
I/O- and Cache-Efficient Algorithms
for Spatial Data

Mark de Berg

TU Eindhoven

TU e

TU e Massive data sets

• AT&T: data base of phone calls: 20 TB

• Wal-Mart: data base of buying patterns: 70 TB

• geographic data: NASA satellites collect more than 1 TB / day

Massive data sets are becoming more and more common

TU e Massive data sets

• AT&T: data base of phone calls: 20 TB

• Wal-Mart: data base of buying patterns: 70 TB

• geographic data: NASA satellites collect more than 1 TB / day

Massive data sets are becoming more and more common

• 100 m resolution: 500 MB

• 30 m resolution: 5.5 GB
(available for 80% of earth)

• 1 m resolution: 5 TB

Apalachian mountains (800 x 800 km2)

TU e Massive data sets

UC Berkeley study (2000)

TU e Comparing algorithms

Two sorting algorithms: InsertionSort and MergeSort

Which one is faster ?

InsertionSort (A)
1. for j := 2 to N
2. do key := A[j]; i := j − 1
3. while i > 0 and A[i] > key
4. do A[i + 1] := A[i]; i := i − 1
5. A[i + 1] := key

MergeSort (A, p, r)
1. if p < r
2. then q := (p + r)/2
3. MergeSort (A, p, q)
4. MergeSort (A, q + 1, r)
5 Merge (A, p, q, r)

Merge (A, p, q, r)
1. N1 := q − p + 1; N2 := r − q
2. Create arrays L[1..N1 + 1] and R[1..N1 + 1]
3. for i := 1 to N1 do L[i] := A[p + i − 1]
4. for i := 1 to N2 do R[i] := A[q + j]
5. L[N1 + 1] := ∞; R[N2 + 1] := ∞
6. for k := p to r
7. do if L[i] ≤ R[j]
8. then A[k] := L[i]; i := i + 1
9. else A[k] := R[j]; j := j + 1

TU e Analysis of algorithms

running time depends on input size

analyze running time as a function of the input size

TU e Analysis of algorithms

running time (sec)

input size
500,000 1,000,000

running time depends on input size

analyze running time as a function of the input size

TU e Analysis of algorithms

running time (sec)

input size
500,000 1,000,000

running time depends on input size

analyze running time as a function of the input size

TU e Analysis of algorithms

running time (sec)

input size
500,000 1,000,000

running time for 500,000 input
elements in the worst case

running time depends on input size

analyze running time as a function of the input size

TU e Analysis of algorithms

running time (sec)

input size
500,000 1,000,000

running time for 500,000 input
elements in the worst case

number of elementary operations

running time depends on input size

analyze running time as a function of the input size

TU e Analysis of algorithms

running time (sec)

input size
500,000 1,000,000

running time for 500,000 input
elements in the worst case

number of elementary operations

running time depends on input size

analyze running time as a function of the input size

TU e Analysis of algorithms

running time (# elementary operations)

input size

T (N)

500,000 1,000,000

TU e Analysis of algorithms

running time (# elementary operations)

input size

T (N)

500,000 1,000,000

we analyze asymptotic behavior of T (N): is it O(N), O(N2), etc.

=⇒ relevant for large data sets!

T (N)= the algorithm performs in the
worst case as function of N , the number of input elements
elementary operations

TU e Analysis of algorithms: InsertionSort vs. MergeSort

elementary operations

input size (N)
500,000 1,000,000

InsertionSort: O(N2)

MergeSort: O(N log N)

InsertionSort (A)
1. for j := 2 to N
2. do key := A[j]; i := j − 1
3. while i > 0 and A[i] > key
4. do A[i + 1] := A[i]; i := i − 1
5. A[i + 1] := key

MergeSort (A, p, r)
1. if p < r
2. then q := (p + r)/2
3. MergeSort (A, p, q)
4. MergeSort (A, q + 1, r)
5 Merge (A, p, q, r)

Merge (A, p, q, r)
1. N1 := q − p + 1; N2 := r − q
2. Create arrays L[1..N1 + 1] and R[1..N1 + 1]
3. for i := 1 to N1 do L[i] := A[p + i − 1]
4. for i := 1 to N2 do R[i] := A[q + j]
5. L[N1 + 1] := ∞; R[N2 + 1] := ∞
6. for k := p to r
7. do if L[i] ≤ R[j]
8. then A[k] := L[i]; i := i + 1
9. else A[k] := R[j]; j := j + 1

TU e Smallest enclosing disk

Compute smallest enclosing disk of set P of N points in the plane.

TU e Smallest enclosing disk

Compute smallest enclosing disk of set P of N points in the plane.

TU e Smallest enclosing disk: algorithm

SmallestDisk(P)
1.
2. D := smallest disk for P [1], P [2], P [3]
3. for i := 4 to N
4. do if P [i] ∈ D
5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}

where P [i] is on the boundary

RandomPermute(P)

TU e Smallest enclosing disk: algorithm

SmallestDisk(P)
1.
2. D := smallest disk for P [1], P [2], P [3]
3. for i := 4 to N
4. do if P [i] ∈ D
5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}

where P [i] is on the boundary

”recursive” call

RandomPermute(P)

TU e Smallest enclosing disk: algorithm

SmallestDisk(P)
1.
2. D := smallest disk for P [1], P [2], P [3]
3. for i := 4 to N
4. do if P [i] ∈ D
5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}

where P [i] is on the boundary

”recursive” call

RandomPermute(P)
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

RandomPermute(P)

TU e Smallest enclosing disk: analysis (1)

RandomPermute(P)
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

running time is O(N)

TU e Smallest enclosing disk: analysis

SmallestDisk(P)
1. RandomPermute(P)
2. D := smallest disk for P [1], P [2], P [3]
3. for i := 4 to N
4. do if P [i] ∈ D
5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}

where P [i] is on the boundary

P [1] t/m P [i]

P [i + 1] t/m P [N]

TU e Smallest enclosing disk: analysis

SmallestDisk(P)
1. RandomPermute(P)
2. D := smallest disk for P [1], P [2], P [3]
3. for i := 4 to N
4. do if P [i] ∈ D
5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}

where P [i] is on the boundary

P [1] t/m P [i]

P [i + 1] t/m P [N]

Pr [P [i] 6∈ D] ≤ 3/i

TU e Smallest enclosing disk: analysis

SmallestDisk(P)
1. RandomPermute(P)
2. D := smallest disk for P [1], P [2], P [3]
3. for i := 4 to N
4. do if P [i] ∈ D
5. then skip
6. else D := smallest disk for {P [1], . . . , P [i]}

where P [i] is on the boundary

P [1] t/m P [i]

P [i + 1] t/m P [N]

Pr [P [i] 6∈ D] ≤ 3/i

=⇒ expected running time is O(N)

TU e Smallest enclosing disk: experiments

Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program

TU e Analysis of algorithms: massive data sets

T (n) = the algorithm performs in the
worst case as function of N , the number of input elements
elementary operations

additions, multiplications, comparisons,
reading a value from memory, etc.

Hmmm . . . is this justified?

TU e Analysis of algorithms: massive data sets

T (n) = the algorithm performs in the
worst case as function of N , the number of input elements
elementary operations

additions, multiplications, comparisons,
reading a value from memory, etc.

Hmmm . . . is this justified?

NO!

operations on data in main memory: tens of nanoseconds
disk operations: several milliseconds

TU e Smallest enclosing disk: experiments (2)

Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program

TU e I/O-efficient algorithms: the model

M = size of main memory

B = block size for data transport

CPU

disk

main memory

”typical value” 8KB

TU e I/O-efficient algorithms: the model

M = size of main memory

B = block size for data transport

CPU

disk

main memory

”typical value” 8KB

• let algorithm handle data placement and transport

– which data are placed together in a block

– which blocks are kept in main memory

• analyze number of disk operations

TU e Smallest enclosing disk: analysis in the I/O-model

RandomPermute(P)
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

• N ≤ M : 0

0 disk operations

• N > M :

(N − 1) · (1− M
N

) disk operations

(e.g. (N − 1)/2) disk operations when N = 2M)

analysis of (expected) number of disk operations

TU e I/O-efficient search structures: a well known example

TU e I/O-efficient search structures: a well known example

• nodes contain one key, have degree 2

• depth is O(log N)

binary search tree: search structure for internal memory

TU e I/O-efficient search structures: a well known example

• nodes contain one key, have degree 2

• depth is O(log N)

binary search tree: search structure for internal memory

• nodes contain many keys, have high degree

• put each node into one block on disk

• depth is O(log N/ log B)

B-tree: I/O-efficient variant

TU e I/O-efficient search structures: a well known example

in practice, degree is 250 – 2000
and depth is at most 4

• nodes contain one key, have degree 2

• depth is O(log N)

binary search tree: search structure for internal memory

• nodes contain many keys, have high degree

• put each node into one block on disk

• depth is O(log N/ log B)

B-tree: I/O-efficient variant

TU e I/O-efficient search structures for spatial data: R-trees

I/O-efficient variant of bounding-volume hierarchy:

• nodes contain many bounding boxes, have high degree

• put each node into one block on disk

• depth is O(log N/ log B)

R-tree: search structure (index) for spatial data

TU e Another example: TerraFlow

digital elevation model (DEM)

TerraFlow: P. Agarwal, L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J. Vitter,
R. Wickremesinghe. Pfaffstetter: + H. Haverkort

• flow routing, flow accumulation

• watersheds, Pfaffstetter labeling

TU e TerraFlow: performance

comparison with existing commercial software (ArcInfo) and
open source software (GRASS):

speed-up factor between 2 and 1000

implemented using TPIE, a library for I/O-efficient algorithms

TU e Designing I/O-efficient algorithms?

• M and B depend on platform

• even on fixed machine values of M and B may vary

– main memory may have to be shared with other processes

– disk-cache ”changes” block size

• two-level I/O-model too simplistic CPU

disk

main memory

TU e Beyond I/O-efficiency

capacity latency

16 KB 1 cycle

256 KB 5+ cycles

6MB 12+ cycles

2 GB > 150 cycles

can be 106 cycles

Intel Itanium2 memory hierarchy

ALU

registers

L1 cache

L2 cache

L3 cache

main memory

disk

TU e Beyond I/O-efficiency

capacity latency

16 KB 1 cycle

256 KB 5+ cycles

6MB 12+ cycles

2 GB > 150 cycles

can be 106 cycles

Intel Itanium2 memory hierarchy

ALU

registers

L1 cache

L2 cache

L3 cache

main memory

disk

Conclusion: caching behavior can also make a large difference.

TU e I/O-and cache-efficiency

Ideal: algorithm that is effcient w.r.t. disk and all cache levels

• caches are not under control of algorithm

• algorithms taking all cache-levels into account quite complicated

So what can we do ??

TU e Cache-oblivious algorithms

Algorithm designed for simple two-level memory model

But: algorithm is not allowed to use the value of B and M !

M = size of fast memory

B = block size for data transport

slow memory

CPU

fast memory

TU e Cache-oblivious algorithms

M = size of fast memory

B = block size for data transport

slow memory

CPU

fast memory

Assumptions:

TU e Cache-oblivious algorithms

M = size of fast memory

B = block size for data transport

slow memory

CPU

fast memory

Assumptions:

• Data written to ”disk” consecutively is stored consecutively on disk

data

TU e Cache-oblivious algorithms

M = size of fast memory

B = block size for data transport

slow memory

CPU

fast memory

Assumptions:

• Data written to ”disk” consecutively is stored consecutively on disk

data
layout on disk

or
or . . .

TU e Cache-oblivious algorithms

M = size of fast memory

B = block size for data transport

slow memory

CPU

fast memory

Assumptions:

• Data written to ”disk” consecutively is stored consecutively on disk

data
layout on disk

or
or . . .

• Operating system uses optimal replacement strategy

TU e A cache-oblivious algorithm for smallest enclosing disk

CacheObliviousSmallestDisk(P)
1. if (# points in P) ≤ 3
2. then return smallest disk for P
3. else (P1, P2) :=
4. D := CacheObliviousSmallestDisk(P1)
5. for all P [i] ∈ G2

6. do if P [i] 6∈ D
7. then Di := smallest disk for P with P [i] on its boundary
8. return best of all computed disks

RandomSplit (P)

With: S. Cabello, X. Goaoc, M. Schroders

TU e A cache-oblivious algorithm for smallest enclosing disk

CacheObliviousSmallestDisk(P)
1. if (# points in P) ≤ 3
2. then return smallest disk for P
3. else (P1, P2) :=
4. D := CacheObliviousSmallestDisk(P1)
5. for all P [i] ∈ G2

6. do if P [i] 6∈ D
7. then Di := smallest disk for P with P [i] on its boundary
8. return best of all computed disks

RandomSplit (P)

RandomSplit(P)
1. for i := 1 to N
2. do r := random number in range [0, 1]
3. if r < 1/2
4. then Put P [i] into P1

5. else Put P [i] into P2

6. return (P1, P2)

With: S. Cabello, X. Goaoc, M. Schroders

TU e A cache-oblivious algorithm for smallest disk: analysis

RandomPermute(P)
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

E[#disk operations] = (N − 1) · (1− M
N

)

old algorithm:

TU e A cache-oblivious algorithm for smallest disk: analysis

RandomPermute(P)
1. for i := 1 to N − 1
2. do r := random integer in range i . . . N
3. swap P [i] and P [r]

E[#disk operations] = (N − 1) · (1− M
N

)

old algorithm:

RandomSplit(P)
1. for i := 1 to N
2. do r := random number in range [0, 1]
3. if r < 1/2 then Put P [i] into P1 else Put P [i] into P2

4. return (P1, P2)

E[#disk operations] ≤ N/B

layout on disk

new algorithm:

TU e Smallest enclosing disk: experiments

Pentium 4, 2.60GHz
≈ 89 MB main memory available to the program

TU e A cache-oblivious B-tree

regular (cache-aware) B-tree:

• blocks: subtrees of size B

B

TU e A cache-oblivious B-tree

regular (cache-aware) B-tree:

• blocks: subtrees of size B

B

√
N

√
N

√
N

√
N

√
N

cache-oblivious B-tree:

• cut tree into subtree at middle level;
gives 1 top tree,

√
N lower trees

• first, write top to disk recursively

• next, write lower trees to disk recursively

search visits O(log N/ log B) blocks

TU e Cache-oblivious computation of Voronoi diagrams

Kumar: Voronoi diagrams of up to 300 M points

TU e Conclusions

• I/O- and caching behavior crucial for massive data sets

• algorithms community is now addressing these issues

• I/O-efficient algorithms

– have proven their value for various practical problems

– need tuning for hardware, do not optimize caching behavior

• cache-oblivious algorithms:

– ideal in theory: no tuning, good on all cache-levels

– practical relevance needs further investigation

