TU/e

1/0O- and Cache-Efficient Algorithms
for Spatial Data

Mark de Berg

TU Eindhoven

TU/e Massive data sets

Massive data sets are becoming more and more common

o AT&T: data base of phone calls: 20 TB
e \Wal-Mart: data base of buying patterns: 70 TB

e geographic data: NASA satellites collect more than 1 TB / day

TU/e Massive data sets

Massive data sets are becoming more and more common

o AT&T: data base of phone calls: 20 TB
e \Wal-Mart: data base of buying patterns: 70 TB

e geographic data: NASA satellites collect more than 1 TB / day

Apalachian mountains (800 x 800 km?)
e 100 m resolution: 500 MB

e 30 m resolution: 5.5 GB
(available for 80% of earth)

e 1 m resolution: 5 TB

TU/e Massive data sets

More New Information Over Next 2
Years Than in All Previous History 5554

|
|
I
|
|
I
2002 1ZB'I
0,000 BCE —
! wﬁl‘mg CE

SHILGVOID

Sowrce; UC Berkeley .
EMC Copyright 2001

UC Berkeley study (2000)

TU/e Comparing algorithms

Two sorting algorithms: InsertionSort and MergeSort

InsertionSort (A) MergeSort (A, p, 1)

1. for j :=2to N Lifp <r

2. do key:= A[j];i:=j — 1 2. then g := (p + 7)/2

3, while i > 0 and A[i] > key 3. MergeSort (A, p, q)

4. do A[i + 1] := A[i]; i =13 — 1 4. MergeSort (A, q + 1, 1)
5. Ali + 1] := key 5 Merge (A, p, q, T)

Merge (A, p, q, T)
Ny:=q—p+1 Nog :=17r —g¢q
Create arrays L[1..N1 4+ 1] and R[1..N1 + 1]
for ¢ := 1to Nqjdo L[i] := A[p+ i — 1]
for i := 1to No do R[i] := Alq + j]
L[Ny + 1] := oo; R[Ng 4+ 1] := o0
for kK := pto r
do if L[:] < R[j]
k L[i];i:=i+1
else A[k] := R[j];j =7+ 1

O ooNOE W=

Which one is faster ?

TU/e Analysis of algorithms

running time depends on input size

analyze running time as a function of the input size

TU/e Analysis of algorithms

running time depends on input size

analyze running time as a function of the input size

running time (sec)

A

| | — input size
500,000 1,000,000

TU/e Analysis of algorithms

running time depends on input size

analyze running time as a function of the input size

running time (sec)

A

| | — input size
500,000 1,000,000

TU/e Analysis of algorithms

running time depends on input size

analyze running time as a function of the input size

running time (sec)

A

running time for 500,000 input

/ elements in the worst case

| | — input size
500,000 1,000,000

TU/e Analysis of algorithms

running time depends on input size

analyze running time as a function of the input size

number of elementary operations

running time (%)

A

running time for 500,000 input

/ elements in the worst case

| | — input size
500,000 1,000,000

TU/e Analysis of algorithms

running time depends on input size

analyze running time as a function of the input size

number of elementary operations

running time (%)

A

running time for 500,000 input
elements in the worst case

| | — input size
500,000 1,000,000

TU/e Analysis of algorithms

running time (# elementary operations)

A
'T(N)

| | — input size
500,000 1,000,000

TU/e Analysis of algorithms

running time (# elementary operations)

A
'T(N)

| | — input size
500,000 1,000,000

T(N)= # elementary operations the algorithm performs in the
worst case as function of N, the number of input elements

we analyze asymptotic behavior of T(IV): is it O(N), O(N?), etc.

—> relevant for large data sets!

TU/e Analysis of algorithms: InsertionSort vs. MergeSort

InsertionSort (A) MergeSort (A, p,)

1. for j := 2to N 1L.ifp < r

2. do key:= A[j;i:=35 —1 2. thenq := (p+17)/2

3. while ¢ > 0 and A[i] > key 3. MergeSort (A, p, q)

4. do A[i 4+ 1] := A[i]; i : =17 — 1 4. MergeSort (A, g + 1, r)
5. Ali 4+ 1] := key 5 Merge (A, p, q,)

Merge (A, p, q, T)

1. Ny:=q—p+1, No :=17r —gq
2. Create arrays L[1..N71 + 1] and R[1..N7 + 1]
. 3. for ¢ :=1to Ny do L[i] := A[p + i — 1]
elementary operations 4 for i = 1to Ny do R[] = Alq + 4]
A 5. L[Nl—l—l] 1= OO;R[N2—|—1] 1= o0
6. for Kk := pto r
7. do if L[i] < R[j]
. i 2 8. then A[k] := L[¢]; 4 := 1+ 1
InsertionSort: O(N*) o else Alk] = Rljlj iz j + 1

MergeSort: O(N log N)

| | | — input size (N)

500,000 1,000,000

TU/e Smallest enclosing disk

Compute smallest enclosing disk of set P of N points in the plane.

TU/e Smallest enclosing disk

Compute smallest enclosing disk of set P of N points in the plane.

TU/e Smallest enclosing disk: algorithm

SmallestDisk(P)

1. RandomPermute(P)

2. D := smallest disk for P[1], P|2], P|3]

3. for ::=4to N

4. do if Pli]e€ D

5. then skip

6. else D := smallest disk for { P[1],..., P|i]}

where P[i] is on the boundary

TU/e Smallest enclosing disk: algorithm

SmallestDisk(P)

1. RandomPermute(P)

2. D := smallest disk for P[1], P|2], P|3]

3. for i:=4to N "recursive’ call
4. do if PliJe D

5. then skip

6. else D = smallest disk for { P[1],..., P

where P[i] is on the boundary

TU/e Smallest enclosing disk: algorithm

SmallestDisk(P)

1. RandomPermute(P)

2. D := smallest disk for P[1], P|2], P|3]

3. for i:=4to N "recursive’ call
4. do if PliJe D

5. then skip

6. else D = smallest disk for { P[1],..., P

where P[i] is on the boundary

RandomPermute(P)

1. for ::=1to N —1

2. do r :=random integer in range ¢... N
3. swap Pli] and P|r]

TU/e Smallest enclosing disk: analysis (1)

RandomPermute(P)

l. for ::=1to N —1

2. do r :=random integer in range 7... N
3. swap Pli] and P|r]

running time is O(N)

TU/e Smallest enclosing disk: analysis

SmallestDisk(P)

1. RandomPermute(P)

2. D := smallest disk for P[1], P|2], P|3]

3. for ::=4to N

4. do if P[i]e D

5. then skip

0. else D := smallest disk for { P[1],..., P[i]}
where P[i] is on the boundary

e P[1] t/m PJi]
e P[i+1]t/m P[N]

TU/e Smallest enclosing disk: analysis

SmallestDisk(P)

1. RandomPermute(P)

2. D := smallest disk for P[1], P|2], P|3]

3. for ::=4to N

4. do if P[i]e D

5. then skip

0. else D := smallest disk for { P[1],..., P[i]}
where P[i] is on the boundary

Pr[Plil¢ D] <3/i
e P[] t/m P[]
e Pli+1]t/m P[N]

TU/e Smallest enclosing disk: analysis

SmallestDisk(P)

1. RandomPermute(P)

2. D := smallest disk for P[1], P|2], P|3]

3. for ::=4to N

4. do if P[i]e D

5. then skip

0. else D := smallest disk for { P[1],..., P[i]}
where P[i] is on the boundary

Pr[Pli]¢ D] < 3/i

e P[1] t/m P[i] — expected running time is O(NV)
e P[i+1]t/m P[N]

TU/e

Time (Seconds)

300

250

200

15.0

10.0

a0

0.0

Smallest enclosing disk: experiments
User (time) and system (stime) time for points on a line.
stime GILP
_F time GILP
W ameEEE
..f.‘.iu-uﬂ-ﬂ stime COGLP
T d ul -.A.‘.nﬁ:‘.‘* T T
1 1.5 2 25 3 35
Number of points (Millions)

Pentium 4, 2.60GHz

~ 89 MB main memory available to the program

Analysis of algorithms: massive data sets

elementary operations) the algorithm performs in the
worst ¢ ion of IV, the number of input elements

additions, multiplications, comparisons,
reading a value from memory, etc.

Hmmm .. .is this justified?

TU/e Analysis of algorithms: massive data sets

T(n) = elementary operations) the algorithm performs in the
worst ¢ ion of IV, the number of input elements
additions, multiplications, comparisons,
reading a value from memory, etc.
Hmmm .. .is this justified?
NO!

operations on data in main memory: tens of nanoseconds
disk operations: several milliseconds

TU/e

Smallest enclosing disk: experiments (2)

0.30

0.25

0.20

0.14

0.10

Number of page faults per point

0.05

0.oa

Number of page faults per point for points on a line.

Page faults [constraint
GILP

|

f Page faults [constraint
....... . COGLP

2 25 3 3.4

Number of points (Millions)

Pentium 4, 2.60GHz

~ 89 MB main memory available to the program

TU/e | /O-efficient algorithms: the model

emory | M = size of main memory

B = block size for data transport
"typical value” 8KB

disk

TU/e | /O-efficient algorithms: the model

emory | M = size of main memory

B = block size for data transport
"typical value” 8KB

disk

e let algorithm handle data placement and transport

— which data are placed together in a block

— which blocks are kept in main memory

e analyze number of disk operations

TU/e Smallest enclosing disk: analysis in the |/O-model

RandomPermute(P)

l. for i:=1to N —1

2. do r := random integer in range ¢... N
3. swap Pli] and P|r]

analysis of (expected) number of disk operations
o N M:0

0 disk operations

o N > M:
(N —1)-(1— &) disk operations
(e.g. (N —1)/2) disk operations when N = 2M)

TU/e | /O-efficient search structures: a well known example

TU/e | /O-efficient search structures: a well known example

binary search tree: search structure for internal memory

e nodes contain one key, have degree 2

e depth is O(log V)

TU/e | /O-efficient search structures: a well known example

binary search tree: search structure for internal memory

e nodes contain one key, have degree 2

e depth is O(log V)

- B-tree: |/O-efficient variant

e nodes contain many keys, have high degree

e put each node into one block on disk

e depth is O(log N/ log B)

TU/e | /O-efficient search structures: a well known example

binary search tree: search structure for internal memory

e nodes contain one key, have degree 2

e depth is O(log V)

- B-tree: |/O-efficient variant

e nodes contain many keys, have high degree

e put each node into one block on disk
in practice, degree is 250 — 2000

e depth is O(log N/log B) and depth is at most 4

TU/e | /O-efficient search structures for spatial data: R-trees

R-tree: search structure (index) for spatial data

| /O-efficient variant of bounding-volume hierarchy:
e nodes contain many bounding boxes, have high degree

e put each node into one block on disk

e depth is O(log N/ log B)

TU/e Another example: TerraFlow

digital elevation model (DEM) e flow routing, flow accumulation

e watersheds, Pfaffstetter labeling

TerraFlow: P. Agarwal, L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J. Vitter,
R. Wickremesinghe. Pfaffstetter: + H. Haverkort

TU/e TerraFlow: performance

comparison with existing commercial software (Arclnfo) and
open source software (GRASS):

speed-up factor between 2 and 1000

implemented using TPIE, a library for 1/O-efficient algorithms

TU/e Designing 1/O-efficient algorithms?

e)M and B depend on platform
e even on fixed machine values of M and B may vary

— main memory may have to be shared with other processes

— disk-cache "changes” block size

e two-level 1/O-model too simplistic

| main memory |

disk
v

T U /e Beyond | /O-efficiency

Intel Itanium2 memory hierarchy

-\
ALU :
capacity latency
registers
I
L1 cache 16 KB 1 cycle
|
L2 cache 256 KB 5+ cycles
|
L3 cache o6MB 12+ cycles
|
main memory 2 GB > 150 cycles

’ disk I can be 10° cycles

v

T U /e Beyond | /O-efficiency

Intel Itanium2 memory hierarchy

-\
ALU :
capacity latency
registers
I
L1 cache 16 KB 1 cycle
|
L2 cache 256 KB 5+ cycles
|
L3 cache o6MB 12+ cycles
|
main memory 2 GB > 150 cycles
’ disk ‘ can be 10° cycles
v

Conclusion: caching behavior can also make a large difference.

TU /e |/O-and cache-efficiency

|deal: algorithm that is effcient w.r.t. disk and all cache levels

e caches are not under control of algorithm

e algorithms taking all cache-levels into account quite complicated

So what can we do ?7?

T U /e Cache-oblivious algorithms

Algorithm designed for simple two-level memory model

N/
CPU

fast memory M = size of fast memory

B = block size for data transport

slow memory
u

But: algorithm is not allowed to use the value of B and M !

T U /e Cache-oblivious algorithms

-\

CPU

fast memory M = size of fast memory

B = block size for data transport

slow memory
_/

Assumptions:

TU/e

-\

CPU

fast memory

Cache-oblivious algorithms

M = size of fast memory

B = block size for data transport

slow memory
_/

Assumptions:

e Data written to "disk” consecutively is stored consecutively on disk

datalllllllllII

T U /e Cache-oblivious algorithms

-\

CPU

fast memory M = size of fast memory

B = block size for data transport

slow memory
_/

Assumptions:

e Data written to "disk” consecutively is stored consecutively on disk

datalllllllllII

layout on disk | | | |

or | [[[[1
or ...

T U /e Cache-oblivious algorithms

-\

CPU

fast memory M = size of fast memory

B = block size for data transport

slow memory
¥/

Assumptions:

e Data written to "disk” consecutively is stored consecutively on disk

datalllllllllII

layout on disk | | | |

or | [[[[1
or ...

e Operating system uses optimal replacement strategy

TU/e A cache-oblivious algorithm for smallest enclosing disk

CacheObliviousSmallestDisk(P)
1. if (# pointsin P) <3
2. then return smallest disk for P
3. else (P1, P») := RandomSplit (P)
D := CacheObliviousSmallestDisk(P:)
for all P[i] € G2

doif Pli| & D

then D; := smallest disk for P with P[] on its boundary

return best of all computed disks

Sel e SR

With: S. Cabello, X. Goaoc, M. Schroders

TU/e A cache-oblivious algorithm for smallest enclosing disk

CacheObliviousSmallestDisk(P)
1. if (# pointsin P) <3
2. then return smallest disk for P
3. else (P1, P») := RandomSplit (P)
D := CacheObliviousSmallestDisk(P:)
for all P[i] € G2

doif Pli| & D

then D; := smallest disk for P with P[] on its boundary

return best of all computed disks

Sel e SR

RandomSplit(P)
1. for ::=1to N
2. do r :=random number in range |0, 1]

3. if r <1/2
4. then Put P[i] into P;
5 else Put P[i| into P
6. return (Pl, PQ)

With: S. Cabello, X. Goaoc, M. Schroders

TU/e A cache-oblivious algorithm for smallest disk: analysis

Id algorithm:
o ASOHE RandomPermute(P)

1. for ::=1to N —1
2. do r :=random integer in range i¢... N
3. swap P[i] and P|r]

E[#disk operations] = (N — 1) - (1 — %)

TU/e A cache-oblivious algorithm for smallest disk: analysis

Id algorithm:
S GRS RandomPermute(P)

1. for ::=1to N —1
2. do r :=random integer in range i¢... N
3. swap P[i] and P|r]

E[#disk operations] = (N — 1) - (1 — %)

new algorithm:

RandomSplit(P)

1. for ::=1to N

2. do r := random number in range |0, 1]

3. if » < 1/2 then Put P[] into P; else Put Pli] into P»

4. return (P, P»)

layout on disk | | | |

E[#disk operations] < N/B

TU/e

Time (Seconds)

300

250

200

15.0

10.0

a0

0.0

Smallest enclosing disk: experiments
User (time) and system (stime) time for points on a line.
stime GILP
_F time GILP
W ameEEE
..f.‘.iu-uﬂ-ﬂ stime COGLP
T d ul -.A.‘.nﬁ:‘.‘* T T
1 1.5 2 25 3 35
Number of points (Millions)

Pentium 4, 2.60GHz

~ 89 MB main memory available to the program

TU/e A cache-oblivious B-tree

regular (cache-aware) B-tree:

e blocks: subtrees of size B A

>/
2\
>/

=N
@/
=
@/
=N
@/
=
8>O/
O
@/
=N
=

=

%O/

TU/e A cache-oblivious B-tree

B

regular (cache-aware) B-tree:

- N N
e blocks: subtrees of size B A A A A

/ /

R R R R LRI

cache-oblivious B-tree:

e cut tree into subtree at middle level:
gives 1 top tree, vV N lower trees

e first, write top to disk recursively

v N N N\/Vv N e next, write lower trees to disk recursively

search visits O(log N/ log B) blocks

TU/e Cache-oblivious computation of Voronoi diagrams

Kumar: Voronoi diagrams of up to 300 M points

TU/e Conclusions

e |/O- and caching behavior crucial for massive data sets
e algorithms community is now addressing these issues
e |/O-efficient algorithms

— have proven their value for various practical problems

— need tuning for hardware, do not optimize caching behavior
e cache-oblivious algorithms:

— ideal in theory: no tuning, good on all cache-levels

— practical relevance needs further investigation

