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Abstract

Global gravity field recovery from satellite-to-satellite tracking data
with the acceleration approach

This thesis is focused on the development of new techniques for global gravity
field recovery from high-low (hl) and low-low (ll) satellite-to-satellite tracking
(SST) data. There are a number of approaches to global gravity field recovery
known from literature, including the variational equations approach, short arc
approach, energy balance approach and acceleration approach. The focus of the
thesis is the acceleration approach with an aim to produce high-quality global
gravity field models using real data from CHAMP and GRACE satellite missions.

In the first part, the research is devoted to a refinement of CHAMP hl-
SST data processing methodology, which was developed at DEOS earlier. The
refinement includes two major updates. The first update is usage of smoothed
kinematic orbits, instead of reduced-dynamic ones, in data processing. A
procedure based on B-splines has been developed for smoothing kinematic orbits
by means of a regularised least-squares adjustment. The second update is the
implementation of a data noise estimation procedure from the data themselves,
with the aim to obtain a statistically optimal gravity field solution. The refined
procedure is used to compute both regularised and a non-regularised models from
a nearly one-year set of CHAMP accelerations. The regularized model is proved to
be better than the regularized ITG-CHAMP01E model, and slightly better than
the older DEOS CHAMP-01C 70 model computed at DEOS. The non-regularized
solution is compared to a few non-regularized CHAMP-only models produced by
several research groups. The comparison shows that the obtained solution clearly
outperforms most of the alternative models.

In the second part of the research, the methodology of processing CHAMP
hl-SST data is extended to the case of GRACE hl-SST data, including the
GRACE kinematic baselines. The kinematic positions and baselines are processed
both individually and jointly. It is found that the kinematic baselines themselves
are, in general, not favorable for the derivation of gravity field models. We explain
this, first of all, by a poor sensitivity of the baseline data to East-West variations
of the gravity field. Nevertheless, kinematic baselines slightly improve the quality
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of gravity field modeling if added to a set of kinematic positions.

In the third part of the research, two innovative methodologies of gravity
field modeling from GRACE ll-SST data, i.e. so-called 3-point Range Rate
Combination (3RRC) approach and 3-point Range Combination (3RC) approach,
are developed as extensions of the classic acceleration approach. Corresponding
functional models are derived and a comprehensive procedure for processing real
GRACE data is developed. The data processing procedure contains two major
steps: pre-processing and inversion. The pre-processing includes the computation
of purely dynamic orbits as reference ones on the basis of state-of-the-art back-
ground models of static and rapidly changing gravity fields. The reference orbits,
together with the observed KBR data, are used to form the residual quantities
associated with the three functional models. The inversion of these quantities into
gravity field parameters is somewhat similar to inversion of kinematic baselines.
The developed approaches are compared with each other and with the classic
acceleration approach using real GRACE data from both August 2003 and
October 2003. The corresponding hydrological models are taken as a reference
for the comparison. It is found that the classic acceleration approach produces
the worst results, which are not reasonable at all. The 3RC approach gives the
best results and, consequently, is chosen as the primary approach to be further
refined and used for routine data processing. In the course of the final refinement,
an iterative data processing is implemented. It is found that two iterations are
sufficient to reach a convergence. Ultimately, the recovered gravity field signals
are increased by at least 10%-15% in this way.

Finally, the 3RC approach is applied to process real GRACE data rou-
tinely. A 4-year data set, spanning the period from February 2003 to December
2006, is processed on a monthly basis. Each solution represents a set of spherical
harmonic coefficients, which describe the average gravity field within the month
under consideration. All the solutions are supplied with full variance-covariance
matrices. In the course of post-processing, the obtained solutions are subject to
de-striping and 400-km Gaussian filtering, resulting in a definitive time series of
filtered DEOS solutions. Furthermore, the obtained models are used to estimate
secular changes as well as and seasonal and semi-seasonal variations of the
Earth’s gravity field. For comparison, we compute also the secular, seasonal
and semi-seasonal variations from the GLDAS hydrological models. There are
many remarkable similarities found in this comparison. A further analysis of the
obtained GRACE solutions allowed ice melting in Greenland and Antarctica as
well as the Sumatra-Andaman Earthquake to be observed and quantified. Finally,
a comprehensive comparison is made of the obtained GRACE solutions with
those published by other research centers: CSR, GFZ, JPL and CNES, as well
as with the GLDAS hydrological model. The comparison shows that the DEOS
solutions are relatively close to the JPL solutions, and less close to the GFZ
and CSR solutions, which are, in turn, relatively close to each other. The main
differences between the group of DEOS and JPL solutions and the group of GFZ
and CSR solutions are concentrated between degree 2 and 5. We also compute
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the mean values of water storage changes in sixteen large river basins from all the
solutions. The selected basins represent various sizes and climatic environments.
The comparison of the results shows that in general the DEOS solutions have a
reasonable agreement with other GRACE solutions, and are particularly close to
the JPL solutions.





Samenvatting

Mondiale zwaartekrachtveldbepaling uit satelliet-naar-
satellietmetingen met de versnellingenmethode

Dit proefschrift richt zich op de ontwikkeling van nieuwe technieken voor
de bepaling van het mondiale zwaartekrachtveld met behulp van de hoog-laag
(hl) en laag-laag (ll) satelliet-naar-satellietmetingen (SST). Er zijn een aantal
benaderingen voor mondiale zwaartekrachtveldbepaling bekend uit de literatuur,
zoals de variationele vergelijkingenmethode, korteboogmethode, energiebal-
ansmethode en versnellingenmethode. De focus van dit proefschrift is de
versnellingenmethode met als doel de vervaardiging van kwalitatief hoogwaardige
mondiale zwaartekrachtveldmodellen met behulp van re ele data van de CHAMP
en GRACE satellietmissies.

In het eerste deel is het onderzoek gewijd aan het verbeteren van de meth-
ode voor de verwerking van CHAMP hl-SST gegevens, die reeds ontwikkeld
was binnen DEOS. Deze verbetering omvat twee belangrijke aanvullingen. De
eerste aanvulling is het gebruik van ge effende kinematische banen, in plaats
van gereduceerd-dynamische banen, in de gegevensverwerking. Een procedure
gebaseerd op B-splines is ontwikkeld voor het effenen van kinematische banen
door middel van de geregulariseerde kleinstekwadratenmethode. De tweede
aanvulling is de implementatie van de schatting van de meetruis uit de gegevens
zelf, met als doel het verkrijgen van een statistisch optimale zwaartekrachtvel-
doplossing. De verbeterde procedure wordt gebruikt om zowel geregulariseerde
en niet-geregulariseerde modellen te berekenen uit een dataset van bijna een
jaar aan CHAMP versnellingen. Het geregulariseerde model is bewezen beter
te zijn dan het geregulariseerde ITG-CHAMP01E model, en iets beter dan
het oudere DEOS CHAMP-01C 70 model dat is berekend binnen DEOS. De
niet-geregulariseerde oplossing is vergeleken met enkele niet-geregulariseerde
CHAMP-modellen die door verschillende onderzoeksgroepen vervaardigd zijn. De
vergelijking laat zien dat verkregen oplossing duidelijk beter is dan het merendeel
van de alternatieve modellen.

In het tweede deel van het onderzoek wordt de methode van de verwerking
CHAMP hl-SST gegevens uitgebreid voor het geval van GRACE hl-SST data,
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met inbegrip van de GRACE kinematische basislijnen. De kinematische posities
en basislijnen zijn zowel individueel als gezamenlijk verwerkt. Het is gebleken
dat de kinematische basislijnen zelf over het algemeen niet geschikt zijn voor de
bepaling van zwaartekrachtveldmodellen. Wij verklaren dit, in de eerste plaats,
door de beperkte gevoeligheid van de basislijngegevens voor oost-westvariaties in
het zwaartekrachtveld. Toch kunnen de kinematische basislijnen de kwaliteit van
zwaartekrachtmodellering enigzins verbeteren als deze worden toegevoegd aan
een reeks van kinematische posities.

In het derde deel van het onderzoek zijn twee innovatieve methoden on-
twikkeld voor zwaartekrachtveldmodellering met behulp van GRACE ll-SST
gegevens, namelijk de zogenaamde 3-punts Range Rate Combination (3RRC)
methode en de 3-punts Range Combination (3RC) methode, als uitbreiding op
de klassieke versnellingenmethode. Voor beide methodes is het functionele model
afgeleid en is een uitgebreide procedure voor de verwerking van re ele GRACE
data ontwikkeld. De procedure voor de gegevensverwerking bestaat uit twee grote
stappen: voorverwerking en inversie. De voorverwerking omvat de berekening
van zuivere dynamische banen als referentiebanen, op basis van de allernieuwste
achtergrondmodellen van statische en snel veranderende zwaartekrachtvelden.
De referentiebanen worden samen met de gemeten KBR data gebruikt om de
residugrootheden, behorende bij de drie functionele modellen, te bepalen. De
inversie van deze grootheden in zwaartekrachtveldparameters is enigszins vergeli-
jkbaar met de inversie van kinematische basislijnen. De ontwikkelde methodes
worden met elkaar vergeleken en met de klassieke versnellingenmethode, met
behulp van echte GRACE gegevens, gemeten van augustus 2003 tot oktober
2003. De overeenkomstige hydrologische modellen worden gebruikt als referentie
voor de vergelijking. Het is gebleken dat de klassieke versnellingenmethode
resulteert in de slechtste oplossing, die totaal niet re eel is. De 3RC methode
geeft de beste resultaten en is zodoende gekozen als de primaire methode die
verder wordt uitgewerkt, en wordt gebruikt voor het stelselmatig verwerken van
de gegevens. Gedurende de laatste verbetering is een iteratieve verwerking van
gegevens geimplementeerd. Het is gebleken dat twee iteraties voldoende zijn om
te komen tot een convergentie. Uiteindelijk wordt op deze manier ten minste
10%-15% meer van het zwaartekrachtveldsignaal bepaald.

Ten slotte wordt de 3RC methode toegepast voor het stelselmatig verwerken van
re ele GRACE gegevens. Een data set van 4 jaar, die de periode van februari 2003
tot en met december 2006 omvat, is verwerkt op een maandelijkse basis. Elke
oplossing is een set van sferisch harmonische cofficinten, die een beschrijving geven
van het gemiddelde zwaartekrachtveld voor de betreffende maand. Alle oplossin-
gen worden geleverd met volledige variantie-covariantie matrices. Gedurende de
naverwerking, worden de verkregen oplossingen ontdaan van strepen en wordt
400-km Gaussische filtering toegepast, wat resulteert in de uiteindelijke tijdreeks
van gefilterde DEOS-oplossingen. Bovendien worden de verkregen modellen
gebruikt voor de schatting van seculiere veranderingen, alsmede voor seizoens-
en halfseizoensgebonden variaties van het zwaartekrachtveld van de aarde. Ter
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vergelijking berekenen wij ook de seculiere, seizoens -en halfseizoensgebonden
schommelingen van de GLDAS hydrologische modellen. Er zijn veel opmerkelijke
gelijkenissen gevonden bij deze vergelijking. Uit een verdere analyse van de
verkregen GRACE-oplossingen kon smeltend ijs in Groenland en Antarctica,
alsmede de Sumatra-Andaman aardbeving worden waargenomen en gekwan-
tificeerd. Ten slotte is een uitgebreide vergelijking gemaakt van de verkregen
GRACE-oplossingen met de oplossingen die zijn gepubliceerd door andere onder-
zoekscentra: CSR, GFZ, JPL en CNES, alsmede met het GLDAS hydrologische
model. De vergelijking laat zien dat de DEOS-oplossingen relatief dicht bij de
JPL-oplossingen liggen, en minder dicht bij de GFZ en CSR-oplossingen, die
op hun beurt relatief dicht bij elkaar liggen. De belangrijkste verschillen tussen
de verzameling van DEOS en JPL-oplossingen en de verzameling van GFZ en
CSR-oplossingen bevinden zich voornamelijk tussen graad 2 en 5. We hebben ook
voor alle oplossingen de gemiddelde wateropslagveranderingen in zestien grote
stroomgebieden berekend. De geselecteerde stroomgebieden hebben verschillende
maten en klimatologische omstandigheden. Uit de vergelijking van de resultaten
blijkt dat over het algemeen de DEOS-oplossingen redelijk overeenkomen met
andere GRACE-oplossingen, en bijzonder dicht bij de JPL-oplossingen liggen.
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tionally, Dr.-ing T. Mayer-Gürr of Bonn University is appreciated for his valuable
suggestions during our meetings at conferences. Cooperation with Prof. Ph.
Moore and Dr. R. Tenzer of Newcastle University upon Tyne accumulated our
experiences on GRACE data processing. Both of them are grateful for their efforts.

Last but not least, I am indebted to my wife, Qin, and my son, Sikai, for
their great patience when I stayed in the office at weekends and evenings.
Without their quiet support, I could not have this thesis done.



Chapter 1

Introduction

1.1 Background

The Earth’s gravity is the sum of gravitational attraction and centrifugal force
that the Earth exerts on an object on or near its surface. Its strength is quoted
as an object acceleration being approximately 9.8 m/s2. The precise strength and
direction of the Earth’s gravity vary from point to point. Thus, the Earth’s gravity
is a vector function of 3 coordinates or a vector field. The Earth’s gravity field is
a potential field. It can be represented as the gradient of gravity potential (scalar
function), which includes the gravitational and centrifugal potential. Since the
centrifugal potential can be precisely determined, the Earth’s gravity field is very
often linked to only the gravitational potential (e.g. in this thesis). The Earth’s
gravity field and its spatial and temporal variations reflect the density structure,
mass redistribution and dynamics of Earth’s surface and interiors.

1.1.1 Applications of precise gravity field models

Determination of the gravity field with the highest possible accuracy is needed in
various Earth science related disciplines, such as geodesy, aerospace engineering,
oceanography, climatology and solid-Earth physics. In particular, the following
applications can be highlighted [Rummel, 2002]:

1) Establishment of a global height reference system for datum connection,
which can serve as a fundamental basis for engineering applications, and a
reference surface for the study of various topographic processes, including
the evolution of ice-sheets and land-surface topography.

2) Precise estimation of the global unified geoid, which is an equipotential sur-
face approximately coinciding with the mean sea level. In particular, the
marine geoid is required for the quantitative determination of absolute ocean
currents and the associated transport of heat, salt and other substances. This
knowledge forms a part of the input for building a global climate change pic-
ture.
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3) Accurate orbit determination of satellites, particularly low-orbiting ones,
which provide high-accurate measurements of Earth’s environment and cli-
mate change. In addition, the launch, navigation, prediction and tracking of
spacecrafts require a precise gravity field model as a constraint condition.

4) Comprehensive description and understanding of the physics of the Earth’s
interiors, including geodynamics associated with lithosphere, mantle com-
position and rheology, uplifting and subduction processes. Furthermore,
refined local gravity field models can be used in exploration geophysics, e.g.
to explore mineral and hydrocarbon deposits.

5) Estimation of thickness of the polar ice sheets through the combination of
bedrock topography and ice-sheet surface topography.

6) Investigation and detection of temporal variations of the Earth’s gravity field
provide unique knowledge on natural mass transportation and re-distribution
at the Earth surface and inside the Earth. This includes temporal water
storage variations in continents; global re-distribution of water masses be-
tween the continents and oceans, and sea level rise; continuous melting of
ice at various geographical locations, including mountain glaciers, as well as
ice sheets in Greenland and Antarctica; re-distribution of mass in Earth’s
interiors including the so-called “isostatic adjustment”.

1.1.2 Classical observations of the Earth’s gravity field

Determination of the Earth’s gravity field model can be carried out with a wide
variety of different measurement types and solution techniques [Nerem, 1995].
The measurement types can mainly be divided into surface gravity measurements,
satellite tracking measurements, and satellite radar altimetry measurements.
Surface gravity measurements, including terrestrial absolute (and relative) gravity
data as well as airborne gravity data, are the most straight forward information
about the Earth’s gravity field, but a homogeneous distribution of data over the
Earth can not be achieved, even only on land. Satellite altimetry data yield
gravity anomalies and geoid over the ocean, provided that the mean dynamic
sea surface topography can be adequately modeled. Finally, direct satellite
tracking data are used to measure gravitational perturbations affecting satellites.
Satellite tracking data from a large number of mostly non-geodetic satellites,
including conventional observations acquired by SLR (Satellite Laser Ranging),
TRANET (Tracking Station Coordinates for Tracking Network), and DORIS
(Doppler Orbitography and Radio positioning Integrated by Satellite) systems,
and satellite-to-satellite tracking measurements acquired by TDRSS (Tracking
Data and Relay Satellite System) and GPS (Global Positioning System) satellites,
were widely used in the 1990’s to improve the accuracy and resolution of the
gravity field models.

Comprehensive gravity field solutions must incorporate these inhomogeneous
data of various types in order to estimate gravity field parameters, e.g. spherical
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harmonic coefficients, as well as the errors of estimated parameters. The optimal
combination of these data certainly requires the development of complicated
computational procedures. One of the most remarkable solutions of this kind
is the EGM96 geo-potential model [Lemoine et al., 1998]. The EGM96 model
computed up to degree 360 represents a significant improvement over previous
models such as JGM-2 [Nerem et al, 1994] and JGM-3 [Tapley et al., 1996] by
combining all three above mentioned types of data. Although the EGM96 model
had significantly increased our knowledge on the Earth’s gravity field, it could
not meet the requirements from solid-Earth physics, oceanography and geodesy,
not even to a limited extent [Rummel, 2002]. The above three data sources of
information about the Earth’s gravity field had somewhat reached their intrinsic
limits in terms of data distribution and accuracy, particularly for the purpose
of mapping the global gravity field model. In particular, there are a number
of limitations in the above mentioned types of satellite tracking data. Firstly,
most of exploited non-dedicated satellites could be tracked from the ground only
over short intervals. Secondly, orbit altitudes were frequently too high to sense
sufficient signal at high spherical harmonic degrees. Thirdly, satellite motion is
determined not only by gravitational force, but also by surface forces, such as
air-drag and solar radiation pressure. These disturbances certainly corrupted
the obtained gravity models. These three fundamental limitations motivated the
development and launching of low-orbiting dedicated satellite missions, such as
CHAMP, GRACE and GOCE [Rummel, 2002].

1.1.3 Dedicated satellite missions: CHAMP, GRACE and GOCE

CHAMP (CHAllenging Minisatellite Payload) is a dedicated low-orbiting gravity
field satellite mission, launched in July 2000. The satellite entered into an almost
circular, near polar orbit with an initial altitude of 454km. The purpose of
choosing such an orbit is to obtain a homogeneous and complete global orbit
coverage, which is important for modeling the global gravitational field with a
high spatial resolution [Reigber et al., 2002]. The design lifetime of the satellite
system is 5 years. Thanks to excellent executive status, the mission was already
extended by a few more years. In order to estimate gravity field parameters,
the CHAMP satellite is equipped with a high-end GPS receiver, which acquires
high-low Satellite-to-Satellite Tracking (hl-SST) data. The satellite orbit can
therefore be derived with high accuracy. The concept of gravity field modeling
with the hl-SST observation technique is the following. The LEO is attracted by
mass anomalies as it is passing over them, which results in disturbances of the
satellite’s orbit. The Earth’s gravity field can therefore be recovered from the orbit
provided that the attitude and the non-gravitational accelerations are measured
by a star camera and a three-axis accelerometer respectively. Because the hl-SST
data are particularly sensitive to long and medium wavelength (below degree
60-70) gravity field perturbations [Visser and van den IJsel, 2000], the CHAMP
mission has dramatically improved the accuracy of the gravity field models at
these wavelengths [Reigber et al., 2002, Han et al., 2003, Reigber et al., 2003,
Gerlach et al., 2003, Ditmar et al., 2006]. Nevertheless, one of the mission’s goals



4 Chapter 1: Introduction

was not achieved. The CHAMP mission was not able to retrieve time-variable
gravity field as was supposed. Therefore, the attention was drawn to another
dedicated gravity mission: GRACE.

The Gravity Recovery and Climate Experiment (GRACE) satellites were
launched in 2002 also into a near polar orbit, mainly for the purpose of high-
precision mapping the Earth’s gravity field with an emphasis on its changes with
respect to time [Tapley et al., 2004]. The mission consists of two satellites flying
at an altitude of about 500 km as a formation at distance of about 200 km apart.
The satellites are equipped with a K-band Ranging (KBR) system. Thanks
to this low-low Satellite-to-Satellite Tracking technique (ll-SST) changes in the
inter-satellite distance are continuously tracked with a precision of a few microns.
On-board GPS receivers provide the data to determine satellites’ orbits and to
synchronize time tags of KBR measurements of the two satellites. In addition,
accelerometers measure non-gravitational satellite accelerations, whereas star
cameras determine the satellite attitudes. The KBR measurements are provided
as biased ranges, derived range-rates, and derived range-accelerations. Thanks to
the extremely high ranging accuracy, the ll-SST is more sensitive than hl-SST and
can be used to retrieve both the static gravity field and its temporal variations.
It should be mentioned that some of GRACE-based solutions were obtained
by a combined processing of ll-SST and hl-SST data, see [Tapley et al., 2004,
Reigber et al., 2005b, Tapley et al., 2005, Förste et al., 2006, Mayer-Gürr, 2006].

The third satellite gravimetry concept will be realized by the upcoming
Gravity Field and steady-state Ocean Circulation Explorer (GOCE) mission,
scheduled to be launched on October, 2008. It is dedicated to modeling the
Earth’s static gravity field and geoid with extremely high accuracy and spatial
resolution. The mission has two peculiar features: Satellite Gravity Gradiometry
(SGG) as the measurement concept and an extremely low satellite altitude.
The SGG system consists of three pairs of highly sensitive accelerometers in
a diamond configuration centered at the satellite’s center of mass. In other
words, two accelerometers are placed on each axis of the instrument triad.
Thus, the differences of gravitational accelerations in all three spatial directions
are measured, which can be used to derive all the elements of the matrix of
second derivatives of the gravitational potential. It should be mentioned that
the accelerometers have only two sensitive axes, the third one is less sensitive
by a factor of 1000 [Oberndorfer and Mueller, 2002]. The accelerometers are
oriented in such a way that the three diagonal components of the matrix of
second derivatives are measured with the highest accuracy. The GOCE satellite
will fly at an average elevation of 250km. The purpose is to measure gravity
signals at higher spatial frequencies. However, lowering the elevation is limited
by the increase in atmospheric drag. To compensate for it as well as for other
non-gravitational forces, such as solar radiation pressure, the satellite is equipped
with a drag-free control system. The satellite will also carry a high-quality GPS
receiver to provide accurate hl-SST data. It should be mentioned that processing
SGG data is beyond the scope of the thesis. Mentioning this mission is for
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completeness.

1.2 Research objectives

The primary goal of this research is to develop efficient techniques (and proce-
dures) to process the hl- and ll-SST data for the determination of static and/or
temporal Earth’s gravity field models represented as a series of spherical har-
monics. The motivation of the research is to avoid costly computations employed
in traditional techniques (e.g. computing the partial derivatives which requires
a numerical integration of variation equations). Additionally, the techniques to
be developed are to make use of in-situ observations (e.g. accelerations), which
provide directly the information of gravity field at the vicinity of observation
points.

The primary research related to processing hl-SST data starts from a so-
called average acceleration approach developed earlier by Ditmar and van
Eck van der Sluijs [2004]. The approach has been successfully used to pro-
duce the DEOS CHAMP-01C 70 model of the Earth’s static gravity field
[Ditmar et al., 2006]. One of goals in the thesis is to refine the pre-processing
of CHAMP data, in order to compute a gravity field model as independently as
possible from a priori CHAMP-based information, and meanwhile to improve the
model. Another goal is to develop a procedure for an accurate estimation of the
stochastic model of data noise needed for improving the accuracy of the gravity
field model. The third goal is to extend the data processing methodology to make
it applicable to the GRACE hl-SST data. The new procedure is more than a
simple joint estimation by combining two satellite data sets, because processing
kinematic baselines of two GRACE satellites also has to be considered. The
reason is that the kinematic baselines directly estimated from GPS data are more
accurate than the ones derived from individual kinematic orbits.

The primary research goal related to processing GRACE ll-SST data is to
identify a linear functional model that could be used to treat GRACE data as
in-situ observations. The research is to focus on the so-called classic acceleration
approach [Rummel, 1979] and two innovative ones proposed in the thesis, i.e. the
so-called 3-point Range Rate Combination (3RRC) and 3-point Range Combina-
tion (3RC) approach. The investigation is to not only derive the mathematical
models, and has to also include real data processing. A comprehensive data
processing methodology is to be developed for producing high-quality GRACE
gravity models, and for identifying the optimal approach. Necessary refinements
of the selected approach may also be needed for routine production of monthly
GRACE models.

The secondary goal of the research is to analyze the produced time series
of GRACE solutions. The parameters of the global inter-annual water changes
and hydrological cycle should be derived. Some important geophysical phe-
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nomena, e.g. the ice melting rate in Greenland and Antarctica, should be
analyzed. Additionally, the produced solutions should be used to investigate mass
re-distribution associated with the co-seismic and post-seismic deformation due
to the Sumatra-Andaman earthquake. Furthermore, a comprehensive comparison
of the solutions with those produced by other processing centers, such as CSR,
GFZ, JPL and CNES is to be conducted with an emphasis on water storage
variations in several selected large river basins.

1.3 Outline of the thesis

This thesis comprises seven chapters. Chapter 2 gives a brief overview of
techniques for gravity field modeling from SST data. The spherical harmonic
representation of the gravity field and the transformation of the gradient of
gravitational potential from one frame to another are presented. Next, the
precise orbit determination is discussed, since high-precision orbits play a central
role in gravity field modeling from CHAMP and GRACE data. A few different
methodologies of gravity field modeling, i.e. variational equations, short-arc,
energy balance and acceleration approaches, are introduced in order to provide
a basis for the further discussion. The emphasis is on the average acceleration
approach, since it is extensively used in the further chapters.

Chapter 3 is devoted to gravity field modeling on the basis of CHAMP
data. Two refinements on the average acceleration approach are presented. The
first one is the development of a new algorithm for computing a smooth and
accurate satellite orbit. Such an orbit is an important ingredient for computing
a CHAMP model without any CHAMP-based prior information involved. The
algorithm is based on B-splines and regularization in the form of acceleration
constraints. Simulations and real data processing are carried out. The other
refinement is the estimation of noise model from a posterior residuals in order to
obtain an optimal gravity field solution. The noise model is represented in terms
of power spectral density. The simulation and real data processing prove that
the noise estimation procedure is a key ingredient of the accurate gravity field
modeling. These two refinements are used to compute a regularized CHAMP
model and a non-regularized one. A comparison of the computed models with
those produced by other research groups confirms a high quality of our models.

Gravity field modeling methodology is extended in chapter 4 to the case of
GRACE hl-SST data. In particular, processing the kinematic baselines is dis-
cussed. The kinematic positions and baselines of GRACE satellites are processed,
both individually and jointly. The obtained results are inter-compared and
analyzed.

Chapter 5 focuses on novel methodologies for processing GRACE ll-SST
data. The chapter starts from the classical acceleration approach proposed by
Rummel [1979], which makes use of range acceleration data and inter-satellite
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velocity vectors. Since radial components of inter-satellite velocities in the
approach are not accurate enough, no reasonable results can be obtained.
After that, a novel approach, namely, the 3RRC approach, is proposed, which
explicitly connects a linear combination of gravitational potential gradients with
a linear combination of range-rate measurements at three successive epochs.
The idea behind this approach is that the radial component of inter-satellite
velocities is derived from KBR data themselves. In addition, we propose a new
variant of average acceleration approach, i.e. the 3RC approach, in which the
functional model connects gravity field parameters with a linear combination
of bias-corrected range measurements at three successive epochs without an
explicit involvement of inter-satellite velocity vectors at all. The details of
data processing are given, and results produced by these three approaches are
analyzed. The conclusion is that the 3RC approach produces the best solution
compared to the other two approaches. On the basis of the conclusion, a further
refinement of the 3RC processing procedure is made. Finally, almost 4 years
of GRACE ll-SST data are processed on the monthly basis with the 3RC approach.

A post-processing and analysis of the produced GRACE monthly model is
the subject of chapter 6. In particular, the seasonal variations and global
inter-annual changes in the Earth’s gravity field are derived. The secular mass
changes in Greenland and Antarctic are considered in detail. The effects of
co-seismic and post-seismic deformation due to the rupture caused by the
Sumatra-Andaman earthquake are also discussed in the chapter. Finally, the
chapter contains a comparison of our solutions with GRACE solutions produced
by some other research institutes as well as with the GLDAS hydrological model.
The comparison is focused on the spectral assessment and the differences of water
storage changes in large river basins.

Finally, the major findings of the thesis are summarized and recommenda-
tions for further researches are given in chapter 7.
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Chapter 2

Gravity field modeling from SST data: an

overview

2.1 Introduction

This chapter gives an overview of techniques for gravity field modeling from
Satellite-to-Satellite Tracking (SST) data with emphasis on the average accel-
eration approach. The conceptional background and the latest development of
methodologies applied in the global gravity field analysis are briefly presented, in
order to provide a basis for the research conducted in the thesis.

Section 2.2 gives the mathematical expressions for gravitational potential
and geoid as a series of spherical harmonics. The coefficients of the basis functions
are the principle parameters to solve for in the thesis. As will be intensively
used in the thesis, the expression for mass change, power spectrum and potential
gradient are also given in this section. A brief description of related coordinate
frames and the rotations among them are given in section 2.3. A high-precision
orbit plays a central role in gravity field modeling through being the input data
or/and providing precise locations for measurements of other types. Therefore, it
is necessary to describe some relevant aspects of precise orbit determination. This
is done in section 2.4, which includes three different approaches widely used for
determining CHAMP, GRACE and future GOCE satellite orbits, i.e. kinematic,
dynamic and reduced-dynamic orbit determination. Moreover, some properties
of these types of orbits are analyzed. In section 2.5, we briefly discuss the
current strategies of global gravity recovery from the SST data. A few different
approaches, i.e. variational equations, short-arc, energy balance and acceleration
approaches, are discussed. The basic functional models of these approaches are
presented, and the relevant gravity field models produced with these approaches
are listed. The advantages and disadvantages of these methodologies are analyzed
as well. Section 2.6 describes the inversion of observations into gravity field
parameters with a focus on the average acceleration approach. The adopted
strategy to obtain the least-squares solution is to perform the inversion iteratively
using the preconditioned conjugate gradient method. Besides this, fast synthesis
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and co-synthesis as well as the data weighting are briefly explained in the section.
The procedure of computing CHAMP acceleration residuals is also described as a
platform for further development in the next chapters.

2.2 Gravity field and its functionals

2.2.1 Gravitational potential

The static part of the Earth’s gravitational potential V at any point P at the
Earth’s surface is commonly expressed as a series of spherical harmonics (see, e.g.
[Heiskanen and Moritz, 1984]):

V (r, ϑ, λ) =
GM

R

{
∞∑
l=0

(
R

r

)l+1 l∑
m=0

(Clm cosmλ + Slm sin mλ) P̄lm(cosϑ)

}
,

(2.1)

where r, ϑ, λ are the spherical geocentric coordinates of the computation point:
radius, co-latitude and longitude, respectively; GM is the geocentric gravitational
constant; R is the semi-major axis of a reference ellipsoid; Clm, Slm are the
spherical harmonic (or Stokes’) coefficients with l, m being degree and order, re-
spectively; and P̄lm(cos ϑ) are the fully normalized associated Legendre functions.

The estimation of degree 0 coefficient is beyond this thesis, since it can not
be estimated accurately from the data acquired by the LEO satellites. The degree
1 spherical harmonic coefficients (i.e. C10, C11, S11) are related to the geocenter
coordinates and defined in this thesis as 0, due to the assumption that the
coordinate system’s origin always coincides with the geocenter. These coefficients
are not possible to be estimated accurately, even without the assumption.
Therefore, the minimum degree Lmin is usually set equal to 2 in this thesis.

The spherical harmonic coefficients represent the global structure and irreg-
ularities of the Earth’s gravity field. Higher degrees correspond to a higher spatial
resolution. In reality, the gravity field can not be estimated with unlimited spatial
resolution. Therefore, a certain truncation degree needs to be set in the expression
equation (2.1). The maximum degree Lmax relates to the spatial resolution at the
Earth surface as

λmin ≈ 40000 km/(Lmax + 0.5), (2.2)

where λmin is the minimum wavelength of the gravity field features. The
(

R
r

)l+1

term of equation (2.1) reflects the attenuation of the signal with altitude.
According to the precision of the available data, the measurement altitude and
the aim of gravity field modeling, a reasonable maximum degree can be chosen
somewhere between 50 and 70 for the CHAMP hl-SST data, and between 70 and
150 for the GRACE KBR measurements.
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It should be mentioned that spherical harmonics are functions with a global
support. Therefore, the local signal and erroneous information could be spread
over the entire globe. Spherical harmonics may not be a very efficient tool to
localize the regional signals. Alternative representations of gravitational potential,
which are more suitable for regional signals are spherical radial basis function
[Klees et al., 2008] or spherical wavelets [Fengler et al, 2007]. However, this is
beyond the scope of this thesis, which is devoted to modeling the gravity field
globally.

The goal of the SST data processing is either to improve the estimates of
the mean spherical harmonic coefficients, or to compute the time variations of
them. It is common practice to subtract the contribution of an a-priori mean
gravity field model from the observations. The residual observations then reflect
the deviations of the true gravity field from the a-priori reference model. Inversion
of these residuals will result in coefficients of the residual gravity field model,
which has to be added to the reference model. Let us introduce the residual
potential ΔV (r, ϑ, λ), the spherical harmonic expansion of which then reads

ΔV (r, ϑ, λ) =
GM

R

Lmax∑
l=Lmin

(
R

r

)l+1 l∑
m=0

(ΔClm cosmλ + ΔSlm sinmλ) P̄lm(cosϑ)

(2.3)

with ΔClm, ΔSlm are the corrections (or changes) of individual spherical harmonic
coefficients. The number of coefficients Ncoef in this series expansion is given by

Ncoef = L2
max − L2

min + 2Lmax + 1. (2.4)

By definition, the Sl,0 terms are zero and therefore are not counted in equa-
tion (2.4).

2.2.2 Geoid

The geoid is defined as an equipotential sureface that coincides with the mean sea
level. An Earth’s gravity field variation can be quantified in terms of geoid height
N(ϑ, λ), which is the distance between the geoid and the respective reference
ellipsoid. According to the Bruns formula [Heiskanen and Moritz, 1984], the geoid
height can be derived from the disturbing potential, which is the difference between
the real gravitational potential V (R, ϑ, λ) and the normal gravitational potential
U(R, ϑ):

N(ϑ, λ) =
V (R, ϑ, λ)− U(R, ϑ)

γ(ϑ, λ)
, (2.5)

where γ(ϑ, λ) denotes the normal gravity at the geoid, which can be approximated
by GM/R2 with a relative accuracy of 0.3%. Let us consider residual geoid heights.
The normal gravitational potential U(R, ϑ), by definition, does not change, and
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therefore, the differences in the geoid heights are completely determined by the
residuals or changes of the gravitational potential, i.e. ΔV (R, ϑ, λ). Hence, the
residuals or changes in geoid heights can also be represented as a series of spherical
harmonics:

ΔN(ϑ, λ) = R

Lmax∑
l=Lmin

l∑
m=0

(ΔClm cosmλ + ΔSlm sin mλ) P̄lm(cos ϑ). (2.6)

This expression is frequently employed in the thesis to compare different models
and to analyze the noise or signal behavior of estimated corrections or time-varying
models.

2.2.3 Mass change

When working with a time series of spherical harmonic coefficients, for example,
monthly solutions from GRACE data, the term surface mass density is often used.
The variation of surface mass density can also be expanded as a sum of residual
spherical harmonics under the assumption that the variation can be attributed to
a thin water layer at the Earth’s surface (see e.g. [Wahr et al., 1998]):

Δσ(ϑ, λ) = Rρw

Lmax∑
l=Lmin

l∑
m=0

(
ΔČlm cosmλ + ΔŠlm sinmλ

)
P̄lm(cosϑ), (2.7)

where ρw is the density of water to make the surface density coefficients ΔČlm,
ΔŠlm dimensionless. It is assumed to be 1000 kg/m3. The ratio Δσ/ρw yields the
variation in equivalent water thickness, which will be often used for the analysis of
the solved-for monthly solutions in this thesis. The relation between the surface
density coefficients and the gravitational potential ones is given by:{

ΔČlm

ΔŠlm

}
=

ρave(2l + 1)

3ρw(1 + kl)

{
ΔClm

ΔSlm

}
, (2.8)

with ρave being the average density of the Earth (5517 kg/m3) and kl the degree
dependent load Love numbers [Farrell, 1972, Wahr et al., 1998]. The factor (1+kl)
in equation (2.8) takes both the direct mass potential and solid Earth loading
deformation potential into account. With equation (2.8), it is easy to derive the
variations in surface density Δσ(R, ϑ, λ) from changes in the potential coefficients

Δσ(ϑ, λ) =

Lmax∑
l=Lmin

l∑
m=0

(ΔClm cosmλ + ΔSlm sinmλ) KlP̄lm(cos ϑ), (2.9)

with

Kl =
Rρave(2l + 1)

3(1 + kl)
. (2.10)
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Vice versa, the geoid height changes ΔN(ϑ, λ) can be determined from the surface
density coefficients as

ΔN(ϑ, λ) = R2ρw

Lmax∑
l=Lmin

l∑
m=0

(
ΔČlm cosmλ + ΔŠlm sin mλ

) 1

Kl
P̄lm(cosϑ). (2.11)

2.2.4 Power spectrum

It is common that a new gravity field solution in terms of potential coefficients
(Slm and Clm) is accompanied with their respective standard deviations σClm

and
σSlm

, which are obtained via an error propagation process. The signal degree
amplitudes σl, i.e. square root of power per degree, can be defined as follows in
terms of unitless coefficients as follows:

σl =

√√√√ l∑
m=0

(C2
lm + S2

lm), (2.12)

and the error degree amplitudes can be similarly defined as:

σ̂l =

√√√√ l∑
m=0

(σ2
Clm

+ σ2
Slm

). (2.13)

The signal degree amplitudes can be also computed in terms of geoid heights:

σl(N) = R · σl, (2.14)

and in terms of equivalent water heights:

σl(W ) =
Rρave(2l + 1)

3ρw(1 + kl)
· σl. (2.15)

The corresponding error degree amplitudes can be expressed similarly by replacing
σl with σ̂l. In some cases, when two different gravity field models are compared,
we need to compute the difference signal degree amplitudes, in order to see the
agreement of two models. In this case, the coefficients of equation (2.12) should
be replaced by the differences of coefficients between the two models.

The cumulative amplitudes as a function from minimum to maximum de-
gree represent the power (signal, error, difference) spectrum accumulated over a
spectral band from lmin to lmax:

σlmin,lmax =

√√√√ lmax∑
l=lmin

σ2
l . (2.16)
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2.2.5 Potential gradient

The focus of the thesis is to connect the satellite acceleration vectors to the grav-
itational potential gradient. The partial derivatives of the gravitational potential
V (r, ϑ, λ) with respect to ϑ, λ, r can be given as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂ϑ
= −GM

R

Lmax∑
l=Lmin

(
R

r

)l+1 l∑
m=0

{Clm cosmλ + Slm sin mλ} P̄ ′lm(cos ϑ) sin ϑ

∂V

∂λ
=

GM

R

Lmax∑
l=Lmin

(
R

r

)l+1 l∑
m=0

m {−Clm sin mλ + Slm cosmλ} P̄lm(cosϑ)

∂V

∂r
= −GM

R2

Lmax∑
l=Lmin

(l + 1)

(
R

r

)l+2 l∑
m=0

{Clm cosmλ + Slm sin mλ} P̄lm(cos ϑ).

(2.17)

Here, the derivative of V (r, ϑ, λ) with respect to ϑ is a function of the partial
derivative of the associated Legendre functions, i.e. P ′lm, which can obtained with
a recursive formula, see also [Heiskanen and Moritz, 1984],

P ′lm(cosϑ) =
−l cosϑPlm(cosϑ) + (l + m)Pl−1,m(cosϑ)

sin2 ϑ
. (2.18)

It should be mentioned that Clm and Slm in equation (2.17) can be treated as
coefficients of either full signal or residual. We do not specifically distinguish
them later in the thesis. For example, they are understood as residual ones in the
case of building an explicit relationship with the residual satellite accelerations.

2.3 Reference frames and rotation of vectors

The potential gradients, as well as satellite positions and velocities, are computed
as vectors in a certain reference frame. Therefore, rotations between different
frames are necessary. It is useful to introduce an intermediate coordinate system,
i.e. the so-called Geographical Reference Frame (GRF), which is a local right-
handed Cartesian frame with the origin at the satellite location. The x-axis of the
frame is oriented towards the North, the z-axis points radially outward, and the
y-axis to the West, see figure 2.1. The potential gradient vector a(G) in this frame
can be represented in terms of the spherical coordinates:

a(G)
x = −1

r

∂V

∂ϑ
, a(G)

y = − 1

r sin ϑ

∂V

∂λ
, a(G)

z =
∂V

∂r
. (2.19)

Transformation of the potential gradient vector from GRF into the Terrestrial
Reference Frame (TRF), i.e. Earth-Center Earth-Fixed coordinate system, can be
performed by a standard rotation

a(T) = Rz(π − λ)Ry(ϑ)a(G), (2.20)
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Fig. 2.1. Relations among TRF and GRF, LORF

where Ry(ϑ) and Rz(π − λ) are 3 × 3 matrices of elementary rotation through
a given angle around the y-axis and z-axis respectively. The rotation matrix R
represents a relative orientation between two frames when they have a common
axis. The new frame can be obtained from the old one by means of an elementary
rotation around the common axis [Seeber, 2003]. Furthermore, any rotation matrix
has the following property.

[RA→B]T = [RA→B]−1 = [RB→A], (2.21)

where A and B present two coordinate systems, respectively. It is worth mention-
ing that for any elementary rotation matrix it holds:

R(x)−1 = R(−x), (2.22)

with x being the rotation angle.

It may be needed to transform the potential gradient vector from GRF
into the so-called Local Orbital Reference Frame (LORF). The frame is defined
as follows: the x-axis is directed along the track, the y-axis coincides with
the direction of the orbital angular momentum and the z-axis completes the
frame to a right-handed one, see figure 2.1. The frame is very often used in
this thesis since it offers at least two advantages. It is nearly consistent with
the orientation of the on-board accelerometer (CHAMP and GRACE missions).
Additionally, a nearly block-diagonal normal matrix can be built up on its
basis [Ditmar and van Eck van der Sluijs, 2004]. The transformation is also
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implemented by a standard rotation:

a(L) = Ry(−α)Rz(−β)a(G), (2.23)

where β is the azimuth of satellite velocity vector (measured from the North clock-
wise), and α is the angle between the velocity vector in case of a circular orbit
and the actual instantaneous velocity vector of the satellite (measured upwards).
Therefore, it is rather simple to convert the gradient of potential from the TRF
frame into LORF frame via the intermediate GRF frame:

a(L) = Ry(−α)Rz(−β)Ry(−ϑ)Rz(λ− π)a(T). (2.24)

The transformation between the TRF frame and the Celestial Reference Frame
(CRF), i.e. the so-called (quasi-)inertial frame, is also necessary for some com-
putations, e.g. when the input acceleration vectors are derived with numerical
differentiation. The transformation matrix at epoch t can be written as (see e.g.
[Montenbruck and Gill, 2000] or [McCarthy and Petit, 2003])

R(C→T)(t) = Π(t)Θ(t)N(t)P(t), (2.25)

where C presents CRF and T TRF frame, respectively; the rotation matrices
Π, Θ,N and P describe the coordinate changes due to polar motion, Earth
rotation, nutation and precession, respectively. The International Astronomical
Union (IAU) conventions adopted some resolutions at the 24th General Assembly
to compute each of these matrices with an accuracy of microarcsecond level.
The required input for the computation of these matrices, such as polar motion
parameters and the UT1-UTC time offsets, can be obtained from the International
Earth Rotation Service (IERS).

The non-gravitational measurements are very often provided in a so-called
Satellite Body Frame (SBF). To transform the SBF into the CRF, the data from
the attitude control system (e.g. a star camera) are used . The rotation angles are
expressed in terms of quaternions, which contain a scalar part q0 and a vectorial
part q:

q = (q0,q) = (q0, q1, q2, q3). (2.26)

The attitude data provided are not as complete as the accelerometer data, since
the Sun and the Moon blind the star camera regularly depending on the satellite
orbit. Quaternions are very well suited in this case for the description of rotations
as they can be interpolated. Other alternative representations of rotations, such
as rotation matrices and Euler angles, are not suitable for that purpose. As soon
as the quaternions q are known, the corresponding rotation matrix R(S→C) can
be easily assembled [Schwintzer et al., 2002] as follows:

R(S→C) =

⎛⎝ q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

⎞⎠ . (2.27)
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2.4 Precise orbit determination

2.4.1 Relation with gravity field modeling

Precise orbit determination (POD) plays a central role in the context of the
dedicated gravity field missions due to at least two reasons. First of all, POD is
needed to locate the data, e.g. the KBR observations of the GRACE mission or
SGG measurements of the GOCE mission in three-dimension space. Secondly,
the orbit is mainly a result of the Earth’s gravitation. The combined analysis
of orbit data with non-gravitational accelerations, measured by an on-board
accelerometer, can be used to model the gravity field.

POD has entered a new era with space geodetic techniques. One of exam-
ples is the Satellite Laser Ranging (SLR). The ground-based tracking SLR
systems accurately measure distance by determining the two-way travel time
of laser pulses transmitted to a satellite and returned by a retro-reflector. An
accuracy of several centimeters can be achieved in this way depending on the
distance to the satellite and the strength of the returned signal, which therefore
allows the orbit of target satellites to be determined. Being applied to dedicated
satellites like Starlette and Lagoes, the SLR technique has contributed to the
study of geocenter variations and extraction of gravity field coefficients. However,
for low-orbiting satellites, a purely ground-based tracking system suffers from a
limited number of stations, so that the available tracking measurements cover
only a small fraction of the orbit. An alternative positioning concept is offered
by the GPS system. Usage of a space-borne GPS receiver allows the data to be
collected continuously. Moreover, the GPS measurements can provide a precise
time transfer to synchronize time tags of other in-situ measurements, e.g. KBR
measurements.

In principle, the POD and gravity field modeling can be done simultane-
ously using all available measurements collected by dedicated gravity missions,
such as (LEO-based and/or ground-based) GPS code and carrier phase data,
accelerometer data, KBR range and range-rate data and even ground-based
satellite laser ranging data. In Zhu et al. [2004], an integrated adjustment
procedure, which is called ’one-step’ approach, was proposed to make use of
all these data for simultaneous determination of the orbits of GPS and LEO
satellites, geocenter variations and gravity field parameters. The criterion for
distinguishing one-step and two-step approaches in Zhu et al. [2004] is whether
the high attitude GPS orbits are updated altogether with the coefficients of the
Earth’s gravity field. Although there is a potential to improve the accuracy of
the gravity field parameters by using such an integrated adjustment method,
the computation burden is high, which makes the approach unpractical. In this
thesis, we assume that precise GPS satellite ephemerides and clock products
are sufficiently accurate, so that it is not needed to update them in the course
of gravity field modeling. Therefore, the one-step method in our definition is
an approach when the LEO-based GPS raw measurements are directly used to
simultaneously determine the orbit of the LEO satellite and the parameters of
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gravity field with GPS satellite positions and clocks being fixed. On the other
hand, a two-step approach implies that the orbit of the LEO satellite is firstly
determined by using GPS raw observations and is then employed in the second
step to form pseudo-observations for gravity field recovery. A similar definition of
one-step and two-step methods can be seen in Reubelt et al. [2006] as well.

The LEO satellite orbit can be determined using un-differenced GPS mea-
surements kinematically (not using force models) and dynamically (using force
models). In order to compute as accurate as possible the satellite orbit, the deter-
mination is very often a compromise between a kinematic approach and a dynamic
approach, resulting in a so-called reduced-dynamic orbit determination. It should
be mentioned that the LEO orbit of one satellite can be determined with respect to
the other one. In this case, differentiated GPS measurements can be used in order
to eliminate or reduce common data errors. In relative orbit determination, the
absolute orbit of one satellite, serving as the reference, has to be known to the best
possible extent. The procedure of relative orbit determination is basically identical
to that of the normal POD, with the main difference that the ‘relative’ parameters
are used instead of the ‘absolute’ ones. For example, the initial state vector
is replaced by the initial relative state vector (i.e. baseline and velocity difference).

In section 2.4, the focus is on the (absolute) orbit determination without
considering the improvement of gravity field model. However, we will show a hint
for further discussion of the one-step approach which is given in section 2.5. The
remaining part of section 2.4 describes different orbit determination approaches,
including their principles, computation procedures and some analysis of results.

2.4.2 Kinematic orbit determination

The kinematic orbit determination is a straightforward point-wise calculation
of the satellite positions from the available GPS observations without an in-
volvement of any force model. The determination is usually done by using the
un-differenced ionosphere-free GPS measurements combined with precise orbits
of GPS satellites and GPS clock products provided by the International GPS
Service (IGS), (see e.g. [Zhao, 2004] and [Kroes, 2006]). At any given epoch ti,
the set of unknown parameters is defined as the phase center position of the
GPS receiver antenna and the GPS receiver clock offset, xi = (xi, yi, zi, cδti),
with c being the velocity of light. These parameters must be estimated at
every epoch since the satellite is continually moving. The total number of
these parameters in a single day is 11520 if the sampling rate is 30 seconds.
Additionally, the carrier phase measurements contain the term of the ionosphere
free ambiguity, such as bj = (λIF AIF )j , with AIF being the ambiguity and λIF

being the wavelength of ionosphere-free carrier phase. The ambiguity remains
unchanged over an interval of continuous tracking unless a cycle slip or phase
break occurs. The interval is usually not longer than about 40 minutes due to
rapid change of relative geometry between LEO and GPS satellites, Therefore,
there are about 15 continuous passes with constant ambiguities per day for a
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single GPS satellite [Kroes, 2006]. In most cases, the total number of ambiguity
parameters over 24 hours is approximately 500. Therefore, the total number
of parameters that need to be estimated for a single day is about 12000. The
estimation problem is in principle over-determined because an average number
of 6 good quality observations (code and carrier phase) are available for each
epoch, resulting in 35000 measurements in total. Nevertheless, it is sometimes
impossible to avoid large errors in determining high-precision kinematic positions,
particularly in the case when measurements contain outliers or cycle slips.
Therefore, the data cleaning is a crucial step in the kinematic orbit determination
[Zhao et al., 2007]. Nowadays, the accuracy of kinematic orbit determination
may reach a few mm [Švehla and Rothacher, 2002, Kroes, 2006, Zhao et al., 2007].

The kinematic POD is preferable for gravity field modeling, because it re-
sults in a series of satellite positions that is nearly free from force model
assumptions. Evidence is that the noise is almost uncorrelated in time though
the variances may vary considerably according to our analysis, see figure 2.2.
As far as relatively large noise is concerned, it can be taken into account by a
proper stochastic model. However, a kinematic orbit can still contain outliers
not removed at the orbit determination phase. The usual way of final cleaning a
kinematic orbit from outliers is to compare the kinematically determined position
differences between two successive epochs with their counterparts obtained from
a dynamic or reduced dynamic orbit. Positions for which the differences exceed a
certain threshold are then rejected [Ditmar et al., 2006].

2.4.3 Dynamic orbit determination

Dynamic orbit determination implies that satellite positions are computed arc-by-
arc rather than point-by-point. The initial state vector of each arc (together with
a few empirical dynamic parameters) has to be estimated as a part of the orbit
determination process. The dynamic force models are therefore used to accurately
transit the initial state vector in the inertial frame [Montenbruck and Gill, 2000].
The resulting orbit should fit the input data best according to the chosen minimum
criterion. In this way, the number of solved-for parameters is dramatically reduced.

Following [Montenbruck and Gill, 2000, Zhao, 2004, Kroes, 2006, Beutler, 2006],
the equation of motion of an Earth-orbiting satellite can be described in an
inertial frame as:

r̈ := a = ag + at + ang + ap, (2.28)

where r is the position of the satellite, a is the total accelerations of the satellite,
of which ag is the gravitational acceleration on the basis of a static gravity
field model, at is the known temporal gravitational acceleration caused by
tides, loading effects and atmospherical and oceanic mass variations, ang is the
non-gravitational accelerations measured by the accelerometers or computed on
the basis of non-conservative model, and ap is the unmodeled accelerations.
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Fig. 2.2. Autocorrelation analysis of noise of kinematic orbit. Time series of differ-
ences between the GRACE KBR ranges and the ranges computed from two individual
kinematic orbits (top). The noise of KBR ranges is much smaller than orbits, therefore
they are ignored. The time series can be thought as noise of kinematic orbits (as a
whole, notice of two satellites and three components). The RMS of the time series is
less than 4mm. Autocorrelation coefficients of the time series (bottom), which shows
that the positions of kinematic orbits are almost uncorrelated. The computation of
auto-correlation coefficients will be described in appendix A. The kinematic orbits used
are August 1, 2003 with a sampling of 30 sec. The orbits are provided by [Kroes, 2006]

Let the satellite dynamic parameter vector in the inertial frame be written
as

x(t) =

(
y(t)
p

)
, (2.29)

where y(t) is the state vector, including the position r(t) and the velocity ṙ(t)
vectors within an arc. Vector p is the so-called additional dynamic parameter
vector in the context of dynamic orbit determination. It includes typically only
biases or scaling factors of non-gravitational accelerations. However, the additional
dynamic parameter vector may be extended by some other parameters, which will
be described in the next sections devoted to reduced-dynamic orbit determination
or gravity field modeling with the one-step approach. The initial value at epoch
t0 is expressed as x(t0), which is to be estimated. In other words, the first group
of parameters to be estimated includes the initial state vector and the additional
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dynamic parameters. The first order differential equations of the state vector can
be written as:

F(t,y(t),p) :=
d

dt
y(t) =

(
ṙ(t)
r̈(t)

)
. (2.30)

Furthermore, let us consider another group of parameters to be estimated. Write
the measurement vector as d = (d1,d2, · · · ,dn)T , assuming that the measure-
ments are taken within the arc at times t1, t2, · · · , tn, and that s measurements
are collected at each epoch. The observation equation can be written as

ds
i (ti) = gs

i (ti,x(ti), z(ti)) + ε = hs
i (ti,x(t0), z(ti)) + ε, (2.31)

where gs
i denotes the physical or geometrical relationship at the epoch ti between

the measurements and the parameters. The latter ones include dynamic param-
eters x(ti) and measurement-related parameters z(ti) (e.g. GPS receiver clock
biases T and carrier phase ambiguities B). Symbol hs

i denotes the model value as
a function of the state x(t0) at the reference epoch t0. The quantity ε accounts for
the difference between actual and modeled measurements due to the measurement
and modeling errors. The partial of the modeled measurement hs

i with respect to
the clock bias vector can be expressed as:

∂hs
i

∂T
= (0, ..., 0, 1(i), 0, ..., 0). (2.32)

The non-zero element is only set for the epoch ti, and the length of this vector
equals the number of epochs n. Similarly, the partial of the carrier phase ambigu-
ities is

∂hs
i

∂B
= (0, ..., 0, 1(k), 0, ..., 0). (2.33)

The only non-zero element is for the kth ambiguity relating to the carrier phase
measurement from satellite s at epoch ti. The length of partial vector is the
number of ambiguities. For the code measurements, the elements of the partial
are not set at all.

A priori LEO positions x0(t) are obtained, preliminarily from a GPS code
solution or from a rapid orbit provided by other resources. An a priori initial
state vector x(t0) may be computed from this position of data, and the additional
dynamic parameters may be set as 0 at the beginning. Dynamic orbit deter-
mination can therefore be considered as a procedure to estimate corrections of
the dynamic parameters. Apart from the evaluation of the partials with respect
to the measurement-related parameters, we have to compute the partials with
respect to the initial dynamic parameter vector, i.e.

∂hs
i

∂x(t0)
=

(
∂hs

i

∂y(t0)

∂hs
i

∂p

)
=

(
∂hs

i

∂y(ti)

∂y(ti)

∂y(t0)

∂hs
i

∂y(ti)

∂y(ti)

∂p

)
. (2.34)
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Equation (2.34) can be re-arranged as:

∂hs
i

∂x(t0)
=

(
∂hs

i

∂y(ti)
Φ(ti, t0)

∂hs
i

∂y(ti)
S(ti)

)
, (2.35)

where

Φ(ti, t0) =
∂y(ti)

∂y(t0)
, (2.36)

which is the so-called state transition matrix, and

S(ti) =
∂y(ti)

∂p
, (2.37)

which is the so-called sensitivity matrix. The first element on the right-hand side
of equation (2.35) presents the measurement-related partials with respect to the
current satellite state vector, which differs according to the types of measurements.
For example, the partials of the GPS measurements with respect to the current
satellite state vector are given as:

∂hs
i

∂y(ti)
=

(
∂hs

i

∂r(ti)

∂hs
i

∂ṙ(ti)

)
=
(
−(es(ti))

T 01×3

)
, (2.38)

where es(ti) is the unit vector of the line of sight between the LEO satellite and
the individual GPS satellite s in the inertial frame.

The state transition matrix can be obtained by differentiating equation (2.30)
with respect to the initial state:

∂

∂y(t0)

d

dt
y(t) =

∂F(t,y(t),p)

∂y(t0)
=

∂F(t,y(t),p)

∂y(t)
· ∂y(t)

∂y(t0)
. (2.39)

The order of the partial derivatives in the left-hand side can be inter-changed, so
that we have

d

dt

∂y(t)

∂y(t0)
=

d

dt
Φ(t, t0) =

∂F(t,y(t),p)

∂y(t)
· Φ(t, t0), (2.40)

with

∂F(t,y(t),p)

∂y(t)
=

⎛⎜⎜⎝
03×3 I3×3

∂r̈(t)

∂r(t)

∂r̈(t)

∂ṙ(t)

⎞⎟⎟⎠
6×6

. (2.41)

Equation (2.40) is a first order differential equation with the identity matrix as
the initial value, Φ(t0, t0) = I6×6. In a similar way the sensitivity matrix can be
obtained by differentiation equation (2.30) with respect to the additional dynamic
parameters:

∂

∂p

d

dt
y(t) =

∂F(t,y(t),p)

∂y(t)
· ∂y(t)

∂p
+

∂F(t,y(t),p)

∂p
. (2.42)
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Therefore, the first order differential equations of equation (2.37) can be specifically
written as

d

dt
S(t) =

⎛⎜⎜⎝
03×3 I3×3

∂r̈(t)

∂r(t)

∂r̈(t)

∂ṙ(t)

⎞⎟⎟⎠
6×6

· S(t) +

⎛⎜⎜⎝
03×np

∂r̈(t)

∂p

⎞⎟⎟⎠
6×(6+np)

, (2.43)

where the initial values of the elements of the sensitivity matrix are zero since
the initial state vector does not depend on the additional dynamic parameters.
Equations (2.40) and (2.43) can be combined as the so-called variational equations:

d

dt
(Φ,S) =

⎛⎜⎜⎝
03×3 I3×3

∂r̈(t)

∂r(t)

∂r̈(t)

∂ṙ(t)

⎞⎟⎟⎠
6×6

·(Φ,S)+

⎛⎜⎜⎝
03×6 03×np

03×6
∂r̈(t)

∂p

⎞⎟⎟⎠
6×(6+np)

, (2.44)

which is suitable and adequate for use with numerical integration methods to
evaluate the solution of the first order initial value problem. Within the orbit
determination process the variational equations are integrated simultaneously
with satellite trajectory. As far as the latter procedure is concerned, accurate force
models including known temporal gravity field variations are needed to compute
the satellite accelerations, see e.g. chapter 3 of [Montenbruck and Gill, 2000].
Furthermore, the variational equations depend on the partial derivatives of
the acceleration with respect to the state vector and the dynamic parame-
ters. How to compute these elements can be found in detail in chapter 7 of
[Montenbruck and Gill, 2000].

From the estimated initial dynamic parameters and the accurate background
force models, position at any given epoch along the orbit can be computed.
The dynamic orbit is relatively smooth, therefore positioning errors are highly
time-correlated compared with the kinematic orbit, see figures (2.2) and (2.3).
The dynamic orbit depends on the background force models and positions are
strongly correlated in time. Therefore, an orbit of this type can not be taken
as a set of observations for later gravity field recovery. However, it can be used
to compute reference values that are subtracted from the observations (e.g.
KBR measurements or kinematic positions). It should be noticed that there are
homogeneous solution and resonance effects in the the dynamic orbit caused by
errors in the estimated initial state vector and in the zonal coefficients of the
background gravity field. As can be seen from figure 2.3, these effects mostly map
into a one-cycle-per-revolution (cpr) pattern. These effects should be carefully
considered when the orbit is taken as the reference value [Visser, 2005].

2.4.4 Reduced-dynamic orbit determination

As we discussed in the previous sections, a purely kinematic orbit is sensitive to
erroneous measurements and data gaps, while the purely dynamic POD results
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Fig. 2.3. Autocorrelation analysis of the noise (or error) of a purely dynamic orbit.
Time series of differences between the GRACE KBR ranges and the ranges computed
from two individual dynamic orbits (top). The RMS of the time series is 5mm.
Autocorrelation coefficients of the time series (bottom). The dynamic orbits used are
August 1, 2003 with a sampling of 30 sec. The orbits are computed by the PANDA
software for August 1, 2003 [Zhao et al., 2007].

in robust continuous positions even within data gaps, but depends on the force
models. However, the forces acting on a LEO satellite are hardly known a priori
with the accuracy matching the accuracy level of GPS measurements. Due to
these drawbacks of both kinematic and dynamic orbits, the POD is very often
performed with the reduced-dynamic approach. In this approach, the additional
dynamic parameters p in equation (2.29) are extended in order to absorb a priori
model errors or any other model deficiency. There are, in general, two ways to
take additional empirical parameters into account: instantaneous velocity changes
and empirical accelerations.

2.4.4.1 Instantaneous velocity changes

The concept of instantaneous velocity changes, or pulses, was introduced as em-
pirical parameters by [Beutler et al, 1994] to improve the orbit quality of the GPS
satellites. Such a concept is also useful for reduced-dynamic POD of LEO satellites
since the parameters can be set up efficiently [Jäggi et al., 2006]. Assume that a
vector of pulses pv in three components is taken as a part of dynamic parameters
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Fig. 2.4. Autocorrelation analysis of noise of reduced-dynamic orbit. Time series of
differences between the GRACE KBR ranges and the ranges computed from reduced-
dynamic baselines (top). The RMS of the time series is 0.7mm. Autocorrelation
coefficients of the time series (bottom). The reduced-dynamic baselines used are
August 1, 2003 with a sampling of 10 sec. The baselines are provided by [Kroes, 2006]

p for a pre-defined sub-interval [tj , tj+nv
), with nv being the number of epochs

of the sub-interval. The pulses at three directions are characterized by velocities
vj introduced at time tj with the pre-determined matrix E(tj) (formed by unit
vectors of radial, along-track and cross-track directions). The contribution of pv in
r̈(t) may formally be written as δ(t− tj) ·vT

j ·E(t), where δ(·) denotes Dirac’s delta
distribution and E(t) is the rotation matrix (from Earth centered frame to local
reference frame) at the epoch t [Jäggi et al., 2006]. The corresponding element of
variational equations in equation (2.44) reads:

∂r̈(t)

∂pv
= δ(t− tj) ·E(t). (2.45)

A reasonable choice of interval length of pulses is 6− 15 minutes. The approach
using instantaneous velocity changes, resulting in precise reduced-dynamic or-
bits, are widely used by the gravity field community [Švehla and Rothacher, 2002],
[Beutler, 2005] and [Jäggi et al., 2006]. A drawback is that the resulting orbit r(t)
is continuous in the entire interval, but the velocities ṙ(t) are discontinuous at the
epochs of introduced changes.
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2.4.4.2 Empirical accelerations

In order to overcome the disadvantages of instantaneous velocity changes, empirical
accelerations are usually introduced as piecewise constants a with the predeter-
mined directions E(tj) in a pre-defined sub-interval [tj , tj+na

), with na being the
number of epochs of the sub-interval. The contribution of the vector of empirical
acceleration pa in r̈(t) can be written as aT ·E(t) in the designated time interval.
The corresponding element of variational equations in equation (2.44) reads:

∂r̈(t)

∂pa
=

⎧⎨⎩
E(t); t ∈ [tj tj+na

)

0; otherwise
(2.46)

Experiments show that empirical accelerations can absorb the unmodeled signal
efficiently, see [Zhao, 2004] and [Kroes, 2006]. A reasonable choice of interval
length is roughly 10 minutes, which compromises the computation efficiency
and the capability of absorbing unmodeled errors. A drawback of this type of
orbit is that the accelerations r̈(t) is not differentiable at the epoch tj . There
are a few extended researches to handle the drawback by using piecewise linear
accelerations, refer to [Jäggi et al., 2006] and [Kroes, 2006] for details.

The accuracy of a reduced-dynamic orbit (or relative orbit) is higher than
that of a purely dynamic orbit and the auto-correlation errors are reduced, see
figure 2.4. The price to be paid is a reduction of the smoothness. The orbit is not
advisable as a set of data for gravity field recovery, because one cannot expect
that these empirical parameters preserve all characteristics of the gravity field,
i.e. loss of information, is practically inevitable.

2.5 Approaches to gravity field modeling

As we discussed before, raw GPS measurements can be directly employed to
recover the gravity field model by using the one-step approach, see section 2.4.1.
In the approach, the coefficients of gravity field are included into the parameters
of dynamic POD. This will be further discussed in this section on the basis of
equation (2.44). On the other hand, we prefer the two-step approach in the
thesis, i.e. taking the POD results as input data, for gravity field modeling. The
main reason is that the number of GPS measurements is an order of magnitude
larger than the number of LEO positions. Therefore, the computation of partials
of those GPS measurements with respect to gravity field parameters is relatively
time-consuming. In addition, GPS measurements, besides unavoidable observa-
tion noise, may contain errors due to unresolved ambiguities, multipath effects or
temporary malfunction of the receiver. These errors could influence the results
of gravity field modeling considerably. It is therefore necessary that these in-
fluences are removed as much as possible before inversion of the data is carried out.

If the techniques of recovery of gravity field parameters from satellite tracking
data are classified according to the physical or geometrical relations between
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the parameters and measurements, two physical laws are of importance: (1) the
energy conservation law and (2) Newton’s second law of motion. Based on these
laws, there are roughly four different approaches to link precise satellite data
to the Earth’s gravity field. The variational equation approach, being one of
them, can be one-step or two-step. Other approaches make use of orbits of the
satellites rather than GPS raw measurements directly, therefore they are classified
as two-step approaches. In the following, the corresponding functional models
and latest results are described as well as the advantages and disadvantages of
different approaches.

2.5.1 Variational equations approach

2.5.1.1 One-step

The traditional approach to determine gravity field parameters from satellite-to-
satellite tracking data can be combined with the dynamic orbit determination
discussed in section 2.4.3. In this case, the dynamic parameters p are extended
to the Stokes coefficients Clm and Slm, rather than empirical accelerations or ve-
locity pulses, for absorbing the unmodeled signals. The relation between these
coefficients and hl-SST and/or ll-SST measurements is not linear. Therefore, lin-
earization and iterations are necessary steps. The partials of measurements to
the Stokes coefficients must be integrated via the variational equations. With the

chain rule of differentiation, the term ∂r̈(t)
∂p0

in equation (2.44) turns into :

∂r̈(t)

∂p
=

⎛⎜⎜⎜⎝
∂

∂Clm
(

∂V

∂r(t)
)

∂

∂Slm
(

∂V

∂r(t)
)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
∂

∂r(t)
(

∂V

∂Clm
)

∂

∂r(t)
(

∂V

∂Slm
)

⎞⎟⎟⎟⎠ (2.47)

where

∂V

∂Clm
=

GM

R

(
R

r

)l+1

P̄lm(cosϑ) cosmλ, (2.48)

and

∂V

∂Slm
=

GM

R

(
R

r

)l+1

P̄lm(cos ϑ) sin mλ. (2.49)

In this way, the partials of the orbit to Stokes coefficients can be numerically
integrated altogether with the partials to the initial state vector. However, this
dramatically increases the computation burden and memory with the increase
of maximum degree of the coefficients under consideration, in particular when
incorporating different types of measurements.

In addition, the measurement-related partials, i.e.
∂hs

i

∂y(t) , should be consid-

ered. In the one-step approach, the elements of
∂hs

i

∂y(t) for GPS measurements has
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been given in equation (2.38). If there are KBR measurements available, e.g. the
ranges ρ and range-rates ρ̇, we have to consider the measurement partials with
respect to the state vectors of two satellites. These partials of the leading satellite
can be written for range measurements as:

∂ρi

∂y(t)
=

(
∂ρi

∂r(t)

∂ρi

∂ṙ(t)

)
=
(
−(eAB(t))T 01×3

)
, (2.50)

where eAB(t) is the LOS unit vector of two GRACE satellites. The partials of the
trailing satellite is the same as ones of the leading satellite, but with opposite sign.
For the case of range-rates, these partials for the leading satellite can be written
as:

∂ρ̇i

∂y(t)
=

(
∂ρ̇i

∂r(t)

∂ρ̇i

∂ṙ(t)

)
=

(
−1

ρ
(ṙAB(t)− ρ̇eAB(t))

T − (eAB(t))T

)
(2.51)

where ṙAB(t) is relative velocity vector. Again, the partials for the trailing
satellite are identical up to the sign.

In the one-step approach, a nominal orbit has to be computed firstly on
the basis of a suite of background mean and time-variable Earth gravity field
models. No attempt is made to reduce the effect of unmodeled signals and
model error. Therefore, the total effect of these signals and errors will be
included in the dynamic orbit. The nominal orbit is then used to compute
the nominal hl-SST and/or ll-SST measurements. The resulting differences
between the real measurements and the nominal ones can then be used to
estimate the corrections to the background gravity field model. This procedure is
repeated until the corrections to the gravity field parameters are negligible. In
practice, the satellite orbit is normally split into arcs. One initial state vector
has to be estimated for each arc. The length of a nominal arc is selected as a
compromise between the need for a short arc in order to prevent an increase
of the unmodelled errors (e.g. linearization error), and a longer arc to reduce
the number of unknowns. The admissible length of the orbital arc is mostly
determined by the quality of the background gravity field model, e.g. 6−24 hours.

A number of gravity field models were directly computed from CHAMP GPS mea-
surements by the one-step approach [Reigber et al., 2002, Reigber et al., 2003].
The last model in this series is called EIGEN-CHAMP03S [Reigber et al., 2005a].
The GGM and EIGEN series of static models based on GRACE KBR data
as well as the corresponding monthly models are also computed by this
method [Tapley et al., 2004], [Reigber et al., 2005b], [Förste et al., 2006]
and [Biancale et al., 2005]. The most recent and widely used are GGM02
[Tapley et al., 2005] and EIGEN-GL04C [Förste et al., 2007].

2.5.1.2 Two-step

The two-step variational equations approach defined here is similar to the tradi-
tional one-step approach. The main difference is that the approach determines
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gravity field parameters from high precision satellite orbits (plus KBR measure-
ments in GRACE case) rather than from raw GPS measurements. High-precision
(preferably kinematic) orbits should be computed beforehand. In this approach,
the partials of orbit to the Stokes coefficients are computed exactly in the same as

in equation (2.47), but the measurement-related partials, i.e.
∂hs

i

∂r(t) , are different.

Taking the existing orbit as input data, es(t) in equation (2.38) is replaced
by a unit matrix, since the measurement hs

i taken here is position itself (three
components).

A drawback of the variational equation approach is high computation costs
even if the input is defined as a kinematic orbit. This is because for every
iteration, orbit integration and integration of the variational equations have to be
performed and the least-squares solution for the variational parameter corrections
needs to be calculated. Furthermore, an additional initial state vector has to be
estimated for every arc.

2.5.2 Short arc approach

The short-arc approach is similar to the variational equations approach in the
sense that the positions (or range measurements) are defined as observations di-
rectly. The approach is based on Newton’s equation of motion formulated as a
boundary value problem in the form of a Fredholm-type integral equation. Con-
sider an orbit arc that spans the time interval [tP , tQ], tP < tQ. Let the satellite
positions at two boundaries of the arc be r(tP ) and r(tQ), respectively. According
to [Mayer-Gürr et al., 2005, Mayer-Gürr, 2006], it can be shown that the position
at any time t ∈ [tP ; tQ] is equal to:

r(τ) = (1 − τ)r(tP ) + τr(tQ)− (tQ − tP )2
1∫

τ ′=0

K(τ, τ ′)r̈(τ ′)dτ ′, (2.52)

where τ is the normalized time: τ := t−tP

tQ−tP
, and the kernel function K(τ, τ ′) is:

K(τ, τ ′) :=

{
τ ′(1− τ) if τ ′ ≤ τ
τ(1 − τ ′) if τ ′ > τ ′.

(2.53)

In the short arc approach, equation (2.52) is used for the processing of precise
kinematic orbit. The positions r(τ) are the observed quantities.

For the GRACE mission, the precise inter-satellite range and range-rate
measurements are available. The functional model, e.g. for range observations,
can be derived by projecting the baseline vector onto the LOS direction:

ρ(τ) = eAB · (rB(τ) − rA(τ)). (2.54)

Again, the subscripts ”A” and ”B” correspond to the two satellites, respectively.
Similar to the variational equations approach, the partials of the range measure-
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ment with respect to the Stokes coefficients can be written as:

∂ρ(τ)

∂p
=

∂ρ(τ)

∂r(τ)
· ∂r(τ)

∂r̈(τ)
· ∂r̈(τ)

∂p
. (2.55)

The first term at the right hand side can be referred to equation (2.50), and
the second term can be derived from equation (2.52). Equation (2.47) can
be used for the third term. These terms are individually computed for the
two satellites. To compute the elements of the second term, a procedure of
the so-called numerical quadrature is used, instead of integration of variation
equations [Mayer-Gürr et al., 2005]. Another feature of the approach is that the
length of an individual satellite arc is usually chosen to be not very long, e.g. 30
minutes [Mayer-Gürr et al., 2005]. In this way, the accumulation of model errors
(e.g. linearization error and resonance effects) can be controlled. However, the
positions at two boundaries of the arc rA and rB should be adjusted together
with gravity field parameters, which may increase the computation costs.

The short-arc approach has been used successfully to derive the series of
ITG-CHAMP01 models from CHAMP kinematic orbit [Mayer-Gürr et al., 2005]
and the high-precision ITG-GRACE series of models from GRACE KBR data
[Mayer-Gürr, 2006, Mayer-Gürr et al., 2006].

2.5.3 Energy balance approach

The energy balance approach is based on the energy conservation law. According
to the law, the sum of kinetic and potential energy of a satellite (or a satellite
constellation) must be constant, if it is only subject to conservative static forces. In
reality, non-conservative forces like atmospheric drag, solar radiation pressure, etc.
also influence the motion of the satellites whereas the gravitational field experiences
temporal variations. The energy subsequently accumulated or dissipated needs to
be accounted for in order to conserve total energy. Hence, the conservation of
energy of one satellite can be written in an inertial frame as:

Ekin + Epot −ΔErot − Eng = C, (2.56)

where all the quantities are given per unit mass; Ekin and Epot represent the
kinetic and potential energy, respectively; Eng is the energy accumulated or dis-
sipated due to the non-conservative forces (i.e. non-gravitational accelerations),
which are measured by on-board accelerometers; ΔErot is the so-called ’potential
rotation’, accounting for temporal variations of the gravitational potential at a
given point in the inertial frame; C is an unknown constant value.

In an inertial reference system, the kinetic energy of the satellite is defined
by

Ekin =
‖ ṙ(t) ‖2

2
, (2.57)
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where ṙ(t) is the velocity vector, and ‖ · ‖ the norm operator. The potential energy
in the Earth’s gravitational field is equal to:

Epot = −V (r(t), t). (2.58)

The temporal variations of the gravitational potential at the satellite locations,
i.e. ΔErot, can be written as:

Erot = −
∫ t

t0

∂V (r(t), t)

∂t
dt, (2.59)

where t0 is the reference epoch, usually the beginning of the orbital arc. According
to [Jekeli, 1999], this term is primarily caused by the rotation of the Earth, and
can be approximately given by:∫ t

t0

∂V (r(t), t)

∂t
dt ≈ ωe(rx(t)ṙy(t)− ry(t)ṙx(t)), (2.60)

where ωe is the Earth’s rotation rate, which is assumed constant to be
7.292115 × 10−5 rad/s; r(t) = (rx(t), ry(t), rz(t)) and ṙ(t) = (ṙx(t), ṙy(t), ṙz(t)).
Strictly speaking, the temporal variations of the gravitational potential due to
tides, loading effects and other geodynamic phenomena should be included here
for the computation of the term of Erot. However, in practice, their effects are
largely absorbed by bias or low-order polynomial parameters used to remove an
along-track instrumental bias of accelerometer in real data processing [Kusche and
Ditmar, personal communication, September 25, 2008]. It should be mentioned
that all time variations of the gravitational potential must also be taken into
account in the term Epot [Han, 2003].

Considering the non-gravitational forces, their work at an elementary path
ds = ṙ(t)dt is

dEng = ang(t) · ṙ(t)dt. (2.61)

Hence, the work at the time interval [t0, t] is

Eng =

∫ t

t0

ang(t) · ṙ(t)dt. (2.62)

Obviously, this term depends on non-gravitational forces at all epochs since the
epoch t0.

On the basis of equations (2.56)-(2.62), the gravitational potential in the
inertial frame can be finally computed as follows:

V (r(t), t) =
‖ ṙ(t) ‖2

2
+ωe(rx(t)ṙy(t)−ry(t)ṙx(t))−

∫ t

t0

ang(t) · ṙ(t)dt−C (2.63)
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Thus, the energy balance approach results in a functional model that virtually
connects the squared magnitude of the satellite’s velocity linearly to the gravi-
tational potential. The satellite velocities, thought as pseudo-observations, are
usually obtained by numerical differentiation of the precise orbit positions (we
leave numerical differentiation to be discussed in next section). The unknown
constant C can be absorbed as an empirical parameter accounting for the bias,
which may be estimated once per an orbital arc or within a successive measuring
period of non-gravitational accelerations.

In the GRACE case, it is possible to link the observed range-rates to the
inter-satellite gravitational potential differences. Let us write the functional
model of the energy conservation law for satellites A and B:⎧⎨⎩

VA = Ekin,A − Erot,A − Eng,A − CA

VB = Ekin,B − Erot,B − Eng,B − CB

(2.64)

where (t) is not shown for the brevity. By subtracting the first equation from the
second one, we obtain:

VAB := VB − VA = Ekin,AB − Erot,AB − Eng,AB − CAB (2.65)

where the subscript ”AB” denotes the difference between the corresponding quan-
tities with subscripts ”B” and ”A”. The kinetic energy difference can be written
as:

Ekin,AB =
1

2

(
‖ ṙB ‖2 − ‖ ṙA ‖2

)
=

1

2
(ṙB + ṙA)

T
ṙAB, (2.66)

where ṙAB is the relative velocity of two satellites. The relative position of two
GRACE satellites rAB can be connected with the range measurement ρ as:

rAB = ρeAB, (2.67)

where eAB is the LOS unit vector pointing from satellite A to satellite B. Taking
the derivative, we split the relative velocity vector into the along-track part and
the orthogonal part:

ṙAB = ρ̇eAB + ρėAB, (2.68)

where ρ̇ is the so-called range-rate and ėAB is the time derivative of unit vector
of LOS. Inserting equation (2.68) into equation (2.66) results in:

Ekin,AB =
1

2

(
ρ̇ (ṙB + ṙA)T eAB + ρ (ṙB + ṙA)T ėAB

)
. (2.69)

Therefore, the kinetic energy difference can be linked with the KBR measurements.
In principle, this relationship allows the observed range-rates to be converted into
inter-satellite potential differences, with a subsequent determination of gravity
field parameters by means of a least-squares adjustment.
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The energy balance approach is more numerically efficient than the varia-
tional equations approach. The costly integration of the variational equations
is not necessary any more. In addition, the observation model is linear, so
that no iterations are needed if the orbits provided are sufficiently accurate.
Furthermore, the estimation of the initial state vectors is not necessary in
case of the energy balance approach. On the other hand, it is important to
notice that velocities need to be derived as pseudo-observations by numerical
differentiation. Consequently, noise in these observations will be correlated, since
differentiation causes noise amplification proportional to the frequency in spectral
representation. A frequency-dependent weighting may be helpful in this case.
Another disadvantage of the energy balance approach is that it does not exploit
fully the information presented in the precise orbit in the case of hl-SST data
processing [Ditmar and van Eck van der Sluijs, 2004]. The functional model only
links velocity magnitudes to the gravity potential. As the velocities are vector
quantities, the direction information is lost in the inversion process. For GRACE,
the functional model still contains the velocity vectors ṙA and ṙB , which can
not be directly derived from the high-precise KBR range-rate measurements.
Therefore, a complicated pre-processing procedure may be needed to adjust the
velocities by using the range-rate measurements, in order to improve the accuracy
of velocities, at least in the along-track direction, see e.g. [Han et al., 2006a].

Nevertheless, the energy balance approach can lead to satisfying results
provided that the noise of the pseudo-observations is properly handled in the
inversion process. The energy balance approach was used, in particular, to
compute TUM-1S and TUM-2S gravity field models from the CHAMP data, see
[Gerlach et al., 2003]. The intensive research on the approach was carried out at
the Ohio State University. The CHAMP case can be referred to [Han et al., 2003]
and [Han, 2003], and for the GRACE case, see [Han, 2003], [Han et al., 2005]
and [Han et al., 2006a]. A remarkable achievement made by the energy balance
approach is that [Han et al., 2006b] successfully observed effects of co-seismic and
post-seismic deformation due to the rapture from the great Sumatra-Andaman
earthquake on December 26, 2004 by using GRACE range-rate measurements.

2.5.4 Acceleration approach

The acceleration approach is based on the Newton’s second law of motion, which
links the acceleration vector to the gradient of the gravitational potential. The
acceleration vector is derived by double numerical differentiation of the satellite
positions along the precise orbit. The basic functional model reads:

ag = ∇V (r(t)), (2.70)

with ag representing as before the gravitational acceleration vector, which means
that other forces are corrected beforehand. As the gradient ∇ is a linear operator,
(see e.g. equation (2.17)), equation (2.70) represents a linear functional model
with respect to the unknown potential coefficients.
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The advantage of the acceleration approach, just as is the case for the en-
ergy balance approach, is that no linearization errors are introduced and no
iterations are needed. The computation can be done very efficiently. An
additional advantage, compared to the functional model derived from the energy
conservative law, is that equation (2.70) represents a vector observation equation
in the case of hl-SST case. Therefore the three-direction information presented in
the derived accelerations can be exploited in the inversion. Note also that there
are no nuisance parameters inherently related to the inversion process, like the
initial state vector in the orbit integration approach.

The price to be paid is that the noise propagation of this approach can be
considered as the worst case scenario compared to the other two. The double
numerical differentiation results in a noise amplification proportional to the
squared frequency. Thus, the noise at high frequencies can be amplified very
significantly. In the time domain, the noise level can be even higher than the
level of signal to be solved for. Therefore, a frequency-dependent data weighting
should be incorporated into the inversion procedure.

There are at least two different variants of the acceleration approach de-
pending on how to derive observed accelerations r̈(t): the one based on point-wise
accelerations and the other based on average accelerations.

2.5.4.1 Point-wise acceleration approach

The point-wise acceleration approach is very straightforward. The functional
model represented by equation (2.70) can be directly used without any modifi-
cation. However, the point-wise accelerations must be derived from the kinematic
orbit since the accelerations themselves are generally not provided as output of the
orbit determination. If the positions are given in the terrestrial frame, they must
be firstly transformed into the inertial frame in order to result in accelerations
that are free from frame accelerations (centrifugal, Coriolis and others). Numeri-
cal differentiation is used to derive point-wise accelerations from satellite positions
just as in the energy balance approach. The goal of numerical differentiation is
to calculate the (first or second) derivative of a polynomial function defined at a
set of epochs, for example, in the time interval [t − nΔt, t + nΔt] with Δt being
the sampling rate and n being an integer number. Assume that the kinematic
positions can be approximated in the time interval with a polynomial of degree
2n:

r(t + s) =
2n∑

j=0

cjs
j , s ∈ [−nΔt, nΔt], (2.71)

where r(t + s) is one component of positions and cj represents the unknown coef-
ficients. Equation (2.71) can be written in matrix notation:

r = Vc, (2.72)
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where r is the vector composed of kinematic positions in the given time interval,
c = (c0, c1, c2, ..., c2n)T , and V is a square matrix defined as follows:

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −nΔt · · · (−nΔt)k · · · (−nΔt)2n

1 (−n + 1)Δt · · · ((−n + 1)Δt)k · · · ((−n + 1)Δt)2n

...
...

. . .
...

. . .
...

1 (−n + k)Δt · · · ((−n + k)Δt)k · · · ((−n + k)Δt)2n

...
...

. . .
...

. . .
...

1 nΔt · · · (nΔt)k · · · (nΔt)2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.73)

Therefore, the coefficients c can be found as a solution of a Vandermonde-type
system of linear equations:

c = V−1r. (2.74)

Remarkably, it is not necessary to find the polynomial function itself. In other
words, the coefficients c may not be explicitly estimated. The double differentia-
tion of equation (2.71) yields:

r̈(t + s) =
∂2

∂s2

2n∑
j=0

cjs
j =

2n∑
j=2

j(j − 1)cjs
j−2 := wT · c, (2.75)

where w = (0, 0, 2, 3!·s, 4!·s2, ..., (2n)!·s2n−2)T . Let us consider a special case when
we compute the derivative at the middle point of the time interval, i.e. s = 0. Then
w = (0, 0, 2, 0, ..., 0)T . Inserting the equation (2.74) into equation (2.75) results in

r̈(t) = wT ·V−1r := eT r, (2.76)

where

e = (wT ·V−1)T = (VT )−1w. (2.77)

Here, the vector e is considered as a differentiation operator, and the elements
of the vector are constant, therefore they can be computed just once for the
whole data set. A similar procedure can be used to derive the satellite velocity.
The only difference is that the vector w must be obtained by using the single
differentiation of equation (2.71), so that w = (0, 1, 0, 0, ..., 0)T .

In order to obtain a good approximation of point-wise accelerations, rela-
tively high degree polynominals should be used, which requires a sufficient
number of epochs to be involved into the differentiation. At least, n should be
larger than 4 [Reubelt et al., 2006]. However, the Vandermonde system rapidly
becomes ill-conditioned as the degree of the polynomial increases, therefore it
must be solved with a tailored algorithm [Press et al., 1992]. Furthermore, the
propagation of orbit noise increases with a high degree scheme. According to
[Reubelt et al., 2006], the 9-point scheme offers a good compromise between
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approximation errors and errors propagated from kinematic positions, which are
apparently not smooth, see figure 2.2. In the case of smooth orbits (such as
dynamic ones), a higher-order scheme (e.g. a 13-point scheme or a 15-point one)
can be used.

It is natural to use the point-wise accelerations to connect the satellite po-
sitions with gravity field parameters [Reubelt et al., 2003]. However, in practice
such a functional model has its disadvantages. Firstly, derivation of point-wise
accelerations requires a multi-point scheme, therefore, even one missing observa-
tion in terms of orbit data causes a relatively broad gap in terms of accelerations.
Secondly, designing an accurate and efficient data weighting procedure would be
not trivial in case of the multi-point differentiation. It should be mentioned that
the point-wise acceleration approach was used in [Götzelmann et al., 2006] to
derive a gravity field model from CHAMP kinematic orbit. Importantly, it is pos-
sible to connect the GRACE KBR (point-wise) range-accelerations with gravity
field parameters. To make this connection, however, the inter-satellite velocities
have to be involved. The approach was firstly proposed by [Rummel, 1979].
This approach will be presented in detail in chapter 5 in the context of the real
GRACE data processing.

2.5.4.2 Average acceleration approach

If we consider a 3-point differentiation scheme, V in equation (2.73) should be
written as:

V =

⎛⎝ 1 −Δt (−Δt)2

1 0 0
1 Δt (Δt)2

⎞⎠ , (2.78)

and w = (0, 0, 2)T . Computation of the differentiation operator using equa-
tion (2.77) results in ( 1

(Δt)2 , −2
(Δt)2 , 1

(Δt)2 )T . The differentiation operator can be

used to derive satellite accelerations from a precise orbit as follows:

¯̈r(t) =
r(t−Δt)− 2r(t) + r(t + Δt)

(Δt)2
. (2.79)

It is obvious that satellite accelerations derived in this way cannot be treated as
point-wise ones.

As a matter of fact, the single numerical differentiation of positions results
exactly in the average velocity within the differentiation interval according to the
definition of the average velocity. A similar statement holds also for accelerations.
The acceleration ¯̈r(t) obtained with equation (2.79) can be interpreted as the
exact average acceleration.

¯̈r(t) =

∫ Δt

−Δt

w(s) r̈(t + s) ds, (2.80)
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with a weight function

w(s) =
Δt− |s|
(Δt)2

. (2.81)

It has been proved by [Ditmar and van Eck van der Sluijs, 2004] that:∫ Δt

−Δt

w(s) r̈(t + s) ds =
r(t−Δt)− 2r(t) + r(t + Δt)

(Δt)2
. (2.82)

The next question is how to link the gravity field parameters to average accel-
erations defined by equation (2.80). As we know that the accelerations ag are
point-wise values, it is, however, possible to apply an averaging filtering to both
sides of equation (2.70) [Ditmar and van Eck van der Sluijs, 2004]. In this way,
one can transform point-wise accelerations (i.e. gradient of potential in the right-
hand side of equation (2.70) computed along the orbit) into average ones. Let us
consider this idea in more detail. Similar to the case of numerical differentiation,
we can represent the accelerations (rather than positions in the differentiation
case) in a given time interval [t− nΔt, t + nΔt] as a high-degree polynomial:

a(t + s) =
2n∑

j=0

cjs
j , s ∈ [−nΔt, nΔt], (2.83)

where the scalar function a(t + s) represents one component of the accelerations
ag in an inertial frame, n is an even number, and cj are the coefficients of the
polynomial. Similar to equation (2.74), the coefficients c = (c0, c1, . . . , c2n)T can
be written as:

c = V−1a, (2.84)

where a is the vector composed of point-wise accelerations at times (t−nΔt, . . . , t+
nΔt) by inserting equation (2.83) into equation (2.80) and taking into account the
weighting function expressed with equation (2.81), we obtain:

ā(t) =

∫ Δt

−Δt

w(t)a(t + s)ds =

=

∫ 0

−Δt

Δt + s

(Δt)2

2n∑
j=0

cjs
jds +

∫ Δt

0

Δt− s

(Δt)2

2n∑
j=0

cjs
jds

=
1

Δt

2n∑
j=0

cj

∫ Δt

−Δt

sjds +
1

(Δt)2

2n∑
j=0

cj

∫ 0

−Δt

sj+1ds− 1

(Δt)2

2n∑
j=0

cj

∫ Δt

0

sj+1ds

=
1

Δt

2n∑
j=0

cj

j + 1
sj+1

∣∣∣∣∣∣
Δt

−Δt

+
1

(Δt)2

2n∑
j=0

cj
sj+2

j + 2

∣∣∣∣∣∣
0

−Δt

− 1

(Δt)2

2n∑
j=0

cj
sj+2

j + 2

∣∣∣∣∣∣
Δt

0
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=

2n∑
j=0

cj

{
(Δt)j + (−Δt)j

j + 1
− (−Δt)j + (Δt)j

j + 2

}
:= wT

a c, (2.85)

where elements of the vector wa are defined as:

{wa}j =

⎧⎪⎪⎨⎪⎪⎩
2(Δt)j

(j + 1)(j + 2)
for even j

0 for odd j

(j = 0, 1, ..., 2n) (2.86)

Inserting the equation (2.84) into equation (2.85) results in:

ā(t) = wT
a ·V−1a := eT a, (2.87)

where

e = (VT )−1wa. (2.88)

Thus the coefficients e can be obtained similarly to the case of numerical
differentiation. Again, elements of the vector e are constant and play a role of
filter coefficients. The difference between the averaging filter used in average
acceleration approach and the numerical differentiation used in point-wise
acceleration approach is that the input vector w of the Vandermonde-type system
is different. Furthermore, the average filter is applied to reference quantities,
not observed ones. Reference quantities are usually computed on the basis of
force models and therefore smoother than the observed ones, see an example
in section 2.6.4.3. Therefore, the order of the averaging filter can be chosen
to be relatively high: somewhere between 12 to 16 (n = 6 to 8). Choosing a
higher order does not make any practical difference according to the simulation
in [Ditmar and van Eck van der Sluijs, 2004].

The technique based on average accelerations has been used to compute
the DEOS CHAMP-01C 70 gravity field model, for which purpose a one-year
set of CHAMP data was utilized [Ditmar et al., 2006]. It should be mentioned
that the approach will be the focus of this thesis. The details of processing of
(real) average accelerations for the CHAMP case will be further discussed below.
In addition, the extension of this approach to GRACE data processing and its
results will be presented in chapter 5.

2.6 Data processing strategy: average acceleration

approach

This section will describe the data processing strategy in a general sense with an
emphasis on the average acceleration approach for processing CHAMP satellite
data. We refer the section mostly to [Ditmar and van Eck van der Sluijs, 2004]
and [Ditmar et al., 2006]. The section provides a basis for further developments
in the thesis.



2.6 Data processing strategy: average acceleration approach 39

2.6.1 Solution of Gauss-Markov model

2.6.1.1 Functional model

As we discussed above, the goal of gravity field modeling is to determine a set
of spherical harmonic coefficients. These unknowns are arranged as a parameter
vector m. Furthermore, additional unknowns can be included in the vector m,
e.g. empirical biases and scale factors of non-gravitational accelerations. The
available satellite measurements can be represented as a data vector y. In general,
the number of measurements is much larger than the number of parameters. A
certain physical or geometrical relation, i.e. functional model, has to be established
to connect these two vectors to each other:

y = Φ(m). (2.89)

Depending on the actual definition of the vector y, the relationship of equa-
tion (2.89) can be either linear or non-linear. For example, satellite accelerations
can be related to the vector m linearly, see section 2.5.4, whereas for an ob-
served satellite orbit this relation is non-linear, see section 2.5.1.2. In any case,
equation (2.89) allows a set of data to be simulated on the basis of a given set
of spherical harmonic coefficients. It is important to notice that in practice the
functional model of equation (2.89) may suggest rather advanced computations.

In a non-linear functional model, the determination of the unknown vector
m should start from a linearization. A certain realistic reference model m0 should
be specified and used to compute the corresponding model response y0:

y0 = Φ(m0). (2.90)

The required accuracy of such a computation depends on how accurate the data
are. For example, in CHAMP data processing, temporal gravity field variations
caused by mass transport in the oceans and atmosphere are typically ignored; in
GRACE data processing, taking them into account is a must.

As long as the reference model is sufficiently close to the true one, equa-
tion (2.89) can be approximated by the Taylor expansion where only the zero-
and first-order terms are retained:

y = y0 + A(m −m0), (2.91)

with A the matrix of partial derivatives (or the design matrix):

Aij =
∂Φi(m)

∂mj

∣∣∣∣ m = m0
. (2.92)

The relationship of equation (2.91) yields a linear functional model:

d1 = Ax, (2.93)

with x the model correction to be found: x = m − m0, and d1 the residual
observations: d1 = y − y0. Correspondingly, the final model can be computed at
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the last stage of data processing as m = m0 +x. In fact, it is advisable to operate
with residual observations even if the functional model is linear. This is because
the accuracy and resolution of any satellite data set is limited. For example, it
will be always impossible to recover high-frequency components of the gravity field
(say, above degree 300 or slightly higher). Splitting observations into the reference
model response and the residual part allows one to circumvent this problem. In
this way, the final model is assembled of two ingredients: m0, which may contain
all the knowledge about the gravity field collected prior to the satellite mission,
and x, which contains only such corrections that are needed to make the final
gravity field model fitting to the newly acquired satellite data. How to derive the
quantities, such as y, y0 and then d1 for the average acceleration approach in the
case of processing CHAMP data will be described in section 2.6.4.

2.6.1.2 Least-squares solution

In general, the set of residuals d1 contains measurement noise. Suppose firstly
that noise is random and Gaussian. Therefore, one can introduce a standard
Gauss-Markov (G-M) model

E{d1} = Ax, D{d1} = Cd1
, (2.94)

where E and D denote the expectation and dispersion operators, respectively;
Cd1

is the noise variance-covariance matrix. Without regularization, the optimal
solution x̂ (2.94) can be obtained by least-squares:

x̂ = N−1
(
AT C−1

d1
d1

)
, (2.95)

where N is the normal matrix:

N = AT C−1
d1

A. (2.96)

The variance-covariance of the solution can be presented by the inverse of the
normal matrix.

The normal matrix N may be ill-conditioned (e.g. in the presence of down-
ward continuation and/or data gaps), so that physically meaningful solution
may not be obtained. Then, additional constraints have to be included into
the least-squares procedure. The constraints can be another group of real or
fictitious measurements. Let us introduce such constraints as a set of additional
(pseudo-)observation without losing generality:

E{d2} = Bx, D{d2} = Cd2
, (2.97)

where d2 is a given vector of (fictitious) measurements, which could be, for exam-
ple, a priori values of the unknown parameters, or the derivatives of the unknown
parameters or even another type (group) of real measurements. Cd2

is the noise
variance-covariance matrix of data set d2. In a majority of practical applications
we assume that Cd2

= I, but it also can be chosen arbitrarily. B is a transport
matrix that relates the unknown parameters to the (fictitious) measurements.
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2.6.1.3 General regularized solution

In order to balance the contributions of two data sets, a regularization parameter
α ≥ 0 can be introduced. It is easy to obtain the regularized solution for the given
regularization parameter:

x̂α = N−1
α (AT C−1

d1
d1 + αBT C−1

d2
d2), (2.98)

where Nα is the regularized normal matrix

Nα = AT C−1
d1

A + αBT C−1
d2

B. (2.99)

This is the general Tikhonov regularized solution for constrained least-squares.
From equation (2.98), we can consider the following cases:

Case 1: α = 1. x̂ = (AT C−1
d1

A + BT C−1
d2

B)−1(AT C−1
d1

d1 + BT C−1
d2

d2).
This is actually a joint estimation of two types of observations in the case when
their covariance matrices are sufficiently accurate, which is widely employed
in geodesy for processing angle and distance observations jointly, and in orbit
determination for processing code and phase GPS observations simultaneously.

Case 2: α 	= 1. This case corresponds to the situation when the noise co-
variances Cd1

and Cd2
are not properly scaled. The optimal solution can be

obtained by choosing an optimal regularization parameter, i.e. the relative
weighting [Koch and Kusche, 2002] and [Ditmar et al., 2003]. We leave this to be
further discussed in section 3.3.2 when dealing with a particular case.

Case 3: d2 = x0. The prior knowledge of unknowns is taken as the ficti-
tious observation. In this case, B = I. Hence, the solution is:

x̂ = (AT C−1
d1

A + αC−1
x0

)−1(AT Cd1

−1d1 + αC−1
x0

x0), (2.100)

which can be interpreted as the Bayesian maximum a posteriori estimate of the
unknown parameters, assuming a Gaussian distribution of a priori model with
mean x0 and a priori covariance matrix Cx0

[Koch, 1999].

Case 4: d2 = 0. The prior model is usually mapped and then subtracted
from observations of the first-type, as is the case when corrections of the
geopotential coefficients are estimated. In this case, the prior estimate x0 can be
set equal to zero. So that, the solution is

x̂ = (AT C−1
d1

A + αC−1
x0

)−1AT C−1
d1

d1. (2.101)

It can be understood as a solution subject to the Kaula regularization provided
that the covariance matrix Cx0

is a diagonal matrix with the elements given by
Kaula’s rule of thumb [Kaula, 1966]. Cx0

can be also a priori covariance matrix
as in Case 3. If the covariance Cx0

matrix is set as unit matrix I, the solution is

x̂ = (AT C−1
d1

A + αI)−1AT C−1
d1

d1, (2.102)
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which can be then regarded as the general ridge regression
[Xu and Rummel, 1994]. In the case, the solution may be biased.

The dimension of the normal matrix N (or Nα) is equal to the number of
unknowns. Even for a modest size model complete up to degree and order
120, more than 14400 coefficients have to be found. Together with a much
larger number of observations (in GRACE data processing about half million
per month) it makes direct computation of design and normal matrix very
time consuming. Furthermore, the storage of these huge matrices may cause
a problem. To avoid these problems, the normal equations can be solved
iteratively. The preconditioned conjugate gradient method is frequently used for
that purpose. The method has already been applied successfully in producing
the DEOS CHAMP-01C 70 gravity field model [Ditmar et al., 2006] and in the
inversion of simulated SGG data [Schuh, 2003], [Ditmar et al., 2003].

2.6.1.4 Preconditioned conjugate gradient method

The conjugate gradient (CG) iteration is an effective method to solve symmetric
positive (semi-)definite systems of equations. The convergence rate of the CG
method can be improved if a so-called pre-conditioner is introduced, which is an
approximation of the normal matrix. This results in the so-called preconditioned
conjugate gradient (PCCG) method. The better the approximation, the faster the
iterations will converge. Importantly, the preconditioner should be chosen in such
a way that the approximate system of normal equations can be solved much faster
than the exact one. In satellite gravimetry, a block-diagonal preconditioner Nbd

is frequently used. Considering the regularization of Case 4, the PCCG iterations
are carried out according to the following scheme, see also [Ditmar et al., 2003]
and [van Eck van der Sluijs, 2003]:

1. x0 = x̃0 = 0, r0 = r̃0 = AT C−1
d1

d1, p0 = p̃0 = Nbd
−1r0, k = 0

2. ak = Npk

3. αk = rk
T pk

ak
T pk

4. xk+1 = xk + αkpk

5. rk+1 = rk − αkak

6. ek = r̃k − rk+1

7. γk = − rk+1
T ek

r̃k−rk+1
T ek

8. x̃k+1 = xk+1 + γk (x̃k − xk+1)

9. r̃k+1 = rk+1 + γk (r̃k − rk+1)

10. If ||r̃k+1||
||ro||

< ε , set x = x̃k+1 and stop
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11. p̃k+1 = Nbd
−1rk+1

12. βk+1 =
rk+1

T p̃k+1

rkT p̃k

13. pk+1 = p̃k+1 + βk+1pk

14. k = k + 1, go to item (2)

A major advantage of the PCCG method is that there is no need to build up the
normal matrix explicitly. Applying the normal matrix to a vector pk (step 2) can
be represented by a series of matrix-vector multiplications:

Npk = AT (C−1
d1

(Apk)) + αC−1
x0

pk. (2.103)

This considerably reduces the required computer memory, as now only vectors
need to be stored. The second term on the right-hand side of equation (2.103)
is not present if no a-priori information is used. The operation Apk is nothing
but spherical harmonic synthesis. The multiplication of the matrix C−1

d1
with the

resulting vector is called thereafter data weighting. Applying the vector AT to
the vector that results from data weighting will be referred to as co-synthesis, see
also [Ditmar et al., 2003].

2.6.2 Synthesis and co-synthesis

2.6.2.1 Steps of synthesis and co-synthesis

In this section, we take the average acceleration approach as an example to discuss
the steps of synthesis and co-synthesis. The synthesis is basically implemented in
two steps: (1) point-wise synthesis and (2) averaging. Besides the basic steps,
necessary rotations have to be taken into account since the averaging filter has
to be applied in an inertial frame for all point-wise accelerations, while the data
are defined in the LORF frame. All synthesis operations are linear, therefore the
synthesis can be represented as:

y = Ap = R(C→L)ER(L→C)Apwp, (2.104)

where p is the synthesis input (e.g. the Stokes’ coefficients) and the vector y is the
synthesis output (e.g. acceleration vector); Matrix E is the averaging matrix. It
consists of three groups of elements for three components of data, respectively. The
elements of each group are comprised of coefficients obtained from equation (2.88).
R(L→C) is the matrix for rotation of the data set from the LORF into an inertial
frame; R(C→L) is the matrix for rotation in the opposite direction. R(C→L) can be
obtained by combining equation (2.25) and (2.24), given a point with coordinates
{r, ϑ, λ}j and the additional angles {α, β}j at the time tj

R(C→L)(tj) = Ry(−αj)Rz(−βj)Ry(−ϑj)Rz(λj − π)R(C→T)(tj). (2.105)



44 Chapter 2: Gravity field modeling from SST data: an overview

Matrix Apw in equation (2.104) is the point-wise design matrix, which can be
symbolically represented at epoch j as

(Apw)j = Ry(−αj)Rz(−βj)

⎛⎜⎝A
(x)
j

A
(y)
j

A
(z)
j

⎞⎟⎠
GRF

, (2.106)

with A
(x)
j , A

(y)
j and A

(z)
j being the transposed matrices, formed by expressions in

equations (2.17) and (2.19). Multiplication of these matrices with geo-potential
coefficients results respectively in the synthesized x-, y-, and z-component of the
acceleration vector in the GRF.

The co-synthesis is applied to an arbitrary input vector z and results in an
output vector q This can be implemented in a similar way as the synthesis,
provided that all the operations are understood in the transposed sense:

q = AT z = Apw
T R(C→L)ET R(L→C)z, (2.107)

with

(Apw)T
j =

(
(A

(x)
j )T (A

(y)
j )T (A

(z)
j )T

)
GRF

Rz(βj)Ry(αj). (2.108)

Here we make use of the fact that rotation matrices are orthogonal.

2.6.2.2 Fast synthesis and co-synthesis

The point-wise synthesis and co-synthesis can be simply carried out as described
in the previous section by the standard matrix-to-vector multiplication. How-
ever, this way is relatively time-consuming. The most computation costs come
from the computation of the elements of Apw, which includes, in particular, the
computation of the Legendre functions at each orbit point since the co-latitude
ϑj changes. The number of operations required by the straightforward matrix-
to-vector multiplication would be of the order of L2

max per observation point. An
alternative approach was developed earlier in [Sneeuw, 1994], [Ditmar et al., 2003]
and [Ditmar and van Eck van der Sluijs, 2004], which is the so-called fast synthe-
sis and co-synthesis. The fast synthesis is basically composed of three steps. In the
first step, the accelerations are computed at the nodes of a regular 3-D spherical
grid in the local geographical frame. This step can be efficiently carried out thanks
to the Fast Fourier Transformation (FFT) as well as to the fact that the Legendre
functions are only needed to be computed once per latitude. Important is that the
computation costs required by this step are independent of the number of obser-
vation points. In the second step, the computed values are interpolated onto the
observation points with the 3-D Overhauser splines. In the third step, the com-
puted values are rotated from the local geographical frame into the LORF. The
total computation cost mostly depends on the density of the chosen grid nodes.
It is much more efficient than the straightforward one, especially if the maximum
degree Lmax and the number of measurement points are large. Furthermore, each
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of the three fast synthesis steps can be represented as a matrix-to-vector multipli-
cation. Therefore, the fast co-synthesis can be implemented by applying them in
the transposed sense and in the reverse order.

2.6.3 Data weighting

The data weighting in the acceleration approach is the application of the inverse
covariance matrix C−1

d1
to the vector y, i.e. to the output vector of the spherical

harmonics synthesis, at each iteration of the PCCG procedure:

z = C−1
d1

y. (2.109)

Data-weighting is non-trivial if the covariance matrix is fully populated. Fortu-
nately, it is not necessary to compute its inverse explicitly. Ditmar and van Eck
van der Sluijs [2004] have already presented a frequency-dependent data weighting
algorithm based on the assumption that noise in the orbit data is stationary. A
more general algorithm developed later by Ditmar et al. [2007] does not require
such an assumption. The section only summarizes the frequency-dependent data
weighting algorithm without a detailed derivation.

Let us firstly assume that the kinematic orbit is given in the terrestrial
frame (TRF), so that the accelerations d1 are derived from the vector of orbit
data r according to the following expression:

d1 = R(C→L)DR(T→C)r, (2.110)

where D is the matrix of the double numerical differentiation. For each observa-
tional component, a fragment of matrix D related to an uninterrupted series of
observations is

D =
1

Δt2

⎛⎜⎝ 1 −2 1
. . .

. . .
. . .

1 −2 1

⎞⎟⎠ (2.111)

According to the law of variance-covariance propagation, the covariance matrix
Cd1

can be explicitly represented as

Cd1
= R(C→L)DR(T→C)Cr

(T )R(C→T)DT R(L→C), (2.112)

where Cr
(T ) is the covariance matrix of noise in positions in the TRF frame. Let

Cd1

(C) = DR(T→C)Cr
(T )R(C→T)DT . Then, the inverse covariance matrix can

be expressed as:

C−1
d1

= R(L→C)
(
Cd1

(C)
)−1

R(C→L). (2.113)

Therefore, applying the matrix C−1
d1

to a vector mainly depends on the compu-

tation of the matrix
(
Cd1

(C)
)−1

. This could be easily done if the double dif-

ferentiation operator D were invertible. However, this is not the case since the
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number of columns in this matrix exceeds the number of rows. To solve the prob-
lem, the matrix can be approximately written as a circular one by the following
manipulations: (1) remove the first and last column in order to make the number
of columns equal the number of rows; (2) fill the top-right and the bottom-left
corners with value 1; (3) change the sign of all the elements in order to make
the matrix positive semi-definite (the sign can be defined arbitrarily since D will

be operated twice in the covariance matrix Cd1

(C)); (4) regularize the matrix by
adding a small number ε2 to its diagonal elements. The new matrix looks like:

D̃ =
1

Δt2

⎛⎜⎜⎜⎜⎜⎝
2 + ε2 −1 −1
−1 2 + ε2 −1

. . .
. . .

. . .

−1 2 + ε2 −1
−1 −1 2 + ε2

⎞⎟⎟⎟⎟⎟⎠ (2.114)

The inverse of a circular matrix can be found with ease by means of the discrete
Fourier transform [Davis, 1979]. Let us introduce the matrix of discrete Fourier
transform F:

{F}j,k = e
i
2π(j − 1)(k − 1)

N ; j, k = 1, . . .N, (2.115)

where N is the number of rows/columns in the circular matrix D̃ defined above.
It is easy to see that FF∗ = F∗F = NI, where F∗ is the Hermitian conjugate
(transposed complex-conjugate) of F. Next, it is necessary to introduce a diagonal
matrix SD obtained by distributing the discrete Fourier spectrum of the first row
of the matrix D̃ along the main diagonal:

SD = diag

(
1

N
F
{
D̃
}

1

)
(2.116)

Then, the matrix D̃ can be restored from the matrix SD as follows [Davis, 1979]:

D̃ = F∗SDF. (2.117)

Importantly, the inverse of a circular matrix is also circular [Davis, 1979]. The
inverse of the matrix D̃ can be found as

D̃−1 =
1

N2
F∗ (SD)−1 F. (2.118)

The elements of the diagonal matrix SD can be computed analytically from equa-
tions (2.114), (2.115) and (2.116) [Ditmar and van Eck van der Sluijs, 2004]:

{SD}kk =
1

N(Δt)2

[
2(1− cos(ωkΔt)) +

(
Δt

τ

)2
]

, (2.119)

where ωk is the angular frequency corresponding to the k-th spectral line: ωk =
2πk/(NΔt); and τ ≡ Δt/ε is the filter halfwidth. Consider the spectrum of equa-
tion (2.119) at low frequencies: ωkΔt � 1. Under this condition, the function
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cos(ωkΔt) can be approximated as 1− (ωkΔt)2/2, hence equation (2.119) trans-
forms into:

{SD}kk ≈
1

N

(
ω2

k +
1

τ2

)
. (2.120)

This expression helps to justify the introduction of parameter τ by adding the
term 1/τ2. We assume that noise in accelerations is not infinitely small at any
frequency, so that the weights assigned to different frequencies cannot be infinitely
large.

For practical reasons, the inverse filtering is implemented in the time do-
main rather than in the Fourier domain. The explicit expression for the inverse
filter, which approximates the application of the matrix D̃−1 to a vector, is as
follows:{

D̃
}

ij
≈ Δtτ

2
e−

|i−j|Δt

τ . (2.121)

The inverse of Cd1

(C) involves also another inverse matrix
(
Cr

(T )
)−1

. The in-

version Cr
(T ) can be done easily since noise in satellite positions is assumed to

be non-correlated in time (though correlations between the components are not
excluded). Therefore, this matrix is block-diagonal with the size of blocks being
3 × 3. To implement the data weighting, the analytical noise representation (i.e.
parameter τ and relative weighting of the components) has to be determined. In
the previous studies, these values were determined on basis of comparing the ob-
tained models with the ground truth [Ditmar et al., 2006]. In chapter 3, we will
discuss how to determine them from the data themselves. It should be mentioned
that introduction of a circular structure can cause strong edge effects, particularly
if data gaps are present. To solve this, the low-level PCCG scheme is used.

2.6.4 Computation of residual accelerations

2.6.4.1 Steps of computation

In order to provide a basis for the further discussion in the thesis, the procedure
of computing the residuals in the average acceleration approach has to be ex-
plained, see figure 2.5. It should be stressed that the residual accelerations refer
to the LORF frame defined in section 2.3. The computation of residual acceler-
ations mainly includes (1) the derivation of the observed satellite accelerations,
(2) the computation of reference accelerations, and (3) the preprocessing of the
non-gravitational satellite accelerations. The residual averaged accelerations are
therefore obtained as follows:

d1j = ¯̈r
(obs)
j − ¯̈r

(ref)
j − ¯̈r

(ng)
j (2.122)

There is an alternative way to directly compute the residual accelerations by using
a residual orbit in the inertial frame via the three-point differentiation scheme. The
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Fig. 2.5. Flow chart of CHAMP data pre-processing from [Ditmar et al., 2006]

residual orbit is obtained by subtracting a purely dynamic orbit from a kinematic
orbit. The purely dynamic orbit is integrated according to the procedure described
in section 2.4.3 on the basis of the reference gravity field model and the temporal
force models. In this way, the reference force models should be as accurate as
possible. Otherwise, the error of the background force models will increase the
orbit error in the integrated dynamic orbit, which may be finally mapped into the
residual accelerations. This idea is not applied to actual CHAMP data processing
but serves a basis for developing a procedure of processing GRACE ll-SST data
(see chapter 5).

2.6.4.2 Deriving observed accelerations: outlier detection

Before deriving observed accelerations, a comprehensive outlier detection is imple-
mented to screen the kinematic orbit on the basis of the discrepancies of kinematic
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and reduced-dynamic orbits. The outlier detection step includes four steps:

1) If there are epochs not supplied with covariance matrices at all, such epochs
are discarded, since those data are not considered reliable.

2) If the position formal error exceeds a given threshold (e.g. 5 cm) for any of
the components, the epoch is discarded. Those data are considered as of low
quality.

3) If the distances between the kinematic and reduced-dynamic positions are
larger than a given threshold (e.g. 50cm), these epochs are discarded. Those
kinematic positions may have large error.

4) The neighboring time-differences of the orbit discrepancies altogether with
the noise descriptions are used to execute a generalized likelihood ratio test.
If the statistics of the test is larger than a certain threshold, the corre-
sponding epochs are also excluded from the further data processing, see
[Ditmar et al., 2006].

After the outlier detection, the cleaned kinematic positions are used to derive the

observed accelerations ¯̈r
(obs)
j by means of the three-point differentiation scheme,

see equation (2.79). The obtained series of satellite accelerations are then rotated
into the LORF frame using equations (2.25) and (2.24).

2.6.4.3 Computation of reference accelerations

The computation of the reference accelerations ¯̈r
(ref)
j is performed in four steps:

1) The static point-wise reference accelerations are computed using equa-
tion (2.19) at the points of the reduced-dynamic orbit with the same sampling
intervals as that of the observed accelerations. A static Earth’s gravity field
(e.g. the EGM96 model in this thesis) is used in the step. Besides, the tem-
poral point-wise accelerations caused by astronomic, solid Earth and ocean
tides are computed. Both static and temporal accelerations are summed as
the reference accelerations. The GRACE de-aliasing products, like atmo-
spheric and oceanic effects are not considered in the CHAMP data process-
ing.

2) To be consistent with the functional model, the point-wise accelerations have
to be transformed into averaged ones. In order to implement the average
filter, it is necessary to rotate the reference accelerations into the inertial
frame using equation (2.25).

3) The point-wise accelerations are transformed into averaged ones using the
averaging filter of equation (2.80).

4) The computed averaged accelerations are rotated into the LORF.
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2.6.4.4 Processing of non-gravitational accelerations

The point-wise non-gravitational accelerations provided by the accelerometer on
board are transformed into the inertial frame by using the quaternions measured
by the star camera. After that, averaging of the point-wise non-gravitational
accelerations is required. One way to do that is to apply the averaging filter as used
for reference accelerations. Importantly, the order of the filter in this case should
be lower since a series of real non-gravitational accelerations cannot be considered
as a very smooth function. This approach requires that the sampling rate of the
accelerometer data is equal to that of the total satellite accelerations obtained
by the double differentiation of the satellite orbit. An alternative approach can
be used if the accelerometer data are sampled denser. Consider, for example, a
situation when the sampling rate of non-gravitational accelerations is 10 sec (in
the CHAMP case), and the sampling rate of the orbit is 30 sec. In this case,
equation (2.80) is directly applicable for a numerical integration, e.g. with a
simple trapezium rule [Ditmar et al., 2006]. Then, the averaged non-gravitational
accelerations can be obtained as:

ā(tj) =
1

9

(
a(tj −20)+2a(tj −10)+3a(tj)+2a(tj +10)+a(tj +20)

)
. (2.123)

If the camera data or accelerometer data are absent at one or more of the five
epochs in equation (2.123), ā(tj) is not computed, and the epoch tj is excluded
from the further data processing. The averaged non-gravitational accelerations

are then rotated into the LORF frame, forming the vector ¯̈r
(ng)
j .

The measured non-gravitational accelerations should be calibrated. The
bias and scaling factor per accelerometer axis are to be estimated. The dis-
tributed accelerometer data are typically supplied with an initial estimation of the
calibration parameters. However, they are usually adjusted further in the course
of the gravity field modeling. This means that the true non-gravitational accel-
erations a(tj) to be used in the data processing are related to the corresponding
observed non-gravitational measurements ã(tj) as

a(tj) = Bk + (Sk + I)ã(tj), (2.124)

where Bk is a 3 × 1 bias vector, Sk is a 3 × 3 diagonal matrix containing the
residual scaling factors, and I is the 3× 3 unit matrix. The subscript k has been
introduced because biases and scale factors are defined not for the whole data
set but once per estimation interval. The length of the estimation interval is
somewhere between several hours and several days (e.g. 10 days for CHAMP data
processing). The unknown parameters comprising the vectors Bk and matrices
Sk are determined together with the gravity field parameters in the course of the
least-squares adjustment.

2.7 Summary and remarks

This chapter focused on the description of the theoretic background and previous
developments in gravity field modeling related to the research conducted in this
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thesis. The solved-for parameters are the spherical harmonic coefficients, which are
used to represent the Earth’s gravity field. Some of basic functionals of the gravity
field model were given. The related coordinate frames and the rotations among
them were described as well. The orbit determination is closely related to the
gravity field modeling using the SST data. Therefore, various aspects of precise
orbit determination were discussed in the chapter. The statistical properties of
three types of orbits, i.e. kinematic, reduced-dynamic and purely dynamic one,
were analyzed. The relation between the orbit determination and gravity field
modeling was explained. Several linear and nonlinear functional models connecting
the gravity field parameters and the SST data had been set up. The gravity
field modeling approaches corresponding to these functional models are such as
variation equation approach, short arc approach, energy balance approach and
acceleration approach. The advantages and disadvantages of these approaches
were discussed. The thesis is focused on a linear functional models, in particular on
the acceleration approach, which makes use of Newton’s second law of motion that
links the acceleration vectors to the Earth’s gravitational field vector. Therefore,
a relatively comprehensive description had been given of how the inversion of the
acceleration residuals into gravity field parameters is carried out. The practical
procedure of computing the acceleration residuals in the case of CHAMP data
processing was also described to provide a basis for the next chapters.
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Chapter 3

Gravity field modeling from CHAMP data

3.1 Introduction

This chapter is devoted to gravity field modeling on the basis of CHAMP data.
We exploit the acceleration approach to compute parameters of the Earth’s
gravity field. The orbit-derived accelerations are directly related to the Earth’s
gravity field according to Newton second law. Two refinements of the acceleration
approach will be discussed in this chapter: 1) a new algorithm to compute a
smooth and accurate satellite orbit, which can be used for calculating reference
accelerations and the entries of the design matrix. 2) a better stochastic modeling
of data noise. The aims of these two refinements are: 1) to optimize the resulting
gravity field model; 2) to make it as independent as possible from any other
CHAMP-based a priori information about the Earth gravity field.

The chapter starts from section 3.2, where we motivate these two refine-
ments, and then re-arrange the computation procedure of gravity field modeling.
Section 3.3 presents the algorithm, which is used to compute a smoothed
kinematic orbit. In section 3.4, the estimation of the noise model from posterior
least-squares residuals is described, and the results of a simulation case study
are presented. Section 3.5 presents the results of real data processing and a
comparison of them with other CHAMP- or GRACE-based solutions.

3.2 Motivations to refine the data processing strat-

egy

In the acceleration approach, both the observed and the reference accelerations
have to be computed, see section 2.6.4. To do that, the orbit of a particular
type (e.g. kinematic, reduced-dynamic or dynamic) has to be used. The
kinematic orbit is calculated entirely from GPS measurements. It suffers from
interruptions and relatively strong noise, see [Visser and van den IJsel, 2000]
and [Švehla and Rothacher, 2002]. An important property of an orbit of this
type, however, is that it is not biased towards any a priori gravity field model
as was discussed in the previous chapter. Therefore, the kinematic orbit is
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preferable for calculating the observed accelerations. The situation is different
for the computation of reference gravitational accelerations. It is more physical
to take a smooth orbit to define a set of points where reference accelerations are
calculated. Furthermore, gaps in such an orbit are undesirable: the reference
accelerations can not be computed within gaps and neither at a few observation
points before and after a gap, as an operation of averaging filtering has to be
performed [Ditmar and van Eck van der Sluijs, 2004]. Then, an unnecessary loss
of data may occur. The loss of data may be significant if the number of data
gaps is large (e.g. due to outliers). Thus, a smoothed orbit with a minimum
number of interruptions is needed for the computation of reference accelerations.
One example of such an orbit is a reduced-dynamic orbit, which is smooth and
accurate. However, the reduced-dynamic orbit is produced by integration of the
equations of motion on the basis of a force model and probably contains artificial
velocity jumps. On the one hand, discontinuities in terms of satellite velocities
is non-physical and therefore an undesirable feature of such an orbit. On the
other hand, a high-quality gravity field model may be used in computing the
reduced-dynamic orbit. For example, a CHAMP-based or even a GRACE-based
gravity model is used to determine the orbit of the CHAMP satellite. Although
this orbit is only used to compute reference accelerations, it may have an indirect
influence on the estimated gravity model. Does it contribute somehow to high
quality of the obtained results? If so, it is not fair to compare the model
obtained by one research group with those published by others. Additionally, the
resulting models cannot be called CHAMP-only model anymore. This was the
motivation to investigate an alternative way to obtain a smooth satellite orbit,
which should be free from CHAMP-based or GRACE-based a priori information.
By comparing the results with those produced with the reduced-dynamic orbit,
we may estimate the indirect influence of an a priori gravity field model, i.e. the
influence on quality of the estimated model via the orbit used to compute the
reference accelerations. Another motivation was to see if such a smoothed orbit
can improve the quality of the obtained gravity field model.

In addition, a crucial aspect of accurate gravity field modeling is a proper data
weighting, which requires an adequate noise model. In particular, it is important
to take into account that data noise is time-correlated. Even if correlations
are absent in raw measurements, they may be introduced in the course of data
pre-processing. For example, noise in observed satellite accelerations becomes
correlated (frequency-dependent) due to the operation of numerical differentia-
tion. In order to obtain the optimal model of the Earth’s gravity field, one has to
use a proper stochastic model, which takes such a noise behavior into account.
If the dependency of noise on frequency is not known a priori, it is necessary to
implement a procedure to estimate it from the data themselves.

When adding a noise estimation procedure, the entire hl-SST data process-
ing can be organized as shown in figure 3.1, which includes three parts: data
pre-processing, data processing and post-processing. In the flow chart, we also
include the procedure of computing a smooth and accurate satellite orbit.
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3.3 Orbit smoothing for computing reference accel-

erations

The proposed orbit smoothing procedure uses a kinematic satellite orbit as input,
and is based on a regularized estimation of B-spline coefficients. Section 3.3.1 de-
scribes a least-squares procedure for orbit smoothing on the basis of B-splines;
Section 3.3.2 is devoted to regularization issues, in particular, to the optimal
choice of the regularization parameter. In section 3.3.3 and 3.3.4 a simulation
study and real CHAMP orbit smoothing for gravity field modeling are tackled,
respectively. The contents of this section has been partly published in the paper
[Liu and Ditmar, 2006].

3.3.1 Orbit smoothing on the basis of B-splines

Given a set of data values
{
yr, r = 1, . . . , m

}
, which are one component of a

kinematic orbit (i.e. X-, or Y- or Z-coordinate) in an inertial frame, and a set
of corresponding time variables tr within a time interval a ≤ tr < tr+1 ≤ b, a
polynomial representation of the orbit, y(t), t ∈ [a, b], is determined to fit the yr

according to the least squares criterion, so that y(tr) � yr. If the kinematic orbit
were accurate enough, it would be sufficient to determine y(t) by an interpolation,
i.e. such that y(tr) = yr. However, the values yr contain measurement noise, e.g.
due to GPS carrier phase measurement noise. Furthermore, yr may also contain
errors due to unfixed ambiguities, multi-path effects or temporary malfunction
of the GPS receiver. Therefore, a least-square adjustment procedure has to
be preferred. In this procedure, a noise variance-covariance matrix may be
taken into account. The developed adjustment procedure is based on a B-spline
parameterization [de Boor, 2001, Dierckx, 1993].

B-splines are frequently used to represent a function, since it preserves the
function smoothness up to an arbitrarily chosen order k. With the given set of
knots

{
λi : i = −k,−k + 1, ..., 0, 1, ..., n, n + 1, ..., n + k + 1

}
, one can construct

n+k+1 linearly independent B-splines of degree k, i.e. Ni,k+1(t) for i = −k, ..., n,
with knots λi satisfying:

λ−k ≤ λ−k+1 ≤ . . . ≤ λ−1 ≤ λ0 = a,

a ≤ λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λn ≤ b,

b = λn+1 ≤ λn+2 ≤ . . . ≤ λn+k ≤ λn+k+1.

Ni,k+1(t) has the following basic properties:

1. Local support: Ni,k+1(t) = 0 if t /∈ (λi, λi+k+1);

2. Positivity: Ni,k(t) ≥ 0 for all t;

3. Normalization:
∑n

i=−k Ni,k+1(t) = 1 for all t ∈ [a, b];
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formulated as: y(t) =
∑1

i=−2 ciNi,4(t).

4. Recursion: Ni,l+1(t) = t−λi

λi+l−λi
Ni,l(t) + λi+l+1−t

λi+l+1−λi+1
Ni+1,l(t);

with: Ni,1(t) =

{
1, if t ∈ [λi, λi+1),
0, if t /∈ [λi, λi+1).

5. Derivative of a B-spline: N
′

i,k+1(t) = k
{ Ni,k(t)

λi+k−λi
− Ni+1,k(t)

λi+k+1−λi+1

}
.

Figure 3.2 shows some B-splines for a given set of knots. A function y(t) can be
represented as a weighted sum of B-splines:

y(t) =

n∑
i=−k

ciNi,k+1(t), (3.1)

where ci are called the B-spline coefficients of y(t).

To find coefficient estimates from the given data set
{
(tr, yr) : r = 1, ..., m

}
, (m ≥

n + k + 1), one has to solve a system of linear equations:

yr =

n∑
i=−k

ciNi,k+1(tr), r = 1, ..., m. (3.2)
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Let the kinematic orbit errors be described by a zero-mean, Gaussian noise with
covariance matrix Qy = σ2W−1 with the standard deviation σ not necessarily
known, and weight matrix W. Then, the relationship between the observations
and the unknown parameters can be expressed as the Gauss-Markov model similar
as equation (2.94):

E{y} = Ac, D{y} = Qy, (3.3)

where y is the vector of given values yr of one component of the kinematic orbit;
c is the vector of unknown B-spline coefficients; and A is the design matrix, which
is built from Ni,k+1(tr). The optimal set of coefficients ĉ can be obtained as the
least-square solution, i.e.

ĉls =
(
AT Qy

−1A
)−1 (

AT Qy
−1y

)
. (3.4)

Because Ni,k+1 is nonzero only within the interval (λi, λi+k+1), the design matrix
is sparse, and the normal matrix Nls, i.e. AT Qy

−1A, is a banded matrix with
2k+1 bandwidth, which makes solving of the linear system particularly easy. The
smoothed orbit can be therefore obtained as

ŷls = Ãĉls, (3.5)

where Ã is built from Ni,k+1(t) at any time within [a, b]. With regard to a stable
evaluation of B-splines and computational schemes for a banded matrix, we refer
to [de Boor, 2001, Dierckx, 1993]. Depending on the sampling rate and the order
of splines, the presented procedure can also handle data with gaps provided that
they are not too long, e.g. less than 5 minutes for the CHAMP orbit. Longer data
gaps may cause the matrix A to be rank defect in our case.

3.3.2 Regularization in the form of acceleration constraints

Accuracy of estimations can be improved if a priori information is taken into
account. An orbiting satellite experiences an influence of forces. As soon as a
force model is known, satellite accelerations can be computed at any point along
the kinematic orbit. Although the accelerations from a force model might not be
very accurate, they can be considered as a priori information regarding the second
derivative of the orbit.

3.3.2.1 Acceleration constraints

An advantage of B-splines is that a priori information in the form of acceleration
constraints can be easily included. The second derivative of equation (3.2) can be
expressed as:

ya
r =

n∑
i=−k

ciN
′′

i,k+1(tr), r = 1, ..., m, (3.6)

where ya
r is one acceleration component (e.g. the X-component) calculated from

a force model along the kinematic orbit. N
′′

i,k+1(tr) is the second derivative of the
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B-spline, and it can be calculated as:

N
′′

i,k+1(tr) = k

{
N
′

i,k(tr)

λi+k − λi
−

N
′

i+1,k(tr)

λi+k+1 − λi+1

}
, (3.7)

with N
′

i,k(tr) given by

N
′

i,k(tr) = (k − 1)

{
Ni,k−1(tr)

λi+k−1 − λi
− Ni+1,k−1(tr)

λi+k − λi+1

}
. (3.8)

Thus, the second derivative of a spline function of degree k is a spline of degree
k − 2 having the same knots.

Equation (3.6) can be used as the basis for the following Gauss-Markov
model similar to that of equation (2.97):

E{ya} = Bc, D{ya} = Qya
, (3.9)

where ya is the vector of accelerations ya
r ; c is the same vector of unknown

coefficients as before; B is the design matrix formed by the B-spline second
derivatives, and Qya

is the covariance matrix of noise in accelerations. Notice
that in practice it is not easy to estimate the stochastic properties of acceleration
noise. For this reason, we have just set Qya

equal to a scaled unit matrix.

With the acceleration constraints, the optimal solution can be obtained by
minimizing the objective function

η̃ := (Ac− y)T Qy
−1(Ac − y) + α(Bc − ya)T (Bc− ya), (3.10)

where α is a regularization parameter. The objective function is somewhat similar
to the criterion function for a cubic natural spline in Voltring [1986]. The first
term of both functions force the spline to fit the data. The meaning of the second
term is, however, different. The second term of equation (3.10) makes the second
derivatives of the spline match the force model, whereas the second term in the
criterion function [Voltring, 1986] only makes the spline as smooth as possible
without a specific physical sense. The purpose of α is to balance the first and the
second term. In other words, it has to balance errors of the kinematic orbit and
inaccuracies of accelerations computed on the basis of a force model. If α tends to
zero, the least-squares solution is obtained. If α tends to infinity, a spline which
exactly fits the force model in the least-squares sense is obtained. Hereafter, we
call the minimum of the objective function equation (3.10) the regularized solution.
The regularized solution for a given regularization parameter α has already been
given by equation (2.98). For this particular case, the solution is written as:

ĉα = N−1
α (AT Qy

−1y + αBT ya), (3.11)

where Nα is the regularized normal matrix:

Nα = AT Qy
−1A + αBT B. (3.12)
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Similarly to the least-squares solution, the smoothed force model-based orbit can
be obtained from the regularized solution as:

ŷα = Ãĉα. (3.13)

The problem of finding the optimal regularization parameter will be discussed in
the next section.

The regularization procedure can deal with longer data gaps in the kine-
matic orbit than the original least-square procedure. In the presence of gaps,
the smoothed orbit is computed iteratively in the regularization procedure. First
of all, the gaps are filled in by approximately determined satellite positions, for
which purpose a numerical integration with a Runge-Kutta scheme is applied
[Montenbruck and Gill, 2000]. Accelerations computed at those positions are
used as constraints in computing a smoothed orbit. Then, positions from the
smoothed orbit are utilized to compute an improved set of accelerations, and the
smooth orbit is obtained again. The iterations are stopped when the recovered
positions within gaps differ in average at two successive iterations less than a
threshold.

3.3.2.2 Parameter choice by generalized cross-validation

For regularization solution, the proper selection of α is rather crucial. There
are a few methods to find the optimal regularization parameter, of which the
L-curve and generalized cross-validation (GCV) attracted a lot of attention
[Voltring, 1986, Hansen, 1992]. As far as the geodetic community concerns,
Kusche and Klees [2002] compared the two methods in the context gravity
recovery from satellite gravity gradients, and stated that the L-curve method
might give over-smooth solution, whereas, the GCV method demonstrates
relatively good performance. An alternative way could be the variance-covariance
component estimation, see [Koch and Kusche, 2002]. We will only consider the
GCV method to choose the regularization parameter in this research.

The principle of the GCV method is based on the leave-out-one or ’jackknife’
idea. Traditionally, it is applied when only one data set is under consideration. In
other words, vector ya has to be equal to zero. A careful analysis of this method
has shown, however, that it can also be used in the context of two data sets as
in our case. In this situation, the ’leave-out-one’ idea has to be applied only to
the data set y. Then, the problem reduces to minimization of the GCV function,
which looks as follows:

fgcv
α =

m(Aĉα − y)T Q−1
y (Aĉα − y)

(m− Tα)2
, (3.14)

where m is the number of data in the set y, Tα = trace(Fα), and Fα is the influence
matrix related to the data set y:

Fα = A(AT Q−1
y A + αBT B)−1AT Q−1

y . (3.15)
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The regularization parameter α for which the GCV function reaches the mini-
mum is considered as the optimal one. To use GCV in large-scale problems, a
fast algorithm for the computation of the trace of the influence matrix is needed
[Uteras, 1981]. Girard [1989] proposed a fast Monte-Carlo method for this pur-
pose. The method introduces a random vector z of length m with E{z} = 0 and
D{z} = I. Then, an unbiased trace estimation is given by

Tα = E{zT Fαz}. (3.16)

Application of the expectation operator suggests that a number of random
vectors z have to be used with a subsequent averaging of trace estima-
tions [Kusche and Klees, 2002, Ditmar et al., 2003]. However, just one real-
ization of z may be sufficient if the number of data is sufficiently large
[Kusche and Klees, 2002]. In satellite gravity modeling, this condition is always
met. Thus, an unbiased trace estimation can be obtained as:

Tα = zT A(AT Q−1
y A + αBT B)−1AT Q−1

y z. (3.17)

In practice, the computation of Tα is divided into the following steps:

1. Generate a random vector z.

2. Calculate two auxiliary vectors: y1 = AT Q−1
y z and y2 = AT z.

3. Choose the regularization parameter,

• For each admissible regularization parameter α in a given range, solve
the system of linear equation (AT Qy

−1A + αBT B)qα = y1 and the
system of equation (3.11). It makes sense to solve both systems simul-
taneously because they share the same normal matrix.

• Compute the trace estimator Tα = yT
2 qα and the GCV function itself

[equation (3.14)].

• Choose the regularization parameter α, which makes fgcv
α minimum.

Thus, each computation of the GCV function reduces to only two inversions: one
is to obtain the estimates ĉα, and the other to compute qα.

3.3.3 Simulation study

In order to demonstrate the performance of the method proposed, we have simu-
lated a CHAMP-like kinematic orbit (sampling: 30 seconds, and the time interval:
00:00:00 - 24:00:00 of 2000-01-01) by means of a numerical integration technique
[Schrama, 2001]. In doing so, we made use of the EGM96 gravity field model
[Lemoine et al., 1998]. This orbit was considered as the true one. At the next
stage, three realizations of Gaussian white noise with a standard deviation of 5 cm
were generated and added to all three components of the true orbit. The resulting
noisy orbit has played a role of the kinematic orbit that can be obtained from
GPS data. Furthermore, this noisy orbit was used to compute the force acting
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on the satellite at each orbit point. This information is needed for the purpose of
regularization. Considering that the precise force model is not known in practice,
two force data sets were generated by using the EGM96 model truncated at de-
gree 10 and 50, respectively. A smoothed orbit was obtained with three processing
schemes:

• Scheme A: Least-square smoothing without acceleration constraints.

• Scheme B: Forces generated from the degree 10 gravity field model are used
as acceleration constraints. The GCV procedure is employed to find the
optimal regularization parameter.

• Scheme C: The same as Scheme B, but the forces are computed from the
degree 50 gravity field model.

The degree of B-splines used in computations was set equal to 5 (degrees larger
than 5 could be also chosen, but it has no significant effect on the final solutions).
The knots were defined at every second epoch. No iteration is needed in this sim-
ulation since no data gaps are simulated in the case. Figure 3.3 shows differences
between the smoothed orbits recovered by the three processing schemes and the
true orbit. The RMS statistics of the discrepancies between the smoothed orbits
and the true orbit is displayed in table 3.1. It can be seen that the Scheme C leads
to the best result. This confirms that the estimation procedure can benefit from
an a priori force model and that the more precise the force model is, the higher
the accuracy of the smoothed orbit. On the other hand, even a relatively simple
force model (e.g. up to degree 10) significantly reduces noise in positions.

Figure 3.4 shows the GCV values against regularization parameters for Scheme B
and C. The optimal regularization parameters chosen for Scheme B and C were
found to be 106 and 1010, respectively. This indicates that the more precise the
acceleration constraints, the larger they contribute to the solution. Notice that
the solution obtained with the Scheme A is free from regularization.

3.3.4 Smoothing a real CHAMP orbit for gravity field modeling

In order to further demonstrate the performance of the proposed procedure for
kinematic orbit smoothing, we consider a 322-day set of CHAMP data (March

Table 3.1. The RMS statistics of the smoothed orbits and the true orbit

difference noise Scheme A Scheme B Scheme C

RMS (cm) (cm) (cm) (cm)

along-track 5.03 3.53 2.54 0.87

cross-track 5.13 3.57 2.25 1.21

radial 5.11 3.68 2.61 1.17
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Fig. 3.3. The difference between the smoothed orbits and the true orbit of along-track
component in black; the grey line depicts the simulated noise. The force models make
the orbit smoother
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Fig. 3.4. GCV functions depending on the regularization parameters (dashed line for
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64 Chapter 3: Gravity field modeling from CHAMP data

2002 to January 2003) in the context of gravity field modeling. The data sets
consist of: (i) a kinematic orbit; (ii) description of the kinematic orbit noise
in the form of a 3×3 position error covariance matrix per epoch (taken as a
prior noise model of the input data); (iii) a reduced-dynamic orbit computed
on the basis of the EIGEN-2 gravity field model [Reigber et al., 2002]; (iv) a
set of accelerometer data supplied with star camera data and other supporting
information. The first 3 data sets were kindly provided by D. Švehla and M.
Rothacher, Technical University Munich [Švehla and Rothacher, 2002]. The
accelerometer data are distributed by CHAMP’s Information System and Data
Center (ISDC) at GeoForschungsZentrum Potsdam (GFZ).

The first step of the study is to smooth the real CHAMP kinematic orbit.
Three versions of a smoothed orbit are calculated:

(1) A smoothed kinematic orbit computed without a force model, i.e. no accel-
eration constraint. A least-squares solution is obtained in this case.

(2) A smoothed kinematic orbit with the acceleration constraint, the force model
is based on the EGM96 gravity field model complete to degree/order 360.

(3) The same as (2), but the force model is based on the EIGEN-CG03C gravity
field model also complete to degree/order 360. This model is much accurate
than EGM360 since it was compiled from GRACE data.

Both (2) and (3) are regularized solutions. The purpose of using a GRACE-based
model is to see how important the accuracy of a force model in orbit smoothing is.
During the orbit smoothing, X-,Y- and Z- components of the orbit are processed
separately, and the formal standard deviations of three components at each epoch
are used to form the covariance matrix Qy. Correlations between components
and between epochs are not considered, i.e. the matrix Qy is diagonal. For the
least-squares solution (strategy 1), the smoothed orbit is split into independent
fragments if a gap in the kinematic orbit exceeds 5 minutes, in order to avoid a
rank deficiency of the normal matrix. Due to the presence of gaps in the kinematic
orbit, the regularized solutions (strategy 2 and 3) are computed iteratively, the
threshold of the stopping criterion is 1 mm. If, however, a gap is sufficiently
long ( > 15 minutes), the orbit is simply split into independent fragments to be
processed separately. The optimal regularization parameter is chosen for each
fragment, individually.

After that, we have used the procedure discussed in section 3.2 to recover
gravity field models up to degree/order 70 (the post-processing was not applied
in this case). All three smoothed orbits are used to compute the reference
accelerations. In order to complete the comparison, the original reduced-dynamic
orbit and kinematic orbit are also considered. The data screening is imple-
mented on the basis of the discrepancies between a smoothed and the kinematic
orbit. In the case of the kinematic orbit, when no smoothed orbit is involved
in computing the reference accelerations, the data screening is based on the
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smoothed kinematic orbit computed with the EGM96 model. The reference
model for computing the reference accelerations is the EGM96 model. The reason
for this is that the model was until recently one of the most accurate models
of the Earth’s gravity field computed without CHAMP and GRACE data. It
should be mentioned that the observed accelerations are always derived from the
kinematic orbit. The covariance matrix of data noise of the kinematic orbit is
used. However, the a prior covariance matrix of the EGM96 model is not used
for this computation, therefore, no regularization is implemented in the course
of the inversion. Furthermore, we do not consider the frequency-dependent data
weighting discussed in section 2.6.3. It means that the noise in accelerations is
considered as non-correlated. The reason for this is that we intend to minimize
the influence of other operations, in order to find out only how large the indirect
influence of a gravity field model is through the orbit used to compute the
reference accelerations. Five models are obtained and compared in terms of geoid
height with the EIGEN-GL04C model, which is one of the state-of-the-art models
computed on the basis of GRACE and LAGEOS as well as surface gravity field
data [Förste et al., 2006, Förste et al., 2007]. The dominating contributor to the
EIGEN-GL04C model at degrees below 70 is a two-year set of GRACE data.
Since these data are significantly more accurate than CHAMP data, discrepancies
between a CHAMP-based model and the EIGEN-GL04C model can be safely
interpreted as errors in a CHAMP-based model.

Table 3.2. The cumulative geoid height differences between the produced models and
the EIGEN-GL04C model at degree 2, 5, 10, 30, 50 and 70, respectively. ’ko’, ’sko ls’,
’sko EGM96’, ’sko CG03C’ and ’rdo’ stand for reference accelerations computed along
’the kinematic orbit’, ’the kinematic orbit smoothed without constraint’, ’the kinematic
orbit smoothed with EGM96’, ’the kinematic orbit smoothed with EIGEN-CG03C’, and
’the reduced-dynamic orbit’, respectively

Geoid height l = 2 l = 5 l = 10 l = 30 l = 50 l = 70

difference (mm) (mm) (mm) (mm) (mm) (mm)

ko 2.8 6.3 9.6 24.2 87.8 358.5

sko ls 2.1 4.8 8.2 21.0 75.3 312.5

sko EGM96 2.3 4.9 7.8 20.6 71.7 301.8

sko CG03C 2.3 4.8 7.7 20.5 70.7 299.2

rdo 4.7 5.9 7.9 19.4 67.9 288.4
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Fig. 3.5. The cumulative geoid height differences between the produced models and
the EIGEN-GL04C model. In producing these models, the corresponding reference
accelerations are computed along the kinematic orbit (red solid line), the kinematic
orbit smoothed without constraint (green solid line), the kinematic orbit smoothed
with the EGM96 model (orange solid line), the kinematic orbit smoothed with the
CG03C model (blue dashed line), and the reduced-dynamic orbit (black dashed line)

From figure 3.5 and table 3.2, we can see the following features: (1) Usage of
smoothed orbits to compute the reference accelerations produce better models
than usage of the kinematic orbit. At least 10% improvement can be observed.
(2) The smoothed orbits on the basis of regularization are slightly superior to
the least-squares one. (3) As far as the smoothed orbits with force models are
concerned, the choice of the gravity field model in the force model shows a very
minor influence on the quality of the final product. (4) The reduced-dynamic orbit
results in a slightly worse model than smoothed orbits up to degree 10. Above
that degree, it produces slightly better model, though the difference is very limited.

Through this case study of real data processing, one can see, on the one
hand, that the smoothed kinematic orbit can replace the reduced-dynamic orbit
in the procedure of data processing since it can produce a model of almost the
same accuracy as the reduced-dynamic orbit. On the other hand, we found the
orbit used to compute the reference accelerations has relatively small influence
on the accuracy of the gravity field, provided that the orbit is sufficiently smooth
and accurate. Therefore, the answer to the question raised in section 3.2 is the
following. The reduced-dynamic orbit does not cause significantly higher quality
of the gravity models via the orbit used to compute the reference accelerations.
However, a smoothed orbit is worthy to be computed since this guarantees that
our CHAMP model is fully independent from any other CHAMP- or GRACE-
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based a priori information. Therefore, we will use the smoothed kinematic orbit
in further experiments on gravity field modeling in this chapter.

3.4 Noise estimation from posterior residuals

The section will describe the theory and the procedure of noise estimation.
A numerical simulation of data processing is carried out, and its results are
demonstrated. The section is partly based on our papers [Liu et al., 2005,
Ditmar et al., 2007].

3.4.1 Theory

A data processing strategy results in a statistically optimal model only, if it fully
benefits from the acquired information. From this point of view, the full covariance
matrix of observation noise has to be exploited. If the a priori covariance matrix of
observation noise is not accurate, or missing, one of the possible ways to estimate
the noise properties is to derive them from the data themselves. Followed the
average acceleration approach discussed in the previous sections, the estimation
of a gravity field model is given as:

x̂ =
(
AT C−1

d A + C−1
xo

)−1
AT C−1

d d, (3.18)

where A is the design matrix, d is the set of computed residual accelerations
(here only one input data set is considered), and Cxo

is the covariance matrix of
the reference gravity model; its inverse plays the role of the regularization matrix.
It is expected that the matrix Cxo

is provided a priori. In the previous section,
we did not use this matrix in gravity field modeling. The matrix Cd may be
an a priori covariance matrix of the data noise. However, this prior stochastic
model may not be accurate enough to reflect the real noise characteristics. In
order to obtain the optimal solution, it can be advisable to (re-)estimate the noise
covariance matrix. This section focuses on an estimation procedure.

It is assumed [Ditmar et al., 2007] that the noise covariance matrix can be
represented as:

Cd = PC(nst)PT , (3.19)

where C(nst) is a diagonal matrix of size N ′ × N ′; P is a rectangular matrix of
size N × N ′ obtained from a band-limited Toeplitz matrix by a corresponding
‘horizontal extension’. N is the number of a data in a segment without gaps,
and N ′ = N + Np − 1, where Np is the number of non-zero diagonals in P. The
matrix C(nst) is responsible for the non-stationarity of the noise model, whereas
the matrix P introduces correlations. The definition of equation (3.19) resembles
the noise propagation formula. It can be interpreted as the assumption that
actual noise is produced from non-stationary and non-correlated noise, i.e. the
covariance matrix C(nst), through the linear transformation given by the matrix
P. The matrix P is introduced purely on a formal basis. We do not introduce a
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physical meaning for the matrix. In this section, we will discuss how entries of
the matrix P can be estimated.

The matrix C(nst) is assumed to be given a priori. We believe that this
assumption is reasonable, because in most cases the measurements are supplied
with error estimates, which give an idea of how the measurement accuracy
changes in time. The only elements of the matrix C(nst) that are not avail-
able in this way are the elements at the edges, which have to be included as
the result of the extension of the matrix P and, consequently, of the matrix
C(nst). We propose to set these elements equal to σ2, the average value of the
available diagonal elements of the matrix C(nst). Furthermore, the matrix P
still has to be defined. Therefore, we can assume without loss of generality that
σ2 = 1: the necessary scaling can be assigned to the matrix P. This means that
the unavailable diagonal elements of the matrix C(nst) can simply be set equal to 1.

If the data set contains gaps, the matrix Cd has to be modified by a mask matrix
M obtained from the unit matrix by removing the rows that correspond to the
missing data [Klees and Ditmar, 2003, Ditmar and van Eck van der Sluijs, 2004].
Notice that a gap in the data series is, most probably, accompanied by a gap in
the time-series of primary formal measurement errors, i.e. more elements of the
matrix C(nst) might not be available a priori than in the case of an uninterrupted
data set. These elements can be filled in the same way as the unavailable elements
at the edges.

To estimate the covariance matrix of a stationary noise, we need to know a
noise realization n. Since n is by definition the difference between the data d
and the response of the true model Ax, the best possible gravity field model is
needed at this stage. Usage of such a model, however, would make the results
of data processing dependent on that model. Therefore, it is more appropriate
for the noise estimation to use the model produced solely from the data set
under consideration. Then, the noise realization n is approximated by the set
of posterior residuals. This approach suggests that the gravity field modeling
consists of a few iterations. In the course of the iterations, the gravity field
model and the stochastic model of data noise (expressed by the covariance matrix
Cd) are successively improved. In practice, two iterations are sufficient; further
update of the gravity field model is not necessary provided that the number of
data substantially exceeds the number of unknown parameters, which is indeed
the case of static gravity field modeling from SST data. The practical objective
of the estimation is to define the matrix P of equation (3.19), which is the
only ingredient of the noise model that is not given a priori. According to
[Ditmar et al., 2007], the whole procedure is as follows:

Step 1 Posteriori residuals n̂ are computed as the differences between the original
and adjusted observations n̂ := d−Ax̂. The residuals are considered as an
approximation of data noise.

Step 2 The noise auto-covariance are estimated from the posteriori residuals (see
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also Appendix A).

ck =
1

Nk

∑
j

njnj±k (0 ≤ k ≤ Na), (3.20)

where nj and nj±k are posteriori residuals at two epochs separated by lag
k; Na is the maximum lag for which the auto-covariance is estimated. In
practice, Na = N/10 is appropriate [Klees and Broersen, 2002]. and Nk is
the number of pairs of elements that are used in the estimation of the k-th
auto-covariance element. Notice that both elements of each pair should have
indices in the interval (1, N), where N is the number of posteriori residuals.
Furthermore, some pairs with proper indices may be discarded if a noise
realization is replaced by a posteriori residuals, because such a series may
contain interruptions related to gaps in the original data.

Step 3 The auto-covariance elements such that the element with index zero becomes
the first one, as c := (c0, c1, c2, ..., cNa−1, cNa

, cNa−1, ..., c1).

Step 4 The noise PSD is smoothed to ensure that it is positive at all frequencies
and, consequently, that the noise covariance matrix Cd is positive-definite.
The smoothing is implemented by multiplying the original auto-covariance
with a function that rapidly decreases in time:

c̃k := ckwk (0 ≤ k ≤ Na). (3.21)

with the truncation function wk being

wk = e
− (kΔt)2

2Q2 . (3.22)

The maximum possible half-width Q of the truncation function can be de-
fined by means of the trial-and-error method. The procedure starts from a
very large Q and gradually decreases until the PSD becomes positive at all
the frequencies.

Step 5 The step is to estimate the noise Power Spectral Density (PSD) u(f), where
f is the frequency. The noise PSD can be obtained from the auto-covariance
sequence through a discrete Fourier transformation,

u ≈ ΔtF∗c, (3.23)

where F is the matrix of discrete Fourier transform,
{
F
}

jk
= eijk 2π

Na , F∗ the

transposed complex conjugate of F, and Δt the sampling interval.

Step 6 The matrix P is computed by applying the inverse Fourier transformation
to the square root of the smoothed PSD as:

P = M

√
Δf ′

N ′
FU

1
2 F∗, (3.24)

with M being the mask matrix, and the diagonal matrix U being composed
of the elements of vector u, and Δf ′ = 1/(N ′Δt), which is the sampling
interval in the frequency domain.
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In the context of our research, Step 6 is extended by computing an analytical
function (i.e. derived from equations (2.116), (2.119) and (3.23) with considering
a priori accuracy and necessary scaling) that approximates the noise PSD u(f),
or to be more precise, the square root of it:

√
u(f) =

β · σ
(Δt)

3
2

[
2 (1− cos(2πfΔt)) +

(
Δt

τ

)2
]

, (3.25)

where f = kΔf ′, β is the scaling factor that plays a role of a relative weighting
factor applied to given component, σ is the a priori average positioning accuracy of
the component and τ is a parameter that controls the behavior of the PSD at low
frequencies as discussed in chapter 2. The advantage of this approximation is that
the corresponding noise covariance matrix can be built analytically. In the absence
of data gaps, the noise covariance matrix per component can be represented as
Cd = PC(nst)PT , where

P =
β · σ
(Δt)2

⎛⎜⎜⎝
−1 2+

(
Δt
τ

)2 −1
. . .

. . .
. . .

−1 2+
(

Δt
τ

)2 −1

⎞⎟⎟⎠ . (3.26)

The optimal estimation of the parameters β and τ is found by means of a non-
linear least-squares adjustment to the square root of the smoothed PSD obtained
in Step 5. Let the parameters β and τ form the vector of unknowns b. Then, the
estimation procedure is as follows:

(1) Set the initial guess b0 := (β0, τ0)
T (e.g. β0 = 1, τ0 = 180 s, which are the

settings for the trial gravity field modeling).

(2) Compute vector Δy :=
√

u(f)−
√

u(f)

∣∣∣∣∣
b=b0

.

(3) Compute the partial derivatives,

∂
(√

u(f)
)

∂β

∣∣∣∣∣
b=b0

=
σ0

(Δt)3/2

(
2(1− cos(2π · f ·Δt)) + (Δt/τ0)

2

)
∂
(√

u(f)
)

∂τ

∣∣∣∣∣
b=b0

=
−2σ0 · β0

(Δt)3/2

(
(Δt)2/τ0

3

)
,

and form the design matrix

H :=

⎛⎝ ∂
(√

u(f)
)

∂β

∣∣∣∣∣
b=b0

∂
(√

u(f)
)

∂τ

∣∣∣∣∣
b=b0

⎞⎠ . (3.27)
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(4) Compute the corrections: Δb = (HTH)−1(HTΔy).

(5) Set b0 = b0 + Δb, if ‖Δb‖ > ε go to (2), otherwise go to (6).

(6) (β̂, τ̂)T = b0.

Finally, the matrix Cd can be obtained according to equation (3.19). It can be
then used for another estimation of the Earth’s gravity field.

3.4.2 Simulation case

The purpose of our simulation is to evaluate how accurately the noise stochastic
properties can be assessed from data posteriori residuals and how an inaccuracy of
the used stochastic model can influence the gravity field model. We recall that the
data are defined as residual satellite accelerations averaged over sampling intervals.
In order to simulate the reality as close as possible, some real CHAMP data sets
are used.

3.4.2.1 Setup of the simulation

In the numerical study, we consider stationary and non-stationary colored noise
added to a series of simulated residual accelerations. In the simulation case, the
true noise is known, and consequently, the truly optimal estimation of the gravity
field can be obtained. Therefore, the study provides an opportunity to validate
our estimation methodology. The following data sets are used:

1) Satellite orbit: a 322-day reduced-dynamic CHAMP orbit from March 10,
2002 to January 25, 2003; 30-s sampling.

2) Error bars: the formal errors of a 322-day kinematic orbit of the CHAMP
satellite. Only variances of three components are considered.

3) Simulated accelerations dobs: this data set is computed from EIGEN-CG01C
model of the Earth’s gravity field [Förste et al., 2005] along the satellite or-
bit. The data gaps from the real CHAMP kinematic orbit are included,
because the kinematic orbit is used to derive the “observed” accelerations
in real CHAMP data processing [Ditmar et al., 2006]. The EIGEN-CG01C
model is taken as the true model later for the purpose of comparison.

4) The reference model: EGM96 model is used to compute the reference satellite
accelerations, dref . Then, the residual (noise-free) accelerations are obtained
as d := dobs − dref .

5) Covariance matrix Cx0
of the reference model up to degree and order 70. It

means that we consider a regularized solution in this simulation.

6) Simulated noise: for each component, a realization of stationary colored noise
nsc is generated. Each realization is obtained as:

nsc
i =

σ

(Δt)2

(
− ni−1 +

(
2 + (Δt/τ)2

)
ni − ni+1

)
, (3.28)
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where Δt = 30s (the sampling rate of the data set); τ is the parameter that
controls the behavior at low frequencies (we set τ = 40 sec according to our
experiences with real CHAMP data); σ is the standard deviation of position
errors (we set σX = 1.9 mm, σY = 1.4 mm and σZ = 4.4 mm for three
components, respectively, according to our experiences with real CHAMP
data) and ni (i = 1, 2, ..., nr with nr = 927360) is a white noise realization
with a unit standard deviation and zero mean. These noise realizations are
used to generate a noisy data set d1 := d + nsc. The noise behavior in the
frequency domain is shown in figure 3.6.

7) Three realizations of non-stationary noise nns are obtained as:

nns
i =

1

(Δt)2

(
−√ai−1ni−1 +

(
2+(Δt/τ)2

)√
aini−

√
ai+1ni+1

)
, (3.29)

where ai are the scaled variances of the kinematic orbit (data set 2). The
scaling was applied in such a way that the average of the square root of these
variances is 1.9mm, 1.4mm and 4.4mm for x-, y-, z-component, respectively.
Notice that the obtained noise realizations are not only non-stationary, but
also time-correlated. These noise realizations are used to generate another
noisy data set d2 := d + nns.

8) An inaccurate a priori stochastic model with diagonal covariance matrix
diag{Σ2

X , Σ2
Y , Σ2

Z} is considered for data set d1: ΣX = 11.2 mm, ΣY =
9.8 mm and ΣZ = 15.8 mm. These values are actually obtained by averaging
the square root of formal variances (data set 2). The unscaled formal vari-
ances of the CHAMP kinematic positions are taken as the a priori stochastic
model for the data set d2.

3.4.2.2 Results of simulation

According to figure 3.1, we implemented in the first step a trial gravity field
estimation on the basis of the two generated data sets containing stationary and
non-stationary noise, respectively. The inaccurate a priori stochastic models
(data set 8) are used at this step. τ is set to 180 s and β is set to 1. This results
in trial gravity field models, see the processing step in figure 3.1. On the basis of
the trial gravity field models, the posterior residuals for two cases are computed.
After that, we follow the procedure described in section 3.4.1 to estimate the
noise model by using the analytical expression of equation (3.25). The noise
model is then used in the final data processing. Consequently, the final gravity
field model is obtained. For comparison, we also use the true a priori stochastic
model to process the data which results in the optimal gravity field model. The
final gravity field model in each case is obtained by the summation of the result of
the least-squares adjustment and the reference model (EGM96). All the gravity
field models are computed up to degree and order 70.

Results in the case of stationary noise are displayed in figures 3.6 and 3.7.
Figure 3.6 shows the square root of PSDs used to derive the trial and final gravity
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Fig. 3.6. Estimation of noise PSD in the case of stationary noise for radial component
(blue line), along-track component (red line) and cross-track component (green line),
respectively. Black dashed curves depict the true square-root PSD of noise. Light blue
dashed lines correspond to the a priori stochastic model
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Fig. 3.7. Accuracy of gravity field models obtained in the case of the simulated
stationary noise data: cumulative geoid height differences (solid lines) and geoid height
differences per degree (dashed lines) with respect to the ”ground-truth”. The models
are obtained using the trial noise model (blue), the estimated final noise model (red)
and the true noise model (black)
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Fig. 3.8. Estimation of noise PSD in the case of non-stationary noise for radial com-
ponent (dark blue line), along-track component (red line) and cross-track component
(green line), respectively. Black dashed curves depict the true square-root PSD of
noise. Light blue dashed lines correspond to the a priori stochastic model
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Fig. 3.9. Accuracy of gravity field models obtained in the case of the simulated
non-stationary noise data: cumulative geoid height differences (solid lines) and geoid
height differences per degree (dashed lines) with respect to the ”ground-truth”. The
models are obtained using the trial noise model (blue), the estimated final noise model
(red) and the true noise model (black)
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field models as well as the true one. It is obvious that the dependence of noise on
frequency is determined rather accurately: the estimations of posterior residual
PSDs are much closer to the true noise PSDs than the a priori PSDs. Figure 3.7
compares the obtained gravity field models with the true model (EIGEN CG01C)
in terms of geoid heights. We can see clearly that the final gravity field model is
very close to the optimal one obtained with the true stochastic model of simulated
noise.

Figures 3.8 and 3.9 show results in the case of non-stationary noise, similar
to figure 3.6 and 3.7. The conclusion can be drawn that certain differences
between the true and the estimated noise square-root PSD is noticeable in the
radial component. The probable reason is that the non-stationarity of noise
manifest itself as a strong noise at low frequencies if the spectral representation
is used. Additionally, it is found that the accuracy of the final gravity field model
is close to that of the optimal model, even though the exploited stochastic model
somewhat deviates from the true one. This can be explained by the fact that the
error in the variance-covariance matrix has a second-order order influence on the
estimated parameters. It is important to add that we have made an effort of a
third iteration, but no obvious improvement has been obtained in both stationary
and non-stationary noise cases.

In addition, it can be noticed that knowledge of data noise may noticeably
improve the quality of gravity field modeling, and that the procedure of noise esti-
mation allows one to avoid tuning of some processing parameters by comparing the
results with a state-of-the-art model as it was proposed by [Ditmar et al., 2006].
This is rather important when there is no suitable state-of-the-art model available,
e.g. in the context of GRACE data processing.

3.5 Results of real CHAMP data processing

The simulations conducted prove that the process of noise estimation can improve
the quality of the resulting gravity field model. Therefore, we have applied it also
to real data processing. We have processed the same real data set: a 322-day set
of CHAMP data as described in section 3.3.4. The differences with the previous
data processing strategy different are as follows:

(1) The smoothed kinematic orbit based on the EGM96 model (one of the
smoothing outputs of section 3.3.4) is taken as a set of observation locations
to compute the reference accelerations. The EGM96 model up to degree and
order 360 is again used for this purpose. Thus, a reduced-dynamic orbit is
not used at all.

(2) As in the simulation case, the full covariance matrix of the EGM96 model
up to degree and order 70 is used as the regularization matrix during the
inversion in order to obtain the optimal solution.

(3) The full 3× 3 covariance matrix at each epoch, instead of only the variance
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matrix, is used to construct the matrix C(nst). This covariance matrix is
scaled so that the average variance per component (along track, cross-track
and radial) is equal to one.

(4) As before, the inversion is performed twice; the first time to compute the
preliminary trial gravity field modeling, and the second time to obtain the
final gravity field model.

The lag number (k in equation 3.20) in the computation of the auto-covariance is
set equal to 215 + 1, which corresponds to the time interval of 32, 769× 30 sec ≈
273 hr. To ensure the positiveness of the computed PSD, it is smoothed with
Q ≈ 23 hr for the along-track and cross-track components and with Q ≈ 29 hr for
the radial component. The smoothed square-root PSDs for the three components
shown in figure (3.10) are used to compute the matrix P using the analytic ex-
pression described with equation (3.25). It is observed that the square-root PSDs
of the real data case are closer to the stationary noise case (see figure (3.6)) than
to the non stationary noise case (see figure (3.8)). The parameters chosen for the
analytic approximation are: β = 0.17, 0.14, 0.28 for the along-track, cross-track
and radial component, respectively; τ = 35 sec for all three components. The
obtained noise model is exploited to produce the final model, see figure 3.11 and
table 3.3. The final model is named as DEOS CHAMP-02C 70. Other gravity field
models, such as EGM96, ITG-CHAMP01E, the trial field, and DEOS CHAMP-
01C 70 model, are also shown for comparison. The ITG-CHAMP01E model was
produced from the same data set (the kinematic orbits used in the thesis) using
the short-arc approach [Mayer-Gürr et al., 2005]. The model was also regularized
using the EGM96 model. The DEOS CHAMP-01C 70 model was produced by
a stochastic model obtained with validating gravity field modeling results with a
GRACE-based model [Ditmar et al., 2006]. In the comparison, the gravity field
model EIGEN-GL04C, truncated at degree 70, is exploited as the ground truth.
Both our trial and final models demonstrate a significant improvement with respect
to the EGM96 model at all degrees. In addition, our final model outperforms the
ITG-CHAMP01E model, likely due to more accurate modeling of the stochastic
properties of the data noise. It is also worthwhile to note that the total RMS of the
geoid height error for the final model is better than that for the DEOS CHAMP-
01C 70 model. More importantly, the empirical procedure to choose the optimal
noise model used in computing the DEOS CHAMP-01C 70 model is replaced by
the one based on a posteriori residuals, so that the use of a state-of-the-art model
is no longer required.

There are more CHAMP gravity field solutions computed by other research in-
stitutes; however, these models are generally not regularized. In order to make a
comparison with those solutions, we have also computed CHAMP-only gravity field
model without a regularization (the model is named as DEOS CHAMP-02S 70).
Figure 3.12 shows the comparison of our CHAMP-only solution with others, includ-
ing the TUM-2S, EIGEN-CHAMP03S, ITG-CHAMP01S and AIUB-CHAMP01S
models, in terms of geoid height differences per degree with respect to the EIGEN-
GL04C model. In addition, Table 3.4 offers the cumulative geoid height differences
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Fig. 3.10. The square-root PSD of the noise model for the three components. The
dashed lines depict the prior stochastic model used for the trial gravity field modeling.
The solid lines denote the estimated square-root PSD of the noise. The corresponding
stochastic model is used to re-process the data
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Fig. 3.11. The cumulative geoid height differences with respect to the EIGEN-GL04C
model for the following models: (i) EGM96 (red solid), (ii) ITG-CHAMP01E (green
dashed), (iii) the trial model without the noise estimation of residuals (blue), (iv) the
final model after noise was estimated (red dashed) and (v) the DEOS CHAMP-01C 70
model (light blue)
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Table 3.3. The cumulative geoid height differences, with respect to the EIGEN-GL04C
model, computed for various gravity field models

Geoid height l = 2 l = 5 l = 10 l = 30 l = 50 l = 70

difference (mm) (mm) (mm) (mm) (mm) (mm)

EGM96 1.6 7.8 20.2 126.9 258.8 342.0

ITG-CHAMP01E 1.3 2.6 4.3 17.1 66.6 168.7

DEOS CHAMP-01C 70 0.5 2.3 4.1 15.9 48.9 132.2

the trial model 0.8 2.3 4.2 22.1 83.9 185.2

DEOS CHAMP-02C 70 0.9 1.9 4.1 16.3 48.3 128.3

for these models. The TUM-2S model was computed up to degree and order 60
using the energy balance approach by the Institute for Astronomical and Physi-
cal Geodesy of Technical University Munich (TUM) [Wermuth et al., 2004]. The
model is based on two years of CHAMP data spanning the interval from March,
2002 to March 2004. The EIGEN-CHAMP03S model produced by GFZ is a
CHAMP-only gravity field model derived for the period from October 2000 to
June 2003 (totally 33 months) [Reigber et al., 2004]. The model was computed
using the variational equations approach (one step). The model contains spher-
ical harmonic coefficients complete to degree and order 120 plus selected terms
up to degree 140. In the comparisons shown, this model was truncated to degree
and order 70. Since other three remaining solutions were produced from approx-
imately one year of data, the degree errors of the TUM and GFZ solutions were
scaled by the factor of

√
2 and

√
3, respectively, to make the comparison more

fair. The ITG-CHAMP01S model [Mayer-Gürr et al., 2005] was again derived
from the same kinematic orbit as was used to produce the DEOS solutions. The
AIUB-CHAMP01S model was recently computed at the Astronomical Institute
of University of Bern (AIUB) by using the orbit integration approach (two-step)
[Prange et al. 2007]. The ITG and AIUB models were computed up to degree and
order 70 as our CHAMP models.

From the comparison, one can see that the TUM-2S performs the worst at all
degrees, particularly at the low ones, and it shows errors several times larger than
the others. Even if the model is not multiplied by a factor of

√
2, the result

is still much worse than for the other models tested. This is not very surpris-
ing because the energy balance approach only makes use of the velocity mag-
nitude, leading to a situation when only the along-track information is exploited
[Ditmar and van Eck van der Sluijs, 2004]. The EIGEN-CHAMP03S model (mul-
tiplied with

√
3) demonstrates less accuracy than the other three. The probable

explanation here is that the model was produced using a sub-optimal stochastic
model of the data noise. The same explanation can probably be given to the differ-
ences between our solution and the ITG-CHAMP01S model, particularly for the
mid-degrees (i.e., starting from degree 31). Compared with the AIUB-CHAMP01S
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Fig. 3.12. The geoid height differences per degree with respect to the EIGEN-
GL04C model computed for the models: (i) TUM-2S (red dashed line), (ii) EIGEN-
CHAMP03S (green line), (iii) ITG-CHAMP01S (cyan line), (iv) AIUB-CHAMP01S
(blue line) and (v) DEOS CHAMP-02S 70 (red line). The values of TUM-02S and
EIGEN-CHAMP03S are multiplied by a factor of

√
2 and

√
3, respectively.

Table 3.4. The cumulative geoid height differences with respect to the EIGEN-GL04C
model computed for the models obtained at degree 10, 20, 40, 50, 60, 70, respectively.
The values of TUM-02S and EIGEN-CHAMP03S models are multiplied with

√
2 and√

3, respectively

Geoid height l = 10 l = 20 l = 40 l = 50 l = 60 l = 70

difference (mm) (mm) (mm) (mm) (mm) (mm)

TUM-2S 28.5 38.7 71.9 125.1 241.4 --

EIGEN-CHAMP03S 8.2 16.8 45.8 90.1 185.2 408.2

ITG-CHAMP01S 4.3 9.3 35.0 73.7 156.3 345.8

AIUB-CHAMP01S 4.3 10.8 32.1 69.3 137.4 290.5

DEOS CHAMP-02S 70 5.3 9.8 31.8 64.1 131.3 294.7
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model, our solution displays a remarkable similarity. The AIUB-CHAMP01S has
slightly better accuracy at the two extremes, i.e. below degree 10 and above degree
60, while our solution shows better performance at the mid-degrees (from degree
10 to degree 60). This is likely an indication that both solutions are close to the
statistically optimal one.

3.6 Summary and remarks

In this chapter, two refinements of the CHAMP data processing were discussed.
The major objective of both refinements was to compute an optimal model that
is independent of any reference gravity field model. The first refinement was the
development of a procedure for smoothing a kinematic orbit by means of a regu-
larized least-squares adjustment. The smoothed orbit is represented by B-splines.
Processing was carried out using real data, in which the smoothed kinematic orbit
produced a model of nearly the same level of accuracy as the reduced-dynamic
orbit. In this way, dependence on a CHAMP-based model was avoided. In addi-
tion, we found that the orbit used to compute the reference accelerations has a
relatively small influence on the accuracy of the gravity field. The second refine-
ment was the implementation of a procedure for noise estimation from a posteriori
residuals in order to obtain an optimal solution. The simulation and real data pro-
cessing proved that the procedure is a key ingredient for accurate modeling the
gravity field. These two refinements were used to compute both a regularized and
non-regularized gravity field model from CHAMP data. The regularized CHAMP
model was shown to perform better than alternative regularized models, such as
the ITG-CHAMP01E and DEOS CHAMP-01C 70. More importantly, the opti-
mal noise model was determined from the a posteriori residuals as opposed to
a GRACE-based model. The non-regularized solution was compared with other
non-regularized CHAMP-only models. Our solution was shown to perform better
than the TUM-2S model, as well as the EIGEN-CHAMP03S model if the differ-
ence in the length of the considered data sets is taken into account. Furthermore,
our model shows improved accuracy over the ITG-CHAMP01S model, particularly
at the high degrees. Compared with the AIUB-CHAMP01S model, our solution
demonstrates remarkably small differences in quality, which can be interpreted as
an indication that both solutions are close to the statistically optimal one.



Chapter 4

Gravity field modeling from GRACE hl-SST

data

4.1 Introduction

In the previous chapter, we developed a CHAMP data processing strategy and
processed a set of real CHAMP data. The GRACE satellites are each equipped
with a high-end GPS receiver, so that the kinematic orbits of the two satellites can
be obtained. Each of these two GRACE satellites can be considered as a single
satellite mission of the CHAMP-type. Therefore, the CHAMP data processing, in
the first instance, is applicable to processing of GRACE hl-SST data as well. This
idea was investigated, in particular, by [Weigelt, 2007], who used the energy bal-
ance approach. The goal of our study is to develop this idea further by also taking
into account the kinematic baselines of the two satellites as well. The kinematic
baselines used in this chapter are not a simple difference of the kinematic orbits
of the two GRACE satellites. Instead, they are determined directly from the GPS
measurements by way of relative positioning. In this way, one satellite is taken
as a reference, and the relative position of the other satellite, i.e. the baseline, is
estimated from differenced GPS measurements, where the double-difference ambi-
guities are fixed at a relatively high success-rate (see [Kroes, 2006]). To derive the
gravity field model from these kinematic baselines, we extend our data processing
of kinematic positions. There are many differences between processing positions
and baselines. This will be described in section 4.2. Section 4.3 will present the
results of the baseline processing, as well as results obtained from kinematic orbits
of the individual GRACE satellites.

4.2 Peculiar features of processing kinematic base-

lines

The flow chart of processing kinematic baselines is, in general, the same as that of
processing kinematic positions, see figure 2.5 and figure 3.1. However, some steps
need to be altered due to the change of the functional model and the available data.
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This section will discuss the peculiar features of processing kinematic baselines.

4.2.1 Functional model

The functional model used to process the baselines of the two satellites involves
Inter-Satellite Accelerations (ISA) rather than acceleration vectors of a single satel-
lite.

r̈AB(t) = ∇V (rB(t))−∇V (rA(t)), (4.1)

where r̈AB(t) is the point-wise ISA at the epoch t, and the right-hand side is the
difference of the potential gradients between two satellites.

4.2.2 Derivation of inter-satellite accelerations

The ISA vectors are derived from the precise kinematic baselines:

¯̈rAB(t) =
rAB(t−Δt)− 2 · rAB(t) + rAB(t + Δt)

(Δt)2
, (4.2)

where rAB(t) is the kinematic baseline at epoch t in the CRF frame, and ¯̈rAB(t)
is the average ISA at time t. Notice that the left-hand side of equation (4.1) rep-
resents a point-wise value, while the left-hand side of equation (4.2) is an average
value. As a result, an averaging filter has to be applied in order to relate them
together. This can be done in the same way as in processing kinematic orbits.
The ISAs derived from the satellite baselines are used as input to produce residual
ISAs by deducing the reference ISAs and non-gravitational ISAs. We will discuss
this further after introducing a new reference frame.

4.2.3 Line-Of-Sight related Reference Frame

The residual ISAs used in processing kinematic baselines are transformed into
a so-called Line-Of-Sight Reference Frame (LOSRF) rather than into the LORF
frame used previously. In the LOSRF frame, the x-axis is directed along the LOS,
from the trailing satellite to the leading one; the z-axis points upwards (nearly
radial), and is orthogonal to the x-axis in the plane formed by the two satellites
and the center of the Earth. The y-axis is orthogonal to the x- and z-axis forming
a right-hand frame, as shown in figure (4.1). The LOSRF frame is very similar to
the LORF frame since the two GRACE satellites follow each other in nearly the
same orbit. The computation of the unit vectors that define the LOSRF in the
Earth-centered inertial reference frame is important for transforming vectors from
one frame to the other. The unit vector of LOS can be easily computed as:

ex =
rAB

ρ
, (4.3)

where ρ is the distance between the two satellites, and rAB is the position difference
of the two satellites. In order to compute the unit vector defining the z-axis, we
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Fig. 4.1. Definition of the LOSRF and computation of unit vectors in the inertial
frame. X,Y,Z represent the three axes of the inertial frame, while x, y, z represent
the three axes of the LOSRF

should find the point V in the LOS which minimizes the distance from the Earth’s
center to the LOS. The position vector of this point can be represented as a linear
combination of the vectors rA and rB :

rV = rA + (rB − rA)β, (4.4)

where β is an unknown variable. The squared distance between the point V and
the Earth’s center is therefore

s2 =‖ rA + (rB − rA)β ‖2 . (4.5)

To minimize this distance, we must set d(s2)/dβ = 0 and solve for β, which yields

β = −rA · (rB − rA)

ρ2
. (4.6)

The vector rV is then easily obtained by substituting equation (4.6) into equa-
tion (4.4). The z-axis unit vector can then be computed as:

ez =
rV

‖ rV ‖
, (4.7)

where ‖ · ‖ is the norm operator. The y-axis unit vector is obtained by the cross-
product of the unit vectors of the x- and z- axis. The x-, y-, and z-axis can
be interpreted as the along-track, cross-track, and radial axis, respectively. The
matrix of rotation from the inertial frame to the LOSRF frame can therefore be
written as:

R(C→LF) = (ex, ey, ez)
T , (4.8)
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where LF stands for the LOSRF frame. It should be mentioned that for computing
these unit vectors, smoothed (or reference) satellite orbits are used. By using the
transformation matrix R(C→LF), the observed inter-satellite accelerations can be
transformed into the LOSRF as follows:

¯̈rLF
AB(t) = R(C→LF)¯̈rAB(t) (4.9)

4.2.4 Synthesis and co-synthesis

The synthesis and co-synthesis can be generally carried out in the same way as was
done for processing the kinematic orbits; however, the design matrix A presented
in equations (2.104) and (2.107) should be replaced by the following expression.

Absl = R(C→LF)ER(T→C)(Apw,B −Apw,A), (4.10)

where Absl is the new design matrix, E is the averaging matrix as used in equa-
tion (2.104), and R(T→C) is the transformation matrix from TRF to CRF. Apw,A

and Apw,B are the satellite A and B related point-wise design matrices in the
TRF, respectively. For example, Apw,A can be represented as:

(Apw,A)j = Rz(π − λj)Ry(θj)

⎛⎜⎝A
(x)
j

A
(y)
j

A
(z)
j

⎞⎟⎠
GRF

(4.11)

where A
(x)
j , A

(y)
j and A

(z)
j are the same matrices as the ones presented in equa-

tion (2.106). It should be emphasized that the x, y and z axes in equation (4.11)
are defined in the GRF at a given epoch tj for a given satellite.

4.2.5 Computation of the reference inter-satellite accelerations

Calculation of the reference ISAs is carried out in four steps: (1) The point-wise
accelerations are computed in the TRF for both satellites using the reference grav-
ity field and tide models. This is the same procedure as was used in processing the
kinematic positions. (2) The point-wise accelerations of satellite A are subtracted
from those of satellite B, and then rotated into the CRF frame. (3) The ISAs are
averaged. (4) The averaged ISAs are then rotated into the LOSRF.

4.2.6 Processing of non-gravitational inter-satellite accelera-

tions

Processing of the non-gravitational ISAs is done in the same way as described
in section 2.6.4.4 except that (1) we have to process the non-gravitational ac-
celerations of both satellites and then subtract one from the other; (2) the non-
gravitational ISAs have to be rotated into the LOSRF rather than into the LORF.
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4.3 Results of data processing

We consider a data period of 101 days (July 9, 2003 to October 17, 2003) since
all of the necessary data sets are available for this period. For comparison, the
CHAMP hl-SST data for the same period are also processed. The data sets are as
follows:

• Kinematic and reduced-dynamic positions of GRACE A/B and CHAMP
from the Institute for Astronomical and Physical Geodesy (IAPG), TU Mu-
nich [Švehla and Rothacher, 2002]. The kinematic positions are supplied
with the variance-covariance matrices.

• Kinematic and reduced-dynamic baselines of GRACE A/B from the Astro-
dynamics and Satellite Systems group of the Delft Institute of Earth observa-
tion and Space System (DEOS), TU Delft [Kroes et al., 2005]. The baselines
are supplied with variances.

• The accelerometer and quaternion data from CHAMP provided again by Ge-
oForschungsZentrum Potsdam, and the corresponding non-gravitational data
from GRACE provided by the Physical Oceanography Distributed Active
Archive Center (PO.DAAC) of NASA’s Jet Propulsion Laboratory (JPL).

On the basis of the above-mentioned data sets, we computed the following solu-
tions:

• Solution A: estimated from the kinematic orbits of the GRACE A satellite
only

• Solution B: estimated from the kinematic orbits of the GRACE B satellite
only

• Solution C: jointly estimated from the kinematic orbits of the GRACE A
and B satellites

• Solution D: estimated from the kinematic orbits of the CHAMP satellite

• Solution E: estimated from kinematic baselines of the two GRACE satellites

• Solution F: jointly estimated from the kinematic orbits of GRACE A and
the kinematic baselines of the two satellites

• Solution G: jointly estimated from the kinematic orbits of GRACE A and
B, as well as kinematic baselines of two satellites

The data processing procedure for solution A, B, C and D is the same as that
described in section 3.2, including the estimation of the stochastic properties of
the data noise. The purpose of computing a CHAMP-based model (solution D) is
to make a comparison with the results obtained from the GRACE hl-SST data.
The processing of the kinematic baselines is discussed in the previous section.
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Fig. 4.2. Degree geoid height differences with respect to the EIGEN-GL04C model
computed for (i) solution A (red), (ii) solution B (black), (iii) solution C (light blue)
and (iv) solution D (dashed green). Regularization is not applied

It should be mentioned that the reduced-dynamic orbits are used for computing
the reference accelerations in this case study, not kinematic orbits. In fact,
the type of exploited orbits is not so important because our primary goal is to
compare our solutions produced from kinematic baselines with those produced
from kinematic orbits. We are not aiming at comparing our results with ones
obtained at other research institutes: no results based on the kinematic baselines
have been published so far.

The outlier detection algorithm used for the calculation of the kinematic
baselines is adapted to this data type. A given epoch is discarded if: (1) the kine-
matic baseline is supplied with zero elements of variances; (2) any component of
the baseline formal error exceeded a given threshold (10 cm); (3) the discrepancy
between the lengths of the kinematic baseline and the reduced-dynamic baseline
is larger than a given threshold (5 times the RMS of discrepancies).

Figures 4.2 and 4.3 display the RMS of the geoid height differences with
respect to the EIGEN-GL04C model for solutions A, B, C and D. No regulariza-
tion is applied when computing these solutions. From these two figures, it is easy
to observe:

1) The GRACE A-only and GRACE B-only solutions show similar accuracy as
a whole, though the GRACE A-only solution demonstrates slightly better
results at the low degrees, and slightly worse results at the high degrees,
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Fig. 4.3. Cumulative geoid height differences with respect to the EIGEN-GL04C model
computed for: (i) solution A (red), (ii) solution B (black), (iii) solution C (light blue)
and (iv) solution D (dashed green). Regularization is not applied

with the crossing point at approximately degree 40.

2) For all of the solutions, there is a peak of roughly one centimeter at degree
4. Similar error peaks were also found by other research groups that em-
ployed the same version of Munich orbits, see, [Götzelmann et al., 2006] and
[Weigelt, 2007]. While the reason for this error is currently unknown, it may
have been caused by a systematic error in the orbit determination process.

3) The joint solution estimated from the data of GRACE A and B improves
accuracy by about a factor of

√
2, which is the expected result. The cumula-

tive error of solutions obtained from the individual satellites 1.31 m and 1.20
m, for GRACE A and B respectively, while that of the joint solution is 0.88
m. However, the joint solution has lower accuracy compared to the GRACE
A-only solution at the low degrees (i.e., below degree 20). This is likely due
to the contamination of GRACE B data. To deal with this properly, a more
accurate stochastic model of the data noise should be developed. We did not
make further efforts on this issue.

4) The CHAMP solution is the best solution among the four, particularly at
the high degrees, due to the lower orbit of the CHAMP satellite and, hence,
its increased sensitivity to the gravity signal.

Figures 4.4 and 4.5 show the RMS of the geoid height differences with respect to
the EIGEN-GL04C model for solution C, E, F and G. Again, no regularization
was applied. It is clearly visible that solution E, which is based on kinematic
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Fig. 4.4. Degree geoid height differences with respect to the EIGEN-GL04C model
computed for: (i) solution E (red), (ii) solution C (black), (iii) solution F (light blue)
and (iv) solution G (dashed green). Regularization is not applied
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Fig. 4.5. Cumulative geoid height differences with respect to the EIGEN-GL04C model
computed for: (i) solution E (red), (ii) solution C (black), (iii) solution F (light blue)
and (iv) solution G (dashed green). Regularization is not applied
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baselines, contains relatively large errors at the low and mid degrees. Starting
from about degree 55, however, this solution shows higher accuracy than solution
C, which is based on kinematic orbits of the two GRACE satellites. The overall
cumulative error of solution E is slightly lower than that of solution C. The
higher overall accuracy of solution E is probably due to a lower noise level in
the computed baseline relative to that in the orbits. Therefore, baselines may
be preferred for the high-resolution determination of the gravity field. The low
accuracy of solution E at the low and mid degrees can be explained by two
reasons. One is that a majority of the gravity signal at the low degrees is the
same for both satellites. At the same time, the accuracy of the ISAs derived
from the kinematic baselines does not significantly increase when compared to
the accelerations derived from a single satellite. Therefore, the differentiation
operation between the two satellites makes the large part of signals ‘non-visible’ in
the ISAs – smaller than even noise in the domain of frequencies. Furthermore, the
differences measured in baselines at two points are located at the same meridian.
Such kind of measurements are not sensitive to the East-West signal. The other
reason is that the geographical locations of the two satellites used to compute the
partial elements of the design matrix are relatively close to each other, and the
differentiation operation between the individual design matrices could make the
whole design matrix more ill-posed (see equation 4.10).
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Fig. 4.6. The geoid height differences with respect to the EIGEN-GL04C model. Solid
lines present the geoid height difference per degree and the dashed lines the cumulative
geoid height differences. The models were produced from GRACE kinematic baselines
with regularization (blue line) and without regularization (red line). The regularization
matrix used was the full covariance matrix of EGM96 model up to degree and order
70.
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Improving the accuracy at the low degrees could be achieved using the following
means: (1) combining baseline data with kinematic positions. (2) regularization
of the solution (3) increasing the accuracy of the baselines. The last idea will
be discussed in the next chapter in the context case of using more precise KBR
data. In this section, we consider the first two ideas. From figures 4.4 and 4.5,
it can be clearly seen that solutions F and G improve the quality of the gravity
field when compared to solution E, particularly at the low degrees. The quality
of the combined solution, however, does not exceed that of the solution based on
the kinematic orbits. Only at the high degrees was the accuracy of the combined
solution slightly higher. The overall cumulative error (at degree 70) is improved
in the case of the combined solution by 15% - 25%. This fact confirms that the
GPS measurements of satellite A (or B) are implicitly employed twice in this
case, the baselines do contain additional information that is absent in the orbits.

Figure 4.6 shows the comparison of regularized solutions based on the kine-
matic baselines. It is clear that the regularization significantly improves the
quality of the gravity field model at the low and high frequencies. One reason for
this is that the regularized solution contains information from an a priori model,
i.e. EGM96, which has relatively high accuracies at the low and high degrees
thanks to the incorporation of many years worth of satellite orbit and altimetry
data. Another reason is that the regularization stabilizes the normal matrix, and
decreases the oscillation of the solution.

4.4 Summary and Remarks

In this chapter, we extended our gravity field modeling methodology to GRACE
hl-SST data. Both kinematic positions and baselines of the GRACE satellites
were processed, both individually and jointly. We found that, in general, the
kinematic baselines themselves are not favored for the purposes of deriving gravity
field models, due to a limited accuracy of the kinematic baselines (even though
it is higher than that of kinematic orbits). This problem can be solved using
high-precision KBR measurements of GRACE mission (see next chapter). On the
other hand, the GRACE mission has a limitation of life period. Currently, there
are a few existing and proposed formation flying missions not supplied with the
KBR system. Therefore, it might be still valuable to make use of these missions
for gravity field modeling. The kinematic baselines might still be useful, since
they can somehow improve the quality of gravity field model, particularly at high
frequencies, if used jointly with the kinematic orbits.



Chapter 5

Gravity field modeling from GRACE ll-SST

data

5.1 Introduction

This chapter discusses in detail the procedure of gravity field modeling from
ll-SST data provided by the GRACE satellite mission. Making use of ll-SST
data does not mean that the hl-SST data can be fully ignored. The hl-SST
data are still needed to compute the precise orbits, which are indispensable for
high-quality gravity field modeling. However, the hl-SST data are not used as ob-
servations and do not provide any additional contribution to the normal equations.

We will describe three approaches of processing GRACE ll-SST data that
make use of range-acceleration, range-rate and range measurements, respectively.
These three approaches are referred to as the classic acceleration approach,
the 3-point Range-Rate Combination (3RRC) approach and the 3-point Range
Combination (3RC) approach. The first one was proposed by Rummel [1979],
while the latter two are innovative approaches proposed in the frame of this
research. The common feature of these approaches is that the functional models
are linear, and that the calculation of the partial derivatives through numerical
solution of the variational equations, which is typically computationally expen-
sive, can be avoided. The chapter starts with the derivation of the classical
acceleration approach in section 5.2.1. The approach connects inter-satellite
gravitational potential gradients with point-wise range-accelerations and the
component of inter-satellite velocities orthogonal to the LOS. After a realistic
sensitivity analysis we find that it is difficult to compute high-precision gravity
field models using this approach since the velocity term does not match the
accuracy of KBR range-acceleration. To cope with this problem, we derive the
3RRC approach and the 3RC approach in section 5.2.2 and 5.2.3, respectively.
The first approach virtually makes use of range-rate measurements to determine
the orthogonal component of the inter-satellite velocities. The second approach
even allows the velocity term in the observation equation to be avoided by
computing the gravitational potential gradients from KBR ranges rather than
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from KBR range-accelerations or range-rates.

A comprehensive description of the data processing strategy, which includes the
pre-processing and inversion process, is given in section 5.3. The pre-processing is
described in an integrated manner for all three approaches. In order to generate
residuals from the ranges, range-rates and range-accelerations, the purely dynamic
orbits of the two GRACE satellites are computed in such a way that they best
fit the existing reduced-dynamic orbits. By using the generated residuals, the
corresponding residual quantities are formed for the final inversion. The inversion
strategies of the three approaches are based on the similar procedure used for
processing baselines, as described in chapter 4. The peculiar features of the
inversion using ll-SST data are discussed in section 5.3.4.

The aim of section 5.4 is to compare the results obtained by the three ap-
proaches, with a focus on estimating time variable gravity fields. Two months of
GRACE mission data are processed using the data processing strategy outlined. A
corresponding set of hydrological models is taken as a reference for the comparison.

In section 5.5, we further refine the data processing procedure based on
the 3RC approach. An iterative estimation is implemented to retrieve the gravity
signal potentially absorbed by the empirical parameters introduced in the first
iteration. Section 5.6 summarizes the main findings of the chapter and discusses
possible ways to improve the accuracy of gravity field models derived by the
classic acceleration approach and the 3RRC approach.

5.2 Functional models

5.2.1 Classical acceleration approach

Following Rummel [1979], this section derives the functional model of the classic
acceleration approach. Let rA and rB be the positions of GRACE satellites A and
B in an inertial Earth centered frame at a given epoch, respectively. The range
vector between two satellites is given by

rAB = rB − rA. (5.1)

The square of the range can be expressed as

ρ2 = rAB · rAB . (5.2)

Differentiation of equation (5.2) with respect to time gives

2ρρ̇ = 2rAB · ṙAB, (5.3)

where ṙAB = ṙB − ṙA. Therefore, the range-rate can be expressed as

ρ̇ = eAB · ṙAB , (5.4)
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with the unit vector of the LOS defined as

eAB =
rAB

ρ
. (5.5)

Equation (5.4) means that the inter-satellite range-rate can be interpreted by pro-
jection of the inter-satellite velocity vector ṙAB onto the LOS of the two satellites.
The range-acceleration can be obtained by the differentiation of equation (5.4):

ρ̈ = ėAB · ṙAB + eAB · r̈AB , (5.6)

where r̈AB = r̈B − r̈A. The time derivative of the unit vector can be obtained on
the basis of equation (5.5):

ėAB =
ṙAB

ρ
− ρ̇rAB

ρ2
=

ṙAB

ρ
− ρ̇eAB

ρ
. (5.7)

Therefore, the functional model of the classical acceleration approach can be writ-
ten as:

eAB · r̈AB = ρ̈− ‖ ṙAB ‖2 −ρ̇2

ρ
= ρ̈− ‖ ṙ⊥AB ‖2

ρ
, (5.8)

where ṙ⊥AB is the inter-satellite velocity vector projected onto the plane orthogonal
to the LOS, which can be obtained through

ṙ⊥AB = ṙAB − (ṙAB · eAB)eAB . (5.9)

Equation (5.8) linearly connects the difference between gravitational potential
gradients at the satellite locations with the inter-satellite range-acceleration
compensated by a velocity term, i.e. the second term on the right-hand side
[Thomas, 1999].

In order to estimate the time variable component of the gravity field, a
significant parts of the known signal should firstly be removed from the KBR
range-accelerations. Let us introduce a reference field and denote any quantities
that are derived from it with the subscript c (the subscript AB will no longer be
used for the sake of brevity), so that:

ec · r̈c = ρ̈c −
‖ ṙ⊥c ‖2

ρc
. (5.10)

By subtracting this equation from equation (5.8), and introducing the approxima-
tion ρc

∼= ρ and ec
∼= e, we obtain

ec · δr̈ = δρ̈− ‖ ṙ⊥ ‖2 − ‖ ṙ⊥c ‖2
ρc

, (5.11)

where δρ̈ := ρ̈− ρ̈c is the residual inter-satellite range acceleration, and δr̈ := r̈− r̈c

is the residual inter-satellite acceleration vector. Let us introduce the residual
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orthogonal velocity vector δṙ⊥ = ṙ⊥ − ṙ⊥c . Therefore,

‖ δṙ⊥ ‖2= (ṙ⊥ − ṙ⊥c ) · (ṙ⊥ − ṙ⊥c ) =‖ ṙ⊥ ‖2 −2ṙ⊥ · ṙ⊥c + ‖ ṙc
⊥ ‖2

=‖ ṙ⊥ ‖2 −2(ṙ⊥c + δṙ⊥) · ṙ⊥c + ‖ ṙc
⊥ ‖2

=‖ ṙ⊥ ‖2 −2(ṙ⊥c · δṙ⊥)− ‖ ṙc
⊥ ‖2 . (5.12)

Then, equation (5.11) can be written as:

ec · δr̈ = δρ̈− ‖ δṙ⊥ ‖2 +2ṙ⊥c · δṙ⊥
ρc

. (5.13)

We define δρ̈ as the range-acceleration term and the rest of the right-hand side
in equation (5.13) as the velocity term. A few remarks should be made here with
regard to equation (5.13). Firstly, working with reference quantities, i.e. ec and
ρc, rather than with observed quantities, i.e. e and ρ, holds a practical advantage
since latter ones can not be obtained from KBR data. Secondly, all of the reference
quantities, i.e. ec, ρc, ρ̈c and ṙc, have been computed from accurate reference orbits
of two GRACE satellites. The details surrounding the computation of the reference
orbit will be described later in the section on real data processing. Thirdly, the ve-
locity term is important, which must be taken into account for the full computation
of ec · δr̈. The observed quantity ṙ is determined by a numerical differentiation of
kinematic baselines, which are defined on the basis of GPS measurements without
dependence on the reference model. The velocity term is an important contributor
to the error budget. The kinematic baselines have relatively large errors, and the
magnitude of the vector ṙ⊥c is rather significant: about 250m/s. Assume that noise
of along-track and cross-track component of velocity differences is at the level of
±0.5 × 10−3 m/s, whereas the radial component may have 2 times higher noise
than other two components [Švehla and Földváry, 2006]. Because the orthogonal
component to the LOS is comprised of the cross-track and radial components, its
noise could be at the level of ±

√
5× 0.5 × 10−3 m/s. Therefore, the contribution

of the corresponding velocity term in equation (5.13) to the overall error budget is
±2× 250×

√
5× 0.5× 10−3/(200× 103)m/s2 = ±2.8× 10−6 m/s2. This is at least

one order of magnitude larger than that caused by the range-acceleration term,
which is usually at the level of ±(0.08 ∼ 0.09)× 10−6 m/s2 [Biancale et al., 2005].
Therefore, the velocity term is not accurate enough to match the accuracy of KBR
range-accelerations for high-precision gravity field modeling. A similar conclusion
was also made earlier by [Visser et al., 2002] in the context of the energy integral
method. Of course, this is a very simplistic error analysis, because the depen-
dence of noise on frequency is not taken into account. Nevertheless, even such
an analysis indicates that the acceleration approach is probably not well suited
for high-quality gravity field modeling. Still, in view of the long history of this
approach, an attempt at processing GRACE real data with this approach has been
made in this thesis.
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defined for the epoch i − 1 (a), and the angle ω(i+) and orientation of the frame at
the epoch i + 1 relatively to the axes defined for the epoch i (b)

5.2.2 3-point range-rate combination approach

We have discussed in the previous section that it may be problematic to
compute a high-precision gravity field model using the classic acceleration
approach, because the inter-satellite velocities computed from the GPS data
are not accurate enough. This section is devoted to the range-rate combina-
tion approach, which allows the determination of not only the LOS, but also
the radial component of the inter-satellite velocities directly from KBR-data,
thereby reducing the influence of the GPS data on the overall error budget
[Ditmar and Liu, 2006b, Ditmar and Liu, 2006c, Liu et al., 2007a].

To derive the functional model of the 3-point Range-Rate Combination
(3RRC) approach, we make use of the LOSRF frame defined in section 4.4.1 (see
figure 4.1). Three successive epochs, denoted as i−1, i and i+1, are used to form
one observation equation. For the sake of simplicity, assume that the satellite’s
motion is 2-dimensional (i.e. that the inter-satellite velocity vector does not have
a cross-track component). Let ω(i−) be the angle between x-axes at epochs i− 1
and i. Similarly, let ω(i+) be the angle between x-axes at epochs i and i + 1,
see figure 5.1. The angles ω(i−) and ω(i+) are assumed to be positive. The 3-D

average inter-satellite accelerations between the epochs i− 1 and i (i.e. ¯̈r(i−)) and

between the epochs i and i + 1 (i.e. ¯̈r(i+)) are defined as follows:

¯̈r(i−) =

∫ ti

ti−Δt
r̈(t) dt

Δt
; ¯̈r(i+) =

∫ ti+Δt

ti
r̈(t) dt

Δt
,

where r̈(t) is the point-wise inter-satellite acceleration as a function of time t, and
Δt is the sampling interval. From these definitions, the following equalities hold:

Δt · ¯̈r(i−) = ṙi − ṙi−1, (5.14)
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Δt · ¯̈r(i+) = ṙi+1 − ṙi, (5.15)

where ṙk (k = i−1, i, i+1) are inter-satellite velocities at three successive epochs.
Consider the projections of equations (5.14) and (5.15) onto the zi axis:

Δt · ¯̈r⊥(i−) = ṙ⊥i − ṙ⊥i−1, (5.16)

Δt · ¯̈r⊥(i+) = ṙ⊥i+1 − ṙ⊥i , (5.17)

where ṙ⊥k , ¯̈r
⊥
(i−) and ¯̈r

⊥
(i+) are the projections of vectors ṙk, ¯̈r(i−) and ¯̈r(i+) onto

the zi axis, respectively, (thus, ṙz
i = ṙ⊥i ). By adding equations (5.16) and (5.17)

together, we have:

Δt ·
(
¯̈r
⊥
(i−) + ¯̈r

⊥
(i+)

)
= ṙ⊥i+1 − ṙ⊥i−1. (5.18)

Furthermore, ṙ⊥i−1 can be represented as a linear combination of ”locally defined”
x- and z-components of the vector ṙi−1, i.e. ṙx

i−1 and ṙz
i−1 (with this notation,

we imply that the axes x and z correspond to the epoch of the vector under
consideration, i.e. i− 1):

ṙ⊥i−1 = ṙx
i−1 ·cos

(π

2
− ω(i−)

)
+ ṙz

i−1 ·cosω(i−) = ρ̇i−1 · sin ω(i−) + ṙz
i−1 ·cosω(i−),

(5.19)

where ρ̇k is the range-rate at the epoch k. Similarly, ṙ⊥i+1 can be represented as a
linear combination of ρ̇i+1 and ṙz

i+1:

ṙ⊥i+1 = −ρ̇i+1 · sin ω(i+) + ṙz
i+1 · cosω(i+). (5.20)

Substitution of equations (5.19) and (5.20) into (5.18) yields:

Δt·
(
¯̈r
⊥
(i−) + ¯̈r

⊥
(i+)

)
= −ρ̇i−1·sinω(i−)−ρ̇i+1·sin ω(i+)−ṙz

i−1·cosω(i−)+ṙz
i+1·cosω(i+).

(5.21)

Now, let us express ṙz
i−1 and ṙz

i+1 in terms of range-rates and average inter-satellite
accelerations. To do that, we can consider the projection of equations (5.14) and
(5.15) onto the xi axis:

Δt · ¯̈r‖(i−) = ṙ
‖
i − ṙ

‖
i−1 = ṙx

i − ṙ
‖
i−1 = ρ̇i − ṙ

‖
i−1; (5.22)

Δt · ¯̈r‖(i+) = ṙ
‖
i+1 − ṙx

i = ṙ
‖
i+1 − ρ̇i, (5.23)
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where ṙ
‖
k, ¯̈r

‖
(i−) and ¯̈r

‖
(i+) are projections of the vectors ṙk, ¯̈r(i−) and ¯̈r(i+) onto

the xi axis, respectively. Next, ṙ
‖
i−1 can be represented as a linear combination of

ρ̇i−1 and ṙz
i−1:

ṙ
‖
i−1 = ρ̇i−1 · cosω(i−) − ṙz

i−1 · sin ω(i−). (5.24)

Substitution of equation (5.24) into (5.22) yields the following expression for ṙz
i−1.

ṙz
i−1 =

Δt · ¯̈r‖(i−)

sinω(i−)
− ρ̇i

sinω(i−)
+ ρ̇i−1 · cot ω(i−). (5.25)

Similarly, ṙ
‖
i+1 can be represented as a linear combination of ṙx

i+1 and ṙz
i+1:

ṙ
‖
i+1 = ṙx

i+1 · cosω(i+) + ṙz
i+1 · sinω(i+). (5.26)

Then, ṙz
i+1 can be obtained by substituting equation (5.26) into (5.23):

ṙz
i+1 =

Δt · ¯̈r‖(i+)

sinω(i+)
+

ρ̇i

sinω(i+)
− ρ̇i+1 · cotω(i+). (5.27)

Now, equations (5.25) and (5.27) can be inserted into (5.21) with the inter-satellite
accelerations being arranged in the left-hand side and the range-rates in the right-
hand side:

Δt ·
(
¯̈r
‖
(i−) · cotω(i−) − ¯̈r

‖
(i+) · cot ω(i+) + ¯̈r

⊥
(i−) + ¯̈r

⊥
(i+)

)
= ρ̇i

(
cot ω(i+) + cotω(i−)

)
− ρ̇i−1

sin ω(i−)
− ρ̇i+1

sin ω(i+)
. (5.28)

After a scaling factor has been applied, which will be explained below, equa-
tion (5.28) can be finally written as follows:

Δt
[
(τ(i+))¯̈r

‖
(i+) − (τ(i−))¯̈r

‖
(i−) − νi(¯̈r

⊥
(i−) + ¯̈r

⊥
(i+))

]
= (ε(i−))ρ̇i−1 − (τ(i−) + τ(i+))ρ̇i + (ε(i+))ρ̇i+1, (5.29)

with

νi :=
2

(Δt)2 · (cotω(i−) + cotω(i+))
, τ(i−) := νi · cotω(i−),

τ(i+) := νi · cot ω(i+), ε(i−) :=
νi

sinω(i−)
, and ε(i+) :=

νi

sin ω(i+)
.

Hereafter, the parameters νi, τ(i−), τ(i+), ε(i−) and ε(i+) are referred to as the
navigation parameters. Equation (5.29) defines our functional model, which
connects a linear combination of three successive range-rates with a linear
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combination of gravitational potential gradients at the satellite locations.

Strictly speaking, equation (5.29) is only valid in the 2-D case, i.e. if all 3
line-of-sight unit vectors coincide with the orbital planes of the satellites. How-
ever, real data can be reduced to the (local) 2-D case by applying small corrections
to ρ̇i−1, ρ̇i and ρ̇i+1. The corrections are calculated from the y-components
of inter-satellite velocity vectors at epochs i − 1 and i + 1 projected onto the
x- or z-axes of the epoch i. For example, ρ̇i is corrected by −ṙy

i−1(e
x
i · ey

i−1)
or −ṙy

i+1(e
x
i · ey

i+1). In these corrections, we need GPS data to derive only the
cross-track component of the inter-satellite velocity vectors rather than the entire
set of orthogonal components (i.e., both cross-track and radial components), as
is the case with the classical acceleration approach. The radial component is
now derived from the KBR range-rates, see equation (5.29). The cross-track
component of the inter-satellite velocity vector has the smallest value among the
three components. The range of values is within ±0.5 m/s, see figure 5.2. The
ranges of values for the LOS and radial components are ±2.5 m/s and ±250 m/s,
respectively. Furthermore, the x-axis of epoch i is almost orthogonal to the
y-axes of neighboring epoches, since the orbit planes do not change much within
a short time interval. Therefore, the values of ex

i · ey
i−1 and ex

i · ey
i+1 are rather

small, roughly within ±1.0 × 10−5, see figure 5.2. Since these values act as
scale factors applied to the cross-track velocity component, they dramatically
reduce the influence of noise in this component. If it is assumed that the
noise of the cross-track component derived by GPS measurements is at the
level of ±0.5 × 10−3 m/s, then the noise level of these corrections should be
at the level of ±1.0 × 10−5 × 0.5 × 10−3 m/s = ±0.5 × 10−8 m/s. Considering
that the noise level of KBR range-rates is ±0.2 × 10−6 m/s, these corrections
fully preserve the accuracy of KBR range-rates. Although we did not explic-
itly express these corrections in the functional model, i.e. equation (5.29), we
do implement them in the course of real data processing shown later in section 5.3.

In the special case of circular satellite orbits, we have:

ω(i−) = ω(i+) = ωi, νi =
tan ωi

(Δt)2
,

τ(i−) = τ(i+) =
1

(Δt)2
, and ε(i−) = ε(i+) =

1

(Δt)2 cosωi
.

If we assume further that the orbit radius approaches infinity, tanωi → 0 and
cosωi → 1. Then, equation (5.29) turns into:

¯̈r
‖
(i+) − ¯̈r

‖
(i−)

Δt
=

ρ̇i−1 − 2ρ̇i + ρ̇i+1

(Δt)2
. (5.30)

Thus, the computation of range-rate combinations in this special case reduces
to the double numerical differentiation of range-rates with the 3-point scheme.
In other words, the range-rate combinations become approximately equal to
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second time-derivatives of range-rates. This explains the scaling applied to
equation (5.28).

The functional model shown with equation (5.29) is strictly linear, there-
fore, it can be re-written for residual quantities:

Δt
[
(τ(i+),c)δ ¯̈r

‖
(i+) − (τ(i−),c)δ ¯̈r

‖
(i−) − (νi,c)(δ ¯̈r

⊥
(i−) + δ ¯̈r

⊥
(i+))

]
= (ε(i−),c)δρ̇i−1 − (τ(i−),c + τ(i+),c)δρ̇i + (ε(i+),c)δρ̇i+1, (5.31)

with all navigation parameters being replaced by the derived quantities, which are

calculated from the reference orbits. In addition, δ ¯̈r
(‖,⊥)
j = ¯̈r

(‖,⊥)
j − ¯̈r

(‖,⊥)
j,c with

j = i−, i+; and δρ̇k = ρ̇k − ρ̇k,c with k = i − 1, i, i + 1. The computed range-
rates are also calculated from the reference orbits by numerical differentiation.
The right-hand side of equation (5.31) is hereafter called the residual range-rate
combination.

5.2.3 3-point range combination approach

In the previous section, we have derived a functional model that can determine the
radial component of inter-satellite velocities directly from the KBR range-rates.
Although the cross-track component, which is derived from GPS data, is still
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involved in correcting the range-rates, this does not cause problems since it is
scaled with a factor of the order of 10−5. In this section, we demonstrate that
it is even possible to avoid the velocity term in an observation equation. The
observation equations can directly connect the potential gradients with KBR
ranges rather than with a combination of KBR range-acceleration and velocity
orthogonal to the LOS [Liu et al., 2007b, Liu et al., 2007c, Liu et al., 2007d].

The 3-D average inter-satellite acceleration between epochs i − 1 and i + 1
can be related to the inter-satellite range vectors ri−1, ri and ri+1 according to a
simple three-point scheme, similarly to that given by equation (4.2).

¯̈r =
ri−1 − 2ri + ri+1

(Δt)2
. (5.32)

Since rk = ek · ρk where k = i − 1, i, i + 1, and ek is the unit vector of LOS at
epoch k as defined before, equation (5.32) can be written as:

¯̈r =
ei−1 · ρi−1 − 2ei · ρi + ei+1 · ρi+1

(Δt)2
. (5.33)

By taking the projection of both sides of equation (5.33) onto the unit vector ei

at the epoch i, we obtain the following relationship:

ei · ¯̈r =
ξ(i−) · ρi−1 − 2ρi + ξ(i+) · ρi+1

(Δt)2
, (5.34)

where ξ(i−) = ei · ei−1 and ξ(i+) = ei · ei+1, see figure 5.3, which are defined as
the navigation parameters for this so-called 3-point Range Combination (3RC)
approach. ξ(i−) and ξ(i+) are approximately equal to 1 since the radius of the
satellite orbit is much larger than the distance that satellites travel during a sam-
pling interval. Therefore, computation of the right-hand side of equation (5.34)
is approximately equivalent to a 3-point double numerical differentiation based
on the range measurements. The only problem is that the GRACE KBR range
measurements have unknown ambiguities, which can not be restored from KBR
data themselves. In order to determine the constant bias in the measured KBR
ranges within one continuous segment, precise GRACE satellite baselines are
needed.
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The functional model given by equation (5.34), is linear and straightforward. We
can write it also in the residual form:

ei,c · δ¯̈r =
ξ(i−),c · δρi−1 − 2δρi + ξ(i+),c · δρi+1

(Δt)2
, (5.35)

with ei,c, ξ(i−),c and ξ(i+),c being the reference quantities, which are calculated
from the reference orbits. In addition, δ¯̈r = ¯̈r − ¯̈rc, and δρk = ρk − ρk,c with
k = i− 1, i, i + 1. The reference ranges ρk,c are also calculated from the reference
orbits of the two satellites. The right-hand side of equation (5.35) is hereafter
called the residual range combination.

5.3 Data processing methodology

In this section, we will describe in detail the data processing strategy for all three
approaches presented above. Because many input data and processing steps are
shared by all the approaches, it is logical to consider all three approaches at the
same time. The reduced-dynamic orbits, which are used as input values, are
discussed in section 5.3.1. The computation of purely dynamic orbits is given
in section 5.3.2. In section 5.3.3, we discuss how to generate residual quantities
from ranges, range-rates and range-accelerations. Section 5.3.4 is devoted to the
inversion of the corresponding residuals into unknown parameters. A comparison
of the results produced by the three approaches is given in section 5.3.5.

5.3.1 Preparation of orbits

The GRACE satellite orbits, as the result of high-low satellite-to-satellite tracking
data processing, do not play a major role of observations. However, they are of
importance for establishing accurate reference positions as well as for computing
reference quantities and navigation parameters in processing KBR data. We
claim that only a purely dynamic orbit can be taken as an accurate reference since
neither empirical accelerations nor pseudo-stochastic parameters are introduced
as takes place for reduced-dynamic orbits (to reduce the effect of an insufficiently
known force model). Therefore, the reference quantities (ranges, range-rates or
range-accelerations) derived from purely dynamic orbits can be directly subtracted
from the corresponding observed quantities to form the residual observations.

In the classical acceleration approach, the GRACE satellite orbits are also
needed to derive observed satellite velocities. In this sense, the orbit must be
provided kinematically, since it does not depend on any a priori force model. A
reduced-dynamic orbit is also not suitable in this context, since it relies on the a
priori force model.

Of course, a reduced-dynamic orbit might be more accurate than the corre-
sponding purely dynamic orbit from the point of view of positioning accuracy as
it is less subject to errors in force models. Therefore, it can be advised, e.g. as the
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input for estimation of accelerometer calibration parameters to isolate its errors
[Luthcke et al., 2006]. For this reason, reduced-dynamic orbits of the GRACE
satellites are used as input to compute the purely dynamic orbit and, at the same
time, calibration parameters of the accelerometers. It should be mentioned that
the kinematic orbits are also suitable for this purpose if they are available.

Instead of using the reduced-dynamic orbits of both GRACE satellites as
input, we use one reduced-dynamic orbit in combination with a set of reduced-
dynamic baselines. The reasons to use baselines are as follows. 1) Several
investigations have shown that the gravity field models produced from GRACE
KBR data are, as a whole, more sensitive to the relative positioning errors of
the two satellites than they are to the absolute positioning errors [Jekeli, 1999]
[Ditmar and Liu, 2006b]. This means that the accuracy of the baselines is more
important than that of the absolute positions of individual satellites. 2) The accu-
racy of baselines is higher than that of the absolute positions. Furthermore, it can
be somewhat improved further by using the KBR measurements. Additionally,
precise GRACE satellite baselines are also needed to determine the constant bias
in the measured KBR ranges within one continuous segment for the 3RC approach.

For the years 2003-2005, precise reduced-dynamic orbits of the GRACE A satellite
and a set of reduced-dynamic baselines were provided by the Astrodynamics
and Satellite Systems in DEOS (Delft Institute of Earth Observation and Space
Systems) [Kroes et al., 2005]. It should be mentioned that baseline solutions are
directly determined from GPS measurements rather than being computed from
the L1B ephemerides [Case et al., 2004]. An important feature of the exploited
baselines is that double difference ambiguities of GPS phase measurements are
fixed with a relatively high success-rate. In addition, an extended Kalman filter,
complete with a rigorous ambiguity validation, was employed to smooth the
relative baseline estimates in the estimation process. As a result, the baselines of
the GRACE satellites were determined with a precision of slightly less than 1 mm,
as determined through a comparison with KBR measurements [Kroes et al., 2005].

The orbit data of 2006 were kindly provided by the GNSS Research Center
of Wuhan University. The high-precision kinematic orbits and baselines are used
instead of reduced-dynamic ones. The accuracy of the exploited baselines is 3-4
mm. The baselines were also processed in relative mode, but added to an absolute
orbit, resulting in two individual kinematic orbits before they are provided to us
[Zhao et al., 2007]. In this case, we directly use the provided kinematic orbits as
input to compute the purely dynamic orbits.

Although the exploited baselines are of high quality, we still make an at-
tempt to improve them using KBR range measurements. However, KBR range
measurements can not be used for that purpose directly, since they are suffer
from phase ambiguities, just like GPS phase measurements. To determine the
KBR range bias (also needed in the 3RC approach), the GPS baselines within a
continuous KBR tracking segment are used. A continuous KBR tracking segment
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is a segment, in which the ambiguities do not change. The unknown constant in
the KBR ranges can be computed as:

BKBR =
1

n

n∑
i=1

(ρc(ti)− LKBR(ti)), (5.36)

where ρc(ti) and LKBR(ti) are the computed ranges and measured biased ranges at
the epoch ti, respectively, and n is the number of KBR range measurements within
a continuous KBR tracking segment. In this way, we can restore the unknown
constant in the KBR ranges:

ρ(ti) = LKBR(ti) + BKBR. (5.37)

Theoretically, the precision of KBR bias-corrected ranges can reach a few microns
when the length of a continuous segment is above ten thousand epochs as it
follows from the the error propagation law (1 mm/

√
10000 = 10 μm). In most

cases, the actual segment length exceeds this number. It is important to add that
range combinations derived from the bias-corrected observed ranges in the 3RC
approach do not suffer from errors in the estimated biases because the latter ones
are canceled out after the double differentiation.

The orbit preparation for the years 2003-2005 is outlined in the flow chart
shown in figure 5.4. The input data sets include reduced-dynamic positions of
satellite A, with the 30-sec sampling rate, and baseline vectors between satellite A
and B, with the 10-sec sampling rate [Kroes et al., 2005]. Positions and baselines
are given in an Earth-fixed Earth-centered frame and in the GPS time system.
Both are transformed into the inertial frame using rotation matrices. Afterwards,
an 11th order shifted Legendre interpolation scheme is applied to obtain 5-sec
sampling positions and baselines. Our experiments tell us that the accuracy of
the 11th shifted Legendre interpolation is sufficient. After the interpolation, both
positions and baselines have the same sampling rates as the KBR measurements,
i.e. 5-sec interval. The baselines are used to determine the bias in the KBR
biased-ranges, and after that the bias-corrected ranges can be used to adjust
(scale) the baselines. The vector summation of the corrected baselines and
satellite A results in the orbit of satellite B. Finally, the orbits of the two satellites
are rotated back into the Earth-fixed Earth-center frame to be used as the input
for orbit fitting and for the computation of the design matrix.

5.3.2 Orbit fitting for computation of purely dynamic orbit

As discussed previously, the purely dynamic orbit must be taken as an accurate
orbital reference. Ideally, the purely dynamic orbit can be computed on the
basis of GPS measurements directly; however, this will dramatically increase
both the computational burden and overall complexity of the problem, and is a
topic considered to be beyond the scope of this thesis. Therefore, we prefer to
compute dynamic orbits by fitting an existing high-precision orbit. To this end,
the reduced-dynamic orbits prepared in the previous section are exploited in this
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Fig. 5.4. Flow chart of orbit preparation

step as the input.

An accurate dynamic orbit can not be obtained without an improvement
in the non-gravitational acceleration measurements. In other words, the ac-
celerometer data should be calibrated simultaneously with orbit fitting. This
section discusses the exploited procedure of orbit integration and orbit fitting.
The procedure is based on the integration and orbit fitting module of PANDA, a
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precise orbit determination software originally developed at the GNSS Research
Center of Wuhan University [Zhao et al., 2007]. The module was updated in the
context of this study by incorporation of the latest updates of force models and
conventions.

The computation procedure is demonstrated in the flow chart shown in fig-
ure 5.5. In essence, the procedure is divided into three steps. The first step
is the orbit integration on the basis of (i) the initial state parameters that are
the initial position and velocity per orbit arc and (ii) the calibration parameters
that include 3-dimensional bias and scale factor vectors for non-gravitational
accelerations per arc. The a priori initial position and velocity are picked up
from the reduced-dynamic positions at the beginning of the arc. The a priori
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values for the biases and scale factors are set to zero. During the first integration,
the partial derivatives with respect to the initial state parameters and calibrated
parameters are computed, together with the positions, on the basis of known
force models. The orbit fitting is carried out in the second step, during which
the residuals between the reduced-dynamic orbit and the integrated one are
computed. After that, corrections to the a priori initial state parameters and
calibration parameters are estimated using the least-squares adjustment. Based
on the newly obtained estimates, the purely dynamic orbit is computed in the
third step by using the integrator.

The procedure is similar to that presented by [Luthcke et al., 2006]. How-
ever, we implicitly make use of bias-corrected ranges instead of range-rates during
the orbit fitting, since the baseline vectors of the two satellites are adjusted using
bias-corrected ranges beforehand. Additionally, we do not estimate one-cycle-
per-revolution (cpr) parameters in the along-track direction for the accelerometer
data calibration, but only bias and scale factors for each of three directions per
arc. Furthermore, the length of the arc is 6 hours rather than one day. In this
way, we can largely avoid the accumulation of resonance effects caused by errors
in the initial state vector and the zonal coefficients of the background gravity field
model [Visser, 2005].

The numerical integration of the equations of motion is carried out using
the 11th order Adams multi-step method [Montenbruck and Gill, 2000]. The
integration step-size is 1 second. The Runge-Kutta single-step method is used
to compute the values at the first few points so that the Adams integrator is
properly initialized. The integration is performed in the inertial frame.

The integration of the equations of motion relies on the accelerations expe-
rienced by the satellite. The accelerations are the sum of gravitational and
non-gravitational perturbations. The non-gravitational accelerations are mea-
sured by the accelerometers. The known gravity signals, including those related
to the static field, should be fully considered during the orbit integration.
The acceleration vector caused by direct planetary perturbations can be easily
evaluated using the planetary ephemerides. Other geopotential perturbations are
represented by a spherical harmonic series with time-variable coefficients, to a
specified maximum degree and order.

The background force models and data sets for the computation of acceler-
ations of the satellites are given as follows. Firstly, the EIGEN-GL04C model
up to degree 150 is taken as the static reference field. The secular changes of
coefficients C20, C21, S21, C30 and C40 are considered according to the IERS 2003
convention [McCarthy and Petit, 2003]. The reference epoch of the secular change
is the epoch 2004. These secular changes are mainly the differences between the
mean figure axis and mean rotation pole averaged over the observation period of
the background gravity field model. These differences would be due to long-term
fluid motions in the atmosphere, oceans, or Earth’s fluid core. Secondly, solid
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Earth tidal contributions to the geopotential are computed as specified in chapter
7, IERS 2003 conventions. The DE-405 planetary ephemerides are used to
compute the N-body perturbations. The direct perturbations due to the Sun,
Moon and all the planets are also evaluated. All of the N-body accelerations
acting on the satellite are computed using point-mass attraction formulas. The
indirect effects due to the accelerations of the Earth caused by the planets
are also computed as point-mass attractions. The frequency independent term
is computed from degree 2 to degree 4, while the frequency dependent one is
only considered as corrections to coefficients of degree 2. Thirdly, the ocean
tides are modeled according to the FES2004 model [Lyard et al., 2006]. Nine
diurnal/semi-diurnal and four long-period constituents are considered up to
degree 80. Fourthly, the AOD1B RL04 product is used to take atmosphere and
oceanic variability into account [Flechtner, 2007a]. The product is a combination
of the ECMWF operational atmospheric fields and the barotropic ocean model
OMCT driven by the atmospheric fields. The AOD1B RL04 product is provided
in terms of spherical harmonics up to degree 100 and with 6-hour temporal
resolution. The value of the harmonic coefficients at intermediate epochs is
obtained by linear interpolation. In addition, the pole tide, caused by rotational
deformation, is also computed as changes to the coefficients C21 and S21. For
the ocean pole tides, a self-consistent equilibrium Desai model [Desai, 2002] up
to degree 30 is used to consider the centrifugal effect of polar motion on the
oceanic mass. Furthermore, the general relativistic perturbations are computed
as specified in the IERS2003 convention. Finally, the level 1B non-gravitational
accelerations measured by accelerometers, and quaternions measured by the star
cameras, are used to take surface forces into account [Case et al., 2004].

5.3.3 Generation of residual quantities

Once we have obtained the purely dynamic orbits for the two GRACE satellites,
the reference quantities necessary for the three approaches can be computed. Fig-
ure 5.6 shows the procedure for generating the computed ranges and range-rates,
which are derived easily from the position differences and velocity differences,
respectively. Furthermore, the orthogonal components of velocity differences can
also be computed for the classic acceleration approach. In order to form the
residual quantities (also called residuals of pseudo-observation) for these three
approaches, unit vectors (that define the LOSRF) and navigation parameters are
calculated as well. In addition, the range-accelerations are obtained from the
computed ranges by using numerical differentiation. The scheme of the double
numerical differentiation has been already discussed in section 2.5.4.

The computation of residual quantities for the classical acceleration approach
and the 3RRC approach must involve the velocity differences, see figure 5.7 and
figure 5.8. The observed velocity differences are derived from the kinematic
baselines, which were also used in section 4.4 for the GRACE hl-SST data
processing. The noise level of the kinematic baselines we used is around 4 mm,
according to the comparison made by [Kroes, 2006]. It is higher than that of the
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reduced-dynamic baselines since the kinematic baselines suffer from larger random
noise. The sampling rate of the baselines is 10 sec, and the interpolation (same as
before) is applied to match the sampling rate of the KBR measurements (5 sec).
We found that the interpolation does not reduce the accuracy of the baselines,
see figure 5.9a, which remains at the level of 4 mm. The observed velocity differ-
ences can then be derived from the kinematic baselines by means of numerical
differentiation. Figure 5.9(b) demonstrates that the precision of the derived
inter-satellite velocities is 0.5×10−3 m/s, which is three orders of magnitude larger
than that of the KBR range-rates, and is consistent with the analysis of section 5.2.
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The residual velocity and range-acceleration terms in equation (5.13) are
computed, as shown in figure 5.7. In order to validate the analysis conducted
in section 5.2, the daily Root-Mean-Square (RMS) values of the two terms in
equation (5.13) are shown for August 2003 in figure 5.10. There is no data
available for the statistics in August 24 since the purely dynamic orbit of the day
is not good enough to be taken as the reference one. Regarding the other days, the
RMS values of the velocity term are around 3.0 μm/s2, while less than 0.1 μm/s2

RMS values are indicated for the range-acceleration term, see figure 5.10. The
velocity term is more than 30 times larger than the range-acceleration term.
These statistics are similar to the analysis in section 5.2. The gravity field model
estimated with the acceleration approach represented by equation (5.13) (the sum
of these two terms) will be demonstrated in section 5.3.5.



110 Chapter 5: Gravity field modeling from GRACE ll-SST data

Modified
KBR range−rates

Modified

Residual range−rates

Residual quantities expressed in

reference range−rates

Navigation parameters

right−hand side of equation (5.31)

Unit vectors

Observed Reference
range−rates and range−rates and

velocity differencesvelocity differences

Fig. 5.8. Computation of residual quantities for the 3RRC approach

As far as the computation of residual range-rate combinations and the residual
range combinations is concerned, we can refer to the procedures shown in
figure 5.8 and figure 5.11. First of all, residual ranges and residual range-rates
have to be computed, respectively. Figures 5.12(a) and 5.12(c) show a one day
time series of residual ranges and residual range-rates, respectively. The resonance
effects, shown as a low-frequency variations, are still seen in the time series,
though they are largely avoided by using relatively short arcs (6 hours per arc),
in the integration of purely dynamic orbits. The resonance effects are caused by
the errors in the initial state vector, i.e. the initial position and velocity of the
satellite, which may not be 100% correct, even though they are adjusted in the
course of orbit fitting. Furthermore, even if the initial state vector is 100% correct
at the beginning of the procedure, the differences between the reference gravity
field model and the true one could cause errors in the positions and velocities
after the integration of the first epoch. These errors will further cause large
errors at the epochs afterwards. The resonance effects must be eliminated or
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modeled, otherwise they can be mapped onto all the coefficients of the estimated
gravity field model, according to our experiments. In many cases, the influence
could be larger than the signal to be estimated. As indicated by [Colombo, 1984],
resonance effects result in a bow-tie pattern in orbit perturbations. Such a bow-tie
pattern can be modeled with a sufficient accuracy by using empirical parameters,
i.e. bias, bias trend and 1-cpr parameters every orbital revolution [Visser, 2005].
Taking the residual range-rates as an example, we can write

Δρ̇ = a1+a2ω0t+a3 cosω0t+a4 sin ω0t+a5(ω0t)
2+a6ω0t cosω0t+a7ω0t sinω0t,

(5.38)

where ω0 represents the orbital angular velocity of the satellite, t is time and
ai(i = 1, 2, ..., 7) are constant values that can be estimated by least-squares fitting.
Figures 5.12(b) and 5.12(d) demonstrate the residual ranges and range-rates after
resonance effects are eliminated. It can be seen from figure 5.12 that the residuals
of range-rates contain more power at high-frequencies, and much less power at
low-frequencies than those of ranges. This can be explained by the fact that the
numerical differentiation acts as a high-pass filter.

After the subtraction of resonance effects, the residual range-rate combina-
tions and range combinations are obtained that are suitable for gravity field
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modeling. According to the definition of the force model used for the computation
of reference orbits, the residuals contain gravity signals only from non-modeled
time-varying effects, e.g. hydrology, snow cover, ice sheets and post-glacial re-
bound, as well as signals caused by imperfections of the exploited temporal models
used. In addition, noise from the KBR measurements, inaccurate calibration of
the accelerometer data, and inaccurate orbits remain in residuals. As we know
from the previous sections, the range-rate combinations are approximately equal
to third-order derivatives of ranges, and the range combinations are approximately
double differentiated ranges. One may argue that the differentiation amplifies
high-frequency noise, which may exceed the level of temporal gravity field signals.
Therefore, these residuals can not be used to achieve even a reasonable gravity
field solution. This is fortunately not true. The total noise level of residuals may
indeed be higher than that of signals which we expect to recover; however, noise
in the residuals depends on frequency. In other words, noise can be very strong at
the high frequencies (for example, roughly proportional to the frequency squared
in the case of range-combination), whereas, at lower frequencies, the noise rapidly
decreases so that no information is lost. To validate this statement, we plot in
figure 5.13, a global distribution of residual range combinations of August 2003 at
the geographical locations of the middle point of the two satellites. The original
residuals are showed in figure 5.13(a), from which nothing but scattered noise can
be seen. Figure 5.13(b) displays the residuals after low-pass filtering. To this end,
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Fig. 5.13. Map of residual range combinations of August 2003 without low-pass
filtering (a) and with a low-pass filtering (b); Note that the two maps have different
color bars.

a wavelet decomposition and reconstructing procedure is used [Mallat, 1989]. The
decomposition level is selected on a low-pass cutoff frequency which was defined
to ensure the spectral representation of the gravity field up to degree 40. As
can be seen from figure 5.13(b), clear signals are observed in many geographical
areas, e.g. the Amazon and Orinoco river basins of South America, the Zambezi
basins of Africa, the Ganges basin of the southern Asia and Siberia region. The
pattern of the residuals of range-combinations is very similar to that of mass
changes in terms of equivalent water height (shown later), up to a scale factor.
Therefore, it can be concluded that residual range combinations still preserve
temporal gravity field variations and can be used to quantify them. The same
holds also for the range-rate combinations, though in that case it is more difficult
to demonstrate directly the presence of signal in the residuals. A prerequisite is
that the frequency-dependent data weighting is required in estimation of gravity
field parameters.
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5.3.4 Least-squares adjustment

In the previous section, we have discussed the computation of the residual quanti-
ties for all three approaches. In this section, the inversion of the generated residual
quantities into residual gravity field parameters is described in our discussion. We
focus on the differences with respect to the processing of the kinematic baselines
described in chapter 4. The major difference is that an ll-SST observation is a
scalar value rather than a 3-component vector as it is the case for kinematic base-
lines. Another difference concerns the averaging filter: the 3RC approach uses the
same filter as was already introduced in the context of hl-SST data processing (see
section 2.5.4.2); the classical acceleration approach does not need an averaging
filter since it makes use of point-wise range-accelerations to form its functional
model; and the 3RRC approach needs a new averaging filter, which is derived
below. Finally, the noise models used in the three approaches also need to be
adjusted.

5.3.4.1 Design matrices for the three functional models

Just like in the case of processing the hl-SST data, the conjugate gradient method
is exploited for the inversion of ll-SST data into the Earth’s gravity field model. In
doing so, dedicated synthesis and co-synthesis procedures are applied. A general
expression of the synthesis can be given as:

A = Rll(Apw,B −Apw,A), (5.39)

where A is the final design matrix; and Apw,A and Apw,B are the satellite A and
B related point-wise design matrices in TRF, respectively. They are the same as
described by equation (4.10). Rll is the transformation matrix, which links the
point-wise inter-satellite accelerations to the observations.

The explicit expression for the matrix Rll depends on the functional model. For
the classic acceleration approach, Rll can be written as:

Rll = R(C→LF.x)R(T→C), (5.40)

where R(T→C) is the transformation matrix of rotation from TRF to CRF, and
R(C→LF.x) is the matrix that describes the projection of a 3-D vector defined
in the CRF onto the x-axis of the LOSRF. Notice that there is no need for an
averaging filter.

For the 3RC approach, Rll can be written as:

Rll = R(C→LF.x)ER(T→C). (5.41)

In this case, the averaging filter is included, which is exactly the same as in
processing the kinematic baselines.

For the 3RRC approach, Rll can be written as:

Rll = DR(C→LF.xz)EvR
(T→C). (5.42)
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Fig. 5.14. Weight function that describes the averaging of accelerations derived from
velocities by a single differentiation with a two-point scheme

The matrix Rll includes four different operators, three of which are new. First
of all, the average filter given by the matrix Ev is different from the one used
in the 3RC approach. This is discussed in section 5.3.4.2. Secondly, R(C→LF.xz)

describes the projection of vector defined in the CRF onto xz-plane in the LOSRF.
Finally, the matrix D consists of the navigation parameters, such as νi, τ(i−),
τ(i+), defined in equation (5.29). These parameters are computed along with the
residual quantities. From the implementation point of view, the classic acceleration
approach is the easiest approach, and the 3RRC approach is the most complicated
one among the three.

5.3.4.2 Averaging filter for the 3RRC approach

The averaging filter for the 3RRC approach is different from that used in the
range-combination approach, because average accelerations are derived here from
the range-rates, i.e. velocities. It is obvious that a single differentiation based
on velocities at two epochs results in exactly the average acceleration within the
differentiation interval. Therefore, the weight function should be written as:

w(s) =
1

Δt
, (5.43)

see also figure 5.14. In this case, the accelerations can be represented for a given
time interval [t− n

2 Δt, t + n
2 Δt] as follows:

a(t + s) =
2n−1∑
j=0

cjs
j , s ∈ [−n

2
Δt,

n

2
Δt] (5.44)

where cj are the coefficients to be found and n being an odd number. Notice that
the time range of the averaging filter is not identical to the one in equation (2.83).
The coefficients cj can be found with equation (2.74). The square matrix V is
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defined as:

V =
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. (5.45)

Taking the weighting function into account, we can write the average acceleration
as:

ā(t) =

∫ Δt/2

−Δt/2

w(t)a(t + s)ds =
1

Δt

∫ Δt/2

−Δt/2

2n−1∑
j=0

cjs
jds

=
1

Δt

2n−1∑
j=0

cj

j + 1
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∣∣∣∣∣∣
Δt/2

−Δt/2

=
1

Δt

2n−1∑
j=0

cj

j + 1

{(Δt

2

)j+1 −
(−Δt

2

)j+1
}

:= wT
v c, (5.46)

where elements of the vector wv are defined as:

{wv}j =

⎧⎪⎪⎨⎪⎪⎩
(Δt

2

)j 1

2(j + 1)
for even j

0 for odd j

(j = 0, 1, ..., 2n− 1) (5.47)

Similar to equation (2.87), we obtain:

ā(t) = wT
v ·V−1a := eT a, (5.48)

where

e = (VT )−1wv. (5.49)

Thus, the averaging filter has three differences with respect to the one given by
equation (2.88): the Vandermonde-type matrix V is different; the degree of the
polynomial to be chosen is an even integer rather than odd; the input vector w of
the Vandermonde-type system of linear equations is also different.

5.3.4.3 Noise models used in the three approaches

Because all the three approaches make use of differentiation to derive the input
data for the inversion, the noise in the input data sets is increased with frequency
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in the spectral domain. Therefore, a frequency-dependent weighting should be
included into the least-squares adjustment. The noise models used in the three
approaches should be considered differently; however, they all can be linked to
the procedure of noise estimation described in section 3.4. The major steps of
the noise estimation are the computation of the PSD of the residuals, and an
analytic approximation of PSD by estimation of the parameters β and τ (see
equation (3.25). It should be mentioned that the scaling parameter, β, is not
that important as in the case of CHAMP data processing, since there is only one
data component to be processed. Therefore, the relative weighting of components
is not an issue. In the absence of regularization, this parameter plays no role
at all. However, it still makes sense to have a realistic estimation of β if the
variance-covariance matrix of the obtained gravity field model is required.

Ideally, the a posteriori residuals should be used as input for the estimation of
the noise model. However, we found that it did not make much of a difference
when using the original residuals obtained as discussed in the previous sections,
since they only contained minor additional signals compared to the posteriori
residuals. These signals are mostly present at low frequencies and practically do
not change the estimation of parameters β and τ .

In order to clarify the noise estimation in the three approaches further, let
us consider an example. The residuals of August 2003 produced as discussed in
section 5.3.3 are taken as input. The PSDs of three sets of residuals are displayed
in figure 5.15 (red line). The parameters β and τ are estimated and used to
build the analytical approximations, which are displayed as blue dashed lines in
figure 5.15. We also introduce a trial noise model for each type of residuals to
investigate whether the obtained results are sensitive to the noise models. The
trial noise models are shown as a black line in figure 5.15. The estimated and
trial noise models are used to process the real data of August 2003. Additionally,
the processing is repeated with the frequency-dependent data weighting switched
off, i.e. with identical weighting of all frequencies. The gravity field models are
estimated up to degree 120, without regularization. Table 5.1 allows the models
to be quantitatively compared. The cumulative geoid height differences with
respect to the EIGEN-CG04C model computed for degree 40 is taken as the
indication of a model quality.

From the comparison, we can see that absence of frequency-dependent data
weighting gave the worst results for the 3RRC. The result can be an order
of magnitude worse in that case. Therefore, it can be concluded that the
frequency-dependent data weighting is essential for this approach. In addition, it
is found that the results of the 3RRC approach are sensitive to the noise model.
The trial noise model gave even better results than that estimated from the
residuals. This may demonstrate that the noise estimation procedure may not
very suitable for the approach. Further research here is needed. In the classic
acceleration approach, we can see that the total error is dominated by noise
in the velocity term. This noise does not vary significantly in the frequency
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Fig. 5.15. Noise models for the classical acceleration approach (top), the 3RRC
approach (middle), and the 3RC approach (bottom). The residuals of real data are
displayed in red, their analytical noise models in dashed blue, and the corresponding
trial noise models in black



120 Chapter 5: Gravity field modeling from GRACE ll-SST data

Table 5.1. Cumulative geoid height differences with respect to EIGEN-GL04C com-
puted for degree 40. The trial noise model and the noise model from real residuals
indicate that frequency-dependent data weighting is used

approach identical trial noise noise model from

data weighting model real residuals

acceleration 127.0 mm 136.0 mm 126.0 mm

3RRC 63.0 mm 2.7 mm 3.9 mm

3RC 1.1 mm 1.1 mm 1.1 mm

range under consideration. The results obtained with the trial noise model give
slightly worse results, mainly due to the fact that unrealistically high weights
are given to the low frequencies. As far as the 3RC approach is concerned, the
frequency-dependent data weighting does not make any difference at the low
degrees. Therefore, the noise model and uniform weighting results with the same
accuracy. At the higher degrees, it is found that the frequency-dependent data
weighting gives slightly better results than those produced without frequency
data weighting (around 5% at degree 110 - 120, not shown here). The same
behavior is observed for other months. We consider this to be an advantage of
the 3RC approach. From the comparison, we also find that the 3RC approach
produced better results than the other two. More details of the comparison of
three approaches will be given in next section.

5.4 Comparison of results

Using the procedures of data processing described in previous sections, we carried
out gravity field modeling on the basis of real data. In this section we will
compare the results obtained with the three approaches for two months: August
2003 and October 2003. In order to investigate the quality of the results, the
GLDAS hydrological model is used for a comparison.

GLDAS stands for the NASA’s Global Land Data Assimilation System
[Rodell et al., 2004], which is jointly developed by the NASA Goddard Space
Flight Center (GSFC) and the NOAA National Center for Environmental Predic-
tion. GLDAS is an advanced modeling system, parameterizing and constraining
multiple land surface models with ground- and satellite- based measurements,
with the aim of estimating the water and energy cycle states and fluxes. GLDAS
can be used, in particular, to estimate water storage variations in a given region.
The change in total water storage has many components, such as changes in soil
moisture, snow water, ground water and open water. The total storage ΔS is
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Fig. 5.16. Degree amplitude of the recovered gravity field variations in August 2003
in terms of geoid heights. The models are obtained with the classical acceleration
approach (orange), the 3RRC approach (light blue), and the 3RC approach (red).
The GLADS hydrological model (black) is shown for a comparison

described by the water balance equation:

ΔS = P − E −R, (5.50)

where P is the precipitation, E is the evapotranspiration, and R is the run-off
in open water body and/or discharge through underground flows. The precip-
itation and evapotranspiration are estimated with a relatively high accuracy
by assimilating the latest surface observations and remote sensing data in the
GLDAS system. However, the run-off is still not trivial to measure with the
same level of accuracy. Consequently, GLDAS does not monitor all components
of the water storage; it reflects only soil moisture and snow water equivalent
[Rodell et al., 2006]. Furthermore, Greenland and Antarctica are excluded in
the GLDAS models because the ice sheet flow and ice mass balance are not
modelled due to that they are not represented by the Noah land surface model
[Ek et al, 2003] applied for deriving the version of GLDAS hydrological models.
Nevertheless, the GLDAS hydrological models are used in the thesis, because
better alternatives do not exist at the global scale. The GLDAS terrestrial water
storage changes are converted into a series of fully normalized surface spherical
harmonics up to degree and order 100. Finally, the mean model of two years
(2003 and 2004) is subtracted from each monthly model. This is consistent with
the processing applied to the time-variable GRACE gravity field models.

The comparison of the results starts with August 2003. Figure 5.16 shows the
signal RMS per degree in terms of geoid heights. The GRACE models produced
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Fig. 5.17. Maps of geoid height variations in August 2003 on the basis of the models
obtained with the 3RRC approach (top) and the 3RC approach (middle). The GLDAS
hydrological model (bottom) is shown for a reference. All the models are truncated
at degree and order 40
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Fig. 5.18. Degree amplitude of the recovered gravity field variations in October 2003
in terms of geoid heights. The models are obtained with the classical acceleration
approach (orange), the 3RRC approach (light blue), and the 3RC approach (red).
The GLADS hydrological model (black) is shown for a comparison

with the three approaches are computed with respect to the background model,
i.e. EIGEN-GL04C up to degree and order 120. Therefore, the values shown
mainly contain the temporal gravity signal and model errors. The temporal
gravity signal is itself limited to the mean value for the month under consideration.
As can be seen in figure 5.16, the degree RMS of the solution obtained by the
classic acceleration approach is more than one order of magnitude larger than
that of the other two GRACE solutions. The gravity signal of monthly variation
can not be that large (see the curve of the hydrological model in the figure),
therefore, the shown values must be mostly due to model errors. In fact, this is
consistent with the error analysis of section 5.3.3. The model errors are probably
caused by noise in the velocity term along the orbit. It can be concluded that the
classic acceleration approach must not be used if the accuracy of velocities is not
improved.

The other two GRACE solutions show a much smaller magnitude of the
recovered signal. Furthermore, the model computed with the 3RC approach
demonstrates a factor two smaller magnitude at the intermediate degrees when
compared to the model obtained with the 3RRC approach. At the high degrees
(above degree 50), the differences are rather close. It is remarkable that at the
very low degrees (lower than 10), the 3RC solution shows magnitudes closer to
the GLDAS hydrological model than to the RRC solution. On the other hand,
a significant difference between the hydrological model and the GRACE models
is observed at higher degrees. The signal RMS per degree of GRACE solutions
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Fig. 5.19. Maps of geoid height variations in October 2003 on the basis of the models
obtained with the 3RRC approach (top) and the 3RC approach (middle). The GLDAS
hydrological model (bottom) is shown for a reference. All the models are truncated
at degree and order 40
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quickly increases with degree, which can be explained by noise due to GRACE
measurement errors as well as other errors. On the contrary, hydrological models
are free from such errors, and consequently show a signal that decreases with
increasing degree.

In order to further compare the GRACE solutions obtained with the 3RC
and 3RRC approach, they are shown as maps of geoid height variations in
figure 5.17, together with the similar variations computed from the GLDAS
hydrological model. The cumulative geoid height differences are only computed
up to degree 40 in order to avoid the noise at high frequencies. The maps provide
information of the spatial distribution of gravity signal contaminated by model
errors. The comparison in the spatial domain firstly shows that the GRACE
solutions have distinct North-South stripes which mainly coincide with the ground
tracks of the GRACE satellites. These stripes are definitely caused by model
errors. This anisotropic pattern of errors may be considered as an intrinsic feature
of GRACE KBR measurements, which are not sensitive to the gravity variations
in the cross-track direction. The second observation is that both GRACE-based
solutions show gravity signals in the Amazon river basin and in the Europe-Asia
continent. On the other hand, the 3RRC solution demonstrates a less smoothed
pattern than the 3RC solution, although the signal can be still seen. We can not
exclude that it might be possible to enhance the signal in the 3RRC solutions by
designing a dedicated post-processing filter. However, this is a challenging task,
and is beyond the scope of this research.

From the comparison of results of August 2003, it is tentatively concluded
that the 3RC approach produces the best gravity field model among the three
approaches. In order to validate this conclusion, similar comparisons were also
made for other months. Here, we show results for only one more month: October
2003. Figure 5.18 shows the RMS signal per degree and figure 5.19 demonstrates
the maps of geoid height variations. It can be seen that the major phenomena
observed and the conclusions made for August 2003 are confirmed. The only
exception is that the 3RRC solution is closer to the 3RC solution in the degree
domain. In particular, the 3RRC solution shows a higher quality than the 3RC
solution at the high frequencies. However, the 3RRC solution still displays much
stronger stripes than the 3RC solution. Therefore, the focus of the rest of thesis
will be only on the 3RC approach, even though we still consider the 3RRC
approach as a promising method, which deserves further studies.

5.5 Iterative improvement of the gravity field model

This section will focus on the necessity and benefits of making several iterations
in the course of producing the gravity field models. Firstly, an investigation is
conducted to see whether there are some signals remaining in the data after the
least-squares adjustment after subtracting the adjusted observations from the orig-
inal ones. Then, an iterative estimation procedure is proposed in order to improve
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Fig. 5.20. Flow chart of iterative gravity field modeling

the accuracy of gravity field models.

As soon as a gravity field model is obtained, it is important to be sure that the
gravity signal contained in the measurements is sufficiently recovered. The point of
concern is the fact that empirical parameters are introduced in the data processing.
The empirical parameters are a double-edged sword. On the one hand, they are
essential for accurate GRACE data processing since they can efficiently absorb
some unwanted signals (e.g. bias, scale factor of non-gravitational accelerations,
and 1 cpr resonance effects), see also [Reigber et al., 2005b, Tapley et al., 2005,
Han et al., 2006a]. On the other hand, the empirical parameters are correlated
with the gravity field parameters. They may absorb part of the gravity signal,
particularly when the latter one is relatively large. If this is indeed a problem, it
can be solved by modeling the gravity field iteratively. The corrections of gravity
field model estimated in the first iteration are added to the background force
models. Then, the purely dynamic orbits and the 3RC residuals are computed
again. The total model of temporal gravity field variations is a sum of models
obtained after each iteration. Figure 5.20 shows the flow chart of the proposed
iterative procedure.

Figure 5.21 demonstrates maps of the 3RC residuals and the obtained models af-
ter three iterations. The models are presented in terms of equivalent water height
smoothed by the Gaussian filtering with 600 km radius (see Appendix B). The 3RC
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Fig. 5.21. Iterative estimation with the 3RC approach for August 2003. Residuals
generated for the first iteration (1a), the model obtained after the first iteration (1b).
Residuals generated for the second iteration (2a), the model obtained after the second
iteration (2b). Residuals generated for the third iteration (3a), the model obtained
after the third iteration (3b). Residuals are shown after a low-pass filtering that was
also used to produce figure (5.13). The models are shown as maps of water storage
changes in terms of equivalent water height after 600 km Gaussian smoothing. Notice
that (1b) has different color bars than (2b) and (3b)

residuals before the first iteration clearly show spatial variations, and the gravity
field model obtained after the first iteration demonstrates a similar pattern as the
residuals. The residuals generated for the second inversion do not display a very
clear gravity signal, but some tiny signals can be seen in Amazon and Zambezi
river basins – two of the areas with large water storage changes. The model ob-
tained after the second iteration indeed shows spatial variations in the two above
mentioned river basins. At the same time, some stripes are present in the model,
even though the Gaussian filtering is applied. From the results of the second iter-
ation, it can be concluded that (1) there is indeed a remaining gravity signal not
recovered after the first iteration, which is particularly visible in the areas with
large gravity variations; (2) the remaining signals are rather small compared with
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Fig. 5.22. Signal degree RMS for August 2003 in terms of geoid heights. Red line
shows the model obtained after the first iteration, light blue line presents the model
obtained after two iterations, and black line is the GLDAS model

the signal recovered in the first iteration. As far as the third iteration is concerned,
it is even more difficult to find any signal in the residuals, and little signal can be
seen in the map of water storage changes.

Fig. 5.23. Water storage changes in terms of equivalent water heights for August
2003. The model is the sum of the second iteration model and the first iteration
model truncated at degree 13
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From this case study, it can be concluded that two iterations are sufficient to ex-
tract all the signal from the data. More iterations make no sense because they
only increase the estimation errors. The same holds for other months, such as
October 2003, according to our experience. Of course, the second iteration also
introduces model errors. In order to reduce the noise in the total model obtained
after the second iteration, we propose to suppress high-frequency noise in the
model after the first iteration, which is added up to the background force models.
There are two ways to do that: 1) the model truncated at a certain degree, or
2) the model is smoothed. We have chosen the first way: the model is truncated
at degree 13. Our motivation is as follows. Firstly, it is easy to implement this
operation because no further operator like filtering is needed. Secondly, the model
errors at the degrees below 13 are much lower than those at degrees above 13
[Luthcke et al., 2006]. Thirdly, the absorbed signal is mainly concentrated at the
low frequencies. Thus, the total model of temporal gravity field variations is the
sum of the second iteration model and the first iteration model taken only up to
degree 13. Figure 5.22 shows the total model in terms of geoid height per degree.
It can be seen that the total model up to degree 13 is larger than that after the
first iteration. Above degree 13, the signal RMS per degree of the two models is
extremely close. This can be considered as evidence that the model errors do not
increase after the second iteration. In addition, figure 5.23 demonstrates the map
of the total model in terms of equivalent water height. A comparison with the
map shown in figure 5.21(1b) tells that the spatial variations in many areas, e.g.
Amazon, Zambezi and Gangs river basins as well as in Siberia increase by at least
10%-15%. The same effect can also be seen in figure 5.24, which shows similar
results for October 2003.

By using the methodology presented above (the 3RC approach with two itera-
tions), we have processed 4 years of GRACE data (February 2003 to December
2006), resulting in 46 monthly solutions (June 2003 is skipped due to a lack of
data). These solutions will be presented and analyzed in the next chapter.

5.6 Summary and remarks

In this chapter we present two innovative methodologies of gravity field modeling
from GRACE ll-SST data. They are compared with the classic acceleration
approach. The functional models exploited in all three approaches are discussed
in detail. Their advantages and disadvantages are considered in the context of
realistic assumptions about data noise. In the classical acceleration approach,
knowledge is needed about the components of inter-satellite velocities orthogonal
to the LOS. Since these components are derived from GPS measurements, they
are not known with a sufficient accuracy. The idea of the 3RRC approach
is to determine the radial component of inter-satellite velocities directly from
the KBR data and therefore, reduce the influence of GPS data on the overall
error budget. The 3RC approach totally avoids the velocity term in the ob-
servation equation, and directly connects the potential gradients with KBR ranges.
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Fig. 5.24. Water storage changes in terms of equivalent water heights of October
2003 for the model (top) of the first iteration, and the model (bottom) obtained from
the sum of the second iteration model and the first iteration model truncated at degree
13)

In order to process real GRACE data, a comprehensive data processing
strategy is developed for all three approaches. The strategy comprises the data
pre-processing and inversion. The key point of the data pre-processing is to
compute purely dynamic orbits of GRACE satellites as reference ones. The orbits
are integrated on the basis of state-of-the-art force models, and meanwhile fit the
provided high-precision kinematic or reduced-dynamic orbits. The reference orbits
are used to derive the computed KBR observations (ranges, range-rates or range
accelerations) and ultimately the corresponding residual quantities. The inversion
procedure used in all three approaches is developed on the basis of that used for the
processing of kinematic baselines as described in chapter 4. Furthermore, we have
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investigated the sensitivity of the three approaches to the accuracy of the noise
model and corresponding data weighting. It is found that frequency-dependent
data weighting is a must for the 3RRC approach. The classic acceleration ap-
proach and the 3RC approach are less sensitive to the noise model, particularly at
the low degrees, though frequency-dependent data weighting still improves results.

The chapter presents a comparison of the three approaches based on pro-
cessing the real data for August 2003 and October 2003. The corresponding
GLDAS hydrological models are used for a comparison. The classic acceleration
approach produces the worst results among three. The 3RRC and 3RC approach
produce gravity field models of a much higher quality. The models obtained with
the 3RC approach are particularly accurate as they contain less noise in the form
of along-track stripes than those based on the 3RRC approach.

Finally, the 3RC approach is refined further. An iterative estimation is
adopted in order to retrieve gravity signal absorbed by the empirical parameters
estimated in the data pre-processing. It is found that two iterations are sufficient.
The results show that an increase of the signal by at least 10%-15% at the areas
with large gravity variations can be achieved by the iterative estimation.

One more issue is worth further discussion. From the functional model of
the classic acceleration approach, it seems to be impossible to increase the
accuracy of result without improving the the velocity term. However, it is not
trivial to significantly increase the accuracy of kinematic baselines, which are used
to derive the velocity term. There may be another way to improve the results of
the classic acceleration approach, i.e. ignoring the contribution of velocity term
entirely by only considering the contribution of point-wise accelerations. This way
may not be totally strict in the physical sense, but it could, in practice, produce
quite reasonable results. In a very late stage of this PhD research project, such
an attempt has been made. Indeed, the accuracy of gravity field modeling has
increased dramatically. However, this idea still needs more investigation in the
future.
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Chapter 6

Analysis of results obtained from the 3RC

approach

6.1 Introduction

We have developed two methodologies to process GRACE ll-SST data to
estimate time variation of the Earth’s gravity field: the 3RC approach and
the 3RRC approach. The 3RC approach was shown in chapter 5 to produce
better results than the 3RRC approach. Therefore, the 3RC approach is used
for routine computations of monthly GRACE solutions at Delft institute of
Earth Observation and Space System (DEOS). These solutions are referred
to as “DEOS solutions”. We have so far processed 4-year of GRACE data,
spanning the interval from February 2003 to December 2006 except for the
month of June 2003, resulting in 46 monthly solutions. The measurements of
June 2003 are not good enough to produce a reasonable result. The monthly
gravity estimates are obtained as corrections (or variations) with respect to the
high-quality EIGEN-GL04C model which is used as the a priori static field.
The time series of these DEOS solutions will be presented in section 6.2, mainly
for the purpose of demonstrating spatio-temporal gravity variation. As gravity
is an integral of mass, spatio-temporal gravity variations represent (horizontal)
mass redistributions. On a large variety of time scales, mass redistribution
mainly occurs inside the surface fluid envelopes, i.e. oceans, atmosphere, ice caps
and continental water reservoirs. Furthermore, there are variations that reflect
processes in the solid Earth. Some geophysical variations are corrected for during
pre-processing, e.g. solid Earth and oceanic tides, selected low-degree secular
variations, pole-tide effects and a combination of atmospheric pressure variations
with the response of a baro-tropical ocean. The final GRACE gravity field
estimates therefore contain mostly mass variability due to: change in continent
water storage, polar ice mass accumulation and ablation, Post Glacial Rebound
(PGR) and effects of co-seismic and post-seismic deformation. We will analyze
the global secular and seasonal variations in the Earth’s gravity field in section 6.3.

Section 6.4 focuses on scientific applications of the DEOS solutions. Firstly
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we will estimate the possible mass loss of Greenland ice sheets. Secondly, it will
be demonstrated that Antarctic seasonal mass variations can be detected from
DEOS solutions. Thirdly, the DEOS solutions are used to investigate the effects
of co-seismic and post-seismic deformation caused by the Sumatra-Andaman
earthquake.

In section 6.5, we will compare the DEOS GRACE solutions with those
produced by the Center of Space Research (CSR) at University of Austin,
GeoForschungsZentrum (GFZ) in Potsdam, Jet Propulsion Laboratory (JPL) in
Pasadena and the Centre National d’Etudes Spatiales (CNES) in Paris as well
as the GLDAS hydrological models, mentioned in chapter 5. We will perform
comparisons of spherical harmonic coefficients and estimations of the water
storage variations in large river basins.

6.2 Time series of DEOS monthly solutions

The DEOS solutions are a series of monthly estimates of the Earth’s gravity
field variation with respect to the static EIGEN-GL04C model. Some gravita-
tional variations were subtracted in the course of data processing: the secular
changes of the C20, C21, S21, C30 and C40 coefficients; direct and indirect Earth
tides [McCarthy and Petit, 2003]; FES2004 ocean tides [Lyard et al., 2006]; Atmo-
spheric and oceanic variability (AOD1B RL04 products) [Flechtner, 2007a] ocean
pole tides (Desai model); and general relativistic perturbations. The DEOS so-
lutions therefore only estimate deviations from the static gravity field caused by
un-modeled effects: hydrology, snow cover, ice sheets, baro-clinic oceanic signals,
post-glacial rebound and tectonics events. The errors in the DEOS models re-
flects measurement errors, numerical errors in the processing, and any errors in
the inprecise ocean/load tidal models and AOD1B model products. Furthermore,
a lack of spatial coverage takes place for some months, which amplifies the errors
additionally.

The DEOS solutions are obtained without any regularization, and they are
output as normalized spherical harmonic coefficients from degree 2 to a certain
maximum degree. The maximum degree varies from 50 to 120 depending of the
measurement ground coverage. The data density distribution across the Earth’s
surface is dramatically reduced when the satellite orbit is characterized by a short
repeat period, and when the KBR data contain large gaps. Figure 6.1 shows
examples of the ground coverage for three months: August 2003, January 2004
and July 2004. The common feature of the three maps is a dense distribution
of measurements at the two poles compared to the equators, which occurs due
to the convergence of the satellite tracks at the poles. It is found that much
sparser measurements were acquired in July and January 2004, compared with
the coverage achieved in August 2003. This is due to a repeat orbit (about
every 4 days) during July 2004 and the collection of only 13 days of KBR data
during January 2004. In these two cases, recovering of a gravity field model to
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(a)

(b)

(c)

Fig. 6.1. Geographical location of middle points of two GRACE satellites during the
periods of August 2003 (a), January 2004 (b) and July 2004 (c)
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Fig. 6.2. Signal (in red) and error (in blue) estimates of the DEOS solutions (Septem-
ber 2003), computed per degree (dashed lines) and cumulatively (solid lines) in terms
of equivalent water height

a high degree (e.g. higher than 70) may not be reasonable. Fortunately, it was
possible to compute all the solutions up to at least degree 50 with a corresponding
variance-covariance matrix for each estimate.

The signal to be estimated from the GRACE measurements is rather weak.
Above degree 30-40 the errors of the monthly solutions are typically larger than
the likely geophysical signal. Figure 6.2 displays the estimated DEOS gravity
spectrum (red curves) alongside the calibrated formal error spectrum obtained
from the covariance matrix (blue curves), in terms of equivalent water height
for September 2003. Figure 6.2 shows that the gravity signal between degrees 2
and 30-35 is clearly greater than the noise. The overall accumulated error of the
DEOS solutions is less than 6mm equivalent water height at degree 10 (2000km
resolution), 1.5 cm at degree 20 (1000km resolution) and 3.7 cm at degree 30
(666km resolution). Above degree 35, the red and blue curves get closer and
closer, which means that noise dominates at high degrees. The cumulative error
is about 20 cm at degree 50 and about 200 cm at degree 80. At degrees higher
than 80, it is not easy to distinguish the two curves. This means that the signal
is totally embedded into the noise, and is no longer visible.

To highlight geophysical signals, a filter is required that suppresses the high-
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frequency noise. In our study a Gaussian filter is employed for this purpose
[Jekeli, 1981]. Figures 6.3(a) and 6.3(b) demonstrate the geographical distribu-
tion of the calibrated formal error of a DEOS solution after the Gaussian filtering
with 400 km radius and 600km radius, respectively. The corresponding solution
after Gaussian filtering is shown in figures 6.4(a) and 6.4(b), respectively. The
geographical error distribution is calculated according to the propagation law of
variances.

Qgeog = AQsolA
T , (6.1)

where Qsol is the variance matrix of our monthly solution containing diagonal
elements σ2

lm,C and σ2
lm,S (covariances are not considered since their effects in

the spatial domain are minor [Swenson and Wahr, 2002]), A is the propagation
matrix, which is a combination of the spherical harmonic synthesis and Gaussian
filtering. Figure 6.3 shows the square roots of the diagonal elements of Qgeog.
The geographical distribution of the formal error depends only on latitude, with
a maximum at the equator and a minimum at the two poles. This is likely due to
the increased observation density at the poles. For the case of 600km Gaussian
filtering, the total error is not larger than 12.5mm at the equator and around
2.0mm at the poles. In the case of 400km Gaussian filtering, the geographic error
is around 5.0mm at the poles and 35.0mm near the equator. The average error
ratio between the latitude of the Amazon River basin of South America and the
north part of Greenland is about 3-4 for both cases.

Significant North-South stripes are present in the results when insufficient
filtering is applied, see figure 6.4(a). These stripes are classified as errors, the
huge amplitude of meridional water transport derived from these stripes is not
observed in independent estimates [Swenson and Wahr, 2006]. When the radius
of the filter is increased, the amplitude of the stripes decreases, see figure 6.4(b).
However, choosing the radius of the Gaussian filter is a trade-off process. On the
one hand, some artifacts may still appear even if the filter is relatively wide (for
example, over the Caribbean Sea and at the southern coast of North America).
On the other hand, the filtering also reduces the amplitude of the real signal.
Thus, the aim is to reduce the stripes as much as possible, while preserving the
signal.

In a recent investigation of the CSR GRACE solutions (see section 6.5.1.1
for details), Swenson and Wahr [2006] found that the observed stripes are asso-
ciated with correlations among certain groups of spherical harmonic coefficients.
The coefficients of a particular degree show no obvious correlations as a function
of order. However, the coefficients of a particular order starting approximately
from a certain order e.g. m = 8, reveal clear correlations if grouped as a function
of either even or odd degree (even and odd degree coefficients do not appear to be
correlated with one another). The stripes appearing in the GRACE solutions are
attributed to these systematic correlations. [Swenson and Wahr, 2006] proposed
a de-striping technique to remove systematic errors; [Chambers, 2006] developed
this concept further. The basic idea behind the de-striping technique is to fit a
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(a)

(b)

(c)

Fig. 6.3. Geographical distribution of the calibrated formal errors of the monthly
solution (September 2003) in terms of equivalent water height: the 400 km Gaussian
filtering is applied (a), the 600 km Gaussian filtering is applied (b), and the P3M8
de-striping and 400 km Gaussian filtering are applied (c)
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(a)

(b)

(c)

Fig. 6.4. Monthly solution (September 2003) in terms of equivalent water height: the
400 km Gaussian filtering is applied (a), the 600 km Gaussian filtering is applied (b),
and the P3M8 de-striping and 400 km Gaussian filtering are applied (c)
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high-order polynomial as a function of degree to coefficients of order higher than
e.g. m = 8 in a moving window while ensuring the coefficients of low degree and
order (e.g. m = 8) remain unaltered. The polynomial fit is separately applied to
odd and even degrees. The de-striped coefficients are calculated by subtracting
the polynomial fit from the original coefficients. By applying a de-striping
procedure we do risk removing real signals if we choose too low a starting order.
However, to study the pole areas, the starting order may be chosen higher than
for a study at or near the equator. In practice, the starting order is chosen from
a trade-off between significant stripe removal and maximum signal retention.

The DEOS solutions have similar inter-coefficient correlations as the CSR
GRACE solutions. For this reason we applied the de-striping technique to the
DEOS solutions as well. After some experimentation, the polynomial order and
the half width of the moving window were fixed to 3. The de-striping starts
for the coefficients of order 8. The de-striping procedure is therefore referred to
as P3M8, the same notation is used by [Chen et al., 2007]. After de-striping,
400km Gaussian filtering was applied. The results are shown in figure 6.4(c).
Comparing figure 6.4(c) with the previous result after 400km Gaussian filtering
(figure 6.4(a)), one can see that the dominant stripes over the oceans are mostly
removed. The remaining signal (or noise) in the oceans is isotropic, it even looks
much smoother than in the previous 600km Gaussian filtered results. Some of
nonphysical features, e.g. the two positive ”tails” over the Caribbean Sea and at
the southern coast of North America, disappear after de-striping. On the other
hand, the expected geophysical signals are more clearly visible.

One issue that needs addressing is how to update the formal errors after the
de-striping. To this end, a relatively simple approach is followed, which is based
on just re-scaling. Taking the C-coefficients as an example:

σds
lm,C = km · σlm,C , (6.2)

where σds
lm,C is the standard deviation of the coefficients after de-striping, and

km is the scale factor which is order-dependent and is different from 1 only for
the coefficients that were subject to de-striping. The scale factor is computed
separately for even and odd degrees as the ratio of power of the coefficients before
and after the de-striping. Taking the even degree as an example:

km =

√√√√√√√√√
max∑
l=8

(Cds
lm)2

max∑
l=8

(Clm)2
, (6.3)

where Cds
lm are the coefficients of even degree after de-striping. The same holds

for the S-coefficients. In this way, four scale factors have to be computed for
each order (for even and odd degrees; for C-coefficients and S-coefficients). The
geographical error distribution corresponding to the solution of figure 6.4(c) is
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Fig. 6.5. Maps of DEOS solutions from January 2003 to December 2003
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Fig. 6.6. Maps of DEOS solutions from January 2004 to December 2004
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Fig. 6.7. Maps of DEOS solutions from January 2005 to December 2005
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Fig. 6.8. Maps of DEOS solutions from January 2006 to December 2006
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shown in figure 6.3(c). The errors are still only dependent on latitude. Compared
with the error distribution shown in figure 6.3(a), the errors at the equator are
significantly reduced, from 35.0mm to 22.0mm. On the other hand, little is
changed at the poles. In general, the error distribution after the scaling due to the
de-striping is close to that shown in figure 6.3(b) for the case of 600 km Gaussian
filter without de-striping.

The observed signal (or noise) over the oceans in the post-processed gravity field
models is almost at the same level in two cases: 600km Gaussian filtering (see fig-
ure 6.4(b)) and P3M8 de-striping plus 400 km Gaussian filtering (see figure 6.4(c)).

Figure 6.5-6.8 shows the time series of DEOS monthly solutions in terms
of equivalent water heights after P3M8 de-striping and 400km Gaussian filtering.
Not all monthly solutions are of the same quality, some of them have relatively
large errors over the oceans. For example, solutions for February and March
2003; January and July of 2004; December 2005 and November 2006 still show
nonphysical patterns, which might be caused by lack of measurements or an
orbit with a short repeat period. Nevertheless, the hydrological signals in the
continental areas do appear clearly, even in the solutions of a relatively poor
quality. Furthermore, a clear seasonal variation of water storage can be seen in
several large tropical river basins: the signal is well above the error level. The
largest observed variation is observed in the Amazon River basin. Starting from
July of each year the dry season begins and the water storage gradually reaches
a minimum in October. After the end of dry season the river basin starts to
accumulate water with the maximum storage usually occurring in April of each
year. Another remarkable example is the West Siberian Plain. The observed water
storage variations in the area show a clear seasonal periodicity. The maximum
variation is observed in spring (April), whereas the minimum is reached at the
beginning of the autumn (September to October). Importantly, this pattern
is consistently repeated from year to year. The mass variation is likely due to
the effects of snow accumulation and melting. A more quantitative analysis of
the GRACE observed hydrological signals is given in the following sections. In
particular, we found that during the four-year period of measurements there is a
significant decline of mass in Greenland which is very likely the consequence of
ice sheet melting.

6.3 Derivation of secular and seasonal gravity

changes

Observations of secular gravity field change are particularly relevant to the inves-
tigation of climate change and global warming. Observations of seasonal vari-
ations in the Earth’s gravity field impose important constraints on models of
global mass variability and mass exchange among the land, ocean and atmosphere
[Tapley et al., 2004]. We have already mentioned the observed seasonal and sec-
ular mass changes in the previous section. In this section, a quantitative analysis
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of secular and seasonal gravity field changes is conducted.
The inter-annual and seasonal gravity field changes are estimated from the DEOS
GRACE monthly gravity fields and associated covariance matrices in a least-
squares process. Since some of our solutions are only computed up to degree
and order 50, all the monthly solutions are first truncated at degree 50 in this
computation. This is justified by the fact that noise at degrees above 50 domi-
nates. The spherical harmonic coefficients of the gravity fields are approximated
in the time domain with 6-parameter curves:

y(ti) = a0 + a1ti + a2 cosωti + a3 sin ωti + a4 cos 2ωti + a5 sin 2ωti (6.4)

where y(ti) is the vector of spherical harmonic coefficients at the month ti, with
i = 1, 2, ..., 46 standing for 46 monthly solutions; ω = 2π

T with T being one year;
and aj , j = 0, 1, ..., 5 are unknown vectors to be solved for: a0 is a mean model
of corrections; a1 is a linear trend; a2 and a3 are the amplitudes of seasonal
cosine and sine terms; a4 and a5 are the amplitudes of semi-annual cosine and
sine terms. It should be noted that a joint estimation of trend and annual signal
is needed to avoid possible leakage between the two signals since the data used
are not regularly distributed in time or space [Andersen and Hinderer, 2005]. The
full variance-covariance matrices Qy(ti)

of the monthly solutions are used, to yield

a statistically optimal estimation. The normal matrix N and the right-hand side
vector b are computed block by block as follows:

N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

Qy
−1
(ti)

n∑
i=1

tiQy
−1
(ti)

· · ·
n∑

i=1

sin 2ωtiQy
−1
(ti)

n∑
i=1

t2i Qy
−1
(ti)

· · ·
n∑

i=1

ti sin 2ωtiQy
−1
(ti)

· · ·
...

symm

n∑
i=1

(sin 2ωti)
2Qy

−1
(ti)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.5)

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

Qy
−1
(ti)

y(ti)

n∑
i=1

tiQy
−1
(ti)

y(ti)

...
n∑

i=1

sin 2ωtiQy
−1
(ti)

y(ti)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.6)

with n = 46. The least-squares solution is obtained by x = N−1b, and the
variance-covariance matrix of the solution is Qx = N−1. After the secular
and seasonal variations are derived, the P3M8 de-striping and 400 km Gaussian
filtering are implemented as described in section 6.2. The variances of the derived
solutions are also scaled to account for the de-striping and Gaussian filtering
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procedures. Error propagation is applied to compute the error estimates on
global grids alongside the equivalent water heights from the estimated secular
and seasonal models, as indicated in equation (6.1).

For comparison, secular trends, annual and semi-annual cycles are estimated
from the GLDAS hydrological models in the same way as the DEOS GRACE
solutions. The GLDAS hydrological models used span a period from February
2003 to December 2006. Variance-covariance matrices are not available for the
GLDAS hydrological models, therefore, they are treated as unit matrices in the
least-squares inversion. For consistency de-striping and 400 km Gaussian filtering
are applied to the GLDAS fields.

6.3.1 Global secular water mass variations

The secular mass changes observed from the DEOS GRACE solutions and the
GLDAS hydrological models are shown in figure 6.9a and 6.9b, respectively. Some
remarkable similarities can be observed between the models. For instance, the
areas of decreasing mass include southeastern Alaska, Southwestern United States,
the La Plata River basin, middle Africa and southern Asia. Examples of regions
consistently showing an increase in mass are the northern part of South America,
southern Africa, central Europe and the Eastern Siberian Plain. Aside from
these similarities, there are some large signals in the GRACE estimates which
are not observed in the GLDAS hydrological models: significant mass decline
in Greenland, mass loss in the Amundsen Sea Embayment (West Antarctica),
and significant positive rates in Hudson Bay and Scandinavia. Some of these
discrepancies, e.g. the positive rate in the Hudson Bay and Scandinavia, can
be attributed to Post Glacial Rebound (PGR). The PGR signal is caused by a
redistribution of lithospheric mass, as a consequence of glacial loading during the
last ice age. These signals appear as secular trends in the Earth’s gravity field.
The PGR signals show up in the trend analysis of the DEOS solutions since no
attempt has been made to remove the signals at the GRACE data pre-processing
stage. In order to derive the secular change due to the water storage, the PGR
signal has to be removed.

The PGR model used in the thesis was computed from using the de-glaciation
models ICE-5G [Peltier, 2004] and IJ05 [Ivins and James, 2005]. The IJ05 model
is only available for the Antarctic, therefore, outside of the Antarctic area it is
combined with the global ICE-5G model. The computation was based on the
assumption of an incompressible, self-gravitating Earth. The mantle viscosity
model was a 4-layered approximation to Peltier’s model [Peltier, 2004]. The
viscosity profiles were based on a lithospheric thickness of 90 km, upper mantle
viscosity of 9.0 × 22 Pa-sec, lower mantle viscosity of 3.6 × 21 Pa-sec, and upper
mantle/lower mantle boundary radius of 1170km. The set of PGR Stokes
coefficients is truncated at degree and order 50 and is smoothed using the P3M8
de-striping and the 400 km Gaussian filtering. Degree-one terms are omitted,
because they are not included in the DEOS GRACE solutions. The results are
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a

b

c

[mm/yr]

Fig. 6.9. Estimated secular mass changes from DEOS GRACE solutions (a), from
GLDAS hydrological models (b), and the mass change signal (c) provided by the PGR
model of [Peltier, 2004, Ivins and James, 2005]
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shown in figure 6.9c. After that, the PGR model is mapped to grid values,
representing the rate of surface mass change, expressed in terms of equivalent
water height. The results are shown in figure 6.9c. As can be seen from the
figure, the PGR signal is located in the Hudson Bay, Antarctic and Scandinavia
regions, which agrees very well with the DEOS GRACE-based secular signal.
Figure 6.10a shows the secular change of the water storage obtained by removing
the PGR signal (i.e. figure 6.9a minus figure 6.9c). It should be mentioned that
the estimated secular changes include the errors of the PGR model; nevertheless,
the dominant positive signals in the Hudson Bay, Antarctic and Scandinavia areas
almost disappear. The resulting map is definitely more similar to that derived
from the GLDAS hydrological model (figure 6.9b) than the original GRACE
solution.

The GRACE derived secular trend (figure 6.10) has the following major features
(excluding the Greenland and Antarctic areas):

1) One of the largest positive signals is a more than 30mm/yr water mass
increase in central Europe. This increase is likely caused by ground water
discharge associated with a record-breaking heat-wave in 2003 followed by
water storage restoration [Andersen and Hinderer, 2005].

2) The peak estimated trend for the Tocantins and Orinoco River basins within
the South American continent exceeds 30mm/yr. The neighboring river
basin, La Plata, shows a peak of 25-30mm/yr of water mass loss.

3) Within the continent of North America, the water storage in southeastern
Alaska is decreasing with a peak value of 30mm/yr, which is close to other
estimates [Chen et al., 2006a]. In addition, the western part of Hudson Bay
shows a negative mass change rate of 30mm/yr, which is probably due to
snow mass variation and uncertainty in the subtracted PGR signal.

4) Within the continent of Africa, a peak of more than 40mm/yr of water
storage decrease is detected in the Congo River basin (central Africa), and
an increase of about 20mm/yr can be seen in South Africa.

5) In Asia, a positive trend is observed in southern India and in the Eastern
Siberian Plain, the latter could be due to the snow accumulation. A negative
mass change rate of more than 25mm/yr can be observed over northern
India. We see a pair of negative and positive trends within the Indonesia,
Malaysia and Andaman Sea regions. This is very likely due to mass changes
caused by the Sumatra-Andaman earthquake and will be discussed later in
section 6.4.3.

The calibrated formal error estimates for the secular trends are shown in fig-
ure 6.10b. The error estimate has a mean of 1.2mm/yr in terms of equivalent
water height, ranging from 0.7mm/yr near the poles to 1.7mm/yr around the
equator. The stochastic estimates could be too optimistic, since the PGR model
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Fig. 6.10. Estimated secular water mass changes after removing the post-glacial
rebound signal (a), and formal errors of secular water mass changes (b)

could introduce errors. A more realistic error estimate can be obtained by comput-
ing the Root Mean Square (RMS) signal over the ocean where the noise should be
significantly smaller than on land [Andersen and Hinderer, 2005]. With possible
leakage of the land signal (due to the Gaussian filtering) and the existing ocean
secular signal (e.g. bottom pressure signal), a value of 3mm/yr is estimated.
With this empirical estimate of precision (here called ”empirical error”), we can
conclude that our estimates of global secular signals are reliable. The estimated
secular signals provide very valuable information for future hydrological modeling,
and could also offer reasonable constraints on the PGR modeling.
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6.3.2 Global seasonal water mass variations

This section is devoted to the analysis of seasonal mass changes observed from the
DEOS GRACE solutions. The annual sine terms derived from the DEOS GRACE
solutions and the GLDAS hydrological models are shown in figures 6.11a and
6.11b, respectively. In addition, the formal error of the GRACE DEOS estimate is
shown in figure 6.11c. The maps of annual sine terms are remarkably similar. The
sine term from GRACE models ranges from -166.0mm (at Orinoco River basin) to
+214.0mm (at Amazon River basin) with a global empirical error RMS of 5.0mm
(formal error is 2.0mm). The sine term from the GLDAS hydrological models
ranges from -140.0mm (in the Ganges River basin) to +193.0mm (in Amazon
River basin) with a global error RMS of 2.0mm. A positive value indicates a
variation that has a maximum in Spring, a negative value indicates a variation
that is opposite in phase, i.e. reaching the maximum in Fall. The annual cosine
term from the DEOS and hydrological models are shown in figure 6.12a and 6.12b
together with the formal error of the DEOS estimates (figure 6.12c). The GRACE
cosine term ranges from -236.0mm (at Orinoco River basin) to +70.0mm (at the
southern border of the Amazon River basin) with a global RMS of 8.0mm (formal
error is 2.0mm). The cosine term from the GLDAS hydrological models ranges
from -142.0mm (the Congo River basin) to +34.0mm (at the Ganges River basin)
with a global RMS of 2.0mm. A positive cosine term is a variation that reaches
maximum in Winter.

The amplitude and phase of the seasonal signal can be calculated from the sine
and cosine components as follows:

Aam =
√

a2
2 + a2

3 φ = arctan
(a2

a3

)
, (6.7)

where a2 and a3 represent the computed equivalent water heights at each grid
point derived from the sine and cosine components; Aam and φ are the amplitude
and phase at the given grid point, respectively. The amplitude and phase maps
are plotted in figure 6.13. One can clearly see regions with relatively large water
mass variations, including the Amazon, Orinoco and Tocantins River basins in
South America; the Zambezi and Congo river basins in Africa; and the Ganges
and Siberia river basins in Asia. Some areas have smaller water mass variations,
for example: central Europe, Southern Australia, Alaska and the Mississippi
River basins in North America, the La Plata River basin in South America.
There are also minor variations in some areas, e.g. central America, Madagascar
island, southern China and Greenland. A clear separation in phase of water mass
changes can be observed from figure 6.13b. Almost all areas in the northern
hemisphere (above latitude 30oN) have maximum water storage in Spring or
Summer (positive values). The areas between latitude 0 and 30oN mostly have
maximum water storage in Fall or Winter. In southern hemisphere, the areas
between latitude 0o and 30oS have positive phase values, which indicates that
water storage occurs in Spring or Summer. The areas below latitude 30oS (except
for eastern Antarctic) have negative phases, which means that a minimum water
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a

b

c

Fig. 6.11. Estimated sine term of annual water mass variations between February
2003 and February 2006 from DEOS GRACE solutions (a), from GLDAS hydrological
models (b), and formal errors of the DEOS estimate. Positive values in (a) and (b)
indicate an increase in Spring
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Fig. 6.12. Estimated cosine term of annual water mass variations between February
2003 and December 2006 from DEOS GRACE solutions (a), from GLDAS hydrological
models (b), and formal errors of the DEOS estimate (c). Positive values in (a) and
(b) indicate an increase in Winter
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a

b

Fig. 6.13. Estimated signal amplitude and phase of water mass variations between
February 2003 and December 2006 from DEOS GRACE solutions: amplitude of annual
term (a), phase of annual term (b). Positive values in (b) indicate the interval from
January to June, and negative ones display the interval from July to December
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a

b

c

Fig. 6.14. Estimated sine term of semi-annual water mass variations between February
2003 and February 2006 from DEOS GRACE solutions (a), from GLDAS hydrological
models (b), and formal errors of the DEOS estimates
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a

b

c

Fig. 6.15. Estimated cosine term of semi-annual water mass variations between Febru-
ary 2003 and December 2006 from DEOS GRACE solutions (a), from GLDAS hydro-
logical models (b), and formal errors of the DEOS estimate (c)
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a

b

Fig. 6.16. Estimated signal semi-amplitude and phase water mass variations between
February 2003 and December 2006 from DEOS GRACE solutions: amplitude of semi-
annual term (a), phase of semi-annual term (b)
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storage takes place in spring or summer.

The semi-annual sine and cosine terms derived from the DEOS GRACE solu-
tions and the GLDAS hydrological models are shown in figure 6.14 and 6.15,
respectively (alongside their formal errors). Compared with the annual terms,
the semi-annual terms are much smaller. Still, the maps produced from the
GRACE estimates and GLDAS hydrological models show some similarities. The
sine term from GRACE ranges from -24.0mm (in the Amazon River basin)
to +27.0mm (in the Orinoco River basin) with a global RMS of 4.0mm (the
formal error is 1.5mm). The sine term from the GLDAS hydrological models
ranges from -19.0mm (in the Ob River basin) to +27.0mm (in the Orinoco River
basin) with a global RMS of 1.0mm. The annual cosine terms from the DEOS
GRACE solutions and the hydrological models are shown in figure 6.15a and
6.15b together with the formal error of the DEOS estimate, which is shown in
figure 6.15c. The cosine term from GRACE ranges from -29.4mm (in southern
India) to +40.0mm (in the Congo River basin) with a global RMS of 4.0mm
(formal error is 1.8mm). The cosine term from the GLDAS hydrological models
ranges from -39.0mm (in southern India) to 25.0mm (in the Orinoco River basin)
with a global RMS of 1.0mm.

The amplitude and phase of the semi-seasonal variations derived from the
DEOS models are shown in figure 6.16. Compared to the amplitude of the
one-year cycle, the half-year amplitude is rather small. The signal is mostly
concentrated in the Orinoco, Amazon and La Plata River basins in South
America; central Africa; India; and the Ob River basin in Russia. This behavior
is interpreted as an evidence that seasonal mass variations in these regions have
maximum deviations from the sinusoidal behavior. In the Ob river basin, for
example, this can be explained by a slow accumulation of snow during Fall and
Winter, and fast snow melting in Spring.

6.4 Applications of DEOS monthly solutions

6.4.1 Greenland ice sheet

In the previous section, we have presented a global model of secular mass changes.
This section will concentrate on Greenland and the surrounding regions.

Greenland is the world’s largest island and the second largest ice cap on
Earth after Antarctica. Its total area measures 2166 086 km2, of which the ice
sheet covers 1755 637 km2. The volume of the ice sheet is of 2.5 million km3,
about 10% of the total global ice mass on Earth. If the Greenland ice sheet
completely melted away, sea level would rise by 6.5m to 7.0m. The addition of
such a large quantity of fresh water to the oceans would disrupt normal ocean
currents, which could have disastrous effects for weather systems. Monitoring the
ice melt and accumulation within the Greenland region is of utmost importance
for the study of sea level rise and climate change.
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[mm/yr]

Fig. 6.17. Estimated secular mass change rates over Greenland from DEOS GRACE
solutions after 300 km Gaussian filtering (a) and the P3M12 de-striping plus 300 km
Gaussian filtering (b). The PGR signal has been removed. Time series of variations
for the points A, B and C are shown in figure 6.18.
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Fig. 6.18. Mass variations obtained from DEOS GRACE solutions at three selected
points shown in figure 6.17: A (top), B (middle) and C (bottom). The straight
lines are linear trends estimated by a weighted least-squares. The monthly values are
equivalent water heights after P3M12 de-striping and 300 km Gaussian filtering are
applied. The PGR signal has been removed
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Prior to the GRACE mission, various techniques were applied to mea-
sure the ice mass balance in Greenland, for example, repeat-pass air-
borne laser altimetry and satellite interferometry, see [Krabill et al., 2004,
Rignot and Kanagaratnam, 2006]. Both techniques indicated that the Greenland
ice sheet is, as a whole, melting, although the estimated rates of melting were
significantly different. One explanation for this difference is that the periods of
measurements differ.

The satellite gravity measurements provided by GRACE mission can also
be used to measure the ice mass balance in Greenland. Two recent investigations
of ice melting in Greenland were conducted by [Velicogna and Wahr, 2005]
and [Chen et al., 2006c] on the basis of CSR GRACE solutions. The periods
of measurements for their research were 2 years and 3.5 years, respectively.
[Luthcke et al., 2006] used 2 years of GRACE mascon solutions. The common
result from these earlier studies is that the ice sheet in the southeast coast of
Greenland is rapidly melting. Here we conduct a similar investigation using
4-years of DEOS monthly solutions.

Figure 6.17 shows the estimated mass change rates in Greenland and sur-
rounding regions after subtraction of the PGR signal. Its magnitude in Greenland
is much smaller than the GRACE estimated rate (figure 6.9a and 6.9c). A 300km
Gaussian filter is applied to the total GRACE-based estimates after subtraction
of the PGR signal. It is found that the 300km Gaussian filtering is sufficient to
suppress the noise over the region of Greenland for the trend estimates and that
de-striping of the model is unnecessary. We suggest three reasons why de-striping
is not necessary: 1) Greenland is located at high latitudes and the GRACE
measurements there are much denser than near the equator. 2) The satellite
ground-tracks intersect each other at larger angles than near the equators, so
that East-West variations of gravity field are sensed better. 3) The secular
mass change signal is rather large. The estimated secular rates are shown in
figure 6.17a. Unfortunately, the 300km Gaussian filtering is not sufficient for
obtaining individual monthly solutions for the Greenland region, de-striping is
still needed. We applied de-striping to the individual monthly solutions, starting
at order 12, this value is higher than previously used to estimate continental
water change rates since the stripes in the Greenland region are of a smaller
amplitude than at the lower latitudes. For consistency, we also plot the rates after
applying the P3M12 de-striping and 300 km Gaussian filtering, in figure 6.17b.
The de-striping does not appear to change the magnitude of the signal in the
Greenland region.

As can be seen from figure 6.17, there are two prominent negative signals
centered at the southeast and northwest coast of Greenland (marked as A and C),
and a slight positive trend in the interior highland (marked as B). Our estimation
confirms that the largest mass loss takes place at the southeast coast, where
active glaciers, ice flows and corresponding ice losses are also observed by remote
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sensing techniques and satellite radar altimetry. This is also consistent with the
earlier estimate from CSR GRACE solutions, see [Velicogna and Wahr, 2005] and
[Chen et al., 2006c]. In order to see the temporal variations at these centers, the
monthly grid values at points A, B and C are computed, and the time series are
plotted in figure 6.18. A trend and seasonal terms are estimated from a least
squares fit to the time series at points A, B and C. The least-squares procedure
is similar to that described in section 6.3, but the input data are the grid values
instead of spherical harmonic coefficients. The uncertainty of the estimates is
also computed in the least-squares fit using the GRACE monthly error and
the model error of the PGR model. The PGR model error is assumed to be
100% of the model value at each grid point. The obtained trend at Point A
is −8.26 ± 0.36 cm/yr over the observation period, which implies a rather large
melting speed. The other center of mass loss at the northwest coast (C), was
not observed in CSR GRACE solutions by earlier studies [Chen et al., 2006c].
The time series at Point C (see figure 6.18) shows that the trend during the
first two years was slightly negative and the ice/snow storage looks stable
(−0.51± 0.55 cm/yr) whereas during the second two years the trend was strongly
negative (−8.24± 0.91 cm/yr), causing the overall trend during the four years to
be −4.14± 0.44 cm/yr. Earlier studies did not use the 2006 data, and this likely
explains why mass loss at point C was not previously detected. There is a slight
mass accumulation in the interior highland at point B, which can be decomposed
into mass loss in the first two years (−5.48 ± 0.82 cm/yr) and mass gain in the
last two years (+4.85 ± 0.81 cm/yr). Our conclusion is that glaciers along the
southeast and northwest coast of Greenland are, in general, melting, whereas the
ice sheets in the Greenland’s interior are getting slightly thicker over the four
years from 2003 to 2006.

6.4.2 Antarctic ice sheet

In this section, the mass loss of Antarctic ice sheet is investigated. Antarctica is
the Earth’s southernmost continent with an area of approximately 14.4 million
km2. The continent is divided into two parts by the Transantarctic Mountains,
close to the neck between the Ross Sea and the Weddell Sea. The portion west
of the Weddell Sea and east of the Ross Sea is called Western Antarctica and the
remainder Eastern Antarctica. Some 98% of Antarctica is covered by ice sheet,
which averages at least 1.6 km in thickness. The continent stores about 90% of
the world’s ice, equivalent of about 70% of the world’s fresh water. If all ice in
Antarctic melted, sea level would rise about 60 meters. Quantifying Antarctic ice
sheet mass balance is a vital part of understanding the global hydrological cycle,
predicting sea level rise and assessing climate change, and has obvious social and
economic impacts.

The stability of Western Antarctic glaciers along the coast of the Amund-
sen Sea Embayment have been of recent concern because of the real possibility
of collapse. If the ice sheet in only this area breaks down, the ocean level would
rise by several meters. Thomas et al. [2004] revealed a significant ice melting
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along the coast of the Amundsen Sea Embayment using satellite altimetry, InSAR
(Interferometric Synthetic Aperture Radar), and GPS data. The Antarctic
Peninsula is similar to the subpolar glacial systems along coastal Greenland and
Alaska [Chen et al., 2008], and is more sensitive to atmospheric warming than
the rest of the Antarctic continent [Vaughan, 2006]. Collapses of the peninsula
glaciers have been frequently observed by InSAR and other remote sensing
techniques [Rignot et al., 2005, Rignot and Kanagaratnam, 2006]. However, it is
difficult to measure the mass variability of Antarctica by remote sensing tech-
niques because of the ice sheet’s size, complex geography and steep slopes. The
GRACE mission is able to provide monthly variation of Earth’s gravity, which can
directly be related to mass variability. Several other investigations have estimated
the mass balance of the Antarctic continent from CSR GRACE solutions, see
[Chen et al., 2006b], [Velicogna and Wahr, 2006] and [Chen et al., 2008] and
CNES GRACE solutions, e.g. [Ramillien et al. 2006], [Llubes et al., 2007]. In
our study, we focus on Antarctica: the Antarctic Peninsula, the Amundsen Sea
Embayment, Southern Ronne Ice Shelf, Enderby Land and East Antarctica. The
data analysis is similar to that used in the previous section.

Figure 6.19 shows the estimated mass change rates within Antarctica and the
surrounding regions. Figure 6.19a presents the mass rates after applying only
300km Gaussian filtering. Although the polar areas have dense coverage with
GRACE ground tracks, the stripes, particularly over oceans near Western
Antarctica (Amundsen Sea, Southern Ocean and Ross Sea) are still present.
In order to suppress these stripes, de-striping is applied with a polynomial of
order 3 that removes correlations between spherical harmonics of order 10 and
above. Figure 6.19b shows the map after applying the P3M10 de-striping and
300km Gaussian filtering. As can be seen, the stripes are significantly suppressed,
whereas the signal is retained. The biggest negative rates occur at the coast of
the Amundsen Sea Embayment (marked as Point A in figure 6.19) and in the
northern Antarctic Peninsula (Graham Land, marked as Point B). A smaller
negative rate can be seen in the region of New Schwabenland (Point E). Two
points with large positive rates are found in Ellsworth Land extending into the
Ronne Ice Shelf (Point C), and Marie Byrd Land in West Antarctica (Point F).
A relatively large positive rate can be found in Enderby Land in East Antarctica
(Point D). The positive mass rates in West Antarctica are very likely PGR effects.
The PGR model is represented by spherical harmonics and the same P3M10
de-striping and Gaussian filter are applied. The obtained PGR signal is shown in
figure 6.19c. Notice that the color scale differs by a factor of 2 from figure 6.19a.
The PGR effects are mostly concentrated in West Antarctica. As can be seen
from figure 6.19b, the PGR signal is also visible in the GRACE measurements
in the region of points C and F. After removing the PGR signals the estimated
ice mass change rates are estimated (see figure 6.19d). Remarkably, the positive
mass changes signals are removed to large extent. The results are consistent with
those obtained from CSR GRACE solutions by [Chen et al., 2008], except that
the mass rates in Enderby land (D) and in the region of New Schwabenland (E)
are not as large as the estimates of [Chen et al., 2008].
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[mm/yr]

Fig. 6.19. GRACE secular mass change rates over Antarctica in terms of equivalent
water heights, estimated from the DEOS monthly solutions after 300 km Gaussian
filtering (a) and P3M10 de-striping plus 300 km Gaussian filtering (b). The PGR
signal after P3M10 de-striping and 300 km Gaussian filtering is plotted in (c). The
GRACE secular mass change rates after removing the PGR signal is plotted in (d).
Time series of variations for six selected points are shown in later figures. Note that
a different scale is used in (c)
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Fig. 6.20. Mass variations obtained from DEOS GRACE solutions at point A (top), B
(middle) and C (bottom), marked on figure 6.19. The straight lines are linear trends
estimated from a weighted least-squares fit. The monthly values are equivalent water
heights after the P3M10 de-striping and 300 km Gaussian filtering. The PGR signal
has been removed
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Fig. 6.21. Mass variations obtained from DEOS GRACE solutions at point D (top),
E (middle) and F (bottom), marked on figure 6.19. The straight lines are linear trends
estimated from a weighted least-squares fit. The monthly values are equivalent water
heights after the P3M10 de-striping and 300 km Gaussian filtering. The PGR signal
has been removed
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To analyze the temporal mass variations further, the time series of mass
changes at 6 grid points are plotted in figures 6.20 and 6.21. The corresponding
error bars are computed using the GRACE monthly error and the model errors
of the PGR model. The PGR model errors are again assumed to be 100% of
model values at the grid points. The mass variations at the melting center on the
coast of the Amundsen Sea Embayment (A) show a trend of −7.14± 0.36 cm/yr,
the total mass decline is more than 30 cm during the 4-year observation period.
At the ice melt center on the Antarctic Peninsula (B), the mass change rate is
−2.94±0.32 cm/yr, an acceleration of ice melting is observed around the beginning
of 2006. These two estimates are close to those made by [Chen et al., 2008] and
dominate the ice mass rate over the whole Antarctic continent. At Point C, the
rate in the first two years is positive (1.82 ± 0.43 cm/yr) and in the second two
years is close to zero (0.03 ± 0.87 cm/yr). The overall rate at Point D is positive
(2.03± 0.29 cm/yr), but is dominated by the period from 2003 to August of 2005.
After August 2005, the rate is negative, which reduces the overall estimated rate.
For this reason the positive rate at Point D is not as large as the estimate made
by [Chen et al., 2008], which did not include GRACE solutions for the second half
of 2006. Another discrepancy with one made by [Chen et al., 2008] is observed at
Point E. The overall rate at Point E is −1.82± 0.36 cm/yr). During the first two
and half years, the mass decreases (−4.14± 0.66 cm/yr), whereas a slight increase
(1.15± 1.19 cm/yr) is observed during the last one and a half years. At Point F,
a positive rate is observed. The main increase took place during 2003 and 2004,
and the mass seems rather stable since then.

We conclude from 4-year DEOS solutions that the mass of the whole Antarctic
continent is not in balance. The ice sheet or glaciers in the West Antarctic
(mainly the Amundsen Sea Embayment and Peninsula) show a large mass loss,
whereas a small mass accumulation is observed in the interiors of West and East
Antarctica.

6.4.3 Sumatra-Andaman earthquake

The 2004 Indian Ocean Sumatra-Andaman earthquake occurred at 00:58:53 UTC
on December 26, 2004, with the hypocenter beneath the sea floor (3.3◦N, 95.9◦E)
off the northwest coast of Sumatra, Indonesia. The magnitude of the earthquake
was between 9.1 and 9.3, the second largest earthquake ever recorded in the
history of seismograph. The earthquake lasted between 8.3 and 10 minutes, the
longest duration of faulting ever observed. The raptures expanded at a speed
of about 2.5 km per second toward the north and northwest, extending 1200 -
1300km along the Andaman trough. Peak displacements reached 15 meters
along a 600km segment of the plate boundary offshore of northwestern Sumatra
and southern Nicobar islands, see [Ammon et al., 2005] and [Lay et al. 2005].
The earthquake triggered a series of devastating tsunamis along the coasts of
most landmasses bordering the Indian Ocean, killing more than 225 000 people
in eleven countries, and inundating coastal communities with waves up to 30
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meters. It was one of the deadliest natural disasters in history. Indonesia, Sri
Lanka, India, and Thailand were hardest hit. Apart from the Sumatra-Andaman
earthquake, a relatively small earthquake, namely Nias, occured in the region on
March 28, 2005 with less disastrous consequences. The hypocenter was located at
2.1◦N, 97.9◦E. The magnitude of the earthquake was about 8.7.

The Sumatra-Andaman earthquake was associated with megathrust events in
subduction zones where the India Plate (part of the great Indo-Australian Plate)
slides under the Burma Plate (portion of the great Eurasian Plate). The corre-
sponding seismic stress was accumulated with the Indian Plate slipping deeper and
deeper beneath the Burma Plate. Eventually, the earthquake released the seismic
stress and permanently changed the mass distribution in Sumatra-Andaman re-
gion. Measurements from GPS static stations have revealed significant permanent
deformations both horizontally and vertically associated with the earthquake
[Hashimoto et al., 2006] and [Banerjee et al, 2007]. The mass re-distribution
caused by the earthquake perturbed the motion of the GRACE low-orbit satellites
to an extent that can be sensed by the inter-satellite range measurements. After
the Sumatra-Andaman earthquake, the GRACE science community immediately
started to investigate the possibility of using GRACE measurements to detect
these gravity changes caused by the earthquake. [Han et al., 2006b] was the
first to successfully detect the gravity changes associated with the subduction
and uplift from GRACE L1B range-rates. [Ogawa et al., 2007] demonstrated
that both the coseismic and post seismic changes due to the Sumatra-Andaman
earthquake can be detected using the GRACE L2 Release 01 products provided
by CSR. Later, [Chen et al., 2007] showed that the new release of L2 products
of CSR is comparable to the estimates from the L1B data, provided that an
improved filtering is applied. In this section, we make use of the DEOS solutions
to conduct a similar investigation of the Sumatra-Andaman earthquake as
published by [Chen et al., 2007].

Firstly, we compute four yearly mean models (as the same way as the monthly
solutions) on the basis of GRACE range combinations in order to suppress
seasonal variations. These four models are for the years 2003, 2004, 2005 and
2006, respectively. GRACE data from December 26 to December 31 are excluded
in the computation of the 2004 mean model. In addition, two 2-year mean
models, i.e. the mean of 2003 and 2004 (before the earthquake), and the mean
of 2005 and 2006 (after the earthquake), are computed for this investigation.
Secondly, the differences between the successive yearly mean models are derived,
as well as the difference between the mean of 2003 and 2004 and the mean of
2005 and 2006. Thirdly, P3M10 de-striping and a 300km Gaussian filter are
applied to the differences between the mean models, in order to suppress the
high degree and order noise. Caution is taken in de-striping since the orientation
of the Sumatra-Andaman rupture is approximately north-south. Therefore, the
starting order of de-striping is chosen to be 10. Figure 6.22 shows the mass
changes within the region of the Sumatra-Andaman earthquake from these mean
model differences. There are no significant mass changes between 2003 and 2004,
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a b

c d

Fig. 6.22. Mass changes in the region of the Sumatra-Andaman earthquake obtained
from DEOS yearly mean models. (a) mass changes between models of 2004 and 2003,
(b) mass changes between the models of 2005 and 2004, (c) mass changes between
models of 2006 and 2005, (d) mass changes between the mean of 2005 and 2004 and
the mean of 2003 and 2004. P3M10 de-striping and a 300 km Gaussian filtering were
applied. The epicenters of the Sumatra-Andaman and Nias earthquakes are marked
as black and white stars, respectively in (d). Three grid points, A (0.75◦N, 95.75◦E),
B (6.75◦N, 96.75◦E) and C (2.25◦S, 91.25◦E), marked as crosses, are the centers of
gravity change, which are used to display time series for a further analysis
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Fig. 6.23. Mass changes at three selected grid points A (top), B(middle) and C
(bottom) after seasonal and semi-seasonal signals are removed. The seasonal terms
are estimated separately for the pre-earthquake period (2003 and 2004) and the after-
earthquake period (2005 and 2006)
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and 2005 and 2006. However, clear signatures can be observed in figure 6.22b
and 6.22d, which show gravitational changes in the rupture zone. The negative
and positive changes are well separated, these changes correspond to subduction
and uplift zones respectively. The gravitational signature is very similar to that
predicted on the basis of seismic measurements (Figure 2 of [Han et al., 2006b])
and the CSR estimate (Figure 2 in [Chen et al., 2007]). The difference of the
2-year mean models (figure 6.22d) does not seem to differ significantly to the
difference of the 1-year mean models (figure 6.22b). In addition to the two large
centers of gravitational change (marked as Points A and B), we find a relatively
smaller negative change (marked as Point C), which was not clearly observed by
[Han et al., 2006b] and [Chen et al., 2007].

The time series of mass change during the 4-year period at the three se-
lected points (marked in figure 6.22 as A, B and C) are derived from the DEOS
four-year gravity solutions after the same post-processing as before (P3M10
de-striping and 300km Gaussian filtering). The corresponding error bars are
calculated according to the error propagation law. In order to analyze the pre-
seismic, coseismic and post-seismic deformation, we remove seasonal variations,
including annual and semiannual sine and cosine terms. These seasonal variations
are estimated from each time series for the two separate periods, i.e. 2003-2004
and 2005-2006. The resulting time series are shown in figure 6.23. Significant
jumps occur at the moment of the Sumatra-Andaman earthquake in the areas
with both positive and negative mass change. The magnitude of change at Point
A (14 cm of equivalent water height) is smaller than that at Point B (20 cm of
equivalent water height). This is similar to the estimate of [Han et al., 2006b]
and [Chen et al., 2007]. At the Point C (much further away from the epicenters
than Points A and B), the change at the moment of the earthquake is not present
as an abrupt change but a general trend is visible. The major decline took place
during the period of 2004 and 2005. This signal is unlikely to be a model error,
but might be related to the earthquake. However, the physics of this signal
requires further investigation. It should be mentioned that a mass change due
to the rupture of companion Nias earthquake is not clearly visible in the time series.

As far as the pre- and post-seismic variations are concerned, we can see
from figure 6.23 that the mass change rates at all chosen points are negative
prior to the earthquake, particularly at Point A. After the earthquake, the
post-seismic mass changes at Points A and B are positive with relatively large
rates (3.31 ± 1.37 cm/yr and 5.03 ± 1.04 cm/yr, respectively). These changes are
also detected by [Chen et al., 2007] and [Ogawa et al., 2007] from CSR GRACE
solutions. The mechanism behind this trend could be a slow positive surface
displacement caused by viscous relaxation of the mantle and/or by pore fluid
diffusion. Another mechanism suggested by [Ogawa et al., 2007] is that the
positive rates were caused by infiltration of supercritical water that abundantly
exists in subduction zones after the stress release of the earthquake. Certainly,
this issue requires further analysis.
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6.5 Comparison with other GRACE solutions

This section aims at a comparison of the DEOS solutions with other published
solutions (CSR, GFZ, JPL, CNES) with emphasis on the spectrum assessment
and analysis of water storage changes in several large river basins. In order to pro-
vide an independent comparison, the GLDAS hydrological models are also used
in this section. It should be mentioned that the JPL solutions were validated
as the best among others (CNES not involved) on the basis of comparisons with
independent observations from satellite altimetry and a numerical ocean model
[Dobslaw and Thomas, 2007]. Therefore, we pay a special attention to the com-
parison with the JPL solutions.

6.5.1 Description of other GRACE solutions

6.5.1.1 CSR RL04 solutions

The monthly solutions issued by CSR have three versions: Release 01 (RL01),
Release 02 (RL02) and Release 04 (RL04) versions. The CSR Release 03 does
not exist. The RL04 products are used in this thesis for comparison and anal-
ysis. The monthly solutions contain fully normalized spherical harmonic coeffi-
cients up to degree and order 60. The gravity field coefficients were estimated
using one-step variational equations approach. The 5 sec KBR range-rates and
30 sec GPS double differences (formed by one GRACE satellite, one ground sta-
tion and 2 GPS satellites) are used to form the normal equations. The solution is
obtained as an optimally weighted combination of GPS and KBR data using one-
day dynamic arcs for the month under consideration. The numerical integration
used for the computation of dynamic arcs is the predictor-corrector formulation
by Krogh-Shampine-Gordon (5-second step size and 7th order). The background
static model was the gravity field model GIFF22a, compiled from the previous
22-month RL02 product (up to degree 120) combined with the GGM02C model
(degree 121 to 200) and EGM96 model (degree 201 to 360). The Solid Earth
tidal contributions to the geo-potential coefficients are computed as specified in
IERS 2003 Conventions. The FES2004 ocean tide model was used to compute
the effects of diurnal and semidiurnal tides. The solid Earth pole tide model was
defined based on IERS 2003 conventions. Ocean pole tide effects were modeled
using a self-consistent equilibrium model based on satellite altimetry data. The
atmospheric and oceanic effects were largely removed by using the AOD1B Re-
lease 04 products. Non-gravitational accelerations are taken into account using
the GRACE accelerometer data. The bias and scale factor of non-gravitational
accelerations were the estimated parameters (but the length of estimation period
was not made public). Apart from this, empirical satellite accelerations were esti-
mated and removed as a sinusoidal along-track and cross-track variation with an
orbital period (1 cpr). More details of the RL04 model computation processing
can be found in [Bettadpur, 2007].
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6.5.1.2 GFZ RL04 Solutions

The GFZ has distributed several versions of the GRACE monthly solutions (RL01-
RL04). The RL04 products are used for the following comparison and analysis.
Basically, the GFZ GRACE data processing starts from the adjustment of the GPS
satellites orbit and clock parameters from ground-based tracking data with an
improved ambiguity fixing method (Step 1). The resulting improved GPS satellite
positions and clocks are therefore fixed in Step 2 of data processing. GRACE un-
differenced high-low GPS code and phase measurements are used together with
KBR range-rates. They all form the observation equations. The background mean
model used is the EIGEN-CG03C model truncated at degree and order 150. The
time-dependent background models are not significantly different from these used
to produce the CSR solutions. More details about the GFZ RL04 models and data
processing can be found in [Flechtner, 2007b].

6.5.1.3 JPL validation solutions

The monthly solutions issued by JPL are validation solutions, which contain fully
normalized spherical harmonic coefficients complete to degree 120. The method-
ology and background models used are generally the same as those of CSR except
that no empirical accelerations were estimated and only 6-minute GPS measure-
ments rather than 30-second ones were used. More details of the JPL data pro-
cessing can be obtained from [Watkins and Yuan, 2007].

6.5.1.4 CNES solutions

The Centre National d’Etudes Spatiales at Toulouse (CNES) provides gravity field
models expressed in normalized spherical harmonic coefficients from degree 2 to
degree 50 at 10 day intervals. The models are based on the running average of three
10-day data periods with weights 0.5/1.0/0.5. The methodology of data process-
ing follows the traditional one-step variation approach. The models are estimated
from GRACE GPS and K-band range-rate data and from LAGEOS-1/2 SLR data
(LAGEOS data provide over 90% of the information on the degree 2 of the gravity
field, whereas GRACE data provide nearly 100% of the information on all the
other spherical harmonic coefficients). According to [Biancale et al., 2007], grav-
itational variations associated with Earth tides (IERS Convention 2003), ocean
tides (FES2004 model), ECMWF 3D-atmospheric pressure fields every 6 hours
and OBP variations (MOG2D barotropic ocean model) have been used in the
processing of the data. A model of the static gravity field named EIGEN-GL04S
(GRGS/GFZ), complete to degree and order 150, is taken as the static background
model. This model was based on a subset of 73 10-day periods, covering exactly
two years (February 24, 2003 to February 23, 2005) in order to avoid the aliasing
of seasonal processes into the mean field. It should be mentioned that a constraint
towards the mean field is applied for high degree coefficients above degree 30 in
order to stabilize them. More details of the CNES GRACE solutions can be found
in [Biancale et al., 2007].
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6.5.1.5 Deriving monthly variations for all solutions

The solutions of CSR, GFZ and JPL are downloaded from the NASA-JPL
PO.DAAC (Physical Oceanography Distributed Active Archive Center), which is
responsible for archiving and distributing data relevant to the physical state of
the ocean. The solutions cover the period from February 2003 to December 2006.
All three processing centers do not provide a solution for June 2003. Additionally,
GFZ has no solutions available for December 2003 and January 2004. In order
to analyze the variations between gravity field models, we compute an individual
mean gravity field over the period of January 2004 to December 2005 separately
for solutions of each processing center. For GFZ solutions, we use January 2006
instead of January 2004. The monthly gravity variations used in this section are
obtained by subtracting the monthly solutions from the individual mean models.

The CNES GRACE solutions can be downloaded from the CNES web pages. The
mean model used for CNES solutions is the EIGEN-GL04S model, with which
the monthly variations are derived as suggested by [Biancale et al., 2007].

6.5.2 Spectral assessment

In order to compare the solutions, we compute geoid height variations per degree
for each of the models. They are plotted separately for each processing center
in figures 6.24 and 6.25. The mean geoid height variations per degree are also
shown in these figures. We assume that the low-degree (below degree 20-30) geoid
contains most of the gravity signal, while the high-degree (above degree 30-40)
part mainly reflects the noise. Between the signal and noise parts, there is a part
where signal and noise are mixed. In our study, we model the signal using the
following function, similarly to [Slobbe, 2007]:

δgl =
x1

lx2
, (6.8)

where δgl is an analytic approximation of geoid height variations per degree; l is
degree; x1 and x2 are parameters to be estimated. The parameter x1 indicates
the signal amplitude and x2 indicates the rate of signal amplitude decreasing. The
noise part is modeled by a linear function in a logarithmic scale:

log δgl = x3 + x4(l − l0), (6.9)

Again, x3 and x4 are parameters to be estimated. The parameter x3 represents
the noise amplitude at the starting degree l0(e.g. degree 30), and x4 represents
the rate of noise amplitude increasing.

From figures 6.24 and 6.25, and table 6.1, we can see that, in terms of geoid
heights, the DEOS solutions have a very similar pattern to the JPL solutions,
whereas the GFZ solutions and CSR solutions are also rather similar. In
addition, the signal part of the DEOS and JPL solutions are very close to
the GLDAS hydrological solutions. Notice that the signal amplitude at the
starting degree for GFZ and CSR solutions is nearly two times larger than
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a

b

c

Fig. 6.24. Geoid height differences per degree of monthly solutions with respect to
the corresponding mean models. (a) GLDAS hydrological models, (b) DEOS GRACE
models, (c) JPL GRACE models. The blue dots represent the degree differences for all
monthly solutions. The green crosses are the averages per degree based on all monthly
degree differences. The black and red solid lines are the analytical approximation of
the signal part and the noise part (except for the GLDAS), respectively
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a

b

c

Fig. 6.25. Geoid height differences per degree of monthly solutions with respect to the
corresponding mean models. (a) CNES GRACE models, (b) GFZ GRACE models, (c)
CSR GRACE models. The blue dots represent the degree differences for all monthly
solutions. The green crosses are the averages per degree based on all monthly degree
differences. The black and red solid lines are the analytic approximation of the signal
part and the noise part, respectively.
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Fig. 6.26. Signal amplitude in terms of geoid height for all GRACE solutions as well
as the GLDAS hydrological models. (a) mean of signal amplitude, (b) RMS of signal
amplitude.
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Table 6.1. Estimated parameters of the analytic functions (see equations (6.8) and
(6.9)), which are used to model the corresponding signal and noise in gravity field
solutions

Solutions x1 x2 x3 x4

GLDAS 1.032 0.865 -1.382 -0.012

DEOS 0.954 0.638 -1.595 +0.026

JPL 1.040 0.688 -1.550 +0.027

CNES 2.050 0.892 +0.856 -0.061

GFZ 1.768 0.820 -1.462 +0.026

CSR 1.809 0.820 -1.365 +0.020

that of the DEOS and JPL solutions. In addition, the signal in the GFZ and
CSR solutions decreases faster than that in the DEOS and JPL solutions.
Furthermore, it can be seen that the CNES solutions have the largest signal
amplitude and the fastest rate of signal decrease. The noise part of the CNES so-
lutions decreases with the degree due to the regularization used in data processing.

In order to further compare these solutions, the mean values per degree up
to degree 30 are shown at larger scale in figure 6.26a. Apart from the discrepan-
cies already observed in previous figures and table, the main differences in mean
values per degree between the DEOS and JPL and the GFZ and CSR solutions
are in the range from degree 2 to 5, whereas the mean values at other degrees
are rather close. Notice that the CNES solutions have a smaller mean value at
degree 2 than the GFZ and CSR solutions, but the largest value at degree 3
among all solutions. We compute the signal variabilities (i.e. root mean square)
of each solution of each processing center with respect to the corresponding mean.
The signal variabilities are shown in figure 6.26b in terms of RMS values per
degree. The DEOS and JPL solutions display smaller signal variability than the
GFZ and CSR solutions at degree 2 to 4. The CSR solutions have the largest
signal variability at degree 2 (up to 0.5mm), while the CNES solutions show the
smallest RMS value among all GRACE solution. It should be noticed that degree
2 coefficients in the CNES solutions are jointly estimated from LAGEOS SLR
data and GRACE data. The reason for the discrepancies between different types
of solutions could be due to the differences in GRACE data processing schemes.
This issue certainly needs more investigation in the future.

6.5.3 Water storage changes in large river basins

In order to make a further inter-comparison of different GRACE solutions and the
GLDAS hydrological models we derived the water storage changes in sixteen large
river basins. The locations and areas of these selected river basins can be seen in
figure 6.27 and table 6.2, respectively. These basins are characterized by various
sizes and climate environments. To evaluate water storage changes in these basins,
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Fig. 6.27. Locations of selected sixteen river basins, their areas are listed in table 6.2

we truncate all available solutions at degree and order 50, and apply P3M8 de-
striping combined with 400 km Gaussian filtering. Subsequently, equivalent water
height variations for the period February 2003 to December 2006 are computed on
a global grid (0.5◦ × 0.5◦) as for the DEOS solutions. The mean equivalent water
height variations for each river basin at a certain month t is computed for each set
of solutions as follows:

q̄(t) =

∑
j∈S

q(θj , λj , t) sin θj∑
j∈S

sin θj

, (6.10)

where q(θj , λj , t) are equivalent water height variations computed at grid nodes;
θj, λj are respectively the colatitude and longitude of a grid node. S represents the
region associated with the selected river basin. The contour of each basin is based
on masks of 0.5◦ resolution from [Oki and Su, 1998]. We analyze and compare
the water storage variations derived from GRACE solutions, as well as from the
GLDAS hydrological model, which is taken as an independent reference. It should
be mentioned that all the geographical descriptions of the selected river basins are
taken from [Wikipedia, 2008].

Two issues are worth mentioning here. Firstly, the GLDAS-derived water storage
variations only contain soil moisture and snow water equivalent. For some regions
where the ground water storage is rather stable, these two components may be
sufficient to represent the total water storage variations. For others, ground water
variations may play a significant role in entire storage changes. Then, relatively
differences between the GRACE-derived variations and the GLDAS-derived ones
may be expected. Secondly, the application of Gaussian filtering to GRACE based
models may cause bias in estimation of mean storage changes in a given region
[Klees et al., 2007]. In principle, it is possible to make use of a hydrological model
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Table 6.2. Area of selected sixteen river basins [Nakaegawa, 2006]

Map Number River Basin Area (103
km

2)

1 Amazon (South America) 6150

2 Orinoco (South America) 944

3 Tocantins (South America) 900

4 Mississippi (North America) 3248

5 Mackenzie (North America) 1668

6 Yukon (North America) 900

7 Nile (Africa) 3007

8 Chari (Africa) 880

9 Congo (Africa) 3690

10 Zambeze (Africa) 1330

11 Danube (Europe) 817

12 Ob (North Asia) 2978

13 Yenisey (North Asia) 2592

14 Changjiang (South Asia) 1809

15 Ganges (South Asia) 1100

16 Pearl (South Asia) 437

(as a priori information) to estimate this bias. This is beyond the scope of the
thesis, but can be definitely advised as the subject of further researches. In the
current study we eliminated the problem of such a bias by applying the same
de-striping and spatial filtering to all models used.

6.5.3.1 South America

In South America, water storage variations are estimated in three selected river
basins, Amazon, Orinoco and Tocantins River basins. The river of Amazon is
the largest river in the world by volume, accounting for approximately 1/5 of the
world’s total river flow. The total river flow of Amazon is greater than the sum of
flows of the next ten largest rivers. The Amazon basin is also the largest drainage
basin in the world, covering the area of some 6150 000 km2. In an average dry
season, 110 000 km2 of land are water-covered, while in the wet season the flooded
area in the Amazon basin rises to 350 000 km2. The Orinoco is one of the longest
rivers in South America reaching the length of 2410km. Its drainage basin covers
944 000 km2. In the rainy season the Orinoco could swell to a breadth of 22 km
and a depth of 100m. The rain season of the Orinoco River basin is opposite to
that of the Amazon river basin. The Tocantins river is popularly regarded as a
tributary of the Amazon, but it is technically a separate system, with a drainage
basin of 900 000 km2. All the three river basins are located in tropical areas.

From figures 6.28 and 6.29, we can see that seasonal water height variation
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Fig. 6.28. Mean water storage variations over Amazon River basin (top) and Orinoco
River basin (bottom) from DEOS, JPL, CNES, GFZ and CSR GRACE solutions as well
as from the GLDAS hydrological models. Units are cm of equivalent water heights
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Fig. 6.29. Mean water storage variations over Tocantins River from DEOS, JPL,
CNES, GFZ and CSR GRACE solutions as well as from the GLDAS hydrological models.
Units are cm of equivalent water heights

derived from different GRACE solutions are in a good agreement with each
other for these three river basins. The Amazon and Tocantins River basins
have the same seasonal cycle: a positive peak in April, and a negative peak in
September-October. The Orinoco River basin has nearly the opposite seasonal
variation with respect to the Amazon and Tocantins river basins: negative
peak in March, and positive peak in August-September. We observe that the
amplitudes of GRACE-derived water variations are larger than computed from
the GLDAS hydrological model, particularly at the Orinoco River basin, where
the GRACE-derived water variations are more than two times larger. A possible
explanation is that the GLDAS solution underestimates the water storage
variations because it models mostly the soil moisture in the region. Thus, the
stock variations associated with ground water and open water bodies are ignored.

In order to see the differences of these solutions, we compute the RMS values
of the differences between the individual GRACE monthly solutions and (i) the
corresponding monthly mean of all GRACE solutions, (ii) GLDAS monthly values
and JPL monthly values. The reason to choose the JPL solutions as a reference
is that the JPL solutions were validated as the best GRACE solutions on the
basis of a comparison with satellite altimetry data and a numerical ocean model
[Dobslaw and Thomas, 2007]. From the RMS values shown in table 6.3, we find
that the DEOS solutions differ from the mean of all GRACE solutions more than
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Table 6.3. Analysis of mean water storage variations in selected river basins in South
America. Values shown here are standard deviations of the differences between in-
dividual GRACE monthly solutions and (i) corresponding mean values of all GRACE
solutions, (ii) mean monthly values from the GLDAS hydrological models, and (iii)
JPL GRACE monthly solutions. Units are cm of equivalent water heights

River Basin Reference DEOS JPL CNES GFZ CSR

Amazon mean 2.57 1.32 1.43 1.13 1.68

GLDAS 3.34 3.95 5.94 5.64 6.32

JPL 2.04 -- 2.50 2.27 2.77

Orinoco mean 1.94 1.35 1.25 1.88 1.41

GLDAS 6.22 7.41 7.40 5.90 7.26

JPL 1.81 -- 1.82 3.16 2.33

Tocantins mean 2.97 1.70 1.85 1.39 1.95

GLDAS 3.99 3.66 5.74 4.94 6.13

JPL 2.58 -- 3.28 2.66 3.36

Table 6.4. Fit of a yearly sinusoidal through the time series from February 2003 till
December 2006 for Amazon, Orinoco and Tocantins. σ̂ is the a posteriori standard

deviation and R2 = 1− σ̂2

σ2 , where σ2 is the signal variance around the 4-year mean

River Basin Models Amplitude [cm] Phase [months] σ̂ R
2

Amazon GLDAS 8.5±0.6 -0.07±0.13 1.3 0.96

DEOS 10.6±1.0 -0.72±0.15 2.2 0.93

JPL 12.5±1.5 -0.69±0.15 2.3 0.94

CNES 14.8±1.3 -0.85±0.18 3.2 0.92

GFZ 14.7±1.5 -0.88±0.18 3.0 0.93

CSR 15.3±1.5 -0.85±0.18 3.5 0.91

Orinoco GLDAS 5.6±0.7 -4.96±0.31 2.1 0.82

DEOS 13.1±1.1 -5.43±0.17 2.8 0.93

JPL 14.7±1.5 -5.35±0.17 3.0 0.94

CNES 14.8±1.6 -5.18±0.22 3.9 0.90

GFZ 12.6±1.1 -4.86±0.24 3.6 0.89

CSR 14.1±1.5 -5.06±0.22 3.8 0.90

Tocantins GLDAS 13.6±1.8 0.12±0.11 1.8 0.97

DEOS 12.5±1.4 -0.37±0.21 3.4 0.88

JPL 14.8±1.4 -0.30±0.19 3.4 0.93

CNES 18.0±1.7 -0.49±0.19 4.1 0.90

GFZ 16.9±1.6 -0.49±0.20 3.8 0.92

CSR 17.4±1.9 -0.51±0.20 4.5 0.90
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other solutions do (for Orinoco though the RMS of the DEOS solutions is very
close to that of GFZ solutions). The reason for this is that the CNES, CSR and
GFZ solutions have, in most cases, larger amplitudes, which dominate the mean
value. On the other hand, the DEOS solutions are, in general, closer to the JPL
solutions and the GLDAS hydrological model. This can be further seen from
table 6.4, which shows parameters of a yearly sinusoidal computed through the
time series of all GRACE solutions and hydrological models for these river basins.
The list of presented parameters includes the amplitudes and phases as well as
the corresponding posteriori standard deviations σ̂ and the values of parameter

R2 defined as R2 = 1 − σ̂2

σ2 , where σ2 is the signal variance around the 4-year
mean. The value of R2 indicates how significant is the one-year cycle signal in
the data records. Obviously, the yearly cycle signal dominates in the water mass
variations for all three river basins. In the meanwhile, it is found that the estimated
parameters of DEOS solutions shown in table 6.4 are very close to others except
for the amplitudes.

6.5.3.2 North America

In North America, we selected the following three river basins: Mississippi,
Mackenzie and Yukon. The Mississippi River Basin is the largest watershed in
North America, draining 41% of the continental United States and discharging
into the Northern Gulf of Mexico at an average rate of 17 330 m3/s. The Missis-
sippi flows 3763km from the Lake of Itasca in northern Minnesota to its delta in
southern Louisiana. The Mackenzie River is the longest river in Canada reaching
the length of 1738km. It originates in Great Slave Lake, in the Northwest Terri-
tories, and flows north into the Arctic Ocean. The Mackenzie and its tributaries
drain 1805 200 km2. Its mean discharge is 9700 m3/s. The Yukon River is a ma-
jor watercourse of northwestern North America. The river is 3700km long and
empties into the Bering Sea at the Yukon-Kuskokwim Delta. The average flow
is 6430 m3/s. The total drainage area is 832 700 km2, of which 323 800 km2 is in
Canada.

The mean water storage variations in Mississippi and Mackenzie River basins are
shown in figure 6.30 and in Yukon River basin in figure 6.31. The RMS values
of all GRACE solutions are listed in table 6.5. The fit of the yearly sinusoidal is
shown in table 6.6.

The three North American river basins show similar seasonal cycle: a posi-
tive peak around April, and a negative peak around October. The differences of
phases between the GRACE solutions are less than 0.3 month for the Mackenzie
and Yukon River basins, but almost 0.5 month for the Mississippi River Basin.
Notice that the GLDAS hydrological models show significant phase differences
with GRACE-based solutions, particularly in Mackenzie and Yukon River basins.

Compared to the tropical river basins (Amazon, Orinoco and Tocantins),
the water variations in North America are much smaller with the largest seasonal
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Fig. 6.30. Mean water storage variations over Mississippi River basin (top) and
Mackenzie River basin (bottom) from DEOS, JPL, CNES, GFZ and CSR GRACE
solutions as well as from the GLDAS hydrological models. Units are cm of equivalent
water heights
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Fig. 6.31. Mean water storage variations over Yukon from DEOS, JPL, CNES, GFZ
and CSR GRACE solutions as well as from the GLDAS hydrological models. Units are
cm of equivalent water heights

Table 6.5. Analysis of mean water storage variations in selected river basins in North
America. Values shown here are standard deviations of the differences between in-
dividual GRACE monthly solutions and (i) corresponding mean values of all GRACE
solutions, (ii) mean monthly values from the GLDAS hydrological models, and (iii)
JPL GRACE monthly solutions. Units are cm of equivalent water heights

River Basin Reference DEOS JPL CNES GFZ CSR

Mississippi mean 1.22 0.90 1.33 0.78 0.94

GLDAS 2.22 2.39 2.71 2.31 2.92

JPL 1.57 -- 1.59 1.51 1.57

Mackenzie mean 1.38 1.01 1.38 1.23 1.39

GLDAS 2.55 1.99 2.51 2.80 2.80

JPL 1.40 -- 1.90 1.82 2.14

Yukon mean 1.50 1.20 2.00 1.41 1.69

GLDAS 3.08 3.57 4.39 3.76 4.42

JPL 1.50 -- 2.69 1.99 2.53
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Table 6.6. Fit of a yearly sinusoidal through the time series from February 2003 till
December 2006 for Mississippi, Mackenzie and Yukon. σ̂ is the a posteriori standard

deviation and R2 = 1− σ̂2

σ2 , where σ2 is the signal variance around the 4-year mean

River Basin Models Amplitude [cm] Phase [months] σ̂ R
2

Mississippi GLDAS 2.9±0.7 0.51±0.49 1.7 0.68

DEOS 4.2±0.7 -0.34±0.32 1.6 0.80

JPL 4.3±0.5 -0.18±0.24 1.2 0.91

CNES 3.6±0.8 0.10±0.45 2.0 0.77

GFZ 4.1±0.8 0.23±0.38 1.9 0.77

CSR 4.3±0.7 0.18±0.34 1.8 0.79

Mackenzie GLDAS 3.7±0.4 0.79±0.22 1.1 0.89

DEOS 4.2±0.6 -0.06±0.29 1.5 0.82

JPL 4.1±0.5 -0.01±0.22 1.1 0.88

CNES 5.8±0.6 -0.04±0.22 1.5 0.89

GFZ 5.2±1.0 0.23±0.36 2.2 0.77

CSR 5.5±1.0 0.17±0.36 2.5 0.73

Yukon GLDAS 2.5±0.5 1.03±0.43 1.3 0.85

DEOS 5.5±0.8 0.23±0.27 1.8 0.88

JPL 6.8±0.8 0.19±0.19 1.5 0.93

CNES 7.1±0.8 0.30±0.23 2.0 0.92

GFZ 6.5±0.9 0.36±0.28 2.2 0.87

CSR 7.2±1.0 0.29±0.27 2.4 0.89

variations being less than 20 cm (peak-to-peak) in terms of mean equivalent water
height. The largest amplitude is 7.2 cm observed by the CSR solutions for the
Yukon River basin (see table 6.6). The Mackenzie river basin shows a secular
water accumulation, whereas the Yukon river basin, conversely, is characterized
by a secular water loss, probably due to glacial melting [Chen et al., 2006a]. We
find that the amplitudes of GLDAS-derived signal are still smaller than those
derived from the GRACE solutions, particularly for the Yukon river basin. The
DEOS solutions for these three river basins are not significantly smaller than the
other GRACE solutions. Compared to the mean of all GRACE solutions, the
DEOS solutions are not the most outstanding ones; the CNES solutions show
the largest discrepancies in two cases out of three. Compared with the GLDAS
model, the DEOS solutions are closer than the other GRACE solutions over
the Mississippi and Yukon River basins. In the Mackenzie River basin, the JPL
solutions are the closest to the GLDAS model. When compared with the JPL
solutions, the DEOS solutions are in the closest agreement in the Mackenzie and
Yukon river basins, while in the Mississippi River basin, all the GRACE solutions
are almost equally close.
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6.5.3.3 Africa

In Africa, we consider four river basins: Nile, Chari, Congo and Zambezi. The
Nile River is the major north-flowing river in Africa and the second longest river
in the world. The drainage basin of the Nile River covers more than 3 million
km2, about 10% of the area of Africa. Most of the Nile’s water comes from the
Blue Nile, one of its two major tributaries. The northern section of the Nile
river flows almost entirely through desert, from Sudan into Egypt. The Nile ends
in a large delta and empties into the Mediterranean Sea. The Chari or Shari
River is a 949km-long river in central Africa. It flows from the Central African
Republic through Chad into the Chad Lake, following the Cameroon border from
N’Djamena. The area of river watershed covers 880 000 km2. The Congo River
is the second longest river in Africa (next to the Nile) with an overall length of
4700km. The river and its tributaries flow through the second largest rain forest
area in the world (second only to the Amazon Rainforest). The river also has
the second-largest flow in the world behind the Amazon. Because large sections
of the river basin lie above and below the equator, its flow is stable. The Congo
river has the second-largest watershed in the world (about 3690 000 km2), which
is slightly larger than that of the Mississippi river, and much smaller than that of
Amazon river. The Zambezi River is the fourth longest river in Africa, and the
largest one flowing into the Indian Ocean from Africa. The area of its basin is
1,330,000 km2, nearly half that of the Nile. The 2574km-long river has its source
in Zambia and flows through Angola, along the borders of Namibia, Botswana,
Zambia, and Zimbabwe, to Mozambique, where it empties into the Indian Ocean.

The water storage variations in the Nile and Chari River basins are shown in
figure 6.32 and variations in the Congo and Zambezi river basins are shown in
figure 6.33. The RMS values of all GRACE solutions are listed in table 6.7. The
fit to the yearly sinusoidal is shown in table 6.8.

Firstly, let us look at the Nile and Chari River basins. From figure 6.32, we
can see that the two river basins have the same seasonal cycle: positive peak at
around October and negative peak at around April. The absolute variation in
the Nile River basin is around 15 cm and around 25 cm in the Chari River basin.
Additionally, it is found that in the Nile River basin the JPL and DEOS solutions
differ significantly from the other GRACE solutions in the Fall season of 2004 and
2005. Except for the Fall of 2004 and 2005, all GRACE solutions are in a good
agreement with each other in these two river basins. From table 6.8, the GLDAS
models show more than half month phase difference with the GRACE solutions.
The estimated amplitude of seasonal variations is about 5.2 cm in Nile River basin
and 10.5 cm in Chari River basin (mean for all kinds of solutions). The DEOS esti-
mates of amplitude and phase of seasonal signal are very close with other GRACE
solutions. Secondly, let us analyze the Congo river. Although it has the largest
watershed, the spatially averaged water storage variations there do not seem to
be larger than in the other selected African river basins. A negative long-term
trend and seasonal variation in the Congo River basin are clearly observed by all
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Fig. 6.32. Mean water storage variations over Nile River basin (top) and Chari river
basin (bottom) from DEOS, JPL, CNES, GFZ and CSR GRACE solutions as well as
from the GLDAS hydrological models. Units are cm of equivalent water heights
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Fig. 6.33. Mean water storage variations over Congo River basin (top) and Zambezi
river basin (bottom) from DEOS, JPL, CNES, GFZ and CSR GRACE solutions as well
as from the GLDAS hydrological models. Units are cm of equivalent water heights
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Table 6.7. Analysis of mean water storage variations in selected river basins in Africa.
Values shown here are standard deviations of the differences between individual GRACE
monthly solutions and (i) corresponding mean values of all GRACE solutions, (ii) mean
monthly values from the GLDAS hydrological models, and (iii) JPL GRACE monthly
solutions. Units are cm of equivalent water heights

River Basin Reference DEOS JPL CNES GFZ CSR

Nile mean 1.20 1.26 1.02 1.11 1.13

GLDAS 2.28 2.43 2.04 1.86 1.84

JPL 1.55 -- 1.99 2.00 2.04

Chari mean 1.41 1.16 1.12 1.12 1.20

GLDAS 2.34 2.66 3.14 2.46 2.81

JPL 2.08 -- 1.81 1.78 1.80

Congo mean 1.22 0.97 1.18 1.14 1.25

GLDAS 2.22 2.39 2.71 2.31 2.92

JPL 1.29 -- 1.85 1.67 1.89

Zambezi mean 1.76 1.07 1.69 1.20 1.33

GLDAS 2.60 2.29 3.46 3.03 3.05

JPL 1.81 -- 2.42 1.84 1.89

GRACE measurements. A seasonal positive peak is not observed during March
2006, instead a negative peak is present. The R2 values of the Congo River basin
display that the seasonal signal is below 0.70 on average, less than for the other
selected river basins in the region. The DEOS and (particular) JPL solutions
show more than half month phase difference with other GRACE solutions.
As far as the Zambezi River basin is concerned, a regular pattern of seasonal
variations can be seen from all the GRACE solutions as well as from the GLDAS
models. However, the amplitude of variations derived from different GRACE
solutions does differ, with the DEOS solutions showing the smallest positive peaks.

Analysis of the RMS values listed in table 6.7 tells us that the DEOS solu-
tions are comparable with the others. In the Nile River basin, DEOS solutions
show the second largest RMS values (after JPL solutions) with respect to the
mean of all the GRACE solutions and the GLDAS models. In the Chari and
Congo River basins, the DEOS solutions show the largest difference from the
mean of GRACE solutions, but are the closest to the GLDAS models. In the
Zambezi River basin, the DEOS solutions show the largest deviations from the
mean of GRACE solutions, but are the second closest models to GLDAS (after
JPL solutions).

6.5.3.4 Europe and North Asia

In Europe and North Asia, we analyzed water variations in three river basins:
Danube, Ob and Yenisey.
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Table 6.8. Fit of a yearly sinusoidal through the time series from February 2003 till
December 2006 for Nile, Chari, Congo and Zambezi. σ̂ is the a posteriori standard

deviation and R2 = 1− σ̂2

σ2 , where σ2 is the signal variance around the 4-year mean

River Basin Models Amplitude [cm] Phase [months] σ̂ R
2

Nile GLDAS 3.9±0.3 6.30±0.14 0.6 0.95

DEOS 5.5±0.6 5.53±0.21 1.4 0.90

JPL 6.5±0.5 5.80±0.14 1.1 0.95

CNES 5.0±0.7 5.55±0.26 1.6 0.84

GFZ 5.2±0.6 5.70±0.22 1.3 0.89

CSR 4.8±0.7 5.70±0.45 1.7 0.82

Chari GLDAS 8.9±0.8 6.19±0.20 1.6 0.94

DEOS 9.8±0.7 5.75±0.14 1.8 0.95

JPL 11.6±0.8 5.87±0.14 2.0 0.95

CNES 11.3±1.1 5.67±0.18 2.5 0.92

GFZ 10.4±1.0 5.76±0.20 2.3 0.92

CSR 11.2±1.1 5.71±0.18 2.6 0.91

Congo GLDAS 1.6±0.9 1.01±1.03 2.1 0.59

DEOS 2.0±0.8 2.23±0.80 2.0 0.59

JPL 2.0±0.8 2.60±0.73 1.9 0.69

CNES 3.2±0.9 1.69±0.55 2.2 0.76

GFZ 2.5±1.0 1.87±0.70 2.2 0.72

CSR 3.1±1.1 1.84±0.69 2.6 0.60

Zambezi GLDAS 9.3±1.1 0.25±0.22 2.5 0.88

DEOS 8.4±1.1 -0.33±0.27 2.8 0.85

JPL 9.5±1.5 -0.25±0.25 2.9 0.87

CNES 10.8±1.5 -0.20±0.27 3.5 0.85

GFZ 9.7±1.5 -0.17±0.30 3.5 0.85

CSR 10.7±1.5 -0.21±0.27 3.5 0.85

The Danube is the longest river in the European Union, originating in the
Black Forest in Germany, flowing eastwards for a distance of some 2850km,
and passing through several Central and Eastern European capitals (Vienna of
Austria, Bratislava of Slovakia, Budapest of Hungary and Belgrade of Serbia),
before emptying into the Black Sea via the Danube Delta in Romania and
Ukraine. Crossing through ten countries and draining some 817 000 km2 and
the territory of 18 countries, the Danube is the most international river in the
world and the most important non-oceanic body of water in Europe. The Ob
River originates from the Altai Mountains in central Asia, flowing across western
Siberia northwestward. It goes through the Gulf of Ob into the Kara Sea of
the Arctic Ocean. The river is about 3650km long from the head of the Katun
River or about 5410km long from the head of the Irtysh River. Its middle course
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Fig. 6.34. Mean water storage variations over Danube River basin (top) and Ob river
basin (bottom) from DEOS, JPL, CNES, GFZ and CSR GRACE solutions as well as
from the GLDAS hydrological models. Units are cm of equivalent water heights
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Table 6.9. Analysis of mean water storage variations in selected river basins in Europe
and North Asia. Values shown here are standard deviations of the differences between
individual GRACE monthly solutions and (i) corresponding mean values of all GRACE
solutions, (ii) mean monthly values from the GLDAS hydrological models, and (iii)
JPL GRACE monthly solutions. Units are cm of equivalent water heights

River Basin Reference DEOS JPL CNES GFZ CSR

Danube mean 1.08 0.88 1.12 0.92 0.96

GLDAS 2.87 2.52 2.51 1.35 2.28

JPL 1.43 -- 1.72 1.42 1.32

Ob mean 1.01 1.02 1.14 1.13 1.39

GLDAS 2.16 1.87 2.13 1.89 2.27

JPL 1.44 -- 1.67 1.67 2.03

Yenisey mean 1.23 0.90 1.30 1.51 1.27

GLDAS 2.48 1.88 2.13 2.53 2.34

JPL 1.42 -- 1.66 2.10 1.65

Table 6.10. Fit of a yearly sinusoidal through the time series from February 2003 till
December 2006 for Danube, Ob and Yenisey. σ̂ is the a posteriori standard deviation

and R2 = 1− σ̂2

σ2 , where σ2 is the signal variance around the 4-year mean

River Basin Models Amplitude [cm] Phase [months] σ̂ R
2

Danube GLDAS 6.9±0.8 0.62±0.21 1.9 0.88

DEOS 5.4±0.8 -0.22±0.28 1.8 0.85

JPL 6.3±0.8 0.02±0.25 1.9 0.87

CNES 5.8±0.9 0.00±0.31 2.2 0.82

GFZ 6.7±1.0 0.06±0.31 2.3 0.83

CSR 6.8±1.1 -0.01±0.31 2.6 0.81

Ob GLDAS 5.0±0.7 0.78±0.26 1.6 0.86

DEOS 5.2±0.7 -0.01±0.27 1.7 0.84

JPL 4.3±0.6 0.01±0.24 1.3 0.87

CNES 5.0±0.9 0.17±0.36 2.2 0.75

GFZ 5.5±1.0 0.23±0.32 2.0 0.81

CSR 5.7±1.0 0.03±0.36 2.6 0.75

Yenisey GLDAS 3.6±0.5 1.05±0.23 1.0 0.89

DEOS 5.0±0.7 0.15±0.28 1.7 0.82

JPL 4.4±0.5 0.26±0.20 1.1 0.89

CNES 4.0±0.7 0.44±0.42 1.7 0.75

GFZ 4.1±0.9 0.56±0.42 2.1 0.70

CSR 4.4±0.9 0.29±0.37 2.0 0.72
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Fig. 6.35. Mean water storage variations over Yenisey River basin from DEOS, JPL,
CNES, GFZ and CSR GRACE solutions as well as from the GLDAS hydrological models.
Units are cm of equivalent water heights

is through taiga, swampy coniferous forest with expanses of marshland. In the
north it crosses vast stretches of icy, treeless tundra. The Ob River basin is
ice-bound at southern Barnaul from early November to near the end of April, and
at northern Salekhard, 160km above its mouth, from the end of October to the
beginning of June. The Ob is an important source of hydroelectric power and one
of Siberia’s major transportation routes during the six months of the year when
it is not frozen. The Yenisey River is the fifth longest river in the world (5539km
long), rising from Darkhad Valley in Mongolia. It follows a northerly course to
the Yenisei Gulf in the Kara Sea with an average discharge of 19 600 m3/s. The
draining area is about 2580 000 km2, a large part of central Siberia, and most of
this area is at a height of between 487m to 700m above sea level. Most of the
Yenisey River is icebound for more than half of the year.

The water storage variations in the Danube and Ob River basins are shown in
figure 6.34 and in the Yenisey River basin in figure 6.35. The RMS values of all
GRACE solutions are listed in table 6.9. The fit of the yearly sinusoidal is shown
in table 6.10.

The linear trends and seasonal variations observed by all the GRACE solu-
tions seem to be consistent with each other. These three river basins have almost
the same seasonal cycle: a positive peak around March-April and a negative peak
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around September-October. The absolute variation of the seasonal variations are
less than 20 cm. The Danube River basin has a secular water mass accumulation
during the period between 2003 and 2006, while the Ob River basin shows an
obvious mass decline in this period as previously observed in section 6.3. It can
also be noticed that a rapid loss of mass takes place in Ob and Yenisey river basins
in April-June. This can be explained by intensive melting of snow accumulated
during the Fall and Winter.

From the RMS values listed in table 6.9, we can see that the DEOS solu-
tions are relatively close to the mean of all GRACE solutions (particularly in the
Ob River basin). Referring to the GLDAS models, the DEOS solutions show the
largest discrepancy in the Danube River basin, but not in the Ob and Yenisey
River basins. Noteworthy, all the GRACE solutions show approximately the same
agreement with GLDAS models except for GFZ, which is particularly close to
GLDAS in the Danube river basin, and JPL, which is rather close to GLDAS in
the Yenisey river basin.

6.5.3.5 South-East Asia

In Asia, we analyze water storage in three river basins: Changjiang, Pearl and
Ganges.

The Changjiang (or Yangtze River) is the longest river in Asia and the
third longest river in the world, after Amazon and Nile. The river is about
6300km long and spreading over 1800 000 km2 of basin area. It originates in
Qinghai Province, flowing eastwards into the East China Sea at Shanghai. The
river is a major transportation waterway for China, connecting the interior with
the coast. Flooding along the river has been a major problem. The rainy season
is May and June in the southern part of river basin, and July and August in the
northern part. The huge river system receives water from both southern and
northern flanks, which causes its flood season to extend from May to August.
Meanwhile, a relatively dense population and rich cities along the river make
the floods more deadly and costly. The Pearl River (or Zhujiang) is the China’s
third longest river (2200km, after the Changjiang and the Yellow River), and
the second largest by volume (after the Yangtze). Located in the south, it flows
into the South China Sea between Hong Kong and Macau. Its lower reach forms
the Pearl River Delta. The river flows through the majority of Guangdong,
Guangxi, Yunnan, and Guizhou Provinces, and parts of Hunan and Jiangxi,
forming one of the leading economic regions and a major manufacturing center
of mainland China. The Ganges is a major river in the Indian subcontinent,
which is about 2510km long. It starts from the Gangotri Glacier in the Indian
state of Uttarakhand, in the central Himalayas, flows east through the plains of
northern India into Bangladesh, and drains into the Bay of Bengal through its
vast delta in the Sunderbans. The Ganges and its tributaries drain an area about
one million square kilometers and a fertile basin that supports one of the world’s
highest-density human populations.
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Fig. 6.36. Mean water storage variations over Changjiang River basin (top) and Pearl
River basin (bottom) from DEOS, JPL, CNES, GFZ and CSR GRACE solutions as well
as from the GLDAS hydrological models. Units are cm of equivalent water heights
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Fig. 6.37. Mean water storage variations over the Ganges River basin (bottom) from
DEOS, JPL, CNES, GFZ and CSR GRACE solutions as well as from the GLDAS
hydrological models. Units are cm of equivalent water heights

Table 6.11. Analysis of mean water storage variations in selected river basins in
South-East Asia. Values shown here are standard deviations of the differences between
individual GRACE monthly solutions and (i) corresponding mean values of all GRACE
solutions, (ii) mean monthly values from the GLDAS hydrological models, and (iii)
JPL GRACE monthly solutions. Units are cm of equivalent water heights

River Basin Reference DEOS JPL CNES GFZ CSR

Changjiang mean 1.37 0.75 1.19 0.60 0.85

GLDAS 1.78 1.81 2.56 2.04 2.32

JPL 1.32 -- 1.71 1.09 1.39

Pearl mean 1.48 0.74 1.47 0.84 0.96

GLDAS 1.72 2.02 3.02 2.18 2.50

JPL 1.57 -- 1.87 1.20 1.35

Ganges mean 2.45 1.02 1.63 1.13 1.03

GLDAS 2.50 2.50 3.57 3.01 2.91

JPL 2.50 -- 2.30 1.79 1.62
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Table 6.12. Fit of a yearly sinusoidal through the time series from February 2003
till December 2006 for Changjiang, Ganges and Pearl. σ̂ is the a posteriori standard

deviation and R2 = 1− σ̂2

σ2 , where σ2 is the signal variance around the 4-year mean

River Basin Models Amplitude [cm] Phase [months] σ̂ R
2

Changjiang GLDAS 2.1±0.5 -3.67±0.44 1.1 0.65

DEOS 3.2±0.6 -3.25±0.38 1.4 0.73

JPL 3.6±0.7 -3.76±0.38 1.7 0.72

CNES 4.8±0.8 -4.21±0.28 1.7 0.82

GFZ 4.2±0.7 -4.08±0.33 1.7 0.78

CSR 4.6±0.6 -4.20±0.25 1.5 0.85

Ganges GLDAS 9.0±1.0 -5.62±0.21 2.3 0.89

DEOS 8.2±0.8 -5.92±0.21 2.1 0.90

JPL 10.3±1.3 -5.90±0.25 3.1 0.86

CNES 12.5±1.4 -5.99±0.22 3.3 0.89

GFZ 11.5±1.4 -5.88±0.26 3.4 0.87

CSR 11.8±1.3 -5.91±0.30 3.2 0.89

Pearls GLDAS 5.1±0.8 -3.58±0.29 1.8 0.80

DEOS 5.2±1.1 -3.82±0.40 2.6 0.69

JPL 6.3±1.1 -4.11±0.34 2.6 0.76

CNES 7.4±1.3 -4.25±0.31 3.1 0.76

GFZ 6.6±1.1 -4.19±0.32 2.5 0.78

CSR 7.0±1.0 -4.27±0.26 2.3 0.84

The water storage variations in the Changjiang and Pearl River basins are shown
in figure 6.36 and the Ganges River basin in figure 6.37. The RMS values of all
GRACE solutions are listed in table 6.11. The fit of the yearly sinusoidal is shown
in table 6.12.

In general, the Changjiang and Pearl River basins show positive peaks in
June-July and negative peaks in January-February. The seasonal peaks in the
Ganges River basin have a delay of one or two months, see table 6.12. From the
RMS values listed in table 6.11, we can also see that the DEOS solutions show
the biggest differences with respect to the mean of all GRACE solutions in these
three river basins. This can be explained by the fact that the DEOS solutions
show much smaller signals than the other GRACE solutions, see table 6.12. At
the same time, the DEOS solutions have the best consistency with the GLDAS
models.

6.6 Summary and Remarks

In this chapter, we made a comprehensive analysis of the DEOS solutions,
spanning the interval from February 2003 to December 2006. In order to suppress
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North-South artifacts, the de-striping technique was applied in combination with
400km Gaussian filtering. On the basis of the DEOS gravity field solutions with
their associated full covariance matrices, we estimated global secular trends,
seasonal and semi-seasonal variations of the Earth’s gravity field. In a similar
way, we also computed the secular changes and seasonal variations from the
GLDAS hydrological models. We found many similarities between the secular
trends derived from the DEOS solutions and GLDAS models. Apart from these
similarities, there are some signals that are not observed in the GLDAS models,
but clearly present in the DEOS GRACE solutions, e.g. due to ice mass loss in
some polar areas and PGR signals in Hudson Bay and Scandinavia. The seasonal
variations derived from both DEOS solutions and GLDAS models demonstrate
close similarities. In particular, the largest water mass variations according
to models of both types always happen in the areas between 30◦S and 30◦N.
In addition, the phase of the annual cycle is very clearly separated along the
latitudes of 30◦S and 30◦N. Compared with the amplitude of the annual cycle,
the semi-annual amplitude is rather small, and the phase does not show a clear
separation according to the latitude.

We have applied the DEOS solutions to the analysis of the Greenland ice
melting and Antarctic mass loss. In Greenland, we found two ice melting centers:
one is at the south-east coast, and the other is at the north-west coast. The
maximum mass loss rate at the south-east ice-melting center is approximately
-8 cm/yr in terms of water height. This is two times larger than at the north-west
ice-melting center. On the other hand, the ice sheets in Greenland’s interior
slightly accumulate mass over the whole 4-year period (with mass loss in the
first two years and mass gain in the latter two years). In Antarctica, we found a
mass loss in several regions. After removal of the PGR signals, the major loss of
mass can be seen in the costal Amundsen Sea Embayment and western Antarctic
Peninsula. Meanwhile, a total accumulation can be observed in the interior of
West Antarctica and East Antarctica. Importantly, the total loss of mass in
Antarctica is much larger than the mass accumulation.

We have also demonstrated that the DEOS solutions clearly detect mass
redistribution caused by the Sumatra-Andamam earthquake. The differences
between two yearly mean gravity field models show the anomalies associated with
both mass gain and mass loss. In addition, a negative mass change rate is found
prior to the earthquake and a strong positive rate is observed after the earthquake
at the points with the maximum signal.

A comparison with other GRACE solutions was another goal of this chap-
ter. The published GRACE solutions produced at CSR, GFZ, JPL and CNES,
as well as the GLDAS hydrological models were used for this comparison. The
analysis in the domain of spherical harmonic degrees shows that the DEOS
solutions are relatively close to the JPL solutions, and less close to the GFZ
and CSR solutions, which are consistent with each other. The main differences
between the group of DEOS and JPL solutions and the group of GFZ and CSR
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solutions is concentrated between degree 2 and degree 5. The causes of these
discrepancies should be investigated in the future. We have also computed the
mean values of water storage variations in sixteen large river basins from all
solutions. The selected basins represent various sizes and climate environments.
The comparison was conducted basin by basin with emphasis on the differences
with respect to the mean of all the GRACE solutions, the JPL solutions and the
GLDAS models. We found that in general the DEOS solutions have a reasonable
agreement with other GRACE solutions, and are particularly close to the JPL
solutions. We observe that the GRACE-derived water storage variations seem to
be consistent with each other in some river basins, e.g. the Amazon, Orinoco,
Chari and Zambezi River basins (at least in terms of phase). However, it is also
observed that differences between the GRACE solutions are still rather large in
some other basins, e.g. the Nile, Congo, Yenisey and Changjiang river basins. It
should be mentioned that the DEOS solutions have a smaller signal amplitude
when compared with other GRACE solutions in some river basins (e.g. the
Ganges River basin), but, at the same time, are relatively close to the GLDAS
models.
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Chapter 7

Summary, conclusions and

recommendations

7.1 Summary and conclusions

The primary goals of this research were: 1) to develop efficient techniques for
computing the Earth’s static gravity field represented by spherical harmonics,
from satellite accelerations derived from hl- and ll-SST data. 2) to extend this
technique in order to compute temporal variations of the gravity field and apply
it to real data; and 3) to analyze the estimated gravity field models and validate
them using existing gravity field models provided by other research institutions.
All these goals have been fully met on the basis of the preceding chapters.

The conducted research can be divided into three major parts. In the first
part, we refined a pre-existing CHAMP hl-SST data processing methodology
(chapter 3). Secondly, we further developed that methodology to process GRACE
hl-SST data (chapter 4). Thirdly, we developed two new GRACE ll-SST data
processing methodologies (chapter 5). Finally, we conducted a comprehensive
analysis of the estimated GRACE solutions. The main results and conclusions
can be summarized as follows.

1) We have implemented two refinements of a pre-existing CHAMP data pro-
cessing technique. The purpose of these refinements was to compute an
optimal gravity field model independently from any CHAMP- or GRACE-
based a priori information. The first refinement was the development of a
procedure for smoothing a kinematic orbit by means of a regularized least-
squares adjustment on the basis of B-splines. In this way, we could avoid
using a reduced-dynamic orbit to compute the reference accelerations, and
consequently, exclude an implicit usage of CHAMP- or GRACE-based a
priori information in gravity field modeling. A real data processing demon-
strated that smoothed kinematic orbits can indeed replace reduced-dynamic
orbit in the data processing procedure since they result in virtually the
same accuracy. The second refinement was the implementation of a pro-
cedure for estimation of data noise as a function of frequency from posterior
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residuals. The estimated noise model is used to apply a proper frequency-
dependent data weighting and, consequently obtain a statistically optimal
gravity field solution. These two refinements were used to compute both reg-
ularized (DEOS CHAMP-02C 70) and an un-regularized (DEOS CHAMP-
02S 70) gravity field models from nearly one-year of CHAMP accelerations.
The DEOS CHAMP-02C 70 model proved to be better than the regular-
ized ITG-CHAMP01E model, and slightly more accurate than the older
DEOS CHAMP-01C 70 model. The DEOS CHAMP-02S 70 solution was
compared to several other non-regularised CHAMP-only models. The com-
parison showed that our solution is much better than the TUM-2S model and
somewhat outperforms the EIGEN-CHAMP03S and the ITG-CHAMP01S
models particularly at high degrees. Compared with the AIUB-CHAMP01S
model, the DEOS CHAMP-02S 70 model demonstrated a remarkably small
difference in quality, despite being produced two years earlier than the AIUB-
CHAMP01S model.

2) The methodology of processing CHAMP hl-SST data was extended to deal
with the GRACE hl-SST data, including the GRACE satellite baselines.
The kinematic positions and baselines are processed both individually and
jointly. It is found that the kinematic baselines themselves are, in general,
not favorable for the derivation of gravity field models. We explain this,
first of all, by a poor sensitivity of the baseline data to East-West variations
of the gravity field. Nevertheless, kinematic baselines slightly improve the
quality of gravity field modeling if added to a set of kinematic positions.
Additionally, this research bridged the investigation of processing hl-SST
data with the ll-SST data.

3) Two innovative methodologies of gravity field modeling from GRACE ll-SST
data (the so-called 3RRC approach and 3RC approach) were developed as
extensions of the classic acceleration approach. The corresponding functional
models were derived. Furthermore, a comprehensive data processing strat-
egy for processing real GRACE data was developed for both new approaches
as well as for the classic acceleration approach. The data processing con-
sists of two major parts: pre-processing and inversion. The main elements
of data pre-processing is the computation of purely dynamic orbits as refer-
ence ones and on the basis of state-of-the-art background models of static
and rapidly changing gravity fields. The reference orbits together with the
observed KBR data were used to form the KBR residuals and the residual
quantities associated with the three functional models. The inversion strate-
gies for the three approaches were developed on the basis of the procedure
for inversion of kinematic baselines. The sensitivity of the result to the ac-
curacy of the data noise model in the three approaches was investigated.
It was found that the frequency-dependent data weighting was a must in
the 3RRC approach, while the classic acceleration approach and the 3RC
approach are not very sensitive to the noise models, particularly at the low
frequency degrees. More importantly, the approaches were compared with
each other using real GRACE data from both August 2003 and October
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2003. The corresponding GLDAS hydrological models are used as a refer-
ence in the comparison. It was shown that the classic acceleration approach
produced the worst results. The 3RC approach resulted in the highest accu-
racy of gravity field modeling and, consequently, was chosen as the primary
one. In the course of further refinement, an iterative estimation was adopted
in order to retrieve the gravity signal absorbed by the empirical parameters
estimated in the data pre-processing. It was found that a signal increase of
at least 10%-15% can be achieved in this way. Furthermore, it was shown
that two iterations are sufficient to reach convergence.

4) The 3RC approach was applied to routinely process real GRACE data. A 4-
year GRACE data set, spanning the period from February 2003 to December
2006, was processed on a monthly basis. The solutions were supplied with
full variance-covariance matrices. Each solution represents a set of spherical
harmonic coefficients, which describes the average gravity field within the
month under consideration. The estimated solutions were subject to P3M8
de-striping and 400 km Gaussian filtering to generate a definitive time series
of DEOS filtered solutions. The models with their associated full covariance
matrices were used to estimate global secular trends as well as seasonal
and semi-seasonal variations of the Earth’s gravity field. In a similar way,
we computed the secular, seasonal and semi-seasonal variations from the
GLDAS hydrological models. There are many remarkable similarities found
between the secular changes derived from the DEOS solutions and GLDAS
models, e.g. a mass decrease in south-eastern Alaska, in the south-western
part of United States, in La Plata river basin, as well as a mass increase
in the north part of South America, in southern Africa, in central Europe
and so on. Apart from these similarities, there are some signals that are
not observed in the GLDAS models, but are clearly present in the DEOS
GRACE solutions, e.g. ice mass loss in some polar areas and PGR signals
in Hudson Bay and Scandinavia. The seasonal variations derived from both
DEOS solutions and GLDAS models are even more similar. In particular,
the largest water variations are always in the area between 30◦S and 30◦N.
In addition, the phase of the annual cycle changes clearly along the latitudes
30◦S and 30◦N. The semi-annual cycle is rather small, compared with the
annual cycle, and its phase does not show a clear dependence on latitude.

5) A further analysis of the obtained gravity field solutions allowed ice melting
in Greenland and Antarctica as well as the Sumatra-Andaman earthquake to
be observed and quantified. In Greenland, we found two ice mass loss centers:
one at the south-east coast, and the other at the north-west coast. The mass
loss rate in the south-east center is about -8 cm/yr. This is two times faster
than at the north-west center. On the other hand, the ice mass in Green-
land’s interior is getting slightly larger over the whole 4-year period (with
mass loss in the first two years and mass accumulation in the last two years).
In the Antarctic, we reveal a mass loss in several regions. After removal of
the PGR signal, the major loss of mass occurs in the coastal Amundsen Sea
Embayment and the western Antarctic Peninsula. On the other hand, a to-
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tal mass accumulation can be observed in the interior of West Antarctic and
East Antarctic. In Antarctica the loss of mass is much larger than the mass
accumulation. We have also demonstrated that the DEOS solutions clearly
detect the mass redistribution caused by the Sumatra-Andaman earthquake.
The differences between two yearly mean gravity field models show anoma-
lies associated with both mass gain and mass loss. In addition, a negative
rate of mass changes is found prior to the earthquake and a strong positive
rate is observed after the earthquake at the center of both mass gain and
mass loss.

6) A comparison was made between our GRACE solutions and those produced
at CSR, GFZ, JPL and CNES, as well as GLDAS hydrological models. Our
analysis showed that the DEOS solutions are relatively close to the JPL
solutions, and less close to the GFZ and CSR solutions, which are in turn
relatively close to each other. The main differences between the group of
DEOS and JPL solutions and the group of GFZ and CSR solutions are
concentrated between degree 2 and 5. We also computed the mean values
of water storage changes in sixteen large river basins from all solutions.
The selected basins represent various sizes and climatic environments. The
comparison was conducted basin by basin with an emphasis on the differences
between a given solution and (i) the mean of all GRACE solutions, (ii) the
JPL solutions and (iii) the GLDAS models. We found that in general the
DEOS solutions had a reasonable agreement with other GRACE solutions,
and were particularly close to the JPL solutions. Furthermore, we observed
that all the GRACE-derived water storage changes seemed to be consistent
with each other in some river basins, e.g. the Amazon, Orinoco, Chari
and Zambezi river basins. In some other basins, however, the differences
between the GRACE solutions were still quite large, e.g. in the Nile, Congo,
Yenisey and Changjiang river basins. It should be mentioned that the DEOS
solutions showed smaller signal amplitude compared to the other GRACE
solutions in some river basins (e.g. the Ganges river basin), but, at the same
time, are relatively close to the GLDAS hydrological models.

7.2 Recommendations for future work

1) The classical acceleration approach to gravity field modeling from GRACE
data should be investigated further. From the functional model of the classic
acceleration approach, the results seem impossible to improve upon if the
accuracy of the velocity term is not improved. However, it is not trivial
to significantly improve the accuracy of the kinematic baselines, which are
used to derive the velocity term. There may be another way to improve the
results of the classic acceleration approach, i.e. ignoring the contribution
of velocity term entirely by only considering the contribution of point-wise
accelerations. This way may not be totally strict in the physical sense, but it
could, in practice, produce quite reasonable results. In the very late stages
of this PhD research project, an attempt has been made to do just this.
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Indeed, very reasonable results were obtained; however, this still needs more
investigation in the future.

2) Real GRACE ll-SST data processing showed that both the 3RRC and 3RC
approach produced gravity field models of high quality. Nevertheless, the
models obtained with the 3RC approach are less noisy than those based
on the 3RRC approach. For this reason the 3RC approach was selected
to routinely produce the DEOS monthly GRACE solutions. However, the
3RRC approach is also very promising. We believe that the quality of gravity
field models can be further improved if a dedicated filtering at the post-
processing stage is applied. In this way, the ultimate performance of the
3RRC approach can be made closer to that of the 3RC approach. This
should also be the subject of the future work.

3) The current GRACE data processing strategy may not be optimal, in spite
of considerable efforts we put into its development. There is still some space
to refine the strategy further and, consequently to improve the quality of
the gravity field models. For example, background models and calibration of
non-gravitational accelerations could be updated. Additionally, a compre-
hensive simulation of the GRACE data processing is recommended in order
to tune different processing steps.

4) After comparison of our GRACE models with the solutions produced by
other institutions, we found that the DEOS solutions frequently show a rel-
atively small signal amplitude (though they remain close to the JPL solu-
tions), e.g. in the Ganges river basin. At the same time, the DEOS solutions
show agreement with the GLDAS model in many river basins. Therefore,
further analysis and validation of the GRACE solutions obtained with the
proposed methodology is recommended.

5) Future research should also attempt to improve the monthly models of mass
variations by combining GRACE data with hydrological data and models.
The errors in hydrological models and in GRACE models show a substan-
tially different behavior, both in the time and the spatial domain. The
accuracy of hydrological models is mainly dependent on the availability of
in situ data. Therefore, it is not homogeneous over the globe; some areas
and river basins have been investigated much more exhaustively than others.
Furthermore, it is also problematic to quantify all the relevant hydrological
processes equally well. On the other hand, the accuracy of GRACE solutions
is limited by the setup of the mission, precision of measurements, inaccura-
cies of background models and data processing errors. These issues limit the
spatial resolution of the GRACE solutions and reduce performance when
mapping spatial variations in the west-east direction. Therefore, we believe
that that these two types of data have an enormous potential for synergy and
must be processed jointly. The development of corresponding techniques is
also the subject of future researches.
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Wermuth, N. Sneeuw, B. Frommknecht, H. Oberndorfer, Th. Peters, M.
Rothacher, R. Rummel, and P. Steigenberger (2003). A CHAMP-only grav-
ity field model from kinematic orbits using the energy integral. Geophysical
Research Letters, vol. 30(20), 2037, doi:10.1029/2003GL018025
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Analyse Kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und
GRACE. Dr.-ing Dissertation, University of Bonn.
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ing data. In F. Sansò and R. Rummel eds. Theory of satellite geodesy and
gravity field determination. Lecture notes in Earth Sciences, Vol. 25, 197-234,
Springer-Verlag, Berlin Heidelberg New York.

[Reigber et al., 2002] Reigber, Ch., G. Balmino, P. Schwintzer, R. Biancale, A.,
Bode, J.-M. Lemoine, R. König, S. Loyer, K.-H., Neumayer, J.-C. Marty, F.
Barthelmes, F. Perosanz, and S.Y. Zhu (2002). A high-quality global gravity
field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S).
Geophysical Research Letters, vol. 29, 10.1029/2002GL015064

[Reigber et al., 2003] Reigber, Ch., G. Balmino, P. Schwintzer, R. Biancale, A.,
Bode, J.-M. Lemoine, R. König, S. Loyer, K.-H. Neumayer, J.-C. Marty,
F. Barthelmes, F. Perosanz, and S.Y. Zhu (2003). New global gravity field
models from selected CHAMP data sets. In Reigber, Lühr and Schwintzer
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Appendix A

Autocorrelation

Autocorrelation is a statistical tool to study the cross-correlation of a random
process with itself. In this way, it is possible to find repeating patterns in
a random process, for example, the presence of a periodic signal, which may
be buried under noise invisible in time series. It is also used to identify the
fundamental frequency of a signal. Two terms are described here: autocovariance
and autocorrelation coefficient.

Autocovariance represents the correlation between a random process at dif-
ferent points in time. Let xt be the value of the process at epoch t, with x
being the mean of the process and N the length of the process. The definition of
autocovariance is:

Ck =
1

N − k

N−k∑
t=0

(xt − x)(xt+k − x), (A.1)

where k is the lag time. When the autocovariance is normalized by variance
(i.e. autocovariance when the lag time is zero), it is referred to as a set of the
autocorrelation coefficients:

rk =
Ck

C0
. (A.2)

In this thesis, autocorrelation is used to investigate noise in GRACE orbits by
taking the difference between inter-satellite ranges derived from the orbits and
measured by the KBR system.





Appendix B

Gaussian Filtering

Equation (2.9) is used to recover changes in surface mass density. ΔClm and ΔSlm

are the coefficients estimated from GRACE data with respect to a long-term mean.
The accuracy of coefficients reduces rapidly with the increase of degree l. It is
not difficult to see that the errors in the GRACE estimates can largely influence
estimates of surface mass density variations. In order to reduce the effect of noise
in high-degree coefficients, a spatial averaging (filtering) function is introduced.
According to [Wahr et al., 1998], the spatial averages of the surface mass density
is considered,

Δσ(ϑ, λ) =

∫
Δσ(ϑ, λ)W (γ) sin ϑ′dϑ′dλ, (B.1)

where W (γ) is an averaging function, depending on γ, the central angle between
the points (ϑ, λ) and (ϑ′, λ′) (cos γ = cosϑ cosϑ′+sinϑ sinϑ′cos(λ−λ′)). Inserting
equation (2.9) into equation (B.1) with some manipulation [Wahr et al., 1998], we
obtain:

Δσ(ϑ, λ) = 2π

Lmax∑
l=Lmin

l∑
m=0

KlWl (ΔClm cosmλ + ΔSlm sin mλ) P̄lm(cosϑ), (B.2)

where

Wl =

∫ π

0

W (γ)Pl(cos γ) sin(γ)dγ, (B.3)

with Pl being the Legendre polynomials, and its value Pl = P̄lm,m=0/
√

2l + 1.
Using Jekeli’s Gaussian averaging (filtering) function [Jekeli, 1981], W (γ) in equa-
tion (B.3) can be written as:

W (γ) =
b

2π

e−b(1−cos γ)

1− e−2b
, (B.4)

where

b =
ln(2)

1− cos(rw/R)
, (B.5)
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and where rw is the averaging radius, which can be freely chosen. The value can
be understood as the distance on the Earth’s surface at which W (γ) is reduced to
1/2 of its value at γ = 0. The coefficients Wl can be recursively computed:

W0 =
1

2π
,

Wl =
1

2π

(1 + e−2b

1− e−2b
− 1

b

)
,

Wl+1 = −2l + 1

b
Wl + Wl−1.

(B.6)




