEal	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

More	resources	

• Blogs	
– hnps://blogs.oracle.com/oraclespaEal	

• Developer	forums	on	OTN	
– hnps://community.oracle.com/community/database/oracle-database-opEons/spaEal	

•  LinkedIn	community	
– „Oracle	SpaEal	and	Graph“	group	

• Google+	community	
– „Oracle	SpaEal	and	Graph	SIG“	

75	

Copyright	©	2015	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 76	

