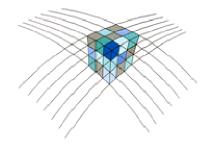
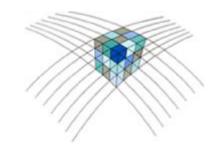
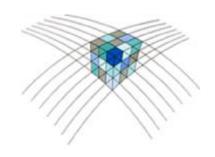
Spatial Engineering

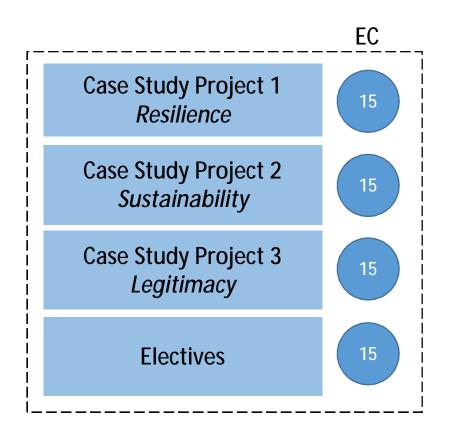

Croho: nog toe te kennen

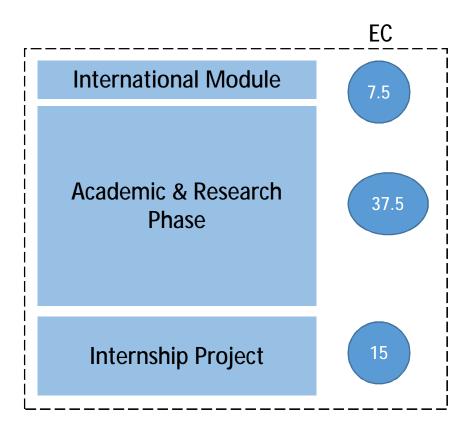

OLD: Victor Jetten

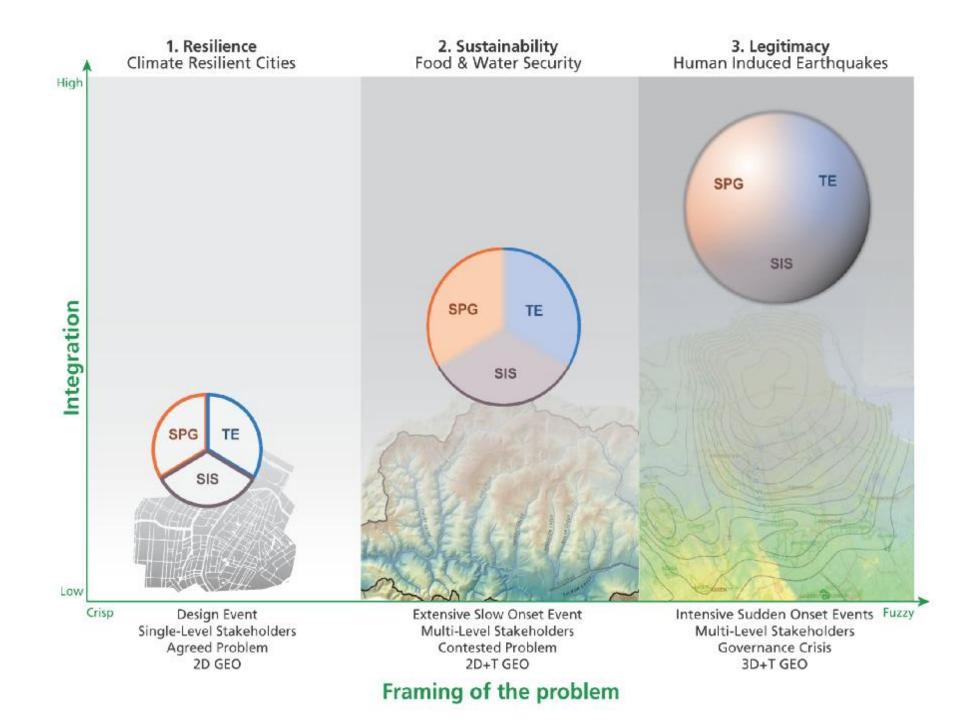
Onderwijsdecaan: Jaap Zevenbergen

NCG MSc GI Onderwijsbijeenkomst 17 april 2018, Fugro Leidschendam

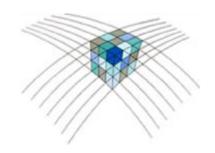





Final Qualifications


- FQ1 Integrated knowledge development in the three knowledge fields: TE, SIS, SPG
- FQ2 Research in a purposeful and methodological way
- FQ3 Design interventions for sustainable development
- FQ4 An academic approach to the development, justified use and validation of theories and models
- FQ5 Competence in reasoning, reflection and judgement
- FQ6 Competence in cooperation and communication
- FQ7 Work internationally as a global citizen and as an empathic engineer

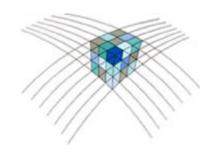
1. Structuur opleiding



Master's programme Spatial Engineering

Content case study projects

	Project content	Technical Engineering (TE)	Spatial Information Science (SIS)	Spatial Planning & Governance (SPG)
Case study project 1	Urban flood problem - Stakeholder analysis - Water Vision Engineering interventions - Functional design - Quantify impact - Assess feasabiliy	Hydrologic engineering Urban hydrology & Flood modelling Rain monitoring & calibration/validation Probability & Frequency analysis	Risk mapping Laser scanning & data acquisition (e.g. UAVs) Catchment delineation from DEMs Cartographic design Base maps & thematic maps	Flexible planning approach Climate change & Social vulnerability Integrated urban water management Urban growth model
Case study project 2	Catchment management Food and water security Multi-level stakeholder diversity Scenario analysis and evaluation Design of an intervention	Food production systems • Ecosystem analysis • Dynamic modelling	Earth Observation Remote sensing Image classification Spatial statistics Vegetation mapping and monitoring	Dynamic planning approach Stakeholder identification Markets and value chain analysis Evidence based policy analysis
Case study project 3	Problem and stakeholder analysis Primary data acquisition via fieldwork Technical analysis and reporting of earthquake hazard and risks Documentation for general public	Selsmic hazards • Structural vulnerability of the built environment • Seismic hazard above gas reservoirs • Geology	Big geodata • 3D/Temporal & collaborative visualizations • Crowdsourcing and citizen science • InSAR for land surface displacement	Learning planning approach Spatial knowledge management Rights and restrictions in the built environment

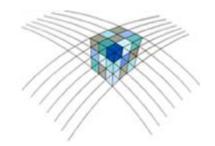


3. Kentallen

Aim: 50% EU, 50% non-EU

To allow students to meet the final qualifications of the Spatial Engineering programme it is necessary that incoming students have knowledge at bachelors level of a research university in at least three of the following topics:

- Water, weather and climate (hydrology, meteorology)
- Earth sciences (geo-engineering, geology, earth surface processes)
- Civil engineering (infrastructure, building, hydraulics, hard interventions)
- Spatial planning and governance (urban and or rural environments)
- Spatial information and visualization (GIS, Remote Sensing)
- Software engineering



4. Uniek

"IT IS A DARING MASTER'S PROGRAMME. IT PROMISES TO DELIVER THE ITC-STYLE REFLECTIVE ENGINEERING PRACTITIONER OF THE FUTURE WHO CAN INTEGRATE TECHNICAL ENGINEERING, SPATIAL INFORMATION SYSTEMS, AND PLANNING AND GOVERNANCE KNOWLEDGE AND KNOW-HOW IN THE REALWORLD OF WICKEDLY COMPLEX PROBLEMS WE INCREASINGLY FACE."

David E. Goldberg, Professor Emeritus Entrepreneurial Engineering, department of Industrial and Enterprise Systems Engineering (IESE), University of Illinois (USA)

5. Visitatie TNO 2018

Standard	Assessment	
Intended Learning outcomes Standard 1: The intended learning outcomes tie in with the level and orientation of the programme; they are geared to the expectations of the professional field, the discipline, and international requirements	Meets the standard	
Teaching-learning environment Standard 2: The curriculum, the teaching- learning environment and the quality of the teaching staff enable the incoming students to achieve the intended learning outcomes.	Meets the standard	
Student assessment Standard 3: The programme has an adequate system of student assessment in place.	Meets the standard	
Conclusion	Positive	

6. Toekomst