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Overview of the talk

1. What is field data?

2. What is uncertainty?
(and what is ambiguity?)
3. Where does uncertainty come from?
sampling — modelling — error propagation
4. Probability and dimensionality
5. Visualisation approaches
static — dynamic — web

6. Encoding ST probability distributions
UncertML — NetCDF-U — FieldGML — R



What is field data?
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Fields are functions of space or space and time

z =f(s,t)
with
> s the location vector (e.g. long, lat in WGS84)
> t the time (e.g., seconds since 01-01-1970, 00:00 UTC)

» z, or f(s,t) is the (observed or modelled) variable



Fields are functions of space or space and time

z =f(s,t)
with
» s the location vector (e.g. long, lat in WGS84)
> t the time (e.g., seconds since 01-01-1970, 00:00 UTC)
» z, or f(s,t) is the (observed or modelled) variable
In this case: f(s), time is not "visible”
» s locations on some grid (e.g. long, lat in WGS84)
» t time (caption): 2000-2009, aggregated out by computing
trend

» z(s, t) the annual average aerosol optical depth trend,
computed over this time period



Functions, a reminder

We can write z = (s, t) or alternatively, s x t — z, or, by
currying, s — t — z, with:

» s, t the domain of the function

v

z the value of the function for a particular (s, t) pair

v

for each pair (tuple) (s, t') we have one and only one value z

v

the reverse is not true, but function inversion results in sets
(sets of regions x periods)

v

if for z(s), s is two-dimensional and regularly discretized, we
have raster data



What is uncertainty?

Uncertainty arises when we are not certain about something. E.g.,
we are uncertain whether the statement

it will rain! tomorrow in this city

is true. We can express our uncertainty in terms of probabilities.

Yminimal 1.0 mm rainfall over at least 75% of the administrative boundaries

of the city



What is uncertainty?

Uncertainty arises when we are not certain about something. E.g.,
we are uncertain whether the statement

it will rain! tomorrow in this city

is true. We can express our uncertainty in terms of probabilities.
Probabilities

> range between 0 and 1, inclusive

» sum to 1, over all possible outcomes (e.g., “yes’, “no")
» may be subjective, personal

» are often based on experiences (relative frequencies)

> are a way to make money for gamblers, traders, and insurance
companies

Yminimal 1.0 mm rainfall over at least 75% of the administrative boundaries

of the city



IPCC, AR5, Tech. Summary: Treatment of Uncertainty

The following summary terms are used to describe the available evidence: limited, medium, or robust; and for the degree of agreement:
low, medium, or high. A level of confidence is expressed using five qualifiers very low, low, medium, high, and very high, and typeset
in italics, e.g., medium confidence. Box TS.1, Figure 1 depicts summary statements for evidence and agreement and their relationship
to confidence. There is flexibility in this relationship; for a given evidence and agreement statement, different confidence levels can be
assigned, but increasing levels of evidence and degrees of agreement correlate with increasing confidence.
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+ | Medium Medium Medium
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< Low agreement Lowagreement Low agreement
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Box TS.1, Figure 1| A depiction of evidence and agreement statements and their relationship to confidence. Confidence increases toward the top right corner as
suggested by the increasing strength of shading. Generally, evidence is most robust when there are multiple, consistent independent lines of high quality. {Figure 1.11}

The following terms have been used to indicate the assessed likelihood, and typeset in italics:

Term* Likelihood of the outcome
Virtually certain 99-100% probability

Very likely 90-100% probability

Likely 66-100% probability

About as likely as not 33-66% probability

Unlikely 0-33% probability

Very unlikely 0-10% probability
Exceptionally unlikefy 0-1% probability

* Additional terms (extremely likely: 95-100% probability, more likely than not: >50-100% probability, and extremely unlikely:
0-5% probability) may also be used when appropriate.



... then what is ambiguity?)

Ambiguity refers to different opinions, not uncertainty. E.g.,
is the color of my eyes green?

Possible answers: yes, no, somewhat, mwah, kind-a-blueish-green.
The issue under discussion is one that has no crisp boundaries,
unlike rain as it was defined on the previous slide. To deal with the
variety in answers, we can come up with class membership, the
degree to which you believe a statement is true, or fuzzy numbers.



... then what is ambiguity?)

Ambiguity refers to different opinions, not uncertainty. E.g.,
is the color of my eyes green?

Possible answers: yes, no, somewhat, mwah, kind-a-blueish-green.
The issue under discussion is one that has no crisp boundaries,
unlike rain as it was defined on the previous slide. To deal with the
variety in answers, we can come up with class membership, the
degree to which you believe a statement is true, or fuzzy numbers.
Why are fuzzy numbers not useful for representing uncertainty?

1. proper theory is lacking (they do not add up to 1)

2. they cannot deal with conditional probabilities, and hence
dependence



Where does uncertainty come from?

sampling

modelling

observation is incomplete, the function z(s, t) is only
observed at particular locations and times (gaps in
time series, sparse soil samples, satellites always
circling around); estimating aggregated values (e.g.
global means) or interpolated values is due to
sampling error.

observing the wrong variable: we observe color, but
want land use; we observe altitude, but want
temperature; we observe GPS points, but want speed
and direction. Models are (i) wrong, as they simplify,
and (ii) usually have parameters that need to be
estimated. (essentially, this is sampling error too)

error propagation we do forward modelling, say a rainfall-runoff

model is formulated as r = f(z, z2, z3, p1, p2) and
z1, zp and po are subject to uncertainty.

Solution: propagate errors (e.g., by Monte Carlo
simulation).



Probability and dimensionality (COMPSTAT 2000)

The stochastic dimension in a dynamic GIS

Edzer J. Pebesma, Derek Karssenberg and Kor de Jong

Utrecht Centre for Environment and Landscape Dynamics, Faculty of
Geographical Sciences, Universiteit Utrecht, P.O. Box 80.115, 3508 TC
Utrecht; e. pebesma@geog.uu.nl

Abstract. Coping with random fields in a time-dynamic geographic infor-
mation system (GIS) increases the computational burden and storage require-
ments with a large amount, and calls for a number of custom functions to
enable easy analysis of the resulting random components, as well as spe-
cialised output reporting functions. This paper addresses the computational
and implementation issues when a Monte Carlo approach is taken, and shows
some results from a rainfall-runoff model running within a GIs.

Keywords. Geographical information systems, Monte Carlo, temporal GIs,
stochastic modelling, geostatistics

1 Introduction

Geographical information systems (a1s, Burrough and McDonnel, 1998) lib-
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Probability and dimensionality (COMPSTAT 2000)

The COMPSTAT 2000 paper argued that for fields, when z is not
“known" but treated as a random variable Z, every scalar z(s, t)
needs to be replaced by a probability distribution function

F(z)(s,t) =Pr(Z < z)(s, t)

which adds one dimension. But note:



Probability and dimensionality (COMPSTAT 2000)

The COMPSTAT 2000 paper argued that for fields, when z is not
“known" but treated as a random variable Z, every scalar z(s, t)
needs to be replaced by a probability distribution function

F(z)(s,t) =Pr(Z < z)(s, t)

which adds one dimension. But note:

> this only captures the marginal distribution, and not the joint
probability

F(z1,....zn)(s,t) = Pr(Z1 < z1, ..., Zn < zp)(s, 1)

» for the latter, n grid nodes would need an n-dimensional
distribution function...




Visualisation approaches
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Figure 2.25 | Trends in MSU upper air temperature over 19792012 from UAH (left-hand panels) and RSS (right-hand panels) and for LS (top row) and LT (bottom row). Data
are temporally complete within the sampled domains for each data set. White areas indicate incomplete or missing data. Black plus signs (+) indicate grid boxes where trends are
significant (ie., a trend of zero lies outside the 90% confidence interval).
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20 years ago...

[0 semi-natural vegetation, sand
[ grassland, sand

I arable land, sand

1 dunes
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Groundwater wells (10-25 m; yearly)




Maps with 95% confidence intervals

Usually, decision (smaller/larger) is done on the basis of (e.g.
95%) confidence interval:

> c.i. above threshold: larger
» c.i. below threshold: smaller

» else: undecided ( “not distinguishable")

Concentratoin

I not distinguishable

lower

Location



K, groundwater, 5-17 m depth
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K, groundwater, 5 17 m depth
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Aguila [JGIS publication, 2005

International Journal of Geographical Information Science ;
Vol. 21, No. 5, May 2007, 515-527 Taylor & prancts

Taylor & Francis Group

Interactive visualization of uncertain spatial and spatio-temporal data
under different scenarios: an air quality example

EDZER J. PEBESMAY, KOR DE JONGT and DAVID BRIGGS}
fFaculty of Geosciences, Utrecht University, The Netherlands
fImperial College, London, UK

(Received 23 November 2005; in final form 13 October 2006 )

This paper introduces a method for visually exploring spatio-temporal data or
predictions that come as probability density functions, e.g. output of statistical
models or Monte Carlo simulations, under different scenarios. For a given
moment in time, we can explore the probability dimension by looking at maps
with cumulative or exceedance probability while varying the attribute level that is



Probability distribution curves

cumulative probability

(a)

Figure 2.

the curve the less uncer{ainty the data have; certainty about the concentration
value would result in a step from 0 to 1 at that particular value;
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(a) cumulative probability plot for a given location s, and given scenario; values
are obtained by assuming a normal distribution on the log-scale, and are drawn from P values
ranging from 0.01 to 0.99; (b) deriving cumulative probability P from a discretized
representation of the CDF, using linear interpolation.



Probability distribution curves
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AGILE 2012 paper

Usability of Spatio-Temporal Uncertainty Visualisation
Methods

Hansi Senaratne” %, Lydia Gerharz', Edzer Pebesma"?, Angela Schwering'

! Institute for Geoinformatics, University of Muenster, Germany
http://www.ifgi.de

2 52°North Initiative for Geospatial Open Source Software, Germany
http://www.52north.org

Abstract

The presented work helps users of spatio-temporal uncertainty visualisation methods to
select suitable methods according to their data and requirements. For this purpose, an
extensive web-based survey has been carried out to assess the usability of selected
methods for users in different domains, such as GIS and spatial statistics. The results of
the survey are used to incorporate a usability parameter in a categorisation design to
characterise the uncertainty visualisation methods. This enables users to determine the
uncertainty visualisation method(s) that are most suitable according to their domain of
expertise. Finally, the categorisation design has been implemented and incorporated in a
web-based tool as the Uncertainty Visualisation Selector. This web application can
automatically recommend suitable uncertainty visualisation method(s) from user and data
requirements.
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Figure 1. Categorisation of selected uncertainty visualisation methods (Senaratne & Gerhkarz 20H) o



3.2.3 Symbols Visualisation

The Symbols method (Pang 2001) expresses the figurative similarities of objects based on
shape or colour (Bertin 1983). Assigning colours to symbols was done with much caution
as it needs to convey a realistic meaning to the users such that they can relate to it. Here,
the uncertainties in the land use data set of Asia were depicted using circular symbols as
seen in the foreground of Figure 4. Different land use classes over Asia are displayed in
the background. The increasing uncertainty was shown by symbols of increasing size and
varying colour. The colours green, yellow, orange and red were used in order, to represent
increasing uncertainties, red commu

Data quality
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..

Figure 4. Uncertainty of land use classes represented through symbols of varying colour and size
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UncertWeb 2010-2013: vis client

As aguila was written in C++, using Qt, it looked odd to use it as
end point of a web-based model chain. So, we rewrote from
scratch, in javascript:

1. starting from openlayers, adding multi-panel support
2. added reading resources from the web

3. supported the UncertWeb profiles (vector: O&M-U, raster:
NetCDF-U)

4. -U implies UncertML: also parametric distributions,
exceedance probabilities are understood

5. rendering of raster data uses a server component, vis-server
(light-weight WMS)

http://giv-uw.uni-muenster.de/vis/v2/


http://giv-uw.uni-muenster.de/vis/v2/

GeoViQua 2010-2013

greenland

GeoViQua/52North continued development of the vis client:

1.
2.

“branded” it to GREENLAND (google: greenland 52North)
development taken over by 52North (a spin-off of ifgi)

3. added GeoViQua requirements: support for ncWMS, WMS-Q
etc

4. extended 2 linked windows to n linked windows

5. added use of glyphs (Jon Blower's presentations)

6. added persistent links

7. added a web site with VERY NICE examples which you can
click on to run

https:

//wiki.52north.org/bin/view/Geostatistics/Greenland


https://wiki.52north.org/bin/view/Geostatistics/Greenland
https://wiki.52north.org/bin/view/Geostatistics/Greenland

Encoding ST probability distributions

» UncertML.org: UncertML is a conceptual model and XML
encoding designed for encapsulating probabilistic uncertainties

» NetCDF uncertainty conventions (NetCDF-U)

» FieldGML: implicit encoding (communicate data + prediction
function)



Encoding ST probability distributions

» UncertML.org: UncertML is a conceptual model and XML
encoding designed for encapsulating probabilistic uncertainties

» NetCDF uncertainty conventions (NetCDF-U)

» FieldGML: implicit encoding (communicate data + prediction
function)

@

» (still) lacks explicit encodings for ST probability distributions
» transparent: communicates what we do, in a reproducible way



Challenges

» open source, but how to continue development?
» optimize caching, deal with big data
» visualize uncertainty in categorical spatio-temporal fields

> integrate in some useful way with R



