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TU e Massive data sets

• AT&T: data base of phone calls: 20 TB

• Wal-Mart: data base of buying patterns: 70 TB

• geographic data: NASA satellites collect more than 1 TB / day

Massive data sets are becoming more and more common

• 100 m resolution: 500 MB

• 30 m resolution: 5.5 GB
(available for 80% of earth)

• 1 m resolution: 5 TB

Apalachian mountains (800 x 800 km2)



TU e Massive data sets

UC Berkeley study (2000)



TU e Comparing algorithms

Two sorting algorithms: InsertionSort and MergeSort

Which one is faster ?

InsertionSort (A)
1. for j := 2 to N
2. do key := A[j]; i := j − 1
3. while i > 0 and A[i] > key
4. do A[i + 1] := A[i]; i := i − 1
5. A[i + 1] := key

MergeSort (A, p, r)
1. if p < r
2. then q := (p + r)/2
3. MergeSort (A, p, q)
4. MergeSort (A, q + 1, r)
5 Merge (A, p, q, r)

Merge (A, p, q, r)
1. N1 := q − p + 1; N2 := r − q
2. Create arrays L[1..N1 + 1] and R[1..N1 + 1]
3. for i := 1 to N1 do L[i] := A[p + i − 1]
4. for i := 1 to N2 do R[i] := A[q + j]
5. L[N1 + 1] := ∞; R[N2 + 1] := ∞
6. for k := p to r
7. do if L[i] ≤ R[j]
8. then A[k] := L[i]; i := i + 1
9. else A[k] := R[j]; j := j + 1
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analyze running time as a function of the input size
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TU e Analysis of algorithms

running time (# elementary operations)

input size

T (N)

500,000 1,000,000

we analyze asymptotic behavior of T (N): is it O(N), O(N2), etc.

=⇒ relevant for large data sets!

T (N)= the algorithm performs in the
worst case as function of N , the number of input elements
# elementary operations



TU e Analysis of algorithms: InsertionSort vs. MergeSort

# elementary operations

input size (N)
500,000 1,000,000

InsertionSort: O(N2)

MergeSort: O(N log N)

InsertionSort (A)
1. for j := 2 to N
2. do key := A[j]; i := j − 1
3. while i > 0 and A[i] > key
4. do A[i + 1] := A[i]; i := i − 1
5. A[i + 1] := key

MergeSort (A, p, r)
1. if p < r
2. then q := (p + r)/2
3. MergeSort (A, p, q)
4. MergeSort (A, q + 1, r)
5 Merge (A, p, q, r)

Merge (A, p, q, r)
1. N1 := q − p + 1; N2 := r − q
2. Create arrays L[1..N1 + 1] and R[1..N1 + 1]
3. for i := 1 to N1 do L[i] := A[p + i − 1]
4. for i := 1 to N2 do R[i] := A[q + j]
5. L[N1 + 1] := ∞; R[N2 + 1] := ∞
6. for k := p to r
7. do if L[i] ≤ R[j]
8. then A[k] := L[i]; i := i + 1
9. else A[k] := R[j]; j := j + 1
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TU e Smallest enclosing disk: algorithm

SmallestDisk(P )
1.
2. D := smallest disk for P [1], P [2], P [3]
3. for i := 4 to N
4. do if P [i] ∈ D
5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}

where P [i] is on the boundary

RandomPermute(P )
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5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}
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TU e Smallest enclosing disk: analysis (1)

RandomPermute(P )
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

running time is O(N)
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TU e Smallest enclosing disk: analysis

SmallestDisk(P )
1. RandomPermute(P )
2. D := smallest disk for P [1], P [2], P [3]
3. for i := 4 to N
4. do if P [i] ∈ D
5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}

where P [i] is on the boundary

P [1] t/m P [i]

P [i + 1] t/m P [N ]

Pr [ P [i] 6∈ D ] ≤ 3/i

=⇒ expected running time is O(N)



TU e Smallest enclosing disk: experiments

Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program



TU e Analysis of algorithms: massive data sets

T (n) = the algorithm performs in the
worst case as function of N , the number of input elements
# elementary operations
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reading a value from memory, etc.

Hmmm . . . is this justified?



TU e Analysis of algorithms: massive data sets

T (n) = the algorithm performs in the
worst case as function of N , the number of input elements
# elementary operations

additions, multiplications, comparisons,
reading a value from memory, etc.

Hmmm . . . is this justified?

NO!

operations on data in main memory: tens of nanoseconds
disk operations: several milliseconds



TU e Smallest enclosing disk: experiments (2)

Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program
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TU e I/O-efficient algorithms: the model

M = size of main memory

B = block size for data transport

CPU

disk

main memory

”typical value” 8KB

• let algorithm handle data placement and transport

– which data are placed together in a block

– which blocks are kept in main memory

• analyze number of disk operations



TU e Smallest enclosing disk: analysis in the I/O-model

RandomPermute(P )
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

• N ≤ M : 0

0 disk operations

• N > M :

(N − 1) · (1− M
N

) disk operations

(e.g. (N − 1)/2) disk operations when N = 2M)

analysis of (expected) number of disk operations
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TU e I/O-efficient search structures: a well known example

in practice, degree is 250 – 2000
and depth is at most 4

• nodes contain one key, have degree 2

• depth is O(log N)

binary search tree: search structure for internal memory

• nodes contain many keys, have high degree

• put each node into one block on disk

• depth is O(log N/ log B)

B-tree: I/O-efficient variant



TU e I/O-efficient search structures for spatial data: R-trees

I/O-efficient variant of bounding-volume hierarchy:

• nodes contain many bounding boxes, have high degree

• put each node into one block on disk

• depth is O(log N/ log B)

R-tree: search structure (index) for spatial data



TU e Another example: TerraFlow

digital elevation model (DEM)

TerraFlow: P. Agarwal, L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J. Vitter,
R. Wickremesinghe. Pfaffstetter: + H. Haverkort

• flow routing, flow accumulation

• watersheds, Pfaffstetter labeling



TU e TerraFlow: performance

comparison with existing commercial software (ArcInfo) and
open source software (GRASS):

speed-up factor between 2 and 1000

implemented using TPIE, a library for I/O-efficient algorithms



TU e Designing I/O-efficient algorithms?

• M and B depend on platform

• even on fixed machine values of M and B may vary

– main memory may have to be shared with other processes

– disk-cache ”changes” block size

• two-level I/O-model too simplistic CPU

disk

main memory



TU e Beyond I/O-efficiency

capacity latency

16 KB 1 cycle

256 KB 5+ cycles

6MB 12+ cycles

2 GB > 150 cycles

can be 106 cycles

Intel Itanium2 memory hierarchy

ALU

registers

L1 cache

L2 cache

L3 cache

main memory

disk



TU e Beyond I/O-efficiency

capacity latency

16 KB 1 cycle

256 KB 5+ cycles

6MB 12+ cycles

2 GB > 150 cycles

can be 106 cycles

Intel Itanium2 memory hierarchy

ALU

registers

L1 cache

L2 cache

L3 cache

main memory

disk

Conclusion: caching behavior can also make a large difference.



TU e I/O-and cache-efficiency

Ideal: algorithm that is effcient w.r.t. disk and all cache levels

• caches are not under control of algorithm

• algorithms taking all cache-levels into account quite complicated

So what can we do ??



TU e Cache-oblivious algorithms

Algorithm designed for simple two-level memory model

But: algorithm is not allowed to use the value of B and M !

M = size of fast memory

B = block size for data transport

slow memory

CPU

fast memory
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TU e Cache-oblivious algorithms

M = size of fast memory

B = block size for data transport

slow memory

CPU

fast memory

Assumptions:

• Data written to ”disk” consecutively is stored consecutively on disk

data
layout on disk

or
or . . .

• Operating system uses optimal replacement strategy



TU e A cache-oblivious algorithm for smallest enclosing disk

CacheObliviousSmallestDisk(P )
1. if (# points in P ) ≤ 3
2. then return smallest disk for P
3. else (P1, P2) :=
4. D := CacheObliviousSmallestDisk(P1)
5. for all P [i] ∈ G2

6. do if P [i] 6∈ D
7. then Di := smallest disk for P with P [i] on its boundary
8. return best of all computed disks

RandomSplit (P )

With: S. Cabello, X. Goaoc, M. Schroders
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CacheObliviousSmallestDisk(P )
1. if (# points in P ) ≤ 3
2. then return smallest disk for P
3. else (P1, P2) :=
4. D := CacheObliviousSmallestDisk(P1)
5. for all P [i] ∈ G2

6. do if P [i] 6∈ D
7. then Di := smallest disk for P with P [i] on its boundary
8. return best of all computed disks

RandomSplit (P )

RandomSplit(P )
1. for i := 1 to N
2. do r := random number in range [0, 1]
3. if r < 1/2
4. then Put P [i] into P1

5. else Put P [i] into P2

6. return (P1, P2)

With: S. Cabello, X. Goaoc, M. Schroders



TU e A cache-oblivious algorithm for smallest disk: analysis

RandomPermute(P )
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

E[#disk operations] = (N − 1) · (1− M
N

)

old algorithm:



TU e A cache-oblivious algorithm for smallest disk: analysis

RandomPermute(P )
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

E[#disk operations] = (N − 1) · (1− M
N

)

old algorithm:

RandomSplit(P )
1. for i := 1 to N
2. do r := random number in range [0, 1]
3. if r < 1/2 then Put P [i] into P1 else Put P [i] into P2

4. return (P1, P2)

E[#disk operations] ≤ N/B

layout on disk

new algorithm:



TU e Smallest enclosing disk: experiments

Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program



TU e A cache-oblivious B-tree

regular (cache-aware) B-tree:
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TU e A cache-oblivious B-tree

regular (cache-aware) B-tree:

• blocks: subtrees of size B

B

√
N

√
N

√
N

√
N

√
N

cache-oblivious B-tree:

• cut tree into subtree at middle level;
gives 1 top tree,

√
N lower trees

• first, write top to disk recursively

• next, write lower trees to disk recursively

search visits O(log N/ log B) blocks



TU e Cache-oblivious computation of Voronoi diagrams

Kumar: Voronoi diagrams of up to 300 M points



TU e Conclusions

• I/O- and caching behavior crucial for massive data sets

• algorithms community is now addressing these issues

• I/O-efficient algorithms

– have proven their value for various practical problems

– need tuning for hardware, do not optimize caching behavior

• cache-oblivious algorithms:

– ideal in theory: no tuning, good on all cache-levels

– practical relevance needs further investigation


