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1
Introduction

1.1 Background

The gravitational �eld of the Earth shows large �uctuations, due to the heterogeneous
mass distribution of the Earth, its oblateness, the topography and the dynamical pro-
cesses within the Earth. Moreover, a time-varying gravitational signal can be measured,
caused by mass redistributions on the surface of the Earth (due to, e.g., hydrology) and
within the atmosphere and the oceans. The gravitational �eld describes the physical
shape of the Earth, perturbates the orbit of a satellite, and gives extra information on the
dynamics of the Earth, the oceans, and its cryosphere; see, e.g., Rummel et al. [2002].
An important surface is the geoid, i.e. the equipotential surface, which best �ts the mean
sea surface at rest. The difference of the geoid with respect to a reference ellipsoid varies
between −100 metres (Indian Ocean) and 80 metres (Iceland); see �gure 1.1.

According to Stokes’s theorem [Heiskanen and Moritz, 1967], it is not possible to
determine the mass distribution of the Earth uniquely from its external gravity �eld.
However, the large majority of the mass redistributions over geologically short (daily
to inter-annual) timescales, takes place in a thin layer near the Earth’s surface [Chao,
2005]. Therefore, these temporal gravity changes can almost be directly inverted to land
hydrology, ocean dynamics and changes in the cryosphere. An exception is the effect
of the post-glacial rebound (PGR) on the time-varying gravity signal. Temporal gravity
changes are often expressed in equivalent water heights, which take amplitudes up to
several decimeters. Seasonal water storage in large river basins, like the Amazon and
the Zambezi, are clearly visible in data of the Gravity Recovery and Climate Experiment
(GRACE) mission [Tapley et al., 2004a]. Moreover, recent studies, e.g., Velicogna and
Wahr [2006] and Luthcke et al. [2006], show a signi�cant decrease in polar ice mass
(Antarctica and Greenland), based on GRACE gravity measurements.

After the removal of the in�uence of topography on the Earth’s static gravity �eld,
the remaining static �eld will give us information on the mass distribution of the Earth’s
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Fig. 1.1: The EIGEN-GL04C geoid model, up to degree and order 360, i.e., with
a spatial resolution of 111 kilometres (shortest wavelength) [Förste et al., 2008].
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lithosphere and mantle. Together with seismic tomography, deformation measurements
(e.g InSAR), magnetometry and laboratory research on mantle material, the gravita-
tional �eld is one of the few sources that can give insight into the properties and struc-
ture of the lithosphere and its interaction with the (upper) mantle. A summary of these
dynamical processes is shown in �gure 1.2.

Fig. 1.2: The dynamical processes within the Earth’s mantle and lithosphere
[BGI].

Research on global climate changes, including sea level rise, is largely dependent
on the knowledge of the ocean surface [Le Grand and Minster, 1999]. If one wants to
monitor ocean currents, together with mass and heat transportation within the oceans,
one needs to know what the in�uence of the heterogeneous mass distribution is on the
ocean surface. This in�uence, expressed in the geoid, should be subtracted from alti-
metric measurements of the sea surface to obtain the mean dynamic topography; see
,e.g., Vossepoel [2007]. Pietrzak et al. [2007] have used satellite altimetry observations,
together with an accurate geoid model, to monitor the destructive tsunami wave of De-
cember 2004 in the Indian Ocean. A study on the effect of the preceding earthquake on
the gravity �eld of the Earth is discussed in Han and Simons [2008].

The gravitational �eld is essential for the height determination of points on the Earth;
in absolute terms, because the geoid is used as a global reference level, and in relative
terms, because gravity de�nes the direction in which water �ows and in this way de�nes
which points are higher than other points. An accurate geoid model can, at least in
theory, be used to transform purely geometric heights, measured by GPS, into physical
heights.
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The motion of a satellite orbiting the Earth is mainly caused by the gravitational
�eld, together with non-conservative forces, like atmospheric drag and solar radiation
pressure. In dynamic orbit determination, one makes use of a global gravity model,
together with positioning techniques like GPS and satellite laser ranging (SLR). The in-
verse approach is to determine a global (homogeneously accurate) gravity model from
orbit information of several satellites. This approach has been used since the launch of
the �rst satellites, see, e.g., Buchar [1958], in which the oblateness of the Earth could be
derived from an alternative data source, compared to the terrestrial and marine observa-
tions used so far. Satellite data has been the key data source for global gravity models,
especially in recent years, with the launch of two dedicated gravity missions, the Chal-
lenging Mini-satellite Payload for Geophysical Research and Applications (CHAMP)
mission and the GRACE mission, and with the upcoming Gravity Field and Steady-
State Ocean Circulation Explorer (GOCE) mission, to be launched in September 2008.
These new satellite observations have already improved our knowledge about the static
and time-varying gravity �eld of the Earth and have given new insights into the large-
scale processes in the interior of the Earth and the smaller (time-varying) changes on its
(sub-)surface.

Fig. 1.3: CHAMP, GRACE, and GOCE satellite missions.

1.2 Motivation

It is common practice in gravity modelling and precise orbit determination (POD) to
combine different data sets in a least-squares sense. The purpose is to �ll in the gaps in
the space domain (e.g., the polar gap of satellite data), strengthen parts of the frequency
domain or extend the observed time interval. Combinations are possible using data from
different satellite missions (e.g., CHAMP plus GRACE), from different arcs or periods
within one mission, from different observation types (e.g., satellite data and terrestrial
data) or from a combination of new data with prior information about the unknown
gravity �eld parameters.

Before combining the different data sets, one should pay attention to a proper mod-
elling of the functional and stochastic model and one should either remove outliers or
reduce their impact on the least-squares solution. The functional model expresses the
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(linearized) relationship between the observations and the vector of unknown parame-
ters. This vector could include the parameters of the global gravity model, expressed
in spherical harmonics, as well as local parameters per data set, often applied to ab-
sorb systematic effects. The data sets can be inconsistent with each other, in the space
or the frequency domain, and these inconsistencies should be statistically tested before
implemented into the functional model.

If the functional model is well-de�ned, one can use the residuals between the obser-
vations and the estimated model to estimate the stochastic model. In this way, we can
re-weight different data sets and obtain a better estimate of the stochastic properties of
the data sets. These properties may vary considerably in time, due to instrument condi-
tions, the changing GPS constellation, the applied preprocessing and other factors. The
stochastic model is used in the weighted least-squares estimation (WLSE) and the de-
tection of outliers. Moreover, it propagates into the quality description of the estimated
parameters and derived quantities.

To improve the stochastic model, we write the variance-covariance (VC) matrix of
the observations as a linear combination of different (cofactor) matrices and estimate
these linear coef�cients (i.e., the variance components). In the early seventies, C.R.
Rao [Rao, 1971a, 1973] developed the Minimum Norm Quadratic Unbiased Estimator
(MINQUE), which, under normality, has minimum variance [Sjöberg, 1983], converges
to the solution of (restricted) maximum likelihood [Koch, 1986] and can be derived in a
least-squares sense [Teunissen, 1988].

Variance component estimation (VCE) techniques have been used in many geodetic
applications, e.g., in the combination of ellipsoidal, orthometric and geoid heights to
derive a corrector surface [Fotopoulos, 2003, 2005], in SLR to give weights to the dif-
ferent SLR stations [Sahin et al., 1992], in very long baseline interferometry (VLBI) to
re-weight the data sets [Lucas and Dillinger, 1998], in a simulated GOCE orbit [Koch
and Kusche, 2002], and in the regularization of ill-posed problems; see, e.g., Koch and
Kusche [2002] and Xu et al. [2006].

However, data weighting in global gravity �eld modelling has often been based
on experience or trial and error. In the 1990’s, several groups had used an alternative
weighting method suggested by F.J. Lerch [Lerch et al., 1988], which is an internal cal-
ibration technique based on subset solutions. Since the launch of the dedicated satellite
missions, not much effort has been placed into the validation of the stochastic model. In
this �eld of research, the geodetic community has made a step back in history, due to the
elaborate processing of large amounts of data. Groups are using an equal weighting of
the data sets or use the stochastic properties of the observations de�ned by the industry,
which are in general not accurate and oftenly too optimistic.

In this thesis, we try to promote the use of VCE techniques and provide tools to use
any least-squares software package to solve for the variance components. To do this,
we randomize the input vector and use Monte Carlo (MC) techniques to estimate the
variance components. The resulting method is simple and each researcher can use his
own software package to retrieve the variance components and consequently obtain a
better estimate of the stochastic model.
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Outliers are observations that do not match the suggested functional and stochas-
tic model. They will deteriorate the least-squares solution of the vector of unknowns
and of the estimated variance components. One often uses hypothesis testing to detect
possible outliers and consequently removes them. The threshold de�nes which obser-
vations are good and which are bad. An alternative to this is not to remove the spurious
observations, but to down-weight those observations, which have a large test statistic.
This so-called M-estimation technique has been used in several geoscience applications,
such as SLR data processing [Yang et al., 1999], magnetic Ørsted satellite data process-
ing [Olsen, 2002], relative GPS positioning [Chang and Guo, 2005], and GPS network
adjustment [Yang et al., 2005].

With this robust technique, we actually assume a different distribution of the obser-
vations than the normal distribution. In this way, a higher probability is given to outliers,
reducing the effect of such an observation in the least-squares estimation. We suggest to
use the huge redundancy in the observations to estimate the probability density function
and use this new function to detect and down-weight possible outliers.

1.3 Outline

We will start (chapter 2) with some theoretical and historical background on satellite
gravity �eld modelling. In section 2.1, the theory of universal gravitation, spheri-
cal harmonics, data combination and GPS-levelling is explained, which will be used
throughout this thesis, especially in the second part of the thesis in which we deal with
some satellite gravimetry applications. Special attention is paid on the temporal gravity
�eld of the Earth (section 2.2). Several techniques are explained in section 2.3 to re-
trieve gravity-related information from satellite observations, including SLR, altimetry,
satellite-to-satellite tracking (SST), and satellite gravity gradiometry (SGG). A histori-
cal overview of the data weighting problem in the estimation of global gravity models
is the topic of the remaining part of chapter 2.

Augmentation of the functional model to include inconsistencies between different
data sets, systematic errors or other local parameters, is the subject of chapter 3. Spe-
cial focus is on the combination of the new satellite data with prior information. The
chapter starts with the principles of least-squares and hypothesis testing (section 3.1).
The augmentation of extra (local) parameters to the functional model to account for e.g.
systematic effects and the test for signi�cance of these parameters are the subject of sec-
tion 3.2. Section 3.3 deals with the addition of prior information and the corresponding
tests for unbiasedness between the two data sets. The chapter ends with the softly un-
biased estimation, which weakens the constraints for unbiasedness in the combination
with prior information.

Chapter 4 is the key chapter of this thesis. It starts (section 4.1) with the parame-
trization of the stochastic model in terms of a linear combination of cofactor matrices,
in which the variance components are the linear coef�cients. The most well-known
estimator of these variance components is the MINQUE. Derivation of this estimator
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is done in section 4.2. It is shown in section 4.3 that under normality this estima-
tor has minimum variance, (restricted) maximum likelihood and can be derived in a
weighted least-squares sense. The derivation of the Least-Squares Variance Component
Estimation (LSVCE) was done in a recent PhD study within the DEOS Department
[Amiri-Simkooei, 2007]. A much faster estimator, which converges to the same results
as MINQUE (under normality), but is biased in the iterations, is the Iterative Restricted
Maximum Likelihood Estimator (IREML); see section 4.4. The equations can be sim-
pli�ed if we assume several disjunctive observation groups. Section 4.5 deals with
groups of multiple variance components and groups with only one variance component
to be estimated per observation group. Several estimators of the variance components
have been used in the past in satellite gravity �eld modelling, which, in general, do
not converge to the MINQUE-like estimators. These alternative weighting algorithms
include Helmert VCE, Bayesian estimation, Lerch’s subset solution method, Maximum
Likelihood Estimation (MLE) and external calibration techniques. These methods will
be dealt with in section 4.6.

The use of Monte Carlo techniques to speed up the computations is the topic of
chapter 5. The chapter provides useful tools to use existing least-squares software in
the computation of the variance components. Both MINQUE and IREML estimators as
well as Lerch’s subset solution technique are dealt with.

Chapter 6 discusses the detection and treatment of outliers. We start in section 6.1
with the derivation of the different test statistics to detect the outliers. A discussion of
outlier detection in the presence of coloured noise is the subject of section 6.2. The
conventional approach is to remove the outliers which fails the hypothesis testing. In
section 6.3, we suggest an alternative approach, in which we down-weight the outliers.
The theory of M-estimation is explained and a modi�cation of Fellner’s approach [Fell-
ner, 1986] is suggested to robustify the VCE. Moreover, the estimation of the probability
density function from the obtained residuals is discussed.

The �rst application, to be discussed in chapter 7, is the global gravity �eld mod-
elling using CHAMP pseudo-observations from the energy balance approach (EBA).
In this application, several data weighting algorithms are compared. Comparisons are
made on the solutions (at convergence), the computation time, and the quality assess-
ment of the results. The estimation of the stochastic model is combined with a treatment
of the outliers. Conventional data snooping is compared with the robust M-estimation
technique and the estimation of the probability density function. Before combining
the satellite-only solution with a prior gravity model, several inconsistency vectors are
tested and, if necessary, implemented in the functional model. The stochastic model of
the prior information is written as a linear combination of several cofactor matrices and
the variance components are estimated.

The second application (chapter 8) is a joint inversion of weekly GPS site displace-
ments with monthly GRACE solutions to derive surface mass changes, expressed in
equivalent water heights [Blewitt et al., 2001]. With such a combination, we can use the
advantages of both data sources to strengthen the combined solution. Weekly estimates
of the motion of the geocentre could be derived as a by-product.
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The effect of temporal aliasing is addressed in chapter 9. We try to quantify the
effect and see if it is possible to reduce the distortions in the estimation of the temporal
gravity �eld. For this, we simulated the annual signal of a hydrological model along
simulated GRACE orbits.

The fourth application is the estimation of a local height reference surface of Switzer-
land, which can be used in the determination of orthometric heights from ellipsoidal
GPS heights (chapter 10). Several heterogeneous data sets are involved in this estima-
tion, each with its own stochastic properties.

The thesis ends with conclusions and recommendations (chapter 11).
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2
Estimation of the Earth’s gravity

�eld

In this chapter we will show how to model the Earth’s gravity �eld with the available
gravity-related observations. First, we will consider some basics of potential theory
and introduce the de�nitions of geoid and gravity. Different techniques to derive gravity
information from satellite observations are explained. The chapter ends with a historical
overview of the data weighting problem in the determination of global gravity models
from satellite data.

2.1 The Earth’s gravity �eld

2.1.1 Newton’s Law of Universal Gravitation

Two objects in space will be attracted to each other by the force of gravitation. Sir Isaac
Newton was the �rst who showed that the motion of the Moon around the Earth can be
explained by the same force as an object falling to the Earth. He introduced the Law of
Universal Gravitation, which states the following [Newton, 1687]:

Every object in the Universe attracts every other object with a force di-
rected along the line of centres for the two objects that is proportional to
the product of their masses and inversely proportional to the square of the
distance between the two objects.

This law is based on experiments. The source of gravitation, necessary for an analytical
derivation of this law, is still under discussion. Newton’s law means that point mass Q,
with mass mQ [kg] will generate a gravitational force F on point mass P with mass mP
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and a distance lPQ [m] to point Q, which is equal to

F (P ) = −G
mP mQ

l2PQ

· ePQ, (2.1)

where G is the gravitational constant, estimated at 6.6742 · 10−11 Nm2kg−2 [Mohr and
Taylor, 2005], and ePQ the unit vector pointing from P to Q. The acceleration of the
point mass mP due to the gravitational force of mQ can easily be computed:

a(P ) =
F (P )

mP

= −G
mQ

l2PQ

· ePQ. (2.2)

Hence, the gravitational acceleration is independent of the mass of the attracted body.
This acceleration vector can be written as the gradient of a scalar function V , which is
called the gravitational potential, i.e.,

a(P ) = ∇V (P ) (2.3)

where this scalar function is de�ned by

V (P ) := G
mQ

lPQ

+ C, (2.4)

with C an arbitrary constant, which we will de�ne as C := 0 from now on to ensure
V = 0 for lPQ → ∞. Note that the potential itself cannot be measured, only potential
differences. The focus of gravity �eld determination is on the estimation of this scalar
function V . The potential induced by multiple point masses is equal to the sum of the
potentials of each mass separately (superposition principle):

V (P ) = G
N∑

i=1

1

lPQi

mi (2.5)

For an arbitrary body ΣQ, composed of in�nitively small point masses dmQ, we can
state that dmQ = ρ(Q)dΣQ and

V (P ) = G

∫
ΣQ

ρ(Q)

lPQ

dΣQ, (2.6)

with ρ(Q) the mass density [kg/m3] at point Q. The Laplace operator Δ, applied to the
scalar function V , is de�ned as

ΔV = div∇V, (2.7)

which is expressed in Cartesian coordinates as

ΔV =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
. (2.8)
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The gravitational potential V satis�es Poisson’s equation [Heiskanen and Moritz, 1967],
i.e.,

ΔV (P ) = −4πGρ(P ). (2.9)

Outside the sources, where ρ(P ) = 0, this equation becomes

ΔV (P ) = 0. (2.10)

This is called Laplace’s equation. A function, which ful�lls Laplace’s equation, is a
harmonic function. Stokes’s theorem states [Heiskanen and Moritz, 1967] that

A function V , harmonic outside ΣQ, is uniquely determined by its values on
the boundary. On the other hand, however, there are in�nitely many mass
distributions inside ΣQ, which have a given V as exterior potential.

So, if we can describe the harmonic function V at a surface enclosing the masses,
we can compute this harmonic function at any point in space. However, it will not be
possible to determine the mass distribution from only external gravity information.

2.1.2 Expansion into spherical harmonics

To model the external gravitational potential of a body (e.g., the Earth), one needs to
know the harmonic function on an enclosing surface of the body of mass. This infor-
mation is, however, only known at some discrete points on this surface. It is, therefore,
necessary to approximate the potential by a function with a limited number of param-
eters, which can be estimated by the discrete points. Any harmonic function can be
represented by a series of spherical harmonics [Heiskanen and Moritz, 1967]:

V (ϑ, λ, r) =
∞∑
l=0

r−(l+1)

l∑
m=0

(alm cos mλ + blm sin mλ)Plm(cos ϑ) (2.11)

where cos mλ·Plm(cos ϑ) and sin mλ·Plm(cos ϑ) are the base functions, called spherical
harmonics. For more information about the Legendre functions Plm(cos ϑ) and the
orthogonality properties, we refer to appendix A. When determining the gravitational
�eld of the Earth, it is common practice to use the series expansion

V (ϑ, λ, r) =
GM

R

∞∑
l=0

(
R

r

)l+1 l∑
m=0

(C̄lm cos mλ + S̄lm sin mλ)P̄lm(cos ϑ), (2.12)

in which the Legendre functions Plm(cos ϑ) are replaced by the 4π-normalized Legen-
dre functions P̄lm(cos ϑ) (appendix A) and the coef�cients are rescaled to better suit the
estimation of the Earth’s gravity �eld numerically. The parameter M is an estimate of
the total mass of the Earth including the atmosphere and R an estimate of the radius
of the Earth, although one should see both GM and R mainly as scale factors of the
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geopotential model [Smith, 1998]. As low-orbiting satellites are not capable of improv-
ing the estimate of GM , one often set C̄00 := 1. Another constraint can be put into
this series if the origin of the coordinate system is located at the centre of mass. Then
C̄10 = C̄11 = S̄11 = 0. The number of coef�cients are still unlimited. We can bound
this number by truncating the model to a degree L. The error, which is introduced when
truncating the model, is called the omission error or the truncation error. The in�uence
of errors in the potential coef�cients is called the commission error. The �rst global
models were truncated to a degree 8. Nowadays it is possible to derive global mod-
els up to degree and order 2160 with the use of terrestrial data; see, e.g., the recently
released EGM08 global gravity model [Pavlis et al., 2008]. A higher truncation de-
gree will result in a model with a higher resolution. However, the highest power of the
gravitational potential can be found in the lowest degrees. Parseval’s theorem states

1

4πR2

∫
σR

V 2dσR =

(
GM

R

)2 ∞∑
l=0

l∑
m=0

(
C̄2

lm + S̄2
lm

)
, (2.13)

in which the left-hand-side represents the mean energy of the gravitational potential V
on σR, with σR the surface of a sphere with radius R. The right-hand-side includes the
dimensionless degree-variances σ2

l :

σ2
l :=

l∑
m=0

(
C̄2

lm + S̄2
lm

)
. (2.14)

Hence, the signal degree variances σ2
l represent the contribution of a certain degree to

the mean energy of the gravitational potential on σR. The dimensionless signal degree
variances of the gravitational potential are often modelled by an analytical function
called Kaula’s rule [Kaula, 1966]:

σ2
l ≈

1.6 · 10−10

l3
. (2.15)

With such an analytical expression, one is able to estimate the omission error. Other
models exists, such as the Tscherning / Rapp model [Tscherning and Rapp, 1974]. The
mean signal variance per coef�cient can easily be derived as

σ2(C̄lm, S̄lm) =
σ2

l

2l + 1
≈ 10−10

l4
. (2.16)

This variance is often used in satellite-only models of the Earth’s gravitational �eld. Dis-
crete measurements at high altitude, and/or a polar gap for non-polar orbits, can cause
an ill-posed problem; see, e.g., Tikhonov and Arsenin [1977] and Bouman [1998a].
The high-degree (and low-order) potential coef�cients are poorly resolved, attain too
much power and have high mutual correlations. A well-known technique to solve this
problem, used in most satellite-only solutions and even in some combined solutions,
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is to add zero-valued pseudo-observations of the potential coef�cients to the system of
observation equations. Kaula’s rule is used to assign noise variances to these pseudo-
observations (Eq. (2.16)). This can be viewed as a Tikhonov regularization. It decreases
the correlations between the coef�cients and stabilizes the ill-posed problem. A draw-
back of the constraints is the biasedness of the solution and the decrease in power in the
higher degrees [Xu, 1992]. More on this modi�ed least-squares approach can be found
in Moritz [1980] as a special case of least-squares collocation.

2.1.3 Gravity and geoid

If one measures gravity with a gravimeter, one does not only measure the gravitational
force of the Earth’s mass. Other forces are also present and need to be either modelled
or measured and subsequently removed from the gravimeter observations. The largest
disturbing force is the centrifugal force of the rotating Earth. The centrifugal acceler-
ation is perpendicular to the axis of rotation and maximum at the equator. The sum of
gravitation and the centrifugal force is called gravity. The gravity potential, therefore,
reads

W (ϑ, λ, r) =
GM

R

∞∑
l=0

(
R

r

)l+1 l∑
m=0

(C̄lm cos mλ + S̄lm sin mλ)P̄lm(cos ϑ)

+
1

2
ω2

er
2 sin2 ϑ.

(2.17)
As the rotation of the Earth ωe is well-known and does not change much in time, the
centrifugal force can be modelled quite easily and subsequently be subtracted from the
observations.

Gravimeters located on moving platforms, such as ships or airplanes, will measure
a Coriolis acceleration when moving in longitudinal direction (again due to the rotating
Earth). Gravity measurements taken on board of moving objects need to be corrected
for this effect (Eötvös-correction), which can be done if the velocity of the object is
suf�ciently known.

The Earth forms a two-body system with the Moon, in which it is attracted by the
gravitational �eld of the Moon and in which it rotates around their common barycentre.
The Earth-Moon system forms a similar two-body system with the Sun. The difference
between the gravitational attractions and centrifugal forces due to these systems is called
the direct tide and can be modelled quite easily. An indirect effect of the tidal forces
are the ocean tides. Recent models show quite accurate estimates of these ocean tides,
which have to be removed from the gravity data.

Other contributions, such as atmospheric and hydrological variations, are more dif-
�cult to model as they continuously change in time.

Every mass will be attracted by its surrounding masses and will be accelerated along
the gradient of the total potential. Ocean water will, therefore, �ow according to this rule
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until the sea surface has reached an equilibrium state. Although the sea will never be at
rest due to currents and winds, we may consider a particular equipotential surface, the
geoid, as a good approximation of the sea surface (after reduction of the tidal effects).

Fig. 2.1: The geoid height N , the elevation H above the geoid and the ellipsoidal
height h.

To linearize the functional relationship between gravity measurements and the grav-
ity potential, we need a good approximation of this geoid. This reference (or normal)
potential is generated by a rotating ellipsoid with its surface being an equipotential sur-
face. It can be de�ned by only four parameters: the semi-major axis of the ellipsoid (a),
the �attening of the ellipsoid (f ), the potential value (U0) at its surface and the rotation
parameter (ωe). The values of this reference potential can be computed with

U(ϑ, λ, r) =
GMU

RU

∞∑
l=0,2,4,...

(
R

r

)l+1

C̄U
l0 · P̄l0(cos ϑ) +

1

2
ω2

er
2 sin2 ϑ. (2.18)

The difference between W and U is called the disturbance potential T :

T (ϑ, λ, r) =
GM

R

∞∑
l=2

(
R

r

)l+1 l∑
m=0

(ΔC̄lm cos mλ+ΔS̄lm sin mλ)P̄lm(cos ϑ), (2.19)

where ΔC̄lm and ΔS̄lm are the differences between the coef�cients of W and U . We
will assume R = RU and M = MU and furthermore neglect differences between the
potential coef�cients for degrees 0 and 1. The geoid heights, i.e. the difference between
the geoid and the reference ellipsoid, can be linked to the disturbance potential by Bruns’
equation:

N(ϑP , λP ) =
T (P0)−ΔW0

γ(Pe)
, (2.20)

with P0 the point of the geoid with geodetic coordinates (ϑP , λP ) and Pe the point on
the ellipsoid with the same geodetic coordinates. The quantity γ(Pe) is the normal
gravity at point Pe, i.e., the gravity computed from the reference ellipsoid. The potential
difference between the geoid and the ellipsoid, ΔW0, will be assumed to be zero, as we
have de�ned ΔC̄00 := 0.
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2.1.4 The gravimetric geoid

In this section, we will show how to compute geoid heights from gravity observations
using Stokes’s approach. We will make use of gravity anomalies, i.e.,

Δg(P0) := g(P0)− γ(Pe). (2.21)

As the gravity measurements are, in general, not performed on the geoid, they need to
be reduced to this geoid by a free-air reduction; see, e.g., Li and Götze [2001], i.e.

g(P0) ≈ g(P ) + cFA ·HP ; cFA = 0.3086 mGal/m, (2.22)

with 1 mGal equal to 1 ·10−5 m/s2 and HP the orthometric height of point P . The grav-
ity anomalies can be linked to the disturbance potential with the fundamental equation
of physical geodesy:

Δg(P0) ≈ −
(

2

R
T (P0) +

∂T

∂r
(P0)

)
. (2.23)

The geoid heights can be computed from the gravity anomalies by Stokes’s formula
[Heiskanen and Moritz, 1967]:

N(ϑP , λP ) =
R

4πγ

∫
σ

St(ΨPQ)ΔgQdσQ, (2.24)

with ΨPQ the angular distance between points P and Q and the Stokes’s function de-
�ned by

St(ΨPQ) :=
∞∑
l=2

2l + 1

l − 1
Pl(cos ΨPQ). (2.25)

The gravity anomalies are assumed to lie on the ellipsoid, although they are computed on

the geoid. This approximation is valid as
∂Δg

∂r
is rather small. As the gravity anomalies

will only be known at discrete points on the geoid, one will, in many practical cases,
use mean gravity anomalies Δḡi instead [De Min, 1996],

N(ϑP , λP ) ≈ R

γ

ni∑
i

St(ΨPQi
)Δḡi

Δsi

4π
, (2.26)

where the gravity anomalies are averaged over small surface elements Δsi.
We have seen that we can calculate the geoid heights with the use of global poten-

tial coef�cients (Bruns’s equation), or with the use of local gravity anomalies (Stokes’s
formula). As the global satellite gravity models are truncated at a degree Ls, one will in-
troduce a spectral truncation error. Surface gravity data at discrete points contain the full
spectrum of the gravity �eld, but lack a global coverage. However, as they are typically
averaged within a block to form mean gravity anomalies, they are as well truncated to a
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certain degree Lm. A combined solution will use global potential coef�cients to ensure
global coverage and surface gravity data to improve the resolution within a certain area.

A commonly used method to combine the global coef�cients with the local gravity
data is the remove-restore technique [Rapp and Rummel, 1975]. With this technique,
the low-degree part of the spectrum is computed directly from the spherical harmonic
coef�cients. The contribution of this part on the gravity anomalies is subtracted from
the local gravity data. The residual observations are then used (in Stokes’s equation) to
improve the geoid heights in a speci�c area.

An alternative is suggested by Molodenskii et al. [1962]. The local gravity data is
used to compute a �rst approximation of the geoid heights in that speci�c area. The
contribution of the outer region (where there is no local gravity data) is computed using
the Molodenskii truncation coef�cients Ql(Ψc):

ΔN(ϑP , λP ) =
GM

Rγ

Ls∑
l=2

Ql(Ψc)
l∑

m=0

(ΔC̄lm cos mλP + ΔS̄lm sin mλP )P̄lm(cos ϑP ),

(2.27)
of which the coef�cients Ql can be computed recursively as was shown by Shepperd
[1982] and Paul [1983]. The contribution ΔN is then added to the initial geoid heights.

2.1.5 GPS / levelling

We will now use the relation between the ellipsoidal height h, e.g., measured with GPS,
the geoid height N and the orthometric height H:

δhi = hi −Ni −Hi ; E{δhi} = 0. (2.28)

Theoretically, if the discrepancies δhi are close to zero, one could use the combination
of ellipsoidal heights hi and the geoid height Ni to estimate the orthometric heights Hi,
and in this way avoid the costly and time-consuming levelling operations [Schwarz et
al., 1987]. However, the discrepancy δhi can, in general, not be neglected. It is caused
by several error sources and is a sum of systematic and stochastic errors. More on this
subject can be found in, e.g., Featherstone [1998], Kotsakis and Sideris [1999], Fotopou-
los [2003] and Prutkin and Klees [2008]. We will now discuss the largest contributions
to δhi �= 0.

Errors in the gravimetric geoid

The gravimetric geoid is in general estimated using several different data sources, each
with its own stochastic properties. The long-wavelength errors, together with the local
(surface gravity) errors, propagate into this gravimetric solution. Moreover, the the-
ory of the determination of the gravimetric geoid makes use of some assumptions and
approximations.

16



Errors in the levelling (orthometric) heights

Apart from the systematic errors (e.g., calibration, atmospheric refractions) and the sto-
chastic errors in the levelling observations, the orthometric heights will also encounter
some extra error sources due to the adjustment of the observations to estimate the or-
thometric heights. One of this error sources is the orthometric correction, which cannot
be solved exactly, as one would need continuous gravity measurements along the plumb
line. A commonly used approximation is to assume a constant density and use the
Poincaré-Prey gravity gradient in the orthometric correction formula to derive Helmert
orthometric heights. Another source of error are the constraints needed to correct the
levelling observations, as one only measures orthometric height differences between
two points and no absolute heights. One could constraint the solution with tide gauges
as zero constraints, introducing errors due to sea surface topography and long-period
tidal effects, or one could use levelling markers, which are in general not stable and
should not be used as �xed constraints.

Errors in the ellipsoidal (GPS) observations

Ellipsoidal heights can be obtained from different systems, such as VLBI, SLR, Doppler
measurements (DORIS) and GNSS systems, like GLONASS, GPS and the future Galileo
system. The GPS system is the most commonly used system to derive ellipsoidal
heights. The measurements my have systematic and stochastic errors, of the order of a
few centimetres.

Other error contributions

One should be cautious that one measures the same quantities with all three observation
types, both in time domain as well as in space domain. Time differences can cause sys-
tematic effects, e.g., due to land subsidence or geodynamic processes. If one does not
measure at the same location, e.g., one cannot measure the levelling marker with GPS
and the correction is not accurate enough, this will propagate directly into the discrep-
ancy δhi. Another possible error source is the difference in reference �eld (ellipsoid)
subtracted from the gravimetric geoid and the GPS measurements or the use of a dif-
ferent tide system. A different choice in ellipsoid can be overcome by a �ve parameter
transformation surface; see, e.g., Heiskanen and Moritz [1967] and Kotsakis and Sideris
[1999]. Some smaller contributions include the difference in angle between the ellip-
soid normal and the plumb line at the geoid (see, e.g., �gure 2.1) and the curvature of
the plumb line in contrast to the geometrical ellipsoidal heights.

The height reference surface

The discrepancy δhi is in general too large to simply compute orthometric heights from
GPS and geoid heights; see, e.g., Kotsakis and Sideris [1999] and Prutkin and Klees
[2008]. A surveyor’s approach is to estimate a ’corrector surface’ and to add this to the
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gravimetric geoid to obtain a transformation surface for the GPS measurements. We
will call this the height reference surface. The corrector surface, added to the gravimet-
ric geoid, could be e.g., a (tilted) plane, a surface obtained by least-squares collocation
[Moritz, 1980], multiquadric interpolation [Hardy, 1971] or the tensioned spline algo-
rithm [Smith and Wessel, 1990]. A division of an area into several subareas to estimate
several corrector surfaces is proposed in Jiang and Duquenne [1996]. In Featherstone
[1998], it is even questioned if we really need a gravimetric geoid. The alternative would
be to estimate a transformation surface from a large number of GPS-levelling reference
points.

Despite all possible errors mentioned before, GPS-levelling data can be used as a
quality assessment of global gravity models, as the data is still much more accurate
than any global model; see, e.g., EGM96 [Lemoine et al., 1998] and EGM08 [Pavlis et
al., 2008].

2.2 The time-variable gravity �eld

Knowledge on the time-varying gravity �eld (e.g., by using data from the GRACE mis-
sion) gives us extra insight into the dynamical processes within a small layer near the
Earth’s surface. Although most of these variations are periodic (e.g., hydrological signal
from rain seasons), recent results show secular trends, such as a clear decrease in the
mass of the polar ice sheets. A combination of GRACE gravity data with site displace-
ments, measured by GPS, will be discussed in chapter 8. This section will focus on the
theoretical background of the temporal gravity signal.

2.2.1 The inverse problem

According to Stokes’ theorem, it is not possible to determine the density distribution of
a body of mass uniquely from its external gravity �eld. However, the majority of the
mass redistributions occurring within short (daily to inter-annual) timescales take place
near the Earth’s surface; see, e.g., Chao [2005]. We can, therefore, associate the time-
variable gravity �eld to surface mass redistributions within a thin spherical shell σa near
the surface (r = a). The gravity potential generated by these surface masses ΔσQ can
be evaluated as

ΔV (P ) = G ·
∫∫∫

ΣQ

ΔρQ

lPQ

dΣQ

= G · a2 ·
∫∫

SQ

1

lPQ

∫
σa

ΔρQdrdSQ (where SQ is the unit sphere)

= G · a2 ·
∫∫

SQ

ΔσQ
1

lPQ

dSQ (where ΔσQ =

∫
σa

ΔρQdr).

(2.29)
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If we expand the inverse of the distance between the points P and Q into a series of
spherical harmonics [Heiskanen and Moritz, 1967], i.e.,

1

lPQ

=
1

rQ

∞∑
l=0

1

2l + 1

(
rQ

rP

)l+1

·
l∑

m=0

P̄lm(cos ϑP )P̄lm(cos ϑQ)(cos mλP cos mλQ + sin mλP sin mλQ),

(2.30)
if rP ≥ rQ, the potential of a spherical shell (rQ = a) can be re-written as

V (P ) = G · a ·
∫∫

SQ

ΔσQ

∞∑
l=0

1

2l + 1

(a

r

)l+1
l∑

m=0

P̄lm(cos ϑP )P̄lm(cos ϑQ)·
(cos mλP cos mλQ + sin mλP sin mλQ)dSQ

= G · a ·
∞∑
l=0

1

2l + 1

(a

r

)l+1
l∑

m=0

P̄lm(cos ϑP )·
[
cos mλP ·

∫∫
SQ

P̄lm(cos ϑQ) cos mλQΔσQdSQ+

sin mλP ·
∫∫

SQ

P̄lm(cos ϑQ) sin mλQΔσQdSQ

]
(2.31)

The surface mass densities ΔσQ [kg/m2] along the spherical shell σa can be expanded
into a series of spherical harmonics:

Δσ(ϑ, λ) = aρw

∞∑
l=0

l∑
m=0

[ΔC̄σ
lm cos mλ + ΔS̄σ

lm sin mλ]P̄lm(cos ϑ) (2.32)

with ρw the average density of water (set to 1025 kg/m3) and ΔC̄σ
lm and ΔS̄σ

lm the
dimensionless coef�cients, de�ned as

{
ΔC̄σ

lm

ΔS̄σ
lm

}
:=

1

4πaρw

∫∫
SQ

P̄lm(cos ϑQ)

{
cos mλQ

sin mλQ

}
ΔσQdSQ. (2.33)

The choice to use the density of water ρw in the series of spherical harmonics is not
only to make the coef�cients dimensionless. The largest part of the mass redistributions
is due to the transportation of water around the globe. An alternative is, therefore, to
express the mass redistributions in equivalent water heights η:

η(ϑ, λ) =
Δσ(ϑ), λ

ρw

= a
∞∑
l=0

l∑
m=0

[ΔC̄σ
lm cos mλ + ΔS̄σ

lm sin mλ]P̄lm(cos ϑ). (2.34)
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Combining Eq. (2.31) and Eq. (2.33) yields

ΔV (ϑ, λ, r) =

GM

a

3 · ρw

ρe

∞∑
l=0

1

2l + 1

(a

r

)l+1
l∑

m=0

[ΔC̄σ
lm cos mλ + ΔS̄σ

lm sin mλ]P̄lm(cos ϑ),

(2.35)

with the average density of the Earth ρe de�ned as [Blewitt and Clarke, 2003]

ρe :=
Me

4

3
πa3

≈ 5514 kg/m3, (2.36)

with Me the mass of the Earth and a the radius of a sphere with the same volume as the
Earth. From now on, we will assume that the scaling parameters of the static �eld, i.e.
M and R, are equal to Me and a respectively. The time-varying gravity potential can be
inverted uniquely into equivalent water heights if the contribution of atmospheric masses
can be removed using isobaric geopotential height data [Swenson and Wahr, 2002] and
if one assumes that (the majority of) the remaining mass redistributions within short
timescales are due to water transportations within a small layer near the surface. Such
an inversion is the primary aim of the GRACE satellite mission; see, e.g., Tapley et al.
[2004a]. However, it is only possible to detect the temporal changes in equivalent water
heights, as the static part of the water storage cannot be separated from the solid Earth
contribution with the use of satellite gravity data only.

2.2.2 Elastic loading of the Earth

When we assume that all mass redistributions occur in a thin layer at the Earth’s surface
and if we assume a purely elastic model, we can use the theory of Farrell [1972] to
model the Earth’s response to the loading masses. In this theory, the load love numbers
(LLN) only depend on the spherical degree l. The surface load creates an additional
potential. The potential due to the surface mass redistributions will, therefore, change
to

ΔV (ϑ, λ, r) =

GM

R

3 · ρw

ρe

∞∑
l=0

1 + k′l
2l + 1

(
R

r

)l+1 l∑
m=0

[ΔC̄σ
lm cos mλ + ΔS̄σ

lm sin mλ]P̄lm(cos ϑ),

(2.37)

with k′l the potential LLN of degree l. The LLN and certain combinations of these
numbers can be found in table 2.1. The temporal change in the Earth’s gravitational
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potential, i.e. ΔV (ϑ, λ, r), can be measured by satellite gravimetry. Therefore, if we
compare Eq. (2.37) to

ΔV (ϑ, λ, r) =
GM

R

∞∑
l=0

(
R

r

)l+1 l∑
m=0

[ΔC̄V
lm cos mλ + ΔS̄V

lm sin mλ]P̄lm(cos ϑ)

(2.38)
we can state that the coef�cients ΔC̄σ

lm, ΔS̄σ
lm can directly be retrieved from the gravity

potential coef�cients ΔC̄V
lm, ΔS̄V

lm:

{
ΔC̄V

lm

ΔS̄V
lm

}
=

3 · ρw

ρe

1 + k′l
2l + 1

·
{

ΔC̄σ
lm

ΔS̄σ
lm

}
(2.39)

Tab. 2.1: Load Love Numbers and combinations to degree 12, from Blewitt and
Clarke [2003]

Degree l 1 + k′l h′l l′l
3 · ρw

ρe

1 + k′l
2l + 1

3 · ρw

ρe

h′l
2l + 1

1 1.021 -0.269 0.134 0.190 -0.050
2 0.693 -1.001 0.030 0.077 -0.112
3 0.805 -1.052 0.074 0.064 -0.084
4 0.868 -1.053 0.062 0.054 -0.065
5 0.897 -1.088 0.049 0.045 -0.055
6 0.911 -1.147 0.041 0.039 -0.049
7 0.918 -1.224 0.037 0.034 -0.046
8 0.925 -1.291 0.034 0.030 -0.042
9 0.928 -1.366 0.032 0.027 -0.040
10 0.932 -1.433 0.030 0.025 -0.038
11 0.934 -1.508 0.030 0.023 -0.037
12 0.936 -1.576 0.029 0.021 -0.035

The Earth itself will also change its shape due to the time-varying gravity poten-
tial, which is caused by the hydrological and atmospheric redistributions [Blewitt et al.,
2001]. As the shape of the Earth and its deformations can be measured very accurately
by GPS using the global network of the International GNSS Service (IGS), this pro-
vides us with an extra independent data set; see, e.g., Blewitt et al. [2001] and [Blewitt
and Clarke, 2003]. The GPS station displacements [Ferland et al., 2000] can be jointly
inverted with the GRACE measurements to estimate the surface mass redistributions.
This may improve the estimation of the lower degrees coef�cients from GRACE. In
Kusche and Schrama [2005], it was shown that in such a joint inversion the contribution
of GPS was up to 60% for degrees 2 till 4 and up to 30% for higher degrees coef�cients,
based upon formal covariances.
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The direct change in geoid heights due to surface masses reads

ΔN(ϑ, λ) = R
∞∑
l=0

l∑
m=0

[ΔC̄V
lm cos mλ + ΔS̄V

lm sin mλ]P̄lm(cos ϑ)

= R
3ρw

ρe

∞∑
l=0

1

2l + 1

l∑
m=0

[ΔC̄σ
lm cos mλ + ΔS̄σ

lm sin mλ]P̄lm(cos ϑ)

(2.40)
The Earth will directly react to this by changing the height Δh of the Earth’s surface.
Using LLN h′l, we obtain:

Δh(ϑ, λ) = R
3ρw

ρe

∞∑
l=0

h′l
2l + 1

l∑
m=0

[ΔC̄σ
lm cos mλ + ΔS̄σ

lm sin mλ]P̄lm(cos ϑ)

:= R
∞∑
l=0

l∑
m=0

[ΔC̄h
lm cos mλ + ΔS̄h

lm sin mλ]P̄lm(cos ϑ)

(2.41)
We can, therefore, compute the coef�cients ΔC̄σ

lm, ΔS̄σ
lm directly from the coef�cients

ΔC̄h
lm, ΔS̄h

lm: {
ΔC̄h

lm

ΔS̄h
lm

}
=

3 · ρw

ρe

h′l
2l + 1

·
{

ΔC̄σ
lm

ΔS̄σ
lm

}
(2.42)

In this way, we can use GPS height displacements to estimate the surface mass redis-
tributions. The lateral displacement can be retrieved by �rst expressing its poloidal
component

ΔΨ(ϑ, λ) = R
∞∑
l=0

l′l

l∑
m=0

[ΔC̄V
lm cos mλ + ΔS̄V

lm sin mλ]P̄lm(cos ϑ)

= R
3ρw

ρe

∞∑
l=0

l′l
2l + 1

l∑
m=0

[ΔC̄σ
lm cos mλ + ΔS̄σ

lm sin mλ]P̄lm(cos ϑ),

(2.43)
with l′l the lateral LLN of degree l. A displacement of the Earth in eastern direction can
now easily be derived by

Δe(ϑ, λ) =
1

sin ϑ

∂

∂λ
ΔΨ(ϑ, λ)

=
R

sin ϑ

3ρw

ρe

∞∑
l=1

l′l
2l + 1

l∑
m=0

m · [−ΔC̄σ
lm sin mλ + ΔS̄σ

lm cos mλ]P̄lm(cos ϑ)

(2.44)
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The displacements in northern direction can be derived by

Δn(ϑ, λ) = − ∂

∂ϑ
ΔΨ(ϑ, λ)

= −R
3ρw

ρe

∞∑
l=1

l′l
2l + 1

l∑
m=0

[ΔC̄σ
lm cos mλ + ΔS̄σ

lm sin mλ]
∂

∂ϑ
P̄lm(cos ϑ)

(2.45)
A GPS time-series (Δh, Δe, Δn) can thus be used to estimate surface mass variations
with respect to a certain reference epoch.

2.3 Gravity �eld determination from satellite data

The big advantage of satellite gravity data is that we can obtain a global coverage of
the Earth. By tracking the orbit of a satellite, one can strengthen the estimation of
the low-degree part of the gravitational �eld and �ll in the gaps in some remote areas.
Altimetry is an accurate technique to obtain an estimate of the geoid in the oceanic
regions. A constellation of multiple satellites, with an inter-satellite tracking, is able
to obtain the temporal changes in the gravity �eld and gradiometry is used to estimate
the high-degree spherical harmonics of the Earth’s gravitational �eld. In this section,
we will shortly discuss the different measurement techniques used in satellite gravity
modelling.

2.3.1 Satellite tracking

The orbit of a satellite is highly in�uenced by the gravity �eld of the Earth. Inversely, a
time series of the position of a satellite can give extra information on this gravity �eld.

Satellite laser ranging (SLR)

Satellite laser ranging is the most accurate technique (within the centimetre level) to
determine the position of a satellite. It measures the round trip time of pulses of light to
satellites equipped with retro-re�ectors. With a network of ground stations measuring
the distances to the satellite, one can determine the position of the satellite’s centre of
mass very precisely.

Some satellites, e.g., LAGEOS-I (1976-), LAGEOS-II (1992-) and GFZ-1 (1995-
1999), have been especially designed for this purpose. The shape of these passive
satellites is spherical and they are fully equipped with retro-re�ectors. The LAGEOS
satellites �y at a high altitude (5, 900 km), increasing their lifetime and improving the
lower degrees spherical harmonics. The GFZ-1 satellite �ew at a much lower altitude
(230− 398 km), reducing its lifetime considerably.
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High-Low Satellite-to-Satellite Tracking (hl-SST)

An alternative method to measure the position of a satellite is to use high-low satellite-
to-satellite tracking (hl-SST) by means of GPS measurements. Together with an on
board accelerometer to measure the non-conservative forces (mostly atmospheric drag),
this hl-SST technique is a highly accurate technique to measure the Earth’s gravitational
�eld. A recently launched satellite to have GPS receivers and a accelerometer on board
is the CHAMP satellite [Reigber et al., 1999]; see also �gure 2.2. The satellite was
successfully launched in July 2000 with a designed lifetime of 5 years, a near polar orbit
(87◦) and an initial altitude of 454 kilometres. It was shown in Ditmar [2007] that the
non-gravitational forces were only of minor in�uence on the gravity �eld determination
when using the acceleration approach. In chapter 7 we will use the CHAMP hl-SST
data, together with the accelerometer data, to estimate a model of the Earth’s gravity
�eld.

Fig. 2.2: The CHAMP satellite with the instruments for gravity �eld determina-
tion [GFZ]

Low-Low Satellite-to-Satellite Tracking (ll-SST)

A constellation of multiple satellites measuring their mutual distances (ll-SST), com-
bined with an absolute positioning technique (hl-SST / SLR) can improve the estima-
tion of the Earth’s gravity �eld, especially its temporal variations, considerably [Jekeli,
1999]. The GRACE mission, launched in 2002, is such a mission, measuring the dis-
tance between two low-altitude (≈ 500 km) satellites in identical near-polar orbits
[Tapley et al., 2004a, 2004b]. The distance (on average 220 kilometres along-track) is
measured by a highly accurate K-band microwave ranging system, see �gure 2.3. The
goal of the GRACE mission is to estimate the time-variable gravity �eld of the Earth
with unprecedented accuracy and resolution; see, e.g., Wahr et al. [1998] and Tapley et
al. [2004a].

The leader-follower con�guration of GRACE is mainly sensitive along the line-of-
sight, i.e., in North-South direction [Sneeuw and Schaub, 2005]. The error behaviour of
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Fig. 2.3: The GRACE twin satellites [CSR]

this kind of con�guration is non-isotropic. Other types of con�gurations (not currently
in orbit) are suggested in Sneeuw et al. [2005] and Shari� et al. [2007]. Compar-
isons show that the GRACE leader-follower con�guration is by far not the most ideal
con�guration for future ll-SST missions.

2.3.2 Satellite altimetry

Satellite altimetry is a method to estimate the sea surface height, by measuring the dis-
tance between the satellite and the sea surface using an on board altimeter. Possible
error sources in this height estimation are the observation error itself (including atmo-
spheric delays), its spatial averaging and the positioning of the satellite. Moreover,
one does not measure the geoid, but the sea surface height, which in general will not
coincide. The difference is called dynamic topography. However, satellite altimetry
provides very accurate data over the oceanic regions, where surface gravity data is ab-
sent. It has contributed to many combination solutions, e.g., EGM96 [Lemoine et al.,
1998] and EGM08 [Pavlis et al., 2008].

Examples of altimetry satellites are the GEOS-3 (1975-1978), SEASAT (1978),
GEOSAT (1985-1990), ERS-1 (1991-2000), ERS-2 (1995-), TOPEX/Poseidon (1992-
2005), Jason-1 (2001-) and Envisat (2002-) satellites. Just recently (June 2008), the
Jason-2 satellite is put into orbit.

2.3.3 Satellite gradiometry

Gradiometry measures the difference in acceleration of test masses over small distances
with two accelerometers for each direction; see �gure 2.4. In this way, components of
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the gravity tensor can be measured, which will mainly provide information on the high-
degree spherical harmonics of the Earth’s gravity �eld [Rummel and Colombo, 1985].
The measured gravity gradients are expressed in units of E = 10−9s−2, named after the
Hungarian scientist Eötvös. Non-conservative forces will act on all test masses in an
almost similar way and this in�uence can therefore be neglected from the gradiometer
observations.

The GOCE satellite will be the �rst satellite carrying a gradiometer on board. The
launch of the satellite is scheduled for 2008, with an expected lifetime of two years.
It will �y at a low-altitude (250 kilometres) and will be equipped with GPS receivers,
laser re�ectors (SLR), and a gradiometer. Three pairs of accelerometers will measure
the gravity gradients in three directions with a baseline of approximately 0.5 metres
between the corresponding accelerometers. The gradiometer noise is expected to be
below 6 mE/

√
Hz across the measurement bandwidth [Drinkwater et al., 2007]. It is

expected that the GOCE-derived geoid will have an accuracy of 2 cm at spatial scales
down to 100 km (L < 200) [Drinkwater et al., 2007].

Fig. 2.4: The GOCE satellite mission

2.4 The determination of data weights in satellite grav-
ity �eld modelling

In this section, we will give a historical overview of the satellite-based global gravity
models. The focus of the discussion will be on the data weighting problem, i.e., how
to weight the different arcs / data sets relatively to each other. This section is split into
four parts: the early years (1958-1975), the period of external calibration (1975-1988),
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the period of internal calibration (1988-2000), and �nally the era of the dedicated space
missions CHAMP, GRACE and GOCE. We have restricted ourselves to those global
models where particular weight determination techniques have been applied and the
most commonly used models. A more complete overview of global gravity �eld models
can be found in Lambeck and Coleman [1983], Nerem et al. [1995], Bouman, [1998b]
and the web-site of the International Center for Global Earth Models (ICGEM / GFZ).

2.4.1 The early years of satellite gravity �eld modelling (1958-1975)

The space age started with the launch of the �rst arti�cial satellite in 1957, the Russian
Sputnik 1, directly followed by Sputnik 2 and the American satellites Explorer 1 and
Vanguard 1. The satellites were tracked from various tracking sites to estimate the low-
degree spherical harmonic coef�cients. The �rst results on the oblateness of the Earth
using arti�cial satellites can be found in Buchar [1958]. This marks the beginning of
satellite-based gravity �eld modelling.

Fig. 2.5: The Sputnik 1 satellite

The �rst global gravity model using a combination of satellite data and surface data
was computed at the Goddard Space Flight Center by W.M. Kaula [Kaula, 1961]. The
satellite data represented measurements of the motion of the node, the perigee and the
eccentricity of the Sputnik 2 and Vanguard 1 satellites. The surface gravity data con-
sisted of 10◦ × 10◦ blocks of free air anomalies as well as geoid height differences, the
latter based on astro-geodetic data. The weights of the satellite data were given a-priori,
con�rming earlier publications about the two satellite missions; see, e.g., Merson and
King-Hele [1958]. This over-weighted the satellite data [Kaula, 1961]. A least-squares
adjustment was used to compute a global gravity model complete to degree 8. All vari-
ances and covariances were re-scaled a-posteriori by a single factor. This factor was
computed by comparing the weighted residual square sum (neglecting the covariances)
with the trace of the variance-covariance matrix of the adjusted residuals.

In the next few years, the Smithsonian Astrophysical Observatory (SOA) published
some global gravity models, based on satellite tracking data and surface gravity data.
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The models were named Standard Earth (SE)-I,-II, and -III. Several models have used
the satellite tracking data and its stochastic properties from the data base of SOA, e.g.,
OSU-68 [Rapp, 1968] and [Koch and Morrison, 1970]. The SE-III global gravity model
[Gaposchkin, 1973] used tracking data of 25 satellites. In those days, the errors in the
satellite tracking data were mainly due to the bad tracking instruments on site. Therefore
these measurements were grouped according to the laser instrument and were given a-
priori weights, based on earlier experiences on the quality of the instruments (σ = 2-10
metres). The 5◦ × 5◦ mean gravity anomalies were given a standard deviation based on
the block size and the available data within such a block.

The potential coef�cients of the satellite-only (L = 12) GEM-3 model were com-
bined with 5◦ × 5◦ mean gravity anomalies to form the (L = 20) combined model
OSU-73 [Rapp, 1973]. The standard deviations of the GEM-3 coef�cients, used in the
weighting scheme of OSU-73, were estimated by comparing them to the coef�cients
of contemporary models. The relative weighting of the gravity anomalies with the co-
ef�cients was done by minimizing the difference between the predicted orbit of the
GEOS-A satellite, based on the combined solution, and the ’true’ positions, based on
laser ranging data.

2.4.2 External calibration (1975-1988)

Up until 1988, with the introduction of the subset solution technique [Lerch et al., 1988],
the observation weights of the satellite data were mainly based on trial and error by com-
paring the results to independent data like other geopotential models, satellite tracking
data or altimeter data. This can be viewed as an external calibration method. Huge
amounts of satellite data became available from the mid seventies. Especially the launch
of the GEOS-3 satellite in 1975 and of the LAGEOS-I satellite in 1976 improved the
global gravity models considerably. The altimeter on board the GEOS-3 satellite could
�ll in the gaps in the surface gravity data. The LAGEOS-I satellite (�gure 2.6) im-
proved the estimation of the low-degree spherical harmonics, as it was less sensible to
non-gravitational forces (e.g., atmospheric drag) due to its spherical shape and its high
altitude (5, 900 km).

Fig. 2.6: The LAGEOS-I satellite
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A German-French cooperation started in 1976, resulting in three global gravity mod-
els, GRIM1 [Balmino et al., 1976b], GRIM2 [Balmino et al, 1976a] and GRIM3 [Reig-
ber et al., 1983], the latter using the new GEOS-3 altimeter data. The determination
of the data weights was done rather arbitrary; e.g., the a-priori standard deviations of
the surface data in GRIM3 were bounded to 5-15 mGal due to ”too uneven weighting”
[Reigber et al., 1983].

From 1979 to 1986, two American institutes, the Goddard Space Flight Center and
the Ohio State University, based their global gravity models on the satellite-only model
GEM-9 [Lerch et al., 1979], a global gravity model complete to degree 20, which was
computed to improve the radial orbit determination of the GEOS-3 satellite. The GEM-
9 model was combined with mean gravity anomalies to yield GEM-10 [Lerch et al.,
1979], GEOS-3 altimeter data to yield GEM-10B and GEM-10C [Lerch et al., 1981],
LAGEOS-I data to yeild GEM-L2 [Lerch et al., 1982,1985] and a huge amount of both
surface gravity data and altimeter data to yield OSU-78 [Rapp,1978], OSU-81 [Rapp,
1981], OSU-86C/D [Rapp and Cruz, 1986a], and OSU-86E/F [Rapp and Cruz, 1986b].
The determination of the data weights in these models was done based on personal
experiences and comparisons with other models. The GEOS-3 altimeter data were given
a high weight to balance the in�uence of the continental surface gravity data (GEM-
10B/C) and the LAGEOS-I data in the GEM-L2 solution had to be down-weighted by a
factor of 10.

Between 1987 and 1992 a lot of effort was put into reducing the predicted radial
orbit error of the future TOPEX/Poseidon altimeter satellite (launched in 1992). The
requirement was to have a RMS radial error (due to gravity �eld mismodelling) of 10 cm
maximum, which was clearly not met by the GEM-L2 satellite model (65 cm) [Nerem
et al., 1993]. The Goddard Space Flight Center computed three gravity models for that
purpose: GEM-T1, GEM-T2 and GEM-T3. The �rst model, GEM-T1, is a satellite-only
solution, using both laser and optical data [Marsh et al., 1987, 1988]. The determination
of the observation weights was done using trial and error by comparing the solution to
independent data (external calibration). The observations were down-weighted with a
factor 50, compared to a-priori zero constraints on the coef�cients. Systematic errors in
the laser data were probably the cause of this rather large down-weighting [Marsh et al.,
1987]. The predicted radial orbit errors had a RMS of 26 cm.

2.4.3 Internal calibration (1988-2000)

So far, any calibrations were mainly done using trial and error by comparing the results
to independent data (external calibration). One of the disadvantages of this method is
that the high-quality independent data were not used in the estimation of the global
gravity �elds. The goal was, therefore, to �nd a suitable internal calibration technique.
Such a technique was proposed in Lerch et al. [1988, 1991] and compared with external
calibration techniques. Different subset solutions were compared to calibrate the ob-
servation weights. For every data set, a solution was computed, in which the particular
data set was omitted. The difference between the solution using all data and the solution
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Fig. 2.7: The TOPEX-Poseidon satellite [NASA].

with the data set omitted, was compared with the stochastic model. The data set was
then re-weighted and a different data set was calibrated. This algorithm was repeated
until convergence. The calibrated solution was in good agreement with independent al-
timeter and surface gravity data. More on Lerch’s subset solution method can be found
in Lerch [1989, 1991] and in section 4.6.3.

The �rst model, that actually used the internal calibration method of Lerch was the
GEM-T2 model [Marsh et al., 1989a, 1989b, 1990]. The improved data weighting and
the increase in the number of observations reduced the predicted radial orbit error of
TOPEX/Poseidon due to gravity from 26 to 10 cm. External calibration with indepen-
dent altimeter-derived gravity anomalies showed the consistency of the new method.
The GEM-T2 model was later used by the Ohio State University to compute the com-
bined gravity �eld models OSU89A, OSU89B [Rapp and Pavlis, 1990], and OSU91A
[Rapp et al., 1991]. The combination of the GEM-T2 model with altimeter and surface
gravity data was done using external calibration.

The latest GEM-model to provide accurate radial positioning of the TOPEX/ Posei-
don altimeter satellite was the GEM-T3 (L = 50) combined model; see, e.g., [Nerem
et al., 1992] and [Lerch et al., 1994]. It has an estimated radial orbit error due to grav-
itational mismodelling of 6.8 cm. The satellite-only solution GEM-T3S was calibrated
using the subset solution method. These relative weights were kept �xed in the combi-
nation with surface gravity data and altimeter data. SPOT 2 DORIS observations were
used as an external test for the calibration method [Lerch et al., 1993]. They were later
on added to the normal equations to form the GEM-T3A model [Nerem et al., 1994a].
The new model was seen as a considerable improvement, especially in the polar regions,
due to the high inclination of the SPOT 2 satellite (98.7◦). The predicted radial accuracy
improved to 5 cm [Nerem et al., 1994b].

Several institutes combined their data in the mid ’90s to compute new global gravity
models like JGM-1 and JGM-2 [Nerem et al., 1994b], JGM-3 [Tapley et al, 1996],
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GRIM-C4 [Schwintzer et al., 1997], and EGM96 [Lemoine et al., 1998]. Apart from
the GRIM-C4 model, which uses external calibration techniques, the subset solution
technique was used to weight the different data sets in these models. A remark could be
made on the JGM-3 model, which kept the JGM-1 relative weights �xed and estimated
the weights of the new data using trial and error by an external calibration to independent
TOPEX/Poseidon arcs. The JGM-3 model had reduced the TOPEX/Poseidon predicted
radial orbit error due to gravity �eld mismodelling to only 0.9 cm [Tapley et al., 1996].

The global gravity �eld models, computed at the University of Texas, like TEG-3
[Tapley et al., 1997], use a different internal calibration technique. In Yuan [1991], this
method is referred to as an optimal weighting technique. We prefer to call it the Iterative
Maximum Likelihood Estimator (IMLE); see section 4.6.5. The estimator compares
the residual square sum of a data set with the number of observations. The method is
biased, has no minimum variance and takes no account of the degrees of freedom that
are involved in estimating the vector of unknowns.

In the past few years some new Earth-Observation satellites have been launched,
such as JASON-1, ENVISAT, CHAMP, and GRACE. A new global gravity model was
needed as a reference �eld for these missions. Such a model is the GRIM5-C1 gravity
model [Gruber et al, 2000]. It is a combined model of the satellite-only model GRIM5-
S1 [Biancale et al., 2000] and surface data. Variance component estimation was used to
compute the data weights in the satellite-only solution. Kaula constraints were added to
the normal equations. Coef�cients, which were determined over 90 percent by satellite
data, were later used in the computation of the combined solution GRIM5-C1. The
weights for the gravity anomalies were based on earlier experiences. The observa-
tion weights in the GRIM5-C1 solution were assumed as “close to optimal”, as the
a-posteriori variance factor approximated unity.

2.4.4 Dedicated satellite missions (2000-)

Despite several proposals in the last decades (e.g., GRAVSAT and ARISTOTELES),
only recently, with the launch of the CHAMP satellite [Reigber et al., 1999] in 2000, a
satellite was put into orbit with an in situ measurement system dedicated to improve the
knowledge of the Earth’s gravity �eld. In the �rst years after the launch of the CHAMP
satellite in 2000 and the GRACE satellites in 2002, not much effort was put into the data
weighting problem. Only recently, internal calibration methods, like VCE, have been
used to re-weight the CHAMP [Van Loon and Kusche, 2005] and GRACE [Mayer-Gürr
et al., 2007] data sets.

The �rst global gravity model to incorporate the new CHAMP satellite data was the
EIGEN-1S model [Reigber et al., 2002], which uses three months of CHAMP satel-
lite data, together with the normal equations of the satellite-only solution GRIM5-S1
[Biancale et al, 2000]. The relative weighting of the prior model with the new satel-
lite data was based on external calibrations with an altimeter-derived geoid and gravity
anomalies and orbit tests on different satellites [Schwintzer, personal communication].
The a-posteriori calibration of the spherical harmonic coef�cients was performed by in-

31



dependent gravity �eld solutions covering different observation data periods. The key
references of the CHAMP-only solutions EIGEN-2 [Reigber et al., 2003], EIGEN-3p
[Reigber et al., 2005a] and TUM-1S [Gerlach et al., 2003] do not provide us with in-
formation about the estimation of the data weights. However, we can assume that the
observations were equally weighted, as was also done in other CHAMP-only global
gravity models, like the TUM-2Sp model [Földvary et al., 2005].

Both University of Bonn and Delft University of Technology used VCE to weight
different arcs of pre-processed CHAMP data. Monte Carlo algorithms were used to
speed up the computations. Our contribution can be found in Kusche and Van Loon
[2005] and Van Loon and Kusche [2005] and later in this thesis, in chapter 7. Infor-
mation about the CHAMP-only global gravity model of Bonn, ITG-CHAMP01, can be
found in Mayer-Gürr et al. [2005] and Ilk et al. [2005].

The DEOS CHAMP-01C 70 global gravity model [Ditmar et al., 2006] uses the
second derivatives (accelerations) of the CHAMP satellite positions. The propagation of
the white noise, assumed for the positions, to the acceleration observations is regularized
not to overweight the low-frequency part of the noise [Ditmar and Van Eck van der
Sluijs, 2004].

The �rst models involving GRACE observations are the American GGM01S model
[Tapley et al., 2003] and the European EIGEN-GRACE01S [GFZ, 2003] and EIGEN-
GRACE02S [Reigber et al., 2005b] models. We can assume that the data sets were
weighted equally to estimate the global gravity models as no information is given ex-
plicitly in the corresponding references. The EIGEN-GRACE models are calibrated
a-posteriori by degree using subset solutions from different time intervals. The variance
by degree of the coef�cients’ differences between subset solutions are compared with
the formal error degree variances [Reigber et al., 2005b].

The GGM02S model [Tapley et al., 2005] use the same internal calibration method
(IMLE, section (4.6.5)) as was used in the TEG series; see Tapley et al. [1997] and
Yuan [1991]. Three relative weights were estimated for each day, two for the GPS
normal equations and one for the KBR range-rate normal equations. The K-Band range-
rate had an estimated noise level of 0.4 μm/s for the earlier days of the mission and
0.2 μm/s for the data in late 2003. The GPS standard deviations ranged between 1 and
2 cm [Tapley et al., 2005]. The satellite-only solution was then calibrated by comparing
subset solutions (internally) and by an external calibration with independent data. The
calibrated model was then combined with the EGM96 solution to form the GGM02C
model [Tapley et al., 2005]. However, as covariance information of EGM96 is only
available up to degree 70, the VC matrix of the TEG-4 model was used instead. This
model has full covariance information up to degree and order 200 and has used much
the same terrestrial information as EGM96. However, down-weighting of the prior
EGM96/TEG-4 model in the lower degrees and down-weighting of the GGM02S model
in the higher degrees was necessary to optimally use the characteristics of both models.

A GRACE-only global gravity model, which uses Variance Components Estimation,
is the ITG-GRACE02S [Mayer-Gürr et al., 2007]. Three years of GRACE data have
been used to determine the satellite-only model up to degree and order 160. The data
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have been divided into short arcs (30 minutes) and for each arc an individual variance
component is estimated. One of the most recent GRACE models is the EIGEN-GL04C
model [Förste et al, 2008]. This (L = 360) global gravity model uses SLR data to
LAGEOS to strengthen the low-degree part of the spectrum, which was poorly solved
by the GRACE satellite gravity data. Surface gravity (gravimetric and altimetric) data
were used to determine the high degrees.

An even higher resolution (L = 2160) was obtained in the EGM08 model [Pavlis et
al., 2008]. This model combines the ITG-GRACE03S GRACE-only model with a large
data base of surface gravity data. It is expected that large improvements will be made
up to degree and order 200 with the launch of the GOCE satellite [Drinkwater et al.,
2007]. The most important satellites, weighting algorithms and global gravity models
are summarized in a chronological order in table 2.2.

Tab. 2.2: Historical overview of the most important satellites, weighting algo-
rithms and models in the �eld of satellite gravity �eld modelling

Year Satellite Weighting algorithm Model
1957 Sputnik-1 Experience / trial and error
1973 OSU-73
1975 GEOS-3 Trial and error / experience
1976 LAGEOS-I
1981 GEM 10B/C
1982 GEM L2
1983 GRIM-3
1988 Subset solution / trial and error
1989 GEM-T2
1991 OSU91a
1992 TOPEX/Poseidon
1998 EGM96
2000 CHAMP Equal weights / VCE GRIM5-C1
2002 GRACE
2005 EIGEN-GRACE02S
2008 EGM08
2008 GOCE?

2.5 Summary

This chapter gives a brief overview of physical geodesy. It explains the basics of gravity
�eld determination, with a special focus on the use of satellite data. An overview of
the determination of the data weights in satellite gravity �eld modelling is the topic
of the second part of the chapter. One could distinguish four periods since the launch
of the �rst satellite in 1957. The �rst years (1958-1975) are characterized by little
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redundancy in the observations. Only a few satellites were in orbit and used for satellite
gravity modelling. It was however possible to improve the estimates of the oblateness
of the Earth from these �rst satellite observations. The data weights were chosen rather
arbitrary, mostly based on the experience of the scientist or trial and error methods.

In the period 1975-1988 huge amount of gravity-related satellite observations be-
came available, especially with the launch of the Geos-3 and the LAGEOS-I satellites.
The data weights were mostly determined using external calibration techniques. The
weights were chosen on a trial and error basis by comparing the results to independent
data or other global gravity models.

Lerch et al. [1988] suggested to use an internal calibration technique by looking
at subset solutions, omitting one observation group at a time. This method has been
widely used in the period 1988-2000 to calibrate the observation groups and conse-
quently weight the different data sets. Several combination models, such as EGM96,
have used combinations of external and internal calibration to improve the stochastic
model of the observations.

With the launch of the CHAMP satellite in 2000 and the GRACE satellite in 2002,
a huge amount of gravity-related observations became available to be used in global
gravity �eld modelling. Many groups computed their own global models using differ-
ent functional models and different outlier treatment techniques. Most of the groups,
however, did not take a proper modelling of the stochastic model into account. They
considered the a-priori stochastic properties of the observations to be optimal or even
used an equal data weighting approach.
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3
Augmentation of the functional

model

The combination of several data sets requires reliable stochastic models, the removal
(or down-weighting) of outliers, and proper functional models. The functional model
not only includes the (linearized) relationship between the observations and the com-
mon unknown parameters, but may also include some local parameters, which model
systematic effects or inconsistencies among the data sets. This chapter starts with an
introduction to the least-squares approach. Hypothesis testing on the signi�cance of
certain local parameters is the subject of the second part. The chapter ends with the
Best Linear Softly Unbiased Estimator (BLSUE), which weakens the constraints of un-
biasedness in the combination of new data with prior information.

3.1 The Least-Squares principle

3.1.1 The Least-Squares estimator of the vector of unknowns

We assume a general linear Gauss-Markov Model as the functional model, i.e.,

y = Ax + e (3.1)

where
y = m× 1 vector of observations
A = m× n design matrix
x = n× 1 vector of unknowns
e = m× 1 vector of residuals.

We have chosen to use this Gauss-Markov model throughout the thesis. Other func-
tional models, like the mixed linear model or the conditional model, can always be
re-written as a Gauss-Markov model.
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The stochastic properties of the residuals are described by the stochastic model:

E{e} = 0 ; D{e} = Qy (3.2)

where E{.} denotes the expectation operator, and D{.} the dispersion operator, de�ned
as

D{e} := E{(e− E{e})(e− E{e})T}. (3.3)

The observations can take any value in the R
m space due to observation errors. The

observations are, however, expected to lie in R(A), the column space of A, since
E{y} = Ax. Any mis�t is expressed in the vector e. As a result, the variance-covariance
matrix of the observations Qy equals the variance-covariance matrix of the residuals. In
a weighted least-squares approach (see e.g., Teunissen [2000a]), the weighted residual
square sum Ω is minimized, where Ω is de�ned as

Ω :=‖ e ‖2
Qy

= eT Q−1
y e. (3.4)

Minimization of Ω by varying x results in the least-squares estimate x̂ of the vector of
unknowns x:

Ω̂ := minx eT Q−1
y e = minx (y−Ax)T Q−1

y (y−Ax) = (y−Ax̂)T Q−1
y (y−Ax̂). (3.5)

The vector x̂ is the solution of the system of normal equations

Nx̂ = h, (3.6)

with N the normal matrix and h the right-hand-side vector de�ned as [Teunissen, 2000a]

N := AT Q−1
y A

h := AT Q−1
y y,

The least-squares estimate x̂ has maximum likelihood and minimum variance if one
assumes a normal distribution with known functional and stochastic model. The propa-
gation law of variances is used to derive the estimator of the variance-covariance matrix
of x̂

Qx̂ = N−1AT Q−1
y QyQ

−1
y AN−1 = N−1NN−1 = N−1. (3.7)

The vector ŷ := Ax̂ is the least-squares estimator of the vector of observations y and
can be computed by:

ŷ = A(AT Q−1
y A)−1AT Q−1

y y = PAy. (3.8)

where PA is a projection matrix, which projects a vector onto the column space R(A)
and along its orthogonal complement (in Qy-space). The least-squares estimator of the
residual vector is the difference between y and ŷ:

ê = [I − A(AT Q−1
y A)−1AT Q−1

y ]y = P⊥A y, (3.9)

with P⊥A the projection matrix, which projects along the column space R(A) and onto
its orthogonal complement. Useful properties of the aforementioned projection matrices
are [Strang, 1988]:
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1. PA, P⊥A are symmetric m×m matrices if Qy is a scaled identity matrix.

2. PA, P⊥A are idempotent matrices, i.e. PAPA = PA and P⊥A P⊥A = P⊥A .

3. PA = I − P⊥A and P⊥A = I − PA.

4. P T
A Q−1

y = P T
A Q−1

y PA = Q−1
y PA and (P⊥A )T Q−1

y = (P⊥A )T Q−1
y P⊥A = Q−1

y P⊥A .

5. R(PA) = R(A) = N (P⊥A ) andR(P⊥A ) = R(A)⊥ = N (PA) withR(·) the range
operator and N (·) the null space operator.

3.1.2 The overall model test

We have now derived an estimator for the vector of unknowns using the least-squares
approach (Eq. (3.6)) and we have an estimate of the variance-covariance matrix of this
estimator (Eq. (3.7)). If the design matrix A is of full column rank and the number of
observations is at least equal to the number of unknowns, one will always �nd a solution
of the vector of unknowns x. However, the residuals can be relatively large, if one would
compare them to the stochastic properties of the observations, de�ned by the stochastic
model. One should therefore test if the observations �t the functional and stochastic
model. Two hypotheses can be tested against each other:

H0 : E{y} = Ax ; HA : E{y} = Ax + Bδ, (3.10)

with Bδ a matrix-vector product, which can account for any mis�t in the data. The
test can be used to test for any bias in the data, i.e. B = [ 1 1 . . . 1 ]T or to test
for a speci�c outlier B = [ 0 . . . 0 1 0 . . . 0 ]T . In both cases, the matrix B
becomes a vector and δ a scalar. If one increases the dimensions of B to its maximum
m × (m − n), the expectation E{y} can take any value within R

m. A suitable test

statistic for this problem is the quadratic form Ω̂ [Teunissen, 2000b], see Eq. (3.5),
which is distributed under H0 and HA as

H0 : Ω̂ ∼ χ2(m− n, 0) ; HA : Ω̂ ∼ χ2(m− n, λ) (3.11)

with the non-centrality parameter de�ned as

λ := δT BT Q−1
y QêQ

−1
y Bδ. (3.12)

Note that the matrix Qy is assumed to be known, which is in general not valid for real
data. Equivalent to this test statistic, one could also consider the unbiased estimator of
the variance factor of unit weight (or a posterior variance factor):

σ̂2 =
Ω̂

m− n
, (3.13)
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which is distributed under H0 and HA as

H0 : σ̂2 ∼ F (m− n,∞, 0) ; HA : σ̂2 ∼ F (m− n,∞, λ) (3.14)

This test is called the overall model test or the global model test. It compares Ω̂ with its
expectation under H0, i.e.

E{Ω̂} = m− n. (3.15)

Rejection of the H0-hypothesis implies either

- outlier(s) in the data (error in y),

- unmodelled systematic effects in (parts of) the data (error in Ax),

- or a wrong variance-covariance matrix (error in Qy).

In this chapter, we will focus on the augmentation of the functional model, i.e., on
rede�ning the design matrix A. The augmentation of the stochastic model and the de-
tection of outliers will be discussed in chapters 4 and 6.

3.2 Global and local parameters

3.2.1 The estimation of global and local parameters

It is common practice in gravity �eld modelling to use different satellite data sets in a
common least-squares adjustment, e.g., data from different missions, satellite gravity
data from different periods (e.g., individual arcs) within one mission, a combination
with terrestrial or altimetric data or a combination with an a-priori model. Suppose, the
noise of these data sets can be considered to be mutually uncorrelated. The stochastic
model can then be written as

E{

⎡
⎢⎢⎢⎣

e1

e2
...
ep

⎤
⎥⎥⎥⎦} = 0 ; D{

⎡
⎢⎢⎢⎣

e1

e2
...
ep

⎤
⎥⎥⎥⎦} =

⎡
⎢⎢⎢⎣

W−1
1 0 · · · 0
0 W−1

2 · · · 0
...

...
. . .

...
0 0 · · · W−1

p

⎤
⎥⎥⎥⎦ (3.16)

The general case of a functional model, in which we can assume different observation
groups, reads ⎡

⎢⎢⎢⎣
y

1

y
2
...
y

p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A1

A2
...

Ap

⎤
⎥⎥⎥⎦x +

⎡
⎢⎢⎢⎣

e1

e2
...
ep

⎤
⎥⎥⎥⎦ . (3.17)
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We will call such a model a functional model of type I. The least-squares estimate fol-
lows from solving Eq. (3.6), in which the normal matrix N and the right-hand-side
vector h are de�ned by

N =

p∑
i=1

Ni ; Ni = AT
i WiAi;

h =

p∑
i=1

hi ; hi = AT
i Wiyi

.

(3.18)

In general, the observations are not only dependent on the common or global parame-
ters, such as spherical harmonic coef�cients. Inconsistencies can occur in the functional
model, such as datum inconsistencies [Fotopoulos, 2005], systematic biases [Kotsakis,
2005] and geographically correlated errors. These effects can be modelled by local pa-
rameters. Dividing the vector of unknowns in global and local parameters can reduce the
computational effort of the least-squares solution considerably. The functional model of
type II can be written as

⎡
⎢⎢⎢⎣

y
1

y
2
...
y

p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A11 0 · · · 0 A1s

0 A22 · · · 0 A2s
...

...
. . .

...
...

0 0 · · · App Aps

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xp

xs

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

e1

e2
...
ep

⎤
⎥⎥⎥⎦ (3.19)

The normal equations will reduce to (see, e.g., Lucas and Dillinger [1998])⎡
⎢⎢⎢⎢⎢⎣

N11 0 · · · 0 N1s

0 N22 · · · 0 N2s
...

...
. . .

...
...

0 0 · · · Npp Nps

Ns1 Ns2 · · · Nsp Nss

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x̂1

x̂2
...

x̂p

x̂s

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

h11

h22
...

hpp

hs

⎤
⎥⎥⎥⎥⎥⎦ . (3.20)

The sub-matrices (i = 1, . . . , p) can be computed by

Nii = AT
iiWiAii

Nis = AT
iiWiAis

Nsi = NT
is

Nss = AT
1sW1A1s + AT

2sW2A2s + . . . + AT
psWpAps =

p∑
i=1

AT
isWiAis

(3.21)

and the right-hand-side vectors by

hii = AT
iiWiyi

hs = AT
1sW1y1

+ AT
2sW2y2

+ . . . + AT
psWpyp

=

p∑
i=1

AT
isWiyi

.
(3.22)
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If the functional model is written as a functional model of type III, the system of normal
equations to solve for the global parameters xs can be reduced to (see, e.g., Reigber
[1989]):

N̄ssx̂s = h̄s, (3.23)

where

N̄ss = Nss −
p∑

i=1

NsiN
−1
ii Nis

h̄s = hs −
p∑

i=1

NsiN
−1
ii hii,

(3.24)

or [Lucas and Dillinger, 1998]

N̄ss =

p∑
i=1

Υi ; Υi := AT
isWiAis −NT

isN
−1
ii Nis

h̄s =

p∑
i=1

ψ
i

; ψ
i
:= AT

isWiyi
−NT

isN
−1
ii hii.

(3.25)

The variance-covariance matrix of the global parameters then reads

Qx̂s
= N̄−1

ss . (3.26)

The least-squares solution of the local parameters xi can be computed by using the
back-substitution step

Niix̂i = hii −Nisx̂s

= AT
iiWi(yi

− Aisx̂s)
(3.27)

with variance-covariance matrix

Qx̂i
= N−1

ii + N−1
ii NisN̄

−1
ss NsiN

−1
ii . (3.28)

Instead of solving a large system of normal equations with a n× n normal matrix, now
several smaller systems need to be solved with normal matrices of varying size. As
the computational cost increases dramatically with the dimension of the normal matrix
(e.g., Cholesky factorization: n3), the division of the vector of unknowns into global
and local parameters will reduce the computation time considerably.

3.2.2 Test of signi�cance for local parameters

Naturally, by adding an increasing number of local parameters, we can improve the �t of
the data to the model. However, one should �rst test any augmentation of the functional
model. Consider a functional model of type II, in which the local parameters of group
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k are split into two parts, i.e. xk,1 and xk,2:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
1

y
2
...

y
k
...
y

p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 · · · 0 0 · · · 0 A1s

0 A22 · · · 0 0 · · · 0 A2s
...

...
. . .

...
...

. . .
...

...
0 0 · · · Akk,1 Akk,2 · · · 0 Aks
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · App Aps

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xk,1

xk,2
...

xp

xs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2
...
ek
...
ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.29)
We will now test the signi�cance of xk,2. Two hypotheses are tested against each other:

H0 : xk,2 = 0 ; HA : xk,2 �= 0, (3.30)

When accepting the H0-hypothesis, the vector xk,2 is not signi�cant and should be re-
moved from the vector of unknowns. The system of normal equations then reads

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N11 · · · 0 0 0 · · · 0 N1s
...

. . .
...

...
...

. . .
...

...
0 · · · Nk−1,k−1 0 0 · · · 0 Nk−1,s

0 · · · 0 Nkk,11 0 · · · 0 Nks,1

0 · · · 0 0 Nk+1,k+1 · · · 0 Nk+1,s
...

. . .
...

...
...

. . .
...

...
0 · · · 0 0 0 · · · Npp Nps

Ns1 · · · Ns,k−1 Nsk,1 Ns,k+1 · · · Nsp Nss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂1
...

x̂k−1

x̂k,1

x̂k+1
...

x̂p

x̂s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11
...

hk−1k−1

hkk,1

hk+1k+1
...

hpp

hs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.31)
with

Nkk,11 = AT
kk,1WkAkk,1

Nks,1 = AT
kk,1WkAks

Nsk,1 = NT
ks,1

hkk,1 = AT
kk,1Wkyk

.

(3.32)

This can be re-written as

N0x̂0 = h0. (3.33)

Note that the removal of xk,2 from the vector of unknowns does not change Nss and hs.
Rejecting the H0-hypothesis implies accepting the signi�cance of the local parameters
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xk,2. The normal equations extend to⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nkk,22 0 · · · Nkk,21 · · · 0 Nks,2

0 N11 · · · 0 · · · 0 N1s
...

...
. . .

...
. . .

...
...

Nkk,12 0 · · · Nkk,11 · · · 0 Nks,1
...

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · Npp Nps

Nsk,2 Ns1 · · · Nsk,1 · · · Nsp Nss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂k,2

x̂1
...

x̂k,1
...

x̂p

x̂s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hkk,2

h11
...

hkk,1
...

hpp

hs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.34)

with
Nkk,ij = AT

kk,iWkAkk,j

Nks,2 = AT
kk,2WkAks

Nsk,2 = NT
ks,2

hkk,2 = AT
kk,2Wkyk

.

(3.35)

The system of normal equations can be re-written as[
Nkk,22 Nk2,0

N0,k2 N0

] [
x̂k,2

x̂A

]
=

[
hkk,2

h0

]
. (3.36)

The local parameters x̂k,2 can now be retrieved after reduction of the normal equations:[
Nkk,22 −Nk2,0N

−1
0 Nk2,0

]
x̂k,2 = hkk,2 −Nk2,0x̂0. (3.37)

Using the back-substitution step, we �nd

x̂0 − x̂A = N−1
0 N0,k2x̂k,2. (3.38)

The two hypotheses can be tested by analyzing the difference

δ̂Ω := Ω̂0 − Ω̂A (3.39)

which is distributed as

H0 : δ̂Ω ∼ χ2(nk,2) ; HA : δ̂Ω ∼ χ2(nk,2, λ), (3.40)

where λ is de�ned by Eq. (3.42). The test statistic δ̂Ω can be computed as

δ̂Ω = (x̂A − x̂0)
T h0 + x̂T

k,2hkk,2

= −x̂T
k,2Nk2,0N

−1
0 h0 + x̂T

k,2hkk,2

= x̂T
k,2

[
Nkk,22 −Nk2,0N

−1
0 Nk2,0

]
x̂k,2

= x̂T
k,2Q

−1
x̂k,2

x̂k,2

(3.41)

This is in agreement with Schaffrin and Iz [2001]. As E{x̂k,2} = xk,2 and D{x̂k,2} =

[Nkk,22 −Nk2,0N
−1
0 Nk2,0]

−1, the non-centrality parameter reads

λ = xT
k,2

[
Nkk,22 −Nk2,0N

−1
0 Nk2,0

]
xT

k,2. (3.42)

Rejecting H0 implies accepting HA, which justi�es the addition of the tested (local)
parameters xk,2 to the vector of unknowns.
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3.3 The addition of prior information

3.3.1 Augmentation of the functional model

The addition of prior information on any linear combination of the unknown parameters
leads to an augmentation of the functional model:[

y
y

P

]
=

[
A
H

]
x0 +

[
e
eP

]
, (3.43)

where y
P

is the vector of prior information on the vector of unknowns x̂, i.e., y
P

=
Hx̂P , where H is a q×n design matrix of the prior information, containing the q linear
combinations (assuming rank H=q). The corresponding stochastic model reads

E{
[

e
eP

]
} = 0 ; D{

[
e
eP

]
} =

[
Qy 0
0 HN−1

P HT

]
, (3.44)

with NP the inverse of the variance-covariance matrix of the prior information x̂P . Such
a linear combination Hx̂P could represent a variety of information, e.g., geoid informa-
tion in a certain area or information about certain spherical harmonic degrees. The
least-squares solution reads

x̂0 = (N + HT (HN−1
P HT )−1H)−1(AT Q−1

y y + HT (HN−1
P HT )−1y

P
)

= x̂A + (N + HT (HN−1
P HT )−1H)−1HT (HN−1

P HT )−1(y
P
−Hx̂A),

(3.45)

where x̂A is the least-squares estimate if only the satellite data is used, i.e.,

y = AxA + e, (3.46)

with E{e} = 0 and D{e} = Qy.

3.3.2 Test for consistency with prior information

The prior information y
P

should be tested for consistency with the satellite data y before
combining the two data sets in a common least-squares adjustment. Two hypotheses will
therefore be tested against each other:

H0 : E{y
P
} = E{Hx̂A} ; HA : E{y

P
} �= E{Hx̂A}. (3.47)

If the H0-hypothesis is valid, the two data sets y and y
P

are consistent with each other
and one should use the functional model of Eq. (3.43). If this hypothesis is not valid, one
should only use the ’old’ data set y, see Eq. (3.46) or augment the functional model. The
two hypotheses can be tested by evaluating the increase in the residual square sum when
assuming consistency between the two data sets. Therefore, the difference between Ω̂0

and Ω̂A needs to be computed, where

Ω̂0 = (y − Ax̂0)
T Q−1

y (y −Ax̂0) + (x̂P − x̂0)
T HT (HN−1

P HT )−1H(x̂P − x̂0), (3.48)
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and
Ω̂A = (y − Ax̂A)T Q−1

y (y − Ax̂A). (3.49)

The increase then reads (cf. [Schaffrin, 1987])

δ̂Ω := Ω̂0 − Ω̂A

= −(x̂0 − x̂A)T AT Q−1
y y + x̂T

P HT (HN−1
P HT )−1H(x̂P − x̂0)

= (x̂P − x̂A)T HT (HN−1HT + HN−1
P HT )−1H(x̂P − x̂A),

(3.50)

which is distributed as

H
′
0 : δ̂Ω ∼ χ2(q) ; H

′
A : δ̂Ω ∼ χ2(q, λ), (3.51)

with
λ = δT HT (HN−1HT + HN−1

P HT )−1Hδ. (3.52)

The vector δ is de�ned as the discrepancy between the expectation of x̂P and x̂A, i.e.

δ := E{x̂P} − E{x̂A}, (3.53)

which is assumed to be non-zero under HA. Finally, the test statistic for the addition of
prior information to the functional model reads:

T̂ :=
δ̂Ω

q
/

Ω̂A

m− n
(3.54)

which is distributed as

H
′′
0 : T̂ ∼ F (q,m− n, 0) ; H

′′
A : T̂ ∼ F (q,m− n, λ). (3.55)

The acceptatance of H0, H
′
0 or H

′′
0 implies consistency between the new data and the

prior information. When the hypothesis is rejected, there may exist an inconsistency
between both data sets, which can often be modelled by adding extra parameters to the
functional model.

3.4 Softly unbiased estimation

One of the disadvantages of the least-squares combination is that the solution x̂0 is sen-
sitive to errors in the prior information. Schaffrin [1985, 1986, 1987] tried to minimize
this sensitivity by introducing an alternative combination method, which he called ro-
bust collocation. In Middel and Schaffrin [1987] this method was applied to global
gravity �eld modelling. The robust collocation was �rst developed for the mixed linear
model. The equivalent estimator for the Gauss-Markov model is called the Best Lin-
ear Softly Unbiased Estimator (BLSUE) [Schaffrin, 1999]. The BLSUE is a mixture
between the Best Linear Unbiased Estimator (BLUE) and the Best Linear Estimator.
First, we will discuss the BLUE and the BLE and then derive the equations for the
BLSUE.

44



Best Linear Unbiased Estimator (BLUE)

We start with the Gauss-Markov model:

y = Ax + e ; E{e} = 0 ; D{e} = Qy. (3.56)

The Best Linear Unbiased Estimator (BLUE) minimizes the trace of the Mean Square
Error (MSE) matrix under the condition of unbiasedness. This matrix reads

MSE{x̂} = D{x̂}+ (E{x̂} − x)(E{x̂} − x)T (3.57)

and is equal to D{x̂} if we can assume unbiasedness, i.e., E{x̂} = x. Writing x̂ = Fy,
the BLUE can be achieved by minimizing the trace of D{x̂} = FQ−1

y F T under the
unbiasedness constraint FA = In. Note that E{x̂} = FE{y} = FAx = x → FA =
In. The BLUE can be found by minimizing the Lagrange function

ΨBLUE(F, Λ) = tr(FQyF
T ) + 2tr(Λ(FA− I)) (3.58)

The minimum is attained if

x̂BLUE = (AT Q−1
y A)−1AT Q−1

y y = N−1h, (3.59)

which is the well-known weighted least-squares equation.

Best Linear Estimator (BLE)

The Best Linear Estimator (BLE) minimizes tr(MSE{x̂}), but does not use the as-
sumption of unbiasedness. Therefore,

MSE{x̂} = D{x̂}+ (E{x̂} − x)(E{x̂} − x)T

= D{x̂}+ (FAx− x)(FAx− x)T .
(3.60)

The BLE objective function reads

ΨBLE(F ) = tr(FQyF
T ) + tr((FA− I)xxT (FA− I)T ). (3.61)

Minimizing this function leads to the equation of the BLE:

x̂BLE = (In + xxT N)−1xxT h, (3.62)

or, using Eq. (B.6),

x̂BLE = x · xT h

1 + xT Nx
; (3.63)

see also Schaffrin [2007]. As the vector x is not known, one could replace this vector
by the estimate xBLE and iterate till convergence. This estimate is called repro-BLE
[Schaffrin, 2007]. It was also suggested in the same paper to replace xxT by α−1 · S,
resulting in the equation for the so-called α-weighted S-homBLE:

x̂homBLE = (N + αS−1)−1h, (3.64)

which can be seen as a Tikhonov-Philips regularization.
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Best Linear Softly Unbiased Estimator (BLSUE)

The Best Linear Softly Unbiased Estimator (BLSUE) adds to the target function of BLE
the constraint of softly unbiasedness:

FA = In + ET
0 ; vec(E0) ∼ (0, In ⊗Q0) (3.65)

Hence, the uncertainty of the unbiasedness is expressed in the matrix Q0. The target
function of BLSUE then reads [Schaffrin, 1995]

ΨBLSUE(F, Λ) = tr(FQyF
T )+tr((FA−I)xxT (FA−I)T )+2tr(Λ(FA−I))−tr(ΛT Q0Λ)

(3.66)
For Q0 → 0 the BLSUE converges to the BLUE, for Q0 → ∞ it will be equal to the
BLE. Minimizing this target function yields [Schaffrin, 1999]

x̂BLSUE = (In + (xxT + Q−1
0 )N)−1(xxT + Q−1

0 )h (3.67)

Using Eq. (B.6) this can be re-written as

x̂BLSUE = [N + Q0 − (1 + xT Q0x)−1Q0xxT Q0]
−1h (3.68)

and further as (cf. Schaffrin [1999])

(N + Q0)x̂BLSUE = h + αQ0x, (3.69)

with

α =
xT Q0(N + Q0)

−1h

1 + xT Q0(N + Q0)−1Nx
. (3.70)

Equivalent to Schaffrin’s Robust Collocation theory, which uses the mixed-linear model
as a functional model ([Schaffrin, 1985, 1986, 1987], [Middel and Schaffrin, 1987]),
one can replace the vector x by the vector of prior information x̂P and Q0 by the normal
matrix NP . The estimator then reads

(N + NP )x̂RC = h + αNP x̂P (3.71)

with

α =
x̂T

P NP (N + NP )−1h

1 + x̂T
P NP (N + NP )−1Nx̂P

. (3.72)

Note that the parameter α is dependent on the values of the right-hand-side vectors
NP x̂P and h and therefore is not invariant to translations. As the BLSUE is biased and
not translation invariant, we suggest not to use the BLSUE in global gravity �eld mod-
elling. If the solution is highly sensitive to errors in the prior information, one should
either change the stochastic model of the prior information or augment the functional
model to account for inconsistencies between the prior information and the new data.
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3.5 Summary

The linear relation between the observations and the parameters (to be estimated) are
captured in the design matrix, as part of the functional model. Any systematic effects
in a data set should be accounted for in this functional model. If the functional model
is not properly de�ned, the estimated parameters will absorb these systematic effects.
Moreover, in a combination of different data sets, the unmodelled systematic effects will
cause inconsistencies between the data sets.

The functional model should be augmented by extra (local) parameters to account
for these systematic effects. The residual square sum will always decrease with the
addition of extra parameters. However, one should �rst test the signi�cance of the
parameters before implementing them. The addition of a data set requires that the data
set be consistent with the other data sets. Tests have been derived to test the data set for
unbiasedness, or test for consistencies between the data sets.

The chapter ends with a discussion of the Best Linear Softly Unbiased Estimator,
which weakens the constraint of unbiasedness in the combination of the data sets, and
robustify the addition of the extra data set.
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4
Stochastic model validation

In the previous chapter, we tried to eliminate any systematic errors from the vector of
residuals by augmentation of the functional model. The remaining vector of residu-
als between the observations and the estimated signal is assumed to be stochastic with
random noise. If this noise is normally distributed with zero mean, we can express its
stochastic properties by its dispersion, the variance-covariance (VC) matrix.

A proper choice of the VC-matrix is necessary for the estimation of the vector of
unknowns in a weighted least-square sense and the quality description of this estimation.
Moreover, we will show later that this matrix is crucial in the detection and treatment of
outliers.

To estimate the elements of the VC-matrix, we have to make use of the redundancy
in the observations. However, this redundancy is not suf�cient to estimate all elements
separately. The matrix is therefore written as a linear combination of different cofactor
matrices with its scaling factors (variance components) to be estimated.

Several approaches have been proposed in the past to estimate these variance com-
ponents. Many of these estimators converge, under normality, to the same estimate. The
estimators are unbiased, translation invariant, have minimum variance, maximum likeli-
hood and are optimal in a weighted least-squares sense. In the early seventies, C.R. Rao
[Rao, 1971a] published his paper on the MINQUE-theory, which leads to the estimator
with the above-mentioned properties (under normality). The estimator is equal to the
estimator of Helmert [1924] if and only if the observations are normally distributed and
the observation groups are uncorrelated with one variance component to be estimated
for each observation group.

Rao [1971b] showed that the MINQUE (under normality) is of minimum variance
and Sjöberg [1983] estimated the VC-matrix of the estimated variance components. In
Teunissen [1988] and recently in Amiri-Simkooei [2007], the equations were derived
following a weighted least-squares approach. Maximization of the likelihood, under
consideration of the degrees of freedom involved in the estimation of the vector of un-
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knowns, has been introduced by Harville [1977] and later modi�ed by Koch [1986,
1990].

A fast algorithm, which in general converge to the same estimate, was �rst developed
by Horn et al. [1975] under the assumption of uncorrelated observations. This Iterative
Restricted Maximum Likelihood Estimator was further generalized by Förstner [1979]
and Koch [1986].

Alternative methods, which converge to a different estimate, are the Bayesian esti-
mate ([Koch, 1990], [Ou, 1991, 1993]), Lerch’s subset solution method [Lerch, 1989,
1991] and the Iterative Maximum Likelihood Estimator (IMLE) [Yuan, 1991]. In Sjöberg
[1984] a non-negative alternative to MINQUE is suggested. However, negative variance
components indicate either a low redundancy, an improperly designed variance com-
ponent model or badly chosen a-priori variance components [Amiri-Simkooei, 2007].
Therefore, these estimators will not be addressed. In Schwintzer [1990], Koch and
Kusche [2002] and Xu et al. [2006], VCE is used to estimate the regularization param-
eter in an ill-posed problem.

We will start this chapter with the derivation of the properties of the MINQUE esti-
mator. We then re-write and simplify these equations under the consideration of uncor-
related observation groups. The derivation of the alternative algorithms is the subject of
section 4.6. Further time-reducing operations, using Monte Carlo simulations, will be
dealt with in chapter 5.

4.1 The stochastic model

The stochastic model represents the stochastic properties of the vector of residuals e
(assuming a Gauss-Markov functional model). This vector contains the mis�t between
the observation vector y and the model Ax. The vector of residuals is assumed to be
unbiased, i.e. E{e} = 0. Any systematic effect should be either removed from the
observations or added as nuisance parameters to the functional model. However, in
satellite gravity modelling, it is, in general, not possible to exclude all these errors from
the residual vector. Fixed effects, such as errors in the tidal or atmospheric models, as
well as truncation errors, remain in the vector of residuals e.

Along with these systematic effects, the vector e consists of stochastic errors, which
are caused by many sources. Summation of different elementary errors, each with an
arbitrary probability function, generally results in an error vector with a multivariate
normal distribution (according to the central limit theorem; see, e.g., Cramér [1946]).
Hence, the error vector can be written as a linear combination of q̄ elementary errors
(constituents):

e = U1ε1 + ... + Uq̄εq̄ =

q̄∑
k=1

Ukεk (4.1)

with
Uk = m× ak transformation matrix
εk = ak × 1 vector of stochastic errors of group k.
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These elementary errors are assumed to be unbiased, i.e.

E{εk} = 0 for all k = 1, ..., q̄
D{εk} = σ̄2

kQεk
for all k = 1, ..., q̄

C{εk, εl} = σ̄klQεkεl
for all k, l = 1, ..., q̄, k �= l

(4.2)

with
σ̄2

k = variance component
σ̄kl = covariance component.

Note that the dimension of the (co)variance components equals the square of the di-
mension of the observations and the Qεk

and Qεkεl
matrices are dimensionless. As the

covariance component σ̄kl equals the covariance component σ̄lk, the total number of
variance and covariance components is equal to q = q̄(q̄ + 1)/2. Hence, the variance-
covariance matrix can be split into q matrices:

Qy =

q∑
i=1

γiQi (4.3)

where

Qi = UkQεk
UT

k ; γi = σ̄2
k ; for all k = 1, ..., q̄;

Qi = UkQεkεl
UT

l + UlQεlεk
UT

k ; γi = σ̄kl ; for all k = 1, ..., q̄, l < k.
(4.4)

For simplicity, we shall call all γi elements variance components from now on, as in
practice the vast majority of the (co)variance components are in fact variance compo-
nents. The matrices Qεk

and Qεkεl
are, however, generally not known exactly. The

choice of the cofactor matrices Qi is based on prior assumptions and to a certain extent
arbitrary. Note that different linear combinations of the right-hand side of Eq. (4.3)
may result in the same matrix Qy. This means, the choice of a model for the variance-
covariance matrix Qy is non-unique. Several variance component estimators will now
be introduced.

4.2 Minimum Norm Quadratic Unbiased Estimator
(MINQUE)

One of the best known estimators for the variance components (in a linear stochastic
model) is the Minimum Norm Quadratic Unbiased Estimator (MINQUE), de�ned by
C.R. Rao in the early seventies, see, e.g., Rao [1971a, 1973] and Rao and Mitra [1971].
We will derive the equations for the MINQUE by looking at the different properties of
the estimator, which are unbiasedness, invariance and a minimum Euclidean norm.
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Quadratic Estimator

If a linear combination of variance components, i.e., lT γ, is estimated by a quadratic
form of the observations:

yT My,

where M is an arbitrary, symmetric m × m matrix, yT My is said to be a Quadratic
Estimator (QE) of lT γ. The expectation of the Quadratic Estimator reads, using the
Gauss-Markov model:

E{yT My} = E{(Ax + e)T M(Ax + e)}
= xT AT MAx + 2xT AT ME{e}+ E{eT Me}
= xT AT MAx + tr(MQy).

(4.5)

Invariance with respect to a datum shift

The estimator should be invariant for any shift in datum, such as xd := x − x0; e.g.,
the reduction of a reference gravity model from the measurements y and the vector of
unknowns x:

y
d

= Axd + e = y − Ax0. (4.6)

The estimated variance components should not depend on a particular choice of datum
or reference model. Hence, the estimator yT

d
MyT

d
must be equal to yT My for any datum

shift x0:
yT

d
My

d
= (y − Ax0)

T M(y − Ax0)

= yT My − 2xT
0 AT My + xT

0 AT MAx0.
(4.7)

This equals yT My if
MA = O. (4.8)

Note that MA is a m× n matrix, with m the number of observations and n the number
of unknown parameters. When these m · n equations hold, the estimator is invariant
with respect to the vector x. Equation (4.5) then reduces to:

E{yT My} = tr(MQy). (4.9)

The matrix M can be formally split into q m×m matrices for which Eq. (4.8) must be
valid, with q the number of variance components to be estimated:

M =

q∑
j=1

λjMj. (4.10)

Introducing the q × 1 vector u, with its j-th component

uj = yT Mjy (4.11)
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gives
E{uj} = E{yT Mjy} = tr(MjQy)

=

q∑
i=1

γitr(MjQi) =

q∑
i=1

γiSij.
(4.12)

For an Invariant Quadratic Estimator (IQE), which is split according to Eq. (4.10), the
following relation holds:

E{u} = Sγ (4.13)

with
Sij = tr(MjQi)
uj = yT Mjy.

The choice of the λj coef�cients and the Mj matrices is still arbitrary. The λ vector
will be de�ned when requiring unbiasedness. The Mj matrices will be de�ned when
optimizing the variance components estimation, e.g., maximum likelihood, minimum
variance, etc.

Unbiasedness of the estimator

The linear combination of the variance components, lT γ, is estimated unbiasedly by
yT My if and only if

E{yT My} = lT γ. (4.14)

This is true if [Rao, 1973]
tr(MQi) = li, (4.15)

as

E{yT My} = tr(MQy) =

q∑
i=1

γitr(MQi) =

q∑
i=1

γili. (4.16)

Equation (4.15) can be rewritten as

li = tr(MQi) =

p∑
j=1

λjtr(MjQi) =

q∑
j=1

λjSij. (4.17)

Hence, an Invariant Quadratic Unbiased Estimator (IQUE) is de�ned as an IQE with the
additional property that the λi de�ned in (4.10) ful�ll

Sλ = l. (4.18)

The de�nition of an IQUE does not include any assumption on the distribution of the
observations y apart from (3.1). The IQUE provides an unbiased, quadratic estimator
of a linear combination of the variance components and is invariant with respect to a
translation in the x-parameter space. The choice of the Mj-matrices is still arbitrary.
The determination of the ’best’ set of Mj matrices will now be addressed.
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Minimum Euclidean norm

The MINQUE is de�ned as the IQUE with minimum norm [Rao, 1973]. Although many
matrix norms exist, in MINQUE one considers the Euclidean norm, i.e., the sum of the
squares of all the elements of a matrix. This is equivalent to the minimization of [Rao,
1973]

tr(MQyMQy). (4.19)

Hence, one needs to minimize tr(MQyMQy) subject to the constraints (4.8) and (4.15).
This is equal to minimizing the Lagrange function Ψ(M) [Koch, 1999]:

Ψ(M) = tr(MQyMQy)− 2tr(MAΛT )− 2

q∑
j=1

λjtr(MQj − pj) (4.20)

where −2Λ denotes the m × n matrix of Lagrange multipliers for the constraints (4.8)
and −2λj the q Lagrange multipliers for the constraints (4.15). The Lagrange function
can be minimized by setting its derivative equal to zero. Using the properties (see Eq.
(B.1) and (B.2))

∂tr(AB)

∂A
= BT (4.21)

and
∂tr(ABAB)

∂A
= 2(BAB)T , (4.22)

this derivative becomes

∂Ψ

∂M
= 2QyMQy − 2ΛAT − 2

q∑
j=1

λjQj. (4.23)

Setting this equal to zero results in

QyM̂Qy = ΛAT +

q∑
j=1

λjQj. (4.24)

To get rid of the Qy-matrices on the left-hand-side, one has to multiply this equation
from the left and right by Q−1

y . The �rst term on the right-hand-side, ΛAT can be
eliminated by a post-multiplication with the projection matrix (P⊥A )T . The symmetric
matrix R, also known as the redundancy or Rao’s matrix does both:

R := Q−1
y P⊥A = (P⊥A )T Q−1

y = Q−1
y −Q−1

y A(AT Q−1
y A)−1AT Q−1

y . (4.25)

The minimum norm is attained if [Rao, 1973]

M̂ =

q∑
j=1

λjRQjR. (4.26)
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Hence,
M̂j = RQjR. (4.27)

When substituting Eq. (4.27) into Eq. (4.13), we �nd the system of conditions for a
MINQUE:

E{u} = Sγ (4.28)

with
Sij = tr(RQiRQj)
uj = yT RQjRy.

Solving this system for γ is an iterative procedure, as the computation of Rao’s matrix R
involves the unknown variance components. After de�ning γ̄i as an approximate value
for the variance component γi, an improved estimate γ̂i can be computed as

γ̂ = S−1(γ̄)u(γ̄). (4.29)

This estimate will then be used as the approximate value for the variance components
in the next iteration. The algorithm is repeated until convergence. As the unbiased esti-
mator of Eq. (4.28) requires the stochastic model to be known (and true), the iterations
of MINQUE, using an a-priori estimate of the stochastic model, will not be unbiased.
However, we will assume that this bias will be reduced within each iteration step and
can almost be neglected at convergence.

4.3 Properties of the MINQUE under normality

Several estimators have been proposed in the past to estimate the variance components.
However, some of these estimators produce the same equations as MINQUE and one
should look at them as proofs for certain properties of the MINQUE. Three estimators
will be dealt with, each of them assuming the data to be normally distributed. It has
already been shown in the previous section that in general a MINQUE

- is unbiased,

- is invariant to a datum translation, and

- has minimum norm.

Under normality, we will prove in this section that a MINQUE also

- has minimum variance (MIVQUE, BIQUE),

- can be derived in a least-squares sense (LSVCE), and

- converges to the (restricted) maximum likelihood (REML) estimator.

Moreover, a quality description of the estimated variance components in terms of a
variance-covariance matrix is available under normality.
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4.3.1 Best Invariant Quadratic Unbiased Estimator (BIQUE)

Rao [1971b] derived equations for the Minimum Variance Quadratic Unbiased Estima-
tor (MIVQUE) and found that this estimator equals the MINQUE if the observations are
normally distributed. This was also proved by Sjöberg [1983], who derived the equa-
tions for MINQUE under normality and assumed the general linear adjustment model
(condition adjustment with unknowns) as the functional model, of which the Gauss-
Markov functional model is a special case. This estimator is addressed as the Best
Invariant Quadratic Unbiased Estimator (BIQUE). The variance of the Quadratic Esti-
mator yT My, in which y is a vector of normally distributed data, reads [Rao and Mitra,
1971]

D{yT My} = 4xT AT MQyMAx + 2tr(MQyMQy). (4.30)

Under invariance (MA = 0) this reduces to

D{yT My} = 2tr(MQyMQy). (4.31)

Minimizing the variance thus is equivalent to minimizing the norm, as was done in the
derivation of the MINQUE, see Eq. (4.19). The BIQUE is, therefore, equal to the
MINQUE under the assumption of normally distributed observations. The covariance
between two linear combinations of estimated variance components can be derived as
follows:

C{pT γ̂, qT γ̂} = C{yT M̂y, yT N̂y} = 2tr(M̂QyN̂Qy)

= 2tr([
q∑

i=1

λiRQiR]Qy[

q∑
j=1

μjRQjR]Qy)

= 2tr(
q∑

i=1

λiRQi[

q∑
j=1

μjRQj])

= 2

q∑
i=1

q∑
j=1

λiμjtr(RQiRQj)

= 2λT Sμ = 2λT SS−1Sμ = 2pT S−1q.

(4.32)

Hence, the VC-matrix of the estimator γ̂ reads [Sjöberg, 1983]

Qγ̂ = 2S−1. (4.33)

4.3.2 Least-Squares Variance Component Estimation (LSVCE)

In Teunissen [1988], the variance components are written as a vector of unknowns in a
least-squares setting, see also Pukelsheim [1976]. New applications and a more elabo-
rate study on this subject can be found in Amiri-Simkooei [2007], Amiri-Simkooei et
al. [2007] and Teunissen and Amiri-Simkooei [2008].

Let B be a m × (m − n) basis matrix of the null space of AT , i.e., the columns of
B span the null space of AT , N (AT ) ,and AT B = On×(m−n) holds. The (m − n) × 1
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vector of misclosures v is de�ned as

v := BT y = BT e, (4.34)

with the stochastic model

E{v} = 0 ; D{v} = BT QyB = Qv. (4.35)

Basically, one makes use of the remaining redundancy r = m − n after estimating
the least-squares estimate x̂ to estimate the variance component vector γ. The v and x̂
vectors are therefore uncorrelated. As the misclosure vector has zero mean, it follows
that

E{vvT} = BT QyB =

p∑
i=1

BT QiBγi. (4.36)

The observation matrix vvT has r · (r + 1)/2 distinct elements. We will use the vh-
operator, which stacks the columns of the lower part of a symmetric matrix below each
other. One should not use the vec-operator, as this would result in a singular variance
matrix of the observation vector vec{vvT} [Teunissen and Amiri-Simkooei, 2008]. Ap-
plying the vh-operator on the observation equation results in a general linear Gauss-
Markov model:

y
vh

= Avhγ + evh (4.37)

with yvh the new r · (r + 1)/2× 1 observation vector, de�ned as

y
vh

:= vh{vvT}, (4.38)

and the new r · (r + 1)/2× q design matrix Avh, de�ned as

Avh := [vh{BT Q1B}, . . . , vh{BT QqB}], (4.39)

and the stochastic model

E{evh} = 0 ; D{evh} = Qvh. (4.40)

Hence, one could only solve for a variance component model with a maximum of r ·
(r + 1)/2 variance components. The BLUE of γ, which is a Best Quadratic Unbiased
Estimator with respect to the observation vector y, therefore reads

Nγ̂ = h, (4.41)

with
N = AT

vhQ
−1
vh Avh

h = AT
vhQ

−1
vh y

vh
.

If we make use of the duplication matrix D with the property D · vh{M} = vec{M},
we can state that [Amiri-Simkooei, 2007]

Q−1
vh =

1

2
DT (Q−1

v ⊗Q−1
v )D. (4.42)
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The elements of the matrix N can now be written as

Nij =
1

2
(vec{BT QiB})T (Q−1

v ⊗Q−1
v )vec{BT QjB}

=
1

2
tr(Q−1

v BT QjBQ−1
v BT QiB)

=
1

2
tr(RQiRQj)

=
1

2
Sij,

(4.43)

where use is made of [Teunissen et al., 2005]

A(AT Q−1
y A)−1AT Q−1

y + QyB(BT QyB)−1BT = Im. (4.44)

and of the identity of Eq. (B.11). In a similar way, we can compute the elements of h:

hi =
1

2
(vec{BT QiB})T (Q−1

v ⊗Q−1
v )vec{vvT}

=
1

2
vT Q−1

v BT QiBQvv

=
1

2
yT RQiRy

=
1

2
ui.

(4.45)

Note that
γ̂ = N−1h = S−1u ; Qγ̂ = N−1 = 2S−1. (4.46)

Hence, the LSVCE is, under normality, identical to the BIQUE and the MINQUE.

4.3.3 Restricted Maximum Likelihood Estimation (REML)

We will now show that the equations to compute the MINQUE also lead to maximum
likelihood (at convergence) if we can assume normally distributed observations. The
method has been proposed by Patterson and Thompson [1971] and Harville [1977] and
was later modi�ed by Koch [1986,1990]. The probability density function for a multi-
variate normal distribution reads

p(y|x, γ) =
1

(2π)m/2(detQy)1/2
exp[−1

2
(y − Ax)T Q−1

y (y − Ax)]. (4.47)

The probability density function is dependent on the variance-covariance matrix Qy

(and consequently on the variance components vector γ) and is dependent on the vector
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of unknowns x. If we try to �nd the maximum of this function by varying one of the
two vectors (γ or x) and �xing the other vector, we will get a Maximum Likelihood
Estimator (MLE). This estimator is however biased and has no minimum variance. The
MLE will be discussed in section 4.6.5.

In this section we will consider the Restricted Maximum Likelihood Estimator, in
which the vector of unknown parameters x will be seen as a vector of free parameters
and integrated out of the likelihood function. So it maximizes that part of the likelihood
function, which is invariant to the vector of unknown parameters x. A non-informative
prior for this vector is introduced, which results in a constant value for the conditional
density function p(x|y). The conditional density function p(y|γ) can be computed by

p(y|γ) =

∞∫
−∞

. . .

∞∫
−∞

p(y|x, γ)p(x|y)dx. (4.48)

In Koch [1990] it was found that this equation (under the assumption of normally dis-
tributed data) can be simpli�ed to

p(y|γ) ∝ 1

(detQydet(AT Q−1
y A))1/2

exp(−1

2
yT Ry), (4.49)

where∝ denotes proportionality and R is Rao’s matrix (Eq. 4.25). We make use of pro-
portionality relations whenever possible because this allows us to disregard unnecessary
constants. The REML can now be found by maximizing this probability density func-
tion by varying the variance components. This maximization can be simpli�ed when
using the natural logarithm of the likelihood function:

ln p(y|γ) ∝ C − ln detQy − ln det(AT Q−1
y A)− yT Ry, (4.50)

where C is some constant. This equation is differentiated with respect to γi. Using the
properties (Eq. B.4 and Eq. B.5) of a symmetric matrix, the derivative becomes

∂ ln p(y|γ)

∂γi

∝ −∂ ln detQy

∂γi

− ∂ ln det(AT Q−1
y A)

∂γi

− ∂yT Ry

∂γi

= −tr(Q−1
y Qi) + tr[(AT Q−1

y A)−1AT Q−1
y QiQ

−1
y A]− yT ∂R

∂γi

y

= −tr(RQi) + yT RQiRy;

(4.51)

see also Koch [1986,1990]. Setting this equation equal to zero results in a set of condi-
tions, which determine the REML of the variance components [Koch, 1986]. Condition
for the Restricted Maximum Likelihood Estimator:

t− u = 0 (4.52)

where
ti = tr(RQi)
ui = yT RQiRy.
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Newton-Raphson iteration

The q conditions of the REML of the variance components, as are stated in Eq. (4.52),
can be solved with a Newton-Raphson (NR) iteration. First, we introduce the residual
vector d(γ):

d(γ) = t(γ)− u(γ). (4.53)

Using the vector γ̄ as an approximation of the solution of Eq. (4.52), NR iteration can
be used to predict a better estimate γ̂ of the variance components:

d(γ) = d(γ̄) +
∂d(γ)

∂γ

∣∣∣∣
γ=γ̄

(γ̂ − γ̄) = 0. (4.54)

Rewriting Eq. (4.54) gives the equation to compute γ̂:

γ̂ = γ̄ −H−1(γ̄)d(γ̄), (4.55)

where H is the Hessian matrix [Koch, 1986]:

Hij =
∂di(γ)

∂γj

∣∣∣∣
γ=γ̄

= 2yT RQjRQiRy − tr(RQjRQi) = Kij − Sij. (4.56)

Rewriting Eq. (4.55) results in an expression to compute the REML using NR iteration:

Hγ̂ = u(γ̄) + Hγ̄ − t(γ̄)
= u(γ̄) + Kγ̄ − Sγ̄ − t(γ̄)

(4.57)

This system of equations can be simpli�ed using

(Sγ̄)i =

q∑
j=1

Sij γ̄j =

q∑
j=1

tr(RQjRQi)γ̄j = tr(RQyRQi) = tr(RQi) = ti. (4.58)

and

(Kγ̄)i =

q∑
j=1

Kij γ̄j =

q∑
j=1

2yT RQjRQiRyγ̄j = 2yT RQiRy = 2ui. (4.59)

Hence, the system of equations to compute an improved estimate of the REML using
NR iteration reads

Hγ̂ = 3u− 2t (4.60)

with
Hij = 2yT RQjRQiRy − tr(RQiRQj)
uj = yT RQjRy
tj = tr(RQj).

We will abbreviate the REML using Newton-Raphson iterations as REML-nr.
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Fisher scoring

The Hessian matrix depends on the observations y. The computational effort to compute
the REML can be reduced by replacing the Hessian matrix by its expectation E{H}
(see, e.g., Koch [1986] and Searle et al. [1992]):

E{Hij} = E{2yT RQjRQiRy} − tr(RQjRQi)
= 2tr(RQjRQiRE{yyT})− tr(RQjRQi)
= 2tr(RQjRQiRQy)− tr(RQjRQi)
= 2tr(RQyRQjRQi)− tr(RQjRQi)
= 2tr(RQjRQi)− tr(RQjRQi)
= tr(RQjRQi)
= Sij.

(4.61)

This is called Fisher scoring. The iteration formula for the Fisher scoring thus reads:

γ̂ = γ̄ − S−1(γ̄)d(γ̄) (4.62)

or

S(γ̂ − γ̄) = u(γ̄)− t(γ̄) (4.63)

with u and t according to Eq. (4.52). This system of equations can be simpli�ed using
Eq. (4.58). Hence, the system of equations to compute an improved estimate of the
REML using Fisher scoring (REML-fs) reads

Sγ̂ = u (4.64)

with
Sij = tr(RQiRQj)
uj = yT RQjRy,

which proves that MINQUE, under normality, converges to the Restricted Maximum
Likelihood (REML). However, the iterations of MINQUE will in general not have max-
imum likelihood.

4.3.4 Other properties

As we can write the vector of variance components as a vector of unknowns in the
Gauss-Markov model and estimate them in a least-squares sense, we can test the es-
timation of the variance components for signi�cance and derive the equations for lin-
earization and non-negative estimation [Amiri-Simkooei, 2007]. In this section, we will
shortly address these topics.
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Estimability

Note that a linear independence of the cofactor matrices is a necessary but not a suf-
�cient condition for the estimability of the variance components. The columns of
Avh := [vh{BT Q1B}, . . . , vh{BT QqB}] should be independent of each other, i.e. the
matrix Avh should have full rank. One of the conditions for this is that the number of
variance components to be estimated is not larger than r · (r + 1)/2, with r = m− n.

Test for signi�cance

If a variance component can be estimated, we should test if this variance component is
signi�cant. Therefore, we need to test

H0 : γi = 0 ; HA : γi �= 0. (4.65)

In Amiri-Simkooei [2007], it was found that this can be tested by the v-test statistic:

vi =

êT Q−1
y

q∑
j=1

[Qγ̂ ]ijQjQ
−1
y ê

2
√

[Qγ̂ ]ii
, (4.66)

which has a non-trivial distribution, i.e., a sum of chi-squared distributions; see Amiri-
Simkooei [2007].

Prior information

If we have reliable, independent information on the vector of variance components,
i.e., y

P
= Hγ

P
, with a reliable estimate of its stochastic properties, i.e., D{y

P
} =

HQγP
HT , then the combined normal equations will read

[
1

2
S + HT

(
HQγP

HT
)−1

H

]
γ̂ =

1

2
u + HT

(
HQγP

HT
)−1

y
P
. (4.67)

Linearization

Up till now we have assumed the stochastic model to be a linear function of several
cofactor matrices, with the variance components γ the linear coef�cients. Now, we will
assume the non-linear case:

Qy = Q(γ). (4.68)

Using the equations for the derivation of the LSVCE, the linearized functional model
reads

Δy
vh

= AvhΔγ + evh, (4.69)
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where
Δy

vh
= vh{vvT} − vh{BT Q(γ̄)B},

Avh =

[
vh{BT

∂Q(γ)

∂γ1

∣∣∣∣
γ=γ̄

B}, . . . , vh{BT
∂Q(γ)

∂γq

∣∣∣∣
γ=γ̄

B}
]

,

Δγ = γ − γ̄,

(4.70)

with γ̄ as the prior estimate of the vector of variance components. The least-squares
estimate of the variance components then reads

γ̂ = γ̄ + S−1(u− 2AT
vhQ

−1
vh vh{BT Q(γ̄)B}),

= γ̄ + S−1(u− t),
(4.71)

with

Sij = tr

(
R

∂Q(γ)

∂γi

∣∣∣∣
γ=γ̄

R
∂Q(γ)

∂γj

∣∣∣∣
γ=γ̄

)

ui = yT R
∂Q(γ)

∂γi

∣∣∣∣
γ=γ̄

Ry

ti = tr

(
R

∂Q(γ)

∂γi

∣∣∣∣
γ=γ̄

)
,

(4.72)

where use is made of Eqs. (4.44) and (B.11). Note that the redundancy matrix R is also
dependent on the prior estimate γ̄. Although Eq. (4.71) equals Eq. (4.62), we cannot
simplify Eq. (4.71) to Eq. (4.64), as Sγ̄ = t only holds in the linear case.

Outlier detection and robust estimation

The subject of the combination of an outlier detection on y and the estimation of the
variance components will be the subject of chapter 6. It will not be useful to test for
outliers in the vector y

vh
= vh{ttT} as outliers in the vector y will contaminate multiple

elements of this vector.

4.4 Iterative Restricted Maximum Likelihood Estima-
tor (IREML)

A drawback of the MINQUE is the computational cost of computing the elements of
the S-matrix. To overcome this problem, we make use of Eqs. (4.58) and (4.64):

Sγ̄ = t
Sγ̂ = u.
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The matrix S is replaced by the diagonal matrix D in such a way that

Dγ̄ = t (4.73)

still holds [Koch, 1986]. Hence, the diagonal elements of this matrix read

di =
ti
γ̄i

. (4.74)

This diagonal matrix is then used to replace the matrix S in the computations of the
BIQUE. The Iterative Restricted Maximum Likelihood Estimator (IREML) then reads

γ̂i =
ui

ti
γ̄i =

yT RQiRy

tr(RQi)
γ̄i. (4.75)

This new estimator converges to the REML, as do the REML-fs equations. The estima-
tor was introduced in Horn et al. [1975], although under the assumption of uncorrelated
observations. The general case, in which several variance components can be estimated
within one observation group, was derived by Förstner [1979]. The IREML is, there-
fore, also known as Förstner’s estimator. As the iterations are somewhat biased, contrary
to the unbiased REML-fs iterations, and they converge to unbiasedness in the limit, the
estimator is often referred to as the Almost Unbiased Estimator. In Egeltoft [1992],
an approximation of the variance of IREML is given, in which again the S-matrix is
replaced by the diagonal matrix D, cf. Eq. (4.33):

σ2
γ̂i

=
2

di

=
2γ̂i

tr(RQi)
. (4.76)

As the elements of the S matrix does not have to be computed, the IREML is much
easier to compute than the REML-fs. Another advantage of the IREML is the non-
negativeness of the estimated variance components if the cofactor matrices Qi are posi-
tive semi-de�nite [Rao and Kleffe, 1988].

One of the disadvantages is that the IREML, if not iterated, is generally not unbi-
ased. Lucas [1985] found that large variance components are typically underestimated
and small variance components are overestimated in the �rst iterations. Due to this
biasedness, more iterations are needed compared to the REML-fs. Nevertheless, the
computation of the IREML is still more ef�cient [Lucas, 1985].

In Crocetto et al. [2000] a different approach is introduced to derive the IREML.
They introduce variance factors or calibration factors vi, which ’update’ the variance
components:

γ̂i = v̂i · γ̄i. (4.77)

A variance factor can be estimated by solving the system of equations:

Lv̂ = g (4.78)
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with
Lij = γ̄iγ̄jSij

gj = γ̄juj.

The iteration process stops when v converges to the vector [1, ..., 1]T . The IREML is
computed by replacing the matrix L by a diagonal matrix D, in which the diagonal
element di is the sum of the elements of the ith row of L:

di =

q∑
j=1

Lij =

q∑
j=1

γ̄iγ̄jSij =

q∑
j=1

γ̄iγ̄jtr(RQiRQj) = γ̄itr(RQi). (4.79)

Using Eq. (4.78), we obtain

v̂i =
γ̄iui

γ̄itr(RQi)
=

yT RQiRy

tr(RQi)
. (4.80)

This approach will be used in section 4.5 for the derivation of the IREML from the
MINQUE in case of uncorrelated observations.

4.5 Uncorrelated observation groups

The computation of a global gravity model often relies on several sources of data, such
as satellite tracking data, airborne gravity data and terrestrial data. One can assume
that the noise of these data sets are uncorrelated to each other. Moreover, it is often
legitimate to split the data of a certain type into several uncorrelated data sets. The two
types of functional models, when considering uncorrelated observation groups, have
already been discussed in section 3.2. In this section, we will �rst consider the general
stochastic model for uncorrelated observations, in which the variance-covariance matrix
of a certain observation group can be written as a linear combination of several cofactor
matrices. Secondly, we will look at the commonly used stochastic model, in which we
need to estimate a single variance component for each observation group. The equations
for the MINQUE and the IREML will be derived for these different functional and
stochastic models.

4.5.1 Groups with multiple variance components

When several variance components have to be estimated within the stochastic model
of one observation group, the variance-covariance matrix of this group, W−1

i should be
written as a linear combination of the variance components and the cofactor matrices:

W−1
i =

qi∑
k=1

σ2
i,kCik. (4.81)
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Hence,

Qy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1∑
k=1

σ2
1,kC1k · · · 0 · · · 0

...
. . .

...
. . .

...

0 · · ·
qu∑

k=1

σ2
u,kCuk · · · 0

...
. . .

...
. . .

...

0 · · · 0 · · ·
qp∑

k=1

σ2
p,kCpk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.82)

where

qu = Number of variance components in observation group u
p = Number of observation groups
σ2

u,k = kth variance component in observation group u
Cuk = mu ×mu matrix.

MINQUE

We will now derive the equations for the MINQUE for type I and II functional models,
assuming the stochastic model of Eq. (4.82) is valid. The VC-matrix Qy can be re-
written as

Qy =

p∑
u=1

qu∑
k=1

σ2
u,kQuk, (4.83)

where
Quk = JuCukJ

T
u . (4.84)

The m×mu matrix Ju is de�ned as

Ju :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Om1

...
Omu−1

Imu

Omu+1

...
Omp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.85)

where Imu is a mu ×mu identity matrix and Omi
is a mi ×mi zero matrix. The inverse

of the variance-covariance matrix can now be written as:

Q−1
y =

p∑
r=1

JrWrJ
T
r . (4.86)
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The system of equations to compute the MINQUE is, see Eq. (4.28):

Sγ̂ = u, (4.87)

with
γ = (σ2

1,1...σ
2
1,q1

σ2
2,1...σ

2
2,q2

...σ2
p,1...σ

2
p,qp

)T

Sij = tr((P⊥A )T Q−1
y Quk(P

⊥
A )T Q−1

y Qvl)
uj = yT (P⊥A )T Q−1

y QvlQ
−1
y P⊥A y.

Note that σ2
u,k is the ith element of γ and σ2

v,l the jth element. Using Eq. (4.84) yields

Sij = tr((P⊥A )T Q−1
y JuCukJ

T
u (P⊥A )T Q−1

y JvCvlJ
T
v )

uj = yT (P⊥A )T Q−1
y JvCvlJ

T
v Q−1

y P⊥A y.
(4.88)

Inserting Eq. (4.86) gives:

Sij = tr((P⊥A )T [

p∑
r=1

JrWrJ
T
r ]JuCukJ

T
u (P⊥A )T [

p∑
s=1

JsWsJ
T
s ]JvCvlJ

T
v )

uj = yT (P⊥A )T [

p∑
r=1

JrWrJ
T
r ]JvCvlJ

T
v [

p∑
s=1

JsWsJ
T
s ]P⊥A y.

(4.89)

Using the properties of the Ji matrix,

JT
i Jj = O for all i �= j

JT
i Ji = Imi

(4.90)

we can reduce Eq. (4.89) to:

Sij = tr((P⊥A )T JuWuCukJ
T
u (P⊥A )T JvWvCvlJ

T
v )

uj = yT (P⊥A )T JvWvCvlWvJ
T
v P⊥A y.

(4.91)

When using the properties

JT
u (P⊥A )T Jv = JT

u Jv −WuAuN
−1AT

v

JT
v P⊥A y = êv

(4.92)

Eq. (4.91 can be re-written as

Sij = tr([JT
v Ju −WvAvN

−1AT
u ]WuCuk[J

T
u Jv −WuAuN

−1AT
v ]WvCvl)

uj = êT
v WvCvlWvêv.

(4.93)

Hence, the equations for MINQUE when we assume a stochastic model with uncor-
related observation groups and multiple variance components to be estimated for each
observation group (see Eq. (4.82)) and a type I functional model, read

E{u} = Sγ (4.94)
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with

Sij |u=v = tr(WvCvkWvCvl)− 2tr(N−1AT
v WvCvkWvCvlWvAv) +

+ tr(N−1AT
v WvCvkWvAvN

−1AT
v WvCvlWvAv)

Sij |u �=v = tr(N−1AT
u WuCukWuAuN

−1AT
v WvCvlWvAv)

uj = êT
v WvCvlWvêv.

These equations were �rst published in Van Loon and Kusche [2007]. We will now
continue from Eq. (4.94) to derive the equations for MINQUE assuming the same sto-
chastic model, but now with the functional model of type II. Reduction of the normal
matrix N to N̄ss results in the following equations to compute S and u:

Sij |u=v = tr(WvCvkWvP
⊥
Avv

Cvl)− 2tr(N̄−1
ss AT

vsWvCvkWvP
⊥
Avv

CvlWvAvs) +

+ tr(N̄−1
ss AT

vsWvCvkWvP
⊥
Avv

AvsN̄
−1
ss AT

vsWvCvlWvP
⊥
Avv

Avs)

Sij |u �=v = tr(N̄−1
ss AT

usWuCukWuP
⊥
Auu

AusN̄
−1
ss AT

vsWvCvlWvP
⊥
Avv

Avs)

uj = êT
v WvCvlWvêv, (4.95)

with the projection matrices PAii
and P⊥Aii

de�ned as

PAii
:= Aii(A

T
iiWiAii)

−1AT
iiWi

P⊥Aii
:= I − PAii

,
(4.96)

cf. Eq. (3.8).

IREML

We will now derive the equations of the IREML using the technique suggested in section
4.4 and in Crocetto et al. [2000]. First, we will consider the functional model of type I.
The variance factors vi can easily be derived using Eq. (4.78):

Lv̂ = g, (4.97)

with

Lij |u=v = tr(Wvσ̄
2
v,kCvkWvσ̄

2
v,lCvl)− 2tr(N−1AT

v Wvσ̄
2
v,kCvkWvσ̄

2
v,lCvlWvAv) +

+ tr(N−1AT
v Wvσ̄

2
v,kCvkWvAvN

−1AT
v Wvσ̄

2
v,lCvlWvAv)

Lij |u �=v = tr(N−1AT
u Wuσ̄

2
u,kCukWuAuN

−1AT
v Wvσ̄

2
v,lCvlWvAv)

gj = êT
v Wvσ̄

2
v,lCvlWvêv. (4.98)
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The diagonal elements dj of the matrix D then read:

dj = tr(Wv[

qv∑
k=1

σ̄2
v,kCvk]Wvσ̄

2
v,lCvl)−

− 2tr(N−1AT
v Wv[

qv∑
k=1

σ̄2
v,kCvk]Wvσ̄

2
v,lCvlWvAv) +

+ tr(N−1[

p∑
u=1

AT
u Wu[

qu∑
k=1

σ̄2
u,kCuk]WuAu]N

−1AT
v Wvσ̄

2
v,lCvlWvAv).

(4.99)

Noting that
qu∑

k=1

σ̄2
u,kCuk = W−1

u , (4.100)

the equation reduces to

dj = tr(Wvσ̄
2
v,lCvl)−

− 2tr(N−1AT
v Wvσ̄

2
v,lCvlWvAv) +

+ tr(N−1[

p∑
u=1

AT
u WuAu]N

−1AT
v Wvσ̄

2
v,lCvlWvAv)

= tr(Wvσ̄
2
v,lCvl)− tr(N−1AT

v Wvσ̄
2
v,lCvlWvAv). (4.101)

The IREML, therefore, reads:

σ̂2
v,l =

êT
v Wvσ̄

2
v,lCvlWvêv

tr(WvCvl)− tr(N−1AT
v WvCvlWvAv)

, (4.102)

cf. [Crocetto et al., 2000]. This is the IREML when we assume a functional model of
type I, i.e., without considering any local parameters. The IREML under the assumption
of a type II functional model can be derived in the same way. The diagonal elements dj

can be computed by

dj = tr(P⊥Avv
σ̄2

v,lCvlWv)−
− 2tr(N̄−1

ss AT
vsWvP

⊥
Avv

σ̄2
v,lCvlWvAvs) +

+ tr(N̄−1
ss [

p∑
u=1

AT
usWuP

⊥
Auu

Aus]N̄
−1
ss AT

vsWvσ̄
2
v,lCvlWvP

⊥
Avv

Avs).

(4.103)

As

N̄ss =

p∑
u=1

AT
usWuP

⊥
Auu

Aus, (4.104)
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the IREML reads

σ̂2
v,l =

êT
v Wvσ̄

2
v,lCvlWvêv

tr(WvP⊥Avv
Cvl)− tr(N̄−1

ss AT
vsWvP⊥Avv

CvlWvAvs)
. (4.105)

4.5.2 Groups with only one variance component

For most applications in global gravity �eld modelling, one only re-weights the normal
matrices of each observation group due to a lack of knowledge of the error sources. The
structure of the variance-covariance matrix of the observation group stays intact and a
re-scaling is performed using a weighting algorithm. The variance-covariance matrix of
the residuals can then be written as

Qy =

⎡
⎢⎢⎢⎢⎢⎣

γ1C1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · γjCj · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · γpCp

⎤
⎥⎥⎥⎥⎥⎦ (4.106)

We will now re-write the VC-estimators under this assumption.

MINQUE

The equations for the MINQUE in case of a type I functional model and a stochastic
model with the form of Eq. (4.106) can easily be derived using Eq. (4.94) and read

E{u} = Sγ (4.107)

with

Sjj =
1

γ̄2
j

[mj − 2tr(N−1Nj) + tr(N−1NjN
−1Nj)]

Sij =
1

γ̄iγ̄j

tr(N−1NiN
−1Nj) if i �= j

uj =
1

γ̄2
j

êT
j C−1

j êj.

The elements of S and u under the assumption of a type II functional model read

Sjj =
1

γ̄2
j

[tr(P⊥Ajj
)− 2tr(N̄−1

ss AT
jsWjP

⊥
Ajj

Ajs) +

+ tr(N̄−1
ss AT

jsWjP
⊥
Ajj

AjsN̄
−1
ss AT

jsWjP
⊥
Ajj

Ajs)]

Sij =
1

γ̄iγ̄j

tr(N̄−1
ss AT

isWiP
⊥
Aii

AisN̄
−1
ss AT

jsWjP
⊥
Ajj

Ajs) if i �= j

uj =
1

γ̄2
j

êT
j C−1

j êj. (4.108)
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When we use the matrix Υi, see Eq. (3.25), introduced by Lucas and Dillinger [1998],
we can further simplify this to

Sjj =
1

γ̄2
j

[mj − nj − 2tr(N̄−1
ss Υj) + tr(N̄−1

ss ΥjN̄
−1
ss Υj)]

Sij =
1

γ̄iγ̄j

tr(N̄−1
ss ΥiN̄

−1
ss Υj) if i �= j

uj =
1

γ̄2
j

êT
j C−1

j êj. (4.109)

IREML

Under the assumption of a type I functional model and a stochastic model of the form
of Eq. (4.106), the IREML reads

γ̂j =
êT

j C−1
j êj

mj − tr(N−1Nj)
. (4.110)

The matrix N−1Nj is called the observation group in�uence matrix. The trace of this
matrix is a measure of the in�uence of the measurements on the least-squares solution.
When this trace equals the number of unknowns, the least-squares solution of the vector
of unknowns only depends on this observation group. If this trace equals zero, the
observation group does not contribute to the least-squares solution and could, therefore,
be removed from the observation equations without changing the solution. This form
of the IREML estimator has been used frequently, including [Kusche, 2003], [Xu et al.,
2006], [Van Loon, 2007], and [Mayer-Gürr et al., 2007].

The IREML of γ in case of a type II functional model can be written as

γ̂j =
êT

j C−1
j êj

mi − ni − tr(N̄−1
ss AT

jsWjP⊥Ajj
Ajs)

=
êT

j C−1
j êj

mi − ni − tr(N̄−1
ss Υj)

(4.111)

The denominator of Eqs. (4.110) and (4.111) is called the group redundancy number
rj . Summation of all group redundancy number equals the total redundancy m− n. An
alternative expression for the group redundancy number is

rj = tr(
∂êj

∂y
j

) =

mj∑
i=1

∂êji

∂yji

=

mj∑
i=1

rji, (4.112)

with rji the observation redundancy number. This number is a measure of the in�uence
of a change in the observation to the corresponding residual. If the number is close to
zero, any change in the observation will have a large effect on the solution vector, and
consequently a small effect on the residual. If the observations within one observation
group will have redundancy numbers close to one, the group redundancy number will
be close to the number of observations. The group in�uence matrix is then close to zero
and the observation group will have a small effect on the least-squares estimate.
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4.6 Alternative weighting algorithms

We will now deal with some well-known weighting algorithms, which will not iterate
to the same values as REML-fs or IREML, but have been used in global gravity �eld
modelling. A robusti�ed VCE will be treated in chapter 6.

4.6.1 Helmert’s Variance Component Estimation

F.R. Helmert has introduced a Variance Component Estimator [Helmert, 1924], which
assumes the stochastic model to be de�ned as

Qy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ2
1C11 σ12C12 · · · σ1kC1k · · · σ1pC1p

σ12C
T
12 σ2

2C22 · · · σ2kC2k · · · σ2pC2p
...

...
. . .

...
. . .

...
σ1kC

T
1k σ2kC

T
2k · · · σ2

kCkk · · · σkpCkp
...

...
. . .

...
. . .

...
σ1pC

T
1p σ2pC

T
2p · · · σkpC

T
kp · · · σ2

pCpp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.113)

The (co)variance components σ2
1, σ12, . . . σ

2
p are collected in the p(p + 1)/2 × 1 vector

γ. If we set γi = σkl, the variance-covariance matrix can again be written as

Qy =

q∑
i=1

γiQi, (4.114)

with q = p(p + 1)/2 and

Qi :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · 0 · · · Ckl · · · 0
...

...
. . .

...
...

0 · · · CT
kl · · · 0 · · · 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.115)

The inverse of the Qy-matrix is divided into sub-matrices Gkl, de�ned as

Q−1
y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G11 G12 · · · G1k · · · G1p

GT
12 G22 · · · G2k · · · G2p
...

...
. . .

...
. . .

...
GT

1k GT
2k · · · Gkk · · · Gkp

...
...

. . .
...

. . .
...

GT
1p GT

2p · · · GT
kp · · · Gpp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.116)
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The Q−1
y matrix can now be written as

Q−1
y =

q∑
i=1

Fi (4.117)

with

Fi :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · 0 · · · Gkl · · · 0
...

...
. . .

...
...

0 · · · GT
kl · · · 0 · · · 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.118)

The matrices Fi can be written as

Fi = T T
k Q−1

y Tl + (1− δkl)T
T
l Q−1

y Tk. (4.119)

with

Tk :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · Ik · · · 0 · · · 0
...

...
. . .

...
...

0 · · · 0 · · · 0 · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.120)

and δkl the Kronecker symbol. The Helmert estimator of γ reads [Grafarend et al., 1980]

Hγ̂ = q, (4.121)

with
Hij = tr((P⊥A )T FiP

⊥
A Qj)

qj = yT (P⊥A )T FjP
⊥
A y.

Inserting Eq. (4.119) gives

Hij = tr((P⊥A )T [TkQ
−1
y Tl + (1− δkl)TlQ

−1
y Tk]P

⊥
A Qj) (4.122)

qj = yT (P⊥A )T [TrQ
−1
y Ts + (1− δrs)TsQ

−1
y Tr]P

⊥
A y.

with γj = σrs. If and only if the observation groups are uncorrelated with each other
(see Eq. (4.106)) these elements can be written as

Hij = tr((P⊥A )T Q−1
y QiQ

−1
y P⊥A Qj) = Sij (4.123)

qj = yT (P⊥A )T Q−1
y QjQ

−1
y P⊥A y = uj,
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which is identical to the elements of MINQUE. Hence, in the case of uncorrelated ob-
servation groups, the Helmert VCE is MINQUE; see also Kelm [1978] and Grafarend et
al. [1980]. The general case of Helmert’s VCE, in which also covariances between ob-
servation groups are taken into account, is, however, not a MINQUE [Grafarend et al.,
1980]. Many groups refer to Helmert VCE if they use MINQUE, assuming uncorrelated
observation groups; see, e.g., Kizilsu and Sahin [2000].

4.6.2 The Bayesian estimate and the MAP estimate

Up till now we used a traditional approach to estimate the variance components, in
which we looked at the conditional density function p(y|γ). This function describes the
probability of the observation vector y under the assumption of the vector of variance
components γ. In Bayesian theory one makes different assumptions as one looks at the
conditional (or posterior) density function p(γ|y), i.e. the probability of the vector γ
given the observation vector y. The relation between both density functions reads:

p(γ|y) =
p(γ)p(y|γ)

p(y)
=

p(γ)p(y|γ)∫
p(γ)p(y|γ)dγ

. (4.124)

With the prior density function p(γ), one can accommodate for prior knowledge on
γ. However, this knowledge is not always available. Instead one can make use of a
non-informative prior density function, which can be computed according to Jeffreys’
invariance principle [Koch, 1990]:

p(γ) ∝ (detIγ)
1/2, (4.125)

where Iγ is Fisher’s information matrix, de�ned as

Iγ := −E

{
∂2 ln p(y|γ)

∂γi∂γj

}
. (4.126)

Under the assumption that the observations have a multivariate normal distribution, the
non-informative prior density function p(γ) can be computed as

p(γ) ∝ (detS)1/2; (4.127)

see, e.g., Eqs. (4.51), (4.56) and (4.61). Up to an unknown scale factor, the posterior
density function can now be computed by:

p(γ|y) ∝ p(γ)p(y|γ) ∝ (detS)1/2

(detQydet(AT Q−1
y A))1/2

exp

(
−1

2
yT Ry

)
; (4.128)

see Eq. (4.49) for the expression of p(y|γ). Maximization of this posterior density
function yields the Maximum A Posteriori (MAP) estimate. The Bayesian estimate γ

B
for the variance components reads

γ̂
B

:=

∫
γ · p(γ|y)dγ. (4.129)
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To compute this Bayesian estimate one needs the posterior density function, Eq. (4.124).
Hence, integration over the product p(γ)p(y|γ) is necessary. This integration can not,
however, be solved analytically. The same holds for the integration of Eq. (4.129).
Numerical methods to solve this problem are suggested in Koch [1990]. However, fol-
lowing the argumentation in [Koch, 1990], such a Bayesian estimate will give approxi-
mately the same results as Eq. (4.64). When prior information on the density function
p(γ) is available, use can be made of this prior information in the Bayesian analysis.
More on this subject can be found in Koch [1990], Ou [1991, 1993], Ou and Koch
[1994] and Grodecki [1999].

An analytical expression for the MAP estimate and the Bayesian estimate is avail-
able for uncorrelated observation groups with only one variance component for each
group to be estimated. The expression for the estimator, which converges to the MAP
estimate, reads

γ̂MAP,j =
êT

j C−1
j êj

rj + 2
=

rj

rj + 2
γ̂j (4.130)

where γ̂j is the IREML. The analytical expression for the estimate, which converges to
the Bayesian estimate reads, according to Ou and Koch [1994]:

γ̂B,j =
êT

j C−1
j êj

rj − 2
=

rj

rj − 2
γ̂j. (4.131)

Hence, the MAP estimate is, for this particular stochastic model, always smaller than
the IREML and the Bayesian estimate is always larger than the IREML. If the group
redundancy number rj is large, all three estimators are approximately equal.

4.6.3 Lerch’s subset solution method

In Lerch’s method [Lerch, 1989,1991], a solution using all observation groups is com-
pared to the solution in which one observation group is omitted. The difference between
both solutions should be in agreement with the expectation of the difference, based on
the stochastic model. In Lerch [1989, 1991], the observations are assumed to be un-
correlated. Those equations will now be generalized under the assumption of a block-
diagonal variance-covariance matrix of which only one variance component is to be
estimated for each block, see Eq. (4.106). Hence, Lerch’s method can not be used in the
computation of multiple variance components per observation group. The least-squares
solution using the complete data set, x̂, is given by (Eq. 3.18). Omitting observation
group j results in a different least-squares solution, x̂[j]:

N[j]x̂[j] = h[j] ; Qx̂[j]
= N−1

[j] , (4.132)
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in which

N[j] = (

p∑
i=1
i�=j

Ni)

h[j] = (

p∑
i=1
i�=j

hi).

Hence
N = N[j] + Nj

h = h[j] + hj.
(4.133)

If the in�uence of the data set y
j
is small compared to the overall data set, we �nd

N−1 ≈ N−1
[j] −N−1

[j] NjN
−1
[j]

x̂ ≈ x̂[j] + N−1
[j] h̃j.

(4.134)

Lerch’s method compares the unweighted square of the difference between the subset
solution and the complete solution, i.e., (x̂[j] − x̂)T (x̂[j] − x̂), with its expected value,
based on the stochastic model. This expectation can be computed by

E{(x̂[j] − x̂)T (x̂[j] − x̂)} = tr(D{x̂[j] − x̂}) (4.135)

if E{x̂[j]− x̂} = 0. The variance-covariance matrix of this difference, D{x̂[j]− x̂}, can
be computed by

D{x̂[j] − x̂} = D{x̂[j]} − 2C{x̂[j], x̂}+ D{x̂}, (4.136)

with
C{x̂[j], x̂} = N−1

[j] C{h[j], h}N−1

= N−1
[j] C{h[j], h[j]}N−1

= N−1
[j] N[j]N

−1

= N−1.

(4.137)

This results in
D{x̂[j] − x̂} = N−1

[j] −N−1. (4.138)

The variance factor can then be computed by comparing the square of the differences
with its expectation:

v̂j =
(x̂[j] − x̂)T (x̂[j] − x̂)

E{(x̂[j] − x̂)T (x̂[j] − x̂)} =
(x̂[j] − x̂)T (x̂[j] − x̂)

tr(N−1
[j] −N−1)

. (4.139)

This factor is then used to update the variance components:

γ̂j = v̂j · γ̄j. (4.140)
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A different observation group is then omitted and the variance factor is computed for
this observation group. This algorithm is repeated until all variance factors approximate
unity. At this point, all data sets are balanced in the sense that their actual in�uence on
the solution is in agreement with its expectation, the latter being based on the stochastic
model. Lerch’s estimator is an approximately unbiased estimator if the approximations
of Eq. (4.134) hold:

E{γ̂j} = γ̄jE{v̂j} = γ̄j

E{(x̂[j] − x̂)T (x̂[j] − x̂)}
tr(N−1

[j] −N−1)

= γ̄j

tr(D{x̂[j] − x̂})
tr(N−1

[j] −N−1)
≈ γ̄j

tr(D{N−1
[j] h̃j})

tr(N−1
[j] NjN

−1
[j] )

=
tr(N−1

[j] D{h̃j}N−1
[j] )

tr(N−1
[j] AT

j C−1
j AjN

−1
[j] )

=
tr(N−1

[j] γjA
T
j C−1

j AjN
−1
[j] )

tr(N−1
[j] AT

j C−1
j AjN

−1
[j] )

= γj.

(4.141)

This is true if the in�uence of the omitted observation group is small compared to the
overall data set. However, small observation groups can cause instability problems
[Lerch et al., 1994] when they do not add extra information. The least-squares solu-
tion and the normal matrix of the complete data set will then be almost equal to the data
set omitting this observation group, which results in an unrealistic calibration. To over-
come this problem, several similar small observation groups have to be combined to one
larger observation group. Alternatively, one leaves their stochastic models unaltered.

The GEM-T2 [Marsh et al., 1990] and GEM-T3 [Lerch et al., 1994] global gravity
models used this subset solution method to calibrate the different data groups. Three
groups of data, namely satellite tracking data, surface gravity data and radar altimeter
data, were calibrated against each other as a test in the GEM-T3 solution. The calibra-
tion of the surface gravity data and the altimeter data worked well. However, the results
were bad when calibrating the satellite tracking data as the satellite data is strong in
the low-degree part of the spectrum, compared to the surface gravity and radar altime-
ter data, which mostly contribute to the medium and high-frequency part [Lerch et al.,
1994].

Eq. (4.139) calibrates the data sets with respect to all unknowns. However, some-
times it would be better to omit some unknowns in the calibration procedure. If for
example the goal is to estimate the lower-degree potential coef�cients, one should only
calibrate these coef�cients and remove other unknowns from the calibration process
[Lemoine et al., 1998]

In Lerch et al. [1993, 1994], an alternative subset solution method is proposed,
in which the actual residuals (yk − Akx̂[k]) are compared with the projected stochastic
model (AT

k N[k]Ak) together with the uncertainties in the tides, station coordinates and
polar motion. The method was tested for the Starlette and Ajisai satellite data, which
were used in the computation of the GEM-T3 global gravity model. It was shown that
these satellite data were well-calibrated.
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4.6.4 Generalized Cross-Validation (GCV)

An unstable system of normal equations can be stabilized by adding pseudo-observations
to the functional and stochastic model, i.e.

0 = x + eK ; E{eK} = 0 ; D{eK} = (αK)−1, (4.142)

with K a symmetric positive-de�nite regularization matrix. This stabilization is a form
of Tikhonov regularization, see e.g., section (2.1.2). The regularized least-squares esti-
mator then reads

x̂α = (AT Q−1
y A + αK)−1AT Q−1

y y. (4.143)

As the pseudo-observations can be seen as an extra data set, we can obtain an estimate
of the regularization parameter using VCE, e.g., IREML as follows

α̂ =
n− ᾱtr((AT Q−1

y A + ᾱK)−1K)

x̂T
αKx̂α

. (4.144)

The estimation of such a regularization parameter can be unstable. An alternative
method is the (Generalized) Cross-Validation.

The Cross-Validation (CV) method is based on the leave-one-out principle, in which
an observation value is compared with the predicted value, using all other observa-
tions. If one assumes a scaled identity matrix as the variance-covariance matrix, the
CV-estimate of α is the α which minimizes this difference [Golub et al., 1979]:

α̂CV = arg min
1

m

m∑
i=1

(
(yi − Ax̂[i]

α )i

)2

. (4.145)

This can be re-written as

α̂CV = arg min
1

m

m∑
i=1

((yi − Ax̂α)i)
2

(1− Vii)2
, (4.146)

with V = A(AT Q−1
y A + αK)−1AT Q−1

y . This is a much faster algorithm, as one does
not need to compute m estimates x̂[i]

α . If correlations are taken into account for the
observations and if the denominators are replaced by their mean value tr(I −V )/m, we
obtain the Generalized Cross-Validation estimate; see, e.g., Kusche and Klees [2002]

α̂GCV = arg min
m(y − Ax̂α)T Q−1

y (y − Ax̂α)

(m− tr((AT Q−1
y A + ᾱK)−1AT Q−1

y A))2
. (4.147)

4.6.5 (Iterative) Maximum Likelihood Estimator (MLE and IMLE)

The equations for MINQUE converge to the Restricted Maximum Likelihood (REML)
if one assumes normally distributed data. Instead of setting the estimate of the vector of
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unknowns x as a vector of free parameters, as was done in the REML, we will now �x
this vector.

Again, we will assume the probability density function of Eq. (4.47). But now
we take the variance-covariance matrix Qy as a �xed estimate (true values) and only
differentiate with respect to x to �nd maximum likelihood:

∂ ln p(y|x, γ)

∂x
= AT Q−1

y y − AT Q−1
y Ax. (4.148)

Setting this equation equal to zero results in the well-known Weighted Least-Squares
solution of the vector of unknowns (see, e.g., Eq. (3.6)):

AT Q−1
y Ax̂ = AT Q−1

y y.

Differentiation of the function ln p(y|x, γ) with respect to the variance component γi

reads

∂ ln p(y|x, γ)

∂γi

= −1

2
tr(Q−1

y Qi) +
1

2
(y − Ax)T Q−1

y QiQ
−1
y (y − Ax). (4.149)

where use is made of the properties (Eq. (B.4) and (B.5)) of a symmetric matrix; see
also Koch [1986,1990]. Replacing x by its MLE x̂ results in the equation for the MLE
of the variance component γi:

−tr(Q−1
y Qi) + yT RQiRy = 0, (4.150)

where R is Rao’s matrix; see Eq. (4.25). The equation can be solved iteratively, e.g.,
with Newton-Raphson or Fisher scoring. However, there are some disadvantages to
using the MLE to estimate the variance components. It takes the least-squares estimate
x̂ as the true value for x and does not take into account the degrees of freedom that are
involved in estimating x̂. Moreover, the MLE is, in general, biased and has no minimum
variance [Searle et al., 1992].

If we now assume a stochastic model of Eq. (4.106), i.e. consider one variance
component for each observation group, the MLE reads at convergence

γj =
êT

j C−1
j êj

mj

. (4.151)

In Yuan [1991], this equation is used at each iteration:

γ̂j =
êT

j C−1
j êj

mj

. (4.152)

We will call this estimator the Iterative Maximum Likelihood Estimator (IMLE). As the
estimates converge to the estimates of the Maximum Likelihood Estimator, the IMLE
has the same disadvantages as the MLE. The numerical computation of the estimator
is however very fast and shall be tested against the other estimators in chapter 7. The
estimator was used in several global gravity �eld models, e.g., TEG-3 [Tapley et al.,
1997] and GGM02S [Tapley et al., 2005].

79



4.6.6 External calibration

Many global gravity models have been derived by comparing the results to external
(independent) data. One could choose the data weights by trial and error to minimize
the difference between the solution and the independent data. In Lerch et al. [1993], a
more sophisticated method is introduced to externally calibrate a solution. The solution
is compared to SLR observations. The difference is, similar to Lerch’s subset solution
method, compared to the expected difference, based on the stochastic models. If nec-
essary, the stochastic model of the global gravity solution is rescaled by the calibration
factor of the external calibration.

4.7 Summary

Observations are in general corrupted by errors. With a proper modelling of the func-
tional model, one tries to reduce other effects than the stochastic observation noise from
the vector of residuals e, i.e. the difference between the observation vector and its ex-
pected value. Those other effects could include systematic errors, truncation errors,
errors in the background models (e.g., tidal or atmospheric models) or inconsistencies
with other data sets. The stochastic properties of the remaining residual vector are de-
�ned in the stochastic model, in which the variance-covariance matrix Qy de�nes the
dispersion of the residual vector.

However, this dispersion is in general not known beforehand and one needs to esti-
mate the Qy-matrix. To do this, we choose to write this matrix as a linear combination of
several (cofactor) matrices, in which the variance components are the linear coef�cients.
The division of the variance-covariance matrix in its components is however rather ar-
bitrary and non-unique. One should base this linear combination on the properties of
the different error sources contributing to the observation noise.

In a least-squares approach, one tries to minimize the residual square sum eT Q−1
y e.

A proper modelling of the variance-covariance matrix is therefore needed to compute
the least-squares solution of the vector of unknowns and its variance-covariance matrix.

The Variance Components Estimation (VCE) can be done using several estimators,
each with its own properties. We have discussed some estimators, which under nor-
mality converge to the same estimate. This estimate is unbiased, translation invariant,
has minimum variance, converge to maximum likelihood and is based on a weighted
least-squares approach. Within this group of estimators, the Iterative Restricted Maxi-
mum Likelihood Estimator (IREML) is somewhat faster than the other estimators, like
MINQUE, but it is biased in each iteration and requires more iterations till convergence.

We have derived equations to simplify the discussed estimators in case of uncor-
related observation groups with either multiple variance components or just a single
variance component to be estimated within one observation group. This is common
practice in global gravity �eld modelling, as many independent data sets (e.g., satellite
data, marine data, airborne data and terrestrial data) are involved.
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Alternatively, we have discussed some variance components estimators, which are
well-known in the weight determination of global gravity models, e.g., Helmert VCE
and Lerch’s subset solution method. However, they do not ful�ll in general the proper-
ties of unbiasedness, maximum likelihood and minimum variance.
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5
Monte Carlo implementation

The estimation of the variance components (e.g., MINQUE, IREML) involves the com-
putation of the trace of a matrix. This matrix is the result of the multiplication of sev-
eral matrices, including the inverse of the accumulated normal matrix. As this inverse
is generally not available for large-scale problems (which are usually solved by, e.g.,
Cholesky factorization), one cannot compute the trace directly. In this chapter, we will
use the alternative of the stochastic trace estimation (STE), in which we do not need the
inverse of the normal matrix to obtain an estimate of the trace. We will �rst introduce
this approach and then use STE for several estimators discussed in the previous chapter,
including Lerch’s subset solution method. It will be shown that this leads to very ef�-
cient Monte Carlo algorithms. One can use any least-squares software package and use
it as a black box to solve for the variance components. In this way, the extra computa-
tional effort involved in VCE remains limited. Although STE could also be bene�cial
for the computation of Helmert’s VCE and GCV, we will only focus on the MINQUE,
IREML, and Lerch’s estimator. The use of STE in GCV is discussed in Kusche and
Klees [2002].

5.1 Stochastic Trace Estimation (STE)

The STE is based on one of the properties of a square matrix, i.e. [Girard, 1989]

tr(T ) = E{zT Tz}, (5.1)

where z is a random vector with E{z} = 0 and D{z} = I . In Girard [1989], it was
stated that this property holds for symmetric positive-de�nite matrices. We can show
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however, that this property holds for every square matrix:

E{zT Tz} = E{tr(zT Tz)}
= E{tr(TzzT )}
= E{[TzzT ]11 + [TzzT ]22 + . . .}
= E{T11[zz

T ]11 + T12[zz
T ]21 + . . .}

= T11E{[zzT ]11}+ T12E{[zz]21}+ . . .
= [TE{zzT}]11 + [TE{zzT}]22 + . . .
= tr(TE{zzT})
= tr(T (D{z}+ E{z}E{z}))
= tr(T ).

(5.2)

The expectation operator E{.} can be approximated by the average over r realizations
(sample mean):

E{zT Tz} ≈ 1

r

r∑
k=1

zT
k Tzk. (5.3)

In several experiments (see, e.g., Girard [1989, 1995] and Golub and Von Matt [1997])
it was found that one realization of z is the best compromise between accuracy and
computational costs, when dealing with large-scale problems. Therefore only one real-
ization will be used in the following derivations. It is, however, possible that multiple
realizations are necessary in some exceptional cases.

Up till now, no assumption has been made on the probability density function of
the vector z. When using the multivariate normal distribution, the variance of the trace
estimate can be bounded by Girard [1989]

V (zT Tz) = 2tr(T 2). (5.4)

The variance of the trace estimate attains its minimum if a multivariate discrete
binary probability function is chosen as the probability function for z. Then each sample
of the vector z takes the value −1 or 1 with equal probability. The variance is now
bounded by Hutchinson [1990]

V (zT Tz) = 2
n∑

k �=l

(Tkl)
2 < 2tr(T 2)− 2

n
(tr(T ))2 < 2tr(T 2). (5.5)

As we will show in the next sections, STE can be used as a Monte Carlo method to
estimate the trace of a matrix. The equations will be derived in such a way that the
computation of the variance components does not require a new Cholesky factoriza-
tion or inversion of a large normal matrix. One can simply derive randomized pseudo-
observations and insert them into existing software, which is then considered as a ’black
box’. The output will then be used to compute the variance components.

Koch and Kusche [2002] used for the �rst time Monte Carlo VCE (MC-VCE) to
compute the regularization parameter. Kusche [2003] provides us with more informa-
tion and a test with a simulated GOCE orbit. We will derive the Monte Carlo variants of
the MINQUE, IREML and Lerch estimators and show the equations for the functional
models of type I and type II.
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5.2 Monte Carlo MINQUE (MC-MINQUE)

We will now derive algorithms to compute the MINQUE using STE. The general form
of the MINQUE, i.e., Eq. (4.28),

E{u} = Sγ

with
Sij = tr(RQiRQj)
uj = yT RQjRy

will not be implemented as this form is not applicable for large-scale problems due to
the inversion of the variance-covariance matrix Qy in the computation of R. We will
therefore focus on the situation of uncorrelated observation groups.

5.2.1 Groups with multiple variance components

Functional model of type I

In the situation of uncorrelated observation groups, in which the stochastic model of an
individual observation group can be written as a linear combination of several cofactor
matrices, the elements of S and u can be written as (Eq. (4.94)):

Sij |u=v = tr(WvCvkWvCvl)− 2tr(N−1AT
v WvCvkWvCvlWvAv) +

+ tr(N−1AT
v WvCvkWvAvN

−1AT
v WvCvlWvAv)

Sij |u �=v = tr(N−1AT
u WuCukWuAuN

−1AT
v WvCvlWvAv)

uj = êT
v WvCvlWvêv.

The different traces can be estimated by STE. The �rst trace tr(WvCvkWvCvl) can be
computed explicitly as the inversion of the normal matrix is not involved. The compu-
tation of the matrix Wv needs a matrix inversion of size mv ×mv. However, this matrix
is already computed in the least-squares estimation. The second trace can be estimated
by

tr(N−1AT
v WvCvkWvCvlWvAv) = tr(N−1AT

v WvCvkDvD
T
v CvlWvAv)

= tr(DT
v CvlWvAvN

−1AT
v WvCvkDv)

≈ zT
v DT

v CvlWvAvN
−1AT

v WvCvkDvzv

= zT
v DT

v CvlWvAv q̂vk
,

(5.6)

where use is made of the decomposition (e.g., Cholesky)

Wv = DvD
T
v , (5.7)

and the solution of the randomized normal equations

Nq̂
vk

= AT
v WvCvkDvzv. (5.8)
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If one replaces the vector of observations as

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
1
...

y
v−1

y
v

y
v+1
...
y

p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ yq

vk
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

CvkDvzv

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.9)

one can use existing software as a black box to compute the vector q̂
vk

and consequently
the variance components. Furthermore,

tr(N−1AT
v WvCvkWvAvN

−1AT
v WvCvlWvAv) ≈ q̂T

vl
AT

v WvCvkWvAv q̂vl
(5.10)

and

tr(N−1AT
u WuCukWuAuN

−1AT
v WvCvlWvAv) ≈ q̂T

vl
AuWuCukWuAuq̂vl

, (5.11)

The algorithm can be found in �gure 5.1.
Hence, one needs to factorize Wv to compute the pseudo-observations. This vector

will then be inserted into any least-squares software to compute the vectors q̂
uk

instead
of the vector of unknowns x̂. After the least-squares software, one only needs to do
some matrix-vector multiplications to get the required variance components. These new
estimates are then used to re-compute the VC-matrix, which will be inserted in the
least-squares software. The Monte Carlo variant of MINQUE was for the �rst time
derived in Van Loon and Kusche [2007]. The proposed algorithm in this thesis is a
slight modi�cation of the algorithm proposed in that paper.

Functional model of type II

A functional model of type II takes local parameters into account. The equations to
derive the MINQUE in case of uncorrelated observation groups with multiple variance
components for each group and a functional model of type II read (Eq. (4.95)):

Sij |u=v = tr(CvkWvP
⊥
Avv

CvlWv)− 2tr(N̄−1
ss AT

vsWvCvkWvP
⊥
Avv

CvlWvAvs) +

+ tr(N̄−1
ss AT

vsWvCvkWvP
⊥
Avv

AvsN̄
−1
ss AT

vsWvCvlWvP
⊥
Avv

Avs)

Sij |u �=v = tr(N̄−1
ss AT

usWuCukWuP
⊥
Auu

AusN̄
−1
ss AT

vsWvCvlWvP
⊥
Avv

Avs)

uj = êT
v WvCvlWvêv,

One could now start with replacing the traces by stochastic trace estimators. It would
however be easier to take the algorithm of �gure 5.1 and to make some slight modi�ca-
tions. The output of the black box algorithm will now be used assuming a different func-
tional model. We therefore have to replace Av by [ 0 . . . 0 Avv 0 . . . 0 Avs ]
in the computation of the stochastic models. Note that we need all elements of the
vectors q̂

uk
.
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γ̄ = [σ̄2
1,1, . . . , σ̄

2
u,k, . . . , σ̄

2
p,qp

]

Wv = [

qv∑
k=1

σ2
v,kCvk]

−1 = DvD
T
v

� � �
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y yq
11

yq
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Black Box
LSE Software

Black Box
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Black Box
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x̂ q̂

11
q̂

uk
q̂

pqp

êv = y
v
− Avx̂

for all v = 1, p

�
Sγ̂ = u with

Sij |u=v = tr(WvCvkWvCvl)− 2zT
v DT

v CvlWvAv q̂vk
+

q̂T

vl
AvWvCvkWvAv q̂vl

Sij |u �=v = q̂T

vl
AuWuCukWuAuq̂vl

uj = êT
v WvCvlWvêv

�
γ̄ = γ̂

Fig. 5.1: The algorithm to estimate the vector of unknowns x̂ and the variance
components γ̂ using MINQUE with uncorrelated observation groups, multiple
variance components per group, and a functional model of type I.
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5.2.2 Groups with only one variance component

Functional model of type I

If the variance-covariance matrices of the individual observation groups are known up
to a certain scaling parameter, one only needs to estimate one variance component per
observation group. The elements of MINQUE then read (see Eq. (4.107)):

Sjj =
1

γ̄2
j

[mj − 2tr(N−1Nj) + tr(N−1NjN
−1Nj)]

Sij =
1

γ̄iγ̄j

tr(N−1NiN
−1Nj) if i �= j

uj =
1

γ̄2
j

êT
j C−1

j êj.

We can simply derive the equations for the STE of the traces, i.e., for the trace of the
group in�uence matrix N−1Nj:

tr(N−1Nj) = tr(N−1AT
j Wj γ̄jCjWjAj)

≈ γ̄jz
T
j GT

j WjAjN
−1AT

j WjGjzj

= γ̄jz
T
j GT

j WjAj q̂j

= zT
j GT

j C−1
j Aj q̂j

(5.12)

with Cj = GjG
T
j and

Nq̂
j
= AT

j WjG
T
j zj = AT Wyq

j
(5.13)

in which yq
j
is de�ned by

yq

j
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

Gjzj

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.14)

Note that the variance-covariance matrix of yq
j
actually reads (propagation law of vari-

ances):

Qy =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Cj · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ , (5.15)
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which is the cofactor matrix corresponding to γj . However, we will assume

Qy =

⎡
⎢⎢⎢⎢⎢⎣

γ1C1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · γjCj · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · γpCp

⎤
⎥⎥⎥⎥⎥⎦ (5.16)

as its variance-covariance matrix in the black-box algorithm. The STE of the other trace
tr(N−1NiN

−1Nj) can be derived in a similar way

tr(N−1NiN
−1Nj) ≈ γ̄j q̂

T

j
AT

i WiAiq̂j
=

γ̄j

γ̄i

q̂T

j
AT

i C−1
i Aiq̂j

(5.17)

This algorithm can be found in �gure 5.2.
Note that in this algorithm the factorization step (this time: Ci = GjG

T
j ) is only

needed once, as Cj does not change in the iteration process. Moreover, one does not
need to change the randomized input vector. This vector yq

j
also stays intact.

Functional model of type II

If the functional model is of type II, the elements of MINQUE can be estimated by Eq.
(4.108):

Sjj =
1

γ̄2
j

[tr(P⊥Ajj
)− 2tr(N̄−1

ss AT
jsWjP

⊥
Ajj

Ajs) +

+ tr(N̄−1
ss AT

jsWjP
⊥
Ajj

AjsN̄
−1
ss AT

jsWjP
⊥
Ajj

Ajs)]

Sij =
1

γ̄iγ̄j

tr(N̄−1
ss AT

isWiP
⊥
Aii

AisN̄
−1
ss AT

jsWjP
⊥
Ajj

Ajs) if i �= j

uj =
1

γ̄2
j

êT
j C−1

j êj.

Instead of replacing these traces using STE, we can use the algorithm of �gure 5.2 and
slightly modify it, as was also done in the case of multiple variance components per
observation group. One simply replaces Ai with [ 0 . . . 0 Aii 0 . . . 0 Ais ]. If
the reduced normal matrices Υj are available one can further simplify the equations.
Use is made of the system of normal equations to compute the vector q̂

i
:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N11 · · · 0 · · · 0 N1s
...

. . .
...

. . .
...

...
0 · · · Nii · · · 0 Nis
...

. . .
...

. . .
...

...
0 · · · 0 · · · Npp Nps

Ns1 · · · Nsi · · · Nsp Nss

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̂
i1
...

q̂
ii
...

q̂
ip

q̂
is

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

AT
iiWiGizi

...
0

AT
isWiGizi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.18)
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Cj = GjG
T
j Wj = γ̄−1
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j
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Sjj =
1

γ̄2
j

[mj − 2zjG
T
j C−1

j Aj q̂j
+ q̂T

j
AT

j C−1
j Aj q̂j

]

Sij =
1

γ̄2
i

q̂T

j
AT

i C−1
i Aiq̂j

if i �= j

uj =
1

γ̄2
j

êT
j C−1

j êj.

�
γ̄ = γ̂

Fig. 5.2: The algorithm to estimate the vector of unknowns x̂ and the variance
components γ̂ using MINQUE with uncorrelated observation groups, one variance
component per group, and a functional model of type I.
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Hence, the global vector q̂
is

is computed by solving

N̄ssq̂is
= AT

isWiGizi −NT
isN

−1
ii AT

iiWiGizi. (5.19)

The local vectors are obtained by solving

Niiq̂ii
= −Nisq̂is

+ AT
iiWiGizi

Njj q̂ij
= −Njsq̂is

if i �= j.
(5.20)

Both traces can now be estimated by

tr(N−1NiN
−1Nj) ≈ γ̄i · (Ajj q̂ij

+ Ajsq̂is
)T Wj(Ajj q̂ij

+ Ajsq̂is
)

tr(N−1Ni) ≈ γ̄i · zT
i GT

i Wi(Aiiq̂ii
+ Aisq̂is

).
(5.21)

The trace tr(N−1NiN
−1Nj) can be re-written as

tr(N−1NiN
−1Nj) ≈ γ̄i ·

(
q̂T

ij
Njj q̂ij

+ q̂T

ij
Njsq̂is

+ q̂T

is
NT

jsq̂ij
+ q̂T

is
AT

jsWjAjsq̂is

)
= γ̄i ·

(
−q̂T

is
NT

jsN
−1
jj Njsq̂is

+ q̂T

is
AT

jsWjAjsq̂is

)
= γ̄i · q̂T

is
Υj q̂is

=
γ̄i

γ̄j

· q̂T

is
Υ∗j q̂is

(5.22)
for any i �= j. We use the unweighted reduced normal matrices Υ∗j as these matrices
will be stored and re-used throughout the estimations of the vector of unknowns and the
VCE. The trace tr(N−1NiN

−1Ni) can be re-written as

tr(N−1NiN
−1Ni) ≈ q̂T

is
Υ∗i q̂is

+ 2zT
i GT

i C−1
i Aiiq̂ii

. (5.23)

The equations for MINQUE can now be expressed as

Sγ̂ = u (5.24)

with

Sjj =
1

γ̄2
j

·
(
mj − 2zjG

T
j C−1

j Ajsq̂js
+ q̂T

js
Υ∗j q̂js

)
Sij =

1

γ̄2
i

q̂T

js
Υ∗i q̂js

if i �= j

uj =
1

γ̄2
j

êT
j C−1

j êj.

Hence, we can use the scheme of �gure 5.2 to estimate the vectors q̂
i
and then use Eq.

(5.24) to compute the variance components.
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5.3 Monte Carlo IREML (MC-IREML)

We will now try to implement Monte Carlo algorithms to estimate the Iterated Maxi-
mum Likelihood Estimator (IREML). The general form (Eq. (4.75)), i.e.,

γ̂i =
yT RQiRy

tr(RQi)
γ̄i

will not be treated as it includes R = Q−1
y P⊥A , which is in general not available for

large-scale problems if one does not consider uncorrelated observation groups.

5.3.1 Groups with multiple variance components

Functional model of type I

The IREML for uncorrelated observation groups with multiple variance components per
observation group reads (Eq. (4.102)):

σ̂2
v,l =

êT
v Wvσ̄

2
v,lCvlWvêv

tr(WvCvl)− tr(N−1AT
v WvCvlWvAv)

.

The second trace in the denominator needs to be estimated with STE:

tr(N−1AT
v WvCvlWvAv) = tr(N−1AT

v WvGvlG
T
vlWvAv)

= zT
v GT

vlWvAvN
−1AT

v WvGvlz
= zT

v GT
vlWvAvŝvl

(5.25)

with
Nŝvl = AT

v WvGvlz. (5.26)

The observation vector y will be replaced in the black box by

y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
1
...

y
v−1

y
v

y
v+1
...
y

p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ ys

vl
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

Gvlzv

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.27)

Note that the variance-covariance matrix of ys
vl

is the Qvl-matrix, de�ned in Eq. (4.84),
but again we will use the full variance-covariance matrix of the observations y as its
stochastic model. The algorithm can be found in �gure 5.3.

In the initial phase, we compute the factorization of Cvl into GvlG
T
vl and we derive

the pseudo-observations ys
vl
. These quantities have to be computed once and will not

change during the iteration process.
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Cvl = GvlG
T
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qv∑
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σ̄2
vkCvk]
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�
σ̄2
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Fig. 5.3: The algorithm to estimate the vector of unknowns x̂ and the variance
components γ̂ using IREML with uncorrelated observation groups, multiple var-
iance components per group, and a functional model of type I.
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Functional model of type II

If one considers local parameters for certain observation groups, the IREML reads (Eq.
(4.105)):

σ̂2
v,l =

êT
v Wvσ̄

2
v,lCvlWvêv

tr(WvP⊥Avv
Cvl)− tr(N̄−1

ss AT
vsWvP⊥Avv

CvlWvAvs)
. (5.28)

As in previous cases, it is easier to modify the algorithm of �gure 5.3 than to estimate
the traces of Eq. (4.105) by STE. Such a modi�cation is the replacement of Av by
[ 0 . . . 0 Avv 0 . . . 0 Avs ].

5.3.2 Groups with only one variance component

Functional model of type I

The IREML in case of one variance component per observation group reads (Eq. (4.110)):

γ̂j =
êT

j C−1
j êj

mj − tr(N−1Nj)
.

The STE of this trace has been derived in Eq. (5.12) and could also be found in Kusche
[2003]. The algorithm for this estimator can be found in �gure 5.4.

Functional model of type II

The equations of the IREML when one considers a functional model of type II can be
written as (see Eq.(4.111)):

γ̂j =
êT

j C−1
j êj

mi − ni − tr(N̄−1
ss AT

jsWjP⊥Ajj
Ajs)

=
êT

j C−1
j êj

mi − ni − tr(N̄−1
ss Υj)

The Monte Carlo version is a modi�cation of �gure 5.4. We simply have to replace the
denominator of the IREML:

mj − zjG
T
j C−1

j Aj q̂j
→ mj − zjG

T
j C−1

j [Ajj q̂jj
+ Ajsq̂js

] (5.29)

One could also estimate tr(N̄−1
ss Υj) with STE, but this will be of no computational

bene�t if one uses an existing software package as a black box.

5.4 Monte Carlo Lerch (MC-Lerch)

In Lerch’s method, the variance factors are estimated by (Eq. (4.139)):

vj =
(x̂[j] − x̂)T (x̂[j] − x̂)

E{(x̂[j] − x̂)T (x̂[j] − x̂)} =
(x̂[j] − x̂)T (x̂[j] − x̂)

tr(N−1
[j] −N−1)

.
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j êj

mj − zjG
T
j C−1

j Aj q̂j

for all j = 1, p

�
γ̄ = γ̂

Fig. 5.4: The algorithm to estimate the vector of unknowns x̂ and the variance
components γ̂ using IREML with uncorrelated observation groups, one variance
component per group, and a functional model of type I.
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The trace in the denominator can be estimated using STE techniques:

sj = tr(N−1
[j] −N−1) = zT (N−1

[j] −N−1)z, (5.30)

where z is a random vector with the dimension of the number of calibrated unknown
parameters. The �rst step in the STE is to solve the systems of normal equations:

N[j]q̂[j]
= z Nq̂

j
= z. (5.31)

The solutions q̂
[j]

and q̂
j
are then used to estimate the denominator:

sj = zT (q̂
[j]
− q̂

j
). (5.32)

Note that one has to invert (or solve) a new normal matrix every time one computes a
variance factor.

5.5 Summary

The computation of a high resolution, global gravity model poses a large-scale numeri-
cal problem, which usually involves millions of observations and thousands of unknown
parameters. Using the equations of VCE mentioned in the previous chapters will practi-
cally not be feasible as large matrix operations must be carried out, such as the inversion
of the normal matrix. This is probably the reason why variance components estimation
has not widely been used in global gravity modelling.

Stochastic trace estimation (STE) is one of the solutions to this problem. The trace
operator is then replaced with a pre-multiplication and post-multiplication with a ran-
dom vector. As this is an approximation of the trace of the matrix, a small error is
introduced. The variance of these errors attains its minimum if the entries of the ran-
dom vector are samples of the binary distribution.

Both MINQUE and IREML are approximated using STE. The estimators are called
Monte Carlo MINQUE (MC-MINQUE) and Monte Carlo IREML (MC-IREML), re-
spectively. We have written the equations in such a way that if we replace the obser-
vation vector by a randomized observation vector, we can easily use any least-squares
software package to obtain the estimates of the variance components. The chapter ends
with a Monte Carlo variant of Lerch’s subset solution method (MC-Lerch).
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6
Outlier detection and robust

estimation

Most observations are corrupted by small error contributions and the summation of
these errors will, in general, produce normally distributed data (central limit theorem,
see, e.g., Cramér [1946]). Under the assumption of normality and with true functional
and stochastic models, the least-squares approach will produce a Maximum Likelihood
estimate of the vector of unknowns x, which is also a Best Linear Unbiased Estimator
(BLUE), with best referring to minimum variance.

However, experience tells us that a set of observations is, in general, contaminated
by outliers. As the least-squares method tries to minimize the square of the residuals
(eT Q−1

y e), such outliers can have a signi�cant effect on the estimated gravity �eld pa-
rameters; see, e.g., Götzelmann et al. [2006]. Moreover, they will affect a possible
adjustment of the stochastic model using VCE.

There are several ways to detect and treat possible outliers. Detection of outliers in
time series can either be done in the time domain or in the space domain. The detection
in the time-domain is performed by �tting the observations to some local model, such
as polynomials, splines or wavelets. A disadvantage of such a method is that it does not
take into account the spatial correlation. A spatial anomaly in the �eld can be misinter-
preted as an outlier in the time domain. Therefore, detection in the time-domain should
only be performed if the residuals of the outliers are much larger than the variation in
the expected observations y. Outlier detection in the time domain is, however, a relative
fast method and can be used to quickly detect and remove the largest outliers in a data
set.

Detection in the space domain does take into account the spatial correlation of the
�eld through the estimated vector of unknowns x̂, as it uses the estimated residual êi and
compares this to the estimated standard deviation of the residual σêi

(Pope’s test, [Pope,
1976]), or the estimated standard deviation of the observation σyi

(μ-test statistic). The
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least-squares estimation of the vector of unknowns should be iterated after each treat-
ment of an outlier (data snooping). This is, however, not feasible in large-scale problems
and alternatives will be treated in this chapter. An overview of several outlier detection
techniques, which can be applied to the GOCE observables can be found in Kern et al.
[2005].

Once detected, one could remove the outliers from the observation vector or re-
weight the corresponding observation within the least-squares approach (M-estimation).
In the latter case, one assumes the observations to have a different distribution than the
normal distribution.

The �rst part of this chapter deals with the detection of the outliers in the space
domain (time domain will not be considered). The second part will focus on the re-
weighting of the observations using M-estimation and the consequences of such a re-
weighting on the VCE. Moreover, we have developed the cost function estimation (CFE)
algorithm, which estimates the cost function (and consequently the probability density
function) from the observations themselves.

6.1 Test statistics in outlier detection

Three different test statistics will be derived, which are commonly used in outlier de-
tection algorithms. A discussion whether or not to include correlations when detecting
outliers will be the scope of the next section. A short discussion about the treatment of
the outliers is given at the end of this section.

6.1.1 The w-test statistic

We will now assume the stochastic model to be known and test for any mis�t δ in a
certain observation yi. This theory is well-known and extensively described in, e.g.,
Teunissen [2000b]. The null hypothesis reads

H0 : y = Ax + e (6.1)

with
y ∼ N(Ax,Qy), (6.2)

and the alternative hypothesis can be written as (cf. the overall model test, Eq. (3.10))

HA : y = Ax + bi · δ + e (6.3)

with
y ∼ N(Ax + bi · δ,Qy), (6.4)

where
δ = blunder in observation i
bi = (0 · · · 0 1 0 · · · 0)T .
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Using a similar derivation as in section 3.2.2, the test statistic δ̂Ω = Ω̂0 − Ω̂A is dis-
tributed as

H0 : δ̂Ω ∼ χ2(1) ;HA : δ̂Ω ∼ χ2(1, λ) (6.5)

and can be computed by

δ̂Ω =
δ̂2

σ2
δ̂

, (6.6)

with

δ̂ =
bT
i Q−1

y ê

bT
i Q−1

y QêQ−1
y bi

(6.7)

and

σ2
δ̂

=
1

bT
i Q−1

y QêQ−1
y bi

. (6.8)

The non-centrality parameter λ reads

λ = δT [bT
i Q−1

y QêQ
−1
y bi]δ. (6.9)

The well-known w-test statistic takes the square root of the test statistic δ̂Ω [Teunissen,
2000b]:

ŵi =
δ̂

σδ̂

=
bT
i Q−1

y ê√
bT
i Q−1

y QêQ−1
y bi

. (6.10)

This test statistic is distributed as

H0 : ŵi ∼ N(0, 1) ; HA : ŵi ∼ N(
√

bT
i Q−1

y QêQ−1
y bi∇, 1). (6.11)

If we can assume uncorrelated observations, the computational effort will be greatly
reduced. The test statistic ŵi can then be written as

ŵi =
êi

σêi

=
êi√

σ2
i − AiN−1AT

i

, (6.12)

with σêi
the standard deviation of the residual êi, which is the square root of the ith

diagonal element of Qê.

6.1.2 Pope’s test statistic

The w-test assumes that the true stochastic model Qy is known. If this is not true, the
w-test should be replaced with the Pope’s test, which assumes the stochastic model to
be rescaled using VCE. The Pope’s test statistic for uncorrelated observations then reads

τ̂i =
êi

σ̂êi

=
êi√

σ̂2
i − AiN−1AT

i

. (6.13)

The τ -test statistic will not have a standard normal distribution. However, with a large
number of observations and a suf�ciently high redundancy, this distribution will be very
close to the normal distribution.
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6.1.3 The μ-test statistic

The Pope’s test is a good test for detecting outliers in small-scale least-squares problems.
However, due to the time-consuming operations involved in this test, it is practically not
feasible for large-scale problems. An alternative is to replace σ̂êi

with σ̂i, thus replacing
the standard deviation of the residual by the standard deviation of the observation. In
this way, we neglect AiN

−1AT
i . The test statistic now reads:

μ̂i =
êi

σ̂i

(6.14)

The μ-test statistic will have a slightly different distribution than the normal distri-
bution, due to the before-mentioned approximation and the estimation of the variance
components. The big advantage of the μ-test statistic is that all quantities have been
computed before. Therefore the computations are extremely fast.

6.1.4 Treatment of the outliers

Under the H0-hypothesis, the w-test statistic will have a standard normal distribution.
Both Pope’s test and the μ-test statistic will have slightly different distributions (under
H0), but will be close to the standard normal distribution.

A commonly used method is to remove all observations for which the chosen test
statistic is above a certain threshold κα. With a threshold κα = 3.0, and assuming a
standard normal distribution, the one-sided level of signi�cance will be α = 0.0013.
This threshold is widely used in a combination with the computation of the μ-test statis-
tic. We refer to this method as the 3-sigma rule. For other critical values, we refer to
table C.1.

Due to correlations in the observations and the functional relationships, good obser-
vations could get high test statistics. It is therefore (theoretically) better to only remove
the observation with the highest test statistic and then recompute x̂ and test again for any
other outliers after each outlier removal. This is called data snooping; see, e.g., Baarda
[1968]. However, as the method is not feasible in large-scale problems, we will remove
(or down-weight) all observations of which the test statistic exceeds the threshold within
a single iteration.

As the choice of the threshold κα is rather arbitrary and it sharply determines which
observations will get full weight and which observations shall be removed, we shall
discuss an alternative method in section 6.3, which will gradually give lower weights to
observations with a higher test statistic.

6.2 Detection of outliers in correlated observations

There has been some discussion throughout the years, whether or not to take correlations
into account when detecting outliers; see Xu [1989] and Yang et al. [2002]. The answer
to this question is not as trivial as many authors suggest.
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If we use the w-test statistic, we assume that one observation is an outlier (with δ
the inconsistency in that observation) and all other observations are good observations,
which follow the stochastic model. However, if an outlier occurs in time series, it is
most likely that surrounding observations are also effected by the source of the outlier.
Therefore, the residuals of these observations will not follow the assumed stochastic
model. For example, if an outlier occurs in observation yi, the observations yi−1 and
yi+1 will most likely not be mutually correlated according to the stochastic model.

Furthermore, we assume that the pseudo-observation yi− δ̂i will follow the stochas-
tic model and also this assumption is rather premature. The source of the outlier (e.g.,
malfunctioning) can cause high correlations with observations after the blunder occurs,
and negligible correlations with previous observations. An outlier is de�ned as an ob-
servation that does not match the assumed stochastic model, and it is questionable if the
subtraction of δ̂i will change this.

A reason to use the correlations in the detection of outliers is that bT
i Q−1

y ê (Eq.
(6.10)) will de-smooth the smoothing effect of a certain outlier on correlated observa-
tions.

Therefore, in small-scale problems, we can assume correlated observations and per-
form data snooping. In large-size problems with large time series of observations (in
which often a large number of outliers occurs), we shall neglect the correlations in the
observations (only during the detection of the outliers) and remove (or down-weight) all
possible outliers within a single iteration. Whether or not to treat any surrounding obser-
vations in a similar way is an interesting topic, see, e.g., Ding and Coleman [1996], who
make use of the redundancy number of that observation. We choose to leave the other
observations unaltered and use the VC-matrix, including the covariances, to estimate
the vector of unknowns x and the variance components γ.

Observation i can be removed by removing the observation value from the vector y,
deleting the ith row from the design matrix A and removing the ith row and ith column
from the VC-matrix Qy. A re-weighting can be done by only rescaling the ith row and
the ith column of the matrix Q−1

y . More on the subject of re-weighting can be found in
the next section.

6.3 Robust estimation

A disadvantage of the outlier removal method is that the critical value κα decides, which
observations are taken into account and which observations should be removed. There
is nothing in between. An observation is either accepted with full weight or rejected and
removed. Here, we consider the robust M-estimation method [Huber, 1964, 1981], in
which all observations are taken into account, but can have different (smaller) weights
if the residuals are large. The method is robust, as the treatment of the outliers is robust
against small changes in the estimated solution vector. Moreover, one still can compute
a reliable estimate of the vector of unknowns if the number of outliers is high. With such
a robust method, the assumed probability of a certain large test statistic is increased, i.e.,
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one assumes a different distribution than the normal distribution. Under this assump-
tion, the estimator of the vector of unknowns does not try to �t a multivariate normal
distribution to the observations, which causes high weights for the outliers. Instead, the
new estimator takes into account the existence of such observations and tries to �t a
better suited distribution to the observations.

We will use a simulated data set in this section, in which we have combined three
datasets of varying quality into one data set. The probability density function of the
standardized residuals of this data set is shown in �gure 6.1. Due to the varying quality
of the observations within the data set, the probability density function shows thicker
tails than the standard normal distribution.

Fig. 6.1: Top: comparison between the (empirical) density function of the stan-
dardized residuals μ of a simulated data set (bars) with the density function of
the standard normal distribution (dashed line). Bottom: Tail of these probability
density functions.

M-estimation techniques have successfully been used with SLR data [Yang et al.,
1999], magnetic Ørsted satellite data [Olsen, 2002], and in relative GPS positioning
[Chang and Guo, 2005].
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6.3.1 M-estimation of the vector of unknowns

The robust M-estimation assumes uncorrelated observations (in the outlier detection
step) and assumes that the probability density function can be written as

p(y|x) ∝ exp[−
m∑

j=1

ρ(μj)], (6.15)

with m the number of observations and ρ(x) the speci�c cost function. Maximization
of the probability function p(y|x) results in the Maximum Likelihood estimate of x, i.e.
x̂R. Such a maximization is equal to the minimization of the sum of the cost values
ρ(μj), i.e.

minx

m∑
j=1

ρ(μj). (6.16)

According to Xu [1989], the cost function ρ(x) must satisfy the following:

1. Its de�nition domain is R,

2. ρ(x) is continuous,

3. ρ(0) = 0, ρ(x) = ρ(−x), and if ‖a‖ ≤ ‖b‖ then ρ(a) ≤ ρ(b),

4. lim
x→∞

∂2

∂x2
ρ(x) = 0.

Minimization of the sum of cost values can also be written as

m∑
j=1

∂ρ(μj)

∂xi

|x=x̂R = 0 for all i = 1, n, (6.17)

with n the number of unknown parameters xi. Introducing the in�uence function Ψ(μ̂j),
i.e.

Ψ(μ̂j) :=
∂ρ(μj)

∂μj

|x=x̂R , (6.18)

yields
m∑

j=1

Ψ(μ̂j)
∂μj

∂xi

=
m∑

j=1

Ψ(μ̂j)
Aji

σ̂j

= 0 for all i = 1, n, (6.19)

of which Aji is an element of the design matrix A (Eq. (3.1)) and σ̂j comes from Eq.
(6.14). We will use the Iteratively Re-weighted Least-Squares (IRLS) method [Beaton
and Tukey, 1974] to calculate the M-estimator. De�ning the robust weights νj as

ν2
j := ν2(μ̂j) :=

Ψ(μ̂j)

μ̂j

, (6.20)

103



the n equations of the M-estimation read

m∑
j=1

ν2
j

σ̂2
j

êjAji = 0 for all i = 1, . . . , n. (6.21)

Writing this in matrix notation and assuming a full VC-matrix, the vector of unknowns
x can be estimated by the Robust Weighted Least-Squares Estimator (RWLSE):

AT DνQ
−1
y DνAx̂R = AT DνQ

−1
y Dνy, (6.22)

with Dν the diagonal matrix with the robust weights νi as the diagonal elements. Note
that an observation is re-weighted by a factor νi and not by ν2

i . One could keep the
observations and design matrix �xed and change the stochastic model by re-scaling the
elements of the weight matrix W = Q−1

y :

Wν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ν2
1w11 ν1ν2w12 · · · ν1νiw1i · · · ν1νmw1m

ν1ν2w12 ν2
2w22 · · · ν2νiw2i · · · ν2νmw2m

...
...

. . .
...

. . .
...

ν1νiw1i ν2νiw2i · · · ν2
i wii · · · νiνmwim

...
...

. . .
...

. . .
...

ν1νmw1m ν2νmw2m · · · νiνmwim · · · ν2
mwmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.23)

Alternatively, one keeps the weight matrix �xed and pre-multiplies the observation vec-
tor and the design matrix by the diagonal matrix Dν . The �rst approach is in agreement
with Yang et al. [2002]. It is an iterative method, as the weights will change with every
new estimate for x and a possible new stochastic model using VCE. An alternative to
the IRLS-method is Newton’s method; see, e.g., Madsen and Nielsen [1990] and Chang
and Guo [2005]. In general, Newton’s method needs less iterations to converge than the
IRLS method, as its convergence rate is quadratic, while the IRLS method has a linear
rate. However, the IRLS method is easier to implement and requires less computational
cost for large-size problems, in which the stochastic properties and consequently the
standardized residuals change within each iteration. We therefore choose to use the
IRLS method in a combination with VCE.

6.3.2 Choice of the distribution

Normal distribution

The cost function ρ(μj) under the assumption of a multivariate normal distribution reads

ρ(μj) =
μ2

j

2
. (6.24)

Therefore, the in�uence function reads

Ψ(μ̂j) = μ̂j, (6.25)
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and the ’robust’ weights ν2
j are all equal to 1. The least-squares approach, based on this

normal distribution, is, therefore, not a robust method. Outliers are equally weighted
with good observations. We have to use a method, which gives less weights to obser-
vations with a higher test statistic μj . The most commonly used distribution within the
M-estimation is Huber’s distribution.

Huber’s distribution

The Huber distribution [Huber, 1964, 1981] assumes the observations to be normally
distributed within an interval [−k, k], and a Laplace distribution outside this interval,
i.e. the cost function continues as a linear function outside the interval, decreasing the
in�uence of those observations. The distribution is de�ned as Eq. (6.15), where

ρ(μj) =

⎧⎪⎨
⎪⎩

μ2
j

2
if |μj| ≤ k

k · |μj| − k2

2
if |μj| ≥ k.

(6.26)

Koch [1999] recommends that if the number of outliers is about 4% of the observations,
one should use a threshold k = 1.5 and a threshold of k = 2.0 for the 1% level of
outliers. Normally, the threshold is set within this interval. The in�uence function,
which corresponds to the Huber distribution, is bounded outside the interval, i.e.,

Ψ(μ̂j) =

{
μ̂j if |μ̂j| ≤ k

k · μ̂j/|μ̂j| if |μ̂j| ≥ k,
(6.27)

reducing the weights to

ν2
j =

{
1 if |μ̂j| ≤ k

k/|μ̂j| if |μ̂j| ≥ k.
(6.28)

Tri-Weighted M-estimation

Observations with a test statistic |μ̂j| above a certain (second) threshold k2, with k2

ranging between 3.0 and 8.5 [Yang et al., 2005], are likely to be outliers. Huber’s
M-estimation down-weights these observations, instead of removing them. The Tri-
Weighted M-estimation gives zero weights to observations with a test statistic outside
the interval [−k2, k2] and assumes a Huber distribution within this interval. The cost
function then reads

ρ(μj) =

⎧⎪⎨
⎪⎩

μ2
j/2 if |μj| ≤ k1

k1 · |μj| − k2
1/2 if k1 < |μj| ≤ k2

k1 · k2 − k2
1/2 if k2 < |μj|.

(6.29)
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The in�uence function is equal to the in�uence function of the Huber distribution within
the interval [−k2, k2] and is zero outside this interval:

Ψ(μ̂j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ̂j if |μ̂j| ≤ k1

k1 · μ̂j

|μ̂j| if k1 < |μ̂j| ≤ k2

0 if k2 < |μ̂j|.
(6.30)

The weights of the Tri-Weighted M-estimation are

ν2
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |μ̂j| ≤ k1

k1

|μ̂j| if k1 < |μ̂j| ≤ k2

0 if k2 < |μ̂j|.
(6.31)

In Olsen [2002], the Tri-Weighted M-estimation was used to re-weight magnetic data
from the Ørsted satellite (k1 = 1.5 and k2 = 5.0).

IGG-3 scheme (Yang)

A short-coming of the Tri-Weighted M-estimation is the discontinuity of the in�uence
function at the threshold k2. In Yang [1994] a modi�cation of the Tri-Weighted M-
estimation is proposed, in which the in�uence function decays towards 0, making the
in�uence function continuous

Ψ(μ̂j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ̂j if |μ̂j| ≤ k1

k1 · μ̂j

|μ̂j| ·
(

k2 − |μ̂j|
k2 − k1

)2

if k1 < |μ̂j| ≤ k2

0 if k2 < |μ̂j|.
(6.32)

with equivalent weights

ν2
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |μ̂j| ≤ k1

k1

|μ̂j| ·
(

k2 − |μ̂j|
k2 − k1

)2

if k1 < |μ̂j| ≤ k2

0 if k2 < |μ̂j|.
(6.33)

Modi�ed Yang distribution

A modi�cation of the IGG-3 scheme is to replace the power 2 by an arbitrary power α:

Ψ(μ̂j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ̂j if |μ̂j| ≤ k1

k1 · μ̂j

|μ̂j| ·
(

k2 − |μ̂j|
k2 − k1

)α

if k1 < |μ̂j| ≤ k2

0 if k2 < |μ̂j|.
(6.34)
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With this, α = 0 represents the Tri-Weighted M-estimation, α = 1 corresponds to a
parabolic cost function within the interval |μj| ∈ [k1, k2] and α = 2 represents the IGG
scheme. The parameter α can be considered as an extra free parameter, to be chosen
depending on the data.

6.3.3 Cost Function Estimation (CFE)

Up till now, we have assumed that the probability density function of the observations
is known. The function is either a �xed distribution, like the normal distribution or
one needs to de�ne certain shape parameters, e.g., the threshold k in case of a Huber
distribution. The treatment of the outliers and consequently the estimation of the vector
of unknowns and the stochastic model is, therefore, largely dependent on the rather
arbitrary choice of these shape parameters.

In general, we do not have any prior information on the shape of the probability den-
sity function. However, we can use the large redundancy in the time series of satellite
gravity data to estimate this probability density a-posteriori. With a suf�cient para-
metrization of this function, this information can be used in the next iteration of the
M-estimation. In this way, an estimate of the probability density function is obtained
at convergence. Consequently, the parametrization of this function will produce robust
weights, which better suit the error characteristics of the data than any �xed distribution.

The histogram f ′(μ) of the a-posteriori standardized residuals μi will be a suitable
estimate of the probability density function f(μ). In Constable [1988], it was suggested
to �t an analytical function ρ(μ) through the empirical cost function ρ′(μ) = − ln f ′(μ).
This approach has been used in the robust weighting of geomagnetic data.

We have to �nd an analytical function to �t the empirical cost function. Constable
[1988] suggests to use B-spline basis functions to parameterize this function. More
information on the �tting of these splines can be found in Constable and Parker [1988].

Our approach is to group the bins of the empirical function ρ′(μ) and estimate a
second order polynomial ρi(μ) = ai · μ2 + bi · μ + ci for each group of bins. If one
assumes symmetry in μi, one could take the absolute value |μi| of these standardized
residuals. In �gure 6.2, we have made 4 groups of 10 bins to estimate the analytical cost
functions ρi(μ) of the simulated data set of �gure 6.1

With n second order polynomials ρi to be estimated, we should compute a total of
3 · n coef�cients. However, we have put some extra constraints on the estimation of the
polynomials:

- It is not necessary for polynomials to be continuous at the interval boundaries di.
However, the �rst derivatives need to be continuous at these boundaries to ensure
a continuous in�uence function and a continuous weight function. This leads to
the �xed constraint 2 · ai · di + bi = 2 · ai+1 · di + bi+1.

- The �rst derivative of the �rst polynomial must be equal to zero at μ = 0. There-
fore, b1 = 0.
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Fig. 6.2: Empirical cost function from simulated data (circles), compared to the
analytical cost functions ρi(μ) (solid line) and the cost function of the normal
distribution (dashed line).

- The last polynomial ends at dn and is then extended to dn+1. The �rst derivative
in dn+1 is zero to ensure zero weight at dn+1.

- The observations with a test statistic above dn+1 should either be removed or given
zero weight.

If the �xed constraints on the parameters are written as the linear combination

Kx = c (6.35)

the constraint system of normal equations will read[
N KT

K 0

] [
x̂

λ̂

]
=

[
h
c

]
(6.36)

(see Koch [1999]), with λ the vector of Lagrange multipliers. Using Eq. (6.18), we can
easily obtain the analytical in�uence function:

Ψi(μ) = 2 · aiμ + bi. (6.37)

The in�uence function of the simulated data set is plotted in �gure 6.3.
The last part [dndn+1] of such an estimated in�uence function is always a straight

line towards zero. The robust weights can easily be retrieved using Eq. (6.20):

νi(μ) =

√
ai +

bi

μ
. (6.38)
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Fig. 6.3: In�uence function (CFE) of the simulated data set (solid line), compared
to the in�uence function, derived from the standard normal distribution (dashed
line).

Fig. 6.4: Analytical weight function νi(μ) from CFE for the simulated data set
(solid) line, compared to the normal distribution (dashed line).
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The robust weights of the simulated data set are shown in �gure 6.4.
One could normalize the weight function by dividing it by

√
a1, i.e., setting ν1(μ) to

1.0. However, this is not necessary, as these relative weights will be factorized later in
the M-estimation of the variance components to ensure unbiasedness.

6.3.4 M-estimation of the variance components

Outliers will have a large impact on the stochastic model validation method (e.g., VCE),
as the large residuals of the outliers are squared in the estimation of the variance compo-
nents. Therefore, one does not only have to reduce their weight in the estimation of the
unknowns, but also in the estimation of the variance components. The conventional 3-
sigma rule removes all possible outliers from the data. In this way, the VCE is assumed
to be free of outliers. We will focus here on the estimation of the variance components,
in combination with the robust M-estimation.

Restricted Maximum Likelihood Estimation

First, we will try to derive the equations of the (Restricted) Maximum Likelihood, sim-
ilar to what has been done in section (4.3.3) for normally distributed data. The REML
maximizes the conditional density function

p(y|γ) =

∞∫
−∞

. . .

∞∫
−∞

p(y|x, γ)p(x|y)dx. (6.39)

The density function p(y|x, γ) can be written as the product of the density functions of
each observation yj , i.e.,

p(y|x, γ) =
m∏

j=1

p(yj|x, γj). (6.40)

For many M-estimators, the shape of the density function p(yj|x, γj) depends on the
test statistic μj and consequently on yj . This is an undesirable situation, as one needs to
integrate a function over x and the shape of the function is unknown. It is therefore not
possible to derive the REML of the variance components unless the shape of the density
function is independent of the actual test statistic μj [Stahel and Welsh, 1997], like in
the normal distribution or the Cauchy-Lorenz distribution (i.e. p(x) ∝ 1/(1 + x2)).

We shall now discuss two alternative methods, which will modify the IREML esti-
mator for normally distributed data by reducing the in�uence of possible outliers.

Re-weighting of the observations

The equations for the estimators of the variance components can be robusti�ed by a
re-weighting of the observations. We choose not to change the stochastic model (and
weight matrix W ), but to down-weight the observations by a pre-multiplication of y and
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A with the diagonal matrix Dν (see Eq. (6.22)), similar to what has been done in the
robust estimation of the vector of unknowns x. A scaling by a factor κj is necessary to
make the estimator unbiased.

We shall now derive the robusti�ed equations for several Variance Components Es-
timators. We start with the general case, in which we assume that all observations are
correlated to each other. The equations for MINQUE (Eq. (4.28)) will change to

E{uR} = SRγR (6.41)

with
SR

ij = tr(RRQiR
RQj)

uR
j = κj · (êR)T Q−1

y QjQ
−1
y êR,

in which the robusti�ed Rao’s matrix RR is de�ned as

RR := Q−1
y −Q−1

y DνA(AT DνQ
−1
y DνA)−1AT DνQ

−1
y (6.42)

and the robusti�ed residual vector êR can be computed by

êR := Dν · (y − Ax̂R), (6.43)

with x̂R the M-estimator of x. If we do not take the correction factor κj into account,
the solution will be biased, as a data set with a standard normal distribution (e.g., z ∼
N(0, 1)) will have an estimated standard deviation of less than 1. The reason is the
re-weighting of the residuals ê, which will also be done for observations that follow the
standard normal distribution, but have a large test statistic.

The correction factor κj can be computed as follows. If we write uj as

uj = κj · êT DνQ
−1
y QjQ

−1
y Dν ê

= κj · êT D−1
σ̂ Dσ̂DνQ

−1
y QjQ

−1
y DνDσ̂D

−1
σ̂ ê

= κj · μ̂T Dσ̂DνQ
−1
y QjQ

−1
y DνDσ̂μ̂,

(6.44)

with Dσ̂ the diagonal matrix containing the diagonal elements of Qy, the factor κj is
derived as

κj = E

{
zT Dσ̂Q

−1
y QjQ

−1
y Dσ̂z

zT Dσ̂DνQ−1
y QjQ−1

y DνDσ̂z

}
, (6.45)

and can be computed using several realizations of the m× 1 vector z, of which the ele-
ments have a standard normal distribution. Similar to this, we can derive the equations
for the IREML in the general case, with correlated observations, i.e.

γ̂i =
κi · (êR)T Q−1

y QiQ
−1
y êR

tr(RRQi)
γ̄i. (6.46)

If we assume uncorrelated observation groups with multiple variance components to
be estimated per observation group, the implementation of the M-estimation algorithm
to MINQUE reads (cf. Eq. (4.94))

E{uR} = SRγ (6.47)
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with

SR
ij |u=v = tr(WvCvkWvCvl)− 2tr((NR)−1AT

v DvWvCvkWvCvlWvDvAv) +
+ tr((NR)−1AT

v DvWvCvkWvDvAv(N
R)−1AT

v DvWvCvlWvDvAv)
SR

ij |u �=v = tr((NR)−1AT
u DuWuCukWuDuAu(N

R)−1AT
v DvWvCvlWvDvAv)

uR
j = κvl · êT

v DvWvCvlWvDvêv,

where Du is the diagonal matrix with the robust weights of data set u as diagonal ele-
ments and NR de�ned as

NR := AT DνQ
−1
y DνA. (6.48)

The corresponding robusti�ed IREML can now be derived and reads (cf. Eq. (4.102))

σ̂2
v,l =

κvl · êT
v DvWvσ̄

2
v,lCvlWvDvêv

tr(WvCvl)− tr((NR)−1AT
v DvWvCvlWvDvAv)

. (6.49)

For comparison with Fellner’s approach [Fellner, 1986], we will further simplify the
equations by assuming only one variance component to be estimated per observation
group and the identity matrix as the cofactor matrix. The equations for the IREML
simplify to

γ̂R
j =

κ · êT
j Dν,jDν,j êj

mj − tr((NR)−1NR
j )

=
κ · γ̄j ·Ψ(μ̂

j
)T μ̂

j

mj − tr((NR)−1NR
j )

,

(6.50)

with Dν,i the mj × mj diagonal matrix with the robust weights of the observations of
y

j
, and the normal matrices de�ned as

NR
j = AT

j Dν,jDν,jAj ; NR :=

p∑
j=1

NR
j . (6.51)

The correction factor κ can now easily be derived:

κ =
1

E {Ψ(z) · z} ; z ∼ N(0, 1). (6.52)

Fellner’s approach

In the approach suggested by Fellner [1986] and Dueck and Lohr [2005] the residual êi

is replaced by the bounded residual

êB
i = Ψ(μ̂i) · σ̂i = êi · νi · νi (6.53)

under the assumption that the stochastic model consists of uncorrelated observation
groups with the identity matrix as cofactor matrix of group i. The normal matrices are
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computed during the M-estimation of the vector of unknowns. Fellner’s robust variance
component can then be estimated by

γ̂B
i =

κ′ · γ̄i ·Ψ(μ̂
i
)T Ψ(μ̂

i
)

mi − tr((NR)−1NR
i )

=
κ′ · êT

i Dνi
Dνi

Dνi
Dνi

êi

mi − tr((NR)−1NR
i )

,

(6.54)

with

κ′ =
1

D{Ψ(z)} ; z ∼ N(0, 1). (6.55)

Hence, the re-weighting of the observations is not consistent in Fellner’s approach. The
observations, and consequently the elements of the normal matrices (which enter into
the denominator of Eq. (6.54)), are re-weighted by a factor νi, contrary to the residuals
in the nominator of Eq. (6.54), which are re-weighted by a factor ν2

i .

Decreasing in�uence function

One should be cautious to use Fellner’s approach or the re-weighting of the observations
if the in�uence function decreases for high test statistics μi. This can happen, e.g., with
a cost function estimation or the tri-weighted M-estimation. The residual square sum
Ψ(μ̂

j
)T Ψ(μ̂

j
), or to a lesser extend Ψ(μ̂

j
)T μ̂

j
, will decrease towards zero at conver-

gence for a data set with several outliers. However, these outliers will be counted in the
number of observations (and consequently in the redundancy number), resulting in too
optimistic values for the variance components. In the next iteration, the observations
will be further down-weighted, which decreases the residual square sum even further.
The variance component will converge to a too optimistic value, which can even be
zero. A solution to this is to use a bounded in�uence function (e.g., Huber’s in�uence
function) in the estimation of the variance components.

6.4 Summary

In the least-squares approach, one tries to minimize the residual square sum of the ob-
servations. However, a set of observations is in general contaminated by outliers. These
outliers can have large effects on the estimation of the vector of unknowns and the var-
iance components.

The outliers should therefore be detected and effectively be down-weighted or re-
moved. As outliers are observations, which do not follow the assumed stochastic model,
one should be careful in assuming correlations between the observations in the detection
step of the outliers. We suggest to consider correlations in the least-squares estimation
of the vector of unknowns and in the VCE, but to neglect correlations in the detection
of outliers, when dealing with large time series of satellite gravity data.
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Hypothesis testing to detect an outlier in the set of observations leads to the classical
w-test. An approximation is to use the standardized residual, i.e., the residual (after
least-squares adjustment) divided by the a-posteriori standard deviation of the observa-
tion, which can be estimated by VCE.

Conventional outlier removal techniques remove those outliers that have a standard-
ized residual (test statistic) above a certain threshold. An observation is good or bad and
there is nothing in between. Robust M-estimation looks at the outlier treatment problem
from a different point of view. It assumes a different distribution than the normal distri-
bution and therefore assumes a higher probability for the outliers. In this way, possible
outliers are down-weighted in the least-squares estimation.

We suggest to go one step further and estimate the probability density function us-
ing the adjusted residuals, i.e. we perform a Cost Function Estimation (CFE) on the
standardized residuals. This can only be done if a suf�ciently large number of residuals
is available. The estimation of the cost function depends on the estimated stochastic
model and vice versa. Therefore the variance component estimation, the estimation of
the parameters of the probability density function and the outlier detection (and down-
weighting) should be done in an iterative process.

A robusti�cation of the VCE was suggested by Fellner [1986]. The residuals are
bounded to have less in�uence on the estimation of the variance components. We found
that this method down-weights the outliers twice, compared to the down-weighting of
the observations in the estimation of the vector of unknowns. We therefore suggest to
modify Fellner’s approach and down-weight the observations to an equal amount for
both VCE and the estimation of the vector of unknowns.
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7
Application 1: CHAMP satellite

gravity data

In this chapter, we will derive pseudo-observations from the primary data collected on
board the CHAMP satellite using the energy balance approach (EBA). The different
arcs of the CHAMP data are re-weighted using Monte Carlo variants of MINQUE,
IREML and Lerch’s subset solution method. Different outlier treatment algorithms are
compared, such as the conventional 3-sigma rule, M-estimation and the Cost Function
Estimation. A quality description of the derived satellite-only global gravity models is
obtained by taking the difference with the EIGEN-GL04C model [Förste et al., 2008],
which is much more accurate in all bandwidths than any CHAMP-only model. The
best satellite-only solution is then combined with the EGM96 model. Inconsistencies
between the two models are tested and, where necessary, estimated and a re-estimation
of the stochastic properties of the EGM96-model is performed. Part of the results have
been published in Van Loon [2007], and early results on the combination with prior
information are published in Van Loon and Kusche [2007].

We have used CHAMP data to test the different algorithms and to be able to compare
the methods to better, independent, global data from the GRACE/LAGEOS combined
model EIGEN-GL04C. However, these algorithms can also be applied to any other time
series, e.g., to data obtained from the GRACE or GOCE satellite missions.

7.1 The energy balance approach for gravity recovery

The energy balance approach is based on the fact that the motion of a satellite orbiting
the Earth is highly correlated with the gravity �eld of the Earth. Other forces, such as
tidal forces or non-conservative forces, will either be measured or modelled and their
contribution will be removed from the data. The total energy of gravity (plus modelled
forces) and kinematics is conserved. The basic idea of the energy balance approach
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goes back to the early days of satellite geodesy [O’Keefe, 1957]. In Jekeli [2001], it
was shown that, when neglecting some smaller effects (e.g., electromagnetic interaction,
polar motion, precession, nutation), the gravity �eld of the Earth can be modelled with
the use of the satellite’s orbit vector, the knowledge of the non-conservative forces, the
Earth’s rotation and models concerning the tides and loading effects. For any position
(r) of the satellite, with t the point in time, the gravitational potential at that point can
be estimated by Jekeli [1999]:

V (r) ≈ 1

2
‖ṙ‖2−

∫ t

t0

f(τ)·ṙ(τ)dτ−ωe(r1ṙ2−r2ṙ1)−
∫ t

t0

∇Vtides(τ)·ṙ(τ)dτ−C, (7.1)

with
V (r) = gravitational potential at position r [m2s−2],
ṙ = time-derivative of the position vector r [ms−1],
f = vector of non-conservative forces [ms−2],
ωe = rotation of the Earth [rad/s],
Vtides = model of the tidal potential [m2s−2],
C = energy constant [m2s−2].

This form of the EBA is often referred as the Jacobi integral. Alternative energy
balance relations can be found in Löcher and Ilk [2007]. The EBA has been successfully
used in global gravity �eld modelling using CHAMP orbits (e.g., Han et al. [2002]), and
GRACE orbits (e.g., Han et al. [2005b]).

The velocity of the satellite is measured by hl-SST GPS measurements. For each arc,
i.e., piece of orbit with no data gaps in the GPS measurements, the pseudo-observations
νi of Eq. (7.1) can be computed by:

νk =
1

2
‖ṙk‖2−Δt

k∑
j=0

f
j
· ṙj−ωe(rk,1ṙk,2−rk,2ṙk,1)−Δt

k∑
j=0

∇Vtides,j · ṙj−Ci, (7.2)

with Δt the time interval between two consecutive GPS measurements and Ci the en-
ergy constant for arc i. The velocity vector ṙk can be derived from the orbit positions rk

using numerical differentiation. The vector of non-conservative forces f
j

is measured
by the on board accelerometer. The rotation of the Earth ωe is assumed to be known and
is mainly derived from VLBI measurements. Tidal models are used to estimate Vtides.

Many research groups (Han et al. [2002], Howe and Tscherning [2003], Kang et
al. [2003] and Perosanz et al. [2003]) have found a bias, a drift and a scaling factor
in the measurements of the accelerometer. Together with the energy constant, these
low-frequency errors in the pseudo-observations need to be subtracted from the obser-
vations by, e.g., using a low-degree polynomial. As the coef�cients of this polynomial
are different for each arc, these coef�cients will be treated as local parameters in the ad-
justment procedure. To estimate these parameters, one should �rst subtract an a-priori
global gravity �eld xR from the observations:

y
i
= νi − AisxR (7.3)
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Next, a low-degree polynomial will be �tted through these (reduced) pseudo-observations
to account for the low-frequency noise. The functional model then reads (cf. Eq.
(3.19)):

E{y
i
} = E{νi} − AisxR

= AisxG + Aiixii − AisxR

= Aisxs + Aiixii

(7.4)

with xG the unknown spherical harmonic coef�cients of the Earth’s gravity �eld.
Other research teams remove the local parameters (drift, polynomial, bias) in a pre-

processing step, based on νk time series and / or cross-over adjustments. Yet we consider
them as local parameters in a joint estimation with the global spherical harmonic coef-
�cients. One of the advantages of this approach is that we can study the correlations of
the local parameters with the spherical harmonic coef�cients.

7.2 Test setup 1: One data set (232 days)

Available data

Two years of CHAMP kinematic orbit data have been kindly provided by D. �Svehla,
IAPG, TU Munich. These orbits were processed following the zero–differencing strat-
egy [ �Svehla and Rothacher, 2003], and were provided with full three-dimensional variance-
covariance information per data point. Whenever the standard deviation exceeds the
threshold of 10 cm, the data point is removed and the data batch is cut into two parts. In
this way, the two year data set is split into 9476 batches.

We start with the 1250 longest data batches, ranging between 2.7 hours and 20.4
hours. The total number of selected observations is 668465, equivalent to 232 days.

To derive kinematic velocities from the kinematic orbit we use the 7-point Lagrange
interpolator:

ẋi ≈ a3 · xi+3 + a2 · xi+2 + a1 · xi+1 − a1 · xi−1 − a2 · xi−2 − a3xi−3

c ·Δt
, (7.5)

in which a1 = 45, a2 = −9, a3 = 1 and c = 60. The accelerometer and quaternion data
have been provided by GFZ, Potsdam. The direct tidal acceleration is modelled by JPL
DE ephemeris, the solid earth tides follow IERS conventions and we use GOT 99.2 to
account for the ocean tides [Ray, 1999]. The derived pseudo-observations are assumed
to be uncorrelated.

Estimated global parameters

The gravitational �eld of the Earth, V , is a harmonic function outside the sources and
can, therefore, be written as

V (ϑ, λ, r) =
GM

R

∞∑
l=0

(
R

r

)l+1 l∑
m=0

[C̄lm cos mλ + S̄lm sin mλ]P̄lm(cos ϑ) (7.6)
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As it is not possible to estimate an in�nite number of coef�cients, a global model of the
gravitational �eld is usually a truncated version of this harmonic expansion:

VG(ϑ, λ, r) =
GM

R

L∑
l=0

(
R

r

)l+1 l∑
m=0

[C̄lm cos mλ + S̄lm sin mλ]P̄lm(cos ϑ). (7.7)

As it was stated before, to remove the low-degree polynomial, one needs to subtract
a reference model from the observations. We have subtracted pseudo-observations in-
duced by the EGM96 model [Lemoine et al., 1998]. The scalar Aisxs, as a part of the
functional model can, therefore, be written as

δV (ϑi, λi, ri) = Aisxs

=
GM

R

L∑
l=0

(
R

ri

)l+1 l∑
m=0

[ΔC̄lm cos mλi + ΔS̄lm sin mλi]P̄lm(cos ϑi),

(7.8)
with ΔC̄lm and ΔS̄lm the reduced spherical harmonic coef�cients. In this test setup,
we truncate the global model to degree and order L = 75, with �xed coef�cients for
degrees l = 0 and l = 1, resulting in a total number of 5772 coef�cients. The truncation
degree L = 75 is chosen to minimize the sum of commission errors (noise + aliasing)
and omission errors. However, as the high degrees (50 ≤ l ≤ 75) are poorly resolved
by CHAMP and they suffer from spatial aliasing of the higher degrees (l > 75), we will
only compare the solution up to degree l = 50.

The EIGEN-GL04C model

The EIGEN-GL04C global gravity model (�gure 1.1) is a combined model, complete to
degree 360, derived from GRACE data, LAGEOS data, and surface gravity data [Förste
et al., 2008]. The LAGEOS data mainly improve the low-degree spherical harmonics
(up to degree 30), the GRACE data are used up to degree 150, and the surface gravity
data (gravimetric and altimetric) strengthen the entire bandwidth, up to degree and order
360. As the model does not include CHAMP satellite data, the model can be used to
evaluate the CHAMP satellite-only solutions. The combination models computed in
this chapter (a combination with the EGM96 model) can not be considered independent
of the EIGEN-GL04C model, as some surface gravity data is used in both models. The
mean accuracy (commission error) up to degree 360 is estimated to be 15 cm. The
North-South pattern seen in many GRACE-only models is largely reduced. We will use
this combination model to evaluate our satellite-only and combination models.

Estimated local parameters

We have estimated (and tested) 6 local parameters per data set, i.e., a bias and a drift in
the observations, and parameters to account for two periodic effects (1 cycle per revo-
lution (cpr) and 2 cpr). The local parameters were tested for signi�cance (see section
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(3.2.2)), and the test results can be found in table 7.1. As such tests can only be per-
formed with a proper stochastic model, we have computed the test statistics after the
estimation of the variance components with MINQUE.

Tab. 7.1: Test statistics Ω for the signi�cance of the local parameters (κα =
3.842, α = 0.05), with t the time of the observation and T the period of revo-
lution.

Parameter
% of data sets Statistics of Ω

(Ω < κα) mean min. max.
Bias 0.00 % 2.67 · 1012 8.28 · 109 1.46 · 1013

Drift 7.44 % 1.79 · 103 9.91 · 10−5 1.38 · 105

cos(2π · t/T ) 54.00 % 10.79 4.77 · 10−5 1.28 · 103

sin(2π · t/T ) 50.32 % 11.02 3.37 · 10−6 6.30 · 102

cos(4π · t/T ) 37.04 % 20.20 1.58 · 10−4 3.50 · 102

sin(4π · t/T ) 37.60 % 23.31 8.80 · 10−6 3.75 · 102

The test statistics for the bias and drift in the observations clearly show that these
two parameters are signi�cant, as the majority of the data sets have a test statistic Ω
above the critical value κα. The bias absorbs the energy constant of the EBA and the
drift absorbs the bias in the accelerometer, the latter under the assumption that the along-
track satellite velocity is nearly constant. The four parameters of the periodic effects can
also be considered signi�cant, although in approximately half of the data sets they were
found to be insigni�cant. As the mean and maximum values of these test statistics are
well above the critical value κα, we can conclude that also these 4 local parameters are
signi�cant and should be included in the least-squares estimation procedure.

As we solve for spherical harmonic coef�cients and local parameters in a joint esti-
mation process, we can compute correlations between these parameters. In Kusche and
Van Loon [2005], we have shown that the correlations between the local parameters and
the spherical harmonic coef�cients are negligible. In this study, we have computed the
mean correlations among the local parameters. Apart from strong correlations between
the bias and the drift, we can see that the mean correlations all lie within the inter-
val [−0.20, 0.20]. The correlation between the bias and drift is not only increasing for
smaller data sets [Kusche and Van Loon, 2005], but it also shows a periodic function at
the orbit frequency and twice the orbit frequency; see �gure 7.1. One should therefore
avoid over-parametrization in the case of very small data sets, as the local parameters
will be strongly correlated.

7.3 Re-weighting of the data sets

Equal weighting

We start with the most simple experiment, in which we weight all 1250 data sets equally
and we do not try to �nd any outliers in the data. This is the standard approach in
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Fig. 7.1: Correlations between the estimated bias and drift for 1250 data sets
(blue), with in red an approximative function.

satellite gravity �eld modelling using the newest CHAMP or GRACE data. We will
show that the solution can be improved signi�cantly using VCE techniques and a proper
treatment of the outliers. A plot of the geoid height differences with EIGEN-GL04C (up
to degree 50) can be found in �gure 7.2. The solution contains large errors and a clear
North-South pattern is visible in the geoid height differences with EIGEN-GL04C. The
erroneous data should be down-weighted by VCE.

Error statistics [m]

min. -2.071
max. 2.104
mean 0.000
RMS 0.420

Fig. 7.2: Geoid differences [m] between the satellite-only solution and EIGEN-
GL04C (l ≤ 50) before re-weighting of the data sets and without a treatment of
the outliers.
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MINQUE

As we assume normally distributed observations, the MINQUE estimator will have min-
imum variance (BIQUE) and converges to maximum likelihood (REML-fs). Moreover,
as the data sets are assumed to be uncorrelated, the Helmert VCE will produce the same
results. We have estimated the variance components using a Monte Carlo variant of
MINQUE. Only three iterations were necessary to obtain convergence, as can be seen
in �gure 7.3.

Fig. 7.3: Calibration factor between iteration 2 and 3 and between iteration 3 and
4

This �gure shows that iteration 4 would give almost the same results as iteration
3. Hence, only 3 iterations were necessary to obtain convergence (of which the �rst
iteration is the ’equal weight solution’). The estimated standard deviations (iteration 3)
for all 1250 data sets are displayed in �gure 7.4.

Fig. 7.4: Estimated standard deviations
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It becomes clear that some spurious data sets are present in the CHAMP gravity
data. These data could have caused the stripe pattern in the earlier solution using equal
weights. Due to the near-polar orbit of the CHAMP satellite, some bad orbits will
deteriorate the solution with some erroneous north-south pattern. The spurious data sets
are however detected by MINQUE and consequently down-weighted. If one assumes
the data to be normally distributed, one could estimate the uncertainty in the estimates
of the variance components; see Eq. (4.33). The standard deviations (uncertainties) of
the estimated variance components (BIQUE or REML-fs) are plotted as error bars in
�gure 7.5. The estimation of the variance components of the spurious data sets is less
accurate (up to σ = 18.3 m4/s4), compared to the other data sets, which had an accuracy
of σ ≈ 0.06− 0.10 m4/s4. The VCE does not only down-weight the spurious data sets,

Fig. 7.5: Uncertainty in the BIQUE and REML-fs estimates for data sets 500-550
(including the spurious data sets).

but also re-weights the other data sets, of which the quality can vary considerably. The
estimated standard deviations and corresponding weights can be found in �gure 7.6.

The maximum likelihood of the estimated standard deviations lies close to 1.0 m2/s2.
The �gure of the weight estimates (�gure 7.6, right) shows the variations of the weight
estimates for each data set. If we use these weights in the Weighted Least-Squares Es-
timation, we can improve the solution considerably. The statistics of the geoid height
differences with EIGEN-GL04C are shown in table 7.2.

The table shows the large improvements by VCE in terms of geoid height differ-
ences with EIGEN-GL04C, for different bandwidths, i.e., l ≤ 10 and l ≤ 50. Even
if we remove the sequence of the 7 bad data sets, the VCE decreased the geoid height
differences from σ = 19.1 cm to σ = 12.7 cm for l ≤ 50. A spatial plot of these
geoid height differences is shown in �gure 7.7. The erroneous stripe pattern, present
in the equal weighting solution, has vanished once a proper stochastic model has been
implemented using VCE. Hence, VCE has successfully down-weighted these spurious
data sets.
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Fig. 7.6: Top: estimated standard deviations of the CHAMP data sets. Bottom:
corresponding weights of these data sets.

Tab. 7.2: Statistics of the geoid height differences [m] between various satellite-
only solutions and EIGEN-GL04C. The solutions differ in the way the weights of
the data sets are determined.

VCE Data l ≤ 10 l ≤ 50
method sets Max. RMS Max. RMS
γi = 1.0 1250 0.137 0.045 2.104 0.420
γi = 1.0 1243 0.101 0.036 0.920 0.191

MC-MINQUE 1250 0.104 0.036 0.616 0.127
MC-IREML 1250 0.104 0.036 0.616 0.127
MC-Lerch 1250 0.102 0.035 0.563 0.126

IMLE 1250 0.104 0.036 0.616 0.127
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Error statistics [m]

min. -0.547
max. 0.616
mean 0.000
RMS 0.127

Fig. 7.7: Geoid differences [m] between the satellite-only solution and EIGEN-
GL04C (l ≤ 50) after a re-weighting of the data sets using MINQUE (3 iterations).
No treatment of the outliers.

Iterative Restricted Maximum Likelihood Estimator (IREML)

The Iterative Restricted Maximum Likelihood Estimator (IREML) converges to the
same estimates as the MINQUE. The results are therefore equal to the MINQUE re-
sults; see table 7.2. However, the Monte Carlo IREML is much faster than the Monte
Carlo variant of MINQUE. In this test setup, the computations of MC-MINQUE took
100 times more CPU time than the computation of the MC-IREML estimates.

The computational costs of MC-MINQUE increase with the number of independent
elements of S, i.e. p·(p+1)/2, whereas the computational costs of MC-IREML increase
with p, where p is the number of variance components to be estimated. The choice
whether to use MC-IREML or MC-MINQUE is therefore dependent on the size of the
problem, if one requires a quality description of the estimated variance components and
if negative variance components are allowed.

Lerch’s subset solution method

We have also tested the Monte Carlo variant of Lerch’s subset solution method. The
estimated standard deviations are compared with the estimated MC-MINQUE standard
deviations in �gure 7.8. Although Lerch’s subset solution method is derived from a
different point of view than the MINQUE method, the results are very similar. The
results in terms of geoid difference with EIGEN-GL04C are therefore almost identical to
the MC-MINQUE results. The estimated standard deviations for the spurious data sets
are however too high in Lerch’s method, compared to the unbiased MINQUE estimates.

The main disadvantage of Lerch’s subset solution are the computational costs, as
one has to solve p systems of normal equations. In this test setup, the CPU time of the
subset solution method was by a factor 155 larger than the computation of the IREML
estimates.
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Fig. 7.8: Comparison between the estimates of Lerch’s subset solution method
and MINQUE estimates for data sets 500-550.

Iterative Maximum Likelihood Estimator (IMLE)

The results of the IMLE are, in this test setup, almost the same as the MINQUE esti-
mates; see �gure 7.9. The difference between IMLE and IREML is that we neglect the
trace of the group in�uence matrices when computing the IMLE. As all groups only
have a small in�uence on the total solution, compared to the number of observations,
we could approximate the redundancy number by using the number of observations.

Fig. 7.9: Comparison between the IMLE and MINQUE estimates for data sets
500-550.

In this test setup, the quantities to compute the IMLE were easy to compute: êT
i êi/mi

and the computational costs are therefore negligible compared to the other VCE algo-
rithms. As can be concluded from table 7.2, all four proposed methods give comparable
results in this CHAMP experiment. Both MC-MINQUE and MC-Lerch methods are
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however quite time-consuming. As the MC-IREML method and the IMLE method are
both fast and give comparable results, we choose to use the MC-IREML method in fur-
ther computations, as this estimator is almost unbiased, compared to the biased IMLE
method.

7.4 Treatment of outliers

The stochastic model (and consequently the weights of the data sets) will be determined
by using the IREML (with Monte Carlo techniques to speed up the computations). How-
ever, to achieve reasonable variance estimates of this stochastic model, one should �rst
remove the effect of possible outliers. These outliers will deteriorate both the solution
of the vector of unknowns as the estimation of the stochastic properties of the data.

We will compare three methods to each other: the conventional 3-sigma rule, in
which one removes any possible outliers, the robust M-estimation and �nally the Cost
Function Estimation (CFE) technique, in which one down-weights possible outliers. We
start with the conventional 3-sigma rule.

Conventional 3-sigma rule

We have combined the μ-test to detect and remove outliers (κα = 3.0) with the MC-
IREML method to estimate the stochastic model. As outliers have an in�uence on the
estimation of the variance components and can only be detected with a proper stochastic
model, the two algorithms are connected, and we need several iterations for the MC-
IREML and the computation of the μ-test statistic.

We have used three iterations, in which all observations with a test statistic μ above
the threshold k = 3.0 are removed within each iteration. In this way, 2.1 % of the
CHAMP pseudo-observations has been removed. The results in terms of geoid height
differences with EIGEN-GL04C are shown in table 7.3. We can see that the removal
of the outliers has almost no effect on the estimation of the very low degrees (l ≤ 10),
no matter which outlier treatment technique is used. However, the solution up to degree
50 improved from 12.7 cm to 11.6 cm in terms of RMS of the geoid height differences
with EIGEN-GL04C.

M-estimation

The drawback of the conventional 3-sigma rule is the strict separation between good and
bad observations. An observation with a test statistic of μ = 2.99 is considered to be a
good observation and is given full weight, whereas an observation with a test statistic
of μ = 3.00 is considered to be an outlier and is removed. In the robust M-estimation
method, we increase the probability of outliers compared to the normal distribution. In
this way, possible outlying observations are given less weight. There is no clear cut-off.

126



Tab. 7.3: Statistics of the geoid height differences [m] between the satellite-only
solutions and EIGEN-GL04C.

VCE Outlier l ≤ 10 l ≤ 50
method treatment Max. RMS Max. RMS
γi = 1.0 - 0.137 0.045 2.104 0.420

MC-IREML - 0.104 0.036 0.616 0.127
MC-IREML 3-sigma 0.100 0.036 0.507 0.116

Fellner Huber 0.102 0.036 0.482 0.113
Fellner tri-weighted 0.101 0.036 0.454 0.112
Fellner CFE 0.099 0.037 0.470 0.113

Fellner (Huber) CFE 0.100 0.036 0.459 0.111

We have tested two well-known M-estimation weight functions: the Huber weight
function [Huber, 1964] and the tri-weighted weight function [Yang et al., 2005]. Both
weight functions start down-weighting the observations with a test statistic above k1 =
1.7. However, outliers with a very high test statistic, e.g., above 10, still receive a sub-
stantial weight. These observations are given zero weight, when using the tri-weighted
M-estimation. We have chosen to put this zero-weight threshold at k2 = 4.5. Fellner’s
approach has been used to remove the effect of outliers in the estimation of the variance
components.

The geoid height differences with respect to the EIGEN-GL04C model are given in
table 7.3. The tri-weighted method gives slightly better results than the Huber distribu-
tion, as the largest outliers are given zero weight.

Cost Function Estimation (CFE)

When considering the Huber distribution or the tri-weighted weight function, one as-
sumes that the observations have a certain �xed distribution. Based on this assump-
tion, one assigns pre-de�ned (robust) weights to the observations. In the CFE ap-
proach, we use the time series of the test statistic μi to estimate the distribution from
the observations. We consider the class of probability functions, which has the form of
Eq. (6.15) and can therefore uniquely determine the probability density function from
the cost function ρ(μ). The empirical cost function can now be retrieved by taking
ρ(μ) = − ln f(μ), of which f(μ) is approximated by the histogram of the test statistics
μi. The empirical cost function can be found in the top panel of �gure 7.10, together
with the estimated cost function, which is a linear combination of second order poly-
nomials. The �gure shows the cost function estimates after the three VCE iterations
(iter=1) and after the second series of three VCE iterations (iter=2). As both cost func-
tion estimates (and corresponding weighting schemes) are almost identical, we can stop
after two iterations of CFE.

The analytical function ρ(μ), expressed in sets of polynomials of the second order,
allows us to estimate the probability density function f(μ), the in�uence function Ψ(μ),
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Fig. 7.10: Top: empirical cost functions from 232 days of CHAMP pseudo-
observations, compared with the estimated analytical cost functions, for different
iterations of CFE. The boundary parameters are dn = 4.0 and dn+1 = 5.0. The
interval [0, dn] is divided into n = 4 groups and each polynomial is estimated
out of 8 bins. Middle: in�uence function Ψ(μ). Bottom: (normalized) weight
function ν(μ).
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and the weighting function ν(μ). The in�uence functions and the weight functions for
iteration 1 and iteration 2 are shown in the middle and bottom panel of �gure 7.10.
The weight function is scaled to ensure ν(0) = 1.0 for comparisons with the normal
distribution and the Huber distribution. This has no effect on the estimation of the
vector of unknowns, as it only changes the absolute weights and not the relative weights.
Moreover, the scaling factor κ in Fellner’s approach or RVCE will ensure unbiasedness
in the variance components.

As the in�uence function Ψ(μ) decreases towards zero, we have used the Huber
in�uence function in the computation of the variance components. This gave the best
results in terms of geoid height differences with EIGEN-GL04C, compared to other M-
estimation methods and the conventional 3-sigma rule method; see table 7.3. We will
now perform similar tests for a larger data set, i.e., the full two-year data set.

7.5 Test setup 2: Two year data set

We will now use the tested algorithms on the full data set of two years. The data set con-
sisted of 9476 different data batches (see section 7.2). As the correlations between the
local parameters increase drastically for smaller data sets (section 7.2) and the ef�ciency
(group in�uence / computational costs) decrease for smaller data sets, we excluded the
smallest data batches from this test setup. The smallest data set used had a time span
of 27 minutes. After the removal of the data batches lacking accelerometer data, we
could group the remaining batches according to time into 7 subsets of 1228 or 1229 data
batches. This was equivalent to 594 days. The number of observations for each subset
of the two-year data set is shown in �gure 7.4.

Tab. 7.4: Number of observations for each subset of the two-year data set

Data set Observations Equivalent days
1 174917 60.7
2 237364 82.4
3 174443 60.6
4 243897 84.7
5 283519 98.4
6 274759 95.4
7 320537 111.3

Total 1709436 593.6

We have used the data of data set 1 to compare the CFE to the tri-weighted weight
function and to compare Fellner’s approach to the re-weighting of the observations
(RVCE), see section 6.3.4. The results in terms of geoid height differences with EIGEN-
GL04C can be found in table 7.5.

We can conclude from table 7.5 that again the CFE performs better compared to
the conventional 3-sigma rule or the M-estimation. Both Fellner’s approach and RVCE
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Tab. 7.5: Geoid height differences [m] between the satellite-only solutions of data
set 1 and EIGEN-GL04C.

VCE Outlier l ≤ 10 l ≤ 50
method treatment Max. RMS Max. RMS
γi = 1.0 - 0.218 0.072 3.032 0.472
IREML - 0.191 0.063 2.383 0.443
IREML 3-sigma 0.164 0.048 1.963 0.404
Fellner tri-weighted 0.174 0.050 1.922 0.405
Fellner CFE 0.168 0.048 1.817 0.386

Fellner (Huber) CFE 0.166 0.049 1.810 0.387
RVCE tri-weighted 0.172 0.049 1.892 0.393
RVCE CFE 0.169 0.049 1.813 0.387

RVCE (Huber) CFE 0.166 0.049 1.804 0.388

show similar results. However, we prefer to use RVCE, as this method is consistent with
the M-estimation of the vector of unknowns. As data set 1 does not contain arcs with
many outliers, the Huberization of the VCE does not have much effect. However, we
will use this Huberization for the other data sets in case we encounter a data batch with
many outliers.

From each data set, a satellite-only gravity model is computed using the CFE, with
an Huberized RVCE. The estimated cost functions for the 7 subsets are shown in �gure
7.11.

Fig. 7.11: The CFE weight functions for the 7 independent subsets.

We can conclude from this �gure that the distributions of the independent subsets
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of observations are consistent with each other. The cost functions only deviate from
each other at the higher test statistics, as the accuracy of the polynomials for these
test statistics decrease through decreasing number of observations within a bin. The
statistics of the geoid height differences with EIGEN-GL04C are shown in table 7.6.

Tab. 7.6: Left: geoid height differences [m] between the 7 subset solutions and
EIGEN-GL04C. Right: estimated variance components in a joint estimation (Hu-
ber, RVCE)

subset
l ≤ 10 l ≤ 50 IREML RVCE

Max. RMS Max. RMS γ̂i γ̂i

1 0.166 0.049 1.804 0.388 3.74 3.30
2 0.101 0.035 0.892 0.190 2.74 2.01
3 0.101 0.031 1.804 0.368 3.07 2.76
4 0.080 0.027 0.955 0.215 2.70 2.43
5 0.145 0.054 1.137 0.252 3.79 3.27
6 0.154 0.060 0.758 0.169 2.53 1.99
7 0.081 0.029 0.767 0.160 2.07 1.83

At this point, we can look at the 7 satellite-only solutions as independent observation
groups with the spherical harmonic coef�cients as input observations. We have com-
bined the 7 data sets using REML to re-weight the observation groups and the Huber
distribution to re-weight the spherical harmonic observations (and down-weight possi-
ble outliers). The estimated variance components for the non-robust and robust case are
shown in table 7.6. It can be seen that a bad data set in terms of geoid height differences
with EIGEN-GL04C (external comparison), also obtains (using VCE) a high scaling of
the stochastic model (internal calibration). Moreover, one can clearly see in table 7.6
that the estimated variance components of the robusti�ed IREML are much lower than
the variance components of the non-robust IREML, due to a down-weighting of outly-
ing spherical harmonic coef�cients. The statistics of the geoid height differences of the
joint solution with EIGEN-GL04C are shown in table 7.7.

Tab. 7.7: Statistics of the geoid height differences [m] between the different
satellite-only solutions and EIGEN-GL04C.

VCE Outlier l ≤ 10 l ≤ 50
method treatment Max. RMS Max. RMS
γi = 1.0 - 0.096 0.036 0.387 0.088
IREML - 0.094 0.034 0.387 0.086
RVCE Huber 0.078 0.027 0.383 0.084

The RVCE satellite-only solution is clearly better in the very low degree (l ≤ 10)
than the solutions without a proper outlier treatment. The lowest degrees (l ≤ 4) are
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poorly resolved by satellite-only solutions and the CHAMP solution show inconsis-
tencies for these degrees with independent models, which we will discuss in the next
section. A plot of the geoid height differences with EIGEN-GL04C is shown in �gure
7.12.

Error statistics [m]

min. -0.314
max. 0.383
mean 0.000
RMS 0.084

Fig. 7.12: Geoid differences [m] between the CHAMP satellite-only solution and
EIGEN-GL04C (l ≤ 50) after a re-weighting of the data sets by RVCE.

7.6 Combination with a prior gravity model

7.6.1 The EGM96 global gravity model

The EGM96 global gravity model [Lemoine et al, 1998], which is complete up to de-
gree 360, had been the most widely used global gravity model before the launch of the
dedicated satellite missions CHAMP and GRACE. The model combines SLR data with
altimeter, terrestrial, marine and airborne gravimetry data. The re-weighting of the data
sets was partly done using Lerch’s subset solution method and partly by trial and error
comparisons with independent data.

The model scores very good in the oceanic regions, due to the availability of radar
altimeter data. A spatial plot of the geoid height differences with EIGEN-GL04C is
shown in �gure 7.13. As some surface gravity data have been used in both EIGEN-
GL04C and EGM96 models, these models can not be considered independent from
each other.

7.6.2 Stochastic model validation (�rst iteration)

If we want to combine the EGM96 model with the CHAMP satellite-only model, the
two data sets should be consistent with each other, in terms of the solution vector and
in the stochastic model. Any inconsistency between the two data sets, present in the
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Error statistics [m]

min. -2.230
max. 3.350
mean 0.000
RMS 0.259

Fig. 7.13: Geoid height differences [m] between EGM96 and EIGEN-GL04C
(l ≤ 50).

solution vector, should be tested and consequently removed from one of the two data
sets. Such a testing can only be done properly if the stochastic models are accurate
enough, both in relative terms and in absolute terms. However, the estimation of the
stochastic properties of a data set, e.g., by VCE, assumes the functional model to be
valid. Any systematic effects or inconsistencies should have been augmented in this
functional model.

As we expect that a proper stochastic model has more effect on the test of sig-
ni�cance of the inconsistencies than the augmentation of the functional model on the
stochastic model validation, we have chosen to start with such a stochastic model vali-
dation. After this, inconsistencies are tested and if necessary dealt with by an augmen-
tation of the functional models. Finally, the stochastic properties are re-estimated using
the augmented functional models.

(Robust) re-weighting of the data sets

We have compared the robust combination of EGM96 and CHAMP with the IREML
combination and the equal weight combination, of which the latter is the most common
procedure in combining a satellite-only solution with prior information in global gravity
�eld modelling. The advantage of the robust combination (Huber, k = 1.7) is that badly
determined coef�cients of either the CHAMP solution or the EGM96 solution are down-
weighted and will not disturb the determination of the weights by VCE. The results are
shown in table 7.8.

We can see that large improvements are made using the robust combination, com-
pared to the other two combination methods, especially in the lowest degrees. The
variance component of CHAMP was estimated at 5.79, the EGM96 variance compo-
nent at 4.82. Figure 7.14 shows the geoid height differences by degree. It becomes clear
that some low-degree spherical harmonic coef�cients in CHAMP are badly determined
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Tab. 7.8: Statistics of the geoid height differences [m] between different combi-
nation solutions and EIGEN-GL04C.

Solution
l ≤ 10 l ≤ 50

Max. RMS Max. RMS
EGM96 0.062 0.020 3.350 0.259

CHAMP 0.078 0.027 0.383 0.084

EGM96 + CHAMP

{ γi = 1.0 0.031 0.010 0.393 0.072
IREML 0.029 0.010 0.480 0.075
RVCE 0.019 0.006 0.417 0.069

or even biased with respect to EIGEN-GL04C and EGM96. The RVCE combination
down-weights such spurious spherical harmonic coef�cients. In this way these coef-
�cients are better determined in the combination solution. Moreover, it improves the
estimation of the other coef�cients, due to the mutual correlations, and it improves the
estimates of the variance components.

In the bottom panel of �gure 7.14, the focus is on the very low degree spherical
harmonics. A comparison is made between the non-robust IREML solution and the
robust RVCE solution. The IREML solution is close to the CHAMP-only solution due
to the much better stochastic model of the CHAMP spherical harmonic coef�cients.
The difference between the CHAMP-only solution and the combined IREML solution,
which is the residual vector of CHAMP in the �rst iteration of the RVCE solution, is
however still too large for the low-degree coef�cients, if we compare it to the re-scaled
stochastic model of CHAMP. Therefore, the standardized residuals μ̂i are very high for
the low-degree spherical harmonic coef�cients of CHAMP. This leads to lower robust
weights in the next iteration. At convergence, the robusti�ed stochastic models �t better
the actual residuals of EGM96 and CHAMP compared to the RVCE solution.

The robust RVCE combination enables us to treat the vector of unknowns (spherical
harmonic coef�cients) better by down-weighting outlying coef�cients. In this way, in-
consistent low-degree CHAMP coef�cients could be down-weighted, which improved
the combination solution considerably.

Eigenvalue decomposition

The publicly available VC-matrix of EGM96 is dense up to degree l = 70 and has
a diagonal structure for higher degrees [Lemoine et al., 1998]. The VC-matrix is the
outcome of a speci�c weighting scheme (Lerch subset solution and trial and error) of
several different data sets. It would therefore be better if we were able to re-weight the
different data sets ourselves with the use of VCE algorithms. As these data are not pub-
licly available, we try to get as close as possible by using an eigenvalue decomposition
(EVD) of the EGM96 VC-matrix.

By grouping the eigenvalues, we can split the VC-matrix into several cofactor ma-
trices. These cofactor matrices are then re-scaled using a VCE. In this way, the new

134



Fig. 7.14: Top: geoid height differences by degree for different solutions. Bottom:
comparison between the non-robust IREML solution (dashed line) with the robust
RVCE solution (solid line).
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linear combination of the cofactor matrices should be more consistent to the residuals
of the EGM96 matrix. We have investigated two eigenvalue decompositions. In the �rst
decomposition, the VC-matrix up to degree L = 75 is split into four cofactor matrices;
see the left panel of �gure 7.15. The second decomposition �rst de�nes a cofactor ma-
trix for the spherical harmonics with l > 70, and performs an eigenvalue decomposition
on the remaining part l ≤ 70. This is shown in the right panel of �gure 7.15.

Fig. 7.15: Eigenvalues of the EGM96 variance-covariance matrix, with a (rather
arbitrary) division into 4 groups. In the left �gure, an eigenvalue decomposition
is performed up to degree and order 75, in the right �gure up to degree and order
70.

However, the re-weighting of these cofactor matrices did not improve the combina-
tion solution, compared to the RVCE solution, using one scale factor for the EGM96
VC-matrix. In terms of RMS geoid height differences with EIGEN-GL04C, the RVCE
EVD solutions gave comparable, but slightly worse (7.0 cm) results than the RVCE
solution without a EVD (6.9 cm), up to degree L = 50.

7.6.3 Augmentation of the functional model

In �gure 7.14, we can see that some degrees of the CHAMP-only solution show large
differences with the independent EIGEN-GL04C model. Now we will perform a sta-
tistical test for any inconsistencies between the CHAMP-only solution and the EGM96
global model. If we order the potential coef�cients by degree, an inconsistency vector in
degree l is augmented in the functional model as a vector of local (nuisance) parameters:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣
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1,2:(l−1)
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cf. section 3.2. We will test for such an inconsistency vector for every degree of the
CHAMP-only solution. In the �rst test setup, we choose to test the CHAMP solution
with the robusti�ed stochastic model; in the second test setup, we test for inconsistencies
in the same CHAMP solution, but in the non-robust combination with EGM96. The esti-
mated test statistics, compared with the critical value (dependent on the number of local
parameters), can be seen in �gure 7.16. First we will look at the differences between

Fig. 7.16: Test statistics for the CHAMP solution for the robust (RVCE) combi-
nation (left), and the non-robust (VCE) combination (right).

the two plots. We can see that the high test statistics in the non-robust combination are
much lower in the robust combination. As we would expect, the robust combination
partly masks the inconsistencies between the two models. If one would like to test for
inconsistencies, it is therefore better to look at the non-robust combination.

In this combination, we see signi�cant inconsistencies in the even degrees up to l =
14. If we compare this to the geoid height differences by degree with EIGEN-GL04C
(�gure 7.14), we can conclude that there is a signi�cant inconsistency in the degrees
2 and 4 of the CHAMP-only solution. The high test statistics for the even degrees
between 6 and 14 are due to correlations with the degrees 2 and 4. These test statistics
are therefore much lower in the robust combination test setup. Many groups made
suggestions that there is something wrong with degrees 2 and 4 of the TUM kinematic
orbits; see, e.g., Reubelt et al. [2004]. It was found to be an error in the reference frame
during the processing of the CHAMP kinematic orbits. If we combine these results with
�gure 7.14, we can draw the conclusion that an inconsistency vector for degrees 2 and
4 should be estimated for the CHAMP solution in the combination with EGM96.

7.6.4 Stochastic model validation (second iteration)

The augmentation of the functional model not only improved the estimation of the co-
ef�cients of the degrees 2 and 4, or the coef�cients, that are highly correlated to these
coef�cients but also improved the VCE and consequently the re-weighting of the data
sets and the treatment of outlying coef�cients (RVCE). The results in terms of geoid
height differences with EIGEN-GL04C are shown in table 7.9.
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Tab. 7.9: Statistics of the geoid height differences [m] between different combi-
nation solutions and EIGEN-GL04C.

Solution
l ≤ 10 l ≤ 50

Max. RMS Max. RMS

Functional model not augmented

{ γi = 1.0 0.0312 0.0100 0.393 0.072
IREML 0.0291 0.0095 0.480 0.075
RVCE 0.0193 0.0056 0.417 0.069

Functional model augmented

{ γi = 1.0 0.0188 0.0060 0.348 0.063
IREML 0.0189 0.0065 0.304 0.063
RVCE 0.0195 0.0056 0.306 0.063

One can see that the robust solution partly absorbed the inconsistency in the lower
degrees. After the implementation of the inconsistency vector, the results between the
different solutions were comparable. The geoid height differences by degree between
the RVCE solution, with and without an augmentation of the functional model, are
shown in �gure 7.17.

Fig. 7.17: Geoid height differences by degree [m] between different solutions and
EIGEN-GL04C.
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7.7 Summary and outlook

We have used CHAMP satellite data to test the proposed algorithms concerning the
augmentation of the functional model, the validation of the stochastic model and the
treatment of outliers. First, we computed CHAMP pseudo-observations using the en-
ergy balance approach. Monte Carlo variants of MINQUE, IREML and Lerch’s subset
solution method were compared to each other and to the Iterative Maximum Likelihood
Estimator (IMLE). All four estimators converged to quite similar variance components,
although Lerch’s method gave less weights to some spurious data sets. However, the
estimators were quite different in terms of computational costs involved. The MC-
MINQUE and MC-Lerch methods were several orders slower than the fast MC-IREML
method and the very fast IMLE method. As the IMLE method produces biased esti-
mates, we chose to use the MC-IREML estimator to validate the stochastic model.

With a proper stochastic model, we could test for signi�cance of the local parame-
ters. All 6 parameters, i.e., a bias, a drift, and four parameters to account for periodic
effect at 1 cpr and 2 cpr, were found to be signi�cant. Correlation tests showed us that
singularity problems could arise if the data sets are too short to distinguish between the
different local parameters. This was however not the case in our test setup.

The VCE was used in a combined iterative setting, together with the outlier treat-
ment techniques. Several techniques have been discussed and compared, including the
conventional 3-sigma rule, M-estimation and the Cost Function Estimation (CFE), of
which the latter was found to produce the smallest differences with the accurate (and
independent) EIGEN-GL04C model. The Huber in�uence function was used in the
estimation of the variance components.

A CHAMP-only model was computed using the full two year data set. Geoid height
differences by degree (with EIGEN-GL04C) and tests for inconsistencies with EGM96
showed that the degrees 2 and 4 were badly determined. This was also found by other
groups, who contributed this to an error in the reference frame during the processing
of the kinematic orbits. We augmented the functional model in the combination of
CHAMP with EGM96 to account for an inconsistency vector between the two data sets.

An attempt to divide the VC-matrix of EGM06 into several cofactor matrices using
an eigenvalue decomposition and consequently rescale these cofactor matrices (with
VCE) did not show better results than a simple rescaling of the entire EGM96 VC-
matrix.

The robust combination of the CHAMP model and EGM96 could partly absorb the
inconsistencies in the lower degrees. However, after the augmentation of the functional
model to account for these inconsistencies, the robust combination showed quite similar
results than the non-robust combination method.

Future work should include correlations between the CHAMP pseudo-observations,
as these observations show correlations due to the derivation of the velocities from the
kinematic positions. With a better stochastic model of CHAMP, we expect to obtain
better estimates of the variance components of the EVD cofactor matrices of EGM96
and in this way improve the VC-matrix of EGM96.
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8
Application 2: Joint inversion of

global GPS time-series with
GRACE gravity models

In this chapter we will combine weekly coordinate solutions of a global GPS network
with monthly spherical harmonic GRACE solutions. Both ’observation’ types are highly
sensitive to temporal mass variations on the surface of the Earth, due to, e.g., the global
water cycle.

The GRACE satellite mission (launched in 2002) provides us with monthly L = 120
solutions for the time-variable part of the Earth’s gravity �eld. These time-varying
gravity models can be directly inverted into surface mass changes. In this way, the
GRACE mission has provided us with information on the seasonal hydrological signal in
large river basins [Tapley et al., 2004a] and the decrease in ice mass in the polar regions
[Velicogna and Wahr, 2006]. However, the low-degree spherical harmonic coef�cients
(especially ΔC̄σ

20) of the monthly GRACE models are poorly resolved. This mainly
disturbs the estimation in the equatorial regions and the polar regions, which are our
regions of interest.

A combination with an independent data set, which can solve for these low-degree
coef�cients, is therefore necessary. Only recently [Blewitt et al., 2001], weekly time se-
ries of GPS site displacements were used to obtain estimates of the mass redistributions
on the surface of the Earth. However, in case of globally supported basis functions, like
spherical harmonics, this inversion is highly unstable, even for the very low degrees.
A regularization or a combination with other data (e.g., GRACE) is therefore neces-
sary. Monthly regularized GPS-only solutions (�gure 8.13) show reasonable results,
compared to the GRACE-only solutions; see �gure 8.14. Moreover, weekly geocen-
tre motions can be measured by GPS site displacements in a joint estimation with the
coef�cients of the surface mass changes.
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Due to the different signal characteristics of GRACE and GPS, a joint inversion
of both observation types [Kusche and Schrama, 2005] can improve the estimation of
the low-degree spherical harmonics compared to the GRACE-only solutions and can
stabilize the estimation of the geocentre motion and other local parameters needed in
the estimation of the GPS inversion.

We will focus on the joint inversion of GPS and GRACE using VCE for the relative
weighting and a robust estimation of the derived observations to detect and treat possible
outliers. Other techniques to measure either the deformations of the Earth, such as
InSAR [Galloway et al., 1998], or the change in sea surface heights from radar altimeter
data and ocean bottom pressure (OBP) data [Wu et al., 2006], will not be considered.

8.1 The functional model of the joint inversion

The goal of the joint inversion is to estimate the coef�cients ΔC̄σ
lm, ΔS̄σ

lm (Eq. (2.32))
and consequently the surface mass redistributions, which can be directly translated to
equivalent water heights; see also section 2.2. As the GRACE satellite gravity data is
provided from degree 2, the common parameters in the joint inversion are the spherical
harmonic coef�cients from degree 2 to L. The functional model of the time-varying
satellite gravity data (e.g., GRACE), therefore, reads

y
1

= A1sxs + e1 (8.1)

with

y
1

= vector of observations: [. . . ΔC̄sat
lm , ΔS̄sat

lm , . . .]T

A1s = diagonal design matrix, with diagonal elements
3 · ρw

ρe

1 + k′l
2l + 1

xs = vector of unknowns: [. . . ΔC̄σ
lm, ΔS̄σ

lm, . . .]T

e1 = vector of residuals,

where l = 2, . . . , L. Note that a reference model (mostly the average over a larger time
span) needs to be removed from the GRACE coef�cients.

The second observation group consists of all GPS stations with three observations
(Δhi, Δei, Δni) for each station. A reference position needs to be subtracted from the
GPS time series to obtain relative site displacements. To avoid inconsistencies with
the GRACE observations, one should be careful to use the same time interval in the
computation of the reference points as in the GRACE reference model.

The functional relationship of the height (Δh), eastward (Δe) and northward (Δn)
displacements of station i reads respectively, cf. Eq. (2.41), Eq. (2.44) and Eq. (2.45):

Δh(ϑi, λi) = R
3ρw

ρe

L∑
l=1

h′l
2l + 1

l∑
m=0

[ΔC̄σ
lm cos mλi + ΔS̄σ

lm sin mλi]P̄lm(cos ϑi)

+ehi
· b−R · s,

(8.2)
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Δe(ϑi, λi) =
R

sin ϑi

3ρw

ρe

L∑
l=1

l′l
2l + 1

l∑
m=0

m · [−ΔC̄σ
lm sin mλi + ΔS̄σ

lm cos mλi]P̄lm(cos ϑi)

+eei
· b + eni

· ε
(8.3)

and

Δn(ϑi, λi) = −R
3ρw

ρe

L∑
l=1

l′l
2l + 1

l∑
m=0

[ΔC̄σ
lm cos mλi + ΔS̄σ

lm sin mλi](
∂

∂ϑ
P̄lm(cos ϑ)|ϑ=ϑi

)

+eni
· b− eei

· ε
(8.4)

with
ehi

, eei
, eni

= unit vectors in the local reference frame
b = Helmert transformation parameters
ε = Helmert rotation parameters
s = Helmert scaling parameter.

For each epoch, we estimate 7 Helmert parameters to account for residual datum in-
consistencies in the weekly GPS solutions; see, e.g., Kusche and Schrama [2005] and
Wu et al. [2006]. The degree-1 spherical harmonic coef�cients ΔC̄σ

10, ΔC̄σ
11 and ΔS̄σ

11

(= geocentre motion parameters) are not present in the functional model of the satel-
lite gravity observations and should, therefore, also be considered as local parameters,
together with the 7 Helmert parameters. We have chosen to work in the Centre of Fig-
ure (CF) frame and therefore set the degree 1 Load Love Numbers to l′l = 0.134 and
h′l = −0.269 [Kusche et al., 2007]. More on the subject of reference frames can be
found in Dong et al. [2003] and Blewitt [2003].

We will assume that there is a mass conservation within the surface layer σR, i.e.
we de�ne ΔC̄σ

00 := 0 as a constraint [Wahr et al., 1998]. This is a valid assumption if
the atmospheric mass changes are considered to be included in the surface layer. These
masses should, therefore, be present in both GPS and GRACE data.

8.2 Inversion of weekly GPS displacements

8.2.1 Description of the GPS data

First we will focus on weekly GPS-only solutions. The input data consists of 104 weeks
(1260 to 1363) of GPS combination solutions for 158 sites, spanning the period of March
2004 to February 2006, as part of the network of the International GPS Service (IGS).
Full covariance information is available and will be used in the solution. Temporal
variations are obtained relative to a two year average (March 2004 - February 2006).
More information on the IGS network solutions can be found in Ferland et al. [2000].
A height time series of a GPS station in the Amazon is shown in �gure 8.1.
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Fig. 8.1: Two-year (March 2004 - February 2006) time series of the height dis-
placement (in meters) of the Amazon IGS GPS station in Brasilia, Brazil.

8.2.2 Constraining the solution

Due to the (2l + 1)−1 term in Eqs. (8.1)-(8.4) and the behaviour of the Load Love
Numbers for increasing degrees, the model of the surface mass redistributions becomes
increasingly sensitive to errors in the high-degree coef�cients in either the satellite grav-
ity data or the GPS displacements [Blewitt and Clarke, 2003]. Moreover, the sparse and
heterogeneous distribution of the GPS stations (�gure 8.2) causes an unstable GPS-only
solution, already from the lowest spherical harmonic degrees (l > 3). A solution to this
is to use localizing basis functions which can be directly related to spherical harmon-
ics. If one keeps to global representation using series of spherical harmonics, one needs
to constraint the solution, which can be done by a low-degree truncation [Blewitt et
al., 2001], by spatial averaging [Wahr et al., 1998; Kusche, 2007], or by regularization
[Kusche and Schrama, 2005; Wu et al., 2006].

Low-degree truncation

We will combine point values (GPS measurements) with a continuous function, trun-
cated to a certain degree L, and solve to this degree L. In this way, the high-degree
(l > L) frequencies of the site displacements will enter into the truncated solution
(leakage error). To reduce this error, we have to choose a suf�ciently high degree L.
However, the signal-to-noise ratio of the monthly GRACE solutions decreases for in-
creasing L. As a �rst try, we have chosen to use a truncation degree L = 14 for the
combination. In this way, we have prevented the bad resonance orders of the GRACE
models (CSR, RL04) from entering into the solution.

144



Fig. 8.2: GPS stations used in the inversion

Spatial averaging

High-degree errors can be smoothed in the space domain by taking a weighted average
over a certain area. This can either be done by an isotropic weighting kernel [Wahr et al.,
1998], or by a non-isotropic weighting kernel [Han et al., 2005cl; Cheng et al., 2006;
and Kusche, 2007]. If the weighting kernel is isotropic, the averaging operation can
be replaced by a weighting operation in the frequency domain, in which the weighting
factors are only degree-dependent. The most frequently used isotropic weighting kernel
is the Gaussian kernel, suggested by Jekeli [1981]. As we have truncated our solution to
degree 14 and a spatial averaging would also smooth the signal itself, we have chosen
not to perform any spatial averaging in this study.

Regularization

In Kusche and Schrama [2005], it was suggested to add a regularization matrix to the
system of normal equations and in this way stabilize the solution. This regularization
matrix is the result of a re�ned least-squares solution, in which we do not only minimize
the vector of residuals e = y − Ax, but also the signal itself over the oceans. The cost
function to be minimized reads:

Jα = ‖y − Ax‖2
Q−1

y
+ αo

∫
O(ϑ, λ)

(
Δσ(ϑ, λ)

R · ρw

)2

dω, (8.5)

with O(ϑ, λ) the characteristic function over the oceans (1 over the oceans, 0 over land)
and αo the ocean damping parameter. The minimization of the signal over the oceans is
valid as the oceanic mass variations are mainly due to diurnal and semi-diurnal ocean
tides, which are corrected during the IGS GPS and GRACE data processing. The regu-
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larization matrix can be computed as [Kusche and Schrama, 2005]:

[ΞO]lm,l′m′ =

∫
σ

O(ϑ, λ)Ȳlm(ϑ, λ)Ȳl′m′(ϑ, λ)dω, (8.6)

with Ȳlm(ϑ, λ) de�ned in appendix A. The system of normal equations then reads[
AT Q−1

y A + αo · ΞO
]
x̂α = AT Q−1

y y. (8.7)

We can see this as a kind of Tikhonov regularization, using pseudo-observations (valued
zero) with the matrix Ξ−1

O as its variance-covariance matrix. The propagation of this VC

matrix on a spatial grid by computing
√

bT
P Ξ−1

O bP , with bP = [. . . Ȳlm . . .]T , is shown in
�gure 8.3.

Fig. 8.3: Error propagation of Ξ−1
O onto a spatial grid, L = 14.

In Wu et al. [2006] a combined global model of atmosphere, oceans and land hy-
drology is used as prior information to regularize the solution.

8.2.3 Weekly solutions

We have computed regularized weekly solutions up to degree 14 for all 104 GPS weeks.
The ocean damping parameter αo was estimated using IREML and had values of the
order of 104, see �gure 8.4. In Kusche and Schrama [2005], this parameter was obtained
by looking at the spatial variability of the signal Δσ over the oceans. They found, for
a solution truncated to L = 7, the value of αo = 0.9 · 105 from estimates of an ECCO
ocean bottom pressure model and αo = 0.3 · 105 from GRACE monthly solutions.

The regularized weekly solution of week 1299 is shown in �gure 8.5. We can com-
pare this weekly solution with the monthly GRACE solution (December 2004), see
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Fig. 8.4: Ocean damping parameter αo for different GPS weeks, estimated from
IREML for weekly GPS-only solutions, without the treatment of possible outliers.
The solid line represents the moving average over 5 consecutive weeks.

�gure 8.14. The main features of the GRACE solution are already visible in the regu-
larized weekly solution of week 1299, such as the large mass variations in the Amazon
River basin. Large inconsistencies with respect to GRACE occur in continental areas
with a sparse distribution, e.g., Africa. More on this topic can be found in section 8.2.7.
We will now try to reduce the effect of possible outliers on the solution.

8.2.4 Outlier treatment

We will compare the conventional 3-sigma rule with the robust M-estimation (Huber,
k = 1.7) and apply IREML to rescale the VC-matrix per week. The estimation of the
stochastic model and the treatment of the outliers are performed in an unregularized test
setup. This is an iterative process, which converges within a few iterations. The ocean
function (with the estimated parameter from the solution without any outlier treatment
as �xed ocean damping parameter) is then used to regularize the solution. The difference
of the solution, using the conventional 3-sigma rule, with the solution, using no outlier
treatment, can be found in �gure 8.6.

As the inversion is unstable in areas with only a few GPS sites, these areas will
destabilize even further if outlying GPS sites are removed. Such a destabilization will
deteriorate all spherical harmonic coef�cients and therefore also have in�uence on re-
mote areas. In �gure 8.6 it is clearly visible that the removal of some observations
in Europe and Asia has an effect on the surface mass estimates in South America and
Africa. It is therefore better to use the robust M-estimation technique to down-weight
outlying observations instead of removing them. The in�uence of this down-weighting
on the solution can be found in �gure 8.7.

If we compare �gure 8.7 with �gure 8.6, we can see that a robust treatment of the
outlying observations mainly affects the areas in the proximity of these observations.
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Fig. 8.5: Weekly regularized GPS-only solution for week 1299, expressed in
terms of equivalent water heights [m], truncated at degree 14. No outlier treat-
ment has been performed.

Fig. 8.6: Difference of the solution, using the 3-sigma rule, with the solution, us-
ing no outlier treatment (�gure 8.5). The green circles display those observations,
which are removed, with the size of the circles indicating the value of the test
statistic.
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Fig. 8.7: Difference of the solution, using the robust M-estimation technique
(k = 1.7) with the solution using no outlier treatment (�gure 8.5). The green
circles display the observations that are down-weighted, with the size of the cir-
cles indicating the value of the test statistic.

We therefore choose to use the robust M-estimation technique as the outlier treatment
technique in this study.

8.2.5 Covariance information

We will now discuss how the covariances in the stochastic model of the GPS measure-
ments contribute to the solution. The omission of these covariances (by setting them
to zero) will disturb the estimation of the vector of unknowns, as the system of normal
equations will change. Moreover, it will disturb the estimation of the stochastic model
by VCE and consequently the treatment of the outliers using either the conventional
3-sigma rule or the robust M-estimation.

In �gure 8.8 the robust solution is given for GPS week 1299, neglecting the covari-
ances in the stochastic model. In the bottom panel one can see the difference with the
robust solution using full variance-covariance information.

As we would expect, the continental areas where no GPS stations are located show
the largest differences. The differences can reach up to 10 cm, which is half of the
amplitude of the temporal signal. The covariances connect the information in the GPS
stations and therefore play an important role in the estimation of the signal between
these GPS stations. Neglecting the covariances mainly disturbs these regions.
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Fig. 8.8: The robust M-estimation GPS-only solution for week 1299, using a diag-
onal variance-covariance matrix for the GPS observations (top), and the difference
of this solution with the robust solution, using full variance-covariance informa-
tion (bottom). Note the different scale bars
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8.2.6 Monthly solutions

We have used IREML to weight the different (4 or 5) weekly solutions in order to com-
pute monthly GPS solutions. The ocean damping parameters were again estimated by
IREML and were of the order of 103. These under-estimated ocean damping parameters
caused the solution to oscillate over the oceans. We have therefore chosen to constrain
the ocean damping parameter to 0.4 ·105, based on weekly solutions (�gure 8.4), ECCO
estimates and GRACE estimates [Kusche and Schrama, 2005].

A possible reason for these under-estimated damping parameters is the increased
in�uence of the GPS observations. These GPS stations contain 4 to 5 times more ob-
servations, decreasing the trace of the group in�uence matrix of the ocean damping
function. The solution will therefore be closer to the GPS observations, decreasing the
weight of the damping function.

We have estimated monthly GPS-only unregularized solutions using 4 or 5 weeks
per month. The robust M-estimation method (Huber, k = 1.7) is used to down-weight
possible outliers. At convergence, the solution is regularized by the ocean damping
function with a �xed ocean damping parameter of 0.4 · 105. The results are shown in
�gure 8.9.

8.2.7 Modi�ed regularization matrix

We have shown that estimates are obtained of the equivalent water heights up to degree
and order 14 from only GPS site displacements as input data. However, areas with only
a few GPS stations show large oscillations, which can not be attributed to the signal
itself. These areas, e.g., Northern Africa, should be damped by regularization, as was
done over the oceans.

We have therefore modi�ed the regularization matrix to damp the signal in those
areas where only a small signal is expected. We have used two years (same time span)
of monthly GRACE models (CSR, Release 04) to estimate the variability of the signal.
More on these GRACE models can be found in the section 8.3. The 24 monthly grids
(L = 14) are compared to each other, and for each grid point a root mean square value
is computed. The results are shown in �gure 8.10.

We will now have to choose a threshold, which de�nes the areas where signal can
be expected and the areas in which the signal should be damped by regularization. A
threshold of 3.5 cm seems the best compromise between taking as much signal into
account over the continents and damping the oceans as much as possible. In this way, the
ocean function O(ϑ, λ) is replaced by a signal constraint function S(ϑ, λ). With the new
boundaries of S(ϑ, λ), a modi�ed regularization matrix ΞS (L = 14) is computed. The
propagation of its inverse Ξ−1

S , i.e., the VC-matrix of the pseudo-observations (values
zero), onto a global grid is shown in �gure 8.11.

This modi�ed regularization matrix will stabilize some unstable regions, such as
Northern Africa, which is a continental region but with only a few GPS stations. The
improvement of the regularized solution in this area can be found in �gure 8.12.
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Fig. 8.9: Equivalent water heights [m] from monthly regularized GPS-only solu-
tions (ocean damping) using robust M-estimation (Huber, k = 1.7) complete to
degree L = 14.
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Fig. 8.10: Root mean square of the variations in equivalent water heights, re-
trieved from two years of monthly GRACE models (CSR, Release 04) up to de-
gree and order 14.

Fig. 8.11: Error propagation of Ξ−1
S onto a spatial grid, L = 14.
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Fig. 8.12: Weekly GPS-only solution (week 1319) over Northern Africa, in terms
of equivalent water heights [m], truncated to degree 14. Left: regularization with
the ocean damping matrix ΞO. Right: regularization with the signal constraint
matrix ΞS .

The robust monthly GPS solutions, using this new regularization matrix, are shown
in �gure 8.13. These solutions agree much better with the GRACE solutions (�gure
8.14) than the ocean damped GPS solutions.

8.3 Inversion of monthly GRACE gravity models with
weekly GPS displacements

One can see the combination of monthly GRACE solutions with weekly GPS site dis-
placements as a regularization of the GPS-only solution by GRACE, making the previ-
ous regularization methods obsolete, or one could see the GPS data set as extra infor-
mation on the low-degree spherical harmonics, which are poorly solved by GRACE. In
this section, we will perform such a combination, using VCE methods to re-weight the
different data sets and robust methods to treat possible outliers.

8.3.1 Description of the GRACE data

From the web-site of the Center of Space Research (CSR) [CSR, 2008], we obtained
monthly estimates of the gravity �eld of the Earth (Release 04 GSM �les). As non-
tidal contributions of the oceans and the atmosphere (GAC �les) are subtracted from
the monthly gravity solutions, we need to add these back to the monthly models by
the addition of the GAC �les to the GSM �les, as this signal is not removed from the
GPS solutions. The average over the 24 GSM+GAC solutions (time span March 2004
- February 2006) is subtracted from the gravity solutions. In this way, the obtained
GRACE gravity models should be consistent with the 104 weekly GPS IGS solutions.
The GRACE CSR (Release 04) models, complete to degree 14, can be found in �gure
8.14.
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Fig. 8.13: Equivalent water heights [m] from monthly regularized GPS-only so-
lutions (signal constraint) using robust M-estimation (Huber, k = 1.7), L = 14.
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Fig. 8.14: Equivalent water heights computed from the GRACE monthly solu-
tions (CSR, RL04), truncated to degree and order L = 14.
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8.3.2 GPS/GRACE combination

As only the variance information and not the covariance information is publicly avail-
able for the CSR RL04 global gravity models, we have chosen to use the full variance-
covariance matrix of September 2006 (which is publicly available) as the cofactor matrix
for every month. This is a valid assumption as the structure of the variance-covariance
matrix is expected to be quite homogeneous for all 24 months. A rescaling is done using
VCE.

We will use GRACE and GPS in a joint inversion of monthly models of surface mass
variations. In this way, GRACE will regularize the GPS normal matrices, making an
ocean damping regularization or signal constraint regularization obsolete. For all GPS
observations and GRACE spherical harmonic coef�cients, robust weights are estimated
in a combination with IREML to rescale the corresponding cofactor matrices.

However, due to inconsistencies between the two data sets in the lower degrees (�g-
ure 8.15), the GRACE solution gets a low weight in the �rst iteration. The accumulated
normal matrix gets destabilized, producing high values over the oceans. In the next it-
eration, the weight of the GRACE solution is even further decreased. At convergence,
the GRACE weight is decreased to zero with an unregularized monthly GPS solution as
a result. Generalized cross-validation could not solve this problem.

Fig. 8.15: Mean values (over two years) for the test statistics, testing for an incon-
sistency vector by degree between the GRACE monthly solutions and the monthly
(robust) signal constraint regularized GPS solutions, with the error bars indicating
the standard deviation over the two years. The dashed line represents the critical
value (α = 0.01).

We have therefore chosen to use the signal constraint regularization matrix to obtain
proper relative weights for the GRACE model and the weekly GPS data sets. The rela-
tive weights of GPS and GRACE were then used to compute a GPS/GRACE combined
solution (without any signal constraint).
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The inclusion of GPS data mainly improves the low-degree spherical harmonic co-
ef�cients. The difference between the combined GPS/GRACE solution and the GRACE
solution for October 2005 is shown in �gure 8.16.

Fig. 8.16: Difference, in terms of equivalent water heights, between the combined
GPS/GRACE solution and the GRACE solution for October 2005, truncated to
degree 14.

Some months, like June 2005, show differences up to several centimetres. The im-
provements mainly come from the very low-degree spherical harmonic coef�cients, es-
pecially from ΔC̄σ

20. This can be clearly seen in �gure 8.17, in which we have plotted the
diagonal elements of the accumulated group in�uence matrix of GPS. This is a measure
of the contribution of the data set on the estimation of the coef�cients. The in�uence of
GPS on the estimation of ΔC̄σ

20 was (on average) 0.88. The in�uence numbers are in
close agreement with studies by Kusche and Schrama [2005] and Jansen et al. [2008a].

The difference, in terms of equivalent water heights, between the combined GPS /
GRACE solution and the GPS-only solution for October 2005 is shown in �gure 8.18.
The largest differences can be found in those areas with high signal amplitudes.

8.4 Evaluation of the local parameters

In addition to the spherical harmonic coef�cients ΔC̄σ
lm and ΔS̄σ

lm, we need to estimate
10 extra (local) parameters per week. Three of these parameters are connected to the
degree 1 spherical harmonic coef�cients and represent the geocentre motion, which can
be estimated by GPS and is �xed for the monthly GRACE models. The geocentre
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Fig. 8.17: Diagonal elements of the accumulated group in�uence matrix of GPS,
averaged over all months, for each spherical harmonic coef�cient.

Fig. 8.18: Difference, in terms of equivalent water heights, between the combined
GPS/GRACE solution and the GPS-only solution for October 2005, truncated to
degree 14.
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motions X , Y and Z can be retrieved by
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(8.8)

The other 7 parameters account for a Helmert transformation of the GPS frame with
respect to the GRACE reference frame.

8.4.1 Test for signi�cance

If we want to draw any conclusions from the estimates of the local parameters, we
�rst need to test if these parameters are signi�cant; see section 3.2.2. The weekly test
statistics of the local parameters are shown in �gure 8.19.

Although the majority of the test statistics are below the critical value, partly due to
the oscillations of the signal around zero, the high test statistics justify the estimation
of these local parameters. If we would not estimate parameters for the residual Helmert
transformation, they will alias into the estimation of the geocentre motion.

8.4.2 Motion of the geocentre

The motion of the geocentre can either be estimated in the regularized GPS-only estima-
tion or the combined GPS/GRACE estimation. Figure 8.20 shows that for the majority
of the weeks both estimates of the geocentre are comparable to each other.

However, for some weeks (1339 − 1355) that correspond to the period September
2005 to December 2005, both Y and Z components show an offset between the GPS-
only estimates and the GPS/GRACE estimates. If we look at the test statistics for this
period, we can see that the geocentre motions are not signi�cant for this period and that
the ε1 and ε2 Helmert rotation parameters show large values for the test of signi�cance.
Therefore, a possible reason for the offset is that the parameters of the geocentre motion
are poorly resolved in the combined GPS/GRACE estimation.

The Helmert transformation parameters are small (σ ≈ 5.0 · 10−4) and do not show
seasonal cycles. Therefore, it is not expected that these parameters partly absorb the
motion of the geocentre [Kusche and Schrama, 2005].

8.5 Summary and outlook

The global water cycle generates a time-varying gravity signal due to land hydrology
near the Earth’s surface and mass changes in the atmosphere and cryosphere. The
GRACE mission is highly sensitive to this time-varying signal and its data is used to
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Fig. 8.19: Test for signi�cance for the local parameters in the GPS/GRACE com-
bination: geocentre motion X ,Y ,Z (top), Helmert transformation parameters b
(middle), and the Helmert rotation parameters ε and the Helmert scaling parame-
ter s (bottom).
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Fig. 8.20: Geocentre motion for each GPS week. The GPS-only solution (regular-
ized by the signal constraint) is shown, together with the GPS/GRACE combined
solution.
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generate monthly gravity solutions. Using the Loading Love Numbers, these monthly
models can be inverted into surface mass changes, expressed in equivalent water heights.

A different technique to estimate these surface mass changes is to invert deforma-
tions of the Earth, measured by GPS site displacements. The technique is quite accurate,
but it lacks global coverage. Therefore, a GPS-only solution is unstable even for the
very low degree spherical harmonics (l > 3). A solution to this problem is to regularize
the solution. As the time-varying gravity signal should be very small over the oceans,
we could damp the solution of the surface mass changes over the ocean. This can be
viewed as a Tikhonov regularization. However, continental areas with only a few GPS
sites, such as Northern Africa, still produce unstable results in these areas. We therefore
modi�ed the regularization procedure and damped those regions in which the tempo-
ral variations of the gravity signal were small (based on the GRACE estimates). The
new regularization matrix improved the solution considerably, compared to the GRACE
solutions.

Weekly GPS-only solutions (L = 14) could be obtained with the use of this regular-
ization. The regularization parameter was determined using VCE techniques and was
comparable to earlier estimates by independent ECCO solutions [Kusche and Schrama,
2005]. With a proper stochastic model, we could detect and treat possible outliers in the
GPS site displacements. We have compared the conventional 3-sigma outlier removal
technique to the robust M-estimation method (Huber, k = 1.7). The robust method only
changes the solution close to the down-weighted observations, whereas the removal of
the outliers destabilized the solution, changing the surface mass estimates around the
globe. The importance of the covariances between the GPS site displacements was
tested for the weekly GPS-only solutions. Large differences, up to half of the signal
amplitude, could be seen when we compared this solution to the solution using full
variance-covariance.

Due to inconsistencies between the GRACE models and GPS, we needed to add the
regularization matrix in the estimation of the weights of the monthly GRACE model
and the weekly GPS data sets, using VCE. These relative weights were then used to
obtain the unregularized GPS/GRACE monthly solutions of the surface mass changes.
We could see that the GPS data mainly contributed to the very low spherical harmonic
coef�cients, especially to degree 2.

As a by-product, weekly estimates of the motion of the geocentre could be obtained,
together with 7 Helmert parameters to account for an inconsistency in the reference
frame between the weekly GPS data sets and the monthly GRACE models. The geo-
centre parameters and the Helmert parameters were treated as local parameters and were
tested for signi�cance.

Future work should include satellite laser ranging data to improve the low-degree
spherical harmonics and ocean bottom pressure data to stabilize the solution over the
oceans. Moreover, we should extend the truncation degree and link the monthly solu-
tions together, by using a singular value decomposition; see e.g., Schrama et al. [2007].
In this way, we can reduce the stripe pattern at the resonance terms of the CSR GRACE
models and better separate signal from noise.
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9
Application 3: Temporal aliasing of
hydrological signals in a simulated

GRACE recovery

One of the problems with the estimation of monthly gravity �eld solutions using GRACE
observables is that short period mass variations alias into the monthly solutions. Errors
in the ocean tide models and atmospheric models, as well as the variations of the hydro-
logical (continental mass) signal within a month, will disturb the monthly mean gravity
�eld estimates [Han et al., 2004].

In this study, we will try to reduce this temporal aliasing effect using VCE tech-
niques. As the short period mass variations are not accounted for in the functional model
(the reason for the aliasing), they will enter into the vector of residuals and should there-
fore be accounted for in the stochastic model. A reduction of the temporal aliasing effect
is therefore possible by a re�nement of the stochastic model by VCE.

The method is tested using a simulated GRACE orbit. The annual signal of the
hydrological LaD model [Milly and Shmakin, 2002] is used as the simulated signal and
the noise variance of GRACE is added to these simulated observations.

9.1 Temporal aliasing of signals

Before the GRACE observables can be inverted into the temporal (monthly) gravity
solutions, one needs to subtract the in�uence of the ocean tide and the mass varia-
tions within the atmosphere. Comparisons between different ocean tide models, e.g.,
GOT99.2 [Ray, 1999], NAO99 [Matsumoto et al., 2000], and TPX06.2 [Egbert and
Erofeeva, 2002] give an indication of the errors still present in the current ocean tide
models. Although the estimation of monthly GRACE models will average out most
of these errors, a part of the errors, especially the solar tides, will alias into the global
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monthly GRACE solutions. This has been extensively discussed in Ray et al. [2003]
and Seo et al. [2008].

The mass redistributions within the atmosphere generate a time-varying gravity sig-
nal, which can be modelled by surface pressure data, under the assumption that the
atmosphere is condensed onto a very thin layer on the Earth’s surface [Chao and Au,
1991]. The difference between the models of the European Center for Medium-range
Weather Forecast (ECMWF) and the National Centers for Environmental Prediction
(NCEP) is an indication of the error budget within these models, although the models
are not completely independent of each other [Han et al., 2004]. In Velicogna et al.
[2001] errors in the 6-hour forecast �elds (NCEP) are used to predict the aliasing error
in the monthly GRACE �eld due to the atmospheric correction.

One of the goals of the GRACE mission is to retrieve the temporal gravity �eld sig-
nal, which is caused by continental surface mass redistributions. However, this temporal
signal will produce a temporal aliasing effect on its own, as short-term temporal varia-
tions will alias into the monthly solutions. In Jansen et al. [2008b], it was shown that
sub-monthly GRACE solutions can be retrieved, which will partly reduce the temporal
aliasing effect.

The surface water mass redistributions are caused by the hydrological cycle (precip-
itation, evaporation, transpiration, and run-off) and can be modelled by daily hydrologi-
cal models. The GRACE mission will provide Monthly mean Water Storage Anomalies
(MWSA), which is a relative signal, compared to a long-term mean. One can not distin-
guish between this long-term mean and the Earth’s static �eld, i.e. the long-term mean
of the hydrological signal will enter into the models of the static gravity �eld. In our
test setup, we shall use Daily mean Water Storage Anomaly (DWSA) to identify the
aliasing effect of this hydrological signal.

More information on the aliasing effect of errors in the ocean tide models, atmo-
sphere and continental hydrology, together with a simulation study of the future GOCE
mission, can be found in Han et al. [2006].

9.2 Test setup

If one wants to identify the effect of the temporal aliasing on the monthly GRACE
solutions, one needs to work with a detailed orbital simulation of the GRACE mission,
as the aliasing effect is also dependent on the orbit characteristics [Velicogna et al.,
2001]. We simulated the gravity potential differences due to continental hydrology
(expressed in spherical harmonics) between the two satellites GRACE-A (ϑA, λA, rA)
and GRACE-B (ϑB, λB, rB) on the true GRACE orbits. The potential differences can
be computed by

V AB(ϑA, λA, rA, ϑB, λB, rB, t) = V (ϑA, λA, rA, t)− V (ϑB, λB, rB, t) (9.1)
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with the scalar function V (ϑ, λ, r, t) computed by

V (ϑ, λ, r, t) =
GM

R

∞∑
l=0

(
R

r

)l+1 l∑
m=0

[
C̄lm(t) cos mλ + S̄lm(t) sin mλ

]
P̄lm(cos ϑ).

(9.2)
Note that the input parameters, C̄lm(t) and S̄lm(t), are time-dependent. If we add noise,
the functional model will read

y = V AB + n = Ax + e, (9.3)

with n the noise vector. The stochastic model of the residual vector e reads

E{e} = 0 ; D{e} = Qy. (9.4)

As the vector of unknowns x contains the monthly mean spherical harmonic coef�-
cients, C̄lm and S̄lm, the temporal variations of these coef�cients will be absorbed by
the residual vector e. We will try to use a stochastic model validation by VCE to reduce
this aliasing effect.

9.2.1 Hydrological model

We have used the Land Dynamics (LaD) model [Milly and Shmakin, 2002], which
is a model of land water and energy balance. The spatial resolution is 1◦ × 1◦ grid,
the temporal resolution is one month. From the monthly solutions, the annual signal
(expressed in spherical harmonic coef�cients) is retrieved. The solution was truncated
to degree and order 60. We have limited ourselves to one month (August 2003) as a
test case for our algorithms. For each day, a set of coef�cients was generated from the
annual signal. The mean signal for this particular month (August 2003) is subtracted
from the daily solutions to obtain daily variations of the annual signal within one month.
The variation of the annual signal, expressed in equivalent water heights, on the 1st of
August 2003 with respect to the mean of August 2003 is drawn in �gure 9.1. From
these daily coef�cients, potential differences (V AB) between the two GRACE satellites
are simulated along the orbit, with a sampling of 10 seconds.

9.2.2 Simulation of the noise

If we want to add the noise vector n to the temporal signal vector V 12, we need a good
estimation of the noise characteristics of the GRACE potential differences, which are the
pseudo-observations. As the in situ observations from GRACE mainly come from the
range-rate variations between the two satellites [Jekeli, 1999], the pseudo-observations
V 12 could be approximated by

V AB ≈ ‖ṙA‖ · ρ̇AB, (9.5)
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Fig. 9.1: Variation of the annual hydrological signal (LaD model) of day 1 (Au-
gust 2003) with respect to the monthly mean, truncated at L = 60.

with ρ12 the range between between the two satellites measured by the highly accurate
K-band ranging. From the propagation law of variances, we then obtain

σV AB ≈ ‖ṙA‖ · σρ̇AB
(9.6)

As the post-processed range-rate data ρ̇AB have an accuracy of approximately 0.1 μm/s
[Han et al., 2004, 2005a] and the satellites �y at an along-track velocity of approxi-
mately 7.5 km/s, the assumed standard deviation for the noise of the pseudo-observations
in the energy balance approach is σV AB = 7.5 · 10−4 m2/s2. We have simulated some
variations along this value for different days.

9.3 Results

We will perform three tests with the simulated data. First, we will only consider the
hydrological signal, which gives us the opportunity to solely look at the temporal alias-
ing effect that comes from the daily variations of the annual signal. In the second test,
we simulate white observation noise and try to estimate the characteristics of this noise
by VCE. In the third test, we will combine the two components and look at the total
contribution of the temporal aliasing effect and the noise.

9.3.1 The temporal aliasing effect

In this test, we will only consider the daily variations of the signal. We have generated
30 daily data sets, using the annual signal in the LaD model. From these 30 data sets,
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normal equations are computed and solved for up to degree and order 60. The retrieved
signal is the direct result of the temporal aliasing of the daily variations within one
month. This signal is shown in �gure 9.2.

Error statistics [m]

min. -0.2454
max. 0.2233
mean 0.0000
RMS 0.0368

Error statistics [m]

min. -0.0039
max. 0.0037
mean 0.0000
RMS 0.0007

Fig. 9.2: Temporal aliasing, expressed in terms of equivalent water heights [m],
due to daily variations of the annual hydrological signal (August 2003), without a
re�nement of the stochastic model using VCE. Solution without Gaussian �ltering
(top), and a solution with Gaussian �ltering (radius = 600 km) (bottom). Note the
different color bars.

Although we used a Gaussian �ltering with a radius of 600 kilometres (see section
8.2.2), we can still see a clear North-South pattern in the solution. Especially near
areas where the daily variations show large �uctuations (see �gure (9.1)), the solution
is disturbed by the temporal aliasing effect.

As the temporal variations of the signal are not augmented in the functional model
(in the estimation of monthly models), these variations will be absorbed by the residual
vector e and therefore can not be separated from the observation noise. In this test setup,
we set the noise to zero, making it possible to identify and quantify the temporal aliasing
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effect. We have used the Iterative Restricted Maximum Likelihood Estimator (IREML)
to estimate the stochastic model of the residual vector (and consequently the temporal
aliasing effect). The estimated standard deviations per day of the month (Aug. 2003)
are shown in �gure 9.3.

Fig. 9.3: Estimated standard deviations (by IREML) for August 2003 of the daily
variations of the annual hydrological signal within one month.

As for each coef�cient the monthly mean is subtracted from the observations, the
days at the beginning and the end of a month show larger variations to this mean than
the days along the middle of the month. This is also clearly visible in the estimated
standard deviations. The data sets at the beginning and end of the month retrieve higher
standard deviations than the other data sets. In Han [2004], it was shown that the daily
variation of day 15 with respect to the monthly mean is below the GRACE noise level,
already from degree 3, contrary to the daily variation of day 30, which is higher than the
noise of the GRACE up to degree 17.

If we use this estimated stochastic model in a weighted least-squares approach, the
data sets at the border will get less weight than the other data sets. This will reduce the
temporal aliasing effect considerably. For this test case, the �ltered results showed a
decrease in RMS from 0.7 mm. to 0.5 mm, in terms of equivalent water heights. The
improved solution is shown in �gure 9.4.

9.3.2 The addition of random noise

Based on a-priori estimates of the error behaviour of the K-band range data [Han et
al., 2004], we have come to an approximated noise level of 7.5 · 10−4 m2/s2 for the
potential differences between the two satellites; see also section 9.2.2. As the noise of
the GRACE satellites is not heterogeneous, we have used different noise levels for each
daily arc. First we will show the solution in which all data sets are weighted equally by
taking a scaled identity matrix as the stochastic model. This solution is shown in �gure
9.5.
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Error statistics [m]

min. -0.1350
max. 0.1425
mean 0.0000
RMS 0.0221

Error statistics [m]

min. -0.0019
max. 0.0027
mean 0.0000
RMS 0.0005

Fig. 9.4: Temporal aliasing errors, expressed in terms of equivalent water heights,
due to daily variations of the annual hydrological signal (August 2003), after a
re�nement of the stochastic model using VCE. Solution without Gaussian �ltering
(top), and a Gaussian �ltering (radius = 600 km) (bottom). Note the different color
bars.
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Error statistics [m]

min. -1.3886
max. 1.4376
mean 0.0000
RMS 0.3396

Error statistics [m]

min. -0.0173
max. 0.0137
mean 0.0000
RMS 0.0042

Fig. 9.5: Propagation of the white noise in the simulated GRACE observations
(potential differences) into a spherical harmonics model, complete to degree 60,
without making use of VCE for stochastic model validation. Solution without
Gaussian �ltering (top), and with Gaussian �ltering (radius = 600 km) (bottom).
Note the different color bars.
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The un�ltered solution shows equivalent water heights, which even exceed the 1
metre level, solely due to the white noise. The stochastic model and consequently the
weighted least-squares solution was improved by VCE (IREML). The estimated stan-
dard deviations are found in �gure 9.6, together with the estimated standard deviations
of the temporal aliasing signal.

Fig. 9.6: Estimated standard deviations of the simulated white noise (by IREML),
the temporal aliasing and their combined effect, for August 2003.

The estimated standard deviations are very close to the noise levels that were used
as input in this test setup, a proof that the algorithms used produce unbiased estimates.
When applying these standard deviations to the weighted least-squares solution, the
effect of the noise can largely be reduced (�gure 9.7).

9.3.3 The combination of noise and hydrological signal

The effect of the daily variations on the gravity �eld recovery is less than the measure-
ment noise for the low-degree spherical harmonics (l < 30) [Han et al., 2004]. This
is especially true for this test setup, as we only used a part of the hydrological signal.
Therefore, the combination of both effects will produce nearly the same results as the
noise-only solution; see �gure 9.6 and table 9.1.

A way out of this is to incorporate more hydrological signal into the temporal alias-
ing data sets and to include error estimates of the ocean tide models and the atmospheric
models. Han et al. [2004] mentioned that the daily variations within a month can lead
to potential differences between the two satellites up to 1.0 · 10−3 m2/s2 above the con-
tinental areas, which is much larger than the estimated standard deviations estimated so
far, see �gure 9.3. With higher amplitudes of the daily variations of the hydrological
signal, the temporal aliasing effect will become more visible in the combination of noise
and the temporal signal.

We have written the stochastic model as a linear combination of daily cofactor ma-
trices. This is not a realistic situation, as the properties of the observation noise will not
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Error statistics [m]

min. -0.9530
max. 0.9369
mean 0.0000
RMS 0.1928

Error statistics [m]

min. -0.0104
max. 0.0107
mean 0.0000
RMS 0.0025

Fig. 9.7: Propagation of the white noise in the simulated GRACE observations
(potential differences) into a spherical harmonics model, complete to degree 60,
after a proper stochastic model validation using VCE. Solution without Gaussian
�ltering (top), and with Gaussian �ltering (radius = 600 km) (bottom). Note the
different color bars.

Tab. 9.1: Propagation of the temporal aliasing effect, simulated white noise and
a combination of both, on a spherical harmonic solution (L = 60), expressed in
equivalent water heights [m]. No Gaussian �ltering has been applied.

Temp. aliasing Noise-only Combination

no VCE
Max. 0.245 1.438 1.440
RMS 0.037 0.340 0.343

VCE
Max. 0.143 0.953 0.991
RMS 0.022 0.193 0.207
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change on a daily basis. Moreover, one should incorporate the noise covariances in the
stochastic model and include spatial information of the aliasing effect in the stochastic
model. This will be the scope of future studies on temporal aliasing.

9.4 Summary and outlook

With the launch of the GRACE satellites, it is not only possible to estimate the static
gravity �eld of the Earth, but also temporal deviations from this static �eld are esti-
mated on a monthly basis. The contributions of the ocean tides and mass changes in the
atmosphere should be modelled and subtracted from the observations in order to sepa-
rate them from the gravity �eld solutions. Errors in these models will partly alias into
the monthly GRACE solutions. Moreover, the hydrological variations within a month
are not augmented in the functional model and will therefore alias into these monthly
solutions.

As the ocean tide errors, atmospheric model errors and the hydrological variations
(within a month) are not augmented in the functional model, they will be partly absorbed
by the vector of residuals. The part that is not absorbed by the vector of residuals will
alias into the solution. As the weighted least-squares solution will minimize the residual
square sum, we need to adjust our stochastic model to account for these errors (next to
the measurement noise). We will use variance component estimation to validate the
stochastic model and in this way try to down-weight the data sets with large errors
in the ocean tide model, the atmospheric model or with large hydrological variations,
compared to the monthly mean.

In our test setup, we have used the annual signal of the hydrological LaD model
and simulated pseudo-observations (potential differences) along a real GRACE orbit.
We have divided the data set into daily arcs and estimated variance components for each
daily arc. In a noise-free setting, the arcs in the middle of the month obtained much more
weight (VCE) than the arcs at the beginning and end of the month. The hydrological
variations with respect to the monthly mean (temporal aliasing effect) are much higher
at the boundaries of a month than close to the middle of the month. So far, the VCE
looks promising in reducing the temporal aliasing effect in monthly GRACE solutions.

However, if we add noise to the observations, we can see that in this test setup, the
simulated noise of GRACE is much higher than the generated temporal aliasing signal.
Variance component estimation mainly followed the noise levels of the different daily
arcs.

In the future, we need to simulate more temporal aliasing signal by including ocean
tide errors, atmospheric model errors and more hydrological signal than the annual sig-
nal. Moreover, the GRACE data sets should be divided into smaller arcs (than the daily
arcs) and noise covariances should be incorporated in the stochastic model of GRACE.
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10
Application 4: The computation of

a height reference surface in
Switzerland

As was stated earlier in section 2.1.5, one can not simply use the gravimetric geoid to
derive orthometric heights H from ellipsoidal heights h, which are mostly measured by
GPS. The discrepancy δhi = hi − Ni − Hi is caused by many errors, including long-
wavelength errors in the gravimetric geoid, and systematic and stochastic errors in the
levelling data and the GPS data.

A solution to this problem is to estimate a corrector surface, which best �ts these
discrepancies, and to add this to the gravimetric geoid. In this way, one obtains a height
reference surface, which can be used as a transformation surface between the measured
GPS measurements and the desired orthometric heights.

In this study, we will compute such a height reference surface for Switzerland. The
corrector surface is computed using a combination of gravimetric, GPS and levelling
data sets, each with full variance-covariance information. Variance component estima-
tion is used to re-weight the different data sets and a robust M-estimation technique is
used to down-weight possible outliers in the data sets. Different functional models to
estimate the corrector surface are compared to each other and the parameters are tested
for signi�cance. It will be shown that the parametrization of the corrector surface has an
effect on the VCE, the quality description of the variance components, and the treatment
of the outliers.

10.1 Test setup

The old height reference surface of Switzerland, LN02, was purely based on levelled
height differences, without making use of information on the gravitational �eld of the
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Earth. Moreover, it did not take the uplift of the Alps into account, which is of the or-
der of 1.5 mm/year with respect to the Central Plateau [Schlatter and Marti, 2002]. A
new height reference surface was needed, which was called LHN95 [Schlatter, 2006].
The orthometric heights of LHN95, which take the uplift of the Alps and the gravita-
tional �eld into account, show differences with LN02 up to several decimeters. The
most recent national geoid model is called CHGeo2004, which is a combination of the
gravimetric solution, astro-geodetic data and GPS/levelling data [Marti, 2007]. As the
GPS/levelling data receive high weights, CHGeo2004 should be considered as a height
reference surface for Switzerland. Levelling measurements (LHN95), GPS measure-
ments (LV95 campaign) and the CHGeo2004 surface are consistent with each other
[Marti and Schlatter, 2005].

Fig. 10.1: Available 111 GPS/levelling points in Switzerland.

We will use a data set of 111 GPS/levelling points (�gure 10.1) with the correspond-
ing gravimetric geoid estimates to model the correction surface for the gravimetric geoid
of Switzerland. The data set, covering the entire country of Switzerland, was kindly pro-
vided by Urs Marti from the Federal Of�ce of Topography Swisstopo, together with full
variance-covariance information on the GPS observations, the levelling data, and the
gravimetric solution.

If we write the parametrization of the corrector surface as Ax, the functional model
reads

y = h−N −H = Ax + e, (10.1)

with the corresponding stochastic model de�ned by

E{e} = 0 ; D{e} = Qy = γhQh + γNQN + γHQH , (10.2)

where Qh, QN , and QH are the cofactor matrices of respectively the GPS measurements
h, the gravimetric data N and the levelling data H .
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10.1.1 The data sets used

The GPS measurements and their variance-covariance matrix are the output of a com-
mercial post-processing software package [Fotopoulos, 2005]. The correlations be-
tween neighbouring points are much lower than in the stochastic models of the ortho-
metric heights and the gravimetric geoid [Marti et al., 2002].

The orthometric heights of LHN95 are computed from the adjustment of the national
�rst- and second-order levelling measurements [Schlatter, 2006]. As the VC-matrix is
the direct result from the adjustment of the levelling measurements, the orthometric
heights between neighbouring points are highly correlated [Marti et al., 2002].

The gravimetric geoid was obtained by least-squares collocation. The variance-
covariance information in the GPS/levelling points is the outcome of an error propa-
gation procedure. As the uncertainty contribution of the global geopotential model is
not incorporated into the VC-matrix, the a-priori standard deviations of the gravimetric
geoid estimates are too optimistic. Nevertheless, the largest (a-priori) uncertainty in the
pseudo-observations δhi comes from the gravimetric solution, with an average standard
deviation of 1.93 cm.

10.1.2 The four-parameter corrector surface

Many suggestions have been made in literature to de�ne a parametric model for the
corrector surface. De Min [1996] uses a simple tilted plane to correct the gravimetric
geoid of the Netherlands to the height reference surface. One could extent this to a
parametric model with an increasing number of free parameters, up to the number of
observations (= number of GPS-levelling points). One should however be cautious and
test the parameters for signi�cance.

A well-known parametrization is the four-parameter form, which accounts for a
datum inconsistency between the GPS datum and the datum used to estimate the gravi-
metric geoid. In Fotopoulos [2005], this form is used for exactly the same Swiss data
set, as is used in this study. The functional model of observation i then reads

f(φi, λi) = x1 + cos φi cos λi · x2 + cos φi sin λi · x3 + sin φi · x4, (10.3)

with xj the four unknown parameters. We will use this parametric model to test our
algorithms. In section 10.4, several parametric models will be compared to each other.

As a �rst estimate, we set γh = γN = γH = 1.0 and leave all outliers as they are.
The estimated corrector surface is shown in �gure 10.2. Based on the vector of residuals
e and the stochastic model Qy, we have computed the standardized residuals. Although
one observation had a test statistic above 3.0, we did not perform any outlier treatment
at this stage.
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Fig. 10.2: Correction surface, using the a-priori stochastic model. The green cir-
cle indicate the test statistic of the observation with a test statistic above 3.0.

10.2 Validation of the stochastic model

The estimation of the vector of unknowns x assumes a proper stochastic model. This
stochastic model will be estimated by VCE by a rescaling of the cofactor matrices.
Moreover, the stochastic model will propagate into the quality estimate of x, it will be
used in the treatment of outliers, and in the tests for signi�cance of the parameters of
the corrector surface.

10.2.1 Variance Component Estimation

We will use the general form of the MINQUE, i.e. Eq. (4.28), to estimate the var-
iance components of the cofactor matrices and its error estimates. If we assume the
observations to be normally distributed, we can obtain a quality description of the esti-
mated variance components. If we do not treat the outliers and we assume full variance-
covariance information, the estimated variance components and their VC-matrices have
the values

γ̂ =

⎡
⎣ γ̂h

γ̂N

γ̂H

⎤
⎦ =

⎡
⎣ 2.74

0.98
4.04

⎤
⎦ ; Qγ̂ =

⎡
⎣ 1.49 −0.19 −0.72
−0.19 0.11 −0.38
−0.72 −0.38 8.03

⎤
⎦ . (10.4)

The results were quite similar to Fotopoulos [2005], who performed the same study.
The estimated corrector surface, together with its difference from the previous estimate
(using equal weighting) is shown in �gure 10.3.
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Fig. 10.3: Top: corrector surface, using MINQUE to estimate the stochastic
model. Bottom: Differences with respect to the model using the a-priori stochastic
model.
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10.2.2 Diagonalized variance-covariance matrices

If we would neglect the covariances of the VC-matrices, this would evidently have an
effect on the estimation of the variance components and consequently the corrector sur-
face. The MINQUE estimates at convergence are

γ̂ =

⎡
⎣ γ̂h

γ̂N

γ̂H

⎤
⎦ =

⎡
⎣ 0.82

1.03
3.65

⎤
⎦ ; Qγ̂ =

⎡
⎣ 2.49 −0.11 −2.58
−0.11 0.20 −0.93
−2.58 −0.93 9.88

⎤
⎦ , (10.5)

and are also quite similar to Fotopoulos [2005]. The uncertainties of the variance com-
ponents have increased signi�cantly, as we would expect. Moreover, the correlations
between the estimates of the different variance components increased. If we de�ne the
correlation as

ρij =
Qij√

Qii ·Qjj

, (10.6)

the correlation between the ellipsoidal variance component γ̂
h

and the orthometric var-
iance component γ̂

H
changed from −0.21 to −0.52, when assuming diagonal cofactor

matrices. The effect of this alternative stochastic model on the estimation of the correc-
tor surface is shown in �gure 10.4. Hence, neglecting the covariances in the observations
can lead to changes in the corrector surface up to 1.5 cm.

10.3 Treatment of outliers

With the new stochastic model, with full variance-covariance information and MINQUE
to re-scale the cofactor matrices, we can detect and treat possible outliers. We will
compare the conventional 3-sigma rule with the robust M-estimation technique (Huber).

10.3.1 Conventional 3-sigma rule

Under the consideration of the new stochastic model, we did not �nd any observation
with a test statistic above 3.0. Therefore, no outliers were removed, according to the
conventional 3-sigma rule.

10.3.2 Robust M-estimation

As the conventional 3-sigma rule did not �nd any possible outliers, we can state that
there are no large outliers in the data. However, erroneous observations with a test
statistic between 1.7 and 3.0 can have a large effect on the estimation of the corrector
surface, if the observation is far from any other observation. The robust M-estimation
down-weights 6 observations within the data set of 111 observations; see �gure 10.5.
Especially the observations at the borders of the Swiss data set can have a large in�uence
on the estimation of the corrector surface. The down-weighting of the 6 observations
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Fig. 10.4: Top �gure: corrector surface, using MINQUE to estimate the stochastic
model, with diagonal cofactor matrices. The bottom �gure shows the differences
with the MINQUE solution, using full cofactor matrices.
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Fig. 10.5: Top �gure: corrector surface, using MINQUE to estimate the stochastic
model and the robust M-estimation (Huber, k = 1.7) to down-weight possible
outliers. The green circles indicate the estimated test statistic. The bottom �gure
shows the differences with the MINQUE solution, without any outlier treatment.

184



changed the corrector surface up to 1 cm. Moreover, the M-estimation changed the
variance components and their VC-matrix, i.e.,

γ̂ =

⎡
⎣ γ̂h

γ̂N

γ̂H

⎤
⎦ =

⎡
⎣ 2.90

1.17
4.01

⎤
⎦ ; Qγ̂ =

⎡
⎣ 1.75 −0.22 −0.82
−0.22 0.14 −0.46
−0.82 −0.46 9.14

⎤
⎦ . (10.7)

As the outliers are now properly treated (M-estimation) and the variance-covariance
matrices are re-scaled by VCE, we can test for signi�cance of the parameters of the
corrector surface (Eq. (3.41)). Tests for signi�cance of the parameters of the corrector
surface show that all 4 parameters are insigni�cant, with test statistics δ̂Ω ranging from
0.11 to 0.50. These low test statistics imply are incorrect parametrization of the corrector
surface. In the next section, we will compare several alternative parametrizations of this
corrector surface.

10.4 Other parametrizations of the corrector surface

In this section, we will try to �nd a suitable parametrization of the corrector surface. As
we need residuals for the outlier treatment and the VCE, we will not consider interpo-
lation methods, like the multiquadric interpolation [Hardy, 1971]. One class of possible
parametrizations is the class of polynomials of the form

pN(φ, λ) =
N∑

i=0

N∑
j=0

pij · φi · λj · cosj φ, (10.8)

see e.g., Jiang and Duquenne [1996]. Additionally, we will account for the effect of a
datum transformation on the geoid height N , i.e.,

q(φ, λ) = Δa + ΔX cos φ cos λ + ΔY cos φ sin λ + ΔZ sin φ + aΔf sin2 φ, (10.9)

with ΔX , ΔY , ΔZ the shift parameters between two datums, Δf the change in the
�attening of the ellipsoid, and Δa the change in the semi-major axis a of the ellipsoid;
see e.g., Heiskanen and Moritz [1967] and Kotsakis and Sideris [1999]. If we add
q(φ, λ) to pN(φ, λ), we get the parametrization

fN(φ, λ) = pN(φ, λ) + q(φ, λ). (10.10)

As p00 and Δa will both account for a bias in the discrepancies δhi, we will only con-
sider p00.

One should be cautious to add extra parameters to the functional model as numerical
instabilities can occur by an over-parametrization of the corrector surface [Fotopoulos,
2005]. The parameters have therefore been tested for signi�cance (Eq. (3.41)). This
is done in an iterative way. If multiple parameters fail the test of signi�cance, we �rst
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remove the parameter that has the lowest test statistic from the functional model. The
iteration stops when all remaining parameters pass the test of signi�cance. The resulting
parametrization f ′N after the elimination of the insigni�cant parameters is then compared
to the other parametrizations.

We need to de�ne tests to compare the different parametrizations with each other.
An indication of the goodness of �t are the standard deviations of the estimated var-
iance components. Low standard deviations of the variance components imply that the
observations are consistent with the stochastic and functional model.

Additionally, one could make a comparison by testing for the signi�cance of the
full vector of unknowns, i.e., Ω̂ = x̂Nx̂. As this test statistic largely depends on the
number of parameters, it is better to look at the probability in the right-hand tail that the
vector of unknowns is not signi�cant. This probability depends on Ω̂ and the number of
parameter n. In table 10.1, the results are shown for the different parametrizations.

Parametrization up to N = 0

We start with N = 0, which implies the estimation of a bias, if we only consider
p0(φ, λ):

p0(φ, λ) = p00. (10.11)

As was also found by Fotopoulos [2005], this parametrization results in a high estimate
of the variance component for the levelling observations γH . This is probably due to
systematic errors (e.g., tilt) in these observations, which will, if not properly treated in
the functional model, be absorbed in the vector of residuals. The test for signi�cance for
the bias in this parametrization had the value of α = 0.07, i.e. test statistic was lower
than the threshold κ0.05, which indicates that this parametrization is not signi�cant.

The addition of q(φ, λ) increased the number of parameters to 5. With this parame-
trization, one estimates a datum transformation between two ellipsoids. However, two
parameters failed the (iterative) test for signi�cance, resulting in the parametrization

f ′0(φ, λ) = ΔX cos φ cos λ + ΔZ sin φ + aΔf sin2 φ, (10.12)

Parametrization up to N = 1

The polynomial parametrization up to N = 1 leads to the function

p1(φ, λ) = p00 + p10 · φ + p01 · λ · cos φ + p11 · φ · λ · cos φ. (10.13)

However, the parameter p11 of the basis function φ ·λ ·cos φ fails the test of signi�cance.
Removing this parameter from the parametrization results in the functional model of a
tilted plane. The results of a tilted plane are quite good, compared to p1(φ, λ) and the
four parameter form; see table 10.1. The addition of q(φ, λ) and the elimination of the
parameters that failed the test for signi�cance, results in the function f ′1(φ, λ):

f ′1(φ, λ) = p01 · λ · cos φ + p11 · φ · λ · cos φ + ΔY cos φ sin λ. (10.14)
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Tab. 10.1: Variance components, their standard deviations and a test for signif-
icance of the vector of unknowns for different parametrizations of the corrector
surface.

n γ̂h σ̂γh
γ̂N σ̂γN

γ̂H σ̂γH
α

Four parameter form 4 2.90 1.32 1.17 0.38 4.01 3.02 2.33 · 10−5

p0(φ, λ) (bias) 1 2.71 1.38 1.12 0.41 9.72 4.51 6.91 · 10−2

f ′0(φ, λ) 3 3.00 1.34 1.17 0.38 3.73 2.88 8.42 · 10−6

p1(φ, λ) 4 2.93 1.34 1.20 0.38 4.04 3.03 5.37 · 10−5

p′1(φ, λ) (tilted plane) 3 2.95 1.33 1.18 0.38 3.90 2.93 1.32 · 10−5

f ′1(φ, λ) 3 3.01 1.33 1.14 0.37 3.61 2.81 2.61 · 10−6

p2(φ, λ) 9 2.85 1.29 1.07 0.36 3.42 2.85 4.44 · 10−6

p′2(φ, λ) 3 2.99 1.33 1.15 0.37 3.69 2.85 4.27 · 10−6

f ′2(φ, λ) 4 3.29 1.37 0.99 0.35 3.73 2.81 8.66 · 10−7

p′3(φ, λ) 4 3.36 1.41 0.99 0.36 4.33 3.04 7.36 · 10−6

f ′3(φ, λ) 3 3.01 1.33 1.16 0.37 3.61 2.83 4.11 · 10−6

Parametrization up to N = 2

The polynomial representation up to N = 2 can be written as

p2(φ, λ) =
2∑

i=0

2∑
j=0

pij · φi · λj · cosj φ. (10.15)

As the number of parameters is increased to 9, this functional model has a better �t to
the data than any of the previous parametrizations. Therefore, the estimated variance
components show the lowest results; see table 10.1. However, many of the parameters
fail the test of signi�cance. The function p2(φ, λ) is therefore not a good parametrization
of the corrector surface.

The addition of q(φ, λ) to p2(φ, λ) results in a numerical unstable system of normal
equations, as some basis functions are almost identical to each other. We solve the
problem by �rst removing the parameters pij that failed the test of signi�cance:

p′2(φ, λ) = p01 · λ · cos φ + p11 · φ · λ · cos φ + p12 · φ · λ2 · cos2 φ. (10.16)

We then add q(φ, λ) and test for signi�cance of the parameters. We obtain

f ′2(φ, λ) = p01 ·λ·cos φ+p12 ·φ·λ2 ·cos2 φ+ΔX ·cos φ·cos λ+ΔY ·cos φ·sin λ (10.17)

Parametrization up to N = 3

The series of polynomials up to N = 3 resulted in an unstable system of normal equa-
tions. Some basis functions were too close to each other for this small area and the low
amount of observations. After stabilizing the solution by removing some parameters we
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tested the parameters for signi�cance. The parametrization with signi�cant parameters
reads

p′3(φ, λ) = p20 ·φ2 +p21 ·φ2 ·λ ·cos φ+p22 ·φ2 ·λ2 ·cos2 φ+p13 ·φ ·λ3 ·cos3 φ. (10.18)

The addition of q(φ, λ) and subsequently the removal of those parameters that failed the
test of signi�cance, resulted in the function f ′3(φ, λ):

f ′3(φ, λ) = p00 + p13 · φ · λ3 · cos3 φ + ΔX · cos φ · cos λ (10.19)

We can further extend the parametrizations to N > 4, but this will over-parameterize
the functional model [Fotopoulos, 2005].

The corrector surface

If we look at the test for signi�cance (table 10.1), we can see that both the f ′1(φ, λ)
and f ′2(φ, λ) parametrizations have very low probability α, i.e., the probability that the
vector of unknowns is not signi�cant is very low. A comparison between the functions
shows that the estimates of the variance components of the f ′1(φ, λ) function are closer
to the estimates of the other functions, compared to the f ′2(φ, λ). We therefore have
chosen to use this parametrization of the corrector surface, i.e.,

f ′1(φ, λ) = p01 · λ · cos φ + p11 · φ · λ · cos φ + ΔY cos φ sin λ,

although some other parametrizations, mentioned in table 10.1, will be suitable as
well. The chosen parametrization, together with a robust treatment of the outliers and
MINQUE to scale the cofactor matrices, leads to the corrector surface shown in �g-
ure 10.6. The estimated variance components and their VC-matrix changed slightly,
compared to the four parameter form:

γ̂ =

⎡
⎣ γ̂h

γ̂N

γ̂H

⎤
⎦ =

⎡
⎣ 3.01

1.14
3.61

⎤
⎦ ; Qγ̂ =

⎡
⎣ 1.77 −0.23 −0.76
−0.23 0.14 −0.40
−0.76 −0.40 7.91

⎤
⎦ . (10.20)

10.5 Summary and outlook

In theory, the ellipsoidal height h, measured by GPS, should be equal to the sum of the
gravimetric geoid N and the orthometric height H measured by levelling campaigns.
However, this is in general not valid due to systematic and stochastic errors among the
three measurement types. A solution to this problem is to estimate a corrector surface
and add this to the gravimetric geoid. In this way, we obtain an height reference surface,
which can be used to transform ellipsoidal (GPS) heights to orthometric heights.

We have computed such a corrector surface for Switzerland. The three data sets
(GPS, levelling and gravimetric geoid) were provided with full variance-covariance in-
formation. Comparisons have shown that we can not neglect the covariances. This will
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Fig. 10.6: Top �gure: chosen corrector surface (f ′1(φ, λ)), with the locations of
the down-weighted observations. The bottom �gure shows the differences with
the corrector surface, using the four parameter form.
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disturb the estimation of the corrector surface, the variance components, and the outlier
detection.

Improvements of the corrector surface were possible with a combination of VCE
(MINQUE) and a robust M-estimation technique (Huber). In this way, several GPS-
levelling points had to be down-weighted. This was done in an iterative process with
the re-weighting of the cofactor matrices, in which the cofactor matrix of the levelling
data had to be rescaled by a factor 4. The tests were performed using a conventional
four parameter form as parametrization of the corrector surface.

We have compared several parametrizations of the corrector surface and tested the
parameters for signi�cance. The best parametrization, using only 3 parameters, showed
differences in the corrector surface with the conventional four parameter form up to
0.5 cm.
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11
Conclusions and

recommendations

11.1 Conclusions

Since the beginning of the space era in 1957 (with the launch of the Sputnik satellite),
satellite measurements have been used in the estimation of the gravity �eld of the Earth.
The combination of different data sets is essential in this estimation. It can �ll the gaps in
the space domain (e.g., polar gaps), strengthen parts of the frequency domain or extend
the time span of the observations. Such combinations can include different arcs within
the same satellite mission, arcs of different satellite missions, and the combination of
satellite gravity measurements with other (prior) information, such as surface gravity
data.

In this thesis, we propose to combine a validation of the stochastic model with a
proper modelling of the functional model and a robust treatment of the outliers. As
these algorithms are connected to each other, it is not possible to obtain an accurate
estimate of the stochastic model without correctly augmenting the functional model or
without a proper treatment of the outliers. The weighted least-squares solution should
therefore be an iterative process.

The algorithms developed in this thesis are applied to a combination of CHAMP
pseudo-observations with a prior gravity model, to a combination of GRACE monthly
gravity solutions with weekly GPS site displacements, to the reduction of the tempo-
ral aliasing effect, and to the estimation of a corrector surface for Switzerland using a
combination of levelling data, ellipsoidal heights (GPS) and a gravimetric geoid.

The functional model describes the linear relationship between the observations and
the common (global) parameters we are interested in, e.g., the potential coef�cients of
a global gravity model. Moreover, it should account for systematic effects in the data
and other inconsistencies with the other data sets. This can be done by an augmentation
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of the functional model, i.e., the addition of (local) parameters to the functional model
to account for these effects. In this way, we could estimate weekly estimates of the
motion of the geocentre in the GPS / GRACE combination, which could be considered
as local parameters of the GPS site displacements. However, the addition of the local
parameters should �rst be tested for signi�cance. This is done by hypothesis testing,
i.e. we compare the estimates of the parameters with their quality description. As the
latter depends on the stochastic model of the observations, we need to have a proper
stochastic model in order to test the local parameters of the functional model. We have
conducted such a testing on inconsistencies between the CHAMP-only solution and
the prior gravity model, on inconsistencies between the GPS site displacements and
the GRACE solution, and on the different parametrizations of the corrector surface for
Switzerland.

The stochastic model describes the noise behaviour of the observations and is needed
in the weighted least-squares estimation, the testing of the local parameters and the de-
tection and treatment of the outliers. Moreover, it propagates into the quality description
of the vector of unknowns and consequently the geophysical by-products. The noise
level (and covariance structure) of the observations can change in time, due to, e.g., in-
strument conditions or a changing GPS constellation. However, if signal is not properly
taken care of in the functional model (e.g., systematic effects, truncation of the global
models, and temporal aliasing effects), this signal will be absorbed by the vector of
residuals and should be accounted for in the stochastic model. We have tried to reduce
the in�uence of the temporal aliasing of daily variations in the land hydrology on the
monthly solutions by a re�nement of the stochastic model. This was possible in a noise-
free simulation. However, in the present test setup, the noise level was much higher than
the aliasing signal. In this way, the validation of the stochastic model mainly followed
the noise variances of the simulated data set.

To improve the stochastic model, we �rst have to write the variance-covariance (VC)
matrix of the observations as a linear combination of several cofactor matrices. The esti-
mation of these linear coef�cients (variance components) is called variance component
estimation (VCE). The most commonly used VCE method is the Minimum Norm Qua-
dratic Unbiased Estimator (MINQUE), which, under normality, converges to (restricted)
maximum likelihood, has minimum variance and can be derived in a least-squares ap-
proach. The latter property enables us to test the variance components for signi�cance,
add prior information to the variance components and linearize the VCE in non-linear
expressions of the VC-matrix. In this thesis, we could for the �rst time derive the equa-
tions for MINQUE under the assumption of uncorrelated observation groups and with
multiple variance components to be estimated for each observation group.

A comparison is made between the unbiased estimates of MINQUE and the alter-
native methods of the Iterative Restricted Maximum Likelihood Estimator (IREML),
Helmert’s VCE, Lerch’s subset solution method and the Iterative Maximum Likelihood
Estimator (IMLE). Helmert’s VCE is identical to MINQUE if and only if we assume
uncorrelated observation groups. The other three estimators are biased at each iteration,
but converge to MINQUE for large time series of satellite gravity data, as was shown in
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the gravity recovery using the CHAMP pseudo-observations. In small-scale problems,
e.g., network adjustments, one should only use MINQUE or IREML, as they produce
unbiased estimates at convergence.

The number of available satellite gravity measurements has increased throughout the
years. Large improvements in the estimation of the global gravity �eld were obtained
with the launch of the GEOS-3 satellite in 1975, the LAGEOS-I satellite in 1976, the
TOPEX / Poseidon satellite in 1992, and recently with the launch of the CHAMP satel-
lite in 2000 and the GRACE satellite mission in 2002. The upcoming GOCE satellite
will further improve the estimation of the static gravity �eld of the Earth.

We can see a gradual change in the data weighting methods throughout the years,
starting with trial and error methods, then external calibrations, by comparing the results
to independent data, and �nally internal calibration methods (such as Lerch’s subset
solution method and variance component estimation). However, with the launch of
the dedicated satellite missions, most institutes have used a simple equal weighting
approach to weight the different data sets, probably due to the elaborate processing of
large amounts of data. We have derived Monte Carlo algorithms, which enable us to use
existing least-squares software as a black box to obtain the variance components. In this
way, the re�nement of the stochastic model (and consequently an improvement of the
least-squares estimate) hardly needs any extra computation time. One can simply use
their own software package, change the observation vector into a randomized vector and
use the output to derive the variance components. In this study, we could for the �rst
time derive the equations of the Monte Carlo variant of the Minimum Norm Quadratic
Unbiased Estimator (MINQUE).

We have compared the Monte Carlo variants of the several estimators (MINQUE,
IREML, IMLE and Lerch) in the gravity recovery using the CHAMP pseudo-observations.
The computational costs involved in the computation of MC-MINQUE and MC-Lerch
is several orders larger than the computational costs involved in the estimation of MC-
IREML and IMLE. We can therefore conclude that the MC-IREML is a fast, unbiased
method, which can be used in satellite gravity �eld modelling using large amounts of
data.

When we estimate the vector of unknowns or the variance components, we assume
that outliers are treated in a correct way. The treatment of the outliers starts with a
proper detection of the outliers. One should be cautious to assume correlations among
the observations in the detection of the outliers, as outliers in general do not match the
assumed functional and stochastic model. Moreover, large number of outliers may oc-
cur, which do not correspond to the stochastic model. We therefore choose to neglect the
covariances in the detection of the outliers in large time series of observations. These
covariance are however not neglected in the weighted least-squares estimation of the
vector of unknowns or in the VCE. In the inversion of GPS site displacements into sur-
face mass anomalies, we could see that neglecting the covariances would lead to errors,
which could range up to half of the amplitude of the surface mass signal. Moreover, it
was shown that neglecting the covariances in the estimation of the corrector surface of
Switzerland had a signi�cant effect on the estimation of the variance components.
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We have compared robust M-estimation techniques to the conventional 3-sigma re-
moval technique to treat the outliers in a data set. In a M-estimation, one assumes a
higher probability for outliers and in this way down-weight the outliers. To do this,
one needs to de�ne an alternative distribution to the normal distribution, e.g., the Hu-
ber distribution, which is normally distributed within a certain interval and follows a
Laplace distribution outside this interval. We have further developed the Cost Function
Estimation (CFE). With this method, we no longer pre-de�ne the distribution of the
observations, but estimate this distribution from the data itself. In this way, not only
observations with a high test statistic are re-weighted, but the re-weighting involves all
observations, as these data are in general not normally distributed. A simulation study
and the gravity recovery of real CHAMP pseudo-observations showed that the CFE
is a proper robust weighting algorithm, which performs better than any other outlier
treatment technique. Moreover, the determination of the cost function is very fast, as
it makes use of the standardized residuals. A disadvantage is that all elements of the
normal matrix need to be re-weighted.

The in�uence of the outliers on the estimation of the variance components should
also be reduced. We can use the robust weights from the M-estimation or the CFE to
down-weight the residuals of the outliers in the VCE algorithm. In this way, the re-
weighting in the estimation of the vector of unknowns and the variance components is
consistent, contrary to Fellner’s approach, which is often used in robust variance compo-
nent estimation. One should be cautious for descending in�uence functions, which can
arise in the M-estimation or the CFE, as they can produce too optimistic VC-matrices.
A solution to this problem is to use the Huber distribution in the robust VCE.

11.2 Recommendations

In this section, some recommendations for further research will be addressed:

• One should further look into the problem of correlations among the observations
in the detection of outliers. The covariances in the stochastic model will smooth
outliers over multiple residuals. The assumption of these correlations will de-
smooth these residuals. In this way, the outliers should become more visible.
However, this assumes that, after the adjustment of a single outlier, the other
observations follow the stochastic model, which is in general not the case. Corre-
lations may have changed after the blunder has occurred.

• The M-estimation method, and consequently the cost function estimation (CFE),
assume the data to be uncorrelated. One should generalize the equations to ac-
count for these correlations.

• The cost function estimation may be improved by a different parametrization than
the second order polynomials used so far.
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• One could derive the REML-fs of the variance components if the distribution of
the observations is estimated by a modi�ed CFE, in which the expression of the
function is not dependent on the standardized residuals.

• Future work should include covariances among the CHAMP pseudo-observations,
as they are correlated due to the numerical Lagrange interpolator. This may have
a positive effect on the rescaling of the EGM96 EVD cofactor matrices in the
combination with the CHAMP-only solution.

• The algorithms, proposed in this thesis, should be applied to the temporal gravity
�eld modelling using GRACE observations. In this way, outliers will be down-
weighted in the data and a proper VC-matrix of the potential coef�cients is ob-
tained.

• The combination of weekly GPS site displacements with monthly GRACE mod-
els could be further improved by the inclusion of satellite laser ranging (low-
degree coef�cients) and the inclusion of ocean bottom pressure data to improve
the oceanic regions. Moreover, the monthly solutions should be connected with
each other by using an singular value decomposition in time and space or by com-
puting one model, which accounts for the static part of the gravitational �eld and
the main periodic and secular effects among the potential coef�cients.

• The possible reduction of the aliasing effect by VCE should be further addressed
by adding more signal to the simulated data set, e.g., ocean tide errors, atmo-
spheric model errors and more hydrological signal.

• The upcoming GOCE mission deserves a proper modelling of the functional and
stochastic models. Possible systematic effects should be tested for signi�cance
and augmented for in the functional model. The different sources of errors have
to be de�ned and the variance-covariance matrix has to be written as a linear
combination of cofactor matrices. Monte Carlo VCE is able to handle the large
amount of data and the dimension of the problem. The standardized residuals can
then be used to estimate the probability density function out of the data and con-
sequently re-weight the observations. Combinations with other satellite missions
(e.g., CHAMP and GRACE) are necessary, as well as with terrestrial, marine and
airborne data to strengthen parts of the frequency domain, �ll in the polar gaps
and extend the time interval of the observations. A re-weighting of the different
data sets using VCE will most likely improve the combined solution.
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A
Series expansion into spherical

harmonics

A harmonic function V is a scalar function, which ful�lls Laplace equation:

ΔV = 0, (A.1)

in which the Laplace operator Δ, expressed in Cartesian coordinates, is de�ned as

ΔV :=
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
. (A.2)

As

Δ

(
1

l

)
= 0, (A.3)

we can show that the gravitational potential is a harmonic function outside its masses,
i.e.,

ΔV (P ) = G

∫
ΣQ

ρ(Q)Δ

(
1

lPQ

)
dΣQ = 0. (A.4)

In Earth sciences, it is much more convenient to work with spherical (or ellipsoidal)
coordinates instead of Cartesian coordinates. Transformation between the spherical co-
ordinates (ϑ, λ, r) and the Cartesian coordinates (x, y, z) is as follows:

x = r sin ϑ cos λ,
y = r sin ϑ sin λ,
z = r cos ϑ,

(A.5)

and inversely
r =

√
x2 + y2 + z2,

ϑ = arctan

√
x2 + y2

z
,

λ = arctan
y

x
.

(A.6)
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In Heiskanen and Moritz [1967] it was shown that ΔV can be written in spherical coor-
dinates as

r2∂2V

∂r2
+ 2r

∂V

∂r
+ cot ϑ

∂V

∂ϑ
+

1

sin2 ϑ

∂2V

∂λ2
= 0. (A.7)

The solution to this equation reads

V (ϑ, λ, r) =
∞∑
l=0

1

r(l+1)

l∑
m=0

[almPlm(cos ϑ) cos mλ + blmPlm(cos ϑ) sin mλ] . (A.8)

In global gravity �eld modelling, we use a slightly modi�ed series expansion, i.e.

V (ϑ, λ, r) =
GM

R

∞∑
l=0

(
R

r

)(l+1) l∑
m=0

[
C̄lm cos mλ + S̄lm sin mλ

]
P̄lm(cos ϑ), (A.9)

with GM the gravity-mass constant of the geopotential model, R a scale factor, C̄lm, S̄lm

the 4π-normalized potential coef�cients and P̄lm(cos ϑ) the 4π-normalized Legendre
functions. The unnormalized Legendre functions can be obtained by Heiskanen and
Moritz [1967]

Plm(t) =
1

2ll!
(1− t2)m/2 dl+m

dtl+m
(t2 − 1)l. (A.10)

This can be split into two parts, if we �rst compute the Legendre polynomial

Pl(t) = Pl0(t) =
1

2ll!

dl

dtl
(t2 − 1)l, (A.11)

and in a second step compute the Legendre function

Plm(t) = (1− t2)m/2 dmPl(t)

dtm
. (A.12)

The Legendre polynomials are often obtained by the recursive equation

Pl(t) = − l − 1

l
Pl−2(t) +

2l − 1

l
tPl−1(t) ; P0(t) = 1 ; P1(t) = t. (A.13)

In global gravity �eld determination, we make use of the 4π-normalized Legendre func-
tions, i.e.,

P̄lm(cos ϑ) = HlmPlm(cos ϑ) (A.14)

with
Hlm =

√
2l + 1 for m = 0

Hlm =
√

2(2l + 1) (l−m)!
(l+m)!

for m �= 0.
(A.15)

The 4π-normalized Legendre functions have the orthogonality relationship

∫
σ

P̄lm(cos ϑ)P̄nk(cos ϑ)

⎧⎪⎪⎨
⎪⎪⎩

cos mλ cos kλ
sin mλ sin kλ
cos mλ sin kλ
sin mλ cos kλ

⎫⎪⎪⎬
⎪⎪⎭ dσ =

⎧⎪⎪⎨
⎪⎪⎩

4πδlnδmk

4πδlnδmk

0
0

⎫⎪⎪⎬
⎪⎪⎭ . (A.16)
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B
Matrix algebra and matrix analysis

In this appendix, we will summarize several properties of matrices and matrix operators
that will have been used in this thesis; see also Teunissen and Amiri-Simkooei [2008].

Partial derivatives of a matrix

∂tr(AB)

∂A
= BT (B.1)

∂tr(ABAC)

∂A
= (BAC)T + (CAB)T (B.2)

∂tr(AT BAC)

∂A
= BAC + (CAT B)T (B.3)

∂ ln detA
∂ai

= tr(A−1 ∂A

∂ai

) (B.4)

∂A−1

∂ai

= −A−1 ∂A

∂ai

A−1 (B.5)

Matrix inversions

(A + BDC)−1 = A−1 − A−1B(I + DCA−1B)−1DCA−1 (B.6)
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The Kronecker product

Let A be a m× n matrix and B a q × r matrix. The mq × nr matrix

A⊗B :=

⎡
⎢⎢⎢⎣

A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

Am1B Am2B · · · AmnB

⎤
⎥⎥⎥⎦ (B.7)

is de�ned as the Kronecker product of A and B. Properties of this product are

A⊗ (B ⊗ C) = (A⊗B)⊗ C
A⊗ (B + C) = (A⊗B) + (A⊗ C)
(A + B)⊗ C = (A⊗ C) + (B ⊗ C)
(AB)⊗ (CD) = (A⊗ C)(B ⊗D)
(A⊗B)T = AT ⊗BT

(A⊗B)−1 = A−1 ⊗B−1 for square non-singular A and B matrices
(B.8)

The vec-operator

The vec-operator stacks the columns of a matrix below one another. With A de�ned as
a m× n matrix with A = [a1a2 · · · an], the mn× 1 vector vec{A} is de�ned as

vec{A} :=

⎡
⎢⎢⎢⎣

a1

a2
...

an

⎤
⎥⎥⎥⎦ (B.9)

Properties of this operator are

vec{ABC} = (CT ⊗ A)vec{B} (B.10)

The vh-operator

The vh-operator is obtained in quite a similar way as the vec-operator, but it starts with
the diagonal elements of the square matrix A. If A is a n × n matrix, the elements of
the vector vh{A} will consist of the n(n + 1)/2 lower triangle elements of this matrix.

The trace-operator

The tr-operator performs a summation of the diagonal elements of a square matrix.
Properties of this operator are

tr(AB) = tr(BA)
tr(A⊗B) = tr(A)tr(B)
tr(ABCD) = (vec{DT})T (CT ⊗ A)vec{B}

(B.11)
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C
Some standard distributions

Normal distribution

The central limit theorem states that the summation of p different elementary errors,
each with an arbitrary distribution, converges to a normal distribution if p approximates
in�nity. As measurement errors are, in general, a summation of multiple independent
error sources, most measurement errors can be assumed to be normally distributed. The
univariate normal distribution can be written as

p(x) =
1√
2πσ

e−(x−μ)2/2σ2

, (C.1)

also denoted as
x ∼ N(μ, σ). (C.2)

This can be generalized to the multivariate normal distribution of the n× 1 vector x:

p(x) =
1

(2π)n/2(detQx)1/2
e−

1
2
(x−μ)T Q−1

x (x−μ), (C.3)

denoted as
x ∼ N(μ,Qx), (C.4)

where
E{x} = μ ; D{x} = Qx.

Let y = Ax + c, then

y ∼ N(Aμ + c, AQxA
T ) (C.5)

The relationship between the critical values and the two-sided levels of signi�cance is
shown in table C.1.
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Tab. C.1: Critical values κα for some two-sided levels of signi�cance α within
the normal distribution

α κα

0.250 1.150
0.100 1.645
0.050 1.960
0.025 2.241
0.010 2.576
0.005 2.807
0.001 3.291

Non-central χ2-distribution

If x ∼ N(μ,Qx) and y = xT Q−1
x x then y ∼ χ2(n, λ), with n, the degrees of freedom

and λ the non-centrality parameter, de�ned as λ = μT Q−1
x μ. The expectation and

dispersion of y are
E{y} = n + λ ; D{y} = 2n + 4λ (C.6)

If λ = 0 the distribution is called the central χ2-distribution and noted as y ∼ χ2(n).

Non-central F -distribution

If x ∼ N(μ,Qx) and y ∼ N(0, Qy) and x and y are uncorrelated, then

z =
(xT Q−1

x x)/n

(yT Q−1
y y)/m

∼ F (n,m, λ) (C.7)

with n the dimension of x, m the dimension of y and λ the non-centrality parameter
de�ned as μT Q−1

x μ. Note that the distribution of u = (xT Q−1
x x)/n is sometimes noted

as u ∼ F (n,∞, λ). If λ = 0, the distribution is called the central F -distribution and
noted as z ∼ F (n,m).

Student’s t-distribution

If x ∼ N(0, 1) and y ∼ χ2(k), then

z =
x√
y/k

∼ t(k) (C.8)

with k the degrees of freedom and t(.) the notation of the Student’s t-distribution. Note
that

u = zT z ∼ F (1, k) (C.9)
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Summary

Functional and stochastic modelling of satellite gravity data

The gravitational �eld of the Earth is caused by the heterogeneous mass distribution of
the Earth. Due to this �eld, the mean sea level (at rest) shows �uctuations (geoid heights)
up to 100 meters with respect to a reference ellipsoid. The time-varying gravity signal is
a source of information on the melting of the polar ice, the hydrological cycle and other
mass variations within the Earth. Moreover, the gravity �eld of the Earth is needed
to derive the physical (orthometric) heights and to estimate the ocean at rest, which is
necessary for oceanographic research.

The gravitational �eld is an harmonic �eld and can be expressed in a model of
spherical harmonic coef�cients. A higher resolution can be obtained by an increase
in this number of coef�cients; e.g., more than 130,000 coef�cients are needed for a
resolution of 111 kilometers. Traditional techniques for the determination of this gravity
�eld are terrestrial measurements, marine measurements and airborne gravimetry. Since
the launch of the �rst satellite in 1957, satellite tracking measurements are used to derive
the gravitational �eld, together with altimetry measurements to estimate the sea surface
at rest. With the launch of the dedicated satellite missions CHAMP (2000), GRACE
(2002) and the upcoming GOCE mission (2008), millions of observations have become
available, which will (and allready have) improved the gravitational �eld by several
orders. Moreover, the measurements of the GRACE mission enable us to derive monthly
estimates of the mass changes in a thin shell near the Earth’s surface, mainly due to
hydrology, post-glacial rebound and the melting of the polar ice. The combination of
different observation groups (satellite / surface gravity data) raises a number of research
questions:

How to deal with systematic effects in the data?

The (linear) relationship between the observations and the unknown parameters is de-
�ned in the functional model. These parameters consist of the ’global’ coef�cients of the
gravitational �eld and some ’local’ parameters, such as systematic effects. The resid-
uals, i.e., observations minus model, should only consist of observation noise. Local
parameters need to be tested for signi�cance. A correct stochastic model is needed for
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such an hypothesis testing. As unmodelled systematic effects enter into the stochastic
model, which will change this stochastic model with each improvement of the vector of
unknowns, this testing should be done in an iterative process.

How to weight the different observation groups?

The quality of the satellite measurements vary considerably in time due to changing
GPS constellations and instrument conditions. The weighted least-squares approach
will give more weight to high-quality observations. The precision of the observations
is expressed in the variance-covariance matrix, as part of the stochastic model. A-priori
estimates of these stochastic properties are often not reliable and in general too op-
timistic. To achieve precise and reliable estimates of the unknown parameters, it is
therefore necessary to calibrate the stochastic model. In the 1970s and 1980s such a cal-
ibration was mainly done externally, i.e., by comparing the result to independent data.
A breakthrough was the implementation of the subset solution method, which is an in-
ternal calibration method suggested by F.J. Lerch [1989]. However, with the launch of
the CHAMP and GRACE missions, which have brought millions of gravity-related ob-
servations to the geodetic community, this community has made a step backwards with
respect to the validation of the stochastic model. This is probably due to the huge di-
mensions of the least-squares problem. In this thesis, we have shown that even for large
amounts of data (and unknown parameters), it is still possible to compute unbiased var-
iance components and consequently observation weights . With the use of Monte Carlo
simulations, we have re-written the equations in such a way that every least-squares
software package can be used to compute the new weights of the different data sets. In
this way, the stochastic model can absorb the varying quality of the satellite data and it
enables an improved combination of different observation types.

How to decrease the in�uence of the blunders in the data?

Outliers are observations that do not follow the assumed functional and stochastic model.
The residual of an outlier is much higher than one could expect from the stochastic
model. The conventional approach is to test a bias in an observation for signi�cance
(w-test statistic) and consequently remove the observation with the highest test statistic
(data snooping). An alternative method is to assume a different distribution than the nor-
mal distribution as the probability density function of the observations (M-estimation).
In this way, more probability is assumed for observations with a high test statistic.
Therefore, the in�uence of these observations is highly reduced. With a suf�ciently
high redundancy in the observations, it is even possible to estimate this probability den-
sity function from the observations and consequently re-weight all observations accord-
ingly. This cost function estimation(CFE) produced the best results in a test setup with
real CHAMP satellite gravity data. It is recommended to further re�ne this method and
to use it on different sources of data, including the very precise measurements of the
GOCE satellite.
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The testing of the local parameters, the validation of the stochastic model and the
detection and treatment of the outliers are all connected to each other. It is therefore
recommended to perform these algorithms in an iterative process. The algorithms have
been tested on several different applications in this thesis. In the �rst application a global
gravity �eld model is derived from CHAMP pseudo-observations, using the energy bal-
ance approach. In the second test setup, we have computed a joint inversion of weekly
GPS site displacements with monthly GRACE models to obtain estimates of the surface
mass redistributions. Simulated GRACE observations are used in the third application
to quantify and reduce the effect of temporal aliasing. In the last application a corrector
surface to the gravimetric geoid is estimated for Switzerland using a combination of
GPS/levelling data and the gravimetric geoid.

Jasper van Loon
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Samenvatting

Functional and stochastic modelling of satellite gravity data

Het zwaartekrachtsveld van de Aarde wordt veroorzaakt door de massaverdeling binnen
de Aarde en heeft tot gevolg dat het zeeoppervlak in rust afwijkingen (geo�̈dehoogten)
vertoont tot wel 100 meter ten opzichte van een referentie-ellipso�̈de. Veranderingen
in dit zwaartekrachtsveld geven ons zo informatie over de smelting van de poolkap-
pen, de hydrologische cyclus en de massaveranderingen in het binnenste van de Aarde.
Bovendien is het zwaartekrachtsveld essentieel in de bepaling van de fysische (orthome-
trische) hoogte en de de�niëring van het zeeoppervlak in rust, hetgeen nodig is voor
oceanogra�sch onderzoek.

Dit zwaartekrachtsveld is een harmonisch veld en kan uitgedrukt worden in een
model van spherisch harmonische coef�ciënten. Een verhoging van dit aantal coef-
�ciënten leidt tot een verbetering van de resolutie. Zo heeft men voor een resolutie
van 111 kilometer meer dan 130.000 coef�ciënten nodig. Traditionele technieken voor
de bepaling van dit zwaartekrachtsveld zijn zwaartekrachtmetingen op land, mariene
metingen en vliegtuiggravimetrie. Sinds het begin van het ruimtetijdperk (1957) worden
ook afstandsmetingen naar satellieten uitgevoerd, alsmede altimetriemetingen van het
zeeoppervlak. Met de lancering van de satellietmissies CHAMP (2000), GRACE (2002)
en de toekomstige GOCE missie (2008) komen vele miljoenen metingen beschikbaar,
die ervoor zorgen (en al hebben gezorgd) dat het zwaartekrachtsveld met enkele or-
des beter bepaald kan worden. De waarnemingen van de GRACE-missie maken het
bovendien mogelijk om voor het eerst op een maandelijkse basis de massaveranderin-
gen in de bovenste laag van de Aarde te berekenen. Deze massaverplaatsingen zijn voor-
namelijk toe te schrijven aan hydrologie, post-glaciale ophef�ng en het smelten van de
poolkappen. De combinatie van verschillende waarnemingsgroepen (satellietmetingen
/ terrestrische metingen) levert een aantal onderzoeksvragen op:

Hoe om te gaan met de systematische effecten per data set?

Het functionaal model geeft de relatie weer tussen de waarnemingen en de onbek-
ende parameters. Deze onbekende parameters bestaan uit de ’globale’ coef�ciënten
van het zwaartekrachtsveld en enkele ’locale’ parameters, zoals systematische fouten.
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De residuen, oftewel waarnemingen minus model, dienen idealiter slechts de ruis te be-
vatten. De locale coef�ciënten dienen getest te worden op signi�cantie. Hiervoor is
echter ook het stochastische model nodig. Aangezien ongemodelleerde systematische
fouten geabsorbeerd worden door het stochastic model, zal dit model bij iedere schat-
ting van de onbekende parameters aangepast moeten worden. Hierdoor is het testen van
de locale parameters een iteratief proces.

Hoe moeten de verschillende waarnemingsgroepen gewogen worden?

De kwaliteit van satellietmetingen verandert sterk in de tijd door veranderende GPS-
constellaties en het functioneren van de meetapparatuur. In een gewogen kleinste-
kwadraten oplossing krijgen metingen met een hogere kwaliteit een hoger gewicht in de
schatting van de onbekende parameters. De kwaliteit wordt uitgedrukt in de variantie-
covariantie matrix, als onderdeel van het stochastisch model van de waarnemingen. De
a priori schattingen van deze stochastische eigenschappen zijn meestal niet betrouw-
baar en over het algemeen te positief. Een calibratie van het stochastisch model is
daardoor noodzakelijk voor een precieze en betrouwbare schatting van de onbekende
parameters. In de jaren ’70 en ’80 werd deze calibratie voornamelijk uitgevoerd door
het eindproduct te vergelijken met onafhankelijke gegevens. Een doorbraak was de
’subset solution’-methode, een interne calibratiemethode, voorgesteld door F.J. Lerch
[198i9]. Met de komst van miljoenen waarnemingen van de nieuwe satellietmissies
CHAMP en GRACE heeft de geodetische wereld echter een stap teruggedaan voor wat
betreft de validatie van het stochastische model. Dit is waarschijnlijk toe te schrijven
aan de enorme dimensiteit van het kleinste-kwadraten probleem. In dit proefschrift
laten we echter zien dat ook voor grote hoeveelheden data het mogelijk is om de zuivere
variantiecomponentenschatting toe te passen. Met behulp van Monte Carlo simulaties
zijn de vergelijkingen zo opgeschreven dat ieder kleinste-kwadraten softwarepakket ge-
bruikt kan worden voor de berekening van de nieuwe gewichten van de verschillende
data sets. Op deze manier kan de variërende kwaliteit van de satellietgegevens worden
opgevangen door het stochastisch model en is een betere combinatie mogelijk tussen de
verschillende soorten waarnemingen.

Hoe kan de invloed van blunders zo veel mogelijk beperkt worden?

Blunders zijn waarnemingen, die niet overeenkomen met de aangenomen functionale
en stochastische modellen. De residuen zijn veel groter dan verwacht zou worden, uit-
gaande van het stochastisch model. De conventionele aanpak is om een afwijking in de
waarneming te testen voor signi�cantie (w-toets) en vervolgens de waarneming met de
hoogste testgrootheid te verwijderen uit de data set (data snooping). Een alternatieve
methode is echter om een andere verdeling voor de waarnemingen aan te nemen dan
de normaalverdeling. Hierdoor vermoed men meer kans op een blunder in de waarne-
mingen en verkleint men zo de invloed van zo’n blunder. Nog een stap verder is om
deze kansverdeling rechtstreeks te schatten uit de waarnemingen. Deze ’cost function
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estimation (CFE)’ levert in een testopzet met echte CHAMP-waarnemingen de beste
oplossing. Het verdient aanbeveling om deze methode te ver�jnen en toe te passen op
verschillende soorten data, waaronder de nieuwe, zeer nauwkeurige metingen van de
GOCE-satelliet.

Het testen van locale parameters, het verbeteren van het stochastic model en de be-
handeling van blunders in de data zijn gerelateerd aan elkaar. Het is daarom aan te raden
dit in een iteratief proces op te lossen. Dit is in dit proefschrift gedaan voor meerdere
applicaties betreffende zwaartekrachtgegevens. Zo is het globale zwaartekrachtsveld
gemodelleerd, gebruikmakend van satellietmetingen van de CHAMP-missie. De tweede
applicatie vormt de combinatie van wekelijkse GPS-stationsverplaatsingen met maan-
delijkse GRACE-modellen voor de bepaling van massaverplaatsingen in de opperste
laag van de aarde. De derde toepassing richt zich op het reduceren van het ’temporal
aliasing’-effect. Hierbij is gebruik gemaakt van gesimuleerde GRACE-waarnemingen.
De laatste toepassing is de bepaling van het correctieoppervlak in Zwitserland door ge-
bruik te maken van GPS-waarnemingen, waterpasmetingen en de gravimetrische geo�̈de.

Jasper van Loon
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