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1. Introduction 



 

1. Introduction 

1.1 Examples 
I will start with two examples to illustrate what this thesis is about: 
 
According to the cadastre’s records, the area of a parcel is 10.044 hectares. The 

parcel is sold and the new owner measures the area by moving around the parcel with a 
global positioning system (GPS) device, according to which the area is 9.890 ha, 0.154 
ha less than according to the cadastre. At a price of 35,700 euro per hectare (data from 
the Netherlands Central Bureau of Statistics, CBS), he claims from the vendor 5,498 
euros. The vendor argues that the difference of 0.154 ha may well be caused by errors 
in the GPS coordinates and rejects the claim. Using the equations presented in chapter 5 
of this thesis, the buyer argues that a difference as large as 0.154 ha cannot be 
explained from errors in GPS coordinates. The vendor then argues that the difference 
could further be explained by misinterpretation of the parcel boundary definition, or 
due to inherent fuzziness of the boundary. Did the buyer move along the inner edge or 
the centre of the ditch that surrounds the parcel? 

 
As a consequence of being a party to the United Nations Framework Convention 

on Climate Change, a country has designed a national, spatially explicit, system for 
monitoring land use, land use change and changes in the forestry sector. Through an 
overlay of maps of two dates, changes are recorded. But are all recorded changes real 
changes? Probably not. Probably part of the changes shown are actually 
misclassifications at one or both dates. Probably part of the changes shown can also be 
attributed to changes in definitions of land use classes. Then, knowing the frequencies 
of misclassifications and knowing which changes in definitions have occurred, can 
these uncertainties be quantified and eliminated? 

 
What do these examples tell us? Firstly, that spatial data quality is an issue in many 

decisions and analyses. This will be elaborated in section 1.2. Secondly, the examples 
show the importance of definitions. Section 1.3 elaborates on the issue of definitions 
and the topic is briefly touched upon in each of the chapters of the thesis. Thirdly, the 
examples identify a need of information on spatial data quality. Section 1.4 explains 
how descriptions of spatial data quality can be applied to quantify their implications for 
applications. Fourthly, the examples show that spatial data quality is not an issue for 
scientists only. Spatial data are used in decision-making and spatial data quality has 
implications for decision-making. In chapters four to six these implications are 
quantified based on spatial data quality descriptions, chapter seven is about how users 
cope with spatial data quality. 

 

1.2 Why spatial data quality is an issue 
For centuries cartographers, geographers, surveyors and geodesists have been 

involved in collection, storage, analysis and visualisation of spatial data. They have 
also been studying spatial data quality (for example see Haasbroek 1968, Balchut et al. 
1979, Maling 1989 and Polman and Salzmann 1996). Since the 1980s, concerns about 
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spatial data quality have increased, as a result of a two developments: (1) the 
emergence of Geographical Information Systems (GIS) in the 1960s and (2) from the 
1970s onwards, a strong increase of available spatial data from satellites. With the 
large-scale adoption of GIS, the number of users from non-spatial disciplines has 
grown. Also with GIS, opportunities to use and combine data have grown 
tremendously. It is now much easier to use spatial data in all sorts of applications, even 
if inappropriate considering the quality of the data. Brimicombe (2003) wrote: 
“Historically, a detailed consideration of data quality issues in GIS lagged considerably 
behind the mainstream GIS development and application”. Based on Aronoff (1989), 
Morrison (1995) and Longley et al. (1999) the five main reasons for current concerns 
about spatial data quality issues were identified as: 

 
1. There is an increasing availability, exchange and use of spatial data; 
2. There is a growing group of users less aware of spatial data quality; 
3. GIS enable the use of spatial data in all sorts of applications, regardless of the 

appropriateness with regard to data quality; 
4. Current GIS offer hardly any tools for handling spatial quality; 
5. There is an increasing distance between those who use the spatial data (the end 

users) and those who are best informed about the quality of the spatial data (the 
producers). 
 
Early warnings on the potential implications of spatial data quality were given by 

amongst others Chrisman (1984) who would later become chair of the group defining 
the spatial data quality part of the United States of America spatial data transfer 
standard (Chrisman 1987) and author of a chapter on spatial data quality (Chrisman 
1991) in one of the most influential books on GIS. Brimicombe (2003) showed that the 
annual number of articles on spatial data quality has strongly grown since 1987, with 
less than five articles per year published before 1987. From the end of the 1990s 
onwards, there is a boom of international conferences on the topic: Symposia on Spatial 
Accuracy Assessment (1996, 1998, 2000, 2002, 2004) and Symposia on Spatial Data 
Quality (1999, 2003, 2004, 2005). Articles presented at these symposia have been 
published in Goodchild and Jeansoulin (1998), Lowell and Jaton (1999), Heuvelink and 
Lemmens (2000), Mowrer and Congalton (2000), Foody and Atkinson (2002), 
Heuvelink and Burrough (2002), Hunter and Lowell (2002) and Shi, Fisher and 
Goodchild (2002). Before this boom of conferences few books were published on 
spatial data quality, an exception being the book edited by Goodchild and Gopal 
(1989). Nowadays, no book about GIS or Geographical Information Science (GISc) 
goes without a chapter on spatial data quality. With the adoption of GIS in other 
disciplines, the attention for spatial data quality and its propagation in models has also 
grown, for example in ecology (Hunsaker et al. 2001) and in environmental modelling 
(Heuvelink 1998, Brimicombe 2003). Apart from these developments in the field of 
GIS, a branch of statistics called geostatistics emerged (Matheron 1971, Deutsch and 
Journel 1998, Goovaerts 1997, Isaaks and Srivastava 1990, Cressie 1991). The field is 
of great importance in spatial data quality research, because almost always variables are 
spatially correlated. Often, they are also correlated temporally. Geostatistics offers the 
theory to model both the implications of temporal and spatial correlation (see Pebesma 
et al. 2005 and Bogaert et al. 2005 and many, many more). GIS and geostatistics have 
different historical roots; the two became seriously engaged in the 1990s (Goodchild 
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2002) and they are now generally recognised as essential partners (Burrough 2001), 
increasingly also by GIS software producers. 

 

1.3 From the real world to a spatial data set 
An important part of spatial data quality research concerns the description of error 

and uncertainty in spatial data. Fundamental to the understanding of these concepts is 
an understanding of the process of how spatial data are derived from the real world. 
Aalders (2002) partitioned this process into two steps:  
• Conceptualisation = the specification of what should be considered the real world 

and the abstraction of the selected objects; 
• Measurement1 = the specification of the measuring methods and the measurement 

requirements for capturing the data. 
I will not discuss alternative terms, nor go into more detailed descriptions of these 

two steps and their sub-steps. The interested reader may consult Laurini and Thompson 
(1992), Burrough and Frank (1996), Burrough and McDonnell (1998), Molenaar 
(1998), Fisher (1999), Raper (1999), Frank (2001), Uitermark (2001), Kresse and 
Fadaie (2004) and Leyk (2005). Information on conceptualisation rules and 
measurement rules can be found under the heading of the terms lineage and ontology. 
Lineage is generally more focussed on measurement (including transformations after 
data acquisition), while ontologies are generally more focussed on conceptualisation. In 
this section, I will use the term ontology to refer to a set of conceptualisation and 
measurement rules. In other words ontology is here defined as the definition of the 
objects in a spatial data set. 

 
Fisher (1999) distinguished three forms of uncertainty that arise during in the 

process of deriving a spatial data set from the real world: error, vagueness and 
ambiguity: 
• Error is the difference between the value of a property of an object measured with 

unknown error (in the test data set) and the true value of the same property of the 
same object measured without error (in the reference data set). Error can be 
measured if a clear definition (ontology) is available; 

• Vagueness arises due to poor definitions. Vagueness can be caused by poor 
documentation, or more fundamentally, if objects are fuzzy; 

• Ambiguity arises due to disagreement on the definition of objects in a spatial data 
set. Such disagreement can arise because the definition was not specific, and it can 
arise due to fundamental differences in opinion. 
 
According to Fisher (2000) many books on spatial data quality are limited to the 

treatment of error, thereby ignoring the two other forms of uncertainty. The same 
observation can be made from the overview of spatial data quality definitions in chapter 
2 of this thesis. Clearly, the measurement of error requires agreement on a clear 
definition of what is perceived to be reality. This requirement cannot always be met, 
causing problems in the measurement and interpretation of error. Measurement of error 
is further complicated by the fact that no instrument exists with which error-free 
measurements can be made. Three solutions have been proposed. In recognition of the 

                                                 
1 Aalders (2002) called it ‘mensuration’ 
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fact that these solutions do not completely solve the problem the data in a reference 
data set are often referred to as ‘accepted as true’ rather than ‘true’ values. The 
solutions that have been proposed are: 
• The solution to the interference of vagueness is to agree on a set of well defined 

rules and to apply these to both the test and the reference data. After doing this, 
error can be measured free from interference of vagueness and will be relevant to 
those who share the same ontology. This solution cannot always be applied. Firstly, 
the test data may already be collected according to poorly defined rules. Secondly, 
some concepts are inherently vague and it may be more rewarding to formalise their 
vagueness using fuzzy set theory than to try to eliminate it (Burrough and Frank 
1996, Burrough et al. 1997, Fisher 1999, 2000); 

• In case of ambiguity, there is disagreement on what constitutes the truth. Ambiguity 
is caused by the difference between the data set ontology (used in the collection of 
the test data) and the user ontology (of a certain user with a specific application of 
the test data). To satisfy the needs of users, producers may decide to collect 
reference data according to the user’s ontology. For example Boschetti et al. (2004) 
dealt with the case where the data set ontology contained a rule stating that only one 
hard class is assigned to a pixel, while the user’s ontology contained a rule stating 
that one or more hard classes may be assigned to a pixel. With error defined as the 
difference between test and true values, and disagreement on what constitutes the 
truth, one may question the appropriateness of the term “error” when reference data 
have a different ontology; 

• The generally accepted solution to the problem that no instrument exists with which 
error-free measurements can be made is to collect reference data with instruments 
that a have a far greater accuracy than the instruments used in the collection of test 
data. 
 
Consider the case where a test data set has been collected using a clear definition 

of what is perceived to be reality. Even then, vagueness can hamper the measurement 
of error. Ideally to eliminate vagueness, the same definitions are applied to both test 
and reference data. In practice, the definitions will often be slightly different. The 
highest consistency is obtained when reference data are collected through field 
measurements and when these measurements occur at the same time as the 
measurement of the test data. An often chosen alternative is to select a candidate 
reference data set with an ontology that does not differ too much from the test data set’s 
ontology. This candidate reference data is then transformed to minimise the ontological 
difference between test and reference data. Sometimes this alternative is chosen 
because it is cheaper or faster, on other occasions it may be the only option. It is the 
only option when collection of reference data starts at a point in time where the real 
world phenomena represented in the test data have changed since the test data set’s 
acquisition date. For example, there is increasing attention for digitisation of historical 
data (Petit and Lambin 2002, Kramer and Knol 2004, Leyk 2005) also in the context of 
climate change (Vitousek 1994, Houghton et al. 1999). As a result of this practice, test 
and reference data definitions will be similar but not exactly the same. This will result 
in vagueness and will interfere with measurement and interpretation of error 
descriptions.  
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In conclusion, the reader should realise after reading this section that measurement 
of error is not at all that simple and straightforward as one might expect. To interpret 
correctly the errors reported in spatial data quality reports, it is important to be aware of 
the possible interference of vagueness and ambiguity, which may be caused both by 
test and reference data. It is of importance to be informed about how both test and 
reference data were collected. This information should be provided under the heading 
of the spatial data quality element called lineage (see next chapter). Finally, is 
important to choose appropriate models for describing the uncertainty and its 
propagation, appropriate considering the different forms of uncertainty discussed in this 
section. 

 

1.4 Fitness for use assessment 
Sections 1.1 and 1.2 showed why concerns about spatial data quality exist. Section 

1.3 briefly explained the uncertainties that arise during the process of deriving spatial 
data from the real world. There is an increasing call for formal methods to describe 
these uncertainties and to apply these descriptions in fitness-for-use assessment. It is 
generally accepted that spatial data quality descriptions serve to allow the user to 
evaluate the fitness of the data for his particular application (Moellering 1988, 
Morrison 1995). 

 
The process of assessing fitness-for-use can be partitioned into three steps: 

1. To search for a spatial data set that contains the information needed for the intended 
application (Brassel et al. 1995 called this the assessment of model completeness); 

2. To explore whether there are legal or financial constraints to access or particular 
use of the spatial data (Aronoff 1989 called this the usage component); 

3. Finding out if, given the spatial data quality, risks are acceptable (see Agumya and 
Hunter 2002). 
 
All necessary information for going through these 3 steps is found in the meta-data 

report (FGDC 1998a, ISO 2003b), but not necessarily in the spatial data quality section 
of the meta-data report. The first two steps are extensively addressed in research on 
meta-data, spatial data infrastructures and interoperability. This thesis deals exclusively 
with the third step. Different approaches exist to finding out if risks are acceptable, 
given the spatial data quality. Extensive discussions are found in Agumya and Hunter 
(1999a, 1999b, 2002), Openshaw (1989) and chapter 7 of this thesis. They are often 
based on theoretical considerations from risk analysis (e.g. Fischhoff et al. 1981, 
Morgan et al. 1990, Jaeger et al. 2001). The most rigorous approach, advocated by 
Agumya and Hunter, is to apply error propagation analysis to quantify how errors in 
input data sets propagate into the outcomes of the analysis or decision-making process. 
The approach is gaining popularity in research (e.g. see Stein et al. 1995, Broos et al. 
1999, Li et al. 2000, Crosetto and Tarantola 2001, de Bruin et al. 2001, de Bruin and 
Hunter 2003, chapters four to six of this thesis). The approach is often called risk 
analysis, although in many cases quantitative risk analysis would be a more appropriate 
term. More qualitative forms of risk analysis make an inventory of which events may 
occur and their consequences, without quantification of the probabilities and 
consequences of events. 
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Fischhof et al. (1981) provided a typology and discussion on different approaches 
to assessing risks and their acceptability. Within research on risks caused by limited 
spatial data quality, frequently approaches other than quantitative risk analysis are 
adopted to assess the fitness for use of spatial data. Agumya and Hunter (1999a), 
Openshaw (1989) and Longley et al. (1999) suggest that often the third step of the 
fitness-for-use assessment is omitted. For step 3, approaches less rigorous than 
quantitative risk-analysis are often applied. These less rigorous alternatives include:  
• Use a spatial data set if acceptable results were obtained with it in the past; 
• Rely on feedback mechanisms that are expected to reduce the risk; 
• Consult experts; 
• Consult information on usage and purpose; 
• Apply trial and error as a means of finding out the amount and acceptability of risk; 
• Insurance and other forms of risk absorption. 

These approaches have in common that in the short run they are faster and cheaper 
than quantitative risk analysis. They are less rigorous because risks are not quantified. 
As a result, it is possible that unknowingly, the spatial data input to a decision or 
analysis produce larger risks than acceptable.  

 

1.5 Knowledge gaps and scope 
This thesis is about the description of spatial data quality and the application of 

these descriptions in fitness-for-use assessment. The previous sections showed that 
already a large body of literature exists. The following two subsections identify 
knowledge gaps and scope with regard to the description and application of spatial data 
quality as dealt with in this thesis.  

 

1.5.1 Description of spatial data quality 
From an early stage, researchers like Chrisman and Aalders have been involved in 

committees that developed standards for the description of spatial data quality. Spatial 
data quality standards were accepted in the USA in 1992 and by the International 
Standardisation Organisation ISO in 2002; final meta-data standards were accepted in 
the USA in 1998 and by ISO in 2003. With these standards accepted and used by the 
GI user community (Crompvoets et al. 2004), there seems not much left of the 
knowledge gap with regard to the definition of spatial data quality. However, research 
on the definition of spatial data quality is not yet complete. Three knowledge gaps can 
be identified: 
• After the acceptance of standards comes the need to adopt and implement them. 

Research into the problems that occur and the questions that arise when 
implementing the standards is outside the scope of this thesis; 

• Spatial data quality is defined by its elements. In literature somewhere between five 
and eleven elements are distinguished (Aalders 2002, Devillers et al. 2005). 
Chapter 2 presents an overview. Based on the overview and the chapters thereafter, 
recommendations are given in chapter 8, section 8.2; 

• There is increasing attention for modelling the spatial variability in spatial data 
quality, especially the spatial variability in the accuracy of attributes with a nominal 
measurement scale (Bierkens and Burrough 1993, Steele et al. 1998, McGwire and 
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Fisher 2001, Bogaert 2002, Smith et al. 2003, de Bruin et al. 2004, Foody 2005). 
Chapter 3 contributes to the research on this topic. 
 

1.5.2 Application of spatial data quality 
According to Longley et al. (1999), “Despite what appear obvious arguments in 

favour of explicit treatment of data quality in GIS, and despite substantial research into 
appropriate methods, much GIS practice continues to proceed as if data were perfect”. 
As argued by Veregin (1999) and Fisher (1997) in a review of Guptill and Morrison 
(1995), much research has focussed on defining and reporting spatial data quality, 
while fitness-for-use assessment has received relatively little attention. Error 
propagation analysis is the most scientific way to assess fitness for use. Pleas for 
incorporating error propagation analysis tools in GIS appeared in the 1990s (Burrough 
1992) and have since then only gained in strength (Burrough 2001). Many tools have 
been developed within the GISc research community (Heuvelink 1993, Forier and 
Canters 1996, van der Wel 2000, Crosetto and Tarantola 2001 and Duckham 2002). 
However, such tools have to date still only very scarcely been implemented in 
commercial GIS software. Despite the availability of tools, methods and knowledge in 
the GISc community, researchers like Openshaw (1989), Agumya and Hunter (1999a) 
and Longley et al. (1999) noted that these are scarcely utilised by users outside the 
GISc community. One way to increase their use could be, as advocated by Agumya and 
Hunter (1999a, 1999b, 2002), to make the results of error propagation analysis more 
tangible by continuing the analysis not to the stage of the end product of a spatial 
analysis, but further to the stage of expressing the consequences of errors in spatial data 
in terms of risks. The number of publications following this approach is growing (a.o. 
Stein et al. 1995, Broos et al. 1999, Li et al. 2000, Crosetto and Tarantola 2001, de 
Bruin et al. 2001, de Bruin and Hunter 2003, chapters four to six of this thesis). 
Another way to increase the use of tools, methods and knowledge about error 
propagation analysis would be to increase the usability of the tools. However, to my 
knowledge no scientific publications exist in which the use of these tools (or the lack of 
it) has been properly evaluated. With regard to the knowledge gap in the application of 
spatial data quality descriptions, the contributions of this thesis are: 
• Chapter 4 shows how knowledge on classification errors can be used to improve 

estimates of land cover change. It also shows that classification errors between 
different dates are often correlated and that this correlation needs to be taken into 
account when improving change estimates; 

• Chapter 5 presents theory and an illustration of the calculation of the financial 
uncertainty in the value of a set of polygons, where uncertainty exists on the true 
position of the polygon boundaries; 

• Chapter 6 discusses the elements of spatial data quality that are relevant in digging 
activities around underground cables and pipelines, and proposes a model to 
quantify the implications of over- and incompleteness. As in chapters 4 and 5, the 
theory is illustrated in a case-study; 

• Chapter 7 is a study of why users of spatial data are in many cases less willing to 
spend resources on the quantification of implications of spatial data quality. 
Contrary to existing publications on the same topic, this chapter focuses on the 
decision-theoretic considerations of users. 
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1.6 Aim, research questions and outline 
This chapter started with two examples of spatial analysis and decision-making in 

which spatial data quality is an issue. GIS practitioners are continuously confronted 
with such questions. In the Netherlands, a number of important practitioners recognised 
the need for research in addressing issues of spatial data quality. The work presented in 
this thesis was inspired and funded by their organisations. The aims and research 
questions below were formulated on the basis of literature (in which knowledge gaps 
were identified) and on the basis of feedback from funding organisations. Feedback 
was received from representatives during joint biannual progress meetings, and in 
between during bilateral meetings. The names of the organisations and their 
representatives are listed in the acknowledgements. 

 
The aim of this thesis is twofold: (1) to enhance the description of spatial data 

quality and (2) to improve our understanding of the implications of spatial data quality. 
Six research questions were formulated, which are answered consecutively in chapters 
2 to 7. The questions and chapters follow the order already indicated in the thesis title: 
their contents move from description to application. Chapters 2 and 3 contribute mostly 
to the first aim (description), chapters 4 to 7 mostly to the second (application). Chapter 
8 presents conclusions and recommendations for further research. The six research 
questions are: 

 
1. What is spatial data quality? (chapter 2); 
2. Does land cover classification accuracy depend on landscape heterogeneity? 

(chapter 3); 
3. How can knowledge of classification errors be used to improve land cover change 

estimates? (chapter 4); 
4. How do positional errors in vertex coordinates propagate into errors in area 

estimates for polygons sharing a boundary? (chapter 5); 
5. How can implications of spatial data quality be calculated in the case of digging 

activities around underground cables and pipelines? (chapter 6); 
6. Which decision-theoretic factors determine the willingness of researchers and 

policy makers to spend resources on the quantification of implications of spatial 
data quality (chapter 7); 
 
In each chapter, new theory is presented and then applied in case-studies. In the 

case-studies I analysed the national land cover database LGN, the national topographic 
database Top10vector, data from Veregin (1989), data on subsidies for management of 
natural areas of the Forest Service of the Netherlands and data from interviews and 
questionnaires. 
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2. Spatial data quality: terms and definitions 

This chapter gives an overview of definitions of spatial data quality. First, some 
basic terms related to spatial data quality are discussed. Next, contents of five 
definitions are compared and discussed. The chapter concludes with a summary. For 
convenience terms in this chapter are printed in bold when first introduced, to enable 
the reader to quickly look up these terms. 

 

2.1 Some basic terms related to spatial data quality 
Previous chapter (§1.3) showed that the measurement of error requires agreement 

on a clear definition of what is perceived as reality. Presence of vagueness and/or 
ambiguity can complicate the measurement of error and hence its interpretation. Error 
was defined as the difference between the value of a property of an object measured 
with unknown error and the true value of the same property of the same object 
measured without error. Below, terms related to error are discussed. 

The total error consists of systematic error and random error, the systematic 
error is often called bias. Random error is the distance between a measurement and the 
mean of measurements, total error is the distance between a measurement and the true 
value and bias is the distance between the mean of measurements and the true value. 
Accuracy and precision are summary measures of error. Accuracy is calculated from 
total errors, precision from random errors. If the systematic error (bias) equals zero, 
then precision equals accuracy. For this reason, the two are often used interchangeably. 
This can be confusing and misleading and the best thing to avoid confusion is to report 
explicitly the bias, even if it equals zero. The most common way to summarise errors is 
with the Mean Square Error (MSE) or the Root Mean Square Error (RMSE). Other 
summary measures are for example the Mean Error (ME), Mean Absolute Error (MAE) 
and Maximum Error (ME). The error matrix, used in reporting classification accuracy, 
measures the frequency and type of correct and misclassifications. Summary measures 
of the error matrix are the users’, producers’ and overall accuracy. The set of data of 
which the accuracy or precision is to be calculated is called the test data set, and the 
set of data containing the true values is called the reference data set. These two terms 
will be applied throughout the thesis.  

Two types of precision can be distinguished: statistical precision and storage 
precision. The two terms have also been called geographical precision and digital 
precision (Vauglin 2002). Statistical precision is a summary measure of random errors, 
corresponding with the definition of precision given above. Storage precision refers to 
the detail (number of digits) with which data are stored in a database. Statistical 
precision is affected by storage precision, by the precision of the measurements and by 
all transformations applied thereafter (Burrough and McDonnell 1998). A high storage 
precision does not guarantee a high statistical precision and a high statistical precision 
does not guarantee a high accuracy. In this thesis, the term precision refers always to 
statistical precision. If storage precision is meant then this is explicitly reported so. 

The terms resolution and precision are often used interchangeably (e.g. Worboys 
1998, Veregin 1999), because both refer to the level of detail. There is a subtle 
difference between the two. Resolution is the detail at which data are presented; 
precision is the amount of detail that can be discerned. It is not justified to present data 
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at a resolution higher than determined by the precision. However, there may be sound 
reasons to present data at a courser resolution than justified by their precision (Veregin 
1999). Resolution is not limited to the spatial domain (pixel size, smallest polygon, 
smallest distance between vertices); it can also be given for the thematic and temporal 
domain (Veregin 1999). Related to the term resolution is the term scale. Historically, 
large scale is associated with high resolution and high precision (Maling 1989, Aronoff 
1989). In a digital era, this implicit relationship no longer holds (Aronoff 1989). In a 
GIS it is quite easy to increase the resolution of a data set, thereby suggesting a high 
precision and large scale. Similarly it is quite easy to increase the digital precision, 
thereby suggesting a high statistical precision. With GIS, data can be visualised at any 
scale desired. Consequentially, the use of the terms scale and resolution without further 
explanation may cause confusion. 

 

2.2 Elements of spatial data quality  
Quality is defined as “totality of characteristics of a product that bear on its ability 

to satisfy stated and implied needs” (ISO 2002, originally in ISO standard 8402). 
Without a more detailed definition of these characteristics, the definition remains 
meaningless. The characteristics are traditionally called elements, so we speak of 
elements of spatial data quality. Definitions of elements of spatial data quality were 
derived from the following five sources, in historical order of appearance (see also 
Aalders 2002 and Devillers et al. 2005): 

 
• Aronoff (1989) presented an interpretation of the draft USA-SDTS (Chrisman 

1987, Moellering 1988) from a management perspective; 
• USA-SDTS (1992). The United States of America spatial data transfer standard 

contains a section on spatial data quality elements. The spatial data transfer 
standard was accepted in 1992 (Department of Commerce 1992) and was later 
incorporated in the USA metadata standard (FGDC 1998a,b); 

• ICA (1995). On behalf of the International Cartographic Association, Guptill and 
Morrison (1995) published the book entitled “Elements of Spatial Quality”. The 
book contains contributions by a range of authors; 

• CEN/TC287 (1998). Technical committee 287 of the Comité Européen de 
Normalisation (CEN) developed the European pre-standard ENV 12656. During the 
process, ISO started standardisation and CEN/TC287 dissolved into ISO/TC211 
(Kresse and Fadaie 2004: page 6). This meant that development of ENV 12656 
stopped and that after acceptance of standards as international standards by 
ISO/TC211, CEN/TC287 started considering approval of these standards as 
European standards. The CEN/TC287 standard referred to in this thesis is the 
European pre-standard, CEN/TC287 (1998); 

• ISO/TC211 (2002). Technical committee 211 of the International Standardisation 
Organisation (ISO) has developed a number of international standards for 
geographic information: 19113 (Quality principles), 19114 (Quality evaluation 
procedures). These elements are described as part of the 19115 (Metadata). The 
standard 19138, which is still under development at the time of writing this thesis, 
will define a set of measures for the spatial data quality elements identified in ISO 
19113. See ISO (2002, 2003a,b) and Kresse and Fadaie (2004). 
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The elements distinguished in these five sources are listed in table 1. Table 1 
shows that all elements are part of the metadata, yet not all elements are part of the 
spatial data quality section of the metadata. For this reason, some researchers (Devillers 
et al. 2005) have criticised spatial data quality standards for providing the user with 
insufficient information to allow for assessing fitness for use. Also, the explicitness 
with which elements are recognised in the sources differs. For example, the term 
resolution is used repeatedly in the “Entity and Attribute Information” section in the 
USA metadata standard (FGDC 1998a), but is not explicitly distinguished in the spatial 
data quality section. However, in its data quality section, it states in its description of 
the element completeness: “geometric thresholds such as minimum area or minimum 
width must be reported”. This could well be interpreted as resolution. The elements in 
table 1 are discussed in this section in the order in which they are numbered in the 
table. For details and exact contents the reader is referred to the references cited above.  

 
Table 1. Elements of spatial data quality in five sources 

element* 
Aronoff 
(1989) 

USA-
SDTS 
(1992) 

ICA 
(1995) 

CEN 
TC287 
(1998) 

ISO 
TC211 
(2002) 

1. Lineage S S S S S 
2. Positional accuracy S S S S S 
3. Attribute accuracy S S S I S 
4. Logical consistency S S S S S 
5. Completeness S S S S S 
6. Semantic accuracy   S S  
7. Usage, purpose, 

constraints 
S M  S M 

8. Temporal quality S M S  S S 
9. Variation in quality  I I S I 
10. Meta-quality  I I S I 
11. Resolution S I I I M 
* the names of the elements are my choice. The five sources in some cases use different 

names for the same elements, for example thematic instead of attribute accuracy, 
for example temporal information, temporal accuracy or time instead of temporal 
quality 

S = explicitly recognised as an element, in the spatial data quality section of the 
metadata. In the USA-SDTS, the CEN/TC287 and the ISO/TC211, the spatial data 
quality section is part of the larger metadata report. In Aronoff and ICA the 
distinction between different sections of the metadata report is not made. 

M = explicitly recognised as an element, in another section of the metadata 
I = implicitly recognised as an element. 

 
1. Lineage 

Lineage is in short the history of a geographic data set. A description of the source 
material from which the data were derived, and the methods of derivation, including all 
transformations involved in the production process. 
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2. Positional accuracy 
Positional accuracy is the accuracy of coordinate values. A distinction is often 

made between relative and absolute positional accuracy and between vertical and 
horizontal positional accuracy. Vertical positional accuracy however has also been 
treated as attribute accuracy (attribute depth or height), for example see the contribution 
by Goodchild in ICA (1995). Relative positional accuracy is the accuracy relative to 
other data in the same test data set. Absolute positional accuracy is the accuracy of test 
coordinate values relative to matching reference coordinate values on the same 
coordinate reference system. As Chrisman (1991) indicates, relative positional accuracy 
is sufficient for calculating via error propagation analysis the variance in area and 
variance in length of lines. More generally speaking, it is sufficient for error 
propagation analysis on a single spatial data set. If data sets are to be combined then 
absolute positional accuracy needs to be known. 

 
3. Attribute accuracy 

Attribute accuracy is the accuracy of all attributes other than the positional and 
temporal attributes of a spatial data set. Attributes can be measured on four 
measurement scales: ratio, interval, ordinal and nominal. The nominal scale is an 
unordered scale, for example land cover. The accuracy of nominal attributes is 
normally described in an error matrix, also called misclassification matrix or confusion 
matrix. The accuracy of ratio attributes is described with the same measures as those 
used for positional attributes, for example root mean square error (RMSE). In the 
CEN/TC287 (1998, p. 22), the name semantic accuracy was used for what was in fact 
attribute accuracy. It is for this reason that table 1 states that attribute accuracy is only 
implicitly recognised in the CEN/TC287 data quality standard. 

 
4. Logical consistency 

Logical consistency is defined in the USA-SDTS as: “the fidelity of relationships 
encoded in the data structure”. Similar definitions are found in the other references in 
table 1. Kainz in Guptill and Morrison (1995) elaborates with great rigour the definition 
of topological consistency, with much less emphasis on other aspects of logical 
consistency:  
• valid values, graphic data, topological, date (USA-SDTS); 
• geometric-, semantic- and topological consistency (CEN/TC287); 
• conceptual-, domain-, format- and topological consistency (ISO/TC211). 

 
5. Completeness 

Completeness is a measure of the absence of data and the presence of excess data. 
Errors resulting in overcompleteness are called errors of commission, errors resulting in 
incompleteness are called errors of omission. Crucial to the detection of these errors is 
to know what does and what does not belong to the complete set that the producer 
intended to include in his data set. For this reason, the USA-SDTS states: “The quality 
report must include information about selection criteria, definitions used and other 
relevant mapping rules. For example geometric thresholds such as minimum area or 
minimum width must be reported … The report on completeness shall describe the 
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relationship between the object represented and the abstract universe1 of all such 
objects. In particular, the report shall describe the exhaustiveness of a set of features. 
Exhaustiveness concerns spatial and taxonomic (attribute) properties, both of which can 
be tested”  

I will give an example to illustrate. An abstract universe states that a data set 
contains hospitals and defines a hospital as a building in which one or more doctors are 
employed and where the average annual number of patients is at least 100. A building 
with an annual average of 90 patients does not belong to this abstract universe. If this 
building is present in the data set then that is an error of commission (resulting in 
overcompleteness). A building with average 110 patients and with doctors employed 
does belong to the abstract universe. If this building is not present in the data set then 
the data set is incomplete due to an error of omission. 

 
The definition of completeness by Brassel et al. (1995) from ICA is broader than in 

the three standards. Brassel et al. distinguish two kinds of completeness: data 
completeness and model completeness. Data completeness corresponds with the 
definition given in the standards. Model completeness is a measure of how well the 
contents of a spatial data set correspond with the information needed for the intended 
application. In this thesis in section 1.4, assessment of model completeness was 
identified as the first step of fitness-for-use assessment. A producer cannot provide 
information on model completeness, because that would require knowledge of the exact 
information needs of all possible applications. The best a producer can do is provide 
detailed descriptions of the information content of his product. Often under the heading 
of “usage, purpose, constraints”, the producer documents applications for which other 
users considered the information content of the spatial data set (model-) complete. 

 
6. Semantic accuracy 

As can be seen in table 1, the element semantic accuracy occurred only in the ICA 
publication and in the European pre-standard (the CEN/TC287). Now that the 
development of the ISO standards is completed, CEN will adopt the ISO standard so 
that the element will most likely disappear altogether. An elaborate discussion on the 
element semantic accuracy is found in the ICA publication, by François Salgé. In his 
broad definition of the element Salgé stresses the interconnectedness of all data quality 
elements and he stresses the importance of describing sources of uncertainty other than 
error (see also §1.3 of this thesis). 

 
7. Usage, purpose, constraints 

In section 1.4 I identified 3 steps of fitness-for-use assessment. The element 
“Usage, purpose, constraints” assists the potential user of a data set in steps 1 and 2 of 
the assessment. Aronoff (1989) explicitly recognised the importance of this element 
and provides more details on its contents. ISO/TC211 makes a distinction between 
usage, purpose and constraints. Its rationale for doing so is that intended use (purpose) 
is not necessarily the same as actual use (usage). A difference between on the one hand 
the constraints in Aronoff (1989) and on the other hand the constraints in the USA-
SDTS, the CEN/TC287 and the ISO/TC211 is that Aronoff also considers the costs a 

                                                 
1 the definition of Abstract Universe in the USA-SDTS corresponds closely with the definition of 
ontology given in §1.3 and with the definition of the nominal ground. See also Aalders (2002) 
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constraint. The direct cost is the price paid for a data set. As indirect costs, Aronoff 
considers all the time and material used to make the data ready for use for the buyer. 
The constraints in the USA-SDTS, the CEN/TC287 and the ISO/TC211 represent only 
legal or contractual constraints to the access and application of data, while direct costs 
are listed in yet another section of the metadata report. 

 
8. Temporal quality 

CEN/TC287 and ISO/TC211 contain an element called temporal accuracy, in ICA 
it is called temporal information, Aronoff calls it time and the USA-SDTS (Department 
of Commerce 1992) contains no such element. I prefer the use of the term temporal 
quality rather than the term temporal accuracy, because not all sub-elements listed 
below summarise error (see the definition of accuracy in §2.1). The following sub-
elements have been distinguished in CEN/TC287 and in ISO/TC211: 
• accuracy of time measurements = summary of errors in time measurements (CEN 

and ISO); 
• temporal validity = the validity in respect of time (CEN and ISO), also sometimes 

called currency. According to CEN the temporal validity can take on one of the 
following three values: “out_of_date”, “valid” or “not_yet_valid”; 

• temporal consistency = correctness of the order of events (ISO); 
• last update (CEN); 
• rate of change = an estimate of the rate of change in the phenomenon represented in 

the data. Together with information on the last update this element can inform the 
user about the currency (CEN); 

• temporal lapse = the average time between change on the nominal ground and its 
representation in data (CEN). 
 

9. Variation in quality 
CEN/TC287 defined the element homogeneity as “a textual and qualitative 

description of the expected or tested uniformity of quality parameters in a geographic 
data set”. In this thesis the element is named variation in quality since the element is 
only relevant if quality varies within the data set. According to table 1, only the 
CEN/TC287 distinguishes this element as a separate element. Closer reading of the 
USA-SDTS, ISO/TC211 and ICA learns that these treat variability as a part of the other 
elements (for that reason they are shown as I’s in table 1). The USA-SDTS states: 
“Where the spatial variation in quality is known, a quality report must record that 
variation” and repeats this statement under the elements positional accuracy and 
attribute accuracy. ISO (2002: 8) incorporates the description of variability using the 
term data quality scope: “At least one data quality scope shall be identified for each 
applicable data quality sub-element. A data quality scope may be a data set series to 
which a data set belongs, the data set or a smaller grouping of data located physically 
within the data set sharing common characteristics. If a data quality scope cannot be 
identified, the data quality scope shall be the data set”. Annexes in ISO (2002) further 
show how this variation in quality can be reported: by reporting the data quality scope 
to which the data quality measure is applicable. 

 
10. Meta-quality 

This element provides information on the quality of the quality description. For 
example if the positional accuracy is estimated from a smaller sample size, then that 
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estimate is of lower quality. The three standards USA-SDTS, CEN/TC287 and 
ISO/TC211 treat meta-quality as a part of the other elements and require it to be 
documented if possible. As is in element 9, table 1 shows that the element meta-quality 
is explicitly recognised in CEN/TC287. The USA-SDTS does not use the term meta-
quality, but does describe different tests to assess accuracy and ranks these according to 
what we may here call meta-quality. It states: “informed assessment of fitness for use is 
best served by the most rigorous types of tests”.  

 
11. Resolution 

Being aware of the confusion that can arise about the interpretation of the terms 
resolution and scale (§2.1), it is also recognised that they can be relevant to the user of 
a spatial data set (Veregin 1999). Often a decision or analysis requires data at a certain 
resolution and as such, information on the resolution is important in the first step of 
fitness-for-use assessment (§1.1.4). As for “variation in quality” and “meta-quality”, 
the element “resolution” is mostly encountered as a sub-element of other spatial data 
quality elements or other metadata elements. 

 

2.3 Summary 
The most important motivation for describing spatial data quality is to provide the 

potential user of a data set with the necessary information to decide on the fitness for 
use of a data set for his particular application (§1.4). This chapter presented an 
overview of definitions of spatial data quality. Five sources of definitions were 
compared. As can be seen in table 1, there is strong agreement on the contents of the 
definitions. The treatment of elements of spatial data quality in the five sources differs 
in two aspects: (1) the location within the meta-data report and (2) the explicitness with 
which elements are named as individual elements. Leaving these differences aside there 
appears to be little disagreement on which elements together define spatial data quality. 
Of the eleven elements listed above, the last three (“variation in quality”, “meta-
quality” and “resolution”) are often encountered not as individual elements but as sub-
elements of other individual elements. The element “semantic accuracy” is likely to 
dissolve in other elements in which case it is no longer recognised as an individual 
element. 

 



 



 

 



 

 

 
 
 
 
 

3. Spatial variability in classification accuracy1

                                                 
1 Based on: P.A.J. van Oort, Bregt, A.K., de Bruin, S., de Wit, A.J.W. and Stein, A., 2004. Spatial 
variability in classification accuracy of agricultural crops in the Dutch national land-cover database. 
International Journal of Geographical Information Science 18(6): 611–626. © Taylor & Francis Ltd. 



 

3. Spatial variability in classification accuracy 

Abstract 
Variability in per cell classification accuracy is predominantly modelled with land 

cover class as the explanatory variable, i.e. with users’ accuracies from the error matrix. 
We developed logistic regression models to include other explanatory variables: 
heterogeneity in the 3×3 window around a cell, the size of the patch and the complexity 
of the landscape in which a cell is located. We found that per cell the probability of 
correct classification was significantly (α = 0.05) higher for cells with a less 
heterogeneous neighbourhood, for cells that are part of larger patches and for cells 
located in regions with a less heterogeneous landscape. To validate the models, a leave-
one-out procedure was applied in which the absolute difference between the actual and 
the model-estimated number of cells correctly classified was summarised over 55 
regions in the Netherlands. The sum of differences reduced from 60.9 to 48.1 after 
adding the variables ‘patch size’ and ‘landscape dominance’ to the land cover class 
model. Spatial variability thus modelled therefore lead to a substantial improvement in 
per cell classification accuracy estimation. 

 

3.1 Introduction 
Land cover data derived from classified satellite images are increasingly used in 

land use planning and environmental management. As a consequence, concern about 
the accuracy of these data has grown. Commonly, the classification accuracy is 
reported by the percentage correctly classified (PCC) and the error matrix (Congalton 
1991, Janssen and van der Wel 1994). Information on the spatial variability of these 
measures is rarely provided (Foody et al. 1992, Goodchild 1995, Smith et al. 2002). 
Lack of quantitative information on this spatial variability can be a serious problem: 
usage of a PCC not representative for a region may lead to misleading outcomes in an 
error propagation analysis and to incorrect assessment of the fitness for use of the data 
for a specific region. Therefore, McGwire and Fisher (2001) recommend reporting the 
accuracy for the smallest region size where the producer expects the data set to be used. 

Responding to the demands from users, de Wit (2002) has recently published 
estimates of the accuracy of the Dutch national land cover database (LGN) on a region 
(62.5 km2) and province basis. These estimates were computed from reference data 
located within each of the regions concerned. The disadvantage of such an approach is 
that proper accuracy assessment may be impossible if there are no or too few reference 
points within a given region. Model based approaches possibly do not suffer from this 
disadvantage.  

For example, some researchers (Steele et al. 1998) used a spatial interpolator 
(kriging) for estimating probabilities of correct classification from sample points with 
known probability of misclassification and models of spatial continuity (variograms). 
Their method requires that the interpolated points are within the range of influence of 
sampled points. If this requirement is not met, models calibrated on exhaustively 
sampled explanatory variables can be considered. The most commonly applied model is 
based on users’ accuracies derived from the error matrix, in which land cover class is 
the explanatory variable. Smith et al. (2002, 2003) developed logistic regression 
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models to assess the impact of other variables on per cell classification accuracy. They 
found significant (α = 0.05) impacts of both patch size and focal heterogeneity 
(heterogeneity in the 3×3 window around a cell).  

On the basis of visual analysis, de Wit et al. (1999) anticipated that regional 
differences in accuracy were also associated with complexity of the landscape and that 
differences in landscape complexity were not entirely captured by the variables land 
cover class, patch size and focal heterogeneity. To our knowledge, such observation has 
never been substantiated by quantitative evidence. 

In this chapter, our aim is to extend the work of Smith et al. (2002, 2003) by 
including landscape indices (Forman and Godron 1986, O’Neill et al. 1988, Li and 
Reynolds 1993, Riiters et al. 1995) as potential explanatory variables of per cell 
classification accuracy. These indices aggregate the distribution of land cover classes 
and of focal heterogeneity values within a region to one number representative for a 
whole region. In the following sections we describe an experiment with 55 regions 
taken from the Dutch national land cover database. First the data sets, variables and 
models are introduced and the procedure to validate the models is outlined. Next the 
results are presented and we end with a discussion of the results. 

 

3.2 Methods 

3.2.1 Data 
In this study two data sets were used: (1) the national land cover database (LGN) 

derived from satellite images and (2) a reference data set derived from the agricultural 
census (REF). LGN has a resolution of 25 m and covers the whole Netherlands. It is 
produced every 4 years, the most recent update of the database is based on images of 
1999 and 2000 and was completed in 2001. The production process involves 
integration of multi-temporal satellite imagery (from Landsat TM and SPOT), ancillary 
data and expert knowledge (Thunnissen and Noordman 1996, Thunnissen and de Wit 
2000). The classification system comprises 39 land cover classes, 7 of which are 
agricultural crops. In total, agricultural crops cover 52.9% of the country. The database 
is widely used by national and regional government agencies for water management, 
hydrological modelling, land use planning and environmental management (van Soest 
et al. 2001, de Wit 2002).  

The reference data set used in this study was derived from the agricultural census. 
For the census the government annually sends to all farmers one or more 1:10000 aerial 
photos, with parcel boundaries derived from the national topographical map and the 
cadastral map printed on these photos. Farmers return these maps, indicating the areas 
of crops produced within their parcels. Crop name(s) and area(s) are recorded without 
reference to their position within the parcel. The maps returned by all individual 
farmers are combined per region. Figure 1 shows 55 of these regions, their location 
corresponds with map sheets supplied by the national topographical database which is 
often used in combination with LGN. The reference data set was derived from this 
census data set in four steps: 
1. Parcels with more than one crop and parcels with a reported crop area exceeding the 

geometrical area in the census data set by more than 10% were excluded. As a 
result, the coverage of census data per region ranged between 1% and 42%; 
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2. The census data set, originally in vector format, was converted to raster to enable 
overlay with LGN. As in LGN, only one class was assigned to each cell in the 
reference data set using the majority rule. This rule assigns to a cell the land-cover 
class with the largest relative area within the cell; 

3. We randomly selected 55 of the regions of the census data set (figure 1). Of the 
selected regions, 47 were sized 6.25 × 10.0 km, the other 8 regions were slightly 
smaller. The resulting data set contained 955 783 cells with reference land cover; 

4. Reference data were sub-sampled to obtain a more or less realistic data density. For 
that purpose, the data set was overlaid with a point grid with spacing 30 cells (750 
m) and a randomly drawn origin was made in each region (de Gruijter 1999). All 
points coinciding with census data cells were added to the reference data set. The 
resulting reference data set (REF) contained 1161 cells. 
 

 
Figure 1. The Netherlands with regions (rectangles) used in this study. Models to 
estimate the PCC of a validation region (black) were fitted on data of the other 54 
regions (white). This procedure was repeated for all regions. 
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3.2.2 Explanatory variables  
We used 4 categories of explanatory variables (see table 1). Category 1, contains a 

single variable CLASS, which specifies the land cover class of the cell. 
Category 2 variables quantify the heterogeneity of the focal (= 3×3) neighbourhood 

around each cell. Focal heterogeneity, HET, equals the number of different land cover 
classes in the neighbourhood. Focal homogeneity, HOM, equals the number of 
neighbouring cells with the same land cover class as the central cell.  

The single category 3 variable L10P quantifies the size of the patch in which a cell 
is located. A patch was defined as a set contiguous cells of the same land cover class. 
Contiguity was defined as sharing a common boundary, thus each cell had 4 contiguous 
cells. Patch shape indices express in one number the distribution of patch sizes 
occurring in a region (Forman and Godron 1986: 189, Baker and Cai 1992). They were 
not considered here because a preliminary data analysis showed little variation in the 
values of these indices for the 55 regions assessed in this study (O’Neill et al. 1988 
obtained similar results for agricultural areas). 

Category 4 includes four landscape indices, which differ in sensitivity to the 
number of land cover classes and in ability to distinguish between different landscape 
textures. The indices are known as landscape heterogeneity, landscape dominance, 
landscape entropy and landscape contagion (O’Neill et al. 1988, Li and Reynolds 1993, 
Riiters et al. 1995). We will refer to the indices as landscape variables. 

Landscape heterogeneity and landscape dominance are derived from marginal 
probabilities p(i), i = 1,…,I , with I the number of land cover classes in the region. Let 
A(i) be the area of land cover class i in a region. Then p(i), landscape heterogeneity 
(HTG) and landscape dominance (DMG) are: 
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Landscape Entropy (ENT) and Landscape Contagion (CON) are obtained from the 
probabilities padj(i,j), that a randomly chosen cell is classified as i and that at least one 
adjacent cell (in a 3×3 window) is classified as j. Let Nadj(i,j) be the total number of 
adjacencies between cells with class i and class j within a region. Then: 
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Table 2 shows the range of values of the landscape variables. In distinguishing between 
relatively heterogeneous and finely textured landscapes the variables HTG and ENT are 
more sensitive to I than the variables DMG and CON. 
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Table 1. Explanatory variables 
Category Variable Key aspects of variable 
1. Land cover Land cover 

class (CLASS) 
6 binary variables are used to indicate the presence 
of one of the 7 land cover classes* 

2. Focal Heterogeneity 
(HET) 

number of different classes in direct (8-cell) 
neighbourhood of cell 

 Homogeneity 
(HOM) 

number of cells with land cover class in direct (8-
cell) neighbourhood the same as of centre cell 

3. Patch Patch size  
(L10P) 

contiguous cells with same land cover grouped to 
patches 

4. Landscape Heterogeneity 
(HTG) 

independent of landscape texture, more sensitive to 
number of land cover classes 

 Dominance 
(DMG) 

independent of landscape texture, less sensitive to 
number of land cover classes 

 Entropy (ENT) dependent on landscape texture, more sensitive to 
number of land cover classes 

 Contagion 
(CON) 

dependent on landscape texture, less sensitive to 
number of land cover classes 

* if all binaries are zero then the class is LGN = 7 
 

Table 2. Minimum and maximum values of landscape variables 
landscape HTG DMG  landscape ENT CON 
heterogeneous ln(I) 0  fine texture 2·ln(I) 0 
one class dominates 0 ln(I)  coarse texture 0 2·ln(I) 
I is the number of land cover classes in a region 

 

3.2.3 Statistical analysis 

Logistic regression 
We used logistic regression (Agresti 1990, Collett 1991) to calculate the 

probability of correct classification pcorr(c) of a cell c as a function of the explanatory 
variables introduced in the previous section. A logistic regression model with intercept 
b0 and with k =1,…,K explanatory variables xk equals: 
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A linear function logit(pcorr(c)) = β0 + ∑βk
.xk(c) is fitted through the data. In some 

cases the linearity of this function can be improved by transforming a variable x. 
Preliminary data analysis showed that this was the case for patch size, which we 
transformed to a logarithmic scale.  

Regression coefficients are obtained by minimising the –2 log likelihood (also 
known as the deviance) of the model. The difference between the deviances of two 
models follows a 2

lχ  distribution, where l denotes the number of explanatory variables 
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additional to those shared by the two models. A 2χ test can then be used to test if 
adding these l variables to the model significantly improves the fit of the model. 
Ignorance of spatial dependence in the residuals of the fitted regression models will 
result in models seeming more significant than they actually are (Bio 2000). We 
visually checked for spatial dependence in the residuals by plotting their variograms. 

We applied an exhaustive model selection procedure that would result in finding 
the model containing the highest number of significant (at α = 0.05) explanatory 
variables. Table 3 lists the evaluated models, table 6 the tests. At each step in the 
procedure we tested at three significance levels (0.05, 0.01 and 0.001) the significance 
of the addition of a variable to a model: 
1. addition of CLASS to model 0 (creates model 1), addition of HET to model 0 

(creates model 2a), …, addition of CON to model 0 (creates model 2g); 
2. addition of HET to model 1 (creates model 3a), …, addition of CON to model 1 

(creates model 3g); 
3. addition of a second explanatory variable to a model containing CLASS and one 

variable of the same category (table 1). For example addition of HOM to model 3a. 
Because none of these additions was significant (at α = 0.05) we continued the 
analysis with one variable out of each category: HET, L10P and DMG; 

4. addition of one of the variables HET, L10P and DMG to a model containing 
CLASS and one of these three. For example addition of L10P to model 3a (creates 
model 4a); 

5. addition of HET to model 4c and addition of L10P·DMG to model 4c. 
 

Table 3. Models evaluated 
model 
nr. (m) 

Model 

0 β0 
1 β0 + β1-6 · CLASS 
2a β0 + β1 · HET 
M M 

2g β0 + β1 · CON 
3a β0 + β1-6 · CLASS + β7 · HET 
M M 

3g β0 + β1-6 · CLASS + β7 · CON 
4a β0 + β1-6 · CLASS + β7 · HET + β8 ·L10P 
4b β0 + β1-6 · CLASS + β7 · HET + β8 ·DMG 
4c β0 + β1-6 · CLASS + β7 · L10P + β8 ·DMG 
5a β0 + β1-6 · CLASS + β7 · L10P + β8 ·DMG+ β9 · HET 
5b β0 + β1-6 · CLASS + β7 · L10P + β8 · DMG + β9 · L10P · DMG 

For each of the six binary variables in CLASS a regression coefficient is estimated: β1 
… β6. 

 

Validation 
A leave-one-out procedure was applied to cross-validate each model. Each time the 

model was fit on data from 54 regions and one region r was used as the test data set 
(figure 1). The resulting 55 parameter sets are refered to as versions of a model. For 
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each of the cells c = 1, …, n(r) , with n(r) the number of cells in region r, the 
probability of correct classification pcorr,m(c) was calculated with model m. The binary 
variable y(c) obtained from the test data set indicates if c was actually correctly 
classified or misclassified. The measure SMm (eq. 8) summarises over all cells the 
absolute difference between model estimated and actual correctness of classification. 
R0m (eq. 9) is the relative improvement of model m to the model assuming the same 
probability of correct classification for all cells (m = 0), R1m (eq. 10) is the relative 
improvement to the model with CLASS as the explanatory variable (m = 1). SMm, R0m 
and R1m are calculated as: 
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3.3 Results 

3.3.1 Error matrix 
The error matrix is shown in table 4. Overall LGN has a high classification 

accuracy: 90.2%. There are large differences in user accuracies between different crops 
(ranging between 33.3% and 95.8%). An implication of the large differences is that in 
for example a region with a relatively large area of bulb cultivation, the assumption of a 
PCC of 90.2% could overestimate this region’s PCC. 

 

3.3.2 Model Selection 
Table 5 shows the estimated regression coefficients for a selection of models. 

Model 1 shows the effect of CLASS on classification accuracy, models 2a-3g show the 
effect of the explanatory variables HET to CON. Models 3a-3g show the effect of these 
variables when CLASS is accounted for. Model 4c is the model that contained the 
highest number of significant (α = 0.05) explanatory variables. If kβ̂ < 0, the probability 

of correct classification decreases with increase of the value of variable k, if kβ̂ > 0 the 

probability increases. The impact of the variable k decreases as kβ̂  approaches 0. Of 
interest are the effect of our explanatory variables on classification accuracy and the 
influence of accounting for CLASS. We see that classification accuracy is higher for 
higher values of focal homogeneity, patch size, in regions with landscapes with one 
dominant class and in regions with a coarser texture. 
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Table 5. Estimated regression coefficients 
regression coefficients Model 

nr. (m) 0β̂  1β̂  2β̂  3β̂  4β̂  5β̂  6β̂  7β̂  8β̂  

0 2.2174          
1 -0.6931 3.4764 3.8177 2.4551 3.1091 2.9322 0.2231   
2a 2.8899 -0.4751        
2b 1.3078 0.1277        
2c -0.4525 0.9934        
2d 5.7134 -1.8275        
2e -0.1922 2.0886        
2f 5.8240 -1.3646        
2g -3.3758 1.6022        
3a 0.0316 3.3821 3.9384 2.4439 3.1197 2.9139 0.2028 -0.4899  
3b -1.4315 3.3831 3.8174 2.4018 3.0770 2.8734 0.1666 0.1125  
3c -2.7223 2.1251 3.5502 2.0543 3.0299 2.4440 -0.1030 1.0404  
3d 2.0440 3.4337 4.0300 2.9414 3.5135 3.2936 0.6484 -1.5253  
3e -2.5261 3.2388 3.7770 2.8400 3.4262 3.2043 0.5814 1.5559  
3f 2.2878 3.4579 4.0815 2.9336 3.5296 3.2677 0.6347 -1.1993  
3g -4.7307 3.1681 3.6906 2.7595 3.3866 3.1146 0.5129 1.1663  
4c -3.5752 2.1731 3.4820 2.2875 3.1923 2.6263 0.1395 0.9248 0.9309

See table 3 for model descriptions. For example in model 2c, 1β̂  is multiplied by L10P, 
in model 3c 1β̂  is multiplied by the binary indicating if CLASS = 1 and 7β̂  is 
multiplied by L10P. 

 
As an illustration figures 2 to 4 show for the models 2a, 2c and 2e the expected 

probabilities of correct classification and the 95% confidence intervals of correct 
classification. The broad confidence interval for HET < 2 is due to the distribution of 
the values of HET in the observations: HET = 1: 68%, HET = 2: 29% and HET < 2: 
3%. If we compare the 1β̂ ’s of models 2a-3g with the 7β̂ ’s of models 3a-3g we see that 
the effect of the focal and patch variables does not change when CLASS is accounted 
for. The impact of the landscape variables (models 2d-3g and 3d-3g) is lower in a 
model containing variable CLASS, indicating that a part of the impact of these 
variables is accounted for by CLASS. 
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Figure 2. Impact of focal heterogeneity (HET) on probability of correct classification: 
model 2a (solid line) and 95% confidence interval (dotted line). 

 

 
Figure 3. Impact of patch size (L10P) on probability of correct classification: model 2c 
(solid line) and 95% confidence interval (dotted line). 

 

 
Figure 4. Impact of landscape dominance (DMG) on probability of correct 
classification: model 2e (solid line) and 95% confidence interval (dotted line). 
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Figure 5 shows for model 2c that there is no risk of overestimation of significance 
levels due to spatial dependence in the residuals. Variograms of residuals of the other 
models also revealed no spatial dependence. Table 6 shows the significance testing of 
improvement of fit of models by adding an additional explanatory variable xl. The table 
shows that of the explanatory variables only HOM was not significant at α = 0.05. The 
patch and landscape variables were highly significant (all at α = 0.001) also when 
added to the model already containing CLASS. HET was significant at α = 0.01 in 
fewer versions if CLASS was already in the model (54 vs. 24 versions). Adding L10P 
or DMG to a model containing CLASS and HET was in all 55 versions significant at α 
= 0.001. Adding HET to respectively CLASS & L10P and CLASS & DMG was 
significant at the α = 0.05 level in 0 and 54 of the 55 versions. We concluded that a 
model should at least contain CLASS and either L10P or DMG and that it need not 
contain HET. But would a model containing CLASS and both L10P and DMG still be 
better? Adding DMG was significant at α = 0.05 in 55 versions and adding L10P was 
significant at α = 0.001 in 55 versions. Finally we tested if adding to model 4c the 
variable HET or the interaction L10P·DMG would significantly (at α = 0.05) improve 
the fit. This was never the case, so model 4c was the model containing the highest 
number of significant explanatory variables. 

 

 
Figure 5. Semivariogram of residuals of model 2c (explanatory variable: L10P). 

 

3.3.3 Model validation 
Table 7 shows the absolute differences between actual classification correctness 

and estimated probabilities of correct classification, summarised over all cells. The 
table shows that all model estimates were better than model 0 (R0m > 0 for all m). The 
models containing focal variables were slightly better than model 0 (R02a = 1.3%, R02b 
= 1.5%), however they produced worse estimates than model 1 (R12a = -34.4%, R12b = -
34.1%). Their contribution to the model containing variable CLASS was marginal: R13a 
= 0.6%, R13b = 0.2%. The patch and landscape variables provided better estimates than 
models 0 and 1. Adding a patch or landscape variable to a model containing intercept 
only (models 2c-2g) improved model 0 estimates by R02c = 3.5% to R02g = 19.2%. 
Adding a patch or landscape variable to a model containing CLASS (models 3c-3g) 
improved model 1 estimates by 10.6% to 15.7%. Model 4c, the model with the highest 
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number of significant variables, also had the highest R0m and R1m values. Relative to 
models 0 and 1 model 4c improved estimates of probabilities of correct classification 
by 42.0% and 21.0% respectively. 

 
Table 6. Chi-square tests for selected models 
chi-square 
test (df.) 

Description: significance of 
additional explanatory variable xl to a 
model already containing variables xk 

Frequencies of significance at 
α in the 55 versions* of each 
model 

 xk xl α = 0.05 α = 0.01 α = 
0.001 

D0 – D1 (6) 1 CLASS 55 55 55
D0 – D2a (1) 1 HET 55 54 0
D0 – D2b (1) 1 HOM 5 0 0
D0 – D2c (1) 1 L10P 55 55 55
D0 – D2d (1) 1 HTG 55 55 55
D0 – D2e (1) 1 DMG 55 55 55
D0 – D2f (1) 1 ENT 55 55 55
D0 – D2g (1) 1 CON 55 55 55
D1 – D3a (1) 1 & CLASS HET 54 24 0
D1 – D3b (1) 1 & CLASS HOM 0 0 0
D1 – D3c (1) 1 & CLASS L10P 55 55 55
D1 – D3d (1) 1 & CLASS HTG 55 55 55
D1 – D3e (1) 1 & CLASS DMG 55 55 55
D1 – D3f (1) 1 & CLASS ENT 55 55 55
D1 – D3g (1) 1 & CLASS CON 55 55 55
D3a – D4a (1) 1 & CLASS & HET L10P 55 55 55
D3a – D4b (1) 1 & CLASS & HET DMG 55 55 55
D3c – D4a (1) 1 & CLASS & L10P HET 0 0 0
D3c – D4c (1) 1 & CLASS & L10P DMG 55 7 0
D3e – D4a (1) 1 & CLASS & DMG HET 54 4 0
D3e – D4c (1) 1 & CLASS & DMG L10P 55 55 55
D4c – D5a (1) 1 & CLASS & L10P 

& DMG 
HET 0 0 0

D4c – D5b (1) 1 & CLASS & L10P 
& DMG 

L10P·DMG 0 0 0

* a version is a model fitted on data from 54 regions, with cells of one region left out 
for cross-validation 

Dm: Deviance of model m; variables are described in table 1, models in table 3; xk = 1 is 
multiplied by the intercept 0β̂ . 
 

3.3.4 Model validation versus model selection 
In general the ranking of models according to significance levels of contributing 

variables in the model selection corresponded well with the ranking of models 
according to R0m and R1m values in the validation. Landscape variables yielded the 
greatest improvement in estimates of per cell probabilities of correct classification, the 
patch variable yielded a greater improvement than the focal variables. Model selection 
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showed that adding CLASS to a model containing DMG or CON was significant at α = 
0.001 (testing 2

6=lχ  = D2e – D3e and 2
6=lχ  = D2g – D3g), yet validation showed a 

deterioration when CLASS was added (R13e < R12e and R13g < R12g). Finally, the big 
differences in significance between HET and HOM observed during model selection 
were absent in the model validation.  

 
Table 7. Validation: comparison between actual and estimated number of cells correctly 
classified 

relative to models 0 and 1 Model 
nr. (m) Model description SMm R0m (%) R1m (%) 
0 same PCC in all regions 83.0   
1 CLASS ( = error matrix) 60.9 26.6  
2a HET 81.8 1.3 -34.4 
2b HOM 81.7 1.5 -34.1 
2c L10P 58.8 29.1 3.5 
2d HTG 58.3 29.8 4.3 
2e DMG 51.0 38.5 16.2 
2f ENT 58.5 29.5 3.9 
2g CON 49.2 40.7 19.2 
3a CLASS & HET 60.5 27.0 0.6 
3b CLASS & HOM 60.8 26.8 0.2 
3c CLASS & L10P 52.4 36.8 13.9 
3d CLASS & HTG 54.4 34.4 10.6 
3e CLASS & DMG 51.5 37.9 15.4 
3f CLASS & ENT 54.0 35.0 11.4 
3g CLASS & CON 51.4 38.1 15.7 
4c CLASS & L10P & DMG 48.1 42.0 21.0 

 

3.3.5 Comparison between landscape variables 
Table 7 shows that R13e – R13d > R13f – R13d , indicating a stronger increase in R1 

values when HTG was replaced by DMG (10.6% to 15.4%) than when HTG was 
replaced by ENT (10.6% to 1.4%). Similar comparisons between R0m and R1m values 
of other models, for example R12g – R12f > R12g – R12e, confirmed that PCC estimates 
improved stronger when a landscape variable less sensitive to the number of land cover 
classes was included in the model (DMG or CON) than when a variable sensitive to 
texture was included (ENT or CON). The table further shows that the impact of 
replacing HTG by DMG or ENT by CON is smaller in models 3d-3g than in models 
2d-2g. This indicates that a part of the effect of accounting for sensitivity to the number 
of land cover classes is accounted for by the inclusion of the variable CLASS in the 
model. 

 

3.4 Conclusion and discussion 
Our aim was to extend the work by Smith et al. (2002, 2003) by evaluating 

landscape indices (Forman and Godron 1986, O’Neill et al. 1988, Li and Reynolds 
1993, Riiters et al. 1995) as potential explanatory variables of variability in the 
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classification accuracy of cells. Four landscape indices were applied, differing in 
sensitivity to the number of land cover classes and in ability to distinguish between 
different landscape textures. In this section we will discuss the outcomes of the model 
selection and validation, and then separately discuss the impact of the landscape 
variables. 

 

3.4.1 Model selection and validation 
Our model selection procedure showed the significance of variables in a series of 

models with increasing number of variables. The model with the highest number of 
significant (α = 0.05) explanatory variables included the variables ‘land cover class’, 
‘patch size’ and ‘landscape dominance’. We found that per cell classification accuracy 
was significantly higher for cells with more heterogeneous focal (= 3×3) 
neighbourhoods, cells located in larger patches, cells located in regions with a less 
heterogeneous landscape and cells located in regions with a more coarsely textured 
landscape.  

To assess the validity of our statistical analysis we checked spatial dependence in 
the model residuals (Bio 2000). Variograms of the residuals did not reveal such 
dependence. A leave-one-out procedure was applied to validate the models. 
Improvement was measured relative to the model assuming the same probability of 
correct classification for all cells and relative to the model with ‘land cover class’ as the 
single explanatory variable. The model with the highest number of significant 
explanatory variables also yielded the largest relative improvements: respectively 21% 
and 42%. In general the ranking of models according to significance levels during 
model selection corresponded well with the ranking according to relative improvements 
during the model validation. 

 

3.4.2 Impact of landscape variables 
Model selection showed in all stages a significant contribution of the landscape 

variables HTG, DMG, ENT and CON. The impact was smaller but still significant if 
the model contained variable ‘land cover class’, which indicates that a part of the 
impact of these variables is already accounted for by this variable. Validation results 
showed that estimates of per cell probabilities of correct classification were better in 
models with landscape variables less sensitive the number of land cover classes (DMG 
and CON) and that estimates were slightly better in models with variables sensitive to 
landscape texture (ENT and CON). 

 



 



 

 

 
 
 
 
 

4. Land cover change and classification errors1

                                                 
1 Based on: van Oort, P.A.J., 2005. Improving land cover change estimates by accounting for 
classification errors. International Journal of Remote Sensing 26(14): 3009-3024 © 2005 Taylor & 
Francis Ltd. 



 

4. Land cover change and classification errors 

Abstract 
In monitoring land cover change by overlay of two maps of different dates the rate 

of change is frequently overestimated. This is due to three sources of uncertainty: (i) 
semantic differences in class definitions between two maps, (ii) positional errors and 
(iii) classification errors. In this study 4 methods are proposed that use the Bayes 
theorem to update prior estimates of land cover change with information on the 
probabilities with which land cover classes are mistaken for each other. The methods 
were illustrated for two case-studies. In the first case-study the real change was 1.4% 
and by overlay of the two maps 7.4% was predicted. The estimates by the four methods 
were 6.3%, 15.3%, 6.7% and 1.6%. In the second study these percentages were 48%, 
36% and with our 4 methods: 39.2%, 54.1%, 50.8% and 53.0%. Two of the methods 
account for correlation in classification accuracy between maps of two dates. Where 
this correlation was high (study area 1), the methods that accounted for correlation 
yielded change estimates closer to real change than the methods that did not account for 
this correlation. 

 

4.1 Introduction 

4.1.1 Change detection 
Land cover change seriously affects our environment (Vitousek 1994, Achard et al. 

2002), so it is important to have good estimates of these changes. National land cover 
databases are often used for monitoring land cover change; research is increasingly 
focusing on improvements in change detection methods (Lunetta et al. 2002). An 
important issue is the effect of positional errors and classification errors on change 
detection.  

Different change detection methods exist (Singh 1989, MacLeod and Congalton 
1998, Mas 1999). The most obvious method is post-classification comparison of land 
cover at two dates. The use of post-classification comparison is appropriate when the 
phenomenon monitored can be partitioned into crisp classes and when data can be 
stored and collected at a resolution so high that the spatial objects are homogeneous in 
their land cover class. Otherwise, image differencing, principal component analysis or 
hierarchical fuzzy pattern matching may be more applicable (Singh 1989, MacLeod and 
Congalton 1998, Power et al. 2001). The transition matrix is often used as a non-site-
specific measure of land cover change. It shows the total area of transitions between 
different land cover classes and is derived from an overlay of test data sets of two dates. 

 

4.1.2 Sources of uncertainty in change detection 
Numerous studies have shown that post-classification comparisons overestimate 

land cover change, due to uncertainties in the data (MacLeod and Congalton 1998, Mas 
1999, de Zeeuw and Hazeu 2001, Achard et al. 2002, Foody 2002). These uncertainties 
originate from three sources: (1) semantic differences in the definitions of land cover 
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classes between two data sets, (2) misregistration of pixels or object boundaries and (3) 
misclassifications. 

Only when uncertainty due to semantics has been eliminated can the effect of 
misregistrations and misclassifications be quantified and reduced. Uncertainty due to 
semantics can be eliminated either by using a consistent classification method (Achard 
et al. 2002) or by developing a common ontology by generalization of the classes in the 
available data sets (de Zeeuw and Hazeu 2001, Petit and Lambin 2002). The first 
solution has the disadvantage of being very costly, requiring restructuring, often of 
large data sets; the second results in a loss of detail. Most monitoring studies only 
address this first source of uncertainty. 

For satellite images, the most researched method to reduce the effect of 
misregistration on change detection is by reduction of misregistration (Townshend et 
al. 1992, Dai and Khorram 1998, Stow and Chen 2002). Just a few of these studies used 
post-classification comparison as a change detection method. Verbyla and Boles (2000) 
simulated the effect of positional error in image rectification on land cover change. 
They found a low correlation between registration root mean square error and the 
overestimation in land cover change. Carmel et al. (2001) and Kiiveri et al. (2001) 
showed that misregistration can result in classification errors, which can be reported in 
the error matrix. For vector data, misregistration refers to the positional accuracy of 
boundaries of objects (polygons). De Zeeuw et al. (1999), Sonneveld et al. (2000) and 
de Zeeuw and Hazeu (2001) developed a model called MonGIS for reducing the effect 
of such misregistrations. MonGIS uses rules based on expert knowledge of the 
geometry of changing spatial objects to decide if the detected change was real or not. 
The use of expert knowledge is problematic in that it is difficult to validate, and one 
cannot be confident about the applicability to other data sets than the calibration data 
set. The present study is inspired by the work by de Zeeuw et al. (1999); methods are 
proposed that do not require expert knowledge, but instead require information on 
classification errors. 

Classification errors may arise due to misregistration and due to assignment of the 
wrong class to spatial objects. The propagation of classification errors depends on the 
size of the classification errors, not on the source of these errors. (Kiiveri et al. 2001). 
Veregin (1989) showed how propagation of classification errors at two observation 
dates in an overlay operation can be calculated. His method addressed calculating the 
percentage correctly classified of the resulting map. Rosenfield (1982) presented a 
method of estimating change and variance in land cover change for individual land 
cover classes as a function of sample design. Kiiveri et al. (2001) reduced mis-
estimation of change by using data sets of increased classification accuracy. They 
increased the classification accuracy by using a priori knowledge of the actual 
transition probabilities. In this study, I have no prior knowledge of actual transition 
probabilities, and I will estimate actual transition probabilities by including information 
on classification accuracy. 

 

4.1.3 Objective 
Research into methods developed to reduce overestimation or underestimation of 

land cover change estimates has predominantly been on increasing the quality of single 
date data sets and on comparison of change detection methods. Both are often not an 
option to the user, who is supplied with ‘off the shelf’ data sets and their quality 
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descriptions. The aim of this study is to propose four methods to improve land cover 
change estimates by accounting for classification errors. For illustration, the methods 
were applied to two case study areas using data described in Veregin (1989) and in de 
Zeeuw and Hazeu (2001). In both case studies, exhaustive reference data sets were used 
to evaluate the methods proposed. A comparison of the proposed four methods with the 
model MonGIS (de Zeeuw et al. 1999) was made. 

 

4.2 Materials and Methods 

4.2.1 Data processing 
This section introduces terminology and describes how data were processed. The 

data sets used in the two case-studies will be described in a subsequent section. In each 
study, two classified land cover data sets, of dates t1 and t2, were used and also two 
exhaustive reference data sets with the actual land cover classes at dates t1 and t2. Land 
cover classes are described by the variable LCa,b, where subscripts ‘a’ refers to a data 
set or method and ‘b’ to the date. From five overlays of these data sets the following 
matrices and table were obtained: 
1. Test data set at t1 and test data set at t2  post classification comparison (PCC) 

transition matrix, with elements Area(LCdata,t1, LC data,t2); 
2. Reference data set at t1 and reference data set at t2  actual transition matrix, with 

elements Area(LCact,t1, LC act,t2); 
3. Test and reference data set at t1  error matrix of t1, with elements Area(LCdata,t1, 

LCact,t1); 
4. Test and reference data set at t2  error matrix of t2, with elements Area(LCdata,t2, 

LCact,t2); 
5. All four data sets  table with Area(LCdata,t1, LCact,t1, LCdata,t2, LCact,t2). 
 

Transition probabilities are obtained from the transition matrices. For example 
from the PCC transition matrix Pr(LCdata,t2 | LCdata,t1) is the probability that a site is 
classified as LCdata,t2 at t2, given that it is classified LCdata,t1 at t1. Confusion 
probabilities are derived from the error matrices, indicating the probability with which 
two classes are mistaken for each other. For example Pr(LCdata,t1 | LCact,t1) is the 
probability that the classified land cover class at t1 is LCdata,t1, given that the actual 
class is LCact,t1 at t1. Correlation of confusion probabilities at one date with another 
date, is quantified in confusion probabilities derived from the fifth overlay. From the 
table one can derive the probability Pr(LCact,t2 | LCdata,t2, LCdata,t1, LCact,t1), i.e. the 
probability that the actual land cover class at t2 is LCact,t2 given that a site is classified 
as LCdata,t2 at t2, classified as LCdata,t1 at t1 and has the actual class LCact,t1 at t1. For 
each combination {LCdata,t1, LCact,t1}, the following equality (1) holds: 





>
=

=∑ 0)LC,Area(LC if   1
0)LC,Area(LC if   0

)LC,LC,LC|Pr(LC
t1act,t1data,

t1act,t1data,

LC
t1act,t1data,t2data,t2act,

t2data,

  (1) 

If the sum is 0 then this specific combination does not occur. In that case the 
probability not accounting for temporal correlation is used: Pr(LCact,t2 | LCdata,t1, LCact,t1, 
LCdata,t2) = Pr(LCact,t2 | LCdata,t2).  
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4.2.2 Proposed methods to reduce errors in change detection 
In the Bayes theorem (O’Hagan 1994), prior estimates of a variable of interest are 

updated with data to obtain posterior estimates of the variable of interest. In this study, 
the variables of interest are the actual transitions, prior estimates are the PCC 
transitions, and data are the confusion probabilities. The posterior estimates are the 
elements Area(LCM,t1, LCM,t2) of the posterior transition matrix, calculated with one of 
the methods M proposed in this section. Multiplication of the posterior transition 
probabilities Pr(LCM,t2|LCM,t1) or Pr(LCM,t1|LCM,t2) with posterior area estimates 
(equation (2) or (3)) yields the elements Area(LCM,t1, LCM,t2) of the posterior transition 
matrix (equation (4) or (5)): 

 
∑ ⋅=

t1data,LC
t1data,t1act,t1data,t1M, )LC|Pr(LC)Area(LC)Area(LC      (2) 

∑ ⋅=
t2data,LC

t2data,t2act,t2data,t2M, )LC|Pr(LC)Area(LC)Area(LC     (3) 

Area(LCM,t1, LCM,t2) = Area(LCM,t1) · Pr(LCM,t2 | LCM,t1)    (4) 
Area(LCM,t1, LCM,t2) = Area(LCM,t2) · Pr(LCM,t1 | LCM,t2)    (5) 

 
The four methods proposed here differ in the calculation of the posterior transition 

probabilities, Pr(LCM,t2 | LCM,t1). In the first method, all elements in the PCC transition 
matrix are multiplied by the rate of overestimation or underestimation of land cover 
classes at t1. In the second method, confusion probabilities derived from the 3rd and 4th 
matrix, are used to update PCC transition probabilities. Specifically, 4 situations can 
occur: 

 
1. correct classification at t1 and at t2 (LCdata,t1 = LCact,t1, LCdata,t2 = LCact,t2); 
2. misclassification at t1, correct at t2 (LCdata,t1 ≠ LCact,t1, LCdata,t2 = LCact,t2); 
3. correct at t1, misclassification at t2 (LCdata,t1 = LCact,t1, LCdata,t2 ≠ LCact,t2); 
4. misclassification at t1 and t2 (LCdata,t1 ≠ LCact,t1, LCdata,t2 ≠ LCact,t2). 

 
The third and fourth methods also update PCC transition probabilities using 

confusion probabilities at t1 and at t2, but these methods use confusion probabilities 
from the 5th matrix. In the third method, confusion probabilities at t2 are conditioned on 
the confusion between classes at t1, {LCdata,t1, LCact,t1}. In the fourth method, confusion 
probabilities at t1 are conditioned on the confusion between classes at t2, {LCdata,t2, 
LCact,t2}. The equations for the four methods are listed below: 

 
Method 1: 

)LC|Pr(LC
)Area(LC
)Area(LC

)LC|Pr(LC t1data,t2data,
t1data,

t1act,
t1M,t2M, ⋅=     (6) 

 
with LCM,t1 = LCdata,t1 = LCact,t1 and LCM,t2 = LCdata,t2 = LCact,t2 
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Method 2: 

∑ ∑ ⋅⋅

=

t1data, t2data,LC LC
t2data,t2act,t1data,t2data,t1act,t1data,

t1M,t2M,

)LC|Pr(LC)LC|Pr(LC)LC|Pr(LC

)LC|Pr(LC
  (7) 

 
with LCM,t1 = LCact,t1 and LCM,t2 = LCact,t2 

 
 
Method 3: 

)LC,LC,LC|Pr(LC

)LC|Pr(LC)LC|Pr(LC)LC|Pr(LC

t1act,t1data,t2data,t2act,

LC LC
t1data,t2data,t1act,t1data,t1M,t2M,

t1data, t2data,

⋅

⋅= ∑ ∑
  (8) 

 
with LCM,t1 = LCact,t1 and LCM,t2 = LCact,t2 

 
Method 4: 

)LC,LC,LC|Pr(LC

)LC|Pr(LC)LC|Pr(LC)LC|Pr(LC

t2act,t2data,t1data,t1act,

LC LC
t2data,t1data,t2act,t2data,t2M,t1M,

t1data, t2data,

⋅

⋅= ∑ ∑
  (9) 

 
with LCM,t1 = LCact,t1 and LCM,t2 = LCact,t2 

 
From equation (2), it follows that if exact estimates of the confusion probabilities 

are available (this is the case if an exhaustive reference data set is used), then 
Area(LCM,t1) ≡ Area(LCact,t1) and Area(LCM,t2) ≡ Area(LCact,t2). Because 

1)LC|Pr(LC
t2M,LC

t1M,t2M, =∑ , it follows from equation (4) that the row total of the 

transition matrix estimated by methods 1–3 is equal to Area(LCact,t1) and from equation 
(5) that the column total of the transition matrix estimated by method 4 is equal to 
Area(LCact,t2). Moreover, it can be shown that with exact estimates of the confusion 
probabilities, the column totals of the transition matrix calculated with method 2 will 
correspond exactly with Area(LCact,t2). As a result, method 2 will provide exact 
estimates for one of the measures of land cover change applied in this study. 

 

4.2.3 Measures of land cover change 
MacLeod and Congalton (1998) distinguished four aspects in change detection: (i) 

detecting that changes have occurred, (ii) identifying the nature of the change, (iii) 
measuring the areal extent of the change and (iv) assessing the spatial pattern of the 
change. The transition matrix quantifies the first three aspects. De Zeeuw and Hazeu 
(2001) defined two summary measures of the transition matrix: point-wise (PC) and 
region-wise (RC) change (figure 1). As a third measure I defined the sum of absolute 
differences (SAD). Let the transition matrix be equal to T = {t}ij. Point-wise change is 
the total area in which change occurred and is calculated from the diagonal elements of 
the transition matrix: ∑∑ −=

i
ii

ji,
ij ttPC . Region-wise land cover change is the sum of 



Land cover change and classification errors 

 

43

absolute net changes in the area of the land cover classes and is calculated from the 
transition matrix row and column totals: ∑

=
++ −=

iji,
ji |tt|RC . The sum of absolute 

differences is calculated from all elements in the actual transition matrix (TA = {ta}ij) 
and the transition matrix of which the accuracy is tested (T): ∑ −=

ji,
ijij |tta|SAD . 

 
Figure 1. Illustration of point-wise and region-wise land cover change calculation. 

 

4.2.4 Case-studies 
For illustration the methods for error reduction described in previous sections were 

applied to two case-study areas, using data described in de Zeeuw and Hazeu (2001) 
and in Veregin (1989). In both cases, exhaustive reference data sets were used to ensure 
that differences in reduction of mis-estimation of change were due to differences 
between the methods and not due to sampling design. The two study areas differ in 
mis-estimation of change, classification accuracy and temporal correlation in 
classification accuracy (table 1).  
 
Table 1. Differences between the two study areas 
 study area 1 study area 2 
mis-estimation of change overestimation underestimation 
accuracy at t1 high low 
accuracy at t2 higher than t1 same as t1 
temporal correlation high low 
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The expert knowledge in the model MonGIS is valid for study area 1, so a 
comparison between this model and the methods proposed will be made for this area. 
Study area 1 is based on data by de Zeeuw and Hazeu (2001). They document an 
extensive study of land cover change in the municipality Soest in the Netherlands. 
Soest was chosen because land cover within this municipality was representative for the 
Netherlands, it was large enough to be representative, and at the same time small 
enough to manage the collection of field data for an exhaustive reference data set. The 
municipality has an area of 3,387 ha. As test data set they used the national topographic 
database (Top10vector) collected in 1991 and in 1995. Top10vector is a vector-based 
data set that is updated once in four years. Source data are aerial photographs of scale 
1:10,000. These are converted into digital images, classified and then verified by 
topographers of the national topographic service (van Asperen 1997). The reference 
data sets for 1991 and 1995 were made using the Top10vector data set as a geometric 
base. Additional information was obtained by means of aerial photo-interpretation, 
existing detailed studies and maps and a fieldwork campaign. To compare Top10vector 
with two other national land cover databases, de Zeeuw and Hazeu (2001) generalised 
the classes in these databases into a common ontology. The common ontology 
distinguished four land cover classes: Urban & Infrastructure, Forest & Nature, 
Agriculture and Water. Figure 2 shows the Soest study area and the areas where 
transitions were detected using an overlay of the two test data sets and using an overlay 
of the two the reference data sets. Clearly, land cover change is overestimated by the 
test data sets. 

 

 
Figure 2. Study area 2. Municipality Soest (grey), with change between 1991 and 1995 
(black). Data derived from de Zeeuw and Hazeu (2001). (a) PCC transitions; (b) actual 
transitions. 
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Study area 2 is based on an example by Veregin (1989). Veregin presented four 
synthetic land cover maps (figure 3) with classes A, B, U and W for illustration of error 
modelling in an overlay operation. He used these maps to illustrate how for different 
overlay operations the percentage correctly classified of the resulting map could be 
calculated. The overlay shown in figure 3 is an AND overlay. 

 

 
 
Figure 3. Study area 2; data derived from Veregin (1989). 

 

4.3 Results and discussion 

4.3.1 Classification errors 
The error matrices of study area 1 are shown in tables 2 and 3. The percentage 

correctly classified at t1 (1991) is 90.8% and at t2 (1995) 95.8%. In study area 2 the 
percentage correctly classified is lower, 84% at both dates. In area 1 the largest error, at 
both dates, is that Urban & Infra is classified as Agriculture. Table 4 shows the 
normalised areas of correct and incorrect classification for both study areas. Temporal 
correlation in classification accuracy is quantified as the probability that classification 
is correct at both dates. For study area 1 this is 0.93 (0.9002+0.0334), for area 2 it is 
0.76 (0.72+0.04). Thus temporal correlation in classification correctness is higher in 
area 1 than in area 2. Table 4 served to illustrate this correlation. In methods 3 and 4 
this temporal correlation was accounted for through conditioning of confusion 
probabilities. As an example of an unconditioned confusion probability at t2, consider 
the probability Pr(LCact,t2 | LCdata,t2) = Pr(Agriculture | Urban & Infra) = 0.0079 (= 
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10/1272, table 3). In method 3 confusion probabilities at t2 are conditioned on the 
confusion that occurred at t1, {LCdata,t1, LCact,t1}. For example the confusion probability 
at t2, conditioned on {Agriculture, Agriculture}, is: Pr(Agriculture | Urban & Infra, 
Agriculture, Agriculture) = 0.2631.  

 
Table 2. Error matrix of study area 1, date t1 
 Actual land cover in 1991 (ha.)  
Test land cover 
in 1991 

Urban 
& Infra 

Forest & 
Nature Agriculture Water Total 

Urban & Infra 1104 31 7 0 1141 
Forest & Nature 50 1464 1 0 1516 
Agriculture 206 14 482 1 703 
Water 0 0 0 27 28 
Total 1361 1509 489 28 3387 

 
Table 3. Error matrix of study area 1, date t2 
 Actual land cover in 1995 (ha.)  
Test land cover 
in 1995 

Urban 
& Infra 

Forest & 
Nature Agriculture Water Total 

Urban & Infra 1260 3 10 0 1272 
Forest & Nature 1 1505 0 0 1506 
Agriculture 127 1 453 0 580 
Water 0 0 0 29 29 
Total 1388 1508 462 29 3387 

 
Table 4. Temporal correlation in classification correctness in the two study areas, both 
normalised by total area 

study area 1  study area 2 
correct at t2   correct at t2  correct 

at t1 yes no sum  
correct 

at t1 yes no sum 
yes 0.9002 0.0082 0.9084  yes 0.7200 0.1200 0.8400 
no 0.0582 0.0334 0.0916  no 0.1200 0.0400 0.1600 

sum 0.9584 0.0416 1.0000  sum 0.8400 0.1600 1.0000 
 

4.3.2 Land cover change estimates 

Post classification comparison and actual transitions 
For the Soest study area the PCC and actual transition matrix are shown in tables 5 

and 6. The largest error is the 259 ha. underestimation of the number of Urban & Infra 
to Urban & Infra transitions (1094 ha. vs. 1352 ha.). Analysis of the change detection 
error matrix (table 7) reveals that of the 259 ha., a total of 102.8 ha. was due to 
overestimation of the area Agriculture at the expense of Urban & Infra in 1991, and that 
102.3 ha. was due to overestimation of the area Agriculture at the expense of Urban & 
Infra in both 1991 and 1995. Point-wise and region-wise land cover changes are 7.4% 
and 7.8% according to the PCC transition matrix, while the actual changes are only 
1.4% and 1.7% (table 9, first two lines).  
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For study area 2 the change detection error matrix is shown in table 8. The PCC 
transition matrix and the actual transition matrix can be derived from this matrix, for 
example the number of AU transitions according to the test data is 2 cells (row total) 
and is actually 4 cells (column total). Point-wise and region-wise land cover changes 
are (table 10, first two lines): 9 cells (36%) and 14 cells (56%) according to the test data 
sets versus 12 cells (48%) and 18 cells (72%) according to the actual data sets. Thus 
change is overestimated in study area 1 (PCPCC > PCactual) and underestimated in study 
area 2 (PCPCC < PCactual). 

 
Table 5. PCC transition matrix of study area 1, with changes in ha. 
 Test land cover in 1995 (ha.)  
Test land cover 
in 1991 

Urban 
& Infra 

Forest & 
Nature Agriculture Water Total 

Urban & Infra 1094 26 22 0 1141 
Forest & Nature 39 1467 9 0 1516 
Agriculture 139 13 550 1 703 
Water 0 0 0 27 28 
Total 1272 1506 580 29 3387 

 
Table 6. Actual transition matrix for study area 1, with changes in ha. 
 Actual land cover in 1995 (ha.)  
Actual land 
cover in 1991 

Urban 
& Infra 

Forest & 
Nature Agriculture Water Total 

Urban & Infra 1352 7 1 0 1361 
Forest & Nature 7 1501 1 0 1509 
Agriculture 29 0 459 1 489 
Water 0 0 0 28 28 
Total 1388 1508 462 29 3387 
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Posterior transition matrices  
Tables 9 and 10 show, for the two case-studies, land cover change estimates 

derived from the actual transition matrix (first line), the PCC transition matrix (second 
line) and the posterior transition matrices (third and following lines). Application of 
method ‘x’ yielded better estimates of actual change than method ‘y’ when the 
following three conditions apply: 
1. | PCactual – PCx | < | PCactual – PCy |, i.e. PCx is closer to PCactual than PCy is to 

PCactual; 
2. | RCactual – RCx | < | RCactual – RCy | ; 
3. SADx < SADy ; 
 

In all cases land cover change estimates by methods 1 to 4 were closer to PCactual, 
RCactual and SADactual than were the estimates by post-classification comparison (PCC). 
The only exception was method 2 in the Soest study area, where | PCactual – PCmethod 2 | 
> | PCactual – PCPCC | and SADmethod 2 > SADPCC. For the Soest study area a comparison 
with the model MonGIS was possible. In general the PC, RC and SAD values 
calculated with the methods 1 to 4 were closer to PCactual, RCactual and SADactual than 
were the PC, RC and SAD values calculated with model MonGIS.  

In study area 1, SADmethod 1 < SADmethod 2 and SADmethod 1 < SADmethod 3; in study 
area 2 these relationships were the other way round: SAD method 1 > SAD method 2 and 
SADmethod 1 > SADmethod 3. The use of method 1 is only recommended under two 
specific conditions. That is, when classification accuracy at t2 is almost 100% and 
when at t1 the area of one or more of the land cover classes is systematically 
overestimated or underestimated at t1. These specific conditions applied to study area 
1, where classification accuracy at t2 was 95.8% and where at t1 the area Urban & Infra 
was underestimated and the area Agriculture overestimated (table 2, row total vs. 
column total). 

The two study areas differ in temporal correlation in classification accuracy. In 
study area 1 this correlation was stronger (0.93, table 4). There, the change estimates by 
methods 3 and 4 were closer to actual change than were the change estimates by 
method 2. In study area 2, where the correlation was weaker (0.76, table 4), the 
differences between change estimates by methods 2, 3 and 4 were smaller. In study area 
1, change estimates by method 4 were closer to actual change than were the estimates 
by method 3: | PCact – PCmethod 4 | < | PCact – PCmethod 3 |, | RCact – RCmethod 4 | < | RCact – 
RCmethod 3 | and SADmethod 4 < SADmethod 3. Consider what would have happened if 
classification accuracy at t2 had been 100%. In that case, the conditioned confusion 
probabilities Pr(LCact,t2 | LCdata,t2 , LCdata,t1, LCact,t1) would be exactly the same as the 
unconditioned probabilities Pr(LCact,t2 | LCdata,t2) and as a result there would be no 
difference between change estimates by methods 2 and 3. As classification accuracy at 
t2 decreases conditioning of confusion probabilities at t2 on t1 can have a greater 
impact on change estimation. Because in study area 1 classification accuracy at t1 was 
lower than at t2 (90.5% vs. 95.8%), conditioning on t2 (method 4) had a greater impact 
on the posterior change estimates than conditioning on t1 (method 3).  
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Table 9. Study area 1: land cover change estimates by different methods 
 PC RC SAD 
Method ha. % ha. % ha. % 
Actual * 47 1.4 56 1.7 0 0.0 
       
PCC ° 249 7.4 264 7.8 587 17.3 
Method 1 + 212 6.3 160 4.7 360 10.6 
Method 2 + 519 15.3 56 1.7 945 27.9 
Method 3 + 228 6.7 163 4.8 362 10.7 
Method 4 + 54 1.6 48 1.4 18 0.5 
MonGIS + 232 6.8 248 7.2 576 17.0 

PC = Point-wise change, RC = Region-wise change, SAD = Sum of Absolute 
Differences; * = based on exhaustive reference data set, ° = Post Classification 
Comparison, + = error-reduced estimates  
 

Table 10. Study area 2: land cover change estimates by different methods 
 PC RC SAD 
Method #cells % #cells % #cells % 
Actual * 12.0 48.0 18.0 72.0 0.0 0.0 
       
PCC ° 9.0 36.0 14.0 56.0 12.0 48.0 
Method 1 + 9.8 39.2 16.4 65.6 6.4 25.6 
Method 2 + 13.5 54.1 18.0 72.0 3.8 15.2 
Method 3 + 12.7 50.8 18.0 72.1 4.1 16.4 
Method 4 + 13.3 53.0 18.0 72.1 3.7 14.8 

PC = Point-wise change, RC = Region-wise change, SAD = Sum of Absolute 
Differences; * = based on exhaustive reference data set, ° = Post Classification 
Comparison, + = error-reduced estimates 
 

Which method to use? 
The previous section showed for two case-study areas that land cover change 

estimates could be improved with the 4 methods proposed in this study. Improvement 
was quantified by comparing PC, RC and SAD values of each method with their true 
values, quantified from 2 exhaustive reference data sets. Method 1 is easiest to apply, 
but is only applicable under limited conditions. These limited conditions are that 
classification accuracy at t2 is high and that at t1 the relative areas of land cover classes 
are systematically overestimated or underestimated (comparison between row and 
column totals of the error matrix of t1). Method 2 is applicable to a broader range of 
conditions than method 1, accounting for confusion probabilities at both dates. Method 
2 does not account for temporal correlation in confusion probabilities. If this correlation 
is strong, then if possible one should use either method 3 or 4. How strong this 
correlation should be before the use of these methods becomes advantageous is still a 
matter of research. Practically, one should be aware of the fact that data producers 
rarely report information on temporal correlation in classification accuracy, and they 
rarely report confusion probabilities for one date conditioned on another date. If such 
information is available, a choice is to be made between the use of either method 3 or 
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method 4. The choice depends on the classification accuracy at the two dates. If it is 
lowest at t1, then use method 4, if it is lowest at t2 then use method 3. 

 

4.4 Conclusions 
For most users improvement of land cover change estimates by selection of the 

best change detection method or by improvement of data quality is often not an option. 
These users buy classified land cover data sets of two dates, often accompanied by 
quality descriptions such as the error matrix. This study showed that the error matrix 
can be used for more purposes than only describing the quality of a single date data set: 
it can also be used to improve land cover change estimates. The methods proposed in 
this study can be used directly by users. For two case-studies it was shown that these 
methods provided better land cover change estimates than the standard change 
detection method (post classification comparison). The methods provided better 
estimates than an existing model (MonGIS, by de Zeeuw et al., 1999) and are more 
generally applicable.  

Quality descriptions of the fitness of national land cover databases for monitoring 
are generally lacking (de Zeeuw and Hazeu, 2001; Lunetta 2002). Producers of vector 
data sets, for example topographical maps, tend to focus on quantifying positional 
accuracy and rarely report error matrices. Error matrices cannot be derived from 
standard measures of positional accuracy (e.g. Federal Geographic Data Committee, 
1998b), since some but not all misregistrations result in misclassifications. If vector 
data sets are to be used for monitoring purposes, then to allow for application of the 
methods proposed in this study, the error matrices associated with these data sets 
should also be reported. This study showed that estimates of land cover change between 
two dates could be further improved by accounting for temporal correlation in 
classification accuracy. In two of the methods proposed the probabilities of confusion 
between two land cover classes at one date were conditioned on the confusion between 
land cover classes that occurred at the other date. To my knowledge, producers of land 
cover data sets do not report such conditional confusion probabilities. They can be 
quantified when reference data sets have been collected from the same study area at 
two dates. 

In both case-studies presented in this chapter, I used exhaustive reference data sets 
to quantify error matrices. In practice, error matrices supplied by data producers will be 
derived from a reference data set that is only a sample of the total area mapped. Further 
research should increase understanding of the effect of sample design on the reduction 
of overestimation or underestimation of land cover change that can be achieved by 
application of the methods proposed in this study. 
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5. A variance and covariance equation for area 

estimates 

Abstract 
Geographical Information Systems (GIS) automatically calculate the area of a 

polygon from the coordinate values of the vertices that describe its boundary. 
Uncertainty in these coordinate values results in uncertainty in area estimates. Earlier 
papers showed how area uncertainty of individual polygons could be calculated. In this 
chapter we propose a covariance equation to quantify the impact of uncertainty in the 
position of a vertex on uncertainty in the area of all polygons sharing this vertex. The 
approach is based on the assumption of absence of spatial correlation in positional 
errors, but includes variation in the positional accuracy. The equations were 
implemented and applied to a case study area, described by a set of 97 adjacent 
polygons with different per unit area utility values (€/ha). We were then able to 
calculate how uncertainty in the coordinate values propagated into uncertainty in the 
utility value of the complete set of polygons. 

 

5.1 Introduction 
Geographical Information Systems (GIS) are increasingly used in forest science 

(Heit and Shortreid 1991, Husch et al. 2003). A standard GIS operation is the 
calculation of polygon area from the coordinates of the vertices that describe the 
polygons’ boundaries. Uncertainty in the coordinate values results in uncertainty in area 
estimates, which in turn results in uncertainty in the estimated utility value of the 
polygons. So far, research has been limited to the calculation of uncertainty in the areas 
of individual polygons (Chrisman and Yandell 1988, Griffith 1989, Bondesson et al. 
1998, Magnussen 1996, Næsset 1999). The single exception appears to be the work by 
Prisley et al. (1989). Their equation required the position of polygon centroids to be 
known whereas this chapter presents an equation which is independent of the polygon 
centroid. 

In this chapter we propose a method to quantify the implications of uncertainty in 
area estimates on the uncertainty in the utility value of a set Ω of polygons pq, q = 1, 
…, N. Each polygon has a, possibly different, utility value per unit area vq. One may 
think of a set of forest stands at different growth stages, thus with different monetary 
value, or of a set of polygons to which subsidies for nature conservation are assigned 
depending on the type of nature present. The utility value of a polygon, U(pq), is the 
product of the value per unit area, vq, and polygon area, A(pq) (eq. 1). The utility value 
of the set of polygons, U(Ω), is the sum of values U(pq) of the N individual polygons 
(eq. 2). For several reasons, knowledge of the uncertainty in U(Ω) may be of interest: 
• When two parties have a different estimate of U(Ω), then knowledge of the 

uncertainty in U(Ω) may help in decide on what to do: accept the difference as 
being caused by uncertainty in the data, or start to investigate the cause of the 
difference in estimated U(Ω) by considering differences in data and methods used 
by the two parties.  
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• Knowing in advance how much uncertainty in U(Ω) is reduced as a result of 
measuring A(pq) with greater accuracy may be of interest to the manager who has to 
decide whether measurement of A(pq) with greater accuracy is worth the costs. 

 
Implications of uncertainty in vq on uncertainty in U(Ω) have been frequently 

addressed (Buongiorno and Gilless 2003, Husch et al. 2003), implications of 
uncertainty in A(pq) scarcely. Næsset (1999), in a study of uncertainty in timber volume 
estimates, studied uncertainty in both vq and A(pq). His study was limited to uncertainty 
in individual polygons; our study assesses uncertainty in a set of adjacent polygons. In 
this chapter the focus is entirely on implications of uncertainty in A(pq) on uncertainty 
in U(Ω), var(U(Ω)). The assumption is made that no uncertainty exists in vq. The case 
study in the second part of the chapter provides an example of a case where this 
assumption is valid. The uncertainty in the area of a single polygon is expressed by 
var(A(pq)). The covariance cov(A(pq),A(pr)), r ≠ q measures the relation between A(pq) 
and A(pr). The uncertainty in U(Ω), as expressed by var(U(Ω)), depends on both 
var(A(pq)) and cov(A(pq),A(pr)) (eq. 4): 

 
U(pq) = vq · A(pq)         (1) 

∑
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5.1.1 Aim and outline 
The aim of this study is to develop a model to calculate var(U(Ω)). Ingredients for 

this model are the equations for var(A(pq)) and cov(A(pq),A(pr)). Our derivation of the 
equation for cov(A(pq),A(pr)) is based on the work by Chrisman and Yandell (1988). It 
differs from the existing equation for cov(A(pq),A(pr)) by Prisley et al. (1989) in that it 
is independent of polygon centroid coordinates. The following section presents an 
overview of literature on methods to quantify var(A(pq)) and cov(A(pq),A(pr)). The 
chapter consists of two parts. In part one of the chapter the equations in the model are 
presented and a simple example serves as an illustration. The equations were derived 
under a set of simplifying assumptions on error structure which are discussed in this 
part of the chapter. Part two of the chapter provides a practical illustration of the use of 
the model in a case study by the National Forest Service of the Netherlands (SBB). In 
this case study, we consider the case of the manager, who has a limited budget to 
increase the positional accuracy of the data set of the case study. The model is used to 
quantify the reduction in var(U(Ω)), as a result of increasing the positional accuracy of 
the vertices causing the uncertainty in area estimates.  

 

5.1.2 Uncertainty in area estimates 
A polygon is described by a set of vertices connected by arcs. Each vertex has a set 

of coordinates that describe its position, which in turn allow calculation of the area of 



Chapter 5 

 

58 

the polygon. Uncertainty in polygon area may be caused by uncertainty in the 
coordinate values of the recorded vertices and by incompleteness of the vertices (i.e. 
not all vertices are recorded). Incompleteness of vertices may be unavoidable due to 
fuzziness of the boundary (Magnussen 1996, de Groeve and Lowell 2001). There is no 
crisp answer to the question on whether a boundary is crisp or fuzzy: it depends on the 
level of detail at which the boundary is studied. As one zooms in on an apparently crisp 
boundary more detail will become visible and one may conclude that it is in fact not 
crisp but fuzzy. Magnussen (1996) included effects of fuzziness explicitly in his area 
variance equation. Another approach of including fuzziness in the model is to use one 
error term σx that includes both the effect of measurement error σx,m and the effect of 
fuzziness or generalisation σx,g . Assuming independence between measurement and 
generalisation, the error term σx is calculated as 2

,
2
, gxmxx σσσ += . For example see 

Blachut et al. (1979: 202) and Polman and Salzman (1996: p. 50 and p. 402; in Dutch). 
In this chapter, we proceed with the assumption that var(A(pq)) and cov(A(pq),A(pr)) 
can be calculated solely from the error terms σx and σy assigned to the vertices 
delineating polygons.  

Two approaches exist to quantify uncertainty in area estimates: (1) by comparison 
with another data set (e.g. Gross and Adler 1996, van Neil and McVicar 2001) or (2) by 
error propagation analysis. The advantage of the first approach is that it does not make 
any assumptions on the sources of uncertainty. The disadvantage of the approach is that 
the estimation of the uncertainty in areas of polygons not included in the sample is 
problematic because the approach does not directly address the sources of uncertainty. 
If the major source of uncertainty in area estimates is uncertainty in coordinate values, 
then var(A(pq)) and cov(A(pq),A(pr)) can be calculated directly from the uncertainty in 
these coordinate values using error propagation analysis. The two most commonly 
applied error propagation analysis methods are Monte Carlo Simulation (MCS) and 
derivation from the area equation based on probability theory. In MCS the positions of 
vertices are repetitively permutated, areas recalculated and the variance is calculated 
from the total number of repetitions. MCS is computationally intensive due to the 
number of repetitions needed (Næsset, 1999), but also because the permutations may 
cause topological inconsistencies that have to be eliminated before areas can be 
recalculated (Hunter et al. 1996). Variance and covariance equations based on 
derivation from the area equation do not require repetitions and do not cause 
topological inconsistencies. Prisley et al. (1989) derived variance and covariance 
equations from an area equation that required the coordinate values of each polygon’s 
centroid. Other studies used the trapezoid rule (Burrough and McDonnel 1998: 62-63, 
Husch et al. 2003: 61) as the area equation, which is independent from the position of 
the centroid. Equations of var(A(pq)) have been derived from this rule under a range of 
model assumptions (Chrisman and Yandell 1988, Griffith 1989), but a derivation of the 
equation of cov(A(pq),A(pr)) was never made. This chapter provides a derivation based 
on the trapezoid rule, yielding an equation of cov(A(pq),A(pr)) which is independent of 
the position of the polygon centroids. 
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5.2 Part 1: equations 

5.2.1 Notation 
At the highest aggregation level, the vector data structure in a GIS contains a set Ω 

of N polygons pq, Ω = {pq, q = 1, …, N}. Building blocks of these polygons are the 
vertices. Vertices are connected by arcs which together form a closed loop. The 
boundary of a polygon pq is described by vertices with labels sq(i) and coordinate pairs 
xq(i),yq(i), i = 1, …, nq. The boundary of an adjacent polygon r ≠ q from the same set Ω 
is described by vertices with labels sr(j) and coordinate pairs xr(j),yr(j), j = 1, …, nr,. As 
polygons may share several vertices, we introduce the variable δ(sq(i),sr(j)): δ(sq(i),sr(j)) 
= 1 if vertex sq(i) = sr(j) occurs in both polygon pq and pr, and δ(sq(i),sr(j)) = 0 
otherwise.  

The polygon area is calculated from the coordinates of the vertices that describe 
the polygon’s boundary. The trapezoid rule requires that the vertices are sorted in 
counter clockwise direction so that vertex i–1 comes just before and vertex i+1 just 
after vertex i. As a polygon is described by a closed loop of vertices, sq(0) ≡ sq(nq) and 
sq(nq+1) ≡ sq(1). The polygon area A(pq) is calculated as: 
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The true coordinates xq(i) and yq(i) are rarely known. Instead we have recorded 

Xq(i) and Yq(i) with unknown errors ε(i) and η(i):  
 

E(Xq(i)) = xq(i) + E(ε(i)) ; E(Yq(i)) = yq(i) + E(η(i)) 
 

The estimated polygon area A(pq) can now be decomposed into the unknown true 
area a(pq) and two error terms, B(pq) and C(pq):  
 
A(pq) = a(pq) + B(pq) + C(pq)         (6) 
with: 

( )∑
=

−−+⋅⋅=
qn

i
qqqq iyiyixpa

1

)1()1()(
2
1)(  

∑
=

−−+⋅+−−+⋅⋅=
qn

i
qqqqq iXiXiiYiYipB

1

))1()1(()())1()1(()(
2
1)( ηε  

and 

∑
=

−−+⋅⋅=
qn

i
q iiipC

1

))1()1(()(
2
1)( ηηε  

 

5.2.2 Model assumptions 
Derivation of the equations for var(A(pq)) and cov(A(pq),A(pr)) depends on the 

assumptions made on the structure of errors ε and η. In this chapter we assume that ε(i) 
and η(i) are distributed according to a continuous distribution with mean 0 and 
variances σ2

x(i) and σ2
y(i). We assume that the distribution of errors may be different in 
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different vertices, that errors in the x- and y-direction of each individual vertex are 
uncorrelated, and that the errors between vertices are uncorrelated:  

 
E(ε(i)) = 0   ; E(η(i)) = 0 
E(ε2(i)) = σ2

x(i)  ; E(η2(i)) = σ2
y(i)  ; E(ε(i)·η(i)) = 0  

E(ε(i)·ε(k)) = 0  ∀ k ≠ i  ; E(η(i)·η(k)) = 0 ∀ k ≠ i ; E(ε(i)·η(k)) = 0 ∀ k ≠ i 
 

In the absence of bias in xq(i) and yq(i), i.e. E(ε(i)) = 0 and E(η(i)) = 0, one finds 
that E(B(pq)) = E(C(pq)) = 0. As a result, A(pq) is an unbiased estimate of the true area 
a(pq). Bias may exist, however. If that is the case and the bias is known, then it can be 
removed by subtracting it from the coordinate values Xq(i) and Yq(i). Variance and 
covariance equations can then be applied to the resulting unbiased coordinates. Næsset 
(1999) found bias in errors in vertices, related to the length of shadows cast 
perpendicular to the boundaries of patches of forest and found that this led to biased 
areas estimates.  

In the equations proposed in this chapter, we relax the assumption that the position 
accuracy is the same for all vertices. In equations for var(A(pq)) based on the epsilon 
band concept, this relaxation is impossible, as the concept presumes a fixed width of 
the error-band describing the uncertainty in the position of an arc (Leung and Yan, 
1998).  

We assume that the errors in x- and y-direction in each individual vertex are 
independent. Chrisman and Yandell (1988) examined the Digital Line Graph data set of 
the U.S. Geological Survey and found a negligibly small correlation, ρ = 0.026. 
Bondesson et al. (1998) showed that such dependency occurs if a vertex’s coordinates 
are measured using trigonometry (i.e. using the angle and distance to other vertices), 
but does not occur when measurements are made with GPS. Chrisman and Yandell 
(1988) and Griffith (1989) derived a variance equation that included dependence of 
errors in x- and y-direction.  

The last assumption is that positional errors between different vertices are 
independent. Examples of such dependency are (figures 1a and 1b):  
• Errors caused by shadow may be positively correlated, because vertices located on 

the same boundary have shadows casting into the same direction. 
• If a road has a fixed width, then errors on either side of the road are positively 

correlated. As a result, uncertainty in the area of a polygon on one side of the road 
is correlated with uncertainty in the area of the polygon on the other side of the road 
(e.g. pq and pr in figure 1b). According to the equations proposed in this chapter, the 
two are independent, because they do not share a single vertex with δ(sq(i),sr(j)) = 1 

 
Griffith (1989) derived the variance equation for the case where errors were 

correlated between adjacent vertices. Keefer et al. (1991) quantified correlation 
between adjacent vertices using time-series analysis. With the fitted model of 
correlation between vertices, they then calculated variance in polygon area using Monte 
Carlo Simulation. Naesset (1999) also measured serial correlation between adjacent 
nodes, but did not include it explicitly in his computations. Implicitly it was included, 
because random errors were added to segments, i.e. equal random errors to each of the 
vertices defining the segment. To our knowledge, correlation between errors of non-
adjacent vertices (figure 1b) has not been addressed in literature. The difficulty in 
modelling this correlation is due to the problem of identifying which vertices have 
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correlated errors, as these cannot simply be identified on the basis of adjacency (as in 
figure 1a). 
 

 
Figure 1. Correlation in errors between vertices; (a) adjacent vertices, (b) non-adjacent 
vertices. Arrows indicate errors, which are correlated in size and direction. 
 

The review processes of the articles by van Oort et al. (2005) and Bogaert et al. 
(2005) coincided and for this reason the two could not refer to each other. Reference to 
the work by Bogaert et al. (2005) is now added in this chapter. Bogaert et al. measured 
correlation in errors of GPS measurements. They found no correlation in errors in x- 
and y-direction for individual vertices. They did however find correlation between 
different vertices, depending on the time span between GPS measurements. Serial 
correlation was absent at time spans larger than 30 seconds. 
 

5.2.3 Variance and covariance equations 
The variance and covariance in polygon areas are calculated as a function of the 

variances in the vertex coordinate values. The variance equation (7) is defined as: 
var(A(pq)) = E(A2(pq)) – {E(A(pq))}2        (7) 
 
Substitution of A(pq) with a(pq) + B(pq) + C(pq) and elimination of terms with 
expectation zero yields: 
 
var(A(pq)) = E(B2(pq)) + E(C2(pq)) + 2·E(B(pq)·C(pq))    (8) 
 
where: 

( ) ( )[ ]







−−+⋅+−−+⋅⋅= ∑

=

qn

i
qqqqq iXiXiiYiYipB

1

22222 )1()1()()1()1()(E
4
1))((E ηε  

( )[ ]







−−+⋅⋅= ∑

=

qn

i
q iiipC

1

222 )1()1()(E
4
1))((E ηηε  

and  



Chapter 5 

 

62 

( ) ( )[ ]

( ) ( )[ ]
0

)1()1()1())1()(

)1()1()1())1()(
E

4
1))()((E

1

2

1

2

=





















−−+⋅−−+⋅

+−−+⋅−−+⋅
⋅=⋅

∑

∑

=

=

q

q

n

i
qq

n

i
qq

qq

iXiXiii

iYiYiii
pCpB

εεη

ηηε
 

Note that a(pq) is a constant and hence does not occur in an expression of the 
variance. Substitution of E(ε2(i)) = σ2

x(i), E(η2(i)) = σ2
y(i), E(X(i)) = x(i) and E(Y(i)) = 

y(i), and elimination of terms with expectation zero yields the variance equation: 
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Although our derivation is similar to that in Chrisman and Yandell (1988), the final 
form of (9) differs in two aspects:  
1. their equation allowed for the errors x- and y-direction to be correlated, whereas we 

assumed absence of correlation;  
2. their equation did not allow for differences in the positional accuracy of vertices, 

whereas (9) allows for such differences to exist. 
 
The covariance equation is derived in a similar way as the variance equation, starting 
from equation 10: 
cov(A(pq),A(pr)) = E(A(pq)·A(pr)) – E(A(pq))·E(A(pq))    (10) 
 
Substitution of A(pq) = a(pq) + B(pq) + C(pq) and A(pr) = a(pr) + B(pr) + C(pr) and 
elimination of terms with zero expectation yields: 
 
cov(A(pq),A(pr)) = E(B(pq)·B(pr)) + E(C(pq)·C(pr))     (11) 
where 
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and summation is carried out over the vertices shared by both polygons. 
 
Substituting σ2

x(i), σ2
y(i), xq(i), yq(i), xr(j) and yr(j) into E(B(pq)·B(pr)) and 

E(C(pq)·C(pr)) we obtain the covariance equation (12). The binary δ(sq(i),sr(j)) is used 
to identify where substitution is possible. For example if δ(sq(i),sr(j)) = 1 then 
E(ε(i)·ε(j)) = σ2

x(i), else E(ε(i)·ε(j)) = 0. If δ(sq(i),sr(j)) = 1 and δ(sq(i+1),sr(j–1)) = 1 
then E(ε(i)·ε(j)·η(i+1)·η(j–1)) = σ2

x(i)·σ2
y(i+1) in the term E(C(pq)·C(pr)). The 

covariance equation under these conditions equals: 
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Note that in this equation summation occurs twice over each vertex δ(sq(i),sr(j)) = 1, so 
the result is divided by 2, resulting in the (1/8) instead of (1/4). 
 

5.2.4 Illustration 
The equations presented in the previous section were implemented in a script in the 

programming language AML of the GIS software package ArcInfo by ESRI. This 
section serves as a simple illustration of the equations presented. Figure 2 shows two 
adjacent polygons pq=1 and pr=2, with reference to the vertex numbers as stored in the 
GIS. See the figure for notation. The axes show the coordinate values in x- and y-
direction.  

 

 
Figure 2. Two polygons with reference to vertex numbers. 

 
Table 1 lists the contribution of each vertex to var(A(p1)), var(A(p2)) and 

cov(A(p1),A(p2)), with elaborate notation for vertex s1(i) = s2(j) = 1. Note that for vertex 
1 the binary δ(s1(i–1),s2(j+1)) equals 0 and that for vertex 4 the binary δ(s1(i+1),s2(j–1)) 
equals 0. The contribution of vertex 2 to var(A(p1)) is equal to the contribution of vertex 
2 to var(A(p2)), both of which are equal to the contribution of vertex 2 to –
1·cov(A(p1),A(p2)). If the per unit area values of the polygons are v1 and v2 = v1 + d, 
then the contribution of uncertainty in the position of vertex 2 to uncertainty in the 
utility value U(Ω) is (eq. 4): var(U(Ω)) = v1

2 · var(A(p1)) + v2
2 · var(A(p2)) + 

2·v1·v2·cov(A(p1),A(p2)) = d2·var(A(p1)), where var(A(p1)), var(A(p2)) and 
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cov(A(p1),A(p2)) refer to the individual contribution of this vertex. We notice in passing 
that this is the contribution of the uncertainty in the polygons for that single vertex and 
is therefore different from var(A(p1)) as calculated with 9, which expresses contribution 
from all vertices delineating polygon 1. This also applies to var(A(p2)), cov(A(p1),A(p2)) 
and the notation in table 1. The result d2·var(A(p1)) implies that the larger the difference 
between v1 and v2, the greater is the vertex’s contribution to var(U(Ω)). If the polygons 
p1 and p2 have the same per unit area value (d = 0), then uncertainty in the position of 
vertices 2 and 3 does not contribute to var(U(Ω)).  

 
Table 1. Contribution of uncertainty in the position the vertices in figure 2 to 
var(A(p1)), var(A(p2)) and cov(A(p1),A(p2)). The table lists only the non-zero 
contributions. 
vertex s1(i) = s2(j) = 1 
var(A(p1)) 
 

= 0.25·[σ2
x(i)·(8–2)2 + σ2

y(i)·(8–4)2] + 0.25·σ2
x(i)·[σ2

y(i+1) + σ2
y(i–1)] 

= 9·σ2
x(i) + 4·σ2

y(i) + 0.25·σ2
x(i)·[σ2

y(i+1) + σ2
y(i–1)] 

var(A(p2)) 
 

= 0.25·[σ2
x(j)·(1–8)2 + σ2

y(j)·(12–8)2] + 0.25·σ2
x(j)·[σ2

y(j+1) + σ2
y(j–1)] 

= 12.25·σ2
x(i) + 4·σ2

y(i) + 0.25·σ2
x(i)·[σ2

y(i+1) + σ2
y(i–1)] 

cov(A(p1),A(p2))  = 0.25·1·[σ2
x(i)·(8–2)·(1–8) + σ2

y(i)·(8–4)·(12–8)] –  
0.25·1·σ2

x(i)·[1·σ2
y(i+1) + 0·σ2

y(i–1)] 
= –10.5·σ2

x(i) + 4·σ2
y(i) – 0.25·σ2

x(i)·σ2
y(i+1) 

vertex s1(i) = s2(j) = 2 
var(A(p1)) = 16·σ2

x(i) + 0.25·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
var(A(p2)) = 16·σ2

x(i) + 0.25·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
cov(A(p1),A(p2)) = –16·σ2

x(i) – 0.25·σ2
y(i) – 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
vertex s1(i) = s2(j) = 3 
var(A(p1)) = 4·σ2

x(i) + 0.25·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
var(A(p2)) = 4·σ2

x(i) + 0.25·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
cov(A(p1),A(p2)) = –4·σ2

x(i) – 0.25·σ2
y(i) – 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
vertex s1(i) = s2(j) = 4 
var(A(p1)) = 1·σ2

x(i) + 1·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
var(A(p2)) = 1·σ2

x(i) + 12.25·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
cov(A(p1),A(p2)) = 1·σ2

x(i) + 3.5·σ2
y(i) – 0.25·σ2

x(i)·σ2
y(i–1) 

vertex s1(i) = 5 
var(A(p1)) = 25·σ2

x(i) + 9·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
vertex s1(i) = 6 
var(A(p1)) = 25·σ2

x(i) + 0.25·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
vertex s1(i) = 7 
var(A(p1)) = 0·σ2

x(i) + 6.25·σ2
y(i) + 0.25·σ2

x(i)·[σ2
y(i+1) + σ2

y(i–1)] 
vertex s2(j) = 8 
var(A(p2)) = 9·σ2

x(j) + 9·σ2
y(j) + 0.25·σ2

x(j)·[σ2
y(j+1) + σ2

y(j–1)] 
vertex s2(j) = 9 
var(A(p2)) = 30.25·σ2

x(j) + 6.25·σ2
y(j) + 0.25·σ2

x(j)·[σ2
y(j+1) + σ2

y(j–1)] 
 
As a numerical example consider positional accuracies equal to σx(i) = σy(i) = 0.5 m for 
all vertices. Then: 
 

A(p1) = 47 m2 ; A(p2) = 46 m2 ; 
var(A(p1)) = 25.47 m4 ; var(A(p2)) = 26.31 m4 ;  
cov(A(p1),A(p2)) = –5.72 m4 
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With utility values per unit area v1 = 10 €/m2 and v2 = 20 €/m2, the utility of the set Ω = 
{p1, p2} is: U(Ω) = € 1390 (eq. 2) and the uncertainty in U(Ω) is (eq. 4): var(U(Ω)) = €2 
10784.38. Assuming normality, the 95% confidence interval on U(Ω) is 
[1186.46,1593.54] = (1±0.146)·U(Ω) = within ±14.6% of U(Ω). Note that 
cov(A(p1),A(p2)) is negative, because the expansion of one polygon at the expense of 
another leads to a negative covariance. 
 

5.3 Part 2: case study 

5.3.1 Introduction 
Part 2 of the paper provides a practical illustration of the use of the equations 

derived in part 1. The National Forest Service of the Netherlands (SBB) receives 
subsidies from the ministry of agriculture, nature conservation and food quality for the 
management and conservation of nature. The subsidy per unit area depends on the type 
of nature. Figure 3 shows that 8 nature types are present in the study area, table 2 shows 
the total subsidy (in €) received for each. The total area shown in figure 3 is 225 ha, 
184 ha of which is covered by nature types for which subsidies are received. The data 
set contains 1436 vertices, 1527 arcs and 97 polygons. The subsidy value of set of 
polygons in the study area is U(Ω) = € 27455.  

For convenience of notation we will report in this part of the paper standard 
deviations instead of variances, thus σ instead of σ2

x(i) and σ2
y(i) and std(U(Ω)) instead 

of var(U(Ω)). 
 

± Nature types

no data

Deciduous forest on clay soils

Reedbed marshland

Nutrient rich meadows

Flowery grasslands

Waterbodies in fens and claysoil

Hedgerows

Standard orchards

Compounds0 50 10025
Kilometers

0 1 20.5
Kilometers 

 

Figure 3. Case study area with types of nature. 
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Table 2. Nature in figure 3: description and subsidy value. 
Description Area (ha) Subsidy (€)

Deciduous forest on clay soils 8.1 214
Reedbed marshland 11.1 5157
Nutrient rich meadows 147.5 20414
Flowery grasslands 33.7 0
Waterbodies in fens and claysoil 14.7 1170
Hedgerows 1.1 112
Standard orchards 1.6 387
Compounds 1.7 0

 

5.3.2 Data acquisition 
Currently, data are acquired using the national topographical map, scale 1:10000, 

and lines drawn upon this map during field visits by SBB employees. The positional 
accuracy of the data is σ = 2.0 m for all vertices, according to SBB experts. Differences 
exist in accuracy between the vertices, but it is currently impossible to identify subsets 
of vertices with different accuracy. An accuracy of σ = 2.0 m is not unrealistic in the 
field of forestry, for example Naesset (1999) reports σ = 2.4 m, but most studies report 
larger errors: Magnussen (1996): σ = 10 m (from 1:15,000 photographs), Gross and 
Adler (1996): σ = 6.5 m (from a 1:7,000 photograph). 

The data acquisition procedure may be changed, for example: 
• Await improvements in the data acquisition procedure of the national topographical 

service and buy their updates;  
• Switch from the national topographical map (scale 1:10000) to the use of 

municipality maps (scale 1:2000), provided that these are complete for the study 
area; 

• Supply the employees with handheld GPS during their field visits; 
• Revisit the study area with a map indicating the vertices which contribute most to 

the uncertainty in the total subsidy claimed from the area and record the position of 
these vertices with greater accuracy. 
 

In terms of the terminology introduced in part 1 of the paper these changes may be 
redefined as:  
1. Increase/decrease in the positional accuracy of all vertices; 
2. Increase in the positional accuracy of a subset of vertices. 
 
A subset can be created using simple selection criteria based on equations 4, 9 and 12. 
An alternative is to calculate each vertex’s individual contribution to std(U(Ω)) and 
then select the vertices that contribute most to std(U(Ω)). The latter option is 
computationally more intensive, so the question is if similar reductions in std(U(Ω)) 
can be realized with simple selection criteria. In the following sections we will compare 
5 subsets. 
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Aim 
SBB would like to base decision making with regard to changes in the data 

acquisition procedure on the expected implications on the uncertainty in the total 
subsidy claimed from the ministry, std(U(Ω)). Our model is the whole set of equations 
presented in part 1 of the paper and implemented in a GIS. Our aim is to show how this 
model can support SBB in this aspect of their decision-making. 

 

5.3.3 Methods 
In two scenarios the effects of changing the positional accuracy on std(U(Ω)) were 

quantified. In scenario 1, the effect of increasing or decreasing the accuracy of all 
vertices within the range σ = 1.0 m to 10.0 m was quantified. In scenario 2, we 
increased the accuracy of five subsets of 500 vertices (35% of all) from σ = 2.0 m to 0.5 
m. The subsets are described in table 3. The first four subsets were created using simple 
selection criteria, subset 2.5 was identified after calculation of the contribution of 
individual vertices to std(U(Ω)).  
 
Table 3. Scenario 2: subsets of vertices for which the effect of increasing the positional 
accuracy on std(U(Ω)) is quantified. 
Subset Selection criterion  Motivation 
2.1 vertices on located on 

the outer boundary of 
the study area 

The contribution of ‘inner’ vertices to 
cov(A(pq),A(pr)) ≤ 0; the contribution of ‘outer’ 
vertices is 0 because these vertices have no 
adjacent polygon. 

2.2 vertices delineating the 
polygons with the 
highest vq·A(pq) 

Generally if A(pq) is larger var(A(pq)) is also 
higher. A(pq) is weighted by vq in this subset 
because the reduction in var(U(Ω)) depends on 
both var(A(pq)) and vq (eq. 4). 

2.3 vertices part of arcs 
with longest arc-
length* 

The contribution of uncertainty in the position of a 
vertex sq(i) to var(A(pq)) depends on the distance 
between the vertices sq(i+1) and sq(i–1) (eq. 9).  

2.4 vertices part of arcs 
with highest product 
(arc-length)·|vq–vr| † 

For a vertex completely surrounded by polygons 
with the same utility value per unit area, i.e. vq = vr, 
uncertainty in the position of the vertex does not 
affect var(U(Ω)) at all.  

2.5 vertices with highest 
contribution to 
var(U(Ω)) 

Calculate directly the contribution of each vertex to 
var(U(Ω)), then select the 500 vertices with the 
highest contribution. 

* the arc connecting vertices sq(i) and sq(i+1) has length [(Xq(i) – Xq(i+1))2 + (Yq(i) – 
Yq(i+1))2]0.5  

† where vq and vr are the per unit area utility values of the two polygons pq and pr on 
either side of an arc 
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5.3.4 Results 

Contribution of individual vertices to std(U(ΩΩΩΩ)) 
Figure 4 shows a part of the data set, with per vertex the contribution to std(U(Ω)) 

in €. Inside the polygons are the per unit area values of the nature types in €/ha. The 
figure shows that the contribution is larger for vertices delineating ‘valuable’ polygons, 
vertices located on longer arcs and larger when the difference between the per-unit-area 
values of polygons on either side of an arc is larger. The contribution to std(U(Ω)) is 
exactly zero for vertices located on arcs which have on either side the same value per 
unit area. The contribution of the 1436 vertices to std(U(Ω)) ranged from € 0.0 (330 
vertices) to € 7.91, with a mean of € 0.61 a median of € 0.36. The contribution to 
std(U(Ω)) of the vertices in subset 2.5 (table 3) was at least € 0.57. 
 

 
Figure 4. Contribution (in €) of individual vertices to std(U(Ω)). Inside the polygons 
are per unit area values in €/ha. 

 

Increasing the accuracy of all vertices 
Recall that the subsidy value U(Ω) of the study area is € 27455. With an accuracy 

of σ = 2.0 m for all vertices std(U(Ω)) = (3814 – 2276)0.5 = € 39.22 and the 95% 
confidence interval [27377, 27531] = (1±0.0028)·U(Ω) = within ±0.28% of U(Ω). 
Increasing or decreasing the positional accuracy of all vertices at the same time 
(scenario 1), revealed the following relationship between std(U(Ω)) and σ:  

 
std(U(Ω)) = 19.96·σ         (13) 

The 95% confidence limits are then: U(Ω) ± 1.96·std(U(Ω)) = U(Ω) ± 39.11·σ. 
Filling in σ = 10 m (Magnussen 1996) in (13) yields a 95% confidence interval of 
(1±0.014)·U(Ω). To realize a further reduction of the 95% confidence limits on U(Ω) to 
(1±0.0010)·U(Ω), the positional accuracy should be increased to σ = 0.0010·U(Ω) / 
39.11 = 0.7 m. 
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Increasing the accuracy of a subset of vertices  
Figure 5 shows the upper limit of the two-sided 95% confidence interval on U(Ω), 

for each of the subsets defined in scenario 2. These limits were calculated from the 
variances of each subset as computed with the model. A comparison between scenarios 
1 and 2 shows that a 95% confidence limit of (1±0.001)·U(Ω) can be obtained by either 
increasing the accuracy of all vertices from 2.0 m to 0.7 m (scenario 1) or by increasing 
the accuracy of 35% of the vertices to 0.5 m (scenario 2, subsets 2.4 and 2.5).  

The lowest possible std(U(Ω)) given the subset size and the accuracy of the 
vertices in the subset is calculated with subset 2.5. The question was if an equally low 
std(U(Ω)) could be achieved with subsets identified with simple selection criteria (table 
3, subsets 2.1 to 2.4). The effectiveness of these criteria is now discussed. The fact that 
subset 2.1 yielded the lowest reduction in std(U(Ω)) indicates that there exist vertices 
inside the study area that contribute more to std(U(Ω)) than vertices located on the 
outer boundary of the study area. For example, a larger reduction in std(U(Ω)) was 
obtained by increasing the accuracy of vertices delineating the most valuable polygons 
(subset 2.2). The selection criterion for subset 2.2 however does not address the source 
of the contribution of individual vertices to var(A(pq)) and cov(A(pq),A(pr)). For 
example when a ‘valuable’ polygon is delineated by a relatively large number of 
vertices sq(i), then the distance between vertices sq(i+1) and sq(i–1) is small. Equation 9 
then shows that the contribution of these vertices to var(A(pq)) is small. The selection 
criteria for subsets 2.3 and 2.4 were based on distances between vertices and as a result 
yielded a larger reduction in std(U(Ω)). Yet however large the distance between 
vertices is, the contribution to std(U(Ω)) remains zero if a vertex is shared by polygons 
with identical per unit area values. This fact is accounted for in subset 2.4. Figure 5 
shows that with a simple selection criterion as that applied to obtain subset 2.4, we 
came very close to the lowest possible std(U(Ω)) as defined by subset 2.5. 
 

 
Figure 5. Upper 95% confidence limits on U(Ω) for 5 subsets of vertices for which the 
positional accuracy was increased. The vertical axis is scaled to U(Ω) so that 1.001 
corresponds with (1+0.001)·U(Ω). 
 



Chapter 5 

 

70 

5.4 Conclusions and discussion 
Our aim was to develop a model to calculate the uncertainty in the utility value of 

an area described by a set of polygons with different per unit area utility values and 
uncertainty in the area of these polygons. To achieve this, equations for the variance 
and covariance were derived from a standard GIS area calculation. The equations were 
implemented in a GIS and applied to case study by the National Forest Service of the 
Netherlands (SBB). The following two sections provide a discussion on the relevance 
of this study for SBB and recommendations for further research. 

SBB receives subsidies for the management and conservation of the nature present 
in a small study area. Knowledge of uncertainty reduction in these subsidies can 
support SBB managers in decision-making with regard to resources spent on spatial 
data quality. Two scenarios showed how much the uncertainty in the subsidy value 
could be reduced as a result of increasing the positional accuracy. A comparison 
between the scenarios showed that the same uncertainty reduction could be achieved by 
either increasing the accuracy of all vertices to σ = 0.7 m or by increasing the accuracy 
of 35% of the vertices to σ = 0.5 m. If different costs are associated with these two 
options, then such a comparison may aid in selecting the cheapest option of the two. 

Thus the model provides information that can support SBB in its decision-making. 
To provide meaningful information for actual decision making on spatial data quality, a 
cost-benefit analysis of the different options to increase/decrease data quality should be 
added. Further, the model could be expanded by including measurements instead of 
expert estimates of positional accuracy. The validity of the model assumptions 
described in part 1 needs further checking. One assumption was that fuzziness could be 
captured in the error-terms σx and σy. Although no evidence is given in this chapter, one 
may expect that area variance is underestimated if existing fuzziness is not fully 
captured in these terms (see also Magnussen 1996). Further, a number of assumptions 
on the correlation of errors were made and require checking. This checking involves 
measurement of correlation of errors in x- and y- direction and of correlation between 
errors in different vertices. Keefer et al. (1991) provide an example of how correlation 
between errors in different vertices can be measured and modelled. Complementary to 
measurements, a covariance equation could be derived that includes these correlations, 
just as Chrisman and Yandell (1988), Griffith (1989) and Bogaert et al. (2005) did for 
the variance equation. 

 
 



 

 



 

 



 

 

 
 
 
 
 

6. Detection and risk in digging activities1 

                                                 
1 van Oort, P.A.J., Bregt, A.K. and de Bruin, S., submitted. Detection and risk for digging activities 
around underground cables and pipelines: implications of spatial data quality. Submitted to Transactions 
in GIS. 



 

 

6. Detection and risk in digging activities  

Abstract 
Digging activities are considered the largest cause of damage to underground 

cables and pipelines. Contractors can reduce the risk through detection, which will cost 
time and thus money. In the Netherlands, maps are the prime source of information on 
the location of cables/pipelines and detection time strongly depends on whether maps 
indicate the presence of cables and pipelines. Poor quality maps can contribute to 
increased risk or higher risk avoidance costs. The objective of this chapter is to present 
a model for calculating the trade-off between detection costs and risk and for 
calculating implications of over- and incompleteness of maps. The model aims to find 
the optimal detection time at which the sum of detection cost and risk is at its 
minimum. A case-study showed that it is possible to parameterise the model with data 
collected from contractors through a questionnaire. The case-study provides a 
numerical example of calculation of the trade-off between risk and detection costs and 
provides and example of calculation of costs of incompleteness. We conclude that the 
model contributes valuable new insight. However, more and location specific data are 
needed to enable operational use of the model. 

 

6.1 Introduction 

6.1.1 Damage to underground cables and pipelines 
Underground cable and pipeline networks are used for transportation of utilities 

such as gas, water, electricity, telecom, sewage and industrial liquids. Studies from the 
U.S., U.K., Australia, Germany, Japan and the Netherlands, reported in Muhlbauer 
(2004) and in Pauwels en Wieleman (2004), indicate that damage to these networks is 
in the order of at least tens of millions of euros per country per year. Figure 1, based on 
Pauwels and Wieleman (2004), provides qualitative insight into the probability and 
consequence of damage to the different types of cables and pipelines present in The 
Netherlands. Five general causes of damage are distinguished by CONCAWE, the oil 
companies European organisation for environmental and health protection: (1) 
mechanical failures, (2) operational errors, (3) corrosion, (4) natural hazards and (5) 
digging activities. Analyses of 30-years damage records on oil and gas pipeline 
networks in Europe and the U.S. by Guijt (1998) and True (2004) indicate that digging 
activities represent the largest cause of damage: between 30 to 50% of all damages 
could be attributed to digging activities. These percentages are European and U.S. 
averages for pipelines. Higher percentages may be expected where the frequency of 
digging activities is higher, for example in more densely populated areas such as the 
Netherlands. Also higher percentages may be expected for cables, which are buried less 
deep and with higher densities inside urban areas. 

VELIN, the Dutch organisation for owners of high-pressure (> 40 bar) pipelines, 
analysed 262 incidents on 14,500 km of pipeline over a period of 4 years. 97% of the 
damages was attributed to digging activities (VELIN 2004). Although this percentage 
is exaggerated by the fact that the analysis also included near misses, the difference 
with the 30-50% reported by True (1998) and Guijt (2004) is striking. It shows that the 
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impact of digging activities is larger in more densely populated areas. With increasing 
world population and increasing urbanisation the impact of digging activities may also 
be expected to increase in other countries of the world. 

 

 
Figure 1. Probability and consequence of damage to all cables and pipelines in the 
Netherlands, based on Pauwels and Wieleman (2004). 

 
To reduce damage due to digging activities, understanding of the digging decision-

making process is needed. It is generally accepted that contractors can reduce damage 
by spending efforts in detecting cables and pipelines. Nevertheless, there appears to be 
hardly any quantitative research into the trade-off between detection costs and damage 
reduction, nor research into characteristics of digging activities that affect this trade-off. 
To make inferences on how characteristics of digging activities affect the probability of 
damage one needs data about both those digging activities that did and those that did 
not result in damage. Hardly any publication includes data on digging activities that did 
not result in damage (the study by van Houten en Lourens (1995) is the single 
exception known to us). Most studies however are based only on records in damage 
registration systems (for example see Cooke and Jager 1998, True 1998 and Guijt 
2004). In the analysis reported in this chapter, data on digging activities with no 
damage are included. 

Contractors, utility companies and researchers may benefit from each others 
knowledge. Research may provide answers to questions and issues raised by these 
companies, while addressing these questions can enrich the research agenda. 
Contractors and utility companies are confronted with questions and issues on spatial 
data quality (Dijkema en Zweistra 2001, Meeus en Schoof 2003, de Kruif 2004c, van 
Oort 2004 and van der Stok 2005) and questions and issues on spatial data 
infrastructures (which are called one-call systems in their terminology, see U.S. DoT 
1999, Muhlbauer 2004, de Kruif 2004a, FGDC 2004). Many publications on spatial 
data infrastructures (SDI) and spatial data quality (SDQ) can be found in geographical 
information science journals, but none of these report on digging activities around 
underground cable and pipeline networks. In this chapter we address the issue of SDQ. 
Despite concerns about SDQ in digging activities around underground cables and 
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pipelines, no conceptual model is available to provide insight into how exactly SDQ 
can contribute to damage, no mathematical model is available to calculate the 
implications of SDQ and little quantitative insight exists into the implications. 

6.1.2 Aim and outline 
Digging activities are a major cause of damage to underground cables and 

pipelines. Contractors invest in reducing damage through detection. The trade-off 
between detection and damage has to date never been quantified. Concerns have been 
raised about the quality of maps, but it is unclear how consequences of errors in maps 
can be quantified. The aim of this chapter is to develop a model that meets the 
following criteria:  
1. It must formalise (and thereby provide insight into) how contractors make the trade-

off between detection costs and risk reduction; 
2. It can be used to quantify the trade-off between detection costs and risk reduction; 
3. It can be used to quantify economic impacts of errors in cable/pipeline maps; 
4. It must be possible to estimate the model parameters from questionnaires 

distributed among contractors, since they are the only source of information on 
without-damage digging activities. 
 
Considering the lack of scientific research into how contractors make the trade-off 

between detection costs and risk reduction, a major output of the research will be the 
formulation of a model. The model presented in section 6.2 is widely applicable; the 
case-study in section 6.3 is based on data from the Netherlands. 

 

6.2 Model development 
The conceptual model (§2.1) is based on interviews with contractors and utility 

companies, articles in Dutch professional journals and consultancy reports. The 
mathematical model (§2.2) is our formalisation of the conceptual model. 

 

6.2.1 Conceptual model 

Trade-off between detection and risk 
We propose a model as depicted in figure 2. The positively sloping line shows the 

detection costs which increase linearly with detection time. The lower curve shows the 
risk which is the product of damage per hit and expected number of hits. The upper 
curve is the total of detection cost and risk. Clearly, there is an optimal detection time 
at which the total costs are at their minimum. 

Normally, risk is defined as the probability of an event multiplied by the 
consequence of the event. Here, because more than one cables can be present and can 
be hit during one digging activity, risk is defined as the expected number of events 
(=cable/pipeline hits) multiplied by their consequences. The expected number of hits 
decreases non-linearly with detection time because detection starts with the most 
efficient detection methods (map interpretation, aboveground detection, see Jeong and 
Abraham 2004) and then proceeds to less efficient methods (underground detection). 
The most common form of underground detection is to dig a number of transects 
perpendicular to the expected trajectory of a cable/pipeline. With an increasing number 
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of transects, the probability of encountering a deviation or extra cable in a new transect 
decreases. 
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Figure 2. Conceptual model of the trade-off between detection costs and risk. 

 

Spatial data quality 
The trade-off between detection costs and risk is affected by three spatial data 

quality elements: completeness, vertical positional accuracy and horizontal positional 
accuracy: 
1. Completeness. If a cable/pipeline is present but not shown, then this is a case of 

incompleteness resulting in increased risk for the contractor who assumes that 
detection is unnecessary. In the opposite case of overcompleteness the contractor 
unnecessarily spends a certain amount of time on detection. Contractors can 
anticipate on incompleteness by spending some time on detection even if according 
to maps no cables/pipelines are present. But then they could needlessly be spending 
time on detection in digging activities if conform the maps no cables/pipelines are 
present. 

2. Vertical positional accuracy. If the depth of a digging activity is less than the 
depth of cables/pipelines shown on the map, then no hits are expected and the 
optimal detection time is assumed to be zero. If an error exists in the vertical 
position in the upwards direction then that can result in increased risk. 

3. Horizontal positional accuracy. As indicated in figure 2, detection reduces risk. 
The steepness of the slope of the risk curve depends amongst others on the relative 
horizontal positional accuracy. A higher relative horizontal positional accuracy will 
result in the slope being less steep. Relative positional accuracy is the accuracy of 
the position of the cable/pipeline relative to other objects on the same map. 
Absolute positional accuracy is the accuracy of objects in the map relative to a 
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coordinate system. Currently it is not an issue for contractors. It would be an issue 
if digging machinery were fully controlled by digital maps in combination with 
positioning systems such as GPS, GALILEO or GLONASS. 
 
Although the model presented in the next section could be used to calculate the 

implications of all three elements, we have chosen to describe the procedure to 
calculate implications only for the element completeness. Contractors and utility 
companies pointed to this element as the most relevant element for further analysis, 
because: 
1. According to contractors, maps are used to find the approximate horizontal position 

of cables and pipelines, not the exact position. Once their location has 
approximately been found, other aboveground and underground detection methods 
are used for finding the exact position. 

2. According to utility companies, depth can easily change while they remain 
uninformed about these changes. Depth may change due to people adding or 
removing a layer of soil, or due to erosion. As a result, utility companies have little 
control over the reliability of information on this attribute. In the Netherlands, as a 
consequence of the lack of control, utility companies do not provide information on 
depth. Good digging practice rules for depths of different cables and pipelines exist 
but utility companies cannot be held accountable for deviations from these rules. 

3. On the other hand, interviews made clear that completeness is an issue and can be 
improved by the utility companies. For example, they could increase the speed with 
which their records are updated and could develop protocols to increase the 
completeness based on notifications from contractors. 
 

6.2.2 Mathematical model 
The conceptual model visualised in figure 2 consists of equations 1 to 5, with 

definitions of variables and parameters in tables 1 and 2 respectively. The expected 
costs for a contractor are calculated with equation 1. Equation 1 calculates the total 
costs Costtot as the sum of detection costs Costdet (eq. 2) and risk Costrisk (eq. 3). 
Detection costs depend on detection time Timedet and on detection costs Costlab. The 
fact that more than one cables and pipelines can occur on one digging location has 
implications for the definition of risk (explained in §2.1.1) and for the definition of 
parameters Prliveonly(map,loc) and Prlive&dead(map,loc) (see §2.2.2). Note that these two 
parameters depend on the number of cables/pipelines shown on the map(s) (variable 
map) and on location (variable loc). Risk (eq. 3) is calculated as the costs in case of a 
hit Costhit (eq. 4) times the expected number of hits E(hits) (eq. 5). In equation 5 an 
exponential function is used to describe the non-linear decrease of the expected number 
of hits E(hits) with detection time Timedet. Note that a decrease of E(hits) with Timedet 
implies negative values for pardet,liveonly and pardet,live&dead. 

 
riskdettot CostCostCost +=         (1) 

detlabdet TimeCostCost ⋅=         (2) 
)(hitsECostCost hitrisk ⋅=         (3) 

claimclaimhit CostCost Pr⋅=         (4) 
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Table 1. Variables in the model. 
variable description unit 
Timedet detection time hour 
Timetot project time = total time of the digging activity hour 
Timedet /Timetot fraction detection time - 
map number of cables / pipelines shown on map(s) - 
loc location of the digging activity - 
soil(i) binary indicating whether soil type i is present, with i = 1,N 

and N the total number of soil types 
- 

Timeopt optimum detection time, at which total costs are at their 
minimum 

hour 

 

Expected number of hits 
The expected number of hits equals zero if digging occurs at a depth where no 

cables pipelines are present (Prvert = 0 in eq. 5) and on a location where not a single 
cable or pipeline is present (Prliveonly(map,loc) = 0 and Prlive&dead(map,loc) = 0 in eq. 5). 
If one or more cables/pipelines are present within the digging depth, then the expected 
number of hits depends on the detection time (Timedet) conditional to the project size 
(Timetot) and the soil type (soil(i)).  

To allow for a comparison between digging activities of different size, detection 
time is divided by the total project time to obtain the unit-free fraction detection time 
(Timedet / Timetot) in equation 5. Equation 5 takes the natural log of Timetot so that if 
parprsize = 1 then the expected number of hits increases linearly with project size. If 0 < 
parprsize < 1 then the odds of a hit are relatively large in smaller projects but still 
increasing with project size. If parprsize < 0 then more hits are expected in smaller 
projects. Pauwels and Wieleman (2004) have hypothesised relatively large risks in 
smaller projects, thus parprsize < 1. One reason to expect a relatively large probability in 
smaller projects is that requests for maps to the one-call system are more frequently 
omitted in smaller projects. Another reason occurs when in a larger project 
cables/pipelines are only present in a small part of the total digging area. 

Through Prliveonly , Prlive&dead , pardet,live and pardet,live&dead the model recognises the 
possible implications of presence of dead (out-of-order) cables and pipelines. Based on 
our interviews, we expect that risks are less efficiently reduced if dead cables and 
pipelines are present, because a contractor may stop his detection activities when first 
finding a dead cable or pipeline, so that the probability of hitting the live cable or 
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pipeline increases. Thus in terms of equation 5, we expect pardet,liveonly < pardet,live&dead < 
0.  

 
Table 2 Parameters in the model. 
parameter description unit 
Costtot total costs euros 
Costlab detection costs (mainly labour, but may also include 

other costs, e.g. costs of machinery) 
euros/hour 

Costclaim damage claim paid by contractor in case of registered 
damage 

euros/hit 

Prclaim probability that damage is registered immediately by 
the utility company. Only in that case is a damage 
claim sent to the contractor. 

- 

Prvert probability that one or more cables are present within 
the digging depth. 

- 

Prliveonly(map,loc) probability that one or more live (active) and zero 
dead (out-of-order) cables or pipelines are present, at 
location loc and with map indicating the number of 
cables pipelines present according to available map(s) 

- 

Prlive&dead(map,loc) probability that one or more live (active) and one or 
more dead (out-of-order) cables or pipelines are 
present 

- 

Prlive(map,loc) probability that one or more live (active) cables or 
pipelines are present. Ignoring out-of-order cables and 
pipelines 

- 

parprsize project size parameter 1/hour 
pardet,liveonly detection parameter for when one or more live 

(active) and zero dead (out-of-order) cables or 
pipelines are present 

- 

pardet,live&dead detection parameter for when one or more live 
(active) and one or more dead (out-of-order) cables or 
pipelines are present 

- 

pardet,live detection parameter for when one or more live 
(active) cables or pipelines are present. 

- 

parsoil(i) soil type parameter - 
N number of soil types - 

 

Definition of parameters Prlive, Prliveonly and Prlive&dead 
Often, but not always, cables and pipelines lie buried close together at a single 

digging location. This has implications for the definition of Prlive, Prliveonly and Prlive&dead. 
Consider the case where maps show 4 cables/pipelines on the digging location, while 
actually 5 are present. Then two possible definitions of Prlive are: 
1. treat this as 4 cases of a complete map and 1 case of an incomplete map; or 
2. treat this as one case of {≥1 shown on the map(s), ≥1 actually present}. 

In this chapter, the second definition is used. The first definition implies 
determining per digging activity an optimum detection time for each of the individual 
cables/pipelines and then summation of these optimum detection times to obtain the 
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optimum detection time for the digging activity. However, if cables/pipelines are close 
together, detection times for individual cables/pipelines will coincide so that one cannot 
simply sum the optimum detection times for individual cables/pipelines. The two 
motivations to choose for the second definition were: 
1. Our interviews indicated that contractors do not distinguish between optimum 

detection times per individual cable/pipeline but do try to apply optimum detection 
times per digging activity. Since one of the criteria of the model was that it must be 
possible to estimate the parameters from questionnaires distributed among 
contractors, it was of great importance to choose a definition that is in-line with the 
contractors’ perception of their decision-making processes. 

2. It simplifies the model while retaining the most determining effect of over- and 
incompleteness, namely the distinction between zero and more than zero 
cables/pipelines present. 
 
Ignoring possible implications of dead (out-of-order) pipelines, Prliveonly(map,loc) 

and Prlive&dead(map,loc) can be written as Prlive(map,loc). Based on our interviews and 
the discussion above, we define the instances of map and loc as: 
• map = [“≥1 shown on the map(s)”, “0 shown on the map(s)”, “no map(s) 

available”]; 
• loc = [“inside built-up area”, “outside built-up area and along infrastructure”, 

“outside built-up area and not along infrastructure”]. 
 
We can now define overcompleteness as Prlive(“≥1 shown on the map(s)”) = 0, that 

is, in reality not a single cable or pipeline is present while according to map(s) one or 
more cables or pipelines are present. Similarly, we can define incompleteness as 
Prlive(“0 shown on the map(s)”) = 1, that is in reality one or more cables or pipelines are 
present while none are shown on the maps. We will use subscripts act and asm to refer 
to the actual and assumed values of parameters Prlive, Prliveonly and Prlive&dead. Then note 
that while the actual value of Prlive,act in an individual digging activity is a binary event, 
a contractor may assume for Prlive,asm any value between 0 and 1. If in k out of K 
digging activities it happens that one or more cables/pipelines are present then a 
plausible assumption for Prlive is Prlive,asm = k/K. 

 

Implications of over- and incompleteness 
Assuming that contractors select optimum detection times the model can be used to 

calculate implications of over- and incompleteness and the costs of making the wrong 
assumption on the over- and incompleteness. With Prlive, the procedure to calculate the 
extra costs of an assumption is, in three steps:  

 
1. Calculate optimal detection times: Timeopt,asm given Prlive,asm and Timeopt,act given 

Prlive,act; 
2. Calculate expected costs: Costtot,asm given Timeopt,asm and Prlive,act and Costtot,act 

given Timeopt,act and Prlive,act (note: different detection times, same Prlive,act); 
3. calculate extra costs = Costtot,act – Costtot,asm 

 
The case-study in section 6.3 presents examples of calculations on the costs of 

incompleteness.  
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6.3 Case-study 

6.3.1 Methods 

Model 
The introduction noted a general lack of data on digging activities that did not 

result in damage. The only way to obtain such data is by attending digging activities or 
to get the information from contractors through a questionnaire. As will be shown in 
section 6.4, contractors and utility companies can benefit from a fully parameterised 
model. However, these benefits do not necessarily occur at the level of individual 
contractors. For individual contractors filling in questionnaires costs precious time with 
no direct reimbursement foreseeable. For this reason we anticipated low response rates 
and a need to limit the length of the questionnaire and thereby the size of the model. 
Equation 7 is the model parameterised in the case-study. Equation 8 presents the 
derivation of the optimal detection time for this model. Definitions of parameters and 
variables of this model are found in tables 1 and 2. 
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Parameter estimation 
This section describes how each parameter was estimated, based on responses to a 

questionnaire sent out by CUMELA (an organisation representing contractors in the 
Netherlands). Bruil Ede b.v. and another contractor who chose to remain anonymous 
gave access to their damage registration systems. 

 
Parameter Costclaim was calculated as the mean of damages from the damage 

registration systems of two large contractors. The means of the two contractors are used 
separately in two scenarios (table 3).  

Parameter Prclaim. There are two ways to estimate parameter Prclaim. The first (eq. 
9) is based on data from utility companies and may underestimate Prclaim because the 
annual number of failures also includes failures due to other causes than digging 
activities. The second (eq. 10) is based on data from the questionnaire and may 
overestimate Prclaim if not all hits are reported. Both ways to estimate Prclaim were 
applied and used separately in two scenarios (table 3) 

 

failures ofnumber  annual
claims ofnumber  annualPr =claim        (9) 
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hits ofnumber 
companyutility   toreported hits ofnumber Pr =claim      (10) 

 
Parameter Prlive(map,loc). Ideally, parameter Prlive(map,loc) would be estimated 

from the number of cables/pipelines actually present. The only way to be absolutely 
sure about this number is to uncover the entire area, which is obviously very costly. As 
an approximation, the number encountered during digging can be used. In the 
questionnaire, contractors were asked to report per digging activity (1) the number of 
cables/pipelines reported in/by the map(s), (2) the number of cables/pipelines 
encountered during digging and (3) location (“inside built-up area”, “outside built-up 
area and along infrastructure” or “outside built-up area and not along infrastructure”).  

Parameters parprsize and pardet,live. Contractors were asked to register per digging 
activity values of Timedet, Timetot, map, loc and hits. hits is a discrete variable, with a 
high number of 0s (no damage) and incidentally a positive discrete number of hits. For 
such a data set, the appropriate method to estimate parprsize and pardet,live is through 
Poisson regression (Neter et al. 1996). We may expect a contractor to apply a larger 
detection time Timedet if he anticipates a high value of Costclaim . Parameters parprsize 
and pardet,live are estimated from Timedet, Timetot and hits and may be dependent on 
contractors’ anticipated values of parameters Costclaim, Prclaim and Prlive(map,loc). We 
would like to estimate parprsize and pardet,live independent of anticipated values of 
Costclaim, Prclaim and Prlive(map,loc). Therefore, parprsize and pardet,live were estimated 
only from recordings of digging activities where we were sure that the estimate of 
Prlive(map,loc) would be very close to one. A test showed no significant correlation 
between the fraction detection time (Timedet / Timetot) and the expected damage in case 
of a hit (Costclaim). Interference of Prclaim was not investigated. 

Parameter Costlab. Parameter Costlab was calculated as the mean of personnel 
costs per hour per contractor. Other costs (machinery) were not considered because 
they are relatively small and because they can be quite difficult to estimate. 

 

6.3.2 Results & discussion 
400 contractors were sent a questionnaire, 19 contractors returned a total of 81 

questionnaires. In the text below, the number of records from which parameters were 
estimated is often lower than 81, because often not all fields in the questionnaire were 
filled in. 

Parameters 
Table 3 shows parameter estimates. The two scenarios reflect the uncertainty on 

the values of parameters Costclaim and Prclaim. Scenario 1 is the scenario with the lowest 
risk, scenario 2 is the scenario with the highest risk. Parameter Costclaim was estimated 
from damage registration systems of two different contractors. Investigation of the 
cause of the large difference was beyond the scope of this chapter. From de Kruif 
(2004b), based on an interview with experts of a utility company, Prclaim was estimated 
as in equation 9: 1100/1700 = 0.65. From the questionnaire we obtained that 25 out of 
29 damages were reported to the owner, thus Prclaim = 0.862.  

For parameters parprsize and pardet,live it was tested whether they deviated 
significantly from zero. Note that since detection reduces risk pardet,live must be lower 
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than 0, so that the alternative hypothesis for pardet,live was H1: pardet,live < 0. Tests 
yielded: 
1. Test H0: parprsize = 0, H1: parprsize ≠ 0, result: parprsize = -0.3109, s.e. = 0.1349, p-

value 0.0212; 
2. Test H0: pardet,live = 0, H1: pardet,live < 0, result: pardet,live = -4.9869, s.e. = 4.4646, p-

value 0.1320. 
 
Both null hypotheses were rejected at α = 0.15, suggesting that the expected 

number of hits E(hits), equation 5, is as we proposed correlated with total project time 
and with detection time. The standard errors however are so large that accurate 
prediction of E(hits) is impossible. The negative value for parprsize is consistent with 
results from interviews by Pauwels and Wieleman (2004) which suggested that parprsize 
< 1. Histogram 6, see the discussion in §3.2.4, suggests a possible underestimation of 
parprsize. 

 
Table 3. Parameter estimates. 
parameter estimate unit 

 scenario 1* scenario 2*  
Costclaim 407 894 euros 
Prclaim 0.65 0.862 - 
Prlive see table 4 - 
parprsize -0.3109 -0.3109 1/hour 
pardet,live -4.9869 -4.9869 - 
Costlab 28 28 euros/hour 
* the two scenarios reflect uncertainty in the parameters Costclaim and Prclaim. 

 
Table 4 lists for 48 digging activities whether 0 or ≥1 cables/pipelines were 

encountered. From table 4, one can calculate the probability that ≥1 cables/pipelines are 
encountered, given that one is inside built-up area, with 0 cables/pipelines shown on the 
map. This probability is calculated as Prlive(“0 shown on the map(s)”, “inside built-up 
area”) = 2/(2+3) = 0.4.  

 
Table 4. Frequency of presence and absence of cables and pipelines. 

 Location 

 inside built-up 
area 

outside built-up 
area 

not specified 

number encountered*  ≥1 0 ≥1 0 ≥1 0 
≥1 shown on map(s) 15 1 11  9  
0 shown on map(s) 2 3 1 4 1 1 
* encountered during the digging activity 

Trade-off between detection and risk 
Figure 3 shows how the expected number of hits decreases with the fraction 

detection time and with increasing project size. Figure 4(a) shows, for a project of size 
Timetot = 20 hours, the trade-off between detection and risk. The black and white 
markers reflect the uncertainty in parameters Costclaim and Prclaim as in scenarios 1 and 2 
(table 3). In scenario 1, the optimum fraction detection time is around zero. Scenario 2 
would give an optimum fraction detection of approximately 0.2. The circles in figure 
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4(b) show the expected number of hits associated with these optima, respectively 0.39 
and 0.15. Although no alternative quantitative data are available to compare with, these 
optima appear rather high. Further research should indicate whether they can be 
explained by uncertainty in model parameters, or by other factors. 
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Figure 3. Expected number of hits decreases with fraction detection time and is higher 
in smaller projects. 

 
With the scenario 2 parameters Costclaim = 849, Prclaim = 0.862, Prlive(map,loc) = 1, 

parprsize = -0.3109, pardet,live = -4.9869 and Costlab = 28 and with total project time 
Timetot = 20 hours the model yields (eq. 8) an optimal detection time of Timeopt = 4 
hours, corresponding with an optimal fraction detection time of Timeopt / Timetot = 0.2. 
At this optimum, the expected costs (eq. 7) are Costtot = 224 euros. 
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Figure 4. Trade-off between detection and risk. Part a shows the costs, b shows the 
expected number of hits. Black and white markers, corresponding with scenarios 1 and 
2 (table 3), reflect the uncertainty in parameters Costclaim and Prclaim. 

 

Implications of over- and incompleteness 
Continuing with the scenario 2 parameters and with total project time Timetot = 20 

hours, some calculations on incompleteness (Prlive,act(“0 shown on the map(s)”,*) = 1). 
The asterix (*) is used to indicate that the calculation applies for any location. The 
subscripts act and asm are used for actual and assumed. For a contractor who assumes 
error-free maps, following the procedure outlined in section 6.2.2, we obtain: 
1. Optimum detection times given Prlive,asm(“0 shown on the map(s)”,*) = 0 and 

Prlive,act(“0 shown on the map(s)”,*) = 1 are: Timeopt,asm = 0 hours and Timeopt,act = 4 
hours; 

2. Given Prlive,act(“0 shown on the map(s)”,*) = 1 the expected costs are: Costtot,asm = 
304 euros and Costtot,act = 224 euros; 

3. The extra costs due to assuming an error-free map are 304 - 224 = 80 euros. 
 
Table 5 shows the expected total costs and extra costs for three different 

assumptions Prlive,asm(“0 shown on the map(s)”,*), when in a digging activity maps are 
complete and incomplete. From table 5, one can calculate the expected costs when 
incompleteness occurs for example in 4 or in 0 out of 10 digging activities. Results of 
these calculations are shown in table 6. In case of incompleteness in 4 out of 10 the best 
thing to do is to assume Prlive,asm(“0 shown on the map(s)”,*) = 0.4, with costs 1,211 
euros. If maps are always error-free (0 out of 10 incomplete) then the best thing to do is 
to assume Prlive,asm(“0 shown on the map(s)”,*) = 0.0, with costs 0 euros. Over 10 
digging activities of Timetot = 20 hours the costs of incompleteness in 4 out of 10 
digging activities are then at least 1,211 euros. 
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Table 5. Total and extra costs depending on Prlive,asm and Prlive,act . 

  
Costtot (eq.7): total costs 

(euros) per digging activity1 
extra costs (euros) per 

digging activity1,2 
Prlive,asm 

(“0 
shown on 

map”) Timeopt,asm 

Prlive,act (“0 
shown on 
map”) = 1 

(incomplete) 

Prlive,act (“0 
shown on 
map”) = 0 

(complete)3 

Prlive,act (“0 
shown on 
map”) = 1 

(incomplete) 

Prlive,act (“0 
shown on 
map”) = 0 

(complete)3 
0 0 304 0 80 0

0.4 0.3 290 9 66 9
1 4 224 112 0 112

1 assuming parameters as in scenario 2 (table 3) and total project time Timetot = 20 
hours 
2 calculated as outlined in section 6.2.2 
3 Prlive,act (“0 shown on map”) = 0 is complete because conform the map(s) no 
cables/pipelines are present. The only costs are then the detection costs: Costdet = 
Timeopt,asm·Costlab 

 
Table 6. Example of calculation of costs of incompleteness. 
 nr. of digging activities1 with sum over all digging activities 
Prlive,asm 

(“0 
shown on 

map”) 

Prlive,act (“0 
shown on 
map”) = 1 

(incomplete) 

Prlive,act (“0 
shown on 
map”) = 0 

(complete)2 
total costs3 

(euros) 
extra costs3 

(euros) 
0 4 6 1,215 319 

0.4 4 6 1,211 315 
1 4 6 1,566 670 
0 0 10 0 0 

0.4 0 10 88 88 
1 0 10 1,117 1,117 

1 assuming parameters as in scenario 2 (table 3) and total project time Timetot = 20 
hours in all 10 digging activities 
2 Prlive,act (“0 shown on map”) = 0 is complete because conform the map(s) no 
cables/pipelines are present 
3 by multiplication of the number of digging activities in this table with costs in table 6 

 

Actual and optimal fraction detection time 
In the questionnaire, respondents filled in for individual digging activities the 

actual detection time Timedet . With the model, we can compute for each of these 
individual digging activities the optimal detection time Timeopt . Then, the difference 
between the two can be calculated (shown in figure 5) and the extra costs due 
deviations from the optimum can be calculated (figure 6). In both figures, the top and 
bottom histogram reflect the uncertainty in parameters Costclaim and Prclaim as in 
scenarios 1 and 2 (table 3). In figure 5 the top histogram (mean -0.0648) suggests that 
contractors took slightly less risk than optimal, the bottom histogram (mean 0.0211) 
suggests that contractors took slightly more risk than optimal. Visually, the histograms 
in figure 5 suggest that contractors’ detection times are close to optimal. Figure 6 
shows that generally, deviations from the optimum bring along extra costs of less than 
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200 euro per digging activity. For the three digging activities with extra costs higher 
than 500 euro a partitioning (not shown) into detection costs and expected risk revealed 
that the extra costs were all due to excessive detection costs and not due to excessive 
risks. This could mean either that parprsize is underestimated in the model, or risk-
adverseness of contractors or their contractors. More data need to be collected in order 
to determine which of the two is the case. 
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Figure 5. Histograms of difference between optimal and actual fraction detection time 
for the two scenarios (table 3). The top histogram (mean -0.0648) suggests that 
contractors took slightly less risk than optimal; the bottom histogram (mean 0.0211) 
suggests that contractors took slightly more risk than optimal. Expected extra costs due 
to deviation from the optimum are shown in figure 6. 
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Figure 6. Histograms of expected extra costs caused by deviations from the optimal 
fraction detection time. 
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Detection time and expected damage 
Clearly, it is advantageous to spend more time on detection if the expected damage 

in case of a hit is larger. The questionnaire also asked contractors to indicate how much 
damage they expected in case of a hit. Expected economic damage categories (in euros) 
were: (1) <500, (2) < 5,000, (3) <50,000 and (4) >50,000. Expected physical danger 
categories were: (1) “no physical danger”, (2) “physical danger, non lethal” and (3) 
“lethal”. We tested for correlation between fraction detection time and expected 
damage and obtained very low correlation coefficients of 0.19 and 0.22, with one-sided 
p-values of 0.19 and 0.16. There are two possible explanations for this inconsistency: 
(1) the model does not correctly represent the digging decision-making process and (2) 
contractors are poorly informed about damage in case of a hit. Results of van Houten 
and Lourens (1995) support the second explanation. 

 

6.4 Conclusions & further research 
Digging activities represent the largest cause of damage to underground cables and 

pipelines, but very little scientific research is available. Dutch professional journals, 
consultancy reports and newspaper have raised concerns about spatial data quality. 
There was a lack of insight in which element of spatial data quality (SDQ) was most 
relevant and a lack of insight into how implications of SDQ could be quantified. Based 
on this chapter seven conclusions can be drawn: 
1. The formulation of the conceptual and mathematical model is general and therefore 

widely applicable. The issue addressed occurs all over the world, the case-study 
presented some quantitative results for the Netherlands; 

2. The model provides insight into the trade-off between detection costs and risk; 
3. The model can be used to calculate the optimal detection time; 
4. Three spatial data quality parameters are relevant: completeness, horizontal 

positional accuracy and vertical positional accuracy. Completeness is the most 
relevant element; 

5. The model could be used to calculate implications of all three elements. The 
chapter presents and illustrates a procedure to calculate implications of over- and 
incompleteness; 

6. The case-study proved that it is possible to parameterise the model with data 
derived from questionnaires among contractors; 

7. The case-study results are consistent with our model of the contractor’s behaviour, 
that is, histograms suggest that their detection times are close to optimal. 
 

6.4.1 Beyond insight: applicability in decision-making 
Once parameterised with acceptable accuracy, the following potential applications 

of the model are foreseen: 
1. At the start of a project contractors can use the model to decide on how much to pay 

for detection. Or conversely, contractors may confront the contractor with the 
expected damage and expected number of hits for the sum that the contractor offers 
to pay for detection; 
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2. The model could be used to substantiate claims by Dutch contractors (Dijkema en 
Zweistra 2001, de Kruif 2004c, van der Stok 2005) who argue that they suffer the 
consequences of poor quality maps; 

3. For contractors that take more risk than optimal the model could be used to 
convince them of the benefits of increasing their detection time; 

4. When detection efficiencies and mean detection fractions per contractor are known, 
they could become a selection criterion in bids for contracts. Through economic 
competition this could lead to an overall increase in safety for public and 
contractors; 

5. Costs for utility companies can be included in the model. Once included in the 
model, the model could be used to estimate the costs and benefits of 
increasing/decreasing the spatial data quality of their maps (as already suggested in 
van Oort 2004). 
 

6.4.2 Further research 
The case-study illustrated that the model could, as required, be parameterised with 

data collected from contractors through a questionnaire. The previous section showed 
that, once parameterised with acceptable accuracy, applications valuable for society 
may be expected. The first recommendation is therefore to collect more data so that the 
model can be put to use. Two modelling challenges lie ahead. Firstly, the challenge of 
finding a method that accounts of the coincidence of detection times for individual 
cables/pipelines. Secondly, to make parameters dependent on the type of cable or 
pipeline, such as the size of the damage claim (Costclaim). Once more data have been 
collected it will be a challenge to parameterise and validate the model. 
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7. Do users ignore spatial data quality? 

Abstract 
Risk analysis (RA) has been proposed as a means of assessing fitness for use of 

spatial data but is only rarely adopted. The proposal is that better decisions can be made 
by accounting for risks due to errors in spatial data. Why is RA so rarely adopted? Most 
Geographical Information Science (GISc) literature stresses educational and technical 
constraints. In this chapter we propose, based on decision-theory, a number of 
hypotheses for why the user would be more or less willing to spend resources on RA. 
The hypotheses were tested with a questionnaire, which showed that the willingness to 
spend resources on RA depends on the presence of feedback mechanisms in the 
decision-making process, on how much is at stake and to a minor extent on how well 
the decision-making process can be modelled. 

 

7.1 Introduction 
Spatial data are data about topography and specific themes of the earth's surface. 

They are an ingredient in almost all public decision-making (Burrough and McDonnell 
1998, Cornélis and Brunet 2002), a popular estimate is that 80% of the data used by 
managers and decision-makers is spatial. Many researchers have stressed the need to 
deal with issues of Spatial Data Quality (SDQ), as the risk of misuse of spatial data has 
greatly increased (see conference proceedings: Lowell and Jaton, 1999; Heuvelink and 
Lemmens, 2000; Mowrer and Congalton, 2000; Hunter and Lowell, 2002). Important 
causes of this increased risk of misuse are the growing availability of spatial data, 
greatly enhanced access to these data, enhanced possibilities of manipulating these data 
and a growing group of inexperienced users (Aronoff 1989, Morrison 1995; Doucette 
and Paresi 2000). Furthermore, producers of spatial data sets provide little information 
regarding the quality of these data sets (Östman 1997, Jakobsson and Vauglin 2001). 
Geographical Information Systems (GIS) have limited functionality for visualisation of 
SDQ (van der Wel 2000) and limited functionality for quantifying error-propagation 
(Forier and Canters 1996, Heuvelink 1998, Duckham, 2002). Apart from these factors, 
Openshaw (1989) noted that the traditional response of both researchers and users has 
too often been to simply ignore SDQ. Agumya and Hunter (1999) categorised users 
into three groups according to how they respond to SDQ in data:  
1. Those who establish that the data are suitable prior to using the data; 
2. Those who wish to chose the best among several suitable data sets; 
3. Those who use data regardless of their suitability, either because they must use it or 

they choose to ignore its SDQ. 
 

According to Agumya and Hunter (1999), studies about the proportion of users in 
each class are scant, but there is a general belief among researchers that most users fall 
into the third class. Fitness for use can be established in various ways: consultation with 
experts, trial and error, by assessing legal or other constraints to the use of a data set, by 
assessing for which purposes the data set is already used and for which purposes it is 
produced, to the most rigid method which is to establish fitness for use through risk 
analysis (RA). In RA implications of errors or uncertainties on expected outcomes of a 
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decision-making process are quantified and data sets are only used if the risks 
generated are acceptable (Agumya and Hunter 2002). Several authors have shown that 
RA can be used as a means of assessing fitness for use, see for example Li et al. (2000), 
Crosetto and Tarantola (2001), de Bruin et al. (2001) and de Bruin and Hunter (2003). 
Users are often assumed to 'ignore' SDQ if they did not establish fitness for use through 
RA prior to using spatial data sets (Openshaw 1989, Agumya and Hunter 1999). 
Knowledge of the risks caused by SDQ can contribute in several ways to decision-
making: 
• It helps in finding out which level of SDQ is required for the decision, and this can 

aid in selecting the data set to be used; 
• It helps in deciding how many resources need to be reserved for mitigation; 
• It helps in deciding on the deciding the risk-level of an investment; 
• It helps in redesigning the decision-making process to reduce sensitivity to low 

SDQ; 
• By being candid towards stakeholders about the risks taken in a decision, it is 

possible to preserve public trust in public decision-making. 
 

Given these advantages, one may wonder why RA is so rarely adopted as a means 
of establishing fitness for use. One possible explanation is the lack of time and money. 
More informative explanations explain why the costs are considered to be too high and 
why the benefits are considered to be too low. A full list of hypotheses or explanations 
as to why users so rarely quantify risks due to SDQ prior to using spatial data in 
decision making is rarely found in geographical information science (GISc) literature 
(but see Openshaw 1989). Rather, most research articles briefly state that risks due to 
SDQ are not quantified and that this may be a problem. The greatest part of such a 
research article then addresses one or more of the following problems: 
1. Lack of awareness that SDQ may cause risks; 
2. Lack of practical examples illustrating the needs and benefits of RA; 
3. Users lack the skills to conduct RA; 
4. Earlier research has been limited to error propagation analysis on the geographical 

analyses conducted using GIS, the outcomes of which are less tangible to users than 
outcomes reported in terms of risks; 

5. Lack of methodologies for calculating risks due to SDQ; 
6. Lack of supporting tools in current GIS software (for example error-buttons, 

visualisation, wizards); 
7. Poor documentation of SDQ. 

 
The seven problems mentioned above can be summarised as two classes of 

hypotheses as to why users ignore SDQ: educational (1 to 4) and technical (5 to 7). The 
origin of this chapter lies in an effort to address the problems as listed above. In 2002, 
we conducted open interviews with GIS/spatial data users in public decision-making to 
find case studies in which these problems could be addressed. Surprisingly, we noted in 
these interviews that the users concerned were well aware of spatial data quality issues, 
yet in many cases they considered quantification of implications of SDQ (= Risk 
Analysis, RA) unnecessary or impossible. They deliberately chose to ignore SDQ. The 
three problems addressed in this chapter are (1) that existing educational and technical 
explanations could not fully explain these users’ motivations, (2) that there is hardly 
any empirical research into why users ignore spatial data quality and (3) that there 
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appears to be an unknown discrepancy between researchers and spatial data users in 
public decision-making. 

The aims of this chapter are therefore: (1) to propose new hypotheses as to why 
users ignore SDQ, (2) to test these hypotheses in a questionnaire and (3) to test for 
differences between respondents of the questionnaire. 

 

7.2 Methods 

7.2.1 Definitions and outline 
Before proposing hypotheses, relevant definitions are given in Table 1. Section 

7.2.2 then presents hypotheses based on decision-theory. 
 

Table 1. Definitions 
Decision (-making): a process consisting of five phases (from Cornélis and Brunet 
2002) 

1. DO: documentation and information = identification of data needs, problems, 
objectives and knowledge of how these can be achieved; 

2. DA: decision analysis = definition of alternative actions to achieve these objectives; 
3. DT: decision taking = selection of one of the alternatives; 
4. DI: decision implementation = implementation of the selected action and; 
5. DE: decision evaluation = evaluation of the outcomes of the action in terms of 

objective achievement. 
SDQ: Spatial Data Quality. A general term, covering all aspects that affect the quality 

of a spatial data set. Prominent elements of SDQ are positional accuracy, attribute 
accuracy, completeness, logical consistency and lineage. See chapter 2 of this 
thesis. 

RA: Risk-analysis. Quantification of risks by multiplying potential outcomes of a 
decision with the probabilities of these outcomes. Probabilities of outcomes are 
calculated, using error propagation analysis, from probabilities of errors. 
Probabilities of errors are derived from SDQ reports of the input data set(s). If 
necessary, additional information on these errors (and their correlation!) is acquired. 

 

In the decision-making process we distinguish two types of actors: 

(Co-) decision-maker: has the power to select one of the alternatives in phase DT of 
the decision 

Stakeholder: does not have the power to select one of the alternatives in phase DT of 
the decision, but does experience the consequences in DE. 

 

7.2.2 Hypotheses 
Hypotheses were derived from open interviews with users of spatial data in various 

government organisations in the Netherlands and from a selection of decision-theoretic 
literature references. A list of hypotheses is presented at the end of this section; below, 
the sources of the hypotheses are listed.  
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Cornélis and Brunet (2002) described the spatial decision-making process as a 
sequence of five phases (see Table 1). They described the various sources of 
uncertainty that occur in the decision-making process and provided a policy-maker 
point of view. In each phase, we distinguish in this chapter a feedback mechanism that, 
if present, may reduce risks generated by SDQ. Hypothesis 1 is that if a decision-maker 
expects that a mechanism sufficiently reduces risks, then this may reduce his or her 
willingness to spend resources on RA. Concrete descriptions of the feedback-
mechanisms are given in Tables 3 and 4 and in the discussion (§7.4.2).  

In order to calculate risks as a result of SDQ in a decision-making process, the 
decision-making process needs to be described in a model. The two most important 
modelling steps that have to be taken to allow for RA are (Morgan et al. 1990, Jaeger et 
al. 2001): (1) it must be possible to rank potential outcomes of the decision-making 
process according to their desirability and (2) the relationship between input data, the 
alternative actions and outcome of each {input data, action, outcome}-combination 
must be described by a set of equations. These modelling steps are further referred to as 
RA modelling criteria. Once meeting these criteria becomes more problematic, users 
may start to become more concerned about how realistic the risks calculated with such 
a model are. They may become more sceptical about the potential benefits of RA. See 
van der Smagt and Lucardie (1991) for a general comment on applicability of models 
under not well-defined conditions. Hypothesis 2 is that people will be less willing to 
spend resources on RA if RA modelling criteria are more difficult to be met. 

Campbell (1991) distinguished between four kinds of decision-making processes, 
which in this chapter are reduced to two kinds: data-driven and discussion-driven 
decisions. Criteria for RA are less likely to be met in discussion-driven decisions: it 
may be more difficult to model these processes and more difficult to rank expected 
outcomes according to their desirability. Often, but not necessarily, a greater public 
interest is at stake in discussion-driven decisions. The opposite is the case in data-
driven decisions: RA criteria are more likely to be met, but less may be at stake. Thus 
in both the data-driven and the discussion-driven decision there is one argument in 
favour and one against RA. It will be interesting to see if one argument outweighs the 
other and if so, which. Hypothesis 2 and 3 test whether modelling criteria and the 
stakes affect the willingness to spend resources on RA, hypotheses 4 and 5 test whether 
one outweighs the other in data or discussion-driven decisions. 

 
On the basis of the decision-theoretic literature cited above, we propose the 

following hypotheses: People will be less willing to spend resources on RA if: 
1. A feedback mechanism reduces risks due to SDQ; 
2. RA modelling criteria are more difficult to be met: 

• Criterion 1: it is difficult to rank possible outcomes of the decision-making 
process according to their desirability;  

• Criterion 2: it is difficult to cast the decision-making process into a set of model 
equations; 

3. Not much is at stake; 
4. The decision is data-driven; 
5. The decision is discussion-driven. 
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7.2.3 Questionnaire 
Trials with the hypotheses inserted directly as a questions in a questionnaire 

proved not to be an option, because they were considered to be too abstract by 
respondents. Therefore, they were translated into a set of features and associated 
arguments. The formulation of the hypotheses and their translation into features and 
arguments is the result of a learning process of the authors, fed by open interviews with 
GIS/spatial data users in public decision-making, experience in spatial data quality 
research, literature research and trial questionnaires. 

 

Questions in the questionnaire 
The decision-theoretic hypotheses were formalised into nine features and 

seventeen associated arguments, listed in Tables 3 and 4. Table 2 shows the 
relationship between the five hypotheses mentioned in §7.3.2 and the nine features in 
Table 3. Arguments are associated with features such that arguments 1a and 1b (Table 
4) are associated with feature 1 (Table 3). Their relationship with the above hypotheses 
can be found through their association with features. The relationship between the five 
hypotheses and the features and arguments will also become clear in the discussion in 
section 7.4.2.1. The questionnaire contained the same questions for each feature and for 
each argument (see figure 1):  
• Feature question: “If a decision-making process has this feature, then are you less 

/ neutral / more willing to spend resources on risk-analysis?”; 
• Argument question: “Do you agree with this argument?” (Permissible answers: 

disagree / neutral / agree). 
There were three reasons for adding arguments to the features: 
• Arguments clarify the relationship between feature and RA; 
• The feature questions require more commitment from respondents than argument 

questions. As a result respondents may be inclined to answer ‘neutral’ more 
frequently in the feature questions than in the argument questions. Arguments may 
uncover more information;  

• If respondents agree with both the argument in favour and against RA, they may fill 
in ‘neutral’ in the feature question. In that case it would be wrong to discard the 
feature as being irrelevant. 

The third aim of this chapter was to test for differences between respondents. To 
achieve this the questionnaire contained a background question: for their current job 
respondents could fill in (1) policy-maker, (2) cartographer, (3) GIS-expert, (4) 
researcher or (5) other, namely …. The definition of policy-maker given in the 
questionnaire was: ”policy-maker: part of my job is to make decisions on how many 
resources will be spent on different projects”. For the other job-categories no 
definitions were given, because a trial questionnaire indicated that their meaning was 
clear to respondents. 
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Table 2. Relationship between hypotheses and features 
feature (see Table 3) hypothesis  

(see §7.3.2) 
 

1 2 3 4 5 6 7 8 9 
– phase –          1. feedback 

mechanism DO: documentation and 
information 

x         

 DA: decision analysis  x        
 DT: decision taking     x     
 DI: decision 

implementation 
      x   

 DE: decision evaluation    x      
– criterion –          2. RA modelling 

criteria ranking of outcomes   x       
 model as a set of equations     x x  x x 
3. not much at stake       x   x 
4. data-driven         x  
5. discussion-driven      x    x 

 
Table 3. Features  

ftr. feature title 

1 Stakeholders often know the area of interest very well. They are invited to inspect and 
criticise the spatial data to be used, prior to your decision taking. 

2 Prior to implementation a field trip is organised. Data acquired during this trip may be 
reason to change your plans, even before implementation starts. 

3 The aim of the decision is to achieve an objective. The extent to which this objective is 
achieved can be expressed numerically. 

4 The decision will have implications for stakeholders. Stakeholders may hold you 
accountable and claim compensation for damage caused by errors in your data. 

5 The decision is taken in negotiation between different parties. 
6 After an action to be implemented has been selected it is implemented over the course of 

10 years. 
7 After an action to be implemented has been selected it is implemented. During 

implementation there is room for adjustment of the selected action 
8 The decision-making process is clearly described. 
9 The decision to be taken is a strategic one, in which policy-makers do their best to 

anticipate expected long-term developments. 
 

7.2.4 Trials and final questionnaire 
Before the final questionnaire, two trials were conducted. From the first trial we 

learned two lessons: (1) it proved better not to provide information about the specific 
context of decision-making processes and (2) it was better to apply a qualitative 
willingness-to-pay concept than a quantitative willingness-to-pay concept. In trials 
where we added context information we observed that respondents would make 
inferences about how much was at stake and then assign more resources to where they 
thought more was at stake, without paying further attention to presence or absence of 
other features/arguments in the context descriptions. Also, we found that respondents  
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Table 4. Arguments for and against RA, associated with features in Table 3 
arg. Argument title † 

1a Before presenting these data to them, I want to be sure that they do not contain errors. 
Otherwise they could use these errors against me or loose trust in me as a decision-
maker. Therefore, in my opinion there is a greater need for RA if this feature is 
present. 

1b Stakeholders will notice errors and inform me about them. That way, risks are reduced. 
Therefore, in my opinion there is less need for RA if this feature is present. 

2a Field trips are expensive. If RA can contribute to reducing the number of field trips, 
then in my opinion there is a greater need for RA. 

2b During the field trip errors in the data are detected and the right action selected. That 
way, risks are avoided. If risks are avoided anyhow, then in my opinion there is less 
need to quantify them. 

3a If the objective can be expressed numerically, then it is possible to conduct calculations. 
Therefore, in my opinion there is a greater need for RA if this feature is present. 

4a I want to know if the risk is acceptable to me, for example I want to know how many 
claims for compensation may be expected. Therefore, in my opinion there is a 
greater need for RA if this feature is present. 

5a It is more difficult to model propagation of errors, as the decision-making process also 
depends on the negotiation behaviour of the actors involved. Therefore, in my 
opinion there is less need for RA if this feature is present. 

5b As soon as more than one party is involved, it is of importance to know how reliable 
each party’s information is. Therefore, in my opinion there is a greater need for RA 
if this feature is present. 

6a Precisely because implementation takes place over such a long period of time, 
conscientious consideration is important. Therefore, in my opinion there is a greater 
need for RA if this feature is present. 

6b So much changes over the course of 10 years that little may be expected of RA at the 
start of the period. Therefore, in my opinion there is less need for RA if this feature 
is present. 

7a Adjustment during implementation will require repetition of the planning phase, which 
will cost both time and money. If RA can contribute to reducing these costs, then in 
my opinion there is a greater need for RA if this feature is present. 

7b No risks occur, because there is room for adjustment. Therefore, there is little use in 
calculating these risks. In my opinion, if this feature is present there is less need for 
RA. 

8a In the case of a clear procedure I expect that the designers of the procedure have made 
sure that it doesn’t generate unacceptable risks. Therefore, in my opinion there is 
less need for RA if this feature is present. 

8b If the procedures are clear, then it is easily possible to calculate which risks are caused 
by SDQ. Therefore, in my opinion there is a greater need for RA if this feature is 
present. 

9a Great interests are at stake. Therefore, in my opinion there is a greater need for RA if 
this feature is present. 

9b The uncertainty in projections of long-term developments is often greater than the 
uncertainty in spatial data. Therefore, in my opinion there is less need for a 
calculation which shows the risks generated by uncertainty in spatial data. 

9c Characteristic of strategic decisions is that at the onset, it is not precisely clear which 
alternative actions will be considered. As a result, it is difficult to say what the risks 
will be. In my opinion, therefore, there is less need for RA. 

† respondents were asked if they agreed with these arguments (see figure 1) 
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tended to answer “neutral” or “no response” when they were less familiar with the 
context of the decision-making process. In trials with more quantitative willingness-to-
pay concepts, we found that respondents were only willing to answer quantitatively if 
much more context information was provided. Also, we found that part of the 
respondents does not regularly make decisions on resource spending. These 
respondents considered it difficult to respond quantitatively but did have a clear 
qualitative opinion. 

In the second trial a questionnaire was distributed at a conference organised by a 
GIS software company attended by approximately 300 visitors. It contained an 
introductory letter stating the objective of the questionnaire, a simple example of RA on 
spatial data, a background question on the current job of respondents, five feature 
questions and one open question inviting to add other relevant features affecting the 
willingness to spend resources on RA. Two lessons were learned: (1) arguments had to 
be included for clarification and (2) respondents at the conference only partially 
represented the target group of our questionnaire. 73% Of the respondents indicated 
they were GIS-experts, less than 10% indicated they were policy-maker. We observed 
that a large number of GIS-experts had experienced difficulties in responding, because 
the questions were too far beyond the scope of their daily work. 

The final questionnaire contained an introductory letter stating the objective of the 
questionnaire, a simple example of RA on spatial data, a background question on the 
current job of respondents, all nine features and seventeen arguments of Tables 3 and 4 
and an open question inviting to add other relevant features. Special efforts were made 
to include in the list of respondents policy-makers from various government 
organisations. Figure 1 is taken from the final questionnaire, it shows the instructions 
for filling in, one feature q  uestion and two associated argument questions. 

 

Statistical testing 
The population was defined as Dutch policy-makers, managers, advisors, GIS-

experts and researchers. Active use of a GIS was not a criterion. Respondents were 
personally targeted and contacted by e-mail and telephone and asked only to return the 
questionnaire if they felt willing and capable of filling it in. 

Minimum sample size is calculated as a function of desired precision of the 
outcomes and prior knowledge on the distribution of the variable of interest. Precision 
refers to the p-values. In this study, p-values less than 0.15 were considered significant. 
No prior knowledge of the distribution of our variables was available. Based on the 
distribution observed from the first 20 questionnaires returned it was estimated that a 
sample of 50 should be the minimum. 

The statistical test used was the Fisher Exact test for ordinal data (Agresti 1990: 
60-65), which tests for differences in ranking and is an appropriate test for small 
sample sizes. The null hypothesis was an equal number of responses in each category 
(disagree/neutral/agree or less/neutral/more). It is possible that the total number of 
responses N, divided by the number of response categories (= 3) does not result in an 
integer. We applied H0 = 17-18-17 for N = 52, H0 = 18-17-18 for N = 53 and H0 = 18-
18-18 for N = 54. For example in Table 5 the response for feature 1 was 22-24-8 
(N=53), so H0 = 18-18-18 and we obtained a (one-sided) p-value of 0.052. Next the 
Fisher Exact test for ordinal data was applied to test for differences in ranking of 
responses according to the respondent's current job. 
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Conducting a risk-analysis costs time and money. Below, 9 features of a decision-making process
are listed. I would like to know if presence of the features in the decision-making process affects
your willingness to spend resources on risk-analysis.

Per feature arguments are shown in favour and against a larger budget for risk-analysis. Please
indicate whether you disagree, are neutral or agree (tick one of the boxes)
The last question at each feature is whether you would spend more or less resources on risk-
analysis:

if you have both an argument for and one against RA, then encircle “neutral”;
if one of the arguments is decisive then encircle “more” or “less”;
you are allowed to include other arguments in your judgement and describe these arguments in
the open question at the end of the questionnaire.

the risk-analysis at all times refers to the calculation of risks caused by
. Thus , such as for example the chance that a

proposal receives insufficient support and hence is not chosen to be implemented.

Instructions for filling in:

Important:

�

�

�

uncertainty in
spatial data not risks caused by other factors

Feature 1: Stakeholders often know the area of interest very well. They are invited to inspect
and criticise the spatial data to be used, prior to your decision taking.

neutral agreedisagreeArguments

1a. Before presenting these data to them, I want to be
sure that they do not contain errors. Otherwise they
could use these errors against me or loose trust in
me as a decision-maker. Therefore, in my opinion
there is a need for RA if this feature is
present.

greater

1b. Stakeholders will notice errors and inform me about
them. That way, risks are reduced. Therefore, in my
opnion there is need for RA if this feature is
present.

less

neutral moreless
If a decision-making process has feature 1, then I am
less/neutral/more willing to spend resources on risk-analysis:
(encircle what applies to you)

 
Figure 1. Instructions for filling in the final questionnaire. 

 

7.3 Results and discussion 

7.3.1 Results 
From the 250 respondents targeted 55 filled in and returned the questionnaire. 

Table 5 shows the results for all respondents, with reference to features in Table 3 and 
arguments in Table 4. The Tables should be read as follows: Table 3, feature 1 states: 
“Stakeholders often know the area of interest very well. They are invited to inspect and 
criticise the spatial data to be used, prior to your decision taking”. Table 5 shows that if 
this feature is present in a decision-making process, then a significant (p<0.15) majority 
of the respondents is less willing to spend resources on RA. Arguments 1a (+, in favour 
of RA) and 1b (–, against RA) are associated with feature 1. Argument 1b (Table 4) 
states: “Stakeholders will notice errors and inform me about them. That way, risks are 
reduced. Therefore, in my opinion there is less need for RA if this feature is present”. 
Table 5 shows that a significant majority agreed with this argument. Phase 1 (Table 1, 
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Cornélis and Brunet 2002) is: “1. DO: documentation and information = identification 
of data needs, problems, objectives and knowledge of how these can be achieved”. 
Recalling the decision-theoretic hypotheses listed in section 7.3.2, we conclude that in 
the opinion of the respondents there is less need for RA if feedback is received from 
stakeholders in phase 1 of the decision-making process.  

Of the respondents 23 indicated they were policy-makers, 0 cartographer, 7 GIS-
experts, 13 researchers and 12 other. The twelve indicating “other” all specified their 
jobs as either manager, advisor or coordinator. Significant differences were found 
between all groups. The most and largest differences were found between researchers 
(N=13) and policy-makers (N=23). Table 6 presents the response of these groups, with 
the last column showing one-sided p-values from the test for difference in ranking 
between the two groups. 

 
Table 5. Feature and Argument questions, all respondents 

ftr.†  less neutral more no response p-value sign.º 
1  22 24 8 1 0.052 * 
2  10 24 19 2 0.159  
3  7 27 20 1 0.063 * 
4  1 10 42 2 0.000 * 
5  10 24 20 1 0.131 * 
6  11 27 16 1 0.307  
7  16 22 16 1 0.548  
8  13 30 11 1 0.449  
9  12 19 23 1 0.108 * 
        

arg.† fa‡ disagree neutral agree no response p-value sign. º 
1a + 24 17 14 0 0.125 * 
1b - 14 15 26 0 0.080 * 
2a + 6 12 36 1 0.000 * 
2b - 17 16 22 0 0.278  
3a + 13 15 27 0 0.051 * 
4a + 3 4 46 2 0.000 * 
5a - 19 16 20 0 0.447  
5b + 13 16 25 1 0.084 * 
6a + 11 19 24 1 0.070 * 
6b - 22 19 14 0 0.186  
7a + 11 8 35 1 0.002 * 
7b - 23 11 19 2 0.302  
8a - 24 15 16 0 0.173  
8b + 19 21 14 1 0.304  
9a + 7 12 36 0 0.000 * 
9b - 18 9 28 0 0.114 * 
9c - 17 21 16 1 0.485  

† Features: respondents were asked if presence of the feature affected their willingness 
to spend resources on risk-analysis (RA); Arguments: respondents were asked if 
they agreed with the argument. See Tables 3 and 4 for definition of features and 
arguments 

‡ argument is in favour (+) or against (–) RA 
º p-values smaller than 0.15 were considered significant 
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Table 6. Feature and Argument questions, differences between respondents 
 researchers (N=13) policy-makers (N=23)   

ftr. † less neutr
al 

more no 
resp. 

less neutr
al 

more no 
resp. 

p-
value 

sign. º 

1 3 7 3 0 10 10 2 1 0.089 * 
2 3 5 5 0 4 11 6 2 0.407  
3 2 6 5 0 4 12 6 1 0.311  
4 0 3 9 1 1 4 17 1 0.598  
5 5 5 3 0 3 9 10 1 0.059 * 
6 2 5 6 0 6 14 2 1 0.035 * 
7 2 5 6 0 7 13 2 1 0.026 * 
8 2 7 4 0 6 13 3 1 0.149 * 
9 3 2 8 0 5 10 7 1 0.117 * 
           

arg. † disag
ree 

neutr
al 

agree no 
resp. 

disag
ree 

neutr
al 

agree no 
resp. 

p-
value 

sign. º 

1a 4 3 6 0 9 9 5 0 0.173  
1b 6 2 5 0 3 8 12 0 0.079 * 
2a 2 2 9 0 1 7 15 0 0.513  
2b 6 1 6 0 6 9 8 0 0.464  
3a 3 4 6 0 7 7 9 0 0.360  
4a 0 2 11 0 2 2 19 0 0.418  
5a 7 1 5 0 6 9 8 0 0.274  
5b 6 2 4 1 2 9 12 0 0.031 * 
6a 4 2 7 0 4 13 5 1 0.181  
6b 7 5 1 0 7 7 9 0 0.040 * 
7a 3 1 9 0 4 3 16 0 0.496  
7b 7 2 3 1 8 7 7 1 0.179  
8a 7 3 3 0 11 6 6 0 0.425  
8b 4 4 4 1 9 11 3 0 0.226  
9a 3 0 10 0 3 7 13 0 0.208  
9b 5 3 5 0 7 3 13 0 0.218  
9c 7 4 2 0 5 9 8 1 0.038 * 

† Features: respondents were asked if presence of the feature affected their willingness 
to spend resources on risk-analysis (RA); Arguments: respondents were asked if 
they agreed with the argument. See Tables 3 and 4 for definition of features and 
arguments  

º p-values smaller than 0.15 were considered significant 
 

7.3.2 Discussion 
The discussion is about the five decision theoretic hypotheses (§7.3.2), formalised 

as features (Table 3) and arguments (Table 4). Features and arguments, in brackets in 
the text below, are significant (p-value < 0.15) unless explicitly stated otherwise. 

 

Decision-theory 
Hypothesis 1 is about feedback mechanisms in phases 1 to 5 (Table 1, Cornélis and 
Brunet 2002). Significant outcomes were found for the feedback mechanisms in phases 
1, 3 and 5 of the decision-making process and not in phases 2 and 4. Phase 1 is “DO: 
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documentation and information = identification of data needs, problems, objectives and 
knowledge of how these can be achieved”. If feedback was received in this phase, then 
respondents had the opinion that this effectively reduced risks so that they were less 
willing to spend resources on RA (Table 5, ftr. 1, arg. 1b). Phase 3 is “DT: decision 
taking = selection of one of the alternatives”. In phase 3 the majority was more willing 
to spend resources on RA (Table 5, ftr. 5). Note the difference between the role of 
stakeholder (phase 1) and co-decision-maker (phase 3). Both may provide feedback on 
SDQ, but the co-decision-maker has the power to influence the decision taken and for 
this reason respondents regard his feedback with more distrust (Table 6, arg. 5b). Phase 
5 is “DE: decision evaluation = evaluation of the outcomes of the action in terms of 
objective achievement”. Feedback in this phase implies that the decision-maker can be 
held accountable for damage done due to SDQ. Respondents were more willing to 
spend resources on RA if this feedback mechanism is present (Table 5, ftr. 4, arg. 4a). 
Epstein et al. (1998) present a discussion on the legal aspects of implementing this 
feedback mechanism. According to them, the decision-maker has a strong defence 
against damage claims if he can prove that he has implemented policies to maintain 
product quality. Amongst other things, quality depends on the risks generated by SDQ. 
The first step then in maintaining product quality is to quantify it. This can be done 
using RA. Other proofs of quality control are, for example, the ISO 9000 accreditation. 

Phase 2 is “DA: decision analysis = definition of alternative actions to achieve 
these objectives”, phase 4 is “DI: decision implementation = implementation of the 
selected action”. The fact that no significant majorities were found for feedback in 
phases 2 and 4 (Table 5, ftr. 2 and 7 are not significant) is also interesting. We had 
anticipated that the presence of these mechanisms would reduce willingness to spend 
resources on RA, as was the case for feature 1. Significant majorities of the respondents 
took into account that these mechanisms are expensive, and hoped that applying RA 
might contribute to reducing these expenses (Table 5, arg. 2a and 7a). Respondents 
differed in their opinion as to whether or not feedback mechanisms in phases 2 and 4 
reduced risks (Table 5, arg. 2b and 7b are not significant). Our experience is that these 
mechanisms certainly exist in many decision-making processes and thus reduce risks, 
and that respondents speculate about the necessity of these mechanisms but do not 
translate this into actively replacing them by RA. One reason for not doing so may be 
resistance from within the organisation, from the large workforce applying these 
mechanisms. As one of the respondents commented: “we always do fieldwork prior to 
decision-taking” and “there is no tradition of conducting RA within my organisation”. 
If feedback mechanisms in phases 2 and 4 reduce risk, be it not as cheaply as possible, 
a sense of urgency to replace them for RA may be lacking. 

Hypothesis 2 is about RA modelling criteria. Criterion 1 is that it should be 
possible to rank expected outcomes of the decision according to their desirability; 
criterion 2 is that the decision-making process can be described in a model using a set 
of equations. Outcomes were significant for criterion 1 (Table 5, ftr. 3, arg. 3a), but not 
significant for criterion 2 (Table 5, arg. 5a, 6b, 8b). The only exception to this was that 
the majority agreed with argument 9b, against RA if criterion 2 is violated. 

Hypothesis 3 was confirmed (Table 5, arg. 6a and 9a): a greater need for RA is felt 
if more is at stake. Hypothesis 4 is that respondents are less willing to spend resources 
on RA in data-driven decisions. The hypothesis was tested with feature 8 and neither 
rejected nor accepted. Hypothesis 5 was tested with features 5 and 9. Results from the 
questionnaire indicate users are more willing to spend resources on RA in discussion-
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driven decisions (Table 5, ftr. 5 and 9). Results indicate that in discussion-driven 
decisions, RA is desired because decision-makers want to know how reliable co-
decision-makers data are (Table 5, arg. 5b) and because more is at stake in discussion-
driven decisions (Table 5, arg. 9a). The argument that more is at stake can override the 
fact that a decision may be difficult to model (RA modelling criterion 2) and result in a 
higher willingness to spend resources on RA (Table 5, ftr. 9, arg. 9a, 9b).  

 

Differences between respondents 
Table 6 shows the differences in response between researchers and policy-makers. 

These differences can be summarised as: 
• Policy-makers have more trust in feedback mechanisms in phases 1 and 4 of the 

decision-making process (Table 6, ftr. 1, 7, arg. 1b); 
• Policy-makers are more concerned about the reliability of data from co-decision-

makers (Table 6, ftr. 5, arg. 5b); 
• Policy-makers are less willing to spend resources on RA if the decision is 

implemented over the course of 10 years (=long term). They agree more with the 
argument that “so much changes over the course of 10 years that little may be 
expected of RA at the start of the period. Therefore, in my opinion there is less need 
for RA” (Table 6, ftr. 6, arg. 6b); 

• Policy-makers are less willing to spend resources on RA in strategic decisions. 
They agree more with the argument that “Characteristic of strategic decisions is that 
at the onset, it is not precisely clear which alternative actions will be considered. As 
a result, it is difficult to say what the risks will be. In my opinion, therefore, there is 
less need for RA” (Table 6, ftr. 9, arg. 9b).  

 

7.4 Conclusion and further research 
The title of this chapter is “Do users ignore spatial data quality? – A decision 

theoretic perspective”. The word “ignore” is used in Openshaw (1989) and Agumya 
and Hunter (1999) where it seems to refer to the phenomenon that users use spatial data 
without quantifying risks due to SDQ prior to using these data. Strictly according to 
this definition, we observe that SDQ is frequently ignored. This chapter showed the 
inappropriateness of the use of the word “ignore”. The chapter shows that although 
risks are rarely quantified, this certainly does not mean that SDQ is in all these cases 
ignored. 

While lack of resources, awareness, skills, tools and poor documentation of SDQ 
certainly explain some of the reasons why risks due to SDQ are rarely quantified they 
do not provide the full explanation. Users of spatial data make decisions on the level of 
resources spent on quantifying risks due to SDQ before using a spatial data set in their 
decision-making process. These decisions are based on analysing features of the 
decision-making process. We found that respondents are less willing to spend resources 
on RA: 
• If feedback on SDQ is received from stakeholders at the start of a decision-making 

process. Respondents expect that stakeholders will detect and inform the decision-
makers about errors in the spatial data and so reduce risks to an acceptable level. 

We found that respondents are more willing to spend resources on RA: 
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• if the objective of the decision can be expressed numerically; 
• if feedback on SDQ is received from co-decision-makers in the decision-taking 

phase, because there is more concern about the reliability of co-decision-makers’ 
information; 

• if feedback on SDQ is received at the end of the decision-making process, that is if 
the decision-maker can be held accountable for risks due to SDQ; 

• if more is at stake. 
 

In cases where much is as at stake or where decision-makers need to rely on each 
others data, the desire for RA can override the fact that such decisions are at times 
difficult to model. This raises the question of how to incorporate factors that are 
difficult to model such as outcomes of negotiation processes, anticipation of long-term 
developments or the fact that at the start of the modelling process it is not yet clear for 
which decision the outcomes of the spatial analysis will be used. The answer to this 
question may be scenario-analysis, in which these factors are represented as a number 
of scenarios and propagation of spatial errors is modelled for each scenario.  

In the questionnaire respondents were asked whether certain feedback mechanisms 
reduced risks sufficiently. The results therefore refer to stakeholders’ perception of the 
effectiveness of these mechanisms. Further research should asses the actual 
effectiveness of these mechanisms and make a comparison with respondent’s 
perceptions. The first mechanism to be addressed is feedback from stakeholders in the 
data acquisition stage. The majority of the respondents were of the opinion that this 
mechanism sufficiently reduced risks. Confirmation of rejection of this perception 
should be of importance to policy-makers who rely on this feedback mechanism as an 
alternative to RA. 

We began with an image of users using spatial data in decisions making without 
prior consideration of risks due to spatial data quality. Users failed to quantify risks due 
to constraints such as lack of tools, theory and poor documentation of SDQ. What 
emerges from this chapter is an image of a user who assesses different aspects of his 
decision-making process and then decides whether or not quantification of risks due to 
SDQ is necessary. In view of the authors, this chapter presents only a start to learning 
more about why users fail to quantify risks due to SDQ prior to using spatial data. More 
empirical research into how users handle SDQ is needed. At least one of the topics that 
deserves further research is the confrontation between willingness to invest (outcomes 
of the questionnaire) and actual resource spending on RA. 
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8. Conclusions and recommendations 

Since the advance of GIS and automated data acquisition methods (such as 
satellites), concerns about possible implications of spatial data quality have risen. 
Based on Aronoff (1989), Morrison (1995) and Longley et al. (1999) the five main 
reasons for current concern about spatial data quality issues were identified as: 

 
1. There is an increasing availability, exchange and use of spatial data; 
2. There is a growing group of users less aware of spatial data quality; 
3. GIS enable the use of spatial data in all sorts of applications, regardless of the 

appropriateness with regard to data quality; 
4. Current GIS offer hardly any tools for handling spatial quality; 
5. There is an increasing distance between those who use the spatial data (the end 

users) and those who are best informed about the quality of the spatial data (the 
producers). 
 
To deal with these concerns, it is necessary to (1) formalise and standardise 

descriptions of spatial data quality and (2) to apply these descriptions in assessing the 
suitability (fitness for use) of spatial data, before using the data. The aim of this thesis 
was twofold: (1) to enhance the description of spatial data quality and (2) to improve 
our understanding of the implications of spatial data quality. To achieve these aims, six 
research questions were formulated. Conclusions on these questions are presented in 
section 8.1; section 8.2 lists recommendations for users, producers and researchers of 
spatial data. 

 

8.1 Research questions 

8.1.1 What is spatial data quality? 
A definition of quality was given in chapter 2: “the totality of characteristics of a 

product that bear on its ability to satisfy stated and implied needs”. Five sources of 
definitions of characteristics were compared, characteristics which are usually referred 
to as elements of spatial data quality. A comparison between these five sources showed 
that (1) for some elements the location within the meta-data report differs - not all 
elements are in the data quality section and (2) the explicitness with which elements are 
named as individual elements differs - elements are present but not explicitly named as 
individual elements. Apart from these differences, there appears to be little 
disagreement on which elements together define spatial data quality. Eleven elements 
were identified. Three of these elements (“variation in quality”, “meta-quality” and 
“resolution”) are often encountered not as individual elements but as sub-elements of 
other individual elements. One element (“semantic accuracy”) is likely to dissolve in 
other elements in which case it is no longer recognised as an individual element.  
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8.1.2 Does land cover classification accuracy depend on 
landscape heterogeneity? 

This question was answered positively in chapter 3. We quantified landscape 
heterogeneity using four landscape metrics and found classification accuracy to be 
positively correlated with these metrics. The study confirmed results of Smith et al. 
(2002, 2003) indicating that classification accuracy also depends on land cover class, 
focal heterogeneity and patch size.  

 

8.1.3 How can knowledge of classification errors be used to 
improve land cover change estimates? 

As an answer to this question, chapter 4 presented five methods, one based on 
expert knowledge and four based on the Bayes theorem and on theory on how 
classification errors propagate in the AND overlay (Veregin 1989). It was shown that 
error matrices can be used to improve land cover change estimates. It was also shown 
that the method based on error matrices performs poorly when classification errors at 
different dates are correlated. Correlation has a positive effect: it reduces the error in 
change estimates. For example if correlation is absent, the result of an AND overlay 
between data sets of with accuracies 0.8 and 0.7 will be 0.8·0.7 = 0.56. In case of 100% 
correlation the resulting accuracy will be min{0.8,0.7} = 0.7. Methods that ignore this 
correlation (e.g. Fuller et al. 2003) may come to overly pessimistic conclusions on the 
fitness of spatial data sets for monitoring purposes.  

The methods presented in chapter 4 all use input data derived from the change 
detection error matrix. In chapter 4, exact estimates of the true change could be 
obtained from the exhaustive change detection error matrix. The question then arises 
why one should choose to use the methods presented. The point is, often no change 
detection error matrix is available: most producers only provide error matrices for 
single dates. On other occasions, there is a change detection error matrix based on a 
small sample and an error matrix for one of the dates based on a large sample. In those 
cases, application of the methods presented in chapter 4 may be beneficial because they 
allow for the incorporation of information from error matrices. The situation of a small 
change detection error matrix and a large error matrix for one of the two dates is likely 
to occur in the analysis of historical land cover databases. In that case collection of 
reference data for change detection error matrices is difficult or even impossible, while 
error matrices will be readily available for the most recent dates of the time series.  

 

8.1.4 How do positional errors in vertex coordinates propagate 
into errors in area estimates for polygons sharing a 
boundary? 

Chapter 5 presented the derivation of both a variance and a covariance equation. 
The derivation of the covariance equation was new. In the chapter, the assumptions 
underlying the derivation are extensively discussed. It is shown how these equations 
can be put to use in the calculation of the uncertainty in the total subsidy value (in 
euros), for a spatial data set consisting of polygons sharing boundaries and with 
different subsidy values (euros per hectare) attached to each polygon. Further, it is 
shown that the model can be used to answer some interesting what-if questions. How 
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much would the variance in the total subsidy value change if the positional accuracy of 
all vertices were increased or decreased by amount X? How much would the variance 
in the total subsidy value change if the positional accuracy of a particular subset of 
vertices were increased or decreased by amount X? Which vertex contributes most to 
the uncertainty in the total subsidy value? 

 

8.1.5 How can implications of spatial data quality be calculated in 
the case of digging activities around underground cables 
and pipelines? 

To reduce the chance of hitting an underground cable or pipeline, contractors 
spend time on detection. They continuously make the trade-off between risk and 
detection costs. Chapter 6 presents a model with which risk and detection costs can be 
calculated as a function of detection time. With this model, an optimal detection time 
can be calculated. The amount of time spent on detection depends strongly on spatial 
data on the location of underground cables and pipelines. Poor quality data can result in 
the contractor either spending more or less time than optimal on detection, resulting in 
sub-optimal costs for the contractor. The extra costs are then the difference between the 
optimal and sub-optimal costs. In the chapter it is shown how these extra costs can be 
quantified. In a case-study, the chapter illustrates how the model can be parameterised 
and presents some calculations of costs of incompleteness. 

 

8.1.6 Which decision-theoretic factors determine the willingness 
of researchers and policy makers to spend resources on the 
quantification of implications of spatial data quality? 

This question was answered in chapter 7. From open interviews with GIS/spatial 
data users in public decision-making we noted that the users concerned were well 
aware of spatial data quality issues. In many cases, they considered quantification of 
implications of spatial data quality either unnecessary or impossible. They deliberately 
chose to ignore spatial data quality and often used decision-theoretical arguments to 
motivate their choice. Using a questionnaire we further analysed these arguments. We 
found that respondents are less willing to spend resources on the quantification of 
implications of spatial data quality: 
• If feedback on spatial data quality is received from stakeholders at the start of a 

decision-making process. Respondents expect that stakeholders will detect and 
inform them about errors in the spatial data and so reduce risks to an acceptable 
level; 
We found that respondents are more willing to spend resources on the 

quantification of implications of spatial data quality: 
• If the objective of the decision can be expressed numerically; 
• If feedback on spatial data quality is received from co-decision-makers in the 

decision-taking phase, because there is more concern about the reliability of co-
decision-makers’ information; 

• If feedback on spatial data quality is received at the end of the decision-making 
process, that is if the decision-maker can be held accountable for risks due to spatial 
data quality; 
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• If more is at stake. 
 

8.2 Recommendations 

8.2.1 Spatial data quality description 
With regard to spatial data quality description, I would recommend: 
 

1. To include in the element lineage also a detailed description of how reference data 
were collected; 

2. Most spatial analyses and most spatial decisions are based on multiple data sets. To 
model the propagation of errors in a spatial analysis on multiple data sets, one needs 
to know how errors are correlated (see also chapter 4). Producers however only 
document the quality of their own data set and not the correlation with other data 
sets. With the huge number of data sets nowadays available, measurement of 
correlation between all data sets may appear a formidable task. Taking a pragmatic 
approach it is recommended that users and producers together assess which data 
sets are often co-analysed and then measure correlation only between those data 
sets. To measure the correlation, producers must coordinate their reference data 
collection campaigns so that reference data are collected at more or less the same 
location and time. Producers of land cover databases for monitoring purposes are 
recommended to collect reference data at the same locations for each time slice and 
report the results in change detection error matrices; 

3. Fisher (1999, 2000) identified three forms of uncertainty: error, vagueness and 
ambiguity. Often, two or even three forms occur in the same data set, but most 
publications on spatial data quality are limited to one form. There is a need for 
models in which all three are quantitatively combined; 

4. Producers are recommended to implement a spatial data quality standard and a 
metadata standard. The promised virtues of these standards can only be realised if 
they are actually implemented. Producers are recommended to engage researchers 
to learn from the experiences in adoption. Once adopted, it will be easier to realise 
tools that support the user in handling spatial data quality. 
 

8.2.2 Spatial data quality application 
With regard to the application of spatial data quality descriptions in fitness-for-use 

assessment, I would recommend: 
1. On use of error matrices for monitoring purposes (chapter 4), two recommendations 

can be given: (1) test the effectiveness of the methods when they are calibrated 
from a sample reference data set rather than from an exhaustive reference data set 
and (2) proceed with research on error propagation analysis on categorical variables 
while taking into account both spatial and temporal correlation; 

2. On uncertainty in area estimates (chapter 5), three recommendations can be given: 
(1) include in the model effects of fuzziness and generalisation, (2) include in the 
covariance equation various forms of correlation (3) check the validity of model 
assumptions with field measurements; 

3. On cable and pipeline damage (chapter 6), the first recommendation is to collect 
more data so that the model can be used to support decision-making. The second 
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recommendation is to find a way of calculating optimum detection times for 
individual cables and pipelines, while taking into account that detection times will 
coincide if cables and pipelines are buried close together; 

4. On the willingness to spend resources on the quantification of implications of 
spatial data quality (chapter 7), note that we researched perceptions on factors that 
increased or decreased the need to quantify implications. The next step in research 
should be to check the validity of these perceptions. Secondly, we identified a lack 
of empirical research into how users cope with spatial data quality. More research is 
needed in that area; 

5. Although not systematically investigated, my experience over the past four years 
was that awareness of spatial data quality issues can especially be raised by 
quantification of implications as risks. I recommend continuing this line of 
research. 
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Abstract 
 
The growing availability of spatial data along with growing ease to use the spatial 

data (thanks to wide-scale adoption of GIS) have made it possible to use spatial data in 
applications inappropriate considering the quality of the data. As a result, concerns 
about spatial data quality have increased. To deal with these concerns, it is necessary to 
(1) formalise and standardise descriptions of spatial data quality and (2) to apply these 
descriptions in assessing the suitability (fitness for use) of spatial data, before using the 
data. The aim of this thesis was twofold: (1) to enhance the description of spatial data 
quality and (2) to improve our understanding of the implications of spatial data quality. 

Chapter 1 sets the scene with a discussion on uncertainty and an explanation of 
why concerns about spatial data quality exist. Knowledge gaps are identified and the 
chapter concludes with six research questions. 

Chapter 2 presents an overview of definitions of spatial data quality. Overall, I 
found a strong agreement on which elements together define spatial data quality. 
Definitions appear to differ in two aspects: (1) the location within the meta-data report: 
some elements occur not in the spatial data quality section but in another section of the 
meta-data report; and (2) the explicitness with which elements are recognised as 
individual elements. For example, the European pre-standard explicitly recognises the 
element ‘homogeneity’. Other standards recognise the importance of documenting the 
variation in quality, without naming it explicitly as an individual element. 

In chapter 3 we quantified the spatial variability in classification accuracy for the 
agricultural crops in the Dutch national land cover database (LGN). Classification 
accuracy was significantly correlated with: (1) the crop present according to LGN, (2) 
the homogeneity of the 8-cell neighbourhood around each cell, (3) the size of the patch 
in which a cell is located, and (4) the heterogeneity of the landscape in which a cell is 
located. 

In chapter 4 I present methods that use error matrices and change detection error 
matrices as input to make more accurate land cover change estimates. It was shown that 
temporal correlation in classification errors has a significant impact and must be taken 
into account. Producers of time series land cover data are recommended not only to 
report error matrices, but also change detection error matrices. 

Chapter 5 focuses on positional accuracy and area estimates. From the positional 
accuracy of vertices delineating polygons, the variance and covariance in area can be 
derived. Earlier studies derived equations for the variance, this chapter presents a 
covariance equation. The variance and covariance equation were implemented in a 
model and applied in a case-study. The case-study consisted of 97 polygons with a 
small subsidy value (in euros per hectare) assigned to each polygon. With the model we 
could calculate the uncertainty in the total subsidy value (in euros) of the complete set 
of polygons as a consequence of uncertainty in the position of vertices. 

Chapter 6 explores the relationship between completeness of spatial data and risk 
in digging activities around underground cables and pipelines. A model is presented for 
calculating the economic implications of over- and incompleteness. An important 
element of this model is the relationship between detection time and costs. The model 
can be used to calculate the optimal detection time, i.e. the time at which expected costs 
are at their minimum.  



 

 

Chapter 7 addresses the question why risk analysis (RA) is so rarely applied to 
assess the suitability of spatial data prior to using the data. In theory, the use of RA is 
beneficial because it allows the user to judge if the use of certain spatial data does not 
produce unacceptable risks. Frequently proposed hypotheses explaining the scarce 
adoption of RA are all technical and educational. In chapter 7 we propose a new group 
of hypotheses, based on decision theory. We found that the willingness to spend 
resources on RA depends (1) on the presence of feedback mechanisms in the decision-
making process, (2) on how much is at stake and (3) to a minor extent on how well the 
decision-making process can be modelled. 

Chapter 8 presents conclusions on the six research questions (chapters 2-7) and 
lists recommendations for users, producers and researchers of spatial data. With regard 
to the description, four recommendations are given. Firstly, spend more effort on 
documenting the lineage of reference data. Secondly, quantify and report correlation of 
quality between related data sets. Thirdly, investigate the integration of different forms 
of uncertainty (error, vagueness, ambiguity). Fourthly, study the implementation and 
use of spatial data quality standards. With regard to the application of spatial data 
quality descriptions, I have two main recommendations. Firstly, to continue the line of 
research followed in this thesis: quantification of implications of spatial data quality, 
through development of theory along with tangible illustrations in case-studies. 
Secondly, there is a need for more empirical research into how users cope with spatial 
data quality. 

  



 

 

Samenvatting 
 
Sinds de jaren 1960 is de hoeveelheid beschikbare geo-informatie sterk 

toegenomen; met Geografische Informatie Systemen (GIS) kan deze geo-informatie 
gebruikt worden in een veelheid aan toepassingen, ook in toepassingen waarvoor de 
kwaliteit van de informatie eigenlijk onvoldoende is. Om tegemoet te komen aan 
zorgen over kwaliteit van geo- informatie zijn nodig: (1) de beschrijving van kwaliteit 
van geo- informatie door middel van duidelijke en gestandaardiseerde definities en (2) 
de geschiktheid van de geo-informatie beoordelen voordat de geo-informatie wordt 
gebruikt in toepassingen. De doelen van dit proefschrift waren: (1) onderzoek naar de 
beschrijving van kwaliteit van geo-informatie (2) inzicht verkrijgen in de implicaties 
van kwaliteit van geo-informatie. 

Hoofdstuk 1 beschrijft verschillende vormen van onzekerheid en verklaart de 
toegenomen interesse in de kwaliteit van geo-informatie. Het schetst de leemtes in de 
huidige kennis en eindigt met zes onderzoeksvragen. 

Hoofdstuk 2 biedt een overzicht van diverse definities van het begrip kwaliteit van 
geo-informatie. Ik vond grote overeenstemming tussen de vergeleken definities. De 
definities bleken op twee onderdelen te verschillen. Ten eerste de locatie binnen de 
meta-data: niet alle elementen van kwaliteit worden noodzakelijkerwijs beschreven in 
de kwaliteit sectie van de meta-data. Ten tweede de mate waarin elementen met naam 
genoemd worden. Bijvoorbeeld het element “homogeniteit”, ofwel variatie in de 
kwaliteit, wordt in de Europese voornorm expliciet genoemd. In andere standaarden 
wordt het belang van dit element wel onderkend, maar het wordt niet expliciet als een 
element genoemd. 

Voor hoofdstuk 3 kwantificeerden wij voor de landbouwgewassen in het Landelijk 
Grondgebruiksbestand Nederland (LGN) de ruimtelijke variatie in classificatie 
nauwkeurigheid. De classificatie nauwkeurigheid bleek gecorreleerd met: (1) het 
volgens LGN aanwezige landbouwgewas, (2) de homogeniteit van de 8 grid cellen 
rondom iedere grid cel, (3) de grootte van het perceel waarin een grid cel ligt en (4) de 
heterogeniteit van het landschap waarin een grid cel ligt. 

In hoofdstuk 4 worden methoden gepresenteerd om, gebruik makend van fouten-
matrices, nauwkeurigere schattingen van veranderingen in landgebruik te maken. Het 
komt relatief vaak voor dat op twee tijdstippen dezelfde misclassificatie optreedt. Het is 
belangrijk om daar rekening mee te houden en hoofdstuk 4 presenteert ook de daarvoor 
geschikte methoden.  

Hoofdstuk 5 gaat over positionele nauwkeurigheid en oppervlakte schattingen. 
Vertices beschrijven de omtrek van polygonen. Met behulp van fouten-voortplanting 
kunnen vergelijkingen voor de variantie en covariantie van oppervlakte schattingen 
worden afgeleid, als functie van onzekerheid in de coördinaten van de vertices. Eerdere 
studies presenteerden variantie vergelijkingen, dit hoofdstuk presenteert voor het eerst 
ook een covariantie vergelijking. Beide vergelijkingen zijn ingevoerd in een model en 
toegepast in een case-studie. De case-studie bestond uit 97 polygonen met ieder een 
kleine subsidie (in euros per hectare). Met behulp van het model konden wij de 
onzekerheid in het totale subsidie bedrag (in euros) berekenen. 

Hoofdstuk 6 legt het verband tussen de volledigheid van geo-informatie en de 
graafschade risico’s bij graafwerkzaamheden nabij ondergrondse kabels en leidingen. 
In het hoofdstuk presenteren wij een model waarmee de financiële implicaties van 
over- en incompleetheid berekend kunnen worden. Belangrijk onderdeel van dit model 



 

 

is de relatie tussen detectie tijd en kosten. Met het model kan de optimale detectie tijd 
(de tijd waarbij de verwachte kosten het laagst zijn) berekend worden. 

Hoofdstuk 7 gaat in op de vraag waarom zo zelden fouten-voortplanting en risico-
analyse (RA) worden gebruikt vooraf aan het gebruik van geo-informatie. Theorie 
suggereert dat RA verstandig zou zijn omdat het de gebruiker in staat stelt om te 
beoordelen of gebruik van bepaalde geo-informatie leidt tot onaanvaardbare risicos. De 
meeste hypotheses voor het schaarse gebruik van RA zijn van technische aard of 
gerelateerd aan kennis van de gebruiker. In hoofdstuk 7 zijn hypotheses op het 
bestuurlijke vlak geformuleerd en getoetst. Daaruit bleek dat de bereidheid om geld en 
tijd te spenderen aan RA afhangt van (1) terugkoppelings mechanismen in het 
besluitvormingsproces; (2) hoeveel er op het spel staat en (3) in mindere mate van hoe 
goed de beslissing in een model te beschrijven is. 

Hoofdstuk 8 geeft antwoorden op de zes onderzoeksvragen (hoofdstukken 2-7) en 
doet aanbevelingen voor gebruikers, producenten en onderzoekers van geo-informatie. 
Ten aanzien van de beschrijving van kwaliteit worden vier aanbevelingen gedaan: (1) 
meer aandacht voor de beschrijving van hoe referentie data werden verkregen (2) 
onderzoek naar de correlatie tussen fouten in verschillende data sets, (3) onderzoek 
naar methoden om meerdere vormen van onzekerheid (error, vagueness, ambiguity) in 
een model op te nemen en (4) onderzoek naar de implementatie van standaarden. Ten 
aanzien van het gebruik van kwaliteits- beschrijvingen voor het bepalen van 
geschiktheid voor gebruik heb ik twee aanbevelingen. Ten eerste, doorgaan op de in dit 
proefschrift ingeslagen weg: het kwantificeren van implicaties van kwaliteit van geo-
informatie, door ontwikkeling van theorie en parallel daaraan aansprekende toepassing 
van de theorie in case-studies. Mijn tweede aanbeveling is om meer empirisch 
onderzoek te doen naar hoe gebruikers omgaan met kwaliteit van geo-informatie. 
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