Zeespiegelstijging meten, begrijpen, voorspellen

Caroline Katsman

KNMI / Global Climate Division

Hylke de Vries (KNMI, Global Climate) Aimée Slangen, Roderik van de Wal (IMAU, Utrecht University) Bert Vermeersen (NIOZ/Delft Technical University)

Global mean sea level rise

more water

land ice melt, changing river discharge, changing land storage

warmer water

ocean expansion

subsidence

Jakarta

Global mean sea level rise

AT HIGH TIDE

AT LOW TIDE

Global mean sea level rise

Ocean heat uptake

Levitus et al (2009) 0-700 m

Ocean heat uptake

Levitus et al (2009) 0-700 m

% energy content change ('93-'03) [data source: IPCC (2007)]

Mass loss ice sheets

West-Antarctic ice sheet

[compiled by Roderik van de Wal for Delta Commission / Katsman et al (2011)]

Sea level budget [1971-2010]

Sea level budget [1993-2010]

Global mean temperature rise

Increase for 2081–2100: 0.3°C - 4.8°C (depending on emission scenario)

Sea level projections

summed contributions of individual components

global mean thermal expansion

glaciers & ice caps

Greenland

Antarctica

Sea level projections

summed contributions of individual components

global mean thermal expansion

glaciers & ice caps

Greenland

Antarctica

36-81 cm

IPCC 5AR (2013)

Observed sea level change

natural variability + spatially varying long-term trends

Changing ocean density & dynamics

+ atmospheric loading

Self-gravitation effect

ice mass loss

- ⇒ melt water added to the ocean
- ⇒ sea level tilts

Self-gravitation effect

Glacial Isostatic Adjustment

Land water storage

building of dams

ground

NOTE:

self-gravitation needs to be accounted for

Regional projections

ocean expansion

glaciers & ice caps

Greenland

Antarctica

GIA

Slangen et al (accepted)

land storage

Moderate

Warm

a.) Scenario A sum

0.52 m

b.) Scenario B sum

0.71m

Spatial variations

Moderate

Warm

Understanding natural variability

Statistical analysis

Explained variance (daily versus yearly data)

Pattern analysis

IDEA: 20 years of altimetry must have captured 10-30% of signal expected for the 21st century

Pattern analysis

PROJECT: separate the natural variability from the long-term, forced regional changes to assess the quality and merits of the regional sea level rise projections

High-resolution modelling North Sea

IPCC 4AR models

IPCC 5AR models

SUMMARY

- Sea level is rising, it happens faster than in the
 20th century, and is expected to accelerate further
- Various processes result in large regional variations in sea level, now and in the future
- Developing regional sea level rise projections requires a multidisciplinary approach (ocean / ice / solid Earth / hydrology)
- Understanding of the (natural, short-term)
 variations in observed sea level is required to
 connect observations and projections
- For this, we need long observational records of sea level change and its driving variables and highresolution models