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Summary

Spacecraft formation flying is currently considered as a key technology for advanced
space missions. Compared to large individual spacecraft, the distribution of sensor
systems amongst multiple platforms offers improved flexibility and redundancy,
shorter times to mission and the prospect of being more cost effective. Besides
these advantages, satellite formations in low Earth orbit provide advanced science
opportunities that cannot, or not easily, be realized with single spacecraft. One
of the fundamental issues of spacecraft formation flying is the determination of
the relative state (position and velocity) between the satellite vehicles within the
formation. Knowledge of these relative states in (near) real-time is important for
operational aspects. In addition, some of the scientific applications, such as high
resolution interferometry, require an accurate post-facto knowledge of these states.
The goal of this dissertation is therefore to develop, implement and test a method
for high precise post-facto relative positioning of formation flying spacecraft, using
GPS observation data. The need for such a methodology comes from scientific
satellite formation flying missions that are currently being planned. A good example
here is the Synthetic Aperture Radar (SAR) interferometry formation consisting of
the TerraSAR-X and TanDEM-X satellites. The primary mission objective here
requires the relative position to be known within a 2 mm precision (1-dimensional).

GPS receivers are often considered as the primary instruments for precise rela-
tive navigation in future satellite formation flying missions. As is commonly known,
precise relative positioning between GPS receivers in geodetic networks is exercised
on a routine basis. Furthermore, GPS receivers are already frequently used on-
board satellites to perform all kinds of navigational tasks, are suitable for real-time
applications and provide measurements with a 3-dimensional nature.

Previous studies carried out in this research area focussed on the real-time or
operational aspects, and all used GPS data obtained from software or hardware-in-
the-loop simulations. This dissertation clearly distinguishes itself due to the fact
that the developed methodology has been tested using real-world GPS data from
the GRACE mission, which in addition also provides a precise way to validate
the obtained results by means of the GRACE K/Ka-Band Ranging System (KBR)
observations.

One of the key aspects of any GPS positioning application is the quality of the
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observation data used. To this extent an in-flight performance analysis of the used
GRACE (and CHAMP) GPS data has been carried out. The results show that the
GRACE GPS pseudorange observations, on the individual frequencies, are subject
to systematic errors in the order of 10-15 cm. Furthermore, an assessment of the
noise of both the GPS pseudorange and carrier phase data demonstrates that the
noise of the GRACE B observation data is significantly lower.

When using GPS for precise relative spacecraft positioning, the trajectory or
orbit of one of the spacecraft, serving as the reference, has to be known to the best
possible extent. In order to facilitate this, a total of three precise orbit determi-
nation strategies, using undifferenced ionosphere free GPS pseudorange and carrier
phase observations, have been implemented and tested. They comprise a kinematic
and reduced dynamic batch LSQ estimation method, as well as an extended Kalman
filter/smoother (EKF), that also form the conceptual basis for the relative space-
craft positioning strategies. Each of the precise orbit determination concepts has
been tested using GPS data from the CHAMP and GRACE missions. The reduced
dynamic batch LSQ orbits were validated with Satellite Laser Ranging data, where
the residuals showed an RMS of 3-4 cm.

Out of a total of four possible processing strategies that have been identified for
relative spacecraft positioning, only an extended Kalman filter/smoother has proven
to work satisfactorily when tested on the real-world GRACE GPS data. The EKF
processes single difference GPS pseudorange and carrier phase observations and uses
(pseudo) relative spacecraft dynamics to propagate the relative satellite state over
the observation epochs. Despite its single difference parametrization the EKF can
still resolve and incorporate the integer double difference carrier phase ambiguities,
which is commonly regarded as, and has proven to be in this dissertation, the key to
precise GPS based relative positioning. Estimation of the integer ambiguities is ac-
complished by the well known Least Squares Ambiguity Decorrelation Adjustment
(LAMBDA) method. Due to the presence of systematic errors in the GRACE GPS
data, a relatively conservative validation of the estimated integer ambiguity para-
meters was found to be required prior to their incorporation in the filter. When
validating the daily ambiguity fixed GRACE relative position solutions from the
EKF with the KBR observations, it has been shown that an actual overall relative
position precision of 0.9 mm (1-dimensional) over a 101 day data arc is achieved.
This dissertation is the first that proves that such precision can be truly obtained
for real-world relative spacecraft positioning applications.



Samenvatting

Op dit moment wordt het in formatie vliegen van ruimtevaartuigen, of satellieten,
gezien als een van de meest veelbelovende technieken voor toekomstige en gea-
vanceerde ruimtevaartmissies. Een van de voordelen is onder meer de verdeling
van meetinstrumenten en sensoren over verschillende kleine satellieten. Naast het
feit dat dit de flexibiliteit verhoogt zal dit waarschijnlijk ook leiden tot een kortere
ontwikkelingstijd en een kostenreductie. Buiten deze voordelen bieden satellietfor-
maties in een lage aardbaan geavanceerde wetenschappelijke onderzoeksmogelijkhe-
den die niet, of zeer moeilijk, kunnen worden gerealiseerd wanneer er slechts van een
enkele satelliet gebruik wordt gemaakt. Een van de fundamentele kwesties bij het
in formatie vliegen van satellieten is het bepalen van de onderlinge, of relatieve, af-
standen tussen de satellieten in deze formatie. Kennis van deze relatieve afstanden
in real time is belangrijk voor onder meer operationele aspecten. Sommige weten-
schappelijke toepassingen vereisen echter een hoogprecieze of -nauwkeurige kennis
van deze afstanden achteraf. Het doel van dit proefschrift, en het onderliggende
onderzoek, is de ontwikkeling, de implementatie en het testen van een methode
die deze afstanden met een hoge precisie achteraf kan bepalen, gebruikmakend van
GPS metingen. De vraag naar zulk een methode komt van enkele wetenschap-
pelijke missies die momenteel voorbereid worden. Een goed voorbeeld is de nieuwe
’Synthetic Aperture Radar’ (SAR) interferometrie missie bestaande uit twee in for-
matie vliegende satellieten, TerraSAR-X en TanDEM-X. Het primaire missiedoel,
het genereren van hoognauwkeurige digitale hoogtemodellen, vereist dat de relatieve
afstand tussen beide satellieten achteraf kan worden bepaald met een precisie van
2 mm (1-dimensionaal).

GPS ontvangers worden vaak overwogen als het primaire meetinstrument voor
het precies bepalen van de relatieve afstanden tussen in formatie vliegende satelli-
eten. Dat komt onder meer doordat precieze onderlinge afstandsbepalingen tussen
GPS ontvangers in geodetische netwerken al routinewerk is, en het dus is aange-
toond dat dit meetinstrument hiervoor geschikt is. Verder worden GPS ontvangers
al zeer frequent gebruikt aan boord van satellieten voor allerlei soorten navigati-
etaken. Het GPS systeem is bovendien geschikt voor real time toepassingen en de
metingen zijn 3-dimensionaal van aard.

Het merendeel van de eerder uitgevoerde studies in dit vakgebied had betrekking
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op de real time of operationele aspecten van het in formatie vliegen. Bovendien was
de gebruikte GPS meetdata altijd verkregen uit simulaties, zij het door middel van
software of ’hardware-in-the-loop’. Dit proefschrift onderscheidt zich duidelijk door
het feit dat de ontwikkelde methoden getest zijn met GPS observatiedata afkomstig
van de GRACE missie, en doordat de verkregen relatieve afstanden precies kunnen
worden gevalideerd met behulp van de GRACE K/Ka-Band Ranging System (KBR)
metingen.

Een van de belangrijkste aspecten van GPS toepassingen is de kwaliteit van de
gebruikte observatiedata. Om een beter inzicht hierin te krijgen zijn er eerst een
aantal analyses uitgevoerd om de prestaties van de GPS ontvangers aan boord van
de CHAMP en GRACE satellieten te bepalen. De resultaten laten onder meer zien
dat de systematische fouten van de GPS code metingen afkomstig van de GRACE
GPS ontvangers in de orde van 10-15 cm zijn. Verder is gebleken dat de meetruis
van de GPS observatiedata afkomstig van GRACE B significant lager is dan voor
CHAMP of GRACE A.

Wanneer GPS wordt gebruikt voor relatieve satelliet-afstandsbepaling moet de
baan van een van de satellieten, die als referentiepunt dient, met de hoogst mo-
gelijke precisie bekend zijn. Daarom zijn er in totaal drie methoden voor precieze
satelliet baanbepaling ontwikkeld en getest, die gebruik maken van ionosfeervrije
GPS code en fase metingen. Deze bestaan uit een kinematische en een gereduceerd
dynamische ’batch LSQ’ schattingsmethode, alsmede een ’Extended Kalman Fil-
ter/Smoother’ (EKF). Deze methoden vormen ook de conceptuele basis van de
later ontwikkelde strategieën voor relatieve satelliet afstandsbepaling. Elk van de
precieze baanbepalingsmethoden is uitvoerig getest met GPS observatiedata van
de CHAMP en GRACE missie. De satelliet banen verkregen met de gereduceerd
dynamische ’batch LSQ’ schattingsmethode zijn gevalideerd met ’Satellite Laser
Ranging’ metingen, waar de residuen een RMS van 3-4 cm vertonen.

Van de totaal vier strategieën die gëıdentificeerd en uitgeprobeerd zijn voor pre-
cieze relatieve afstandsbepaling van satellieten bleek alleen de ’Extended Kalman
Filter/Smoother’ robuust genoeg voor toepassing op de GRACE GPS data. De EKF
verwerkt de zogenaamde enkelverschillen (’single differences’) van de GPS code en
fase metingen op de individuele frequenties, en gebruikt een ’pseudo’ modellering
van de relatieve satellietdynamica om de toestandsvector tussen de meetepochen te
propageren. Ondanks de parametrisatie, behorende bij de enkelverschil metingen, is
de filter nog steeds in staat om de geheeltallige fase-meerduidigheden behorende bij
dubbelverschil GPS fase metingen op te lossen en te gebruiken. Dit laatste wordt
algemeen gezien als de sleutel tot hoogprecieze relatieve GPS plaatsbepaling, wat
ook gedurende dit onderzoek duidelijk gebleken is waar te zijn. Schatting van deze
geheeltallige meerduidigheden gebeurd met behulp van de bekende Least Squares
Ambiguity Decorrelation Adjustment (LAMBDA) methode. Voordat de geschatte
meerduidigheden gebruikt kunnen worden door de filter worden ze door een vrij con-
servatief validatieschema getoetst op juistheid. Dit is noodzakelijk gebleken door
de aanwezigheid van niet gemodelleerde fouten in de GPS observatiedata. Wanneer
de dagelijkse oplossingen voor de relatieve positie tussen beide GRACE satellieten,
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verkregen uit de EKF waarbij de geheeltallige fase-meerduidigheden worden geschat
en gebruikt, worden gevalideerd met de KBR metingen blijkt, dat de algehele pre-
cisie van de oplossingen op 0.9 mm (1-dimensionaal) ligt voor een testperiode van
101 dagen. Dit proefschrift is het eerste waarin wordt bewezen dat zulke precisie in
de werkelijkheid te halen valt voor relatieve satelliet-afstandsbepaling.





Chapter 1

Introduction

Although initially only intended for terrestrial positioning applications, the use of
the Global Positioning System (GPS) for space applications, especially in low Earth
orbits (LEOs), was recognized early on as well. In 1982 the LandSat-4 satellite
carried the first GPS receiver into orbit [Birmingham et al., 1983]. With only a
few of the prototype Block I GPS satellites available at the time, LandSat-4’s GPS
receiver demonstrated that a spacecraft could be navigated to an accuracy better
than 50 meters in real-time.

Since that inaugural flight GPS receivers have gradually evolved into well-
accepted standard tools for spacecraft navigation. Aside from onboard applications
like real-time positioning, attitude determination or time-synchronization of space-
craft sensors, GPS receivers are nowadays considered as primary tracking system for
precise orbit determination in many satellite missions. Here, the accuracy, global
coverage and three-dimensional nature of GPS measurements makes this system
highly competitive to other, more traditional, spacecraft tracking systems such as
Satellite Laser Ranging (SLR) and DORIS.

In accordance with geodetic applications, dual-frequency GPS receivers are pre-
ferred for precise orbit determination and navigation of LEO spacecraft. As opposed
to single frequency GPS receivers, the dual frequency ones are capable of eliminat-
ing the ionospheric signal errors and thus to make best use of the high accuracy
GPS carrier phase measurements. Single frequency GPS receivers, such as Surrey’s
SGR series [SSTL, 2003], the DLR Phoenix [Montenbruck et al., 2004] and As-
trium’s Mosaic [Astrium, 2002], are generally used for small satellite missions when
medium navigational precision is required. Driven by the need of various scientific
missions, a growing number of suitable dual frequency GPS receivers is being made
available for space applications. Aside from the Jet Propulsion Laboratory’s (JPL)
BlackJack GPS receiver [Montenbruck and Kroes, 2003], which is already flown
on CHAMP, GRACE, IceSat and Jason-1, the European Lagrange receiver [Mar-
radi et al., 2001] and the GRAS instrument [Silvestrin et al., 2000] are currently
prepared for use on Radarsat-2, GOCE and METOP. Recently, a Soyuz-2 capsule
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travelling to the International Space Station already carried a Lagrange GPS re-
ceiver, as a test experiment [ENEIDE, 2005] for differential GPS (DGPS) using the
European Geostationary Navigation Overlay System (EGNOS). Furthermore, the
validation of commercial-off the-shelf receivers (NovAtel OEM4-G2L) is in progress
for use onboard the Canadian CASSIOPE mission [Langley et al., 2004].

Besides their use for precise navigational tasks, dual frequency spaceborne GPS
receivers are slowly becoming stand-alone scientific instruments as well. They have
successfully profiled the atmosphere, by observing GPS signals as they are occulted
by the Earth’s limb [Kursinski et al., 1997], and are used to study the Earth’s
gravity field [Reigber et al., 2002]. Furthermore the use of GPS for altimetry
purposes, where backscattered GPS signals from the sea surface are measured, is
currently being investigated [Yunck, 2003].

This research work focusses on yet another space application of GPS, namely
its use for precise relative navigation of formation flying satellites. The rationale
of this relatively new application and an overview of previous research conducted
in this field are provided in the next section. Followed by this is the objective and
motivation of the current study and its contribution to this area of research. A
brief introduction of two satellite missions, CHAMP and GRACE, of which GPS
data is frequently used for this research, is given thereafter. Finally, the chapter is
concluded with a detailed outline of the rest of this dissertation.

1.1 Spacecraft formation flying using GPS

Spacecraft formation flying is currently considered as a key technology for advanced
space missions. Compared to large individual spacecraft, the distribution of sensor
systems amongst multiple platforms offers improved flexibility and redundancy,
shorter times to mission and the prospect of being more cost effective. Besides
these advantages, satellite formations in low Earth orbit provide advanced science
opportunities that cannot, or not easily, be realized with single spacecraft, such as
measuring small scale variations in the Earth’s gravity field or higher resolution
imagery and interferometry.

One of the fundamental issues of spacecraft formation flying is the determination
of the relative state (position and velocity) between the satellite vehicles within the
formation. Knowledge of these relative states in (near) real-time is important for
operational aspects. In addition some of the scientific applications, such as high
resolution interferometry, require an accurate post-facto knowledge of these states
instead. Therefore a suitable sensor system needs to be selected for each mission.
The highest precision is obtained with optical metrology. Here, use is made of a
laser interferometer, which measures the relative distances between satellites with
mm to µm precision. A custom tailored radio frequency (RF) system, such as
the Ka-Band Ranging system on GRACE, obtains the same kind of precision, but
measures a biased range instead. The major drawbacks of both systems are the
relatively narrow field of view, certainly for the optical system, and the fact that
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only 1-dimensional measurements (ranges) are provided. This is where GPS, used
as an RF metrology system, clearly makes a difference.

As commonly known, precise relative positioning between GPS receivers in geo-
detic networks is exercised on a routine basis. Furthermore GPS receivers are
already frequently used onboard satellites to perform all kinds of navigational
tasks, are suitable for real-time applications and provide measurements with a 3-
dimensional nature. Therefore they are often considered as the primary instrument
for relative navigation in future satellite formation flying missions.

Most of the research on GPS based spacecraft relative navigation conducted over
the past decade focused on the needs and aspects of formation control and main-
tenance in (near) real-time. For this a single frequency GPS receiver is generally
sufficient when the inter-satellite distance, or baseline, is restricted to a maximum
of about 10 km. A few studies regarding rendez-vous and docking applications used
GPS data from actual demonstration missions. The most well known is proba-
bly the Automated Transfer Vehicle (ATV) Rendez-Vous Predevelopment Program
(ARP). The ATV is ESA’s logistic and supply vehicle for the International Space
Station. It uses GPS for relative navigation during the long and medium distances
(40 km to 200 m) of the approach. The program consisted of 3 demonstration mis-
sions, all involving the Space Shuttle (STS-80, STS-84 and STS-86) as the chaser
spacecraft. The real-time relative position accuracy obtained varied from 8.7 to
10.0 m [Highsmith and Axelrad, 2002] compared to precise laser ranges. This lim-
ited accuracy is the result of solely processing GPS pseudorange data, subject to
large multipath errors, whilst using the first order Clohessy-Wiltshire equations
[Clohessy and Wiltshire, 1960] for propagation of the relative state.

Due to the unavailability of real-world GPS data from other types of formation
flying scenarios most of the previous research is based on software or hardware-in-
the-loop (HWIL) simulations. Studies performed by Ebinuma [2001], Leung and
Montenbruck [2005], Busse [2003] and Hartrampf et al. [2002] used single frequency
GPS receivers in HWIL simulations, where the first two studies focussed on real-
time relative positioning. Ebinuma [2001] has demonstrated precise closed loop
rendezvous of two spacecraft and achieved a relative position accuracy of 5 cm (3D
RMS). In order to achieve this he used double differenced carrier phase data. No
attempts were made to fix the accompanying carrier phase ambiguities to integer
values, as is commonly regarded to be the key to precise relative GPS position-
ing. Of the other studies mentioned here, only Leung and Montenbruck [2005] and
Hartrampf et al. [2002] made efforts to fix the double difference carrier phase am-
biguities to integer values. Busse [2003] and Leung and Montenbruck [2005] both
used modified versions of the Zarlink Orion GPS receiver, with the difference that
Leung and Montenbruck [2005] implemented the processing algorithms on a flight
proven onboard navigation computer. For respective baselines of 1 km [Busse,
2003] and 12 km [Leung and Montenbruck, 2005] both studies obtained a relative
positioning accuracy of 1 cm (3-dimensional root-mean-square (RMS)), where the
latter clearly shows the accuracy improvement from fixing ambiguities over longer
baselines. Finally, Hartrampf et al. [2002] performed an HWIL simulation using
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Astrium Mosaic receivers. Here, an accuracy of 1 cm was obtained for a 1 km base-
line with purely kinematic processing of double difference carrier phase data with,
as mentioned before, the ambiguities fixed to integer values.

A study using dual frequency GPS data from both software and HWIL sim-
ulations was carried out by Binning [1997]. Here, the employed filtering scheme
only processes the wide lane combination of the double difference carrier phase
observations, and fixes the accompanying ambiguities to integer values. Although
this somewhat improves the accuracy of the relative position solution, high pre-
cision comes from correctly fixing the ambiguities on both carrier frequencies and
processing the ionosphere free combination of the carrier phase data instead. The
resulting relative position accuracy in this study therefore remains limited to 3 cm
(3-dimensional RMS) for a 50 km baseline.

More recently, some studies were carried out focussing on high accurate post
facto relative S/C positioning, all using dual frequency GPS data. A study by
Flechtner [2003], purely based on software simulations, suggests that for two along-
track separated formation flying S/C (separation up to 80 km) the relative position
can most of the time be determined with an accuracy of 1 mm. Furthermore,
with the coming of the GRACE mission, a study by Svehla and Rothacher [2004a]
finally presents non-simulated results of highly precise post-facto relative spacecraft
positioning using GPS. Here it is demonstrated that the relative position between
the GRACE satellites can be determined with a precision of 3 mm (1-dimensional,
along-track) when comparing to the measurements obtained from the Ka-Band
Ranging System.

1.2 Research objective and motivation

The objective of this research work is to develop, implement and validate a strat-
egy for high precision post-facto relative positioning of formation flying satellites,
using dual frequency differenced GPS observations. The demand for such a method
is driven by near future scientific applications requiring these high precision so-
lutions in order to satisfy the mission objectives. A good example here is the
planned Synthetic Aperture Radar (SAR) interferometry formation consisting of
the TerraSAR-X and TanDEM-X satellites (Fig. 1.1).

TerraSAR-X is an advanced interferometric SAR mission, which is planned to
be launched into a near polar, near circular orbit with an altitude of 515 km, in
2006. The formation is completed in 2008 when an identical satellite, TanDEM-X
[Moreira, 2003], shall be put into orbit. The formation can be operated in two
modes; bistatic mode, where both spacecraft will be separated by approximately
3 km, and a mono-static pursuit mode for along-track interferometry, where the
separation will vary between 30 - 50 km. In bistatic operation mode the mission
objective is to generate highly accurate Digital Elevation Models (DEMs) on a global
scale, satisfying DTED-3 [Moreira et al., 2004] specifications. This translates to
a vertical mapping accuracy of 2 m or better, which can only be achieved if the
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Figure 1.1 Artist’s impression of the TerraSAR-X and TanDEM-X satellites in bistatic
operation mode (Source: Astrium GmbH).

relative distance between both spacecraft is known within 2 mm (1-dimensional
RMS), cf. [Moreira et al., 2004].

None of the studies conducted so far were able to proof that such precision is
feasible, due to inadequacies in the filter design and measurement processing. In
addition, all obtained results, except for the ones obtained by Svehla and Rothacher
[2004b], remain based on simulations, which even if they involve flight proven GPS
hardware still resemble an ideal environment. This study clearly distinguishes it-
self on several critical issues, which are also the main contributions to this area of
research. First of all, the developed filtering scheme processes single difference dual-
frequency GPS pseudorange and carrier phase observations in a reduced dynamic
way. Using high precision force models to generate ’pseudo’ relative spacecraft
dynamics, the relative state is propagated. In order to compensate for dynam-
ical modeling deficiencies, empirical accelerations, employing a first order Gauss
Markov noise process, are estimated. Second and more important, despite a sin-
gle difference formulation, the double difference integer carrier phase ambiguities
on both frequencies are estimated and used by the filter in order to achieve the
highest obtainable precision. Finally, and perhaps most important, the developed
method is tested with actual GPS data from the GRACE mission, and the result-
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ing relative position solutions can be precisely validated using Ka-Band Ranging
system observations. This assures that the developed strategy is viable for use in
real-world situations, and will truly provide baseline solutions with the precision
(1-dimensional) presented in this dissertation.

1.3 The CHAMP and GRACE satellite missions

Throughout this research extensive use is made of GPS data from both the CHAMP
and GRACE satellite missions. A brief overview of both missions is therefore given
in the following.

 

Figure 1.2 Artist’s impression of the CHAMP satellite in orbit (Source: Astrium GmbH).

The Challenging Minisatellite Payload (CHAMP), illustrated in Fig. 1.2, is
a German small satellite mission for geoscientific and atmospheric research and
applications [Reigber et al., 2003]. On 15 July 2000 CHAMP was launched into an
almost circular, near polar orbit with an initial altitude of approximately 454 km.
The primary mission objectives comprise the accurate determination of the Earth’s
gravity field, the estimation of the magnetic field including its spatial and temporal
variations, as well as the collection of refraction data for modeling the physical
properties of the troposphere and ionosphere. To achieve these science goals, the
satellite is equipped with a number of highly accurate instruments, such as the
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STAR accelerometer (ONERA, France), the JPL BlackJack GPS receiver, multiple
magnetometers and an autonomous star sensor. A more detailed description of the
CHAMP mission and its scientific goals can be found in [Reigber et al., 1996].

The JPL BlackJack GPS receiver onboard of the CHAMP satellite is connected
to a total of four GPS antennas. A zenith-mounted patch antenna equipped with
a choke ring and a typical cone of 80◦ serves as prime antenna for precise orbit
determination (POD). A backup POD antenna is mounted next to the prime one,
but not equipped with a choke ring. On the rear side of the spacecraft (S/C) a helix
antenna for occultation measurements can be found, exhibiting a 20◦ nadir tilt. The
last antenna, a helix antenna with left-hand circular polarization, is mounted on
the bottom side (nadir pointing) and is planned to be used for GPS altimetry. For
this research only the GPS data collected by the primary POD antenna are used,
for both precise orbit determination and data quality assessment.

Figure 1.3 Artist’s impression of the GRACE satellites in orbit (Source: CSR at the
University of Texas). The KBR link between both S/C is clearly illustrated.

The Gravity Recovery and Climate Experiment (GRACE) mission consists of
two identical formation flying spacecraft in a near polar, near circular orbit with an
initial altitude of approximately 500 km (Fig. 1.3). The spacecraft have a nominal
separation of 220 km. The primary mission objective is to measure the time varying
changes in the Earth’s gravity field [Tapley et al., 2004b], which is accomplished
by the mission’s key instruments, the Ka-Band Ranging System (KBR) and the
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accelerometers. The KBR instrument measures the change in distance (biased
range) between both S/C, which is a measure for the change in gravity, within a
precision of 10 µm at 1Hz samples (10 µm/

√
Hz) [Dunn et al., 2003]. Both S/C are

equipped with the Instrument Processing Unit (IPU), which is a modified version of
the JPL BlackJack GPS receiver. In addition to making the usual GPS observations,
the IPU also processes the Star Camera and KBR signals. Frequency generation
for both the KBR (24 & 32 GHz) and GPS reference signals is accomplished by an
ultra stable oscillator (USO). A complete overview of the entire GRACE mission
can be found in NASA [2002]. Within this research the KBR observations are used
to independently validate the precision of the along-track component of the relative
S/C positions computed by solely using GPS observations.

1.4 Outline

Chapter 2 provides a detailed overview of the GPS observation types used through-
out this research. It deals with observation modeling for both absolute and relative
spaceborne positioning applications, as well as with data quality aspects, including
the analysis of systematic errors and thermal noise in the GPS observation data.

In order to obtain an accurate relative position solution, the absolute position
of one of the S/C, serving as the reference for modeling, has to be known with
good precision as well. Furthermore, due to the great similarities in modeling and
handling of GPS measurements for both absolute and relative GPS positioning, the
developed concepts for POD serve as a reference for the relative S/C positioning
problem. Therefore, a thorough discussion of the developed precise orbit determina-
tion (absolute positioning) techniques using GPS observations is given in chapter 3.
Here, a kinematic and reduced dynamic batch Least-Squares (LSQ) estimator and
an extended Kalman filter are discussed in detail, together with a comparison of
the results of each method when tested with CHAMP and GRACE data.

Chapter 4 is devoted to the problem of relative positioning between formation
flying spacecraft. It starts with an overview of the integer carrier phase ambiguity
estimation and validation problem, followed by a description of promising strategies
for relative positioning. The most viable processing strategy, an extended Kalman
filter (EKF), is presented in full detail, including extensive test and validation results
of this method using GRACE data.

Finally the conclusions, recommendations and the issues for future study are
given in chapter 5.



Chapter 2

GPS observations

The Global Positioning System nominally consist of a constellation of 24 satellites
in near circular orbits with a radius of approximately 26500 km. The satellites are
divided over 6 orbital planes, equally spaced around the equator with an inclination
of approximately 55◦. Each satellite continuously transmits data on 2 L-band fre-
quencies denoted as f1, at 1575.42 MHz, and f2, at 1272.60 MHz, corresponding to
wavelengths of approximately 19.0 cm, λ1, and 24.4 cm, λ2. Both frequencies are
modulated with so-called Pseudo Random Noise (PRN) codes used for acquisition
and tracking of the GPS signal. The first frequency is modulated with the Coarse
Acquisition (C/A) and the Precision (P) code, the second frequency only with the
P-code. The C/A-code is accessible to all users whereas the P-code is normally en-
crypted to the P(Y)-code, which can only be directly observed by authorized users.
The GPS navigation data message is distributed using the code observations and
contains information about the actual GPS time and the position and clock errors
of the GPS satellites, making the system suitable for real-time positioning appli-
cations. More detailed information about the GPS system itself can be found in
several literature sources such as [Hofmann-Wellenhof et al., 2001] and [Parkinson
and Spilker, 1995].

This chapter primarily deals with the GPS observation types used throughout
this research, what affects them and how they are modeled for the different posi-
tioning applications. In addition, the final section of this chapter is devoted to GPS
data quality aspects. For this an in-flight performance analysis of the GPS data
obtained from the main POD antenna of the BlackJack GPS receiver onboard the
CHAMP and GRACE satellites has been conducted to visualize systematic errors
and noise influencing the different GPS observations.

2.1 Observation types

Generally there are 3 types of GPS observations, the code or pseudorange obser-
vation, the carrier phase or integrated Doppler observation, and the range-rate or
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instantaneous Doppler observation. Not every receiver supports or gives out all
types of observations. As mentioned earlier all real-world GPS observation data
used in this research comes from the CHAMP and GRACE mission, and is there-
fore obtained from the JPL BlackJack GPS receiver, which supports tracking of all
3 code and accompanying carrier phase observations.

GPS positioning is primarily based on one way measurements of the signal trav-
elling time. For this purpose a common reference time, called GPS time, has been
defined, which has a constant offset of -19 seconds with respect to the international
atomic time (TAI). The GPS satellites are equipped with redundant atomic clocks
of either Cesium or Rubidium (see section 3.1), whereas GPS receivers use tem-
perature compensated crystal oscillators (TCXOs) in most cases. Both the GPS
satellite (superscript s) and GPS receiver (subscript r) experience a clock offset (δt)
causing the respective internal times to become

ts(t) = t + δts(t)
tr(t) = t + δtr(t)

(2.1)

as function of the overall GPS system time t. The clock offsets are subject to a drift
and therefore only valid on a certain epoch. This fact has to be taken into account
when modeling the different observation types throughout this research.

2.1.1 Pseudorange

The code observations are a direct, but coarse, measure of the signal travelling time,
and thus of the range between the antenna phase centers of the GPS satellite and
the GPS receiver. They are also referred to as pseudoranges because they are still
subject to clock offsets from both the GPS satellite and GPS receiver. Although the
P(Y)-code is encrypted, several techniques, such as (semi-)codeless tracking, have
been developed allowing P(Y)-code observations to be made without the decryption
key and hardware, at the expense of a loss in Signal to Noise Ratio (SNR), and thus
a reduced precision [Woo, 1991]. As mentioned above the GPS receivers used in
this study are capable of making these observations on both frequencies.

Following Husti [2000], the observed signal travelling time, tsr(t), at epoch t is
written as:

tsr(t) = tr(t) − ts(t − τ s
r (t)), (2.2)

in which tr(t) is the receiver time of reception and ts(t−τ s
r (t)) is the satellite time of

signal transmission. The true signal travelling time is denoted as τ s
r (t). Substitution

of eqn. 2.1 into eqn. 2.2 yields,

tsr(t) = τ s
r (t) + δtr(t) − δts(t − τ s

r (t)). (2.3)

Multiplication of this expression with the speed of light and substitution of the
geometric range between the GPS satellite and receiver antenna phase centers,
ρs

r(t) = cτs
r (t), results in a first approximation of the pseudorange observation

P s
r (t) = ρs

r(t) + c(δtr(t) − δts(t − τ s
r (t))). (2.4)
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The actual observation however is still affected by atmospheric effects, instrumental
delays in the GPS receiver and GPS satellite, signal multipath and other systematic
errors, and of course thermal measurement noise. Since this study solely focuses on
space applications the only atmospheric effect influencing the observations is the
one caused by the ionosphere. The ionosphere stretches from roughly 50 to 1000 km
above the Earth’s surface and consists of ions and free electrons. Its effect on radio
waves is frequency dependent. From [Hofmann-Wellenhof et al., 2001] it is learned
that for GPS observations the so called ionospheric path delay, Is

r (t, f), in units of
meters, is given by

Is
r (t, f) =

40.3

f2
TECs

r(t), (2.5)

where TEC stands for the Total Electron Content i.e. the total electron den-
sity along the signal path length. Although this term only covers the first or-
der ionospheric effect, it comprises the dominant error induced by the ionosphere.
Higher order effects are generally on the sub-mm level [Kedar et al., 2003] and are
ignored here.

The measurement thermal noise of the code observation, ǫs
rP (t), is assumed to be

purely random with a zero mean and is typically on the decimeter level for modern
geodetic grade receivers. All other errors and biases are contained in one term,

Ms
rP (t) = bs

r(i)P (t) + ms
rP (t) + ss

rP (t), (2.6)

where the GPS receiver and GPS satellite hardware delays are grouped into a
code bias on receiver tracking channel i, br(i)P (t), and the code multipath and
other systematic effects are respectively given by ms

rP (t) and ss
rP (t). Finally the

observation equation for a pseudorange observation on any of the two transmitting
frequencies yields

P s
r (t) = ρs

r(t) + c(δtr(t) − δts(t − τ s
r (t))) + Is

r (t, f) + Ms
rP (t) + ǫs

rP (t). (2.7)

2.1.2 Carrier phase

Besides making code observations most GPS receivers also support accurate track-
ing of the carrier onto which the code was modulated. The observed carrier beat
phase on one of the frequencies can be expressed as

φs
r(t) = φr(t) − φs(t − τ s

r (t)) + Ns
r . (2.8)

and basically consists of a phase difference, φr−φs, and an integer number of carrier
cycles, Ns

r . The GPS receiver carrier phase at the moment of signal reception is
denoted by φr(t), and φs(t− τ s

r (t)) represents the carrier phase of the GPS satellite
at time of transmission. These last two terms can furthermore be written as

φr(t) = φr(t0) + f(t − t0) + f(δtr(t) − δtr(t0))
φs(t − τ s

r (t)) = φs(t0) + f(t − τ s
r (t) − t0) + f(δts(t − τ s

r (t)) − δts(t0))
, (2.9)
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where φr(t0) and φs(t0) resemble the initial phases, at t0, of the GPS receiver and
GPS satellite and f the transmitting frequency. Substitution of these expressions
into eqn. 2.8 yields

φs
r(t) = fτs

r (t) + f(δtr(t) − δts(t − τ s
r (t)) + As

r, (2.10)

in which the ambiguity or bias term,

As
r = Ns

r + φr(t0) − fδtr(t0) − φs(t0) + fδts(t0), (2.11)

is a real valued parameter, which is constant over a continuous tracking arc.
Similar as for the code observation the carrier phase measurement is also affected

by the ionosphere and subject to hardware delays, systematic errors and multipath,
and of course thermal measurement noise. In addition, carrier phase observations
can be subject to polarization induced wind-up [Xu, 2003]. This effect occurs when
a GPS antenna receives a polarized GPS signal while at the same time the antenna
is rotating around the line of sight vector. For spaceborne GPS this effect can occur
when e.g. the satellite’s attitude is not actively controlled.

The first order ionospheric correction to the phase observation is the same as
for the code observation, but has the opposite sign. This is due to the fact that the
ionosphere causes an advance on the phase and similarly a delay on the modulated
code observation. Furthermore, the thermal noise of the carrier phase measurement
is on the mm level and multipath errors are confined to a quarter of the signal
wavelength ( [Leva et al., 1996]; [Braasch, 1995]), making this observation type
much more accurate than pseudoranges. After multiplication of eqn. 2.10 with
the signal wavelength, λ, and applying the above mentioned corrections, the carrier
phase observation equation, for any of the frequencies, is given by

Ls
r(t) = ρs

r(t)+ c(δtr(t)− δts(t− τ s
r (t)))− Is

r (t, f)+λAs
r +Ms

rL(t)+ ǫs
rL(t), (2.12)

where the measurement noise, captured in ǫs
Lr(t), is again assumed as purely random

with a zero mean and where all other (systematic) errors are given by

Ms
rL(t) = br(i)P (t) + ws

rL(t) + ms
rL(t) + ss

rL(t). (2.13)

Here, similar to the code observation, the hardware delays from both the GPS
receiver and GPS satellite for the phase observable are grouped into an additional
phase bias on receiver tracking channel i, br(i),L(t), and the carrier phase multipath
and systematic errors are given by ms

rL(t) and ss
rL(t). Furthermore, the effect of

phase wind up is captured in ws
rL(t).

The major differences between the code and carrier phase observations are the
overall accuracy, the opposite influence of the ionosphere and the fact that the
carrier phase observations are ambiguous.

2.2 Dual frequency observation model

After having derived the observation equations in the previous section, the overall
dual frequency model for the P-code and accompanying carrier phase measurements
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obtained from GPS satellite s, is summarized as

P s
1r(t) = ρs

r(t) + c(δtr(t) − δts(t − τ s
r (t))) + Is

r (t) + Ms
rP1

(t) + ǫs
rP1

(t)

P s
2r(t) = ρs

r(t) + c(δtr(t) − δts(t − τ s
r (t))) +

f2
1

f2
2
Is
r (t) + Ms

rP2
(t) + ǫs

rP2
(t)

Ls
1r(t) = ρs

r(t) + c(δtr(t) − δts(t − τ s
r (t))) − Is

r (t) + λ1A
s
1r + Ms

rL1
(t) + ǫs

rL1
(t)

Ls
2r(t) = ρs

r(t) + c(δtr(t) − δts(t − τ s
r (t))) − f2

1

f2
2
Is
r (t) + λ2A

s
2r + Ms

rL2
(t) + ǫs

rL2
(t)

,

(2.14)

with the carrier phase ambiguities

As
1r = Ns

1r + φ1r(t0) − f1δtr(t0) − φs
1(t0) + f1δt

s(t0)
As

2r = Ns
2r + φ2r(t0) − f2δtr(t0) − φs

2(t0) + f2δt
s(t0)

. (2.15)

Here, the subscripts 1 and 2 denote the different frequencies, f1 and f2. It can
be seen that the ionospheric path delay on f1, given as Is

r (t), is mapped to f2

with the factor f2
1 /f2

2 , derived from eqn. 2.5. Although not further discussed here,
when needed the C/A code and carrier phase observables can be modeled in exactly
the same way as the P1 and L1 observables respectively. Furthermore, it must be
pointed out that in the dual frequency model the geometric range, ρs

r(t), is assumed
to be the same for each observation. As pointed out by Teunissen and Kleusberg
[1998] this is not the case in reality, since the signal travelling time slightly varies for
each of the frequencies, but with less than 0.1µs. This results in sub-mm position
differences for the GPS satellites, which are negligible compared to the other errors
that are present in the observations.

As stated earlier, the thermal noise, ǫs
r(t), for each of the observations is assumed

to be purely random with a zero mean. Furthermore, a very important assumption
is that individual observations from a single GPS receiver are completely uncor-
related temporally, spatially and also between the different observation types and
frequencies. This means that the covariance matrix, Qz, of the observation vector

z(t) =









P s
1r(t)

P s
2r(t)

Ls
1r(t)

Ls
2r(t)









(2.16)

is completely diagonal

Qz =









(σs
rP1

)2 0 0 0
0 (σs

rP2
)2 0 0

0 0 (σs
rL1

)2 0
0 0 0 (σs

rL2
)2









, (2.17)

where the entries resemble the assumed precision of the observations. The individual
measurement variances are kept constant for now, under the assumption σs

rP1
=

σs
rP2

and σs
rL1

= σs
rL2

.
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Although the dual frequency GPS observation model presented here can not be
used for positioning applications in its current form it serves as an overall reference
in the derivation of linear data combinations and positioning models throughout
this chapter.

2.3 Linear data combinations

Several linear data combinations, useful for positioning as well as data analysis and
editing applications, can be derived from the previously presented dual frequency
model. The linear combinations used throughout this study are briefly discussed in
the following.

2.3.1 Ionosphere free linear combination

As the name suggests this linear combination eliminates the first order ionospheric
path delay. It is extensively used in absolute GPS positioning applications since
it simplifies measurement modeling and data handling. For the code and carrier
phase observations the ionosphere free (subscript ’IF’) combination yields

P s
IFr(t) =

f2
1

f2
1−f2

2
P s

1r(t) −
f2
2

f2
1−f2

2
P s

2r(t) ≈ 2.546P s
1r(t) − 1.546P s

2r(t)

Ls
IFr(t) =

f2
1

f2
1−f2

2
Ls

1r(t) −
f2
2

f2
1−f2

2
Ls

2r(t) ≈ 2.546Ls
1r(t) − 1.546Ls

2r(t)
. (2.18)

Applying this to the dual frequency observation model results in the following para-
metrization

P s
IFr(t) = ρs

r(t) + c(δtr(t) − δts(t − τ s
r (t))) + Ms

rPIF
(t) + ǫs

rPIF
(t)

Ls
IFr(t) = ρs

r(t) + c(δtr(t) − δts(t − τ s
r (t))) + λIFAs

IFr + Ms
rLIF

(t) + ǫs
rLIF

(t)
,

(2.19)

where it must be noted that the carrier phase ambiguity, As
IFr, does not any longer

contain an integer part as a result of the non-integer multiplication. Propagation
of the covariance however still results in an uncorrelated observation model, but
the noise is roughly a factor 3 higher than for the measurements on the individual
frequencies.

2.3.2 Wide-lane and narrow-lane

The wide-lane (subscript ’WL’) and narrow-lane (subscript ’NL’) combinations are
only related to the carrier phase observations and are often used in ambiguity
resolution applications. When the carrier phase observations are again expressed
in cycles, the combinations yield

φs
rWL(t) = φs

1r(t) − φs
2r(t)

φs
rNL(t) = φs

1r(t) + φs
2r(t)

. (2.20)
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These combinations have a (virtual) wavelength of approximately 86.2 cm, λWL, and
10.7 cm, λNL, hence the names. When expressed in units of length and combined
with pseudorange measurements, observations yielding the wide-lane and narrow-
lane carrier phase ambiguity remain. The expression for the wide-lane carrier phase
ambiguity, λWLAs

rWL,

MW s
r (t) =

1

f1 − f2

(

f1L
s
1r(t) − f2L

s
2r(t)

)

− 1

f1 + f2

(

f1P
s
1r(t) + f2P

s
2r(t)

)

(2.21)

is also referred to as the Melbourne-Wübbena linear combination, cf [Melbourne,
1985]; [Wübbena, 1985]. The long virtual wavelength, in combination with a noise
of approximately 0.7 times the noise on the individual code observations, makes
this combination very suitable for (real-time) data editing purposes, such as carrier
phase cycle slip detection, or for use in integer ambiguity resolution.

2.3.3 Multipath combinations

The so-called multipath combinations [Estey and Meertens, 1999] can be used to,
as the name suggests, assess multipath and systematic errors in, and the noise level
of, the pseudorange observations. They are constructed using a mix of code and
carrier phase observations, where it is assumed that the systematic errors and noise
of the carrier phase measurements are negligible compared to the ones on the code
observations. The first step is to derive an expression for the ionospheric path delay
based on the carrier phase observations:

Is
r (t) =

1

α − 1

(

Ls
1r(t) − Ls

2r(t)
)

− 1

α − 1

(

λ1A
s
1r − λ2A

s
2r

)

. (2.22)

Here, α is the factor describing the relation between the ionospheric path delays
on both frequencies, α = f2

1 /f2
2 . The multipath combinations are now formed

by subtracting the respective carrier phase observations from their accompanying
pseudoranges and substituting eqn. 2.22 for the ionosphere. When neglecting the
carrier phase noise and systematic errors, the multipath observations,

MP1s
r(t) = P s

1r(t) −
(

1 +
2

α − 1

)

Ls
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(

2
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)
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(
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)

Ls
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2α

α − 1
− 1

)

Ls
2r(t)

, (2.23)

are parameterized as

MP1s
r(t) ≈ −

(

1 +
2

α − 1

)

λ1A
s
1r +

(

2

α − 1

)

λ2A
s
2r + Ms

rP1(t) + ǫs
rP1(t)

MP2s
r(t) ≈ −

(

2α

α − 1

)

λ1A
s
1r +

(

2α

α − 1
− 1

)

λ2A
s
2r + Ms

rP2(t) + ǫs
rP2(t)

, (2.24)

consisting of a constant combined carrier phase bias and the systematic errors and
the thermal noise of the pseudorange observations. These linear combinations are
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used in section 2.6 for assessing the pseudorange data quality of the CHAMP and
GRACE GPS receivers.

2.4 Linearization for positioning

So far the dual frequency and ionosphere free GPS observation models are com-
pletely linear, but are still parameterized with the geometric ranges, ρs

r(t), between
the phase centers of the GPS receiver and GPS satellite antennas. Parametrization
in terms of antenna phase center positions, required for positioning applications,
however, introduces a non-linearity. The geometric range

ρs
r(t) = ‖rs(t − τ s

r (t)) − rr(t)‖ (2.25)

is simply given as the distance between the antenna phase center position of the GPS
receiver, rr(t), and the GPS satellite, rs(t−τ s

r (t)), at the time of signal reception and
transmission respectively. When approximate values of both positions are obtained
(subscript 0), a linearization around them yields

ρs
r(t) = ρs

r0(t) − es
r(t) · ∆rr(t) + es

r(t) · ∆rs(t), (2.26)

where

ρs
r0(t) = ‖rs

0(t − τ s
r (t)) − rr0(t)‖ (2.27)

and where ∆rr(t) and ∆rs(t) are the phase center position increments of the GPS
receiver and GPS satellite respectively. Furthermore, the partial derivatives, also
known as the line of sight vector (Fig. 2.1), are given by

es
r(t) =

rs
0(t − τ s

r (t)) − rr0(t)

‖rs
0(t − τ s

r (t)) − rr0(t)‖
. (2.28)

Substitution of this linearized range into the observation equations again results in
linear observation models, which are now suitable for use in positioning applications.

At this point it has to be noted that although the GPS observations are parame-
terized with the antenna phase center position(s) (increments), these are in general
not the points of interest for positioning. Throughout this study all positions that
are provided or estimated refer to the center of mass of either the GPS satellites or
the spacecraft onto which the GPS receiver is mounted. The antenna phase center
offsets with respect to the centers of mass of all satellites involved are accounted
for in the different positioning applications. These offsets however, have virtually
no impact on the linearization presented here.

Throughout this research the GPS satellite positions and clock offsets are ob-
tained from external resources and are assumed known on every epoch, resulting in
∆rs(t) = 0, and thus rs(t) = rs

0(t). A discussion of these so-called GPS ephemerides
is provided later in section 3.1. It must however be noted that this introduces an
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additional uncertainty in the observation model since the externally generated GPS
ephemerides data is only accurate to a certain level (see section 3.1). Any error in a
provided GPS satellite clock offset propagates directly into the concerning observa-
tion equations, whereas GPS satellite position errors, ǫrs(t), affect the observations
according to the previously derived linearization, es

r(t) · ǫrs(t).
For the different absolute positioning applications in this research it is assumed

that the biases and errors, captured in the Ms
r terms of the different observations,

are zero. No corrections whatsoever are applied to compensate for any of the previ-
ously discussed errors concerned. They are simply accounted for in the measurement
variances, for which realistic values are determined using the analysis in section 2.6.
The different observations however are still assumed to be uncorrelated.

The ionosphere free observation model, used for the absolute positioning ap-
plications, is now parameterized with the position increment of the GPS receiver
antenna phase center, the GPS receiver clock offset and the ionosphere free carrier
phase ambiguity. When these parameters are adjusted for using observations from
multiple GPS satellites, it must be noted that the mean value of all unmodeled
biases and errors over all observations cannot be separated from the GPS receiver
clock offset and will therefore bias it. Since this will in general only result in a
very slight time offset the impact of this effect on the accuracy of the final position
is negligible, even for spaceborne GPS positioning applications where the GPS re-
ceiver in general moves faster than the GPS satellite. For completeness it has to
be stated that constant phase channel biases can also not be separated from the
carrier phase ambiguities. Again this has no direct consequence for the resulting
position accuracy.

2.5 Relative positioning models

When only the relative position between two GPS receivers is required, use is made
of GPS data differences between observations taken by both GPS receivers. Differ-
enced GPS observation data has the advantage of eliminating or reducing common
error sources, such as the GPS satellite clock offsets and common biases due to
hardware delays.

In the following the so called single difference (SD) and double difference (DD)
GPS observation and positioning models, used within this research, are described
using Fig. 2.1 for illustration purposes.

2.5.1 Single difference model

A SD observation is formed by subtracting two GPS observations of the same type
and on the same frequency, taken by two GPS receivers at the same instant and
originating from a mutually observed GPS satellite. In general a SD parameter
or observation between GPS receivers A and B, and with respect to GPS satellite
j (Fig. 2.1) is denoted as �

j
AB = �

j
B − �

j
A, where � can be any observation or

parameter. Applying this to the dual frequency observation model from eqn. 2.14,
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Figure 2.1 Overall viewing geometry for relative (spacecraft) positioning using differenced
GPS observations. GPS satellites j and k are commonly observed by both
receivers and thus SD and DD observations can be formed. This is not the
case for GPS satellites h and m, which are only observed by one receiver.

which from now on will be referred to as the undifferenced (UD) model, results in
the SD observation model

P j
1AB(t) = ρj

AB(t) + cδtAB(t) + Ij
AB(t) + M j

AB,P1
(t) + ǫj

AB,P1
(t)

P j
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AB(t) + cδtAB(t) +
f2
1

f2
2
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AB(t) + M j

AB,P2
(t) + ǫj

AB,P2
(t)
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1AB(t) = ρj

AB(t) + cδtAB(t) − Ij
AB(t) + λ1A

j
1AB + M j

AB,L1
(t) + ǫj

AB,L1
(t)

Lj
2AB(t) = ρj

AB(t) + cδtAB(t) − f2
1

f2
2
Ij
AB(t) + λ2A

j
2AB + M j

AB,L2
(t) + ǫj

AB,L2
(t)

,

(2.29)

which is parameterized with the SD or ’relative’ parameters instead of the ’absolute’
ones. As can be seen the GPS satellite clock offset is eliminated when forming single
differences. The SD carrier phase ambiguities,

Aj
1AB = N j

1AB + φ1AB(t0) − fδtAB(t0)

Aj
2AB = N j

2AB + φ2AB(t0) − fδtAB(t0)
, (2.30)

are still real valued with the difference that the initial phase and clock offset of the
GPS satellite have been removed. In addition, any common errors captured in the
Ms

r terms of the individual receivers that are caused by the GPS satellite, such as
biases due to hardware delays, also cancel out. Multipath and other systematic
errors however still remain present since they generally have a different pattern for
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the individual receivers. It must furthermore be noted that if the relative position
between both spacecraft would be small (several km) the SD ionospheric path delays
might become very small as well (a few cm). Similar to many terrestrial applications
such small atmospheric effects, SD or their DD equivalents, could potentially be
ignored to speed up the resolution of the integer DD carrier phase ambiguities
(eqn. 2.35). However, for the 220 km separation of the GRACE satellites the SD
ionospheric path delays, as well as the DD ones, can still be in the order of meters
(Fig. 4.7 on page 109) and thus have to be accounted for.

As already stated before all UD GPS observations are assumed to be uncor-
related, resulting in a diagonal covariance matrix, QUD. In general the relation
between e.g. the SD and UD P1-code observations taken by GPS receivers A and
B from GPS satellites h, j, k, and m is given by









P j
1AB(t)

Ph
1AB(t)

P k
1AB(t)

Pm
1AB(t)









=









1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
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
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























P j
1B(t)

Ph
1B(t)

P k
1B(t)

Pm
1B(t)

P j
1A(t)

Ph
1A(t)

P k
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1A(t)

























, (2.31)

which can also be written as zP1

SD = TSDzP1

UD. The covariance matrix for these SD

observations, QP1

SD, can now be propagated from the UD model and yields

QP1

SD = TSDQP1

UDTT
SD =









(σj
AB,P1

)2 0 0 0

0 (σh
AB,P1

)2 0 0

0 0 (σk
AB,P1

)2 0

0 0 0 (σm
AB,P1

)2









(2.32)

with the single difference variances of e.g. GPS satellite j defined as (σj
AB,P1

)2 =

(σj
A,P1

)2 + (σj
B,P1

)2. This shows that the single difference observations of one type
and frequency remain uncorrelated but experience an increase in noise level with a
factor of

√
2 when the noise of the observations from both receivers is assumed to be

equal. Since no SD combinations between the different data types or frequencies are
formed, the entire SD observation model from 2.29 remains uncorrelated, resulting
in again a purely diagonal covariance matrix, QSD.

In analogy with the UD observation model a linearization has to take place before
the SD observations can be used in relative positioning applications. For this the
relative position between the antenna phase centers of GPS receivers A and B is
defined as rAB(t) = rB(t) − rA(t). When now using eqn. 2.26, the linearized SD
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geometric range becomes

ρj
AB(t) = ρj

B(t) − ρj
A(t)

= ρj
AB0(t) − ej

B(t) · ∆rB(t) + ej
A(t) · ∆rA(t)

+ (ej
B(t) − ej

A(t)) · ∆rj(t)

= ρj
AB0(t) − ej

B(t) · ∆rAB(t) − ej
AB(t) · ∆rA(t) + ej

AB(t) · ∆rj(t),

(2.33)

where it can be seen that the relative position is incremented using the line of sight
vector from GPS receiver B exclusively. As mentioned before the GPS satellite po-
sitions are assumed to be known on every epoch, and thus again ∆rj(t) = 0. It can
also be seen here that any uncertainties in them, ǫrj (t), affect the SD observations
by the relation ej

AB(t) · ǫrj (t), which is many times smaller than for the absolute
positioning case. Furthermore, relative positioning applications require the knowl-
edge of the absolute position of the reference GPS receiver, A in this case, which is
then kept fixed to its given value, resulting in ∆rA(t) = 0. From the linearization
it is learned that any errors in the assumed reference position, ǫrA

(t), affect the
SD observations in the same way as the uncertainties of the GPS satellite position,
ej

AB(t) · ǫrA
(t). By applying the cosine rule, an upper limit for this expression is

derived in Teunissen and Kleusberg [1998] as

ej
AB(t) · ǫrA

(t) ≤ ‖rAB(t)‖
‖rj(t) − rB(t)‖‖ǫrA

(t)‖. (2.34)

It can now be shown that in e.g. the case of GRACE where the relative position
between both receivers is roughly 220 km, a 1 m error in the position of the reference
spacecraft could possibly affect the SD observations by 1 cm. In order to reduce
errors induced by this effect the trajectory of the reference spacecraft should be
known with high precision, e.g. a 3-dimensional position accuracy of 10 cm or
better.

Substitution of the linearized range (eqn. 2.33) into the SD observation model
results in the linear SD positioning model. Similar to the absolute positioning case,
the remaining systematic errors, captured in the SD M j

AB terms, are assumed to
be zero. The presence of these unmodeled effects is now again accounted for by the
variances, which remain uncorrelated. The SD positioning model is now parameter-
ized with the relative position (increment) between the GPS receiver antenna phase
centers, the relative GPS receiver clock offset, the SD carrier phase ambiguities on
both frequencies and the SD ionospheric path delays. When, in full analogy with
the discussion in the previous section, these parameters are adjusted for, the mean
value of all unmodeled errors will again bias the relative GPS receiver clock offset,
and in a similar way constant phase channel biases cannot be separated from the
SD carrier phase ambiguities.

If closely observed it can be seen that despite the fact that everything is modeled
with ’relative’ parameters instead of ’absolute’ ones, the dual frequency SD and UD
positioning models have exactly the same structure.
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2.5.2 Double difference model

A double difference observation is formed by subtracting two SD observations of the
same type and frequency, taken by the same two GPS receivers at the same instant,
but each relating to a different GPS satellite. When in general a DD parameter
or observation between GPS receivers A and B with respect to GPS satellites j
and k (Fig. 2.1) is denoted as �

jk
AB = �

k
AB − �

j
AB , where � again stands for any

parameter or observation, the DD observation model is obtained from the SD one
(eqn. 2.29) as

P jk
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1
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2
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2
Ijk
AB(t) + λ2N
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AB,L2(t) + ǫjk
AB,L2(t)

. (2.35)

As can be seen this removes the relative GPS receiver clock offset still present in
the SD observations as well as any common biases in the SD error terms, M j

AB .
It must be noted that in the presence of inter-channel biases that are different for
both receivers a bias remains in the resulting DD error terms, M jk

AB . In a similar
way multipath and systematic errors remain present in the DD observation data,
since their patterns are generally different between the individual receivers. It can
however be seen that the initial receiver phase and clock offset are removed from
the carrier phase ambiguities, transforming them to integers. The model shows that
once these integer carrier phase ambiguities are correctly resolved the accompanying
observations are transformed to highly accurate relative ranges, allowing for precise
relative positioning.

The removal of the relative GPS receiver clock offset in the DD model however
is done at the expense of one observation and the introduction of a correlation
between the observations of the same type and frequency. This is demonstrated
by taking the SD P1-code observations of the previous subsection and transforming
them to their DD equivalents, using the SD observation from GPS satellite j as a
common reference,
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. (2.36)

This is equally expressed as zP1

DD = TDDzP1

SD, and the accompanying measurement

covariance matrix, QP1

DD, is obtained by propagating the SD one,
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, (2.37)
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where e.g. (σjh
AB,P1

)2 = (σh
AB,P1

)2+(σj
AB,P1

)2. Here it can immediately be seen that
all DD observations are correlated with the variance of the reference SD observation,
σj

AB,P1
. Since the DD observations are only formed between SD observations of the

same type and frequency, no further cross-correlations are introduced. The overall
covariance matrix of the DD observation model is thus block diagonal:

QDD =




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DD 0 0

0 0 QL1
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
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



, (2.38)

where the sub-matrices are of the same structure as in eqn. 2.37.
Again a linearization of the DD geometric ranges, ρjk

AB(t), between the respective
antenna phase centers has to take place before the DD observations can be used in
relative positioning applications. When using eqn. 2.33, the linearization reads

ρjk
AB(t) = ρk

AB(t) − ρj
AB(t)

= ρjk
AB0(t) − (ek

B(t) − ej
B(t)) · ∆rAB(t)

+ (ek
AB(t) − ej

AB(t)) · ∆rA(t)

+ ek
AB(t) · ∆rk(t) − ej

AB(t) · ∆rj(t),

(2.39)

where again ∆rA(t) = 0, ∆rk(t) = 0 and ∆rj(t) = 0 due to the fact that the
positions of the reference GPS receiver A and GPS satellites are assumed known.
The relative position is still incremented using exclusively the line of sight vectors
of GPS receiver B. Substitution of the linearized DD geometric range into the dual
frequency DD observation model results in the DD positioning model. Here, similar
as in the UD and SD case, it is assumed that all (systematic) errors and biases, cap-

tured in the M jk
AB terms, are zero. This assumption is again not expected to change

anything in the correlations derived earlier. The dual frequency DD positioning
model is now exclusively parameterized with the relative position (increment) be-
tween the phase centers of GPS receivers A and B, the DD ionospheric path delays
and the (integer) DD carrier phase ambiguities.

When comparing the SD and DD models one might suggest that in the DD
formulation there is even further error reduction, positively influencing the results
in positioning applications. This is however not true since in the SD case the mean
value of all unmodeled effects was absorbed by the relative receiver clock, which
is now eliminated at the cost of one observation. When the earlier derived DD
correlations are correctly taken into account the result of a position adjustment in
both models is the same. However, the DD formulation has the advantage that it
allows for a direct estimation of the integer DD carrier phase ambiguities, which, as
pointed out earlier, transform the accompanying DD observations to highly accurate
relative ranges, allowing for precise relative positioning.
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2.6 GPS data quality

For all precise GPS positioning applications the quality of the GPS observation data
used is of utmost importance. Ideally the data is only subject to a random noise with
zero mean and a small standard deviation. However, as discussed in the previous
sections, with real-world GPS applications channel biases and multipath and/or
other types of systematic errors are most likely to be present and can influence
the final position solution accuracy, if not properly accounted for. Since for this
research all these errors are neglected in the functional part of the positioning
model, they have to be accounted for in the stochastic part. Here the combination
of the unmodeled errors and the thermal measurement noise is still assumed to be
uncorrelated and to have a zero mean, but with a higher variance than for thermal
noise only.

This section gives an overview of the unmodeled errors to the best possible ex-
tent in an effort to provide some background and physical interpretation of the
observation variances used for the different CHAMP and GRACE positioning ap-
plications throughout this research. This is accomplished by in-flight performance
analyses, using data obtained from the main POD antennas, of the BlackJack GPS
receivers onboard the CHAMP and GRACE spacecraft in the analogy of Mon-
tenbruck and Kroes [2003], as well as by a pre-flight validation of the BlackJack
follow-up, the Integrated GPS Occultation Receiver (IGOR), for the TerraSAR-X
mission [Montenbruck et al., 2005c].

2.6.1 Biases and correlations

Since the IGOR pre-flight validation test is executed on a GPS signal simulator
(Spirent STR4760), using a two hour spaceborne scenario, it allows for some analysis
on inter-frequency and inter-channel code biases and correlations of the thermal
noise, that cannot, or not easily, be assessed with the in-flight performance analysis.
Both the in-flight and pre-flight analysis conducted show a constant differential code
bias between the C/A and P1-code observations, P1−C/A ≈ +0.3 m, which is more
or less the same for all satellites and all receivers involved. In addition, in the pre-
flight validation test [Montenbruck et al., 2005c] a constant bias between the P2

and P1 code observations, P2 − P1 ≈ +4.5 m, again constant over time for all GPS
satellites, was observed. This resembles a difference in the geometric range, and thus
in the signal travelling time of approximately 0.015 µs, resulting in displacements
of 0.05 mm for the GPS satellites and 0.14 mm for the LEO spacecraft that can be
neglected in POD applications, and even cancels out in relative positioning when the
same for all GPS receivers involved. In addition, a larger systematic timing error of
approximately 0.45 µs was found for the carrier phase observables, corresponding to
a roughly 4 mm displacement. Again, for relative positioning applications this error
cancels out if the same receivers are used (which is the case for this research since
both GRACE S/C are equipped with the BlackJack GPS receiver). Furthermore
the pre-flight validation test showed that inter-channel biases are mostly small and
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around zero, but can have a maximum of 0.10 m for the P1, and 0.40 m for the
P2 code. It remains unclear though, to which extent uncalibrated biases inside the
employed GPS signal simulator are responsible for part, or all, of these observed
inter-channel code biases.

In addition, no evidence for correlations between the noise of the P1 and P2

code observations was found in Montenbruck et al. [2005c]. This is expected since
for codeless tracking the individual P codes are still used to track the encrypted
signal, making the process uncorrelated. The carrier phases of the encrypted codes
however cannot be properly tracked without help of the C/A code phase and each
other, and correlations between the inter-frequency carrier phase observations are
expected at this point, as was shown earlier for several geodetic GPS receivers
[Tiberius et al., 1999] and during a performance assessment of the NovAtel OEM4-
G2 receiver [Montenbruck, 2003]. Unfortunately a zero baseline test, required for
finding such correlations, could not be carried out in the limited time available for
the pre-flight validation test, and correlations between the carrier phase observables
within the BlackJack GPS receiver can therefore only be suspected at this point.
Nevertheless, as stated earlier, all observations from a single GPS receiver are still
treated as uncorrelated throughout this research.

2.6.2 Multipath and systematic effects

Multipath errors in a GPS receiver are caused by the superposition of the direct
signal with interfering signals taking a different signal path. They are typically
associated with signal reflections in the vicinity of the receiving antenna, in which
case the resulting errors depend on the path difference, the strength and polarization
of the reflected radiation as well as receiver internal properties. While carrier-phase
multipath is confined to a quarter wavelength, code multipath may be as large as 0.5
code chips for distant reflectors ( [Leva et al., 1996]; [Braasch, 1995]). This makes
carrier phase multipath harder to visualize. In case of a spaceborne GPS receiver,
multipath reflections are exclusively caused by the satellite’s surfaces, excluding
rendezvous and docking type of applications, and the maximum path delay is thus
of the order of the linear spacecraft dimension. Still choke-ring antennas are used
for most scientific satellite missions in an effort to minimize the already restricted
multipath.

Other types of systematic errors, such as electronic signal interference, cannot be
separated easily from pure multipath errors, because they mostly exhibit a similar
pattern. However, the only concern with both types of errors is the impact they
have on positioning applications. This is especially true in the case of relative
positioning, where these errors influence on two different levels. First of all, the
integer carrier phase ambiguities have to be resolved, for which the pseudorange
observations are heavily needed. Large errors in the pseudoranges can therefore
lead to erroneous integer estimates, dramatically degrading the relative position
solution. Second, after resolution of the integers, the carrier phases can be used
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as highly accurate relative ranges. Here carrier phase multipath easily exhibits the
noise level and can deteriorate the desired positioning accuracy.

In this subsection the combined multipath and systematic errors present in the
pseudorange observations of the CHAMP and GRACE GPS data are analyzed using
the multipath equations derived earlier (eqn. 2.23). Besides the individual P -code
observations the errors in the ionosphere free combination and in the C/A code are
also presented. Since the errors concerned are generally of a repetitive nature they
are best expressed in an antenna diagram as function of the azimuth and elevation
in the S/C body frame. This is accomplished as follows. First, the carrier phase bi-
ases of the multipath equations are calibrated over an entire (continuous tracking)
pass, using good quality pseudoranges. Then, for each pseudorange observation
the combined multipath and systematic errors and measurement thermal noise are
obtained, using the calibrated carrier phase biases, which are saved into the cor-
responding azimuth/elevation bin. The azimuth and elevation bins are defined in
the respective CHAMP and GRACE body fixed reference systems that can be ob-
tained using the transformations from section 3.2. After having processed all data
the average value of each bin is taken as the combined systematic/multipath error,
where the average contribution of the noise per bin is assumed to be zero. It must
be mentioned that the mean contribution of the pseudorange errors over a single
satellite pass will be absorbed by the bias in the calibration process. Within this
research, the results of this analysis are therefore purely intended for visualization
of errors present in the pseudorange data and not for the creation of a corrective
model of any kind.

For a good visualization the azimuth/elevation grid should first of all be dense
enough, but also contain enough data points per bin and has to cover a larger
time span to be able to observe if there is any pattern change over time. There-
fore, a data arc of 51 consecutive days, covering July 9 through August 28 2003,
has been processed for each individual S/C according to the previously described
scheme. The results can be found in Figures 2.2 (CHAMP), 2.3 (GRACE A) and
2.4 (GRACE B), where each bin contains at least 10 data points for elevations above
20 degrees and 5 data points below this mask. The error plots presented here were
found to be constant over time when comparing them with plots of other, shorter
time spans.

It has already been shown by Montenbruck and Kroes [2003] that the pseudor-
ange data obtained from the POD antenna on CHAMP, Fig. 2.2, is severely influ-
enced by systematic errors, which again are seen here. The errors on the individual
code observations have maximum values of approximately 0.6 m, both positive and
negative, for low elevations. Due to the different pattern, these errors are only
slightly amplified in the ionosphere free combination where a maximum of 0.8 m
is observed. These observed errors are not caused by multipath but were earlier
related to cross-talk interference between the GPS occultation and POD antenna
strings in the GPS receiver front end [Montenbruck and Kroes, 2003]. The effect
confines itself to the aft looking hemisphere, since it only occurs if GPS signals from
the same GPS satellite are simultaneously received by both antennas.
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When examining the results for the GRACE satellites the systematic patterns
are generally on the sub-dm level with maximum values of approximately 0.2 m in
both positive and negative direction for the individual pseudorange observations.
The absence of the large systematic interference as seen on CHAMP is explained
by the fact that, although physically present, the GPS occultation antenna is not
activated on either of the S/C. Although the errors on GRACE B are slightly higher,
the overall patterns of both spacecraft show great similarity, which, due to the fact
that the GRACE S/C are identical, might actually be the visualization of true
signal multipath.

The ionosphere free pseudorange error plots for the GRACE S/C, Fig. 2.3d and
2.4d, show great similarities with the ones derived by Haines et al. [2005]. Here,
similar plots were created using ionosphere free pseudorange and carrier phase post-
fit measurement residuals, resulting from the GRACE spacecraft reduced-dynamic
POD process, over a period of two years. In addition to the pseudorange error
visualization, collecting post-fit residuals also allows for a visualization of multipath
and systematic errors on the ionosphere free carrier phase observation, which cannot
be created using the multipath equations. However, these residuals are generally
small and can easily be affected by errors from e.g. the dynamic modeling or in
the GPS satellite clock offsets. Therefore care should be taken when interpreting
them. Nevertheless, it is learned that for ionosphere free carrier phase observations,
the systematic errors are generally small and appear to have maximum values of
around 1 cm, both positive and negative. Furthermore, in Haines et al. [2005] the
systematic error plots of both ionosphere free observation types were also compared
with the results of a multipath simulation. For the carrier phase the simulation and
the residual plots show great similarity, which can unfortunately not be said for
the pseudorange. It therefore remains unclear if the systematic pseudorange errors
found for the GRACE S/C are truly the result of multipath or of something else.

As mentioned before, the GRACE GPS occultation antennas were not activate
during the period for multipath analysis. More specifically, until the time of writing
only the GPS occultation antenna on GRACE B has been activated for testing
purposes on two occasions. The first test conducted covered a time span of slightly
over 24 hours during July 28 and 29 2004, The second test period on the other hand
covers over a week, December 2 to 9 2004. Although for an analysis of the systematic
errors the second test period is favored, any GRACE data beyond August 1 2004
has not been made public so far. Therefore the results of the multipath analysis
of GRACE B, shown in Fig. 2.5, are obtained using the 24 hour test period from
July 2004. Although the plots are a bit noisy due to the limited data available it
can be clearly observed that a similar type of interference as for CHAMP is now
also present in the GRACE B pseudorange observations. This effect is basically
added to the systematic errors already present. Again the effect is confined to the
aft looking hemisphere, where the signals from a GPS satellite are observed by
both the POD and the occultation antenna. It appears however that the fringes of
the effect are smaller and are repeated multiple times in comparison to CHAMP.
This can be attributed to the fact that the physical separation between the GPS
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POD and occultation antennas is larger on the GRACE S/C than it is on CHAMP.
However, more data should be accumulated, and a more thorough analysis should
be conducted, before any conclusive statement on this matter can be made.

2.6.3 Measurement noise

All GPS observations are subject to a random thermal noise with zero mean and
a standard deviation (σ). The noise level depends on the observation type and
on the signal strength at which the observation was taken. Pseudoranges typically
have an average noise on the dm level, whereas carrier phase observations are well
known to have a maximum noise error of only a few mm. In order to allow a
proper interpretation of the noise characteristics for both observation types, the
noise standard deviation can best be expressed as a function of the carrier to noise
density ratio (C/N0), in order to e.g. relate it to tracking loop characteristics
[Ward, 1996].

In the case of CHAMP and GRACE the Signal to Noise Ratio (SNR) of all code
and accompanying carrier phase observation types are also provided in the GPS
data file. This allows for the derivation of the carrier to noise density ratio, which
in case of the BlackJack GPS receiver is specified as [Montenbruck and Kroes,
2003]:

C/N0 = 20 log10

(

SNR√
2

)

. (2.40)

For the in-flight GPS pseudorange data, the noise level can be assessed by using
the pseudorange residuals from each of the azimuth/elevation data bins in the mul-
tipath and systematic error analysis and group them into carrier to noise density
ratio data bins. Due to the fact that small systematic errors can still be present, the
RMS of each of these bins represents an upper limit of the pseudorange measure-
ment noise standard deviation. The results of this analysis is shown in Fig. 2.6, for
CHAMP (top), GRACE A (middle) and GRACE B (bottom) respectively. The low
noise on the C/A code is caused by the fact that this observation can be tracked
directly, whereas the P1 and P2 code observations are obtained using a form of semi-
codeless tracking. Another result of the semi-codeless tracking process is the lower
C/N0 for the concerned observations at the same elevations. Typically, for C/A
code observations an elevation of 10◦ corresponds to a C/N0 of 40 dB-Hz, whereas
for the P1 and P2 the corresponding C/N0 values are respectively 25 dB-Hz and
20 dB-Hz. The figure shows a large difference between especially the code noise for
GRACE A and GRACE B, which remains unexplained for now. The same type of
noise figures were also derived in the pre-flight IGOR validation test [Montenbruck
et al., 2005c]. Here, the C/A code noise ranges from 20 cm at a C/N0 of 40 dB-Hz
to 5 cm at 58 dB-Hz. For the P1 and P2 code observations the noise respectively
varied from 60 cm and 45 cm at a C/N0 of 20 dB-Hz to 5 cm for both at a C/N0

of 53 dB-Hz. As can be seen here the noise on the P2 code is actually lower than
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Figure 2.6 Pseudorange noise (measured and fitted), after the removal of the systematic
effects, as function of the carrier to noise density ratio (C/N0) for CHAMP
(top), GRACE A (middle) and GRACE B (bottom).
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Figure 2.7 Upper limit of the carrier phase noise (measured and fitted) on the L1

observation, as function of the carrier to noise density ratio (C/N0) for
CHAMP, GRACE A and GRACE B.

the one on the P1 code. An explanation for this was not given, and contradicts the
results of all three in-flight analyses.

Unfortunately the carrier phase noise was not assessed in the pre-flight validation
test, but some information on this can be obtained from the in-flight scenarios. Each
of the BlackJack GPS receivers gives out the carrier phase observation of the P1 and
C/A codes, L1 and LA respectively. Since they are taken on the same frequency the
ionospheric path delay and multipath and systematic errors are the same. When
taking the difference of these observations the only parameters remaining are the
difference between the (constant) carrier phase biases on each of the observations
and the combined thermal noise. When again assuming no correlation, the combined
noise

σ(L1−LA) =
√

σ2
L1

+ σ2
LA

> σL1
> σLA

, (2.41)

can now serve as an upper limit of the noise on L1, when this noise is assumed
larger than the one on the C/A code phase observable. For each continuous pass
this carrier phase difference is constructed and corrected for its bias. The resulting
carrier phase noise is then again grouped into C/N0 data bins, from which a curve
in analogy with the code noise is created. For all three in-flight scenarios the carrier
phase noise curves are presented in Fig 2.7. As can be seen here the noise RMS is
3 to 4 mm for observations taken at low elevations (20 dB-Hz) whereas a sub-mm
noise, 0.3 to 0.7 mm, is found for observations taken at high elevations (53 dB-Hz).
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Overall it can be said that the empirically derived noise curves, for each of the
in-flight data sets, could be used for proper data weighting if the multipath and
systematic errors would be corrected or modeled for as well. Since this is not the
case, these curves, and the multipath analysis from the previous subsection, are
merely presented here for motivating the order of magnitude of the observation
data weights used for the different positioning applications later on.



Chapter 3

Precise orbit determination

Nowadays most Earth observation satellites require a precise post-facto knowledge
of the orbit in order to fulfill the scientific mission requirements. This is especially
true for remote sensing applications like satellite altimetry and SAR interferometry,
but also for gravity missions. Furthermore, as already mentioned in the previous
chapter (section 2.5.1), spacecraft formation flying applications also require an ac-
curate knowledge of the position of the reference spacecraft, in order to minimize
errors in the relative position computation.

For this study a total of three proposed precise orbit determination strategies
using undifferenced ionosphere free GPS observations have been implemented and
tested. They comprise purely kinematic as well as reduced dynamic data processing
schemes. Since these POD techniques also form the conceptual bases for the devel-
oped relative positioning methodologies, that are presented in the next chapter, a
detailed overview of them is provided here.

The choice of using undifferenced GPS observation data for the developed POD
techniques is primarily motivated by the deactivation of Selective Availability, i.e.
the intentional dithering of the GPS satellite clock and manipulation of the broad-
cast ephemerides [Hofmann-Wellenhof et al., 2001]. As a result precise (high rate)
post-facto GPS satellite clock products and ephemerides data, required for precise
positioning using undifferenced GPS data, are available nowadays (section 3.1). In
order to obtain a high precise satellite orbit, there is thus no longer a direct need
for single, double or even triple difference GPS based POD schemes, see e.g. Svehla
and Rothacher [2003] or Van den IJssel et al. [2003], which require the usage of
GPS data from a network of ground based GPS reference stations. The complex
data handling, associated with such schemes, can thus be avoided, which is found
to be one of the major benefits of using undifferenced GPS observation data.

This chapter starts with an overview of the GPS orbit and clock products,
the GPS ephemerides, used for the developed GPS POD applications. This is
followed by a description of reference frame conventions and transformations used
throughout the rest of this thesis. A detailed description of each of the different
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POD strategies, a kinematic and a reduced dynamic batch least-squares estimator
and an extended Kalman filter, is given thereafter. The chapter is concluded with
an analysis of the POD results from each of the developed strategies using data
from the CHAMP and GRACE mission.

3.1 GPS orbit and clock products

Any type of precise positioning application using undifferenced GPS data requires
an accurate knowledge of the GPS satellite positions and clock offsets. These so
called GPS ephemerides are provided by the International GNSS Service (IGS),
formerly known as the International GPS Service. The IGS began to provide precise
GPS ephemerides information for geodetic users and surveyors as early as 1994
[Kouba, 2002] when GPS had almost reached its fully operational status. Within the
IGS, various Analysis Centers derive their own, independent GPS orbit and clock
solutions. These are subsequently merged into combined IGS products applying
proper weighting and quality control. Both the network of IGS ground stations
and the quality of the resulting products have continuously increased over the past
decade.

The IGS currently provides three types of GPS ephemerides products; the final,
rapid and ultra-rapid ephemerides. The final IGS ephemerides are released some 13
days after the end of a GPS week and have a reported position and clock accuracy
of better than 5 cm [IGSCB, 2005]. The rapid products, in contrast, are available
within 17 hours past the end of each day and, meanwhile, achieve an almost identical
accuracy. The ultra-rapid orbit and clock products were created in response to the
increasing need of near real-time GPS processing. They are made available four
times per day and have a latency of 3 hours past the last GPS observations. In
addition to the GPS orbit and clock data based on actual GPS observation data,
the ultra-rapid ephemerides also contain a 24 hour prediction. The predicted orbit
information is presently accurate to roughly one decimeter, whereas irregularities
of the clock drift cause prediction errors on the order of one meter [IGSCB, 2005].

All types of IGS ephemerides products provide GPS orbit and clock offset data
in the standard SP3 format [Remondi, 1991] on a regular 15 min grid. The po-
sitions and velocities in the SP3 format are provided in the Inertial Terrestrial
Reference Frame (ITRF) [McCarthy, 1996] and relate to the center of gravity of
the GPS satellites. The regular grid point spacing allows for accurate polynomial
interpolation of the GPS satellite position at the time of a measurement, which
for this research is accomplished using an 8th-order Lagrange interpolation method.
After interpolation to the epoch of interest the GPS satellite position needs to be
corrected for the antenna phase center offset before it can be used in positioning.
Throughout this research these offsets are assumed to be constant. Phase center
variations for the different observation types and GPS satellites, such as mentioned
by Haines et al. [2005], are ignored here. For all IGS ephemerides products the
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antenna phase center offsets, defined in the GPS satellite body coordinate system
which originates in the center of gravity of the satellite, are specified in Table 3.1.

Table 3.1 Antenna phase center offsets for the GPS satellites it their body coordinate
system.

X [m] Y[m] Z[m]

Block II/IIA 0.279 0.000 1.023
Block IIR 0.000 0.000 0.000

As can be seen here, the assumed antenna phase center positions coincide with
the satellite center of mass for the newer Block IIR satellites. For the other GPS
satellites the offset correction still needs to be applied. The attitude model used for
this is described in Xu [2003]. Here, the z-axis of the satellite always points towards
the center of the Earth, the y-axis is perpendicular to the vector between the Sun
and the GPS satellite and the x-axis completes the right-handed coordinate system.

In contrast to orbital data, high-order polynomial interpolation is not suitable
for clock parameters due to the underlying random noise processes, and linear inter-
polation is therefore advisable. The errors resulting from the interpolation of clock
data depend on the interval size and the Allan variance of the respective clock, cf.
[Kouba, 2002], [Zumberge and Gendt, 2001]. Therefore, supplementary to the SP3
ephemerides products, clock offset data at 5 min intervals are made available as
part of separate (final and rapid) clock products. In response to the demand for
even higher rate clock data, several IGS Analysis Centers, such as the Center for
Orbit Determination in Europe (CODE) and JPL, have made their clock solutions,
at 30 second intervals, and accompanying orbits publicly available.

The different POD applications described in this chapter process the GPS data
at intervals of nominally 30 seconds. In order to achieve the best results use is
made of the CODE high rate clocks and accompanying orbits, to which the same
antenna offset and attitude model is applied as for the IGS products. When not
available they are replaced with final IGS ephemerides supplemented with the 5
minute clock corrections. In Montenbruck et al. [2005b] an assessment of the error
associated with linear interpolation of the 5 minute, and for completeness also the
15 minute, clock data set, is presented using the high rate 30 second CODE clock
solutions. Different test data sets were first reduced to 5 min and 15 min intervals,
then interpolated linearly to 30 s steps and finally compared with the original data.
To explore the dependence on the employed clock type, Block II/IIA satellites
operating cesium clocks, Block II/IIA satellites working with rubidium clocks and
Block IIR satellites that use rubidium clocks exclusively have been distinguished
in the analysis presented in Montenbruck et al. [2005b]. Comparisons conducted at
different epochs in the 2000-2004 time frame did not indicate a general trend in the
clock noise characteristics. It was therefore stated that it is appropriate to work
with time-averaged values for the clock interpolation error that are summarized in
Fig. 3.1 for the individual clock types.
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Figure 3.2 Number of GPS satellites operating cesium (Cs) and rubidium (Rb) clocks over
time. (Source: [Montenbruck et al., 2005b])

The biggest errors are clearly encountered for Block II/IIA cesium clocks, which
exhibit an RMS interpolation error of almost 10 cm at 15 min intervals. This
notably exceeds the accuracy of IGS final and rapid clock solutions and underlines
the need for 5 min or even higher-rate clock products for undifferenced GPS data
processing. Among the rubidium clocks, the best interpolation results are obtained
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for Block II/IIA satellites. For 5 min intervals the interpolations error decreases to a
few centimeters for all clock types, even though the relative gain for rubidium clocks
is less pronounced than for the Block II/IIA cesium clocks. Over the past five years,
a notable number of Block II/IIA satellites have been replaced by the follow-on IIR
model. Also, numerous II/IIA satellites no longer operate their cesium clocks but
have switched to one of their backup rubidium clocks. The fraction of GPS satellites
operating cesium clocks has thus decreased from 2/3 in early 2000 to about 1/3 in
late 2004 (Fig. 3.2). According to Montenbruck et al. [2005b], this change has
resulted in a continuous reduction of the average clock interpolation error for the
entire GPS constellation from about 8 cm to 6 cm for 15 min interpolation and
from 4 cm to 3 cm for 5 min interpolation. The results presented here are in good
consistency with an analysis of GPS clock data performed by Zumberge and Gendt
[2001] right after the deactivation of Selective Availability. Based on a two weeks
data set in May 2000, these authors determined an average interpolation error of
3.5 cm for 5 min interpolation that decreases linearly to 4 mm at 30 s sampling.

3.2 Reference frame transformations

Throughout the various applications discussed in this chapter and the next one po-
sition coordinates are expressed in different reference systems. The just mentioned
GPS ephemerides data for example are provided in the ITRF, whereas the reduced
dynamic orbit determination applications require the integration of the equations
of motion of the user spacecraft, i.e. CHAMP and/or GRACE, in the International
Celestial Reference Frame (ICRF) [McCarthy, 1996]. In addition, the phase cen-
ter offset of the receiving GPS antenna with respect to the center of mass of the
user spacecraft also has to be accounted for. To this extent two reference frame
transformations, used throughout this entire research are provided in the following.

First, whenever a position vector in the ICRF, rICRF, requires transformation
to the ITRF, rITRF, this is accomplished by

rITRF = U(t)rICRF, (3.1)

where U(t) is a 3 × 3 orthonormal matrix more specifically defined as

U(t) = Π(t)Θ(t)N(t)P(t). (3.2)

Here, the individual matrices describe the coordinate change due to precession,
Π(t), nutation N(t), Earth rotation, Θ(t), and polar motion, P(t). The Inter-
national Astronomical Union (IAU) conventions used to compute each of these
matrices are summarized in Table 3.2 and can be found in McCarthy [1996] or
Montenbruck and Gill [2000]. The required input for these models, such as polar
motion parameters or the UT1-UTC time offsets, are captured in the so called Earth
rotation parameters. For this research these parameters are obtained from either
the International Earth Rotation Service (IERS) or from the IGS. For the POD
applications in this chapter and the relative positioning applications in the next
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Table 3.2 Reference system transformation conventions used for this research.

Item Description

Π(t) IAU 1976 Precession
N(t) IAU 1980 Nutation
Θ(t) IAU 1982 Sidereal Time
Π(t) Polar motion (IERS/IGS)

one, the ITRF convention used is ITRF2000, which is implied by the used IGS or
CODE GPS ephemerides data. When following the reference frame transformations
from Table 3.2 the ICRF convention used then becomes the Earth Mean Equator
of J2000 (EME2000), also known as the J2000 inertial system.

The second transformation concerns the user spacecraft GPS antenna phase
center offset. This offset is provided in the user S/C body system, which has its
origin in the center of mass of the user S/C. Similar to the GPS satellites this offset is
assumed to be constant, meaning that possible phase center variations are ignored.
For this research, the 3 × 3 orthonormal matrix C(t) describes the transformation
between a position, or antenna offset, in the S/C body frame, rBODY, and in the
ICRF, here EME2000, as

rICRF = C(t)rBODY. (3.3)

Within the various applications this transformation matrix is constructed using
precise S/C attitude data, which is obtained from star camera observations, and
provided as quaternions. The exact definition of how the quaternions are handled for
this research can be found in Montenbruck [2000]. When required, a transformation
between the S/C body frame and the ITRF can now be simply handled by

rITRF = U(t)C(t)rBODY. (3.4)

Due to the fact that both U(t) and C(t) are orthonormal, their inverse, required
for a transformation in the other direction, is simply given by their transposed.

3.3 Kinematic orbit determination

The Global Positioning System is the only tracking system to date allowing purely
kinematic 3-dimensional positioning of LEO spacecraft. The real-time GPS re-
ceiver internal position solution, or navigation solution, is often a kinematic one
constructed using solely pseudorange data. For onboard applications this position
solution with a typical accuracy of several to tens of meters mostly suffices. Post
facto kinematic POD applications on the other hand should provide reliable high
accuracy position solutions and still have the benefit of relative simplicity, since no
prior knowledge of the spacecraft trajectory is required. This means that carrier
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phase observations must be included and an adequate processing technique has to
be used.

Within this research kinematic GPS based POD is accomplished using a
weighted linearized batch least-squares (LSQ) estimator, processing all ionosphere
free carrier phase and pseudorange measurements, collected over data arcs with a
typical length of a day (24 hours), at once. Subsequently, the parameters of in-
terest, also referred to as the estimation parameters, used in modeling the GPS
observations are then resolved from an overdetermined system of linear equations.
This is done in such a way that the squares of the measurement residuals, in the
metric of the measurement covariance, are minimized. Aside from the following
brief overview, the fundamental concept of weighted linearized LSQ is extensively
covered in literature, such as Teunissen [2000] and Montenbruck and Gill [2000],
where in the latter the problem is discussed in the context of satellite orbit adjust-
ment. Therefore, the focuss here is on those aspects that are of prime relevance for
GPS based orbit determination.

When considering a linearization of the modeled GPS measurements, h(y),
around an initial value, y0, of the estimation parameters, y, the LSQ update of
this initial value is given by

∆y = (HT WH)−1HT W(z − h(y0)), (3.5)

resulting in the updated estimation parameters, y = y0 + ∆y. Here, z is the
vector containing the actual GPS observations and W = Q−1

z is the accompanying
weighting matrix, given by the inverse of their covariance matrix. Furthermore,
the design matrix, H = (∂h(y0)/∂y0), contains the linearized partial derivatives of
the modeled measurements with respect to the estimation parameters. The part
requiring inversion, N = HT WH, is also referred to as the normal equations. Non-
linear estimation problems, such as GPS positioning applications, can be coped
with by means of multiple iterations, where the updated estimation parameters are
used as the initial values for the next iteration.

For spaceborne kinematic GPS positioning applications parametrization of
pseudorange and carrier phase observations is relatively straightforward, and is
done according to the UD ionosphere free GPS observation model, eqn. 2.19, and
the linearization from eqn. 2.26. At any given measurement epoch ti both obser-
vation types are parameterized with the phase center position of the GPS receiver
antenna and the GPS receiver clock offset, xi = (xi; yi; zi; cδti). Since the spacecraft
is continuously moving a new position and clock offset have to be determined at
every epoch. In addition, the carrier phase observations also contain the ionosphere
free ambiguity or bias parameter, bj = (λIFAIF)j , which remains constant over
time until a cycle slip or phase break occurs. In the absence of data gaps a typ-
ical one day (24 hour) data arc now requires a total of nX = 2880 epochs to be
processed, when the measurements are processed at 30 second intervals. Due to
the fast changing viewing geometry for LEO spacecraft GPS satellites are observed
for a maximum of about 40 minutes resulting in typically 15 (phase connected)
passes with constant ambiguities for a single GPS satellite. Most of the time the



42 Precise orbit determination

total number of independent ambiguity parameters over 24 hours is approximately
nB ≈ 450 − 500 for spaceborne scenarios. Together this results in a total number
of roughly 4nX + nB ≈ 12000 estimation parameters that need to be adjusted on
a single day. With an average number of 6 good quality pseudorange and car-
rier phase observations per epoch, the total number of measurements adds up to
approximately 35000, making the system in principle overdetermined.

Although the total number of estimation parameters is quite large, they can
be efficiently solved for when grouped into the 4nX dimensional position and clock
offset vector

X =
(

x0; · · · ;xi; · · · ;xnX−1

)

, (3.6)

and the nB dimensional carrier phase ambiguity vector

B =
(

b0; · · · ; bj ; · · · ; bnB−1

)

, (3.7)

allowing a partitioned solution of the normal equations later on. In accord with
the partitioned formulation the design matrix H is split up into a part containing
the modeled linearized measurement partials with respect to the position and clock
offset, HX , and the carrier phase ambiguities, HB . The partials of a modeled
measurement of GPS satellite s with respect to the position and clock offset,

∂hs
i

∂X
=
(

0T
(0), . . . ,0

T
(i−1),

(

es(ti) ; 1
)T

(i)
,0T

(i+1), . . . ,0
T
(nX−1)

)

, (3.8)

only relate to the epoch ti the measurement was taken. The same is true for the
partials of the modeled carrier phase measurement of GPS satellite s with respect
to the ambiguity parameters

∂hs
i

∂B
=
(

0(0), . . . , 0(j−1), 1(j), 0(j+1), . . . , 0(nB−1)

)

. (3.9)

Here, the only non-zero entry is for the bias parameter (j) relating to the carrier
phase observation from satellite s at epoch ti. As can be seen in these last two
equations the only non-linear part of the model is formed by the position partials,
seen earlier in eqn. 2.28 as the line of sight vector. If the initial positions, X0, are
not chosen close enough to the final ones, multiple iterations might be required for
this part of the model to become linear.

The GPS observation model is linearized around initial values of the epoch wise
position and clock offset (X0) and ambiguity values (B0),

X = X0 + ∆X

B = B0 + ∆B
. (3.10)

for which respective updates, ∆X and ∆B, are computed during the LSQ solution
process. Using the initial values to compute the partial derivatives and the modeled
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observations, the LSQ estimation problem now reads

(

∂h

∂(X0,B0)

)T

W

(

∂h

∂(X0,B0)

)(

∆X
∆B

)

=

(

∂h

∂(X0,B0)

)T

W
(

z − h(X0,B0)
)

.

(3.11)

When substituting the partitioned notation of the design matrix,
(

∂h

∂(X0,B0)

)

=
(

HX HB

)

, (3.12)

the LSQ estimation is rewritten as
(

HT
XWHX HT

XWHB

HT
BWHX HT

BWHB

)(

∆X
∆B

)

=

(

HT
XW

(

z − h(X0,B0)
)

HT
BW

(

z − h(X0,B0)
)

)

. (3.13)

which can furthermore be reduced to
(

NXX NXB

NBX NBB

)(

∆X
∆B

)

=

(

nX

nB

)

. (3.14)

Due to the partitioned formulation of the problem, the normal equations can be
solved for more efficiently than by direct inversion of the full matrix with dimension
12000 × 12000. The general structure of the normal equations from eqn. 3.3 is
visualized in Fig. 3.3 for a 1-hour data arc, processed in 60 second measurement
intervals. It can be seen in the structure of NXB , or NBX , that all positions and
clock offsets are interconnected through the carrier phase biases. Furthermore, it
shows that the part relating to the positions and clock offsets, NXX , is a block
diagonal matrix with 4 × 4 elements. Inversion of this matrix (N−1

XX) is easily
accomplished by a simple inversion of the individual 4 × 4 diagonal sub-matrices.
It is now possible to first resolve the bias parameter updates,

∆B =
(

NBB − NBXN−1
XXNXB

)−1(
nB − NBXN−1

XXnX

)

, (3.15)

which are subsequently back-substituted to find the updates for the positions and
clock offsets,

∆X = N−1
XX

(

nX − NXB∆B
)

. (3.16)

Note that this only requires the direct inversion of a matrix with the approximate
dimension 500 × 500, in addition to the 2880 inversions of the 4 × 4 sub-matrices.
The formal covariances of the estimation parameters are given by

QBB =
(

NBB − NBXN−1
XXNXB

)−1
, (3.17)

which was already computed when solving for the bias parameter updates, and by

QXX = N−1
XX +

(

N−1
XXNXB

)

QBB

(

N−1
XXNXB

)T
. (3.18)
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Figure 3.3 Structure of the normal equations for kinematic least-squares batch estimation
of epoch-wise position and clock corrections, as well as carrier phase biases
over continuous tracking arcs.

Due to the fact that both GPS pseudorange and carrier phase observations are
processed the normal equations can be readily inverted, allowing for a parameter
adjustment. It is however also possible to process solely ionosphere free carrier
phase data, which could be more accurate. This requires the same parameters to
be adjusted, but with roughly half of the observation data available. The resulting
system however is no longer overdetermined since a singularity is now introduced.
A common shift in the carrier phase bias parameters can namely no longer be
separated from a common shift in all receiver clock offsets and vice versa. A solution
to this is adding (uncorrelated) a-priori information to e.g. the bias parameters.
The a-priori bias values, Bapr, and their accompanying data weights, or information
matrix, ΛB, are added to the normal equations as
(

NXX NXB

NBX NBB + ΛB

)(

∆X
∆B

)

=

(

nX

nB + ΛBBapr

)

, (3.19)

which can still be solved in the same way as before, since the general structure
depicted in Fig. 3.3 does not change. It must be noted however that if multiple
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bias parameters are given a-priori information, whilst being interconnected with
each other, there is no longer a free estimation of the parameters. Therefore, ide-
ally, only one of the bias parameters should be given a-priori information for each
interconnected batch of carrier phase biases.

After having obtained the final position solutions they still need to be expressed
in the center of mass of the concerning spacecraft. This is accomplished using the
GPS antenna phase center offset and the transformation described in eqn. 3.4.
Results of the kinematic batch LSQ for POD can be found later on in this chapter
when tested with CHAMP and GRACE GPS observation data.

3.4 Reduced dynamic orbit determination

As made clear in the previous section kinematic POD requires no a-priori knowledge
of the spacecraft motion and can thus be applied to a wide range of scenarios. On
the other hand, kinematic methods are particularly sensitive to erroneous measure-
ments, unfavorable viewing geometry and data outages, which sometimes restrict
their value in practice. Dynamic orbit determination, in contrast, makes use of
known physical models of the spacecraft motion to constrain the resulting position
estimates. This allows an averaging of measurements from different epochs and the
satellite trajectory can even be propagated across data gaps.

However, the dynamics of real-world LEO spacecraft are hardly known to a level
that matches the accuracy of GPS pseudorange and carrier phase measurements.
Particularly aerodynamic forces are not well predictable at altitudes of 300-600 km
due to limitations of upper atmosphere density models [Bruinsma et al., 2003]
and the complicated interaction of neutral gases and charged particles with the
spacecraft surface.

Due to the limitations of both pure kinematic and pure dynamic orbit determi-
nation the concept of reduced dynamic orbit determination has been introduced in
the previous decades ( [Wu et al., 1991]; [Yunck et al., 1990]). Here, the determin-
istic (numerical) model of the spacecraft dynamics is complemented by stochastic
parameters, in the form of empirical accelerations or impulsive shots, that are ad-
justed along with other parameters in the orbit determination process. In this way,
the available accuracy of the GPS measurements may be fully exploited without
sacrificing the robustness offered by dynamical orbit determination techniques.

This section starts with an overview of the dynamical models and their partial
derivatives used for the actual orbit determination process, followed by the theory
of the empirical accelerations. Furthermore, two different concepts for reduced dy-
namic orbit determination are discussed, a batch LSQ estimator and an extended
Kalman filter. The measurement processing and handling of the orbit parameters
and empirical accelerations differ for each of these methods. The merits and dis-
advantages of both approaches are discussed in the next section, where the orbit
determination results are presented.
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3.4.1 Dynamical modeling

When considering reduced dynamic orbit determination, dynamic force models
are first of all used to accurately propagate the satellite (initial) state vector, in
EME2000,

y(t) =

(

r(t)
v(t)

)

, (3.20)

over time by means of numerical integration of the first order differential equation

d

dt
y(t) = f(t,y(t),p) =

(

v(t)
a(t, r,v,p)

)

. (3.21)

More specifically the dynamic force models are used to compute the gravitational
and non-gravitational accelerations, a(t, r,v,p), acting on the spacecraft. These on
their turn depend on the time, t, the position, r, and velocity, v, of the spacecraft
as well as the force model parameters, p. Since the initial state vector at t0,
y(t0), and the force model parameters are actually being estimated as part of the
orbit determination process, linearized expressions for the partial derivatives of the
satellite state at an arbitrary time t with respect to the estimation parameters
are required for GPS measurement modeling later on. The computation of these
partials again requires the use of the dynamic force models.

Following Montenbruck and Gill [2000], the partial derivatives of the spacecraft
state at arbitrary time t with respect to the initial state vector are captured in the
state transition matrix,

Φ(t, t0) =
∂y(t)

∂y(t0)
, (3.22)

which is 6 × 6 dimensional and can be obtained by differentiating eqn. 3.21 to the
initial state:

∂

∂y(t0)

d

dt
y(t) =

∂f(t,y(t),p)

∂y(t0)
=

∂f(t,y(t),p)

∂y(t)
· ∂y(t)

∂y(t0)
. (3.23)

This last equation can be rewritten to

d

dt
Φ(t, t0) =

∂f(t,y(t),p)

∂y(t)
· Φ(t, t0), (3.24)

or more specifically

d

dt
Φ(t, t0) =





03×3 13×3

∂a(t, r,v,p)

∂r(t)

∂a(t, r,v,p)

∂v(t)





6×6

· Φ(t, t0), (3.25)

which is a first order differential equation with the identity matrix as the initial
value, Φ(t0, t0) = 16×6. In a similar way the partials of the state vector with
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respect to the force model parameters, captured in the 6 × np dimensional (np

being the number of estimated force model parameters) sensitivity matrix

S(t) =
∂y(t)

∂p
, (3.26)

are obtained. When differentiating eqn. 3.21 to the force model parameters,

d

dt

∂y(t)

∂p
=

∂f(t,y(t),p)

∂y(t)
· ∂y(t)

∂p
+

∂f(t,y(t),p)

∂p
, (3.27)

a first order differential equation, more specifically written as

d

dt
S(t)6×np

=




03×3 13×3

∂a(t, r,v,p)

∂r(t)

∂a(t, r,v,p)

∂v(t)





6×6

· S(t) +





03×np

∂a(t, r,v,p)

∂p





6×np

,
(3.28)

is again obtained. Since the initial satellite state does not depend on any of the force
model parameters the initial value of the sensitivity matrix yields S(t0) = 06×np

.
The derived expressions for both the state transition and sensitivity matrix can

now be combined into the first order differential equation

d

dt
(Φ,S) =

(

03×3 13×3

∂a

∂r

∂a

∂v

)

6×6

· (Φ,S) +





03×6 03×np

03×6
∂a

∂p





6×(6+np)

(3.29)

also referred to as the variational equations. This form of the variational equations
is adequate for use with numerical integration methods for the solution of first order
initial value problems. Within the actual orbit determination process the integra-
tion of the satellite trajectory and the variational equations is typically performed
at the same instance. As pointed out by Montenbruck and Gill [2000] common
subexpressions in the set of differential equations are used to make the integration
process more efficient in this way.

For integration of the trajectory, accurate force models are used to compute
the gravitational and non-gravitational accelerations acting on the satellite. All
expressions for the exact computation of these accelerations can be found in chapter
3 of Montenbruck and Gill [2000]. More specifically, the POD scenarios described
later on use the GRACE GGM01S gravity field [UT/CSR, 2003] of selectable degree
and order, up to 120 × 120, to obtain the acceleration due to the Earth’s static
gravity field. The effects of tidal displacements are accounted for by including solid
Earth tides (4 × 4, diurnal), polar tides and ocean tides (UT/CSR 3.0 [UT/CSR,
2001] and TEG-2B) in the computation. Furthermore, accelerations due to point
mass attraction by the Sun and Moon, computed using analytical expansions of
luni-solar coordinates, described in Montenbruck and Gill [2000], are also taken
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into account. Accelerations due to non-gravitational forces include the atmospheric
drag and the solar radiation pressure acting on the spacecraft. Both are computed
using a simple ’canon-ball’ model for the satellite assuming a constant surface and
mass on which the forces act. The atmospheric density is furthermore computed
using the Jacchia 71 [Jacchia, 1971] atmospheric density model, and a conical Earth
shadow model is applied indicating if solar radiation pressure is experienced. Since
atmospheric density and solar activity are hard to model accurately a drag and
solar radiation pressure scaling coefficient, CD and CR respectively, are estimated
as part of the force model parameters.

Accuracy requirements for the partial derivatives are generally not as stringent
as for the trajectory itself. This is due to the fact that some contributions are
very small and that it concerns a linearized problem, which is typically adjusted
for by a huge number of GPS observations over multiple iterations. It is therefore
common to apply a simplified version of the force models in the integration of the
variational equations. For this research the partials of the acceleration with respect
to the spacecraft position solely depend on the Earth’s static gravity field, using
only the central term, GM , and the lowest zonal gravity field perturbation, C2,0,
in their computation. The partials of the acceleration with respect to the velocity
are not set at all, i.e. they are always zero. Finally the partials of the acceleration
with respect to the force model parameters are set using the simple expressions
for the atmospheric drag and solar radiation pressure as described in Montenbruck
and Gill [2000], and by the direction partials from eqn. 3.30 when the empirical
accelerations, described in the next subsection, are considered.

3.4.2 Empirical accelerations

Within the two different reduced dynamic POD approaches empirical accelerations
in the radial (subscript ’R’), along-track (transverse, subscript ’T ’) and cross-track
(normal, subscript ’N ’) direction

eR =
r

‖r‖ , eT = eN × eR, eN =
r × v

‖r × v‖ (3.30)

are considered to compensate for any modeling deficiencies in the employed space-
craft dynamics. Although the amplitude of the individual acceleration components
is not known beforehand, but estimated as part of the orbit determination process,
realistic a-priori constraints have to be applied in each of the POD concepts to
prevent a divergence of the estimated orbit solution.

Following Bierman [1977], the theory of random processes with exponentially
correlated, also referred to as ’colored’, process noise provides a suitable mathemat-
ical framework for the description of these unmodeled accelerations. A first-order
Gauss-Markov process p(t) [Brown and Hwang, 1997] exhibits an exponential au-
tocorrelation

R(∆t) = E
(

p(t), p(t + ∆t)
)

= σ2e−|∆t|/τ , (3.31)
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where σ2 denotes the steady-state variance of the process and τ is the correlation
time scale. In a time-discrete form, the process satisfies the first-order difference
equation

p(ti+1) = mip(ti) + wi, (3.32)

where the mapping factor is given as

mi = e−|ti+1−ti|/τ , (3.33)

and where the process noise wi is an uncorrelated random sequence with zero mean
and variance

E(w2
i ) = σ2(1 − m2

i ). (3.34)

Although this framework can be directly applied to a recursive filtering scheme,
as already done by Lichten [1990], it was found to be unsuitable for practical use
by the batch LSQ. For this concept, the empirical accelerations are considered to
be piecewise constant in pre-defined sub-intervals, which facilitates both the trajec-
tory propagation and the overall parameter adjustment. Here, the entire data arc is
divided into na intervals of equal duration τ and an independent set of empirical ac-
celeration parameters (aR, aT , aN )j is estimated for each interval, j = 0, . . . , na−1.
The choice of an adequate interval length reflects a compromise between observ-
ability, computational effort and the capability to resolve time varying phenomena.
Given an orbital period of roughly 6000 s for LEO satellites and a representative
measurement interval of 30 s, intervals of 600 s duration have been found to be most
suitable and are adopted throughout this research. While shorter intervals provide
a smoother variation of the estimated accelerations, no relevant improvement of
the overall orbit determination accuracy has been observed that would justify an
associated increase in computation time. Longer intervals, in contrast, appeared
insufficient to sample the characteristic time scales of the empirical acceleration
variation. In accordance to the batch LSQ, the auto-correlation time used for han-
dling the empirical accelerations in the Kalman filter is also set to 600 s. Although
a variation in the auto-correlation time here does not influence the computational
effort, it does affect the characteristics of the empirical acceleration variation and
thus influences the orbit solution.

3.4.3 Batch LSQ

The major difference between the kinematic and reduced dynamic batch LSQ is
the fact that the individual spacecraft positions at each measurement epoch are
replaced by the spacecraft trajectory model. This of course has its effects on the
modeling of the ionosphere free pseudorange and carrier phase data. Both data
types are still parameterized with the GPS receiver clock offset, cδtr, which again
has to be determined at every measurement epoch, ti. In exactly the same way, the
GPS carrier phase observations contain the additional ionosphere free ambiguity or
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bias parameter, bk = (λIFAIF)k. The rest of the estimation parameters are used
for modeling the satellite trajectory in accordance with the previously discussed
theories. They comprise the 6-dimensional initial spacecraft state vector, y0 = y(t0)
at a reference epoch t0, relating to the S/C center of mass and expressed in the ICRF
(EME2000), a solar radiation pressure coefficient CR that acts as an adjustable
scaling factor for the surface reflectivity in the modeling of solar radiation pressure
forces, a drag coefficient CD that acts as an adjustable scaling factor in the modeling
of drag forces and the empirical accelerations aj = (aR, aT , aN )j in consecutive
time intervals [t0 + j · τ, t0 + (j + 1) · τ ] for compensating deficiencies in the applied
dynamical models.

When grouping the estimation parameters in the nT -dimensional vector of GPS
receiver clock offsets,

T =
(

cδt0; . . . ; cδtnT −1

)

, (3.35)

the nY = 8 + 3na dimensional vector concerning the satellite trajectory modeling,
also referred to as the dynamic estimation parameters,

Y =
(

y0;CR;CD;a0; . . . ;ana−1

)

, (3.36)

and the nB-dimensional vector of ionosphere free carrier phase biases,

B =
(

b0; . . . ; bnB−1

)

, (3.37)

a similar partitioning as for the kinematic batch LSQ can be applied. The total
number of estimation parameters in this minimization problem however, is less than
for the kinematic case. When again considering a 24 hour data arc in which the
measurements are processed in 30 second steps, this results in a total of nT =
2880 clock offsets and the typical number of nB ≈ 450 − 500 carrier phase biases
that need to be adjusted. In addition, when using 600 second intervals for the
empirical accelerations this results in nY = 440 dynamical estimation parameters.
The total number of estimation parameters now becomes approximately 3800, which
is significantly less than for the kinematic case.

Similar to the kinematic batch LSQ, a linearization around initial values (sub-
script 0) of the estimation parameters takes place,

T = T0 + ∆T,

Y = Y0 + ∆Y,

B = B0 + ∆B,

(3.38)

for which updates (preceding ∆) are computed in the LSQ estimation process, given
by

(

∂h

∂(T0,Y0,B0)

)T

W

(

∂h

∂(T0,Y0,B0)

)





∆T
∆Y
∆B





=

(

∂h

∂(T0,Y0,B0)

)T

W
(

z − h(T0,Y0,B0)
)

.

(3.39)
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Here, again, the weighting matrix is the inverse of the measurement covariance,
W = Q−1

z , and the overall design matrix
(

∂h

∂(T0,Y0,B0)

)

=
(

HT HY HB

)

, (3.40)

is constructed from the three partitioned ones. Similar to the kinematic case the
partials of the modeled GPS observation, hs, of GPS satellite s with respect to the
clock offset vector,

∂hs
i

∂T
=
(

0(0), . . . , 0(i−1), 1(i), 0(i+1), . . . , 0(nT −1)

)

, (3.41)

are only set for the epoch, ti, the measurement was taken. The same is again true
when it concerns a carrier phase observation. In this case only the partial of the
concerning bias parameter is set,

∂hs
i

∂B
=
(

0(0), . . . , 0(k−1), 1(k), 0(k+1), . . . , 0(nB−1)

)

. (3.42)

Of course for pseudorange observations these partials are not set at all. Finally,
the partials with respect to the dynamic estimation parameters refer to the point
in the trajectory at which the measurement was taken,

∂hs
i

∂Y
=

(

∂hs
i

∂y0
,

∂hs
i

∂CR
,

∂hs
i

∂CD
,

∂hs
i

∂a0
, · · · ,

∂hs
i

∂aj−1
,

∂hs
i

∂aj
, 0T

(j+i), · · · , 0T
(na−1)

)

, (3.43)

meaning that if the measurement at epoch ti falls within the jth interval of empirical
acceleration parameters, the partials up to this point are set accordingly. This
follows from the physical explanation that the empirical accelerations in the past
contributed to the trajectory shape in the present. No fading characteristics as for
e.g. a Gauss-Markov process have been applied. A more generic expression for this
last set of partials is given by

∂hs
i

∂Y
=

(

∂hs
i

∂y0

∂hs
i

∂p

)

, (3.44)

where the dynamic estimation parameters are divided into the initial state vector
and the concerning force model parameters, pi = (CR;CD;a0; . . . ;aj ;0; . . . ;0) up
to epoch ti. In addition, the partials of the measurement with respect to the current
satellite state are given by

∂hs
i

∂yi
=
(

− (UT (ti)e
s(ti))

T 01×3

)

, (3.45)

where the line of sight vector, es(ti), from eqn. 2.28 is transformed to the inertial
reference frame using the 3 × 3 transformation matrix U(ti) from eqn. 3.1. Com-
bining the last two equations leads to an expression for the partials with respect to
the dynamic estimation parameters:

∂hs
i

∂Y
=

(

∂hs
i

∂yi

∂yi

∂y0

∂hs
i

∂yi

∂yi

∂pi

)

=

(

∂hs
i

∂yi
Φ(ti, t0)

∂hs
i

∂yi
S(ti)

)

, (3.46)
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Figure 3.4 Structure of the normal equations for least-squares batch estimation of
epoch-wise clock corrections, dynamic orbit parameters and carrier phase biases
over continuous tracking arcs.

involving the state transition and sensitivity matrix.
In practice the construction of these partials and the accompanying measure-

ment residual, z−h(cδtr(ti),y(ti), bk), are not so trivial anymore, since they require
the numerical integration of the spacecraft trajectory along with the variational
equations. Within the reduced dynamic batch LSQ this integration over the en-
tire batch of observation data, with a restart at every new interval of empirical
accelerations, is accomplished using the variable order variable step-size multi-step
numerical integration method DE of Shampine and Gordon [1975], which has ear-
lier been proven to be a highly efficient and flexible integrator for orbital dynamics
problems with stringent accuracy requirements ( [Montenbruck and Gill, 2000];
[Montenbruck et al., 2005a]). Furthermore, it must be noted that the modeling of
the GPS observations is done in the ITRF, using the GPS receiver antenna phase
center position. The modeled observation, h(cδtr(ti),y(ti), bk), internally handles
the appropriate transformations and corrections given earlier in section 3.2.

In a similar way as has been done for the kinematic batch LSQ, eqn. 3.39 can
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be rewritten as




NTT NTY NTB

NY T NY Y NY B

NBT NBY NBB









∆T
∆Y
∆B



 =





nT

nY

nB



 . (3.47)

Although the normal equations are generally not singular when both code and car-
rier phase observations are processed, and can thus be inverted, a free estimation
is in general no longer possible. In order to prevent divergence of the satellite tra-
jectory, uncorrelated a-priori information, Yapr, with a predefined weight, ΛY , is
added to the concerning part of the normal equations to constrain the dynamic
estimation parameters. Similar to the kinematic case (uncorrelated) a-priori infor-
mation must also be added to the carrier phase biases, Bapr and ΛB , if pseudorange
observations are not processed. Again, ideally, this a-priori information only con-
cerns one bias parameter for each carrier phase interconnected data arc. When
incorporating this a-priori in formations the normal equations would read




NTT NTY NTB

NY T NY Y + ΛY NY B

NBT NBY NBB + ΛB









∆T
∆Y
∆B



 =





nT

nY + ΛY Yapr

nB + ΛBBapr



 , (3.48)

where ΛB is zero if both code and carrier phase observations are processed. The
structure of the partitioned normal equations is visualized in Fig. 3.4 for a 3 hour
data arc, processed in 30 second steps and a 600 second interval for the empirical
accelerations. Here it can be seen directly that NTT is a diagonal matrix whose in-
verse, N−1

TT , is readily computed. Furthermore, the specific structure of NTY shows
the contributions of all empirical accelerations prior to a concerned measurement
epoch. When grouping the dynamic estimation parameters and the carrier phase
biases into

X =

(

Y
B

)

, (3.49)

the LSQ problem from eqn. 3.48 is redefined as
(

NTT NTX

NXT NXX

)(

∆T
∆X

)

=

(

nT

nX

)

. (3.50)

Similar to the kinematic case the updates of the dynamic estimation and carrier
phase bias parameters are efficiently obtained as

∆X =
(

NXX − NXT N−1
TT NTX

)−1(
nX − NXT N−1

TT nT

)

, (3.51)

which are subsequently back-substituted to obtain the updates for the clock offsets

∆T = N−1
TT

(

nT − NTX∆X
)

. (3.52)

Again, the formal covariances of the estimation parameters are given by

QXX =
(

NXX − NXT N−1
TT NTX

)−1
, (3.53)
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which was already computed when solving for the dynamic estimation and bias
parameter updates, and by

QTT = N−1
TT +

(

N−1
TT NTX

)

QXX

(

N−1
TT NTX

)T
. (3.54)

After having obtained the updates for the estimation parameters the initial
estimates are corrected for, and the newly obtained values are now used as initial
values for a second run. Multiple iterations of this kind are required to cope with
the non-linearity of the reduced dynamic estimation problem, and convergence is
typically achieved within 3 to 4 iterations. Although the total number of estimation
parameters is less than for the kinematic case, the numerical integration of the
trajectory and the variational equations as well as the multiple iterations result in a
much longer computation time. This however results in a continuous, smooth and
(generally) more accurate solution of the satellite orbit.

3.4.4 Extended Kalman filter

A recursive formulation of the LSQ problem is captured in the standard Kalman
filter [Brown and Hwang, 1997] for linearized models. Starting from a given set of
initial conditions, measurements are processed at consecutive epochs. Non-linear
estimation problems, such as reduced-dynamic orbit determination, can be coped
with by adding an additional step to the Kalman filter where the filter state is
updated to a value suitable for linearization. This concept is also referred to as the
extended Kalman filter (EKF), which is described in e.g. Montenbruck and Gill
[2000]. For this research the EKF is also used as a GPS based POD technique,
which, due to its recursive nature, is particularly suitable for real-time applications.

In analogy with the reduced dynamic batch LSQ, the EKF state,

x =





Y
cδtr
B



 , (3.55)

and accompanying covariance, P, comprise the dynamic estimation parameters, Y,
the GPS receiver clock offset, cδtr, and the ionosphere free carrier phase biases,
B, all relating to the current measurement epoch. This leads to a much smaller
total number of estimation parameters to be handled at once since they are simply
updated or removed over time. The dynamic estimation parameters,

Y =
(

y;p
)

=
(

(r;v); (CR;CD;a)
)

, (3.56)

therefore comprise the 6-dimensional spacecraft state, y = (r;v), again relating to
the center of mass and defined in the ICRF (EME2000), and a fixed number of
force model parameters p = (CR;CD;a), including the 3 empirical accelerations, a,
resulting in a 11-dimensional vector of constant size. In a similar way the ionosphere
free carrier phase biases, bj = (λIFAIF)j , in the filter state,

B =
(

b0, . . . , bn

)

, (3.57)
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only concern the currently observed GPS satellites, resulting in an n-dimensional
vector, that has to be re-ordered over time when new satellites become available
and old satellites are no longer observed.

Time Update:
Propagate filter state from ti-1 to tiCompute state transition matrix
Set process noise matrix
Update filter covariance

Rearrange Filter State and Covariance:
Eliminate GPS satellites out of view
Incorporate newly observed GPS satellites

Measurement Update:
Compute predicted residuals of GPS observations
Compute Kalman gain matrix
Update filter state and covariance

Next
Epoch

Figure 3.5 Extended Kalman Filter processing scheme for GPS based precise orbit
determination

Starting from given initial values of the filter state and covariance at t0, the
EKF processes GPS observations at consecutive measurement epochs using the
three step processing scheme visualized in Fig. 3.5. The first step covers the time
update, where the filter state and covariance estimate from the previous epoch ti−1

(superscript ’+’) are propagated to a prediction (superscript ’-’) at the current
epoch ti, which is generally expressed as

x−
i = x

(

ti;x(ti−1) = x+
i−1

)

P−
i = ΦiP

+
i−1Φ

T
i + Qi

. (3.58)

Propagation of the filter state and covariance involves numerical integration of the
satellite trajectory and the variational equations from ti−1 to ti. This requires us-
age of the estimated force model parameters, p+

i−1, which are kept constant during

the integration. The numerical integration itself is accomplished using a simple 4th

order Runge-Kutta integration method, that is most suitable for the small measure-
ment intervals (typically 30 seconds), with the need for a complete restart at every
measurement epoch. After integration the empirical accelerations are propagated
in accordance to the Gauss-Markov process model to

a−
i = e−|ti−ti−1|/τa+

i−1, (3.59)
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using the mapping factor cf. eqn. 3.33. All other estimation parameters in the
filter state remain unchanged during the time update, i.e
(

CR;CD; cδtr,B
)−

i
=
(

CR;CD; cδtr,B
)+

i−1
, (3.60)

reflecting a white process noise model. Propagation of the filter covariance requires
the filter state transition matrix,

Φi =





ΦY 0 0
0T 1 0T

0 0 1



 , (3.61)

where the part relating to the carrier phase ambiguities is given by the identity
matrix, 1n×n, and the part relating to the receiver clock by the scalar 1. Except for
the somewhat more complex structure of the submatrix ΦY, visualized in Fig. 3.6,
all other entries are zero. Looking at the state transition matrix relating to the

Фr,v(ti-1,ti) Sr,v(ti)
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Figure 3.6 The structure of the transition (ΦY,left) and the process noise (QY,right)
matrices, concerning the dynamic parameters in the EKF.

dynamic parameters it can be seen that for covariance propagation of the satellite
state, the satellite state transition and sensitivity matrix are required, which were
simultaneously obtained when solving the variational equations during trajectory
integration. Furthermore, the entries corresponding to the empirical accelerations
are set using the mapping factors from the Gauss-Markov process model cf. eqn.
3.33. In addition, process noise,

Qi =





QY 0 0
0T qcδt 0T

0 0 0



 , (3.62)

is added to the covariance matrix during the time update step in order to pre-
vent filter divergence and to obtain more realistic covariance predictions for the
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estimated accelerations. The process noise matrix is completely diagonal and the
time-independent structure is also displayed in Fig. 3.6. Here, it can be seen that
only the entries of the empirical acceleration parameters are set in accordance with
the Gauss-Markov process model,

qi = σ2(1 − m2
i ), (3.63)

using the corresponding mapping factor from the transition matrix. Although this
process noise should actually be correlated with the position and velocity cf. Te-
unissen [2001] and Tapley et al. [2004a], it was found to have no impact on the
satellite position when implemented for testing. This can be attributed to the fact
that the numerical values of these process noise entries were negligible in comparison
to the corresponding covariance matrix entries. More specifically, when applying
the settings specified in Table 3.7 on page 67, the process noise for the empirical
accelerations is between 10 and 11% of the corresponding covariance entry. For
the position and velocity, as well as the cross correlations, the respective values
were in the order of 10−7%, 10−5% and 10−4%. The only remaining parameter for
which process noise is added is the receiver clock offset. This parameter is treated
as a stochastic variable with an underlying random walk process model, where the
mapping factor is 1 (eqn. 3.61) and the process noise is given as

qcδtr
=

(

σ2
cδtr

τcδtr

)

(ti − ti−1), (3.64)

where (σ2
cδtr

/τcδtr
) is the noise spectral density. The process noise variance, σcδtr

as
well as the time scale, τcδtr

, are only used (Table 3.7) to construct the noise spectral
density of the process. No process noise is added to the carrier phase ambiguities,
since they are constant over time. This means that their covariance becomes more
precise as more data is accumulated over time, which is supposed to be the case.

Upon completion of the time update follows a step concerning a reordering of
the filter state and covariance. This step incorporates the change in observed GPS
satellites and therefore only involves the carrier phase biases. If at a certain epoch
a specific GPS satellite is no longer observed, or if it experienced a carrier phase
discontinuity, the corresponding bias parameter has to be removed from the filter
state and covariance. In addition, whenever a new GPS satellite is tracked, its
carrier phase bias has to be incorporated in the filter state and covariance. This
assures that the total size of the filter state is always equal to 12+n, where n equals
the number of currently tracked satellites.

The final step in the EKF scheme is the actual incorporation of the GPS ob-
servation data to obtain the updated filter state, x+

i , and covariance, P+
i , at the

current measurement epoch. This is accomplished during the linearized measure-
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ment update,

Ki = P−
i HT

i

(

W−1
i + HiP

−1
i HT

i

)−1
,

x+
i = x−

i + Ki

(

zi − h(x−
i )
)

,

P+
i =

(

1 − KiHi

)

P−
i ,

(3.65)

which starts with the computation of the Kalman gain, Ki, from the predicted
filter covariance, the design matrix, Hi, and the diagonal measurement covariance
or inverse weighting matrix, W−1

i . Subsequently the Kalman gain is used to map
the predicted residuals, consisting of the ionosphere free GPS pseudorange and
carrier phase observations,

zi =

(

PIF

LIF

)

=

(

(PIF,1; . . . ;PIF,n)
(LIF,1; . . . ;LIF,n)

)

, (3.66)

minus their modeled values, h(x−
i ), into a correction of the propagated state from

which the updated filter state is obtained. Similar to the batch LSQ it must be
noted that GPS measurement modeling is done in the ITRF using the position of
the GPS receiver antenna phase center. Again, this means that the appropriate
transformations and phase center offset correction discussed in section 3.2 have to
be handled accordingly.

The design matrix contains the linearized partial derivatives with respect to the
filter state,

Hi =

(

∂h

∂r

∂h

∂v

∂h

∂p

∂h

∂cδtr

∂h

∂B

)

, (3.67)

which, due to the fact that the model can be linearized around the predicted state
from the time update, can be more specifically written as

Hi =

(

Ei 0 0 1 0
Ei 0 0 1 1

)

. (3.68)

Here, care must be taken to observe that the partials relating to the receiver clock
are an n×1-dimensional vector of ones, and that the carrier phase ambiguity partials
are given by the n×n-dimensional identity matrix. This is however only true if the
carrier phase measurements are put in the same order as their corresponding bias
parameters in the filter state. The geometry matrix,

Ei =







−(UT (ti) e
1(ti))

T

...
−(UT (ti) e

n(ti))
T






, (3.69)

finally comprises the line of sight vectors (eqn. 2.28) to the different GPS satellites
in the Earth fixed system, which have to be transformed to the ICRF by matrix
UT (ti) from eqn. 3.1.
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To improve the accuracy of the extended Kalman filter solution, the entire GPS
data set is processed both in a forward, as well as a backward direction. At each
epoch, a smoothed solution

xi =
P−1

i,fwdxi,fwd + P−1
i,bckxi,bck

P−1
i,fwd + P−1

i,bck

(3.70)

is then computed as the weighted average of the estimated filter states from both
runs [Brown and Hwang, 1997]. The weights are determined by the information
matrix, i.e. the inverse covariance, of the respective state estimates. By combining
the forward and backward results, measurements from both before and after a given
epoch contribute to the corresponding state estimate. As a result, a factor-of-two
improvement in accuracy over the individual solutions can usually be achieved.
However, a small degradation of the smoothed solution can usually be observed
near the beginning and end of the data arc as well as over extended data gaps,
where either the forward or backward filter is not yet fully converged.

3.5 GHOST toolkit

All of the previously discussed POD processing techniques are fully implemented
in separate software tools as part of the GPS High precision Orbit determination
Software Tools (GHOST, see [Montenbruck et al., 2005a]). Besides the core POD
tools, the toolkit furthermore comprises software for the generation of intermediate
orbit and positioning products, data formatting, and satellite orbit comparisons.
Similar to other POD software packages, such as GIPSY-OASIS [ORMS, 2005],
Bernese [Hugentobler et al., 2001] and GEODYN [Rowlands et al., 1995], a strict
processing scheme is to be followed when using GHOST for POD. This is required
in order to assure a proper and robust editing of the GPS data within each of POD
tools, prior to the actual orbit determination process. The following subsections
provide an overview of both the GHOST processing scheme as well as the applied
GPS data editing concept as used in this research.

3.5.1 Processing scheme

Within GHOST, precise orbit determination based on undifferenced GPS observa-
tions is a three step process, illustrated in Fig. 3.7. The first step is the generation
of kinematic single point position solutions at discrete (measurement) epochs using
only ionosphere free GPS pseudoranges, implemented in the Single Point Position-
ing for LEO satellites (SPPLEO) program. The second step involves the dynam-
ical filtering of these kinematic positions using the reduced-dynamic batch LSQ
approach described earlier in this chapter, with the only difference that position
estimates, instead of GPS observations, are used as measurements. This is mecha-
nized in the so-called Position Fit (PosFit) program. The output of this second step
is a continuous and smooth orbit with medium precision (15-25 cm, 3-dimensional),
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provided in the SP3 format. The third and final step of the process consists of the
actual precise orbit determination, kinematic and/or reduced dynamic, where the
just derived coarse a-priori orbit is used for GPS data editing, as described in the
next subsection. Here, the kinematic batch LSQ from section 3.3 is implemented
in the Kinematic Point Positioning (KIPP) program, the reduced dynamic batch
LSQ from section 3.4.3 in the tool called Reduced Dynamic Orbit Determination
(RDOD) and the EKF from section 3.4.4 in the Filter for Adjustment of Satellite
Trajectories (FAST).

Single Point Positioning
(SPPLEO)

Dynamical Filtering
(PosFit)

Positions (at
discrete epochs)

Coarse a priori
orbit (continuous)

Data Editing & Precise Orbit Determination

Kinematic
Batch LSQ
(KIPP)

Reduced Dynamic
Batch LSQ
(RDOD)

Extended Kalman
Filter
(FAST)

High precise orbit
(continuous)

Medium precise
orbit (at discrete

epochs)
High/medium
precise orbit
(continuous)

GPS Observation &
S/C Attitude Data

GPS Ephemeris &
Clock Data Earth Orientation

Parameters

Force models (gravity,
flux table, etc.)

Figure 3.7 Processing scheme for GPS based precise orbit determination of LEO satellites
using the GHOST toolkit.
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The GHOST orbit determination process is typically conducted in single day
(24 hour) data batches. If desired data batches of longer duration, e.g. 30 hours, can
also be processed for conducting overlap analysis or the creation of semi-continuous
orbits over an extended data arc. The toolkit works with standardized data formats,
such as the Receiver INdependent EXchange (RINEX) [Gurtner, 1994] format
for GPS observations and the SP3 format for the GPS satellite ephemerides and
the reduced dynamic output orbits. Furthermore, Earth orientation parameters,
required for the necessary reference frame transformations, can be provided in either
the IERS yearly table, or the IGS Earth rotation parameter (ERP) format. Other
required input data, such as the spacecraft attitude information used for correcting
the GPS antenna phase center offset with respects to the center of mass, has to be
put into a GHOST specific format [Helleputte, 2004].

The here presented processing scheme is fully self-contained and does not require
any external reference ephemerides for purposes other than orbit comparisons in an
effort to validate the orbit precision.

3.5.2 GPS data editing

A crucial factor of GPS based precise orbit determination is the quality of the data
used. Therefore proper methods for data screening have to be applied in order
to detect outliers and bad measurements, which are regularly encountered even in
data obtained from geodetic grade spaceborne GPS receivers. Each of the three
POD programs within the GHOST toolkit validate the GPS measurements prior to
the actual orbit determination process using a combination of different statistical
tests and simple limit checks. User configurable thresholds are, for example, used
to discard any observations taken below a certain elevation or below a minimum
SNR ratio. Also the presence of GPS satellite orbit and clock data is verified since
this is required for processing the observations.

In addition to the more simple limit checks the quality of the GPS code and
carrier-phase measurements is assessed in comparison with an a-priori reduced dy-
namic orbit, determined in the second step of the GHOST processing scheme. Dur-
ing construction of this orbit severe position outliers are also identified and removed.
At each epoch modeled geometric ranges are computed, using the GPS receiver po-
sition obtained from this a-priori orbit, which are then used in conjunction with the
observed ionosphere free pseudoranges to determine the GPS receiver clock offset
value. From the set of n ≥ 2 observations an estimate

cδtr(tj) =
1

n

n
∑

i=1

(

P i
IF,r(tj) −

(

ρi
r(tj) − cδti(tj)

)

)

(3.71)

of the receiver clock offset at the measurement epoch tj and the associated residuals

resi
r(tj) = P i

IF,r(tj) −
(

ρi
r(tj) + cδtr(tj) − cδti(tj)

)

(3.72)

are now obtained. Whenever the standard deviation of these residuals exceeds a
predefined threshold, the code observation that contributes the dominating error is
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identified and removed from the set of observations. If necessary, the process is re-
peated to reject multiple outliers at the same epoch. The GPS receiver clock offsets
determined in this way can be used as a-priori values in the orbit determination
process later on. This approach to pseudorange editing provides a safe and robust
way to identify outliers. Although the receiver position from the a-priori orbit also
exhibits an error, this is largely absorbed by the receiver clock offset. The small
remaining contribution as well as pseudorange multipath, systematic errors and
noise not absorbed can be compensated for by the size of the standard deviation
threshold.

Whereas the code observations are subject to outliers, which need to be detected,
the carrier phases have to be accurately screened for cycle slips, i.e. sudden jumps in
the carrier phase bias. Since the carrier phase biases are constant over time a sudden
jump can be detected by examining time differenced carrier phase measurements
between two consecutive measurement epochs, tj−1 and tj , in a similar process as
for the code observations. Instead of the receiver clock offset the time difference of
two consecutive clock offsets is determined. From the set of n ≥ 2 observations an
estimate

cδtr(tj−1, tj) =
1

n

n
∑

i=1

(

Li
IF,r(tj−1, tj) −

(

ρi
r(tj−1, tj) − cδti(tj−1, tj)

)

)

(3.73)

of the time differenced receiver clock offset between the measurement epochs tj and
tj−i and the associated residuals

resi
r(tj−1, tj) = Li

IF,r(tj−1, tj) −
(

ρi
r(tj−1, tj) + cδtr(tj−1, tj)

− cδti(tj−1, tj)
) (3.74)

of the time differenced carrier phase observations are determined. Again, whenever
the standard deviation of these residuals exceeds a predefined threshold, the carrier
phase observation that contributes the dominating error is assumed to have expe-
rienced a cycle slip and is removed from the set of observations. If necessary, the
process is repeated to identify multiple cycle slips. The threshold for this process
however must be set small enough in order to guarantee no undetected cycle slips.
This is possible due to the low noise level in the carrier phase data and the fact
that errors in the a-priori positions used, even as highly time correlated multipath
and systematic effects, cancel over short time spans.

Even though this data editing procedure puts an additional burden on the overall
POD process, due to the required a-priori orbit generation, practical tests with
CHAMP and GRACE GPS measurements have demonstrated this approach to be
more reliable and accurate than ’on-the-fly’ GPS data screening, such as e.g. outlier
removal from post-fit residuals of the batch LSQ, or a scheme for model validation
and adaption, as the detection, identification and adaption (DIA) method proposed
in Teunissen [1990], for use in the extended Kalman filter.
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3.6 POD results

This section contains the GPS based POD results of the CHAMP and GRACE
spacecraft for a 101-day data arc in 2003 ranging from July 9 to October 17 (cor-
responding to day of year (DOY) 190 to 290 respectively), using the kinematic and
reduced dynamic tools from the GHOST toolkit and following the processing scheme
presented earlier. The CHAMP GPS and precise attitude data for this period are
obtained from the CHAMP Information System and Data Center (ISDC) at the
GeoForschungsZentrum (GFZ). In the case of GRACE this publicly available data,
part of the so-called GRACE Level 1B products [Case et al., 2002], is obtained
from JPLs Physical Oceanography Distributed Active Archive Center (PODAAC).
In addition to the mandatory GPS measurement and S/C attitude data, other input
data required, and settings used, for the different POD programs are given in the
next subsection. This is followed by a brief presentation of some additional output
of the POD programs, the empirical accelerations and the post-fit residuals. In
an effort to validate the quality of the final orbits, several orbit comparisons have
been carried out, as well as an independent orbit validation using Satellite Laser
Ranging (SLR) data. The results of both comparisons can be found in the last two
subsections.

3.6.1 Settings and input data

Despite the fact that CHAMP and GRACE GPS measurements are provided
at nominal intervals of 10 seconds, when excluding GPS data outages, they are
processed at intervals of 30 seconds in the different POD applications. These epochs
coincide with the high rate CODE GPS satellite clock offset data (section 3.1) that
are, together with their accompanying GPS satellite orbits, used for the POD appli-
cations described here. Actually, the reduced dynamic and kinematic orbits show
a small degradation in their precision when processing GPS data at the nominal
10 second data rate, most likely caused by the additional clock interpolation error
now introduced, whilst the processing time of the different programs increases with
roughly a factor 3.

As mentioned earlier, the first step within each of the POD programs concerns
the GPS data editing, requiring the a-priori reduced dynamic orbit (PosFit). This
orbit was found to have an overall precision of 5 cm in both radial and cross-track
direction, and 15 cm in the along-track direction when compared to the reduced
dynamic POD orbits (RDOD, FAST), using the orbit comparison methodology from
section 3.6.4. Throughout all POD programs, and for all spacecraft, identical and
constant setting are applied for GPS data editing. All GPS observations taken at
elevations below 5◦ and with an SNR value of 5, corresponding to a C/N0 of about
11 dB-Hz cf. eqn. 2.40, or lower are rejected from processing. In addition to these
simple limit checks the ionosphere free pseudorange and carrier phase measurements
are subjected to the robust comparison with the a-priori reduced dynamic orbit.
The earlier discussed thresholds for the standard deviation of the ionosphere free



64 Precise orbit determination

residuals are set to values of 0.5 m for the pseudorange and 2.5 cm for the carrier
phase observations. These settings result in the average daily data editing statistics
for the CHAMP and GRACE GPS observation data used, shown in Table 3.3.

Table 3.3 Average daily data editing statistics for the CHAMP and GRACE spacecraft.
Displayed are the total number of observations and the percentages used.

Total PIF/LIF obs. Used PIF [%] Used LIF [%]

CHAMP 24317 78.8 87.1
GRACE A 24905 81.7 92.5
GRACE B 22062 87.2 93.8

The table displays the average daily number of ionosphere free pseudorange and
carrier phase observations (taken at the 30 second processing interval) over the
entire data arc, and the percentage of them that passed the data editing, which are
thus used in the subsequent POD process. As can be seen most data is edited for
CHAMP. This is a combined result of the lower GPS data quality, as discussed in
section 2.6, and the higher number of observations taken below the elevation mask
when compared to GRACE. When looking at the GRACE results it is noted that
there is a structural lower number of GPS measurements for GRACE B, which is
the result of a structural lower number of observations per epoch and is not related
to large GPS data outages. However, it was shown in section 2.6 that the multipath
and systematic errors were more or less the same for both GRACE satellites, but
that the noise left on the pseudorange and carrier phase observations, Figures 2.6
and 2.7 respectively, is lower for GRACE B, meaning that the GPS data is of
better quality here. This is also reflected is the data editing statistics, where higher
percentages of the available GPS data, especially the pseudoranges, are used for the
POD process.

In the presence of the unmodeled multipath and other systematic effects, as
well as GPS ephemerides errors, an SNR or elevation dependent weighting of the
GPS data was not found to be very suitable. Therefore, all GPS observations used
for the POD process are given a unit weight, which of course differs between the
observation types and also varies slightly for the different spacecraft. Based on the
analysis in section 2.6, and given the fact that outliers have already been taken out,
the ionosphere free measurement standard deviations used are set to the ones in
Table 3.4.

Table 3.4 Unit standard deviations for the ionosphere free GPS observation data, used
throughout all POD applications.

CHAMP GRACE A GRACE B

σPIF
[cm] 50.0 40.0 40.0

σLIF
[cm] 1.0 1.0 1.0
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Due to the higher accuracy of the carrier phase observations displayed here,
the position or orbit determination process is basically dominated by this observa-
tion type. The pseudorange observations are required to discriminate the carrier
phase bias parameters from the receiver clock offsets, and therefore only contribute
indirectly, but crucially, in the positioning. It might be recalled that during the
discussion of the kinematic and reduced dynamic batch LSQ it was mentioned that
by adding a-priori information to the carrier phase bias parameters the kinematic
positions or the satellite trajectory could be computed using solely carrier phase
observations. Although this approach has been tried here as well, and the GHOST
toolkit is able to handle this methodology, processing both ionosphere free pseudo-
range and carrier phase observations was found to provide better and more stable
results. Since an equivalent approach by Svehla and Rothacher [2005] provides high
quality orbit solutions it remains for further study to see if this methodology can
be improved in the GHOST toolkit.

Table 3.5 GPS antenna phase center offsets with respect to the center of gravity, defined
in the respective S/C body systems, for the CHAMP and GRACE satellites.

X [m] Y [m] Z [m]

CHAMP -1.4880 0.0000 -0.3928
GRACE A 0.0004 -0.0004 -0.4140
GRACE B 0.0006 -0.0008 -0.4143

No further input information is required for the kinematic batch LSQ (KIPP),
although for completeness the used GPS antenna phase center offsets to the center
of mass of the CHAMP and GRACE spacecraft still need to be given. These
offsets, expressed in the respective S/C body frames, are listed in Table 3.5. It
must also be mentioned that the positions from the a-priori reduced dynamic orbit
are used as initial position values for linearization in the kinematic batch LSQ.
Furthermore, the GPS receiver clock offsets are also initialized using the clock offset
determination results from the pseudorange data editing. Since none are treated as
a-priori information, and thus no weight is assigned to them, a free estimation is
still performed. Due to the fact that the initial values are already close to the final
positions (and clock offsets), only 1 iteration is required in the kinematic case.

For the reduced dynamic applications the dynamical models discussed in section
3.4.1 are used, which are listed in Table 3.6. Furthermore, the used reference frame
transformations from ITRF2000 (implied by the CODE GPS ephemerides) to the
EME2000 inertial frame, needed for integration of the trajectory, were already dis-
played in Table 3.2. For both the batch LSQ and the EKF the a-priori PosFit orbit
is used to obtain the initial spacecraft state. Similar to the kinematic case, the GPS
receiver clock offsets for the reduced dynamic batch LSQ (RDOD) are initialized
using the values obtained from the pseudorange data editing process. For the EKF
only the clock value on the initial state epoch requires initialization. Furthermore,
for computation of the atmospheric drag and solar radiation pressure the mass and
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Table 3.6 Overview of the dynamical models used for processing the GHOST reduced
dynamic orbits.

Item Description

Static gravity field GGM01S 100 × 100
Tidal perturbations Solid Earth tide (4 × 4, diurnal)

Polar tide (IERS/IGS)
Ocean tides (UT/CSR 3.0 + TEG2B)

3rd body gravity Analytical series expansions of luni-solar coordinates
Satellite model Canon-ball model (constant surface and mass)
Radiation pressure Solar radiation pressure (conical Earth shadow)
Atmospheric drag Jacchia 71 density model (NOAA solar flux (daily)

and geomagnetic activity (3 hourly))

surface of both the CHAMP and GRACE spacecraft are set to values of 500 kg
and 0.5 m2 respectively. The atmospheric drag and solar radiation pressure scaling
coefficients are also chosen similar for these spacecraft, 2.3 and 1.3 respectively, but
are adjusted to unique values during the estimation process. Finally, in both the
batch LSQ and EKF the empirical accelerations are all initialized to zero. For the
batch LSQ a total of 3 iterations are required to adjust the estimation parameters
to their final values, whereas the filter-smoother only processes the observation data
once in forward and backward direction.

The just discussed (uncorrelated) a-priori information is constrained with the
standard deviations displayed in Table 3.7. As can be seen in this table, the EKF
has relatively tight constraints for the initial satellite state, otherwise convergence
of the filter takes too long. This in contrast to the batch LSQ where the initial
satellite state is left relatively free, and where even looser constraint could be ap-
plied. For the batch LSQ, the amplitudes for the empirical accelerations in the 600 s
intervals are estimated as part of the orbit determination process. Here, a-priori
constraints are applied to prevent divergence. Since the tangential (along-track)
and radial component are difficult to separate due to the heavy in-plane dynamic
coupling, tighter constraints are applied in radial direction. The along-track com-
ponent should still be allowed to compensate for un- or mismodeled atmospheric
drag. A similar philosophy has been applied to the empirical accelerations in the
EKF, only here the process noise and the auto-correlation time were found to be
more important than the a-priori constraints.

The just discussed settings for the different POD programs were found to provide
the most precise orbits, and are therefore adopted for the entire data arc. The
relevant outputs of the POD programs are discussed in the following subsections.
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Table 3.7 Uncorrelated a-priori constraints and process noise used throughout the
reduced dynamic POD programs for the entire data arc. Identical values are
applied to the CHAMP and GRACE spacecraft.

RDOD FAST

A-priori standard deviation
σr [m] 100.0 1.0
σv [m/s] 100.0 1.0
σCD

[-] 1.0 0.4
σCR

[-] 0.5 0.2

σaR
[nm/s2] 5.0 10.0

σaT
[nm/s2] 30.0 40.0

σaN
[nm/s2] 10.0 20.0

σcδtr
[m] - 500.0

σbIF [m] - 10.0

Auto-correlation time/Interval size
τa(R,T,N)

[s] 600.0 600.0
τcδtr

[s] - 100.0

Process noise (steady state) σ
σaR

[nm/s2] - 2.0
σaT

[nm/s2] - 8.0
σaN

[nm/s2] - 4.0

σcδtr
[m] - 500.0

3.6.2 Empirical accelerations

Typical results of the empirical accelerations estimated in orbit determination runs
of the reduced-dynamic batch LSQ and EKF, using the just described program
settings, are depicted in Fig. 3.8 (GRACE B, DOY 230). Here, only the dominant
components in the tangential, or along-track, direction are shown. The normal
components of the empirical accelerations are typically less than 20 nm/s2 and
might be related to albedo, mismodeled solar radiation pressure effects, unmodeled
cross winds or unmodeled tidal perturbations. Due to the applied constraint in
the radial component, the empirical accelerations in this direction are always near
zero. The tangential component of the empirical acceleration for the batch LSQ in
Fig. 3.8 (top) shows a small amplitude of 30 nm/s2 during the first hours of DOY
230, followed by a peak of 120 nm/s2 and a subsequent transition to again a quasi-
periodic behavior. The observed pattern of the tangential acceleration component
mainly reflects a mismodeling of atmospheric drag in the applied dynamical model.
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Figure 3.8 Empirical accelerations of GRACE B in the tangential, aT , or along-track
direction for both the reduced dynamic batch LSQ (top) and the EKF
(bottom) for August 18, 2003 (DOY 230).

The peak value being the result of a non-modeled geomagnetic storm during that
day. When comparing the empirical accelerations estimated by the batch LSQ (top)
and the EKF (bottom), it becomes obvious that the observed phenomena are highly
correlated. However, it is noted, that the estimated amplitudes differ by a factor of
about 1.5. The origin of this discrepancy has not yet been resolved but might be
due to a coupling between empirical accelerations and other estimation parameters,
e.g. CR and CD, or simply by the different stochastic processes. It is further noted,
that care must be taken when interpreting empirical acceleration patterns. The
obtained values are highly dependent on the underlying dynamical and stochastic
models, as well as the applied filter settings.

3.6.3 Post-fit residuals

A measure for consistency of the applied models with the GPS observation data
is provided by the post-fit measurement residuals of the different POD programs.
These residuals are readily obtained from the batch LSQ methods, for which the
RMS of the ionosphere free pseudorange and carrier phase observations are shown



3.6 POD results 69

2 4 6 8 10 12 14 16 18 20 22 24
−10

−8

−6

−4

−2

0

2

4

6

8

10

L
IF

 r
e
s
id

. 
(R

D
O

D
) 

[c
m

]

2 4 6 8 10 12 14 16 18 20 22 24
−10

−8

−6

−4

−2

0

2

4

6

8

10

GPS Time [hours] since 2003/07/19 00:00

L
IF

 r
e
s
id

. 
(K

IP
P

) 
[c

m
]

Figure 3.9 Post-fit residuals of the kinematic (KIPP, bottom) and reduced-dynamic
(RDOD, top) batch LSQ orbit determination for GRACE A on July 19, 2003
(DOY 200).

in Table 3.8. The residuals were found to have a zero mean, which is expected given
the underlying stochastic model applied.

Table 3.8 RMS of the ionosphere free pseudorange and carrier phase post-fit residuals for
the entire data arc.

RMS Res. (KIPP) RMS Res. (RDOD)
PIF [cm] LIF [cm] PIF [cm] LIF [cm]

CHAMP 39.09 0.48 38.90 0.77
GRACE A 34.68 0.47 34.93 0.87
GRACE B 34.23 0.41 34.23 0.89

As can be seen the pseudorange residuals are a little higher for CHAMP than
they are for GRACE, reflecting the overall measurement quality. When looking at
the carrier phase residuals it is readily observed that in the kinematic case these
are much lower. Fig. 3.9 depicts the time series of typical carrier phase residuals
from both the kinematic and reduced-dynamic batch LSQ for GRACE A on DOY
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200. Here, it can be seen that systematic errors in the data as well as small errors
in the CODE clock offsets are left outside the estimation parameters. This even
applies to the larger errors visible around 12:00 and 14:00. Since these appeared in
the CHAMP and GRACE B residuals as well they are not the result of undetected
cycle slips, but were found to be related to a drift in the CODE GPS satellite clock
offsets, occurring on a regular basis. In the kinematic case, the larger number of
estimation parameters, as well as the absence of the dynamical constraints, cause
all errors to be largely absorbed, and the residuals here mostly show observation
noise. It must be noted that occasionally the reduced dynamic batch LSQ carrier
phase residuals slightly diverge at the end of the daily data arc. This is caused by
the long-arc integration performed within this method, making it more susceptive
to the accumulation of numerical errors, as well as the (sometimes) not so good
condition of the normal equations matrix. Additional iterations do not resolve this
problem, but when occurring it only marginally degrades the orbit precision.

Unfortunately post-fit residuals are not easily obtained for the EKF in its current
implementation. Normally, for recursive methods use can be made of the predicted
residuals to test model consistency while running. An example of this is the ear-
lier mentioned DIA procedure, described in Teunissen [1990] and implemented by
e.g. Tiberius [1998] in a kinematic recursive estimation scheme. Due to the robust
data editing procedure applied for this research, it is assumed that no model mis-
specifications, such as undetected cycle slips, remain and that large outliers in the
observation data are completely removed. As can be seen in the post-fit (reduced
dynamic) batch LSQ residuals this assumption is allowed here.

Although it must be said that slight variations in the POD program settings
result in different empirical acceleration patterns and trajectory or position esti-
mates, the post-fit residuals in general remain unaffected. Therefore they do not
disclose any information on the orbit quality. The same must also be said about
the formal (co)variances of the different estimation parameters. These values are in
general too optimistic and solely depend on the program settings and the applied
models. The two methods used for validation of the orbit results are discussed in
the following two subsections

3.6.4 Orbit comparisons

In an effort to obtain some information on the precision of the CHAMP and GRACE
orbits computed for this research they are compared to externally generated reduced
dynamic GPS based POD solutions derived using different processing methodolo-
gies. Although this is certainly not an independent validation procedure, it is one
of the most obvious tests, often used, to obtain a first indication of the overall orbit
quality. It must be noted however that the so-called reference ephemerides used for
the different comparisons are limited to a precision of, at best, several centimeters
as well.

The orbit differences between the GHOST orbits and the reference ephemerides
are computed in the radial, along-track and cross-track direction at the discrete
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epochs in case of a kinematic orbit (KIPP) and at the nominal sampling rate of
30 seconds if reduced dynamic orbits are concerned (FAST, RDOD). These individ-
ual values are grouped in a daily statistic comprising of a mean and RMS (around
zero) value in each of the directions mentioned. Statistics over multiple days are
computed from the single day values, applying proper weighting to account for dif-
ferences in the number of data points used. In practice this weighting only applies
to the kinematic orbit comparisons, since these are the only ones that have positions
at discrete epochs, which vary in number from day to day. It is furthermore noted
that all reference ephemerides used are provided in the SP3 format, and are already
defined in ITRF2000 coordinates. No additional reference frame transformations
are therefore applied.

The CHAMP reference ephemerides are provided by the Department of Earth
Observation and Satellite systems (DEOS) at the Technical University of Delft
[Van den IJssel et al., 2003]. These reduced dynamic orbits were created by process-
ing ionosphere free triple difference GPS carrier phase observations with the GEO-
DYN software package. Using the just described methodology, comparisons are
made between the kinematic and reduced dynamic GHOST orbits and the DEOS
reference ephemerides. In addition the kinematic and reduced dynamic batch LSQ
GHOST orbits are also compared with each other, which gives an indication of the
impact of the dynamic models applied. The results of this analysis are given in
Table 3.9, showing the statistics of almost the entire data arc. Here, DOY 267 is
left out of the reduced dynamic orbit comparisons (FAST-DEOS, RDOD-DEOS)
due to an extended GPS data outage of nearly 5 hours at the end of the day. This
however does not apply to the kinematic comparison since here there simply are no
positions if no observation data is available. The reduced-dynamic statistics for this
single day are given in Table 3.11 where it can be seen that when no observations
are available the orbits show large discrepancies, especially when created using the
EKF. It must be noted however that the reference ephemerides are also affected by
this outage and no longer have sub-dm precision.

Table 3.9 Mean and RMS values in radial, along-track and cross-track direction for the
CHAMP orbit comparisons of both the kinematic and the reduced-dynamic
solutions over the period 2003 DOY 190 - 290, excluding DOY 267.

Mean [cm] RMS [cm]
Radial Along- Cross- Radial Along- Cross-

track track track track

Kin. - Red.Dyn.
KIPP - DEOS -0.32 0.72 1.56 5.11 4.90 4.56
KIPP - RDOD -1.48 -0.20 1.45 4.89 3.60 4.16

Red.Dyn. - Red.Dyn.
RDOD - DEOS 1.15 0.93 0.11 2.50 3.69 2.31
FAST - DEOS 0.60 0.70 -0.31 2.58 4.49 2.46
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Table 3.10 Mean and RMS values in radial, along-track and cross-track direction for the
GRACE A and B orbit comparisons of both the kinematic and the
reduced-dynamic solutions over the period 2003 DOY 190 to 290. The external
GRACE ephemerides data is provided by JPL and TUM.

Mean [cm] RMS [cm]
Radial Along- Cross- Radial Along- Cross-

track track track track

GRACE A
Kin. - Red.Dyn.

KIPP - JPL 2.27 0.05 -3.37 4.93 4.65 4.45
KIPP - RDOD 2.78 -0.28 -5.48 4.84 3.50 6.32

Red.Dyn. - Red.Dyn.
RDOD - JPL -0.50 0.35 2.11 1.75 2.88 2.98
FAST - JPL -0.62 0.32 2.74 2.07 3.29 3.44

RDOD - TUM -0.75 -1.86 2.80 2.77 3.68 3.91
FAST - TUM -0.87 -1.89 3.45 2.96 3.99 4.43

TUM - JPL 0.25 2.21 -0.69 2.68 3.76 2.48

GRACE B
Kin. - Red.Dyn.

KIPP - JPL 3.09 -0.20 2.59 5.66 4.92 3.98
KIPP - RDOD 3.64 -0.15 1.23 5.61 3.63 3.75

Red.Dyn. - Red.Dyn.
RDOD - JPL -0.54 -0.05 1.37 1.85 2.98 2.59
FAST - JPL -0.58 -0.08 1.46 2.05 3.12 2.47

RDOD - TUM -1.63 -1.41 1.91 3.20 3.59 3.41
FAST - TUM -1.67 -1.43 2.01 3.36 3.79 3.31

TUM - JPL 1.09 1.36 -0.53 2.76 3.19 2.21

For both GRACE satellites two sets of reference ephemerides are used in the
comparison. The first one is provided by JPL and is distributed along with the
GRACE GPS data [Case et al., 2002]. These orbits are created by processing
undifferenced ionosphere free pseudorange and carrier phase data with the GIPSY-
OASIS software package. The other reference ephemerides are obtained from the
Technical University of Munich (TUM) [Svehla and Rothacher, 2005]. They are
created using the Bernese software package, by processing undifferenced ionosphere
free carrier phase observations only. It must be mentioned that both sets of reference
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ephemerides were generated using internally consistent GPS satellite orbit and clock
offset solutions.

The orbit comparisons for the GRACE satellites are carried out in full analogy
with the just described CHAMP orbit comparison, with the only difference that
two sets of reference ephemerides are used here. Again, some outliers in the orbit
comparisons were detected. For GRACE A, a GPS data outage of 6 hours was found
in DOY 222, whereas for GRACE B an extended data gap of 10 hours stretching
over DOY 239 and 240 was observed. Similar to CHAMP these days are not used in
computing the reduced dynamic statistics presented in Table 3.10. The comparison
statistic with the JPL ephemerides of these days can again be found in Table 3.11.
It must be mentioned that for the comparison with the TUM orbits even more
days had to be left out of the statistics. Due to reasons unexplained these orbits
sometimes exhibit position errors of several hundreds of meters compared to both
JPL and GHOST ephemerides.

Table 3.11 RMS values in radial, along-track and cross-track direction for the CHAMP
and GRACE reduced dynamic GHOST orbit comparisons over days with
extended data gaps.

RMS [cm]
Radial Along- Cross-

track track

CHAMP (DOY 267)
RDOD - DEOS 15.9 55.3 40.0
FAST - DEOS 35.1 249.9 10.2

GRACE A (DOY 222)
RDOD - JPL 3.0 23.1 2.7
FAST - JPL 42.4 536.4 3.3

GRACE B (DOY 239/240)
RDOD - JPL 9.7 94.1 2.7
FAST - JPL 20.1 184.3 2.9

Nevertheless, it can be seen in the results of the CHAMP and GRACE orbit
comparisons that overall the GHOST orbits are in good consistency with the ref-
erence ephemerides. It can also be observed that the largest RMS values occur
in the comparisons of the kinematic solution, which is therefore assumed to be
the least precise orbit of all. Furthermore, it is suspected that under normal cir-
cumstances the EKF (FAST) provides marginally worse results than the reduced
dynamic batch LSQ (RDOD). During GPS data outages the performance is signifi-
cantly worse (Table 3.11). It is noted however that care must be taken when further
interpreting the orbit comparison statistics. No hard conclusions can be drawn on
which ephemerides are the most accurate. The different biases, or means, and RMS
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values can have a number of reasons and can be the result of several underlying
effects, including differences in the dynamic models, GPS ephemerides data or ob-
servation modeling, reference frame transformations or GPS antenna phase center
offset displacements. Although most of the statistics show a behavioral pattern
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Figure 3.10 Cross-track mean offset for the CHAMP KIPP-RDOD comparison (top) over
the entire data arc, together with the angle between the Sun vector and the
CHAMP orbital plane (bottom) for 2003. The period corresponding to the
data arc is highlighted.

that is more or less expected, such as a large radial RMS in the kinematic compar-
ison and dominating along-track RMS values in the reduced-dynamic comparisons,
a time varying behavior could be established in the cross-track direction. Although
more dominant in some, all of the comparisons show the mean cross-track offset to
gradually vary over time. For CHAMP the mean cross-track offset of the KIPP-
RDOD comparison over the entire data arc can be found in Fig. 3.10. In addition
the angle of the CHAMP orbital plane with the sun vector, βSun, is also shown
here. The period relating to the data arc has been highlighted. An angle of ±90◦

means that the orbital plane is perpendicular to the sun vector. For GRACE A
the mean cross-track offsets for the RDOD-JPL comparisons is shown in Fig. 3.11,
together with βSun for the GRACE orbital plane. In both cases the time variation
seems to be correlated with βSun. Although clearly a longer time series needs to
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Figure 3.11 Cross-track mean offset for the GRACE B RDOD-JPL comparison (top) over
the entire data arc, together with the angle between the Sun vector and the
GRACE orbital plane (bottom) for 2003. The period corresponding to the data
arc is highlighted.

be analyzed in order to draw any hard conclusions, it is suspected that the effect is
caused by solar radiation pressure mismodeling in the reduced dynamic orbits. Ap-
parently these discrepancies are not absorbed by the empirical accelerations. The
effect seems to be most dominantly present in the GHOST reduced-dynamic orbits,
which can be explained by the fact that the solar radiation pressure modeling is
not very sophisticated (constant surface and mass) compared to e.g. JPL orbits,
where satellite box models are used. Since the orbits are still precise enough for
the purpose of a reference trajectory for relative spacecraft positioning, a possible
solution to this potential problem remains for further study.

3.6.5 SLR validation

The orbit comparisons have the disadvantage that all the orbits involved are cre-
ated using data from the same set of GPS observations. Although very unlikely,
significant flaws in the data resulting in large orbit errors might remain undetected.
An independent way for orbit validation is offered by comparing with SLR obser-
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vation data, which for this research is done using the GEODYN software package.
The SLR antenna offsets, with respect to the center of mass for the CHAMP and
GRACE S/C, used for the comparison are displayed in Table 3.12, where they are
given in the respective S/C body reference frames.

Table 3.12 SLR antenna offsets with respect to the center of gravity, defined in the
respective S/C body systems, for the CHAMP and GRACE satellites.

X [m] Y [m] Z [m]

CHAMP 0.0000 0.0000 0.2500
GRACE A -0.6000 -0.3275 0.2178
GRACE B -0.6000 -0.3275 0.2178

Typical results for the SLR comparison are depicted in Fig. 3.12 concerning the
CHAMP RDOD orbits over the entire data arc. Here, the daily mean offset and the
RMS of the SLR residuals is shown together with the number of SLR observations
used to compute the statistics. As can be seen this number heavily fluctuates from
day to day since the satellite is not always tracked by the same SLR ground stations
on a daily basis. Overall the statistics look very good. The relatively high mean
remains unexplained and is also observed for all SLR comparisons (Table 3.13)
leading to the suspicion that this is caused by the SLR modeling. In the final SLR

Table 3.13 SLR validation statistics for the different reduced-dynamic CHAMP and
GRACE orbits over the period 2003 DOY 190 - 290.

Mean [cm] RMS [cm]

CHAMP
DEOS -1.27 3.09
RDOD -1.89 3.24

GRACE A
JPL -2.59 3.46
RDOD -2.38 3.62
TUM -2.85 4.42

GRACE B
JPL -2.15 3.00
RDOD -1.35 2.81
TUM -3.05 4.17

statistics over the entire data arc, displayed in Table 3.13, the outliers have again
been excluded. For example, CHAMP DOY 267 shows an SLR RMS of 30 cm for
the RDOD and 19 cm for the DEOS orbit, pointing out that both ephemerides are
affected by GPS data outages.



3.6 POD results 77

190 200 210 220 230 240 250 260 270 280 290
−10
−8
−6
−4
−2

0
2
4
6
8

10

M
e
a
n
 [
c
m

]

Mean: −1.89cm

190 200 210 220 230 240 250 260 270 280 290
0

2

4

6

8

10

R
M

S
 [
c
m

]

RMS: 3.24cm

190 200 210 220 230 240 250 260 270 280 290
0

100

200

300

400

Day Of Year (2003)

N
u
m

b
e
r 

o
f 
S

L
R

 O
b
s
. 
[−

]

Figure 3.12 SLR comparison statistics for RDOD CHAMP ephemerides over the DOY 190 -
290, 2003 data arc. Shown are the mean offset (top) and the RMS (middle) of
the SLR fit as well as the number of data points (bottom) used to obtain the
statistics.
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3.6.6 Conclusion

Based on the results from the previous subsections it has been decided to use the
reduced dynamic batch LSQ (RDOD) orbits as reference trajectory for relative
spacecraft positioning. The kinematic positions are only provided at discrete epochs
and have shown to be the least precise of all. Although the EKF also produces good
results, this method was found to be highly susceptive to GPS data outages. Despite
an occasional numerical instability, observed in the post-fit residuals, the reduced
dynamic batch LSQ estimation method was found to be the most robust of all,
producing the highest precision orbits.



Chapter 4

Relative spacecraft positioning

Precise relative positioning between two or more GPS receivers is routinely exercised
in terrestrial applications. This often involves an entire network of receivers with
one dedicated reference station. As already mentioned in chapter 2, use is made of
differenced GPS data for relative positioning applications in order to eliminate or
reduce common data errors, such as the GPS satellite clock offset. Furthermore,
it was shown that double difference GPS carrier phase ambiguities are integers.
Once correctly resolved these integer ambiguities transform the corresponding car-
rier phase observations into highly precise relative ranges, with a noise level of only
a few mm. Exploiting this integer property is therefore commonly regarded as the
key to precise relative positioning.

From a purely kinematic perspective the problem of relative spacecraft position-
ing is almost similar to the terrestrial case of a GPS receiver on e.g. a rover that
is positioned with respect to a reference station. In both cases one of the receivers
is moving with respect to the other and so a new relative position vector has to
be estimated every epoch. The major differences are the complete absence of tro-
pospheric signal delays and the rapidly changing viewing geometry for the purely
spaceborne scenario. These differences mainly influence the total number of estima-
tion parameters, especially due to the larger number of carrier phase ambiguities,
and the observation modeling. A clear advantage of the spaceborne case is the fact
that, as seen in the previous chapter, spacecraft dynamics, and thus in a way also
the relative dynamics between two spacecraft, can be modeled to a high degree of
accuracy, whereas rover motion is, in general, unpredictable.

As already mentioned before, the previously discussed POD strategies form
the conceptual basis for the developed relative positioning processing techniques.
Therefore, in accordance, a kinematic and reduced dynamic batch least-squares
estimator and an extended Kalman filter have been implemented and tested. In ad-
dition, a sequential kinematic filter, not based on any previously discussed scheme,
has also been proposed. All strategies are based on processing differenced GPS
data, and estimate the relative position between two spacecraft directly. This re-
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quires amongst others accurate a-priori knowledge of one of the spacecraft, serving
as the reference. It was already mentioned in chapter 3 that the reduced dynamic
batch LSQ orbits are used for this purpose. The clear advantage of such an ap-
proach is that for multi-satellite formations each of spacecraft relative positions
can be dealt with independently of the others, where one spacecraft serves as a
dedicated reference. Out of the four proposed processing schemes both batch es-
timators and the sequential kinematic filter were found to have some limitations
for use in real-world applications, due to the way they are currently implemented.
These limitations are mostly related to problems with integer ambiguity resolution.
The extended Kalman filter on the other hand has proven to be very adequate and
robust for relative spacecraft positioning and is therefore described in full detail
later on (section 4.3).

Due to the great importance of correctly resolving the integer DD ambiguities
for relative positioning applications, the chapter starts with a description of the
integer ambiguity resolution scheme applied throughout this research. This is fol-
lowed by a discussion of the proposed processing strategies, especially focussing on
the sequential kinematic filter and the two batch LSQ processing techniques, all in-
vestigated for GPS based spacecraft relative positioning, and why, in their current
implementation, they were found to be inadequate for practical use in real-world
applications. A thorough presentation of the extended Kalman filter is given there-
after. The chapter concludes with the test and validation results of the proposed
EKF scheme using real-world data from the GRACE mission.

4.1 Integer ambiguity resolution

Over the past decades several strategies for resolving the integer double difference
carrier phase ambiguities have been developed and implemented, some of course
more successful than others. In addition to the required estimation of the integer
carrier phase ambiguities, successful strategies also comprise a validation scheme
of the obtained integer values. After validation, the integers, that are assumed to
be the correct ones, have to be incorporated in the different processing techniques
in order to obtain better estimates for the relative position solution. This section
gives an overview of how integer ambiguity estimation and validation are dealt with
in this research.

4.1.1 Integer ambiguity estimation

The first step in integer ambiguity resolution is the estimation of the integer DD
carrier phase ambiguities. For this, the linear DD positioning model from section
2.5.2 is written in the general form

z − h(X0,A0) =

(

∂h

∂X0

)

∆X +

(

∂h

∂A0

)

∆A, (4.1)



4.1 Integer ambiguity resolution 81

which is suitable for use in a LSQ adjustment, either a recursive or batch method.
Here, the relative position(s), or dynamic baseline parameters, as well as the DD
ionospheric path delays are captured in vector X. The vector A holds the DD carrier
phase ambiguities on each of the individual transmitting frequencies, expressed in
units of cycles. The classical linear estimation methods however, can only be applied
to models with real-valued parameters and cannot directly take the integer nature of
the DD carrier phase ambiguities into account. Therefore estimation of the integer
values is done in a separate step, after the real-valued, also referred to as the float,
solution has been obtained. The float solution of the dual frequency DD carrier
phase ambiguities and the accompanying covariance matrix, QA, both expressed in
units of cycles, is given as

A =

(

AL1

AL2

)

; QA =

(

QAL1
AL1

QAL1
AL2

QAL2
AL1

QAL2
AL2

)

. (4.2)

In general, the dual frequency ambiguities are highly correlated amongst each other,
and the covariance matrix is therefore fully populated. From this float solution
there are three commonly accepted ways of estimating an integer solution, namely
by integer rounding, by integer bootstrapping or by means of integer least-squares
(ILS). The exact details of each of these integer estimation methods can be found
in appendix A, where their specific working is further illustrated using a numerical
example.

The integer rounding estimator (section A.1), as the name suggests, simply
rounds the float solution to the nearest integer values and hereby obtains the vector
NR of integer rounded (subscript ’R’) ambiguities. Correlations between the DD
ambiguities are completely ignored in this way. Integer bootstrapping (section A.2),
also known as sequential or conditional rounding, takes some of the correlations
between the DD ambiguities into account and therefore requires the covariance
matrix of the real-valued DD ambiguities as well. First, the most precise ambiguity,
based on the conditional variances derived from the covariance matrix (eqn. A.8), is
rounded to the nearest integer value. This is followed by the subsequent rounding
of the second most precise ambiguity, taking the correlation with the previously
integer rounded ambiguity into account. This scheme, expressed in eqn. A.6, is
repeated until the complete vector of integer bootstrapped DD ambiguities NBS is
obtained. Full correlation between all DD ambiguities is only accounted for in the
ILS estimation method (section A.3). The vector of integer DD ambiguities obtained
using ILS, NLS , is the one where the squared norm of the ambiguity residuals in the
metric of the covariance, (A − NLS)T Q−1

A (A − NLS), is the smallest. In contrast
to the integer rounded and bootstrapped solutions, the ILS solution cannot be
readily ’computed’, but is the result of a, sometimes time-consuming, search process,
illustrated in section A.3. However, it was shown earlier in Teunissen [1998] and
Teunissen [1999] that the probability, or success rate, of actually having obtained
the correct integer solution, N, for the DD ambiguities is always higher or equal
for ILS than for integer bootstrapping, which in turn has a higher or equal success
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rate than integer rounding, i.e.

P (NLS = N) ≥ P (NBS = N) ≥ P (NR = N). (4.3)

Therefore, for this research use is made of ILS to perform the estimation of the
integer DD carrier phase ambiguities. More specifically, the well known Least-
Squares Ambiguity Decorrelation Adjustment (LAMBDA) method (see Teunissen
[1995] or section A.4) has been implemented and used. The LAMBDA method is in
fact nothing more than an optimized form of the ILS procedure outlined in section
A.3. Its efficiency comes from an additional decorrelation step prior to the search
for the integer solution yielding the smallest squared norm. The integer solution
obtained from the LAMBDA method and the standard ILS procedure are the same.
The only difference between both methods is the search time needed to arrive at it,
which is usually significantly smaller in case of the LAMBDA method. In addition
to the integer solution yielding the smallest norm, also referred to as the ’best’
solution NB , the LAMBDA method, in its current implementation, also returns
the solution with the one-but-smallest norm, also referred to as the ’second best’
solution NS , and the vector of conditional variances of the decorrelated ambiguities,
σn|N ,

(

A,QA

) LAMBDA−−−−−−−→
(

NB ,NS , σn|N

)

, (4.4)

all resulting from the real-valued or float solution. Of course the best solution is the
one that is used in relative positioning applications. The second best solution and
the conditional variances are given out for integer ambiguity validation purposes as
described in the next subsection.

In many practical applications however ambiguity estimation is performed in
a different way as for this research. For example, two well established software
packages mentioned earlier, GIPSY-OASIS and Bernese, are also able to resolve
the integer DD carrier phase ambiguities, but separately estimate the wide-lane
and narrow-lane combinations (eqn. 2.20). In such a scheme, pseudorange obser-
vations are only required for resolving the wide-lane DD ambiguities, which could
be, and is often, accomplished by simply using the DD Melbourne-Wübbena (eqn.
2.21) combination. Once resolved, the integer DD wide-lane ambiguities that are
assumed to be correct are subsequently used in combination with a DD position-
ing model constructed of solely ionosphere free carrier phase observations to obtain
integer estimates for the DD narrow-lane ambiguities. The advantage of such an
approach is that the wide-lane ambiguities are in general easy to resolve due to
their long wavelength and the pseudorange noise, and systematic error, reduction
of this combination. The harder to resolve narrow-lane ambiguities are now only
subject to the smaller carrier phase errors and noise. The drawback is that inter-
mediate constraints are put onto the ambiguities since the ’fixed’ integer wide-lane
ambiguities are used to resolve the narrow lane. Incorrectly resolved DD wide lane
ambiguities can seriously influence the subsequent narrow-lane ambiguity estima-
tion process in a negative way. If a combined estimate of the dual frequency integer
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DD ambiguities is made, as is the case in this research, they are basically left free
and the correlations between the individual ambiguities are fully incorporated and
exploited when using an ILS estimation scheme. However, it depends on the number
of integer ambiguities that need to be estimated if using such a scheme is feasible
in practice. Both GIPSY-OASIS and Bernese are often used to resolve thousands
of integer DD ambiguities simultaneously, and on a daily basis, for entire (IGS)
ground station networks. An ILS search procedure would in most cases be too
time consuming, even when applied to the wide-lane and narrow-lane models, given
that there is a covariance matrix available. Therefore integer rounding and boot-
strapping approaches are often used, due to the fact that here the solution can be
directly computed. Under such conditions, resolving the wide-lane and narrow-lane
combinations separately is often the best that can be accomplished.

4.1.2 Integer ambiguity validation

Before using the obtained integer DD ambiguity estimates, NB , in any positioning
model, a validation process should determine the likeliness of the estimates being
correct. The reason for this is that erroneous integer values can seriously degrade the
relative position solution instead of strengthening it. Therefore, for this research,
a more conservative validation procedure is preferred, certainly for the sequential
processing schemes where erroneous integer estimates can cause divergence of the
filter solution. The proposed validation procedure for this research consists of a
number of tests, which were calibrated primarily, and were found to work satisfying,
for the EKF processing technique presented later on in section 4.3. Only few of
these tests have some theoretical justification, others were derived from practical
tests using the GRACE data and are therefore more or less custom tailored for
the application at hand. Although the validation scheme was developed specifically
for the EKF it is also applied to the other processing methodologies, where it was
not always found to work satisfyingly, or at all. Nevertheless, the entire scheme is
described here in detail, explaining the rationale behind the individual tests selected.

A very important measure for the quality of the obtained best integer solution
is the probability or success rate of actually having estimated the correct integer
ambiguities, N. For the ILS class of estimation methods, computation of this
probability is very complicated [Verhagen, 2004a]. However, a lower boundary for
the bootstrapping success rate, that can be swiftly computed, is given in eqn. B.4.
Using this success rate together with eqn. 4.3, it follows that

P (NB = N) ≥
n
∏

i=1

(

1 − e
− 1

2 ( 1
2σi|I

)2
)

1
2

(4.5)

serves as a lower boundary for the LAMBDA, or ILS, success rate. In principle,
the integer solution should only be trusted if the success rate is high enough. As
can be seen the lower boundary is solely computed using the conditional variances
that are returned by the LAMBDA method and are obtained from the decorrelated
covariance matrix of the real-valued ambiguity solution. The success rate therefore
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solely depends on the applied model, and does not take any unmodeled effects,
such as pseudorange multipath, into account. Furthermore, the success rate de-
creases when the number of simultaneously estimated ambiguities increases. Since
the estimation of subsets of DD ambiguities, also referred to as partial fixing as
described in Teunissen et al. [1999], is not considered for this research, the value of
the success rate in practice is limited to the sequential processing strategies. Here
it serves as an initial indication to see if enough data has been accumulated to make
a reliable integer estimate at all, prior to further validation tests that involve the
integer ambiguity estimates themselves.

A good overview of various testing procedures that were proposed for practical
use in the past can be found in Verhagen [2004b]. In this study various tests were
compared to one another in an effort to arrive at a conclusion which one performed
best under all circumstances. Unfortunately, it was found that such a conclusion
could not be drawn. However, a preference for certain tests over others was given,
based on the probability of correct acceptance of the integer solution. Therefore,
in accordance with this previous study the most promising testing procedure has
been used, consisting of a so-called integer test and a discrimination test. It must be
mentioned that both tests assume that the integer DD ambiguities are deterministic,
which in reality is not the case. In fact they are stochastic parameters, with a
(discrete) distribution as e.g. depicted in Fig. 4.1 obtained from Joosten and
Tiberius [2000], which is created by sampling (1800 samples to be exact). Here,
the distribution of a DD ambiguity as real-valued (float, continuous distribution)
and integer (fixed, discrete distribution) parameter is shown for a low success rate
(left), where the stochastic nature cannot be neglected, and for a high success rate
(right) where enough probability mass is located at the correct ambiguity (4 in this
case) to assume a deterministic value. Both tests should therefore only be executed
if the success rate is high enough.

The so-called integer test evaluates the squared norm of the ambiguity residuals
of the best solution in the metric of the covariance,

RB = (A − NB)T Q−1
A (A − NB), (4.6)

which, if divided by the number of ambiguities n or in this case the degrees of
freedom, is distributed as F (n,∞) when using the fact that the ambiguities are
treated as deterministic. More specifically, the test reads

RB

n
< Fα(n,∞) = kα, (4.7)

where α is the level of significance of the test and kα the critical value obtained
from the F -distribution. The rationale behind this test is that one would not have
much confidence in the integer estimates if the distance to the float solution is large
[Verhagen, 2004b]. Unfortunately, this test says nothing about the likelihood of the
best solution compared to another integer solution. It can be that there is another
integer solution for which the test is passed as well, although it is known that the
likelihood of the best solution obtained from LAMBDA is higher than any other
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Figure 4.1 Distribution of a double difference ambiguity as real-valued (float) and
accompanying integer (fixed) solution (Source: [Joosten and Tiberius, 2000]).
In the left figure the probability mass for the correct value (4) is still low, in the
right figure this might already be high enough to neglect the stochastic nature
of the ambiguity.

integer solution. However, if the likelihood of the best solution is not significantly
larger as the one associated with another integer solution, both solutions cannot
be discriminated with enough confidence [Verhagen, 2004b]. Therefore the ratio of
the squared norms of the ambiguity residuals in the metric of the covariance for the
best and second best integer solution, as obtained from LAMBDA, is examined,

RS

RB
> kS/B, (4.8)

where RS is constructed in the analogy of eqn. 4.6. If this test is passed for
the second best solution it will pass for any other integer vector, since its squared
norm will always be larger (see section A.3 or A.4). In practice the problem is
setting the critical value kS/B, which is often accomplished using empirical results.
Several literature sources however make suggestions, but these heavily depend on
the underlying model used. In Leick [1994] it is mentioned that many software
packages use a critical value of 3, which was also found to work adequately for the
EKF scheme in this research.

Although the just discussed validation scheme should be conclusive, practical
tests with the EKF using the GRACE data have shown that sometimes an integer
solution (vector) was accepted where one of the individual integer ambiguity pairs
was incorrect. Aside from the fact that this resulted in erroneous relative position
estimates, the incorrectly resolved integers sometimes also lead to divergence of the
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filter solution, due to the specific way they are handled here. A solution to this has
been provided by extending the current validation scheme with two additional tests,
screening favorable combinations of the individual ambiguity residuals, namely the
wide-lane and the ionosphere free one. These residuals are constructed on ambiguity
level using the transformation matrices

TWL =
(

1, −1
)

; TIF =
(

77 · 1, −60 · 1
)

. (4.9)

for the wide-lane and ionosphere free ambiguities respectively, in which 1 is the
identity matrix. The real-valued and integer DD wide-lane ambiguities are now
constructed as

AWL = TWLA; NBWL
= TWLNB , (4.10)

and in a similar way the ionosphere free ones are obtained. The absolute values of
the individual ambiguity residuals of the wide-lane,

|AWL − NBWL
| < kWL, (4.11)

and ionosphere free,

|AIF − NBIF
| <

kIF

λIF
, (4.12)

combination can now be assessed, where the critical values kWL and kIF may not
be exceeded. Here, kWL is expressed in cycles and kIF in units of meters. The
ionosphere free wavelength, λIF, in this last test is given as λIF = 0.0063 m.

Although these last two tests, as well as their critical values, were completely
derived by empirical results from the EKF when testing on the GRACE data, some
rationale behind them can still be given. It must be mentioned that care should be
taken when simply applying them to different applications or processing method-
ologies, since they are more or less custom tailored for the application at hand. It
was already shown by Teunissen [1997] that the wide-lane combination has a decor-
relating property. Although correlations between the wide-lane ambiguity residuals
still exist, they are reduced. Individual screening of the residuals could therefore be
allowed. This can however not be said for the ionosphere free residuals. Correlations
here are typically high. However, the functional model of the DD ionosphere free
carrier phase observation only consists of the relative position and the ionosphere
free DD carrier phase ambiguity. Over time this ambiguity combination will there-
fore become very well determined. It is thus unlikely that the real-valued and the
integer solution of this combination, and thus the corresponding ambiguity residual,
are far from each other.

How the integer estimates, that are assumed to be correct, are incorporated or
handled by the different processing techniques is described in the following section.
Most important is the assumption that integer ambiguities that are assumed to
be correctly resolved have no uncertainty left in them, i.e. σN = 0, and are thus
treated as deterministic.
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4.2 Proposed processing strategies

As mentioned earlier, a total of four possible processing strategies were identified for
GPS based relative spacecraft positioning. In accordance with the POD techniques
discussed in chapter 3, a kinematic and reduced dynamic batch LSQ estimator
and an extended Kalman filter, all processing single difference dual frequency GPS
pseudorange and carrier phase observations, were implemented and tested. In ad-
dition, a sequential kinematic filter, using the more traditional double difference
parametrization, has also been proposed.

When handled appropriately, meaning that all correlations are correctly ac-
counted for, a SD and DD parametrization of the relative positioning model will
yield the exact same results. This has amongst others been verified by practical
tests carried out for this research. However, a SD formulation was found to have
several implementation benefits over a DD one. First of all, the SD GPS observa-
tions already have the benefit of eliminating or reducing common errors in the data,
such as the GPS satellite clock offset and ephemerides errors, whilst still remaining
uncorrelated. This results in a less complex data handling, which is otherwise an
additional burden, especially for the batch LSQ estimation methods. Second, a DD
parametrization in a recursive or sequential estimation scheme requires a continu-
ous re-ordering of some of the estimation parameters in the model, namely the DD
ionospheric path delays and carrier phase ambiguities. This is due to the change in
reference GPS satellite, required to construct the DD GPS observations, over time.
Finally, and perhaps most important, despite a SD formulation, it is still possible
to estimate and exploit the integer nature of DD carrier phase ambiguities.

Furthermore, when closely comparing the UD and SD observation models (eqn.
2.14 and 2.29 respectively), as well as the linearized form for use in positioning,
it can be seen that the overall parametrization is basically identical. The only
difference is the fact that the SD model uses ’relative’ parameters whereas the
UD model uses the ’absolute’ ones. This means that the (ionosphere free) SD
relative positioning models can be solved for in the exact same way as their POD
’equivalents’ from chapter 3. The fact that dual frequency SD GPS data is used,
in order to preserve the integer nature of the carrier phase ambiguities, introduces
some additional estimation parameters (the SD ionospheric path delays and the
dual frequency SD carrier phase ambiguities), but still does not change the general
way the models can be solved.

The a-priori choice of the most appropriate processing methodology is not trivial.
Each of the proposed strategies has its own advantages and disadvantages. This
especially applies to the problem of integer ambiguity resolution and handling where
a clear difference between the recursive, or sequential, and batch LSQ strategies
exists. The sequential or recursive strategies have the advantage of being able to
estimate and incorporate the integer DD ambiguities ’on-the-fly’, where they will
directly strengthen the relative position solution and also aid in the resolution of new
integer ambiguities as they appear over time. A drawback of such a scheme is that
an incorrectly resolved integer ambiguity can, besides the fact that it most likely
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degrades the relative position solution accuracy, lead to the incorrect resolution of
other integers as well, and hereby cause divergence of the filter solution. The batch
LSQ estimation methods on the other hand first accumulate all available GPS
observation data prior to making the integer estimate. Any incorrectly resolved
integers are mostly a ’local’ problem, meaning that they only influence the relative
position solution on the epochs they relate to, and perhaps cause a few neighboring
ambiguities to be incorrectly estimated as well. In general the effect lasts for 1
to 2 orbital revolutions of the spacecraft (Fig. 4.2 on page 91) and does not lead
to complete divergence of the solution, that is if an ILS estimation procedure is
used. The disadvantage is the large number of integer ambiguities that have to
be estimated simultaneously. This certainly applies if an ILS estimation method is
used, where the search time for the best solution can sometimes be excessively long.

Another choice to be made is the one between a kinematic or a reduced dynamic
processing strategy. Despite the fact that for POD a purely kinematic methodology
has shown to be less precise, there are two good reasons for still considering it
for relative spacecraft positioning. The first one is the fact that once the integer
DD carrier phase ambiguities are correctly resolved the accompanying carrier phase
observations are transformed into highly precise relative ranges. A simple kinematic
single point positioning (SPP) process using this data type (cf. eqn. 4.45 on page
103) might already be precise enough for the application at hand. The second reason
is that no a-priori knowledge about the relative motion between both spacecraft is
required, which simplifies matters. The reduced dynamic processing strategies on
the other hand somehow have to incorporate this additional complexity. Although
the earlier mentioned Clohessy-Wiltshire equations [Clohessy and Wiltshire, 1960],
also known as the Hill equations, provide a first order framework describing the
motion between two spacecraft, they are not accurate enough for application to a
problem of this nature ( [Highsmith and Axelrad, 2002]; [Leung and Montenbruck,
2005]). In fact, as far as is known, there are no direct models available at all
that describe the relative spacecraft dynamics up to the required accuracy. This
problem thus has to be coped with by obtaining the ’pseudo’ relative spacecraft
dynamics from the dynamical models of the individual spacecraft, hence pseudo.
Similar to the POD case, the deterministic part of the relative dynamical modeling
is supplemented with stochastic empirical accelerations, but this time the relative
ones, in order to capture any modeling deficiencies.

Out of the total of four proposed processing schemes, both batch LSQ estimators
and the sequential kinematic filter were found to have some serious limitations for
practical use in their current implementation. This section therefore only presents a
brief overview of the fundamentals of each of these methods and provides reasoning
why they were found to be inadequate for the time being. The section concludes
with an introduction of the extended Kalman filter, which was found to be very
adequate and robust for relative spacecraft positioning in real-world applications
(GRACE). A detailed description of this processing strategy is then provided in the
next section, 4.3.
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4.2.1 Sequential kinematic filter

The sequential kinematic filter was developed and initially tested using data from
hardware-in-the-loop simulations, and is accurately described in Kroes and Mon-
tenbruck [2004]. This real time kinematic (RTK) type of approach uses double dif-
ference dual frequency GPS pseudorange and carrier phase data, which is processed
on an epoch-to-epoch basis in a local LSQ adjustment (SPP process). In this way
an estimate for both the relative spacecraft position as well as the DD carrier phase
ambiguities (and the DD ionospheric path delays) is obtained on each epoch. The
DD ambiguity estimates and their covariance are subsequently used as a-priori infor-
mation for the next epoch, where their estimate is refined. This process is repeated
until enough information is gathered over time to make a reliable integer estimate
of the DD ambiguities using the LAMBDA method. After validation, the (assumed
to be) correctly resolved integer ambiguities are treated as deterministic values and
are kept constant. These integer DD ambiguities are now used by the filter as a-
priori information instead of their float values, resulting in better estimates for both
the relative position and the not yet resolved ambiguities. In this way the already
resolved integers will automatically aid in resolution of new DD ambiguity pairs
that appear over time.

The clear advantages of this kinematic scheme, as already lined out in the in-
troduction of this section, are the relative simplicity and the fact that already
resolved integer ambiguities aid in the resolution of new ones, resulting in a faster
and (hopefully) more reliable resolution of these new integers. As also pointed out
in the introduction to this section, the fact that a double difference formulation
is used puts an additional burden on the data handling and filter parametrization
since the reference GPS satellite, required to construct the DD observations and fil-
ter parameters, changes over time. Since only the parameters for the GPS satellites
observed at a certain epoch are considered, which results in a small scale filter, this
additional burden can be coped with.

As discussed in Kroes and Montenbruck [2004] the filter was found to work very
adequately for several 2-hour hardware-in-the-loop scenarios, using two NovAtel
OEM4-G2 GPS receivers. Due to the fact that a precise stochastic model was
used for the GPS observation data ( [Kroes and Montenbruck, 2004]; [Montenbruck,
2003]), the only integer validation test used for the HWIL simulations was the
success rate. For two LEO scenarios, with a spacecraft separation of respectively
10 km and 110 km a 3-dimensional relative position accuracy (RMS) of 3.0 mm and
5.0 mm was found when resolving and incorporating the integer DD carrier phase
ambiguities. No irregularities were encountered at all.

Unfortunately tests with real-world data from the GRACE mission were not so
successful. Although the method proved to work fine over selected data arcs of
6-8 hours, leading to similar precision results as depicted in Fig. 4.13 on page 120,
it was found to have a severe shortcoming. Despite the ambiguity validation scheme
applied, none of the 24-hour arcs tested could be processed without one or more
incorrectly resolved integer ambiguities that got incorporated at a certain moment.
As already stated earlier, this did not only result in erroneous relative position
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estimates, but also in the incorrect resolution of new DD ambiguities, which, in
all cases, was found to lead to divergence of the filter solution. These incorrectly
resolved ambiguities were not detected by the underlying SPP process based on
integer ambiguity corrected carrier phase data only (in essence similar to the one
from eqn. 4.45), indicating that they locally ’fit’ the data very well. The resulting
divergences, or the incorrectly resolved ambiguities causing them, were thus not
always (instantaneously) detected. As a result, the filter could not be restarted
from the epoch an incorrectly resolved ambiguity got allocated, since this point
could not always be determined. The filter was simply found to lack the required
robustness for the real-world application at hand.

4.2.2 Kinematic batch LSQ

The kinematic batch LSQ for relative spacecraft positioning accumulates, similar
to its POD equivalent described in section 3.3, all available GPS observation data
over a selected data arc. All SD observations are, according to the linearized dual
frequency SD positioning model from section 2.5.1, parameterized with the rela-
tive position between the antenna phase centers of both GPS receivers, the relative
GPS receiver clock offset and a SD ionospheric path delay. For n mutually ob-
served GPS satellites on epoch ti, a total of 4 + n time dependent parameters,
xAB,i = (x, y, z, cδt, I1, . . . , In)AB,i, have to be estimated. In addition, the carrier
phase observations are also parameterized with the time constant SD ambiguity
parameters, A1AB and A2AB , on each of the transmitting frequencies. For a total
of nX measurement epochs and nB phase connected SD passes this results in the
following vector for the time dependent estimation parameters

XAB =
(

xAB,0; · · · ;xAB,i; · · · ;xAB,nX−1

)

, (4.13)

and the SD carrier phase ambiguities on the individual frequencies

AAB =
(

A1
1AB ; · · · ;AnB−1

1AB ;A1
2AB ; · · · ;AnB−1

2AB

)

, (4.14)

which respectively replace the vectors in eqn. 3.6 and 3.7 of the kinematic POD
model. The accompanying vectors with the partials also change in accordance to the
SD positioning model. For the SD ionospheric path delays the partials respectively
become 1, f2

1 /f2
2 , −1 and −f2

1 /f2
2 for the P1, P2, L1 and L2 SD observation. These

partials are of course only set for the ionospheric path delay corresponding to the
current SD observation. In addition, the carrier phase ambiguities are expressed
in units of cycles, meaning that the partial accompanying the carrier phase bias
on L1 becomes λ1 and the one on L2 becomes λ2. It can be seen however that
despite the larger dimension of the estimation parameter vectors, the model is still
partitioned in the same way as the POD variant, and can thus also be solved by first
obtaining the updates for the SD carrier phase ambiguities that are subsequently
back-substituted to obtain the updates for the other estimation parameters.

After having obtained the estimates for the SD ambiguities, they are transformed
to DD float estimates together with the accompanying covariance matrix. This is
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accomplished by means of a linear transformation, similar to eqn. 2.36, using one
of the SD ambiguity pairs, (Aj

1AB , Aj
2AB), as a reference. The obtained real-valued

DD ambiguities are then processed by the integer ambiguity resolution scheme,
described in section 4.1, to obtain the vector of integer DD ambiguities. These are
subsequently used to create a relative position estimate on an epoch-to-epoch basis
using only ionosphere free SD carrier phase data corrected for the just found integer
DD ambiguity offsets (cf. the SPP principle from eqn. 4.45). This also allows for
some additional validation since incorrectly resolved ambiguities might be detected,
after which the corresponding measurement can be removed from the SPP process.

The just described kinematic batch LSQ method has been tested using several
24-hour data arcs from the GRACE mission. The SD GPS data was processed at the
10 second interval in which it is provided. Furthermore, in order to guarantee proper
real-valued DD ambiguity estimates, only SD phase connected passes containing at
least 60 epochs of good quality SD pseudorange observations were taken into the
model. For the 24-hour data arcs tested, 2003 DOY 210-215, this still corresponded
to between 330 and 350 SD passes, and consequently between 658 and 698 DD
ambiguities that had to be estimated simultaneously. This is where the first problem
arose. For none of these days was the LAMBDA method able to provide a solution
within 12 hours search time (actual CPU time on a Pentium 4, 2.4 GHz), after
this the search was aborted. When using the kinematic batch LSQ over smaller
time intervals, e.g. 6 hours, where more or less 160 DD ambiguities are searched
for simultaneously, the search time varied between less than 1 second, to again
more than 12 hours. For a practical application the search times were simply
experienced to be too long and too unpredictable. This is the main reason why the
kinematic batch LSQ was found to be inadequate for practical use in its current
implementation.

A second problem that became apparent was that if a vector of integer estimates
was returned (within a reasonable time) the ambiguity validation procedure outlined
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in section 4.1.2 was not found to be applicable at all. It would always reject over
90% of the estimated values, even if they were found to provide high precision
position estimates when compared to the GRACE KBR observations. In e.g. Fig.
4.2 the GRACE relative position fit with the KBR is shown for 2003, DOY 213. As
can be seen the kinematic batch LSQ was used over the 06-18 h time interval. The
integer vector of 336 DD ambiguities was found in slightly over 20 minutes, and
contains a few incorrectly estimated values. This is visible in the relative position
estimates between 10:00 and 11:30 and around 16:15. These were also not detected
by the SPP process, indicating that they ’fit’ the data. Important is the fact that
these incorrectly resolved integers, as explained earlier, affect the solution only
over 1 to 2 orbital revolutions. They are thus more a ’local’ problem, and do not
cause divergence of the relative position solution as experienced with the sequential
kinematic filter.

It must be mentioned that it is not claimed that a kinematic batch LSQ would
not work at all. On the contrary. A study by Svehla and Rothacher [2004a] presents
ambiguity fixed kinematic GRACE relative positioning results of similar precision
as depicted in Fig. 4.13. For this a kinematic batch LSQ estimation method
implemented in the Bernese software was used. The major difference with the
kinematic batch LSQ of this research is the ambiguity estimation scheme applied,
briefly mentioned in section 4.1.1, based on integer rounding/bootstrapping of the
DD wide-lane and narrow-lane ambiguities, as well as another type of ambiguity
validation procedure [Hugentobler et al., 2001].

4.2.3 Reduced dynamic batch LSQ

From all tested POD concepts, the reduced dynamic batch LSQ has shown to
provide the most precise and smoothest orbits. Despite the LAMBDA search time
problems encountered in the kinematic batch LSQ, the reduced dynamic equivalent
for relative spacecraft positioning has therefore still been investigated. In order
to see if the (pseudo) relative dynamics can be properly modeled, it has first been
tested on ionosphere free SD GPS data. The parametrization of the SD observations
in this case is basically identical to the POD variant from section 3.4.3, with the only
difference that ’relative’ parameters are used instead of the ’absolute’ ones. The
GPS receiver clock offsets in eqn. 3.35 are replaced with the epoch wise relative
receiver clock offsets, captured in TAB , eqn. 3.37 is replaced with the SD ionosphere
free carrier phase biases, captured in BAB , and finally the dynamic spacecraft
parameters from eqn. 3.36 are replaced with the dynamic baseline parameters

YAB =
(

yAB(t0);pAB

)

=
(

(rAB(t0);vAB(t0)); (CDAB
;CRAB

;aAB,(0); . . . ;aAB,(na−1)

)

.
(4.15)

As can be seen this vector comprises the initial relative spacecraft state as well as
the relative force model parameters. The relation with the individual spacecraft
dynamic parameters is given by YB = YA + YAB .
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Due to the selected parametrization a direct integration of the relative spacecraft
state, yAB = yB − yA, has been facilitated. For this the first order differential
equation for the relative state (cf. eqn. 3.21) is defined as

d

dt
yAB(t) =

(

vAB(t)
aB(t, rB ,vB ,pB) − aA(t, rA,vA,pA)

)

. (4.16)

Here it can be seen that the relative spacecraft acceleration still has to be obtained
from the individual dynamical force models. To this extent the dynamic parameters
of the reference trajectory, S/C A in this case, so YA, are loaded a-priori and are
propagated together with the dynamic baseline parameters using the same numer-
ical integration method (DE, [Shampine and Gordon, 1975]) as for the POD case.
Whenever the individual accelerations have to be evaluated, the dynamic parame-
ters for S/C B are obtained by the earlier given relation YB = YA + YAB . It
is noted that only the the dynamic baseline parameters are being estimated. The
dynamic parameters for the a-priori reference trajectory of S/C A are kept fixed to
their initial values.

When constructing the normal equations of the batch LSQ the partials with re-
spect to the dynamic baseline parameters are required. These on their turn require
the knowledge of the relative state transition and sensitivity matrix, ΦAB(t, t0) and
SAB(t), which for the individual spacecraft are obtained from integration of the vari-
ational equations (section 3.4.1). In order to arrive at an expression for the relative
case, the state transition matrix from eqn. 3.22 for both S/C are first expressed as
∂yA(t) = ΦA(t, t0) ∂yA(t0) and ∂yB(t) = ΦB(t, t0) ∂yB(t0). By now subtracting
both expressions, ∂yB(t)− ∂yA(t) = ΦB(t, t0) ∂yB(t0)−ΦA(t, t0) ∂yA(t0), and by
substituting ∂yAB = ∂yB − ∂yA, it follows that

∂yAB(t) = ΦB(t, t0) ∂yAB(t0) −
(

ΦA(t, t0) − ΦB(t, t0)
)

∂yA(t0). (4.17)

When using the fact that the trajectory of the reference spacecraft, S/C A, is given
a-priori, and it’s initial state vector yA(t0) is thus kept fixed, i.e ∂yA(t0) = 0, it
can be seen that the relative state transition matrix is equal to the one of S/C B,

ΦAB(t, t0) = ΦB(t, t0). (4.18)

In a similar way it can shown that the relative sensitivity matrix equals the one of
S/C B as well,

SAB(t) = SB(t). (4.19)

Both expressions are more or less in analogy with eqn. 2.33, where the relative posi-
tion partials also solely depend on S/C B, when the position of S/C A is kept fixed.
This also means that if the orbit of S/C A would be estimated simultaneously, a
correlation is introduced. The resulting normal equations have the identical struc-
ture as for the POD case and can be solved in exactly the same way as described
in section 3.4.3.



94 Relative spacecraft positioning

The just discussed reduced dynamic batch LSQ has been tested over several
time intervals (daily and sub-daily) with GRACE SD ionosphere free GPS data.
Unfortunately, another problem became apparent. In no single test case did the
resulting baseline solution fully converge, even after many iterations (up to 10 has
been tested). The 24-hour (daily) solutions even started to diverge after several
hours (10-12) into the integration. Divergence is these last cases could only be
partly resolved by performing more iterations. The growing number of empirical
accelerations (and carrier phase ambiguities) over these long time spans might result
in the accumulation of (numerical) instabilities. The obtained results are the reason
why the reduced dynamic batch LSQ for relative S/C positioning, was found to be
inadequate for practical use in its current implementation. It has therefore also not
been expanded to process dual frequency SD observations, and it is left for further
study to see if the encountered problem can be resolved.

Similar to the kinematic case, it is not claimed that a reduced dynamic batch
LSQ is not suitable at all for the application at hand. On the contrary. Besides
the kinematic batch LSQ, Svehla and Rothacher [2004a] also used a reduced dy-
namic batch LSQ method, implemented in the Bernese software, for estimating the
GRACE baseline, and obtained highly precise relative position results by it when
fixing the DD ambiguities (3 mm precision (1-dimensional)). Although the exact
details of the processing are not published, it is known that the baseline integra-
tion is not facilitated as it is done in this research, but is based on an absolute
formulation.

4.2.4 Extended Kalman filter

Within the current implementations of all proposed processing strategies, the ex-
tended Kalman filter was the only one that works well under all circumstances
tested. It was found to be very robust and adequate for highly precise relative
spacecraft positioning. Similar to the batch LSQ strategies the filter processes dual
frequency SD GPS observations. Nevertheless, the integer nature of the DD ambi-
guities can still be exploited, in an even easier and more elegant way than for the
other processing strategies. The strength of the filter is, similar to the sequential
kinematic method, the fact that integer ambiguities can be resolved ’on-the-fly’ and
instantaneously used. In this way the relative position solution directly improves,
and the already resolved integer ambiguities automatically aid in the resolution of
new ones as they appear over time. The (pseudo) relative spacecraft dynamics can
be handled in an easier way than for the reduced dynamic batch LSQ since the inte-
gration restarts at every measurement epoch. Although the relative dynamics were
found to offer some robustness against incorrectly resolved integer ambiguities it
was noted that the filter solution could still diverge. Therefore, the filter is comple-
mented with the rigorous ambiguity validation scheme from section 4.1.2. Similar
to the POD case, the EKF also processes the measurements in forward and back-
ward direction, and smoothes the relative S/C position estimates. Exact details of
all aspects of the extended Kalman filter/smoother are presented in section 4.3. In



4.3 Details of the extended Kalman filter 95

section 4.4 the results of testing the EKF on the actual GRACE GPS data is given.
Here it is shown that when using this proposed methodology relative spacecraft
positioning with (sub-)mm precision is feasible in real-world applications.

4.3 Details of the extended Kalman filter

Although the extended Kalman filter for relative spacecraft positioning has many
similarities with the POD version from section 3.4.4, there are a few important
differences. Aside from the fact that now ’relative’ instead of ’absolute’ parameters
are used, the filter furthermore processes the dual-frequency SD GPS observations in
order to preserve the integer nature of the DD carrier phase ambiguities. Therefore,
in accordance with the SD observation model from eqn. 2.29, the filter state,

x =









YAB

cδtAB

IAB

AAB









, (4.20)

and covariance, P, at each epoch comprise, next to the dynamic estimation para-
meters, YAB , and the relative receiver clock offset, cδtAB , the SD ionospheric path
delays, IAB , and the SD carrier phase ambiguities, AAB , on each of the transmitting
frequencies. The dynamic estimation parameters,

YAB =
(

yAB ;pAB

)

=
(

(rAB ;vAB); (CRAB
;CDAB

;aAB)
)

, (4.21)

comprise the 6-dimensional relative S/C state, yAB , containing the relative posi-
tion and velocity between the centers of mass of both S/C (in EME2000), and the
5-dimensional vector of relative force model parameters, pAB . This last vector fur-
thermore contains the relative drag and solar radiation pressure coefficient as well as
the relative empirical accelerations in radial, along-track and cross-track direction,
that are used to capture any discrepancies or mismodeling of the (pseudo) relative
spacecraft dynamics. Similar to the POD implementation, the n-dimensional vector
of SD ionospheric path delays

IAB =
(

I1
AB ; . . . ; In

AB

)

, (4.22)

and the 2n-dimensional vector of SD carrier phase ambiguities, expressed in units
of cycles,

AAB =
(

A1AB ;A2AB

)

=
(

(A1
1AB ; . . . ;An

1AB); (A1
2AB ; . . . ;An

2AB)
)

,
(4.23)

only comprise the parameters of the GPS satellites that are mutually tracked, at
the same instant, by the GPS receivers onboard both spacecraft concerned.

Similar to the POD implementation the updated filter state and covariance at
ti−1 are first propagated to a prediction at the current measurement epoch ti during
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Time Update:
Propagate filter state from ti-1 to tiCompute state transition matrix
Set process noise matrix
Update filter covariance

Rearrange Filter State and Covariance:
Eliminate GPS satellites out of view
Incorporate newly observed GPS satellites

Measurement Update:
Compute predicted residuals of Single Difference
(SD) GPS observations
Compute Kalman gain matrix
Update filter state and covariance

Integer Ambiguity Resolution:
Identify GPS satellites with unresolved Double
Difference (DD) ambiguities
Construct DD float ambiguities and covariance
from current filter SD ambiguity estimates
Estimate integer DD ambiguities using LAMBDA
Validate integer estimates
Update filter state and covariance using “observed”
integers (ambiguity fixing)

Next
Epoch

Figure 4.3 Epoch wise processing scheme of the Extended Kalman Filter for relative
positioning of spacecraft.

the time update. This is followed by a reordering step to accommodate the change
in mutually tracked GPS satellites, only concerning the SD ionospheric path delays
and carrier phase ambiguities. After this step the SD GPS measurements are added
to the filter during the measurement update, resulting in the updated filter state
at the current epoch. In addition to these 3 steps the EKF contains a 4th step
concerning the estimation and validation of the integer DD ambiguities (integer
ambiguity resolution), as well as their incorporation into the filter. This four step
processing scheme is visualized in Fig. 4.3, and is discussed in full detail in the
following.

Time update

During the time update, the updated filter state and covariance at ti−1 (superscript
’+’) are first propagated to a prediction (superscript ’-’) at the current measurement
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epoch ti, yielding

x−
i = x

(

ti;x(ti−1) = x+
i−1

)

P−
i = ΦiP

+
i−1Φ

T
i + Qi

. (4.24)

Propagation of the filter state however requires the integration of the relative S/C
state. As mentioned in the introduction of section 4.2, there is no direct model
describing the relative S/C motion with the required accuracy. The relative S/C
motion is thus obtained from the dynamical models of the individual spacecraft,
hence the ’pseudo’ relative dynamics. In contrast to the reduced dynamic batch
LSQ where a direct integration of the relative spacecraft state was facilitated (eqn.
4.16), the EKF handles this problem in a slightly different way, which was found
to be more flexible and easier when implementing. Here, integration of the relative
state, from ti−1 to ti, is accomplished by independent integration of the two absolute
S/C states, yA and yB , over the same time interval and subtracting them in the end.
This approach was already successfully demonstrated by Leung and Montenbruck
[2005] and during an earlier stage of this research in Kroes et al. [2005]. More
specifically, at epoch ti−1 the absolute state from the reference spacecraft, again
S/C A, is obtained from a reduced dynamic a-priori reference orbit (in SP3 format),
yref

A (ti−1). The (auxiliary) state of the other spacecraft, S/C B, is obtained by
adding the updated filter estimate of the relative state at ti−1 to the state of the
reference spacecraft,

yaux
B (ti−1) = yref

A (ti−1) + y+
AB,i−1. (4.25)

The absolute force model parameters, required for integration of the individual
S/C states, are obtained in a similar way. The force model parameters for S/C A,
pref

A , are set to realistic predefined values and are kept constant over time. The
(auxiliary) force model parameters for S/C B are obtained by adding the relative
force model parameters from the filter state to the ones of S/C A at ti−1, yielding

paux
B (ti−1) = pref

A (ti−1) + p+
AB,i−1. (4.26)

Integration of the individual spacecraft states, leading to their predicted values

y−
i = y+

i−1 +

∫ ti

ti−1

f(t,y(t),p)dt, (4.27)

is now accomplished using a 4th order Runge-Kutta numerical integration method,
similar to the POD case. The predicted relative state,

y−
AB,i = y−

B,i − y−
A,i, (4.28)

is now constructed as the difference of the predictions of the absolute states. This
process is repeated at every epoch and visualized in Fig. 4.4.
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∫ dt

∫ dt

ref
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Figure 4.4 Illustration of the propagation of the relative spacecraft state over the time and
measurement update. (Source: [Kroes et al., 2005])

Although analytically the integration of the individual S/C states is identical to
the direct integration of the relative state from eqn. 4.16, there is a difference when
numerically evaluating both expressions. Therefore, as a test, the direct integration
has also been facilitated. Here, the state of S/C A is integrated in a similar way as
just described, but with simultaneous integration of the relative S/C state. During
integration the state of S/C B as well as the accompanying force model parameters,
all required to evaluate the accelerations, are obtained as YB = YA + YAB . Both
formulations resulted in relative position differences of up to 0.05 mm for a 10 second
integration interval when fixing ambiguities. Due to the fact that the integration
is restarted at every epoch, and the GPS measurements are added in between, the
numerical discrepancy between both approaches does not accumulate over time.
When both solutions were compared to the KBR measurements a difference of up
to 0.02 mm in the precision was noticed in the advantage of the here illustrated, and
finally used integration scheme. Therefore, and due to the fact that implementation
is more straightforward, the integration of the relative state remains facilitated by
integrating the individual S/C states as just illustrated.

Similar to the EKF for POD, the relative empirical accelerations are propagated
over time using the Gauss-Markov process model (cf. eqn. 3.33),

a−
AB,i = e−|ti−ti−1|/τa+

AB,i−1. (4.29)

The other estimation parameters are again kept constant during the entire filter
time update phase

(

CRAB
;CDAB

; cδtAB , IAB ,AAB

)−

i
=
(

CRAB
;CDAB

; cδtAB , IAB ,AAB

)+

i−1
, (4.30)

reflecting a white process noise model. Propagation of the filter covariance requires
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the filter state transition matrix

Φi =









ΦY 0 0 0
0T 1 0T 0T

0 0 1 0
0 0 0 1









, (4.31)

which is completely diagonal and filled with ones except for the submatrix regarding
the dynamic estimation parameters, ΦY. Since the trajectory of S/C A is again
given a-priori and is kept fixed (no parameters are estimated for it), the relative S/C
state transition and sensitivity matrix are similar to the ones of S/C B, ΦAB(t, t0) =
ΦB(t, t0) and SAB(t) = SB(t), as was shown earlier in eqn. 4.18 and eqn. 4.19
respectively. This means that ΦY has exactly the same structure as for the POD
process (Fig. 3.6), where the relative S/C state transition and sensitivity matrix
have to be substituted by the ones of S/C B. In addition, process noise,

Qi =









QY 0 0 0
0T qcδt 0T 0T

0 0 QI 0
0 0 0 0









, (4.32)

is also added to the covariance. This entirely diagonal matrix only has entries
for the empirical accelerations, the relative GPS receiver clock offset and the SD
ionospheric path delays. The entries for the empirical accelerations are again set
according to the Gauss-Markov process model (Fig. 3.6),

qi = σ2(1 − m2
i ). (4.33)

Similar to the POD case (section 3.4.4), it can again be argued to incorporate the
correlations of the process noise of the empirical accelerations with the relative
position and velocity. When implemented for testing using the settings from Table
4.1 on page 107, the process noise entries, as a percentage of their corresponding
covariance matrix entry, were found to be even lower than encountered in the POD
case. Inclusion did introduce a very small difference (up to 0.01 mm) between the
relative position estimates in both cases. Compared to the KBR however, both
solutions still had the same precision. Therefore incorporating these correlations
was only found to be an additional burden.

Similar to the EKF for POD, the relative receiver clock is handled as a random
walk process, meaning a mapping factor of 1 and the corresponding process noise
entry

qcδt =

(

σ2
cδt

τcδt

)

(ti − ti−1). (4.34)

Here, again, (σ2
cδt/τcδt) is the noise spectral density, consisting of a process noise

variance, σcδt, as well as a time scale, τcδt, that are once more only used (Table 4.1)
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to construct the noise spectral density of the process. Although physically not en-
tirely correct the random walk process model is also applied to the SD ionospheric
path delays. These parameters are only estimated since this is required for proper
ambiguity resolution over long baselines (section 4.4.3). To guarantee a ’free’ es-
timation of these parameters, a high enough process noise is added at every time
update of the filter (Table 4.1).

Reordering

Upon completion of the time update step a reordering of the filter state and co-
variance takes place. This in order to incorporate the change in mutually observed
GPS satellites, again only concerning the GPS satellite parameters, i.e. the SD
ionospheric path delays and carrier phase ambiguities. Here, GPS satellites no
longer mutually observed, or which have experienced a (SD) carrier phase disconti-
nuity are removed from the filter state and covariance. Whenever a new commonly
observed GPS satellite becomes available, a-priori values of these parameters are
added to both the filter state vector and covariance matrix. This again assures
that the total size of the filter state is always equal to 12 + 3n, where n equals the
number of currently commonly tracked satellites.

Measurement update

The measurement update of the EKF is performed directly after the reordering step
and is again expressed as

Ki = P−
i HT

i

(

W−1
i + HiP

−1
i HT

i

)−1

x+
i = x−

i + Ki

(

zi − h(x−
i )
)

P+
i =

(

1 − KiHi

)

P−
i

, (4.35)

in which the measurement covariance, or inverse weighting matrix, W−1, is still
completely diagonal due to the fact that the SD GPS observations

zi =









P1AB

P2AB

L1AB

L2AB









=









(P 1
1AB ; . . . ;Pn

1AB)
(P 1

2AB ; . . . ;Pn
2AB)

(L1
1AB ; . . . ;Ln

1AB)
(L1

2AB ; . . . ;Ln
2AB)









(4.36)

are assumed uncorrelated for this research. The filter design matrix

Hi =

(

∂h

∂rAB

∂h

∂vAB

∂h

∂pAB

∂h

∂cδtAB

∂h

∂IAB

∂h

∂A1AB

∂h

∂A2AB

)

, (4.37)

again contains the partial derivatives of the modeled measurements with respect to
the filter state. More specifically, when the SD observations are put in the same
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order as the corresponding estimation parameters, the design matrix reads

Hi =











Ei 0 0 1 1 0 0

Ei 0 0 1
f2
1

f2
2
1 0 0

Ei 0 0 1 −1 λ11 0

Ei 0 0 1 − f2
1

f2
2
1 0 λ21











, (4.38)

where all partials are constant over time except for the ones relating to the relative
position. The partials follow from the dual frequency observation model in eqn.
2.29. It must be noted that the partials with respect to the relative receiver clock
are an n × 1 dimensional vector of ones, whereas the partials with respect to the
SD ionospheric path delays and carrier phase ambiguities are given by the identity
matrix, whether or not multiplied with either the ionospheric refraction factor,
(f2

1 /f2
2 ), or the signal wavelengths. Since the trajectory of S/C A is given a-priori

and does not change, the position partials only depend on the line of sight vectors
to S/C B (eqn. 2.28). The geometry matrix,

Ei =







−(UT (ti) · e1
B(ti))

T

...
−(UT (ti) · en

B(ti))
T






, (4.39)

comprises these line of sight vectors to the different GPS satellites, which, due to
the fact that they are given in the Earth fixed system, have to be transformed to
the ICRF by matrix UT (ti) from eqn. 3.1.

Integer ambiguity resolution

Upon completion of the measurement update, the filter is enhanced with an ad-
ditional step regarding the resolution of integer DD ambiguities and their incor-
poration into the filter. As mentioned earlier, the continuous change in mutually
observed GPS satellites, results in the allocation of new SD ambiguities to the filter,
and the removal of no longer observed ones, over time. This propagates into the
DD estimation problem. At every epoch, the current filter state has to be evaluated
to see if any of the present SD ambiguities can form not-yet-resolved DD ambiguity
pairs (a pair being the SD L1 and L2 ambiguities belonging together). If this is
the case, the concerned DD float ambiguity estimates are formed by differencing
the corresponding filter SD ambiguities with respect to the ones from a reference
GPS satellite j, Aj

1AB and Aj
2AB . Selection of this reference satellite is subject

to the presence of already resolved integer DD ambiguities in the filter state and
covariance. When present, the reference SD ambiguity pair has to be selected from
the subset forming these already resolved integer values. This assures a proper
connection of the to-be-resolved integer DD ambiguities with the pre-existing ones
in the filter. At filter startup or after a complete GPS phase break, no integer am-
biguity constraints are present in the filter state and covariance, meaning that the
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reference SD ambiguity can be freely selected. Selection in this last case is based
on the highest (mutual) elevation of the GPS satellite to which the SD ambiguity
pair belongs. For the integer estimation process, the real-valued SD and DD float
ambiguities are, when keeping the notations of the respective observation models
(eqn. 2.29 and eqn. 2.35), defined as:

ASD =
(

(Ak
1AB ; . . . ;Am

1AB ;Aj
1AB); (Ak

2AB ; . . . ;Am
2AB ;Aj

2AB)
)

ADD =
(

(N jk
1AB ; . . . ;N jm

1AB); (N jk
2AB ; . . . ;N jm

2AB)
)

. (4.40)

Here, the vector ASD contains only those SD ambiguities that are not yet part
of an already resolved DD ambiguity (except for the reference j if applicable) and
therefore differs from the vector of SD ambiguities in the filter state (eqn. 4.23). Be-
sides a float estimate of the DD ambiguities their accompanying covariance matrix,
PADD, is also required. Both are easily obtained from their SD counterparts,

ADD = TASD

PADD = TPASDTT , (4.41)

by means of a transformation with the block diagonal dual frequency ambiguity
transformation matrix,

T =

(

T∗ 0
0 T∗

)

, (4.42)

in which the single frequency transformation matrix yields

T∗ =













1 0 · · · 0 −1

0 1
... −1

...
. . . 0

...
0 · · · 0 1 −1













. (4.43)

The hereby obtained real-valued DD ambiguity estimates as well as their covariance
are used as input for the LAMBDA method, where, cf. eqn. 4.4, the best and second
best integer DD ambiguity estimates, NB and NS respectively, as well as the vector
of accompanying conditional variances, σi|I , are returned. The validation of the
best integer solution is subsequently conducted. Here, the individual tests of the
validation procedure are executed in the order they are discussed in section 4.1.2. If
the success rate (eqn. 4.5) is not high enough, or if either the integer (eqn. 4.7) or
the discrimination (eqn. 4.8) test are not passed, the validation process rejects the
entire vector of integers. If these 3 tests are passed, the individual wide-lane and
ionosphere free ambiguity residuals are screened. Here it can, and does frequently,
occur that only one or a few integer ambiguity pairs are found to be incorrectly
estimated. These are subsequently removed from the vector NB , which then only
contains the integers that are assumed to be correctly resolved.



4.3 Details of the extended Kalman filter 103

Allocation of the integers that have passed the validation procedure is accom-
plished by means of an additional measurement update (eqn. 4.35) with the follow-
ing settings:

z = NB

h(x) = ADD = TASD

W−1 = 0
H =

(

0 0 0 T
)

.

(4.44)

Here it can be seen that the integers are actually allocated as ’observations’ with no
uncertainty left in them, W−1 = 0. They are modeled by the SD ambiguities, and
have the transformation matrix T as the corresponding partials. Although strictly
speaking incorrect, since they are no observations, handling them like this restruc-
tures the covariance in such a way that they act as integer constraints throughout
their existence in the filter. No additional bookkeeping is thus required. It must
be noted that whenever a subset of integers is allocated, due to the fact that some
pairs were removed by either one of the ambiguity residuals screening tests, the
corresponding rows of the vectors and matrices of the measurement update have to
be removed as well.

Kinematic single point positioning

As soon as the filter has integer DD ambiguities allocated, it is no additional burden
to retrieve them at any time. It is therefore possible to construct a precise kinematic
carrier phase only relative position solution at each epoch as long as there are
enough integer DD ambiguities known (4 or more for redundancy). The single
point positioning principle used here processes SD ionosphere free carrier phase
observations corrected for the integer DD carrier phase ambiguities, and satisfies
the simple positioning model













Lj
IF,AB − ρj0

AB

Lk
IF,AB − ρk0

AB − N jk
IF,AB

...

Lm
IF,AB − ρm0

AB − N jm
IF,AB













=











(ej
B)T 1

(ek
B)T 1
...

(em
B )T 1











(

∆rAB

cδtAB + Aj
IF,AB

)

, (4.45)

also given by Misra and Enge [2001]. As can be seen the relative receiver clock offset
becomes biased with the ionosphere free SD ambiguity of GPS satellite j, serving as
the reference. The SPP process performs a check on the post-fit residuals obtained.
Whenever the standard deviation of these residuals exceeds a predefined threshold,
the integer corrected SD carrier phase observation that contributes the dominating
error is identified and removed from the set of observations. If necessary, the process
is repeated to reject multiple outliers at the same epoch. Incorrectly resolved integer
ambiguities could be identified in this way.
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Smoother

Just as for the EKF for POD, the entire SD GPS data set is processed both in a
forward, as well as a backward direction. At each epoch, a smoothed solution

xi =
P−1

i,fwdxi,fwd + P−1
i,bckxi,bck

P−1
i,fwd + P−1

i,bck

(4.46)

is again computed as the weighted average of the estimated filter states from both
runs. The weights are determined by the information matrix, i.e. the inverse co-
variance, of the respective state estimates. By combining the forward and backward
results, measurements from both before and after a given epoch contribute to the
corresponding state estimate. This is now especially important due to the fact that
the integer DD ambiguities are freely estimated on both runs, i.e. none of the in-
teger DD ambiguities obtained during the forward run is a-priori allocated to the
backward run. The smoothing process therefore assures that integer information,
which is not available on a certain epoch in one of the runs, is still accounted for.
Again, as a result, a significant improvement in accuracy over the individual solu-
tions is achieved. This can no longer directly be quantified (for the POD case this
was roughly a factor of 2), but depends if both runs have integers allocated, which
influences the weight of the individual information matrices. As an example, near
the beginning and end of the data arc as well as over extended data gaps, where
either the forward or backward filter has no integer ambiguities allocated yet, the
other solution will dominate the smoothing process.

The same process is applied to the kinematic SPP solutions, created indepen-
dently during the forward and the backward run, but it would be more appropriate
to speak of averaging instead of smoothing in this case. Here, the SPP solution will
not be smoothed, but the process assures that the information of integer ambigu-
ities, that are not part of both the forward and backward SPP solution, can still
contribute. The resulting solution is the one where all available (integer corrected
measurement) information is accounted for.

4.4 Extended Kalman filter results

This section contains the results of the EKF for relative positioning of spacecraft,
when tested using the GRACE data from the same 101-day data arc, 2003 DOY
190 to 290, as for the GPS based POD tools from the previous chapter. First, the
specific EKF settings and the processing scheme are discussed. This is followed
by some words on the relative empirical accelerations and SD ionospheric path
delays resulting as additional output of the EKF runs. The actual validation of the
relative position solution is presented thereafter. This starts with an overview on
how exactly the GRACE KBR observation data is used for this purpose, followed by
the KBR comparison of four different relative position solution types. These include
the relative position computed from two individual GRACE POD orbits, the EKF
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float solution, created without resolving the integer DD ambiguities, and the high
precision EKF ambiguity fixed solution as well as the simultaneously constructed
kinematic SPP solution. Due to the fact that the KBR only provides a 1-dimensional
validation possibility and cannot detect constant biases in the solution, a comparison
of the different EKF position solutions, as an additional consistency check, along
with an analysis of the formal filter errors (variances) associated, concludes this
section.

4.4.1 Filter settings

The EKF for relative positioning of spacecraft has been implemented in the Filter
for Relative Navigation of Spacecraft (FRNS) as an extension of the GHOST toolkit
discussed in section 3.5. Similar to the POD tools in this software package, a strict
processing scheme is to be followed when using the FRNS tool. This is first of
all implied by the fact that one of the S/C serves as a reference (GRACE A) and
therefore its orbit should already be known to the best possible extent. Second,
and perhaps even more important, a similar GPS data editing procedure as for the
POD tools (section 3.5.2) is implemented, requiring a reduced-dynamic reference
orbit for both S/C concerned. It has earlier been decided to use the RDOD orbits
(section 3.6) of both S/C for this purpose, and therefore prior to running the FRNS
tool, the GHOST processing scheme (section 3.5.1) for each of the individual S/C
has to be executed.

Similar to the POD tools, the FRNS program processes the GRACE GPS data
in 24 hour, so daily, batches. One of the differences compared to the POD tools is
the fact that the SD GPS data is processed at the higher data rate of 10 seconds,
at which it is provided. This can now be done since the SD formulation no longer
requires knowledge of the GPS satellite clock offsets. Therefore, if desired, use can
even be made of the final IGS ephemerides (section 3.1) for this application, instead
of the ones from CODE. When processing at this data rate, it was found that for
the entire 101-day data arc there are on average 64088 observed SD code and carrier
phase observations on each of the individual frequencies, on a 24 hour basis. This
number is in good agreement with the values found in Table 3.3, where GRACE
B is the limiting factor. Of course one has to account for the 3 times higher data
rate and the fact that GPS satellites are not always mutually observed by both S/C
for the 220 km GRACE separation. For the FRNS tool this total number of SD
observations is edited using a similar scheme as for the POD tools. If an individual
GPS observation, on either one of the GRACE S/C, has an elevation lower than 5◦

or an SNR value lower than 5, corresponding to a C/N0 threshold of about 11 dB-Hz
cf. eqn. 2.40, the SD observation is rejected. The two other tests no longer use the
UD ionosphere free pseudorange and carrier phase observations, but the SD ones
instead. In accordance the standard deviation threshold for the pseudorange data
editing has been incremented with roughly a factor

√
2 to 0.7 m, to accommodate

the higher noise of the SD ionosphere free observations. The standard deviation
threshold of the time differenced SD carrier phase test for cycle slip detection on
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the other hand has been lowered to 1 cm. This could be done due to the fact
that the error reduction of the SD carrier phases was actually found to be higher
than the increment in noise. This lower threshold assures an even better detection
of (SD) cycle slips and other irregularities in the carrier phase data. These data
editing settings allowed for an average of 86.3% of the observed SD pseudoranges
to be used and a much higher 94.8% of the carrier phase data. A distribution of
the SD observation data over the epochs is depicted in Fig. 4.5. Here the relative
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Figure 4.5 Average distribution, for the entire 101-day GRACE data arc, of the number of
SD observations per epoch. Shown are the available SD observations
(’Observed’), the ones used (’Used’) by the filter and the ones of which the SD
carrier phase ambiguity is part of an already resolved integer DD ambiguity
(’Fixed’).

frequency of the number of SD observations per epoch are given, averaged over the
entire data arc. Shown are the total number of observed single differences and the
ones that passed data editing and are thus used by the filter. More than 98% of
all epochs has 5 or more SD observations that passed data editing and are used
by the filter. In addition, the distribution of the SD carrier phase ambiguities that
are part of an already resolved integer DD ambiguity is also depicted, but will be
further discussed in section 4.4.7.

In accordance to the POD case, the SD GPS observations that are used by the
filter are given an (uncorrelated) unit variance. For the SD pseudoranges (P1 and
P2) and carrier phase (L1 and L2) observations, respective values of 0.5 m and
5.0 mm have been selected. For the pseudoranges this might seem a little conserva-
tive, but assures a better robustness for ambiguity resolution since more data needs
to be accumulated before the success rate is high enough. Other (uncorrelated)
a-priori variances and filter settings applied for the entire data arc can be found
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Table 4.1 Overall settings for the Filter for Relative Navigation of Spacecraft (FRNS)
used throughout the entire 101-day GRACE data arc.

Parameter Value Parameter Value

A-priori standard deviation Process noise (steady state) σ
σr [m] 1.0 σaR

[nm/s2] 0.1
σv [m/s] 1.0 σaT

[nm/s2] 1.0
σCD

[-] 0.1 σaN
[nm/s2] 0.3

σCR
[-] 0.1

σcδt [m] 500.0
σaR

[nm/s2] 0.5 σI [m] 1.0
σaT

[nm/s2] 3.0
σaN

[nm/s2] 1.0 Integer ambiguity validation
P (NB = N) [%] (eqn. 4.5) 99.9

σcδt [m] 500.0 kα [-] (α = 0.01, eqn. 4.7) 1.8
σI [m] 20.0 kS/B [-] (eqn. 4.8) 3.0
σAL1

,σAL2
[cycles] 10000.0 kWL [cycles] (eqn. 4.11) 0.2

kIF [cm] (eqn. 4.12) 1.0
(Auto-corr.) Time scale

τa(R,T,N)
[s] 600.0 GPS SD observation (unit) σ

τcδt [s] 100.0 σP1
,σP2

[m] 0.500
τI [s] 10.0 σL1

,σL2
[m] 0.005

in Table 4.1. The filter uses the same high fidelity force models to propagate the
individual S/C states that are used for the POD tools, provided earlier in Table
3.6. For both GRACE A and GRACE B the mass and surface area onto which the
atmospheric drag and solar radiation pressure act are chosen similar to the POD
process, 500 kg and 0.5 m2 respectively. The initial values of the drag and solar
radiation pressure coefficient for the reference S/C are kept fixed and have been
set to the average ones resulting from the FAST program when running with the
GRACE data (not documented earlier), resulting in CD = 4.45 and CR = 1.60.
The empirical accelerations for the reference S/C are kept fixed to zero for the
short integration time. The relative force model parameters are all initialized to
zero, but are adjusted during the filter run.

The just described filter settings have been applied throughout the remainder
of this section. In case the float solution is considered the ambiguity tests are of
course not executed. Similar to the FAST program, all results presented in this
section refer to the smoothed FRNS solution, computed according to eqn. 4.46.

4.4.2 Empirical accelerations

In accordance with the POD tools, and already displayed in Table 4.1, the auto-
correlation time of the relative empirical accelerations have been set to 600 s. This
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value was found to work very adequately for the application at hand. Of course
the a-priori and steady state variances are chosen much smaller than for the POD
process since only the differential modeling deficiencies have to be captured. Similar
to the POD tools, tighter a-priori and process noise constraints are put onto the
radial component due to the heavy in-plane dynamic coupling, as well as the lower
sensitivity in this direction. The along-track component is thus left more free to
absorb amongst others the effects of unmodeled differential drag. Typical results for
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Figure 4.6 Relative empirical accelerations in the along-track direction (aT ) for the FRNS
program for August 18, 2003 (DOY 230). Shown are the situations with float
(top) and fixed (bottom) ambiguities

the relative empirical accelerations are given in Fig. 4.6 for DOY 230, concerning
both the ambiguity float (top) and fixed (bottom) solution. Similar to the POD
case (Fig. 3.8) only the dominant along-track component is shown here for both
situations. As can be seen the effects of the geomagnetic storm present in Fig.
3.8 do not show up here with the same dominance. If at all, this is most clearly
visible by the ’phase shifted’ pattern between 8:00 and 10:00 in the ambiguity
fixed empirical acceleration. It is interesting to see that there still is a relatively
large difference between the empirical accelerations of the float and fixed solution,
although the overall pattern is largely identical. In the ambiguity fixed case the
’integer corrected’ carrier phase observations dramatically strengthen and dominate
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the relative position solution. Any discrepancies with the force models are kept
outside the position solution and are thus put into the relative empirical acceleration
parameters. In the ambiguity float scenario on the other hand these deficiencies
seem to be more absorbed by the position since they do not always appear in
the empirical accelerations. Again, caution must be taken when interpreting the
empirical acceleration patterns. Similar to the different POD scenarios the obtained
values are highly dependent on the underlying dynamical and stochastic models, as
well as the applied filter settings.

4.4.3 Ionospheric path delays

Typical values for the SD ionospheric path delays obtained from the EKF when
using GRACE GPS data are depicted in Fig. 4.7. In addition, the DD values are
also shown which were formed from the SD filter estimates. As can be seen the
SD delays are quite significant over the long S/C (nominally 220 km) separation,
even for the high altitude of 470 km. The fairly constant mean value of around
-2.8 m however represents the SD differential code bias between both GRACE GPS
receivers, which is absorbed by the SD ionospheric path delay. Since both GRACE
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Figure 4.7 The SD (top) and DD (bottom) ionospheric path delays between the GRACE
S/C for August 1, 2003 (DOY 213).
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S/C rapidly move over the day and night side of the Earth, the SD ionosphere shows
a pattern of higher and lower activity. It is clear that if the DD ambiguities are to
be resolved correctly using a SD filter formulation, the SD ionospheric path delays
have to be estimated, as has been done here. The underlying random walk process,
that is used to model the SD ionospheric path delays, shows to work adequately,
which is mainly caused by the fact that an adequate, high enough process noise
(Table 4.1) is added to allow for a more or less ’free’ estimation of these parameters
at every epoch. Although this approach already works very satisfying, it might be
worthwhile to model the SD ionospheric path delays more precisely, including a rate
of change or even the acceleration of the change in ionosphere, in a future variant
of the EKF. This would namely speed up the re-estimation of integer ambiguities
after a cycle slip has occurred. It can furthermore be seen in Fig. 4.7 that the DD
ionospheric path delays can be more than 1 m, corresponding to 5 and 4 integer
cycles in respectively the L1 and L2 observation. A DD parametrization of the filter
would therefore still require the estimation of the accompanying ionospheric path
delays, where the additional burden of continuous re-ordering the parameters also
has to be coped with.

4.4.4 GRACE K/Ka-Band Ranging System modeling

In addition to the GPS and attitude quaternion data, the GRACE K/Ka-Band
Ranging System observations are also provided as part of the Level 1B GRACE data
distributed by PODAAC. A Level 1B KBR observation, LKBR, is an ionosphere
free phase or biased range measurement, constructed from the dual frequency, or
Level 1A [Case et al., 2002], K- and Ka-Band Ranging observations that have
a noise level, ǫ, of 10 µm at 1 Hz sampling [Dunn et al., 2003]. The Level 1B
KBR observation data is already flagged for bad data points and cycle slips [Case
et al., 2002] and can therefore be used directly for the purpose of validating the
norm of the relative position solution, corresponding more or less to the along-track
component, between both GRACE satellites. The KBR observation, at time ti, is
modeled as

LKBR(ti) = ρAB(ti) + BKBR + ∆ant(ti) + ∆cτ (ti) + ǫ(ti), (4.47)

where ρAB is the distance between the center of mass of both GRACE S/C, BKBR

is the real-valued KBR observation bias that is constant over time until a cycle
slip occurs, ∆ant is the correction concerning the offset between the KBR antenna
phase center and the center of mass, on each of the individual GRACE S/C (Table
4.2), and ∆cτ is the so called light time correction. More specifically, the light
time correction is the correction applied for the distance travelled by both GRACE
satellites during the KBR signal travelling time. Both the antenna offset correction
and light time correction are also provided in the Level 1B KBR data files [Case
et al., 2002] and can directly be used for the purpose of this research. Validation
of the relative position solution is done for each of the individual 24 hour, so daily,
batches at which the GPS data is provided, and thus the interval used to construct
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Table 4.2 The KBR antenna phase center offsets with respect to the center of gravity for
each of the GRACE S/C, defined in the respective S/C body systems.

X [m] Y [m] Z [m]

GRACE A 1.472581 0.002663 0.001548
GRACE B 1.472580 -0.000088 0.003319

the relative position solution. The Level 1B KBR observations are also provided in
identical 24 hour (daily) periods, synchronized to the GPS integer time tags. The
only difference here is the higher output rate of the KBR observations, which are
nominally provided at 5 second intervals. In order to validate the relative position
solution, the constant KBR bias must first be calibrated. This is accomplished
using the norm of the relative position solutions, ρAB(ti) = ‖rAB(ti)‖, obtained at
each of the GPS measurement epochs ti. For a total of n epochs over a day (at the
10 second GPS observation intervals this would be a maximum for n of 8640) the
bias would read

BKBR =
1

n

n
∑

i=1

LKBR(ti) − ρAB(ti) − ∆ant(ti) − ∆cτ (ti). (4.48)

It must be noted that when a cycle slip in the KBR data is detected, which fre-
quently occurs, between e.g. tm and tm+1, two biases must be calibrated over the
respective period, one from t1 to tm and one from tm+1 to tn.

After having calibrated the daily bias or biases, they are subsequently used
to construct a (24 hour) time series of residuals between the norm of the relative
position solution and the bias corrected KBR observations, the so-called ’KBR fit’.
Since the KBR observation noise is negligible compared to the errors in the relative
position solution, the (daily) standard deviation of this time series presents a direct
1-dimensional precision measure of the relative position solution. It must be noted
that this standard deviation only reflects the true daily standard deviation in case
there has been no cycle slip in the KBR data, meaning that only one bias needs
to be calibrated. If multiple biases are present the standard deviation could reflect
a too positive assumption on the quality. It is once more emphasized that the
KBR measurements can only validate the norm of the relative position solution (1-
dimensional precision) and cannot detect any constant biases in the solution since
these are automatically absorbed in the just discussed calibration process.

4.4.5 KBR comparison of the GRACE POD solutions

In order to see how well the relative position can be constructed from two indepen-
dently generated POD solutions of the S/C concerned, a KBR fit of the GRACE
POD orbits from section 3.6 is presented here. For the KBR bias calibration process
the relative position is simply constructed as ρAB(ti) = ‖rB(ti) − rA(ti)‖. For this
analysis the GRACE RDOD orbits, serving as reference trajectories within the
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Figure 4.8 Daily standard deviations of the GRACE relative position, constructed from the
individual satellite orbits, when compared to the KBR measurements.

FRNS tool, as well as the JPL and TUM reference ephemeris for the orbit com-
parisons made in section 3.6.4 are used. The daily standard deviations of this
comparison for the entire 101-day data arc are depicted in Fig. 4.8. In addition,
the standard deviation over the entire series is also provided in the upper right
corner of each of the plots. This value is computed from the daily standard devi-
ations, whilst properly accounting for the number of underlying residuals on each
day. As can be seen the JPL GRACE orbits (top plot) have a really constant fit
with the KBR data without any outliers. As already mentioned in section 3.6.4,
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the TUM orbits (middle plot) have a few very large outliers of several hundreds
of meters (DOY 268 and 290), which have been left out of the comparison. Aside
from the fact that the RDOD orbits (bottom plot) also have some outliers in the
KBR comparison, they seem to have the most precise overall KBR fit of 16 mm.
Although an analysis of this kind can be used as a consistency check for the in-
dividual satellite orbits, it must be mentioned that it does not provide additional
information on their precision or accuracy. Nevertheless, it is now known what the
obtainable precision is for the baseline when constructed from 2 absolute positions.

4.4.6 Float ambiguity solution

As mentioned before, running the FRNS tool without estimating any integer am-
biguities results in the so-called float solution for the relative position estimates.
This solution is constructed using the same overall settings as for the ambiguity
fixed solution (Table 4.1), except of course for the ambiguity validation tests, that
are not required at all in this case. The float solution provides a direct measure
for the improvement that can be gained over the just described baseline created
from the individual orbits, by using (single) differenced GPS observation data and
applying the (pseudo) relative S/C dynamics. The KBR comparison time series of
the float solution, constructed as described in section 4.4.4, are depicted in Fig. 4.9
for four selected days (top down are shown DOY 195, 217, 222 and 258). The first
thing that is clearly visible in each of the time series is the strong periodic signal,
corresponding more or less to the orbital revolution period of each of the GRACE
satellites (around 94 minutes), a so called once per revolution signal. This indicates
that the resulting relative position solution heavily depends on the spacecraft dy-
namics, that are usually responsible for introducing such signals. Furthermore, in
the plot of DOY 222 it can be seen that the EKF for relative S/C positioning is not
as susceptible to data outages as its POD variant, FAST. The formulation of the
relative dynamics implemented propagates the relative S/C state over the nearly
6 hour GPS (and KBR) data gap without any difficulty. Although in either the
forward or backward solution this leads to an error in the relative position solution
of about 15 cm (compared to KBR), this is still in the linear domain and allows for
a rapid convergence of the filter after the data gap. It must however be mentioned
that a performance comparison with the POD variant (FAST) for such cases is not
completely fair. This is due to the fact that the relative S/C state is propagated by
means of integrating the individual spacecraft states in the same manner as for the
POD variant, as discussed in section 4.3. Each of these individual states experiences
an error of several meters after such a data gap, as was shown in section 3.6.4, or
more specifically in Table 3.11. The difference between these errors on the other
hand, which resembles the integration error of the relative S/C state, is apparently
(relatively) small. In addition, the GRACE S/C fly in the same orbital plane, with
a separation of not even 30 seconds (220 km). The individual satellites are thus
subject to more or less the same forces, leading to a more or less similar dynamic
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Figure 4.9 Time series of the KBR comparison residuals of the GRACE relative position
solution. The relative position is obtained from the EKF with float ambiguities.
Shown are (top down) DOY 195, DOY 217, DOY 222 and DOY 258.
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Figure 4.10 Daily standard deviations of the GRACE relative position, constructed by
processing SD code and carrier phase observations with float ambiguities, when
compared to the KBR measurements.

model uncertainty induced error in the individual positions. It remains for further
study to see how the filter would respond to an out of plane system in such cases.

As can be seen the precision of the four KBR fit time series is already much
higher than for the case where the relative position is constructed from the indi-
vidual orbits. Although it must be mentioned that in the time series of DOY 217 a
total of 4 KBR biases had to be calibrated (KBR phase breaks around, 6:15, 10:15
and 21:00; GPS phase breaks at 6:15 and 10:15). In this case for example, the
computed residuals between the calibrated KBR and the relative position solution
over the time interval 6:15 - 10:15 might be a little too optimistic, resulting in a
too optimistic overall precision. The standard deviations of the KBR fit with the
float solution over the entire data arc are given in Fig. 4.10. Here it is immediately
observed that when differenced GPS data is used together with the implemented
formulation of the relative dynamics, a significant precision improvement of (more
than) a factor 2 in the (along-track component of the) relative position is gained
compared to the baseline constructed from the individual orbits.

4.4.7 Fixed ambiguity solution

The highest achievable accuracy for the relative position solution is obtained when
fixing the DD ambiguities to their resolved integer values and incorporating them
as described in section 4.3. Here, the most important assumption is that the integer
DD ambiguities are deterministic and have no uncertainty left in them, σN = 0. As
mentioned earlier this not only dramatically strengthens the relative position but
also aids in the swift and successful resolution of new DD integer ambiguities as
they appear over time.

The rigorous and conservative ambiguity validation scheme, presented in section
4.1.2 using the settings from Table 4.4.1, still allows for a successful resolution of
a seemingly constant average of 82% of the, on average, 494 DD ambiguity pairs
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Figure 4.11 The total number of SD ambiguity pairs processed by the EKF on a daily basis
(top), as well as the percentage of them that are eventually part of a fixed
integer DD value (bottom).

per day (Fig. 4.11). This is a very decent number. When only considering DD
pairs formed from continuous SD carrier phase tracking arcs with a length of at
least 300 s (or 30 measurement epochs at the 10 s measurement interval) an again
fairly constant, and even higher, 91% out of 400 pairs meeting this criterion, are
fixed. This means that only around 40% of the DD ambiguities part of a continuous
SD tracking arcs shorter than 300 s is fixed. This is logical since such short arcs
are mostly the result of a detected cycle slip at the end of a SD pass. Here the
pseudorange observations are not of a very good quality, which, combined with the
short time these ambiguities are present in the filter, makes them hard to resolve.
SD ambiguities for which the DD integer value cannot be resolved remain in the
filter and still participate in, and contribute to, the EKF estimation process.

So far, Fig. 4.11 only depicts the DD ambiguities that are eventually fixed
to their integer value. The distribution of the number of SD ambiguities that are
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part of an already resolved, and incorporated, integer DD value over the epochs was
already shown in Fig. 4.5. Here it can be seen that the distribution of the ’fixed’ SD
ambiguities per epoch appears shifted with respect to the distribution of the good
SD observations, actually used on a per epoch basis. The reason for this is that the
resolution of integer DD ambiguities formed from newly allocated SD ambiguities
in general takes a few epochs, or is sometimes not possible at all. The shift in the
distribution thus depicts the fact that ambiguity resolution takes some epochs. The
figure furthermore shows that less than 10% of the epochs has a maximum of 3 SD
ambiguities part of an already resolved integer DD value. This is the result of the
initial filter startup and complete GPS phase breaks, mostly occurring after a data
outage, where there are no integers known at all. On average it takes somewhere
between 20 to 30 minutes after filter startup before at least 3 integer DD (4 SD)
ambiguities are correctly resolved and incorporated. This also applies to large GPS
data outages, where the filter no longer has any integer ambiguities allocated. Once
the filter already has enough integer ambiguities incorporated, the resolution of new
ones that appear over time is, in general, done swiftly. There is however no overall
’duration of resolution’ that can be specified for such cases. It depends on issues like
the number of simultaneous estimated ambiguities, the quality of the data and the
viewing geometry. Sometimes it only takes one or two epochs of data accumulation
before the ambiguities can be fixed, another time it might take several minutes.

Out of the 5 ambiguity validation tests that are applied, using the settings from
Table 4.1, the most critical one is the test that evaluates the ionosphere free ambi-
guity residual (eqn. 4.12). This test basically dominates the ambiguity validation
procedure and stops even the most ’subtle’ incorrectly resolved ambiguities. The
test evaluating the wide-lane ambiguity residual (eqn. 4.11) only stops the most
critical integer estimation errors. Nevertheless, both test were found to be required
during the development of the validation scheme. Occasionally, ambiguities that
pass the ionosphere free ambiguity residual test were still found to be incorrect by
the wide-lane test. This is due to the fact that the ionosphere free ambiguity does
not heavily depend on the pseudorange data, whereas the wide-lane does. Incor-
poration of such ambiguities were found to lead to position errors as discussed and
depicted in section 4.5.3, but not to divergence of the filter solution. The other
tests, the success rate (eqn. 4.5), the integer test (eqn. 4.7) and the discrimination
test (eqn. 4.8), were found to more or less ’precondition’ the integer estimates to
a level where the just discussed ambiguity residual tests only stop the real critical
decisions. For example, if the success rate is not high enough more data should be
accumulated before a reliable integer estimate can be made at all. In almost all
cases the integer test is simultaneously passed with the success rate. Only occasion-
ally a few additional epochs of data need to be accumulated before it is passed. The
discrimination test was found to be more critical as soon as more ambiguities are
estimated simultaneously. This is logical due to the fact that if only one ambiguity
pair is different between the best and second best solution, the resulting ratio of
both squared norms can be small. Therefore this test is harder to pass if no inte-
ger ambiguities are incorporated yet, i.e during initialization, and thus the integer
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estimation vector is larger. Here, sometimes multiple epochs (up to 3 minutes) of
additional data have to be accumulated before this test is passed. However, if there
are already resolved integer ambiguities present in the filter, this test is, similar to
the integer test, in nearly all cases simultaneously passed with the success rate.

The just discussed ambiguity fixing statistics depicted in Fig. 4.11 and Fig. 4.5
as well as the performance of the individual validation tests apply to both the
individual forward and backward filter run. As mentioned earlier the integer ambi-
guities on both runs are estimated independently from each other, i.e. no integers
estimated in the forward run are allocated a-priori in the backward run. For the
entire data arc processed, no differences were found in an afterwards comparison
between the integer DD ambiguities allocated to the filter during both runs. It is
encouraging to see such a result, since it indicates a good consistency between the
individual estimation processes. However, it must also be mentioned that such an
additional test can only be used to identify discrepancies between both solutions,
but cannot provide conclusive evidence about which integer ambiguity would be
(more) in error in case a discrepancy is detected.

The smoothed relative position solutions from the EKF whilst fixing the ambi-
guities have of course also been compared to the KBR measurements. Similar to
the EKF float solution the KBR comparison time series of (top down) DOY 195,
217, 222 and 258 are presented in Fig. 4.12. It can directly be seen that fixing
the ambiguities, and incorporating them accordingly into the filter, dramatically
improves the precision of the relative position solution, compared to the ambiguity
float case. In addition, it is clearly visible that the ’once per revolution’ periodicity,
encountered in the EKF float solution, has (largely) disappeared. This is due to the
fact that the ’integer corrected’ carrier phase observations dominate the solution
due to the strength of this measurement type. The pattern that has now become
visible is thus mostly the result of unmodeled systematic effects, such as multipath,
present in the GPS carrier phase observation data.

The best overall precision for the entire data arc is obtained for DOY 258 where
the standard deviation of the KBR comparison is only 0.63 mm. It is furthermore
encouraging to see that the worst case scenario for the entire data arc, DOY 217,
has a precision of 1.62 mm, largely due to one outlying period between 15:00 and
16:00 that day. It is unclear if this is related to an incorrectly resolved ambiguity
since the corresponding kinematic solution (Fig.4.13) shows no such traces (like the
ones earlier depicted in Fig. 4.2 between 10:00 and 11:30) and did not reject any
observations for that time. In the kinematic solution it can be observed that around
this period there are some gaps in the KBR comparison, meaning that not enough
integer ambiguities are available to construct the SPP solution. The outlying period
in the reduced dynamic ambiguity fixed solution is most likely related to this fact.
However, since such a ’dramatic’ situation only occurred twice during the entire
data arc (once more on DOY 231, as can be seen from the standard deviation series
for the entire data arc in Fig. 4.14) no further effort has been put into resolving
the exact nature of this discrepancy. Furthermore, it can be seen in the KBR fit
of DOY 222 that also in the ambiguity fixed case the relative position solution
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Figure 4.12 Time series of the KBR comparison residuals of the GRACE relative position
solution. The relative position is obtained from the EKF when fixing DD
ambiguities to integer values. Shown are (top down) DOY 195 (average
situation), DOY 217 (worst case), DOY 222 (extended data gap) and DOY
258 (best overall fit).
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Figure 4.13 Time series of the KBR comparison residuals of the GRACE relative position
solution. The relative position is obtained from the kinematic carrier phase
data only SPP process, using the fixed ambiguities from the EKF. Only
solutions with a PDOP value of 7 or lower are displayed and used. Shown are
(top down) DOY 195, DOY 217, DOY 222 and DOY 258.
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is propagated over extended data gaps without difficulty. The relative position
errors in either the forward and backward solution are on the same level as for the
ambiguity float scenario (15 cm compared to the KBR), and do not show up in the
smoothed solution. This is due to the fact that either one of the solutions no longer
has any integer ambiguities allocated and thus has a significantly lower weight in the
smoothing process from eqn. 4.46. This same analogy can be applied to the ’ramps’
that occur at the beginning and the end of a daily data arc, e.g. the beginning of
DOY 217 or the end of DOY 195. Here the covariance of either the forward or
backward solution has not yet any integers allocated and is not fully converged. A
solution to this can be provided by extending the length of the daily data arc with
e.g. 1 hour on each side, but only use the middle 24-hours for the KBR comparison.
A similar, but smaller, effect can also be seen around the GPS phase breaks at 6:15
and 10:15 during DOY 217. Unfortunately, no simple solution, like the data arc
extension, can be provided for such cases. It can furthermore be seen that the KBR
comparison time series experience several smaller and larger jumps, e.g. DOY 217
0:30 or DOY 258 1:45 and 5:00, not coinciding with GPS or KBR phase breaks.
These jumps are related to the sudden allocation of multiple integer ambiguities in
either the forward or backward run from a state where not many, or no, integer
ambiguities are already present in the filter. Aside from the fact that the kinematic
solution (depicted in Fig. 4.13 for again (top down) DOY 195, 217, 222 and 258,
where only relative position solutions with a PDOP of 7 or lower are included) is
much noisier, correlations in the overall pattern of systematic carrier phase data
errors with the EKF fixed solution can be observed and is expected. However, it
can also be clearly seen in the KBR comparison time series of both the kinematic
and EKF fixed solution, that the relative S/C dynamics offer protection against
some systematic position outliers at e.g. DOY 195 4:00 and 17:00, DOY 222 14:30,
or DOY 258 9:45 and 23:00.

The KBR fit standard deviations for the entire 101 day data arc for both the
kinematic (bottom) and EKF fixed (top) solution are given in Fig. 4.14. Despite
a few, relatively small, outliers in each of the solutions, the overall precision of the
(along-track component of) the relative position in the kinematic case is 4.19 mm
and in case of the EKF fixed solution even 0.91 mm. Compared to the relative
position constructed from the individual GRACE POD solutions or the EKF float
solution a precision improvement of more than respectively a factor 17 and 8 is
achieved. For truly high precision post-facto relative positioning of formation flying
S/C it is thus of the utmost importance to correctly resolve and use the integer
carrier phase ambiguities.

As mentioned earlier in chapter 1 there has so far been only one other study, by
Svehla and Rothacher [2004a], focussing on high precise post-facto reconstruction of
the relative position between both GRACE satellites. In this study a slightly larger,
but fully overlapping, data arc (2003, DOY 182 to 302) has been processed using
the Bernese software package. As mentioned in section 4.2.3 the specific processing
strategy and details are not published, but it is known that a batch LSQ estimation
method has been used based on the absolute S/C dynamics and not the relative
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Figure 4.14 Daily standard deviations of the GRACE relative position, constructed by
processing SD code and carrier phase observations with fixed ambiguities, when
compared to the KBR measurements. The top figure shows the reduced
dynamic solution from the EKF, the bottom one the kinematic SPP position
solution constructed using carrier phase data in conjunction with the integer
DD ambiguities from the EKF.

formulation as presented in section 4.2.3. Furthermore, a DD parametrization is
used, where the wide-lane and narrow-lane ambiguities are estimated separately, in
a similar fashion briefly described at the end of section 4.1.1. Out of an average
daily number of 416 DD ambiguity pairs for the entire data arc presented, 98.4% of
the wide-lane and 92.8% of the narrow-lane ambiguities are stated to be resolved,
which is in good agreement with this research, where 91% out of 400 pairs (that
are present for more than 300 s) are resolved. The resulting reduced dynamic
(batch LSQ) ambiguity fixed relative position solution has also been compared to
the KBR in a similar way as performed here. The best precision found by Svehla
and Rothacher [2004a] is about 2.8 mm, which is even higher than the worst case
presented in this dissertation (1.62 mm). Furthermore, for the period between DOY
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210 and 235, several outliers in the KBR comparison standard deviations, varying
between 12 and 16 mm, were found for the reduced dynamic (batch LSQ) ambiguity
fixed solution. This might indicate that an EKF, or another recursive estimation
method, is more suitable for an application of this nature.

4.4.8 Relative position comparisons

As mentioned in the first chapter, many studies in the field of relative positioning of
formation flying spacecraft are based on hardware-in-the-loop or software simula-
tions. In both cases the actual accuracy of the resulting relative position estimates
can be computed since the reference trajectories of the S/C concerned are exactly
known. For this research such values can unfortunately not be computed. It has
however already been shown in the previous subsections that the true precision of
the along-track component of the relative position between the GRACE S/C could
be computed using the KBR measurements. Aside from the fact that this already
is a very unique aspect for a real-world spaceborne scenario, information about the
precision of the other components is unfortunately not obtained in this way. How-
ever, an indicative measure of these quantities can be obtained by comparing the
different filter solutions, discussed in the previous subsections. This comparison is
performed in exactly the same way as for the POD scenarios, described in section
3.6.4, with the only difference that it now concerns relative position solutions in-
stead. For each of the comparisons the statistical mean and RMS of the data series
are computed. The EKF ambiguity fixed solution has been selected as reference for
the comparisons, since it has been shown to be the most precise when compared
to the KBR measurements. It is therefore also assumed to be the most accurate
solution that has been created. The first comparison concerns the kinematic fixed
solution minus the EKF fixed solution, for which the daily mean and RMS values
over the entire data arc are depicted in Fig. 4.15 and Fig. 4.16 respectively. The
second comparison concerns the EKF float minus the EKF fixed solution, for which
the daily mean and RMS values over the entire data arc are depicted in Fig. 4.17
and Fig. 4.18 respectively. It must be mentioned that the EKF fixed solution is
expected to be (highly) correlated with both solutions, since not only the same
GPS data has been used, but also, in case of the float solution, the same estima-
tion method and settings, or, in case of the kinematic solution the same integer
ambiguities. Therefore the results of this comparison should even be more carefully
interpreted than for the POD scenarios. A more independent measure for consis-
tency would therefore also be the comparison of the kinematic solution with the
EKF float one, which has also been performed. The results obtained were found to
be in perfect agreement with the other comparisons and are therefore not depicted
here.

As can be seen in Fig. 4.15 and Fig. 4.16 a fairly large but seemingly constant
mean and RMS are present in the radial component of the comparison between
the kinematic and the EKF fixed solution. Since it is commonly known that the
radial component of the purely kinematic case is not as well determined as the
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Figure 4.15 Daily mean offset in radial, along-track and cross-track direction between the
kinematic and reduced dynamic relative position solution, both constructed
using fixed integer ambiguities.

other components, due to the GPS viewing geometry, it is logical to assume that
this can mainly be contributed to the kinematic solution. The along-track and
cross-track component show an expected behavioral pattern as well, although it
remains unclear if the mean values, again seemingly constant, can be fully or largely
attributed to the kinematic solution. For example, the along-track component is
the one worst determined for a reduced-dynamic solution (as can also be seen in
Fig. 4.17 and Fig. 4.18) and it is not claimed that the EKF fixed solution, serving



4.4 Extended Kalman filter results 125

190 200 210 220 230 240 250 260 270 280 290
0

3

6

9

12

15

R
a
d
ia

l 
[m

m
]

RMS: 11.71mm

190 200 210 220 230 240 250 260 270 280 290
0

3

6

9

12

15

A
lo

n
g
−

tr
a
c
k
 [
m

m
]

RMS: 4.21mm

190 200 210 220 230 240 250 260 270 280 290
0

3

6

9

12

15

Day Of Year (2003)

C
ro

s
s
−

tr
a
c
k
 [
m

m
]

RMS: 3.55mm

Figure 4.16 Daily RMS values in radial, along-track and cross-track direction of the
comparison between the kinematic and reduced dynamic relative position
solution, both constructed using fixed integer ambiguities.

as the reference for the comparison, is bias free. Correlations between the solutions
can be substantiated for the along-track component. When propagating the overall
precision of the KBR comparisons of both solutions, obtained from Fig. 4.14,
the standard deviation (precision) of the along-track component should more or
less be

√
4.192 + 0.912 = 4.28 mm. For the current relative position comparison,

the standard deviation however is
√

4.212 − (−0.51)2 = 4.18 mm. This indicates
that only a small correlation is present between the along-track components of
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Figure 4.17 Daily mean offset in radial, along-track and cross-track direction between the
float and fixed ambiguity reduced dynamic (EKF) relative position solutions.

both solutions. It is assumed that similar small correlations are present in the
other components. Therefore, the RMS values presented for the radial and cross-
track component of this comparison, 11.71 mm and 3.55 mm respectively, are only
indications, but most likely very good ones, for the precision (standard deviation)
of the kinematic relative position solution in these directions.

When looking at the comparison between the EKF float and fixed solution the
mean and RMS values of all components describe an expected behavioral pattern
as well, i.e. a high RMS for the along-track direction, and lower ones for the radial
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Figure 4.18 Daily RMS values in radial, along-track and cross-track direction of the
comparison between the float and fixed ambiguity reduced dynamic (EKF)
relative position solutions.

and cross-track components. In the same way as done for the previous comparison
the correlation in the along-track component of both solutions can be substantiated.
From the KBR comparisons (Fig. 4.14 and Fig. 4.10) it follows that the along-track
standard deviation of the relative position comparison should be 7.91 mm. This one
however reads 8.07 mm, again indicating a, this time positive, correlation. Similar
small correlations are assumed to be present in the other components of the com-
parison. Therefore, similar to the kinematic comparison, the RMS values presented



128 Relative spacecraft positioning

190 200 210 220 230 240 250 260 270 280 290
0

3

6

9

12

R
a
d
ia

l 
[m

m
]

Std. Dev.: 1.75mm

190 200 210 220 230 240 250 260 270 280 290
0

3

6

9

12

A
lo

n
g
−

tr
a
c
k
 [
m

m
] Std. Dev.: 4.57mm

190 200 210 220 230 240 250 260 270 280 290
0

3

6

9

12

Day Of Year (2003)

C
ro

s
s
−

tr
a
c
k
 [
m

m
] Std. Dev.: 0.73mm

Figure 4.19 Daily formal variances of the extended Kalman filter in radial, along-track and
cross-track direction, in the comparison between the float and fixed ambiguity
relative position solutions.

for the radial and cross-track component of the EKF float comparison, 3.54 mm and
1.56 mm respectively, are only indications, but most likely very good ones, for the
precision (standard deviation) of the EKF float relative position solution. As can
be seen these RMS values are much lower than for the kinematic case, which is nor-
mal since for a reduced-dynamic solution the along-track component is in general
the least precise one. Some evidence for this is provided by looking at the formal
filter precision (variances) for the relative position comparison at hand, depicted in
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Figure 4.20 Daily formal variances of the extended Kalman filter in radial, along-track and
cross-track direction, when constructing the fixed ambiguity relative position
solution.

Fig. 4.19. This figure is constructed by properly propagating the filter covariances
from the individual solutions in the comparison. Despite the fact that the formal
precision is too optimistic by more or less a factor 2, the overall ratios between the
different directions is more or less identical as for the RMS values derived from the
comparison.

Although the KBR comparisons presented in the previous subsections depict
the kinematic solution as the one more precise than the EKF float solution, the
relative position comparisons show a different picture. As expected the radial and
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cross-track component of the EKF float solution have shown to be more precise than
the ones from the kinematic solution. The 3-dimensional float solution is therefore
also expected to be more precise, and more accurate, than the kinematic one. This
could not be concluded based on the KBR comparisons alone. Besides being more
precise, the float solution also has the benefit of being continuous and smooth,
whereas the kinematic one is only available at discrete epochs. The mean values of
the float minus fixed comparison, depicted in Fig. 4.17, can also be explained to
some extent. The fluctuation of the mean of the along-track component can be fully
contributed to the EKF float solution, since it was not present in the mean of the
kinematic comparison (Fig. 4.15). This is mainly caused by day-to-day differences
in the differential atmospheric drag. It was already shown in Fig. 4.6 that the
empirical accelerations between the float and fixed solution are slightly different.
In case of the float solution not all force model discrepancies seemed to be properly
captured by them, meaning that these errors are absorbed in the position. The
fixed solution however is constructed from a much stronger measurement type and
is thus able to keep the discrepancies out of the position components. An interesting
phenomenon is again visible in the cross-track mean, where at the end of the data
arc a periodic effect starts to show up, similar to the POD comparison. This is
probably again related to solar radiation pressure mismodeling, and can most likely
be fully attributed to the float solution since it did not show in the kinematic
comparison. The reason it did not show in the fixed solution is again the fact
that the measurements used in this case are much stronger, and thus dominate the
solution. The seemingly constant radial offset can have several reasons, the most
likely ones are that, again, the dynamics are more dominant in the float solution,
or that there is a different antenna phase center for the pseudorange observations,
which still contribute to the float solution to some extent.

Unfortunately, the just discussed comparisons do not reveal any indication about
the precision of the EKF fixed solution serving as the reference. However, the formal
filter variances of the radial, along-track and cross-track component of this solution
are given in Fig. 4.20. Although it is observed that the true precision from the KBR
validation (Fig. 4.14) fluctuates over the data arc and the formal precision does
not, the overall values (0.91 mm) are in perfect agreement. This mostly indicates
that the a-priori weights for the GPS (carrier phase) observations as well as the
dynamic constraints are realistically chosen. Despite the fact that it is tempting to
believe that the overall precision in the radial and cross-track component are thus
also similar to the formal ones, 0.50 mm and 0.38 mm respectively, no substantial
evidence for such a claim can be provided. The only thing pointing in such a direc-
tion would be the fact that a similar ratio for the individual component precision
was also found for the EKF float solution, based on the EKF float minus EKF
fixed solution comparison. If any statements about the precision of the radial and
cross-track component of the fixed solution should be made, it is more realistic to
assume a similar precision as found for the along-track direction from the KBR fit,
meaning 0.91 mm for both the radial and cross-track component as well. This would
result in a 3-dimensional precision of 1.56 mm. Unfortunately, potential biases in
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the solution remain undetected and cannot be quantified. An example source of
a constant bias in any component would be a shift or mismodeling in either one,
or both, of the GRACE GPS receiver antenna phase center offsets. Such a shift
would also remain undetected in the solution comparison performed here due to
the fact that each solution is constructed using the same offsets. It is possible that
such biases are larger than the precision. It is however unlikely that they are too
large, without quantifying this statement, otherwise the resolution of the integer
DD carrier phase ambiguities might not have been so successful, as validated with
the KBR.

4.5 Some words on ...

This section contains an overview of some additional tests that have been carried
out using the FRNS tool. First, the impact of higher systematic errors in the
GRACE data on the relative position is analyzed, followed by a presentation of the
improvements that can be obtained when using the C/A code and, especially, the
accompanying carrier phase observable instead of the P1 code and carrier phase.
The section is concluded with a brief analysis on using some different ambiguity
resolution approaches.

4.5.1 ... the effects of higher systematic or multipath errors

The GPS data used to create the results presented in section 4.4 was already sub-
ject to a mild form of systematic or multipath errors as depicted and discussed in
section 2.6.2. In this last section it was also demonstrated that once the GPS occul-
tation antenna on GRACE B was activated for testing purposes, higher systematic
errors on the pseudorange data from the GPS POD antenna were encountered. For
the carrier phase data this can so far only be suspected. For relative positioning
applications the effects of higher systematic errors in the GPS data can contribute
to the baseline solution on two levels. First of all, high errors in the pseudorange
data could lead to incorrectly resolved integer DD ambiguities, which would then
degrade the relative position solution accuracy. Second, if the integer ambiguities
can be resolved correctly, high systematic errors in the carrier phase data could
prevent a mm-level precision for the resulting relative position solution.

In order to assess the impact of higher systematic errors in the GPS data on the
relative position solution, the GPS data collected during the occultation antenna
test on GRACE B in July 2004 have been processed by the EKF, and the resulting
baseline solutions compared to the KBR. The settings used for this test are the
same as discussed in section 4.4.1. Only the ambiguity fixed case is considered,
since the effects on ambiguity resolution and mm-level precision of the relative
position solution are assessed. The KBR residuals of the reduced dynamic ambiguity
fixed solution for 2004 DOY 209 through 212 (top down) are given in Fig. 4.21.
The period where the GPS occultation antenna on GRACE B was activated, more
specifically from July 28 (DOY 210) 06:05 until July 29 (DOY 211) 07:10, is marked
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Figure 4.21 Time series of the KBR comparison residuals of the GRACE relative position
solution. The relative position is obtained from the EKF when fixing
ambiguities to integer values. Shown are (top down) DOY 209, DOY 210,
DOY 211 and DOY 212 of 2004. The period over which the GPS occultation
antenna was activated (DOY 210 and 211) has been marked.
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here. As can be seen in this figure no significant changes are encountered in the
KBR residuals during the activation, meaning that the relative position solution
seems to remain unaffected. It must be noted that the higher residuals between
12:00 and 18:00 on DOY 210 were found to be related to 2 small GPS, and KBR,
data gaps after which the filter no longer has any fixed integer ambiguities allocated.
Situations like this were also encountered during the 2003 data arc analyzed for this
research (section 4.4.7, e.g. DOY 217 in Fig. 4.12) and have nothing to do with
higher systematic errors in the GPS data. In addition, a similar percentage of DD
ambiguities (82.3% and 85.5% for DOY 210 and 211 respectively) could be fixed
as under other circumstances. Furthermore, the kinematic solution, not depicted
here, also shows no evidence of higher systematic effects in the carrier phase data.
Although clearly a longer data arc with such higher systematic errors, as the earlier
mentioned December 2004 period (section 2.6.2), should be analyzed to draw any
conclusions, the relative position solution as well as the (quality of the) integer
ambiguity resolution scheme, seem to remain unaffected.

4.5.2 ... using the C/A code and carrier phase observations

So far, all relative position solutions presented in section 4.4 were created using the
P1-code and accompanying L1-carrier phase observable. It was already mentioned
in chapter 2 that the BlackJack GPS receiver onboard the GRACE S/C supports
and gives out all three code and accompanying carrier phase observations. It was
also shown in Fig. 2.6 that the noise of the C/A code observable is notably lower
than the noise on P1 under all circumstances tested. Furthermore, the carrier
phase observable, LA, accompanying the C/A code was used for visualizing the
assumed upper limit for the noise on the L1 observable, depicted in Fig. 2.7.
In order to verify if the noise of the LA observable is indeed lower, and to see
if any further improvements in the relative position solution can be obtained, it
has been used by the FRNS tool for a brief test, together with the accompanying
C/A code observable. The overall settings chosen for this test are identical as
lined out in section 4.4.1. Only the ambiguity fixed case is considered here. The
test has been carried out over the same days for which the KBR comparison time
series were given earlier, DOY 195, 217, 222 and 258. No significant changes were
found in the reduced dynamic solution, where the standard deviation of the KBR
comparison time series changes with no more than 1-2%. A very notable and
significant improvement however was encountered in the kinematic SPP solution,
constructed using the ionosphere free carrier phase observable derived from LA and
L2, which is depicted in Fig. 4.22. Here, again only solutions with a PDOP value
of 7 or lower are included. It can immediately be seen that the noise on the LA

observable is indeed (significantly) lower compared to the one on L1 (Fig. 4.13). The
standard deviation of the KBR comparison is more than 25% lower, corresponding
to more than 1 mm. A similar result is found for the other components of the
kinematic solution, when comparing the reduced dynamic and kinematic relative
position solutions in the same way as described in section 4.4.8. The biases between
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Figure 4.22 Time series of the KBR comparison residuals of the GRACE relative position
solution. The relative position is obtained from the kinematic SPP process
using the ionosphere free carrier phase observable constructed from LA and L2,
complemented with the integer ambiguities from the EKF. Only solutions with
a PDOP value of 7 or lower are displayed and used. Shown are the results for
(top down) DOY 195, DOY 217, DOY 222 and DOY 258.
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both solutions seem to remain unchanged, but the RMS of the residuals in radial,
along-track and cross-track direction respectively become around 9.5 mm, 3.7 mm
and 3.1 mm, indicating that the overall precision of the kinematic solution increased.
Furthermore, a pattern of systematic errors in the data can clearly be observed in
Fig. 4.22, which, when closely examining Fig. 4.13, can also be discovered if the
L1 observable is used. It is thus logical that the reduced dynamic solution does not
alter dramatically if only the noise level of the data lowers, since the EKF is not
very susceptible to such a change.

4.5.3 ... testing different ambiguity resolution approaches

It was already mentioned earlier that without applying the integer validation tests
based on screening the individual ambiguity residuals (eqn. 4.11 and eqn. 4.12)
incorrect integer values were incorporated in the EKF, sometimes leading to diver-
gence of the filter solution. In this section a brief demonstration of a (non-diverging)
result from the EKF is given when using only the success rate and the integer (eqn
4.7) and discrimination (eqn. 4.8) test for ambiguity validation. This is done since
many software packages apparently use such a validation scheme as conclusive (
[Verhagen, 2004b]; [Leick, 1994]). In addition, the results of testing another ambi-
guity validation and handling concept are also briefly presented. Here, the integer
ambiguities are not incorporated in the EKF, but resolved every epoch and only
used on that instance.

Both concepts were tested on a shorter (sub) data arc, 2003 DOY 210 to 220,
initially used for development of the final FRNS tool [Kroes et al., 2005]. Here it
was found that when using only the first 3 integer validation test, without screening
the individual ambiguity residuals and furthermore applying the same settings as
given in Table 4.1, this leads to complete divergence on DOY 214 and 217. There-
fore, a more conservative value for the (more critical) discrimination test has been
selected, kS/B = 5.0, still allowing incorrectly resolved integer ambiguities to be
incorporated in the filter, but preventing divergence for any day in the short data
arc at hand. The results of the relative position compared to the KBR for DOY
213 are depicted in Fig. 4.23. The top plot shows the situation where the entire
validation scheme, including the individual ambiguity residual screening tests, is
applied. The one below this shows the situation with the ’incomplete’ validation
procedure, just discussed. As can be seen some incorrectly resolved ambiguities
have been incorporated, leading to erroneous relative position fixes. A comparison
between both solutions learns that the effect of the incorrectly resolved, but in-
corporated, integer values is most dominantly present in the along-track direction
under all circumstances tested, which is most likely related to the fact that this
direction has the highest uncertainty in the filter. The position errors in the radial
and cross-track components were found to be smaller by at least a factor 2. It must
be mentioned that in this case the incorrectly resolved ambiguities were rejected by
the SPP process of the kinematic solution. It has therefore also been tried to incor-
porate the kinematic SPP solution as an additional ’test’ in the integer ambiguity
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Figure 4.23 Time series of the KBR comparison residuals of the GRACE relative position
solution. Shown are the results of different ambiguity resolution and fixing
concepts for DOY 213. Top-down are given the solution with the overall
integer validation scheme applied, the solution with an integer validation
scheme not screening the individual ambiguity residuals, the float solution, and
the solution with ’locally’ fixed integers.
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validation scheme (also in the complete validation procedure discussed in section
4.1.2). Although this seems attractive at first, it did not work for the following
reasons. First of all, there are not always 4 integer DD ambiguities present, mean-
ing that a (redundant) kinematic solution cannot always be constructed. This in
contrast to the other tests in the validation scheme that can be executed under all
circumstances. Second, an incorrect integer ambiguity is sometimes first detected
after it has already been incorporated into the filter. Finally, the SPP process does
not always seem to properly ’identify’ the integer ambiguity that has been resolved
incorrectly, and can also reject another one instead.

An alternative approach to handling the integer ambiguities is to estimate them
every epoch and subsequently use them only once to improve the relative position
solution locally, without incorporating them as described in section 4.3. The filter
state and covariance are thus kept filled with float values only, which prevents
divergence of the solution under all circumstances tested. The third plot from the
top in Fig. 4.23 shows the relative position constructed using solely float ambiguities
compared to the KBR for DOY 213. The bottom plot shows the solution where
the filter gets local updates from integer ambiguities. The only test that is carried
out here is to see if the success rate is high enough (99.0%), which can be seen
by the fact that sometimes the float solution is used. Still, incorrectly resolved
integers can be identified between 10:00 and 11:30, the same also present in Fig.
4.2. It can also be argued to always use the estimated integer ambiguities in this
case without applying any kind of test. However, when lowering the limit of the
success rate to 90% it was found that outliers of 10 cm were already encountered
in the KBR comparison. Therefore the 99.0% success rate limit remained in effect.
As can be seen in Fig. 4.23 the resulting solution is neither continuous nor 100%
discrete in nature. Its precision however, when compared to the EKF fixed solution,
is somewhere between the EKF fixed and EKF float solution. This might be an
attractive alternative for some applications where a possibility of precise validation
of the solution, presented by the KBR in this case, is not available and incorrectly
resolved ambiguities, leading to a divergence of the solution, can thus not always
be detected.





Chapter 5

Conclusions and outlook

The primary objective of this research work was to develop, implement, test and val-
idate a method for high precision post-facto relative positioning of formation flying
spacecraft. Based on the results from the previous chapter it can be concluded that
this objective has been fulfilled. When tested using GRACE GPS observation data,
the developed extended Kalman filter has shown to provide relative position solu-
tions with (sub-)mm precision (1-dimensional), after validation with the GRACE
KBR measurements. For the 101-day GRACE data arc processed, an overall rela-
tive position precision of 0.91 mm was found from the KBR comparisons. Although
this represents only the precision of, more or less, the along-track component, it is
believed that the precision of the other components (radial and cross-track) is of the
same order of magnitude (section 4.4.8). It is again emphasized that the KBR vali-
dation does not provide conclusive information about the accuracy of the solution.
Constant biases are namely absorbed in the calibration process (section 4.4.4).

However, in order to arrive at the high precision solution it can be concluded
that a few prerequisites have to be met. These are briefly mentioned here, and dis-
cussed in more detail in the following. First, and most important of all, the integer
nature of the double difference carrier phase ambiguities has to be exploited. Once
again, this has proven to be the key to precise relative (spacecraft) positioning.
Second, a reduced dynamic processing strategy should be used. Aside from the fact
that this results in a smooth and (semi-)continuous solution with a much higher
precision (3-dimensional) than for the kinematic ambiguity fixed case (section 4.4.8,
Fig. 4.16), the inclusion of the spacecraft dynamics have shown to provide the ad-
ditional robustness required for reliable integer ambiguity resolution. Furthermore,
the GPS observation data used has to be of a good quality, and it is therefore recom-
mended to use dual frequency geodetic grade GPS receivers for applications of this
nature. Closely related to this fact is the facilitation of a robust GPS observation
data editing procedure. This is of great importance since undetected cycle slips, or
outliers in the pseudorange data, can seriously deteriorate the resulting solution.
In addition, precise a-priori knowledge of the orbit of one of the spacecraft, serving
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as the reference, is required for relative positioning. Therefore, and this is the final
prerequisite, a strict processing scheme is to be followed, involving the generation
of a precise orbit for each of the individual (GRACE) satellites.

Regarding integer ambiguity resolution itself, it can be concluded that the se-
quential or recursive processing methodologies have shown to be more flexible in
dealing with this problem. They allow on-the-fly resolution and incorporation of
the integer ambiguities, directly strengthening the relative position solution. This
however comes with the associated risk of divergence of the filter solution as soon as
incorrectly resolved integers are still allocated. The batch LSQ estimation methods
do not have this last problem. Practical tests with the kinematic batch LSQ on the
other hand demonstrated unacceptably long search times when using the LAMBDA
method. Although not verified, it is not expected that the reduced dynamic batch
LSQ behaves any different in this respect. The large numbers of ambiguity pairs
combined with the short SD pass length for the spaceborne scenario might make
it hard for any kind of ILS scheme to be successfully applied. It is left for further
study to see if e.g. an improved stochastic measurement model could be beneficial
in such cases. In contrast, the LAMBDA method has demonstrated to work well
for the sequential or recursive methods where the number of simultaneously esti-
mated integer ambiguities is much smaller. For these processing strategies however,
proper integer ambiguity resolution for real-world spaceborne applications, with
unmodeled multipath and systematic errors in the GPS observation data, requires
the inclusion of the relative spacecraft dynamics. This was demonstrated with the
sequential kinematic filter, which simply lacked the robustness to properly cope
with this problem. In addition to the dynamics, a conservative ambiguity valida-
tion procedure, more or less custom tailored for the GRACE application at hand,
was required by the EKF in order to prevent incorrectly estimated integer values
to be allocated to the filter.

With respect to the relative spacecraft dynamics, it can be concluded that the
way they are facilitated within the EKF scheme works properly in the context of
the GRACE mission. Next to the fact that the dynamics provides the robustness
for proper ambiguity resolution, it is also required for the highly precise relative
position solution. However, since the EKF ambiguity fixed solution clearly shows
traces of multipath or systematic errors in the carrier phase data (section 4.4.7, Fig.
4.12), it is not believed that improved dynamical modeling for e.g. the atmospheric
drag or solar radiation pressure will result in an even more precise solution. For the
EKF ambiguity float solution on the other hand it was demonstrated that the effects
of some mismodeled forces, most likely the solar radiation pressure, still showed up
in the relative position. Improved dynamical modeling might therefore be beneficial
in this last case.

Another factor of critical importance is the quality of the GPS observation data
used. Despite the fact that under normal circumstances the GRACE GPS data
is relatively low on multipath and systematic errors (section 2.6.2), a conservative
integer ambiguity validation scheme was still required due to the presence of these
unmodeled (pseudorange) errors. In addition, as mentioned before, the EKF relative
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position solution is clearly affected by carrier phase multipath (Fig. 4.12). Although
a first test over a single day with even higher multipath and/or systematic errors
in the GRACE (pseudorange) observation data (Fig. 2.5) did not seem to have any
influence on either ambiguity resolution or the precision of the resulting relative
position solution (section 4.5.1), it is left for further study, involving data collected
over longer time spans, to see if this is truly the case.

It can furthermore be concluded that the entire processing scheme works very
adequately. The reduced dynamic orbits generated with the GHOST RDOD tool
have shown to be precise enough for the purpose of relative positioning. This has
first of all directly been verified by the independent SLR comparisons (section 3.6.5).
An indirect validation is offered by the relative position solution results obtained,
since errors in the RDOD orbit of the reference spacecraft directly influence the
modeled SD observations (eqn. 2.34), and thus the resulting solution.

Applicability of the developed filtering scheme

The EKF processing strategy developed for precise relative positioning of space-
craft is in principle applicable to any kind of (LEO) satellite formation, provided
that enough SD GPS observations can be formed at all, or most, measurement
epochs. Of course it also depends on the GPS receivers that are used. Due to
issues like, again, observation data quality (multipath suppressing characteristics)
geodetic grade spaceborne GPS receivers are preferred. The formulation of the rel-
ative S/C dynamics is basically independent of the composition of the formation.
However, if the formation requires a lot of active control by means of thruster ac-
tivity this might have to be facilitated in the dynamical model. Another issue that
might be important for out-of-plane formations with long baselines is the fact that
after large GPS data outages the filter might require a restart. This is due to the
fact that the resulting integration error caused by the dynamical model uncertainty
might cause the filter to run out of the linear domain.

For satellite formations with short separations between the spacecraft, such
as the envisaged TerraSAR-X/TanDEM-X formation in bistatic operation mode,
some potential benefits for relative positioning can be identified. First of all, a
shorter baseline should be beneficial for the number of SD observations that are
available at each epoch, although the distribution for GRACE was already very good
(Fig. 4.5), and might hereby positively influence the reliability or chance of obtaining
a solution with a high precision. Another potential benefit is a more reliable and
faster resolution of the integer carrier phase ambiguities. This is based on the same
assumption as for the terrestrial case that the DD ionospheric path delays can
be ignored, or at least be reduced by a simple model to a level that they can be
ignored, for short baselines. However, the ionospheric effect should still be properly
accounted for in the final position solution if high precision is to be obtained. Aside
from these two benefits, it is most likely that the precision of the relative position
solution itself will also (slightly) increase. This is first of all due to the fact that
the maximum error in the modeled SD observation (eqn. 2.34) decreases as soon
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as the spacecraft separation becomes smaller. In addition, the (potentially) higher
number of SD observations will in principle result in a better determined solution.
However, the GRACE EKF ambiguity fixed solution has shown to be affected by
systematic errors in the GPS carrier phase data (Fig. 4.12), which do not depend on
the spacecraft separation. Therefore the obtainable precision remains limited to a
certain level (for GRACE the best precision obtained that was obtained is 0.63 mm
for DOY 258), dictated by the quality of the observation data.

The only remaining issue with the applicability of the developed EKF to other
scenarios is the ambiguity validation procedure. As stated earlier this procedure
is more or less custom tailored to the GRACE application at hand. The great
detection power of the KBR observation data is able to visualize every flaw in the
resulting relative position solution, allowing for a good calibration of the critical
values of the different ambiguity validation tests (section 4.1.2). Although the
developed procedure is in principle applicable to other spaceborne scenarios as well,
the absence of an external validation possibility in these cases might make the
calibration of the scheme very hard.

Recommendations for further study

Although the developed EKF is in principle applicable to other spaceborne scenarios
as well, a question that remains for such cases is how to validate the precision of
the relative position solution without an external validation possibility like the
KBR observations. Closely related to this is the proper calibration of the currently
implemented integer ambiguity validation procedure. Although a large divergence
of the ambiguity fixed relative position solution can certainly be detected under
other circumstances as well, it is questionable if the more subtle errors caused by
incorrectly resolved integers, as demonstrated in section 4.5.3, can be identified as
well without such an external validation possibility. These issues form the basis for
the recommendations for further study.

One of the first issues for further study should be the development of a more
generic ambiguity validation procedure for the existing filter. Although the kine-
matic SPP process has demonstrated to have some detection power for incorrectly
resolved ambiguities, its use for inclusion in such a scheme is limited (section 4.5.3).
The first step in the development of a more generic procedure might be the use
of corrective models for multipath and systematic errors in the GPS observation
data, and, simultaneously, the application of a better stochastic model, facilitating
a C/N0 dependent data weighting and perhaps even taking correlations between the
observations, and in time, into account. If this would be implemented, the resulting
ambiguity success rate might become more reliable (meaning that it reflects the
true situation better), and might even make screening of the individual ambiguity
residuals, for which determination of the critical values was found to be the most
difficult, unnecessary. The GRACE scenario still serves as the perfect test-bed for
such as study. As a start, the systematic errors for the pseudorange data from
Fig. 2.3 and Fig. 2.4, presented earlier, can be used. The pseudorange data weights
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can also be obtained from the earlier derived results in Fig. 2.6. For the carrier
phase data, the results from Haines et al. [2005] might somehow provide a good
starting point, as well as the noise curves from Fig. 2.7.

Another consideration might be to step away from the on-the-fly ambiguity
resolution approach. This in order to prevent complete divergence of the filter
solution under all circumstances as soon as incorrectly resolved integer ambiguities
are allocated. An alternative approach might be to resolve the integer ambiguities
on each epoch after the smoothed float (ambiguity) solution has been computed
first. The found integers can then be used to update the solution on the epoch they
relate to. This is not entirely identical to the method discussed in section 4.5.3,
where the ambiguities are still estimated during both filter runs. It is left for further
study to see if the obtainable precision of the suggested alternative is as good as
the precision obtained so far.

The validation of the (ambiguity fixed) relative position solution might already
be partly solved if corrective models for multipath and systematic errors as well a
proper stochastic model are applied. It might namely be that the formal variances of
the relative position comparison between e.g. the EKF float and EKF fixed solution
match the obtained (RMS) values better. However, it is left for further study to
see if this is truly the case. Another consideration might be the use of the reduced
dynamic batch LSQ estimation method for relative spacecraft positioning. The
batch LSQ allows for an additional consistency check of the results, by screening
the post-fit residuals to see if any discrepancies exist (as for the POD case 3.6.3).
It is however left for further study to see if a way exists to properly cope with the
problems encountered earlier with this processing strategy. If (re-)implemented, it
is advised to use the resolved integer ambiguities from the EKF in the batch LSQ
and not (re-)estimate the integers using the LAMBDA method. It is namely still
believed that the earlier encountered search time problem is hard to solve.

Some satellite formations might offer an indirect validation possibility for the
relative position solution. It was already demonstrated by Kohlhase et al. [2003]
that interferometric SAR images can be used to disclose information on the absolute
position accuracy of the satellite that took the images. The interferometric SAR
images from the envisaged TerraSAR-X/TanDEM-X formation could possibly be
used for this purpose as well, but than for the relative position. If this is truly
feasible remains for further study.

A final recommendation is the use of the GRACE GPS observation data for a
real-time relative spacecraft positioning study. This is certainly of interest as soon
as the GRACE satellites would be in close proximity of each other, which is the
case if the envisaged switch manoeuvre [Kirschner et al., 2004] truly takes place.
It could then be proven if many of the (single-frequency) concepts from previous
studies truly work under real-world conditions, or if the assumptions made in here,
especially regarding ambiguity resolution, are too optimistic.
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Future developments of GPS and Galileo

In the near future the GPS system will be enhanced with the modulation of a
civil code on the second transmitting frequency, as well as with a new to come
third transmitting frequency. In contrast to the L1 and L2 frequencies, the third
frequency, L5, will only be modulated with a civil code. In addition, the European
Galileo system, consisting of a total of 30 satellites, will become operational. These
satellites will transmit on a total of four frequency bands, partly overlapping the
GPS transmitting frequencies. A basic overview of these developments was already
given in Hofmann-Wellenhof et al. [2001].

These new developments will have some impact on the relative spacecraft posi-
tioning problem as well. First of all there are benefits for ambiguity resolution. It
has already been shown by Tiberius et al. [2002] that, especially for short baselines,
a somewhat higher ambiguity success rate (eqn. 4.5) can in general be obtained
in case of 3 transmitting frequencies. Significant benefits for ambiguity resolution
however, again measured by the ambiguity success rate, were reported when the
total number of simultaneously observed GPS or Galileo satellites increases. Fur-
thermore, the new Galileo codes are expected to outperform the existing, and new
to come, GPS civil codes with respect to multipath sensitivity as well as noise. This
would even be more beneficial for the ambiguity resolution problem.

The future availability of more GPS and Galileo spacecraft will also lead to a
better viewing geometry in (nearly) all cases. Although in principle this should be
beneficial for the obtainable precision of the relative spacecraft position solution, it
must again be mentioned that the precision will most likely still be dictated, and
thus limited, by the multipath and systematic errors present in the carrier phase
observation data.

Furthermore, it has been shown in section 4.5.2 that the use of the C/A code
and (especially the) carrier phase observable improves the precision of the kinematic
solution. Since the main cause of this improvement was a noise reduction in the
carrier phase observation data, but the multipath or systematic errors were still
present, the EKF solution remained largely unaffected. The future availability of the
civil code (and carrier phase) observable on the second GPS transmitting frequency
will most likely bring an additional improvement in the kinematic relative position
solution. However, based on the earlier obtained results, it is not directly believed
that this will improve the precision of the EKF solution much further. Nevertheless,
a future study is required to see if this is truly the case.



Appendix A

Integer Ambiguity Estimation

This appendix provides an overview of the basic operation of the three commonly
accepted methods for integer estimation, namely integer rounding, integer boot-
strapping, also referred to as sequential or conditional rounding, and integer least
squares (ILS). In addition, the Least Squares Ambiguity Decorrelation Adjustment
(LAMBDA) method, an efficient implementation of ILS and the integer estimation
method used for this research, is also described and compared to the standard ILS
procedure.

Although for this research integer estimation concerns the double difference car-
rier phase ambiguities on the individual frequencies, the just mentioned estimation
methods can be applied to other integer estimation problems as well. As already
mentioned in section 4.1.1 integer estimation is performed from a real-valued so-
lution of the double difference ambiguities. The quality of the integer estimate
strongly depends on the quality of this real-valued solution, as well as the integer
estimation method used. In order to arrive at an adequate real-valued solution, a
batch or recursive LSQ processing technique should be used. The general form of
the n-dimensional real-valued DD ambiguity vector, a, and the accompanying fully
populated covariance matrix, Qa, both expressed in units of cycles, obtained from
a LSQ method, are defined as

a =











a1

a2

...
an











; Qa =











σ2
a1

σa1a2
. . . σa1an

σa2a1
σ2

a2
. . . σa2an

...
...

. . .
...

σana1
σana2

. . . σ2
an











. (A.1)

An n-dimensional integer DD ambiguity vector, derived from this real-valued solu-
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tion is denoted as

n =











n1

n2

...
nn











. (A.2)

In the following the working of the integer estimation methods is discussed with the
aid of the 2-dimensional numerical example

a =

(

2.51
2.23

)

; Qa =

(

0.2767 0.2152
0.2152 0.1680

)

, (A.3)

obtained from Odijk [2002].

A.1 Integer rounding

The easiest way of obtaining an integer estimate from the real-valued solution is by
simply rounding to the nearest integer value. In this way the correlations between
the individual ambiguities are completely ignored. The vector of integer rounded
ambiguities, nR, simply reads

nR =







[a1]
...

[an]






, (A.4)

where [·] represents rounding to the nearest integer. Applying this to the numerical
example yields

nR =

(

[2.51]
[2.23]

)

=

(

3
2

)

(A.5)

for the integer ambiguities. In general integer rounding is a dangerous way of obtain-
ing an integer estimate, since the correlations between the individual ambiguities
are typically high and cannot be easily ignored.

A.2 Integer bootstrapping

A more proper way of obtaining an integer estimate is by means of sequential or con-
ditional integer rounding, also referred to as integer bootstrapping. In contrast to
integer rounding, the integer bootstrapping estimator takes the correlations between
the ambiguities into account to some extent, and therefore requires the covariance
matrix. The bootstrapped integer ambiguities follow from a sequential conditional
LSQ adjustment with a conditioning on the integer ambiguity values from the pre-
vious steps. In other words this means that the first ambiguity is simply rounded to
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the nearest integer value, the second integer is obtained with a conditioning on the
first, the third one with a conditioning on the second and the first, etc. In general
the bootstrapped integer estimator can be written as

n1,B = [a1],

n2,B = [a2|1] = [a2 − σa2a1
σ−2

a1
(a1 − n1,B)],

...

nn,B = [an|N ] =

[

an −
n−1
∑

i=1

σanai|I
σ−2

ai|I
(ai|I − ni,B)

]

,

(A.6)

where ai|I is the real valued i-th ambiguity obtained through a conditioning on
the previous I = 1, . . . , (i − 1) sequentially rounded ambiguities. These real-valued
sequentially least-squared ambiguities are obtained by a triangular decomposition
of the covariance matrix, Qa = LDLT . Here, L is a lower triangular matrix and D
a diagonal matrix, both defined as

L =















1
σa2a1

σ2
a1

1

...
. . .

. . .
σana1

σ2
a1

. . .
σanan−1|N−1

σ2
an−1|N−1

1















; D =











σ2
a1

σ2
a2|1

. . .

σ2
an|N











, (A.7)

with the elements of D specified as the so-called conditional variances, given by

σ2
ai|I

= σ2
ai

−
i−1
∑

j=1

σ2
aiaj|J

σ−2
aj|J

. (A.8)

When applying the LDLT decomposition to the 2-dimensional numerical exam-
ple,

L =

(

1 0
0.7777 1

)

; D =

(

0.2767 0
0 0.0006

)

, (A.9)

the bootstrapped integer ambiguities can be computed as

aB =

(

[2.51]
[2.23 − 0.7777(2.51 − 3)]

)

=

(

3
3

)

. (A.10)

When re-ordering the ambiguities in the numerical example,

a =

(

2.23
2.51

)

; Qa =

(

0.1680 0.2152
0.2152 0.2767

)

, (A.11)

and hereby bringing the most precise ambiguity to the first position entry, the
LDLT decomposition yields

L =

(

1 0
1.280 1

)

; D =

(

0.1680 0
0 0.0010

)

, (A.12)
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and the bootstrapped integer estimate becomes

aB =

(

[2.23]
[2.51 − 1.280(2.23 − 2)]

)

=

(

2
2

)

. (A.13)

It can be immediately seen that both bootstrapped integer estimates differ from
eachother. In general the most reliable integer bootstrapped solution is the one
where the most precise ambiguity is rounded first, followed by the one with the
most precise conditional variance based on eqn. A.8, etc. A re-ordering algorithm
might be necessary to accomplish this.

A.3 Integer Least-Squares

The optimum solution for the integer ambiguities is obtained by solving a non-
standard LSQ problem, referred to as integer least-squares [Teunissen, 1993]. The
integer ambiguities obtained in this way, nLS , follow from solving the following
minimization problem

min
nLS∈Zn

‖a − nLS‖2
Qa

. (A.14)

The solution of this minimization problem cannot simply be computed as was the
case with integer rounding and bootstrapping. Instead a search is required. There-
fore, according to the minimization problem, a search space can be defined as

(a − nLS)T Q−1
a (a − nLS) ≤ χ2, (A.15)

which is an n-dimensional ellipsoid with size χ2. The shape of this ellipsoid is
governed by the covariance matrix. Using the LDLT decomposition derived earlier
the search space can be rewritten as a sum of n squares,

n
∑

i=1

ai|I − ni,LS

σ2
ai|I

≤ χ2, (A.16)

which, when written out in full, result in n constraint equations for the integer
search:

(a1 − n1,LS)2 ≤ σ2
a1

χ2,

(a2|1 − n2,LS)2 ≤ σ2
a2|1

(χ2 − (a1−n1,LS)2

σ2
a1

),

...

(an|N − nn,LS)2 ≤ σ2
an|N

(χ2 −
∑n−1

i=1
(ai|I−ni,LS)2

σ2
ai|I

).

(A.17)
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The sequential conditional ambiguities, ai|I , are similar as for the bootstrapping
estimator

a1 = a1,
a2|1 = a2 − σa2a1

σ−2
a1

(a1 − n1,LS),
...

an|N = an −∑n−1
i=1 σanai|I

σ−2
ai|I

(ai|I − nn,LS),

(A.18)

with the difference that they are not rounded to integers and that they are continu-
ously recomputed during the search for the optimum integer values. The size of the
ellipsoid, χ2, should be set in such a way that at least one solution is present, but
yet not too many for the integer search to be efficient. This is where the previous
integer estimators come in handy. It is known from Teunissen [1998] and Teu-
nissen [1999] that the integer solution obtained by rounding is less optimal than
bootstrapping, which is less optimal than integer least squares, i.e.:

‖a − nLS‖2
Qa

≤ ‖a − nB‖2
Qa

≤ ‖a − nR‖2
Qa

. (A.19)

Therefore the integer bootstrapped solution could be used to set the size of the
search space

χ2 = (a − nB)T Q−1
a (a − nB) (A.20)

In the following the ILS search is demonstrated using the 2-dimensional numer-
ical example. First, the search space is computed using the bootstrapped solution.
The first solution nB = (3, 3)T yields a search space χ2 = 240.62, and the second
solution nB = (2, 2)T yields χ2 = 44.96. For comparison, the integer solution based
on rounding would yield a size of χ2 = 592.81. The search space belonging to the
most precise bootstrapped solution, which also yields the smallest size, is used.

The second step is to search through the range of integer values bounded by the
first constraint equation

n1,LS ≤ a1 −
√

σ2
a1

χ2,

n1,LS ≥ a1 +
√

σ2
a1

χ2.
(A.21)

With the earlier derived search space size it follows that −1.02 ≤ n1,LS ≤ 6.04, so
n1,LS ∈ [−1, 0, 1, 2, 3, 4, 5, 6]. The third step is to evaluate the constraint equation
of the second ambiguity for each possible integer value of the first ambiguity:

n2,LS ≤ a2|1 −
√

σ2
a2|1

χ2 − (a1 − n1,LS)

σ2
a1

,

n2,LS ≥ a2|1 +

√

σ2
a2|1

χ2 − (a1 − n1,LS)

σ2
a1

.

(A.22)
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This process is displayed in Table A.1. Here it can be seen that not every possible
integer value for the first ambiguity has an accompanying integer value for the
second ambiguity within the search space, and results in a so called ’dead end’ of
the search. Only 2 integer ambiguity pairs are found within the search space, the

Table A.1 Search procedure for the second integer ambiguity.

n1,LS a2|1 low upp n2,LS (a − nLS)T Q−1
a (a − nLS)

-1 -0.50 -0.52 -0.48 - -
0 0.28 0.16 0.40 - -
1 1.06 0.90 1.21 1 13.14
2 1.83 1.67 2.00 2 44.96
3 2.61 2.44 2.76 - -
4 3.39 3.24 3.54 - -
5 4.17 4.05 4.26 - -
6 4.94 4.92 4.97 - -

bootstrapped solution and a solution with the smallest possible norm in the metric
of the covariance matrix, which is also the ILS solution,

nLS =

(

1
1

)

. (A.23)

When conducting the ILS search using the re-ordered real-valued ambiguities
(eqn. A.11) it follows that −0.52 ≤ n1,LS ≤ 4.98, meaning that n1,LS ∈ [0, 1, 2, 3, 4].
Again the search for the second ambiguity is displayed in Table A.2. Here it can be

Table A.2 Search procedure for the second integer ambiguity, conducted on the re-ordered
ambiguities

n1,LS a2|1 low upp n2,LS (a − nLS)T Q−1
a (a − nLS)

0 -0.34 -0.47 -0.22 - -
1 0.94 0.74 1.13 1 13.14
2 2.22 2.00 2.43 2 44.96
3 3.50 3.29 3.70 - -
4 4.78 4.61 4.94 - -

directly seen that the solution is the same as for the ’original’ ambiguities, this in
contrast to the bootstrapping estimator. This is due to the fact that a search for
the optimum value, the minimized squared norm, is conducted. The only difference
is the shorter search tree required due to the fact that the process was started with
the most precise ambiguity. Therefore similar as for bootstrapping the most precise
ambiguity should be started with, followed by the second most precise one (based
on the conditional variance), etc. This assures the shortest search time, which can
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be quite significant with a large number of ambiguities, whilst still returning the
optimum solution.

A.4 Optimized Integer Least Squares: The

LAMBDA Method

The biggest problem with the standard ILS search procedure are the long search
times for large numbers of ambiguities, caused by the highly elongated ellipsoidal
search space, resulting in numerous dead ends and possible solutions that have
to be evaluated for their squared norm. The highly elongated shape of the search
space is again the result of the heavy correlations between the ambiguities. In order
to overcome this problem Teunissen [1995] proposed the Least Squares Ambiguity
Decorrelation Adjustment (LAMBDA) method where the integer search procedure
is optimized.

The optimization of this method comes from a decorrelation of the original
ambiguities by means of a transformation with matrix Z,

z = ZT a; Qz = ZT QaZ, (A.24)

and conduct the ILS search over a more spherical search space spanned by the
newly obtained ambiguities z with covariance matrix Qz. After having found the
ILS solution, zLS , the integer estimates of the original ambiguities are obtained as

nLS = Z−T zLS . (A.25)

The so-called Z-transformation must be admissible meaning that the integer
nature of the ambiguities must be preserved, i.e. Z and Z−1 must have integer
entries, and that the volume and size of the search space is preserved, i.e |Z| =
±1. Using the LDLT decomposition of Qa it can immediately be seen that full
decorrelation is achieved when Z = L−T , after which Qz = D. Since it is very
unlikely that L has any lower triangular integer entries full decorrelation cannot be
achieved. A detailed overview of the construction algorithm of the Z-transformation
matrix can be found in De Jonge and Tiberius [1996]. It is based on a sequence of
integer Gauss transformations on the lower triangular matrix L and a continuous
reordering of its columns and the corresponding entries in D.

For the 2-dimensional numerical example the transposed Z-transformation ma-
trix and its inverse are given by

ZT =

(

1 −1
−3 4

)

; Z−T =

(

4 1
3 1

)

, (A.26)

which are then used to create the transformed ambiguities

z =

(

0.28
1.39

)

; Qz =

(

0.0143 0.0043
0.0043 0.0135

)

. (A.27)
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As can be seen the correlations between the ambiguities are not so strong anymore,
resulting in a much more circular search space. This decorrelation process is illus-
trated in Fig. A.1 where a stepwise Z-transformation changes the shape of the search
space from the original very elongated (top) shape to a more circular one (bottom).
The size of the search space is still the same, which is easily verified by transform-
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Figure A.1 Illustration of the stepwise decorrelation of the 2-dimensional search space by
means of an integer Z-transformation. The original very elongated ellipsoidal
search space (top) and the almost fully decorrelated nearly circular one
(bottom) have the same size and are centered around the original ambiguities.
(Figures courtesy of Peter Joosten).
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ing the most precise bootstrapped integer ambiguities, zB = ZT nB = (0, 2)T , and
compute the search space size in the new metric χ2 = (z−zB)T Q−1

z (z−zB) = 44.96.
The remaining search process is identical as previously described (section A.3).

The boundaries of the first ambiguity are thus given as −0.52 ≤ z1,LS ≤ 1.08, so
z1,LS ∈ [0, 1]. Compared to standard ILS this is a much smaller interval to be
searched. The search for the second ambiguity is displayed in Table A.3 where only
one dead end is left.

Table A.3 Search for the second ambiguity in the transformed search space.

z1,LS z2|1 low upp z2,LS (z − zLS)T Q−1
z (z − zLS)

0 1.31 0.61 2.00 1 13.14
2 44.96

1 1.61 1.28 1.93 - -

If the search is performed over the re-ordered transformed ambiguities

z =

(

1.39
0.28

)

; Qz =

(

0.0135 0.0043
0.0043 0.0143

)

, (A.28)

and thus starts with the most precise ambiguity, no dead end is present. In this
case the first ambiguity is bounded as 0.61 ≤ z1,LS ≤ 2.17, and thus z1,LS ∈ [1, 2],
the search for the second ambiguity is listed in Table A.4. This indicates that

Table A.4 Search for the second ambiguity in the transformed search space, conducted on
the re-ordered ambiguities

z1,LS z2|1 low upp z2,LS (z − zLS)T Q−1
z (z − zLS)

1 0.16 -0.50 0.82 0 13.14
2 0.47 0.00 0.95 0 44.96

also within the transformed search space it is recommended to start with the most
precise ambiguity and continue with the second most precise, etc. The ILS solution
in the transformed search space

zLS =

(

0
1

)

, (A.29)

has the same squared norm in the transformed metric as the previously found ILS
solution in the original search space. When transforming back using eqn. A.25 the
same ILS solution as for the original ambiguities is found, nLS = (1, 1)T .

The LAMBDA implementation used for this research is the one described in
De Jonge and Tiberius [1996] and internally re-orders the ambiguities from most
precise to least precise, according to the conditional variances of the decorrelated
ambiguities. This optimizes the ambiguity search tree, and thus search time, as was
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shown to be important. The conditional variances of the decorrelated ambiguities
are also returned by LAMBDA and are used for integer validation purposes as
described in section 4.1.2. Furthermore, the LAMBDA method returns two integer
solutions, the one with the smallest and the one-but-smallest squared norm of the
ambiguity residuals in the metric of the covariance. This is again used for integer
validation purposes. To assure the presence of at least two solutions, χ2 is set
using the one-but-smallest squared norm from the integer solution obtained from
subsequent rounding to the nearest and one-but-nearest decorrelated ambiguities.
Applied to our numerical example it would mean that the following integer rounded
solutions would need to be evaluated: zR = (0, 1)T , zR = (1, 1)T and zR = (0, 2)T .
The accompanying squared norms are respectively given as 13.14, 66.39 and 44.96,
where it can be seen that 44.96 should be used as search space size, which has also
been done throughout the examples. As mentioned in the previous subsection, χ2

can also be set using the bootstrapped solution of the decorrelated ambiguities.
This however does not guarantee the presence of at least two solutions, so the one-
but-smallest squared norm from bootstrapping should be used. This has however
not been done for this research.



Appendix B

Lower boundary for the

bootstrapping success rate

From Teunissen [1999] or Joosten and Tiberius [2000] it is learned that the success
rate or probability of having actually estimated the correct vector of integers, n,
using the integer bootstrapping estimation method (section A.2) is defined as

P (nB = n) =

n
∏

i=1

(

2Φ(
1

2σi|I
) − 1.

)

. (B.1)

Here, σi|I is the conditional variance of the ith bootstrapped ambiguity cf. eqn.
A.8. Furthermore, Φ(x) is the cumulative normal distribution, given as

Φ(x) =

∫ x

−∞

1√
2π

e−
1
2 z2

dz . (B.2)

Although many software packages, e.g. MATLAB, are able to instantaneously eval-
uate eqn. B.1, this is not always the case within other practical applications, e.g.
onboard S/C computers. In Dórtenzio [1965] a lower boundary for Φ(x) is given as

Φ(x) ≥ 1

2

(

1 +
(

1 − e−
x2

2

)
1
2

)

. (B.3)

When combining this last expression with eqn. B.1, a lower boundary for the
bootstrapping success rate is found,

P (nB = n) ≥
n
∏

i=1

(

1 − e
− 1

2 ( 1
2σi|I

)2
)

1
2

, (B.4)

which can be swiftly computed under all circumstances.
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