Dynamic modelling in GIS: modelling in three spatial dimensions and error propagation modelling

Derek Karssenberg

PCRaster research team, Department of Physical Geography, Faculty of Geosciences, Utrecht University

Computer modelling in the earth sciences

- Forward modelling through time: time steps
- Process based modelling: numerical solution of physical equations
- Spatial processes: 2D and 3D spatial domain
- Error propagation through Monte Carlo simulation

Example model: process-based alluvial architecture modelling

- forward modelling
 processes of erosion and deposition
 channel bifurcation and avulsion

Relevance of alluvial architecture modelling

- predicting oil and water resources
- studying fluvial systems under external forcing (climate change)

Researchers are good in science.

Researchers are not programmers

Software engineers are good programmers . .

Solution: model construction with building blocks

- 1) Software engineers develop a model construction toolbox:
- building blocks: spatio-temporal functions framework to glue together functions
- visualisation routines that read data written by the framework

Solution: model construction with building blocks

2) Researchers construct models with the toolbox

Building blocks: classic functions on raster maps

Video dynamic evolution of channels

3D building blocks

Vertical discretization

Building blocks: standard functions on maps and blocks

Building blocks: functions on blocks, change of form

Building blocks: functions on blocks, change of form

Glueing together the building blocks: functions in a script

Framework to represent time

Order of calculations:

run functions calculating initial state
for t in timesteps:
 run functions representing f

Framework: structured script

initial # sequence of functions dynamic (nrtimesteps=...) # sequence of functions

Standard run

- parameters and boundary conditions comparable to Rhine-Meuse
 cell size 200 m, modelling area 30 x 60 km
 external forcing: base level change

Channel belt distribution

Dealing with stochastic variables: Monte Carlo simulation

- •Many models use stochastic variables •Application of Monte Carlo simulation

Framework Monte Carlo simulation

Representing the stochastic dimension in a script: framework

Functions calculating descriptive statistics

calculate a statistical value of attribute values

How do we provide these tools to the user?

PCRaster PCRcalc

- language completely tailored to modelling in time and space
- very easy to use

PCRaster Python

- Python: generic scripting language (used in Arc/Info, Google)
- all functionality for spatial temporal modelling is available in Python (Python extension)
- somewhat more difficult to use, but more flexibility

Challenges for the future: order of calculation and I/O

Challenges for the future: order of calculation and I/O

Final remarks, conclusions

- programmers developing blocks and researchers building models by combining these blocks is a very efficient approach in research
- standard tools are available now for 3D modelling and error propagation modelling
- optimization in a language completely tailored to dealing with all dimensions is a challenge for the future

Acknowledgements

Peter Burrough, Willem van Deursen, Kor de Jong, Edzer Pebesma, Cees Wesseling

And many other people providing all kinds of support and ideas

Info at: http://pcraster.geo.uu.nl