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Summary

Regional gravity field modeling using airborne gravimetry data

Airborne gravimetry is the most efficient technique to provide accurate high-resolution
gravity data in regions that lack good data coverage and that are difficult to access oth-
erwise. With current airborne gravimetry systems gravity can be obtained at a spatial
resolution of 2 km with an accuracy of 1-2 mGal. It is therefore an ideal technique to
complement ongoing satellite gravity missions and establish the basis for many applica-
tions of regional gravity field modeling.

Gravity field determination using airborne gravity data can be divided in two major
steps. The first step comprises the pre-processing of raw in-flight gravity sensor mea-
surements to obtain gravity disturbances at flight level and the second step consists of
the inversion of these observations into gravity functionals at ground level. The pre-
processing of airborne gravity data consists of several independent steps such as low-pass
filtering, a cross-over adjustment to minimize misfits at cross-overs of intersecting lines,
and gridding. Each of these steps may introduce errors that accumulate in the course of
processing, which can limit the accuracy and the resolution of the resulting gravity field.

For the inversion of the airborne gravity data at flight level into gravity functionals at
the Earth’s surface, several approaches can be used. Methods that have been successfully
applied to airborne gravity data are integral methods and least-squares collocation, but
both methods have some disadvantages. Integral methods require that the data are availa-
ble in a much larger area than for which the gravity functionals are computed. A large
cap size is required to reduce edge effects that result from missing data outside the target
area. Least-squares collocation suffers much less from these errors and can yield accurate
results, provided that the auto-covariance function gives a good representation of data
in- and outside the area. However, the number of base functions equals the number of
observations, which makes least-squares collocation numerically less efficient.

In this thesis a new methodology for processing airborne gravity data is proposed. It
combines separate pre-processing steps with the estimation of gravity field parameters in
one algorithm. Importantly, the concept of low-pass filtering is replaced by a frequency-
dependent data weighting to handle the strong colored noise in the data. Frequencies
at which the noise level is high get a lower weight than frequencies at which the noise
level is low. Furthermore, bias parameters are estimated jointly with gravity field param-
eters instead of applying a cross-over adjustment. To parameterize the gravity potential a
spectral representation is used, which means that the estimation results in a set of coeffi-
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cients. These coefficients are used to compute gravity functionals at any location on the
Earth’s surface within the survey area. The advantage of the developed approach is that
it requires a minimum of pre-processing and that all data can be used as obtained at the
locations where they are observed.

The performance of the developed methodology is tested using simulated data and
data acquired in airborne gravimetry surveys. The goal of the simulations is to test the
approach in a controlled environment and to make optimal choices for the processing
of real data. For the numerical studies with simulated data, the new methodology out-
performs the more traditional approaches for airborne gravity data processing. For the
application of the developed methodology to real data, three data sets are used. The first
data set comprises airborne gravity measurements over the Skagerrak area, obtained as
part of a joint project between several European institutions in 1996. This survey pro-
vided accurate airborne gravity data, and because good surface gravity data are available
within the area, the data set is very useful to test the performance of the approach. The
second data set was obtained by the GeoForschungsZentrum Potsdam during a survey off
the coast of Chile in 2002. This data set, which has a lower accuracy than the first data
set, is used to investigate the estimation of non-gravitational parameters such as biases
and scaling factors. The final data set that is used consists of airborne gravity data ac-
quired by Sander Geophysics Limited in 2003. The survey area is located near Timmins,
Ontario and is much smaller than the area of the other data sets. The small size of the
area and the high accuracy of the data make it a challenging data set for regional gravity
modeling.

The computational experiments with real data show that the performance of the de-
veloped methodology is at the same level as traditional methods in terms of gravity field
errors. However, it provides a more flexible and powerful approach to airborne gravity
data processing. It requires a minimum of pre-processing and all observations are used
in the determination of a regional gravity field. The frequency-dependent data weighting
is successfully applied to each data set. The approach provides a statistically optimal so-
lution and is a formalized way to handle colored noise. A noise model can be estimated
from a posteriori least-squares residuals in an iterative way. The procedure is purely data-
driven and, unlike low-pass filtering, does not depend on previous experience of the user.
The developed methodology allows for the simultaneous estimation of non-gravitational
parameters with the gravity field parameters. A testing procedure should be applied,
however, to avoid insignificant estimations and high correlations. For the Chile data set
a significant improvement of the estimated gravity field is obtained when bias and scale
factors are estimated from the observations. The results of the computations with the real
data sets show the high potential of using airborne gravimetry to obtain accurate gravity
for geodetic and geophysical applications.
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Samenvatting

Regionale zwaartekrachtveldmodellering met behulp van vliegtuiggravime−
triegegevens

Vliegtuiggravimetrie is een van de meest efficiënte technieken om nauwkeurige zwaarte-
krachtgegevens in te winnen met een hoge resolutie in regio’s waar een goede dekking
van deze gegevens ontbreekt en die op een andere manier moeilijk te bereiken zijn. Met
de huidige vliegtuiggravimetriesystemen kunnen zwaartekrachtgegevens met een ruimte-
lijke resolutie van 2 km en een nauwkeurigheid van 1-2 mGal worden verkregen. Het
is dus een ideale techniek om huidige satellietzwaartekrachtmissies aan te vullen en de
basis te vormen voor regionale zwaartekrachtveldmodellering.

Zwaartekrachtveldbepaling met behulp van vliegtuiggravimetriegegevens kan wor-
den onderverdeeld in twee stappen. De eerste stap bestaat uit de voorbewerking van
de ruwe data, gemeten met de zwaartekrachtsensoren, wat resulteert in zwaartekracht-
anomalieën op vlieghoogte. De voorbewerking van vliegtuiggravimetriegegevens bestaat
uit verschillende onafhankelijke stappen zoals laagdoorlaatfilteren, een cross-overver-
effening om misfits op kruispunten van profielen te minimaliseren, en gridden. Elk van
deze stappen kan fouten introduceren die accumuleren in de loop van de gegevensver-
werking, wat de nauwkeurigheid en resolutie van het resulterende zwaartekrachtveld kan
beperken.

De tweede stap bestaat uit de omrekening van de waarnemingen op vlieghoogte in
zwaartekrachtwaarden op het aardoppervlak. Voor deze omrekening kunnen verschil-
lende methoden worden gebruikt. Methoden die met succes zijn toegepast op vliegtuig-
gravimetriegegevens zijn integraalmethoden en kleinstekwadratencollocatie, maar beide
methoden hebben een aantal nadelen. Integraalmethoden vereisen dat de gegevens in
een veel groter gebied beschikbaar zijn dan waarvoor de zwaartekrachtwaarden worden
berekend. Een grote blokgrootte is nodig om randeffecten als gevolg van ontbrekende
gegevens buiten het doelgebied te verminderen. Kleinstekwadratencollocatie lijdt veel
minder onder deze fouten en kan nauwkeurige resultaten opleveren, op voorwaarde dat
de auto-covariantiefunctie een goede weergave geeft van de gegevens in en buiten het ge-
bied. Daarentegen is het aantal basisfuncties gelijk aan het aantal waarnemingen, waar-
door kleinstekwadratencollocatie numeriek minder efficiënt is.

In dit proefschrift wordt een nieuwe methode voor de verwerking van vliegtuig-
gravimetriegegevens voorgesteld. Demethode combineert verschillende voorbewerkings-
stappen met de schatting van de zwaartekrachtveldparameters in één algoritme. Daar-
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naast wordt het concept van laagdoorlaatfilteren vervangen door een frequentie-afhanke-
lijke weging van waarnemingen om de invloed van dominante, gekleurde ruis te vermin-
deren. Frequenties waarop de ruis groot is krijgen een lager gewicht dan de frequen-
ties waarop de ruis laag is. Bovendien worden systematische fouten gezamenlijk met
de zwaartekrachtveldparameters geschat in plaats van een cross-oververeffening toe te
passen. Om de zwaartekrachtpotentiaal te parametriseren wordt een spectrale represen-
tatie gebruikt, hetgeen betekent dat de schatting resulteert in een set van coëfficiënten.
Deze worden gebruikt om zwaartekrachtwaarden te berekenen op vooraf bepaalde lo-
caties op het aardoppervlak binnen het gebied. Het voordeel van de ontwikkelde methode
is dat het een minimum van voorbewerkingsstappen vereist en dat alle gegevens kunnen
worden gebruikt zoals ze verkregen zijn in de waarnemingspunten.

De prestaties van de ontwikkelde methode zijn getest met gesimuleerde data en data
verkregen in vliegtuiggravimetriemeetcampagnes. Het doel van de simulaties is om de
methode te testen in een gecontroleerde omgeving en om optimale keuzes te maken voor
de verwerking van echte data. Voor de numerieke studies met gesimuleerde data presteert
de ontwikkeldemethode beter dan de meer traditionele methoden voor de verwerking van
vliegtuiggravimetriegegevens. De ontwikkelde methode is tevens toegepast op drie echte
datasets. De eerste dataset bestaat uit vliegtuiggravimetriemetingen in de Skagerrak,
gemeten in 1996 als onderdeel van een gezamenlijk project van verscheidene Europese
instellingen. Omdat deze meetcampagne nauwkeurige zwaartekrachtmetingen opleverde
en omdat goede oppervlaktezwaartekrachtgegevens beschikbaar zijn in dit gebied, is deze
dataset zeer geschikt voor het testen van de ontwikkelde methode. De tweede dataset is
gemeten door het GeoForschungsZentrum Potsdam in 2002 tijdens een meetcampagne
buiten de kust van Chili. Deze gegevens, die een lagere nauwkeurigheid hebben dan
de eerste dataset, zijn gebruikt om de schatting van niet-gravitationele parameters zoals
systematische fouten en schaalfactoren te testen. De laatste dataset die is gebruikt bestaat
uit de vliegtuiggravimetriegegevens verworven door Sander Geophysics Limited in 2003.
Het gebied waar de meetcampagne is uitgevoerd ligt nabij Timmins, Ontario en is veel
kleiner dan de meetgebieden van de andere twee datasets. De kleine omvang van het
gebied en de hoge nauwkeurigheid van de gegevens maken het een uitdagende dataset
voor regionale zwaartekrachtveldmodellering.

Uit de berekeningen met echte data blijkt dat de prestaties van de ontwikkelde me-
thode vergelijkbaar zijn met traditionele methoden met betrekking tot fouten in de bere-
kende zwaartekrachtwaarden. De methode biedt echter een meer flexibele en effectieve
aanpak voor de verwerking van vliegtuiggravimetriegegevens. Er is een minimum aan
voorbewerking vereist en alle waarnemingen worden gebruikt voor de schatting van een
regionaal zwaartekrachtveld. De frequentie-afhankelijke weging van metingen is met
succes toegepast op elke dataset. Er wordt een statistisch optimale oplossing verkregen
en de methode biedt een formele benadering voor het verwerken van gekleurde ruis. Een
ruismodel kan worden geschat op iteratieve wijze met behulp van a posteriori residuen
uit een kleinstekwadratenvereffening. De procedure wordt geheel door data gedreven en
hangt in tegenstelling tot laagdoorlaatfilters niet af van de expertise van de gebruiker. De
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ontwikkelde methode maakt het mogelijk om niet-gravitationele parameters gelijktijdig
te schatten met zwaartekrachtveldparameters. Een testprocedure moet echter worden
toegepast om niet-significante schattingen en hoge correlaties te voorkomen. Voor de
Chili-dataset kan een belangrijke verbetering van het geschatte zwaartekrachtveld wor-
den verkregen als systematische fouten en schaalfactoren worden geschat op basis van de
waarnemingen. De resultaten van de berekeningen met echte data tonen het grote poten-
tieel aan van het gebruik van vliegtuiggravimetrie voor het verkrijgen van nauwkeurige
zwaartekrachtgegevens voor geodetische en geofysische toepassingen.
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Introduction 1
1.1 Background

Airborne gravimetry has developed into a technique that is capable of providing accurate
gravity data at a high spatial resolution of 2 km or better. Airborne gravity measurements
can be obtained in regions that lack good data coverage and which are difficult to access
otherwise, such as mountainous areas, rain forests, and the polar regions. It is therefore
an ideal technique to complement satellite-only gravity models which are limited to full
wavelengths of approximately 150 km, and to provide the basis for regional gravity field
modeling. Furthermore, airborne gravity can be used to validate existing data sets, such
as marine surveys, and it is the only efficient tool to provide a seamless transition between
terrestrial and marine gravity data.

The idea to use aircraft for gravity measurements is not new. Already in the late 1950s
it was recognized that if the appropriate level of accuracy could be achieved airborne
gravimetry would be vastly superior in economy and efficiency to point-wise terrestrial
gravimetry. Although the first experiments gave promising results, it did not develop
into a major tool for gravity field mapping for the following thirty years, due to the
lack of accurate navigation data. This changed in the late eighties and early nineties
when carrier phase Differential Global Positioning System (DGPS) became available.
Since then many wide-area airborne gravity surveys have been performed with increasing
resolution and accuracy.

In principle, gravimeters are highly sensitive accelerometers. If an accelerometer is
put stationary on the surface of the Earth and it is level (i.e. the sensitive axis coincides
with the direction of the gravity vector), the magnitude of gravity can be determined. For
airborne gravimetry, the situation becomes more complex because the accelerometer is
moving. Both aircraft and gravitational accelerations are sensed and the instrument is
not easily kept level. Therefore, an airborne gravity system requires several components:
an accelerometer for measuring what is called the specific force, a system to keep the
accelerometer level (or for computing its attitude) and a system that measures the iner-
tial acceleration of the aircraft. Since the improvement in GPS-technology, all airborne
gravity systems nowadays depend on DGPS to determine the latter acceleration. By dif-
ferencing the acceleration outputs of the two systems (accelerometer and GPS), common
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accelerations are eliminated and gravity and the effect of system errors remain.
Attitude stabilization is traditionally done with damped two-axes platform systems.

A gravity sensor, often a modified shipborne gravimeter, is mounted on the platform,
which is mechanically stabilized using accelerometers and gyros. Over the years these
systems have been improved and due to the excellent results that have been reported with
these systems, they have become the established technique for airborne gravimetry. An
alternative to a stabilized platform system is a strapdown inertial navigation system (INS).
A comparison with the traditional system has shown that a strapdown system can reach
the same level of accuracy. The advantage of a strapdown INS is that the full gravity
vector can be determined and that it has the potential to increase the spatial resolution,
whereas the platform systems usually have a better long-term stability.

Because airborne measurements are taken in a very dynamic environment, the noise
in the data is extremely large. Typically, noise-to-signal ratios of 1000 or more are ob-
served. To extract the signal from such noise is one of the major challenges in gravity
field modeling from airborne gravity measurements. Fortunately, the largest contribution
to the noise consists of high frequency noise, caused by aircraft vibration and the ampli-
fication of noise in the GPS positions when computing accelerations. The most common
approach to remove these noise effects is to apply a low-pass filter. However, such a
filtering deteriorates the gravity signal and limits the resolution that can be obtained.

In geodesy, one of the main applications of airborne gravity data is local geoid deter-
mination. The geoid can be defined as the equipotential surface of the gravity field that
corresponds most closely to mean sea level. It is used as a reference surface for heights.
Combined with the accurate low-frequency information from satellite gravity models,
the geoid can be determined from airborne gravimetry data with decimeter-level accu-
racy or better. In the field of geophysics, airborne gravimetry is mainly used for regional
geological studies and resource exploration, but the required resolution and accuracy can
only just be met.

The resolution and accuracy of airborne gravimetry may be improved in two ways:
by improvement of the sensors and by developing improved methodologies for the pro-
cessing of airborne gravity data. The research presented in this thesis is focused on the
latter.

1.2 Objectives

Traditionally, the pre-processing of airborne gravity data consists of various indepen-
dent steps, such as low-pass filtering and the adjustment of data by minimizing misfits
at cross-over points. The result of data pre-processing is generally a set of gravity field
values along profiles at flight level, which is used as input for the inversion into gravity
functionals of interest at ground level. The objective of this thesis is to develop a new
technique that combines separate data processing steps with the estimation of gravity pa-
rameters in one algorithm. Importantly, a frequency-dependent data weighting to handle
colored noise is applied instead of the traditional filtering. The developed methodology
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is compared with established methods for airborne gravity data processing.

The following topics related to the general objective are addressed in this study:

Representation of the gravity field
A suitable representation of the disturbing potential for airborne gravity field determina-
tion must be chosen. In this thesis, a spectral representation of the gravity field is used, i.e
the disturbing potential T (x) is expressed as a linear combination of harmonic functions
ϕ(x):

T (x) =
∑

k

akϕk(x), (1.1)

where ak are the coefficients to be determined. The explicit expressions of the base func-
tions ϕ(x) can be chosen depending on the coordinate system under consideration. For a
Cartesian coordinate system they are given as a product of trigonometric and exponential
functions, which are fundamental solutions of Laplace’s equation in Cartesian coordi-
nates. The application of such a representation to airborne gravity data is investigated.

Regularization
For the computation of an accurate gravity field solution, regularization is needed since
the goal is to determine the gravity field on or near the Earth’s surface, not at aircraft
altitude. Without regularization the estimation of a gravity field solution may become er-
roneous because data errors and unmodeled signal get amplified in the process of down-
ward continuation. The issue of optimal regularization is an important part of this study.
Various ways to define the regularization matrix and algorithms for the automatic selec-
tion of the regularization parameter will be considered.

Frequency-dependent data weighting
The standard approach to handle colored noise in airborne gravity measurements is to
apply a low-pass filter. Such a filter, however, deteriorates the signal. A filter of a suffi-
ciently large length reduces the noise in the obtained data, but the signal gets attenuated
as well. As such, the results may be distorted even at frequencies where the noise is
small. In this research the concept of filtering is replaced by the concept of frequency-
dependent data weighting. Frequencies at which the noise is large get less weight than
frequencies at which the noise is small. This approach to handle noise has already been
applied successfully in gravity field modeling from satellite data, but is new in airborne
gravity field determination. Essential in this procedure is the estimation of a noise model
for which several strategies will be explored.

Bias and drift handling
The traditional approach of airborne gravity data processing often includes a cross-over
adjustment to estimate bias and/or drift parameters. This method of adjustment of cross-
over misfits has several disadvantages such as the requirement of a close coincidence of
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measurement points at crossing lines, the low redundancy in the estimation, the necessity
to interpolate data, and the possible aliasing of random errors into the solution. In this
thesis an alternative method is derived, which combines the handling of bias parameters
with the estimation of gravity field parameters. Its performance is compared with the
traditional method of cross-over adjustment.

Comparison and validation
The developed methodology is tested and compared with traditional methods using simu-
lated and real data sets. The goal of the simulation study is to analyze and optimize the
performance of the developed methodology in a controlled environment. The results of
real data processing are compared and validated using results from traditional algorithms
and available surface gravity data.

1.3 Outline

The outline of this thesis is as follows. In chapter 2 the principle of airborne gravimetry is
described. The various system concepts are discussed as well as the general measurement
model and error model of airborne gravimetry. Furthermore, a historical overview is
given and the most important applications of airborne gravity measurements are outlined.

The processing of airborne gravity data is discussed in chapter 3. The processing con-
sists of two steps; the pre-processing, which generally results in a set of filtered observa-
tions at flight level; and the inversion of airborne gravity data into gravity functionals at
the Earth’s surface. For the latter several methods are summarized that have been success-
fully applied to airborne gravity data, such as integral methods, least-squares collocation
and least-squares adjustment using radial base functions.

In chapter 4 a new methodology for the processing of airborne gravity data is pro-
posed. The approach combines several pre-processing steps with the estimation of grav-
ity field parameters. The base functions that are used to represent the disturbing potential
are the fundamental solutions of Laplace’s equation in Cartesian coordinates. Frequency-
dependent data weighting to handle colored noise in the observations is introduced, as
well as regularization methods to obtain a stable solution. This chapter forms the theo-
retical framework for the computations and analyses in the remainder of the thesis.

The developed methodology is tested and compared with traditional methods using
simulated data sets. The results of these computations are presented in chapter 5. The
goal of this chapter is to determine the optimal strategy for airborne gravity data process-
ing. Tests are performed with noise free data as well as with data corrupted by white
noise and colored noise.

Chapter 6 describes the application of the optimal strategy to real airborne gravimetric
survey data. Several data sets are used. The first data set consists of airborne gravity
measurements acquired in 1996 during a survey over the Skagerrak area. For this region
good ground truth data is available, which is used to derive a noise model and to validate
the results. The second data set was obtained during a campaign off the coast of Chile in
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2002. The last data set that is used in this chapter is a geophysical data set from a survey
flown over a relatively small area in Ontario, Canada in 2003.

Finally, the conclusions and recommendations are given in chapter 7.
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Airborne gravimetry 2
This chapter provides an introduction to airborne gravimetry. First, a historical overview
is given, starting from the first ideas in the late 1950s and concluding with the latest de-
velopments in this field. The general principle is discussed in section 2.2, focusing on
sensor orientation and separation of kinematic and gravitational accelerations. Further-
more, an overview of techniques that are used to measure gravity from aircraft is given.
The mathematical concept of both the measurement and the error model is explained in
section 2.3.1, resulting in the fundamental equations for airborne gravity pre-processing
and the most important error sources that affect airborne gravity measurements. The
chapter concludes with a discussion of geodetic and geophysical applications of airborne
gravimetry and opportunities for future developments.

2.1 Historical overview

Already in the 1950s, both geophysicists and geodesists were looking for solutions to
measure gravity from the air. The first reported test of airborne gravity measurements
is described in Lundberg (1957), where a system based on the principle of gradiome-
try was used. However, Lundberg’s test was received with general skepticism in the
exploration industry (Hammer, 1983). Following the successful use of a gravity meter
aboard submarines and ships in the 1950s, the Air Force Cambridge Research Center
initiated a program to develop an airborne gravity meter system. The first test was per-
formed in 1958 by the U.S. Air Force, using a LaCoste and Romberg gimbal-supported
sea gravimeter (S5), with navigation data provided by a Doppler system on the aircraft
and a camera tracking range on the ground (Thompson and LaCoste, 1960). Shortly af-
ter this test a second test was done by Fairchild Aerial Surveys (Nettleton et al., 1960).
The gravimeter used was again a LaCoste and Romberg instrument, but the aircraft was
equipped with a mapping camera for positioning and a radar altimeter and hypsometer to
determine the altitude.

The main problems for airborne gravimetry at the time were the navigation of the
aircraft, including velocity, elevation and space positioning, the Eötvös effect, in-flight
accelerations of the aircraft, and the lack of a gravimeter able to work in a dynamic
environment (Thompson and LaCoste, 1960). However, it appeared that a relatively
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low accuracy of about 10 mGal could be obtained using existing navigation systems,
complemented by accurate ground control techniques, such as optical and radar tracking
ranges.Furthermore, experience with large aircraft at high altitudes indicated that smooth
flight conditions could be obtained, thus reducing large accelerations. The Eötvös effect,
which is directly related to the aircraft velocity, was considered to be a major problem
for gravity measurements in an aircraft. However, with proper flight programming, accu-
rate Eötvös corrections could be made. As mentioned above, the gravimeters used in the
first tests were modified sea gravimeters using a gimbal suspension to handle horizontal
accelerations. This system had been developed and tested by LaCoste and Romberg for
use at sea. Later, these systems were replaced by stabilized platform systems (cf. figure
2.1), which performed much better (LaCoste, 1967).

Figure 2.1: Stabilized platform gravity meter (LaCoste et al., 1967).

The tests in the beginning of the 1960s were performed with gravity meters installed
in fixed-wing aircraft. The first successful measurement of gravity from a helicopter was
performed in 1965 by the U.S. Naval Oceanographic Office, using a gimbal-suspended
LaCoste and Romberg Sea Gravimeter (Gumert and Cobb, 1970; Gumert, 1998). A more
thorough test followed in 1966, providing gravity data with accuracies of about 3 mGal,
leading to the development of a complete helicopter gravity measuring system (HGMS),
described in Gumert and Cobb (1970). The instrumentation consisted of a LaCoste and
Romberg stable-platform gravity meter, a laser altimeter, a camera and a HIRAN nav-
igation system. The advantages of a helicopter over fixed-wing aircraft are the better
terrain-following capability, the increased spatial resolution resulting from flying at lower
altitude and lower speed and the fact that a helicopter is less affected by turbulent condi-
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tions than most other types of aircraft (Lee et al., 2006). Its only disadvantage may be a
somewhat smaller range.

Despite improvements in scalar gravity system design, and the development of high
resolution radar altimeters for vertical acceleration determination in the eighties (see e.g.
Brozena (1984)), airborne gravimetry did not become fully operational until the intro-
duction of GPS. Especially the use of carrier phase measurements and Differential GPS
(DGPS) opened new ways to resolve navigational problems (see e.g. Brozena et al.
(1989), Schwarz et al. (1989), Kleusberg et al. (1990)). The impact of the new posi-
tioning technology led to two important developments in airborne gravimetry (Schwarz
and Li, 1997). The first one was the perfection of existing scalar gravimeter systems,
which could be used, on the one hand, for geophysical exploration and, on the other
hand, for large regional surveys as required by geodesy. The second development was
the combination of GPS with inertial measuring units (IMU) for sensor stabilization and
gravity vector determination.

One of the first large-scale airborne gravity surveys was the campaign over Greenland
in 1991 and 1992, performed by the U.S. Naval Research Laboratory (NRL) in coopera-
tion with the Danish National Survey and Cadastre (KMS) (currently part of the TU Den-
mark (DTU Space)), which proved the suitability of airborne gravimetry for gravity field
mapping (see Brozena (1992), Brozena and Peters (1994), Forsberg and Kenyon (1994)).
Other examples of wide-area surveys are the gravity survey of Switzerland, a joint project
between the Swiss Federal Institute of Technology and LaCoste and Romberg Gravity
Meters Inc. in 1992 (Klingelé et al., 1995), the AGMASCO project over the Skagerrak
(1996) and the Azores (1997) conducted by a joint program of various European institutes
(Forsberg et al. (1997), Hehl et al. (1997)) and the gravity surveys over theWest Antarctic
ice sheet (1991-1997) flown by the Lamont-Doherty Earth Observatory in collaboration
with the Institute for Geophysics of the University of Texas (Bell et al., 1999). Recent
major projects are the nationwide geoid and regional surveys of Malaysia (2002-2003),
Mongolia (2004-2005) and Ethiopia (2006-2007) performed by DNSC (Olesen and Fors-
berg, 2007b), and the survey of Taiwan (Hwang et al., 2007). The reported accuracies of
these campaigns were 1.5-2 mGal at 5-6 km spatial resolution.

In the nineties, several alternative system concepts were developed, based on the
combination of inertial technology and DGPS. The Inertial Technology Center (ITC) in
Moscow implemented and tested an inertially stabilized platform system in cooperation
with the University of Calgary and Canagrav Research Ltd. in Calgary. For details of
this test see Salychev et al. (1994). A similar system, called AIRGrav, was developed
by Sander Geophysics Ltd. (Ferguson and Hammada, 2001). Both systems have been
demonstrated to yield medium and high resolution estimates of the gravity field with an
accuracy of 0.5-1.5 mGal (Bruton, 2000).

The use of a strapdown Inertial Navigation System (SINS) for airborne gravimetry
was pioneered at the University of Calgary (see e.g. Schwarz et al. (1991)), where de-
velopment and testing continued until the beginning of this decade. The advantage of
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such a system is its smaller size and relatively low costs. Results of the first airborne test
in 1995, using a Honeywell LASEREF III inertial system, showed that relative gravity
can be obtained with an accuracy of 2-3 mGal at a half-wavelength resolution of 5 km
(Wei and Schwarz, 1998). A side-by-side comparison of a strapdown INS system with
a LaCoste and Romberg stable platform gravimeter, described by Glennie and Schwarz
(1999), demonstrated that both systems performed equally well in terms of RMS er-
rors, but the LCR system showed a better long-term stability. Later, Bruton et al. (2002)
showed that with the same SINS system, the strapdown approach can yield accuracies
of 1.5 mGal at a half-wavelength of 2 km and 2.5 mGal at a half-wavelength of 1.4
km, demonstrating the potential of this approach for high-resolution applications. The
SINS approach also allows for the determination of the gravity vector, but in that case
the system requirements are more stringent, as discussed by Schwarz et al. (1991) and
Jekeli (1994). Nevertheless, Jekeli and Kwon (1999) obtained the full gravity vector at
an accuracy level of 7-8 mGal for the horizontal component and 3 mGal for the vertical
component, using the same data as Wei and Schwarz (1998).

2.2 The principle of airborne gravimetry

In principle, gravimeters are highly sensitive accelerometers. If an accelerometer is put
stationary on the Earth’s surface and it is level (i.e. the sensitive axis coincides with
the direction of the gravity vector), the magnitude of gravity can be determined directly.
However, the situation becomes much more complex when the accelerometer is moving,
since an accelerometer cannot distinguish between kinematic and gravitational accelera-
tions and because the instrument is not easily kept level. Thus, in airborne gravimetry,
the solution of the following two problems is fundamental (Schwarz and Li, 1997):

1. Sensor orientation or stabilization under aircraft dynamics.

2. Separation of gravitational and non-gravitational acceleration.

There are a number of possible ways to solve the first problem. The use of a damped two-
axes platform system, such as the LaCoste & Romberg Air-Sea gravimeter, is the most
established method for attitude stabilization. The platform is mechanically stabilized by
using gyros and accelerometers in a feedback loop. The damping period of the platform
is typically chosen at 4 minutes for airborne applications. This means that horizontal ac-
celerations with a longer period, as in long turns, are regarded by the system as changes of
the vertical. In theory, the effect of horizontal accelerations is completely eliminated by
using a Schuler-tuned platform with a damping period of 84.4 minutes (Schuler period).
However, such a long period requires extremely accurate gyros and accelerometers that
have virtually no errors or drifts within this time range (Meyer et al., 2003). Example of
systems that use a Schuler-tuned three-axes inertial platform are the GT-1A gravimeter,
developed by Joint Stock Company Gravimetric Technologies in the Russian Federa-
tion and made available for commercial use by Canadian Micro Gravity Pty Ltd (Gabell
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et al., 2004) and the Airborne Inertially Referenced Gravimeter (AIRGrav) developed by
Sander Geophysics Limited (Sander et al., 2004). An alternative to a stabilized platform
system is a Strapdown Inertial Navigation System (SINS) that consists of three orthogo-
nal accelerometers and a set of three gyroscopes. In that case the mechanical stabilization
is replaced by computing the rotation matrix between the body frame and the local-level
frame. The approaches for attitude stabilization are schematically shown in figure 2.2.

The separation of gravitational and inertial acceleration is possible by computing the
difference between the specific force measured by an accelerometer and the output of
a system that provides the inertial acceleration. This process is also known as motion
compensation. Since the introduction of GPS, all airborne systems use carrier phase
DGPS positioning to determine aircraft motion. However, a laser-altimeter or radar-
altimeter can also be used if only the vertical aircraft acceleration is required.

Which system concept should be used depends on the quantity to be measured and on
the application the measurements are used for. The following classification is generally
used for airborne gravimetry (e.g. Schwarz and Li (1997), Wei (1999)):

• Scalar gravimetry

• Vector gravimetry

• Gravity gradiometry

In scalar gravimetry the magnitude of the gravity (disturbance) vector is determined. This
can be implemented using a stable platform system or by using a strapdown system. The
latter case is often referred to as Strapdown INS Scalar Gravimetry (SISG), in which case
only the vertical component of the gravity vector is of interest. An alternative concept
is to use a triad of three orthogonal accelerometers to obtain the magnitude of gravity
from the difference between the specific force vector and the aircraft acceleration vector.
Because the absolute orientation of the accelerometers with respect to the local vertical
is not needed in this case, this approach is called Rotation Invariant Scalar Gravimetry
(RISG). This approach was first explored by Czompo (1994) and later compared with
SISG by Wei and Schwarz (1997).

In vector gravimetry all three components of the gravity vector are determined. This
can only be done with systems that make use of inertial technology, i.e. SINS and inertial
platform systems. The horizontal components are generally of much poorer accuracy
than the vertical component due to attitude errors caused by gyro drifts (Bruton, 2000).
Good results for the estimation of the full gravity vector have been obtained by Jekeli and
Kwon (1999).

In airborne gravity gradiometry the second derivatives of the gravity potential are ob-
served. In the last decade, several operational gradiometer systems capable of rapidly
measuring all components of the gravity gradient tensor have been developed. Examples
are the FALCON gravity gradiometer of BHP Billiton (Lee, 2001) and the Air-FTG gra-
diometer system operated by Bell Geospace (Murphy, 2004). The standard gradiometer
concept is based on a design that uses opposing pairs of accelerometers on a rotating
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Figure 2.2: Attitude stabilization and sensor orientation for airborne gravimetry (after Schwarz
and Li (1997)).
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disk. The input axes of the accelerometer pair point in opposite directions so that the
common mode acceleration is canceled out when their signals are summed. As a result,
gradiometer systems are much less sensitive to GPS positioning errors and results can be
obtained with higher accuracy and resolution compared to scalar and vector gravimetry.
This technique is therefore particularly interesting for the mining and oil industry. For an
overview of the characteristics of gravity gradiometry, see Bell et al. (1997).

2.3 Mathematical models

2.3.1 Measurement model

The principle of airborne gravimetry is based on Newton’s second law of motion. Rear-
ranged with respect to gravity it is

gi = ẍi − f i, (2.1)

where gi is gravity, ẍi is the inertial acceleration and f i is the specific force measured
by an inertial system, where the superscript i refers to the inertial frame. Usually, air-
borne gravimetry measurements are expressed in the local-level frame (l), which is a
local Cartesian reference frame with the origin on the ellipsoid. The z-axis is aligned
with the local ellipsoidal normal, the x-axis points towards the ellipsoidal east and the
y-axis towards the ellipsoidal north, thus forming a North-East-Up frame. Equation (2.1)
written in the local-level frame is

gl = ẍl − f l + (2Ωl
ie + Ωl

el)ẋ
l, (2.2)

where ẍl is the aircraft acceleration, f l is the specific force, ẋl is the aircraft velocity, and
Ωl

ie and Ωl
el are skew-symmetric matrices due to the Earth rotation ωie and aircraft rate,

respectively:

Ωl
ie =

⎡
⎣ 0 −ωie sinϕ ωie cosϕ
ωie sinϕ 0 0
ωie cosϕ 0 0

⎤
⎦

and

Ωl
el =

⎡
⎣ 0 −λ̇ sinϕ λ̇ cosϕ

λ̇ sinϕ 0 ϕ̇

λ̇ cosϕ −ϕ̇ 0

⎤
⎦ ,

where λ̇ and ϕ̇ denote longitude and latitude rate. The gravity vector can be written as
the sum of the normal gravity vector γ and the gravity disturbance vector δg, e.g.

g = γ + δg.

The gravity disturbance is the observable that is generally used in airborne gravimetry.
The measurement model for airborne gravimetry is given as

δgl = ẍl − f l + (2Ωl
ie + Ωl

el)ẋ
l − γl. (2.3)
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In case of strapdown airborne gravimetry, accelerometer and gyro measurements are
obtained in the body frame (b). The body frame generally refers to the vehicle to be
navigated. The x-axis is defined along the forward direction of the aircraft (longitudinal
axis) the y-axis towards the right (lateral axis) and the z-axis points downwards (through-
the-floor). For strapdown gravimetry Eq. (2.3) becomes

δgl = ẍl −Rl
bf

b + (2Ωl
ie + Ωl

el)ẋ
l − γl, (2.4)

where Rl
b is the transformation matrix which rotates the accelerometer measurements f b

to the local-level frame. It can be obtained by integrating the measured angular velocities
ωb

ib between the body frame and the inertial frame.
For scalar gravimetry only the third component of Eq. (2.4) is of interest. When

written explicitly it is

δgU = ẍU − fU −
(

vE

R1 + h
+ 2ωie cosϕ

)
vE − v2

N

R2 + h
− γU , (2.5)

where subscriptsE,N, U stand for East, North, Up in a local-level ellipsoidal frame, and
R1 and R2 are the prime vertical and meridian radii of curvature. The sum of the third
and fourth terms is also called the Eötvös correction.

In principle, Eq. (2.5) is also valid for stable-platform gravimetry. However, attitude
control and the measurement of the specific force is different. As a result, two additional
corrections need to be applied: the cross-coupling correction and the tilt correction. The
cross-coupling correction is applied to account for horizontal accelerations experienced
by the platform, that cross-couple into the vertical acceleration output whenever the beam
is not in the null position. The formula for this correction is given in Valliant (1992) as
(see also Eq. (A.4) in appendix A)

εcc = c1Ḃ
2 + c2(fyB) + c3(fxḂ) + c4(fyḂ) + c5(f

2
xḂ), (2.6)

where c1, c2, . . . , c5 are statistically or empirically determined coefficients, Ḃ is the beam
velocity,B is the beam position, and fx and fy are the horizontal accelerometer measure-
ments. The tilt correction can be estimated from the horizontal accelerometer output and
DGPS-determined horizontal accelerations as (Olesen et al., 1997)

εtilt =
f 2

x + f 2
y − a2

E − a2
N

2g
, (2.7)

where aE and aN are the kinematic aircraft accelerations in the east and north directions,
and g is the magnitude of gravity.

2.3.2 Error model

The general error model of airborne gravimetry can be obtained by linearizing Eq. (2.3)
for a stable platform system or Eq. (2.4) for strapdown INS, as shown by Schwarz and
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Wei (1995). For strapdown inertial vector gravimetry it is:

dδgl = Flεl −Rl
bdf

b + dẍl + (2Ωl
ie + Ωl

el)dẋ
l −Vl(2dωl

ie + dωl
el)

− dγ l + (Ṙl
bf

b + Rl
bḟ

b)dT, (2.8)

where εl denotes the attitude errors due to initial misalignment and gyro measurement
noise, df b represents accelerometer noise, dẍl and dẋl are aircraft acceleration and ve-
locity errors, dωl

ie and dωl
el are errors in angular velocity, dγl denotes the errors in the

computation of normal gravity, and Fl and Vl are skew-symmetric matrices containing
the components of the specific force vector and the velocity vector, i.e.

Fl =

⎡
⎣ 0 −fU fN

fU 0 −fE

−fN fE 0

⎤
⎦ , Vl =

⎡
⎣ 0 −vU vN

vU 0 −vE

−vN vE 0

⎤
⎦ .

The term dT is added to account for the time synchronization error between the two mea-
surement systems, GPS and INS. Assuming that positions and velocities can be obtained
using GPS with standard deviations of σp = 20cm and σv = 5cm/s, respectively, the
fourth, fifth and sixth terms in Eq. (2.8) can be safely neglected since their contribution
to the total error budget is less than 0.5 mGal (Schwarz and Wei, 1995). Then, the most
significant errors affecting the gravity disturbance vector are given by

dδgl = Flεl −Rl
bdf

b + dẍl + (Ṙl
bf

b + Rl
bḟ

b)dT. (2.9)

For scalar gravimetry using INS the error model reads (Glennie et al., 2000)

dδg = fEεN − fNεE −Af b − dẍU + (Ȧf b + Aḟ b)dT, (2.10)

where A and Ȧ are row vectors of the form

A =
[− cos θ sin φ sin θ cos θ cosφ

]
,

Ȧ =
[
θ̇ sin θ sinφ− φ̇ cos θ cosφ θ̇ cos θ −θ̇ sin θ cosφ− φ̇ cos θ sinφ

]
, (2.11)

with φ and θ the roll and pitch angles of the transformation from the body frame to the
local-level frame. Because the roll angle and the quantities θ̇ and φ̇ are generally small
values, Eq. (2.10) can be simplified as

dδg = fEεN − fNεE − dfU + dẍU + ḟUdT. (2.12)

A good understanding of the errors affecting airborne gravimetry is of great importance
for system design and filtering. The error characteristics are briefly discussed and com-
pared below for the various approaches to airborne scalar gravimetry.
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In order to compare the error sources for stable platform gravimetry and SINS, Glen-
nie et al. (2000) performed a first-order error linearization of Eqs. (2.5), (2.6) and (2.7),
resulting in

dδg = dfU − dẍU +
fx

g
dfx +

fy

g
dfy − aE

g
daE − aN

g
daN

+ (c3Ḃ + 2c5fxḂ)dfx + (c2B + c4Ḃ)dfy

+ (2c1Ḃ + c3fx + c4fy + c5f
2
x)dḂ + (c2fy)dB

− Ḃ2dc1 + fyBdc2 + fxḂdc3 + fyḂdc4 + f 2
xḂdc5, (2.13)

where dc1, dc2, . . . , dc5 are errors in the cross-coupling coefficients, dḂ is the beam ve-
locity error, and dB is the beam position error. From Eq. (2.12) and Eq. (2.13) it is clear
that for both cases DGPS vertical acceleration errors ẍU have an identical effect on the
gravity estimates. The remaining errors in the first line of Eq. (2.13) are similar to those
for the RISG approach to airborne gravimetry, of which the error model is given as (Wei
and Schwarz, 1998)

dδg =
fx

fU

dfx +
fy

fU

dfy +
fz

fU

dfz − aE

fU

daE − aN

fU

daN − daU + ḟUdT. (2.14)

Because the RISG approach does not require attitude determination for the airborne grav-
ity sensor, it can be applied to all airborne gravity systems with an orthogonal accelerom-
eter triad.

When applied to a strapdown INS system, the RISG approach is shown to have a
similar error behavior as the SINS approach (SISG) to airborne scalar gravimetry deter-
mination. Glennie et al. (2000) therefore state that the first line of Eq. (2.13) will give
similar error characteristics as the first four terms of Eq. (2.12). However, the error in
the specific force dfU or dfx depends on the system used. In case of stable platform
systems it is derived from beam velocities and spring tension measurements, whereas for
strapdown INS systems it is the z-component of the accelerometer output, which may
be affected by an unknown bias. Furthermore, the horizontal accelerometers of the plat-
form system are of lower quality than the vertical gravimeter, and therefore the horizontal
acceleration errors are a significant error source for stable platform systems such as the
LCR gravimeter system. It should be noted that a time synchronization error term has not
been included in Eq. (2.13), but this term is identical to the one in the SINS approach.

2.4 Applications and opportunities

Airborne gravity measurements are used for a number of applications in geodesy and
geophysics. Although airborne campaigns may serve more than one goal, the survey de-
sign largely depends on the application under consideration. The design of a campaign
comprises the type of observation and accuracy that is required, the resolution, area cov-
erage, flight path, and choice of platform. Several applications are discussed below. For a
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more detailed discussion of airborne gravity applications and related research see Bruton
(2000).

Geodetic applications

In geodesy, one of the main applications of airborne gravimetry is local geoid determina-
tion. The geoid, defined as the equipotential surface of the gravity field at mean sea level,
is used as a reference surface for heights. Geoid determination from airborne gravity data
includes the representation of airborne data on a level surface through downward contin-
uation and using these data in combination with other sources of gravity to estimate the
geoid. When combined with accurate low-frequency information from satellite gravity
models, the geoid can be determined from airborne gravimetry with an accuracy of 2-5
cm at a spatial resolution of 5-10 km (Bruton, 2000). Examples of large-scale campaigns
where airborne gravimetry has successfully been applied are the campaigns in Greenland
by the Naval Research Laboratory (NRL) (Brozena et al., 1997) and the recent airborne
gravity survey over Taiwan by a cooperation of Taiwanese universities and the Danish
National Space Center in 2004 and 2005 (Hwang et al., 2007). Another application is
the filling of the polar gaps and other remote areas that lack accurate gravity data, for the
compilation of high-resolution Earth gravity models, such as the EIGEN-GL04c model
(Förste et al., 2008) and the recently published EGM2008 model (Pavlis et al., 2008).

Geodetic airborne campaigns are characterized by a relatively large flight track spac-
ing and relatively high flight velocities to cover large areas, as well as a high flight al-
titude to minimize effects of turbulence. The instrumentation used in geodetic surveys
consists mostly of traditional scalar gravimetry systems such as the LCR spring type
air-sea gravimeter combined with DGPS.

Geophysical applications

In the field of geophysics, airborne gravimetry is mainly used for regional geological
studies and resource exploration. The requirements for geophysical applications are
listed in table 2.1. With the current accuracy and resolution of airborne gravimetry at
the level of 1-2 mGal at 3-5 km, scalar airborne gravimetry meets the requirements for
regional geological studies, but its use for exploration of mineral deposits is limited (see
also Bruton (2000)). This is also shown in figure 2.3, from which it is clear that even a
ten-fold improvement in terms of GPS acceleration noise would not be sufficient to re-
cover most of the orebodies (for more details see Van Kann (2004)). In comparison with
scalar or vector gravimetry, the application of airborne gravity gradiometry is much more
promising because gravity gradiometry anomalies reflect the edges and shapes of sources
rather than just mass distributions. Furthermore, it is less sensitive to GPS positioning
errors as already mentioned in section 2.2. Figure 2.4 demonstrates that the noise of a
gradiometer system should be about 1 Eötvös RMS for wavelengths of 50-100 m. Ob-
taining such an accuracy and resolution is a challenging problem, but laboratory tests of
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Table 2.1: Required gravity accuracy and resolution for solid Earth science (NRC, 1995).

Feature Accuracy Resolution
(mGal) (km)

Plate boundaries and deformation:
Large-scale flexure 5 50
Rifts 3 10
Diffuse extension 2 5
Mountains 3 5
Sub-ice topography 2 10

Volcanology:
Volcano morphology 1 10
Volcano dynamics 0.5 5

Mineral exploration:
Sedimentary basins 1 3
Salt domes 0.5 1
Mineral prospects 0.1-2.0 1-10

several instruments under development have shown that this may be feasible in the near
future (Van Kann, 2004).

Geophysical surveys for mineral exploration are generally flown at speeds as low as
possible within small areas, and the track spacing is, as a result, usually much denser than
for regional surveys. Air-FTG surveys are for instance typically flown with line spacings
from 50 to 2000 m at a terrain clearance as low as 80 m for small survey targets, using a
fixed-wing aircraft (Murphy, 2004).

Opportunities

The application of airborne gravimetry for acquiring gravity information routinely is lim-
ited due to the availability and costs of the instrumentation (aircraft and gravimeter) and
manpower, which add up to the overall costs of airborne gravity campaigns. A large-scale
airborne survey for gravity field determination such as the campaign in Taiwan can take
more than 200 flight hours to complete. Even though this is still much more efficient than
terrestrial measurement techniques, there are several opportunities to reduce the time and
costs of airborne gravity surveys.

First of all, there is a renewed interest in the use of strapdown INS for gravity field
mapping. These systems are much cheaper than stable platform systems, and with in-
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creased accuracy of accelerometers and gyros, the performance is expected to match
that of stable platform systems. Examples of such projects are the Strapdown Airborne
Gravimetry System SAGS4 by the Bavarian Academy of Sciences in Munich (Boedecker
and Stürze, 2006), the strapdown system being developed for vector gravimetry by the
Institute of Geodesy and Navigation in Munich (Kreye et al., 2006), and the Gravimetry
using Airborne Inertial Navigation (GAIN) project by the Delft University of Technology
(Alberts et al., 2008).

The most promising solution for cost and time reduction is the use of Unmanned
Airborne Vehicles (UAV) equipped with a gravimeter or SINS and GPS. UAVs have
already been successfully applied in other research fields, such as atmospheric science,
remote sensing and hazard monitoring (Clarke, 2002). For accurate airborne gravity
measurements a stable platform is required. In case of a UAV, this means that airships
are the best option, especially if they are provided with solar panels for power supply. An
airborne gravimetry campaign could then consist of one or more UAVs that autonomously
map large parts of the Earth, such as oceans or the polar areas.

20



Processing of airborne gravity data 3
The processing procedure of airborne gravity data can be divided in two steps: pre-
processing and inversion. The pre-processing procedure follows the basic equations
given in section 2.3.1 and includes a number of steps and corrections that are described
in Appendix A. The outcome of data pre-processing is a set of gravity disturbances at
flight level, that are downward continued to ground level and used for the computation
of other gravity functionals. An important part of the pre-processing is the handling of
noise in the data. Usually this includes a low-pass filtering to suppress high-frequency
noise and a cross-over adjustment to eliminate bias and drift terms. Both techniques are
discussed in section 3.1.

For the inversion of airborne gravity measurements into gravity functionals on the
Earth’s surface or on the geoid, many methods have been proposed in literature. Among
the most popular ones in practical applications are integral methods based on the theory
of boundary value problems for the Laplace equation, and least-squares collocation. A
different approach that is used in regional gravity field determination makes use of radial
base functions for the representation of the disturbing potential. The inversion of airborne
gravity data using these methodologies is discussed in section 3.2. The chapter concludes
with a comparison of the different approaches.

3.1 Pre−processing

3.1.1 Low−pass filtering

Airborne gravity measurements are made in a very dynamic environment, resulting in
extremely large noise in the data. Typically, noise-to-signal ratios of 1000 or more can
be observed (Schwarz and Li, 1997). Figure (3.1) shows the ’raw’ gravity signal, which
varies by about 5000 mGal, and the target gravity signal at flight level, which shows a
variation of about 20 mGal. Extracting the gravity signal from measurements contami-
nated by such strong noise is one of the major challenges in airborne gravimetry.

The largest contribution consists of high frequency noise, caused by the effect of
aircraft vibrations on the gravimeter system and the amplification of GPS system noise
when computing accelerations. To reduce these effects, a filtering technique can be ap-
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Figure 3.1: ’Raw’ gravity measurements (top) and the target gravity signal at flight level (bottom).

plied to the airborne gravity data. Because in the low-frequency part of the spectrum
the noise level is below the level of the gravity signal, the most commonly used filters
are low-pass filters, although some alternative model-based approaches have been pro-
posed (Hammada and Schwarz, 1997). When a low-pass filter is used, the filter passes
low-frequency signals, but attenuates any signal above the cut-off frequency.

In general, there are two classes of low-pass filters: finite impulse response (FIR) and
infinite impulse response (IIR) filters. The impulse response of a filter is the output se-
quence from the filter when a unit impulse is applied as its input. The term IIR, however,
is not very accurate, since the actual impulse responses of nearly all IIR filters virtually
reduce to zero in a finite time. Therefore, the terms non-recursive and recursive filters are
often used instead. Both types of low-pass filters have been used for airborne gravity data
processing. The FIR filter for instance has been used by the University of Calgary (Wei
and Schwarz, 1998) for the processing of SINS data and by Brozena and Peters (1988),
who combined it with a resistor-capacitor (RC) filter to sharpen the frequency roll-off.
An example of an IIR filter is the Butterworth filter, which has been used by Forsberg
et al. (1999) and Meyer et al. (2003).

An advantage of using a low-pass filter is its easy implementation. However, even
though both signal and noise are attenuated in the high-frequency band, some noise will
remain in the pass-band, reducing the accuracy of the gravity data. The accuracy may be
improved by using a larger filter length, but this reduces the resolution of the data. Instead
of low-pass filtering, a few model-based approaches have been used, mainly applied to
SINS data. One example is Kalman filtering with a shaping filter as the stochastic model
for the gravity disturbance (Eisfeller and Spietz, 1989; Hammada and Schwarz, 1997).
Another approach is based on the wave filtering concept, where a deterministic model
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filtering is used that approximates the gravity disturbance by a simple function or a ramp
(see e.g. Salychev et al., 1994). Hammada and Schwarz (1997) compared the model-
based filtering approaches with low-pass filtering, and concluded that a low-pass filter
performs systematically better.

The design of a low-pass filter comprises the choice of several parameters, including
the order of the filter and the filter length. The latter is chosen according to the flight
speed and the minimum wavelength to be resolved. The filter design can be analyzed
using the transfer function H(z), which gives the ratio of the output of a filter over the
input of the filter

H(z) =
Y (z)

X(z)
, (3.1)

where X(z) is the z-transform (z = ejωT ) of the input signal and Y (z) is the z-transform
of the filter output signal. From the transfer function the filter’s frequency magnitude
response |H(ejωT )| and phase response ∠H(ejωT ) can be computed. One of the most
popular recursive filter designs is the Butterworth filter. Figure 3.2 shows the frequency
magnitude response of a Butterworth filter for different orders compared to the ideal
low-pass filter design. In this thesis a 2nd-order Butterworth filter is used to analyze and
compare the performance of the filtering strategy developed in the next chapter. The filter
is the same as used by Olesen (2003) andMeyer et al. (2003). Because Butterworth filters
introduce a phase shift between the input and output signals (Hamming, 1989), the filter
is implemented as a two-way (i.e. forward/backward) filter, which removes the phase
shift.
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3.1.2 Cross−over adjustment

After the computation of gravity disturbances at flight level according to Eq. (2.5) and the
application of a low-pass filter, often a cross-over adjustment is applied. This operation
aims at minimizing the misfits at locations of crossing flight lines, by estimating biases,
and optionally a drift, for each profile.

Assuming that airborne gravity measurements are corrupted by a drift d and a bias b
per profile, the observed gravity disturbance δg̃ can be written as

δg̃ = δg + dΔt+ b, (3.2)

where δg is the true gravity disturbance. Then, at the cross-over of intersecting lines, the
difference between two measurements reads (e.g. Glennie and Schwarz (1997), Hwang
et al. (2006))

Δδg̃ij = diΔti − djΔtj + bi − bj , (3.3)

where di, dj, bi and bj are the drifts and biases of lines i and j, respectively, and Δti and
Δtj are the time differences between the start of the flight line and the current crossing
point. The bias and drift parameters are obtained by applying a least-squares adjustment
to the measurement model of Eq. (3.3). Because the model has a rank-defect, at least one
survey line must be held fixed in the adjustment by adding constraints to the functional
model. It means that the bias and drift parameters are estimated relative to the fixed line.

The cross-over adjustment procedure as described here has several disadvantages.
Firstly, the location of the measurements does, in general, not match the exact cross-over
point of two lines. This means that interpolation is required to find the position and to
obtain gravity values gi and gj at the cross-over point. For an accurate interpolation,
a constant flight level is needed. Secondly, the misfits at cross-over points may be the
result of random noise, for instance caused by turbulence. If that is the case, a cross-over
adjustment can in fact degrade the accuracy of the data, as an estimated bias or drift can
corrupt other parts of the profile. Furthermore, lines that have only one cross-over point
are usually not adjusted as the cross-over difference directly translates into a bias for
this line. Finally, the redundancy in a cross-over adjustment is typically small. If only a
few crossing lines are available, the number of cross-overs is only slightly more than the
number of bias and drift parameters to be estimated.

That the misfits at the cross-over points can be very large has for example been shown
by Bell et al. (1999). Because large cross-over misfits indicate data segments of low
quality, they removed these parts of the flight tracks, until an RMS of less than 3 mGal
was achieved for the cross-over differences. Then, the data were corrected for biases and
drifts, which were obtained in a cross-over adjustment. Other examples where a cross-
over adjustment has been applied as part of the pre-processing are found in (Glennie and
Schwarz, 1997) and (Hwang et al., 2007).

Several authors (e.g. Olesen (2003), Forsberg et al. (2007)) do not apply a cross-over
adjustment as such a procedure may be a source of aliasing, and is not required due to the
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excellent stability of the LCR gravimeter they use. In such a case, an analysis of cross-
over differences may be performed to check the internal consistency of the data. Olesen
and Forsberg (2007a) report an RMS cross-over misfit of 2.5-3.0mGal for a large number
of surveys performed with the LCR gravimeter. Assuming that noise is uncorrelated
between the profiles, the noise level is estimated as σe = σx/

√
2, indicating a noise level

of 1.8-2.1 mGal for the airborne data. They claim that a cross-over adjustment would
lower the RMS of the misfits, but the derived error estimates would be too optimistic and
no longer reflect the real noise level.

3.2 Inversion of airborne gravity data

3.2.1 Remove−restore technique

The goal of this section is to discuss the determination of the disturbing potential or geoid
from airborne gravity measurements. The geoid is an equipotential surface of the gravity
potentialW that (approximately) coincides with the mean ocean surface (see figure 3.3).
This equipotential surface is defined as

W (x, y, z) = W0 = constant. (3.4)

The disturbing or anomalous potential T at point P is defined as the difference

T (P ) = W (P )− U(P ), (3.5)

where U(P ) is the normal potential of the reference ellipsoid at point P . The gravity
vector g is the gradient of W and its magnitude (called gravity), which is a measurable
quantity, is denoted by g. Then, analogous to Eq. (3.5) the gravity disturbance is defined
as

δg(P ) = g(P )− γ(P ), (3.6)

W=W
N

Q

P

geoid

ellipsoid

topography

0

P’

Figure 3.3: Geometry of the geoid.
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where γ(P ) is normal gravity. In spherical approximation, the gravity disturbance is
related to the disturbing potential by the simple relation

δg = −∂T
∂r

, (3.7)

where r is the radial distance. The gravity disturbance is the observation that is generally
used in airborne gravity field determination. In classical geoid determination, the gravity
anomaly is used, which is defined as

Δg(P ) = g(P )− γ(Q). (3.8)

In spherical approximation, the gravity anomaly is related to T as

Δg = −∂T
∂r
− 2

r
T. (3.9)

If δg or Δg is known at the geoid, it is possible to solve the boundary value problem for T
and obtain the geoid height N above the reference ellipsoid by means of Bruns’ formula
(Heiskanen and Moritz, 1967)

N =
T

γ
. (3.10)

As part of the processing of airborne gravity data, the remove-compute-restore tech-
nique (e.g. Rapp and Rummel, 1975) (or remove-restore in short) is usually applied.
Because airborne gravimetry provides regional data sets, wavelengths longer than twice
the size of the area cannot be resolved, but are modeled using a global geopotential model
and removed from the data. Furthermore, the accuracy of downward continuation can be
further improved by removing the effect of the terrain, which results in a smoother signal
at flight level.

In the remove-restore technique, the geoid height is written as (Forsberg and Tsch-
erning, 1981)

N = NGGM +Ntopo +Nres, (3.11)

where NGGM is the contribution from the global geopotential model, Ntopo is the part
that describes the terrain effect from topographic masses, and Nres is the residual geoid,
which is modeled from residual gravity observations. To obtain residual gravity obser-
vations, the gravity disturbance (or anomaly) is split into the same contributions as in
Eq. (3.11) and the computed quantities δgGGM and δgtopo are removed from the observed
gravity disturbances. As such, the residual gravity disturbances are given as

δgres = δg − δgGGM − δgtopo. (3.12)

When the residual geoid has been computed, the contributionsNtopo andNres are restored
to yield the complete geoid height N . Methods for the inversion of gravity disturbances
δg obtained at flight level into the disturbing potential T are discussed in the following
sections, where it is assumed that residual quantities are being used.
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3.2.2 Integral methods

The downward continuation and geoid computation based on airborne gravity data using
integral equations has been discussed by several authors (e.g. Novák and Heck (2002),
Alberts and Klees (2004)). Various approaches have been proposed to solve the inte-
gral equations based on the theory of boundary value problems. The transformation of
gravity disturbances into geoid heights can be performed in two steps; the downward
continuation of a harmonic function as the inverse solution of the Dirichlet problem and
the integration of gravity disturbances by means of the Hotine integral. These steps may
be applied in arbitrary order. Alternatively, the solution can be computed directly from
the mathematical model that is obtained by applying the radial derivative to the Poisson
integral.

The approximation procedure used in this thesis is based on the Runge-Krarup theo-
rem (Krarup, 1969; Moritz, 1980):

Any harmonic function φ, regular outside the Earth’s surface, may be uniformly
approximated by harmonic functions φ̄, regular outside an arbitrarily given sphere
inside the Earth, in the sense that for any given ε > 0, the relation |φ − φ̄| < ε
holds everywhere outside and on (any closed surface completely surrounding) the
Earth’s surface.

The value of ε may be arbitrarily small. Thus, the disturbing potential is approximated
by a harmonic function, but for simplicity no distinction is made between this function
and the true disturbing potential. The sphere completely embedded inside the Earth is
called the Bjerhammar sphere (see figure 3.4) and serves as the boundary surface of the
harmonic domain of φ̄. For the determination of the disturbing potential on the Earth’s
topography S, alternative formulations are given in Alberts and Klees (2004).

Two-step approach

In this section two approaches are formulated for the transformation of airborne gravity
measurements into the disturbing potential on the Bjerhammar sphere. In the first ap-
proach, denoted as approach A in Novák (2003b) and method A in Alberts and Klees
(2004), the disturbing potential is first computed at flight level from the observed gravity
disturbances. Subsequently, the obtained disturbing potential is downward continued to
the Bjerhammar sphere. Alternatively, these steps may be reversed, i.e. the gravity dis-
turbances are first downward continued to the Bjerhammar sphere and then transformed
into the disturbing potential. The latter approach is identical to approach B in Novák
(2003b) or method B in Alberts and Klees (2004).

For the first approach (method A), the solution of the first step is obtained by the
numerical evaluation of the Hotine integral (Hotine, 1969), which is the space-domain
representation of the solution of the Neumann boundary value problem for a spherical
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surface. The Hotine integral is given as

T (P ) =
1

4π(R + h)

∫∫
σR+h

δg(Q)H(ψPQ) dσR+h(Q), P ∈ σR+h, (3.13)

where R is the radius of the Bjerhammar sphere, h is the height above R, and dσR+h =
(R + h)2 cosϕdϕdλ (cf. figure 3.4). H is the spherical Hotine function

H(ψPQ) =

∞∑
n=0

2n+ 1

n + 1
Pn(cosψPQ)

= cosec
ψPQ

2
− ln(1 + cosec

ψPQ

2
), (3.14)

with ψPQ the angular distance between P and Q, so that

cosψPQ = sinϕP sinϕQ + cosϕP cosϕP cos(λQ − λP ). (3.15)

The second step requires the downward continuation of the disturbing potential to the
Bjerhammar sphere by inversion of the Poisson integral, which represents the solution of
the Dirichlet boundary value problem for a spherical surface. The Poisson integral reads

T (P ) =
1

4πR2

∫∫
σR

T (Q′)P(R,ψPQ′, rP )dσR(Q′), P ∈ σR+h, (3.16)

with rP = R+ h, rQ′ = R and dσR = R2 cosϕdϕdλ. The values T (P ), P ∈ σR+h, are
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the solution of the first step. P is the spherical Poisson kernel (Kellogg, 1929)

P(R,ψPQ′ , rP ) =
∞∑

n=0

(2n+ 1)

(
R

rP

)n+1

Pn(cosψPQ′)

= R
r2

P
− R2

l3
, (3.17)

where l is the spatial distance between the computation point P and the integration point
Q′

l =
√
r2

P
+ r2

Q′ − 2rPrQ′ cosψPQ′ . (3.18)

The disturbing potential T on the Bjerhammar sphere is the inverse solution of Eq. (3.16),
which can be computed after discretization of the integral formulas and solving the ob-
tained linear system using least-squares techniques.

The two computation steps described above can also be applied in reverse order. In
that case, the first step uses the formula for the upward continuation of a harmonic func-
tion r · δg, which is given by the Poisson integral as

rP · δg(P ) =
1

4πR2

∫∫
σR

R · δg(Q′)P(R,ψPQ′ , rP )dσR(Q′)

⇔ δg(P ) =
1

4πR rP

∫∫
σR

δg(Q′)P(R,ψPQ′ , rP )dσR(Q′), (3.19)

with P ∈ σR+h. The gravity disturbances are obtained on the Bjerhammar sphere σR as
the inverse solution of Eq. (3.19). In the second step the disturbing potential is obtained at
σR from the resulting gravity disturbances by numerical evaluation of the Hotine integral
as

T (P ′) =
1

4πR

∫∫
σR

δg(Q′)H(ψP ′Q′) dσR(Q′), P ′ ∈ σR. (3.20)

An alternative method, which is similar to the latter approach (method B), is given in
Alberts and Klees (2004). It uses a single-layer representation of the disturbing potential.
The advantage of this formulation is that it does not require a spherical boundary surface.
The results obtained with this approach were almost identical to method B (see Alberts
and Klees (2004) for more details).

Single-step approach

Instead of a two-step approach, as discussed in the previous section, the disturbing poten-
tial can be computed directly on the sphere σR from gravity disturbances at flight level.
The functional model is easily found when the radial-derivative operator is applied to the
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Poisson integral (3.16). For P ∈ σR+h, the following expression is obtained (Novák,
2003a; Alberts and Klees, 2004)

∂T

∂r

∣∣∣∣
P

= −δg(P ) =
1

4πR2

∫∫
σR

T (Q′)
∂P(R,ψPQ′ , rP)

∂r

∣∣∣∣
P

dσR(Q′),

⇔ δg(P ) = − 1

4πR2

∫∫
σR

T (Q′)
∂P(R,ψPQ′ , rP )

∂r

∣∣∣∣
P

dσR(Q′). (3.21)

The derivative of the Poisson kernel is given as

∂P(R,ψPQ′ , rP )

∂r

∣∣∣∣
P

= − 1

R

∞∑
n=0

(n+ 1)(2n+ 1)

(
R

rP

)n+2

Pn(cosψPQ′)

= R

[
2 rP

l3
− 3(r2

P
−R2)(2rP − 2R cosψPQ′)

2l5

]
. (3.22)

The disturbing potential at points on σR is obtained as the inverse solution of the integral
equation (3.21) for T (Q′), Q′ ∈ σR. The major advantage of this approach over the
two-step approaches is that for the same data coverage at flight altitude, the disturbing
potential can be determined in a larger area on the Bjerhammar sphere than for the other
methods (see e.g. Novák, 2003a; Alberts and Klees, 2004). As shown by Alberts and
Klees (2004), a spherical cap size of 1.5◦ is sufficient to reduce edge effects, whereas the
combination of the Poisson and the Hotine integral requires typically a cap size of 5◦,
making the single-step approach much more efficient.

Practical considerations

Kernel modification
The integral equations must be integrated over the full spatial angle, but data are gener-
ally only available in a local area. Therefore, the integration is limited to a spherical cap
centered at the computation point, and the data are combined with a global geopotential
model, which largely represents the contribution of the area outside the spherical cap.
The truncation error introduced by limiting the integration to a spherical cap centered at
the computation point can be reduced by a modification of the kernel function. In liter-
ature many modifications have been proposed, see e.g. Molodenskii et al. (1962), Wong
and Gore (1969), Meissl (1971b), Heck and Grüninger (1987), Vanı́ček and Kleusberg
(1987), Featherstone et al. (1998). An alternative approach for the computation of grav-
ity functionals when data are only available in a local area is given in Prutkin and Klees
(2007).

Integration and interpolation errors
The evaluation of the integral formulas and the solution of the integral equations require
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the numerical computation of surface integrals, which is done using numerical integra-
tion. The surface σ is usually decomposed into a sum of patches σk and the integral is
evaluated as a weighted sum of function values at a limited number of points, called the
’nodes’ of the integration formula. Mathematically this can be written as

∫∫
σk

g(Q)K(P,Q)dσk(Q) ≈
M∑
i=1

g(Qi)K(P,Qi)wi, (3.23)

where Qi are the nodes and wi are the weights. The integral methods discussed in this
section involve the evaluation of weakly singular integrals with O(1/l)(l → 0) kernel
functions at the center of the patch σk. Standard integration formulas require a large
number of nodesM to reduce the integration error introduced in Eq. (3.23). The accuracy
of the integration can be improved when a suitable parameter transformation is applied
before numerical integration (Klees, 1996). The Jacobian of such a transformation is zero
at the computation point and the product of the Jacobian with the kernel function behaves
smoothly.

The nodes Qi are irregularly distributed over each patch σk and usually not identical
to the points where the data are given. Therefore, the data have to be interpolated at the
nodes of the integral formula, which in turn introduces interpolation errors. As an alter-
native, the contribution of a patch to the surface integral can be computed using the data
at the observation points, often reduced to a block mean value, as the only node, which
corresponds to the application of the composed one-point Newton-Cotes integration for-
mula (see e.g. Novák et al., 2000; Novák and Heck, 2002). To minimize integration
and interpolation errors, Alberts and Klees (2004) use modified polar coordinates as in-
troduced by Klees (1996) in combination with least-squares prediction to obtain gravity
values at the nodes. This approach improved the performance of the integral-based meth-
ods considerably.

3.2.3 Least−squares collocation

Least-squares collocation (LSC) is often used for the downward continuation of airborne
gravity data and the inversion into gravity functionals at ground level. Examples are
given in Forsberg and Kenyon (1994), Marchenko et al. (2001) and Forsberg (2002).
LSC is an optimal linear estimation method for gravity modeling. For the derivation,
two fundamentally different viewpoints have been derived; the deterministic approach
and the probabilistic (or statistical) approach. Both approaches have certain advantages
and drawbacks (see e.g. Kotsakis and Sideris (1999) for a discussion). The deterministic
viewpoint, first introduced by Krarup (1969), considers the unknown disturbing potential
as an individual element in a reproducing kernel Hilbert Space (RKHS) H, which is
modeled from observations belonging to a dual Hilbert space H

∗ of H (see appendix C
for the definition of a Hilbert space and some of its properties). The optimal solution is
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then defined as the smoothest function that satisfies the given observations. This approach
suffers from two important problems: the norm choice (or equivalently, the choice of the
reproducing kernel) and the lack of efficient measures to evaluate the accuracy of the
approximation.

The probabilistic approach models the unknown disturbing potential as a zero-mean
stochastic process and the available observations are considered as zero-mean random
variables. The optimal solution is then defined as the one with the smallest mean square
error (MSE) and should be an unbiased estimator, which is linearly related to the available
discrete data. The underlying framework is known as the Wiener-Kolmogorov theory,
which was introduced in gravity modeling by Moritz (1962). The main drawback of
this viewpoint is that the gravity field is not a stochastic phenomenon, since repetitive
gravity measurements should always provide the same result (excluding time-dependent
variations and measurement errors).

Both viewpoints provide identical solutions if the reproducing kernel function of the
deterministic approach is combined with the covariance function used in the probabilistic
approach. This leads to an intermediate viewpoint, which was first proposed by Heiska-
nen and Moritz (1967) and rigorously worked out by Sansò (1980). This viewpoint uses
spatial statistical measures to describe the disturbing potential and its accuracy and the
covariance function is defined as a purely deterministic quantity using a spatial averaging
operator M . The solution still satisfies the minimum MSE principle. In this way, it can
be regarded as a minimum-norm solution in an RKHS with the reproducing kernel equal
to the deterministic covariance function.

Pure least-squares collocation

This section describes ’pure’ collocation without noise and systematic parameters. The
derivation of the expressions within the concept of Hilbert spaces with a reproducing
kernel function is discussed in detail in appendix C. The mathematical concept of a
Hilbert space is the natural generalization to an infinite number of dimensions of the
Euclidean space R

n. A Hilbert space is an inner product space which, as a metric space,
is complete. The advantage of working in a Hilbert space is that the norm in the Hilbert
space is associated with a quadratic expression, so that the process of minimization leads
to linear problems.

Suppose for an unknown function f ∈ H, n observations li = Lif are available. In
gravity field modeling, the unknown function f is often the disturbing potential T and the
observations li are linear functionals of T , e.g. gravity disturbances. When the dimension
of the Hilbert space H is larger then n, the function f is not uniquely determined. Among
all approximate solutions f̄ that are compatible with the observations li, there is one, f̂ ,
for which the norm is minimum (Moritz, 1980):

‖f̄‖ ≥ ‖f̂‖. (3.24)

The solution f̂ is the orthogonal projection of f onto a subspace of H. It is precisely the
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solution given by least-squares collocation, which reads (see appendix C)

f̂ = (LK)T (L(LK)T )−1l, (3.25)

where K = K(P,Q) is the reproducing kernel.
With the notation Cfl := (LK)T and Cll := L(LK)T the LSC solution f̂ takes the

usual Wiener-Kolmogorov form

f̂ = CflC
−1
ll l. (3.26)

Instead of least-squares collocation, the method of determining f̂ as outlined here is also
called least-norm collocation, because the norm ‖f̂‖2 is minimized.

Least-squares collocation in the presence of noise

In the previous section it was assumed that the observations li were noise-free, but in
practice gravity measurements always contain measurement errors. Then the observation
model of least-squares collocation becomes

li = Lif + ei, i = 1, . . . , n, (3.27)

where ei is the error in the observation li. In matrix notation this is written as

l = Lf + e.

The least-squares estimator of f for this case is given as (Moritz, 1980)

f̂ = (LK)T (L(LK)T + Cee, )
−1l. (3.28)

whereCee is the variance-covariance matrix of the noise. Using again the notationCfl :=
(LK)T andCll := L(LK)T , this equation can be written in the well known form for LSC
with noise

f̂ = Cfl(Cll + Cee)
−1l. (3.29)

The latter expression is equivalent to Tikhonov regularization with signal constraint, with
the regularization parameter equal to 1, as will be shown in section 4.3.3. As a conse-
quence, LSC provides a stable solution for the generally ill-posed problem of gravity
field determination.

The model for least-squares collocation may be further extended to incorporate the
estimation of additional parameters, such as datum parameters. For the derivation of the
solution in the presence of additional parameters, see Moritz (1980).
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The covariance function

The application of LSC requires the determination of the kernel functionK(P,Q), which
is identified with the covariance function of the disturbing potential. The functionK(P,Q) =
K(ψPQ) can be expanded in a series of spherical harmonics as (see appendix C)

K(ψPQ) =

∞∑
n=2

cn

(
R2

B

rP rQ

)n+1

Pn(cosψPQ), (3.30)

where ψPQ is the spherical distance between P and Q, cn is the signal degree variance
and RB is the radius of the Bjerhammar sphere. The function K(P,Q) defined this way
expresses the spatial covariance function of f , often denoted by C(ψPQ). Similarly, the
matrix Cll defined in Eq. (3.26) is called auto-covariance matrix of the observations l

and the matrix Cfl is called the cross-covariance matrix between f and l.
When the remove-restore procedure is applied, a long-wavelength model is subtracted

from the observations, as described in section 3.2.1. Then, the covariance-function is
given as

C(ψPQ) =
N∑

n=2

εn

(
R2

E

rP rQ

)n+1

Pn(cosψPQ)

+
∞∑

n=N+1

cn

(
R2

B

rP rQ

)n+1

Pn(cosψPQ). (3.31)

where N is the maximum degree of the global gravity field model (GGM) that has been
subtracted and εn is the error degree variance related to the GGM.

The degree variances are expressed by Eq. (C.21) in terms of spherical harmonic
coefficients, which are generally not available for n ≥ N . In practice, an analytical model
is often fitted to an empirically derived covariance function. A degree variance model that
has been used in many applications is the Tscherning and Rapp model (Tscherning and
Rapp, 1974), which is given in terms of degree variances of the disturbing potential as

cn(T, T ) =
A

(n− 1)(n− 2)(n+B)
, (3.32)

where A is a constant in units of (m/s)4 and the integer B is typically put equal to a
small number (e.g. B = 4) if a gravity model has been subtracted from the data. To fit
the covariance function to the empirically derived function, both A and RB need to be
estimated.

For local and regional gravity field modeling, a covariance function is determined us-
ing available gravity functionals within the area of interest. For airborne gravimetry this
means that the covariance function is computed from gravity disturbances, and in a sec-
ond step related to the disturbing potential using the law of covariance propagation. The

34



Inversion of airborne gravity data

relation between the degree variances of the disturbing potential and the degree variance
models associated with the auto- and cross-covariance functions of gravity disturbances
are given as

cn(δg, δg) =
(l + 1)2

rP rQ

cn(T, T ) (3.33)

cn(T, δg) =
(l + 1)

rQ

cn(T, T ). (3.34)

For other functionals, the relations are easily obtained by applying the corresponding
linear operators to the degree variances of the disturbing potential (see e.g. (Meissl,
1971a) for the functional relations).

An alternative analytical covariance function for airborne gravimetry was derived by
(Forsberg, 1987), who uses a planar approximation of the Earth’s surface. The derived
planar attenuated logarithmic covariance model for gravity disturbances at flight level is

C(xP − xQ, yP − yQ, zP + zQ) =

Ch

3∑
i=0

αi log(zi + ri)

3∑
i=0

αi log(2Di + 4h)

, (3.35)

where Ch is the variance of gravity disturbances at flight level h. The parameters αi, zi

and ri are given as

α0 = 1, α1 = −3, α2 = 3, α3 = −1,

zi = zP + zQ +Di,

ri =
√

(xP − xQ)2 + (yP − yQ)2 + z2
i ,

with
Di = D + iT,

where D is the high-frequency attenuation parameter and T the low-frequency attenua-
tion parameter. See (Forsberg, 1987) for more details. The model represents the planar
equivalent of the Tscherning-Rapp model and is especially suitable for local and regional
applications such as airborne gravimetry and airborne gradiometry.

3.2.4 Sequential multipole analysis

The representation of the disturbing potential by potentials of radial multipoles was de-
veloped by Marchenko (1998). This method has been applied to airborne gravity data
acquired during the AGMASCO campaign by Marchenko et al. (2001) for the Skagerrak
area and by Marchenko et al. (2004) for the Azores region. A multipole represents a point
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object at a point Pi inside the Bjerhammar sphere (cf. fig. 3.5). The potential of a radial
multipole is characterized by the degree ni and its coordinates di, ϕi, λi for geocentric
distance, latitude and longitude, respectively.

The disturbing potential can be represented at any point P outside the Bjerhammar
sphere by a convergent series ofK non-orthogonal harmonic functions as

T (P ) =
GM

R

K∑
i=1

μn
i

(
R

r

)n+1

vi
n(P ) (3.36)

where μn
i are the dimensionless multipole moments (or coefficients) and vi

n is the dimen-
sionless potential function of the radial multipole of degree n. The function vi

n is defined
as

vi
n(P ) =

1

n!

∂n

∂sn
i

(
1

qi

)
, (3.37)

with si = di/r and qi = ri/r, where ri is the distance between the radial multipole and
point P ,

ri =
√
r2 + d2

i − 2rdi cosψi, (3.38)

where ψi = ψPPi
is the spherical distance between P and Pi, computed from Eq. (3.15).

Following the derivation in Marchenko et al. (2001) the potential of radial multipoles can
be expressed in terms of Legendre polynomials as

vi
n =

(
r

ri

)n+1

Pn(cos θi), (3.39)

with
cos θi = (rcosψi − di)/ri. (3.40)
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Figure 3.5: Location of a radial multipole (Pi) inside the Bjerhammar sphere.
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It can be shown that the recursion formula for Legendre polynomials (Heiskanen and
Moritz, 1967) can be used for the straightforward computation of the functions vi

n as
well, resulting in the recursion formula (Marchenko, 1998)

vi
0 =

1

qi

vi
1 =

cosψi − si

q3
i

(3.41)

nq2
i v

i
n = (2n− 1)(cosψi − si)v

i
n−1 − (n− 1)vi

n−2.

The expression for the gravity disturbance in terms of the potential of radial multi-
poles can be found by applying the radial derivative operator to Eq. (3.36) as

δg(P ) = −∂T
∂r

=
GM

R

K∑
i=1

μn
i

∂

∂r

((
R

r

)n+1

vi
n(P )

)

=
GM

R2

K∑
i=1

μn
i

(
R

r

)n+2

gi
n(P ), (3.42)

where the functions gi
n(P ) are given as (Marchenko et al., 2004)

gi
n(P ) = −(n + 1)(vi

n(P ) + si v
i
n+1(P )). (3.43)

For the gravity anomaly a similar expression can be found using the fundamental equation
of physical geodesy. Denoting the potential functions by g̃i

n, they read (Marchenko et al.,
2001)

g̃i
n(P ) = (n+ 1)si v

i
n(P ) + (n− 1)vi

n(P ). (3.44)

A practical application of the expressions derived above requires the solution of the
inverse problem. That is, based on the observations, an appropriate finite set of radial
multipoles, i.e. values of the moments (coefficients), locations and degrees, must be de-
termined to approximate the disturbing potential. Within the sequential multipole analy-
sis (SMA) algorithm the solution is obtained in several steps, which may be summarized
as (Marchenko et al., 2001)

1. Input of the initial data set;

2. Find the largest absolute value of the gravity data; postulate this extremum as the
epicenter E of the i-th radial multipole with coordinates (ϕi, λi); estimate the em-
pirical isotropic function;

3. Determine the multipole parameters si, n and μn
i ;

4. Compute the transformed data by removing the contribution of the potential of the
i-th multipole from the data;
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5. Return to step 2 if the desired accuracy is not achieved.

The determination of the relative distance si, the degree n and the moment μn
i , in

step 3, is done on the basis of the empirical isotropic function (EIF) determined in step
2. The EIF is characterized by three parameters: the magnitude of vi

n at the epicenter, the
decreasing length and the curvature. The definition of these parameters is identical to the
definition of those that describe the signal auto-covariance function (i.e. the variance, the
correlation length and the curvature) used in LSC. The optimal degree n, the parameters
si and μn

i , and the location of the radial multipole can be determined by a non-linear
fitting of the EIF to the analytical isotropic function given by the function gi

n(ψi), or
from the closest approximation of the gravity data locally. See Marchenko et al. (2001)
for more details. After all radial multipoles have been selected, the multipole moments
μn

i are re-adjusted by a least-squares estimation.

3.3 Discussion

This chapter gives an overview of the procedures used for the processing of airborne
gravity data, which consists of pre-processing and inversion. The pre-processing con-
sists of several independent steps, such as low-pass filtering, an adjustment of cross-over
misfits, and gridding or interpolation. Each of these steps may introduce errors that ac-
cumulate in the course of processing or limit the resolution of the resulting gravity field.
Therefore, in the next chapter several alternative strategies will be proposed, that replace
the steps of filtering and cross-over adjustment by combining them with the estimation
of gravity field parameters.

For the inversion of airborne gravity data into gravity functionals at ground level, a
number of methods that are used in practice have been outlined, namely integral meth-
ods, least-squares collocation and sequential multipole analysis. Several authors have
compared the performance of the approaches, especially in terms of geoid height er-
rors. Alberts and Klees (2004) investigated the accuracy of the integral methods and
compared them with LSC. They found that least-squares collocation performed slightly
better, but differences between the outcomes were small. A study by Marchenko et al.
(2001) showed that the SMA approach and LSC yield comparable results, which was
confirmed by Klees et al. (2005) who used a simulated data set for the comparison be-
tween the methods.

From these studies it can be concluded that if a proper comparison is made between
the approaches, they yield similar results in terms of geoid height and gravity disturbance
errors at ground level. However, the methods may differ significantly with respect to the
numerical complexity, stability and the extend to which they can be applied in practice.
For instance, the integral methods require the computation of block mean values or in-
terpolation of the data to the integration nodes. Furthermore, the data must be provided
in an area that is much larger than the region for which the gravity functionals are com-
puted. This is especially the case for the two-step integral approaches due to the large
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integration cap size of the Hotine kernel, for which typically a value of 5 degrees is cho-
sen to reduce the far-zone effect. The single-step integral approach is more efficient, but
still a cap size of 1.5-2 degrees is required to obtain accurate results.

The inversion methods differ with respect to the number of base functions that are
required to represent the data and determine the disturbing potential. For LSC the num-
ber of base functions equals the number of observations, which means that the signal-
covariance matrix is generally very large and not easy to invert. In practice, LSC is often
applied block-wise, or data are left out or gridded. When spherical base functions are
used in combination with the application of a data-adaptive algorithm such as the SMA
approach, the number of base functions can be reduced significantly without corrupting
the quality of the solution. The SMA approach depends, however, on a pre-defined level
of accuracy in the iteration scheme. Both LSC and the SMA algorithm do not require
regularization, but the actual noise level may be underestimated.

In the following chapter a different representation of the disturbing potential will be
used. It is based on a linear combination of harmonic functions that are the fundamental
solutions of Laplace’s equation in Cartesian coordinates. The advantages of this ap-
proach are the simple implementation and the fact that the number of base functions only
depends on the resolution that is required. Furthermore, techniques to handle colored
noise that have been developed for satellite gravimetry can be applied directly.
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This chapter gives the theoretical outline of the developed methodology that is applied to
simulated and real data in the following chapters. The approach was first introduced by
Alberts et al. (2005) and further investigated in Alberts et al. (2007a,b). It combines the
processing steps that were discussed in the previous chapter with the estimation of gravity
field parameters in one algorithm. The main advantage of the developed methodology
is that it requires a minimum of pre-processing. The traditional low-pass filtering is
replaced by a frequency-dependent data weighting; frequencies where the noise is high
get a lower weight and vice versa. Furthermore, bias and drift parameters are included
in the functional model, and the data are not gridded but used at the locations where they
have been acquired.

In the first section a suitable gravity field representation is introduced. The disturb-
ing potential is parameterized as a linear combination of harmonic functions that are the
fundamental solutions of Laplace’s equation in Cartesian coordinates. The parameters
of this representation are estimated using least-squares techniques, which are discussed
in section 4.2. Because the inversion of airborne gravity data is an ill-posed problem, a
regularization is applied, which is the topic of section 4.3. Here, Tikhonov regularization
is used, which requires two choices to be made; the choice of the regularization matrix
and the choice of the regularization parameter which determines the weight of the regu-
larization matrix. Section 4.4 describes the frequency-dependent data weighting scheme
to properly take colored noise into account. The approach uses an ARMA model of the
colored noise within a pre-conditioned conjugate gradients (PCCG) scheme. The advan-
tage of this approach is that the variance-covariance matrix of the observations does not
need to be inverted. Other error types such as biases and drifts are treated in section 4.5.
Bias and drift parameters, but also other parameters such as instrument scale factors can
be estimated by including them in the functional model. The chosen representation of
the disturbing potential, described in the first section, implicitly assumes periodicity of
the gravity signal, which results in strong oscillations at the borders of the area. Several
methods are discussed in section 4.6 for the reduction of these edge effects. Finally, sec-
tion 4.7 shows how errors at low frequencies can be reduced by adding prior information
or constraints to the functional model.
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4.1 Gravity field representation

In global gravity field modeling the most frequently used functions to represent the gravi-
tational potential are spherical harmonics, because they are orthogonal on a sphere, which
is an advantage for global gravity field modeling. These functions are obtained as general
solutions of Laplace’s equation in spherical coordinates, using the technique of separa-
tion of variables (see e.g. Heiskanen and Moritz, 1967). However, spherical harmonics
are not convenient for regional applications. Firstly because the number of base functions
would be very large to obtain a high-resolution gravity field solution and, more important,
because it would require data to be available over the whole sphere, which is obviously
not the case for airborne gravimetry.

A more suitable choice of a coordinate system for regional applications is a local
Cartesian reference frame. For Cartesian coordinates the expression of the gravitational
potential is obtained in the same way as for spherical harmonics, by solving Laplace’s
equation. Laplace’s equation in Cartesian coordinates is given as

ΔV (x, y, z) =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0. (4.1)

The transformation from traditionally used ellipsoidal coordinates {ϕ, λ, h} to local Carte-
sian coordinates {x, y, z} is given in appendix B. After separating the variables x, y, z
by writing the potential as

V (x, y, z) = f(x)g(y)h(z), (4.2)

and inserting this expression in Eq. (4.1), the following solution for Laplace’s equation
in Cartesian coordinates is obtained

V (x, y, z) =
∞∑

l=−∞

∞∑
m=−∞

Clm ϕl(x)ϕm(y) e−γlmz, (4.3)

where Clm are coefficients of degree l and order m, and ϕl(x) and ϕm(y) are harmonic
base functions defined as

ϕl(x) =

{
cosαlx, l ≥ 0
sinαlx, l < 0

ϕm(y) =

{
cos βmy, m ≥ 0
sin βmy, m < 0

(4.4)

with

αl =
2π|l|
Dx

, βm =
2π|m|
Dy

. (4.5)

To fulfill the condition of harmonicity (ΔV = 0), γlm is given by definition as

γlm :=
√
α2

l + β2
m = 2π

√(
l

Dx

)2

+

(
m

Dy

)2

. (4.6)
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Figure 4.1: Geometry of the representation in a local Cartesian reference frame.

The parameters Dx and Dy denote the size of the computation domain in the x and y
directions (see figure 4.1). The gravitational potential is thus expressed as a linear combi-
nation of harmonic functions, that are the fundamental solutions of Laplace’s equation in
Cartesian coordinates. The same representation was already used by Tsuboi and Fuchida
(1938) to transform gravity field data from one elevation to another. Note that this rep-
resentation of the disturbing potential is not a planar approximation. Data are used at
the locations where they are observed and their coordinates are transformed to a local
Cartesian coordinate frame, as shown in appendix B for ellipsoidal coordinates.

The longest wavelength that can be represented by Eq. (4.3) is equal to the size
of the area, fixed by Dx and Dy. This requires the application of the remove-restore
technique as described in section 3.2.1, where a long-wavelength model (for instance a
GGM) is subtracted and only the residual field is expressed using Eq. (4.3). Furthermore,
for practical applications the series Eq. (4.3) is truncated at a maximum degree L and
orderM . Then, the disturbing potential is represented by a series of harmonic functions,
expressed in Cartesian coordinates, as

T (x, y, z) =
L∑

l=−L

M∑
m=−M

Clm ϕl(x)ϕm(y) e−γlmz. (4.7)

The minimum wavelength that is represented by this series can be computed from L and
M as

λx =
Dx

L
, λy =

Dy

M
, (4.8)

with λx and λy the wavelength in the x and y directions. Instead of minimumwavelength,
the term spatial resolution is often used, which is characterized in terms of the half-
wavelength that can be resolved. The resolution in x and y direction is λx/2 and λy/2,
respectively.
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The coefficients Clm are unknown, i.e. they must be determined from measured grav-
ity functionals. As mentioned in section 2.3.1, the commonly used observables in air-
borne gravimetry are gravity disturbances, which are related to the disturbing potential
as δg = −∂T/∂r. Approximating the radial derivative by the derivative in the vertical
direction, ∂T/∂r ≈ ∂T/∂z, the relation between observed gravity disturbances, denoted
by Tz, and the unknown coefficients is found by applying the z-derivative operator to Eq.
(4.7). The error introduced by this approximation can be written as

εδg ≈ δg − δg cos
d

R
, (4.9)

where d is the distance from the middle of the area to the location of δg. For d =500
km and δg is 100 mGal, this error is only 0.3 mGal, which is below the noise level of
airborne gravimetry. The expression for Tz reads

Tz(x, y, z) =
∂T

∂z
= −

L∑
l=−L

M∑
m=−M

γlmClm ϕl(x)ϕm(y) e−γlmz. (4.10)

Note that γ00 = 0. Hence, the coefficient C00, which represents the constant part of the
potential, cannot be determined in regional gravity field modeling from airborne gravime-
try measurements. Furthermore, it means that the constant part of the gravity disturbances
Tz is not modeled. Therefore, an extra term κz is added to Eq. (4.7), where κ represents
the constant part of the gravity disturbances. Note that the function κz is also harmonic.

Instead of gravity disturbances, gravity anomalies are also used as observables in
many applications in geodesy or geophysics. The relation between the gravity anomaly
and the disturbing potential was given in section 3.2.1 as

Δg = −∂T
∂r
− 2

r
T ≈ −T

z
− 2

r
T. (4.11)

Inserting the expressions for the disturbing potential (Eq. (4.7)) and the gravity dis-
turbance Tz (Eq. (4.10)) into this equation gives the (approximate) expression for the
gravity anomalies in terms of fundamental solutions of Laplace’s equation in Cartesian
coordinates:

Δg(x, y, z) =

L∑
l=−L

M∑
m=−M

(γlm − 2

r
)Clm ϕl(x)ϕm(y) e−γlmz. (4.12)

4.2 Inversion methodology

4.2.1 Least−squares estimation

The functional model for gravity field recovery from airborne gravity data (Eq. (4.10))
may be written as a standard Gauss-Markov model. The functional model reads

y = Ax + e, (4.13)
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where y is the n × 1 observation vector containing the gravity disturbances Tz, e is the
n × 1 vector of residuals, and x is the u × 1 vector of unknown coefficients Clm. The
n× u design matrix A describes the functional relations between y and x.

The stochastic properties of the residuals are described by the stochastic model

E{e} = 0, E{eeT} = D{e} = Qy, (4.14)

where E{·} denotes the expectation operator, and D{·} the dispersion operator. The
noise in the observations is described by the variance-covariance matrix of e, which is
denoted Qy.

In the absence of prior information the optimal gravity field solution is obtained by
minimizing the quadratic functional

Φ(x) = (y −Ax)TQy
−1(y −Ax), (4.15)

which is equivalent to solving the system of normal equations

(ATQy
−1A)x̂ = ATQy

−1y, (4.16)

where x̂ is the best linear unbiased estimate (BLUE). The product of matrices on the
left-hand side of Eq. (4.16) is called the normal matrix and is denoted by N, i.e

N = ATQy
−1A. (4.17)

The least-squares estimators of the observation vector and the vector of residuals are
given as

ŷ = Ax̂, (4.18)

ê = y − ŷ. (4.19)

4.2.2 Solution strategies

The solution x̂ is obtained by solving the normal equations of Eq. (4.16). If the number
of unknown parameters is huge, the numerical costs to compute N and it inverse are
very large. This section discusses two strategies that can be used to reduce the numerical
costs.

Conjugate gradients

The system of equations can be solved effectively using the conjugate gradients (CG)
method (Hestenes and Stiefel, 1952). Its performance (convergence rate) can be im-
proved by implementing a suitable pre-conditioner P, resulting in the so-called pre-
conditioned conjugate gradients (PCCG) method. The PCCG iterations can be performed
according to the following scheme (e.g Ditmar and Klees, 2002):
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1. x0 = x̃0, r0 = r̃0 = ATQy
−1y, p0 = p̃0 = P−1r0, k = 0;

2. ak = Npk;

3. αk =
rT

k
pk

aT
k
pk
;

4. xk+1 = xk + αkpk;

5. rk+1 = rk − αkak;

6. ek = r̃k − rk+1;

7. γk = − rT
k+1ek

r̃k−rT
k+1ek

;

8. x̃k+1 = xk+1 + γk(x̃− xk+1;

9. r̃k+1 = rk+1 + γk(r̃− rk+1;

10. If ‖rk+1‖

‖r0‖
< ε set x = x̃k+1, stop;

11. p̃k+1 = P−1rk+1;

12. βk+1 =
rT

k+1p̃k+1

rT
k
p̃k

;

13. pk+1 = p̃k+1 + βk+1pk;

14. k = k + 1, go to item (2).

The advantage of the conjugate gradients method is that the normal matrix does not have
to be computed explicitly. Instead, the application of the normal matrix to a vector p

(step 2) is performed, which can be decomposed into a sequence of three matrix-vector
multiplications:

1. u = Ap;

2. v = Qy
−1u;

3. q = ATv.

The first step, the application of the design matrixA to a vector, is nothing but a synthesis
as expressed in Eq. (4.10). The multiplication of the matrix Qy

−1 to the resulting vector
can be interpreted as filtering. The final step, the application of the transposed design
matrix AT to the filtered vector is called co-synthesis. The co-synthesis is given as

qlm = −γlm

n∑
i=1

ϕl(xi)ϕm(yi)e
−γlmzivi (4.20)

for −L ≤ l ≤ L and −M ≤ m ≤ M , with n the number of observations Tz, the set
{xi, yi, zi} describes the position of observation i, and vi the i-th entry of v.
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Cholesky factorization

Since the normal matrixN is a symmetric positive definite matrix with real entries, it can
be decomposed as (e.g. Golub and Van Loan, 1996)

N = GG∗, (4.21)

where G is a lower triangular matrix with positive diagonal entries, and G∗ denotes the
conjugate transpose of G. The decomposition in Eq. (4.21) is called Cholesky factoriza-
tion. It can be used for the numerical solution of a linear system of equations Nx = b

by first computing the Cholesky decomposition, then solving the system Gp = b for p,
and finally solving GTx = p to obtain the solution x.

4.3 Regularization and parameter choice rule

The inversion of airborne gravity data is an ill-posed problem. A problem

y = Ax (4.22)

is called ill-posed if at least one of the following conditions is not satisfied (e.g. Schwarz,
1979):

1. The solution of Eq. (4.22) exists for any y;

2. The solution of Eq. (4.22) is unique;

3. The solution of Eq. (4.22) depends continuously on y.

For airborne gravimetry it is the third condition that is not satisfied. Difficulties arise
because a comparatively smooth function (e.g. gravity disturbances at flight level) is used
to compute a more detailed, and thus less smooth, function (e.g. gravity disturbances at
ground level). As a result the LS solution strongly oscillates, because data errors and
unmodeled signal get strongly amplified due to the ill-conditioning of the normal matrix.
In practical applications the stability of the problem not only depends on observational
errors, but also on the number of observations and their distribution.

4.3.1 Regularization method

Several methods exist to solve the problem of ill-posedness of inverse problems. Among
the most often used in geodesy are Tikhonov-Phillips regularization and truncated sin-
gular value decomposition. For the methodology derived in this chapter the method of
Tikhonov-Phillips regularization (often just called Tikhonov regularization) is used. The
regularized solution is obtained as

x̂α = (ATQy
−1A + αR)−1ATQy

−1y (4.23)
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with the regularization parameter α and a symmetric positive (semi-)definite regulariza-
tion matrix R. This estimate minimizes the penalized LS functional

Φα(x) = (y −Ax)TQy
−1(y −Ax) + αxTRx. (4.24)

It can be shown that the solution x̂α depends continuously on the data y (e.g. Kress
(1989)).

From Eq. (4.23) it is clear that both the choice of regularizationmatrix and regulariza-
tion parameter play an important role in obtaining an optimal solution. Bouman (1998)
compared signal constraint with first- and second-derivative constraints for the downward
continuation of airborne gravity data. The results for the first- and second-derivative con-
straints were comparable and slightly better than the signal constraint. In Bouman (2000),
however, it was found that for global gravity field modeling the signal constraint was
slightly preferable, but differences were small. The choice of the regularization matrix
R thus seems to depend on the application and more than one should be considered. In
this thesis, the regularization with signal constraint, also called zero-order Tikhonov reg-
ularization (ZOT), will be compared with the first-derivative constraint, called first-order
Tikhonov regularization (FOT), and least-squares collocation.

Zero-order Tikhonov regularization (ZOT)

For spherical harmonics, zero-order Tikhonov (ZOT) regularization is equivalent to min-
imizing the L2-norm of the disturbing potential on a sphere with radius R, which results
in a regularization matrix equal to unity. For the base functions used here, defined by Eq.
(4.7), it means that the L2-norm of the disturbing potential is minimized at z = 0. The
derivation of the ZOT matrix, which is given in appendix D, is done in the same way as
in Ditmar et al. (2003) for spherical harmonics. The regularization term in the objective
function of Eq. (4.24) is defined as

ΦZOT =

∫∫
D

T 2(x, y, z)dx dy, (4.25)

where the integration domain D is the computation area. Inserting the expression of
Eq. (4.7) into the regularization condition of Eq. (4.25) and changing the order of inte-
gration and summation yields

ΦZOT =
DxDy

4
xTRZOTx, (4.26)

where the entries of RZOT are given as (see appendix D)

RZOT
ij =

⎧⎨
⎩

4 δij e
−2γlimi

z, if li = mi = 0
2 δij e

−2γlimi
z, if li = 0 ormi = 0

δij e
−2γlimi

z, otherwise.
(4.27)
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Note that the ZOT regularization matrix would also be equal to the unity for this case,
if the base functions were normalized. Furthermore, the constant term DxDy/4 in Eq.
(4.26) can be ignored since the regularization matrix has to be scaled by the regulariza-
tion parameter α. Then, in case of orthonormal base functions, ZOT regularization is
equivalent to adding αI to the normal matrix.

First-order Tikhonov regularization (FOT)

Analogous to the derivation of ZOT regularization, the expression for first-order regular-
ization can be derived. Instead of the gravity potential itself, the horizontal gradient of
the gravity potential at z = 0 is minimized, i.e.

ΦFOT =

∫∫
D

(∇HT (x, y, z))2dx dy, (4.28)

where ∇H is the surface gradient operator

∇H =

⎛
⎜⎝

∂
∂x
∂
∂y

0

⎞
⎟⎠ .

Inserting the expression for the disturbing potential Eq. (4.7) into the regularization
condition above and using the orthogonality properties of the sine and cosine functions,
the following expression is obtained

ΦFOT =
DxDy

4
xTRFOTx, (4.29)

where Dx and Dy denote the size of the area. The elements of the regularization matrix
RFOT are given as

RFOT
ij =

⎧⎨
⎩

0 if li = mi = 0
2 δij(α

2
li

+ β2
mi

) e−2γlimi
z, if li = 0 ormi = 0

δij(α
2
li

+ β2
mi

) e−2γlimi
z, otherwise.

(4.30)

with αl, βm and γlm being defined by Eq. (4.5).

4.3.2 Regularization error

Although regularization stabilizes the solution of Eq. (4.16), it is not obtained without a
penalty. Regularization namely introduces a bias into the solution. Furthermore, instead
of obtaining the solution x̂ from error-free data, the regularized solution x̂ε

α is obtained
from erroneous data yε. The total error in the solution is given as (Bouman, 1998)

δx̂ = x̂ε
α − x̂ = N−1

α ATQ−1
y (yε − y) + (N−1

α −N−1)ATQ−1
y y, (4.31)
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where Nα = (ATQ−1
y A + αR). The first term on the right-hand side is called the data

error, the second one is the regularization error. Bouman (1998) shows that the latter
term is equal to the bias as studied in Xu (1992a,b). Because E{(yε − y)} = 0, the
expectation of the total error δx̂ yields

E{δx̂} = Δx =
(
(ATQ−1

y A + αR)−1 − (ATQ−1
y A)−1

)
ATQ−1

y Ax

= (ATQ−1
y A + αR)−1(ATQ−1

y A + αR− αR)x− Ix

= −(ATQ−1
y A + αR)−1αRx, (4.32)

which is only equal to zero if α = 0.

4.3.3 Relation to least−squares collocation

The least-squares collocation formula for data with observation noise yε = y + ε, given
in section 3.2.3, may be written as

xε = Cxy(Cyy + Cεε)
−1yε, (4.33)

where x is the signal to be recovered, Cyy is the signal auto-covariance matrix of y, Cxy

is the cross-covariance matrix between x and y and Cεε is the noise covariance matrix.
The signal and noise are here assumed to be uncorrelated. Using the relations

Cxy = CxxA
T

Cyy = ACxxA
T ,

and setting Cεε = σ2I, Eq. (4.33) can be written as (Rummel et al., 1979; Bouman,
1998)

xε = CxxA
T (ACxxA

T + σ2I)−1yε

= (σ−2ATA + C−1
xx )−1ATyε

= (ATA + σ2C−1
xx )−1ATyε. (4.34)

which is the minimization of

Φα=1(x) = ‖Ax− y‖2
Cεε

+ ‖x‖2
C

−1
xx
. (4.35)

Comparing Eq. (4.34) with Eq. (4.23) it is clear that, with R = σ2C−1
xx , Tikhonov

regularization and least-squares collocation are formally equivalent. The only difference
is a factor α, which is usually set equal to one in least-squares collocation. Naturally, this
factor is implicitly used if σ2 is set to a different value than the actual observation noise.
The obtained relation shows that LSC is a special kind of regularization method which
provides a statistical motivation to a particular choice of regularization matrix.
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4.3.4 Parameter choice rule

The crucial point in obtaining a stable solution when using a regularization method such
as Tikhonov regularization is the selection of the regularization parameter α. This pa-
rameter controls the trade-off between the accuracy and the degree of smoothness of the
solution. In this thesis two approaches will be used: Generalized cross-validation (GCV)
and Variance Components Estimation (VCE). Both methods are heuristic a posteriori
methods, which means that the methods do not depend on prior assumptions concerning
the unknown solution, but are based on the actual data, and that exact knowledge of the
variance factor is not required.

Generalized cross-validation (GCV)

The method of generalized cross-validation for finding the optimal regularization param-
eter was first proposed by Golub et al. (1979). The idea of cross-validation is that if an
arbitrary element of the observation vector is left out, the corresponding regularized so-
lution should predict this observation well. The regularization parameter that gives the
optimal solution is the one for which the cross-validation function is minimal, which is
denoted by arg min. Assuming uncorrelated observations of equal weight, the ordinary
cross-validation parameter αcv is given as

αcv = arg min
1

n

n∑
k=1

(
(Ax̂[k]

α )k − yk

)2

= arg min
1

n

n∑
k=1

((Ax̂α)k − yk)
2

(1−Qα
kk)

2
, (4.36)

where n is the number of observations, x̂[k] is the leave-out-one solution, and Qα
kk are the

main diagonal elements of the influence matrix Qα, defined as

Qα = A(ATA + αR)−1AT . (4.37)

For the derivation of the second expression in Eq. (4.36) see Golub and Van Loan (1996).
For the computation of the generalized cross-validation parameter αgcv, the weights (1−
Qα

kk) are replaced by their average, which is trace(I−Qα)/n, resulting in

αgcv = arg min
n‖Ax̂α − y‖2

(trace(I−Qα))2
. (4.38)

In the presence of colored noise, which is the case for unfiltered airborne gravity measure-
ments, Eq. (4.38) has to be de-correlated using the inverse covariance matrixQy

−1. Fur-
thermore, the denominator may be rewritten using the relation trace(AB) = trace(BA).
Then, the expression for the GCV parameter becomes

αgcv = arg min
n‖Ax̂α − y‖2

Qy
−1

(n− u+ αTα)2
, (4.39)
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with
Tα = trace(L(ATQy

−1A + αR)−1LT ), (4.40)

where the regularization matrix is decomposed as R = LT L. For large scale problems,
the computation of the trace term, which includes the computation of the inverse normal
matrix, may become time consuming or even impossible. The numerical efficiency can
be improved by using stochastic trace estimation (STE) (Girard, 1989). The use of STE
in GCV was discussed in the context of global gravity field modeling by Kusche and
Klees (2002). An unbiased estimation of the trace term can be obtained as

T̂α = zTL(ATQy
−1A + αR)−1LTz, (4.41)

where z is a random vector with

E{z} = 0, D{z} = I. (4.42)

Following (Hutchinson, 1990), the vector z contains independent samples of the values
+1 and −1 with equal probability. The computation of the estimator T̂α is done in three
steps:

1. Generate a random vector z,

2. solve the system (ATQy
−1A + αR)qα = LTz for qα, and

3. compute T̂α = zTLqα.

In order to find the minimum of the GCV function, golden section search (Kiefer, 1953)
can be applied.

Variance component estimation (VCE)

The regularization of the system Eq. (4.16) can also be interpreted as adding prior infor-
mation. Then, the regularization parameter can be obtained as the ratio of two variance
components, as proposed by Arsenin and Krianev (1992). It is a special case of a sce-
nario with heterogeneous data divided in p observation groups, for which the observation
model of each group can be written as (see e.g. Koch and Kusche (2002))

yi = Aix + ei, E{ei} = 0, D{yi|σ2
i } = σ2

i Qi, i = 1, . . . , p (4.43)

where σ2
i is a variance component that determines the relative weight of observation

group i. If the observations are combined with prior information μ, an additional obser-
vation group is introduced for which the observation model reads

μ = x + eμ, D{μ|σ2
μ} = σ2

μQμ, (4.44)

where μ is a u× 1 vector containing the prior information and Qμ is the cofactor matrix.
The variance components σ2

i are unknown random parameters as the optimal weighting of
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different observations or observations groups is generally not known. The variance com-
ponent σ2

μ is also assumed unknown. Combining equations Eq. (4.43) and (4.44) gives
the observation model with unknown variance components (Koch and Kusche, 2002)⎡

⎢⎢⎢⎣
y1
...
yp

μ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A1
...

Ap

I

⎤
⎥⎥⎥⎦x+

⎡
⎢⎢⎢⎣

e1
...
ep

eμ

⎤
⎥⎥⎥⎦ , E{

⎡
⎢⎢⎢⎣

e1
...
ep

eμ

⎤
⎥⎥⎥⎦} = 0,

D{

⎡
⎢⎢⎢⎣

y1
...
yp

μ

⎤
⎥⎥⎥⎦} = σ2

1P1 + · · ·+ σ2
pPp + σ2

μPμ, (4.45)

where

P1 =

⎡
⎢⎢⎢⎣

Q1 · · · 0 0
...

. . .
...

...
0 · · · 0 0

0 · · · 0 0

⎤
⎥⎥⎥⎦ , · · · , Pp =

⎡
⎢⎢⎢⎣

0 · · · 0 0
...

. . .
...

...
0 · · · Qp 0

0 · · · 0 0

⎤
⎥⎥⎥⎦ ,

Pμ =

⎡
⎢⎢⎢⎣

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

0 · · · 0 Qμ

⎤
⎥⎥⎥⎦ .

The least-squares estimate x̂ of the unknown parameters x follows from the normal equa-
tions

Nx̂ = b, (4.46)

with

N =
1

σ2
1

AT
1 Q−1

1 A1 + · · ·+ 1

σ2
p

AT
p Q−1

p Ap +
1

σ2
μ

Q−1
μ , (4.47)

b =
1

σ2
1

AT
1 Q−1

1 y1 + · · ·+ 1

σ2
p

AT
p Q−1

p yp +
1

σ2
μ

Q−1
μ μ. (4.48)

For the processing of airborne gravity data each flight track can be considered as
a separate observation group. In that case a variance component has to be estimated
for each flight track according to the equations above. If the set of airborne gravity
measurements is considered as one observation group y1 that is combined with the prior
information μ, the normal equations are given as

(
1

σ2
1

AT
1 Q−1

1 A1 +
1

σ2
μ

Q−1
μ )x̂ =

1

σ2
1

AT
1 Q−1

1 y1 +
1

σ2
μ

Q−1
μ μ. (4.49)
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Introducing the regularization parameter α as the ratio of the two variance components

α =
σ2

1

σ2
μ

, (4.50)

this can be rewritten as

(AT
1 Q−1

1 A1 + αQ−1
μ )x̂ = AT

1 Q−1
1 y1 + αQ−1

μ μ. (4.51)

For μ = 0 the last term on the right-hand side of Eq. (4.51) is zero and the solution for
Tikhonov regularization is obtained with R = Q−1

μ .
Starting from approximate values, the unknown variance components σ2

1 and σ2
μ are

computed iteratively until convergence is reached. For the estimation of the components
several approaches have been proposed (see e.g. Crocetto et al. (2000); Van Loon (2008)).
When the iterative maximum-likelihood method is used, the estimates are obtained as

σ̂2
1 =

êT
1 Q−1

1 ê1

r1
and σ̂2

μ =
êT

μQ−1
μ êμ

rμ

, (4.52)

where ê1 and êμ denote the vectors of residuals

ê1 = A1x̂− y1 and êμ = x̂− μ, (4.53)

and r1 and rμ the partial redundancies, i.e. the contributions of, respectively, the obser-
vations y1 and the prior information μ to the overall redundancy (n + u)− u = n. The
partial redundancies are computed as (Koch and Kusche, 2002)

r1 = n1 − tr(
1

σ2
1

AT
1 Q−1

1 A1N
−1), n1 = n

rμ = u− tr(
1

σ2
μ

Q−1
μ N−1), (4.54)

with

N =
1

σ2
1

AT
1 Q−1

1 A1 +
1

σ2
μ

Q−1
μ . (4.55)

The computation of the trace term to obtain the partial redundancies in Eq. (4.54) re-
quires the inversion of the normal matrix N, which may not be possible or too time
consuming for a large number of gravity field parameters. Similar to the problem of gen-
eralized cross-validation, discussed in the previous section, the numerical efficiency can
be improved using stochastic trace estimation.

4.4 Frequency−dependent data weighting

The standard approach to deal with the extremely large noise in airborne gravity mea-
surements is to apply an aggressive low-pass filtering to the data, which was discussed
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in section 3.1.1. However, low-pass filtering also deteriorates (part of) the signal. Gen-
erally, a larger filter length leads to less noise in the obtained signal, but the signal gets
attenuated as well, which limits the resolution of the gravity signal. Furthermore, noise
in the filtered signal is often assumed to be white in the frequency band of interest, which
is generally not the case.

Unfiltered airborne gravity measurements are contaminated by colored noise, i.e. the
noise is non-uniformly distributed over the frequencies. For a proper handling of colored
noise in the estimation of gravity field modeling, an adequate noise model must be used.
Such a model may include a dependence of noise on frequency. Then, the concept of
(low-pass) filtering is replaced by the concept of frequency-dependent data weighting.
Frequencies at which the noise is large get a lower weight than frequencies at which the
noise is small. If the noise statistics are known a maximum of the signal is preserved.

The handling of colored noise in satellite gravimetry data has been discussed by
several authors. Schuh (1996) proposed to de-correlate observations and the functional
model by autoregressive moving-average (ARMA) filters. This idea was used by Schuh
(2003) and Klees et al. (2003) to develop efficient computational algorithms to handle sta-
tionary colored noise in solving large systems of equations. The question how to obtain
such an ARMA model was discussed in Klees and Broersen (2002). A problem of using
de-correlation by filtering is edge effects, that show up at the beginning and at the end of
a data segment, thus also when data gaps are present. Klees and Ditmar (2004) proposed
a methodology using a PCCG algorithm based on ARMA filters, which does not intro-
duce approximations when applying the inverse covariance matrix, even when there are
data gaps. Ditmar and van Eck van der Sluijs (2004) also used the PCCG scheme, but
they approximated the noise dependence on frequency by an analytic relationship. Fur-
thermore, Ditmar et al. (2004) showed how this procedure can take non-stationary noise
into account.

A generalization of the frequency-dependent data weighting approach was given by
Ditmar et al. (2007), who showed that any dependence of noise on frequency can be
combined with non-stationary noise. Furthermore, they discussed how a dependence of
noise on frequency can be derived from the data. They successfully applied the developed
methodology to the processing of CHAMP (CHAllenging Minisatellite Payload) satellite
(Reigber et al., 1996) data.

Here, a review of the developed approach will be given with application to the han-
dling of colored noise in unfiltered airborne gravimetry data.

4.4.1 ARMA filters and Toeplitz systems

When dealing with colored noise, the covariance matrix of the observations will be non-
diagonal. Therefore, the inverse Qy

−1 cannot be easily computed when the number of
observations is large. However, the product Qy

−1A can be considered as the application
of Qy

−1 to the columns of A. Then, the problem is reduced to solving a system of linear
equations with equation matrix Qy.
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If it is assumed that the noise is stationary and if there are no data gaps in the time
series of measurements, the covariance matrix is Toeplitz. An efficient method to solve
Toeplitz systems has been proposed by Klees et al. (2003), which has a numerical com-
plexity of O(n). The approach uses an ARMA model of the colored noise:

ξn = εn −
p∑

k=1

ap,kξn−k +

q∑
i=1

bq,iεn−i, n ∈ Z, (4.56)

where ξn is the colored noise process, εn is a white noise process with zero mean and
variance σ2

ε , and Z denotes the set of integer values (for more details see e.g. Brock-
well and Davis, 1991). The coefficients ap,k : k = 1, . . . , p and bq,i : i = 1, . . . , q are the
model parameters and the pair (p, q) defines the order of the ARMA model. There are
two special cases: if p = 0, the process is a moving-average process of order q (MA(q)),
and if q = 0, the process is purely autoregressive of order p (AR(p)). Eq. (4.56) can be
written in a compact form as

Ap(z)ξn = Bq(z)εn, n ∈ Z, (4.57)

or as

ξn =
Bq(z)

Ap(z)
εn, (4.58)

where Ap(z) and Bq(z) are the polynomials

Ap(z) = 1 +

p∑
k=1

ap,kz
k, (4.59)

Bq(z) = 1 +

q∑
i=1

bq,iz
i. (4.60)

The z term in the equations above must be interpreted as a shift operator, defined by
zjξn = ξn−j for arbitrary j ∈ Z . The sequence ξn can be seen as the output of a rational
filter with transfer function

H(z) =
Bq(z)

Ap(z)
, |z| ≤ 1, (4.61)

where the input is a white noise sequence with variance σ2
ε , i.e. the covariance matrix

of a vector ε = [ε1, . . . , εN ]T , is σ2
εI. Then, the covariance matrix of the vector ξ =

[ξ1, . . . , ξN ]T is Q̃y = σ2
εGGT , where G is a matrix that relates the output s of the filter

with transfer functionH(z) of Eq. (4.61) to the input t as s = Gt.
In general, the matrix Q̃y is only an approximation to the Toeplitz covariance matrix

Qy of the colored noise, due to initialization of the filter. However, only a few elements in
the upper-left part of the matrix Q̃y differ significantly from their corresponding elements
in Qy.
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Since the matrix G is a lower triangular Toeplitz matrix (see e.g. Hayes, 1996), and
every Toeplitz matrix is per-symmetric (symmetric about the anti-diagonal), it holds that
GT = XGX, where X is the exchange matrix, which has ones on the anti-diagonal and
all other elements are zero. Therefore, the matrix Q̃y can be written as

Q̃y = σ2
εGXGX. (4.62)

Because X−1 = X, the approximate solution of the system Qyv = u can now be ob-
tained as

ṽ =
1

σ2
ε

XG−1 XG−1 u, (4.63)

which is schematically shown in figure 4.2. Thus, the approximation ṽ of v can be
obtained in the following way (Klees et al., 2003; Klees and Ditmar, 2004):

1. Filter u (filter with transfer function H(z)−1);

2. Flip result of step 1 (apply exchange matrix);

3. Filter result of step 2 (filter with transfer function H(z)−1);

4. Flip result of step 3 (apply exchange matrix);

5. Scale result of step 4 with 1/σ2
ε .

u H(z)−1 X H(z)−1 X 1/σ2
ε ≈ Qy

−1u� �

Figure 4.2: Approximate computation of Qy
−1u using ARMA filtering. H(z)−1 is the transfer

function of the ARMA filter and X is the exchange matrix. After Klees et al. (2003).

In the presence of data gaps, this approach corrupts the data series before and after
each data gap, even if gaps are ignored, or filled with zeroes or interpolated observations,
or if data segments separated by data gaps are treated as uncorrelated. The most simple
solution is to remove the corrupted segments after filtering from the solution, but this
approach has two drawbacks. First, this may lead to significant reduction of redundancy
if many gaps are present in the data. For airborne gravimetry each profile is considered
a new segment, which means that for each profile the begin and end of the profile would
be discarded. Secondly, the symmetry of the covariance matrix is violated and, therefore,
the symmetry of the normal matrix, which makes the LS inversion more difficult. The
next section discusses an alternative approach, proposed by Klees and Ditmar (2004),
that properly handles colored noise in the presence of data gaps.
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4.4.2 ARMA filtering in the presence of data gaps

The approach presented in Klees and Ditmar (2004) aims at obtaining the exact solution
of Qyv = u and has the same numerical complexity as the ARMA filtering approach,
discussed in the previous section. Furthermore, the approach does not produce any edge
effects at the beginning of the data series and in the vicinity of data gaps, and does not
rely on discarding data in the course of processing.

The basic idea is to solve the system Qyv = u iteratively, using a PCCG procedure.
Within each iteration this requires the exact multiplication of the variance-covariance
matrix with a vector and an approximate multiplication of the inverse covariance matrix
with a vector. The second step serves as a pre-conditioning for which the procedure
outlined in the previous section offers a fast and efficient way to perform this operation.

The first step, i.e. the multiplication of the covariance matrix to a vector, is a straight-
forward series of operations, see Eq. (4.62). However, as mentioned in the previous
section, this operation only provides an approximation due to the initialization of the fil-
ter. Therefore, the idea of infinite extension of the data, as presented in Klees and Ditmar
(2004) and Ditmar and van Eck van der Sluijs (2004), is used. First, it is assumed that
the data set contains no data gaps and is infinite in time, i.e. the infinite extensions of y

and Qy are denoted by y∞ and Q∞
y , respectively.

The actual data set can then be obtained from the infinite one by extracting the se-
lected measurements. Such an extraction can be performed by applying a mask matrix
M, which can be obtained from the infinite unit matrix by keeping only the rows that
correspond to the actual measurements. Thus, the relation between the actual arrays and
their infinite counterparts can be written as

y = My∞, (4.64)

Qy = MQ∞
y MT . (4.65)

Using the latter expression with Eq. (4.62), the covariance matrix can be rewritten as

Qy = σ2
εMG∞X∞G∞X∞MT . (4.66)

Then the computation of Qyd within the PCCG procedure can be obtained by applying
the following steps (Klees and Ditmar, 2004):

1. Extend d with zeroes (apply transposed mask matrix);

2. Flip extended vector de (apply exchange matrix);

3. Filter result of step 2 (filter with transfer function H(z));

4. Flip result of step 3 (apply exchange matrix);

5. Filter result of step 4 (filter with transfer function H(z));
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6. Extract required entries from step 5 (apply mask matrix);

7. Scale result of step 6 with σ2
ε .

The exact computation of Qyd, which is shown schematically in figure 4.3, would re-
quire to extend the vector with infinitely many zeros. However, when the ARMA model
is causal and invertible (cf. Brockwell and Davis, 1991), the filter coefficients decay
quickly. In practice, the number of zeroes to be added depends on the desirable accuracy
of the computation.

d MT X H(z) X H(z) M σ2
ε

= Qyd� �

Figure 4.3: Exact computation of Qyd using ARMA filtering. After Klees and Ditmar (2004).

With the described algorithms, the solution of Qyv = u can be computed with
the following pre-conditioned conjugate gradient procedure (see also Klees and Ditmar,
2004):

1. v0 = 0, r0 = u, p̃0 = p0 = Q−1
y v0, k = 0;

2. bk = p̃T
k rk;

3. Extend pk by adding zeroes for missing data;

4. ak = Qypk (cf. figure 4.3);

5. Replace elements of ak at the locations where data were missing by zeroes;

6. γk =
rT

k
pk

aT
k
pk
;

7. vk+1 = vk + γkpk;

8. rk+1 = rk − γkak;

9. If ‖rk+1‖ < ε1 and difference (vk,vk+1) < ε2, stop;

10. p̃k+1 = Q−1
y rk+1 (cf. figure 4.2);

11. βk+1 =
rT

k+1p̃k+1

rT
k
p̃k

;

12. pk+1 = p̃k+1 + βk+1pk;

13. k = k + 1, go to item (2).
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Note that this PCCG procedure may either be applied in each iteration step of the PCCG
procedure for the estimation of the gravity field parameters as described in section 4.2.2,
or in the explicit computation of the normal matrix when the Cholesky decomposition
is used. In the latter case the filtering operation is applied to the columns of the design
matrix A.

4.4.3 Description of the noise model

The procedure described in the previous subsection uses an ARMA model of the colored
noise to solve the system Qyv = u. This section describes how such an ARMA model
can be obtained. First it is assumed that a noise realization or noise power spectral den-
sity (PSD) function is given, from which an ARMA model can be estimated. In practice,
however, this information is usually not available and must be obtained prior to ARMA
model estimation. Two strategies to obtain a noise model are discussed. The first strategy
uses an analytically derived filter that can either be used directly in the filtering scheme
or it can be used to obtain a PSD that serves as input to ARMA model estimation. Alter-
natively, a noise model may be obtained from a-posteriori LS residuals, that are used as
a first approximation of the colored noise.

ARMA model identification

Usually an ARMA representation is obtained from a noise realization. The correspond-
ing estimation procedure is known as model identification, which is a standard problem in
time-series analysis (see e.g. Kay and Marple, 1981; Brockwell and Davis, 1991). There
are many situations where, instead of a noise realization, only a noise PSD is available.
For example, the expected performance of the gradiometer on board the Gravity Field
and Ocean Circulation Explorer (GOCE) satellite (ESA, 1999), is provided by the man-
ufacturer in terms of an estimated noise PSD function. A procedure for ARMA model
identification from a PSD function was developed by Klees et al. (2003) and discussed
in more detail in Klees and Broersen (2002). Furthermore, Klees and Broersen (2002)
presented a modified approach for model identification from a noise realization, which
has a better performance when applied to short time-series (few hundred samples). It
combines known techniques for model parameter estimation with finite-sample order se-
lection criteria.

The first step in the determination of an ARMA model to represent an observed sta-
tionary time series, is the computation of AR, MA, and ARMA models up to a pre-
defined maximum order (p, q). For each model type, the best-fitting model is selected ac-
cording to a statistical selection criterion. When the best-fitting AR, MA, ARMAmodels
have been identified, the final step is to make a selection among these three, using the
minimum prediction error. A detailed discussion is given in Broersen (2000).

When the noise sequence contains gaps or if only a PSD function is available, a
slightly different procedure has to be used. The starting point is the computation of the
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auto-covariance sequence. From a noise series it can be computed directly, if a PSD is
used it is obtained by an inverse Fourier transform. The auto-covariance sequence can
be transformed into a very long AR model, which serves as the basis model to estimate
and select AR, MA, and ARMA models. After the order of the models is selected, the
AR, MA, and ARMAmodels are estimated as outlined in Klees and Broersen (2002) and
Klees et al. (2003). Once the best-fitting AR, MA, and ARMA models are identified, the
final step comprises the selection among these three best-fitting models according to a
statistical selection criterion.

Note that a noise PSD function contains much less information than a noise realiza-
tion. Therefore, the method of model identification from a PSD should only be used if
a noise realization is not available. In the following it is discussed how a realistic noise
PSD function or noise realization can be obtained for airborne gravity measurements.

Analytical filtering

The largest contribution to the noise in airborne gravity measurements comes from the
double differentiation of GPS positions, to obtain aircraft accelerations. If the three-point
rule is used for the numerical differentiation of vertical aircraft positions h, i.e.

f(t) =
∂2h(t)

∂t2
.
=
h(t−Δt)− 2h(t) + h(t+ Δt)

Δt2
, (4.67)

the noise in the gravity observations due to positioning errors can, according to the law
of variance-covariance propagation, be represented as

Qy = DQhD
T , (4.68)

where D is the matrix of double differentiation

D =
1

Δt2

⎡
⎢⎣

1 −2 1
. . . . . . . . .

1 −2 1

⎤
⎥⎦ , (4.69)

and Qh describes the noise in the vertical GPS positions. Assuming white noise in the
GPS positions, the matrix Qh is given as σ2

hI, with σh the standard deviation of the GPS
noise.

The inverse variance-covariance matrixQy
−1 could be obtained ifDwould be invert-

ible. Obviously this is not the case; foremost because the matrix D is not square. Ditmar
and van Eck van der Sluijs (2004) apply several steps to make D invertible: 1) the first
and last columns are removed to obtain a square matrix; 2) the top-right and bottom-left
corners are filled with value 1; 3) the matrix is made positive-definite by changing the
sign; and 4) the matrix is regularized by adding a small value ε2 to the diagonal elements.
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The resulting circulant approximation of D is then given as

D̃ =
1

Δt2

⎡
⎢⎢⎢⎢⎢⎣

2 + ε2 −1 −1
−1 2 + ε2 −1

. . . . . . . . .
−1 2 + ε2 −1

−1 −1 −2 + ε2

⎤
⎥⎥⎥⎥⎥⎦ . (4.70)

A circulant matrix is a special kind of Toeplitz matrix where each row vector is rotated
one element to the right relative to the preceding row vector. Its inverse, which is also
circulant, can be obtained by means of the discrete Fourier transform (Davis, 1979).
Following the derivation in Ditmar and van Eck van der Sluijs (2004), the matrix D̃ is
written as

D̃ = F∗SDF, (4.71)

where F is the matrix of the discrete Fourier transform

{F}j,k = e
i
2π(j − 1)(k − 1)

N , j, k = 1, . . . , N, (4.72)

with N the number of rows/columns of D̃; F∗ is its transposed complex-conjugate and
SD is a diagonal matrix, obtained by distributing the discrete Fourier spectrum of the first
row of D̃ along the main diagonal, i.e.

SD = diag

(
1

N
F
{
D̃
}

1

)
. (4.73)

Then, the inverse of D̃ is obtained as

D̃−1 =
1

N2
F∗SD

−1F. (4.74)

Using Eqs. (4.70), (4.72) and (4.73) the elements of SD can be computed analytically as
(Ditmar and van Eck van der Sluijs, 2004)

{SD}kk =
1

N(Δt)2

[
2(1− cos(ωkΔt)) +

(
Δt

τ

)2
]
, (4.75)

where ωk is the angular frequency (corresponding to the k-th spectral line): ωk = 2πk/(NΔt),
and τ = Δt/ε is the filter half-width. The latter determines the noise level of the PSD
at low frequencies (Ditmar et al., 2007). The expression of Eq. (4.75) can be used to
compute the approximate noise PSD function. The unknown parameters τ and σh of the
noise representation have to be determined. This can be done using ground truth data, or
using the strategy that is discussed in the next subsection.
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The computation of the function given in Eq. (4.75) allows a direct analytical im-
plementation of the corresponding noise covariance matrix (see e.g. Liu, 2008). Alter-
natively, the PSD function can be used to derive an ARMA model as discussed in the
previous subsection, which is used in the low-level PCCG scheme as outlined in section
4.4.2. This way, the part of the colored noise, which is the result of double differen-
tiation of vertical GPS positions can be taken into account. A similar approach could
be used to model gravimeter noise, of which the largest contributors are spring tension
noise and beam velocity noise. The latter is derived from beam positions by numerical
differentiation.

Noise estimation from least-squares residuals

In practice, the noise characteristics may be different for each flight due to the sensor
used and the flight conditions. Therefore, an approach similar to the one proposed by
Liu et al. (2007) and Ditmar et al. (2007) can be used to obtain a noise model of airborne
gravity data. It uses the residuals of a preliminary least-squares solution to estimate a
noise model, which is used as input to the frequency-dependent data weighting scheme.

The first five steps are equivalent to the procedure presented in Liu (2008).

1. Compute a posteriori residuals ê = y − Ax̂ with Qy = I. The residuals are
considered as an approximation of the data noise;

2. Estimate the noise auto-covariance function from the a posteriori residuals as

ck =
1

Nk

Nk∑
j=1

ejej+k k = 0, . . . , Na, (4.76)

where ej and ej+k are LS residuals separated by lag k, Nk is the number of pairs
that are used to estimate the k-th auto-covariance element, andNa is the maximum
lag for which the auto-covariance is estimated. In practice, it is advisable to choose
Na ≤ N/10, where N is the total number of residuals used for the estimation
(Klees and Broersen, 2002);

3. Order the auto-covariance elements such that the element with index zero is the
first one: c = (c0, c1, . . . , cNa−1, cNa

, cNa−1, . . . , c1);

4. Truncate the auto-covariance elements to ensure that the estimated PSD (step 5)
is positive for all frequencies. The auto-covariances are multiplied by a truncation
function that rapidly decreases in time:

c̃k := ckwk, k = 0, . . . , Na, (4.77)

with

wk = e
− (kΔt)2

2Q2 , (4.78)
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where Q is the maximum possible half-width of the truncation function, which can
be determined empirically.

5. Estimate the noise PSD u(f). The noise PSD can be estimated from the auto-
covariance sequence trough a discrete Fourier transformation (Kay and Marple,
1981):

u ≈ ΔtF∗c, (4.79)

whereF∗ is the conjugate transpose of the matrix of the discrete Fourier transformF

(Eq. (4.72)), and Δt is the sampling interval.

6. Estimate the ARMA model from the PSD as outlined in the first part of this sub-
section (ARMA model identification) (see also Klees and Broersen, 2002).

When analytical filtering is used instead of an ARMA model, the steps described above
can directly be used to obtain the noise covariance matrix.

The derived noise model can be used in a second iteration to compute a new set of a
posteriori residuals from which an improved noise model can be derived. Ditmar et al.
(2007) argued that for highly redundant computational problems, such as global gravity
field modeling, two iterations are sufficient. The developed methodology was tested by
Liu et al. (2007) for simulated CHAMP data. They showed that the procedure works best
in case of purely stationary noise. In chapters 5 and 6 it will be investigated how many
iterations are required to obtain a model of the colored noise in airborne gravity data and
how accurately the actual noise model can be derived.

4.5 Estimation of non−gravitational parameters

4.5.1 Bias and drift handling

As discussed in section 3.1.2, the traditional processing of gravity data includes a cross-
over adjustment to deal with remaining low-frequency errors in the data. This is done
by minimizing gravity differences at cross-over locations between crossing flight lines.
This method of adjustment of cross-over misfits has several disadvantages such as the
requirement of a close coincidence of measurement points at crossing lines, which means
that observations must be acquired at about the same altitude, and the limited number of
cross-overs that are available for the estimation of bias and drift parameters.

Within the methodology described in this chapter, the handling of bias and drift pa-
rameters is combined with the estimation of the gravity field parameters. The bias and
drift parameters can be included in the functional model, Eq. (4.13), and estimated jointly
with the potential coefficients. The advantage of this approach is that it does not require
the computation of cross-overs, which means that a close coincidence of flight lines at
cross-over points is not required. Furthermore, the redundancy for estimating the param-
eters is much higher as all observations are used in the estimation. Although the com-
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putation of cross-overs is not required, connecting control lines are still needed, because
otherwise the estimated bias parameters would absorb the mean value of each profile.

Alternatively, the bias and drift parameters can be removed from the data, by setting
up a covariance matrix that filters out the low-frequency noise. It can easily be shown
that both methods, estimation and filtering, lead to exactly the same results.

When the bias and drift parameters are estimated explicitly, the functional model
changes to

y = Ax + Bq + e, (4.80)

where the vector q = [d1, b1, . . . , dp, bp]T contains the drift and bias parameters di and bi

for each profile i = 1, . . . , p, respectively. The matrix B reads

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Δt12 . . . Δt1n1

1 1 . . . 1
0 Δt22 . . . Δt2n2

1 1 . . . 1
. . .

0 Δtp2 . . . Δtpnp

1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(4.81)
where Δtij is the time difference between the start of the i-th flight line and the current
observation point j, and ni is the number of observations along line i.

Alternatively, a filter matrix can be constructed that removes the bias and drift param-
eters from the data. Consider a linear filter matrix F with the property FB = 0. Then,
applying this matrix to Eq. (4.80) gives

Fy = FAx + FBq + Fe = FAx + Fe, (4.82)

i.e. the parameters q are eliminated from the functional model. The filter matrix is
obtained as follows. Let F1 be the projection matrix onto the column space of B, defined
as

F1 = B(BTQy
−1B)−1BTQy

−1. (4.83)

Then F := I − F1 satisfies FB = 0. Furthermore, the matrix FQy is symmetric, i.e.
FQy = QyF

T . Because FF = F holds, the matrix FQyF
T can be written as FQy.

The filter matrix F has rank n − q (with q the number of parameters to be eliminated).
Therefore, the matrix FQyF

T is singular with rank defect q, and its Caley inverse does
not exist. A generalized inverse of FQyF

T is obtained as

(FQyF
T )− = Qy

−1B(BTQy
−1B)−1BTQy

−1 = Qy
−1F. (4.84)

Using this expression, the least-squares solution x̂ after elimination of the parameters q,
becomes

x̂ = (AT Q̃−1
y A)−1AT Q̃−1

y y, (4.85)
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with
Q̃−1

y = FT Qy
−1F = Qy

−1F. (4.86)

The same result can be obtained in a straightforward way using the least-squares solution
of the Gauss Markov model (Eq. (4.80)):[

ATQy
−1A ATQy

−1B

BTQy
−1A BTQy

−1B

] [
x̂

q̂

]
=

[
ATQy

−1y

BTQy
−1y

]
. (4.87)

The parameters q̂ can be eliminated using the second equation

q̂ = −(BTQy
−1B)−1BTQy

−1Ax̂ + (BTQy
−1B)−1BTQy

−1y. (4.88)

Inserting the expression into the first equation of Eq. (4.87), and using the definition of
the filter matrix F, the LS solution of Eq. (4.85) is obtained.

Note that it is not necessary to compute the new covariance matrix Q̃−1
y explicitly as

it can be considered as a series of matrix multiplications which are solved in the same
manner as discussed in section 4.4.2.

For the most simple case, when n observations contain only a bias and are contam-
inated by white noise (Qy = I), the matrix B becomes B = [ 1 1 . . . 1 ]T and the filter
matrix simplifies to

F =

⎡
⎢⎣

1− 1/n −1/n . . . −1/n
...

...
...

−1/n −1/n . . . 1− 1/n

⎤
⎥⎦ . (4.89)

In case both a bias and drift are to be eliminated, the entries of the projection matrix F1

are obtained as

{F1}lk =
1

det

[∑
t2i − (tl + tk)

∑
ti + tltkn

]
, l, k = 1, . . . , n, (4.90)

with
det = n

∑
t2i − (

∑
ti)

2. (4.91)

Both cases can be easily extended for the elimination of bias and drift from each profile,
resulting in a block diagonal matrix, with the blocks build up either by Eq. (4.89) or by
Eq. (4.90). In case of colored noise, the entries of F1 are obtained by a series of matrix
computations described in Eq. (4.83).

4.5.2 Estimation of scale factors

Airborne gravimeter measurements, such as spring tension and beam velocities, are re-
lated to actual gravity observations by applying several scale factors. The LaCoste and
Romberg air/sea gravimeter, used for the acquisition of the data sets described in sections
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6.1 and 6.2, consists of a highly damped, spring-type gravity sensor mounted on a gyro-
stabilized platform. Because of the high damping, the motion of the gravity meter beam
can be described by the following differential equation (Valliant, 1992)

g + z̈ + kḂ − cS = 0, (4.92)

where g denotes gravity, z̈ is the vertical acceleration with z positive in the upward direc-
tion, Ḃ is the beam velocity, S is the spring tension and k and c are scaling factors. This
equation is just an approximation and correction terms, known as cross-coupling, have to
be applied. The scaling factor k, generally referred to as the k-factor, and the scaling fac-
tor c (or spring tension calibration factor) may be determined by laboratory calibration.
An alternative method to determine the k-factor is given in Olesen et al. (1997).

In this thesis the scaling factors are estimated simultaneously with the gravity pa-
rameters, by incorporating beam velocities and/or spring tension values in the functional
model. The functional model for estimating one k-factor for the whole data set then
becomes

ỹ = Ax−Kδk + e; D{e} = Qy, (4.93)

where K = [Ḃ1 Ḃ2 · · · Ḃm]T and δk is the correction to the k-factor kp that was initially
used in the pre-processing, i.e. the estimated k-factor is obtained as k̂ = kp + δk̂. The
model can easily be extended for the estimation of one k-factor per profile, in the same
way as for the estimation of bias and drift parameters (see previous subsection). The
same holds for the estimation of the spring tension calibration factor.

4.5.3 Testing of non−gravitational parameters

By including additional parameters, the fit of the data to the model can be improved.
However, addingmore parameters is not necessarily an improvement of the gravity model
since they may absorb part of the gravity signal. Furthermore, the parameters may be
highly correlated, which means that they should not be estimated simultaneously. It is
therefore necessary to test whether the parameters are statistically significant and com-
pute the statistical correlation.

The statistical correlation coefficient ρx̂ŷ between to estimated variables x̂ and ŷ is
computed as

ρx̂ŷ =
σx̂ŷ

σx̂σŷ

, (4.94)

where the covariance σx̂ŷ between x̂ and ŷ, and the standard deviations σx̂ and σŷ can be
obtained from Qx̂ = (ATQy

−1A)−1. When Cholesky decomposition is used to solve
the system of normal equations, it can easily be computed by inverting the normal ma-
trix. If the correlation coefficient ρ is close to one, the estimated parameters are highly
correlated.

To test if an estimated parameter x̂i deviates significantly from a given value x0i, the
following two hypotheses are formulated (e.g. Koch, 1999):

H0 : xi = x0i, for a given i ∈ 1, . . . , u; HA : xi �= x0i, (4.95)
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whereH0 is called the null hypothesis andHA the alternative hypothesis. These hypothe-
ses are tested against each other with the test statistic

T =
(x̂i − x0i)

2

σ̂2
i

, (4.96)

where
σ̂2

i = σ̂2σxi
. (4.97)

The estimator σ̂2 of the variance factor of unit weight (or a posterior variance factor)
reads

σ̂2 =
êTQy

−1ê

n− u
. (4.98)

The distribution of T under H0 and HA is given as (e.g. Koch, 1999)

H0 : σ̂2 ∼ F (1, n− u); HA : σ̂2 ∼ F (1, n− u, λ), (4.99)

where the non-centrality parameter λ is computed as

λ =
1

σ2
(Hx− x0i)(HN−1HT )−1(Hx− x0i). (4.100)

Here, H is a vector with zeros and the value 1 on the i-th position: H = [ 0 . . . 1 . . . 0 ]T .
Rejecting the H0-hypothesis implies accepting HA, which justifies the addition of non-
gravitational parameters to the functional model.

4.6 Edge effect reduction

When fundamental solutions of Laplace’s equation in Cartesian coordinates are used, the
model implicitly assumes that the signal is periodic on the computation domain. For
regional gravity field observation this is obviously not the case. The series of Eq. (4.3)
only converges to the true signal at points of continuity, but at points of discontinuity
to the average of the two limits. As a result, near points of discontinuity, a ”ringing”
known as the Gibbs phenomenon occurs (see e.g. Bracewell, 2000). Notice that different
function values at the opposite borders are also considered discontinuities; it is especially
this type of discontinuity that occurs in case of regional gravity field modeling when
periodic base functions are used. The Gibbs effect is illustrated in figure 4.4 for a straight
line.

In this section, several approaches are discussed that aim at the reduction of the Gibbs
effect at the edges. Although edge effects are also caused by neglecting gravity data out-
side the computation area or as the result of the intrinsic non-uniqueness of the problem
(see Prutkin and Klees, 2007), the methods described in this section do not aim at the
reduction of this type of errors. The reduction of edge effects may be done in two ways:
either by extension of the computation area where the signal is assumed periodic; or by
modification of the base functions, such that the requirement of periodicity is circum-
vented.
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4.6.1 Extension of the computation area

Four approaches are introduced that use an extension of the computation area; they are
zero padding, cosine taper, least-squares prediction, and controlled area extension, which
are schematically shown in figure 4.5. Note that when the area is extended, Dx and Dy

become larger and L andM have to be changed accordingly to obtain the same resolution
as without extension. The first three approaches were tested by Alberts et al. (2007a),
controlled area extension was introduced by Alberts et al. (2007b).

Zero padding

The most simple approach to reduce edge effects is to extend the computation area with
zero-observations, i.e. zero-padding, which is a common procedure in discrete Fourier
techniques. This way the signal becomes periodic on the larger domain. However, the
discontinuity at the (former) edge of the area remains, resulting again in high oscillations.
The estimated value at this point equals the average of the two limits at the discontinuity,
which is now half the gravity value at the former edge. Therefore, the result of zero-
padding can even be worse than if the area is not extended by zero-observations.

Cosine taper

A different way to make the signal periodic is to use a cosine taper. Values δg̃ outside the
computation area are computed as

δg̃ = δge (1
2
cos

πd

Δ
+ 1

2
), (4.101)
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Figure 4.4: The Gibbs effect caused by discontinuities at the edges in 1D, illustrated for maximum
degree L = 10.
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Figure 4.5: Approaches to reduce edge effects using different techniques of extending the compu-
tation area; a) Zero padding, b) Cosine taper, c) Least-squares prediction, and d) Controlled area
extension.

a) b)

c) d)

where δge is the observed gravity disturbance value at the (former) edge, Δ defines how
far the area is extended and d is the distance between the point where the value is com-
puted and the nearest point at the edge. The transition between the observed signal and
the computed values may, however, not be very smooth (see figure 4.5b). Oscillations
can therefore still occur near the former edges.

Least-squares prediction

The third approach to reduce edge effects is to estimate gravity disturbances outside the
computation area from the observed signal using interpolation by LSC (see section 3.2.3),
which is also called least-squares prediction. This way the transition of the observed sig-
nal to the values outside the computation area is smooth and due to the nature of LS
prediction the signal gradually approaches zero for distances much larger than the cor-
relation length. However, when processing observations contaminated by colored noise,
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Figure 4.6: The estimation of a straight line using controlled area extension in 1D, illustrated for
maximum degree L = 10.

the noise will propagate into the predicted values, which may cause large errors. Fur-
thermore, the resulting error-covariance matrix that is used in the frequency-dependent
weighting scheme will no longer be Toeplitz and the numerical costs to obtain the optimal
solution may become too large.

Controlled area extension

As mentioned above, the size of the area is defined by the parameters Dt (with t being
either x or y). Increasing the parameter Dt by Δt, makes the estimated signal periodic
on the intervalDt + Δt, whereas data are only available on the intervalDt. This implicit
extension of the computation area reduces edge effects significantly, especially for larger
Δt. However, an increase of Δt also results in an increase of the condition number, i.e.
the system of normal equations becomes unstable. For the example shown in figure 4.6,
where the parameter Δx was set to 20, the condition number increases three orders of
magnitude, but the errors have been reduced significantly. Thus, the optimal value of the
parameter Δt has to be found, which is a trade off between edge effects and instability
of the normal equations. For larger values of Δt, the system of normal equations can be
stabilized using a regularization method.

4.6.2 Modification of the base functions

Representation in terms of cosine functions

Alternatively to the representation of the disturbing potential in Eq. (4.7), the potential
can also be represented as a series of cosine functions only, with a repeat interval of
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Figure 4.7: The estimation of a straight line using the additional base functions in 1D, illustrated
for maximum degree L = 10.

2Dx and 2Dy along the x-axis and y-axis, respectively. Then, the representation of the
disturbing potential becomes

T (x, y, z) =
2L∑
l=0

2M∑
m=0

Clm cos
πlx

Dx

cos
πmy

Dy

e−γlmz, (4.102)

with

γlm := π

√(
l

Dx

)2

+

(
m

Dy

)2

. (4.103)

Although the requirement of periodicity is now evaded, the solution will only be free
of edge effects when the derivative of the signal is zero at the boundary of the compu-
tation area. Similarly, only the sine functions can be used in the expansion. Then, the
requirement is that the signal is zero at the boundary to prevent edge effects.

Additional base functions

Instead of using only cosine functions as base functions, a set of functions, that are not
periodic on the computation domain, can be added to the original set of base functions:

T (x, y, z) =
L+1∑

l=−L−1

M+1∑
m=−M−1

Clm ϕl(x)ϕm(y) e−γlmz (4.104)
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where ϕl(x), ϕm(y) are the same as defined in Eq. (4.4), except for l = ±(L + 1) and
m = ±(M + 1):

ϕl(x) =

⎧⎪⎨
⎪⎩

cos
πx

Dx

, l = L+ 1

sin
πx

Dx

, l = −L− 1
, ϕm(y) =

⎧⎪⎨
⎪⎩

cos
πy

Dy

, m = M + 1

sin
πy

Dy

, m = −M − 1
(4.105)

and the expression for γlm becomes (see appendix E)

γlm :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π

√(
l

Dx

)2

+

(
m

Dy

)2

, −L ≤ l ≤ L; −M ≤ m ≤ M

π

√(
1

Dx

)2

+

(
2m

Dy

)2

, l = ±(L+ 1); −M ≤ m ≤ M

π

√(
2l

Dx

)2

+

(
1

Dy

)2

, −L ≤ l ≤ L; m = ±(M + 1)

π

√(
1

Dx

)2

+

(
1

Dy

)2

, l = ±(L+ 1); m = ±(M + 1)

(4.106)

The same test as shown in figure 4.4, the estimation of a straight line, was also done using
the additional base functions. The result in figure 4.7 clearly shows a large improvement
(the errors are reduced by a factor 1000), which means that the additional base functions
are well suitable for signal representation.

4.7 Combination with prior information

Regional gravity field solutions are generally affected by long-wavelength errors. This
is particularly the case for the computation of geoid heights. These errors can be caused
by the propagation of edge effects, the absence of observations outside the computation
area and imperfections in the reference GPM when using the remove-restore technique.
Furthermore, they may be the result of the intrinsic non-uniqueness of the inversion prob-
lem, that is, solving a boundary value problem without having data at all the boundaries.
To remove long-wavelength effects, two approaches are discussed, both of which make
use of prior information added to the functional model. This prior information is that the
disturbing potential at low spatial frequencies is zero. Both approaches are discussed in
Alberts et al. (2007a).
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4.7.1 Addition of pseudo−observations

To obtain a solution without low-frequency errors, pseudo-observations T = 0 are added
to the functional model. The model of Eq. (4.13) then becomes[

y

yp

]
=

[
A

B

]
xp+

[
e

ep

]
;

D{
[

e

ep

]
} =

[
Qy 0

0 Qp

]
, (4.107)

where yp are the pseudo-observations T = 0, ep is the vector of residuals with expec-
tation E{ep} = 0, and B is the design matrix which describes the relation between the
disturbing potential and the coefficients (Eq. (4.7)). The entries of the covariance matrix
Qp are computed using the covariance function

C(ψ) =

N1∑
n=2

εnPn(cosψ) +

N2∑
n=N1+1

σnPn(cosψ), (4.108)

where ψ is the spherical distance, εn are the error degree variances of the geopotential
model that was subtracted from the gravity signal up to degree N1 and σn are signal
degree variances which may be computed using Kaula’s rule (Kaula, 1966) up to degree
N2. The optimal solution is found by solving the following system of normal equations:

(ATQy
−1A + BTQp

−1B)x̂p = ATQy
−1y. (4.109)

4.7.2 Addition of fixed constraints

A different approach to reduce long-wavelength errors is to add integral constraints to
the functional model. Because the goal is to compute only the high-frequency part of the
disturbing potential, the following constraints are added∫∫

Ω

T (P )Y l′m′(P ) dΩ = 0, (4.110)

where Y l′m′(P ) are the spherical harmonics up to a pre-defined maximum degree and
order, expressed by l′ andm′, and the integration domain Ω equals the computation area.
The choice of the maximum degree and order depends on the maximum wavelength that
is solved for in the determination of the gravity field, but in practice this would result in
a very large number of constraints. Therefore, only a small number of l′ and m′ should
be used. In discretized form Eq. (4.110) becomes

N∑
i=1

T (Pi)Y l′m′(Pi) = 0, (4.111)
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where N is the number of points Pi. Inserting the representation of the disturbing poten-
tial T in Cartesian coordinates, given by Eq. (4.7), results in

∑
l,m

Clm

N∑
i=1

ϕl(xi)ϕm(yi)e
−γlmziY l′m′(Pi) = 0. (4.112)

The constraint equation may symbolically be written as

Kx = c, (4.113)

where K is the design matrix relating the coefficients to be estimated to the constraint
observations, Eq. (4.112), and c is a vector of zero-observations. Adding the constraints
to the functional model of Eq. (4.13), results in the Gauss-Markov model with fixed
constraints, which is given as (see e.g. Koch, 1999)[

y

c

]
=

[
A

K

]
xf +

[
e

0

]
; D{e} = Qy. (4.114)

The optimal solution x̂f is found by minimizing the Lagrange function

Φ(x,λ) = (y−Ax)TQy
−1(y −Ax)− 2λ(c−Kx), (4.115)

yielding the normal equations[
N KT

K 0

] [
x̂f

λ̂

]
=

[
ATQy

−1y

c

]
. (4.116)

The constrained parameter vector is obtained by eliminating the Lagrange multiplier λ̂

from Eq. (4.116), resulting in

x̂f = x̂ + N−1KT (KN−1KT )−1(c−Kx̂) (4.117)

The solution can thus be computed as an update to the unconstrained solution x̂.
If too many constraints are added, the constrained solution cannot be obtained since

the matrixKN−1KT is in that case not invertible. In practice the maximum degree l′ and
order m′ of the spherical harmonic representation in Eq. (4.110) should be limited to a
small number as discussed above.
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Application to simulated data 5
This chapter is devoted to testing the theory presented in chapter 4 using simulated data.
The purpose of the simulations is to ensure that the developed methodology performs
as expected under controlled circumstances. Furthermore, the simulations are used to
choose the optimal strategy in case more than one option is available and to compare
the results with more traditional approaches. In this context, ”optimal” means that the
selected approach should yield the best results in terms of RMS errors. This can only be
assessed in simulations since the estimated gravity field functions can be compared with
their true values. In case of real data true values are often not available, or not known
with sufficient accuracy and resolution to allow for a good comparison.

The performance of the developed methodology is investigated using two data sets
which are described in section 5.1. The first data set is used in section 5.2 for the com-
putations with noise-free data, to test the performance of the chosen gravity field repre-
sentation and investigate the approaches for edge effect reduction. The second data set
is used for the computations with white noise and colored noise, presented in sections
5.3 and 5.4 respectively. The aim of the computations is to select the optimal regulariza-
tion method and investigate the performance of the frequency-dependent data weighting
scheme. The second data set is also used for the investigation of bias and drift handling,
which is discussed in section 5.5. Finally, a summary of the optimal strategy is given in
section 5.6.

5.1 Description of the data

The simulated observations used for the numerical experiments described in this chapter
are computed from the global geopotential model GPM98b (Wenzel, 1998), which is
complete to spherical harmonic degree 1800. On the equator, this corresponds to a half-
wavelength resolution of approximately 10 km. Two data sets have been created: for the
first data set the points are distributed on a regular grid, for the other data set the points
are located along simulated airborne profiles. To avoid artifacts from long-wavelength
signals, the frequency content of both data sets is limited to spherical harmonic degrees
361-1800, i.e. the data do not contain wavelengths longer than approximately 110 km.
Details of the data sets are described below.
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Figure 5.1: Simulated gravity field functionals over the 400 × 400 km test area (data set 1); a)
gravity disturbances at flight level; b) disturbing potential at ground level.

a) b)

Data set 1

The first data set is the same data set as used in Alberts et al. (2007a) and Alberts et al.
(2007b). It consists of 6561 gravity disturbances computed on a regular grid with a
spacing of 5 km at an altitude of 4000 m. The area is located in the Canadian Rocky
Mountains, with the coordinate center of the Cartesian reference frame (ϕc, λc) at 51.7◦

Northern latitude and 241.0◦ Eastern longitude. The size of the area is 400 × 400 km.
The statistics for this data set are: min=-12.78; max=10.68; mean=-0.12; RMS=3.12
mGal. The simulated gravity field functionals are shown in figure 5.1.

Data set 2

The second data set is the same as used in Klees et al. (2005). The area is located in the
United States, north of the gulf of Mexico, with the coordinate center (ϕc, λc) at 33.25◦

Northern latitude and 260.0◦ Eastern longitude. The size of the area is 6.5 × 6.5 degrees
(630 × 730 km). To simulate an airborne gravity data set distribution, observations are
computed at a flight level of 2000 m along 66 East-West oriented profiles, with a distance
of 0.1◦ between the lines, and at 5 North-South oriented profiles at a distance of 1.4◦ from
each other. The spacing of the points along-track is 1 arc-minute, resulting in 27761
observations. The statistics for this data set are: min=-30.92; max=46.60; mean=0.01;
RMS=5.99 mGal. The simulated gravity signal and the flight pattern are shown in figure
5.2a. The disturbing potential at ground level and the distribution of the control points
that are used to compute error statistics, are shown in figure 5.2b.
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Figure 5.2: Simulated gravity field functionals and their distribution for data set 2; a) gravity
disturbances at flight level; b) disturbing potential at ground level.
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5.2 Computations with noise−free data

5.2.1 Gravity field representation and downward continuation

Fundamental solutions of Laplace’s equation

The performance of the approach using fundamental solutions of Laplace’s equation is
first tested using the noise-free observations of data set 1, and the results are compared to
the ones obtained with LSC. The maximum degree L and orderM of the representation
are set to L = M =32, which corresponds to a resolution of 6 km. Coefficients Clm

are estimated by a LS adjustment as described in section 4.2; the normal equations are
solved using Cholesky decomposition. No regularization has been applied. From the es-
timated coefficients, gravity disturbances and disturbance potential values are computed
at ground level (h = 0 m). Note that in terms of z, the z-coordinates vary at ground level.

Errors are computed at ground level with control data, which are also computed from
GPM98b. The results are shown in figures 5.3a and 5.3b, for gravity disturbance errors
and geoid height errors, respectively. The latter are computed from disturbing potential
errors using Bruns’ formula (Eq. (3.10)). The error pattern for the gravity disturbances
(cf. figure 5.3a) is the result of the Gibbs effect discussed in section 4.6: the base func-
tions are periodic, but the data are not, which results in large errors at the edges that
propagate into the area. Figure 5.3b shows that for the computed geoid heights, this re-
sults in large long-wavelength errors. The error statistics of the solutions are given in
tables 5.1 and 5.2.
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Least-squares collocation

A gravity field solution has also been computed using LSC. From the observations at
flight level an empirical auto-covariance function (ACF) is estimated, which is shown
in figure 5.4. Two analytical models are fitted to this function: the Tscherning-Rapp
degree-variance model (Eq. (3.32)) and the planar logarithmic covariance function (Eq.
(3.35)). An analytical model is used to set up the signal-covariance matrix of the gravity
disturbances at flight level and the cross-covariance matrix between gravity disturbances
and the disturbing potential at flight level and ground level, respectively. For the planar
model, the attenuation parameters D and T that define the function were found empir-
ically such that the variance and correlation length are the same as for the empirical
auto-covariance function. This yields values of D = 6 and T = 28. For the fitting of the
Tscherning-Rapp model the program COVFIT, which is part of the GRAVSOFT pack-
age (Tscherning et al., 1994) has been used. The program estimates the model parameter
A and the depth to the Bjerhammar sphere iteratively as described by Knudsen (1987).
From figure 5.4 it is clear that the Tscherning-Rapp model provides the best fit to the
empirical auto-covariance function. The parameters of this model can directly be used
in the GRAVSOFT module GEOCOL, which is used her for the downward continuation
of gravity disturbances, and for the determination of the disturbing potential at ground
level.

Errors are computed by computing differences with the control data at ground level.
The results are shown in figures 5.3c and 5.3d for gravity disturbance errors and geoid
height errors, respectively; their statistics are given in tables 5.1 and 5.2. From the figures
and the tables it is clear LSC performs much better than the representation using the fun-
damental solutions of Laplace equation in Cartesian coordinates. The latter suffers from
large edge effects that propagate into the computation area. When disturbing potential
values are computed, the solution is dominated by long-wavelength errors. These errors
are the result of periodicity of the base functions whereas the data are non-periodic, and
of missing data outside of the computation area. The second effect is common to all
types of parameterizations and estimation techniques, but LSC may perform better than

Table 5.1: Statistics of gravity disturbance errors [mGal] at ground level.

Method Min Max Mean RMS
Laplace solutions -10.24 15.94 0.078 1.12
Least-squares collocation -1.88 1.69 0.005 0.15

Table 5.2: Statistics of geoid errors [m] at ground level.

Method Min Max Mean RMS
Laplace solutions -0.119 0.115 0.003 0.017
Least-squares collocation -0.072 0.040 -0.005 0.015

80



Computations with noise-free data

0

100

200

300

400

0

100

200

300

400
0 100 200 300 400

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

mGal

0

100

200

300

400

0

100

200

300

400
0 100 200 300 400

-0.10 -0.05 0.00 0.05 0.10

m

0

100

200

300

400

0

100

200

300

400
0 100 200 300 400

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

mGal

0

100

200

300

400

0

100

200

300

400
0 100 200 300 400

-0.10 -0.05 0.00 0.05 0.10

m

Figure 5.3: Errors at ground level for the solutions of Laplace’s equation (a and b), and for LSC
solutions (c and d). Figures a) and c) show gravity disturbance errors; figures b) and d) show
geoid height errors.

a) b)

c) d)

other methods if the auto-covariance function also provides a good representation of the
data outside the area. However, if the ACF is not representative for these data (e.g. be-
cause the signal is anisotropic there) LSC will also suffer from edge effects. The problem
of periodicity is typical for using fundamental solutions of Laplace’s equation in Carte-
sian coordinates. Therefore, in the next section the approaches for edge effect reduction,
discussed in section 4.6, are tested and the results are compared with the LSC solution.
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Figure 5.4: The empirical auto-covariance function of the gravity disturbances of data set 1 and
the fitted analytical models. Two models are fitted; the logarithmic model and the Tscherning-
Rapp model.

5.2.2 Reduction of edge effects

Extension of the area

In section 4.6.1 four approaches were proposed to reduce edge effects that use an ex-
tension of the computation area, namely zero-padding, cosine taper, LS prediction and
controlled area extension. The performance of the approaches is tested with data set 1.
For the first three methods the area is extended by 50 km in the x and y directions, re-
sulting in an area size of Dx = Dy = 500 km. The spacing of the extrapolated data
points is the same as the spacing of the original data points, which means that the number
of observations is increased to 10201. To obtain the same resolution as in the previous
subsection, the coefficients Clm were estimated up to L = 40,M = 40.

For controlled area extension, the parameter Δt was set to 50 km, resulting in values
of Dx = Dy = 450 km and coefficients are solved up to L = M = 36. Because
the normal equations become unstable with this approach, Tikhonov regularization is
applied with the regularization parameter set empirically to the smallest value for which
a stable solution could be obtained. The optimal value of Δt was empirically derived by
computing the RMS gravity disturbance error and the condition number of the normal
matrix for various values of Δt. The results are given in table 5.3. The table shows an
increasing ill-conditionedness for larger values of Δt, but the gravity disturbance error
does not become smaller for an area extension larger than the chosen value of 50 km.

For all approaches, gravity field solutions are computed for the original area of 400
by 400 km at ground level. The errors are shown in figures 5.5 and 5.6, and their statistics
are given in tables 5.4 and 5.5 for the computed gravity disturbances and geoid heights,
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Table 5.3: RMS gravity disturbance errors [mGal] and the condition number c of the normal
matrix for varying Δt for a controlled area extension.

Δt [km] 0 12.5 25 37.5 50 75 100
RMS 1.12 0.65 0.15 0.07 0.07 0.07 0.07
c 2.3e+04 7.7e+04 9.4e+08 2.7e+14 5.7e+18 5.2e+19 1.3e+20

respectively.
Comparing the results of table 5.4 with table 5.1 shows that with zero-padding and

with the cosine taper, the errors can be even larger than without a reduction method ap-
plied. This is because there are still discontinuities at the former edges. Nevertheless,
the resulting RMS geoid height errors are somewhat smaller, indicating that the long-
wavelength errors are smaller inside the computation area compared to the case that no
reduction method is used. For LS-prediction, the results are much better than for zero-
padding and cosine tapering. The solution is almost free of edge effects due to the smooth
transition between original and predicted data points at the former edge of the compu-
tation area. The explanation is that the correlation length for this data set was about 20
km, resulting in predicted values that are nearly zero at the edge of the extended area. As
such, the signal can be considered periodic over the larger domain without discontinu-
ities. A larger area extension (e.g. four times the correlation length) may further reduce
the edge effects when LS prediction is used.

Among the methods that use an extension of the computation area, the best results are
obtained with controlled area extension. Both figures 5.5b and 5.6b, and statistics show
a large improvement with respect to the results presented in the previous subsection.
Especially the geoid height errors at ground level show that the results are no longer
affected by long-wavelength errors in the whole area. At a distance of 10 km from the
boundaries of the area the errors are below 2.5 cm

Modified base functions

Instead of an extension of the area, edge effects may also be reduced by modifying the
base functions as shown in section 4.6.2. For the computations with the cosine functions
and the additional base functions, the test setup is the same as for the computations with
the original base functions described in the previous subsection. The results are shown
in figures 5.5 and 5.6, the error statistics are given in tables 5.4 and 5.5. Both approaches
show an improvement in terms of gravity disturbance errors with respect to the original
base functions. However, the results are worse for the computation of the disturbing
potential at ground level. Especially the additional base function solution gets completely
distorted by large long-wavelength errors.

The results obtained in this section show that controlled area extension is the optimal
method for the reduction of edge effects. It is much more efficient than the other three
methods that use an extension of the area and outperforms all the investigated approaches,
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Figure 5.5: Gravity disturbance errors for the various approaches for edge effect reduction: a)
zero padding; b) cosine taper; c) LS prediction; d) controlled area extension; e) cosine functions;
and f) additional base functions.
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Figure 5.6: Geoid height errors for the various approaches for edge effect reduction: a) zero
padding; b) cosine taper; c) LS prediction; d) controlled area extension; e) cosine functions; and
f) additional base functions (note the different color scale).
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Table 5.4: Statistics of gravity disturbance errors [mGal] at ground level.

Method Min Max Mean STD RMS
a) Zero-padding -17.03 21.63 0.02 1.34 1.34
b) Cosine taper -6.85 18.63 0.03 0.88 0.88
c) Least-squares prediction -1.23 1.95 0.01 0.11 0.11
d) Controlled area extension -0.85 0.75 0.00 0.07 0.07
e) Cosine functions -6.68 7.73 0.06 0.56 0.57
f) Additional base functions -4.45 2.91 -0.09 0.31 0.32

Table 5.5: Statistics of geoid height errors [m] at ground level.

Method Min Max Mean STD RMS
a) Zero-padding -0.130 0.158 0.003 0.014 0.014
b) Cosine taper -0.066 0.092 0.003 0.013 0.013
c) Least-squares prediction -0.085 0.036 0.003 0.011 0.011
d) Controlled area extension -0.035 0.045 0.003 0.004 0.005
e) Cosine functions -0.103 0.074 0.003 0.024 0.024
f) Additional base functions -2.218 2.240 0.390 0.456 0.600

including LSC, in terms of RMS gravity disturbance and geoid height errors. The only
drawback of controlled area extension may be the decrease of numerical stability, which
requires regularization. However, regularization is a standard procedure in processing
of noisy data (the issue of regularization is studied in the next section). It is therefore
recommend to use a sufficiently large value of Dt + Δt, when fundamental solutions of
Laplace’s equation in Cartesian coordinates are used for airborne gravity data processing.

5.3 Computations with data corrupted by white noise

In this section a numerical study is conducted to find the optimal regularization method
and parameter choice rule. For this study, the simulated airborne gravity data set (data
set 2, section 5.1) is corrupted by random white noise with an RMS of 2 mGal. The data
are used to estimate coefficients Clm complete to degree L = 36 and order, M = 36,
resulting in 5328 parameters, from which gravity functionals are computed at the control
points at ground level (cf. figure 5.2). To reduce edge effects, controlled area extension is
used with Δt = 50 km, as described in the previous section. The quality of the solutions
is quantified in terms of the RMS deviation from the true noise-free data computed from
the GPM98b model at the control points.
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Figure 5.7: Errors at ground level for ZOT regularization with the optimal regularization param-
eter derived empirically. a) Gravity disturbance errors; b) geoid height errors.
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5.3.1 Choice of regularization matrix

The first goal of the numerical study is to compare the two regularization techniques
presented in section 4.3.1: zero-order Tikhonov (ZOT) and first-order Tikhonov (FOT)
regularization. The regularized solutions are first computed with the optimal regulariza-
tion parameter, which is determined empirically. The parameter choice rules are studied
in the next subsection.

The errors for the solutions obtained with ZOT regularization are shown in figure 5.7.
The results for FOT regularization are omitted because they look very similar to the ones
obtained with ZOT. The errors observed in figure 5.7 are due to two reasons. The first
reason is the propagated data noise, which shows up as the homogeneous high-frequency
pattern in both plots. The second reason is the high-frequency spatial variations of the
gravity field that get smoothed by applying regularization. In the figure this is especially
clear in the middle of the plots. Choosing a larger regularization parameter leads to a
stronger smoothing of gravity field features, whereas a smaller regularization parameter
causes stronger noise in the solution.

The optimal regularization parameter is here defined as the one that gives the smallest
RMS gravity disturbance error. The dependence of the accuracy on the regularization
parameter is shown in figures 5.8a and 5.8b, for ZOT and FOT respectively. With ZOT
regularization the minimum RMS gravity disturbance error is obtained for α = 2.5 · 102,
yielding an RMS of 1.5 mGal. Thus, the effect of white noise of σ = 2mGal is largely
reduced.
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For FOT regularization the optimal regularization parameter is α = 3.5 · 109, which
gives slightly better results than ZOT regularization with an RMS of 1.4 mGal. However,
the RMS geoid height error is much better for ZOT regularization than for FOT regular-
ization: the RMS errors are 1.2 cm and 2.1 cm, respectively (see also tables 5.6 and 5.7).
Note that choosing the optimal regularization parameter on the basis of RMS gravity dis-
turbance error does not necessarily lead to the smallest maximum error or RMS geoid
height error. Especially in case of FOT regularization, smaller RMS geoid height errors
are obtained for larger α’s; for α = 5 · 1010 the RMS is 1.6 cm, but the RMS gravity
disturbance error has increased to 1.7 mGal. In case of ZOT regularization the geoid
height errors are less sensitive to the choice of α; between α = 1 · 102 and α = 1 · 103

the RMS geoid error remains 1.2 cm. This can be explained by the fact that, in case of
ZOT regularization, all coefficients (except for l = 0 and/or m = 0) are regularized in
the same way, whereas for FOT regularization the higher degrees and orders are more
regularized. This means that for larger values of α the higher frequencies get smoothed
more than the lower frequencies. Therefore, the results for gravity functionals such as
gravity disturbances or anomalies that are relatively less smooth than geoid heights, are
more accurate for a smaller regularization parameter, but a larger α gives a better geoid
solution when FOT regularization is applied.

From the results in this section it can be concluded that ZOT regularization yields
the better overall results. Although the RMS and maximum gravity disturbance errors
are slightly larger than for FOT regularization, the geoid height errors are considerably
smaller. However, the choice of regularization depends on the spectrum of the signal.
For the simulated data the spectral content is limited due to the maximum degree of
1800 of the GPM98 model. If the observations contain more high-frequency signal, FOT
regularization may provide better results. This is tested for the computations with real
data in chapter 6.

Optimal regularization does not only depend on the choice of the regularization ma-
trix. The performance of ZOT or FOT regularization in combination with the parameter
choice rule should be analyzed together, which is done in the next subsection.

5.3.2 Parameter choice rules

In practical applications the regularization parameter cannot be determined on the basis
of RMS gravity disturbance or geoid height errors. Instead, a parameter choice rule
must be applied. Here, two heuristic methods are tested: the generalized cross-validation
method (GCV) and the variance component estimation technique (VCE).

GCV

The estimated regularization parameter is located at the minimum of the GCV function
(Eq. (4.38)), which is found using the golden section search (Kiefer, 1953). For ZOT reg-
ularization the search interval was set to [1.0; 1.0× 106] and the minimum was obtained
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Figure 5.8: Dependence of the RMS error on the regularization parameter. Black lines denote
the RMS gravity disturbance error (mGal); grey lines correspond to the RMS geoid height error
(cm). a) ZOT regularization; b) FOT regularization. The circles show the RMS errors obtained
with the estimated regularization parameters using GCV and VCE, and for the empirical value of
α. For FOT regularization GCV did not yield an absolute minimum.
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after 8 iterations. Figure 5.9a shows on a semi-logarithmic scale the computed GCV
function for a wide range of regularization parameters. The minimum of the function is
determined at α = 0.91 × 102. The result is also shown in figure 5.8a, from which it is
clear that the obtained regularization parameter is too small compared to the empirically
determined optimal value. Nevertheless, the results are only slightly worse; the resulting
RMS gravity disturbance error is larger (1.5 mGal), but the RMS geoid error is the same
as for the empirically found α.

Remarkably, the GCV function does not yield an absolute minimumwithin the search
interval (set to [1.0 × 107; 1.0 × 1013]) when FOT regularization is applied. After 10
iterations the value converged to the upper limit of the interval (cf. figure 5.9b), which
already yields a regularization parameter that is much larger than the optimal value, and
the resulting gravity disturbances are close to zero. A larger search interval has been tried
as well, but again GCV did not provide an estimate of the regularization parameter.

Droge (1996) proposed an alternative variant of cross-validation, called full cross-
validation. He showed that under certain conditions, such as linear estimates and nor-
mally distributed observations, the cross-validation criterion is outperformed by the full
cross-validation criterion. The same holds for the generalized variant, which is used in
this thesis. The GCV function of Eq. (4.38) may be written as

GCV (α) =
1/n‖Axα − y‖2

(1− 1/n trace(Qα))2
. (5.1)

Its modified version, the generalized full cross-validation function (GFCV), is given as
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Figure 5.9: Determination of the regularization parameter with generalized cross-validation using
golden section search. a) ZOT regularization; b) FOT regularization.
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(see Droge (1996) for details)

GFCV (α) = 1/n‖Axα − y‖2(1 + 1/n trace(Qα)2). (5.2)

However, applying this function with ZOT regularization, does not improve upon the
results obtained with GCV. The minimum of the GFCV function is again obtained with
golden section search, yielding a regularization parameter that is even smaller than the
one derived with GCV: αGFCV = 0.6 · 102. The resulting RMS gravity disturbance error
is 1.6 mGal. For FOT regularization, GFCV also does not improve the estimation of
the regularization parameter. The GFCV function does not have an absolute minimum
within the search interval and the golden section search algorithm converges to the lower
bound of the interval at 1.0 · 107.

VCE

With VCE, the regularization parameter is obtained as the ratio of two variance compo-
nents, σ2

1 and σ2
μ, according to Eq. (4.50). As shown in section 4.3.4, the estimation of

the variance components requires the computation of the partial redundancies. Because
their sum equals the overall redundancy, only one of the partial redundancies needs to be
computed; here rμ is computed as

rμ = u− tr(
1

σ2
μ

(RN−1), (5.3)

with R being either the ZOT or FOT regularization matrix, and u is the number of un-
knowns. The trace term in this equation is computed explicitly, using the Cholesky de-
composition of the normal matrix. For larger problems stochastic trace estimation, as
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described in section 4.3.4, can be used instead. Tests with the noisy data set showed
that the trace can be estimated very accurately in this way, yielding the same variance
components as when the trace is computed explicitly.

With ZOT regularization, the variance component σ2
1 of the covariance matrix Q1 is

estimated as σ̂2
1 = 4.1. Because the matrix Q1 was set equal to the unity scaled by the

input unit (mGal2), the total variance of the observations is estimated at 4.1mGal2, which
closely corresponds to the variance of the added noise (σ2 = 4.0 mGal2). Convergence
of the variance components is obtained after 5 iterations (see figure 5.10). The obtained
regularization parameter of α = 2.8 · 1010 is very close the one that was determined
empirically (cf. figure 5.8).

Unlike GCV, VCE does provide a good estimate of the regularization parameter in
case of FOT regularization. The variance component σ2

1 is estimated as σ̂2
1 = 4.3, which

means that the noise in the observations is slightly overestimated. This leads to a larger
regularization parameter (α = 0.11 · 1011) than the empirically determined optimal pa-
rameter (cf. figure 5.8b). Again, convergence of the variance components was obtained
after 5 iterations. Tables 5.6 and 5.7 show that the gravity disturbances at ground level
obtained with FOT regularization with VCE have the same accuracy as the results of
ZOT/VCE , but the geoid height errors are somewhat larger. However, if the empirically
optimal α would be determined according to the minimum RMS geoid height error cri-
terion, the FOT regularization parameter found with VCE would be very close to that
one.

5.3.3 Comparison with LSC

To assess the quality of the results obtained in this section, a comparison is made with
LSC. The solution of LSC with noise is obtained by adding D = σ2I to the signal
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the fitted analytical Tscherning-Rapp model.
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Table 5.6: Statistics of gravity disturbance errors [mGal] at ground level for the regularized solu-
tions.

Method Min Max Mean RMS
ZOT: empirical -10.35 15.85 -0.01 1.46
ZOT: VCE -10.84 15.30 -0.01 1.46
ZOT: GCV -11.73 23.94 -0.01 1.54
FOT: empirical -9.21 11.79 -0.01 1.39
FOT: VCE -14.20 10.91 -0.01 1.46
LSC -19.30 13.41 -0.01 2.18

Table 5.7: Statistics of geoid height errors [m] at ground level for the regularized solutions.

Method Min Max Mean RMS
ZOT: empirical -0.068 0.073 0.001 0.012
ZOT: VCE -0.068 0.073 0.001 0.012
ZOT: GCV -0.072 0.094 0.001 0.012
FOT: empirical -0.085 0.133 0.001 0.021
FOT: VCE -0.096 0.113 0.001 0.017
LSC -0.098 0.103 0.000 0.016

auto-covariance matrix with σ = 2 mGal (see Eq. (3.29)). For the computation of the
gravity disturbances and disturbing potential at ground level, the GRAVSOFT package
(Tscherning et al., 1994) for gravity field modeling has been used. As described in section
5.2, the package uses the Tscherning-Rapp degree-variance model, which was fitted to
the empirical covariance function using the program COVFIT. As shown in figure 5.11
this model matches the empirical function very well. The resulting errors at ground
level are shown in figure 5.12 and the error statistics are again given in tables 5.6 and
5.7. The error pattern is similar to the results computed with ZOT regularization (cf.
figure 5.7), but the RMS errors are slightly larger, especially for the computed gravity
disturbances. As mentioned in section 4.3.3, the amount of smoothing is defined by
the noise-covariance matrix. The results could be improved by applying an additional
regularization as for instance presented in Marchenko et al. (2001).

5.4 Computations with data corrupted by colored noise

5.4.1 Simulation of colored noise

The largest contribution to the noise spectrum of airborne gravity observations comes
from the double differentiation of GPS positions. The double differentiation changes the
noise behavior, so that even if noise in the positions is white, it turns into colored noise in
the accelerations, which has especially a lot of power in the high-frequency band. In this
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corresponding PSDs estimated for the whole data set.
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section the frequency-dependent data weighting scheme is tested, using a colored noise
sequence obtained by double differentiation of random white noise. Note that the noise
level in the low-frequency band may be too optimistic in this test. Tests with a more
realistic noise spectra are presented in chapter 6.

The spacing of the observations of data set 2 is 1 arc-minute. Assuming a flight
speed of 150 m/s, the data spacing corresponds to a sampling rate of 10 seconds. For
an RMS error of the vertical GPS positions equal to 5 cm, this results in a total variance
of the airborne gravity noise of 15000 mGal2. The simulated noise and the noise-free
observations are shown for one profile in figure 5.13a. The corresponding PSD of the
resulting colored noise time series is shown together with the PSDs of the simulated
observations in figure 5.13b, for the whole data set. The figure shows that the (noise-
free) gravity signal contains almost no power above 8 · 10−3 Hz, which is due to the
maximum degree and order of 1800 of the GPM98b model. However, for frequencies
larger than approximately 5 · 10−3 Hz the colored noise has more power than the gravity
signal. This means that this part of the spectrum cannot be recovered accurately.

5.4.2 Data weighting using the exact noise model

The PSD of the colored noise sequence is used to derive ARMA model coefficients, as
described in section 4.4.3. For a more detailed description of the algorithms see (Klees
and Broersen, 2002). The estimated ARMA model is a MA(2) model, which is used for
the application of the inverse covariance matrix Qy

−1 in the LS adjustment. From the
data corrupted by colored noise, a gravity field solution is computed using ZOT regular-
ization and VCE to estimate the regularization matrix.

The estimated variance factor σ̂2
1 of the covariance matrix is close to one, which shows

that the MA(2) model correctly describes the noise in the observations. Errors at ground
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level are shown in figure 5.14 and the statistics are given in table 5.8 for the whole area
and for the inner 4.5◦× 4.5◦ area. The latter are given because the errors are much larger
at the edges of the area. This is the result of remaining noise in the high-frequency part of
the spectrum, where the noise has more power then the signal to be recovered (see figure
5.13b). Because the solution is solved for frequencies higher than 5 · 10−3 Hz, part of
the noise is modeled. For the inner area this noise gets largely smoothed by the applied
regularization.

A solution was also computed with FOT regularization applied in combination with
VCE, but the results were slightly worse, confirming the results presented in the previous
section.

5.4.3 Comparison with low−pass filtering

A gravity field solution was also computed from low-pass filtered data. The observa-
tions are filtered using a forward-backward 2nd-order Butterworth filter, as described
in appendix A. The optimal length of the filter was determined empirically as the one
that yields the smallest RMS gravity disturbance error at flight level, resulting in a filter
length of 200 seconds. The RMS difference between the low-pass filtered and the true
observations is 1.2 mGal. To prevent filter artifacts at the beginning and at the end of
the profiles, a cosine taper is applied prior to filtering the data. Nevertheless, the results
computed from the filtered observations, shown in figure 5.15, are still affected by edge
effects. Also for the inner area the gravity disturbance errors and geoid errors are larger
than for the solutions computed with frequency-dependent data weighting. The error
statistics are given in table 5.9.

Table 5.8: Statistics for the results computed with frequency-dependent data weighting. The
results in brackets denote the statistics for the inner area of 4.5◦ × 4.5◦.

δg [mGal] N [m]
Min -50.39 (-8.42) -0.260 (-0.037)
Max 39.26 (6.65) 0.165 (0.032)
Mean -0.03 (0.00) 0.000 (0.000)
RMS 3.28 (1.42) 0.019 (0.007)

Table 5.9: Statistics for the results computed from the low-pass filtered data. The results in
brackets denote the statistics for the inner area of 4.5◦ × 4.5◦.

δg [mGal] N [m]
Min -48.44 (-7.70) -0.226 (-0.039)
Max 116.80 (8.25) 0.427 (0.048)
Mean 0.02 (-0.01) 0.000 (0.000)
RMS 3.45 (1.56) 0.022 (0.008)
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Figure 5.14: Errors at ground level for the solution computed with frequency-dependent data
weighting using the exact noise model. a) Gravity disturbance errors; b) geoid height errors.
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Figure 5.16: PSDs estimated from a posteriori LS residuals (α = 1) and the resulting ARMA
model.

5.4.4 Noise model estimation from residuals

In section 5.4.2, the true noise sequence is used to derive the noise model. In practice this
information is usually not available. Therefore, the strategy discussed in section 4.4.3 is
applied. It uses the a posteriori residuals of a preliminary LS solution, from which the
noise model is derived iteratively.

To ensure that the computed PSD is positive, the covariance function is truncated by
multiplying it with the Gaussian function of Eq. (4.77), with Q = 360 seconds. This
value is determined by trial and error, starting from a large Q and gradually decreasing it
until the PSD becomes positive at all frequencies. To make it easier to approximate the
PSD by an ARMA model a more drastic smoothing is applied with Q = 100 seconds.
This way the order (p, q) of the ARMA-filter is smaller, which makes the algorithm more
efficient.

The first model is estimated from residuals ê = ŷ − y computed using Qy = σ2
yI,

with σy = 1 mGal. In this case both VCE and GCV fail to determine the regularization
parameter. The computation of the partial redundancies for VCE and the nominator of the
GCV function requires the de-correlation of the residuals using the (unknown) covariance
matrix. Therefore, the regularization parameter is first set equal to one. This choice is
arbitrary; below it will be investigated whether the final noise model is sensitive to the
initial choice of the regularization parameter.

The PSDs estimated from the residuals and the resulting ARMA model are shown in
figure 5.16. The model estimated from the residuals is a MA(29) model, which is used
in the subsequent LS adjustment. The results from this estimation already show a large
improvement: the RMS gravity disturbance error is 4.2 mGal and the PSD of the noise
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Figure 5.17: PSDs computed from the estimated noise models for each iteration compared to the
exact model. a) The initial regularization parameter was is equal to one and the final model is
obtained after three iterations; b) the initial regularization parameter is set to α = 1 · 106 and the
final model is obtained after 6 iterations.
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model is close to PSD of the exact model, especially in the high-frequency band. The
procedure of model estimation is repeated until convergence is obtained. The stopping
criterion of the iteration process is that the RMS difference between two iterations should
be smaller than a pre-defined value. Here, a value of 0.5 mGal is used. In this study
convergence is obtained after three iterations. The model of the second iteration is a
MA(8) model, which gives an RMS error of 3.4 mGal. This RMS error is very close to
the RMS error computed with the exact noise model. The final model is a MA(3) model,
which yields an RMS error of 3.2 mGal. The PSDs of the models are shown for each
iteration in figure 5.17a.

For the test described above, the regularization parameter was set equal to one. To
test the dependence of the procedure on the initial choice of the regularization parameter,
the estimation of the noise model is repeated for a much larger α. For α = 1 · 106 the
resulting gravity disturbances are close to zero, and the residuals contain most of the
signal. Nevertheless, an accurate model of the colored noise can still be obtained, but
more iterations are required. Convergence is now obtained after 6 iterations. The PSD
of the ARMA model for each iteration is shown in figure 5.17b. The initial model has
much power at the low frequencies, since most of the signal is absorbed, but with every
iteration step the power decreases until convergence is reached. The results computed
with the final model, which is a MA(2) model, show an RMS gravity disturbance error of
3.2 mGal. Although this test indicates that the estimation procedure is robust against the
initial choice of regularization parameter, it is recommend to start from a smaller α so
most of the signal is preserved when computing residuals. Furthermore, in this case only
a few iterations are required to obtain the noise model. The procedure for noise model
estimation in airborne gravity data processing is shown schematically in figure 5.18.
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Figure 5.18: Noise estimation from a posteriori LS residuals in the frequency-dependent data
weighting scheme.

5.5 Bias and drift handling

5.5.1 Estimation and filtering of bias parameters

In this section the proposed methods for bias and drift handling are tested and compared
with a cross-over adjustment. For the first test, random biases with an RMS of 4.0 mGal
and zero-mean are added to the flight profiles of data set 2. Figure 5.19a shows the
histogram for the cross-over differences computed at the 330 cross-overs. Their standard
deviation is σx = 5.1 mGal, which indicates an overall accuracy of the observations of
σe = σx/

√
2 = 3.6 mGal, instead of the actual noise level of 4.0 mGal.
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Figure 5.19: Histogram of cross-over differences, where a random bias was added to each profile.
a) Noise-free observations; b) observations corrupted by white noise.

a) b)

When bias are estimated jointly with the gravity field parameters (according to Eq.
(4.80)) from noise-free data contaminated by biases, the estimation results in maximum
differences between the true (added) biases and estimated biases of less than 0.001mGal,
disregarding a mean difference of 0.009 mGal. The mean difference is equal to the mean
value of the input data, which is absorbed by the estimated biases. The explanation is that
when bias parameters are added to the functional model, it is not possible to distinguish
between a common bias in the data and the constant part of the gravity signal. The
same holds for each individual line if there would be no crossing lines. In that case the
estimated bias would include the mean value of each flight line. To make sure the mean
value of the data is not absorbed by the estimated biases, a constraint can be added to the
functional model. Here, a fixed constraint that the sum of the estimated biases is equal to
zero is applied.

Bias estimation is also performed for the data corrupted with white noise (RMS=2
mGal). A cross-over analysis performed for this case yields a standard deviation of
σx = 5.6 mGal for the cross-over differences. See figure 5.19b for the histogram of
the computed cross-over differences. The standard deviation of the cross-over errors
indicates an estimated noise level of σe = 4.0 mGal, which again underestimates the true
noise level of 4.6 mGal.

The result of the estimation is given in figure 5.20a. It shows for each flight line
the true bias and the estimated bias, where the lines 67–71 denote the N-S profiles. The
statistics of the estimation are given in table 5.10. Both table and figure show that the
biases are estimated very well; the maximum error in the estimated biases is 1.1 mGal,
whereas the RMS difference is only 0.4 mGal, which is below the noise level of the data.

Instead of estimating bias parameters as additional parameters, they may also be fil-
tered out by applying a filter matrix to the functional model (Eq. (4.83)). In this case
the results for the computed gravity field solutions are nearly the same. Small differences
may occur due to the slightly larger overall redundancy in case of filtering. The numerical
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Figure 5.20: Results of bias estimation where a random bias is added to each profile and ob-
servations are corrupted with white noise. a) Biases are estimated as additional parameters in the
functional model; b) biases are estimated by a cross-over adjustment (the estimated biases are cor-
rected for a mean difference of -1.7 mGal). The bottom part of the figures shows the differences
between the true and the estimated bias parameters.
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costs to compute the filter matrix are however much higher, especially in case of colored
noise. Therefore, bias and drift estimation is preferred over bias and drift filtering.

5.5.2 Cross−over adjustment

Bias parameters are also computed by means of a cross-over adjustment, for which the
software AGX (Hwang et al., 2006) is used. In the adjustment, the line with the smallest
added bias is fixed, and biases are estimated from the 330 cross-over differences. When
the data are only corrupted by a bias, the RMS difference between true and estimated
biases is 0.009 mGal, with a maximum error of 0.022 mGal. These differences are the
result of interpolation errors at the cross-over points.

In case of random white noise the results of the cross-over adjustment are worse
then when biases are estimated as additional parameters in the functional model (see
table 5.10). Because in many points the simulated noise is larger than the true bias, the
computation of cross-over differences is corrupted and therefore the estimated biases get
corrupted as well. The differences between true biases and estimated biases show a mean
error of 1.7 mGal, resulting in an RMS error of 1.9 mGal. The results for the estimated
bias parameters computed by the cross-over adjustment are shown in figure 5.20b.

5.5.3 Simultaneous estimation of bias and drift parameters

Besides a bias, data obtained from gravity sensors generally contain a drift, although the
drift may be very small. For LaCoste and Romberg gravimeters, excellent drift charac-
teristics of less than 1 mGal/day have been reported (Forsberg and Olesen, 2006). In
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Table 5.10: Statistics of the differences between true and estimated biases (b− b̂) [mGal] for bias
estimation and cross-over adjustment.

Method Min Max Mean STD RMS
Bias estimation -1.08 0.98 0.00 0.00 0.43
Cross-over adjustment -4.35 0.82 -1.70 0.91 1.95

such a case drift estimation is not required since the error is well below the noise level of
the data. For INS systems the drift can be as large as 15 mGal/h (Glennie and Schwarz,
1999), in which case drifts should be estimated.

To test whether drift parameters can be estimated simultaneously with bias and grav-
ity parameters, the data are corrupted by a random drift with a standard deviation of 2.0
mGal/hr. Figure 5.21 shows the surface described by the estimated drift and bias pa-
rameters per profile for the noise-free data set, if no constraint for the drift parameters is
added to the functional model. In fact, any surface that can be described by the function
f(x, y) = a + bx + cy + dxy gets absorbed by the estimated bias and drift parameters.
This case is similar to the mean gravity value absorbed by estimated bias parameters per
profile, but in practice the latter can be restored by tying the data set to ground values.

The results for the estimated drift parameters per profile are given in figure 5.22,
which shows the differences between true and estimated drift parameters in a LS ad-
justment with data corrupted with white noise. The RMS difference between true and
estimated drifts is 1.1 mGal/hr. The RMS difference between the estimated and added
bias parameters is in this case 0.7 mGal and the overall RMS gravity disturbance error
at ground level is 1.7 mGal, which is only slightly worse than if data are only corrupted
with white noise (see section 5.3).

Nevertheless, the estimation of a drift per profile is only recommend if the sensors
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Figure 5.21: Surface described by the estimated drift and bias parameters for the uncorrupted
noise-free data if no constraints are added to the functional model.
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Figure 5.22: Results for the estimated drift parameters where a bias and a drift are added to each
profile and observations are corrupted with white noise. Bias and drift parameters are estimated
per profile as additional parameters in the functional model.

used to measure gravity are known to drift, such as the case for INS systems. The sensors
that are used for the acquisition of the gravity data described in the next chapter generally
show very small drifts. Therefore, only biases will be estimated as additional parameters
in the functional model.

5.6 Summary of the optimal solution strategy

The developed methodology provides accurate results when applied to simulated data
sets. For the numerical studies presented in this chapter the methodology outperforms
the more traditional approaches of airborne gravity data processing. Based on the simu-
lations, several conclusions can be drawn and choices among various proposed methods
can be made. This leads to an optimal strategy, summarized below, that will be applied
to real data in chapter 6.

Gravity field representation

The fundamental solutions of Laplace’s equation in Cartesian coordinates are a suitable
representation of the disturbing potential, if a method for edge effect reduction is applied.
The controlled area extension method is the optimal choice to reduce these edge effects.
It was found that an extension of the area, fixed by the parameters Δx and Δy, by a tenth
of the area size already improve the results significantly. The obtained results are more
accurate than for LSC in terms of gravity disturbance and geoid height errors.
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Regularization and parameter choice rule

To overcome the instability of the downward continuation problem, a regularization
method must be applied. For the base functions used in this thesis, VCE should be used to
estimate the regularization parameter, but the choice of regularization matrix depends on
the signal spectrum. In case of the simulated data ZOT regularization yields good results
for both high-frequency solutions (e.g. gravity disturbances) and smooth solutions (e.g.
the disturbing potential), but in practice FOT regularization may perform better. This is
investigated with real data in chapter 6.

Frequency-dependent data weighting

To handle colored noise in airborne gravity data frequency-dependent data weighting is
applied. The noise is efficiently modeled by employing ARMA filters to compute the
application of the (inverse) covariance matrix to a vector. It was shown that a noise
model can be estimated from a posteriori LS residuals in an iterative manner. Starting
with a (scaled) identity matrix as covariance matrix and a relatively small regularization
parameters, an accurate noise model can be obtained after a few iterations. The results
are slightly more accurate than for low-pass filtered data. The developed method is fully
data-driven, and provides a more formalized approach to filtering of airborne gravity
data.

Bias and drift handling

Data acquired from gravity sensors often contain a bias and/or a drift. The optimal ap-
proach to account for these long wavelength effects is to estimate them as additional
parameters in the functional model. This way all data are used in the estimation, which
leads to much better results than a cross-over adjustment, especially if the noise level of
the data is high.
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Application to airborne gravimetric survey data 6
In this chapter the developed methodology for airborne gravity data processing as derived
in the previous chapters, is applied to real gravimetric survey data. Three data sets are
used for the computations.

The first data set, described in section 6.1, consists of airborne gravity measurements
obtained in 1996 over the Skagerrak area between Norway and Denmark. The survey
was performed as part of the AGMASCO campaign, by a cooperation between several
European institutes. Because the survey provided accurate airborne gravity data and
because good ground surface data is available for this region, this data set is very useful
to demonstrate and optimize the performance of the developedmethodology. First a noise
model is derived to handle colored noise in a frequency-dependent data weighting and
the results are compared to the ones obtained from low-pass filtered data. Furthermore,
a method for outlier detection is investigated and bias parameters are estimated jointly
with gravity field parameters. Finally, a local geoid is computed using the developed
methodology and with LSC, and the results are compared to the geoid for the Nordic
countries (NKG-2004).

In section 6.2, tests conducted with airborne gravity data measured by the Geo-
ForschungsZentrum (GFZ) during the CHICAGO campaign are presented and analyzed.
The area covered by this survey is situated near the coast of Chile, and shows strong
gravity gradients due to the Peru-Chile subduction zone. The overall accuracy of the
data is lower than that of the first data set. Therefore, it is used to investigate whether
the estimation and testing of non-gravitational parameters can improve upon the obtained
results. Furthermore, the results obtained with the developed methodology are compared
to the more traditional approach for airborne gravity data processing.

The third data set consists of data acquired during an airborne gravity evaluation
survey performed by Sander Geophysics Limited (SGL). The goal of this survey was to
demonstrate the application of airborne gravimetry for mineral exploration. The area is
located just north of Timmins, Ontario, and is much smaller than the survey areas of the
other two data sets. The reported accuracy of this data set is very good; a comparison
with upward continued ground data produced a standard deviation of 0.6 mGal, after low-
pass filtering. It is therefore a very challenging data set to test the frequency-dependent
data weighting scheme and apply downward continuation of the data to the location of
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the control points at ground level. The results for this data set are presented in section
6.3.

A discussion of the results obtained from the computations with the three data sets is
given in section 6.4.

6.1 Skagerrak data set

The Skagerrak campaign was flown at the end of 1996 as part of AGMASCO (Develop-
ment of an Airborne Geoid Mapping System for Coastal Oceanography), an international
project funded by the European Commission within the framework of the MAST-III pro-
gram (e.g. Forsberg et al. (1997), Hehl et al. (1997), Timmen et al. (1998)). The goal
of this project was to setup a hard- and software system for a combined airborne gravity
and airborne altimetry application in near coastal regions. The Skagerrak area, a strait
running between the Jutland peninsula of Denmark and southern Norway, was chosen as
a first test of the system, because good ground truth data were available for comparisons.
Furthermore, strong localized gravity anomalies are present in the area, which are associ-
ated with a buried volcano just south of the Norwegian coast and salt domes at the Danish
side of the Skagerrak. The availability of good surface gravity data and the fact that the
survey was flown at a relatively low flight level (400 m), make the data very suitable for
developing new processing strategies and comparison studies.

6.1.1 Description of the data

Airborne gravity data

For the computations described in this section, all gravity data were pre-processed anew
using the Airborne Gravity Software (AGS) (Meyer, 2004). After pre-processing, low-
pass filtered and unfiltered data sets have been obtained in the original observation points.
The sampling of the data is 1 second, which results in 70000 observations, divided over
26 tracks. The processing steps performed within AGS are described in Appendix A. The
filtered set of observations is obtained with the 2nd-order Butterworth filter and is used to
compare the results of the computations with those obtained with frequency-dependent
data weighting.

The processing of the GPS data has been performed with the Kinematic/Static GPS
Software KSGSoft (Xu et al., 1998). The track pattern of the processed profiles is shown
in figure 6.1. Because all computations are done in a local Cartesian reference frame,
the ellipsoidal coordinates were transformed to Cartesian coordinates according to Eqs.
(B.1) and (B.2). The local x-axis is aligned with the direction of profiles (cf. figure 6.1).

Ground truth data

There is a good surface data coverage in the Skagerrak area to assess the quality of the
airborne gravity data. During the AGMASCO project new shipborne reference gravity
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Figure 6.1: The flight tracks of the Skagerrak campaign. The star marks the location of the
GPS reference station at the airport in Thisted. The dotted lines denote the area of the airborne
gravimetry survey.

data were acquired along some of the flight lines. The surface data used for the com-
parisons comprises both gridded land and shipborne data as described by Olesen et al.
(1997). The gravity anomalies are shown in figure 6.2. The data have been upward con-
tinued to flight level using the fundamental solutions of Laplace’s equation in Cartesian
coordinates. Two solutions are computed. The first solution is solved up to a very high
degree and order of L = 70 andM = 50, which corresponds to a resolution of 2.5 km.
From the estimated coefficients Clm, gravity disturbances are computed in the locations
of the airborne gravity observations. The resulting gravity field solution is used to derive
a noise model to be applied in the frequency-dependent data weighting scheme.

The second solution is solved up to degree and order L = 14 andM = 10, which is
based on the spacing of approximately 15 km of the flight tracks of the airborne gravity
data. Again, gravity disturbances are computed at the locations of the airborne gravity
observations from the estimated coefficients Clm. This solution, which has the same
resolution as the solutions computed in the following section, is used to validate the
results of the developed methodology at flight level. This way the quality of the data can
be assessed and a good comparison of filter techniques can be made since the solutions
are free of downward continuation effects. The solutions at flight level obtained from the
surface gravity data are shown in figure 6.3.
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Figure 6.2: Surface gravity anomalies in the Skagerrak area. The black rectangle denotes the area
of the airborne gravimetry survey.
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Figure 6.3: Upward continued ground truth data at flight level; a) High resolution, solved for
L = 70, M = 50; b) Low resolution, solved for (L = 14, M = 10).
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Figure 6.4: PSDs computed from the difference between upward continued surface gravity data
and unfiltered airborne gravity data. a) Estimated using all profiles; b) estimated using only one
profile.
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6.1.2 Frequency−dependent data weighting

Noise model from ground truth data

The performance of the developed methodology is first assessed for the determination of
gravity disturbances at flight level. To obtain a noise model, the high resolution gravity
model computed from the surface gravity data (cf. figure 6.3a) is used. The difference
between upward continued gravity and the unfiltered airborne gravity data is in this case
considered as noise. From these differences a covariance function is computed, which is
transformed into a power spectral density function using the inverse Fourier transform.
To ensure that the PSD is positive for all frequencies, the covariances are multiplied by
a truncation function as described in section 4.4.3. The resulting noise PSD is shown in
figure 6.4a, together with the signal PSDs computed from the upward continued ground
data and the airborne gravity data. Obviously, the noise is larger than the gravity signal
for all frequencies, which would mean that the signal cannot be resolved. This is not true.
The airborne gravity data are acquired in multiple flights over several days, during which
the noise characteristics change. It means that noise in the data is non-stationary, which
results in an inaccurate estimation of the low-frequency part of the spectrum. Therefore,
the noise PSD is estimated on the basis of one long flight track that was not affected
by large turbulence. A longer profile allows for the estimation of longer lags in the
computation of the covariance function, and the absence of turbulence leads to a more
accurate estimation of the PSD due to less non-stationary noise. The resulting noise and
signal PSDs are shown in figure 6.4b.

From this noise PSD an ARMA model is estimated using the approach described in
(Klees and Broersen, 2002). The resulting model, which is a MA(33) model, is shown in
figure 6.5. It is used to derive a proper noise covariance matrix applied in the estimation
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Figure 6.5: PSDs computed from the difference between observations and upward continued
ground truth data (red), and the best-fitting ARMA model (blue).

of gravity field parameters. Whether it is justified to apply an ARMA model obtained on
the basis of only one profile is addressed at the end of this section.

From the estimated coefficients Clm, gravity disturbances are computed at flight level
with the same resolution as for the upward continued gravity (i.e L = 14, M = 10,
cf. figure 6.3b). To stabilize the solution, regularization must be applied. Because the
spectrum of the signal is different than for the simulations, solutions are computed for
both ZOT and FOT regularization applied. The regularization parameter is estimated
using VCE. Furthermore, controlled area extension of 50 km is applied to reduce edge
effects. Here, a solution is obtained without the estimation of bias parameters; the joint
estimation of bias parameters and gravity field parameters is investigated in section 6.1.4.

Differences are computed at the observations points between the ground truth solu-
tion (cf. figure 6.3b) and the airborne gravimetry solution, which yields an RMS dif-
ference of 4.5 mGal for ZOT regularization and 3.1 mGal for FOT regularization (see
table 6.2). The gravity field solution at flight level obtained with FOT regularization and
the difference with the upward continued surface gravity are shown in figure 6.6. The
application of FOT regularization provides more accurate results than ZOT regulariza-
tion, even though the latter performed better in case of the simulations in chapter 5. Real
airborne gravity observations contain more power in the high-frequency spectrum, which
means that the structure of the FOT regularization matrix gives a better description of the
covariance matrix of the prior information. This supports the statement in chapter 5 that
the choice of the regularization matrix should be made on the basis of the spectrum of
the data. In the following sections FOT regularization is used to obtain a stable solution.
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Figure 6.6: a) Gravity field solution computed with frequency-dependent data weighting; and b)
differences with upward continued ground truth data. The results along the profile denoted by the
black line are shown in figure 6.8.
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Figure 6.7: Noise PSDs for varying initial regularization parameters. a) PSDs estimated from
residuals of the initial solutions; a) PSDs of residuals computed after one iteration.

a) b)

Noise model estimation

In many occasions, good ground surface data may not be available and the noise model
has to be obtained in a different way. In chapter 5 it was shown that if the noise is large in
the high-frequency part of the spectrum, a noise model can be estimated from a-posteriori
residuals of a preliminary LS adjustment without using a noise model. The estimation of
the variance components for determining the regularization parameter does not converge
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because the residuals are not de-correlated. In chapter 5 it was shown that the estimation
of the noise model is robust against the initial choice of the regularization parameter. To
test whether this is also the case for real data, the estimation of the noise model is repeated
for three different initial regularization parameters (α = 1 · 10−6, α = 1, α = 1 · 106).
The noise PSDs computed from residuals of the initial solutions are shown for each
choice of regularization parameter in figure 6.7a. For each initial choice of regularization
parameter, only two iterations are required and the final noise PSDs, shown in figure
6.7b, are nearly identical. As a result, the differences between the solutions are very
small. They are at the level of the uncertainty in estimating different ARMA models
from one noise realization. The RMS difference between the three solutions and the
ground truth solution is given in table 6.1 for each iteration step.

The results confirm that an accurate noise model can be estimated from residuals of a
preliminary LS solution. Furthermore, the procedure is not sensitive to the initial choice
of the regularization parameter. Although the simulations in chapter 5 showed that more
iterations may be required for a large initial regularization parameter, it is not the case
for this data set. This can be explained by the fact that the power of the noise in the high
frequency band is much larger here, due to the higher sampling rate of this data set.

Table 6.1: RMS difference [mGal] between the upward continued ground truth solution and the
solutions computed with the estimated noise models for different initial choices of the regulariza-
tion parameters.

initial solution 1st iteration 2nd iteration
αinit = 1 · 10−6 57.33 ⇒ 3.58 ⇒ 3.03
αinit = 1 19.08 ⇒ 3.26 ⇒ 3.04
αinit = 1 · 106 9.81 ⇒ 3.08 ⇒ 3.07

Table 6.2: Statistics of differences [mGal] between the upward continued ground truth data and
the airborne gravimetry solutions computed with frequency-dependent data weighting (FDW) and
low-pass filtering.

Method Min Max Mean RMS
FDW: noise model from ground truth -9.71 15.24 0.58 3.12
FDW: estimated noise model -9.89 15.94 0.69 3.03
Low-pass filtering -10.38 15.87 0.74 3.03

Comparison to low-pass filtering

A solution was also computed from the low-pass filtered data. Again FOT regularization
is applied, but the regularization parameter could not be obtained by VCE or GCV. This
may indicate that the assumption of white noise in the frequency band of interest is not
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Figure 6.8: Results at flight level for LPF and FDW compared to the upward continued ground
truth data along one profile.

valid. Instead, the regularization parameter was chosen as the one that yields the smallest
RMS difference with the upward continued ground data. Note that this gives a too opti-
mistic solution. The resulting RMS difference is 3.03 mGal, which is equal to the RMS
difference obtained with frequency-dependent data weighting with the estimated noise
model. The statistics of the difference between the computed solutions and the ground
data are summarized in table 6.2. The resulting gravity solutions along the profile over
the buried volcano are shown in figure 6.8.
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Figure 6.9: Signal variance for each profile, used to rescale the ARMA model.
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Improvement of the noise model

The development of the filter is based on ground truth data or a posteriori residuals com-
puted for a single track, and the obtained model is used for the filtering of all profiles.
However, the noise variance and the noise characteristics are different for each track,
due to changing flight circumstances. Figure 6.9 shows the signal RMS of the unfiltered
observations for each profile. Because the variance of the noise is several orders of mag-
nitude larger than the variance of the gravity signal, the signal variance can directly be
used as a measure of the noise level of each track. The obtained noise variances are used
to re-scale the noise model per track and the structure of the noise model is described
by the ARMA model estimated in the previous subsection. If a gravity field solution
is computed with frequency-dependent data weighting with the scaled model, the results
show however no improvement. The RMS difference with upward continued ground data
is 3.78 mGal, which is larger than the RMS difference obtained without scaling of the
noise model. This can be explained by the fact that the total variance of the signal is the
result of high-frequency noise. If these variances are used to re-scale the noise model,
the noise level of the low-frequency part of the spectrum also changes, which may result
in a wrong weighting of the gravity signal per profile.

Instead of re-scaling the ARMA model of one profile, a separate ARMA model is
computed for each track. The ARMA models are estimated from noise PSDs computed
from the difference between the high resolution gravity field model computed from the
ground truth data (cf. figure 6.3a) and the unfiltered observations. The obtained ARMA
models are used for the application of the (inverse) covariance matrices, belonging to the
observations of those profiles, in the LS adjustment. In this case, the RMS difference
with the ground truth is also larger than for the results computed with one ARMAmodel:
the RMS difference is 4.47 mGal. This indicates that for some profiles a less accurate
noise model was estimated due to gaps and non-stationary noise, or because the length
of some profiles is too short to get a good estimate for the low-frequency part of the
spectrum.

An improvement on the noise modeling presented in this section may be provided
by variance component estimation, as discussed in section 4.3.4. Each profile is consid-
ered as a separate observation group that gets a different weighting. This is similar to
the scaling of one ARMA model, but the relative weights of the co-factor matrices are
estimated in an iterated LS estimation. Such an estimation was implemented using the
iterative maximum-likelihood method and tested with the ARMA model estimated for
one profile, but convergence of the variance components could not be obtained. Since the
convergence of VCE depends on the correctness of the noise model, this can indicate that
the structure of the applied ARMA model is not representative for the noise structure of
all tracks. Further research on obtaining an improved noise model using VCE is recom-
mended. In the following sections, the noise model estimated from a posteriori residuals
of one profile is used in the frequency-dependent data weighting scheme.
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Figure 6.10: Outlier detection using the 3-sigma rule shown for one profile of the Skagerrak
data set. a) Applied to the original observations, resulting in 20 detected outliers out of 3151
observations; b) applied to de-correlated observations. In this case 19 observations are identified
as outliers.

a) b)

6.1.3 Outlier detection

With the application of an accurate noise model an accurate gravity field solution can be
obtained. However, observations are generally not only contaminated by (colored) noise,
but also by outliers and/or systematic errors. It is necessary to detect and remove these
errors prior to the computation of gravity field parameters because undetected outliers
may lead to erroneous results. For the detection of outliers a vast number of methods can
be applied. A conventional approach in geodesy is to test the observations for blunders
using the w-test statistic and remove the observation with the highest test-statistic (see
e.g. Teunissen, 2000). This procedure of data snooping is however not convenient for
large data sets, since a new adjustment must be performed after the removal of each
erroneous observation.

A much more simple approach is the application of the 3-sigma rule, which is often
used as a quick tool to remove gross errors from the data. Assuming a normal distribution
almost all of the observations lie within three standard deviations of the mean. Observa-
tions that are not within this range are discarded. Since the removal of these observations
reduces the standard deviation, it can be applied in an iterative manner until all observa-
tions are within the 3σ range. The noise level of the observations is different for each
profile as shown in previous section (cf. figure 6.9), which means that the application
of the 3-sigma rule results in the removal of most of the observations located in profiles
with a high noise level, whereas for some profiles no outliers are found. Therefore, the
method is applied to each profile separately, in which case 1200 outliers are found (2%
of the data). Figure 6.10a shows as an example the observations that are identified as
outliers within one profile.

An outlier is an observation that does not follow the stochastic properties of the noise
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model. As such, some of the detected outliers may be observations contaminated by
strong noise, which is removed in the frequency-dependent data weighting. Therefore,
the procedure is applied to de-correlated observations, resulting in the 1150 detected
outliers in the whole data set. Figure 6.10b shows for the same profile as figure 6.10a
the de-correlated observations and the detected outliers for this case. The figures shows
that especially the large outliers are detected from the original data as well as from the
de-correlated data.

If a solution is computed with the data from which the outliers detected from the
de-correlated data are removed, the RMS difference with the upward continued ground
data is 4.83 mGal. This is much larger than the RMS difference obtained without outlier
detection (cf. table 6.2). This is remarkable because even if the discarded observations
are falsely identified as outliers, the redundancy of the data set is large enough to compute
an accurate solution when 2% of the observations is removed.

Therefore, the procedure is repeated by removing only the observations that show
a specific pattern. Figure 6.10a shows several occasions where the signal jumps from
a large negative value to a large positive value (or vice versa), such as for instance the
outlier located around 1000 seconds. These outliers occur as large spikes in the de-
correlated data shown in figure 6.10b. As discussed by Olesen (2003), these large errors
may be caused by GPS cycle slips. For the whole data set 50 occurrences of such jumps
were detected and removed. In that case, the RMS difference with the ground truth data
is 3.22 mGal, which is still larger than the solution without outlier detection (cf. table
6.2).

It can be argued that a larger RMS difference with the ground truth data does not nec-
essarily mean a less accurate solution. However, as mentioned above, removing only a
few observations should not have such a large negative effect due to the large redundancy
of the data. The reason for the larger RMS in this case is that removing data introduces a
lot of data gaps. Although the PCCG approach for the application of the covariance ma-
trix to a vector, as presented in section 4.4, is not affected by edge effects in the presence
of data gaps, the removal of outliers decreases the accuracy of the solution. Even when
the outliers are replaced by ’true’ values computed from the ground truth, the fit with the
upward continued ground data is worse than for the case that no outliers are removed.
The reason is that because the data are correlated, removing a single observation affects
a number of observations before and after the detected outlier. Therefore, a different
strategy should be employed in this case to detect and remove outliers from the data.

A possible method to treat outliers in case of colored noise would be to apply a robust
estimation approach, such as M-estimation (Huber, 1981). In that case no observations
are discarded, but observations for which the residuals are large get a smaller weight
in the estimation. This topic requires further research; in the following sections outlier
detection is therefore not applied.
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Figure 6.11: Histogram of cross-over errors computed from low-pass filtered observations.

6.1.4 Estimation of bias parameters

A cross-over analysis is performed with the low-pass filtered data to test the internal
consistency of the data. The standard deviation computed from 95 cross-overs is 4.48
mGal, which corresponds to an estimated accuracy of 3.17 mGal. The histogram of the
computed cross-over misfits is shown in figure 6.11. As discussed in section 3.1.2 these
misfits may be the result of local errors, and biases estimated in a cross-over adjustment
can reduce the accuracy of the gravity field solution.

Here, biases are estimated jointly with gravity field parameters in a LS adjustment.
A solution is computed with frequency-dependent data weighting as well as from the
low-pass filtered observations (i.e. without FDW). The estimated bias parameters are
shown for both solutions in figure 6.12. For most of the profiles, the difference between
the bias parameters estimated from low-pass filtered data and the parameters estimated
using frequency-dependent data weighting is very small, except for profiles that contain
large data gaps due to the removal of data in segments with large turbulence. Again,
this shows that the removal of data distorts the correlated data sequence, which may
introduce errors. On the other hand, the error that is introduced is largely absorbed by
the estimated bias parameters, and the results for the estimated gravity field solutions
obtained with low-pass filtering and frequency-dependent data weighting are nearly the
same. The RMS difference with upward continued surface gravity is 3.8 and 4.0 mGal
for low-pass filtering and FDW, respectively. These differences are significantly larger
than for the solutions obtained without bias estimation (see table 6.2). The reason is
that the estimated bias parameter of a profile represents a mean value of the observations
within that profile, which is not consistent with mean values of the other profiles. If a part
of such a profile is affected by errors, for instance caused by turbulence, this can have
a large effect on the mean value of the whole profile. In that case an estimated bias can
degrade the accuracy of parts that are not affected by errors. Therefore, bias estimation
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Figure 6.12: Bias parameters estimated from a) low-pass filtered data; b) unfiltered data using
frequency-dependent data weighting

is not applied for computations with this data set in the following section.

6.1.5 Geoid determination

In geodesy, the main application of airborne gravimetry is the downward continuation
of gravity to be combined with terrestrial data, and the determination of a local geoid.
For the computation of the geoid the remove-restore technique is applied. The long-
wavelength part of the gravity field is modeled by the EGM96 model (Lemoine et al.,
1998) and removed from the observations. As discussed in section 3.2, a terrain correc-
tion is often applied in practice to make the signal at flight level more smooth. Here, this
correction is not computed because the influence of the topography in the area is very
small.

Gravity field solutions are computed on a grid for the area covered by the obser-
vations using two approaches. One solution is computed from the unfiltered airborne
gravity measurements using frequency-dependent data weighting with the ARMAmodel
estimated from residuals as described in the previous subsection. Coefficients are again
estimated for L = 14, M = 10, which means that the disturbing potential is represented
by 608 base functions. The coefficients are estimated in a LS adjustment with FOT
regularization applied and the regularization parameter is estimated with VCE. The sec-
ond solution is computed from the low-pass filtered airborne gravity data set using LSC.
The resulting geoid solutions are compared to the NKG-2004 geoid model, which is the
gravimetric quasi-geoid for the Nordic countries computed by Forsberg et al. (2004).
The NKG-2004 geoid is computed for the area bounded by Northern latitudes of 53-73
degrees and Eastern longitudes of 1-33 degrees, using FFT techniques to evaluate the
Stokes kernel function.

Before comparing the solutions, the long-wavelength part computed from EGM96 is
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also subtracted from the NKG-2004 geoid. Because the mean value of the disturbing
potential within the computation area cannot be determined from the airborne gravity
measurements, this mean value of 0.83 meter is removed from the residual NKG-2004
geoid. The resulting residual NKG-2004 model is shown in figure 6.13a.

The residual geoid computed using frequency-dependent data weighting and FOT
regularization yields a solution that is too smooth if VCE is used to estimate the regular-
ization parameter. The regularization parameter is estimated as αV CE = 0.6 · 1010. A
better fit is obtained with α = 0.7 · 109, for which the differences with the residual NKG-
2004 geoid are shown in figure 6.13b. The RMS difference is 9.5 cm and the maximum
difference is 36 cm (see also table 6.3). To justify the choice of the regularization ma-
trix, the computation is repeated for ZOT regularization combined with VCE, but again
the solution is too smooth. The RMS difference with the NKG geoid is 12 cm, and the
maximum difference is 49 cm, which is significantly larger than for FOT regularization.
If a solution is computed from low-pass filtered data with the same number of base func-
tions and the regularization parameter of the FOT regularization matrix is determined
empirically, the results are almost the same as for the solution computed with frequency-
dependent data weighting. The statistics of the differences between the solutions and the
residual NKG-2004 geoid are given in table 6.3.

A solution is also computed from the low-pass filtered observations at flight level
using LSC. Not all observations have been used for the computation, because it would
require the inversion of a 70000 by 70000 signal covariance matrix. Instead 3500 grav-
ity disturbances were selected at a spacing of 2’ in latitude direction and 1’ in longitude
direction. The empirical auto-covariance function is computed using all data and approx-
imated by the Tscherning-Rapp degree-variance model, which is used in the software
package GRAVSOFT to obtain a geoid solution. Before applying LSC, the mean value
has been subtracted from the observations. The difference with the residual NKG-2004
geoid solution is shown in 6.13c and the statistics are given in table 6.3. For this solution
the RMS difference is 8.4 cm, which is slightly better than the solution computed with
frequency-dependent data weighting, and the maximum difference is 35 cm.

The solutions computed using fundamental solutions of Laplace’s equation suffer
more from edge effects than the LSC solution. As discussed in chapter 5, these edge
effects are the result of periodicity of the base functions and of missing data outside
of the survey area. The first type of edge effects is reduced by using controlled area
extension. The second effect is common to all types of parameterizations and estimation
techniques, but LSC may perform better than other methods under certain conditions. If
the auto-covariance function is also representative for the area outside the survey area
edge effects due to missing data will be relatively small. On the other hand, if the auto-
covariance function is not representative for data outside the area, LSC will also suffer
from significant edge effects.

To investigate how large the effect is of data outside the area covered by the airborne
gravity data, two solutions were computed from the ground surface data. One solution is
computed from all the available surface gravity data (shown in figure 6.2) and the other

119



Application to airborne gravimetric survey data

5 

o
  6 

o
  7 

o
  8 

o
  9 

o
  10 

o
  11 

o
  12 

o
  

56 

o
  56 

o

57 

o
  57 

o

58 

o
  58 

o

59 

o
  59 

o

-1.0 -0.5 0.0 0.5 1.0

m

5 

o
  6 

o
  7 

o
  8 

o
  9 

o
  10 

o
  11 

o
  12 

o
  

56 

o
  56 

o

57 

o
  57 

o

58 

o
  58 

o

59 

o
  59 

o

-1.0 -0.5 0.0 0.5 1.0

m

5 

o
  6 

o
  7 

o
  8 

o
  9 

o
  10 

o
  11 

o
  12 

o
  

56 

o
  56 

o

57 

o
  57 

o

58 

o
  58 

o

59 

o
  59 

o

-1.0 -0.5 0.0 0.5 1.0

m

5 

o
  6 

o
  7 

o
  8 9 

o
  10 

o
  11 

o
  12 

o
  

56 

o
  56 

o

57 

o
  57 

o

58 

o
  58 

o

59 

o
  59 

o

-1.0 -0.5 0.0 0.5 1.0

m

Figure 6.13: Geoid solutions for the Skagerrak area compared to the NKG-2004 geoid. a) The
residual NKG-2004 geoid with respect to EGM96; b) differences with NKG-2004 for the solution
obtained from unfiltered airborne gravity observations using FDW; c) differences with NKG-2004
for the solution computed from filtered airborne gravity observations using LSC; d) differences
between the LSC solution computed from all available ground surface data and the LSC solution
computed from data in the area covered by the airborne gravity survey, showing the effect from
observations outside the survey area.

a) b)

c) d)
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solution is computed from ground surface data within the area covered by the airborne
survey. The difference between the two solutions is shown in figure 6.13d, from which it
is clear that the errors can be very large. In the north-western part and in the south-eastern
part the differences are as large as 50 cm, whereas in the middle of the area differences
between the two solution are close to zero.

6.1.6 Conclusions

Frequency-dependent data weighting applied to the Skagerrak data set provides gravity
field estimates that have the same accuracy as the results obtained with low-pass filter-
ing. The solutions show a good agreement with upward continued surface data and the
estimated accuracy is at the level of 3 mGal. A noise model estimated from residuals
provides the same results as one derived using upward continued gravity, which shows
that the developed methodology is suitable for practical applications and prior knowledge
of the gravity field is not required.

As regularization matrix FOT regularization is preferred over ZOT regularization,
even though the latter provided more accurate results for simulated data. Real airborne
data contains more power in the high-frequency part of the spectrum, which means that
the FOT regularization matrix gives a better description of the covariance matrix of the
prior information. If FDW is used the regularization parameter can be accurately esti-
mated with VCE, whereas for low-pass filtering convergence of the variance components
could not be obtained. This indicates that correlations in the low-pass filtered signal are
not correctly described by the scaled unity covariance matrix.

The performance of frequency-dependent data weighting gets worse if detected out-
liers are removed from the data due to interruption of the correlated data sequence. This
can be a problem in practical applications since undetected outliers can have a large in-
fluence on the estimated gravity field. The negative effect of introducing data gaps due to
the removal of outliers is however larger than the effect of remaining blunders in the data.
Therefore, the removal of outliers from the observations is therefore not recommended
within frequency-dependent data weighting scheme.

The estimation of bias parameters does not improve the results obtained with this data

Table 6.3: Statistics of differences [m] between the residual NKG-2004 geoid and the airborne
gravimetry solutions computed with frequency-dependent data weighting (FDW) and low-pass
filtering (LPF).

Method Min Max Mean STD RMS

FDW: FOT (αV CE) -0.387 0.347 0.006 0.102 0.102
FDW: FOT (αemp) -0.362 0.349 0.010 0.094 0.095
LPF: FOT (αemp) -0.332 0.344 0.001 0.094 0.094
LPF: LSC -0.284 0.351 0.009 0.084 0.084
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set. Because all observations are used in the estimation of bias parameters, a bias repre-
sents a mean error within a profile that is not consistent with other profiles. This means
that if short-period errors affect this mean, these errors may leak into longer wavelengths.
In this section it is therefore not applied for the computation of a local geoid from the
airborne data. Nevertheless, bias estimation can provide valuable information on the
instrument stability.

A local geoid is computed using frequency-dependent data weighting as well as using
LSC, and compared to the geoid of the Nordic countries NKG-2004. The LSC solution is
less affected by edge effects, which indicates that the auto-covariance function provides a
good representation of data outside the survey area too. Furthermore, LSC is not affected
by errors due to non-periodicity of the data. Local features, such as a buried volcano,
are well recovered in both solutions, which shows that airborne gravimetry is a valuable
technique for regional gravity field determination.

6.2 Chile data set

6.2.1 Description of the data

The data for which the performance of the developedmethodology is tested in this section
was acquired in 2002 by GeoForschungsZentrum Potsdam (GFZ) during the CHICAGO
campaign in Chile (Meyer and Pflug, 2003). The area is of particular interest due to
the presence of the Peru-Chile trench; a subduction zone west of the South American
continent. As a result, strong gravity gradients are observed. The survey consisted of
13 off-shore flights near the coast of Chile and 4 flights above the Chilean mainland,
resulting in 27 off-shore profiles and 12 on-shore profiles. All off-shore flights, except
one because of an island, were performed at about 300 meters altitude, whereas the flights
above the mainland were flown at an altitude of 2100 - 3000 meters. To minimize the
effect of downward continuation, only data from the off-shore profiles are used for this
study. The flight tracks and the main bathymetric features of the area are shown in figure
6.14, the low-pass filtered observations at flight level are shown in figure 6.15. From the
27 off-shore profiles, 24 are used in the computations. The total number of observations
after pre-processing with the AGS software (see appendix A) is 85000. The results of
the computations presented in this section are compared with gravity anomalies from
the DNSC08 ocean-wide gravity model (Andersen et al., 2008), which was derived from
satellite altimetry measurements. This model is shown for the Chile region in figure 6.16.

6.2.2 Gravity field determination

A gravity field solution is computed at ground level from low-pass filtered data and us-
ing frequency-dependent data weighting (FDW). Based on the spacing of the profiles,
coefficients are estimated up to degree and order L = M = 13, which means that the
disturbing potential is parameterized by 728 base functions. Gravity disturbances are
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km

m

Figure 6.14: The off-shore flight tracks of the CHICAGO survey and the main bathymetric fea-
tures in the area (top) and an overview of the region of interest (taken from (Meyer and Pflug,
2003)) showing the southern part of the Nazca plate and the Peru-Chile trench (bottom).

computed from the estimated coefficients on a grid defined by the DNSC08 model for a
slightly smaller area than for which the airborne data is available.

To obtain a gravity field solution with frequency-dependent data weighting, a noise
model must be computed. As shown for the Skagerrak data set it can be estimated from
the residuals of a preliminary LS adjustment. To stabilize the normal equations, FOT
regularization is applied. Because VCE fails to estimate the regularization parameter if
the wrong noise model is used, the regularization parameter is set equal to the smallest
value that allows for a stable inversion of the normal equations. As discussed in chapter
5 and in the previous section the initial choice of the regularization parameter does not
have a significant influence on the estimation of the noise model. Indeed, convergence of
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Figure 6.15: Low-pass filtered observations at flight level.
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Figure 6.16: Gravity anomalies from the DNSC08 satellite altimetry derived gravity model (An-
dersen et al., 2008) in the survey area.

the noise model is obtained within 3 iterations. The RMS difference between the first and
second iterated solution is only 0.6 mGal and the RMS difference between the second
and the third solution is 0.4 mGal. The noise PSDs estimated from the residuals for the
preliminary LS adjustment and the first two iterated solutions are shown in figure 6.17a.
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Figure 6.17: Noise PSDs estimated from residuals of the iterated LS adjustments. a) Using all
data; b) using data of one profile (first iteration only).

a) b)

If a proper noise model is applied in the frequency-dependent data weighting, the
regularization parameter can be determined by VCE. The variance factor of the covari-
ance matrix of the observations is equal to 0.98 for the first iterated solution and 0.99
for the second and the third. This indicates that the noise in the observations is correctly
described by the ARMA model. The resulting gravity field solution computed with the
final noise model is shown in figure 6.18a.

The noise model is estimated using the residuals of the whole data set, whereas for
the Skagerrak area only one (long) profile was used because gaps and non-stationary
noise led to a bias in the estimation of the low-frequency part of the spectrum (see section
6.1.2). Figure 6.17b shows the PSDs estimated from the preliminary a posteriori residuals
for each profile separately. It is clear that the PSD estimated from all residuals represents
the average noise characteristics of this data set very well.

The quality of the frequency-dependent data weighting solution is assessed using the
DNSC08 model. Differences are computed at the locations where the gravity anomalies
of DNSC08 are available, which yields a standard deviation of 12.8 mGal. Furthermore,
a mean difference of 20 mGal is observed between the model and the FDW solution.
The differences are shown in figure 6.18b, and their statistics are given in table 6.4.
Figures 6.16 and 6.18 show that the main features, such as the large anomalies in the
Eastern part and in the middle of the area at the location of the trench, are well recovered,
but locally there are large differences. A solution is also computed using the low-pass
filtered observations, but in that case the estimation of the regularization parameter with
VCE does not converge. This indicates that the assumption that the noise in the low-pass
filtered data is white is not correct. In the following subsection, solutions are computed
using frequency-dependent data weighting.

125



Application to airborne gravimetric survey data

284 

o
 30' 285 

o
 00' 285 

o
 30' 286 

o
 00'

-39 

o
 00' -39 

o
 00'

-38 

o
 30' -38 

o
 30'

-38 

o
 00' -38 

o
 00'

-37 

o
 30' -37 

o
 30'

-120 -80 -40 0 40 80 120

mGal

284 

o
 30' 285 

o
 00' 285 

o
 30' 286 

o
 00'

-39 

o
 00' -39 

o
 00'

-38 

o
 30' -38 

o
 30'

-38 

o
 00' -38 

o
 00'

-37 

o
 30' -37 

o
 30'

-50 -40 -30 -20 -10 0 10 20 30 40 50

mGal

Figure 6.18: a) Gravity disturbances at ground level estimated using frequency-dependent data
weighting; b) differences between the FDW solution and the DNSC08 model. For the computa-
tion of gravity field parameters the laboratory values of the k-factor and calibration factor have
been used.

a) b)

6.2.3 Estimation of non−gravitational parameters

The solution shown in figure 6.18a is obtained without estimating biases or other non-
gravitational parameters, such as scaling factors. However, figure 6.15 shows that espe-
cially at intersections of the flight lines misfits can be identified. A cross-over analysis
is performed to assess the internal consistency and estimate the accuracy of the data
set. The total number of cross-overs is 76, and the standard deviation of the cross-over
misfits is σx = 18.3 mGal, which indicates a noise level of the filtered observations of
σe = σx/sqrt2 = 12.9 mGal. The misfits at cross-over points, which at some locations
are as large as 40 mGal, can be the result of biases, which in turn may be caused by
changing flight conditions that affect the performance of the instrument.

Instrument readings are related to gravity by applying several scaling factors such as
the beam velocity scaling factor (called k-factor) and the spring tension calibration factor.
These values may be determined by laboratory calibration, but conditions may differ
for each flight. Therefore, they are estimated here simultaneously with the gravity field
parameters and tested as described in section 4.5. In this section it will be investigated
how accurate the scaling factors can be estimated and whether the parameters correlate.
If the correlation is high they should not be estimated simultaneously, because in that case
their effect on the gravity field parameters is the same. Furthermore, it will be shownwhat
the effect is of the estimated non-gravitational parameters on the gravity field solution.
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Table 6.4: Statistics of differences [mGal] between the DNSC08 model and the solutions for the
joint estimation of non-gravitational and gravity field parameters.

Method Min Max Mean STD RMS
laboratory values of k and c -75.59 63.25 -20.69 12.79 24.32
estimated k and c -80.13 54.10 -26.93 12.23 29.58
estimated k and c per profile -65.21 50.87 -26.10 10.53 28.14
estimated k and bias per profile -65.19 50.99 -26.13 10.54 28.17

In the pre-processing of the data the laboratory values of the k-factor (k = 39.0) and
spring tension calibration factor (c = 1.014) were used. If they are determined together
with the gravity field parameters, the k-factor is estimated as k̂ = 38.909 ± 1 · 10−3

and for the calibration factor a value of ĉ = 1.01460 ± 1 · 10−5 is obtained. Although
the estimated k-factor differs only slightly from the laboratory value, the deviation is
statistically significant. The effect of this difference is on the gravity solution is, however,
small: the maximum effect is only 1.1 mGal. The difference in c is also small, but a mean
value of 6 mGal is absorbed. The reason is that because spring tension values are always
positive (values range from 9000 to 12000 cu), a change in c leads to a change of the mean
value of the estimated gravity field. Compared to the DNSC08 model, the estimation of
a k-factor and calibration factor leads to minor improvement. The standard deviation of
the differences between the estimated gravity field at ground level and DNSC08 is 12.23
mGal (see table 6.4), but the mean difference with the model increases from 20.7 mGal
to 26.9 mGal.

The joint estimation of one k-factor and one calibration factor per profile with the
estimation of gravity field parameters, leads to an improvement of the solution when
compared to the DNSC08 gravity anomalies at ground level. The gravity field solution
and the differences with DNSC08 are shown in figure 6.20. The standard deviation of the
differences of 10.5 mGal is significantly smaller than for the solution without estimating
non-gravitational parameters. The estimated k-factors and calibration factors per profile
deviate much more from the laboratory values of k and c, than when only one k-factor
and calibration factor is estimated for the whole data set, which is demonstrated in figures
6.19a and 6.19b. For some profiles, the variation of the k-factors results in a change in
gravity with respect to the original solution of about±15 mGal, which is shown in figure
6.21a, and the estimation of a calibration factor per profile has an effect on the solution
of ±30 mGal (see figure 6.21b).

When the estimation of calibration factors is combined with the estimation of bias
parameters, it is found that these parameters are highly correlated (the correlation coeffi-
cient is almost equal to -1), which means that they have the same effect on the parameter
estimation. Indeed, when bias parameters are estimated instead of spring tension calibra-
tion factors, nearly the same gravity field solution is obtained (see table 6.4). Differences
between both solutions are smaller than 0.3 mGal for the whole area. The estimated
bias parameters (cf. figure 6.19) show the same pattern as the calibration factors in fig-
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Figure 6.19: Results of the estimation of non-gravitational parameters. The dashed lines denote
the laboratory values, the solid denote the mean value of the estimated parameters. a) Estimated
k-factors per profile; b) estimated spring tension scaling factors per profile. c) estimated biases
per profile, multiplied by -1 to show the similarity to the estimated spring tension scaling factors.
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Figure 6.20: Gravity field solution at ground level corrected for a k-factor and a calibration factor
estimated for each profile (a); b) differences with the DNSC08 model.

a) b)

284 

o
 30' 285 

o
 00' 285 

o
 30' 286 

o
 00'

-39 

o
 00' -39 

o
 00'

-38 

o
 30' -38 

o
 30'

-38 

o
 00' -38 

o
 00'

-37 

o
 30' -37 

o
 30'

-15 -10 -5 0 5 10 15

mGal

284 

o
 30' 285 

o
 00' 285 

o
 30' 286 

o
 00'

-39 

o
 00' -39 

o
 00'

-38 

o
 30' -38 

o
 30'

-38 

o
 00' -38 

o
 00'

-37 

o
 30' -37 

o
 30'

-30 -20 -10 0 10 20 30

mGal

Figure 6.21: Effect of the estimation of non-gravitational parameters of the gravity field solution.
a) Differences between the solution obtained without estimating scaling factors (cf. figure 6.18)
and the solution where one k-factor is estimated per profile; b) same as for (a) but for the solution
where one calibration factor is estimated per profile.

a) b)
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ure 6.19. Correlations computed between k-factors and bias parameters, and between
k-factors and calibration factors are smaller then 0.5. From the results presented in figure
6.20 and table 6.4 it is clear that the final solution for which k-factors and calibration fac-
tors (or bias parameters) are estimated per profile gives the best results when compared
to the DNSC08 model.

6.2.4 Conclusions

A gravity field solution computed using frequency-dependent data weighting to handle
colored noise, without the estimation of non-gravitational parameters yields an RMS
difference of 12.8 mGal with the satellite altimetry derived gravity model DNSC08. The
proper noise model is estimated using the LS residuals of all observations, instead of a
single long profile as was done in case of the Skagerrak data set. A noise PSD could
be estimated from all data because the data contain no gaps and the profiles have the
same length. In practice, the choice of which strategy should be used, can be made by
computing noise PSDs for all profiles and compare their spectra with the one computed
for the whole data set. If they match, the noise PSD of all data can be used as the input for
ARMA model estimation. Otherwise, a long profile which is less affected by turbulence
and has no data gaps could be used instead.

The gravity field solution is improved significantly if non-gravitational parameters
are jointly estimated with the gravity field parameters. The RMS difference between the
final gravity field model and DNSC08 is 10.5 mGal, which is significantly smaller than
the RMS difference of 12.8 mGal, obtained if no additional parameters are estimated.
Instrument scale factors, such as the k-factor and spring tension calibration factors, can
be accurately estimated. For the Chile data set, they significantly deviate form the labo-
ratory values, especially if they are estimated per profile. Estimated bias parameters and
spring tension parameters are highly correlated, which means that biases in the data are
predominantly caused by deviations in the spring tension data. In practice there is how-
ever no physical justification for the deviations of the spring tension calibration factor,
due to the excellent drift stability of the LCR gravimeter. Therefore, it is recommend
to apply bias estimation combined with the estimation of k-factors for each profile, to
improve the gravity field solution.

6.3 Timmins, Ontario data set

6.3.1 Description of the data

In 2003 Sander Geophysics Limited (SGL) conducted a high-resolution gravimetric sur-
vey north of Timmins, Ontario, Canada. The survey was flown with the AIRGrav (Air-
borne Inertially Referenced Gravimeter) system (Sander et al., 2004), which uses a Schuler-
tuned inertial platform supporting three orthogonal accelerometers. The survey flight
lines were flown with a dense line spacing of 500 m at a constant GPS height of 458 m,
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Figure 6.22: Gravity data coverage in the Timmins area. The blue crosses denote the locations of
ground data points, the black lines denote the airborne gravity profiles.

chosen to safely clear the highest terrain in the area (terrain elevations vary between 250
m and 400 m). The total area size is 36 by 24 km. Several control lines were flown at
a spacing of 5000 m. A detailed description of the survey is given in Elieff (2003); Eli-
eff and Sander (2004). Within the survey area, 573 ground Bouguer gravity anomalies,
acquired in a large ground survey performed in 2001, are available for evaluation of the
AIRgrav data. A map showing the locations of the ground Bouguer gravity anomalies
and the AIRGrav flight lines is shown in figure 6.22.

The pre-processing of this data set was performed by Elieff (2003), resulting in a
set of filtered Bouguer gravity anomalies at flight level which are shown in figure 6.23.
These values are computed by applying several corrections such as Eötvös effect, free-air
and Bouquer corrections, and a correction for the Earth curvature. Furthermore, a static
correction and a level correction are applied to account for instrument variations. The
static connection is based on ground readings, i.e it is applied to tie the data to surface
data, and the level correction is computed from control line intersection misfits to adjust
individual lines with a constant shift. The latter is used in section 6.3.3 to compare the
results of the estimation of bias parameters. Finally, the gravity anomalies are low-pass
filtered to remove high-frequency noise and averaged using a spatial filter with a mid
point of 2.85 km (for more details see Elieff, 2003).

6.3.2 Estimation of the noise model

To test how well the filtered AIRGrav data can be recovered from unfiltered observations
using frequency-dependent data weighting, a noise model is first computed from the
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Figure 6.23: Filtered AIRgrav Bouguer gravity anomalies at flight level as computed by Elieff
(2003) for the Timmins survey.

difference between the filtered data (cf. figure 6.23) and the unfiltered observations. A
PSD of this difference, which is the part removed by the low-pass filter and considered
as noise, is computed for the whole data set. The resulting PSD is shown in figure 6.24.
The noise increases for higher frequencies, but rapidly decreases above 0.25 Hz. This
indicates that some pre-filtering may have been applied to the data. Nevertheless, an
ARMA model is estimated from the smooth noise PSD of figure 6.24a, which results in
an ARMA(22,21) model. This ARMA model is used in the frequency-dependent data
weighting to handle the strong colored noise.

In the LS estimation, coefficients Clm are estimated from 77000 observations up to
degree L = 11 andM = 8, which means that the disturbing potential is represented by
390 base functions. The area size is 36 by 24 km and the parametersDx andDy were set
to 44 and 32 km, respectively, to reduce edge effects. That is, controlled area extension
is applied with Δt = 8 km. The resulting resolution of the estimated gravity field is 2
km. To obtain a stable solution, FOT regularization was applied with VCE as parameter
choice rule. The resulting gravity anomalies at flight level are shown in figure 6.25. It can
be seen that the solution is affected by edge effects, but at 1 km from the borders of the
area the gravity signal is well recovered. The RMS difference with the low-pass filtered
data is 1.08 mGal, with a maximum error of 16.5mGal at the edge, but for the inner area
(1 km from the edges) the RMS is only 0.65 mGal and the maximum difference is 3.5
mGal.

The edge effects are not the result of filtering, since the application of the (inverse)
covariance matrix to a vector is not affected by data gaps, but due to the use of periodic
base functions to represent the non-periodic gravity signal. The application of controlled
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Figure 6.24: Estimated noise PSDs for the Timmins survey. a) PSD computed from the difference
between unfiltered and filtered observations. To ensure positiveness of the PSD, the covariance
function was smoothed with Q =5000 seconds (blue) and Q =50 seconds (red). b) Noise PSDs
estimated from residuals for the three iterations.

a) b)

area extension with Δt = 8 km to reduce edge effects does not completely remove them,
but does prevent propagation of the errors into the area. If larger values of Dx and Dy

are used and more base functions are estimated to obtain the same resolution, the edge
effects are smaller. For example, usingDx = 88, Dy = 64 km and increasing the degree
and order to L = 22, M = 16 reduces the maximum error to 12.3 mGal and the RMS
difference to 0.75 mGal for the whole area, and 2.9 mGal (max) and 0.57 mGal (RMS)
for the inner area.

Next, a noise model is estimated from residuals of a preliminary LS adjustment with-
out applying a model of the colored noise. For the initial solution, the regularization
parameter was set to a small value (α = 1 · 10−6) and the resulting LS residuals are used
to estimate an ARMA model. This ARMA model is used in a following adjustment and
the process of noise model estimation is repeated. Convergence was already obtained
after 3 iterations, resulting in an ARMA(15,14) model. The PSD functions for each iter-
ation are shown in figure 6.24b. When compared with the noise PSD in figure 6.24a it is
clear that the final model is nearly the same as the one obtained from the difference be-
tween low-pass filtered and unfiltered observations. The resulting gravity field solution is
therefore also the same; the RMS difference with solution computed with ARMA(22,21)
(cf. figure 6.25) is only 0.07 mGal for the whole area and 0.03 mGal for the inner area.

6.3.3 Bias estimation

Elieff (2003) gives an detailed analysis on the system resolution and accuracy. The in-
ternal consistency was measured by a cross-over analysis, which yielded an estimated
accuracy of 0.45 mGal (the RMS of the cross-over errors was 0.64 mGal). Based on the
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Figure 6.25: Bouguer gravity anomalies estimated from unfiltered observations using frequency-
dependent data weighting.

misfits at the line intersections Elieff (2003) applied a cross-over adjustment to account
for biases in the data. For the comparison of this adjustment with the results in this sec-
tion, only the filtered values of this correction, called level correction by Elieff (2003),
are available. These values are shown figure 6.26. Therefore, the mean value of this
correction of each track is considered a bias that is removed from the data.

In the developed methodology these biases can be estimated as additional parame-
ters in the functional model. This is tested here for frequency-dependent data weighting
and for the low-pass filtered data (i.e without FDW). The estimated parameters are com-
pared with the mean values of the level correction of each line, which is shown in figure
6.27a for the filtered observations. The RMS difference between the bias parameters
and the level correction values is only 0.19 mGal. The difference between the adjusted
gravity anomalies and the low-pass filtered data (cf. figure 6.23) yields an RMS of 0.26
mGal (min=-1.04; max=0.90 mGal), which shows that the anomalies are accurately rep-
resented by the base functions. The solution is not corrupted by edge effects, unlike the
solution computed from the unfiltered observations in the previous subsection.

Note that when a low-pass filter is applied, the beginning and end of the profile are
corrupted by filter artifacts and discarded. It means that the original data area is larger
than the provided data set as it is used in this thesis. A more fair comparison between
low-pass filtering and frequency-dependent data weighting, needs the data in the larger
area.

When biases are estimated from the unfiltered observations, the edge effects corrupt
the bias parameters. Figure 6.27b shows that especially the biases estimated for the
profiles located near the edge of the area are very large. Furthermore, a clear trend can

134



Timmins, Ontario data set

278 

o
 25' 278 

o
 30' 278 

o
 35' 278 

o
 40' 278 

o
 45' 278 

o
 50'

48 

o
 30' 48 

o
 30'

48 

o
 35' 48 

o
 35'

48 

o
 40' 48 

o
 40'

-3 -2 -1 0 1 2 3

mGal

Figure 6.26: Level correction computed by Elieff (2003).
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Figure 6.27: Estimated bias parameters compared to the mean value of the level correction com-
puted for each line. a) Estimated from low-pass filtered observations; b) estimated from unfiltered
observations using frequency-dependent data weighting.

a) b)

be seen in the estimated bias parameters of the East-West oriented tracks (lines 9–60).
The consequence of the estimated trend absorbed by the bias parameters is that the RMS
difference of the gravity solution with the low-pass filtered observations is much larger
than without bias estimation: 1.76 mGal.

If a solution is computed with a much larger controlled area extension (Dx =176
km, Dy =128 km), the estimated bias parameters for the profiles near the edges are
still large, but there is no trend in the estimated parameters. The resulting gravity field
solution corrected for these biases is shown in figure 6.28. The RMS difference between
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the solution and the low-pass filtered data is 1.03 mGal for the whole area and 0.62mGal
for the inner area.

For the estimation of the bias parameters no constraint was added to the functional
model, which means that the mean value of the data had to be added back to the solution.
If the constraint that the sum of the estimated biases must be equal to zero is added, the
edge effects corrupt all estimated bias parameters in order to fulfill the constraint. This
results in a less accurate gravity field solution than for the unconstrained solution.

6.3.4 Downward continuation

Within the Timmins area good surface is data is available to assess the quality of the
solutions. Elieff (2003) made a comparison with upward continued ground data, using
the 573 measurements within the area and an additional 213 ground readings, which
gave a standard deviation of 0.62 mGal at flight level between air gravity and the ground
readings. Furthermore, a constant off-set of 1.4 mGal was found between the air and
ground data.

An advantage of the developed approach is that when a solution is obtained, gravity
field functionals can be computed at any point within the computation area. This means
that a comparison with ground truth values can be done at the locations of the available
surface data. Gridding and upward continuation to average flight level of these obser-
vations is thus not required. For the Timmins area, 564 of the ground Bouguer gravity
anomalies, shown in figure 6.29, are located within the area covered by the flight tracks.

If the low-pass filtered gravity anomalies are downward continued to the locations
of the surface measurements, a mean difference of 2.4 mGal is observed. The standard
deviation of the difference between the computed gravity anomalies and the surface data
is 1.25 mGal. Edge effects up to 11.6 mGal occur, even though controlled area extension
with Δt = 8 km is applied. However, edge effects may still be expected due to lack of
data outside the area. For 409 values that are located 2 km away from the edges the
results are much better: the standard deviation of the differences is 0.81 mGal and the
mean value is 2.0 mGal. The mean value for the inner area is larger than the off-set
of 1.4 mGal found by Elieff (2003) between the grids of airborne gravity and upward
continued ground data at flight level. The differences corrected for the mean value are
shown in figure 6.30 and the statistics are given in table 6.5.

A solution at the ground data locations is also obtained from the unfiltered obser-
vations using frequency-dependent data weighting with the noise model estimated from
the residuals. The differences computed at these locations (again corrected for the mean
difference) are shown in figure 6.31 and their statistics are given in table 6.5. For this
solution the edge effects are larger (max=17.3 mGal), but for the inner area (2 km from
the edges) the results are almost the same as for the low-pass filtered data. The standard
deviation of the difference between the two data sets in the inner area is 0.86 mGal.
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Figure 6.28: Bouguer gravity anomalies estimated from unfiltered observations using frequency-
dependent data weighting and bias estimation.
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Figure 6.29: Ground Bouguer gravity anomalies within the area covered by the airborne gravime-
try survey.
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Figure 6.30: Difference between ground Bouguer gravity anomalies and downward continued
AIRGrav Bouguer gravity using low-pass filtering.
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Figure 6.31: Difference between ground Bouguer gravity anomalies and downward continued
AIRGrav Bouguer gravity using frequency-dependent data weighting.
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Table 6.5: Statistics for the difference between ground Bouguer gravity anomalies and down-
ward continued AIRGrav Bouguer gravity computed [mGal] using low-pass filtering (LPF) and
frequency-dependent data weighting (FDW). Bias estimation is not applied. The results in brack-
ets denote the statistics for the inner area.

LPF FDW
Min 0.06 (0.06) -3.108 (-0.25)
Max 11.63 (4.57) 17.391 (4.93)
Mean 2.37 (2.04) 2.850 (1.97)
STD 1.25 (0.81) 2.016 (0.87)
RMS 2.68 (2.20) 3.491 (2.15)

6.3.5 Conclusions

The area used in this section is considerably smaller than the Skagerrak and Chile regions.
Furthermore, the gravity field is determined with a much higher resolution, which is
possible due to line spacing of 500 m. Similar to the Chile data set, a noise model
could be estimated using the whole data set. The approach of noise model estimation
from a posteriori LS residuals is validated by comparing the obtained model to a model
estimated from signal removed by the low-pass filter. Differences between the solutions
obtained with both noise models are smaller than 0.1 mGal.

Contrary to the computations for the Skagerrak and Chile data sets, the small size of
the area shows some limitations of the developed methodology. The periodicity of the
base functions causes edge effects when frequency-dependent data weighting is applied
instead of low-pass filtering, even when controlled area extension is applied. The latter
does prevent the propagation of these effects into the area, but extremely large extensions
are needed which increases the ill-conditioning of the normal equations. Furthermore,
edge effects corrupt the estimated bias parameters, especially for profiles near the edges
of the area. Nevertheless, the estimated accuracy of the gravity field solution after down-
ward continuation is at the level of 1 mGal, when compared to ground truth data.

6.4 Summary and discussion

The developed methodology is successfully applied to real airborne gravimetric survey
data. The gravity field solutions obtained with frequency-dependent data weighting are
comparable to those obtained with low-pass filtering. The resolution of the estimated
gravity field solutions, defined by L and M , was based on the track spacing of the air-
borne data and at these frequencies the noise is well below the frequency where the noise
dominates the signal. As such, a low-pass filter does not attenuate much of the signal
in the frequency band of interest. However, the advantage of the frequency-dependent
data weighting scheme is that it is completely data-driven and as such does not depend
on pre-defined parameters such as the filter length in case of low-pass filtering.
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For each data set an accurate noise model could be estimated from a posteriori resid-
uals of a preliminary LS adjustment. No more than three iterations were required for the
Skagerrak and Timmins data set and only two for the Chile data set. The results obtained
with the estimated noise models were at the same accuracy level as those obtained with
a noise model from ground truth data or using low-pass filtered data.

To stabilize the computation and reduce the influence of remaining noise in the data,
regularization is applied. Based on a comparison with available ground truth data, FOT
regularization provided more accurate results than ZOT regularization. In case of the ap-
plication of frequency-dependent data weighting, the regularization parameter could be
estimated using VCE, but for the computations with low-pass filtered data this was not
the case. The assumption that noise is white in the filtered data is not correct, since corre-
lations in the remaining noise result in divergence of the estimated variance components.
For the computations, described within this chapter, using low-pass filtered data the reg-
ularization parameter was chosen as the one that provides the best RMS fit with ground
truth data. However, this gives a very optimistic choice, which makes the comparison
with FDW less fair.

For the Skagerrak region the computed gravity anomaly solution using FDW shows
a good agreement with the surface gravity anomalies. The estimated accuracy is at the
level of 3 mGal. From the airborne gravity data a local geoid solution has been computed
for both FDW and LSC. Although the most important features of the gravity field are
well recovered, the result shows that the accuracy of a geoid obtained from airborne
gravity data is limited due to lack of data outside the computation area. Nevertheless,
the geoid can be determined at decimeter level for a small area such as the Skagerrak. A
comparison between the approaches shows that LSC seems less affected by edge effects
resulting from missing data outside the area, and the results were slightly better than the
ones obtained with FDW. However, for the computation of the LSC solution much more
base functions were used to represent the gravity field.

For the Chile data set, the internal consistency of the data was lower than for the
other data sets. To improve the gravity solution, scale factors and bias parameters were
estimated simultaneously with the gravity field parameters. It was found that the corre-
lation between bias parameters and the spring tension scale factors was very high, which
implies that the biases in the data are purely driven by variations in the spring tension
observations. A comparison with satellite altimetry derived gravity anomalies yields an
estimated accuracy of 10 mGal for this data set.

The results obtained from the Timmins data set in the last section confirm the ex-
cellent quality of the gravity data and the AIRGrav system. Furthermore, the results
demonstrate the feasibility of applying the developed methodology to a small geophysi-
cal airborne gravity survey. An accurate noise model can be obtained and, although the
area is small, the fundamental solutions of Laplace’s equation form a suitable representa-
tion of the gravity field. The errors after downward continuation of the observations are
below 1 mGal.
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7.1 Conclusions

A new strategy for the processing airborne gravity data has been developed. The ap-
proach combines several independent steps, such as low-pass filtering and cross-over
adjustment, with the estimation of gravity field parameters. The concept of low-pass
filtering is replaced by a frequency-dependent data weighting and non-gravitational pa-
rameters are estimated by adding them to the functional model. The performance of the
developed methodology is at the same level as traditional methods in terms of gravity
field errors, but provides a more flexible and powerful approach to airborne gravity data
processing. It requires a minimum of pre-processing and all observations are used for the
determination of the gravity field.

The conclusions are presented below by addressing the items listed in section 1.2:

Representation of the gravity field
The fundamental solutions of Laplace’s equation form a valid and suitable set of base
functions to represent the disturbing potential. Coefficients of the representation can be
estimated with LS techniques and be used to compute gravity functionals on or near
the Earth’s surface at any location in the computation area. Edge effects related to the
periodicity of the base functions can effectively be reduced by applying controlled area
extension, which is a simple modification to the base functions. In practical applications
only few base functions are required to obtain an accurate gravity field solution from
airborne gravity measurements.

The drawback of this representation is that edge effects due to periodicity of the base
functions can still be significantly large, even when controlled are extension is applied.
Especially if the area is small (e.g. less than 50 km wide) the processing of data contam-
inated with colored noise can lead to less accurate results than when low-pass filtering
is applied. Furthermore, the representation is not very suitable if the measurements are
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irregularly distributed, because the resolution of the estimated gravity field depends on
the average spacing of the observations in the x and y directions.

Regularization
Among the investigated regularization methods, first-order Tikhonov regularization gen-
erally provides the best results to obtain a stable solution. Especially for the down-
ward continuation of gravity disturbances the method performs better than zero-order
Tikhonov regularization. Nevertheless, the choice of the regularization matrix depends
on the signal spectrum. For a narrow spectrum ZOT regularization can provide more
accurate results as was shown for the simulated data.

An advantage of using frequency-dependent data weighting over low-pass filtering is
that the use of proper covariance matrix in the LS adjustment allows an optimal estima-
tion of the regularization parameter with VCE. The estimated regularization parameters
are close to the empirically derived ones. For low-pass filtering the variance components
do not converge because correlations in the low-pass filtered signal are not correctly de-
scribed by the scaled unity covariance matrix. VCE does not provide an estimate of
the regularization parameter in case of low-pass filtering instead of frequency-dependent
data weighting. Since the noise covariance matrix in that case is a scaled unity matrix,
remaining correlated noise in the signal is not correctly described which leads to diver-
gence of the variance components.

Frequency-dependent data weighting
Frequency-dependent data weighting provides a good alternative to low-pass filtering. A
statistically optimal solution is obtained and it provides a formalized approach for the
handling of colored noise. The procedure depends, unlike low-pass filtering, purely on
the input data and not on previous experience of the user. A posteriori residuals, obtained
from a preliminary LS estimation, can be used to derive the noise model, for which only
few iterations are required. The procedure of noise model estimation is robust against
the initial choice of the regularization parameter used for computing the preliminary LS
solution. Furthermore, the use of a proper noise model allows the estimation of the
regularization parameter with VCE.

The limitation of frequency-dependent data weighting is the lower performance in
case of data gaps introduced by outlier detection. The removal of a single outlier affects
a number of observations before and after the detected outlier, which has a negative effect
on the accuracy of the gravity field solution. This effect is larger than the accuracy gained
from removing a large error from the data. Therefore, other techniques for the treatment
of outliers should be used.

Bias and drift handling
Non-gravitational parameters, such as biases, drifts and scale factors, can be estimated
simultaneously with gravity field parameters. Because the estimated bias parameters ab-
sorb the mean value of the local gravity field, a constraint that the sum of the biases is
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zero should be added to the functional model. In that case bias parameters can be de-
termined accurately, since all measurements are used for the estimations. The developed
methodology outperforms the method of cross-over adjustment for the estimation of bias
parameters, but short-period errors such as edge effects or errors due to turbulence, may
still be distributed into along-track corrections. The estimation of instrument related scal-
ing factors can significantly improve the gravity field solution and provide information
on the performance of the gravimeter system. However, a testing procedure should be
applied to avoid statistically insignificant estimations as the estimated parameters can be
highly correlated with each other.

Comparison and validation
Tests with simulated gravity data showed that the developedmethodology performs better
than traditional methods in terms of RMS gravity disturbance and disturbing potential er-
rors. Furthermore, the simulation study led to an optimized strategy for the application of
the developed approach to real airborne gravimetric survey data. From the real data sets
accurate gravity field solutions were computed, which were validated using available sur-
face gravity data. The downward continuation error was small for all data sets, partially
due to the low flight altitudes. Furthermore, the tests described in chapter 6 demonstrate
the potential of employing airborne gravimetry data to obtain accurate gravity data which
can be used in geodetic and geophysical applications.

7.2 Recommendations

To improve upon the developed methodology a number of recommendations are given
for further research.

• In this thesis the disturbing potential is represented using fundamental solutions of
Laplace’s equation in Cartesian coordinates. This method is especially suitable for
areas of rectangular shape and evenly distributed observations. For areas which con-
tain irregularly distributed observations or large areas, other representations should be
considered. A good alternative is to make use of spherical radial base functions to rep-
resent of the disturbing potential, especially if use is made of data-adaptive algorithms
as described by Klees and Wittwer (2007). In that case the locations of the base func-
tions are derived from the data, which leads to a smaller number of functions needed
to determine the gravity field. Besides, these functions do not suffer from the Gibbs
effect at the edges as the Laplace’s solutions due to periodicity of the base functions.
Furthermore, spherical radial base functions are suited for global and local gravity field
modeling and they allow for local refinements of spherical harmonic representation of
the gravity field. As such, it is recommended to apply these functions as part of the
developed methodology for airborne gravity data processing.

• The developed approach provides opportunities for the joint processing of airborne
gravity data with other data types, such as terrestrial, marine or satellite gravity data.
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Because the quality and the spectral content of the various data types can be very
different, the development of such an approach is a challenging task that deserves
further investigation. The goal of the joint processing could be to obtain a united
high-resolution representation of the regional gravity field, for instance using spheri-
cal radial base functions, or in case of global gravity field modeling, in terms of spher-
ical harmonics. Alternatively, the airborne gravity data can be processed separately
into a gridded set of gravity anomalies at ground level and then combined with other
data types. In that case the optimal combination of the airborne gravity solution with
other solutions should be derived, especially for the combination with long wavelength
satellite models.

• To improve upon the application of the noise model in the frequency-dependent data
weighting, several strategies have been explored. One method uses VCE for the
weighting of the profiles as different data groups using one ARMA model to describe
the covariance matrix, but convergence of the variance components could not be ob-
tained. In principle, if the structure of the covariance matrix can be determined more
accurately, its weight in the adjustment can be determined by VCE. ARMA models,
for instance derived from estimated noise PSDs for each profile separately, can pro-
vide such a description of the noise covariance matrix. However, for some profiles
it may not be possible to obtain an accurate noise PSD due to the presence of gaps,
non-stationary noise or the relatively short length of some profiles. In that case other
strategies should be explored to improve the estimation of the noise model.

• The developed approach for frequency-dependent data weighting should be tested for
strapdown INS data processing. The data sets used in this thesis were all acquired
using a stabilized platform and are less affected by low-frequency noise. The noise
characteristics of SINS data may be the same in the high-frequency part of the spec-
trum but drifts in the accelerometers and gyroscopes can result in large low-frequency
errors. It should be tested whether the procedure of noise model estimation based on
residuals also works for such a noise spectrum. More information on the spectrum
of SINS observations is found in Bruton (2000). The derived spectra therein may be
useful for the determination of ARMA models to be used for the processing of SINS
airborne gravity data processing.

• In this thesis gravitational effects of the topography and bathymetry, that are the main
source for local gravity variations have not been considered. The application of terrain
corrections to the airborne gravity data can result in a smoother residual signal at flight
level. Generally, a smoother signal can be represented more accurately by a small
number of base functions, which can improve the result of the inversion into gravity
functionals on or near the Earth’s surface. Not only for mountainous areas, but also for
areas with large bathymetric features, such as the Chile data set described in chapter
6, such a correction should be considered.
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• Finally a general recommendation on airborne gravimetry research is made. First of
all, the use of SINS/GPS gravimeter systems should be further explored, since these
systems have several advantages when compared to stable platform gravimeters such
as power consumption and costs. Improvement in accuracy can be made by opti-
mizing the design of SINS/GPS systems and by developing new processing strate-
gies. Furthermore, with the development of improved gravimeter systems for airborne
gravimetry, the main limitation to the accuracy of airborne gravity measurements is
the determination of accelerations from GPS positions. Optimization of the derivation
of accelerations from GPS positions or Doppler-derived velocities is therefore recom-
mended.
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Pre−processing of airborne gravity data A
A.1 GPS processing

For the surveys described in chapter 6, the processing of the GPS data was performed
with KSGSoft (Kinematic/Static GPS Software) (Xu et al., 1998). This software was
developed in 1994 to fulfill the needs of precise GPS navigation for airborne gravime-
try. Some results of GPS kinematic processing with KSGSoft are described in Xu et al.
(1994) and Xu et al. (1997). The main characteristics of the software are that KSGSoft
can perform a combined adjustment of data of multiple kinematic/static stations. Fur-
thermore, the software can provide carrier phase independent velocity solutions from
instantaneous Doppler shift observations, provided the latter are available.

A.2 Gravity processing

The gravity processing has been performed with AGS (Airborne Gravity Software) ver-
sion 4.5 (Meyer, 2004). The software is based on the initial software written for the
AGMASCO project (Olesen et al., 1997), which was modified to fit the requirements
of the ANGEL (Airborne Navigation and Gravimetry Ensemble & Laboratory) equip-
ment of GFZ Potsdam (Meyer et al., 2003). The main steps applied with this software
to process raw in-flight gravity sensor measurements to gravity disturbances of gravity
anomalies, are described below.

Stable platform airborne gravimetry

The expression for the determination of gravity disturbances at flight level using a stabi-
lized platform system is given in chapter 2 as

δg = gm − z̈ + εEot + εtilt − gm0 + ga − γh, (A.1)

where gm is the vertical acceleration of the gravimeter, which is also called the specific
force, z̈ is the vertical aircraft acceleration, εEot is th Eötvös correction, εtilt is the tilt
correction, gm0 is the gravimeter still reading, ga is the absolute gravity value, and γh is
the normal gravity.
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Figure A.1: Overview of input data, processing steps and output data of the AGS software, mod-
ified from Meyer (2004). Input from laser altimetry and INS is optional.

Vertical acceleration of the gravity sensor

The gravimeter acceleration gm is modeled as

gm = s(S + kḂ + εcc), (A.2)

where s is a scale factor to convert counter units of the gravimeter to units of mGal, S
is the spring tension, k is the beam scale factor (often referred to as k-factor), Ḃ is the
beam velocity, obtained by numerical differentiation of the beam positions, and εcc is the
cross-coupling correction. The latter is defined as

εcc = a1ẍ
2 + a2ÿ

2 + a3z̈
2 + a8ÿż + a9ẍz̈ + a10ÿz̈ + . . .+ anẍ

2z̈ + . . . (A.3)

The first two terms are platform leveling errors and are not included in the cross-coupling
correction.

In Valliant (1992) the following expression is given for the cross-coupling correction

εcc = c1Ḃ
2 + c2(fyB) + c3(fxḂ) + c4(fyḂ) + c5(f

2
xḂ), (A.4)

where c1, c2, . . . , c5 are the cross-coupling coefficients, Ḃ is the beam velocity, B is the
beam position, and fx and fy are the horizontal accelerometer measurements.
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Time synchronization

The time synchronization between GPS and gravimeter data (or data from additional
sensors) is established by computing the correlation coefficient between the two data
series. The correlation coefficient for two series x and y is defined as

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)

√
n∑

i=1

(xi − x̄)2

√
n∑

i=1

(yi − ȳ)2

. (A.5)

The time series are synchronized when the correlation coefficient is maximum.

Eötvös correction

The Eötvös effect is caused by the motion of a moving platform over a curved rotating
Earth, which results in a centripetal acceleration. A correction for this motion, simply
called Eötvös correction, was derived by Harlan (1968) and is given as

E =
v2

a

(
1− h

a
− ε

(
1− cos2 ϕ

(
3− 2 sin2 α

)))
+ 2vωe cosϕ sinα, (A.6)

with

ε =
v2

a
sin2 ϕ+ 4vωe

and v = vE + vN , where vE and vN are the easterly and northerly components of the
speed of the aircraft. In Eq. (A.6) the parameter a is the semi-major axis of the Earth, h
is the altitude of the aircraft, ωe is the angular velocity, and ϕ and α are the latitude and
azimuth of the aircraft. From Eq. (A.6) it can be seen that navigation errors have a large
impact on the computation of the Eötvös correction.

Tilt correction

Exact correction
A misalignment of the platform results in errors due to horizontal accelerations. To
account for this effect a tilt correction is applied. It is computed as

εtiltg =
√
g2

m + A2 − a2 − gm, (A.7)

with A2 = (A2
X + A2

L), where AX and AL are the accelerometer outputs along the cross
and long axis and with a2 = (a2

E + a2
N), where aE and aN are horizontal kinematic ac-

celerations in the east and north directions derived from navigational data, and gm is the
gravity meter reading as defined in Eq. (A.2).
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Approximate correction
In Valliant (1992) an approximation to Eq. (A.7) is given. Observing that A2 and a2 are
small compared to g2

m. The tilt correction is then:

εtiltg =
A2 − a2

2gm

≈ εtiltg =
A2 − a2

2g
. (A.8)

Tilt angle modeling
The tilt correction as derived above is computed by squaring of two noisy signals, which
means that zero-mean noise in A or a may introduces a bias in the gravity estimates.
Olesen (2003) derived an alternative expression for the tilt correction which is free of
such a bias. For small tilt angles the following approximations hold for one axis

fx = qx sinφxfz ≈ qx + φxfz ≈ qx + φxg, (A.9)

which can be rewritten with respect to the angle φx as

φx ≈ fx − qx
g

(A.10)

In that case the tilt correction is computed as a linear combination of three acceleration
components:

εtiltg = sin φxfx + cosφx sinφyfy + (1− cos φx cosφy)fz. (A.11)

This method for correcting platform tilts is not implemented in AGS 4.5.

Swain correction
(Swain, 1996) proposed an alternative correction for the tilt by applying a filter that re-
moves the error caused by a tilt. This error is given in LaCoste (1967) as

eg = −ẍθ − gθ2/2 (A.12)

where ẍ is the x-component of horizontal acceleration and θ is the off-level error (tilt), or

eg = −ẍα− ÿβ − g(α2 + β2)/2, (A.13)

when the tilt is composed of angles α and β in the x-z and x-y planes. The tilt is estimated
from horizontal accelerations using a filter with input p (accelerations) and output q (tilt)
(Swain, 1996):

qj = c0pj + c1pj−1 + c2pj−2 + d1qj−1 + d2qj−2 (A.14)
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with

c0 = (a + b)/(4 + a+ b)

c1 = 2b/(4 + a + b)

c2 = (b− 1)/(4 + a+ b)

d1 = (8− 2b)/(4 + a+ b)

d2 = (a− b− 4)/(4 + a+ b)

where a = 4fω0Δt and b = (ω0Δt)
2.

Lever arm effect

A horizontal offset in between the locations of the GPS antenna and the gravimeter causes
a so-called lever arm effect, i.e. the vertical acceleration experienced by the GPS antenna
differs from accelerations observed by the gravimeter due to aircraft attitude variations.
The effect can be modeled if aircraft attitude information is available from INS or may
be neglected if the offset between the GPS antenna and gravimeter is small. According
to Olesen (2003), the effect can be safely neglected for offsets less than 1 meter, in case
of scalar gravimetry. For vector gravimetry the lever arm effect should be modeled more
accurately, as was shown by De Saint-Jean et al. (2007). Similar to the lever arms of
the GPS antennas, the AGS software adjusts for lever arms of the INS and altimeter
instruments, if present. All adjustments are made to the location of the gravimeter, which
should be located close to the center of gravity of the aircraft.

Low-pass filtering

The final step in gravity pre-processing consists usually of applying a low-pas filter to
reduce the extreme high noise level of the airborne gravity data. In the AGS software two
filters are implemented; a 1st-order RC-filter and a 2nd-order Butterworth filter. Both
filters are implemented as a forward-backward filter to remove the phase shift. For the
pre-processing of the data sets used in sections 6.1 and 6.2, the Butterworth filter was
used with a filter length of 180 seconds.

Processing example

An example of the output of AGS 4.5 is shown for a profile of the Skagerrak data set (see
section 6.1) in figure A.2.
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Pre-processing of airborne gravity data
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Figure A.2: AGS processing example for an airborne gravity profile from the Skagerrak survey.
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Coordinate transformation B
The base functions used in this thesis (Eq. (4.3)) require the coordinates to be given in
a local Cartesian reference frame. This appendix gives the definitions of the considered
coordinate systems and the transformations that were applied.

λ

ϕ

X

Y

Z

x

y
z

O

N

a

Figure B.1: Graphical representation of the coordinate systems.

The transformation from ellipsoidal coordinates {ϕ, λ, h} to geocentric coordinates {X, Y, Z}
is given as

X = (N + h) cosϕ cosλ
Y = (N + h) cosϕ sinλ
Z = (N(1− e2) + h) sinϕ,

(B.1)

with N the normal radius of curvature: N = a/W , where a is the semi-major axis and
W is the latitude function defined as

W =

√
1− e2 sin2 ϕ.

In Eq. (B.1) e is the first eccentricity of the ellipsoid used for the definition of the el-
lipsoidal coordinate system. For spherical coordinates the same transformation formulas
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Coordinate transformation

can be used, setting e2 = 0.

The transformation from geocentric coordinates {X, Y, Z} to local Cartesian coordinates
{x, y, z} is given as⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ − sinλc cosλc 0
− sinϕc cos λc − sinϕc sinλc cosϕc

cosϕc cosλc cosϕc sin λc sinϕc

⎤
⎦
⎡
⎣ X
Y
Z

⎤
⎦+

⎡
⎣ tx
ty
tz

⎤
⎦ , (B.2)

with {ϕc, λc} the coordinate center of the area considered and {tx, ty, tz} are translations
in the corresponding directions. If the general direction of the area is not north-south,
the x,y-plane may be rotated about the z-axis by multiplying the obtained coordinates
[x, y, z]T with the rotation matrix

Rz =

⎡
⎣ cosα sinα 0
− sinα cosα 0

0 0 1

⎤
⎦ , (B.3)

where α is a clockwise rotation about the z-axis.
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Least−squares collocation and Hilbert spaces C
This appendix gives a derivation of LSC as minimum norm solution in a reproducing
kernel Hilbert space (RKHS). The first part is a summary of an article on Hilbert spaces
by Meissl (1976). Hilbert spaces are an important type of function spaces in functional
analysis. They represent the logical generalization to functions of n-dimensional vector
spaces. The section describing LSC is based on (Moritz, 1980).

C.1 Definition of a Hilbert space and some properties

Linear space: a set of elements such that for any finite subset f1, f2, . . . , fn, the lin-
ear combination α1f1 + α2f2 + . . . + αnfn is also a member of the linear space. The
constants α1, α2, . . . , αn are real numbers. The elements f1, f2, . . . , fn are linearly in-
dependent if there exist no set of α1, α2, . . . , αn (not all of them being zero) such that
α1f1 + α2f2 + . . .+ αnfn = 0.

Normed linear space: A linear space that assigns to any of its elements f a non-negative
number ‖f‖, called the norm of f , with

‖f‖ > 0 for f �= 0

‖αf‖ = |α|‖f‖
‖f + g‖ ≤ ‖f‖+ ‖g‖.

The norm can be used to define a distance between two elements f and g: |f −g‖, which
can be used to define convergence:

1. Convergence to a limit element: A sequence f1, f2, . . . converges to the limit ele-
ment f if

lim
n→∞

‖f − fn‖ = 0.

This type of convergence is called norm convergence.

2. Convergence in the sense of Cauchy: A sequence f1, f2, . . . is called a Cauchy
convergent if

lim
n,m→∞

‖fn − fm‖ = 0.
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Least-squares collocation and Hilbert spaces

The sequence is then called a Cauchy sequence.

Complete normed linear space: A normed linear space is complete if any Cauchy se-
quence automatically possesses a limit element. They are also called Banach spaces.

Inner product space: A linear space with an inner product 〈f, g〉 with the properties:

〈f, g〉 = 〈g, f〉
〈αf, g〉 = α〈f, g〉
〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉
〈f, f〉 > 0 for f �= 0

Hilbert space: An inner product space that is complete. For examples of Hilbert spaces
see e.g. Meissl (1976).

Linear operators in Hilbert spaces: An operator A is a mapping which assigns to
any element f out of the operators domain space D an image element A(f) out of the
operators range space R. An operator is linear if it maps a linear combination onto the
linear combination of the individual image elements with the same coefficients:

A(α1f1 + . . .+ αnfn) = α1A(f1) + . . .+ αnA(fn).

For linear operators often the notation Af is used instead of A(f).
An operator is continuous if it maps a sequence converging to a limit element onto

an image sequence converging to the image of the limit element. A is called bounded
if there exists a non-negative number β such that ‖A(f)‖ ≤ β‖f‖. The smallest β for
which this relation holds is called the norm of A.

Linear functionals: An important special case of a linear operator is a linear functional.
Its domain is a Hilbert space H, its range is R. Hence, a linear functional L assigns a real
number Lf to any element of H. A bounded linear functional fulfills

|Lf | ≤ ‖L‖‖f‖,
with ‖L‖ the norm of the linear functional.

The Riesz-representation theorem states that any linear functional L operating on a
Hilbert space can be represented by an inner product with suitable element gL:

Lf = 〈f, gL〉, ‖L‖ = ‖gL‖.
The element gL ∈ H is called the representer of L. A special linear functional is the
evaluation functional, Lf = f(Q). Hilbert spaces where the evaluation functional is
continuous (i.e. bounded) for all locations, posses a reproducing kernel. They are called
reproducing kernel Hilbert spaces.
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Reproducing kernel Hilbert spaces

C.2 Reproducing kernel Hilbert spaces

A functionK(P,Q) is called a reproducing kernel belonging to a Hilbert space H if:

a. K(P,Q) ∈ H for Q fixed,

b. f(Q) = 〈f(P ), K(P,Q)〉P for any f ∈ H.

The second relation is called the reproducing property. The notation 〈 , 〉P indicates that
both functions in the inner product are functions of P and that Q is held fixed.

Other properties may be deduced from the properties listed above:

c. K(P, P ) ≥ 0,

d. K(P,Q) = K(Q,P ), i.e. the reproducing kernel is a symmetric function,

e. For arbitrary constants λj and n fixed points Pj the following relation holds:

n∑
j=1

n∑
k=1

λjλkK(Pj, Pk) ≥ 0,

f. K(P,Q) is unique,

g. For any pair of points P,Q the functionK(P,Q) is finite.

Properties (c) to (e) state that the kernel function is symmetric and positive definite.

C.3 Least−squares collocation

Pure least-squares collocation

Suppose for an unknown function f ∈ H, n observations li = Lif are available. If
ri ∈ H is the representer of Li in H, the observations li can be written as

li = Lif = 〈f, ri〉. (C.1)

When the dimension of H is larger then n, the function f is not uniquely determined.
Among all approximate solutions f̄ that are compatible with the observations li (and
therefore satisfy the system (C.1)), there is one, f̂ , for which the norm is minimum
(Moritz, 1980):

‖f̄‖ ≥ ‖f̂‖. (C.2)

The solution f̂ is the orthogonal projection of f onto a subspace of H spanned by ri. It
is precisely the solution given by least-squares collocation, which is shown below.
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Least-squares collocation and Hilbert spaces

The approximation f̂ can be expressed as a linear combination of the base functions
ri as

f̂ =

n∑
i=1

biri, (C.3)

where bi are unknown coefficients to be determined from the data. Substituting Eq. (C.3)
into Eq. (C.1) gives the observation equations as

li = Lif = Lif̂ =
n∑

j=1

bjLirj =
n∑

j=1

bj〈rj, ri〉, i = 1, . . . , n, (C.4)

or in matrix-vector notation
l = Rb,

with matrix

R =

⎡
⎢⎢⎢⎣
〈r1, r1〉 〈r1, r2〉 · · · 〈r1, rn〉
〈r2, r1〉 〈r2, r2〉 · · · 〈r2, rn〉

...
...

. . .
...

〈rn, r1〉 〈rn, r2〉 · · · 〈rn, rn〉

⎤
⎥⎥⎥⎦ .

If the set of representers ri is linearly independent, the approximation f̂ is obtained nu-
merically from the coefficients b

b = R−1l (C.5)

as
f̂ = rTb = rTR−1l. (C.6)

In a reproducing kernel Hilbert space H, the representers ri are simply given as

ri = LQ
i K(P,Q) = K(P, Li), (C.7)

where K(P,Q) is the reproducing kernel evaluated at the data points Q = Qi. Then,
with the following expressions

r = LK, R = L(LK)T , (C.8)

where
L =

[
L1 L2 · · · Ln

]T
(C.9)

and

LK =

⎡
⎢⎢⎢⎣
K(P, L1)
K(P, L2)

...
K(P, Ln)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
LQ

1 K(P,Q)

LQ
2 K(P,Q)

...
LQ

nK(P,Q)

⎤
⎥⎥⎥⎦ , (C.10)

the least-squares collocation solution of Eq. (C.6) can be written as

f̂ = (LK)T (L(LK)T )−1l. (C.11)
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Least-squares collocation

For the norm of the LSC solution f̂ , the following expression is obtained (Moritz, 1980)

‖f̂‖2 = 〈f̂ , f̂〉 = 〈f̂(P ),
n∑

i=1

biL
Q
i k(P,Q)〉P

=

n∑
i=1

biL
Q
i 〈f̂(P ), K(P,Q)〉P

=
n∑

i=1

biL
Q
i f̂(Q) =

n∑
i=1

biL
Q
i

n∑
j=1

bjL
R
j K(Q,R)

=

n∑
i=1

n∑
j=1

bibjL
Q
i L

R
j K(Q,R) = bT (L(LK)T )b. (C.12)

Using expression (C.5), this can be written in terms of observations li as

‖f̂‖2 = lT (L(LK)T )−1l = lTC−1
ll l. (C.13)

Instead of least-squares collocation, the method of determining f̂ as outlined here is also
called least-norm collocation, because the norm ‖f̂‖2 is minimized.

LSC in the presence of noise

The observation model of least-squares collocation in the presence of noise is given as

li = Lif + ei, i = 1, . . . , n, (C.14)

where ei is the error in the observation li. In matrix notation this is written as

l = Lf + e.

The noise e is a genuine random (stochastic) quantity with expectation E{e} = 0. De-
noting the variance-covariance matrix of the noise by Cee, the error norm reads

‖e‖2 = eTC−1
ee e. (C.15)

With the norm for f , which is a norm in a Hilbert space with reproducing kernelK(P,Q),
i.e. ‖f‖2 = 〈f, f〉, the quadratic functional to be minimized is

Φ = ‖f‖2 + ‖e‖2 = 〈f, f〉+ eTC−1
ee e. (C.16)

Then, the least-squares estimator of f is given as (Moritz, 1980)

f̂ = (LK)T (L(LK)T + Cee)
−1l. (C.17)
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Definition of the reproducing kernel

Let f(P ) be a function harmonic outside the Bjerhammar sphere and regular at infinity,
i.e. f(x) → 0, |x| → ∞. Then, the reproducing kernel K(P,Q) is defined as

K(P,Q) = M{f(P ), f(Q)}, (C.18)

whereM{·} is a suitable averaging operator. Following the definition in Heiskanen and
Moritz (1967), the meanM is the average over the whole sphere and over all azimuths.
Since the operator M is homogeneous and isotropic (i.e. independent of the absolute
location and azimuth), the function K(P,Q) is a function only of the spherical distance
ψPQ between P and Q:

K(P,Q) = K(ψPQ) = M{f(P ), f(Q)}

=
1

8π2R2

∫∫
σR

2π∫
αPQ=0

f(P )f(Q)dαPQdσR(P ), (C.19)

with ψPQ given by Eq. (3.15).
The function K(P,Q) can be expanded in a series of spherical harmonics. For K

restricted to σR the expansion is given as

K(ψPQ) =

∞∑
n=2

cnPn(cosψPQ), (C.20)

where Pn(cosψ) are the Legendre polynomials. The coefficients cn can be expressed in
terms of fully normalized spherical harmonic coefficients ānm and b̄nm by

cn =
n∑

m=0

(ā2
nm + b̄2nm). (C.21)

The reproducing kernel in the Hilbert space of regular functions in the exterior of σR

reads

K(ψPQ) =
∞∑

n=2

cn

(
R2

B

rP rQ

)n+1

Pn(cosψPQ), (C.22)

where RB is the radius of the Bjerhammar sphere.
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Derivation of the ZOT regularization matrix D
The zero-order Tikhonov regularization functional is given as

ΦZOT =

∫∫
D

T 2(x, y, z)dx dy, (D.1)

where the disturbing potential T is defined by Eq (4.7). Inserting Eq. (4.7) into Eq. (D.1),
the regularization functional reads

ΦZOT =

∫∫
D

(
L∑

l=−L

M∑
m=−M

Clmϕl(x)ϕm(y)e−γlmz)2dx dy

=

∫∫
D

∑
l1

∑
m1

∑
l2

∑
m2

(Cl1m1ϕl1(x)ϕm1(y)Cl1m2ϕl2(x)ϕm2(y))

× e−(γl1m1
+γl2m2

)zdx dy. (D.2)

Interchanging summation and integration gives

ΦZOT =
∑
l1

∑
m1

∑
l2

∑
m2

(
Cl1m1Cl1m2

∫ Dx

0

ϕl1(x)ϕl2(x)dx

∫ Dy

0

ϕm1(y)ϕm2(y)dy

)

× e−(γl1m1
+γl2m2

)z. (D.3)

The products of the base functions, ϕl1(x)ϕl2(x) (or ϕm1(y)ϕm2(y), are products of sine
and cosine functions that have the following properties:

∫ L

−L

cos
lπx

L
cos

mπx

L
dx =

⎧⎨
⎩

0 if l �= m
2L if l = m = 0
L if l = m �= 0

(D.4)

∫ L

−L

sin
lπx

L
sin

mπx

L
dx =

{
0 if l �= m
L if l = m �= 0

(D.5)

∫ L

−L

sin
lπx

L
sin

mπx

L
dx = 0. (D.6)
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Derivation of the ZOT regularization matrix

For the base functions defined by Eq. (4.4) this means

∫ Dx

0

ϕl1(x)ϕl2(x)dx =

⎧⎨
⎩

0 if l1 �= l2
Dx if l1 = l2 = 0
Dx/2 if l1 = l2 �= 0

(D.7)

Using these properties the regularization functional can be written as

ΦZOT =
DxDy

4
xTRZOTx, (D.8)

where the entries of RZOT are given as

RZOT
ij =

⎧⎨
⎩

4 δij e
−2γlimi

z, if li = mi = 0
2 δij e

−2γlimi
z, if li = 0 ormi = 0

δij e
−2γlimi

z, otherwise.
(D.9)
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Modification of the base functions E
The disturbing potential is expressed by a series of base functions that are the fundamen-
tal solutions of Laplace’s equation in Cartesian coordinates as (see Eq. (4.7))

T (x, y, z) =

L∑
l=−L

M∑
m=−M

Clm ϕl(x)ϕm(y) e−γlmz, (E.1)

where

ϕl(x) =

{
cos 2π|l|

Dx
x, l ≥ 0

sin 2π|l|
Dx

x, l < 0
ϕm(y) =

{
cos 2π|m|

Dy
y, m ≥ 0

sin 2π|m|
Dy

y, m < 0
(E.2)

and

γlm :=
√
α2

l + β2
m = 2π

√(
l

Dx

)2

+

(
m

Dy

)2

. (E.3)

Because the base functions are periodic but the signal is not, the following base functions
that are periodic on a larger domain are introduced (see section 4.5):

ϕl(x) =

⎧⎪⎨
⎪⎩

cos
πx

Dx

, l = L+ 1

sin
πx

Dx

, l = −L− 1
, ϕm(y) =

⎧⎪⎨
⎪⎩

cos
πy

Dy

, m = M + 1

sin
πy

Dy

, m = −M − 1
(E.4)

Then for l = ±(L+ 1),−M ≤ m ≤M the expression for γ±(L+1),m is obtained using

Δ
(
ϕ±(L+1)(x)ϕm(y)eγ±(L+1),mz

)
= −

(
π

Dx

)2

−
(

2πm

Dy

)2

+ γ2
±(L+1),m = 0, (E.5)

which results in

γ±(L+1),m = π

√(
1

Dx

)2

+

(
2m

Dy

)2

. (E.6)
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Modification of the base functions

Similarly, the expressions for γl,±(M+1) and γ±(L+1),±(M+1) are obtained as

γl,±(M+1) = π

√(
2l

Dx

)2

+

(
1

Dy

)2

(E.7)

γ±(L+1),±(M+1) = π

√(
1

Dx

)2

+

(
1

Dy

)2

. (E.8)
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