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Summary

Regional gravity field modelling with radial basis func-
tions

Terrestrial gravimetry, airborne gravimetry, and the recent dedicated satellite gravity
missions Challenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate
Experiment (GRACE), and Gravity and Ocean Circulation Explorer (GOCE) provide us
with high-quality, high-resolution gravity data, which are used in many application areas
such as

1. the computation of global static gravity fields, in support of precise orbit determi-
nation of many Earth observation satellites;

2. the quantification and interpretation of mass transport in the Earth system such
as the shrinking of ice sheets, the shifting of ocean currents, and water storage
variations;

3. the computation of high resolution regional and local gravity fields in support of
height system realisation and the modelling of reservoirs and geophysical features.

Traditionally, for each data set (satellite, airborne, terrestrial) dedicated data processing
schemes have been developed using different estimation principles, parametrisations,
etc. The optimal combination of different data sets would benefit of a methodology that
can be used for any type of data. Elements of this methodology comprise a uniform
parametrisation, estimation principle, data weighting scheme, regularisation, and error
propagation.

In the framework of this thesis, such a methodology is developed. It uses radial basis
functions (RBFs) as parametrisation. They have parameters that allow us to tune their
approximation properties as function of the data coverage and distribution and the signal
variations. This makes them equally well suited for global and local parametrisation.
Moreover, there exists an analytical relationship between a spherical harmonic represen-
tation and a radial basis function representation, which allows the latter to be transformed
into the former, without any approximation error. Among others, this has the advantage
that one can make use of existing processing tools, such as spectral analysis.

Although radial basis functions are not new in gravity field modelling, there are many
important issues which have not yet been addressed or require further research. The
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viii SUMMARY

main research question underlying this thesis is: "Are radial basis functions a suitable
parametrisation for global and regional models of the mean and time-variable gravity
field, and if so, how do they perform compared with spherical harmonic solutions?" Di-
rectly related to this is the question: "Are there situations where radial basis functions
models outperform spherical harmonic solutions?" The answer to both questions is pos-
itive as will be shown in this thesis.

There are two important aspects that determine the quality of a gravity field model based
on radial basis functions: 1) the spatial distribution of the radial basis functions, i.e.
the basis function network design, and 2) the choice of the bandwidths of the radial
basis functions. For both problems, semi-automatic algorithms have been developed.
Data-adaptive network design and local refinement avoid respectively over- and under-
parametrisation by fine-tuning the basis function network based on the data. The basis
function bandwidth is determined by optimising the fit to the data including control data.

The computation of regional gravity fields constitutes a considerable numerical work-
load, especially since the methodology presented here does not use an iterative nor-
mal equation solver (e.g., the preconditioned conjugate gradient method). Instead, a
Cholesky solver is used, which requires the assembly of the complete normal equation
system. For this purpose the program is numerically optimised and fully parallelised for
hybrid high performance computer architectures. This guarantees optimal performance
on all types of parallel computers and handles the memory requirements.

The modelling of satellite data with radial basis functions is investigated using real data
of the GRACE satellites collected over the period 2003-2006. An optimal Wiener filter
has been developed for radial basis functions in line with the optimal Wiener filter ap-
proach previously developed at DEQOS for spherical harmonic representations. Monthly
GRACE gravity models computed using radial basis function are compared to spheri-
cal harmonic models, and validated using independent data provided by the Ice Cloud
and Land Elevation Satellite (ICESat), radar altimetry satellites, and the global hydro-
logical model PCR-GLOBWAB. Two applications were considered: 1) mass variations
over Greenland and Antarctica and 2) water storage variations in river basins. The re-
sults show that the radial basis function approach yields solutions that are of at least the
same quality as global models using spherical harmonics. There is evidence that radial
basis functions may provide better spatial resolution and more realistic amplitudes in
particular in high-Ilatitude areas. For instance, it will be shown that radial basis function
solutions detected signal that could not be seen in spherical harmonic solutions.

Two test areas are used for regional gravity field modelling using real terrestrial data: An
area in the northeastern USA and a larger area in eastern Canada. The results show that
the data-adaptivity and local refinement algorithms developed in the framework of this
thesis provide good solutions of constant quality regardless of the initially chosen grid
spacing. The models are compared to the official regional geoid models GEOIDO03 and
CGGO05, respectively. In both cases, rms errors of several centimetres remain, which are
attributed to different input data and processing strategies.

The combination of satellite and terrestrial data is tested using simulated global and
regional data sets. It is shown that a joint inversion of the two data sets yields combined
solutions which are significantly better than a solution using the traditional remove-
restore approach. The addition of satellite data with the corresponding stochastic model



compensates the reduced quality of the terrestrial data at long wavelengths.

The examples show that the regional modelling methodology presented here is a very
flexible approach that can be applied to all types of gravity data and data distributions,
regardless of application, data source, and area size. The quality of the solutions is at
least equal to the solutions developed for the stand-alone inversion of individual data
sets, while radial basis functions offer numerical benefits. As a result, this approach is
already used for marine geoid modelling, and recommended for the modelling of air-
borne gravity data and data of the GOCE satellite, and for the joint inversion of satellite,
airborne and ground-based gravity data.
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Samenvatting

Regionale zwaartekrachtmodellering met radiale basisfunc-
ties

Terrestrische gravimetrie, vliegtuiggravimetrie en de recente specifieke satelliet-
zwaartekrachtmissies Challenging Minisatellite Payload (CHAMP), Gravity Recovery
and Climate Experiment (GRACE) en Gravity and Ocean Circulation Explorer (GOCE)
leveren data van hoge kwaliteit en hoge resolutie, die voor veel toepassingen gebruikt
worden, zoals:

1. De berekening van mondiale statische zwaartekrachtvelden, ter ondersteuning van
de nauwkeurige baanbepaling van vele aardobservatiesatellieten;

2. Het kwantificeren en de interpretatie van massatransport in het systeem aarde,
zoals het afsmelten van de ijskappen, het verplaatsen van oceaanstromingen en
variaties in wateropslag;

3. De berekening van regionale en lokale zwaartekrachtvelden met hoge resolutie,
ter ondersteuning van de realisatie van hoogtesystemen en de modellering van
reservoirs en geofysische kenmerken.

Voor elk data set (satelliet, vliegtuig, terrestrisch) zijn specifieke verwerkingsschema’s
ontwikkeld die gebruik maken van verschillende schattingsprincipes en parametrisaties
etc. De optimale combinatie van verschillende data sets zou profiteren van een method-
iek die voor elke data set gebruikt kan worden. Onderdelen van een dergelijke methodiek
bevatten een uniforme parametrisatie, schattingsprincipe, methode van data weging en
foutvoortplanting.

In het kader van dit proefschrift wordt een dergelijke methodiek ontwikkeld. Zij gebruikt
radiale basisfuncties (RBFs) als parametrisatie.

Radiale basisfuncties hebben parameters die het mogelijk maken hun approximatie-
eigenschappen aan te passen als functie van de bedekking en verdeling van de waarne-
mingen en de signaalvariatie. Dit maakt ze geschikt voor zowel mondiale als ook voor
regionale parametrisaties. Verder bestaat een analytische relatie tussen een sferisch har-
monische representatie en een representatie in radiale basisfuncties, die het mogelijk
maakt de laatste, zonder approximatiefouten, in de eerste te transformeren. Dit heeft
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Xii SAMENVATTING

onder andere het voordeel dat men gebruik kan maken van bestaande tools, zoals spec-
traalanalyse.

Ondanks het feit dat radiale basisfuncties niet nieuw zijn in de zwaartekrachtmodeller-
ing, zijn er vele belangrijke aspecten die tot nu toe niet behandeld zijn of die dieper
onderzocht moeten worden. De hoofdonderzoeksvraag die aan de basis van dit proef-
schrift staat is: "Zijn radiale basisfuncties een geschikte parametrisatie voor mondiale
en regionale modellen van het gemiddelde en tijdvariabele zwaartekrachtveld, en zo ja,
hoe presteren zij vergeleken met sferisch harmonische oplossingen?” Direct gerelateerd
hieraan is deze vraag: "Zijn er situaties waarin modellen die als parametrisatie radi-
ale basisfunctie gebruiken, beter presteren dan sferisch harmonische oplossingen?” Het
antwoord op beide vragen is positief, zoals in dit proefschrift aangetoond zal worden.

Er zijn twee belangrijke aspecten die de kwaliteit van een zwaartekrachtsveldmodel
gebaseerd op radiale basisfuncties bepalen: 1) het ontwerp van het netwerk van basis-
functies 2) de keuze van de bandbreedtes van de radiale basisfuncties. Voor beide prob-
lemen werden semiautomatische algoritmen ontwikkeld. Een data-adaptief netwerkon-
twerp en locale verfijning voorkomen respectievelijk over- en onderparametrisatie door
het netwerk van basisfuncties aan te passen op de verdeling van de waarnemingen. De
bandbreedte van de basisfuncties wordt bepaald door optimalisatie van de data fit in-
clusief controledata.

De berekening van regionale zwaartekrachtvelden vereist een behoorlijke numerieke
werklast Dit wordt versterkt doordat de hier gepresenteerde methode geen gebruik maakt
van een iteratieve normaalvergelijkings-oplosser (bijv. de preconditioned conjugate gra-
dient methode). In plaats daarvan wordt een Cholesky oplosser gebruikt, die de op-
bouw van het gehele systeem van normaalvergelijkingen vereist. Voor dit doel is het
programma numeriek geoptimaliseerd en geheel geparallelliseerd voor hybride high-
performance computer architecturen. Dit waarborgt optimale prestaties op alle soorten
parallelle computers en voldoet aan de geheugeneisen.

Het modelleren van satellietdata met behulp van radiale basisfuncties wordt onderzocht
met gebruik van echte data van de GRACE satellieten, verzameld in de periode 2003-
2006. Een optimale Wiener filter werd ontwikkeld voor radiale basisfuncties in overeen-
stemming met de optimale Wiener filter aanpak eerder ontwikkeld bij DEOS voor sferisch
harmonische representaties. Maandelijkse GRACE oplossingen, berekent met radiale
basisfuncties, worden vergeleken met sferisch harmonische modellen, en gevalideerd
met gebruik van externe data geleverd door de Ice Cloud and Land Elevation Satel-
liet (ICESat), radar-altimetrie satellieten en een mondiaal hydrologisch model. Twee
toepassingen werden beschouwd: 1) massavariaties boven Groenland en Antarctica en
2) wateropslagvariates in rivierbasins. De resultaten tonen aan dat de aanpak met radiale
basisfuncties oplossingen levert die van tenminste dezelfde kwaliteit zijn als mondiale
modellen berekent met behulp van sferisch harmonischen. Er zijn indicaties dat radiale
basisfuncties mogelijk een betere spatiéle resolutie en realistischere amplitudes leveren,
vooral in gebieden dicht bij de polen. Wij zullen bijv. aantonen dat de oplossingen met
radiale basisfuncties een signaal gedetecteerd hebben wat niet zichtbaar is in een sferisch
harmonische oplossing.

Twee testgebieden worden gebruikt voor regionale zwaartekrachtmodellering met echte
terrestrische data: Een gebied in het noordoosten van de VS en een groter gebied in
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het oosten van Canada. De resultaten tonen aan dat de algoritmen voor data-adaptief
netwerkontwerp en lokale verfijning goede oplossingen leveren, onafhankelijk van de in
eerste instantie gekozen gridafstand. De modellen worden vergeleken met de officiéle
geoides GEOIDO03 en CGGO5. In beide gevallen was het kwadratisch gemiddelde van
de afwijkingen meerdere centimetres, die aan verschillende data en verwerkingsmethod-
ieken toegekend worden.

De combinatie van satelliet- en terrestrische data wordt getest met gesimuleerde mon-
diale en regionale data sets. Het wordt aangetoond dat een gecombineerde inversie van
de twee data sets oplossingen levert die significant beter zijn dan een oplossing die ge-
bruik maakt van de traditionele remove-restore aanpak. De toevoeging van satellietdata
met het bijbehorende stochastische model compenseert de lagere kwaliteit van de ter-
restrische data in de lange golflengtes.

De voorbeelden laten zien dat de hier gepresenteerde methodiek voor regionale mod-
ellering een zeer flexibele aanpak is die voor alle soorten zwaartekrachtdata en
dataverdelingen toegepast kan worden, ongeacht de toepassing, databron en gebieds-
grootte. De kwaliteit van de oplossingen is tenminste gelijk aan de oplossingen on-
twikkeld voor stand-alone inversies van de individuele data sets, terwijl radiale basis-
functies numerieke voordelen bieden. Als resultaat hiervan wordt deze aanpak al ge-
bruikt voor het modelleren van een marine geoide, en wordt hij aanbevolen voor het
modelleren van vliegtuiggravimetriedata en data van de GOCE satelliet, en voor de
gecombineerde inversie van satelliet-, vliegtuig- en terrestrische zwaartekrachtdata.
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Zusammenfassung

Regionale Schwerefeldmodellierung mit radialen Basis-
funktionen

Terrestrische Gravimetrie, Flugzeuggravimetrie und die aktuellen Schwerefelds-
Satellitenmissionen Challenging Minisatellite Payload (CHAMP), Gravity Recovery and
Climate Experiment (GRACE) und Gravity and Ocean Circulation Explorer (GOCE)
liefern uns Schweredaten von hoher Qualitat und hoher Auflésung, die flr viele Anwen-
dungen benltzt werden, zum Beispiel

1. die Berechnung von globalen statischen Schwerefeldern zur Unterstiitzung der
genauen Bahnberechnung vieler Erdbeobachtungssatelliten;

2. die Quantifizierung und Interpretation von Massentransport im System Erde, wie
das Schrumpfen von Eisfeldern, die Verschiebung von Ozeanstrémungen, und
Variationen von Wasserspeichern;

3. die Berechnung hochauflésender regionaler und lokaler Schwerefelder zur Real-
isierung von Hohensystemen und zur Modellierung von Rohstoffspeichern und
geophysischen Merkmalen.

Traditionell wurde fir jeden Datensatz (Satelliet, Flugzeug, terrestrisch) spez-
ifische Prozessierungsmethoden entwickelt, unter \Verwendungen verschiedener
Schatzprinzipen, Parametrisierungen etc. Die optimale Kombination verschiedener
Datensatze wirde von einer Methodik profitieren, die mit allen Datentypen verwen-
det werden kann. Teile solch einer Methodik sind eine einheitliche Parametrisierung,
Schétzprinzip, Datengewichtung, Regularisierung und Fehlerfortpflanzung.

Im Rahmen dieser Dissertation wird eine derartige Methodik entwickelt. Sie verwendet
radiale Basisfunktionen (RBFs) als Parametrisierung.

Diese kennen Parameter die es moglich machen ihre Approximationseigenschaften auf
Datenbedeckung, Datenverteilung und Signalvariationen abzustimmen. Dadurch sind
sie in gleicher Weise geeignet fiir globale und lokale Parametrisierungen. Weiterhin
besteht eine analytische Beziehung zwischen einer Darstellung in sphdrisch Harmonis-
chen und einer Darstellung in radialen Basisfunktionen, die es mdglich macht letztere
in erstere ohne Néherungsfehler zu transformieren. Unter anderem hat dies den Vorteil,
dass existierende Prozessierungstools, z.B. Spektralanalyse, ben(tzt werden kénnen.

XV



XVi ZUSAMMENFASSUNG

Obwohl radiale Basisfunktionen nicht neu sind in der Schwerefeldmodellierung, gibt
es viele wichtige Themen die bisher nicht untersucht wurden oder weitere Forschung
bendtigen. Die Hauptfrage an der Basis dieser Dissertation ist: "Sind radiale Basisfunk-
tionen eine geeignete Parametrisierung fur globale und regionale Modelle des mittleren
und zeitvariablen Schwerefelds, und wenn ja, wie gut funktionieren sie verglichen mit
Losungen in spharisch Harmonischen?" Direkt verwandt hieran ist ist die Frage: "Gibt
es Situationen in denen Modelle in radialen Basisfunktionen besser sind als Losungen
in sphérisch Harmonischen?" Die Antwort auf beide Fragen ist positiv, was in dieser
Dissertation gezeigt wird.

Es gibt zwei wichtige Aspekte die die Qualitat eines Schwerefeldmodells in radialen
Basisfunktionen bestimmen: 1) die rdumliche Verteilung der radialen Basisfunktionen,
der Netzwerkentwurf und 2) die Wahl der Bandbreiten der radialen Basisfunktionen.
Fur beide Probleme wurden semiautomatische Algorithmen entwickelt. Datenadaptiver
Netzwerkentwurf und lokale Verfeinerung verhindern Uber- und Unterparametrisierung
durch Feinabstimmung des Basisfunktionsnetzwerks auf Basis der Daten. Die Bandbre-
ite der Basisfunktionen wird durch den Datenfit, einschlieRlich Kontrolldaten, bestimmt.

Die Berechnung regionaler Schwerefelder formt eine nennenswerte numerische Last,
unter anderem weil die hier vorgestellte Methodik keinen iterativen Ldser (z.B.
die vorkonditionierte konjugierte Gradientenmethode) benitzt. Stattdessen wird ein
Cholesky-Ldser verwendet, der das Aufstellen des kompletten Normalgleichungssys-
tems erfordert. Flr diesen Zweck ist das Programm numerisch optimiert und vollstandig
far hybride Hochleistungsrechnerarchitekturen parallelisiert. Dies garantiert optimale
Leistung auf allen Typen Hochleistungsrechner und ausreichend Hauptspeicher.

Die Modellierung von Satellitendaten wird untersucht an Hand von echten Daten der
GRACE Satelliten, die im Zeitraum 2003-2006 gesammelt wurden. Ein optimaler
Wiener Filter wurde fur die radialen Basisfunktionen entwickelt, ibereinstimmend mit
dem vorher bei DEOS fiir die Darstellung in spharisch Harmonischen entwickelten Fil-
ter. Monatliche GRACE Ldsungen werden verglichen mit Modellen in sphérisch Har-
monischen, und validiert unter Verwendung von unabhé&ngigen Daten vom Ice Cloud and
Land Elevation Satellite (ICESat), Radaraltimetriesatelliten und einem globalen hydrol-
ogischen Modell. Zwei Anwendungen werden betrachtet: 1) Massenverdnderungen tiber
Gronland und der Antarktis und 2) Wasserspeicherschwankungen in Flussbecken. Die
Ergebnisse zeigen, dass der Ansatz mit radialen Basisfunktionen mindestens die gleiche
Qualitat liefert wie globale Modelle mit Verwendung von sphérisch Harmonischen. Es
gibt Hinweise, dass die radialen Basisfunktionen bessere raumliche Auflésung und real-
istischere Signalamplituden liefern, besonders in Regionen hoher geographischer Breite.
Zum Beispiel wird gezeigt, dass die radialen Basisfunktionen Signal detektiert haben das
in den Lésungen mit spharisch Harmonischen nicht zu sehen ist.

Zwei Testgebiete werden flr die regionale Schwerefeldmodellierung mit echten ter-
restrischen Daten verwendet: Ein Gebiet im Nordosten der USA und ein grdsseres
Gebiet im Osten von Kanada. Die Ergebnisse zeigen, dass die Algorithmen zur Date-
nadaption und lokalen Verfeinerung, die im Rahmen dieser Dissertation entwickelt wur-
den, unabhé&ngig vom anfanglich gewahlten Rasterabstand gute Losungen von konstanter
Qualitat liefern. Die Modelle werden mit den offiziellen Geoiden GEOID03 und CGG05
verglichen. In beiden Fallen blieben gemittelte Fehler von mehreren Zentimetern, die
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unterschiedlichen Eingangsdaten und Prozessierungsmethoden zugerechnet werden.

Die Kombination von Satellitendaten und terrestrischen Daten wird mit simulierten glob-
alen und regionalen Datensétzen getestet. Es wird gezeigt, dass die kombinierte Inver-
sion beider Datensatze kombinierte Losungen liefert, die signifikant besser sind als eine
Losung die den traditionellen remove-restore Ansatz verwendet. Das Zufiigen von Satel-
litendaten und des entsprechenden stochastischen Modells kompensiert die reduzierte
Genauigkeit der terrestrischen Daten bei langen Wellenléangen.

Die Beispiele zeigen, dass die hier vorgestellte Methode zur regionalen Schwerefeld-
modellierung ein flexibler Ansatz ist, der flr alle Typen Schweredaten und Daten-
verteilungen verwendet werden kann, unabhéngig von Anwendung, Datenquelle und
GebietsgroRe. Die Qualitat der Losungen ist mindestens vergleichbar zu den Ldsungen
aus den Methoden zur eigensténdigen Inversion des jeweiligen Datensatzes, wobei ra-
diale Basisfunktionen numerische Vorteile bieten. Daraus resultiert, dass dieser Ansatz
bereits flr die Modellierung des Marineschwerefeldes verwendet wird, und empfohlen
wird flr die Modellierung von Flugzeuggravimetriedaten, Daten des GOCE Satelliten,
und die gemeinsame Inversion von Satelliten-, Flugzeug- und terrestrischen Schwere-
daten.
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Nomenclature

Acronyms
CHAMP Challenging Minisatellite Payload
CG Conjugate Gradient method
CRF Celestial Reference Frame
CSR Center for Space Research, University of Texas
DAND  Data-Adaptive Network Design
DEOS Delft Institute for Earth Observation and Space Systems
DMT-1  DEOS Mass Transport model 1
EWH Equivalent Water Height
FW Frequency-dependent data Weighting
GCV Generalised Cross Validation
GIA Glacial Isostatic Adjustment
GOCE Gravity field and steady-state Ocean Circulation Explorer
GPS Global Positioning System
GRACE Gravity field and Climate Explorer
ICESat Ice, Cloud, and land Elevation Satellite
LoS Line of Sight
LR Local Refinement
MC Monte Carlo simulation
PCCG Pre-Conditioned Conjugate Gradient method
PGR Post-Glacial Rebound
RBF Radial Basis Function
SH Spherical Harmonics
SHA Spherical Harmonic Analysis
SHS Spherical Harmonic Synthesis
TRF Terrestrial Reference Frame
VCE Variance Component Estimation
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Notation and symbols

Scalars

Cim

spherical harmonic coefficient

G  gravitational constant
| degree of spherical harmonics
m  order of spherical harmonics
M mass of the Earth
n order of a basis function
N  geoid undulation
r spherical radius
rj partial redundancy
R radius of the Bjerhammar sphere
Re  mean Earth radius
t time
T  disturbing potential
o regularisation parameter
o;  radial basis function coefficient
Y grid level
0g gravity disturbance
Ag gravity anomaly
A spherical longitude
¢@  spherical latitude
vy Legendre coefficient
p  inter-satellite range
c? variance
o?  variance component
G% degree variance
¥ spherical co-latitude
¢ height anomaly
Functions
P (x)  Legendre polynomial

Pm(x) fully normalised associated Legendre function

‘I”i (X)

radial basis function
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N\<><>><;U-1:-1-Uz—_ﬂ_)('DUpU>

design matrix

right-hand-side vector
covariance matrix of vector x
signal covariance matrix
vector of residuals

unit vector

identity matrix

normal matrix

weight matrix

inter-satellite range vector
inter-satellite acceleration vector
regularisation matrix

vector of unknown parameters
least-squares estimate

vector of observations

vector of random numbers

Operators and mathematical notations

Afl
AT
E{}
ﬁ{'}
I

inverse of A
transpose of A
expectation
dispersion
absolute value
norm

normalised vector
mean value
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Chapter 1

Introduction

1.1 Background

Geodesy (from Greek yewdatoie, “division of the Earth”) is traditionally the science
of measuring the size and shape of the Earth. This includes measuring the Earth’s ge-
ometry as well as the gravity field and its variation in time. The Earth’s gravity field
is often represented by the geoid, a surface of equal gravity potential (figure 1.1). The
geoid coincides with the mean surface of the sea at rest.

Figure 1.1: Geoid heights computed from EIGEN-GLO04C up to degree 360 (Foerste et
al., 2008).

Knowledge of the shape of the geoid is of major importance for many applications (Rum-
mel et al., 2002). The geoid serves as a height reference surface; with the knowledge of
the geoid, ellipsoidal heights measured by GPS can be transformed into gravity-related

1
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heights and augment traditional levelling, a time-intensive technique with increasing er-
ror budget over long distances. Since the geoid represents a resting mean sea surface, it
is required for all applications that need to determine dynamic sea surface topography
from altimetry measurements. Precise orbit determination of satellites, particularly for
low-orbiting satellites, also requires accurate gravity field models. The static gravity
field reflects the internal structure of the Earth and can be used to constrain dynamic
models of processes in the Earth’s interior, and can help in the exploration of mineral
and hydrocarbon reservoirs.

The Earth’s gravity field is not constant in time. It changes as result of mass redistribu-
tion, ocean and atmospheric circulation, water flux between terrestrial water storages, ice
melting, basin discharges into the oceans, and convective flow inside the Earth’s man-
tle are mass transport processes that constantly redistribute mass in the atmosphere, on
the Earth’s surface, and inside the Earth. All these processes interact in various ways
on differing time and spatial scales. This makes it difficult to develop realistic models
for accurate predictions. The new gravity satellite missions and resulting gravity field
models make it possible for the first time to monitor these mass transport processes on a
global scale and with high temporal resolution. This allows us to investigate the causes
and build a basis for the prediction of future changes. These insights are essential for the
understanding of the global water cycle, and accurate predictions of the future effects of
climate change.

1.2 Motivation

1.2.1 Regional modelling from satellite data

Satellites provide global or almost-global (in non-polar orbits) data coverage. Spherical
harmonics, as global basis function, are usually used for modelling gravity fields from
satellite data. While past satellite missions only allowed for the computation of models
of the static gravity field, the recent GRACE (Gravity field and Climate Experiment)
mission has made it possible to produce gravity field solutions for each month or even
shorter time spans. This makes it possible for the first time to monitor mass variations
worldwide (Tapley et al., 2004).

The two largest mass variation signals that can be detected by GRACE are the melting of
polar ice caps and water storage variations. Both signals are analysed at the large basin
scale, not globally.

GRACE does not provide the same data quality everywhere on the globe. Figure 1.2
shows the locations of GRACE A over the Northern Hemisphere in February 2006, at
a 5-second interval (the sampling used for data collection). At higher latitudes, orbits
are more tightly spaced. Whether this increased data sampling can be exploited to pro-
duce higher-quality gravity fields at higher latitudes than around the equator needs to be
investigated.

Spherical harmonic (SH) solutions that try to capture all signal at higher latitudes will
overparametrise at lower latitudes. This may lead to numerical instabilities and require
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regularisation. Noise at lower latitudes will be modelled and have to be treated by
smoothing, which introduces a bias by reducing the signal. A regional solution can
be fine-tuned to the specific region of interest.

180°

Figure 1.2: Orbit of GRACE A, February 2006, at 5s interval.

The GOCE mission, launched in March 2009, aims at generating data that makes it
possible to compute accurate static gravity fields with at least twice the spatial resolution
obtainable from GRACE. This increased resolution requires a similar increase in the
number of gravity field parameters and leads to a corresponding increase in numerical
complexity. Not everywhere will the same resolution be required - the gravity field is
much smoother over the parts of the oceans, with strong gravity signals from trenches
and sea mounts. This motivates the use of regional modelling and refinement techniques.

Using spherical harmonics for regional solutions, the numerical complexity will be much
higher compared to a regional parametrisation. Achieving a resolution of 0.5 degrees
requires a spherical harmonic representation up to degree Iyax = 360, more than 130,000
spherical harmonic coefficients. The number of radial basis functions (RBFs) required
to achieve the same resolution depends on the area size. For instance, 400 functions are
sufficient for an area of 10 by 10 degrees.

1.2.2 Regional modelling from terrestrial data

Terrestrial data are collected for comparatively small regions, i.e. the territory of a coun-
try. Compared to satellite data, the data are spaced much tighter, and a gravity field of
much higher resolution can be computed from them. Terrestrial data contain signals with
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shortest wavelengths of a few kilometres, which would result in a maximum spherical
harmonic degree necessary for modelling that is impossible to handle in a least-squares
adjustment.

Terrestrial data are also inhomogeneously distributed. Data gaps may exist e.g. due
to the inaccessibility of an area. Areas of rugged terrain (mountains) feature stronger
signal gradients and require more tightly-spaced functions for a good approximation
than areas of smooth topography. This requires adaptation of the basis function network
and the basis functions’ approximation characteristics to the data’s spatial distribution
and spectral signal content, something that can be achieved with RBFs.

1.2.3 Combined modelling of satellite and terrestrial data

Satellite data are accurate at long wavelengths, but limited in their spatial resolution.
The resolution that can be obtained from terrestrial data is much higher, but the quality
at long wavelengths is not as good as the quality of satellite data. A combination of both
data sources is required for the computation of accurate high-resolution regional gravity
fields.

Up to now, combination of these two data sources has almost exclusively been achieved
by a remove-restore approach using Stokes’s integral (Stokes, 1849; Heiskanen and
Moritz, 1967). A global field is subtracted from the terrestrial data before the grav-
ity field estimation to remove long-wavelength signal and reduce edge effects. This does
however not take the stochasticity of either data set into account. This motivates research
into better combination strategies.

1.2.4 Radial basis functions

While other techniques for regional gravity field modelling exist, e.g. techniques based
on Stokes’s integral (Stokes, 1849) and least-squares collocation (Moritz, 1980), a choice
has been made to use RBFs as gravity field representation.

Both the spatial distribution and the approximation characteristics of RBFs can be ad-
justed. This makes it possible to use them for all kinds of data sets. Inhomogeneous data
distributions and varying spectral data content can be addressed by carefully choosing
the locations of the basis functions and their bandwidth.

An approach using RBFs offers numerical advantages. The number of basis functions
required depends only the resolution that can be achieved with the data set and on the
size of the problem area. The number of observations does not directly influence the
number of basis functions.

Radial basis functions can be related to spherical harmonics. This makes it possible to
transform a gravity field solution computed with RBFs into SH coefficients. Existing
processing tools and techniques for spherical harmonics can thus still be used.

Overall, RBFs are a flexible presentation that can be used for all types of gravity field
modelling. For this reason they have been chosen for the methodology described here.
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1.3 Prior research on radial basis functions

The use of RBFs in gravity field modelling is not new. Over the years, several attempts
to find a methodology have been made. So far, no “standard” methodology has been es-
tablished, and none of the methodologies tested so far have covered the whole spectrum
of gravity field modelling.

The use of point masses as an alternative representation to spherical harmonics can be
traced back to Weightman (1965). The use of several spherical layers of point masses
for gravity anomaly recovery has been described in Reilly and Herbrechtsmeier (1978).
An approach for automatic positioning of point masses was developed by Barthelmes
(1986). Point masses were used by Vermeer (1984, 1989, 1990) for regional gravity
field modelling in Finland and the Baltic. With exceptions, such as Antunes et al. (2003),
point masses have now been replaced by other types of RBFs.

Least-squares collocation (Moritz, 1980) uses the auto-covariance function of the data as
kernel function. It has long been used for gravity field modelling (Forsberg and Kenyon,
1994; Marchenko et al., 2001). Challenges are the proper computation of the covariance
function (Alberts, 2009) and the associated numerical complexity.

At Kaiserslautern University, Germany, the use of RBFs and spherical wavelets has been
investigated for a long time, mostly focusing on multiscale representations. Recent ap-
plications to gravity field modelling where the computation of the multi-scale geopoten-
tial model SWITCH-03 from CHAMP data (Fengler et al., 2003), and the modelling of
regional and temporal gravity variations from GRACE (Fengler et al., 2007). In the first
case, so called .77- splines and the Abel-Poisson kernel were used, while the latter used
cubic polynomials (CuP) as scaling functions.

Another approach to multi-scale wavelet methodology has been developed at DGFI,
Munich, Germany. The methodology uses wavelets with Shannon and Blackman scaling
functions. Recently, the method has been applied to regional computations of potential
field from a combination of CHAMP and terrestrial data, as well as temporal variations
from GRACE (Schmidt et al., 2007).

Marchenko (1998) and Marchenko et al. (2001) have focused on the use of radial multi-
poles for local gravity field modelling. The parameters of the radial multipoles are deter-
mined by the signal covariance function. This approach requires a very small number of
basis functions in order to obtain a good solution, but finding the multipole parameters is
very time consuming. It has been applied to airborne gravity data modelling (Marchenko
et al., 2001), and compared to the approach presented here (Klees et al., 2005).

At Bonn University, Germany, a methodology using so-called harmonic splines as ker-
nels in an otherwise conventional RBF approach has been developed. The kernels are
fine-tuned to the signal characteristics. The methodology has been employed for a vari-
ety of applications, such as regional refinement of global satellite-derived gravity fields,
and the combination of GRACE and altimetry data. A detailed description of the appli-
cation of this methodology to the local refinement of static GRACE gravity models can
be found in Eicker (2008).
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1.4 Research objectives

The goal of the research presented here is the development of a unified methodology for
regional gravity field modelling using RBFs. Unified implies that there is no limitation
to a specific data source or application, instead the aim is the development of a method-
ology suitable for modelling of satellite data, terrestrial data, or a combination of both.
It should be possible to include other data types, such as airborne gravity measurements.
Radial basis functions are used because of their flexibility, adaptability, and relation to
spherical harmonics. The unknown RBF coefficients are estimated by least squares.

To achieve this goal, it has been further subdivided into certain important aspects that
have to be investigated.

Network design

To avoid numerical instabilities due to overparametrisation. and poor data approximation
due to underparametrisation, the number and location of the RBFs needs to be governed
by the data distribution. Network design involves 1) choosing a suitable grid type and
grid spacing for basis function placement, and 2) algorithms for locally adapting and
refining the RBF network to observation density and signal content (section 2.6).

Bandwidth estimation

An RBF’s bandwidth describes its approximation characteristics. In order to achieve a
good solution, an optimal bandwidth needs to be used for each basis function on a given
network. An algorithm for estimation of the optimal basis function bandwidth out of the
data or a reference model will be described in section 2.5.2.

Numerical efficiency

Regional gravity field modelling with RBFs routinely deals with hundreds of thousands
of observations and tens of thousands of unknown gravity field parameters. These pa-
rameters are estimated by least-squares. The resulting numerical effort for the construc-
tion and solution of the linear equation system requires 1) an efficient numerical imple-
mentation and 2) parallelisation (chapter 4).

Modelling of satellite data

The main application of the methodology presented here is the computation of regional
gravity fields using data collected by the GRACE satellite mission. The functional model
and optimal filtering approach developed at the Delft Institute for Earth Observation and
Space Systems (DEOS) are to be used. Network design and bandwidth estimation as they
relate to satellite data are investigated. The approach is to be validated by comparing the
results obtained with the RBF approach to other GRACE models and external data, using
real-world applications, in chapter 5.
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Modelling of terrestrial data

The second application is the computation of local gravity fields using terrestrial data.
This requires proper bandwidth estimation and a network that is adapted to the hetero-
geneous data distribution, for which the data-adaptation and local refinement algorithms
are used. The methodology is to be tested using real data sets and compared to official
gravity fields for the computation areas (chapter 6).

Combined modelling of satellite and terrestrial data

Finally, strategies for the combination of satellite and terrestrial data beyond the remove-
restore approach are to be investigated. This includes the suitable choice of RBF distri-
bution and bandwidth, and the incorporation of the stochastic properties of both data
sets. The strategies are tested in a controlled simulated environment in chapter 7.

1.5 Outline of thesis

This thesis is outlined as follows. Chapter 2 describes different types of RBFs, their
behaviour in the spectral and the spatial domain, and how they relate to spherical har-
monics. An overview of the use of RBFs for gravity field modelling is given. The three
main choices that need to be made for gravity field modelling are explained: kernel
choice, RBF centre location, and bandwidth. Chapter 2 includes a short description of
an approach to multi-scale modelling.

The mathematical model and estimation principle used here are explained in chapter 3.
Functional and stochastic model are described. Least-squares estimation, regularisation
and solution strategies are mentioned, including the use of variance component estima-
tion for data weighting and regularisation parameter estimation.

Chapter 4 addresses numerical issues. These include numerical optimisation and a fast
synthesis scheme for the computation of the design matrix. The focus is on the descrip-
tion of the parallelisation of the program used here. The programming techniques used
for parallelisation for hybrid high performance computer architectures are explained,
and the resulting speed increase is shown.

Results of modelling data collected by the GRACE satellite mission with RBFs are given
in chapter 5. The functional and stochastic model used are described. Included is a
detailed explanation of the application of the optimal filter approach developed at DEOS
to RBF solutions. The issues of network design and bandwidth as they apply to GRACE
modelling are also covered. The results focus on two applications: the recovery of ice
mass loss in Greenland and Antarctica, and the monitoring of hydrological signals. The
former includes a comparison with ICESat, while the latter uses a hydrological model
and satellite radar altimetry for evaluation.

Local gravity field modelling, using terrestrial data as input, is covered in chapter 6. This
once again includes the description of functional model, network design, and bandwidth
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choice. Results are shown for two test areas and data sets: A 10° x 10° area in the
northeastern USA, and a larger area in eastern Canada. In both cases, a comparison to
the official geoid models for these areas was made.

Chapter 7 describes strategies for the combination of satellite and terrestrial data for the
joint computation of an accurate high-resolution regional gravity field model. A global
and a regional setting using simulated data are used for the investigation of the possible
combination strategies.

This thesis concludes with chapter 8, in which the research presented here is briefly
summarised. Recommendations are given concerning problems that still need to be in-
vestigated and possible future research topics and related applications.



Chapter 2

Radial basis functions

This chapter introduces RBFs and discusses issued that are important for their use for
gravity field modelling. First, the properties of RBFs both in the spectral and spatial
domain are described and the relation to spherical harmonics is established.

Three attributes of RBFs need to be addressed in the context of gravity field modelling.
These items, kernel choice (section 2.5.1), bandwidth selection (section 2.5.2), and RBF
centre location (section 2.6) are described in detail. The chapter concludes with a link to
multi-scale modelling.

2.1 Gravity field representations

2.1.1 Spherical harmonics

The disturbing potential is usually represented using spherical harmonics, essentially a
Fourier expansion on the sphere:

oo I+1 1 _
T(x)—a”z(RE) Y GinPim (5iN ). (21)

o \ x| m——I

where x is a point with the spherical coordinates A, ¢,r. Py (sing) are the fully nor-
malised associated Legendre functions of degree | and order m. G is the gravitational
constant, M is the mass of the Earth and Rg its mean equatorial radius. ¢, are the fully
normalised spherical harmonic geopotential coefficients.

Spherical harmonics are global basis functions, as is evident from figure 2.1, which
shows a spherical harmonic function of degree 10 and order 5. Spherical harmonics
provide, as the name implies, a harmonic set of functions to globally describe a certain
field, in our case the gravity potential. A full spherical harmonic representation of degree
Imax makes use of (Imax)2 + 1 functions.

Due to their global nature, spherical harmonics are a natural choice for global methods,
such as computing global gravity fields from satellite data. The spectral representation

9
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Figure 2.1: Spherical harmonic of degree 10 and order 5 in the spatial domain.

Figure 2.2: A radial basis function in the spatial domain.

makes it easy to apply filters in the frequency domain and to analyse the spectral be-
haviour of the signal. Translation into the spatial domain is accomplished by spherical
harmonic synthesis (SHS).

2.1.2 Radial basis functions

Radial basis functions, also named spherical basis functions (e.g. Narcowich and Ward
(1996)), spherical radial basis functions, localising basis functions, are radial-symmetric
functions which are localising in space (figure 2.2), i.e. most of their energy is confined
to a local area. They have either global or local support. All basis functions described
here have global support and do not differ from spherical harmonics in that respect.
Wendland (1995, 2005) has proposed locally supported basis functions which are often
used in science and engineering. This leads to a reduced numerical complexity due
to sparse linear equations systems. They may however not be used for gravity field
modelling because the trace of a harmonic function on the sphere can never have local
support.

or denotes the surface of the sphere of radius R, which is located completely inside the
topographic masses (Bjerhammar sphere), or = {(X1,X2,X3) : X3 +X5+x5 =R?}. Int
or denotes the interior and Ext or denotes the exterior. Two points x, y € R3, y # 0,
with x = (Xl,Xz,Xg)T € Extorandy = (yl,yg,yg,)T € Int or with unit vectors X = ‘—§|
y= ﬁ are considered. The exterior RBF at centre location y; evaluated at x is defined
through

. = R I+1 .
Wi (x,yl)—gotm <|X|> P (X'9i), (2.2)
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with v being the Legendre coefficients of the basis function kernel, and P the Legendre
polynomial of degree I. The kernel determines both the spectral and spatial character-
istics of the basis function. The exterior RBF is a harmonic function in Ext or. It is
restricted to the sphere rotationally symmetric around the ¥ axis.

A function T harmonic outside a sphere of radius R can be written as an infinite sum of
RBFs according to

T(x)= % :Oti‘l’i (X,Yi), (2.3)

where ¢ are the basis function coefficients.

In practice, only a finite number of RBFs is being used to represent the disturbing poten-
tial T. The unknown RBF coefficients ¢ are estimated by least-squares as described in
chapter 3.

2.2 RBF types and behaviour in the spectral domain

The behavior of the basis functions in the spectral domain is determined by the choice of
the basis function kernel and its Legendre coefficients y;. Many different kernels have
been employed for RBFs. This section presents some of the most popular kernels used
so far in gravity field modelling and their spectrum.

Point mass kernel

The point mass kernel has long been used in gravity field modelling (Heikkinen, 1981;
Vermeer, 1984, 1989, 1990; Barthelmes, 1986). Its analytical representation is

Y(xy) = : (2.4)
x=yl

When using the expansion of the reciprocal distance in spherical harmonics, it can easily

be shown that the point mass kernel’s Legendre coefficients are (Klees et al., 2007)

[
y
Y= % (2.5)
The spectral behaviour of the kernel is only dependent on |y|, the radial distance of the
basis function from the centre of the Bjerhammar sphere, which is equivalent to

d=R—lyl, (2.6)

its depth below the Bjerhammar sphere. Figure 2.3 shows the resulting spectrum for
three different depths. It can be seen that the point mass kernel acts as low-pass fil-
ter. Placing the basis functions at shallower depths increases the kernel’s sensitivity for
higher degrees of spherical harmonics.
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Figure 2.3: Normalised spectrum of point mass kernel of depth 2000 km (solid), 1000
km (dashed), and 500 km (dotted).

Radial multipole

The radial multipole has been used by Marchenko et al. (2001) for regional gravity field
modelling. Its analytical representation is

1/ 0 \" 1
‘”‘”‘m(aw) Koyl @7

Its Legendre coefficients are given as (Klees et al., 2007)

L\ Iy "

Y = ( N ) Py (2.8)
There are two different parameters that determine the shape of the radial multipole:
The radial distance |y| and related depth, and the order n. The resulting spectra for
three different depths and order n = 3 are shown in figure 2.4. The radial multipole is
not a truly band-limited function (the Legendre coefficients are never 0), but it has the
characteristics of a band-pass filter. The shallower the depth, the higher the frequencies
covered (and the wider the spectrum).

The spectra for a fixed depth of 1000 km and various orders n are shown in figure 2.6.

Poisson kernel

The analytical representation of the Poisson kernel (Klees et al., 2008a) is given as

L xP—lyf?
v = 2.9
*¥) = 7= x_yP (2.9)
The corresponding Legendre coefficients are (Klees et al., 2007)
21+1
p= Dy 210)

47R3
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Figure 2.4: Normalised spectrum of radial multipole of order 3 and depth 2000 km
(solid), 1000 km (dashed), and 500 km (dotted).
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Figure 2.5: Normalised spectrum of radial multipole of depth 1000 km and order 1
(solid), order 2 (dashed), and order 3 (dotted).

The resulting spectrum (figure 2.6) also exhibits band-pass characteristics. At the same
depth, the maximum of the Poisson kernel is shifted more towards the lower degrees
compared to the radial multipole of order 3.

Poisson wavelet

The Poisson “wavelet” was introduced by Holschneider et al. (2003). A slightly modified
(removal of terms that are eliminated by normalisation) but equivalent definition used in
(Klees et al., 2008a) is

2l+1

= "y, (2.11)

Vi

with the radial distance |y| and the order n as free parameters. The spectrum for n = 3
and three different depths is given in figure 2.7. It is quite similar to the spectrum of the
radial multipole of the same order and depth. With n = 0, the Poisson kernel is obtained.
The Poisson wavelet also has band-pass filter characteristics.
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Figure 2.6: Normalised spectrum of Poisson kernel of depth 2000 km (solid), 1000 km
(dashed), and 500 km (dotted).
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Figure 2.7: Normalised spectrum of Poisson wavelets of order 3 and depth 2000 km

(solid), 1000 km (dashed), and 500 km (dotted).

The spectrum for a fixed depth of 1000 km and three different orders n is shown in figure
2.8. Changing the order n has a similar effect to changing the depth, but higher-order
Poisson wavelets exhibit stronger gradients than lower-order Poisson wavelets of similar
bandwidth (compare the order 3, depth 2000 km curve in figure 2.7 to the order 1, depth
1000 km curve in figure 2.8).

The corresponding analytical representation has been derived as (Klees et al., 2007)
\P(va) = ﬁ (ZXRH +%n) ’

_ P) 1 (2.12)
Xn = MW\ Xyl

Since the Poisson wavelet is the type of kernel used for all computations described here,
the analytical kernel will be covered in more detail.

Klees et al. (2007) have shown that the functions y, can be computed recursively by

n .
xn=2ly" M bnss + Y Builyl'bi (2.13)
i=1



2.2. RBF TYPES AND BEHAVIOUR IN THE SPECTRAL DOMAIN 15

1.0

0.5 1 ! \

I N
! N E
/- S

/. S~~~
0.0 +- —————
0 10 20 30 40 50 60 70 80 90

SH degree

Figure 2.8: Normalised spectrum of Poisson wavelets of depth 1000 km and order 1
(solid), 2 (dashed), and 3 (dotted).

forn>1. Forn=0,

Xo = 2]y|b1+bo (2.14)
holds.
The by, have been derived as (Klees et al., 2007)
bn = (2n—1) [x —y| b1bn_1 — (N —1)?b3by_2, (2.15)
which can be recursively computed with

1 |yl —|x|cos

= , , (2.16)
IX—y| ' \x—y\3

bo
where 9 is the angle between x and y.

The factors B3, i =1,2,3are 31 =3, B32 =17, and B33 = 13.

Blackman wavelets

The Blackman wavelets have been used for multi-scale global and regional gravity field
modelling, e.g. Schmidt et al. (2007). They are defined as

1—<O.42—0.5003’|’—1'+0.080032|—’1"> —ly...2—1
v 0.42—0.50057—2'+0.08c052|—’2" l=1,..21,—1 "~ (2.17)
0 elsewhere

with two free parameters I and I, which determine the bandwidth. Between degrees
l1and |, the Blackman wavelets are larger than 0. They are equal to 1 between 2l; and
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I, — 1. They gradually increase between I; and 2l;, and decrease between I, and 21, — 1.
Hence, the Blackman wavelets are a bandlimited function with smooth cut-off (figure
2.9). Sharp cut-offs are undesirable, as they result in oscillations in the spatial domain
(ringing or Gibbs effect).

1.0 7 S T

0.5 |

0.0
80 90

40 50 60 70
SH degree

Figure 2.9: Normalised spectrum of Blackman wavelets with 1;=5, I,= 15 (solid), I;=
10, I,= 30 (dashed), and 1;= 20, I,= 60 (dotted).

Harmonic splines
The Harmonic splines, as used by Eicker (2008), use the Legendre coefficients

v = of, (2.18)

where G|2 are the SH degree variances of the gravity field to be modelled. Since the true
degree variances are not known, the expected frequency behaviour has to be used. This
can be derived from an existing gravity field model, or using an existing model of the

spectral behaviour such as Kaula’s rule of thumb:

1010
vi= Q@2+ (2.19)

Kaula’s rule of thumb is shown in figure 2.10. When a reference model of degree Imax
is subtracted from the input data, the Legendre coefficients are modified to ensure that
they match the expected signal behaviour. This is achieved either by also subtracting the
reference model’s signal degree variances from the coefficients,

2 _ 2

_ 0 7G|.,Ref’ I < Imax 2.20

i { of, I > Imax (2:20)

or by replacing the degree variances in the part covered by the reference model by the
reference model’s error degree variances,

2
_ Ge,I,Reh I < Imax 221
""_{ N P (2.21)



2.3. BEHAVIOUR IN THE SPATIAL DOMAIN 17

1

0.1+
0.01

0.001 4

0.0001 \

1e-05 - \\
—
—
1e-06 I
le-07
10 20 30 40 50 60 70 80 90
SH degree

Figure 2.10: Spectrum of a harmonic spline when Kaula’s rule of thumb is used.

2.3 Behaviour in the spatial domain

The behaviour of RBFs in the spatial domain is determined by the choice of the kernel
and its Legendre coefficents y;. The more power at the lower degrees the wider the basis
function is. Figure 2.11 shows Poisson wavelets of order and at depths of 2000km, 1000
km, and 500 km in the space domain, the associated spectrum can be seen in figure 2.7.

Figure 2.11: Poisson wavelet of order 3 and of depth 2000km (left), 2000km (centre),
and 500km (right) in the spatial domain.

The spectrum plots already showed that different kernels behave differently in the fre-
quency domain. This behaviour propagates into the space domain, as is evident from
figure 2.12, which shows the six kernels described in section 2.2 in the space domain.
We can detect the characteristics that were already visible in the spectrum. At the same
depth of 500 km, the point mass kernel and the Poisson kernel concentrate more energy
at lower frequencies than the radial multipoles and the Poisson wavelets of order 3. As
a result, the point mass and Poisson kernel have a much wider support in the spatial
domain. The radial multipole’s and Poisson wavelet’s similar spectra lead to similar
characteristics in space, too. It should be noted that the point mass kernel and Poisson
kernel are always positive.

The Blackman wavelet’s band-pass characteristics and relatively sharp cut-off in the
frequency domain causes strong oscillations in the spatial domain. These oscillations
can be reduced by spacing the parameters I; and I, further apart. The Harmonic spline’s
behaviour in space is governed by the chosen degree variance model.

When computing RBFs using their series expansion, it is important not to truncate the
summation too early. Figure 2.13 shows the spatial plots of Poisson wavelets with a
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Figure 2.12: Kernels in the space domain. From left to right and top to bottom: Point
mass kernel at 500 km depth; radial multipole of order 3 at 500 km depth; Poisson kernel
at 500 km depth; Poisson wavelet of order 3 at 500 km depth; Blackman wavelet, ;= 20,
I, = 60; harmonic spline using Kaula’s rule of thumb between degree 20 and 200 (y; =0
forl <20and | > 200).

depth of 500 km. The series expansion has been truncated at degree 300 and degree
30, respectively. The basis function truncated at degree 30 is not only much wider,
but also oscillates quite strongly. This will lead to numerical instabilities. Where the
summation can be truncated depends on the bandwidth of the basis function - the wider
the bandwidth, the earlier the series can be truncated.

For shallow basis functions (small bandwidth), the series will have to be evaluated to
a very high degree, with considerable numerical effort. One way to avoid this is the
use of analytical expressions for the basis functions (see section 2.2). If no analytical
expression is available, a fast synthesis scheme can be implemented (see section 4.2).

2.4 Relation of RBFs to a spherical harmonic represen-
tation

Suppose we have a representation of a harmonic function by a finite set of RBFs and
want to convert it into an equivalent spherical harmonic representation. A potential field
is represented by RBFs according to
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Figure 2.13: Poisson wavelet of depth 500 km truncated at degree 300 (left) and 30
(right) in the spatial domain.

T(x)= %’l _710‘i‘{‘i (X,Yi), (2.22)

where o is the coefficient of basis function i, and ¥; as in eq. (2.2).

Using the addition theorem for Legendre functions (e.g. Heiskanen and Moritz, 1967),

> Pim (%) P (91, (2.23)

eq. (2.22) can be written as

I+1 — —
T = $5iaSv(R) o ZnPn(®)An (i)

(2.24)
I+1 - =
= TS (R) AP 5) P (R).
A representation in spherical harmonics is given by
GM n <R>|+1 | -
TX)=—— — CimPim (X) . (2.25)
™ REZ(’J X mg—lmm()
When comparing eq. (2.25) to eq. (2.24), it can be seen that
im = 1273 0Bl () (2.26)
Im—ll/IZH_li:l iFim (Yi) - .

Eqg. (2.26) allows the computation of spherical harmonic coefficients out of a given
representation in RBFs. Eq. (2.26) can also be written in matrix-vector form as

XsH = AXRBF, (2.27)

where
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Coo

XsH = : ) (2.28)
(:_Imaxlmax

01
XRer=| : |, (2.29)

Oln

woPoo(y1) o woPoo(Yn)
A— : - : . (2.30)
l/llmaxﬁplmaxlmax (yl) e llllmaxﬁplmaxlmax (yn)

If Cyeer is the covariance matrix of the estimated RBF coefficients, error propagation is
then achieved by computing

Cxgy = ACxese AT, (2.31)

where Cy, is the resulting covariance matrix of the spherical harmonic coefficients.

The ability to transform an RBF solution into an equivalent set of spherical harmonic
coefficients is useful for two applications:

1. It allows for the computation of the power spectrum of a potential field in RBFs
and spectral analysis.

2. Since spherical harmonics are the most-used representation, many post-processing
tools, such as spectral analysis or spectral filters, expect SH coefficients as input.
The transformation makes it possible to use these tools. However, a very high
maximum degree | may be necessary to get an accurate representation of Xggr in
terms of spherical harmonics.

2.5 Choice of RBF characteristics

For gravity field modelling, three choices with regard to the RBFs used need to be made
in order to achieve a good approximation quality.

1. The choice of the kernel. Section 2.2 has introduced a number of kernels that
might be used for gravity field modelling. Of course, in practice there may be
many more.

2. The bandwidth of the RBFs. We have seen that the choice of bandwidth of the
RBFs affects their spectral and spatial characteristics and thus their approximation
properties. These must be chosen appropriately in order to obtain a good potential
field approximation.
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3. The location of the basis function centres (network design). Unlike spherical har-
monics, which have global support, RBFs are localising in space. As a result, the
locations of the RBF centres need to be selected appropriately.

2.5.1 Choice of the kernel

The first choice that needs to be made when RBFs are used in gravity field modelling
is the kernel that is to be used. Section 2.2 has listed a number of possible kernels for
regional gravity field modelling using RBFs and their associated spectral and spatial
characteristics. A comparison conducted using the point mass kernel, the radial multi-
pole, the Poisson kernel, and the Poisson wavelet has shown that, for the test data set, all
four kernels yield similar results if the bandwidth is chosen correctly (Tenzer and Klees,
2008). This means that if a bandwidth selection scheme as described in section 2.5.2 is
implemented, any one of the kernels can be used. Additionally, the four kernels used
in the comparison have a desirable analytical expression, which can significantly reduce
the computational load. Whether there are other RBFs that are better suited for potential
field modelling has not been investigated.

The Blackman wavelets are easily fine-tuned to a certain spectral bands, but oscillate
strongly in space due to their sharp frequency cut-off. They are probably best used in a
wavelet analysis. The Harmonic spline approach of directly using the expected spectrum
as kernel is quite elegant, but requires knowledge about the signal when designing the
kernel. A disadvantage is that no analytical expression for the kernel is available.

All computations presented here were done using Poisson wavelets of order three as
kernel for the basis functions. This is a somewhat arbitrary choice from the class of
RBFs with known analytical expressions.

2.5.2 Bandwidth selection

The bandwidth of an RBF affects its approximation characteristics. RBFs with large
bandwidths cover a lower-frequency part of the spectrum, while small bandwidths are
required for modelling high-frequency signal.

There is no single definition for a basis function’s bandwidth. Narcowich and Ward
(1996) introduced a basis function’s variance as measure for the bandwidth. Here, the
bandwidth is considered to be the basis function’s correlation length, 1% 5. The band-
width is defined as the spherical angle where the basis function is half its maximum
value, and is determined by the type of basis function chosen and the associated param-
eters. In the case of the Poisson wavelets of order 3, the bandwidth is determined by the
radial distance |y| and thus the depthd =R —|y|.

It is of utmost importance that the bandwidth is chosen properly. Otherwise, the basis
functions will not have the optimal approximation characteristics. Too narrow band-
widths might lead to a good approximation of the data and a well-conditioned normal
equation system, but a poor quality of the solution between the data points. A band-
width that is chosen too large will result in an ill-conditioned normal equation system,
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may lead to a solution that is too smooth, and might result in leakage since the basis
functions cannot represent the spectral content contained in the signal.

Choosing the bandwidth is a problem of model identification, hence many methods can
be used. Possible methods are computing the signal’s covariance function and mod-
ifying the basis functions’ parameters to fit it (Marchenko et al., 2001), or using the
expected signal spectrum as spectrum for the basis functions (Eicker, 2008). As part of
the methodology presented here, a different approach has been chosen: The bandwidth is
selected by minimising a functional computed out of the data used in the approximation.

The simplest functional is the root mean square (rms) of the least-squares residuals and

thus the best fit to the data:
1., . 2
frms = n HAX - y” : (2.32)

Use of the residual rms has drawbacks. It can be made arbitrarily small by increasing
the number of RBFs. It is minimised when all observations are approximated exactly,
thus interpolated. This includes the modelling of all noise contained in the observations.
Nevertheless, if used with care and with a number of basis functions significantly smaller
than the number of observations, minimising the observation residual rms can yield a
smooth, good solution.

The over-fit can be avoided by using generalised cross validation, based on the leave-
one-out idea (e.g. Picard and Cook , 1984). Solutions X are computed leaving out
a different observation yy in each estimation, and predicting the observation ¥y using
the solution Xx. A well-selected bandwidth would lead to small errors in the predicted
observations. General Cross Validation (GCV, Golub et al. (1979)), aims at minimising
the functional (Kusche and Klees, 2002)

_ njA%-y|?
focy = (n—u+a3)?
(2.33)
3 = trace(L(ATPA+aR) "LT)

where L is the lower triangular matrix resulting from the Cholesky decomposition of the
regularisation matrix R. If more observations are available than necessary for the esti-
mation (oversampling), some observations can be left out and then be used as criterion
for minimising the rms.

Sometimes, information about the signal to be recovered is available, for example when
computing a new gravity field model for an area where an older model or reference
model is available. A smooth solution can then be obtained by minimising the difference
between the reference and the new model, instead of the data rms or GCV. This method
has to be used with caution, as the new model will inevitably be biased towards the
reference model.

A smooth solution is obtained by placing the basis functions deep rather than shallow.
There is a limit to how deep the basis functions can be placed. When placed too deep,
they overlap too much, resulting in an ill-conditioned normal matrix. Looking at the
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condition number of the normal matrix can help in estimating optimal depths. This
approach most however used with caution as it may lead to sub-optimal results, but has
been used successfully when modelling satellite data.

2.6 RBF network design

RBF network design addresses the issues of how many RBFs are to be used in the esti-
mation process and their horizontal position. There are generally two possible choices
for the network design:

1. Placing the RBFs on a grid, with grid type and spacing chosen suitably.

2. Scattered RBF positioning, guided by the location of the observations (data-adaptive).

Grids are a straightforward approach. Grid type and grid parameters (spacing, level)
determine the positions of the basis functions. However, type and parameters need to
be chosen carefully to avoid under- and overparametrisation. Grids are well-suited for
use with homogeneous data distributions. They can also be used for heterogeneous data
distributions to get an initial solution that may then be refined in a two-step approach
(Klees et al., 2008a). Data-adaptivity may be required to avoid overparametrisation in
the initial step.

Scattered RBF positioning does not make use of grids, but optimises the RBF centre lo-
cations based on the characteristics of the data. Least-squares collocation (Moritz, 1980)
places one basis function under each observation. While this makes the RBF centre loca-
tion easy, it will lead to an unnecessarily high numerical complexity and stability issues
for an RBF solution in the case of signal oversampling by the data. Additionally, it may
lead to modelling of noise and not yield the desired smooth solution. In practice, RBFs
are not placed below every observation. There exists however no objective criterion for
leaving out RBFs, the decision is up to the experience of the user.

Barthelmes (1986) designed an algorithm for use with point masses. It solves a non-
linear optimisation problem with four parameters per point mass, three 3D position co-
ordinates and one parameter to fix the magnitude. The associated numerical complexity
might be the reason that this approach has not gained wider acceptance.

An alternative approach has been developed by Marchenko (1998); Marchenko et al.
(2001) for the use with radial multipoles. The sequential multipole algorithm places
basis functions under the largest (residual) observations, and at the same time determines
order and depth of the multipole. The latter two parameters are fixed using the gravity
anomaly covariance function in the vicinity of the data point. It has been proven that this
approach leads to a significantly reduced number of basis functions compared to simpler
approaches (Klees et al., 2005) while maintaining a high-quality solution. The network
optimisation procedure is however quite complex and time-consuming.

Here, another route has been taken. An adaptive approach is used, but to reduce the nu-
merical complexity each solution is first computed using a grid of basis functions, with
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all basis functions located on a sphere inside the Bjerhammar sphere. Individual grid
points may be omitted in a data-adaptive manner in order to ensure a stable solution.
If the resulting approximation quality is not considered sufficient, the RBF network is
locally refined in a second step and a joint solution then computed. This leads to good
approximations with a relatively small number of basis functions, while avoiding a com-
plicated optimisation procedure.

2.6.1 Grids
When using grids for the placement of basis functions, two choices need to be made:

1. The type of the grid. Mentioned here are equi-angular grids, grids based on the
subdivision of an Icosahedron, and Reuter grids. Many other grid types exist and
are viable choices (Eicker, 2008).

2. The grid spacing. The grid spacing needs to be chosen in such a way that the
spectral data content can be recovered with RBFs of suitable bandwidth. Signals
with large gradients and high-frequency content requires dense grids, while coarse
grids are sufficient for smooth signals.

A natural grid choice is a grid with equiangular spacing in longitudinal (1) and latitudi-
nal (o) direction, respectively. An example of such a grid is shown in figure 2.14.

Figure 2.14: Global equiangular grid.

An advantage of such a grid is that it can easily be tailored to a specific purpose by
choosing the proper spacing in both directions. A major disadvantage is visible in figure
2.15. At higher latitudes, the grid becomes increasingly dense in longitudinal direction,
leading to overparametrisation and thus numerical instabilities. Use of an equi-angular
grid should thus be avoided for high-latitude areas.

One solution to this problem is using a grid derived from subdividing a polyhedron (Saff
and Kuijlaars, 1997; Freeden, 1999). A very popular choice is the icosahedron, a poly-
hedron with 20 faces. The number of faces increases four-fold with each subdivision, so
a level v icosahedron grid has

n=20-47"1 (2.34)
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Figure 2.15: Equiangular grid at high latitudes.

points. Figures 2.16 and 2.17 show icosahedron grids of level y= 4. The grid has been
computed with DOME, available from http://wuw.senecass.com/software.html.

60° 120° 180"

180° 240"

60" 120° 180°

Figure 2.16: Global icosahedron grid of level y=4.

The icosahedron grid shows an almost equidistant point distribution at high latitudes. A
disadvantage is the four-fold increase in the number of points from level to level. This
can make it difficult to find the correct level for a given application, as slight in- or
decreases in the number of grid points and thus the resolution are not possible.

An interesting alternative that does not have this disadvantage is the Reuter grid (Reuter,
1982). It was originally designed for numerical integration, approximation and interpo-
lation on the sphere with harmonic splines. A Reuter grid of level y is constructed in the

following way:

() Y = 0, o1 = 0(North Pole)
(i) AY =)y
(iii) Y =iAd,1<i<y—1

(iv) % =2m/arccos ((cosA® — cos? ;) /sin® )

v) Aj=(i—3)@r/%),1< <y
(vi) ¥y =1, 4,1 = 0(South Pole).
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Figure 2.17: Icosahedron grid of level y= 4 at high latitudes.

A level y Reuter grid has a number of grid points which can be estimated by

nz2+%;ﬁ. (2.35)

Figures 2.18 and 2.19 show a Reuter grid of level ¥ = 30. Like the icosahedron grid,
it provides an almost equidistant point distribution. The advantage of the Reuter grid
over the icosahedron grid is that the number of points on a Reuter grid increases more
slowly, with 72 instead of 47, making it easier to find an optimal point distribution for
a given application. Furthermore, as will be shown in chapter 5, the Reuter grid level
v is approximately equal to the maximum spherical harmonic degree Inax that can be
modelled with a RBF representation using this grid.

Most computations presented here make use of the Reuter grid for the mentioned rea-
sons. It has to be noted that Reuter grids have one drawback: They exhibit gaps near
longitude 0° at certain degrees of latitude, depending on the chosen grid level y. They
are evident in figure 2.18, e.g. at 30 and 60 degrees of latitude. These gaps can cause
small errors due to unmodelled signal. It is suggested to reduce these errors by rotating
the grid in a way that the gaps fall in areas of little signal. This can be achieved by
rotating the grid by 180 degrees of longitude, thus placing the gaps in the Pacific ocean.

2.6.2 Adaptation to data

With the methodology presented here, an initial computation always places all basis
functions on a grid at the same depth. In the case of heterogeneous data distributions,
which are often encountered when dealing with terrestrial gravity data, this grid will not
be optimal. Even if the grid spacing is chosen carefully, there may be areas with very
sparse data coverage. Placing an excessive number of basis functions in such an area will
lead to overparametrisation and an unstable normal equation system. This can either be
addressed by regularisation (section 3.3), or by adapting the grid to the data distribution
(data-adaptive network design, DAND) (Klees et al., 2008a).
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Figure 2.19: Reuter grid of level y = 30 at high latitudes.

Here, the data adaption is achieved by using only RBFs that have q > 1 observations
within their influence radius (Klees and Wittwer, 2005). q is usually set to 1, but should
be larger in the case of significant oversampling of the signal.

The influence radius is a function of the correlation length of the basis function:

Ri = o - o35, (2.36)
where oo € R an arbitrary factor. « is usually set to one, but sometimes smaller to
avoid overparametrisation. Additionally, it is possible to only consider observations
with a (residual) signal amplitude exceeding a certain threshold, e.g. o. This way, the
modelling of noise can be reduced.

2.6.3 Local refinement

In gravity field recovery, one has to deal with signal that varies strongly depending on
the geographic location. The signal is quite smooth over the oceans and in areas with



28 RADIAL BASIS FUNCTIONS

little changing topography (such as plains), while there are large variations (gradients)
in mountaineous areas or at plate boundaries. A set of RBFs distributed on a coarse
grid will usually not be able to model all signal in areas with large variations if the grid
is designed in such a way not to lead to over-parametrisation in the areas with smooth
signal, and may lead to leakage that may corrupt the solution. It is thus necessary to
locally refine the coarse grid solution in order to recover the full signal.

Such a local refinement algorithm should place additional basis functions in areas of
large signal variations, where the coarse grid solution alone is not sufficient. The goal
is to capture more usable signal while at the same time avoiding overparametrisation,
numerical instabilities, and the modelling of noise. The implementation used here is
shown in figure 2.20. The starting point is a coarse grid solution. The algorithm performs
the following steps:

1. The observation with the largest residual is chosen as candidate location for a local
refinement basis function.

2. The optimal depth of the new basis function is determined by minimising the
residual when estimating the basis function’s coefficient using observations in the
vicinity of the data point.

3. The contribution of the RBF to the observations is subtracted in the vicinity.

This process continues with the next largest residual, until no residual above a chosen
threshold can be found. The threshold should depend on the signal noise level, to avoid
modelling of noise instead of signal, while making sure that as much signal as possible
is being recovered. Additionally, the mean value of all observations within the vicinity
of the considered observation should exceed some threshold, to avoid the modelling of
outliers. Itis also important that the distance between the basis function exceeds a certain
minimum, otherwise numerical instabilities will occur.

A full readjustment is then performed, using the basis functions on the coarse grid, as
well as all basis functions found during the local refinement, with their respective depths,
to compute the final solution (Klees et al., 2008a).

A variety of parameters have to be chosen in the local refinement algorithm:

1. The threshold used for selection of observations.

2. The threshold for the mean value of all observations in the vicinity (vicinity thresh-
old). This threshold avoids placement of basis functions under isolated large resid-
uals, which are likely to be outliers.

3. The radius of the vicinity in which observations are used for estimating the basis
functions (selection vicinity).

4. The radius of the vicinity in which the contribution of the local refinement basis
function is subtracted (update vicinity).
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Figure 2.20: flowchart of the local refinement algorithm

5. The minimum distance between basis functions. This prevents numerical instabil-
ities.

It is difficult to give definitive numbers for these parameters, as the optimal values will
depend on the test case. From many numerical tests involving different data sets, it can
be said that

1. the threshold should be related to the expected noise in the data, with 3¢ being a
good starting value;

2. the vicinity threshold is very difficult to select, some experimentation is required
to find a good value, which is usually quite small (threshold < ©);

3. the observation selection vicinity should be chosen in such a manner that several,
but not too many, observations are chosen;

4. the update vicinity should be larger than the selection vicinity, with three times as
large being a good starting value;
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5. the minimum RBF distance should be around half the coarse grid spacing; if a
tighter spacing delivers a better solution, it might be advisable to increase the
number of coarse grid RBFs by using a tighter grid spacing.

2.7 Multi-scale modelling

2.7.1 Introduction

Multi-scale modelling, sometimes called multiresolution modelling, describes a method
where the signal is decomposed into different spectral bands, or scales. The signal is
represented by a smoothed version and several detail levels. The motivation behind this
is the feasibility to compute the different scales independently from different input data
with different spectral behaviour, such as satellite and terrestrial data. The ability to
look at different spectral bands also aims at easier identification of certain geophysical
features.

Wavelets have successfully been used for multi-scale gravity modelling (Fengler et al.,
2007; Schmidt et al., 2007). Wavelet methods estimate the full signal using some scal-
ing function (which is in fact a radial basis function), and then compute the individual
detail scales using filter operations in a top-down fashion. In the context of the research
described here, a different method working bottom-up was developed and analysed.

2.7.2 Methodology

The idea behind a bottom-up algorithm is that only parts of a region will have high-
frequency signal, while others will feature a rather smooth signal. With heterogeneous
data sets, some areas will have sparse data coverage, making it impossible to use a
tight spacing of basis functions. By starting at a coarse scale, the long wavelengths
contained in the data will be modelled. Subtracting them from the original input data
should leave only high-frequency signal remaining, which will then be modelled by the
next higher scale, with basis functions placed shallower on a denser grid. An algorithm
working in such a manner may be able to completely model the signal, while using less
basis functions than a single-scale algorithm when dealing with data of heterogeneous
distribution and/or spectral content.

Let X5 denote the least-squares estimate of the single-scale solution
y+es=AsXs (2.37)

which models the potential field (in vector notation)

T=5w,. (2.38)

using the vector of single-scale basis functions ‘¥s. Let X denote a solution at level j,
j = jmin;uq jmax Wlth
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y+ej=AjXj. (2.39)

A flowchart showing the multi-scale algorithm is shown in figure 2.21. The minimum
and maximum scale jmin and jmax have to be chosen, depending on the expected spectral
content of the available data. Estimation starts with scale jmin. The scale j is chosen as
icosahedron grid level and thus determines the spacing of the basis functions. For each
level, the data-adaptive algorithm is applied, as well as the optimal bandwidth/depth
estimation. Once the optimal depth has been found, the solution X; is computed and its
contribution is subtracted from the observations:

Y+ejr1 —AjXj = Ajp1Xji1- (2.40)
The observation equations for level i are thus

i1
Yn=Y— Y AjXj=AX, i€ jmin -, jmax- (2.41)

J=1Jmin

The scale is then increased by one, and the process starts again for the new scale and
solution Xj1. The highest level should be chosen in such a manner that no usable signal
remains after the estimation of the highest level. The total solution is then

T= 3 R]Wj. (2.42)

It is hoped that || Ts — T|| is small and that the number of basis functions for all levels j
is smaller than the number of basis functions used for the single-scale solution Xs.

Note that the methodology does not make use of the local refinement algorithm as
described in section 2.6.3. The combination of the bottom-up approach with data-
adaptivity and thresholding essentially leads to local refinement, with the exception that
all “refinement” basis functions of one scale are located at the same depth. Unlike with
the local refinement method, there is no joint estimation of all basis functions. Each
scale is estimated independently, and no readjustment is performed.

2.7.3 Filtering

While initial results using this methodology looked promising (Klees and Wittwer, 2007),
further research showed that a multi-scale representation computed in such a manner was
of lower quality than a single-scale solution. Testing showed that high-frequency signal
that cannot be modelled by the lowest scale jmin leaked into and corrupted the estimated
coarse-scale RBF coefficients Xj,,,. Hence, the residuals y — Aj, ;. X, contain a long-
wavelength error that can not be modelled by higher levels. To deal with the leakage
problem, it is necessary to low-pass filter the input data for the lower scales.

Applying a filter F; for level i leads to the observation equations
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Figure 2.21: flowchart of multi-scale algorithm

i—1
Fi(y—_z AjXj) = AiXi, i € jmin,-.-, jmax andFj,,, = 1I. (2.43)

J=min

The observation equations for a two-scale solution are thus given by

Fiy1 =Axg

, 2.44

Y2 =Yy1—Aaxs = AXz (244)

where X1 and x, are estimated by least-squares. The total solution is then
T=X1¥1+XW¥,. (2.45)

Fi must be adapted to the basis function vector ¥; of the same level, i.e. the half-width
of the filter must correspond to the correlation length of the basis functions.

Filtering and filter parameter choice is a well-known, common problem. In order to
investigate the effectiveness of filtering in the context of the multi-scale methodology
described here, several possible filters were examined. A test was done using noise-free
data computed from EIGEN-GL04C (Foerste et al., 2008) up to to degree 70. Gravity
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disturbances were synthesised on a grid with 2 degree spacing, resulting in 16,200 ob-
servations. Using these data, the following single-scale and multi-scale solutions were
computed:

1. A single-scale solution using Poisson wavelets at a depth of 800km on a level 6
icosahedron grid, resulting in 12,400 RBFs.

2. Multi-scale solutions using Poisson wavelets at two depths: 5,100 RBFs on a level
5 icosahedron grid at a depth of 1,600km, and 12,400 RBFs on a level 6 icosahe-
dron grid at a depth of 800km. Various low-pass filters were applied to the input
data for the level 5 solution.

While a single-scale solution resulted in an rms error of 0.45 mm compared to a true
signal computed from the same set of SH coefficients, a solution using RBFs on a level
5 and 6 icosahedron grid and the methodology described in the previous section yielded
an rms error of 5.5 cm. The correlation length of the RBFs on the level 5 grid was 500
km. The input data for the level 5 estimation was subsequently filtered with

1. a Gauss filter with a correlation length of 500 km, resulting in an rms error of 0.42
mm;

2. a Blackman filter with the filter parameter p = 25 (correlation length 496 km),
resulting in an rms error of 0.35 mm.

In both cases, the correlation length had been chosen equal to the correlation length of
the level 5 basis functions. Previous testing had shown that this yielded the smallest error
rms.

The cumulative degree errors for the single-scale as well as the two filtered solutions
are shown in figure 2.22. The single-scale solution used 12,400 RBFs, the multi-scale
solution required an additional 5,100 or 41% more basis functions.

A multi-scale solution constructed in such a way can thus deliver the same quality as a
single-scale solution. Unfortunately, the goal of reducing the number of basis functions
required could not be achieved with the chosen test case, global gravity recovery. In-
stead, the number of basis functions required for a multi-scale solution is 30-40% larger
than with a single-scale solution. Because of this, the multi-scale approach was aban-
doned and all solutions shown in later chapters are single-scale solutions. Nevertheless,
the methodology described here is a viable approach if a multi-scale representation is
desired. A multi-scale solution using two scales to model EIGEN-GL04C up to degree
70 is shown in figure 2.23.
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Figure 2.22: Cumulative errors [mm] for single-scale solution (blue), Blackman-filtered
solution (green), and Gauss-filtered solution (red).
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Figure 2.23: Multi-scale solution of disturbing potential: Scale 5 (top) and detail signal
at scale 6 (bottom).
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Chapter 3

Mathematical model and estimation
principle

This chapter describes the mathematical model and the estimation principle used for
computing gravity field models with RBFs. Functional model, stochastic model, estima-
tion principle, regularisation, data weighting, and solution strategies are all addressed.

3.1 Functional model

The functional model for gravity field modelling with RBFs (cf. eq. (2.3)) may be
written as standard Gauss-Markov model

y=AX+e, 3.1)

where y is the n x 1 vector of observations, e is the n x 1 vector of residuals, and x is
the u x 1 vector of unknown coefficients ¢;j. The n x u design matrix A describes the
functional relations between x and y.

3.2 Stochastic model

The stochastic properties of the residuals are described by the stochastic model

E{e}=0,E{ee’} =D{e} =C, (3.2)

where E {-} denotes the expectation operator, and D {-} the dispersion operator. The
noise in the observations is described by the variance-covariance matrix of e, which is
denoted C.
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3.3 Least-squares estimation and regularisation

The coefficients of the RBFs are estimated using least-squares. The quadratic functional

o(x)=e'Cle (3.3)

is minimised, where e is the vector of least-squares residuals and C is the covariance
matrix of the observations. The minimum is obtained by computing

£ =N"1b, (3.4)
with the normal matrix
1 .
N = _2Ai PjAj (3.5)
=19
and the right-hand side vector
J 1 T
b= Z?Aj Pjyj (3.6)

=17

with A; the design matrix of observation group j, the weight matrix Pj = écj*l, Cj
]

being the covariance matrix of observation group j with variance factor GJ-Z, and the
observation vector yj.

The least-squares estimates of the observation vector and the vector of residuals are given
as

§ = AR, 3.7)

e=y—9. (3.8)

It is possible that the normal equation matrix N is ill-conditioned. Then, some sort
of stabilisation is needed to make the computation of a solution possible. This can be
achieved by Tikhonov regularisation

%= (N+aR) b, (3.9)

where R is the regularisation matrix and o is the regularisation parameter. In this thesis
R = 1 is used (zero-order Tikhonov regularisation). The choice of R affects the quality
of the solution (Kusche and Klees, 2002; Ditmar et al., 2003b), although some studies
(e.g. 1k (1993)) have concluded that the choice of R is of secondary importance. In
the research presented here, regularisation is only needed and used with terrestrial data
(chapter 6).



3.4. SOLUTION STRATEGIES 39

There are several methods for choosing the regularisation parameter o (e.g. Ditmar et
al., 2003b). It can be chosen manually by looking at the condition number of the normal
equation matrix N or the smoothness of the solution, which will yield a regularisation
parameter as small as possible for a stable normal equation system. More desirable is an
“automatic” optimal estimation, which can be achieved by generalised cross-validation
or variance component estimation (see section 3.5).

3.4 Solution strategies

For regional gravity field modelling, we often have to deal with a large number of obser-
vations and unknown parameters. As a result, the numerical cost to compute N and its
inverse are very large. Two strategies can be used to handle the numerical complexity.
In addition, a parallel implementation is required to deal with memory requirements and
to reduce computing times. Parallelisation is treated in section 4.3.

3.4.1 Cholesky factorisation

Since the normal matrix N (or N+ R in the case that N is ill-conditioned) is a symmetric
positive-definite matrix with real entries, it can be decomposed as (e.g. Golub and van
Loan, 1996)

N=GG', (3.10)

where G is a lower triangular matrix with positive diagonal entries, and G denotes the
conjugate transpose of G. The decomposition in eq. (3.10) is called Cholesky factorisa-
tion. It can be used for the numerical solution of a linear system of equations Nx = b by
first computing the Cholesky decomposition, then solving the system Gp = b for p, and
finally solving GTx = p to obtain the solution x.

The assembly of N requires the computation of the dense matrix-matrix product N =
ATPA, anumerically intensive operation. Luckily, efficient parallel routines for both the
computation of N and the Cholesky decomposition in eq. (3.10) exist.

3.4.2 Conjugate gradients

The system of normal equations can be solved using the conjugate gradients (CG) method
(Hestenes and Stiefel, 1952), an iterative solver. The expensive assembly of N is not re-
quired for the CG method. Keeping the whole design matrix A in memory can also be
avoided, which drastically lowers the memory requirement.

In order to achieve an acceptable convergence rate, the so-called pre-conditioned con-
jugate gradients (PCCG) method needs to be used. The convergence rate is strongly
affected by the choice of the pre-conditioner P. While a suitable preconditioner is easily
found for spherical harmonics, resulting in estimations that converge within a few iter-
ations (Wittwer, 2006), no effort was made to find a suitable preconditioner for RBFs.
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Therefore, all computations presented here were performed with a parallel solver mak-
ing use of Cholesky factorisation. Furthermore, assembly of the normal matrix N makes
it easy to compute the covariance matrix C = N~ of the estimated coefficients.

3.5 Variance component estimation

3.5.1 Normal equations

If more than one observation group is used, each observation group j has to be introduced
with its proper weighting factor. The normal equations are

J o1 J 1
—ZAJTPJ-AJ- XzZ—ZAJTPjyj, (3.11)
=1 0] j=19;j

or, in the case of regularisation,

J J
1 1
((_}j —GZAJTPJ-AJ) +ocR> x=3 —G_ZAJTP,-yj, (3.12)

=1"] =1"]

with GJ-Z being the variance factors of the observation groups. The regularisation parame-
ter o can be interpreted as inverse variance factor of the observation groupe; 1 +Yyj.1 =
x where D {e;41} = LR~1 = 6?R~1. Then, o can be interpreted as the inverse variance
factor of the unknown parameters.

3.5.2 Variance component estimation

The variance factors of the observation groups are estimated using variance component
estimation (VCE). If regularisation is applied, VCE can also be used to estimate the reg-
ularisation parameter, i.e. the variance factor of the unknown parameters. The variance
factors for the observation groups are, according to Kusche (2003),

eTP;8
g2=11 (3.13)
rj
with the residuals
& =AjX—yj (3.14)

and the partial redundancies

1 -
r,-:nj—?tr(AJTP,-AjN b, (3.15)
J
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where nj denotes the number of observations in observation group j.

The variance factor for the unknown parameters is, in the case of R = I, obtained from

/\T’\
62 =2% (3.16)
I'x
with
11
ry =u—tr G_XZN , (3.17)

and u being the number of unknown parameters (Koch and Kusche, 2002).

3.5.3 Stochastic trace estimation

The computation of the partial redundancies r;, as defined in eq. (3.15), is difficult, as the
inverse of the normal equation matrix N—! is required, which may not be available if an
iterative method is used to compute the least-squares solution X, and time-consuming,
because the matrix product AJTP,-A,-N‘1 needs to be computed. The solution of this
problem is the use of Monte-Carlo methods for stochastic trace estimation.

According to Hutchinson (1990),

E(z"Bz) =trB, (3.18)

holds, where B denotes a symmetric n x n matrix and z an n x 1 vector of n independent
samples from a random variable Z with E(Z) =0 and D(Z) = 1. If Z is a discrete
random variable which takes with probability 1/2 the values -1 and +1, then z" Bz is an
unbiased estimator of tr B with minimum variance. For large-scale problems, it is usually
sufficient to employ only one realisation of z (Kusche and Klees, 2002).

Partial redundancies, unweighted case

In the case of Pj = I, eq. (3.15) may be rewritten as

1
rj :nj—?tr(AjN_lA]T). (3.19)
j
Inserting eq. (3.18) yields
1
rj=nj— ?ZTA,-NflAJTz. (3.20)
j

Computing the product N*lAJTz can be replaced by solving the linear equation system
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Bi =N¢&j, Bj = Ajz. (3.21)

This results in the following equation for the partial redundancies:

1 A
rj :nj—?zTAjéj (3.22)

J

Partial redundancies, weighted case

If Pj # 1, a rearrangement as in eq. (3.19) is not possible. Instead, applying eq. (3.18)
directly to eq. (3.15) yields

1
rj=nj— 2" AJP;AjN"z. (3.23)
%j

The further computation is similar to the unweighted case, with the computation of N~1z
being replaced by solving the linear equation system f; = N&;. The partial redundancies
are then computed as

1 ~
rj :nj—ngA}PjAjgj. (3.24)
J

Partial redundancies, unknown parameters
For the variance factor of the unknown parameters, the equations are somewhat simpler.

Inserting eq. (3.18) into eq. (3.17) yields

1 1yt =
hh=U——72' Nt'z=u— -7 3.25
X GXZ ze ga ( )

where E = N~1z. The variance factor can then be computed according to eq. (3.16).



Chapter 4

Numerical aspects

The computations performed in the context of the research presented here use large
numbers of observations and unknown coefficients. This leads to significant numerical
costs in terms of runtime and memory. Three areas of numerical complexity can be
identified:

» The computation of the design matrix A. This consists of many small operations
that are memory intensive. A numerically optimised implementation is necessary.
Interpolation schemes (see section 4.2) allow for a fast computation of the design
matrix elements even when a series expansion of the RBFs needs to be used.

 The largest computational effort is required for the computation of the normal
equation matrix by dense matrix-matrix multiplication, N = ATPA. Luckily, this
is a well-understood operation for which efficient parallel routines exist.

 The solution of the normal equation system is relatively quicker to compute, but
can also benefit from parallel routines.

To get an idea of the numerical complexity, GRACE is taken as an example. When
computing an optimally filtered GRACE four-year time series, this requires the assembly
and solution of 48 monthly solutions. Each monthly solution typically uses 500,000
observations to estimate 10,000 unknown coefficients. It would require approximately
4 hours of computation time on a single 3 GHz CPU if memory constraints were not
an issue. In fact, since optimal filtering requires iteration (see section 5.3), this time
would be required not 48 times for a 4-year time series, but 480 times in the case of 10
iterations, for a total of 1,920 hours or 80 days. It is obvious that a numerically efficient
and parallel implementation is necessary in order to perform the computations within an
acceptable time frame.

This chapter starts with some numerical optimisation issues. Section 4.2 describes a fast
synthesis scheme that can be used to accelerate the computation of the design matrix.
The actual parallelisation of the program used here is described in section 4.3. The
chapter ends with a summary.
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4.1 Numerical optimisation

4.1.1 Constant expressions in “do”-loops

When dealing with spectral representations of RBFs, frequently series expansions like

Imax [
B(x) = Z(2|+1)< |> o (x,1), (4.2)

have to be evaluated, often up to a very high maximum degree Iyax, €.9. When com-
puting the series expansion of an RBF (see section 2.3). Usually, the series has to be
computed several times with slightly different factors o (x,1), the rest of the expression

R

I
\XI) alone might use as many

remaining constant. The computation of the expression <

as |max+|max+1

tation.

floating point operations, due to the recursive nature of the power compu-

The computation of several series can be accelerated significantly if the constant ex-

I
pression (21 +1) <‘X| is computed beforehand for each degree | and stored in a vector.
Even if the series is computed only once, the costly exponentiation can be avoided by

I -1
computing (IX\) recursively as (IX\) (IX\) Only about Imax floating point operations
are then required.

Smaller expressions, like %, that are frequently reused will often be optimised by the
compiler, by computing them only once and storing them. Since there is no guarantee
that this is done, based on the complexity of the expression and the availability of regis-
ters, it is advisable to do this manually (by computing them once and storing them in a
variable) if a significant reduction in computational workload is expected. It will require
additional storage, but today storage is usually a smaller problem than computing power.

4.1.2 Computation of the design matrix

A typical example of the repeated evaluation of the same series is the computation of the
design matrix A. For n observations and u basis functions, the series

Imax 1+1
\Pi,j (vayl) ZWI i <|X1|> F)| ()’Z]—yl)a (42)

I+1
has to be evaluated n - u times, where %) is the same in each series belonging to the

same observation j. v ; is the same for all basis functions i with the same parameters,
such as depth. This means that the series depends only on the angle between observation

I+1
X;j and basis function y;j. By computing the constant expressions v (ﬁ) only
' ]
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once for each observation, and only the term P (f(})‘/i) for each pair of observation and
basis function, a significant acceleration can be achieved.

When using analytical expressions, the resulting speed improvement will be much smaller.
Still, computing constant expressions only once per observation will accelerate the com-
putations.

4.1.3 Normalisation of coordinates

Normalised coordinates of basis functions and observations are frequently required dur-
ing the assembly of the design matrix, as well as during the data-adaptive network design
and local refinement steps. They are used for computing the angle between observation
j and basis function i by means of the scalar product, f(] ¥i with X = \_§| andy = ﬁ In the
computation of the design matrix, this angle has to be computed n - u times. Computing
a normalised coordinate is performed by

AR 4.3)

X~ [z
iy e

which requires three multiplications, two additions, three divisions, and a very costly
square root operation. A significant acceleration can thus be achieved by computing the
normalised coordinates just once and storing them.

4.1.4 Normalisation of basis functions

The values attained by the basis functions can be very large or very small. In the interest
of numerical stability, it is better to work with normalised RBFs:

¥
Yrorm = ——— 4.4
norm HLPIH 9 ( )

A suitable normalisation factor ||| can be computed by
[Will =¥ (r = mean, ¥ = 0), (4.5)
i.e. the basis function with spherical angle ¥ = 0 between basis function and observation

and the observation radius r equal to the mean observation radius. It is advisable to
compute the normalisation factor only once per program run and store it.

4.2 Fast synthesis

It has been shown in section 2.3 that it is necessary to evaluate the series expansion of
the basis functions to a sufficiently high degree. Depending on the maximum degree
(which is governed by the depth of the basis function, see section 2.3), this poses a
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Figure 4.1: Basis function of 500km depth for various angles ¥ and radii r.

considerable numerical effort, as the series will have to be evaluated for every pair of
basis functions and observations, even if the numerical optimisations in section 4.1 are
used. If no analytical expression for the basis functions is available, a fast synthesis
scheme allows for the quick computation of the basis functions. This scheme is based
on the idea developed for the fast synthesis for spherical harmonics by Ditmar and Klees
(2002).

The basis function W is a function of two parameters: The spherical angle ¥ between
the centre of the basis function and the observation, and the radial distance r of the
observation from the center of the Earth, assuming that all basis functions are located on
the same sphere. Since the function of ¥ and r is quite smooth (fig. 4.1), it is possible to
interpolate between values to compute the basis function with sufficient accuracy.

As a first step (the synthesis step), the basis functions will have to be computed at a
sufficiently dense grid, which will be used for interpolation. Grid spacings of 1-10~4
rad at 16 different radii have been proven to be sufficient in all test cases.

The second step is interpolating the desired values using 2-dimensional Overhauser
splines (Ditmar and Klees, 2002). For the interpolation, 16 nodes are required: 4 nodes
at 4 different altitudes each. With these 16 nodes, values can be interpolated for the area
between the 4 centre points (the shaded area in fig. 4.2).

The interpolated value is calculated by

S(U,V) = 126“Wi(U,V) fi, (46)
i=1

where f; is the function value at point i. The 16 two-dimensional shape functions w; are
the product of four one-dimensional shape functions bj(u) and by (v) witht € [0,1]:
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Figure 4.2: Node setup for Overhauser spline interpolation.

(t)z—lt(l 2t+12)

b (t) 5t2—‘r3t3
bs(zt) =% (l+4t 3t2) “.7)
ba(t) = —3t(1-2)

The w; are then given by wy(u,v) = by (u)bs(Vv), wig(u,v) = ba(u)ba(v) etc. (see fig.
4.2). The parameters u,v are defined as follows:

S— _
U=t v= "3 (4.8)

Eq. 4.7 and 4.8 only hold for a grid of synthesised points that is equidistant both in
and in r direction. As all points need to be in the centre area, with two synthesised points
each to the left, the right, the top, and the bottom, the shells need to be constructed such
that all data points are between the second and the second-to-last spherical shell.

4.3 Parallelisation

4.3.1 Problem description

The estimation of a gravity field model requires the assembly and solution of the normal
equations Nx = b, where N=ATC'AorN=ATC!A+aRandb=ATCy.

Three main areas of computational effort have previously been identified:

1. the computation of the design matrix A,
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2. the dense matrix-matrix multiplication N = ATC1A,

3. the inversion N~1, which is usually replaced by solving the linear equation system
NX = b.

The method described here involves other areas, of considerable computational effort,
such as data-adaptive network design (section 2.6.2) and local refinement (section 2.6.3).

The subject of parallelisation can be treated here only in a superficial manner. A much
more detailed description is given in Wittwer (2006).

4.3.2 Parallel computer architectures

For the purpose of parallel programming, we need to differentiate between two kinds
of parallel computer architectures: shared memory and distributed memory. Figure 4.3
gives a schematic view of a shared memory parallel computer. All CPUs are connected
to all memory banks by some sort of interconnect. If all CPUs have equal access to all
memory, we speak of SMP (symmetric multiprocessing). If the access to some memory
banks is slower than to others, we call this NUMA (non-unified memory access).

Shared memory systems are easy to program, as all CPUs can access the whole memory.
The distribution of data is not of importance, good performance can simply be reached
by distributing the workload in a clever way. The downside to shared memory systems
is their limited maximum size, as the interconnect becomes increasingly complex with
larger numbers of CPUs and memory banks. This puts a practical limit on the maximum
number of CPUs. These days, true SMP systems are rarely found with more than 16
CPUs.

Figure 4.3: Schematic of a shared memory parallel computer.

A schematic of a distributed memory system is shown in figure 4.4. Each CPU has its
own memory. The CPUs are connected by some sort of network. Since the connec-
tion between the CPUs can have a considerably lower bandwidth and latency than the
connection between CPUs and memory, this interconnect can be much simpler than the
interconnect in shared memory systems. In PC-based clusters, even simple (and cheap)
Ethernet is used. As a result, distributed memory systems can be much larger than shared
memory systems. Indeed, systems with tens of thousands of processors are not uncom-
mon.
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While distributed memory computers are easier to expand, they are more difficult to
use. Each CPU has only access to its own memory, so the access of other memory and
communication between CPUs has to be done by explicitly exchanging data. This is
called message passing. It is thus necessary to distribute the data in a smart way, as data
exchange over the interconnect is slow. Communication should be avoided as much as
possible.

connection

Figure 4.4: Schematic of a distributed memory parallel computer.

Today, most high performance computers are of a hybrid type. They are usually con-
structed as a cluster of SMP nodes. Each node forms its own shared memory system,
which in turn communicates with other nodes over a communication network in the
manner of a distributed memory system.

4.3.3 Parallelisation for shared memory computers

Shared-memory parallelisation usually makes use of multi-threading. Computations are
split up in several threads, which are executed by different CPUs. The easiest way to
write multi-threaded programs is the use of OpenMP (OpenMP, 2002) for loop paral-
lelisation. OpenMP needs to be supported by the compiler.

Design matrix computation

The design matrix A contains n x u elements for n observations and u unknown param-
eters. The entries depend on the location of observation (x) and basis function (y), as
well as the observation’s type and the associated functional model. It is thus natural to
arrange the design matrix computation as loop over the observations and basis functions:

do i=1,n (loop over observations)
do j=1,u (loop over basis functions)
Aij = ®(Xi,yj,typei)

end do

end do

Since x and observation type are constant for one line of the design matrix, and a number
of expressions evaluated in the computation are constant if all basis functions are located
at the same depth, it is numerically more efficient to compute all elements for one line at
once (see 4.1.2):
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do i=1,n
AiI - (I)(XI ’ y7type|)
end do

Different lines of the design matrix can be computed independently from each other.
This makes distributing the observations over the threads a natural choice for paralleli-
sation. It can be achieved with a single OpenMP statement:

'$0MP PARALLEL DO

do i=1,n
Ai: = q)(Xi ) yiatypei)
end do

'$0MP END PARALLEL DO

Distribution of the loop iterations i is done automatically by the operating system’s
scheduler. The number of threads used can be set with the OPENMP_NUM_THREADS envi-
ronment variable. It should be set to the number of CPUs/cores of the parallel computer
system.

Computation of normal equation matrix and solution of normal equations

The computation of the normal equation matrix N = ATA or N = ATPA is performed
using the DSYRK or DGEMM routines of BLAS (basic linear algebra subprograms,
Lawson et al. (1979)). BLAS contains routines for vector-vector (level 1), matrix-vector
(level 2) and matrix-matrix (level 3) operations. It is the standard for these linear algebra
operations and available in many different implementations. High performance imple-
mentations, such as the Goto BLAS (Goto and van de Geijn, 2008), AMD’s ACML
(AMD Core Math Library) and Intel’s MKL (Math Kernel Library) are multi-threaded.
Using one of these libraries will automatically lead to a significant acceleration on multi-
CPU systems. As a side effect, these libraries are also optimised and much faster than
the BLAS reference implementation, even on single-CPU systems.

Solving the linear equation system NX = b is done using the DPOSV routine of LA-
PACK (linear algebra package) (Anderson et al., 1999). LAPACK defines a set of stan-
dards for routines such as solving linear equation systems and eigenvalue computation.
Like BLAS, several implementations are available. It makes use of BLAS routines, and
the performance is directly affected by the performance of the BLAS library used. Thus,
using an optimised multi-threaded BLAS library like the abovementioned Goto BLAS,
or the AMD ACML and Intel MKL (which contain, besides BLAS, also LAPACK func-
tionality) results in the desired acceleration.

4.3.4 Parallelisation for distributed memory computers

While parallelisation for shared memory computers is comparatively easy, due to OpenMP
and multi-threaded numeric libraries, distributed memory parallelisation is much more
of a challenge. Explicit communication (message passing) between the processes is re-
quired. Parallelising the design matrix computation in this way is straightforward (by
distributing the computations of rows over the processes), but distributing matrices and
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doing the resulting distributed computations in an efficient manner is difficult. Luck-
ily, for linear algebra, the distributed memory library ScaLAPACK (Scalable LAPACK)
(Blackford et al., 1997) can do this.

ScaLAPACK

ScaLAPACK is a distributed memory implementation of a subset of the LAPACK func-
tionality. It also contains the PBLAS (parallel BLAS), a distributed memory version
of BLAS. Both make use of BLACS (basic linear algebra communication subroutines),
a wrapper for the actual MPI (message passing interface) or PVM (parallel virtual ma-
chine) communication subroutines. MPIl and PVM are two standards for communication
on distributed memory systems. ScaLAPACK is designed in a way that programs using
BLAS and LAPACK can be modified for distributed memory systems with reasonable
effort. Much of the message passing is hidden from the user, and he does not have to
deal with the intricate details of matrix distribution and communication.

Vectors and matrices are distributed among the notes in a block-cyclic manner. Figure
4.5 shows how a matrix is distributed on a 4x4 process grid.

Po | P1 | P2 | P3| Po | P1 | P2 | P3 | Po
P4 | Ps | Pe | P7 | P4 | P5 | Ps | P7 | P4
Ps | Po | Pio | P11 | Pg | P9 | P10 | P11 | Ps
P12 | P13 | P14 | P15 | P12 | P13 | P14 | P15 | P12
Po | P1 | P2 | P3| Po | P1 | P2 P3| Po
Ps | P5 | Pe | P7 | P4 | P5 | Ps | P7 | P4
Ps | P9 | Pio | P11 | Ps | P9 | P1o | P11 | Ps
P12 | P13 | P14 | P15 | P12 | P13 | P14 | P15 | P12
Po | P1 | P2 | P3| Po | P1 | P2 P3| P3

Figure 4.5: Distribution of matrix on 4x4 process grid.

Design matrix computation

The computation of the design matrix remains mostly unchanged with ScaLAPACK,
except that each process only computes the matrix elements for its parts of the distributed
matrix. Assuming process p has r rows and ¢ columns of A, and the routine indx12g is
used to get the global indices n and m for the local indices i and j, the computation looks
like:

do i=1,r

n = idx12g(p,i)

do j=1,c

m = idx12g(p,j)

Aij = @ (Xn,Ym,typen)

end do

end do
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Computation of normal equation matrix and solution of normal equations

The computation of the normal equation matrix and solving the linear equation system
is changed little from the shared memory version shown above. The BLAS routines
DSYRK and DGEMM are replaced by the PDSYRK and PDGEMM from PBLAS.
These routines take care of all communication required - the user does have not to worry
about an efficient implementation of a distributed matrix-matrix multiplication.

For solving, the PDPOSV routine is used. It replaces the DPOSV routine of LAPACK.
All PBLAS and ScaLAPACK routines make use of BLAS routines, so ScaLAPACK
performance is governed by the underlying BLAS library, as well as the speed of the
communication library (usually an MPI implementation) and network used.

4.3.5 Hybrid parallelisation

The combination of the methods described for shared and distributed memory paral-
lelisation is known as hybrid parallelisation. Since most of today’s high performance
computers are of a hybrid nature (interconnected shared memory nodes), hybrid paral-
lelisation offers a number of benefits over parallelisation only for distributed memory,
i.e. without the use of OpenMP.

e Multi-threading on shared memory nodes does not require the explicit communi-
cation by message passing involved in distributed memory parallelisation, and is
thus potentially faster. Message passing is only required between different nodes,
not CPUs on the same node.

¢ With distributed memory parallelisation, there is one process per CPU. Each pro-
cess may need a full set of certain data, such as observations. When processing
a year of GRACE data (about 6 million observation epochs, stored in a 320 byte
structure per epoch), this amounts to a total 1.8 GB. Using four processes on a
four CPU node would thus already require 7.2 GB for observation storage, leaving
insufficient memory available on a node equipped with 8 GB of RAM (as used
in the research presented here). Using only one multi-threaded process per node
severely cuts down memory use, while still allowing the efficient utilisation of all
four CPUs.

« In the case of relatively small numbers of unknowns, as is often the case with re-
gional models, distributing the unknowns over all the processes requires very small
block sizes. Small block sizes result in inefficient communication. Using fewer
processes by employing multi-threading makes it possible to use larger blocks,
while still being able to distribute them over all nodes.

Since hybrid programming offers a number of benefits, and shared memory parallelisa-
tion is much easier than distributed memory parallelisation (by means of OpenMP and
multi-threaded libraries), it is advisable to combine the two in order to get a flexible
program that can achieve high performance on different system architectures.
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4.3.6 Results of parallelisation
System description

The computations presented here were performed on two high performance computing
systems. Cleopatra is the DEOS Physical and Space Geodesy group’s computing cluster.
It consists of 33 compute nodes, each equipped with two dual-core AMD Opteron 280
processors clocked at 2.4 GHz, and 8 GB of RAM. The nodes are interconnected by a
fast Infiniband network. Total theoretical peak performance is 633 GFLOPS.

Huygens is the Netherland’s national supercomputer. It has 104 nodes, each with 16
dual-core IBM Power 6 processors (4.7 GHz) and 128 GB or 256 GB RAM. It also uses
Infiniband as node interconnect. The total theoretical peak performance is 60 TFLOPS.
Both systems use the Linux operating system.

Memory requirement

A parallel computer is required not only to shorten program runtimes, but also to fulfill
the memory requirements resulting from using a Cholesky solver, which requires assem-
bling both the design matrix A and the normal equation matrix N. Table 4.1 shows the
memory requirements for three typical test cases.

| problem | # of observations | # of unknowns | size of A | size of N |
monthly GRACE solution 500,000 1,500 5.6 GB 17 MB
yearly GRACE solution 6,000,000 5,000 223.5GB | 191 MB
typical terrestrial data set 300,000 10,000 224GB | 763 MB

Table 4.1: Memory requirements for various problem sizes.

It is obvious that the storage of the design matrix A is the bigger challenge. Even with
10,000 unknowns, the size of N is less than a Gigabyte. For a one-year global GRACE
solution, keeping A in memory can be difficult. It would require the full memory of 28
nodes of Cleopatra, not taking into account memory required for other data. Subtracting
2.5 GB from the available memory per node (the observations alone require 1.8 GB), 41
nodes would be required, whereas only 33 are available. Two solutions to this problem
are possible:

1. Build A in blocks (e.g. only for one month), and compute N = ZAiTAi/N =
> Al PiA;. This requires the recomputation of A if it is required more than once.

2. Use an out-of-core approach, where parts of the matrix are stored on hard disks.
Since the out-of-core approach was more difficult to program, and it is questionable

whether the slow disk access would provide a speed benefit over the quite quick (re-)
computation of A, the block-wise build was implemented.
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| number of processes | setup of A | N=ATA | solving | total runtime |

4 200 101 1 316
8 107 59 2 175
16 49 53 1 120
32 28 47 1 97

64 17 42 4 91

Table 4.2: Runtimes [s] Cleopatra, GRACE monthly solution.

Monthly GRACE solution

To show the benefits of parallelisation, a monthly global GRACE solution (April 2004)
was computed using various numbers of processes, both on Cleopatra and Huygens.
518,400 observations and 1,543 RBFs were used. The time required for the setup of the
design matrix A, the matrix-matrix multiplication N = ATA, the solving of the linear
equation system, and the total program runtime are used to judge the effect of paralleli-
sation.

Table 4.2 shows the runtimes for Cleopatra. The time required for the setup of A scales
linearly from 4 to 16 processes. Beyond that, the improvement is a little smaller, but still
very good. The matrix-matrix multiplication does not benefit significantly from more
than 8 processes due to the small size of N. Unlike the setup of A, more communication
is required when more processes are used, resulting in the noticed performance dropoff.
The same is true for the solution of the system of linear equations - it is a relatively
cheap operation and does not benefit from more processes, but also does not contribute
significantly to the total program runtime. The total runtime is governed by the first two
operations. As a result, a significant runtime improvement going from 4 to 8 processes
can be seen, with smaller improvements beyond that.

The runtimes for the same test on Huygens are listed in table 4.3. The time required
for the setup of A scales almost linearly up to 64 processes. Once again, the benefit for
the matrix-matrix multiplication is smaller, with almost no benefit for the solution of the
system of linear equations. The total runtime improvement is once again a combination
of the two, with a almost linear improvement going from 4 to 8 processes, and less
beyond that.

Comparing the results to Cleopatra, we see that

e The setup of A requires about the same amount of time on Huygens as on Cleopa-
tra, while the matrix matrix multiplication is faster on Huygens, a consequence of
the processors used;

» The matrix-matrix multiplication on Huygens benefits more from more processes
than on Cleopatra, an indication that Huygens offers faster inter-process commu-
nication.
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| number of processes | setup of A [ N=ATA | solving | total runtime |

4 172 48 1 237

8 87 26 1 135
16 46 16 1 83
32 26 12 1 60
64 14 14 1 50

Table 4.3: Runtimes [s] on Huygens, GRACE monthly solution.

| number of processes | setup of A | N=ATA | solving | total runtime |

8 180 459 14 742
16 83 247 6 387
32 44 171 4 258
64 22 157 7 220
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Table 4.4: Runtimes Cleopatra, terrestrial data, in seconds.

Terrestrial data

Another test was done using a terrestrial data set. The terrestrial data requires more
RBFs, resulting in a higher number of unknown parameters compared to the above-
mentioned GRACE case, which leads to a greater importance of the performance of the
matrix-matrix multiplication. The test was done with the set of Canadian gravity data
(320,000 observations) described in section 6.4.2, and 6447 basis functions.

The runtimes for Cleopatra are given in table 4.4. The results are very similar to the
previous test case. The runtimes for the setup of A improve almost linearly with an
increasing number of processes, while the improvement concerning the matrix-matrix
multiplication is less pronounced, and best going from 8 to 16 processes. Having four
times the number of unknowns leads to longer runtimes for the linear equation solver,
with an associated larger benefit from using more processes. Combined, the total runtime
scales better than in the previous case, with of course the biggest improvement going
from 4 to 8 processes.

Table 4.5 lists the results for Huygens. The results are comparable to the previous test
case, with almost linear scaling of the A setup, a little less improvement for the matrix-
matrix multiplication, and little to no improvement of the solver runtime. The total
runtime drops significantly, even when going from 32 to 64 processes.

| number of processes | setup of A | N=ATA | solving | total runtime |

8 166 232 7 442
16 84 119 3 229
32 49 79 2 145
64 27 54 2 94

Table 4.5: Runtimes Huygens, terrestrial data, in seconds.



56 NUMERICAL ASPECTS

4.4 Summary and conclusions

This chapter has discussed the most important numerical issues associated with the soft-
ware developed within the research presented here. A number of numerical optimisa-
tions have been applied to decrease the required program runtime. Most important of
all, parallelisation was employed to decrease the runtimes to acceptable levels.

Hybrid parallelisation, using OpenMP, optimised numerical libraries, and ScaLAPACK
has been employed, resulting in a program that delivers good performance on shared
memory, distributed memory, and hybrid high performance computer architectures. Even
larger computations, involving hundreds of thousands of observations and thousands of
unknown basis functions, can be performed in a matter of minutes on these machines.



Chapter 5

Gravity field modelling from satellite
data

Global gravity field modelling relies on satellites, as only satellite missions can provide
global data coverage. Satellite geodesy was born in 1957 with the launch of Sputnik I.
Measurements of Sputnik’s orbit allowed the computation of the flattening of the Earth.
Other missions like PAGEOS (passive geodynamic satellite) and later LAGEOS (laser
geodynamic satellite) made it possible to determine the low SH coefficients of the Earth’s
gravity field, using optical and laser measurements to determine the satellite orbits. An
improvement was provided by radar altimetry missions such as Geosat. Geosat was
launched in 1986, and Geosat and ERS-1 data were used for estimation of the EGM96
gravity field model (Lemoine et al., 1998). Altimetry provides high resolution, but is of
course limited to measurements over sea.

A major step forward was the CHAMP (challenging minisatellite payload) satellite,
launched in 2000. A flight altitude of approx. 450 km, GPS-based orbit determina-
tion and an onboard accelerometer made it possible to use CHAMP to compute static
gravity fields complete to spherical harmonic degree 70 (Reigber et al., 2002; Han et al.,
2003; Gerlach et al., 2003; Ditmar et al., 2006).

Currently, research focuses on the GRACE (gravity recovery and climate experiment)
satellite mission. GRACE is a formation-flying mission consisting of two identical
satellites in the same near-polar orbit spaced approx. 220 km apart at 500 km alti-
tude (fig. 5.1). The satellites were launched in 2002. Besides being equipped with
GPS receivers and accelerometers, the inter-satellite distance is continuously measured
with a microwave (k-band) link, down to micrometer accuracy. This yields a significant
improvement in terms of resolution and accuracy of the derived gravity field models
(Tapley et al., 2004).

Static GRACE gravity fields have been computed by GFZ Potsdam, both GRACE-only
(Reigber et al., 2005) and combined fields that also made use of terrestrial data (Fo-
erste et al., 2008,b), and by CSR (Tapley et al., 2005). Static GRACE-only gravity
fields have been computed up to degree 180 (Mayer-Giirr, 2007). GRACE had an even
higher impact on modelling and understanding the time-variability of gravity. Monthly
GRACE solutions are computed by CSR (Bettadpur, 2007), GFZ (Flechtner, 2007), and
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Figure 5.1: Artist’s impression of the GRACE satellites. Source: NASA

JPL (Watkins and Yuan, 2007). DEOS optimally filtered monthly GRACE gravity fields
are computed up to degree 120 (Liu, 2008; Klees et al., 2008b). Computing 10-day so-
lutions is possible and regularly done by CNES, albeit at lower resolution (Biancale et
al., 2007).

Global satellite-based gravity field modelling will make another step forward with the
GOCE (gravity field and steady-state ocean circulation explorer) mission. An advanced
spacecraft, flying at only 250 km altitude and using an ion engine to counter atmospheric
drag, it will use a highly accurate gradiometer to measure gravity gradients. The mea-
surements are expected to make it possible to accurately compute static gravity models
up to degree 200 and beyond. GOCE was launched in March 2009.

The methodology described here can be applied to all satellite gravity missions. The
results presented here focuses exclusively on the GRACE mission, as it provides the
best data currently available. GRACE makes it possible for the first time to compute
monthly high-resolution gravity fields that clearly show mass variations in the Earth
system, which yield new insights into mass transport processes at a global scale. The
computations presented here will also show monthly solutions exclusively, and use these
monthly solutions to derive mass transport quantities.

The chapter starts with a description of the functional model used for gravity recovery
from GRACE. Section 5.2 describes the stochastic model that was used for some of the
computations. The extension of the optimal filtering algorithm developed at DEOS to
RBF solutions is explained in section 5.3. Network design and bandwidth estimation are
addressed in sections 5.4 and 5.5, respectively.

Results of GRACE gravity field modelling are presented in section 5.6. Two main appli-
cations of GRACE monthly models are used as representative examples:

1. The estimation of ice mass loss in Greenland and Antarctica, including a compar-
ison of GRACE and ICESat results.

2. The estimation of water storage variations at river basin scale. Time-series for
several river basins are shown. Comparisons are made between various monthly
GRACE models as well as between GRACE and the PCR-GLOBWB hydrological
model. A comparison to radar altimetry is made for Lake Victoria in Africa.
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GRACEB GRACE A

 GRACE B GRACEA

Figure 5.2: Unit vectors of LoS directions at three successive epochs.

5.1 Functional model

5.1.1 Three-point range combination approach

All GRACE gravity field models were computed using the DEOS 3-point range combi-
nation approach. This allows the direct comparison of SH and RBF solutions that use
identical processing except for the parametrisation. The approach is sketched here. For
more details, the reader should refer to Liu (2008).

GRACE provides biased inter-satellite ranges p using the k-band link. These ranges can
be related to the gravity potential gradient. Using a three-point scheme, the inter-satellite
range vectors of three epochs, ri_1, rj, and rjy1can be used to compute the average 3D
inter-satellite acceleration:

T 2ri+riy1

— , 5.1
1 (At)z ( )
where At is the sampling interval. Since ry = ey - px, withk =1i—1,i,i+1and e the line
of sight (LoS) unit vectors at epoch k,
Ik
e =—. 5.2
<= (5.2)
Eg. (5.1) can be written as
e €i_1°Pi_1— 26 Pi+eit1-pPi
P = i—1°Pi-1 i gl i+1 P|+1. (5.3)
(At)
By projecting both sides of eq. (5.3) onto the unit vector e;, we obtain
o F = Gi1-pi1—2pi+ &1 Pi+17 (5.4)

(at)?

where &_1 =¢j-ej_1 and &1 =¢€j-ej1, see figure 5.2.

In the actual computation, residual quantities are used. They follow from eq. (5.3) by
linearisation:
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(5.5)
opi = Ppi—pc
6o 5 = Gi—1.c-0pi-1—20pi+&ir1c-0pis1 (5.6)

(At?) ’

with r¢, pe, eic, &i—1c and &iy1c being reference quantities computed from precise
reference orbits. ey and py cannot be obtained from the k-band measurements, but need
to be computed from orbits instead. The use of small residual quantities reduces errors
in the functional model. The static EIGEN-GL04C model (Foerste et al., 2008) up to
degree 150 has been been used as background gravity field model for the computation
of the reference orbits.

5.1.2 Residual accelerations

Analytical expressions for the radial base functions used here have been derived as

Y(x,y) = ﬁ (2xn+1+xn),

_ o \" 1 (5.7)
Xn = (\y\ W) =k
The yn can be computed by
1 L i
xn=2]y" " bnya+ Z Br.ily|'bi (5.8)
i=1
forn>1.

The by, have been derived as

bn = (2n—1) [x —y|b1by 1 — (n—1)%b3by 2, (5.9)

which can be computed recursively with

_ 1yl —Ixloosy
x—y|’ |x—y|3

bo , (5.10)

where y is the angle between x and y.

The residual accelerations in eq. (5.6) are related to the gravity potential gradient. The
gradient is defined as

dT JT JT
gradT :(9_)(;|_+(9_X2+8_X3' (5.11)
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To compute the gradient of the RBF in eq. (5.7), we need the partial derivatives of the
coefficients b, with respect to the RBFs. Applying the product rule to eq. (5.9), we find

8bn . 8|x—y| &bl (9bn 1
a—Xi = (2n-1) o bibh_1+(2n—=1)|x—y] bn 1+b1 9%
—(n— 2b bn_o+b, . 5.12
(=% (20075, 0 ox 512
The partial derivatives %E’(”, X = (X1, X2,X3) are required:
dbg Xi —Yi
— = 5.13
M x—yP 1)
and
' Tyuly. v
%7 3(Xi yl)|y|+ Yi X y(Xi Syl) ’ (5.14)
o x—y® W\ x—yP X—y|
as well as
dX=y|  Xi—Vi
= ) 5.15
IXi IX—yl (5.15)

Using eq. (5.7) to (5.15), the point-wise design matrices Apy,a for satellite A and Apyp
for satellite B are computed. The design matrices computed in this manner are defined
in the terrestrial reference frame (TRF) of x and y. The observation in eq. (5.6) is the
averaged residual acceleration in the LoS direction between the two satellites. The final
design matrix is

A =Ry (Apug — ApwA) ; (5.16)

with Ry, being the transformation matrix that links the point-wise accelerations in the
TRF to the averaged observations in the LoS frame. The following transformation steps
are required:

1. Arrotation from the TRF to the celestial reference frame (CRF).
2. Three-point averaging, since averaged accelerations are used.
3. A rotation from the CRF to the LoS between the satellites.

Ry can be thus written as

R|| _ R(CHLOS.X)ER(THC)’ (517)

where RT—C) s the rotation matrix from TRF to CRF, and R(C—L%5X) is the matrix
that projects a 3D-vector defined in the CRF onto the x-axis of the LoS vector, which is
directed along the line-of-sight (LoS) (Liu, 2008). E is the averaging filter that computes
the averaged three-point accelerations (Ditmar and van Eck, 2004).
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5.1.3 Equivalent water heights

Spatial plots of GRACE monthly gravity models and associated mass balances are usu-
ally not provided in terms of potential, but in terms of equivalent water height (EWH),
also known as equivalent water layer thickness (Wahr et al., 1998).

A representation in terms of EWH is computed from a spherical harmonic expansion by

Pe 21+1_ -
ohw(X) =Rg ~C X 5.18
w 3Pw IzamE,O 1—|—k ImY Im ) ( )

where R is the Earth’s mean radius, pe is the Earth’s mean density (5,500 %), pw is the

density of water (1,000 %), and k; are the load Love numbers. Inserting eq. (2.26) into
eg. (5.18) and using eq. (2.23), we find

Pe = 2l+1
oh Re ; oiP X 5.19
w(X) = 3PW|2E)1+kMZ i ¥i)- ( )

It is not possible to use the analytical representations for the basis functions, as only a
spectral representation of the functional model for equivalent water heights can easily
be used. Luckily, the necessary maximum summation degree | is quite low. Load Love
numbers up to degree 1024 were used (Petrov and Boy, 2004), which is sufficient for
the deeply based RBFs used for satellite gravity field modelling. If runtimes become an
issue, an interpolation scheme as described in section 4.2 can be used.

5.1.4 Trend and signal amplitude estimation
This chapter uses not only single solutions, but also trend and yearly signal amplitude

estimates from time series of solutions. The functional model for the trend and annual
signal amplitude estimate is

oh(t) = a+ bt +csin2nt 4 dcos2nt, (5.20)

where 6h (t) is the mass variation at point t in time (measured in years), a is the bias, b
is the linear yearly trend, and v/c2 + d? is the amplitude of the annual signal.

Trends and signal amplitudes can be estimated for basin averages, but also per point.
The latter yields a spatial map of linear mass changes and yearly mass variations.

5.2 Stochastic model

It is assumed that the noise in GRACE range observations is white and Gaussian. Hence,
the noise in the three-point range combinations is coloured, i.e. frequency dependent.
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Most of the noise energy is concentrated at the high frequencies. The frequency be-
haviour of the noise can be approximated by a model (Ditmar et al., 2007), which ap-
proximates the square root of the noise power spectral density u(f):

Vu(f)= 203 (1—cos(Z7rfAt)+ <§>2> ; (5.21)
(At)? K

where o is the standard deviation of the k-band ranges, At is the sampling rate, and ©
is the filter halfwidth. For the computation of the DEOS global models, the values used
were o =40um, At =5s, and © = 30s (Liu, 2008).

It has been shown by Liu (2008) that in the case of the 3-point range combination ap-
proach, use of the stochastic model in eq. (5.21), instead of the assumption of white
noise, does not lead to significant differences up to spherical harmonic degree 40, and
small differences (about 5%) up to degree 120. Nevertheless, application of the stochas-
tic model may be desirable or necessary to get realistic estimates for the noise covariance
matrix Cyx = N~1 and the a-posteriori variance s? = %’j, especially in the context of
optimal filtering, as discussed in section 5.3.3.

Figure 5.3 shows the differences between solutions computed with and without this
frequency-dependent weighting. A monthly solution with and without frequency-
dependent weighting can show significant differences in certain areas. Point differences
are below one cm for yearly signal amplitudes and yearly trends. It can be concluded that
frequency-dependent weighting will have little to no impact when computing trends and
yearly signal amplitudes, but may significantly affect monthly solutions. When comput-
ing basin averages, differences will be even smaller as can be seen in section 5.6.

Using frequency-dependent weighting leads to a considerable increase in the required
computation time, so it is best disabled for large computations that need to be made
quickly.

5.3 Optimal filtering

5.3.1 Introduction

As will be seen in section 5.4, GRACE solutions are strongly affected by noise. Due to
the GRACE orbit and its resulting high sensitivity to unaccounted for effects in the north-
south directions, noise appears as north-south “stripes”. Methods to reduce this noise are
the truncation of the spherical harmonic expansion at a very low degree, simple Gaussian
smoothing of the GRACE models (Wahr et al., 1998), or “de-striping” techniques, which
are often combined with Gaussian smoothing (Swenson and Wahr, 2006).

None of these methods are entirely satisfactory, leading to decreases in spatial resolution
and loss of signal. Another approach is the use of so-called “optimal” filters, which
require information about the signal. Such an optimal filter has been developed in Klees
etal. (2008b). The optimal filter is a Wiener filter, i.e. it minimises the global mean of the
mean square difference between the unfiltered and filtered signal. It is both anisotropic
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Figure 5.3: Differences between level 35 solutions (RBFs at 1600km depth) with and
without frequency-dependent weighting; April 2005 (top), yearly trend (centre), and
yearly signal amplitude (bottom), in EWH. Note different colorbar scales.
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and non-symmetric and thus capable of removing noise artifacts of arbitrary shape, such
as stripes.

The filter can either be applied as post-processing filter or as regularisation-type filter. In
the latter case, application of the filter is done by

%= (N+D"1) b, (5.22)

where D is the signal covariance matrix, N is the normal matrix, and b is the right-hand-
side vector. The inverse signal covariance matrix is thus applied as regularisation matrix.
This means that

« strong regularisation, resulting in a smooth field, will be applied in areas of small
signal to noise ratio;

 weak regularisation will be applied in areas of large signal to noise ratio.

5.3.2 Signal covariance matrix computation

An important factor governing the performance of a filter constructed as in eq. (5.22) is
the signal covariance matrix which is used as regularisation matrix. It would be possible
to construct the signal covariance matrix based on an a-priori model, such as a global
hydrological model, but such a matrix would be biased towards this model. Instead,
the DEOS approach computes the signal covariance matrix in an iterative way using no
a-priori model (Klees et al., 2008b).

The signal covariance matrix Dy is defined in space, in units of EWH. Variances of
points y; on an equidistant Reuter grid (section 2.6.1) are computed using n realisations
t (monthly solutions)

1 2 2
Z(yi) = “ho1, Z (fe (yi) —f(yi) (5.23)
with the signal in EWH

fy = BXt. (5.24)
Signal correlations at the grid points are omitted, leading to a diagonal matrix D¢, which

needs to be transformed into the RBF domain. Since B cannot be inverted (it is not
square), the pseudoinverse

r=(8"8) '8’ (5.25)

is used. The transformation is then computed by

Do =TIDsI. (5.26)
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The iterative computation of the signal covariance matrix D, in the RBF basis is shown
in figure 5.4.

1. Aninitial signal covariance matrix D¢ is constructed using some arbitrary starting
values, e.g. a signal variance of 25 cm? at each grid point.

2. At the start of each iteration, the signal covariance matrix D is transformed into
the domain of the RBFs (RBF analysis).

3. Regularised solutions X; are computed for the whole available GRACE time series.

4. The resulting signal in terms of EWH is computed on the same equidistant Reuter
grid as used in step 1, by f; = BX; (RBF synthesis).

5. The signal variance in each point is computed (eq. 5.23) and used to populate D¢
for the next iteration.

6. The computation is stopped as soon as some stopping criterion, such as sufficiently
small difference (e.g. <3 cm) between the signal covariance matrices of two itera-
tions, is reached. In all computations, not more than ten iterations were sufficient.

It has been shown by Klees et al. (2008b) that the spectrum of the signal computed from
the signal covariance matrix D+ has almost constant signal degree variances. This was
overcome by dividing the degree variances by the spherical harmonic degree 12, which
can be written as the application of an additional scaling matrix S:

Dsy = SID¢I'S. (5.27)

S is diagonal with diagonal elements % Applying spectral scaling in this way is however
not possible with RBFs. For the RBFs, the scaling has to be applied in the functional
model for EWHSs (eq. 5.28) when computing the design matrix B:

2|+1 2
Ohwscaled (X) =Re 5~ Pe |2al X Vi)- (5.28)

3pw S5 1+k

Note that scaling is performed with | instead of ¥, since I"is the inverse of B.

Figure 5.5 shows the signal amplitudes (the square root of the signal variances in D¢)
in the space domain after 10 iterations computed using a level 90 RBF solution. Large
signal variations are detected in areas such as the Amazon river basin, Alaska, Green-
land, and parts of Antarctica. These are due to seasonal hydrological signals or ice
melting. Two spots are visible in the ocean around Indonesia: Mass displacement due to
the Sumatra Earthquake in December of 2004 (Chen et al., 2007).

The diagonal elements of the regularisation matrix D can be plotted in space, at the
location of their respective RBF. Such a plot the signal covariance matrix in figure 5.5
is shown in figure 5.6. It shows an inverted image compared to figure 5.5. Strong
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Figure 5.5: Signal amplitudes in units of EWH. These are the square root of the signal
variances in Ds.

Figure 5.6: Diagonal elements of the regularisation matrix D* in the space domain.

regularisation is applied in regions of small signal to noise ratio, and weak regularisation
in areas that have been identified as area of large signal to noise ratio.

The iterative computation of the optimally filtered solutions constitutes a considerable
numerical effort, because

« the design matrix A requires the spectral representation of the basis functions in
eq. (5.28);

« the computation of T" and D, requires several matrix-matrix multiplications;

¢ the normal matrix N has to be built for each month and iteration, if it is not stored.

A major acceleration can be achieved when using the following scheme:
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1. Normal matrices N and right-hand side vectors b are computed once for every
month, using no regularisation, and stored on disk. Each process stores only its
part of N and b, preferably on a fast (local) disk.

2. The transformation matrix I"is computed only once at the beginning of the iterative
computation, and kept in memory.

3. The design matrix A, required for synthesis of the signal on the spatial grid, is also
computed only once and kept in memory.

4. The signal covariance matrix D, is computed once at the beginning of each itera-
tion.

5. Each regularised monthly solution is then computed by reading N and b, applying
Dy, and solving (N + D¢ )X = b, which is a very fast operation, i.e. takes only
seconds.

In this manner, computing one iteration takes (for a typical parametrisation, depending
on the number of processors used) only a few minutes instead of several hours. The time-
consuming operation of building design matrices for EWH is only executed once, and
matrix-matrix multiplications are necessary only once per iteration. For each monthly
solution, operations are limited to reading a very small part of a matrix from disk, adding
D¢, and solving the regularised normal equations.

5.3.3 Noise level estimation

The inverse signal covariance matrix is applied as regularisation matrix (eq. 5.22). In
order to get correct results, proper relative scaling of normal equation matrix N and
regularisation matrix D! is required. Since N = ATéPA, this means that the correct
weight matrix P and the proper noise level o of the observations needs to be taken into
account. Too large values of ¢ will result in too much smoothing and the loss of signal,;
too small values of o result in insufficient smoothing and the modelling of noise.

When frequency-dependent observation weighting (see 5.2) is used, the noise level is
set using the o of the k-band ranges in eq. (5.21). Initially, c = 40um as with the
DMT-1 model (Klees et al., 2008b) was used. Comparing the a-priori noise level of the
observations to the noise level obtained from the post-fit residuals, a value of 6 =18 um
was obtained and used for all computations. Monthly solution with ¢ = 40um, ¢ =
18 um, and o = 13 um) are shown in figure 5.7. As can be expected, solutions computed
with a smaller o show more noise, but also more signal and apparently improved spatial
resolution.

Comparing a-priori and a-posteriori noise levels is not possible when no frequency-
dependent weighting is used, thus when white noise is assumed. The computed a-
posteriori noise levels are then dominated by high-frequency noise and would lead to
much too large values of . Instead, other methods of determining the noise level are
required:
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Figure 5.7: Level 90 @ 700 km monthly solutions for April 2005 with frequency-
dependent weighting, in EWH; k-band range noise-level was set to 40 um (top), 18
um (centre), and 13 um (bottom).
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An unscientific approach is “guesstimating” the proper noise level by looking at plots of
solutions and judging, based on the noisiness of the plots, whether the chosen noise level
was correct. A better method is the validation by some external information. Used here
as described in Stolk (2009) was the signal above the no-precipitation zone in eastern
Antarctica . The noise level was chosen in such a manner that the resulting signal above
this signal-free area corresponded to the noise level that can be expected from GRACE
(Liu et al., 2009).

Working with and without frequency-dependent weighting yields different results. Both
methods use different ways of computing o and result in different covariance matrices
C. Figure 5.8 shows the differences in terms of a monthly solution, yearly trends, and
yearly signal amplitudes. Significant differences do exist, but are restricted to certain
geographic areas. It is difficult to say which solution is “better” without taking a closer
look, which will be done in section 5.6.

5.4 RBF network design

5.4.1 Grid choice

Satellite-derived observations contain mostly low-wavelength information. It it thus not
necessary to use a very dense grid of basis functions to recover this information. Since
satellite methods deliver essentially global data coverage, we often want to model the
gravity field globally. There are also regional applications in high-latitude areas (e.g.
ice balance estimation for Antarctica and Greenland). Both of these require a uniform
basis function distribution over the whole globe. A grid with increasingly dense spac-
ing at high latitudes has to be avoided to prevent overparametrisation and numerical
instabilites. Possible grid candidates were discussed in section 2.6. All computations
presented in this chapter make use of the Reuter grid.

Unfiltered solutions

The residual GRACE quantities used as observations are contaminated by strong high-
frequency noise. This severely limits the amount of usable information that can be re-
trieved from an unfiltered monthly solution. From numerical experiments, it can be said
that a Reuter grid of level 35 is very suitable for the computation of monthly models
without filtering. Higher-level grids model too much noise. This is visible in figure 5.9.
The same observations were used for both solutions. The first solution was computed
using basis function on a level 35 grid at a depth of 1,600 km, while the second solu-
tion used a level 45 grid and a depth of 1,100 km. The depths were found using the
algorithm described in section 2.5.2. The higher-level solution contains no usable extra
information, but is distorted by stripes, which is an indication that too much noise is
modelled.

This behaviour also holds for trends (fig. 5.10) and yearly signal amplitudes (fig. 5.11)
computed from a four-year time series (2003-2006). The level 45 solution shows little to
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Figure 5.8: Differences between level 90 @ 700 km solutions with and without
frequency-dependent weighting, in EWH; April 2005 (top), yearly trend (centre), and
yearly signal amplitude (bottom).
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Figure 5.9: Unfiltered monthly solutions, level 35 @ 1,600 km (top) and level 45 @
1,100 km (bottom), in EWH.

no extra information, just more noise. It is visible that errors decrease at higher latitudes.
Grid levels higher than 35 may thus be of interest when focusing on high-latitude areas
such as Greenland and Antarctica.
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Figure 5.10: Yearly trends (2003-2006) computed from level 35 @ 1,600 km solution
(top) and level 45 @ 1,100 km solution (bottom), in EWH.
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Figure 5.11: Yearly signal amplitudes (2003-2006) computed from level 35 @ 1,600 km
solution (top) and level 45 @ 1,100 km solution (bottom), in EWH.
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Dependence on area of interest - unfiltered solutions

The GRACE ground tracks are spaced tighter at higher latitudes. This leads to an in-
creased observation density and usually an improved signal-to-noise ratio. This allows
for increased spatial resolution, but requires an adapted grid spacing and related band-
width. Hence, the optimal grid spacing depends on the area of interest, and the latitudes
covered by the area of interest.

To demonstrate the effect of various grid spacings and associated optimal bandwidths,
figure 5.12 shows nine unfiltered gravity fields solutions for Greenland computed with
Reuter grid levels from 20 to 60. The results are shown as yearly mass variations, com-
puted as difference between the October 2003 and October 2006 solution. If the grid
level is chosen too small (i.e. underparametrisation), spatial resolution is lost and signal
is smeared out. If the grid level is chosen too high (i.e. overparametrisation), too much
noise is modelled. The level 45 solution seems to be the solution with the best trade-off
between spatial resolution and noise level.

The same results (yearly mass variation as difference between October 2003 and 2006)
for Antarctica are shown in figure 5.13. Here, the noise is disturbing at lower grid levels
already, and the level 35 solution seems to be the highest one with an acceptable noise
level.

By contrast, smaller grid levels are required when computing solutions for equatorial
regions. Monthly solutions for Africa in October 2006, using grid levels from 20 to 60,
are shown in figure 5.14. The solutions from level 45 onward are dominated by stripes.
The level 25 solution already has a stripe propagating into the Sahara desert, a region
where little to no rainfall occurs, and no signal should thus be present. Higher levels
show more noise, but also allow for better localisation of some features. The level 35
solution has signal over Madagascar, which is smeared out into the ocean in the lower-
resolution solutions.

Further insight can be gained by comparing the regional solution to a global spherical
harmonic solution. Figure 5.15 shows the level 20 and 25 solutions next to the DEOS
global solution, which has been destriped and smoothed with a 400 km Gaussian filter.
The SH solution is even smoother than the level 20 solution, so the level 20 solution
might be considered the optimal solution here when trying to match the SH solution.

It can be summarised that level 20 to 30 and the related RBF depths yield reasonable
solutions at equatorial latitudes when no optimal filtering is used. A higher resolution in
certain areas (level 35, Madagascar) is offset by more noise. Higher spatial resolution
can indeed be achieved at higher latitudes, where level 35 to 45 are valid choices.
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Figure 5.12: Yearly mass variation in terms of EWH computed from three-year differ-
ence (October 2006 - October 2003) from various grid levels, in EWH. From left to right:
20, 25, 30 (top row); 35, 40, 45 (centre row); 50, 55, 60 (bottom row)
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Figure 5.13: Yearly mass variation in terms of EWH computed from three-year differ-
ence (October 2006 - October 2003) from various grid levels, in EWH. From left to right:
20, 25, 30 (top row); 35, 40, 45 (centre row); 50, 55, 60 (bottom row)
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Figure 5.14: Unfiltered GRACE solutions for October 2006 and various grid levels, in
EWH. From left to right: 20, 25, 30 (top row); 35, 40, 45 (centre row); 50, 55, 60 (bottom
row)

Figure 5.15: Unfiltered GRACE solutions for October 2006, in EWH. RBF on level 20
Reuter grid (left), RBF on level 25 Reuter grid (centre), DEOS global model, destriping
and Gaussian 400 km smoothing applied (right)
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Optimally-filtered solutions

The solutions in thre previous subsection were computed without optimal filtering and
the findings are not applicable to optimally filtered solutions. Solutions without optimal
filtering were shown because optimal filtering is a relatively new technique that is not
yet part of the standard processing of GRACE solutions. The optimal filtering scheme
eliminates high-frequency noise and retains the usable signal. As a result,

¢ much tighter grid spacings can be used and should be used to retrieve the complete
signal;

« using a tighter grid spacing than required does not lead to noisy solutions.

Solutions for the whole time series were computed using three different global grids,
with optimal depths as in table 5.2:

 Level 60 Reuter grid, 1,000 km depth, 4,582 basis functions;
 Level 90 Reuter grid, 700 km depth, 10,312 basis functions;

e Level 120 Reuter grid, 500 km depth, 18,334 basis functions.

Figure 5.16 shows the monthly solutions for April 2005. Figure 5.17 shows the resulting
yearly trends, and the yearly signal amplitudes are shown in figure 5.18. All three grid
spacings yield similar results. Level 90 and 120 show slightly larger signal in Antarctica
in the April 2005 solution, and features like ice mass loss in Alaska and Greenland are
defined somewhat more sharply than in the level 60 solution.

Since the grid levels chosen are much higher than those useful with unfiltered solutions,
they can be considered sufficient to retrieve all signal at high latitudes. The optimal filter
scheme suppresses noise that would otherwise results, especially at equatorial latitudes.
Hence, no fine-tuning of the solution level to a specific area of interest is required. The
level 90 solution is considered sufficient and offers numerical advantages over the level
120 solutions, and is used for all future optimally filtered results presented here.
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Figure 5.16: Optimally filtered monthly solutions (April 2005) for level 60 @ 1,000 km
(top), 90 @ 700 km (centre), and 120 @ 500 km (bottom), in EWH.
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Figure 5.17: Yearly trends (2003-2006) for level 60 @ 1,000 km (top), 90 @ 700 km
(centre), and 120 @ 500 km (bottom), in EWH.
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Figure 5.18: Yearly signal amplitudes (2003-2006) for level 60 @ 1,000 km (top), 90 @
700 km (centre), and 120 @ 500 km (bottom), in EWH.
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5.4.2 Data-adaptivity and local refinement

When using satellite data, we deal with a large amount of observations compared to a
rather small number of basis functions. A typical month of GRACE data yields more
than 500,000 rather uniformly distributed observations at a 5 second interval, while only
a few thousand basis functions are used to recover the signal contained in the observa-
tions. Combined with the large bandwidth of the basis functions (see next section), there
will be hundreds of observations within a basis function’s influence radius. Adapting
the basis function network to the data distribution will thus usually not be required. The
smooth, long-wavelength characteristic of the signal compared to e.g. terrestrial data
also imply that local refinement is not required.

5.4.3 Parametrised area

In regional gravity field modelling, we are only interested in a small region, not the
whole Earth. It is thus not desirable to parametrise the whole Earth by placing basis
functions on a global grid. Instead, we want to confine the parametrised area to our
region of interest. Unfortunately, parametrising only the region of interest will lead to
edge effects. It is thus necessary to extend the parametrised area.

To quantify the necessary extension, several test computations using RBFs on a level 35
at 1,600 km depth were made. Two unfiltered solutions were computed:

1. A global reference solution using global data coverage;

2. aregional solution parametrising only the Northern Hemisphere, once again using
global data coverage.

Figure 5.19 shows the resulting differences in the monthly solution for April 2005.
Aside from the expected differences over the Southern Hemisphere (which was not
parametrised by the regional solution), there are also large errors over the Northern
Hemisphere. Apparently, leakage (errors caused by unmodelled signal) affects the es-
timation. The large errors off the east coast of North America are caused by a strong
signal in the Amazon river basin in the chosen month.

These leakage effects can be reduced by using only the observations over the
parametrised area. Figure 5.20 shows the same difference plot (April 2005), but this
time using only observations over the Northern Hemisphere for the regional solution.
One can see that the differences become smaller at a larger distance from the edge of
parametrisation (the equator). At about 30 degrees of Northern latitude, differences do
not exceed two centimetres. It has to be noted that leakage still seems to be an issue, and
is not confined to the border of the area, as can be seen by the stripes at high latitudes.
This is caused by the fact that the space-localising RBFs used here have global support.

For the same scenario, the differences in terms of linear trend and yearly signal am-
plitudes are shown in figure 5.21. The yearly trend exhibits very small differences in
regions further than 20 degrees from the border of parametrisation. The yearly signal
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Figure 5.19: Differences between unfiltered solutions (April 2005) parametrising the
whole globe and only the Northern Hemisphere, in EWH; global data coverage was
used.

Figure 5.20: Differences between unfiltered monthly solutions (April 2005) parametris-
ing the whole globe and only the Northern Hemisphere, in EWH; only observations over
the Northern Hemisphere were used for the regional solution.

amplitudes suffer somewhat more from leakage out of the Amazon basin. Looking at
figure 5.21, about 30 degrees of distance from the edge are required to reduce edge
effects to below the centimetre-level.

The results for optimally filtered solutions are similar. Figure 5.22 shows the differences
between a global solution and a solution covering only the Northern Hemisphere, in
terms of a monthly solution and linear trends. The monthly solution exhibits maximum
differences of approx. 2 cm beyond a 30 degree border, errors for the linear trend are
below a centimetre.

It can be summarised that about 30 degrees of additional parametrised area are required
around the desired region of interest. In the test cases, the edge of parametrisation was
located next to an area with large signals (the Amazon river basin). This results in
leakage. Only observations over the parametrised area should be used.
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Figure 5.21: Differences between unfiltered solution parametrising the whole globe and
only the Northern Hemisphere, in EWH: In terms of trend (top) and yearly signal am-
plitudes (bottom). Only observations over the Northern Hemisphere were used for the
regional solution.
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Figure 5.22: Differences between optimally filtered solutions parametrising the whole
globe and only the Northern Hemisphere, in EWH; monthly solution for April 2005 (top)
and yearly trend (2003-2006, bottom); only observations over the Northern Hemisphere
were used for the regional solution.
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5.5 Bandwidth selection

Choosing the optimal bandwidth in order to get the optimal solution is an integral part of
the method presented here (see section 2.5.2). The optimal bandwidth is dependent on
the spectral content of the data and the density of the RBFs, and is directly related to the
depth of the RBFs. It is thus necessary to compute the optimal depth for each realisation
of an RBF network.

Table 5.1 lists the optimal depths and corresponding bandwidths for several Reuter
grid levels obtained while computing an unfiltered global GRACE monthly solution for
February 2006. These numbers can be used for other months without significant impact
on the quality of the solution. Optimally filtered solutions make use of basis functions
placed somewhat deeper, and can be computed up to higher grid levels (table 5.2).

The effect of choosing a suboptimal depth has also been investigated using numerical
experiments. Figure 5.23 shows the difference between two level 35 monthly solutions,
at 1,600 km at 2,400 km depth. In most areas, the difference does not exceed a few cm
of EWH. Differences are even smaller in terms of trends and yearly signal amplitudes.
When in doubt, it is better to place the basis functions deep rather than shallow, as it
yields a smoother solution.

| level | depth | bandwidth |
20 | 2500 km | 920 km
30 | 1900 km | 660 km
35 | 1600 km | 550 km
40 | 1400km | 470 km
50 | 1100 km | 360 km
60 900 km 290 km

Table 5.1: Optimal depth and resulting bandwidth for unfiltered monthly solutions de-
pending on Reuter grid level.

| level | depth | bandwidth |
60 | 1,000 km | 330 km
90 700 km 230 km
120 | 500 km 160 km

Table 5.2: Optimal depth and resulting bandwidth for optimally filtered monthly solu-
tions depending on Reuter grid level.

This also holds for optimally filtered solutions. Figure 5.24 shows the differences be-
tween monthly solutions (April 2005) using an optimal depth of 700 km and a sub-
optimal depth of 600 km. Differences reach several centimetres in certain areas, but are
on average below one centimetre. The red spots at high latitudes around 175 degrees of
eastern longitude are a result of gaps in the Reuter grid used (see section 2.6.1).

Figure 5.25 shows the spectrum of the RBFs for depths of 2,500 km, 1,400 km, and 900
km. These are the optimal depths for Reuter grids of level 20, 40, and 60, respectively.
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Figure 5.23: Difference between unfiltered level 35 @ 1,600 km and 35 @ 2,400 km
solutions for April 2005 in EWH.

Figure 5.24: Difference between optimally filtered level 90 @ 600 km and 90 @ 700 km
solutions for April 2005 in EWH.

The degree variances of the resulting solutions are shown in figure 5.26. As expected,
solutions generated with a higher-level grid of basis functions located less deep contain
higher frequencies.
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Figure 5.25: Spectrum of Poisson Wavelets of degree 3 and depth 2500 km (red), 1400
km (green), and 900 km (blue)
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Figure 5.26: Degree variances of solutions with Reuter grid level 20 (red), 40 (green),
60 (blue), as well as an SH solution (black).

The cumulative degree variances for the three solutions, as well as those of a solution in
terms of spherical harmonics up to degree 120, are shown in figure 5.27. It is interesting
to see that the signal of a solution with a Reuter grid of level y has a signal content
equivalent to the spherical harmonic solution at degree 7.
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Figure 5.27: Cumulative degree signal [m] of solutions with Reuter grid level 20 (red),
40 (green), 60 (blue), as well as an SH solution (black).
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5.6 Results

5.6.1 Comparison of unfiltered RBF and spherical harmonic solu-
tion

Spherical harmonics are the standard parametrisation used for global gravity field mod-
elling. It is thus interesting to verify the methodology using RBFs by comparing it to
spherical harmonic solutions. In this section, it will be investigated whether a global
RBF representation is capable of producing a solution that is of equal quality as a spher-
ical harmonic solution using the same data.

This test compared unfiltered monthly GRACE solutions computed using spherical har-
monics and RBFs. The month chosen was April 2005, with 483,840 GRACE observ-
ables. A spherical harmonic solution was computed up to degree 120, resulting in 14,641
spherical harmonic coefficients. An RBF solution was computed with basis functions lo-
cated at a depth of 1,600 km on a Reuter grid of level 35, using 1,542 basis functions.

Figure 5.28 shows the degree variances for both solutions. The solutions are almost iden-
tical up to degree 30, after which the degrees variance of the spherical harmonic solution
increase. These coefficients beyond degree 30 are dominated by noise. The RBF solu-
tion contains no significant signal beyond degree 40 due to the chosen parametrisation.
Note that no hard cut-off at degree 35 is noticeable - a result of the Poisson wavelet’s
spectral characteristics (see figure 2.8 and 5.25).
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Figure 5.28: Dimensionless degree variances, April 2005 GRACE solution using RBFs
(solid) and spherical harmonics (dotted).

The corresponding cumulative degree variances are shown in figure 5.29. The spherical
harmonic solution contains a little less signal up to degree 35, where the two curves
intersect. The signal contained in the SH solution beyond that is mostly noise. This is
obvious when looking at the resulting EWH fields in figures 5.30 and 5.31.
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Figure 5.29: Cumulative degree variances [m], April 2005 GRACE solution using RBFs
(solid) and spherical harmonics (dotted).

Figure 5.30 shows the EWHSs obtained when using the potential coefficients up to de-
gree 35, while figure 5.31 has been generated using the coefficients up to degree 50. It
is obvious that going from degree 35 to 50 adds little or no useful information, while
distorting the model with stripe patterns.

Figure 5.30: EWH resulting from spherical harmonic solution computed up to degree
120, only degrees up to 35 are shown.
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Figure 5.31: EWH resulting from spherical harmonic solution computed up to degree
120, only degrees up to 50 are shown.

The EWHs obtained from the RBF solution are shown in figure 5.32. When comparing
it to figure 5.30, the SH solution up to degree 35, the results appear to be very similar.

Figure 5.32: EWH resulting from level 35 @ 1,600 km RBF solution.

The differences between the spherical harmonic solution truncated at degree 35 and the
RBF solution in terms of EWH are shown in figure 5.33. The most obvious difference
are the stripe patterns, which are stronger in the SH solution over the Pacific than in the
RBF solution. The RBF solution captures more signal of e.g. the Sumatra earthquake
and hydrological features in South America and Africa. The rms of the difference is 3.3
cm in terms of EWH.

We can conclude that with monthly solutions, the use of RBFs delivers a solution com-
parable to a solutions with SHs, although the spatial plots showed differences in certain
areas. These differences can however be attributed to larger errors in the SH solution.
There is no evidence that an RBF solution is not as good as an SH solution.
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Figure 5.33: Difference between SH solution truncated at degree 35 and level 35 @ 1600
km RBF solution, in EWH.

5.6.2 Models used for comparison

The next two sections make use of results obtained from several GRACE time-series.
These include the following RBF solutions:

« Unfiltered global RBF solutions computed on a level 35 Reuter grid at a depth
of 1,600 km. RBF 35 refers to the solution without frequency-dependent data
weighting, and RBF 35 FW refers to the solution with frequency-dependent data
weighting (the noise model, see section 5.2).

» Optimally filtered global RBF solutions computed on a level 90 Reuter grid at a
depth of 700 km. These are referred to as RBF 90 (without frequency-dependent
data weighting) and RBF 90 FW (with frequency-dependent data weighting).

 For Greenland and Antarctica, regional RBF solutions are also shown. Both were
computed using RBFs on a level 90 Reuter grid at a depth of 700 km and made use
of optimal filtering. For Greenland, the solution was computed using only RBFs
in the Northern Hemisphere. Similarly, for Antarctica the regional solution was
computed using RBFs only in the Southern Hemisphere. In both cases only data
over the parametrised area was used. No frequency-dependent data weighting was
applied. These solutions are referred to as RBF 90 REG.

To assess the performance of the RBFs, the RBF solutions were compared to global SH
solutions from three sources:

* Release 4 monthly solutions of the Centre for Space Research (CSR) (Bettadpur,
2007). These degree-60 solutions were destriped and smoothed with a 400 km
Gaussian filter, and are referred to as CSR DS400.

» The monthly solution of DEOS (Liu, 2008). These degree-70 solutions were also
destriped and smoothed with a 400 km Gaussian, and are referred to as DEOS
DS400.
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e The optimally-filtered monthly DMT-1 models (Klees et al., 2008b). They are
referenced to as DMT-1.

The DEOS DS400 and DMT-1 spherical harmonic models were computed using the
same data, processing strategy, and functional model as used for the RBF solutions. The
DMT-1 models used the same optimal filter approach as the the optimally-filtered RBF
solutions RBF 90, RBF 90 FW, and RBF 90 REG. Differences between these models and
the RBF models are due to the different representation (and different observation weights
in the case of optimally filtered solutions) only and are thus well-suited to showcasing
the differences caused by the use RBFs instead of spherical harmonics. The CSR DS400
models are used as an external reference.

All comparisons were made using 46 monthly solutions, from February 2003 to De-
cember 2006 with the exception of June 2003. Using several regions of interest, the
results will be used to answer the following questions:

» Are RBFs capable of outperforming SHs for GRACE modelling, or at least able
to produce solutions of comparable quality?

¢ Does frequency-dependent data weighting offer a benefit over the assumption of
white noise?

* What is the benefit resulting from the use of optimal filtering?

Liu et al. (2009) have investigated the quality of the DMT-1 models. Errors of 2 to 3 cm
are given for point-wise values and small basins of the order of 10° km?, whereas the
error for mean mass estimates for larger basins are somewhat smaller, 1.5-2 cm. These
values will be used when judging the quality of the RBF GRACE solutions.

5.6.3 Recovery of ice mass loss in Greenland and Antarctica

Climate change is an important matter of public concern. One consequence of climate
change with immediate repercussions is sea level change. Sea level change can be ac-
curately measured with tide gauges and, after corrections, with satellite radar altimetry.
Since they only provide information about the total sea level change without being able
to discriminate between the contributors, other measurements are needed to quantify the
factors contributing to sea level change. It is clear that the melting of polar ice due to
global warming is one such contributing factor, but the exact magnitude of the contri-
bution is not known. It is thus important to actually measure ice mass loss in order to
quantify its effect on global sea level change.

Due to the large areas involved, their remoteness, and the harsh weather conditions, only
satellite methods can provide estimates with a sufficient temporal and spatial resolution.
Terrestrial GPS measurements are restricted to a limited number of points, and airborne
laser altimetry campaigns are too expensive and time-consuming to execute them regu-
larly and with the desired area coverage. GRACE allows continuous ice mass monitor-
ing, and the results show good agreement with altimetry measurements (Cazenave et al.,
2009).
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Comparison to ICESat

While GRACE measures gravity and gravity change, ICESat, launched in January of
2003, is a laser altimetry satellite designed specifically for measuring ice surface heights.
It provides data of ice surface altitudes and altitude change with almost global coverage
(the orbit inclination is 86°) and a high spatial resolution, due to the laser footprint of
only 50 metres at the Earth’s surface. Unfortunately, problems with the satellite’s lasers
(one of the three lasers failed almost immediately, and premature aging of the others is a
concern) limits it to three 35-day measurement campaign per year. The computation of
ice mass loss from the altimetry measurements is also not straightforward. Assumptions
about the snow density have to be made, and snow compaction may be interpreted as ice
mass loss. Also, strong slopes, which are present in coastal areas, where rapid melting
occurs, may lead to inaccurate distance and thus altitude measurements (Slobbe et al.,
2008).

To provide corrections for these effects, and to fill the gaps between ICESat measure-
ment campaigns, as well as to extend the measurements beyond ICESat’s lifespan, the
GRACE satellites can be used. They measure gravity and gravity change, which can
be translated into mass change. The mass estimates derived from GRACE are not af-
fected by assumptions about snow density or snow compaction (but these are required
for discriminating between ice mass and firn variations), and can be computed contin-
uously since 2003. The combination of GRACE and ICESat can be used to determine
the magnitude of glacial-isostatic adjustment (GI1A) effects (Riva et al., 2009). Unfortu-
nately, the spatial resolution that can be achieved is significantly lower than what can be
achieved with ICESat. GRACE and GRACE model computation also has its own error
sources, such as leakage and striping.

Leakage

The computation of ice mass loss requires the integration over a specific area. Unfortu-
nately, the RBFs work as smoothing filter. As a result, the signal is “smeared out” over
a large area. This means that signal originating inside the area may leak out of the area,
and will thus not be considered when doing the integration over the original target area.
Signal from outside may also leak into the area of interest and be taken into account.

To assess the effect of leakage when RBFs are used, a simulation was done for Green-
land. Figure 5.34 shows mass loss for several basins in Greenland derived from ICESat
measurements. The total mass loss according to ICESat amounts to 145 Gigatons per
year (Slobbe et al., 2009a). It is visible that most of the mass loss happens along the
coast.

The leakage effect was quantified using the ICEsat data set as true signal. When com-
puting unfiltered monthly GRACE solutions, Poisson wavelets at a depth of 1,100 km
on a level 45 Reuter grid are used. Using this parametrisation to approximate the ICESat
data set causes the same leakage effect that is also existent when using GRACE mea-
surements, as the same smoothing of the signal occurs. The resulting ice mass loss over
Greenland is computed as 84 Gigatons per year, only 58% of the original input signal.
Baur et al. (2009) state that GRACE models retrieve only around 50% of the actual mass
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Figure 5.34: Mass loss per basin [m] for Greenland derived from ICESat, in EWH
(Slobbe et al., 2009a).

loss signal. As figure 5.35 shows, the large signal in southeastern Greenland has partly
leaked into the ocean.

One might be inclined to apply a scaling factor to compensate for the mass loss due to
leakage (Velicogna and Wahr, 2005). It is however obvious that the leakage effect is
governed by the spatial distribution of the signal. A strong signal in central Greenland
will not leak out into the ocean. Applying a constant scaling factor will in this case
overcorrect and lead to overestimation of the signal. Scaling factors should only be used
in the case of homogeneous mass distributions inside the target area, and if there is no
danger of signal outside of the area leaking into the area.

Instead, the integration area should be enlarged to also capture signal that has leaked
out. The Poisson wavelets at 1,100 km depth have a correlation length of about 300 km.
Increasing the integration area by 300 km yields a mass loss estimate of 147 Gigatons
in the simulation. This is almost identical to the input signal of 145 Gigatons. It has to
be noted that the use of this increased integration area is only possible since no other
signals are present inside the 300 km area. Otherwise, these would falsely be taken into
account.

With optimally filtered solutions, a different parametrisation is used: RBFs on a level
90 Reuter grid at a depth of 700 km. These are narrower than the RBFs at 1,100 km
depth (figure 5.36), and the optimal filter leads to increased spatial resolution. As a
consequence, the area extension used is 200 km degrees instead of the 300 km used for
the unfiltered solutions.
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Figure 5.35: Signal recovered by RBFs [m] on level 45 Reuter grid @ 1100 km depth,
in EWH.

Greenland

Figure 5.37 shows time series of mass estimates as obtained from various GRACE
models. There is little difference between RBF solutions with and without frequency-
dependent weighting. The unfiltered and filtered RBF solutions and the DMT-1 solution
show similar behaviour. The DEOS DS400 solution (i.e. without optimal filtering) and
the CSR DS400 solution differ significantly for certain months. This can be attributed to
different processing strategies (Klees et al., 2008c).

The resulting trend and annual signal estimates are shown in table 5.3. With the excep-
tion of the DEOS DS400 and CSR DS400 models, all solutions yields a yearly trend
between -139 and -150 Gt per year. Slobbe et al. (2008) estimated a trend of -147 Gt/yr
from ICESat data over a slightly longer time span (February 2003 - April 2007).

Besides time-series and trends for all of Greenland, it is also interesting to look at spatial
plots of the trend. Figure 5.38 shows these plots in terms of EWH for the four models
computed without the use of optimal filtering. The two RBF solutions offer much better
estimation and localisation of the trend in southeastern Greenland than the two spherical
harmonic solutions. The RBF solutions are affected by noise artifacts, and the signal in
northwest Greenland is shifted towards the ocean.

Likewise, plots for the optimally filtered solutions are shown in figure 5.39. All four
solutions produce similar plots. The RBF solution with frequency-dependent weighting
(top left) shows stronger signals in northeast and northwest Greenland than the others.
The localisation of signal is better and almost no noise is visible over the oceans com-
pared to the unfiltered solutions.

For comparison, figure 5.40 shows the yearly trend of altitude change as computed from
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Figure 5.36: RBFs at a depth of 1,1000 km (black) and 700 km (red) with correlation
lengths (dashed).

| model | trend | annual amplitude |

RBF 35 -150.2 Gt/yr 71.0 Gt
RBF 35 FW | -147.6 Gt/yr 73.7 Gt
DEOS DS400 | -122.1 Gt/yr 46.4 Gt
CSR DS400 | -171.2 Gtlyr 60.7 Gt
RBF 90 -146.8 Gt/yr 76.6 Gt
RBF 90 FW | -138.7 Gtlyr 69.6 Gt
RBF 90 REG | -140.5 Gt/yr 44.9 Gt
DMT-1 -139.0 Gt/yr 74.3 Gt

Table 5.3: Yearly trends and signal amplitudes for Greenland, computed from GRACE
time series over the February 2003-December 2006 time span.
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Figure 5.37: Time series [Gt] for Greenland for unfiltered solutions (top) and filtered

solutions (bottom).
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Figure 5.38: Yearly trends, unfiltered solutions: RBF 35 (top left), RBF 35 FW (top
right), DEOS DS400 (bottom left), CSR DS400 (bottom right).



5.6. RESULTS 103

Figure 5.39: Yearly trends, filtered solutions: RBF 90 (top left), RBF 90 FW (top right),
RBF 90 regional (bottom left), DMT-1 (bottom right).
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ICESat data. It is difficult to compute accurate mass loss from ICESat due to unknown
snow densities. ICESat yields however a much higher spatial resolution than GRACE,
and can be used to judge the spatial resolution of GRACE solutions. It is evident that
most ice mass loss happens along the southeastern coast, while the mass loss along the
northwestern coast that is detected by some of the GRACE solutions is also visible. ICE-
Sat shows a positive trend, snow accumulation, on the southern tip of Greenland. This
positive signal can not be found in GRACE plots. Some positive signal is also visible in
northeastern Greenland where it is located especially by the RBF 90 FW solution.

Figure 5.40: Yearly trend [m] of altitude change from ICESat.
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Antarctica

A similar series of computations as has been made for Greenland has also been made for
Antarctica. Figure 5.41 shows mass estimate time series for Antarctica. Several things
are noticeable from this plot:

* For the unfiltered level 35 solutions, whether or not frequency-dependent weight-
ing is used does not matter. The optimally-filtered level 90 solutions for the first
time show significant differences between solutions with and without frequency-
dependent weighting. The solutions with frequency-dependent data weighting
(RBF 90 FW) show considerably larger maximum amplitudes.

 The differences between the various models are quite large, in 2006 even between
the RBF 90 FW and DMT-1 solutions that produce very similar results in other
regions (see Greenland and section 5.6.4). The differences might be caused by
different stochastic models.

« The RBF regional solution (RBF 90 REG) shows significant differences with re-
spect to the other RBF 90 solutions. The regional parametrisation causes a reduced
sensitivity to long wavelengths.

* A seasonal signal, as can be seen with Greenland and other areas, is not clearly
visible in most solutions. An exception are the CSR DS400 and RBF 90 regional
solution, which show annual signals three time as large as other solutions, but on
the other hand result in much smaller trend estimates.

The yearly trends and annual signal amplitudes resulting from the time series are listed
in table 5.4. These values have not been corrected for glacial-isostatic adjustment (GIA),
and thus show the total mass variation. Estimates vary between 16 Gt/yr and 74 Gt/yr.
The optimally-filtered solutions are in the range of 44 to 58 Gt/yr, with the exception of
the regional solution that yields the overall smallest mass gain of all optimally-filtered
solutions (and thus the largest mass loss after correction for GIA).

GIA corrections for Antarctica differ depending on the model used and amount to -107
Gt/yr with the 1J05 model (lvins and James, 2005) and -149 Gt/yr with ICE-5G (Peltier,
2004), but are required when comparing mass balance estimates from GRACE and ICE-
Sat. Likely mass balance estimates from ICESat after GIA correction vary between -55
and -85 Gt/yr (Gunter et al., 2009). The RBF 90, RBF 90 FW, and DMT-1 solutions fall
into this range after GIA correction, but the uncertainties involved make it impossible to
use ICESat as validation for the GRACE mass balance estimate.

Once again, spatial plots of the estimated trends have been made. The plots for the
unfiltered solutions are shown in figure 5.42. The two RBF 35 solutions show much
more signal than the SH solutions, at the cost of more noise. The positive signals along
the eastern coast lead to the largest positive trend estimates of all models presented here.

The plots for the optimally-filtered solutions are shown in figure 5.43. It is clearly visible
that the spatial resolution is much higher and that noise is well suppressed compared to
the unfiltered solutions. The three RBF solutions, especially the regional solution, suffer
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Figure 5.41: Time series [Gt] for Antarctica for unfiltered solutions (top) and filtered
solutions (bottom).

| model | trend | annual amplitude |

RBF 35 74.4 Gtlyr 23.1 Gt
RBF 35 FW | 72.0 Gt/yr 23.1 Gt
DEOS DS400 | 34.6 Gt/yr 17.8 Gt
CSR DS400 | 16.7 Gtlyr 145.0 Gt
RBF 90 43.8 Gtlyr 67.0 Gt
RBF 90 FW | 58.0 Gt/yr 49.9 Gt
RBF 90 REG | 19.6 Gt/yr 144.3 Gt
DMT-1 44.7 Gtlyr 52.0 Gt

Table 5.4: Yearly trends and signal amplitudes for Antarctica, computed from GRACE
time series over the February 2003-December 2006 time span.
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Figure 5.42: Yearly trends, unfiltered solutions: RBF 35 (top left), RBF 35 FW (top
right), DEOS DS400 (bottom left), CSR DS400 (bottom right).
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from some artifacts around the South Pole. These have been artificially suppressed in
the computation of DMT-1 by assigning small signal variances to very high latitudes,
gradually decreasing to a variance of 0 at the pole. Their exact cause is unknown; possi-
ble explanations are deficiencies in the stochastic model (too optimistic at high latitudes)
and a small polar gap, since GRACE’s orbit inclination is not exactly 90 degrees.

All four solutions clearly separate the positive signal over West Antarctica into two dis-
tinct spots and see mass loss at the tip of the Antarctica peninsula. This signal is stronger
in the RBF solutions than in the DMT-1 model. All four solutions also detect a positive
signal off the coast of west Antarctica. Only the RBF solutions detect a very slight mass
loss at the coast at 0 degrees longitude (top of the plot).

More insight is gained by comparing the spatial plots to a plot of mass change derived
from ICESat data, figure 5.44. The actual height change as measured by ICESat has
been multiplied with the presumed densities at the points to yield a plot of mass change.
Comparing this plot to figure 5.43, we see that most of the larger features seen by ICESat
are also visible in the optimally-filtered GRACE solutions. Only the RBF solutions see
the negative signal at O degrees longitude. As a result, the RBF solutions exhibit higher
correlation to ICESat in space than the DMT-1 solution (see figure 5.5). This indicates
that RBFs may provide better resolution at high latitudes than an SH solution.

| GRACE model | Correlation coefficient |

RBF 90 0.81
RBF 90 REG 0.79
DMT-1 0.75
CSR DS400 0.78

Table 5.5: Spatial correlation coefficients between various GRACE solutions and ICESat
over Antarctica.
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Figure 5.43: Yearly trends, filtered solutions: RBF 90 (top left), RBF 90 FW (top right),
RBF 90 regional (bottom left), DMT-1 (bottom right).
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Figure 5.44: Yearly trend of mass variation computed from ICESat data (Gunter et al.,
2009).
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5.6.4 Recovery of terrestrial water storage variations

Besides ice mass loss, another mass transport process that can be monitored using GRACE
are water storage variations at river basin scale. GRACE makes it possible to detect these
worldwide and is not bound to terrestrial measurements. Results from GRACE can be
used to understand hydrological cycles, to monitor changes in hydrology such as lake
levels and irregular events (extreme rainfalls, draughts), and to validate and calibrate
hydrological models.

Using the GRACE monthly models described in section 5.6.2, four-year time series
(2003-2006) of mean monthly mass variations were computed for four river basins (fig.
5.45):

 The Mississippi river basin (area: 2,980,000 km?), an area that is well-covered by
hydrology data;

e The Ob river basin (Siberia, 2,990,000 km?), where snowfall is the dominant
source of signal, and rapid melting occurs in spring;

 The Rhine river basin, a comparatively small area in central Europe (185,000 km?);
» The Rio de la Plata river basin (3,100,000 km?2), an area where the GRACE models

may be affected from leakage due to the proximity of the Amazon river basin.

These time series are used for comparing the various GRACE models among each other
and for comparison with the PCR-GLOBWB hydrological model. In addition to these
four river basins, Lake Victoria in Africa is used for a comparison to satellite radar
altimetry.

Comparison of RBF solutions to other GRACE models

Besides trend and annual amplitudes, this section also uses the difference rms with re-
spect to a mean model as means of comparison:

1 n
rms; = \/ 2 0Ny = A8hnean,. (5.29)
i=

for each model j and n months. The mean model Shmean is the average of all u =7
models used,

1 u
6hmean’i - a Z 5h]| (530)
=1

Figure 5.46 shows the time series of monthly water storage variations for the Mississippi
river basin, and table 5.6 shows the related trends, amplitudes, and differences with
respect to the mean model. All models show similar behaviour. Only the maximum
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Figure 5.45: River basins used in the comparison: 1) Mississippi, 2) Ob, 3) Rhine, 4)
Parana/Rio de la Plata.

amplitudes differ in some years, especially for the CSR DS400 solutions (spring 2004
and 2006). The two unfiltered SH solutions (DEOS DS400 and CSR DS400) estimate a
linear trend that differs by one centimetre with respect to the other solutions, and differ
the most from the mean model. RBF solutions with (RBF 35 FW, RBF 90 FW) and
without frequency-dependent weighting (RBF 35, RBF 90) can be considered identical.
The RBF 90 and DMT-1 solutions are also almost identical, which should not come
as a surprise given that both use the same data, functional model, and optimal filtering
approach.

Figure 5.47 shows the time series of monthly water storage variations for the Ob river
basin, and table 5.7 shows the related trends, amplitudes, and differences with respect
to the mean model. The DEOS DS400, DMT-1, and all RBF models show very similar
behaviour. The CSR DS400 solutions result in slightly different maximum amplitudes,
especially in the spring of 2006, with a much smaller maximum accumulation. This
results in a larger rms with respect to the mean model. Solutions with and without
frequency-dependent data weighting show no significant differences.

The time series of monthly water storage variations for the Rhine river basin is shown in
figure 5.48, with table 5.8 showing the related trends, amplitudes, and differences with
respect to the mean model. The three optimally-filtered solutions result once again in
very similar time series. The DEOS DS400 and CSR DS400 solutions also show the
same seasonal behaviour, but smaller signal amplitudes. Here, the unfiltered level 35
RBF solutions show somewhat erratic behaviour and much too large minimum ampli-
tudes in the summers of 2003 and 2005. Obviously the chosen parametrisation results in
a solution that is not smooth enough for this particular small area, as oscillations are not
averaged over a large enough area. Interestingly, the amplitude estimates are compara-
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Figure 5.46: Time series in EWH [m] of monthly water storage variations for the Mis-
sissippi river basin; unfiltered solutions (top) and filtered solutions plus CSR DS400
(bottom).

ble to the three optimally-filtered solutions. Trends are positive instead of negative, but
absolute differences in the trend estimate amount to only a few millimetres.

Finally, figure 5.49 shows the time series of monthly water storage variations for the Rio
de la Plata river basin, and table 5.9 shows the related trends, amplitudes, and differences
with respect to the mean model. The four RBF solutions, the DEOS DS400 models, and
DMT-1 result in very similar time series, with identical solutions regardless whether or
not frequency-dependent weighting is used. The CSR DS400 solutions behave quite
differently and show a clear phase shift and even a reversed seasonal cycle, which leads
to a large rms with respect to the mean model. Klees et al. (2008c) have attributed the
different behaviour to different processing strategies.

A spatial plot of October 2005, a month exhibiting large differences between different
GRACE solutions, is shown in figure 5.50. The CSR DS400 solution only barely cap-
tures the large positive signal modelled in the two RBF solutions. In addition to this, the
signal in the Amazon river basin is smeared out by the Gaussian smoothing, resulting in
leakage and a negative mass balance estimate for the CSR DS400 solution instead of the
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| model | trend [ annual amplitude | rms to mean model |

RBF 35 -1.4 cmlyr 45cm 1.2cm
RBF 35 FW | -1.4 cm/yr 45cm 1.1cm
DEOS DS400 | -0.4 cm/yr 43cm 19cm
CSR DS400 | -0.6 cm/yr 4.2cm 2.6 cm
RBF 90 -1.5 cml/yr 3.9cm 1.3cm
RBF 90 FW | -1.5 cm/yr 4.3cm 1.0cm
DMT-1 -1.4 cmlyr 4.4 cm 0.6 cm

Table 5.6: Yearly trends, signal amplitudes, and rms to mean model for the Mississippi
river basin in terms of EWH, computed from GRACE time series over the February
2003-December 2006 time span.

| model | trend [ annual amplitude | rms to mean model |

RBF 35 0.5 cmlyr 4.9cm 0.5¢cm
RBF 35 FW | 0.6 cm/yr 5.0cm 0.7cm
DEOS DS400 | 0.4 cm/yr 5.3cm 1.4cm
CSR DS400 | -0.2 cmlyr 5.1cm 1.7cm
RBF 90 0.5 cmlyr 4.7cm 0.5¢cm
RBF 90 FW | 0.6 cm/yr 5.0cm 0.5¢cm
DMT-1 0.6 cm/yr 5.1cm 0.9cm

Table 5.7: Yearly trends, signal amplitudes, and rms to mean model for Ob river basin in
terms of EWH, computed from GRACE time series over the February 2003-December
2006 time span.

strong positive signal seen in the other solutions.

Several conclusions can be drawn from the comparisons of the various GRACE solu-
tions:

* Whether or not frequency-dependent data weighting is used does not matter for
basin averages. The plots showed almost identical time series, and amplitude esti-
mates differ only by 0% to 10%.

¢ The optimally filtered RBF 90 / RBF 90 FW and DMT-1 solutions yield similar
to identical basin averages. Amplitude estimates are within a few %, with the
exception of the Rhine river basin. For this small basin a 15% lower amplitude
estimate results from the DMT-1 solution.

« For larger basins, the unfiltered level 35 RBF solutions perform similar to other
solutions. With small basins, as could be seen with the Rhine basin, noise has too
much influence. In order to achieve a good mass estimate, a smaller grid level
(larger grid spacing) and corresponding wider bandwidth need to be chosen.

« With the exception of the Rio de la Plata river basin, all RBF models and DMT-1
showed generally similar behaviour to the CSR DS400 solutions, but often result
in slightly larger signal amplitudes. For the Rio de la Plata river basin, the CSR
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Figure 5.47: Time series in EWH [m] of monthly water storage variations for the the Ob
river basin; unfiltered solutions (top) and filtered solutions plus CSR DS400 (bottom).

DS400 solution is clearly affected by leakage from the Amazon river basin. This
leads to phase shifts with regard to both the filtered and unfiltered RBF solutions,
and DMT-1.
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| model | trend | annual amplitude | rms to mean model |

RBF 35 0.3 cmlyr 5.3cm 3.5¢cm
RBF 35 FW | 0.5 cm/yr 5.3cm 2.8¢cm
DEOS DS400 | 0.2 cm/yr 3.7¢cm 2.4cm
CSR DS400 | -0.5 cm/yr 3.6cm 5.2cm
RBF 90 -0.4 cmlyr 5.3cm 1.8cm
RBF 90 FW | -0.3 cml/yr 5.3cm 1.5cm
DMT-1 -0.6 cml/yr 4.5cm 1.6cm

Table 5.8: Yearly trends, signal amplitudes, and rms to mean model for the Rhine river
basin in terms of EWH, computed from GRACE time series over the February 2003-
December 2006 time span.
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Figure 5.49: Time series [m] in EWH [m] of monthly water storage variations for the Rio
de la Plata river basin; unfiltered solutions (top) and filtered solutions plus CSR DS400
(bottom).

| model | trend | annual amplitude | rms to mean model |

RBF 35 -0.5 cml/yr 3.1cm 1.2cm
RBF 35 FW | -0.5 cml/yr 3.2¢cm 1.3cm
DEOS DS400 | -0.4 cm/yr 3.1lcm l.lcm
CSR DS400 | -0.3 cm/yr 3.6cm 4.6 cm
RBF 90 -0.5 cml/yr 2.8cm 1.0cm
RBF 90 FW | -0.6 cm/yr 3.2cm l.lcm
DMT-1 -0.6 cm/yr 3.1lcm 0.9cm

Table 5.9: Yearly trends, signal amplitudes, and rms to mean model for the Rio de la
Plata river basin in terms of EWH, computed from GRACE time series over the February
2003-December 2006 time span.



118 GRAVITY FIELD MODELLING FROM SATELLITE DATA

Figure 5.50: Monthly solutions for October 2005 over South America. RBF 35 (unfil-
tered, left), RBF 90 (optimally-filtered, centre), and CSR DS400 (destriped and 400km
Gaussian smoothing, right).
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Figure 5.51: Time series in EWH [m] of monthly water storage variations for the Mis-
sissippi river basin, computed from GRACE and PCR-GLOBWB.

Comparison of GRACE solutions to the PCR-GLOBWB hydrological model

In addition to a comparison of different GRACE models, validation was attempted by
comparison to a hydrological model. The PCR-GLOBWB model (van Beek, 2007) was
used. PCR-GLOBWSB is assumed to be of higher quality than e.g. the GLDAS (Rodell
et al., 2004)global hydrology model. 1t was compared to the optimally filtered RBF level
90 solutions, the DMT-1, and the CSR DS400 (destriped, 400 km Gaussian smoothing)
models, using the same four river basins as before.

| model | trend | annual amplitude | rms |
RBF 90 -1.5 cml/yr 3.9cm 3.5¢cm
DMT-1 -1.4 cmlyr 4.4cm 2.5¢cm
CSR DS400 | -0.6 cm/yr 4.2 cm 1.3cm
PCR-GLOBWSB | -0.3 cm/yr 4.0cm

Table 5.10: Yearly trends, signal amplitudes, and rms error to PCR-GLOBWB for the
Mississippi river basin in terms of EWH, computed from GRACE and PCR-GLOBWB
time series over the time span February 2003-December 2006.

Figure 5.51 shows the time series of monthly water storage variations for the Mississippi
river basin, the associated trend and amplitude estimates are listed in table 5.10. All
models show similar behaviour. The maximum amplitudes differ somewhat, especially
in the spring 2003 and autumn 2006, which also results in different trend estimates.
These differences can be attributed to model deficiencies and poor rainfall data. The
CSR DS400 solutions exhibits the best fit to the hydrological model.

The time series of monthly water storage variations for the Ob river basin are shown in
figure 5.52, trend and amplitude estimates are shown in table 5.11. While the phases and
general behaviour are similar, differences in maximum amplitudes exist. Spring 2003
and spring 2006 show more signal in GRACE than in PCR-GLOBWAB. The RBF 90 and
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Figure 5.52: Time series in EWH [m] of monthly water storage variations for the Ob
river basin, computed from GRACE and PCR-GLOBWB.

| model trend | annual amplitude | rms |
RBF 90 0.5 cm/yr 4.7 cm 2.2¢cm
DMT-1 0.6 cm/yr 5.1cm 1.8cm
CSR DS400 | 0.4 cmlyr 5.3cm 3.3cm
PCR-GLOBWB | 0.0 cm/yr 4.3cm

Table 5.11: Yearly trends, signal amplitudes, and rms error to PCR-GLOBWB for the Ob
river basin in terms of EWH, computed from GRACE and PCR-GLOBWAB time series
over the February 2003-December 2006 time span.

DMT-1 models exhibit a significantly better fit to PCR-GLOBWB than the CSR DS400
model.

| model trend | annual amplitude | rms |
RBF 90 -0.4 cml/yr 5.3cm 1.8cm
DMT-1 -0.6 cm/yr 4.5cm 1.6cm
CSR DS400 | -0.5 cm/yr 3.6cm 5.7cm
PCR-GLOBWB | -0.4 cm/yr 4.8cm

Table 5.12: Yearly trends, signal amplitudes, and rms error to PCR-GLOBWB for the
Rhine river basin in terms of EWH, computed from GRACE and PCR-GLOBWAB time
series over the February 2003-December 2006 time span.

Figure 5.53 shows the time series of monthly water storage variations for the Rhine river
basin, table 5.12 lists the trends and signal amplitudes. In the winter of 2004/2005, PCR-
GLOBWB vyields a significantly larger maximum amplitude than the GRACE models,
with the RBF solution exhibiting the smallest difference. In the summer of 2005, the
CSR DS400 solution deviates from the other models. This results in a smaller amplitude
estimate for the CSR DS400 solution compared to the other models, and a much larger
rms error with respect to PCR-GLOBWB.
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Figure 5.53: Time series in EWH [m] of monthly water storage variations for the Rhine
river basin, computed from GRACE and PCR-GLOBWAB.
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Figure 5.54: Time series in EWH [m] of monthly water storage variations for Rio de la
Plata river basin, computed from GRACE and PCR-GLOBWB.
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| model | trend | annual amplitude [ rms |
RBF 90 -0.5 cm/yr 2.8cm 8.4cm
DMT-1 -0.6 cm/yr 3.1lcm 8.6cm
CSR DS400 -0.4 cmlyr 3.1cm 6.9 cm
PCR-GLOBWB | 1.0 cm/yr 10.9cm

Table 5.13: Yearly trends, signal amplitudes, and rms error to PCR-GLOBWB for
the Rio de la Plata river basin in terms of EWH, computed from GRACE and PCR-
GLOBWRB time series over the February 2003-December 2006 time span.

Finally, figure 5.54 shows the time series of monthly water storage variations for the Rio
de la Plata river basin, the related trends and amplitudes are listed in table 5.13. It has
previously been established that for this basin, the solutions computed at DEOS behave
differently from those computed at CSR. In fact, it can be seen that the CSR DS400
solutions show a behaviour that more similar to the hydrological model (although with
much smaller amplitudes), while the RBF and DMT-1 models yield a phase shift. One
example is October 2005, where the RBF and DMT-1 solutions show a large positive
signal, while the hydrological model produces a negative amplitude. The CSR DS400
solution is somewhere in between.

It has been seen before in figure 5.50 that the CSR DS400 solutions differ significantly
for certain months as it is strongly affected by noise and has a lower spatial resolution. It
is more difficult to assess why the hydrological model yields such different results with
regard to the RBF 90 and DMT-1 solutions. It has been suggested by Klees et al. (2008c)
that GRACE solutions may be affected by leakage from the Amazon river basin. Figure
5.50 shows that this is not the case for the RBF 90 solution. Instead, the time series of the
PCR-GLOBWB maodel follows the general behaviour of the time series of the Amazon
river basin with a slight phase shift (figure 5.55). This yields the question whether the
hydrological model is accurate, since GRACE solutions show opposite cycles in the Rio
de la Plata and Amazon river basins. The trustworthiness of the hydrological model
for this particular area is further questioned by the large signal amplitudes computed
from PCR-GLOBWSB, as Berbery and Barros (2002) state that mean variations over de
la Plata river basin are small due to different precipitation regimes within the basin. This
is supported by the RBF and DMT-1 GRACE models.

Overall, it can be summarised that, with the exception of the Rio de la Plata river basin,
de RBF 90 and DMT-1 solutions show good agreement with the PCR-GLOBWB hy-
drological model. The results obtained for the Rio de la Plata river basin question the
reliability of the hydrological model for this particular area.
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Figure 5.55: Time series in EWH [m] of monthly water storage variations for Amazon
and Rio de la Plata river basins, computed from the PCR-GLOBWAB hydrological model.
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| model | trend [ annual amplitude |
RBF 35 -5.9 cmlyr 1.2cm
RBF 35 FW | -6.0 cm/yr 1.0cm
DEOS DS400 | -0.4 cmlyr 4.3cm
CSR DS400 | -3.6 cm/yr 1.4cm
RBF 90 -5.5 cmlyr 0.9cm
RBF 90 FW | -6.6 cml/yr 0.8cm
DMT-1 -4.4 cmlyr 0.8cm

| altimetry | -35.1 cmlyr | 9.4cm |

Table 5.14: Yearly trends and signal amplitudes computed from GRACE time series and
radar altimetry over the February 2003-December 2006 time span; in terms of EWH
(GRACE) and lake surface level change (altimetry).

Comparison of GRACE solutions to radar altimetry - Lake Victoria

Satellite radar altimetry makes it possible to accurately measure surface height changes
of water bodies (Berry et al., 2005). These height changes can be used for comparison
with EWH estimates obtained from GRACE. A suitable water body for such a compari-
son is Lake Victoria (Awange, 2006):

1. The size of Lake Victoria is on the edge of the spatial resolution we get from
GRACE. Mass change is large enough to be detected by GRACE.

2. ltexhibitsatrend that can be recovered by GRACE and that can be used to estimate
scaling factors.

No leakage correction (see section 5.6.3) has been applied. Leakage correction could be
applied by expanding the integration area as has been done for Greenland and Antarctica,
but this might result in signal from outside the area of interest being taken into account.

Figure 5.56 shows time series of mass variations for Lake Victoria obtained from the
same GRACE models used previously and described in section 5.6.2. Behaviour is sim-
ilar to what we have seen before: Little to no difference between solutions with and
without frequency dependent weighting and good agreement between the optimally fil-
tered RBF and DMT-1 solutions. Like with the Rhine river basin, the integration area is
too small to average out noise in the RBF 35 solution, leading to a noisy time series.

Table 5.14 lists linear yearly trends and signal amplitudes as obtained from the GRACE
solutions and radar altimetry. All trends resulting from GRACE solutions are signif-
icantly smaller than the trend observed by radar altimetry. The strongest trend of a
GRACE solution is retrieved from the RBF 90 FW solution. Even though the RBF 90
FW time series plot looks very similar compared to the RBF 90 solution (no frequency-
dependent data weighting), the trend estimate is different - mostly due to the lower value
for November 2006 obtained from the RBF 90 FW solution.

Figure 5.57 shows the time series as measured by radar altimetry and the scaled GRACE
time series. The scaling factor was computed from the ratio of GRACE to altimetry
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Figure 5.56: Time series in EWH [m] of monthly water storage variations for Lake
Victoria; unfiltered solutions (top) and filtered solutions (bottom).

trend, sj = | . The GRACE models clearly echo the seasonal behaviour that is shown
in the altlmetry time series. Differences between the three GRACE time series shown
are small.

5.7 Summary and conclusions

This chapter displayed the use of RBFs for modelling gravity from data collected by the
GRACE satellite mission. For GRACE modelling, the functional model and optimal fil-
tering approach developed at DEOS was used. Network design and bandwidth selection
as it relates to GRACE modelling was covered:

» For GRACE gravity field modelling, the RBFs need to be placed on an equidistant
grid. Reuter grids have this property; moreover, they allows for sufficiently fine
adjustments in the number of RBFs used by changing the level. Additionally,
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Figure 5.57: Altimetry time series and scaled GRACE time series [m].

the Reuter grid level chosen is approximately equal to the maximum spherical
harmonic degree of the solution.

 Unfiltered GRACE solutions should make use of Reuter grid levels 25 to 35; level
45 may be attempted for high-latitude areas such as Greenland. Note that the
choice of the Reuter grid level implies implicitly a filtering by parametrisation.

e Optimally filtered solutions can use much higher grid levels. Noise due to over-
parametrisation is not an issue, as this is suppressed by the filter. For the optimal
filter of Klees et al. (2008b), level 90 has proven to provide very good solutions.

¢ Data and parametrisation area should be larger than the target area. Empirically it
was found than an area extension of 30° around the target area needs be used to
suppress edge effects sufficiently well; only observations above this parametrised
area should be used.

e The RBFs need to be placed deep. Typical depths are 1,600 km for a level 35
Reuter grid and 700 km for a level 90 Reuter grid when working with order-3
Poisson wavelets. Empirical testing has shown that depths that differ 10% (more
in the case of unfiltered solutions) from the optimal depth have little adverse effect
on the solution.

first test presented here compared an unfiltered RBF solution to an unfiltered spher-
harmonic solution. This comparison showed that the two solution were approxi-

mately equal up to a spherical harmonic degree equal to the chosen Reuter grid level.

The

results focused on the comparison of various GRACE solutions for two main appli-

cations: The detection and quantification of ice mass loss in Greenland and Antarctica,

and

the monitoring of hydrological signals.

e The optimally-filtered solutions clearly outperform unfiltered solutions, especially
in terms of spatial resolution. The unfiltered models in most cases yield compara-
ble time series behaviour, often with smaller maximum amplitudes. The level 35
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RBF solution is too noisy for mean mass estimates over smaller basins, as noise is
not averaged out over a larger area.

« In the case of unfiltered solutions, RBF representations yield much better spatial
localisation of signals and higher amplitudes than spherical harmonic representa-
tions.

 With the exception of Antarctica, whether or not frequency-dependent data weight-
ing was used did not result in significant differences in the monthly mean mass
estimates.

» Mass loss estimates and trends for Greenland are similar for the RBF 90 and DMT-
1 solutions. This also holds for signal amplitudes and spatial patterns.

» For Antarctica, there are significant differences between the SH and RBF solu-
tions. The RBF 90 solutions seem to yield a slightly better spatial resolution and
show a mass loss at 0 degree longitude that is also evident from ICESat measure-
ments. As a result, the RBF 90 solutions feature higher correlation coefficients
with regard to ICESat than DMT-1. This indicates that RBFs may offer advan-
tages for GRACE modelling at high latitudes.

« For larger river basins, which are located at low- and mid-altitudes, the RBF 90
solutions and DMT-1 yield very similar results. This indicates that RBF represen-
tations produce solutions of the same quality as SH representations at equatorial
latitudes.

» Small differences exist between the RBF 90 and DMT-1 solutions for the relatively
small (185,000 km?, 15 times smaller than the large basins used) Rhine river basin
(15% difference in annual amplitude) and Lake Victoria (area: 68,800 km?); the
RBF 90 FW yielded the largest trend estimate (50% larger than DMT-1) and was
thus closest to the trend observed by altimetry. This indicates that RBF represen-
tations may yield better mass storage estimates for very small areas on the edge of
GRACE’s spatial resolution.

» With the exception of the Rio de la Plata river basin, the RBF solutions (as well
as DMT-1) showed good agreement with the PCR-GLOBWB hydrological model
(amplitude differences < 10%). The discrepancies for the Rio de la Plata basin
question the reliability of the hydrological model for this area.

Overall, it can be concluded that the use of RBFs for GRACE gravity field modelling
results in solutions of at least equal quality compared to spherical harmonic solutions. It
is difficult to assess whether RBFs can produce better solutions than spherical harmon-
ics. There are some indications, such as the detection of mass loss in Antarctica at 0
degree latitude that is not visible in DMT-1, and the stronger trend observed for Lake
Victoria. Note that the optimal filter applied to RBF solutions used a a noise covariance
matrix C with a variance factor of 62 = (18 um)?, whereas the DMT-1 solutions used a
variance factor of 62 = (40um)2 (see section 5.3.3). It is thus not obvious whether the
improvements in certain areas are due to the regional parametrisation or simply due to a
higher observation weight in the estimation using RBFs.
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For global optimally-filtered solutions, the numerical complexity slightly lower for com-
puting RBF solutions (level 90: 10,000 unknowns) than for computing SH solutions
(Imax = 120: 14,600 unknowns). RBFs offer an advantage when regional solutions are
computed. Hence, RBFs are more flexible: They can be used for both global and regional
solutions, whereas spherical harmonics are limited to global solutions.



Chapter 6

Local gravity field modelling from
terrestrial data

Radial basis functions are a natural candidate for the computation of gravity fields from
terrestrial gravity data. Unlike satellite data, the data coverage is confined to a small
region. A regional parametrisation is thus a logical choice. Terrestrial data are often
tightly spaced and make it possible to compute a high-resolution gravity field, corre-
sponding to a very high degree of spherical harmonics. Computing such a field with
spherical harmonics would require a much larger numerical effort than is necessary with
RBFs.

Terrestrial data are almost always of a heterogeneous nature, both in terms of spatial
distribution and quality. Data density will be less in remote and inaccessible areas such
as mountains, with much higher data density and possibly oversampling in flat areas.
This makes it necessary to fine-tune the RBF network, and indeed the algorithms of
data-adaptivity (section 2.6.2) and local refinement (section 2.6.3) were motivated by
the use of terrestrial data.

This chapter establishes how the RBF approach can be used for the fast computation
of accurate local gravity fields. This includes the proper choice of RBF centres and
bandwidths. The main use of local gravity fields computed from terrestrial data is to
realise a height reference surface. The methodology presented here has already shown
its usefulness for this task in computing a height reference surface for Germany (Klees
et al., 2007) and the Netherlands (Klees et al., 2008a).

The data are usually obtained during gravimetry campaigns along levelling lines. These
measurement campaigns may have been executed decades apart, using various instru-
ments and different post-processing procedures. This results in data that vary signifi-
cantly in quality, unlike satellite data that are assembled within a short time and usually
are of consistent quality. This variation in data quality needs to be taken into account
by proper weighting, desirably in a semi-automatic way such as variance component
estimation (section 3.5).

The chapter starts with the derivation of the functional model for the observation types
that are encountered when dealing with terrestrial data. Sections 6.2 and 6.3 cover the
aspects of network design and bandwidth choice as they apply to terrestial data. The
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approach is illustrated using two real data sets. One covering an area in the northeast
of the USA (section 6.4.1), the other modelling a larger area in eastern Canada (section
6.4.2).

6.1 Functional model
The disturbing potential T is represented in terms of RBFs according to

GM

Ap. (T
“Re = o (X Y|) ) (6.1)

T(x)
where n is the number of basis functions, ¢; is the coefficient of basis function i, X = ﬁ
and y = |—§’,‘ are points on the unit sphere, and

0o 1+1
Wi (X,Yi) = goum < R ) P(RT9i), (6.2)

x|

with y; being the Legendre coefficients of the basis function, R the radius of the Bjer-
hammar sphere, and P, the Legendre polynomial of degree I.

Throughout the computations presented here, the Poisson wavelets of order 3 have been
used as basis functions. Their Legendre coefficients are

241

n il
P "yl . (6.3)

Y
For all computations, analytical expressions of the basis functions have been employed.
For the Poisson wavelets used here, the analytical expressions have been derived as
(Klees et al., 2008a)

WxY) = 1 @nea(6Y) + Zn(xY) (6.4)

with
1 4 i
An(X,y) =2 |Y|n+ bn1+ 2 Bn.i ly['bi. (6.5)
i=1

6.1.1 Functional model for gravity disturbances

In spherical approximation, gravity disturbances 89 are related to the disturbing potential
T by
_dT(x)
0g(x) = — I (6.6)




6.1. FUNCTIONAL MODEL 131

When we apply the operator —=%- to eq. (6.2), we obtain

a\x\
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X\ x|

independent of the choice of the kernel and its Legendre coefficients 4.

For the analytical expressions of the Poisson wavelets, we need the radial derivates of by
and by, eq. (5.10):
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The basis functions are then computed according to eq. (6.4) with
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6.1.2 Functional model for gravity anomalies

In spherical approximation, gravity anomalies Ag are related to the disturbing potential
T by

T (x). (6.11)

For the spectral representation, it follows that

J 2 ) R 1+1 T
T Wi (X,Yi) — \l i(X.yi) = lefl X < ) P (7). (6.12)

x|

The analytical expressions are once again computed using eq. (6.4), with
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(6.13)
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6.1.3 Functional model for height anomalies

Height anomalies are related to the disturbing potential T by

§(x) = , (6.14)

where v is the normal gravity and x’ is the point on the telluroid associated with the
surface point x by telluroid mapping.

6.2 RBF network design

6.2.1 Grid choice

When processing terrestrial data, usually a dense distribution of observations over a rela-
tively small area has to be dealt with. This makes it possible to compute a high-resolution
gravity field. Since we only deal with small areas, a global grid is not required. Over-
parametrisation due to increasingly dense basis function placement at higher latitudes
will usually also not be a problem, so often an equiangular grid (see section 2.6) will be
an adequate choice. At higher latitudes, an equidistant grid like the Reuter grid will offer
advantages. In this chapter, both grid types have been used.

The grid spacing should be chosen in such a way that all signal in the smoother areas can
be modelled. It is not advisable to use a grid spacing aimed at recovering all signal in
areas with high signal variation, as such a grid will lead to overparametrisation in areas
with smoother signal characteristics.

As a rule of thumb, choosing a grid with an amount of basis functions equal to one third
the number of observations is a good starting point. In case of serious oversampling, such
a grid will be too dense. An optimal grid should be constructed by trial-and-error, by
experimenting with various grid spacings and comparing the solutions obtained. When
in doubt, it is advisable to use the coarser grid. This reduces the numerical complexity
and the danger of over-parametrisation, and unmodeled signal can be considered by local
refinement.

6.2.2 Data-adaptivity and local refinement

Point-wise terrestrial gravity measurements are usually inhomogeneously distributed.
Figure 6.1 shows gravity anomalies in the central United States of America obtained
from the PACES database (http://paces.geo.utep.edu/gdrp/). Some areas have
very sparse data coverage, with very dense coverage over other areas, and along levelling
lines.

Basis functions should only be used when there are observations within their bandwidth,
as a basis function without observations within its bandwidth will lead to numerical in-
stability and require regularisation. To achieve this, the basis function network should be
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Figure 6.1: Gravity anomalies in the central USA

adapted to the data distribution. This can be achieved with the data-adaptivity algorithm
discussed in section 2.6.2.

For test regions with heterogeneous signal content (i.e. strong gradients in some areas
and smooth features in other area, as in figure 6.1), the RBF grid should be chosen
properly for areas of smooth signal variation, not the areas with high signal variation.
Choosing such a grid will lead to underparametrisation in the latter areas. This can be
addressed by using the local refinement algorithm described in section 2.6.3.

6.2.3 Parametrised area

With satellite observations, the parametrised area had to be larger than the target area,
in order to avoid edge effects. Terrestrial data, on the contrary, contain mostly high-
frequency signal after removal of a high-quality long-wavelength model. As a result,
edge effects due to truncation of the area are much smaller. When an accurate global
reference model, such as EGM2008 (Pavlis et al., 2008) or EIGEN-GL04C (Foerste et
al., 2008) is subtracted, edge effects can be limited to an area of at most one degree.

The parametrised area needs to be equal to the data area. If observations covering an
area larger than the area of interest are available, these can be used to reduce edge ef-
fects. Using a data area that is one degree larger than the area of interest is sufficient to
completely suppress edge effects.
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6.3 Bandwidth selection

Dealing with terrestrial measurements is very different from dealing with satellite obser-
vations. Unlike with satellite measurements, we do not have a similar data distribution
and spectral signal content for every region of interest. Each case has its own data set
with specific characteristics in terms of spatial distribution and spectral content. Because
of this, no recommendation for basis function distribution and associated depth / band-
width can be given. For each case, the optimal bandwidth should be estimated, using the
algorithm described in section 2.5.2.
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6.4 Results

6.4.1 Northeastern USA
Area of interest
A regional gravity field was computed for an area of 10 x 10 degrees in the northeastern

United States and parts of Canada (fig. 6.2). The area includes a small part of ocean,
Lake Erie, Lake Ontario, Lake Huron, and the Appalachian Mountains.

Figure 6.2: Topography of the test area in the northeastern USA.

Input data

As input data, surface gravity anomalies from three sources were used:
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e 129,466 pointwise values in the USA from the PACES database (http://paces.
geo.utep.edu/gdrp/),

¢ 12,002 pointwise values in Canada and over the Great Lakes from the Geoscience
Data Repository (http://gdrdap.agg.nrcan.gc.ca/geodap/index_e.html),

e 3,838 gridded values over the Atlantic ocean from the KMS02 data set (ftp:
//ftp.spacecenter.dk/pub/GRAVITY/KMS02/).

Terrain corrections supplied with the data sets were applied, and EIGEN-GL04C up to
degree 150 was subtracted as reference model. The resulting residual gravity anomalies,
as used for the computation, are shown in figure 6.3. Statistics are listed in table 6.1.

In addition to the gravity anomalies, 1,069 GPS-derived height anomalies were used
(http://www.ngs.noaa.gov/GEOID/GPSonBM03/). The results were compared against
the official American geoid, GEOID03 (Roman et al., 2004), which is available from
http://www.ngs.noaa.gov/GEOID/GEOID03/. Figure 6.4 shows the geoid heights
from GEOIDO3 after the EIGEN-GL04C contribution up to degree 150 has been re-
moved.

| dataset | minimum | maximum | mean | standard deviation |
USA | -63.3mGal | 123.1 mGal | -1.5 mGal 20.6 mGal
Canada | -33.0mGal | 28.5mGal | -0.5 mGal 9.2 mGal
KMS02 | -56.5 mGal | 71.5 mGal | -5.4 mGal 21.2 mGal

Table 6.1: Statistics of residual gravity anomaly data sets for USA test area after the
subtraction of EIGEN-GL04C up to degree 150.

Grid choice and basis function placement

A variety of grids were used, from a grid spacing of 30’ (approximately 55 km) up to 6’
(11 km). The optimal depths / bandwidths for all grids were estimated using the method
described in section 2.5.2. The resulting depths are shown in table 6.2.

Data-adaptive network design was used in all cases. Results were computed both with
and without local refinement. For grid spacings below 24’, a threshold of 5 mGal was
used for the local refinement. For 24’ and 30’ grid spacing, the threshold had to be
increased to 10 mGal, and the minimum basis function spacing had to be increased to
avoid overparametrisation. The deep placement and wide influence radius of the basis
functions would otherwise lead to a singular normal equation system and require very
strong regularisation with adverse effects on the solution.

Results

All computations were performed using regularisation. The regularisation parameter was
estimated using variance component estimation with stochastic trace estimation (MC-
VCE, see section 3.5). The MC-VCE was also employed to estimate optimal weights
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| grid spacing | approximate point distance | optimal depth |

30 55 km 220 km
24 44 km 170 km
18’ 33 km 100 km
12’ 22 km 70 km
6’ 11 km 30km

Table 6.2: Optimal depths for various grid spacings

for the three observation groups. The gravimetric field and the GPS/levelling height
anomalies were combined by means of a corrector surface. The corrector surface was
determined by approximating the differences between the height anomalies computed
from a gravity-only solution and the GPS/levelling-derived height anomalies with a ten-
sion spline interpolant, with a tension factor of 0.25. This was done with the surface
command of GMT (Wessel and Smith, 1991). Figure 6.5 shows both the gravimetric
solution and the corrector surface resulting from the solution with 12’ grid spacing and
local refinement.

The results of the computations are listed in table 6.3. Using a larger number of basis
functions reduces the data rms. Figure 6.6 shows the errors for the 12” grid with and
without local refinement, with full statistics for these computations shown in table 6.4.
The application of local refinement clearly reduces the gravity anomaly errors, as more
signal gets modelled.

rms
grid | LR [ #0f RBFs | USA | Canada | KMS02 | GEOIDO3 | 8°x8°

30° | no 441 9.6 mGal | 47mGal | 11.0mGal | 149cm | 12.2cm
30" | yes 705 79mGal | 42mGal | 7.8 mGal | 19.8cm | 9.0cm
24’ | no 676 8.4 mGal | 4.1 mGal | 9.0 mGal 12.4cm 9.3cm
24’ | yes 3592 5.0m@Gal | 3.4 mGal | 4.4 mGal 9.5cm 7.1cm
18’ | no 1156 7.1 mGal | 3.6 mGal | 7.2 mGal 9.7 cm 7.9cm
18" | yes 7529 41mGal | 25mGal | 28 mGal | 10.0cm | 7.2cm
12’ | no 2599 6.1 mGal | 3.0 mGal | 5.3 mGal 8.7cm 7.5cm
12" | yes 8569 4.0mGal | 29 mGal | 2.9 mGal 8.3cm 7.2cm
6" | no 9710 4.6 mGal | 2.0 mGal | 3.0 mGal 9.0cm 7.6cm
6" | yes 12073 3.9mGal | 2.0 mGal | 1.9 mGal 9.6 cm 8.0cm

Table 6.3: Results for various grid spacings, with and without local refinement (LR).
Number of basis functions used, rms error for the three data sets, and geoid height rms
error for the full area, and a sub-area of 8°x8° that is not affected by edge effects.

The basis function network for a grid spacing of 12 with local refinement is shown in
figure 6.7. Local refinement basis functions are placed in areas that had large residuals
previous to local refinement.

Results are different concerning the geoid height error - all grid spacings from 24’ to 12’
yielded a geoid height error of about 7 cm with local refinement, for an area of 8°x8°
that does not suffer from edge effects. Taking edge effects into account, the 12” solution
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| data set | minimum | maximum | mean | standard deviation |
USA, no LR -51.1 mGal | 102.4 mGal | -0.5 mGal 6.1 mGal
Canada, no LR | -18.5mGal | 19.5mGal | -0.1 mGal 3.0 mGal
KMS02,no LR | -39.6 mGal | 24.0 mGal | -0.7 mGal 5.3 mGal
USA, withLR | -46.8 mGal | 73.5 mGal | -0.4 mGal 4.0 mGal
Canada, with LR | -18.7 mGal | 20.3 mGal | -0.1 mGal 2.9 mGal
KMS02, with LR | -42.3 mGal | 17.1 mGal | -0.3 mGal 2.9 mGal

Table 6.4: Statistics of gravity anomaly errors for 12’ grid spacing solution, with and
without local refinement (LR).

yields the best quality. The errors resulting from the 24’, 12’, and 6’ solutions are shown
in figure 6.8. The overall picture is the same. The solutions with tighter grid spacing
capture more signal, which reduces errors in some areas, but increases errors in other
areas. This especially affects the 6” solution. Apparently, not all signal that is contained
in the data is actually represented in GEOIDO3, or noise is modelled. Furthermore,
specially computed terrain corrections that are not publicly available have been used in
the computation of GEOIDO03. It is thus difficult to assess the quality of the solutions
by comparing them to GEOID03. What is obvious is that the 6” solution suffers from
slightly larger edge effects (especially in the lower left corner), and that the grid spacing
that can be used to get a good solution is quite variable, if local refinement is applied.
This illustrates that the local refinement algorithm serves its desired purpose.
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Figure 6.3: Residual gravity anomalies for the USA (top left), Canada (top right),
KMSO02 (bottom left), and residual GPS height anomalies (bottom right), after the sub-
traction of EIGEN-GL04C up to degree 150.
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Figure 6.4: Residual GEOIDO03 geoid model after the subtraction of EIGEN-GL04C up
to degree 150.
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Figure 6.5: Gravimetric solution (top) and corrector surface (bottom), with 12’ grid
spacing and with local refinement.
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Figure 6.6: Gravity anomaly errors with 12’ grid spacing, without (top) and with local
refinement (bottom)
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Figure 6.7: Basis function placement, 2,599 RBFs on 12’ grid (red) and 5,970 local
refinement RBFs (blue).
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Figure 6.8: Differences between GEOID03 and RBF solutions (including corrector sur-
face) for a grid spacing of 24’ (top), 12’ (centre), and 6” (bottom), after the application
of local refinement.
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6.4.2 Canada

Area of interest

A regional gravity field was computed for an area of 40 by 20 degrees in Canada, be-
tween 110 to 70 degrees of western longitude, and 50 to 70 degrees of northern latitude
(figure 6.9). The dominant geographic feature in this area is the Hudson Bay.

Figure 6.9: Topography of the test area in Canada.

Input data

As input data, surface gravity anomalies from two sources were used:

112,628 pointwise values in Canada from the Geoscience Data Repository (http:
//gdrdap.agg.nrcan.gc.ca/geodap/index_e.html), and

» 199,924 gridded values over the Hudson bay and other water bodies from the
Sandwell/Smith data set (Sandwell and Smith , 1997).

EIGEN-GLO4C (Foerste et al., 2008) up to degree 150 was subtracted as reference
model. The resulting gravity anomalies, as used for the computation, are shown in figure
6.10. Statistics for the data sets are listed in table 6.5.

The results were compared against the latest realisation of the official Canadian gravi-
metric geoid, CGGO5 (Véronneau and Huang, 2005). Figure 6.11 shows the geoid
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| data set | minimum [ maximum [ mean | standard deviation |
Canada -59.9 mGal | 85.6 mGal | -2.0 mGal 11.1 mGal
\ Sandwell/Smith | -47.9 mGal | 47.0 mGal | -1.7 mGal 11.2 mGal

Table 6.5: Statistics of reduced gravity anomaly data sets for Canada test area.

heights from CGGO5 after the EIGEN-GL04C contribution up to degree 150 has been
removed. To make a comparison between the quasi-geoid computed by the approach
described here and the CGGO5 geoid, corrections between quasi-geoid and geoid were
computed according to Heiskanen and Moritz (1967):

. _AgB[gal}

(C—N)m = “Him); (6.15)

smz
where Agg is the Bouguer anomaly, H is the height of the point, and y is the Normal
gravity. The Bouguer anomalies were also retrieved from the Geoscience Data Reposi-
tory. All comparisons were then made on the basis of height anomalies.

Grid choice and basis function placement

Due to the large area and high latitudes involved, an equiangular grid is not well suited
to this case. Using this grid type would lead to overparametrisation at the higher lati-
tudes. Instead, Reuter grids of level 360, 540, and 720 were used. The optimal depths
/ bandwidths for all grids were estimated using the method described in section 2.5.2,
using the rms fit to CGGO05 as the optimality criterion. The resulting depths are shown
in table 6.6.

Data-adaptive network design was used in all cases. Results were computed both with
and without local refinement. A threshold of 10 mGal was used for the local refinement,
as using a 5 mGal threshold yielded a lower geoid accuracy. By setting the threshold for
the Sandwell / Smith data set to 100 mGal, no local refinement was applied to this data
set. This was done in order to avoid overfitting to this very dense gridded data set.

| Reuter grid level | approximate point distance | optimal depth |

360 55 km 85 km
540 37 km 60 km
720 28 km 45 km

Table 6.6: Optimal depths for the used grid levels.

Results

The computations without local refinement were performed without regularisation. With
local refinement turned on, regularisation was applied, with the regularisation parameter
being estimated by VCE. VCE was not used for estimating weights for the two obser-
vation groups, as it proved unreliable due to the large number of observations in the
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Figure 6.10: EIGEN-GL04C (up to degree 150) reduced gravity anomalies: Canadian
data (top) and Sandwell/Smith data (bottom).

Sandwell / Smith data set. Instead, a fixed weight of 5 for the Canadian terrestrial data
and unit weight for the Sandwell / Smith data was used, as this yielded better results.

Table 6.7 lists the results of the computations using the three different grid levels, with
and without local refinement. The resulting error (rms) for both data sets, as well as the
height anomaly error relative to CGGO05 are given.

Without the application of local refinement, using a higher grid level, and thus more
basis functions, results in a smaller gravity anomaly error. The geoid height error is also
smaller, but the percentage of the reduction is smaller. With local refinement turned on,
all three grid levels yield similar gravity anomaly errors.

Figure 6.12 shows the gravity anomaly residuals with and without local refinement, for
Reuter grid level 540. Full error statistics are listed in table 6.8. It can be seen that the
errors are reduced significantly by using local refinement. Figure 6.13 shows the associ-
ated distribution of grid basis functions (red) and local refinement basis functions (blue).
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Figure 6.11: EIGEN-GLO04C (up to degree 150) reduced CGGO05 gravity field.

| grid | LR | # of RBFs | rms Canada | rms Sa/Sm | rms CGGO5 |
360 | no 1636 6.8 mGal 6.6 mGal 14.0cm
360 | yes 6703 3.8 mGal 5.4 mGal 9.9cm
540 | no 3641 5.4 mGal 5.7 mGal 10.2cm
540 | yes 6885 3.7 mGal 5.2 mGal 9.0cm
720 | no 6447 4.7 mGal 5.4 mGal 9.5¢cm
720 | yes 8931 3.5 mGal 5.1 mGal 9.0cm

Table 6.7: Results for various grid levels, with and without local refinement (LR). Num-
ber of basis functions used, rms error for the Canadian and the Sandwell/Smith data set,
and height anomaly rms error.

Local refinement basis functions were only placed in areas of large gravity anomaly
residuals.

The benefit of local refinement concerning the height anomaly error depends on the
initial grid level. The level 360 grid is clearly not sufficient to model the signal without
local refinement. With local refinement, the height anomaly error drops by approx. 30%.
For the level 540 grid, local refinement reduces the height anomaly error by 10%. Figure
6.14 shows the height anomaly errors before and after local refinement. Differences are
evident in areas of previously large gravity anomaly errors. Most significant are the
reduced errors on the north shore of Southampton Island, and the reduced edge effects
in the northeast corner of the computation area.

For the level 720 grid, local refinement does not significantly improve the solution.

With local refinement turned on, the level 540 and 720 solutions deliver similar geoid
height errors. The level 360 solution’s error is about one centimetre larger. Looking at
figure 6.15, we see that the level 360 solution produces the smoothest error plot, albeit
with slightly larger errors in the north-east corner than the level 540 solution. The level
720 solution produces a few artifacts. These might be a result of overparametrisation,
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Figure 6.12: Gravity anomaly errors with level 540 grid, without (top) and with local
refinement (bottom).

or the solution captures more signal than contained in CGGO05. Overall, all three local-
refinement solutions can be considered very similar.

Conclusions

From the results obtained with this test data set, it can be concluded that the approxima-
tion quality for gravity anomalies and height anomalies are mostly independent of the
initial grid choice, if the basis function depth (and thus bandwidth) is correctly deter-
mined, local refinement is turned on, and overparametrisation is avoided. The resulting
number of basis functions, and thus the numerical complexity, is also approximately the
same.

Height anomaly rms errors resulted to about 9 cm in all cases with local refinement, and
could not be eliminated using more basis functions. Two explanations for these errors
can be given:
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| data set | minimum | maximum [ mean | standard deviation |
Canada, no LR -80.8 mGal | 56.4 mGal | -0.8 mGal 5.4 mGal
Sandwell/Smith, no LR | -39.8 mGal | 35.7 mGal | -0.2 mGal 5.7 mGal
Canada, with LR -36.2 mGal | 25.5 mGal | -0.7 mGal 3.7 mGal
Sandwell/Smith, with LR | -51.2 mGal | 71.5 mGal | -0.0 mGal 5.2 mGal

Table 6.8: Statistics of gravity anomaly errors for level 540 grid solution, with and with-
out local refinement (LR).

250° 260° 270° 280° 290°

500 , LA ; — 50°
250° 260° 270° 280° 290°

Figure 6.13: Basis function placement, 3,641 level 540 grid functions (red) and 3,244
local refinement functions (blue).

¢ CGGO5 combined gravity anomalies from various sources with a global gravity
model (GGMO02C up to degree 200), while for the computations presented here,
only gravity anomalies from two sources where used.

* For the computation of CGGO05, specifically computed terrain corrections were
used. These are not identical to the publicly available terrain corrections from the
Canadian Geoscience Data Repository. Even though the area used here features
rather smooth topography, this may explain some of the high-frequency errors.

e CGGO5 is also effected by data and processing errors and thus not error-free.
Finally, slight edge effects can be noticed, especially in the northeast corner of the com-

putation area. Using a 38° x 18° sub-area for computing the rms reduces the rms by
about 1.5 cm.
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Figure 6.14: Geoid height errors with level 540 grid, without (top) and with local refine-
ment (bottom).
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Figure 6.15: Height anomaly errors for a level 360 grid (top), level 540 grid (centre),
and level 720 grid (bottom), after application of local refinement.
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6.5 Summary and conclusions

In this chapter, the computation of regional gravity field models from terrestrial gravity
data has been shown using two test areas, the northeastern USA and eastern Canada. It
can be seen that the processing of large amounts of data, more than 300,000 observations
over an area of 40° x 20° in the case of Canada, can easily be handled by the software
developed in the course of the research presented here.

For the US data set, variance component estimation (VCE) has been used for determining
the proper weights for observations from various sources (see table 6.3), as well as for the
determination of the regularisation parameter. A numerically efficient implementation
using Monte Carlo techniques makes it possible to use VCE even with the large data sets
encountered here.

The technique of local refinement has been implemented and evaluated with both data
sets. Together with the data-adaptive network design (DAND), the use of local refine-
ment automatically leads to a good approximation regardless of the chosen coarse grid
resolution.

Combination with GPS/levelling-derived height anomalies was achieved using a simple
corrector surface, computed with the Generic Mapping Tools (Wessel and Smith, 1991).

With both test cases it was not possible to exactly reproduce the reference solutions
GEOIDO03 and CGGO05. Reasons for this are:

« For the computations shown here, publicly available gravity data was used. Other
data were used in the computation of GEOID03 and CGGO05.

» No accurate terrain corrections could be used. Even though both test areas featured
mostly flat terrain, the approximation quality could be improved by using accurate
high-resolution terrain corrections that lead to smoother input data.

» The two official fields were computed with different methodologies, which can
cause additional differences, and they have their own errors.
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Chapter 7

Combined modelling of satellite and
terrestrial data

Satellite and terrestrial data both have inherent limitations. Satellite data are available
globally at high quality, but can yield only low resolution gravity fields, unable to resolve
structures of sizes smaller than approx. 150 km in the case of GRACE. Terrestrial data
allow higher resolution, but may be of heterogeneous quality and spatial distribution.

To overcome the limitations of either data source, they need to be combined to esti-
mate a high-quality gravity field. The traditional approach for combined solutions uses
Stoke’s Integral (Stokes, 1849; Molodensky et al., 1962; Heiskanen and Moritz, 1967).
An overview of the related computational issues is given by Featherstone (2003).

This chapter investigates strategies for the combination of these data sets to produce a
joint solution using the previously established RBF methodology. Section 7.1 describes
possible combination strategies. Network design and bandwidth determination are cov-
ered in section 7.2. The combination strategies are investigated using both a global and
a regional setting in section 7.3. Both settings make use of simulated data. This makes
it possible to compare the results to a true field for error analysis.

7.1 Combination strategies

The aim is the computation of a combined solution x¢ using the data sets ys (satellite
data) and yt (terrestrial data) with their respective covariance matrices Cs and C+.
7.1.1 Remove-restore approach

In the remove-restore approach, the contribution of a satellite-only solution Xs is sub-
tracted from the terrestrial data to remove low frequencies before the estimation:

YT res = YT — AsXs. (7.1)

155
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This is done in order to reduce edge effects. The stochasticity of the satellite solution
Xs and thus the satellite data ys is not taken into account. After the computation of the
solution

~ _ -1 _
XT,res = (A$ Ct 1AT> AT Ct 1yT,res (7.2)

the satellite contribution is added back, resulting in a combined solution

)’ZC == )’zTJ’em +§(S (73)

with the covariance matrix

Cc = (ArCyiAT) (7.4)

The covariance matrix of the SH coefficients of the satellite solution is not used in
the standard remove-restore approach. This is sub-optimal from a statistical point of
view. An inadequate satellite model that is unable to remove a sufficient amount of
low-frequency signal will also lead to edge effects.

An RBF solution can attempt to suppress long-wavelength errors that remain after sub-
traction of an accurate reference model (i.e. long-wavelength errors in the terrestrial
data). This requires insensitivity of the RBFs to the long wavelengths by the choice of
the parametrisation. This insensitivity can be achieved by 1) placing basis function shal-
low rather than deep and 2) starting the summation in eq. (2.3) at a degree i other than
0, preferably starting with degree Imin = Imaxref + 1, Where Inax ref is the degree up to
which the reference model has been subtracted. In both cases, errors will not be totally
suppressed, but may affect the quality of the solution.

7.1.2 High-pass filtering

Low-frequency errors in the terrestrial data can be removed by high-pass filtering the
data (Hipkin and Hunegnaw, 2005). The actual combination is achieved by low-pass
filtering both satellite and terrestrial solutions and subtracting the low-pass filtered part
of the terrestrial solution:

X¢ = %7 + (%) — f (%7). (7.5)

If the filter is linear, eq. (7.5) is equivalent to

Xc =7+ f(Xs —X7). (7.6)

While such a solution is easy to compute, it faces two problems:

1. The filter type and parameters need to be carefully chosen.

2. The stochasticity of both data sets is not taken into account, the satellite data is
considered error-free.
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7.1.3 Direct combination

The direct combination estimates a combined solution using both data sets as input data
for a joint estimation:

Vs |G 0

e (5 2]

With the design matrix
_ | As

a-[2] 0o

we obtain the solution
Re = (ATC,'A) TATC Yy
(7.9)

= (AIC;Ac+ATC!AT) " (ATC; tys+ATCrlyr)

with the covariance matrix

Cc = (AICS A+ ATCTIAT) . (7.10)
This solution takes the stochasticity of both data sets into account. Such a solution may
be difficult and time-intensive to compute due to the size of Cs. The effect of assuming
C;s = diag (Cs) will be investigated. Note that one parametrisation that can approximate
both data sets is required.

7.1.4 Combination with satellite-only solution

Another approach is to combine a satellite-only solution Xs with terrestrial data yr,
which may be numerically easier to handle. The observations are

o )’ZS _ st 0
[2)es[% &) a1

The satellite-only solutions must have been computed using the same basis functions that
are used for the combined solution (sequential adjustment), which will usually require
regularisation. This yields the design matrix

A= { AIT ] (7.12)

and the solution
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% = (ATC,1A) TATCty
(7.13)
= (G +ATCTAT) T (Cilgs + ATCr ).
Since
1A _ _ -1 _ —
Cyl%s = (ALCS1AS) (ALCTA) " AlC ys = AlCtys (7.14)

we see that eq. (7.13) is equivalent to eq. (7.9) and both solutions are identical. This
also holds for the covariance matrix

- _ -1 _ _ -1
Cc= (Cl +ATCT AT) = (ALCSTA+ATCT AT . (7.15)

The effect of assuming Cy, = diag (Cy,) will be investigated.

7.2 RBF network design and bandwidth selection

An RBF network for a combined solution must be able to model both satellite and ter-
restrial data. The two logical network choices are:

1. Asingle-layer RBF network with RBFs that are capable of modelling both satellite
and terrestrial data.

2. Two layers of RBFs, with each capable of modelling satellite data and terrestrial
data, respectively.

At first, it was attempted to compute a combined global solution that used GRACE data
globally and terrestrial data regionally. No reference model was subtracted. Such a
solution requires at least two layers of basis functions:

1. A global layer of deep basis functions that model the GRACE data on a coarse
grid.

2. Aregional layer of shallow basis functions that model the terrestrial data on a fine
grid.

Two configurations of layers were attempted. Configuration 1 (figure 7.1) uses 1) a
global grid of deep basis functions and a 2) regional grid of shallow basis functions,
whose size is equal to the size of the terrestrial data area. Computations showed that
numerical instabilities produced by the overlapping basis functions made it very difficult
to find a working network configuration.

Configuration 2 (figure 7.2) uses the same regional grid. The global grid does not place
basis functions in the area covered by the regional grid in order to avoid the previously
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Figure 7.1: Two RBF layers, global (black) and regional (red), configuration 1.

Figure 7.2: Two RBF layers, global (black) and regional (red), configuration 2.

experienced numerical instabilities. This choice of RBF centres generates oscillations
along the border of the two layers, which degrades the quality of the the gravity field
solution significantly.

All attempts at generating a network consisting of two layers that could produce a good
solution failed. This led to the following conclusions:

1. Combined solutions will have to use only one layer of basis functions; the grid
spacing and depth of the basis functions will be governed by the (high-resolution)
terrestrial data.

2. The basis function network will have to be constrained to the size of the area
covered by terrestrial data. Attempting to use this high-resolution grid globally
would result in overparametrisation of the satellite data and a too large numerical
complexity.

3. Asaresult of 2., since a regional solution will be computed, a sufficiently accurate
reference model will have to be removed from the input data to suppress edge
effects.

Since we have to deal with terrestrial data, the network design follows the guidelines
described in section 6.2. Bandwidths are estimated as outlined in section 6.3.

7.3 Results

7.3.1 Global test

The first of two tests performed for testing various combination strategies uses a global
setting. A global test setup makes it possible to use spherical harmonic analysis for
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spectral analysis of input data and errors, and avoids edge effects.

Data

This test uses simulated GRACE and terrestrial data sets. This allows comparison with a
true model for error analysis. In this case, EGMO08 up to degree 170 (Pavlis et al., 2008)
was chosen as true model. The true model was used for generating both satellite and
terrestrial data.

The simulated GRACE data consisted of the EGMO08 potential coefficients up to degree
170. Coloured noise was added to the coefficients. The noise realisation es was taken
from the covariance matrix Cgrace of ITG-Grace03s (Mayer-Gurr, 2007):

es = Gz, (7.16)

where Cgrace = GG is the Cholesky decomposition (e.g. Golub and van Loan, 1996),
and z is a vector of random numbers of the standard normal distribution (62 = 1).

ys = EGM085"" +es. (7.17)

For the terrestrial data set, gravity disturbances (6g) were synthesised from EGMO08 up to
degree 170 (with the GRS80 normal field subtracted to obtain the disturbance quantities)
on a global equiangular 1°-spaced grid. White noise with a standard deviation of 2 mGal
was added as noise realisation et:

yT = 89 (EGM08{™) +er. (7.18)

Figure 7.3 shows the resulting noise spectra for both data sets. The simulated GRACE
data set is less noisy below approx. degree 130, while the gravity disturbances are bet-
ter beyond that. A combined solution should thus be able to yield smaller errors than
solutions using only one of the two data sets.
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Figure 7.3: Degree variances of EGMO08 errors (black), actual noise realisation for
simulated GRACE coefficients (red), and simulated global grid of gravity disturbances

(green).
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Reference solutions

All computations were performed using a level 175 Reuter grid with Poisson wavelets
of order 3 placed at a depth of 600 km. This choice of grid level and depth yielded a
good approximation. Three reference solutions were computed:

1. A solution using noise-free gravity disturbances as input. This solution verifies
whether the choice of the RBF parametrisation is capable of modelling the input
data.

2. A solution using only the gravity disturbances with the white noise realisation
as input. This solution shows the effect of the noise in the gravity disturbances
on the estimated gravity field. The same errors would be present in a gravity
disturbances-only solution.

3. Asolution using only the GRACE potential coefficients with coloured noise reali-
sation as input. This solution shows the quality that can be obtained for a GRACE-
only solution.

The potential errors resulting from a reference solution using a global grid of noise-free
gravity disturbances is shown in figure 7.4. The standard deviation is 0.5 mGal, the rms
error with respect to EGMO08 geoid heights is 3 mm. The differences are due to small
numerical errors, as data created from spherical harmonics cannot be represented exactly
by RBFs.

Figure 7.4: Gravity potential error resulting from noise-free gravity disturbances.

A solution using the noisy gravity disturbances results in an approximation error of 1.3
mGal and a rms geoid height error of 15.8 cm. The potential errors are shown in figure
7.5.

A GRACE-only solution using the noisy potential coefficients results in a rms geoid
height error of 24 cm. Regularisation was necessary in order to achieve a stable solution.
Figure 7.6 shows that the resulting errors are of a high-frequency nature.
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Figure 7.5: Gravity potential error resulting from gravity disturbances with 2 mGal white
noise.

Figure 7.6: Gravity potential error of the GRACE-only solution.

A combined solution should improve with respect to the gravity disturbance-only and
satellite-only solutions.

Combined solution 1

A combined solution was computed using both the simulated GRACE observations (po-

tential coefficients with colored noise realisation) and gravity disturbances as observa-
tions in a joint estimation according to eq. (7.9). Two scenarios were considered:

1. Using only a diagonal covariance matrix for the GRACE observations.

2. Using the full GRACE covariance matrix.
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With both scenarios, the aforementioned parametrisation was used, with Poisson wavelets
of order 3 placed at a depth of 600 km on a level 175 Reuter grid. As shown, this
parametrisation is able to produce a good solution in the noiseless test case. The result-
ing geoid height errors are listed in table 7.1.

| scenario | rms geoid height error |
og only 15.8cm
GRACE only 24.0cm
69 + GRACE, diagonal covariance matrix 5.9cm
0g + GRACE, full covariance matrix 5.4cm

Table 7.1: Resulting geoid errors for different scenarios.

Using a combination of gravity disturbances and GRACE-derived potential coefficients
significantly improves the quality of the solution. Geoid height errors drop from almost
16 cm in the dg-only-case to below 6 cm. Using the full covariance matrix results in a
10% improvement with respect to the use of a diagonal covariance matrix.

The spectral distribution of the errors is shown in figure 7.7, and the cumulative errors are
shown in figure 7.8. It is obvious that the addition of GRACE observations significantly
reduces the errors below degree 120. The slight increase in error beyond degree 165 is
caused by regularisation. A spatial plot of the errors of the combined solution is shown
in figure 7.9.
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Figure 7.7: Dimensionless error degree variances of terrestrial data solution (green),
satellite data solution (blue), combined solution with diagonal GRACE covariance ma-
trix (red), and combined solution with full GRACE covariance matrix (black).

Combined solution 11
A second series of computations was performed to investigate the effects of combining a
satellite-only RBF solution with terrestrial data, instead of using the actual satellite data

as input data. The following input data sets are used:

1. The same terrestrial data set, gravity disturbances with 2 mGal white noise.
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Figure 7.8: Cumulative geoid height degree errors [m] of terrestrial data solution (green),
satellite data solution (blue), combined solution with diagonal GRACE covariance ma-
trix (red), and combined solution with full GRACE covariance matrix (black).

Figure 7.9: Gravity potential error resulting from gravity anomalies with 2 mGal white
noise combined with GRACE potential coefficients, full GRACE covariance matrix.

2. An RBF solution computed from the GRACE potential coefficients that were pre-
viously used as observations.

The two data sets were combined according to eq. (7.13). Four scenarios were tested
using these input data:

1. Combination of a) terrestrial data and b) RBFs estimated from satellite data with
diagonal covariance matrix for GRACE; the diagonal covariance matrix of the
RBFs is used.

2. Combination of a) terrestrial data and b) RBFs estimated from satellite data with
diagonal covariance matrix for GRACE; the full covariance matrix of the RBFs is
used.
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3. Combination of a) terrestrial data and b) RBFs estimated from satellite data with
full covariance matrix for GRACE; the diagonal covariance matrix of the RBFs is
used.

4. Combination of a) terrestrial data and b) RBFs estimated from satellite data with
full covariance matrix for GRACE; the full covariance matrix of the RBFs is used.

Scenarios 2 and 4 follow eq. (7.13) and eq. (7.14) and thus yield solutions identical to
those previously computed by direct combination of satellite and terrestrial observations.

Using only a diagonal covariance matrix for the RBFs (scenarios 1 and 3) resulted in
solutions of poor quality. Figure 7.10 shows the error degree variances of scenario 1
(green), scenario 3 (red), and scenario 4 (black). Cumulative errors for these solutions
are shown in figure 7.11.
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Figure 7.10: Dimensionless error degree variances of solution with diagonal covariance
matrices for RBFs and GRACE (scenario 1, green), diagonal covariance matrix for RBFs
and full covariance matrix for GRACE (scenario 3, red), and full covariance matrices for
RBFs and GRACE (scenario 4, black).

Using a diagonal covariance matrix for the input RBFs computed from GRACE results
in a poor solution because the dependence of the quality of the RBF satellite solution
on the frequency is not taken into account. In order to achieve a good solution, it is
necessary to use the full covariance matrix of the input RBFs.
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Figure 7.11: Cumulative geoid height degree errors [m] of solution with diagonal co-
variance matrices for RBFs and GRACE (scenario 1, green), diagonal covariance matrix
for RBFs and full covariance matrix for GRACE (scenario 3, red), and full covariance
matrices for RBFs and GRACE (scenario 4, black).
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7.3.2 Regional test

While the previous test showed that the combination of GRACE and terrestrial data does
indeed lead to an improved solution, it was not an entirely realistic test. The terrestrial
data were only contaminated by white noise, which may not be a realistic assumption. In
reality, we know little about the actual noise in terrestrial data sets. A good noise model
is however necessary for achieving good results when combining different data sets, i.e.
terrestrial and satellite data in this case.

This regional test has three goals:

1. Use a more realistic noise realisation for the terrestrial data set, and quantify the
effects resulting from this noise realisation in a combined solution.

2. Show other effects of a combination in a regional setting, especially edge effects.

3. Prove that a single-layer RBF parametrisation is capable of modelling both satel-
lite data and terrestrial data of significantly higher resolution.

Data

For this second test, EGMO08 is once again used as a true model. In order to obtain a more
realistic noise model for the gravity anomalies, the difference between the Canadian
gravity data used in section 6.4.2 and gravity anomalies synthesised from EGMO08 up to
degree 720 was computed. The differences are shown in figure 7.12, the rms difference
is 5.3 mGal.

Figure 7.12: Pointwise differences between Canadian data and EGMO08 gravity anoma-
lies up to degree 720.
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The differences contain both high- and low-frequency noise. Since we are interested in
the effect that the addition of GRACE data has, the noise has to be contained to a part of
the spectrum where GRACE can contribute to the solution. To achieve this, the differ-
ence between the Canadian and the EGMO08 gravity anomalies has been smoothed with
a Gaussian filter with 200km correlation length (figure 7.13). It is assumed that EGMO08
is an accurate gravity field model especially at low frequencies. This low-frequency
error must be caused by errors in the Canadian gravity anomalies, and is thus an accu-
rate noise model. A similar aprpoach has been used by Huang et al. (2008) to quantify
long-wavelength errors in North American gravity data.

Figure 7.13: Pointwise differences between Canadian data and EGMO08 gravity anoma-
lies up to degree 720, smoothed with a Gaussian filter with 200km correlation length.

This difference is added as noise to synthetic gravity anomalies computed from EGMO08
up to degree 720. The resulting data set, with EGMO08 up to degree 150 removed to avoid
edge effects, represents terrestrial data in the test. These data contains no high-frequency
errors since we are only interested in the effect of the combination with GRACE, which
does not contribute to the high frequencies.

y1 = Ag (EGMO8{2?) + f200km (Adcanada — Ag (EGMO08?)) . (7.19)

GRACE data are expressed using a set of EGMO08 potential coefficients up to degree 170
corrupted by a noise model. The noise model is described in section 7.3.1. EGMO08 up
to degree 150 is used as background model. Hence, the observations are given as

ys = EGMO081L) +es. (7.20)

The noise spectrum of the terrestrial data set was computed by approximating the noise
realisation with RBFs and translating the solution into spherical harmonics according to
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eq. (2.26). Figure 7.14 shows the spectra of the noise realisation for both data sets. Both
lines intersect at degree 120, meaning that the GRACE data should improve the solution
up to degree 120. It is interesting to note that the spectrum of the noise realisation
for the terrestrial data is approximately flat. This means that the use of white noise
in the previous test was a valid one, and that the assumption of white noise for the
stochastic model in this test should yield good solutions. Other real terrestrial data sets
may however behave differently.
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Figure 7.14: Dimensionless degree variances of noise realisations for simulated satellite
data (red) and simulated terrestrial gravity anomalies (green).

Results will be compared to EGMO08 from degree 151 to degree 720.

Reference solutions

All computations were performed using a level 900 Reuter grid with Poisson wavelets of
order 3 placed at a depth of 120 km. This parametrisation yielded a good approximation.
Three reference solutions were computed:

1. A solution using noise-free gravity anomalies as input data. This solution verifies
whether the chosen RBF parametrisation is capable of modelling the input data.

2. A solution using only the gravity anomalies with the white noise realisation as
input data. This solution shows the effect of the noise in the gravity anomalies on
the estimated gravity field.

3. Asolution using only the GRACE potential coefficients with coloured noise reali-
sation as input. This solution shows the quality that can be obtained for a GRACE-
only gravity field.

The potential errors resulting from a reference solution using the noise-free gravity
anomalies is shown in figure 7.15. The RBFs were placed at a depth of 120 km. The
approximation error is 0.06 mGal, the rms with respect to EGMO08 geoid heights is 2.9
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Figure 7.15: Gravity potential error using noise-free gravity anomalies.

cm. The errors are mostly due to edge effects (confined to within 1° of the edge), with
small errors visible in areas with data gaps.

The error rms of a solution computed from the gravity anomalies contaminated with the
chosen noise depends on the parametrisation chosen. Using the same level 900 @ 120
km depth solution, the rms geoid height errors amount to 50 cm. The errors can be
reduced by using RBFs with decreased sensitivity to long wavelengths. The rms error is
reduced to 17.6 cm by choosing 80 km as depth, and further to 5.7 cm by starting the
summation in eq. (6.7) at degree Inin =151. The potential errors for all three solutions
are shown in figure 7.16.

A GRACE-only solution using the potential coefficients with colored noise added results
in a rms geoid height error of 28.3 cm, using RBFs at 600 km depth on a level 180 grid.
Regularisation was necessary in order to achieve a stable solution. The error plot (figure
7.6) shows that the resulting errors are of a high-frequency nature.

Combined solutions should improve with respect to these solutions.

Combined solution

A combined solution was computed by using both the simulated GRACE observations
(potential coefficients with colored noise realisation) and gravity anomalies as observa-
tions in a joint estimation according to eq. (7.9). Two scenarios were considered:

1. Using only a diagonal covariance matrix for the GRACE observations.

2. Using the full GRACE covariance matrix.
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With both scenarios, the Poisson wavelets were placed at a depth of 120 km on a level
900 Reuter grid. This parametrisation was able to produce a good solution in the noise-
less test case. The resulting geoid height errors are listed in table 7.2. Error plots for the
two combined solutions are shown in figure 7.18.

| scenario | geoid height error rms |
Ag only, level 900 @ depth 120 km 50.0 cm
Ag only, level 900 @ depth 80 km 17.6 cm
Ag only, level 900 @ depth 80 km Ipjp = 151 5.7¢cm
GRACE only 28.3cm
Ag + GRACE, diagonal covariance matrix 5.8¢cm
Ag + GRACE, full covariance matrix 6.0cm

Table 7.2: Resulting geoid errors for different scenarios.

Errors for the combined solution can be reduced by a few mm by choosing 80 km instead
of 120 km as depth. While both solutions offer a significant improvement over the Ag-
only solutions with I, = 0, they are of the same quality as the Ag-only solution at 80
km depth with Injn = 151. Suppressing the long-wavelength errors by parametrisation
has in this case the same effect as adding more accurate observations.

Using the full GRACE covariance matrix does lead to slightly larger errors than using
the diagonal covariance matrix. This is most probably caused by an inaccurate stochastic
model for the terrestrial data, since the assumption of white noise is only approximately
correct.

No combination with an RBF solution computed only from GRACE data has been per-
formed as no new insights compared to section 7.3.1 would result from such a test: A
good solution can only be obtained by using the full covariance matrix for the RBF
coefficients, which lead to the identical solution as using the SH coefficient.
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Figure 7.16: Gravity potential error of gravity anomaly-only solutions with noise real-
isation: 900 @ 120 km solution (top), 900 @ 80 km solution (centre), 900 @ 80 km
solution with Ii, = 151. Note the different scaling of the colorbars.
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Figure 7.17: Gravity potential error of the GRACE-only solution.
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Figure 7.18: Gravity potential error of the combined solutions with diagonal (top) and
full (bottom) covariance matrix for GRACE data.
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7.4 Summary and conclusions

This chapter investigated methods of combining satellite and terrestrial data into one
solution. It has been established that a remove-restore approach only helps in suppress-
ing edge effects, but not in removing long-wavelength error in the terrestrial data by
combination with more accurate satellite data.

A better combination was attempted by computing a combined solution using both satel-
lite and terrestrial data as input in a joint estimation. This was performed using two test
cases: A global test case with a white noise realisation contaminating the terrestrial data;
and a regional test case with simulated low-frequency noise contaminating the terrestrial
data. In both cases, realistic noise computed from the ITG-Grace03s covariance ma-
trix (Mayer-Glrr, 2007) was applied to the satellite data. By working in a simulated
environment, comparisons to a true field could be made.

Both test cases showed that a combined solution computed in this manner results in
significantly improved quality compared to a remove-restore combination. Whether or
not the full covariance matrix was used for the GRACE data had only a small impact on
the quality of the solution. Both cases also proved that a single layer of RBFs is capable
of modelling the entire signal of both satellite and terrestrial data.

The global test case made use of white noise for the terrestrial data. The regional test
case tried to use a more realistic low-frequency noise realisation, which also exhibited
white noise characteristics. As a result, the assumption of white noise in the stochas-
tic model of the terrestrial data was sufficient in both cases, since white noise was the
stochastic model used for the terrestrial data in the estimation. The presence of coloured
noise could lead to a significantly worse quality of the combined solution unless a more
accurate stochastic model for the terrestrial data is used. Such a model could be applied
by making use of a frequency-dependent weighting approach as described in section 5.2.
The difficulty would lie in the estimation of the noise model.

For the global test case, the use of an RBF solution estimated only from satellite data
as input for a joint estimation was investigated. A good quality of the solution could
only be achieved when the full covariance matrix for the input RBFs was used. There
are indications that the correlations between RBF coefficients ¢; are much stronger than
between SH coefficients ¢;,. Hence, a data combination on the level of a RBF solution
needs to take the full covariance matrix into account. This does not result in a reduced
numerical complexity compared to the use of SH potential coefficients, which can be
used with a diagonal covariance matrix.

The regional test case showed that a solution which suppresses long-wavelength errors
in the terrestrial data by the choice of the parametrisation is of comparable quality as a
joint solution making use of satellite data. The suppression was achieved by placing the
basis functions shallow and starting the summation at a minimum degree Iy that corre-
sponded to the truncation degree of the subtracted reference model. Other data sets may
however lead to different results. When more energy is contained in the low-frequency
errors than in the test case, leakage may occur and negatively affect the solution. This has
previously been experienced (in the other direction, with high-frequency signal leaking
into the estimation) during the computation of multi-scale solutions (section 2.7).
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Chapter 8

Summary, conclusions and
recommendations

8.1 Summary and conclusions

The research presented here aimed at developing a methodology for regional gravity
field modelling. At the start of the research, a choice was made to use RBFs as a repre-
sentation. Poisson wavelets of order 3 were chosen as kernel function, after which two
main issues were identified that have to be optimised for each data set: RBF network
design and bandwidth.

Network and bandwidth selection

Testing with various grid types has proven that Reuter grids are well suited for RBF
placement. An RBF solution obtained from a level y Reuter grid is comparable to a SH
solution of degree y. If sufficient information about the data density and spectral content
is present, a choice of the Reuter grid level can be made with little experimentation. Two
semi-automatic algorithms were developed to counter over- and underparametrisation:
Data adaptation and local refinement. Data adaptation removes RBFs that do not have
observations within their influence radius from the estimation. Local refinement places
additional basis functions in areas of large residuals after an initial estimation, and yields
a good approximation regardless of the initial grid choice.

The optimal bandwidth is estimated using an optimality criterion. This can either be the
data fit or the fit to a reference model, if available. Smooth solutions are obtained when
the basis functions are placed deep, but at depths that still allow for stable solutions for
the chosen network.

Parameter estimation

RBF coefficients are estimated by least-squares using a Cholesky solver. To handle the
large amounts of data that are encountered, the analysis software has been numerically

177
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optimised and parallelised for hybrid high performance computer architectures. This
results in a program that can handle very large data sets in a reasonable amount, i.e.
minutes, of computing time. This is especially important since multiple program runs
may be required to find the optimal RBF network and bandwidth.

Modelling of satellite data

The RBF approach was used for gravity field modelling from data collected by the
GRACE satellite mission. It made use of the functional model and data previously
developed at DEOS for use with spherical harmonics. This included the implementa-
tion of the optimal filter scheme of Klees et al. (2008b) for the use with RBFs. The
approach was tested using two real-world applications: The recovery of ice mass loss
in Greenland and Antarctica, and the monitoring of water storage variations. For unfil-
tered solutions, it could be shown that RBF solutions outperform spherical harmonics,
especially in terms of spatial resolution, and that no additional smoothing is required.
Optimally filtered solutions are of much higher quality than unfiltered ones, and reduce
the differences between spherical harmonic and RBF solutions. Except for some minor
indications (a negative signal in Antarctica that is both seen by ICESat and the RBF so-
lutions, but not by DMT-1; better trend estimate for Lake Victoria), no significant benefit
due to the use of RBFs instead of spherical harmonics could be found, unless a reduced
numerical complexity by computing regional solutions is taken into account.

Modelling of terrestrial data

Besides satellite data, the RBFs were also employed for the modelling of terrestrial data.
Computations were performed using two data set, covering the northeastern USA and
eastern Canada. With both data sets it was proven that RBFs can be used for computing
high-resolution gravity fields from large amounts of data. The use of the data adaptiv-
ity and local refinement algorithms yielded good solutions regardless of the grid spac-
ing chosen for RBF placement. The qualitative comparison to the two official geoids
GEOIDO03 and CGGO05 was not entirely satisfactory, which is not due to the RBF ap-
proach, but can be attributed to different data and processing strategies: rms errors of
several centimetres remained.

Combined modelling of satellite and terrestrial data

Finally, approaches for the combination of satellite and terrestrial data where investi-
gated in both a global and a regional simulated setting. It could be shown that a joint
estimation using satellite and terrestrial data and the corresponding stochastic models
yielded a significantly better quality of the solution than the remove-restore approach,
since at long wavelengths satellite data is of higher quality than terrestrial data. The
combined solutions were computed using one layer of RBFs, which as test computa-
tions showed was the only working parametrisation.

It can be summarised that RBFs can be considered as an established parametrisation
for both regional and global gravity field modelling. The methodology developed with



8.2. RECOMMENDATIONS FOR FURTHER RESEARCH 179

this research can be employed for all types of gravity data sets, from local terrestrial
measurements to global satellite observations. A numerically efficient implementation
that can handle large data sets exists.

8.2 Recommendations for further research

During the course of the research presented here, additional research questions were
formulated that could not be dealt with in a timely manner and are suggested for further
research.

General issues

The choice of the bandwidth of the RBFs is important for the quality of the RBF solution.
The bandwidth estimation using a post-fit criterion may not always be satisfactory. It
should be investigated if it is possible to relate the optimal bandwidth to the data’s auto-
covariance function; the bandwidth estimate could be used to derive the necessary grid
spacing.

Modelling of satellite data and optimal filtering

Here, GRACE modelling made use of the assumption of white noise, or a frequency-
dependent weighting scheme (see section 5.2) using a simple noise model. GRACE
modelling could benefit from an improved stochastic model that is constructed from
post-fit residuals (Siemes and Liu, 2009). Basin averages will most likely not be signifi-
cantly affected.

The determination of the observation accuracy o is a critical factor in the optimal fil-
tering scheme (see section 5.3.3), since X = (%N +D71)"1b. Here, both an external
calibration and the post-adjustment noise level were used. It is suggested to look into
the possibility of using variance component estimation for this purpose; the noise level
should be individually estimated and applied for each month.

Siemes et al. (2009) have developed an improved trend and signal amplitude estimation
algorithm. The full covariance matrix of each monthly solution is used in the estima-
tion of the trend and amplitude parameters in eq. (5.20), and unfiltered SH coefficients
are used as input. The resulting trend is then optimally filtered. This algorithm yields
improved spatial resolution and larger signal amplitudes. This approach needs to be
extended to RBF parametrisations.

Currently, the signal covariance matrix that is needed for the optimal filter is computed
in the spatial domain (see section 5.3). Each monthly solution is used to synthesise a
spatial representation in EWH; the variance of each grid point is computed, and this
spatial signal covariance matrix is then transformed into the RBF basis by RBF analysis.
Using above improved trend and signal amplitude estimation algorithm, it is possible to
compute the signal covariance matrix directly from the RBF coefficients. This approach
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would eliminate the synthesis/analysis steps and would not neglect correlations between
the coefficients.

A longer GRACE time series would make it possible to compute not only one signal
covariance matrix for the whole time span, but individual matrices e.g. for each month.
This might improve the quality of the solution by allowing for more signal to be modelled
in months of strong signal variation.

It has proven difficult to compare and validate GRACE models due to a lack of accurate
reference data and models. This makes it difficult to compare e.g. SH and RBF solu-
tions and prove the benefits (or drawbacks) of RBF modelling. More and higher quality
external data sets that can be used for validation are required to definitely assess whether
RBFs offer benefits over spherical harmonics in regard to gravity field modelling from
GRACE.

Modelling of terrestrial data

Accurate terrain corrections might be required to smooth the input data for terrestrial
gravity field modelling. This would lead to an improved approximation quality in re-
gions of rugged topography (mountains). One method for computation of terrain correc-
tions that can be used is the RTM (residual terrain modelling) approach by Forsberg and
Tscherning (1981). Using this approach might also require the reduction of satellite data
prior to computing a combined solution.

Combined solutions

So far, computing combined solutions using both satellite and terrestrial data with the
RBF approach has only been investigated using simulated data sets. The findings should
be verified using a suitable setting with real data sets. A method of computing an accu-
rate stochastic model of the terrestrial data set may be required.

Other applications

Gravity field modelling with RBFs can now be considered an established and proven
methodology. It is suggested to use them for other applications than those covered
here. All computations presented here made use of Poisson wavelets of order 3 as kernel
choice. These might not be a satisfactory choice for applications other than those pre-
sented here, in which case alternatives need to be investigated. It is then recommended
to try harmonic splines Eicker (2008) as representation.

RBFs can be used for the computation of static gravity fields from several years of
GRACE data. They are a natural candidate for modelling GOCE data, either for full
modelling or for regional refinement of lower-resolution spherical harmonic models as
done by Eicker (2008).

Currently, all RBF models computed from GRACE data are static models, since the
signal is assumed to be constant over the time span of the input data, i.e. one month.
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At DEQS, an approach has been implemented that takes time variability into account
(Siemes and Liu, 2009). While this approach makes use of spherical harmonics, it could
easily be applied to RBFs.

At DEOS, RBFs are already employed for marine geoid modelling, using a combina-
tion of radar altimetry and gravimetry data (Slobbe et al., 2009b). The goal is the joint
estimation of the geoid and the mean dynamic topography.

While the research presented here has focused exclusively on modelling of satellite and
terrestrial gravity data, a third method of gravity data collection is increasingly used:
Airborne gravimetry. Using aircraft as measurement platforms allows for the gather-
ing of high-resolution data over larger areas than terrestrial methods in much shorter
amounts of time. Data gathering is not limited to areas accessible by vehicle.

Much of the challenge in airborne gravity field modelling lies in the pre-processing
of the data. Alberts (2009) has developed a new methodology that combines the pre-
processing steps and gravity field estimation, and performs at least equal compared to
traditional methods. The chosen gravity field representation, using fundamental solu-
tions of Laplace’s equation in Cartesian coordinates, is however somewhat limited to
rectangular areas and homogeneous data distributions. The periodicity of the represen-
tation also leads to edge effects. RBFs, employing the data-adaptive and local refinement
algorithms developed here, suffer no such limitation. It is recommended to combine the
approach of Alberts (2009) with RBFs as gravity field representation for airborne gravity
field modelling.
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