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1. Introduction

1.1 Examples
I will start with two examples to illustrate what this thesis is about:

According to the cadastre’s records, the area of a parcel is 10.044 hectares. The
parcel is sold and the new owner measures the area by moving around the parcel with a
global positioning system (GPS) device, according to which the area is 9.890 ha, 0.154
ha less than according to the cadastre. At a price of 35,700 euro per hectare (data from
the Netherlands Central Bureau of Statistics, CBS), he claims from the vendor 5,498
euros. The vendor argues that the difference of 0.154 ha may well be caused by errors
in the GPS coordinates and rejects the claim. Using the equations presented in chapter 5
of this thesis, the buyer argues that a difference as large as 0.154 ha cannot be
explained from errors in GPS coordinates. The vendor then argues that the difference
could further be explained by misinterpretation of the parcel boundary definition, or
due to inherent fuzziness of the boundary. Did the buyer move along the inner edge or
the centre of the ditch that surrounds the parcel?

As a consequence of being a party to the United Nations Framework Convention
on Climate Change, a country has designed a national, spatially explicit, system for
monitoring land use, land use change and changes in the forestry sector. Through an
overlay of maps of two dates, changes are recorded. But are all recorded changes real
changes? Probably not. Probably part of the changes shown are actually
misclassifications at one or both dates. Probably part of the changes shown can also be
attributed to changes in definitions of land use classes. Then, knowing the frequencies
of misclassifications and knowing which changes in definitions have occurred, can
these uncertainties be quantified and eliminated?

What do these examples tell us? Firstly, that spatial data quality is an issue in many
decisions and analyses. This will be elaborated in section 1.2. Secondly, the examples
show the importance of definitions. Section 1.3 elaborates on the issue of definitions
and the topic is briefly touched upon in each of the chapters of the thesis. Thirdly, the
examples identify a need of information on spatial data quality. Section 1.4 explains
how descriptions of spatial data quality can be applied to quantify their implications for
applications. Fourthly, the examples show that spatial data quality is not an issue for
scientists only. Spatial data are used in decision-making and spatial data quality has
implications for decision-making. In chapters four to six these implications are
quantified based on spatial data quality descriptions, chapter seven is about how users
cope with spatial data quality.

1.2 Why spatial data quality is an issue

For centuries cartographers, geographers, surveyors and geodesists have been
involved in collection, storage, analysis and visualisation of spatial data. They have
also been studying spatial data quality (for example see Haasbroek 1968, Balchut et al.
1979, Maling 1989 and Polman and Salzmann 1996). Since the 1980s, concerns about
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spatial data quality have increased, as a result of a two developments: (1) the
emergence of Geographical Information Systems (GIS) in the 1960s and (2) from the
1970s onwards, a strong increase of available spatial data from satellites. With the
large-scale adoption of GIS, the number of users from non-spatial disciplines has
grown. Also with GIS, opportunities to use and combine data have grown
tremendously. It is now much easier to use spatial data in all sorts of applications, even
if inappropriate considering the quality of the data. Brimicombe (2003) wrote:
“Historically, a detailed consideration of data quality issues in GIS lagged considerably
behind the mainstream GIS development and application”. Based on Aronoff (1989),
Morrison (1995) and Longley et al. (1999) the five main reasons for current concerns
about spatial data quality issues were identified as:

1. There is an increasing availability, exchange and use of spatial data;
. There is a growing group of users less aware of spatial data quality;

3. GIS enable the use of spatial data in all sorts of applications, regardless of the
appropriateness with regard to data quality;

4. Current GIS offer hardly any tools for handling spatial quality;

5. There is an increasing distance between those who use the spatial data (the end
users) and those who are best informed about the quality of the spatial data (the
producers).

Early warnings on the potential implications of spatial data quality were given by
amongst others Chrisman (1984) who would later become chair of the group defining
the spatial data quality part of the United States of America spatial data transfer
standard (Chrisman 1987) and author of a chapter on spatial data quality (Chrisman
1991) in one of the most influential books on GIS. Brimicombe (2003) showed that the
annual number of articles on spatial data quality has strongly grown since 1987, with
less than five articles per year published before 1987. From the end of the 1990s
onwards, there is a boom of international conferences on the topic: Symposia on Spatial
Accuracy Assessment (1996, 1998, 2000, 2002, 2004) and Symposia on Spatial Data
Quality (1999, 2003, 2004, 2005). Articles presented at these symposia have been
published in Goodchild and Jeansoulin (1998), Lowell and Jaton (1999), Heuvelink and
Lemmens (2000), Mowrer and Congalton (2000), Foody and Atkinson (2002),
Heuvelink and Burrough (2002), Hunter and Lowell (2002) and Shi, Fisher and
Goodchild (2002). Before this boom of conferences few books were published on
spatial data quality, an exception being the book edited by Goodchild and Gopal
(1989). Nowadays, no book about GIS or Geographical Information Science (GISc)
goes without a chapter on spatial data quality. With the adoption of GIS in other
disciplines, the attention for spatial data quality and its propagation in models has also
grown, for example in ecology (Hunsaker et al. 2001) and in environmental modelling
(Heuvelink 1998, Brimicombe 2003). Apart from these developments in the field of
GIS, a branch of statistics called geostatistics emerged (Matheron 1971, Deutsch and
Journel 1998, Goovaerts 1997, Isaaks and Srivastava 1990, Cressie 1991). The field is
of great importance in spatial data quality research, because almost always variables are
spatially correlated. Often, they are also correlated temporally. Geostatistics offers the
theory to model both the implications of temporal and spatial correlation (see Pebesma
et al. 2005 and Bogaert et al. 2005 and many, many more). GIS and geostatistics have
different historical roots; the two became seriously engaged in the 1990s (Goodchild
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2002) and they are now generally recognised as essential partners (Burrough 2001),
increasingly also by GIS software producers.

1.3 From the real world to a spatial data set

An important part of spatial data quality research concerns the description of error
and uncertainty in spatial data. Fundamental to the understanding of these concepts is
an understanding of the process of how spatial data are derived from the real world.
Aalders (2002) partitioned this process into two steps:

e Conceptualisation = the specification of what should be considered the real world
and the abstraction of the selected objects;

e Measurement' = the specification of the measuring methods and the measurement
requirements for capturing the data.

I will not discuss alternative terms, nor go into more detailed descriptions of these
two steps and their sub-steps. The interested reader may consult Laurini and Thompson
(1992), Burrough and Frank (1996), Burrough and McDonnell (1998), Molenaar
(1998), Fisher (1999), Raper (1999), Frank (2001), Uitermark (2001), Kresse and
Fadaie (2004) and Leyk (2005). Information on conceptualisation rules and
measurement rules can be found under the heading of the terms lineage and ontology.
Lineage is generally more focussed on measurement (including transformations after
data acquisition), while ontologies are generally more focussed on conceptualisation. In
this section, I will use the term ontology to refer to a set of conceptualisation and
measurement rules. In other words ontology is here defined as the definition of the
objects in a spatial data set.

Fisher (1999) distinguished three forms of uncertainty that arise during in the
process of deriving a spatial data set from the real world: error, vagueness and
ambiguity:

e Error is the difference between the value of a property of an object measured with
unknown error (in the test data set) and the true value of the same property of the
same object measured without error (in the reference data set). Error can be
measured if a clear definition (ontology) is available;

e Vagueness arises due to poor definitions. Vagueness can be caused by poor
documentation, or more fundamentally, if objects are fuzzy;

e Ambiguity arises due to disagreement on the definition of objects in a spatial data
set. Such disagreement can arise because the definition was not specific, and it can
arise due to fundamental differences in opinion.

According to Fisher (2000) many books on spatial data quality are limited to the
treatment of error, thereby ignoring the two other forms of uncertainty. The same
observation can be made from the overview of spatial data quality definitions in chapter
2 of this thesis. Clearly, the measurement of error requires agreement on a clear
definition of what is perceived to be reality. This requirement cannot always be met,
causing problems in the measurement and interpretation of error. Measurement of error
is further complicated by the fact that no instrument exists with which error-free
measurements can be made. Three solutions have been proposed. In recognition of the

' Aalders (2002) called it ‘mensuration’
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fact that these solutions do not completely solve the problem the data in a reference

data set are often referred to as ‘accepted as true’ rather than ‘true’ values. The

solutions that have been proposed are:

e The solution to the interference of vagueness is to agree on a set of well defined
rules and to apply these to both the test and the reference data. After doing this,
error can be measured free from interference of vagueness and will be relevant to
those who share the same ontology. This solution cannot always be applied. Firstly,
the test data may already be collected according to poorly defined rules. Secondly,
some concepts are inherently vague and it may be more rewarding to formalise their
vagueness using fuzzy set theory than to try to eliminate it (Burrough and Frank
1996, Burrough et al. 1997, Fisher 1999, 2000);

e In case of ambiguity, there is disagreement on what constitutes the truth. Ambiguity
is caused by the difference between the data set ontology (used in the collection of
the test data) and the user ontology (of a certain user with a specific application of
the test data). To satisfy the needs of users, producers may decide to collect
reference data according to the user’s ontology. For example Boschetti et al. (2004)
dealt with the case where the data set ontology contained a rule stating that only one
hard class is assigned to a pixel, while the user’s ontology contained a rule stating
that one or more hard classes may be assigned to a pixel. With error defined as the
difference between test and true values, and disagreement on what constitutes the
truth, one may question the appropriateness of the term “error” when reference data
have a different ontology;

e The generally accepted solution to the problem that no instrument exists with which
error-free measurements can be made is to collect reference data with instruments
that a have a far greater accuracy than the instruments used in the collection of test
data.

Consider the case where a test data set has been collected using a clear definition
of what is perceived to be reality. Even then, vagueness can hamper the measurement
of error. Ideally to eliminate vagueness, the same definitions are applied to both test
and reference data. In practice, the definitions will often be slightly different. The
highest consistency is obtained when reference data are collected through field
measurements and when these measurements occur at the same time as the
measurement of the test data. An often chosen alternative is to select a candidate
reference data set with an ontology that does not differ too much from the test data set’s
ontology. This candidate reference data is then transformed to minimise the ontological
difference between test and reference data. Sometimes this alternative is chosen
because it is cheaper or faster, on other occasions it may be the only option. It is the
only option when collection of reference data starts at a point in time where the real
world phenomena represented in the test data have changed since the test data set’s
acquisition date. For example, there is increasing attention for digitisation of historical
data (Petit and Lambin 2002, Kramer and Knol 2004, Leyk 2005) also in the context of
climate change (Vitousek 1994, Houghton et al. 1999). As a result of this practice, test
and reference data definitions will be similar but not exactly the same. This will result
in vagueness and will interfere with measurement and interpretation of error
descriptions.
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In conclusion, the reader should realise after reading this section that measurement
of error is not at all that simple and straightforward as one might expect. To interpret
correctly the errors reported in spatial data quality reports, it is important to be aware of
the possible interference of vagueness and ambiguity, which may be caused both by
test and reference data. It is of importance to be informed about how both test and
reference data were collected. This information should be provided under the heading
of the spatial data quality element called lineage (see next chapter). Finally, is
important to choose appropriate models for describing the uncertainty and its
propagation, appropriate considering the different forms of uncertainty discussed in this
section.

1.4 Fitness for use assessment

Sections 1.1 and 1.2 showed why concerns about spatial data quality exist. Section
1.3 briefly explained the uncertainties that arise during the process of deriving spatial
data from the real world. There is an increasing call for formal methods to describe
these uncertainties and to apply these descriptions in fitness-for-use assessment. It is
generally accepted that spatial data quality descriptions serve to allow the user to
evaluate the fitness of the data for his particular application (Moellering 1988,
Morrison 1995).

The process of assessing fitness-for-use can be partitioned into three steps:
1. To search for a spatial data set that contains the information needed for the intended
application (Brassel et al. 1995 called this the assessment of model completeness);
2. To explore whether there are legal or financial constraints to access or particular
use of the spatial data (Aronoff 1989 called this the usage component);
3. Finding out if, given the spatial data quality, risks are acceptable (see Agumya and
Hunter 2002).

All necessary information for going through these 3 steps is found in the meta-data
report (FGDC 1998a, ISO 2003b), but not necessarily in the spatial data quality section
of the meta-data report. The first two steps are extensively addressed in research on
meta-data, spatial data infrastructures and interoperability. This thesis deals exclusively
with the third step. Different approaches exist to finding out if risks are acceptable,
given the spatial data quality. Extensive discussions are found in Agumya and Hunter
(1999a, 1999b, 2002), Openshaw (1989) and chapter 7 of this thesis. They are often
based on theoretical considerations from risk analysis (e.g. Fischhoff et al. 1981,
Morgan et al. 1990, Jaeger et al. 2001). The most rigorous approach, advocated by
Agumya and Hunter, is to apply error propagation analysis to quantify how errors in
input data sets propagate into the outcomes of the analysis or decision-making process.
The approach is gaining popularity in research (e.g. see Stein et al. 1995, Broos et al.
1999, Li et al. 2000, Crosetto and Tarantola 2001, de Bruin et al. 2001, de Bruin and
Hunter 2003, chapters four to six of this thesis). The approach is often called risk
analysis, although in many cases quantitative risk analysis would be a more appropriate
term. More qualitative forms of risk analysis make an inventory of which events may
occur and their consequences, without quantification of the probabilities and
consequences of events.
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Fischhof et al. (1981) provided a typology and discussion on different approaches
to assessing risks and their acceptability. Within research on risks caused by limited
spatial data quality, frequently approaches other than quantitative risk analysis are
adopted to assess the fitness for use of spatial data. Agumya and Hunter (1999a),
Openshaw (1989) and Longley et al. (1999) suggest that often the third step of the
fitness-for-use assessment is omitted. For step 3, approaches less rigorous than
quantitative risk-analysis are often applied. These less rigorous alternatives include:
Use a spatial data set if acceptable results were obtained with it in the past;

Rely on feedback mechanisms that are expected to reduce the risk;

Consult experts;

Consult information on usage and purpose;

Apply trial and error as a means of finding out the amount and acceptability of risk;
Insurance and other forms of risk absorption.

These approaches have in common that in the short run they are faster and cheaper
than quantitative risk analysis. They are less rigorous because risks are not quantified.
As a result, it is possible that unknowingly, the spatial data input to a decision or
analysis produce larger risks than acceptable.

1.5 Knowledge gaps and scope

This thesis is about the description of spatial data quality and the application of
these descriptions in fitness-for-use assessment. The previous sections showed that
already a large body of literature exists. The following two subsections identify
knowledge gaps and scope with regard to the description and application of spatial data
quality as dealt with in this thesis.

1.5.1 Description of spatial data quality

From an early stage, researchers like Chrisman and Aalders have been involved in
committees that developed standards for the description of spatial data quality. Spatial
data quality standards were accepted in the USA in 1992 and by the International
Standardisation Organisation ISO in 2002; final meta-data standards were accepted in
the USA in 1998 and by ISO in 2003. With these standards accepted and used by the
GI user community (Crompvoets et al. 2004), there seems not much left of the
knowledge gap with regard to the definition of spatial data quality. However, research
on the definition of spatial data quality is not yet complete. Three knowledge gaps can
be identified:

e After the acceptance of standards comes the need to adopt and implement them.
Research into the problems that occur and the questions that arise when
implementing the standards is outside the scope of this thesis;

e Spatial data quality is defined by its elements. In literature somewhere between five
and eleven elements are distinguished (Aalders 2002, Devillers et al. 2005).

Chapter 2 presents an overview. Based on the overview and the chapters thereafter,
recommendations are given in chapter 8, section 8.2;

e There is increasing attention for modelling the spatial variability in spatial data
quality, especially the spatial variability in the accuracy of attributes with a nominal
measurement scale (Bierkens and Burrough 1993, Steele et al. 1998, McGwire and
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Fisher 2001, Bogaert 2002, Smith et al. 2003, de Bruin et al. 2004, Foody 2005).
Chapter 3 contributes to the research on this topic.

1.5.2 Application of spatial data quality

According to Longley et al. (1999), “Despite what appear obvious arguments in
favour of explicit treatment of data quality in GIS, and despite substantial research into
appropriate methods, much GIS practice continues to proceed as if data were perfect”.
As argued by Veregin (1999) and Fisher (1997) in a review of Guptill and Morrison
(1995), much research has focussed on defining and reporting spatial data quality,
while fitness-for-use assessment has received relatively little attention. Error
propagation analysis is the most scientific way to assess fitness for use. Pleas for
incorporating error propagation analysis tools in GIS appeared in the 1990s (Burrough
1992) and have since then only gained in strength (Burrough 2001). Many tools have
been developed within the GISc research community (Heuvelink 1993, Forier and
Canters 1996, van der Wel 2000, Crosetto and Tarantola 2001 and Duckham 2002).
However, such tools have to date still only very scarcely been implemented in
commercial GIS software. Despite the availability of tools, methods and knowledge in
the GISc community, researchers like Openshaw (1989), Agumya and Hunter (1999a)
and Longley et al. (1999) noted that these are scarcely utilised by users outside the
GISc community. One way to increase their use could be, as advocated by Agumya and
Hunter (1999a, 1999b, 2002), to make the results of error propagation analysis more
tangible by continuing the analysis not to the stage of the end product of a spatial
analysis, but further to the stage of expressing the consequences of errors in spatial data
in terms of risks. The number of publications following this approach is growing (a.o.
Stein et al. 1995, Broos et al. 1999, Li et al. 2000, Crosetto and Tarantola 2001, de
Bruin et al. 2001, de Bruin and Hunter 2003, chapters four to six of this thesis).
Another way to increase the use of tools, methods and knowledge about error
propagation analysis would be to increase the usability of the tools. However, to my
knowledge no scientific publications exist in which the use of these tools (or the lack of
it) has been properly evaluated. With regard to the knowledge gap in the application of
spatial data quality descriptions, the contributions of this thesis are:

e Chapter 4 shows how knowledge on classification errors can be used to improve
estimates of land cover change. It also shows that classification errors between
different dates are often correlated and that this correlation needs to be taken into
account when improving change estimates;

e Chapter 5 presents theory and an illustration of the calculation of the financial
uncertainty in the value of a set of polygons, where uncertainty exists on the true
position of the polygon boundaries;

e Chapter 6 discusses the elements of spatial data quality that are relevant in digging
activities around underground cables and pipelines, and proposes a model to
quantify the implications of over- and incompleteness. As in chapters 4 and 5, the
theory is illustrated in a case-study;

e Chapter 7 is a study of why users of spatial data are in many cases less willing to
spend resources on the quantification of implications of spatial data quality.
Contrary to existing publications on the same topic, this chapter focuses on the
decision-theoretic considerations of users.
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1.6 Aim, research questions and outline

This chapter started with two examples of spatial analysis and decision-making in
which spatial data quality is an issue. GIS practitioners are continuously confronted
with such questions. In the Netherlands, a number of important practitioners recognised
the need for research in addressing issues of spatial data quality. The work presented in
this thesis was inspired and funded by their organisations. The aims and research
questions below were formulated on the basis of literature (in which knowledge gaps
were identified) and on the basis of feedback from funding organisations. Feedback
was received from representatives during joint biannual progress meetings, and in
between during bilateral meetings. The names of the organisations and their
representatives are listed in the acknowledgements.

The aim of this thesis is twofold: (1) to enhance the description of spatial data
quality and (2) to improve our understanding of the implications of spatial data quality.
Six research questions were formulated, which are answered consecutively in chapters
2 to 7. The questions and chapters follow the order already indicated in the thesis title:
their contents move from description to application. Chapters 2 and 3 contribute mostly
to the first aim (description), chapters 4 to 7 mostly to the second (application). Chapter
8 presents conclusions and recommendations for further research. The six research
questions are:

1. What is spatial data quality? (chapter 2);
Does land cover classification accuracy depend on landscape heterogeneity?
(chapter 3);

3. How can knowledge of classification errors be used to improve land cover change
estimates? (chapter 4);

4. How do positional errors in vertex coordinates propagate into errors in area
estimates for polygons sharing a boundary? (chapter 5);

5. How can implications of spatial data quality be calculated in the case of digging
activities around underground cables and pipelines? (chapter 6);

6. Which decision-theoretic factors determine the willingness of researchers and
policy makers to spend resources on the quantification of implications of spatial
data quality (chapter 7);

In each chapter, new theory is presented and then applied in case-studies. In the
case-studies I analysed the national land cover database LGN, the national topographic
database ToplOvector, data from Veregin (1989), data on subsidies for management of
natural areas of the Forest Service of the Netherlands and data from interviews and
questionnaires.
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This chapter gives an overview of definitions of spatial data quality. First, some
basic terms related to spatial data quality are discussed. Next, contents of five
definitions are compared and discussed. The chapter concludes with a summary. For
convenience terms in this chapter are printed in bold when first introduced, to enable
the reader to quickly look up these terms.

21 Some basic terms related to spatial data quality

Previous chapter (§1.3) showed that the measurement of error requires agreement
on a clear definition of what is perceived as reality. Presence of vagueness and/or
ambiguity can complicate the measurement of error and hence its interpretation. Error
was defined as the difference between the value of a property of an object measured
with unknown error and the true value of the same property of the same object
measured without error. Below, terms related to error are discussed.

The total error consists of systematic error and random error, the systematic
error is often called bias. Random error is the distance between a measurement and the
mean of measurements, total error is the distance between a measurement and the true
value and bias is the distance between the mean of measurements and the true value.
Accuracy and precision are summary measures of error. Accuracy is calculated from
total errors, precision from random errors. If the systematic error (bias) equals zero,
then precision equals accuracy. For this reason, the two are often used interchangeably.
This can be confusing and misleading and the best thing to avoid confusion is to report
explicitly the bias, even if it equals zero. The most common way to summarise errors is
with the Mean Square Error (MSE) or the Root Mean Square Error (RMSE). Other
summary measures are for example the Mean Error (ME), Mean Absolute Error (MAE)
and Maximum Error (ME). The error matrix, used in reporting classification accuracy,
measures the frequency and type of correct and misclassifications. Summary measures
of the error matrix are the users’, producers’ and overall accuracy. The set of data of
which the accuracy or precision is to be calculated is called the test data set, and the
set of data containing the true values is called the reference data set. These two terms
will be applied throughout the thesis.

Two types of precision can be distinguished: statistical precision and storage
precision. The two terms have also been called geographical precision and digital
precision (Vauglin 2002). Statistical precision is a summary measure of random errors,
corresponding with the definition of precision given above. Storage precision refers to
the detail (number of digits) with which data are stored in a database. Statistical
precision is affected by storage precision, by the precision of the measurements and by
all transformations applied thereafter (Burrough and McDonnell 1998). A high storage
precision does not guarantee a high statistical precision and a high statistical precision
does not guarantee a high accuracy. In this thesis, the term precision refers always to
statistical precision. If storage precision is meant then this is explicitly reported so.

The terms resolution and precision are often used interchangeably (e.g. Worboys
1998, Veregin 1999), because both refer to the level of detail. There is a subtle
difference between the two. Resolution is the detail at which data are presented;
precision is the amount of detail that can be discerned. It is not justified to present data
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at a resolution higher than determined by the precision. However, there may be sound
reasons to present data at a courser resolution than justified by their precision (Veregin
1999). Resolution is not limited to the spatial domain (pixel size, smallest polygon,
smallest distance between vertices); it can also be given for the thematic and temporal
domain (Veregin 1999). Related to the term resolution is the term scale. Historically,
large scale is associated with high resolution and high precision (Maling 1989, Aronoff
1989). In a digital era, this implicit relationship no longer holds (Aronoff 1989). In a
GIS it is quite easy to increase the resolution of a data set, thereby suggesting a high
precision and large scale. Similarly it is quite easy to increase the digital precision,
thereby suggesting a high statistical precision. With GIS, data can be visualised at any
scale desired. Consequentially, the use of the terms scale and resolution without further
explanation may cause confusion.

2.2 Elements of spatial data quality

Quality is defined as “totality of characteristics of a product that bear on its ability
to satisfy stated and implied needs” (ISO 2002, originally in ISO standard 8402).
Without a more detailed definition of these characteristics, the definition remains
meaningless. The characteristics are traditionally called elements, so we speak of
elements of spatial data quality. Definitions of elements of spatial data quality were
derived from the following five sources, in historical order of appearance (see also
Aalders 2002 and Devillers et al. 2005):

e Aronoff (1989) presented an interpretation of the draft USA-SDTS (Chrisman
1987, Moellering 1988) from a management perspective;

e USA-SDTS (1992). The United States of America spatial data transfer standard
contains a section on spatial data quality elements. The spatial data transfer
standard was accepted in 1992 (Department of Commerce 1992) and was later
incorporated in the USA metadata standard (FGDC 1998a,b);

e ICA (1995). On behalf of the International Cartographic Association, Guptill and
Morrison (1995) published the book entitled “Elements of Spatial Quality”. The
book contains contributions by a range of authors;

e CEN/TC287 (1998). Technical committee 287 of the Comité Européen de
Normalisation (CEN) developed the European pre-standard ENV 12656. During the
process, ISO started standardisation and CEN/TC287 dissolved into ISO/TC211
(Kresse and Fadaie 2004: page 6). This meant that development of ENV 12656
stopped and that after acceptance of standards as international standards by
ISO/TC211, CEN/TC287 started considering approval of these standards as
European standards. The CEN/TC287 standard referred to in this thesis is the
European pre-standard, CEN/TC287 (1998);

e ISO/TC211 (2002). Technical committee 211 of the International Standardisation
Organisation (ISO) has developed a number of international standards for
geographic information: 19113 (Quality principles), 19114 (Quality evaluation
procedures). These elements are described as part of the 19115 (Metadata). The
standard 19138, which is still under development at the time of writing this thesis,
will define a set of measures for the spatial data quality elements identified in ISO
19113. See ISO (2002, 2003a,b) and Kresse and Fadaie (2004).
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The elements distinguished in these five sources are listed in table 1. Table 1
shows that all elements are part of the metadata, yet not all elements are part of the
spatial data quality section of the metadata. For this reason, some researchers (Devillers
et al. 2005) have criticised spatial data quality standards for providing the user with
insufficient information to allow for assessing fitness for use. Also, the explicitness
with which elements are recognised in the sources differs. For example, the term
resolution is used repeatedly in the “Entity and Attribute Information” section in the
USA metadata standard (FGDC 1998a), but is not explicitly distinguished in the spatial
data quality section. However, in its data quality section, it states in its description of
the element completeness: “geometric thresholds such as minimum area or minimum
width must be reported”. This could well be interpreted as resolution. The elements in
table 1 are discussed in this section in the order in which they are numbered in the
table. For details and exact contents the reader is referred to the references cited above.

Table 1. Elements of spatial data quality in five sources

Aronoff USA- ICA CEN ISO
element*® (1989) SDTS (1995) TC287 TC211
(1992) (1998) (2002)
1. Lineage S S S S S
2. Positional accuracy S S S S S
3. Attribute accuracy S S S I S
4. Logical consistency S S S S S
5. Completeness S S S S S
6. Semantic accuracy S S
7. Usage, purpose, S M S M
constraints
8. Temporal quality S M S S S
9. Variation in quality I I S I
10. Meta-quality I I S I
11. Resolution S I I I M

* the names of the elements are my choice. The five sources in some cases use different
names for the same elements, for example thematic instead of attribute accuracy,
for example temporal information, temporal accuracy or time instead of temporal
quality

S = explicitly recognised as an element, in the spatial data quality section of the
metadata. In the USA-SDTS, the CEN/TC287 and the ISO/TC211, the spatial data
quality section is part of the larger metadata report. In Aronoff and ICA the
distinction between different sections of the metadata report is not made.

M = explicitly recognised as an element, in another section of the metadata

I = implicitly recognised as an element.

1. Lineage

Lineage is in short the history of a geographic data set. A description of the source
material from which the data were derived, and the methods of derivation, including all
transformations involved in the production process.
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2. Positional accuracy

Positional accuracy is the accuracy of coordinate values. A distinction is often
made between relative and absolute positional accuracy and between vertical and
horizontal positional accuracy. Vertical positional accuracy however has also been
treated as attribute accuracy (attribute depth or height), for example see the contribution
by Goodchild in ICA (1995). Relative positional accuracy is the accuracy relative to
other data in the same test data set. Absolute positional accuracy is the accuracy of test
coordinate values relative to matching reference coordinate values on the same
coordinate reference system. As Chrisman (1991) indicates, relative positional accuracy
is sufficient for calculating via error propagation analysis the variance in area and
variance in length of lines. More generally speaking, it is sufficient for error
propagation analysis on a single spatial data set. If data sets are to be combined then
absolute positional accuracy needs to be known.

3. Attribute accuracy

Attribute accuracy is the accuracy of all attributes other than the positional and
temporal attributes of a spatial data set. Attributes can be measured on four
measurement scales: ratio, interval, ordinal and nominal. The nominal scale is an
unordered scale, for example land cover. The accuracy of nominal attributes is
normally described in an error matrix, also called misclassification matrix or confusion
matrix. The accuracy of ratio attributes is described with the same measures as those
used for positional attributes, for example root mean square error (RMSE). In the
CEN/TC287 (1998, p. 22), the name semantic accuracy was used for what was in fact
attribute accuracy. It is for this reason that table 1 states that attribute accuracy is only
implicitly recognised in the CEN/TC287 data quality standard.

4. Logical consistency

Logical consistency is defined in the USA-SDTS as: “the fidelity of relationships
encoded in the data structure”. Similar definitions are found in the other references in
table 1. Kainz in Guptill and Morrison (1995) elaborates with great rigour the definition
of topological consistency, with much less emphasis on other aspects of logical
consistency:
e valid values, graphic data, topological, date (USA-SDTYS);
e geometric-, semantic- and topological consistency (CEN/TC287);
e conceptual-, domain-, format- and topological consistency (ISO/TC211).

5. Completeness

Completeness is a measure of the absence of data and the presence of excess data.
Errors resulting in overcompleteness are called errors of commission, errors resulting in
incompleteness are called errors of omission. Crucial to the detection of these errors is
to know what does and what does not belong to the complete set that the producer
intended to include in his data set. For this reason, the USA-SDTS states: “The quality
report must include information about selection criteria, definitions used and other
relevant mapping rules. For example geometric thresholds such as minimum area or
minimum width must be reported ... The report on completeness shall describe the
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relationship between the object represented and the abstract universe' of all such
objects. In particular, the report shall describe the exhaustiveness of a set of features.
Exhaustiveness concerns spatial and taxonomic (attribute) properties, both of which can
be tested”

I will give an example to illustrate. An abstract universe states that a data set
contains hospitals and defines a hospital as a building in which one or more doctors are
employed and where the average annual number of patients is at least 100. A building
with an annual average of 90 patients does not belong to this abstract universe. If this
building is present in the data set then that is an error of commission (resulting in
overcompleteness). A building with average 110 patients and with doctors employed
does belong to the abstract universe. If this building is not present in the data set then
the data set is incomplete due to an error of omission.

The definition of completeness by Brassel et al. (1995) from ICA is broader than in
the three standards. Brassel et al. distinguish two kinds of completeness: data
completeness and model completeness. Data completeness corresponds with the
definition given in the standards. Model completeness is a measure of how well the
contents of a spatial data set correspond with the information needed for the intended
application. In this thesis in section 1.4, assessment of model completeness was
identified as the first step of fitness-for-use assessment. A producer cannot provide
information on model completeness, because that would require knowledge of the exact
information needs of all possible applications. The best a producer can do is provide
detailed descriptions of the information content of his product. Often under the heading
of “usage, purpose, constraints”, the producer documents applications for which other
users considered the information content of the spatial data set (model-) complete.

6. Semantic accuracy

As can be seen in table 1, the element semantic accuracy occurred only in the ICA
publication and in the European pre-standard (the CEN/TC287). Now that the
development of the ISO standards is completed, CEN will adopt the ISO standard so
that the element will most likely disappear altogether. An elaborate discussion on the
element semantic accuracy is found in the ICA publication, by Frangois Salgé. In his
broad definition of the element Salgé stresses the interconnectedness of all data quality
elements and he stresses the importance of describing sources of uncertainty other than
error (see also §1.3 of this thesis).

7. Usage, purpose, constraints

In section 1.4 I identified 3 steps of fitness-for-use assessment. The element
“Usage, purpose, constraints” assists the potential user of a data set in steps 1 and 2 of
the assessment. Aronoff (1989) explicitly recognised the importance of this element
and provides more details on its contents. ISO/TC211 makes a distinction between
usage, purpose and constraints. Its rationale for doing so is that intended use (purpose)
is not necessarily the same as actual use (usage). A difference between on the one hand
the constraints in Aronoff (1989) and on the other hand the constraints in the USA-
SDTS, the CEN/TC287 and the ISO/TC211 is that Aronoff also considers the costs a

1 the definition of Abstract Universe in the USA-SDTS corresponds closely with the definition of
ontology given in §1.3 and with the definition of the nominal ground. See also Aalders (2002)
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constraint. The direct cost is the price paid for a data set. As indirect costs, Aronoff
considers all the time and material used to make the data ready for use for the buyer.
The constraints in the USA-SDTS, the CEN/TC287 and the ISO/TC211 represent only
legal or contractual constraints to the access and application of data, while direct costs
are listed in yet another section of the metadata report.

8. Temporal quality

CEN/TC287 and ISO/TC211 contain an element called temporal accuracy, in ICA
it is called temporal information, Aronoff calls it time and the USA-SDTS (Department
of Commerce 1992) contains no such element. I prefer the use of the term temporal
quality rather than the term temporal accuracy, because not all sub-elements listed
below summarise error (see the definition of accuracy in §2.1). The following sub-
elements have been distinguished in CEN/TC287 and in ISO/TC211:

e accuracy of time measurements = summary of errors in time measurements (CEN
and ISO);

e temporal validity = the validity in respect of time (CEN and ISO), also sometimes
called currency. According to CEN the temporal validity can take on one of the
following three values: “out_of date”, “valid” or “not_yet valid”;

e temporal consistency = correctness of the order of events (ISO);

e last update (CEN);

e rate of change = an estimate of the rate of change in the phenomenon represented in
the data. Together with information on the last update this element can inform the
user about the currency (CEN);

e temporal lapse = the average time between change on the nominal ground and its
representation in data (CEN).

9. Variation in quality

CEN/TC287 defined the element homogeneity as “a textual and qualitative
description of the expected or tested uniformity of quality parameters in a geographic
data set”. In this thesis the element is named variation in quality since the element is
only relevant if quality varies within the data set. According to table 1, only the
CEN/TC287 distinguishes this element as a separate element. Closer reading of the
USA-SDTS, ISO/TC211 and ICA learns that these treat variability as a part of the other
elements (for that reason they are shown as I’s in table 1). The USA-SDTS states:
“Where the spatial variation in quality is known, a quality report must record that
variation” and repeats this statement under the elements positional accuracy and
attribute accuracy. ISO (2002: 8) incorporates the description of variability using the
term data quality scope: “At least one data quality scope shall be identified for each
applicable data quality sub-element. A data quality scope may be a data set series to
which a data set belongs, the data set or a smaller grouping of data located physically
within the data set sharing common characteristics. If a data quality scope cannot be
identified, the data quality scope shall be the data set”. Annexes in ISO (2002) further
show how this variation in quality can be reported: by reporting the data quality scope
to which the data quality measure is applicable.

10. Meta-quality
This element provides information on the quality of the quality description. For
example if the positional accuracy is estimated from a smaller sample size, then that
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estimate is of lower quality. The three standards USA-SDTS, CEN/TC287 and
ISO/TC211 treat meta-quality as a part of the other elements and require it to be
documented if possible. As is in element 9, table 1 shows that the element meta-quality
is explicitly recognised in CEN/TC287. The USA-SDTS does not use the term meta-
quality, but does describe different tests to assess accuracy and ranks these according to
what we may here call meta-quality. It states: “informed assessment of fitness for use is
best served by the most rigorous types of tests”.

11. Resolution

Being aware of the confusion that can arise about the interpretation of the terms
resolution and scale (§2.1), it is also recognised that they can be relevant to the user of
a spatial data set (Veregin 1999). Often a decision or analysis requires data at a certain
resolution and as such, information on the resolution is important in the first step of
fitness-for-use assessment (§1.1.4). As for “variation in quality” and “meta-quality”,
the element “resolution” is mostly encountered as a sub-element of other spatial data
quality elements or other metadata elements.

2.3 Summary

The most important motivation for describing spatial data quality is to provide the
potential user of a data set with the necessary information to decide on the fitness for
use of a data set for his particular application (§1.4). This chapter presented an
overview of definitions of spatial data quality. Five sources of definitions were
compared. As can be seen in table 1, there is strong agreement on the contents of the
definitions. The treatment of elements of spatial data quality in the five sources differs
in two aspects: (1) the location within the meta-data report and (2) the explicitness with
which elements are named as individual elements. Leaving these differences aside there
appears to be little disagreement on which elements together define spatial data quality.
Of the eleven elements listed above, the last three (“variation in quality”, “meta-
quality” and “resolution”) are often encountered not as individual elements but as sub-
elements of other individual elements. The element “semantic accuracy” is likely to
dissolve in other elements in which case it is no longer recognised as an individual
element.
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Abstract

Variability in per cell classification accuracy is predominantly modelled with land
cover class as the explanatory variable, i.e. with users’ accuracies from the error matrix.
We developed logistic regression models to include other explanatory variables:
heterogeneity in the 3x3 window around a cell, the size of the patch and the complexity
of the landscape in which a cell is located. We found that per cell the probability of
correct classification was significantly (o = 0.05) higher for cells with a less
heterogeneous neighbourhood, for cells that are part of larger patches and for cells
located in regions with a less heterogeneous landscape. To validate the models, a leave-
one-out procedure was applied in which the absolute difference between the actual and
the model-estimated number of cells correctly classified was summarised over 55
regions in the Netherlands. The sum of differences reduced from 60.9 to 48.1 after
adding the variables ‘patch size’ and ‘landscape dominance’ to the land cover class
model. Spatial variability thus modelled therefore lead to a substantial improvement in
per cell classification accuracy estimation.

3.1 Introduction

Land cover data derived from classified satellite images are increasingly used in
land use planning and environmental management. As a consequence, concern about
the accuracy of these data has grown. Commonly, the classification accuracy is
reported by the percentage correctly classified (PCC) and the error matrix (Congalton
1991, Janssen and van der Wel 1994). Information on the spatial variability of these
measures is rarely provided (Foody et al. 1992, Goodchild 1995, Smith et al. 2002).
Lack of quantitative information on this spatial variability can be a serious problem:
usage of a PCC not representative for a region may lead to misleading outcomes in an
error propagation analysis and to incorrect assessment of the fitness for use of the data
for a specific region. Therefore, McGwire and Fisher (2001) recommend reporting the
accuracy for the smallest region size where the producer expects the data set to be used.

Responding to the demands from users, de Wit (2002) has recently published
estimates of the accuracy of the Dutch national land cover database (LGN) on a region
(62.5 km?) and province basis. These estimates were computed from reference data
located within each of the regions concerned. The disadvantage of such an approach is
that proper accuracy assessment may be impossible if there are no or too few reference
points within a given region. Model based approaches possibly do not suffer from this
disadvantage.

For example, some researchers (Steele et al. 1998) used a spatial interpolator
(kriging) for estimating probabilities of correct classification from sample points with
known probability of misclassification and models of spatial continuity (variograms).
Their method requires that the interpolated points are within the range of influence of
sampled points. If this requirement is not met, models calibrated on exhaustively
sampled explanatory variables can be considered. The most commonly applied model is
based on users’ accuracies derived from the error matrix, in which land cover class is
the explanatory variable. Smith et al. (2002, 2003) developed logistic regression
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models to assess the impact of other variables on per cell classification accuracy. They
found significant (o = 0.05) impacts of both patch size and focal heterogeneity
(heterogeneity in the 3x3 window around a cell).

On the basis of visual analysis, de Wit et al. (1999) anticipated that regional
differences in accuracy were also associated with complexity of the landscape and that
differences in landscape complexity were not entirely captured by the variables land
cover class, patch size and focal heterogeneity. To our knowledge, such observation has
never been substantiated by quantitative evidence.

In this chapter, our aim is to extend the work of Smith et al. (2002, 2003) by
including landscape indices (Forman and Godron 1986, O’Neill et al. 1988, Li and
Reynolds 1993, Riiters et al. 1995) as potential explanatory variables of per cell
classification accuracy. These indices aggregate the distribution of land cover classes
and of focal heterogeneity values within a region to one number representative for a
whole region. In the following sections we describe an experiment with 55 regions
taken from the Dutch national land cover database. First the data sets, variables and
models are introduced and the procedure to validate the models is outlined. Next the
results are presented and we end with a discussion of the results.

3.2 Methods

3.2.1 Data

In this study two data sets were used: (1) the national land cover database (LGN)
derived from satellite images and (2) a reference data set derived from the agricultural
census (REF). LGN has a resolution of 25 m and covers the whole Netherlands. It is
produced every 4 years, the most recent update of the database is based on images of
1999 and 2000 and was completed in 2001. The production process involves
integration of multi-temporal satellite imagery (from Landsat TM and SPOT), ancillary
data and expert knowledge (Thunnissen and Noordman 1996, Thunnissen and de Wit
2000). The classification system comprises 39 land cover classes, 7 of which are
agricultural crops. In total, agricultural crops cover 52.9% of the country. The database
is widely used by national and regional government agencies for water management,
hydrological modelling, land use planning and environmental management (van Soest
et al. 2001, de Wit 2002).

The reference data set used in this study was derived from the agricultural census.
For the census the government annually sends to all farmers one or more 1:10000 aerial
photos, with parcel boundaries derived from the national topographical map and the
cadastral map printed on these photos. Farmers return these maps, indicating the areas
of crops produced within their parcels. Crop name(s) and area(s) are recorded without
reference to their position within the parcel. The maps returned by all individual
farmers are combined per region. Figure 1 shows 55 of these regions, their location
corresponds with map sheets supplied by the national topographical database which is
often used in combination with LGN. The reference data set was derived from this
census data set in four steps:

1. Parcels with more than one crop and parcels with a reported crop area exceeding the

geometrical area in the census data set by more than 10% were excluded. As a

result, the coverage of census data per region ranged between 1% and 42%:;
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2. The census data set, originally in vector format, was converted to raster to enable
overlay with LGN. As in LGN, only one class was assigned to each cell in the
reference data set using the majority rule. This rule assigns to a cell the land-cover
class with the largest relative area within the cell;

3. We randomly selected 55 of the regions of the census data set (figure 1). Of the
selected regions, 47 were sized 6.25 x 10.0 km, the other 8 regions were slightly
smaller. The resulting data set contained 955 783 cells with reference land cover;

4. Reference data were sub-sampled to obtain a more or less realistic data density. For
that purpose, the data set was overlaid with a point grid with spacing 30 cells (750
m) and a randomly drawn origin was made in each region (de Gruijter 1999). All
points coinciding with census data cells were added to the reference data set. The
resulting reference data set (REF) contained 1161 cells.
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Figure 1. The Netherlands with regions (rectangles) used in this study. Models to
estimate the PCC of a validation region (black) were fitted on data of the other 54
regions (white). This procedure was repeated for all regions.
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3.2.2 Explanatory variables

We used 4 categories of explanatory variables (see table 1). Category 1, contains a
single variable CLASS, which specifies the land cover class of the cell.

Category 2 variables quantify the heterogeneity of the focal (= 3x3) neighbourhood
around each cell. Focal heterogeneity, HET, equals the number of different land cover
classes in the neighbourhood. Focal homogeneity, HOM, equals the number of
neighbouring cells with the same land cover class as the central cell.

The single category 3 variable L10P quantifies the size of the patch in which a cell
is located. A patch was defined as a set contiguous cells of the same land cover class.
Contiguity was defined as sharing a common boundary, thus each cell had 4 contiguous
cells. Patch shape indices express in one number the distribution of patch sizes
occurring in a region (Forman and Godron 1986: 189, Baker and Cai 1992). They were
not considered here because a preliminary data analysis showed little variation in the
values of these indices for the 55 regions assessed in this study (O’Neill et al. 1988
obtained similar results for agricultural areas).

Category 4 includes four landscape indices, which differ in sensitivity to the
number of land cover classes and in ability to distinguish between different landscape
textures. The indices are known as landscape heterogeneity, landscape dominance,
landscape entropy and landscape contagion (O’Neill et al. 1988, Li and Reynolds 1993,
Riiters et al. 1995). We will refer to the indices as landscape variables.

Landscape heterogeneity and landscape dominance are derived from marginal
probabilities p(i), i = 1,...,1 , with I the number of land cover classes in the region. Let
A(i) be the area of land cover class i in a region. Then p(i), landscape heterogeneity
(HTG) and landscape dominance (DMGQG) are:

A(i)

p(i)=— (1
Z A(i)

HTG = —Z p(i)-In(p(i)) (2)

DMG =In(I)-HTG 3)

Landscape Entropy (ENT) and Landscape Contagion (CON) are obtained from the
probabilities p.q(i,j), that a randomly chosen cell is classified as i and that at least one
adjacent cell (in a 3x3 window) is classified as j. Let N,4(i,j) be the total number of
adjacencies between cells with class i and class j within a region. Then:

N i

Puaie) = 0
>, 2 Ny i-)

ENT==2> D (i) I0(p (i, /) (5)

CON =2-In(/)—ENT (6)

Table 2 shows the range of values of the landscape variables. In distinguishing between
relatively heterogeneous and finely textured landscapes the variables HTG and ENT are
more sensitive to / than the variables DMG and CON.
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Table 1. Explanatory variables

Category Variable Key aspects of variable

1. Land cover Land cover 6 binary variables are used to indicate the presence
class (CLASS) of one of the 7 land cover classes™

2. Focal Heterogeneity = number of different classes in direct (8-cell)
(HET) neighbourhood of cell
Homogeneity number of cells with land cover class in direct (8-
(HOM) cell) neighbourhood the same as of centre cell

3. Patch Patch size contiguous cells with same land cover grouped to
(L10P) patches

4. Landscape  Heterogeneity  independent of landscape texture, more sensitive to
(HTG) number of land cover classes
Dominance independent of landscape texture, less sensitive to
(DMQG) number of land cover classes

Entropy (ENT) dependent on landscape texture, more sensitive to
number of land cover classes

Contagion dependent on landscape texture, less sensitive to

(CON) number of land cover classes

* if all binaries are zero then the class is LGN =7

Table 2. Minimum and maximum values of landscape variables

landscape HTG DMG landscape ENT CON
heterogeneous In(Z) 0 fine texture 2-In(J) 0
one class dominates 0 In(/) coarse texture 0 2-In(])

1 is the number of land cover classes in a region

3.2.3 Statistical analysis

Logistic regression

We used logistic regression (Agresti 1990, Collett 1991) to calculate the
probability of correct classification p.,.(c) of a cell ¢ as a function of the explanatory
variables introduced in the previous section. A logistic regression model with intercept
by and with k£ =1,...,K explanatory variables x; equals:

exp(B, + . By - x,(0))
P (€)= = (7
1+ exp(By +D_ By - x,(0))

A linear function logit(p...(c)) = fo + D Prxi(c) is fitted through the data. In some
cases the linearity of this function can be improved by transforming a variable x.
Preliminary data analysis showed that this was the case for patch size, which we
transformed to a logarithmic scale.

Regression coefficients are obtained by minimising the —2 log likelihood (also
known as the deviance) of the model. The difference between the deviances of two

models follows a y; distribution, where / denotes the number of explanatory variables
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additional to those shared by the two models. A y°test can then be used to test if

adding these / variables to the model significantly improves the fit of the model.

Ignorance of spatial dependence in the residuals of the fitted regression models will

result in models seeming more significant than they actually are (Bio 2000). We

visually checked for spatial dependence in the residuals by plotting their variograms.

We applied an exhaustive model selection procedure that would result in finding
the model containing the highest number of significant (at a = 0.05) explanatory
variables. Table 3 lists the evaluated models, table 6 the tests. At each step in the
procedure we tested at three significance levels (0.05, 0.01 and 0.001) the significance
of the addition of a variable to a model:

1. addition of CLASS to model 0 (creates model 1), addition of HET to model 0
(creates model 2a), ..., addition of CON to model 0 (creates model 2g);

2. addition of HET to model 1 (creates model 3a), ..., addition of CON to model 1
(creates model 3g);

3. addition of a second explanatory variable to a model containing CLASS and one
variable of the same category (table 1). For example addition of HOM to model 3a.
Because none of these additions was significant (at o = 0.05) we continued the
analysis with one variable out of each category: HET, L10P and DMG;

4. addition of one of the variables HET, L10P and DMG to a model containing
CLASS and one of these three. For example addition of L10P to model 3a (creates
model 4a);

5. addition of HET to model 4c and addition of L10P-DMG to model 4c.

Table 3. Models evaluated

model Model
nr. (m)

0 Lo
1 So+ P16 CLASS
2a ﬂ() +ﬂ1 -HET

2g ,Bo +,Bl - CON
3a ﬂ() +ﬂ1—6' CLASS +ﬂ7' HET

3g ﬂ() +ﬂ1—6 - CLASS +ﬂ7 -CON

4a  fo+pis- CLASS + - HET + fis -L10P

4b ﬂ() +ﬂ1—6 . CLASS +ﬂ7 : HET +ﬂ8 DMG

dc Bo+Pis- CLASS + B+ L10P + fs - DMG

5a ﬂ() +ﬂ1—6' CLASS +ﬂ7' L10P +ﬁ8 DMG+ﬁ9 HET

5b Bo+pis- CLASS + B+ L1I0P + fs- DMG + o+ L10P - DMG

For each of the six binary variables in CLASS a regression coefficient is estimated: £

s,

Validation

A leave-one-out procedure was applied to cross-validate each model. Each time the
model was fit on data from 54 regions and one region » was used as the test data set
(figure 1). The resulting 55 parameter sets are refered to as versions of a model. For
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each of the cells ¢ = 1, ..., n(r) , with n(r) the number of cells in region r, the
probability of correct classification p...n(c) was calculated with model m. The binary
variable )(c) obtained from the test data set indicates if ¢ was actually correctly
classified or misclassified. The measure SM,, (eq. 8) summarises over all cells the
absolute difference between model estimated and actual correctness of classification.
RO,, (eq. 9) is the relative improvement of model m to the model assuming the same
probability of correct classification for all cells (m = 0), R/, (eq. 10) is the relative
improvement to the model with CLASS as the explanatory variable (m = 1). SM,,,, R0,
and R1,, are calculated as:

55 n(r)

SM =" | P (€)= ¥(0)| (8)
r=1 c=1

RO, =100%-(SM,—SM,)/SM, 9)

RI1 =100%-(SM,-SM,)/SM, (10)

3.3 Results

3.3.1  Error matrix

The error matrix is shown in table 4. Overall LGN has a high classification
accuracy: 90.2%. There are large differences in user accuracies between different crops
(ranging between 33.3% and 95.8%). An implication of the large differences is that in
for example a region with a relatively large area of bulb cultivation, the assumption of a
PCC 01 90.2% could overestimate this region’s PCC.

3.3.2 Model Selection

Table 5 shows the estimated regression coefficients for a selection of models.
Model 1 shows the effect of CLASS on classification accuracy, models 2a-3g show the
effect of the explanatory variables HET to CON. Models 3a-3g show the effect of these
variables when CLASS is accounted for. Model 4c¢ is the model that contained the

highest number of significant (a = 0.05) explanatory variables. If ,3,{ <0, the probability
of correct classification decreases with increase of the value of variable £, if Bk> 0 the

probability increases. The impact of the variable k decreases as Bk approaches 0. Of

interest are the effect of our explanatory variables on classification accuracy and the
influence of accounting for CLASS. We see that classification accuracy is higher for
higher values of focal homogeneity, patch size, in regions with landscapes with one
dominant class and in regions with a coarser texture.
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Table 5. Estimated regression coefficients
regression coefficients
Model R - - Ag - - - - -

nr. (m) B B B, B B, B Bs B, B

2.2174
1 -0.6931 3.4764 3.8177 2.4551 3.1091 29322 0.2231
2a 2.8899 -0.4751
2b 1.3078 0.1277
2c  -0.4525 0.9934
2d  5.7134 -1.8275
2e  -0.1922 2.0886
2f  5.8240 -1.3646
2g  -3.3758 1.6022
3a 0.0316 3.3821 3.9384 2.4439 3.1197 2.9139 0.2028 -0.4899
3b  -1.4315 3.3831 3.8174 2.4018 3.0770 2.8734 0.1666 0.1125
3¢ -2.7223 2.1251 3.5502 2.0543 3.0299 2.4440 -0.1030 1.0404
3d  2.0440 3.4337 4.0300 2.9414 3.5135 3.2936 0.6484 -1.5253
3e -2.5261 3.2388 3.7770 2.8400 3.4262 3.2043 0.5814 1.5559
3f  2.2878 3.4579 4.0815 29336 3.5296 3.2677 0.6347 -1.1993
3g -4.7307 3.1681 3.6906 2.7595 3.3866 3.1146 0.5129 1.1663
4c  -3.5752 2.1731 3.4820 2.2875 3.1923 2.6263 0.1395 0.9248 0.9309

See table 3 for model descriptions. For example in model 2c, ,[3’1 is multiplied by L10P,
in model 3c ﬂAI is multiplied by the binary indicating if CLASS = 1 and ,37 is
multiplied by L10P.

As an illustration figures 2 to 4 show for the models 2a, 2c and 2e the expected
probabilities of correct classification and the 95% confidence intervals of correct
classification. The broad confidence interval for HET < 2 is due to the distribution of
the values of HET in the observations: HET = 1: 68%, HET = 2: 29% and HET < 2:

3%. If we compare the ,@1 ’s of models 2a-3g with the ,37 ’s of models 3a-3g we see that
the effect of the focal and patch variables does not change when CLASS is accounted
for. The impact of the landscape variables (models 2d-3g and 3d-3g) is lower in a
model containing variable CLASS, indicating that a part of the impact of these
variables is accounted for by CLASS.
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Figure 2. Impact of focal heterogeneity (HET) on probability of correct classification:
model 2a (solid line) and 95% confidence interval (dotted line).
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Figure 3. Impact of patch size (L10P) on probability of correct classification: model 2¢
(solid line) and 95% confidence interval (dotted line).
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Figure 4. Impact of landscape dominance (DMG) on probability of correct
classification: model 2e (solid line) and 95% confidence interval (dotted line).



32 Chapter 3

Figure 5 shows for model 2c that there is no risk of overestimation of significance
levels due to spatial dependence in the residuals. Variograms of residuals of the other
models also revealed no spatial dependence. Table 6 shows the significance testing of
improvement of fit of models by adding an additional explanatory variable x;. The table
shows that of the explanatory variables only HOM was not significant at o = 0.05. The
patch and landscape variables were highly significant (all at o = 0.001) also when
added to the model already containing CLASS. HET was significant at o = 0.01 in
fewer versions if CLASS was already in the model (54 vs. 24 versions). Adding L10P
or DMG to a model containing CLASS and HET was in all 55 versions significant at o
= 0.001. Adding HET to respectively CLASS & L10P and CLASS & DMG was
significant at the o = 0.05 level in 0 and 54 of the 55 versions. We concluded that a
model should at least contain CLASS and either L10P or DMG and that it need not
contain HET. But would a model containing CLASS and both L10P and DMG still be
better? Adding DMG was significant at o = 0.05 in 55 versions and adding L10P was
significant at a = 0.001 in 55 versions. Finally we tested if adding to model 4c the
variable HET or the interaction L10P-DMG would significantly (at o = 0.05) improve
the fit. This was never the case, so model 4c was the model containing the highest
number of significant explanatory variables.

0.09

0.08 1 *

0.07 { * * *
0.06 1
0.05 {

0.04 1

semivariance

0.03 {

0.02 {

0.01 4

0
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Distance (m.)

Figure 5. Semivariogram of residuals of model 2c (explanatory variable: L10P).

3.3.3 Model validation

Table 7 shows the absolute differences between actual classification correctness
and estimated probabilities of correct classification, summarised over all cells. The
table shows that all model estimates were better than model 0 (R0,, > 0 for all m). The
models containing focal variables were slightly better than model 0 (R0,, = 1.3%, R0y
=1.5%), however they produced worse estimates than model 1 (R/,, = -34.4%, Rl, = -
34.1%). Their contribution to the model containing variable CLASS was marginal: R/3,
= 0.6%, RI3, = 0.2%. The patch and landscape variables provided better estimates than
models 0 and 1. Adding a patch or landscape variable to a model containing intercept
only (models 2¢-2g) improved model 0 estimates by R0O,. = 3.5% to R0O»s = 19.2%.
Adding a patch or landscape variable to a model containing CLASS (models 3c-3g)
improved model 1 estimates by 10.6% to 15.7%. Model 4c, the model with the highest
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number of significant variables, also had the highest R0,, and RI,, values. Relative to
models 0 and 1 model 4c improved estimates of probabilities of correct classification

by 42.0% and 21.0% respectively.

Table 6. Chi-square tests for selected models

chi-square Description: significance of | Frequencies of significance at
test (df.) additional explanatory variable x; to a | a in the 55 versions* of each

model already containing variables x; | model

Xk X; o0a=0.05| a=0.01 o=
0.001

Dy-D;(6) |1 CLASS 55 55 55
Do—Daa (1) |1 HET 55 54 0
Do—Dy (1) | 1 HOM 5 0 0
Do—Da (1) |1 L10P 55 55 55
Do—Dyq (1) |1 HTG 55 55 55
Do—Dae (1) |1 DMG 55 55 55
Do—Dy(1) |1 ENT 55 55 55
Do—Dy (1) | 1 CON 55 55 55
D;—Ds3, (1) | 1 & CLASS HET 54 24 0
D;—Dsy (1) | 1 & CLASS HOM 0 0 0
D;-Dsc (1) | 1 & CLASS L10P 55 55 55
D;—Dsq (1) | 1 & CLASS HTG 55 55 55
D;—Ds. (1) | 1 & CLASS DMG 55 55 55
D;—-Ds¢ (1) | 1 & CLASS ENT 55 55 55
D;-Ds, (1) | 1 & CLASS CON 55 55 55
D3y, —Dasa (1) | 1 & CLASS & HET L10P 55 55 55
D3, —Duay (1) | 1 & CLASS & HET DMG 55 55 55
D3c—D4a (1) | 1 & CLASS & L10P | HET 0 0 0
D3c— Dy (1) | 1 & CLASS & L10P | DMG 55 7 0
D3e—Dasa (1) | 1 & CLASS & DMG | HET 54 4 0
D3¢ —Dyc (1) | 1 & CLASS & DMG | L10P 55 55 55
D4 —Dsa (1) | 1 & CLASS & L10P | HET 0 0 0

& DMG
D4c—Dsp (1) | 1 & CLASS & L10P | L10P-DMG 0 0 0

& DMG

* a version is a model fitted on data from 54 regions, with cells of one region left out
for cross-validation
D,.: Deviance of model m; variables are described in table 1, models in table 3; x;, =1 is

multiplied by the intercept ,[}0 .

3.3.4 Model validation versus model selection

In general the ranking of models according to significance levels of contributing
variables in the model selection corresponded well with the ranking of models
according to R0, and R, values in the validation. Landscape variables yielded the
greatest improvement in estimates of per cell probabilities of correct classification, the
patch variable yielded a greater improvement than the focal variables. Model selection
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showed that adding CLASS to a model containing DMG or CON was significant at o =
0.001 (testing 77, = Dse — D3e and y., = Day — Djg), yet validation showed a
deterioration when CLASS was added (R/3. < Rl and RI3, < RIy,). Finally, the big

differences in significance between HET and HOM observed during model selection
were absent in the model validation.

Table 7. Validation: comparison between actual and estimated number of cells correctly
classified

Model Model description relative to models 0 and 1

nr. (m) SM,, RO, (%) R1, (%)
0 same PCC in all regions ~ 83.0

1 CLASS ( = error matrix)  60.9 26.6

2a HET 81.8 1.3 -34.4
2b HOM 81.7 1.5 -34.1
2c L10P 58.8 29.1 3.5
2d HTG 58.3 29.8 4.3
2e DMG 51.0 38.5 16.2
2f ENT 58.5 29.5 3.9
2g CON 49.2 40.7 19.2
3a CLASS & HET 60.5 27.0 0.6
3b CLASS & HOM 60.8 26.8 0.2
3c CLASS & L10P 52.4 36.8 13.9
3d CLASS & HTG 54.4 34.4 10.6
3e CLASS & DMG 51.5 37.9 15.4
3f CLASS & ENT 54.0 35.0 11.4
3g CLASS & CON 51.4 38.1 15.7
4c CLASS & L10P & DMG 48.1 42.0 21.0

3.3.5 Comparison between landscape variables

Table 7 shows that R/5. — R13q > Rl3r— R34 , indicating a stronger increase in R/
values when HTG was replaced by DMG (10.6% to 15.4%) than when HTG was
replaced by ENT (10.6% to 1.4%). Similar comparisons between R0,, and R/,, values
of other models, for example R/», — RI2¢ > RI2s — Rl5., confirmed that PCC estimates
improved stronger when a landscape variable less sensitive to the number of land cover
classes was included in the model (DMG or CON) than when a variable sensitive to
texture was included (ENT or CON). The table further shows that the impact of
replacing HTG by DMG or ENT by CON is smaller in models 3d-3g than in models
2d-2g. This indicates that a part of the effect of accounting for sensitivity to the number
of land cover classes is accounted for by the inclusion of the variable CLASS in the
model.

3.4 Conclusion and discussion

Our aim was to extend the work by Smith et al. (2002, 2003) by evaluating
landscape indices (Forman and Godron 1986, O’Neill et al. 1988, Li and Reynolds
1993, Riiters et al. 1995) as potential explanatory variables of variability in the
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classification accuracy of cells. Four landscape indices were applied, differing in
sensitivity to the number of land cover classes and in ability to distinguish between
different landscape textures. In this section we will discuss the outcomes of the model
selection and validation, and then separately discuss the impact of the landscape
variables.

3.4.1 Model selection and validation

Our model selection procedure showed the significance of variables in a series of
models with increasing number of variables. The model with the highest number of
significant (o = 0.05) explanatory variables included the variables ‘land cover class’,
‘patch size’ and ‘landscape dominance’. We found that per cell classification accuracy
was significantly higher for cells with more heterogeneous focal (= 3x3)
neighbourhoods, cells located in larger patches, cells located in regions with a less
heterogeneous landscape and cells located in regions with a more coarsely textured
landscape.

To assess the validity of our statistical analysis we checked spatial dependence in
the model residuals (Bio 2000). Variograms of the residuals did not reveal such
dependence. A leave-one-out procedure was applied to validate the models.
Improvement was measured relative to the model assuming the same probability of
correct classification for all cells and relative to the model with ‘land cover class’ as the
single explanatory variable. The model with the highest number of significant
explanatory variables also yielded the largest relative improvements: respectively 21%
and 42%. In general the ranking of models according to significance levels during
model selection corresponded well with the ranking according to relative improvements
during the model validation.

3.4.2 Impact of landscape variables

Model selection showed in all stages a significant contribution of the landscape
variables HTG, DMG, ENT and CON. The impact was smaller but still significant if
the model contained variable ‘land cover class’, which indicates that a part of the
impact of these variables is already accounted for by this variable. Validation results
showed that estimates of per cell probabilities of correct classification were better in
models with landscape variables less sensitive the number of land cover classes (DMG
and CON) and that estimates were slightly better in models with variables sensitive to
landscape texture (ENT and CON).
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Abstract

In monitoring land cover change by overlay of two maps of different dates the rate
of change is frequently overestimated. This is due to three sources of uncertainty: (i)
semantic differences in class definitions between two maps, (ii) positional errors and
(i11) classification errors. In this study 4 methods are proposed that use the Bayes
theorem to update prior estimates of land cover change with information on the
probabilities with which land cover classes are mistaken for each other. The methods
were illustrated for two case-studies. In the first case-study the real change was 1.4%
and by overlay of the two maps 7.4% was predicted. The estimates by the four methods
were 6.3%, 15.3%, 6.7% and 1.6%. In the second study these percentages were 48%,
36% and with our 4 methods: 39.2%, 54.1%, 50.8% and 53.0%. Two of the methods
account for correlation in classification accuracy between maps of two dates. Where
this correlation was high (study area 1), the methods that accounted for correlation
yielded change estimates closer to real change than the methods that did not account for
this correlation.

4.1 Introduction

4.1.1 Change detection

Land cover change seriously affects our environment (Vitousek 1994, Achard et al.
2002), so it is important to have good estimates of these changes. National land cover
databases are often used for monitoring land cover change; research is increasingly
focusing on improvements in change detection methods (Lunetta et al. 2002). An
important issue is the effect of positional errors and classification errors on change
detection.

Different change detection methods exist (Singh 1989, MacLeod and Congalton
1998, Mas 1999). The most obvious method is post-classification comparison of land
cover at two dates. The use of post-classification comparison is appropriate when the
phenomenon monitored can be partitioned into crisp classes and when data can be
stored and collected at a resolution so high that the spatial objects are homogeneous in
their land cover class. Otherwise, image differencing, principal component analysis or
hierarchical fuzzy pattern matching may be more applicable (Singh 1989, MacLeod and
Congalton 1998, Power et al. 2001). The transition matrix is often used as a non-site-
specific measure of land cover change. It shows the total area of transitions between
different land cover classes and is derived from an overlay of test data sets of two dates.

4.1.2 Sources of uncertainty in change detection

Numerous studies have shown that post-classification comparisons overestimate
land cover change, due to uncertainties in the data (MacLeod and Congalton 1998, Mas
1999, de Zeeuw and Hazeu 2001, Achard et al. 2002, Foody 2002). These uncertainties
originate from three sources: (1) semantic differences in the definitions of land cover
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classes between two data sets, (2) misregistration of pixels or object boundaries and (3)
misclassifications.

Only when uncertainty due to semantics has been eliminated can the effect of
misregistrations and misclassifications be quantified and reduced. Uncertainty due to
semantics can be eliminated either by using a consistent classification method (Achard
et al. 2002) or by developing a common ontology by generalization of the classes in the
available data sets (de Zeeuw and Hazeu 2001, Petit and Lambin 2002). The first
solution has the disadvantage of being very costly, requiring restructuring, often of
large data sets; the second results in a loss of detail. Most monitoring studies only
address this first source of uncertainty.

For satellite images, the most researched method to reduce the effect of
misregistration on change detection is by reduction of misregistration (Townshend et
al. 1992, Dai and Khorram 1998, Stow and Chen 2002). Just a few of these studies used
post-classification comparison as a change detection method. Verbyla and Boles (2000)
simulated the effect of positional error in image rectification on land cover change.
They found a low correlation between registration root mean square error and the
overestimation in land cover change. Carmel et al. (2001) and Kiiveri et al. (2001)
showed that misregistration can result in classification errors, which can be reported in
the error matrix. For vector data, misregistration refers to the positional accuracy of
boundaries of objects (polygons). De Zeeuw et al. (1999), Sonneveld et al. (2000) and
de Zeeuw and Hazeu (2001) developed a model called MonGIS for reducing the effect
of such misregistrations. MonGIS uses rules based on expert knowledge of the
geometry of changing spatial objects to decide if the detected change was real or not.
The use of expert knowledge is problematic in that it is difficult to validate, and one
cannot be confident about the applicability to other data sets than the calibration data
set. The present study is inspired by the work by de Zeeuw et al. (1999); methods are
proposed that do not require expert knowledge, but instead require information on
classification errors.

Classification errors may arise due to misregistration and due to assignment of the
wrong class to spatial objects. The propagation of classification errors depends on the
size of the classification errors, not on the source of these errors. (Kiiveri et al. 2001).
Veregin (1989) showed how propagation of classification errors at two observation
dates in an overlay operation can be calculated. His method addressed calculating the
percentage correctly classified of the resulting map. Rosenfield (1982) presented a
method of estimating change and variance in land cover change for individual land
cover classes as a function of sample design. Kiiveri et al. (2001) reduced mis-
estimation of change by using data sets of increased classification accuracy. They
increased the classification accuracy by using a priori knowledge of the actual
transition probabilities. In this study, I have no prior knowledge of actual transition
probabilities, and I will estimate actual transition probabilities by including information
on classification accuracy.

4.1.3 Objective

Research into methods developed to reduce overestimation or underestimation of
land cover change estimates has predominantly been on increasing the quality of single
date data sets and on comparison of change detection methods. Both are often not an
option to the user, who is supplied with ‘off the shelf’ data sets and their quality
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descriptions. The aim of this study is to propose four methods to improve land cover
change estimates by accounting for classification errors. For illustration, the methods
were applied to two case study areas using data described in Veregin (1989) and in de
Zeeuw and Hazeu (2001). In both case studies, exhaustive reference data sets were used
to evaluate the methods proposed. A comparison of the proposed four methods with the
model MonGIS (de Zeeuw et al. 1999) was made.

4.2 Materials and Methods

4.2.1 Data processing

This section introduces terminology and describes how data were processed. The
data sets used in the two case-studies will be described in a subsequent section. In each
study, two classified land cover data sets, of dates t1 and t2, were used and also two
exhaustive reference data sets with the actual land cover classes at dates t1 and t2. Land
cover classes are described by the variable LC,;,, where subscripts ‘a’ refers to a data
set or method and ‘b’ to the date. From five overlays of these data sets the following
matrices and table were obtained:

1. Test data set at t1 and test data set at t2 = post classification comparison (PCC)
transition matrix, with elements Area(LCgatat1, LC data2);

2. Reference data set at t1 and reference data set at t2 = actual transition matrix, with
elements Area(LCctt1, LC actr2);

3. Test and reference data set at t1 = error matrix of t1, with elements Area(LCata 1,
LCact,tl);

4. Test and reference data set at t2 > error matrix of t2, with elements Area(LCgata 2,
LCact,tZ);

5. All four data sets = table with Area(LCatat1, LCactt1, LCdata .2, LCact2)-

Transition probabilities are obtained from the transition matrices. For example
from the PCC transition matrix Pr(LCyata | LCaatat1) 1s the probability that a site is
classified as LCgaarp at t2, given that it is classified LCgannn at tl. Confusion
probabilities are derived from the error matrices, indicating the probability with which
two classes are mistaken for each other. For example Pr(LCgatasi | LCactn1) 1s the
probability that the classified land cover class at t1 is LCgaa 1, given that the actual
class is LC,tq1 at tl. Correlation of confusion probabilities at one date with another
date, is quantified in confusion probabilities derived from the fifth overlay. From the
table one can derive the probability Pr(LCuetir | LCaatar2, LCaatati, LCacts1), 1.€. the
probability that the actual land cover class at t2 is LCye 2 given that a site is classified
as LCaata o at t2, classified as LCgaa1 at t1 and has the actual class LC,e1 at tl. For
each combination {LCgatat1, LCyct1}, the following equality (1) holds:

0 if Area(LC,,,,,LC,,,)=0
1 if Area(LCy,, > LC, ) >0

If the sum is O then this specific combination does not occur. In that case the
probability not accounting for temporal correlation is used: Pr(LCactp | LCdatat1, LCact i1,
LCdata,tZ) = Pr(LCact,t2 | LCdata,tz)-

Z Pr(LCact,tZ | LCdata,tZ H LCdata,tl b LCact,tl ) =

LCdata,tZ

(1

act,t
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4.2.2 Proposed methods to reduce errors in change detection

In the Bayes theorem (O’Hagan 1994), prior estimates of a variable of interest are
updated with data to obtain posterior estimates of the variable of interest. In this study,
the variables of interest are the actual transitions, prior estimates are the PCC
transitions, and data are the confusion probabilities. The posterior estimates are the
elements Area(LCwm1, LCymy2) of the posterior transition matrix, calculated with one of
the methods M proposed in this section. Multiplication of the posterior transition
probabilities Pr(LCypp|LCymy) or Pr(LCuyma|LCmg) with posterior area estimates
(equation (2) or (3)) yields the elements Area(LCy1, LCy o) of the posterior transition
matrix (equation (4) or (5)):

Area(LCM,tl) = zArea(LCdata,tl) : Pr(LCact,tl | LCdata,tl) (2)
Lcdmm.ll

Area(LCM,tz) = zArea(LCdata,tZ) : Pr(LCact,tZ | LCdata,tz) (3)
LCdala,lZ

Area(LCp 1, LCymy) = Area(LCyy) - Pr(LCyp | LC.1) 4)

Area(LCM,tl, LCM’Q) = Area(LCM,tz) . PI‘(LCM,U | LCM,tz) (5)

The four methods proposed here differ in the calculation of the posterior transition
probabilities, Pr(LCy | LCym1). In the first method, all elements in the PCC transition
matrix are multiplied by the rate of overestimation or underestimation of land cover
classes at tl. In the second method, confusion probabilities derived from the 3 and 4™
matrix, are used to update PCC transition probabilities. Specifically, 4 situations can
occur:

correct classification at t1 and at t2 (LCgatat1 = LChctt1, LCdatat2 = LCact.2);
misclassification at t1, correct at t2 (LCatat1 # LCactt1, LCata.2 = LCact2);
correct at t1, misclassification at t2 (LCgatat1 = LCoctt1, LCatat2 # LCact2);
misclassification at t1 and t2 (LCatat1 # LCact.t1, LCaatar2 # LCact.2)-

b e

The third and fourth methods also update PCC transition probabilities using
confusion probabilities at t1 and at t2, but these methods use confusion probabilities
from the 5™ matrix. In the third method, confusion probabilities at t2 are conditioned on
the confusion between classes at t1, {LCgatat1, LCactt1 }. In the fourth method, confusion
probabilities at t1 are conditioned on the confusion between classes at t2, {LCatar2,
LCactr2}. The equations for the four methods are listed below:

Method 1:
Area(LCw’tl )

Pr(LCy [ LCy ) =
(LCy o [ILCy1 ) Area(LCy,, )

: Pr(LCdata,tZ | LCdata,tl) (6)

with LCM,tl = LCdata,tl = LCact,tl and LCM,tZ = LCdata,t2 = LCact,t2
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Method 2:
Pr(LCy;p, [LCyy ) =
Z Z Pr(LCdata,tl | LCaCt,tl) : Pr(LCdata,t2 | LCdata,tl) : Pr(LCact,tZ | LCdata,tz) (7)

Lcdala,tl LCdala,lZ

with LCy,q = LCact1 and LCy 0 = LCct 2

Method 3:
Pr(LCM,tZ | LCM,tl) = Z Z Pr(LCdata,tl | Lcact,tl) : Pr(LCdata,tZ | Lcdata,tl)

LCdalaTtl LCdata.lZ (8)

: Pr(LCact,tZ | LCdata,tZ b Lcdata,tl b Lcact,tl)

with LCy,q = LCact1 and LCy 0 = LCct 2

Method 4:
Pr(LCM,tl | LCM,tZ) = z zPr(LCdata,tZ | LCact,tZ) : Pr(LCdata,tl | LCdata,tZ)

LCdata,‘l LCda&a,tZ (9)
’ Pr(LCact,tl | LCdata,tl s LCdata,tZ b LCact,tZ)

with LCM,tl = LCact,tl and LCM,t2 = LCact,t2

From equation (2), it follows that if exact estimates of the confusion probabilities
are available (this is the case if an exhaustive reference data set is used), then
Area(LCyvy) = Area(LCun) and Area(LCump) = Area(LCurn). Because
Z:Pr(LCM’t2 |LCy,y) =1, it follows from equation (4) that the row total of the
LCy
transition matrix estimated by methods 1-3 is equal to Area(LC,c1) and from equation
(5) that the column total of the transition matrix estimated by method 4 is equal to
Area(LC,ei2). Moreover, it can be shown that with exact estimates of the confusion
probabilities, the column totals of the transition matrix calculated with method 2 will
correspond exactly with Area(LCayur). As a result, method 2 will provide exact
estimates for one of the measures of land cover change applied in this study.

4.2.3 Measures of land cover change

MacLeod and Congalton (1998) distinguished four aspects in change detection: (i)
detecting that changes have occurred, (ii) identifying the nature of the change, (iii)
measuring the areal extent of the change and (iv) assessing the spatial pattern of the
change. The transition matrix quantifies the first three aspects. De Zeeuw and Hazeu
(2001) defined two summary measures of the transition matrix: point-wise (PC) and
region-wise (RC) change (figure 1). As a third measure I defined the sum of absolute
differences (SAD). Let the transition matrix be equal to T = {t};;. Point-wise change is
the total area in which change occurred and is calculated from the diagonal elements of
the transition matrix: PC = Ztij —Ztﬁ . Region-wise land cover change is the sum of

ij i
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absolute net changes in the area of the land cover classes and is calculated from the

transition matrix row and column totals: RC:Z:Hi+ —t,;|. The sum of absolute
ij=i

differences is calculated from all elements in the actual transition matrix (TA = {ta};)

and the transition matrix of which the accuracy is tested (T): SAD = Z| ta; —t; .

ij
ij

Example 1 Example 2
Land cover t1 Land cover t1

grass grass grass grass grass grass

beets | maize | maize beets | maize | maize

grass beets | grass grass beets | grass
Land cover t2 Land cover t2

grass | grass grass beets beets | grass

grass | grass grass grass | grass grass

grass | grass grass grass | grass grass
Transition matrix Transition matrix

t2 t2

t1 | grass maize beets |SUM t1 |grass maize beets |SUM
grass 5 0 0 5 grass 3 0 2 5
maize| 2 0 0 2 maize| 2 0 0 2
beets 2 0 0 2 beets 2 0 0 2
SUM 9 0 0 9 SUM 7 0 2 9

point-wise: 9-5-0-0 =4 (44%) point-wise: 9-3-0-0=6 (67%)
region-wise: |5-9| + |2-0| + |2-0| = 8 (89%) region-wise: |5-7| + |2-0| + |2-2| = 4 (44%)
point-wise change < region-wise change  point-wise change > region-wise change

Figure 1. Illustration of point-wise and region-wise land cover change calculation.

4.2.4 Case-studies

For illustration the methods for error reduction described in previous sections were
applied to two case-study areas, using data described in de Zeeuw and Hazeu (2001)
and in Veregin (1989). In both cases, exhaustive reference data sets were used to ensure
that differences in reduction of mis-estimation of change were due to differences
between the methods and not due to sampling design. The two study areas differ in
mis-estimation of change, classification accuracy and temporal correlation in
classification accuracy (table 1).

Table 1. Differences between the two study areas

study area | study area 2
mis-estimation of change  overestimation underestimation
accuracy at tl high low
accuracy at t2 higher than t1 same as tl

temporal correlation high low
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The expert knowledge in the model MonGIS is valid for study area 1, so a
comparison between this model and the methods proposed will be made for this area.
Study area 1 is based on data by de Zeeuw and Hazeu (2001). They document an
extensive study of land cover change in the municipality Soest in the Netherlands.
Soest was chosen because land cover within this municipality was representative for the
Netherlands, it was large enough to be representative, and at the same time small
enough to manage the collection of field data for an exhaustive reference data set. The
municipality has an area of 3,387 ha. As test data set they used the national topographic
database (ToplOvector) collected in 1991 and in 1995. ToplOvector is a vector-based
data set that is updated once in four years. Source data are aerial photographs of scale
1:10,000. These are converted into digital images, classified and then verified by
topographers of the national topographic service (van Asperen 1997). The reference
data sets for 1991 and 1995 were made using the Topl0Ovector data set as a geometric
base. Additional information was obtained by means of aerial photo-interpretation,
existing detailed studies and maps and a fieldwork campaign. To compare Top10vector
with two other national land cover databases, de Zeeuw and Hazeu (2001) generalised
the classes in these databases into a common ontology. The common ontology
distinguished four land cover classes: Urban & Infrastructure, Forest & Nature,
Agriculture and Water. Figure 2 shows the Soest study area and the areas where
transitions were detected using an overlay of the two test data sets and using an overlay
of the two the reference data sets. Clearly, land cover change is overestimated by the
test data sets.

1;' r'/
y - 4 '
4 . 4
i
] g /]
~ e
\} :
)
b N N N
0051 2 A 005 1 2 A
| —p— | | DT EtETS e — {0 TSRS
Figure 2a. PCC transitions Figure 2b. Actual transitions

Figure 2. Study area 2. Municipality Soest (grey), with change between 1991 and 1995
(black). Data derived from de Zeeuw and Hazeu (2001). (a) PCC transitions; (b) actual
transitions.
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Study area 2 is based on an example by Veregin (1989). Veregin presented four
synthetic land cover maps (figure 3) with classes A, B, U and W for illustration of error
modelling in an overlay operation. He used these maps to illustrate how for different
overlay operations the percentage correctly classified of the resulting map could be
calculated. The overlay shown in figure 3 is an AND overlay.

U UB|B|B UUU|U|B UU|UU|BU|BU| BB
U/ UB|B|B UUU|B|B UU|UU|BU|BB|BB
A WIW[WIW UlUIU|W|B| => |AU{wujwuww/wa
AlAWIWIW UlUIA|WW AU/| AU [WA WWWW
AlAIAIAIW UIAAWW AU|AA|AA |AW|WW
Actual, t1 Actual, t2 Actual transitions
UlUlU|B|B UlUU|U|B UU|UU|UU|BU| BB
U/UW|B|B UlU/UU|B UU | UU (WU BU| BB
UWiWWWw UlUJU|WIW| => [uu|wu|wuwwww
AlAIWWIW UlUIA|WW AU| AU [WA WWWW
AlAAIWW AlAIAIAIW AA| AA| AA|WAIWW
Monitoring, t1 Monitoring, t2 Monitoring transitions
Pr(correct) Pr(correct | t1) Pr(correct | t1, t2)
=21/25 =18/21 = 21/25-18/21=18/25

Figure 3. Study area 2; data derived from Veregin (1989).

4.3 Results and discussion

4.3.1 Classification errors

The error matrices of study area 1 are shown in tables 2 and 3. The percentage
correctly classified at t1 (1991) is 90.8% and at t2 (1995) 95.8%. In study area 2 the
percentage correctly classified is lower, 84% at both dates. In area 1 the largest error, at
both dates, 1s that Urban & Infra is classified as Agriculture. Table 4 shows the
normalised areas of correct and incorrect classification for both study areas. Temporal
correlation in classification accuracy is quantified as the probability that classification
is correct at both dates. For study area 1 this is 0.93 (0.9002+0.0334), for area 2 it is
0.76 (0.72+0.04). Thus temporal correlation in classification correctness is higher in
area | than in area 2. Table 4 served to illustrate this correlation. In methods 3 and 4
this temporal correlation was accounted for through conditioning of confusion
probabilities. As an example of an unconditioned confusion probability at t2, consider
the probability Pr(LCycto | LCaatar) = Pr(Agriculture | Urban & Infra) = 0.0079 (=
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10/1272, table 3). In method 3 confusion probabilities at t2 are conditioned on the
confusion that occurred at t1, {LCgaat1, LCyctt1}. For example the confusion probability
at t2, conditioned on {Agriculture, Agriculture}, is: Pr(Agriculture | Urban & Infra,
Agriculture, Agriculture) = 0.2631.

Table 2. Error matrix of study area 1, date t1

Actual land cover in 1991 (ha.)

'il;lesltg 91 imd cover g:?ﬁ?m ;(;iisrte & Agriculture Water  Total

Urban & Infra 1104 31 7 0 1141
Forest & Nature 50 1464 1 0 1516
Agriculture 206 14 482 1 703
Water 0 0 0 27 28
Total 1361 1509 489 28 3387

Table 3. Error matrix of study area 1, date t2

Actual land cover in 1995 (ha.)

;l;le?t9 91§1nd cover g})fga IliI(;iisfte & Agriculture Water  Total

Urban & Infra 1260 3 10 0 1272
Forest & Nature 1 1505 0 0 1506
Agriculture 127 1 453 0 580
Water 0 0 0 29 29
Total 1388 1508 462 29 3387

Table 4. Temporal correlation in classification correctness in the two study areas, both
normalised by total area

study area 1 study area 2
correct correct at t2 correct correct at t2
at tl yes no sum attl yes no sum
yes 0.9002 0.0082  0.9084 yes  0.7200 0.1200 0.8400
no 0.0582 0.0334 0.0916 no 0.1200 0.0400  0.1600
sum 0.9584 0.0416  1.0000 sum  0.8400 0.1600 1.0000

4.3.2 Land cover change estimates

Post classification comparison and actual transitions

For the Soest study area the PCC and actual transition matrix are shown in tables 5
and 6. The largest error is the 259 ha. underestimation of the number of Urban & Infra
to Urban & Infra transitions (1094 ha. vs. 1352 ha.). Analysis of the change detection
error matrix (table 7) reveals that of the 259 ha., a total of 102.8 ha. was due to
overestimation of the area Agriculture at the expense of Urban & Infra in 1991, and that
102.3 ha. was due to overestimation of the area Agriculture at the expense of Urban &
Infra in both 1991 and 1995. Point-wise and region-wise land cover changes are 7.4%
and 7.8% according to the PCC transition matrix, while the actual changes are only
1.4% and 1.7% (table 9, first two lines).
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For study area 2 the change detection error matrix is shown in table 8. The PCC
transition matrix and the actual transition matrix can be derived from this matrix, for
example the number of AU transitions according to the test data is 2 cells (row total)
and is actually 4 cells (column total). Point-wise and region-wise land cover changes
are (table 10, first two lines): 9 cells (36%) and 14 cells (56%) according to the test data
sets versus 12 cells (48%) and 18 cells (72%) according to the actual data sets. Thus
change is overestimated in study area 1 (PCpcc > PCpyenal) and underestimated in study
area 2 (PCpcc < PCyetual)-

Table 5. PCC transition matrix of study area 1, with changes in ha.

Test land cover in 1995 (ha.)
Forest &

Test land cover Urban

in 1991 & Infra  Nature Agriculture Water  Total

Urban & Infra 1094 26 22 0 1141
Forest & Nature 39 1467 9 0 1516
Agriculture 139 13 550 1 703
Water 0 0 0 27 28
Total 1272 1506 580 29 3387

Table 6. Actual transition matrix for study area 1, with changes in ha.

Actual land cover in 1995 (ha.)

Actual land Urban Forest & .

cover in 1991 & Infra  Nature Agriculture Water  Total
Urban & Infra 1352 7 1 0 1361
Forest & Nature 7 1501 1 0 1509
Agriculture 29 0 459 1 489
Water 0 0 0 28 28
Total 1388 1508 462 29 3387
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Posterior transition matrices

Tables 9 and 10 show, for the two case-studies, land cover change estimates
derived from the actual transition matrix (first line), the PCC transition matrix (second
line) and the posterior transition matrices (third and following lines). Application of
method ‘x’ yielded better estimates of actual change than method ‘y’ when the
following three conditions apply:

l. | PCactuat — PCx | < | PCyctual — PCy |, 1.e. PC 1s closer to PCycnal than PCy is to

PCactual;

2. | RCactual - RCX | < | RCactual - RCy | 5
3. SAD,<SADy;

In all cases land cover change estimates by methods 1 to 4 were closer to PC,cqal,
RCyctual and SAD, a1 than were the estimates by post-classification comparison (PCC).
The only exception was method 2 in the Soest study area, where | PC,cyal — PCrnethod 2 |
> | PCactual — PCpcc | and SADiethod 2 > SADpcc. For the Soest study area a comparison
with the model MonGIS was possible. In general the PC, RC and SAD values
calculated with the methods 1 to 4 were closer to PCycual, RCactual and SADacwar than
were the PC, RC and SAD values calculated with model MonGIS.

In study area 1, SADmethod 1 < SADmethod 2 a0d SADmethod 1 < SADmethod 3; 1n study
area 2 these relationships were the other way round: SAD nethod 1 > SAD method 2 and
SADmethod 1 > SADmethod 3. The use of method 1 is only recommended under two
specific conditions. That is, when classification accuracy at t2 is almost 100% and
when at tl the area of one or more of the land cover classes is systematically
overestimated or underestimated at t1. These specific conditions applied to study area
1, where classification accuracy at t2 was 95.8% and where at t1 the area Urban & Infra
was underestimated and the area Agriculture overestimated (table 2, row total vs.
column total).

The two study areas differ in temporal correlation in classification accuracy. In
study area 1 this correlation was stronger (0.93, table 4). There, the change estimates by
methods 3 and 4 were closer to actual change than were the change estimates by
method 2. In study area 2, where the correlation was weaker (0.76, table 4), the
differences between change estimates by methods 2, 3 and 4 were smaller. In study area
1, change estimates by method 4 were closer to actual change than were the estimates
by method 3: | PCact - PCmeth0d4 | < | PCact - PCmethod 3 |, | RCact - RCmethod 4 | < | RCact -
RCiethod 3 | and SADmethod 4 < SADmethod 3. Consider what would have happened if
classification accuracy at t2 had been 100%. In that case, the conditioned confusion
probabilities Pr(LCycto | LCdatat2 | LCaatart1, LCactt1) would be exactly the same as the
unconditioned probabilities Pr(LCact> | LCaatar2) and as a result there would be no
difference between change estimates by methods 2 and 3. As classification accuracy at
t2 decreases conditioning of confusion probabilities at t2 on tl can have a greater
impact on change estimation. Because in study area 1 classification accuracy at t1 was
lower than at t2 (90.5% vs. 95.8%), conditioning on t2 (method 4) had a greater impact
on the posterior change estimates than conditioning on t1 (method 3).
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Table 9. Study area 1: land cover change estimates by different methods

PC RC SAD
Method ha. % ha. % ha. %
Actual - 47 1.4 56 1.7 0 0.0
PCC ° 249 7.4 264 7.8 587 17.3
Method 1 * 212 6.3 160 4.7 360 10.6
Method 2 * 519 15.3 56 1.7 945 27.9
Method 3 * 228 6.7 163 4.8 362 10.7
Method 4 * 54 1.6 48 1.4 18 0.5
MonGIS * 232 6.8 248 7.2 576 17.0

PC = Point-wise change, RC = Region-wise change, SAD = Sum of Absolute
Differences; = based on exhaustive reference data set, ° = Post Classification
Comparison, = = error-reduced estimates

Table 10. Study area 2: land cover change estimates by different methods

PC RC SAD

Method #cells % #cells % #cells %

Actual * 12.0 48.0 18.0 72.0 0.0 0.0
PCC~° 9.0 36.0 14.0 56.0 12.0 48.0
Method 1 * 9.8 39.2 16.4 65.6 6.4 25.6
Method 2 * 13.5 54.1 18.0 72.0 3.8 15.2
Method 3 * 12.7 50.8 18.0 72.1 4.1 16.4
Method 4 * 13.3 53.0 18.0 72.1 3.7 14.8

PC = Point-wise change, RC = Region-wise change, SAD = Sum of Absolute
Differences; = based on exhaustive reference data set, © = Post Classification
Comparison, = error-reduced estimates

Which method to use?

The previous section showed for two case-study areas that land cover change
estimates could be improved with the 4 methods proposed in this study. Improvement
was quantified by comparing PC, RC and SAD values of each method with their true
values, quantified from 2 exhaustive reference data sets. Method 1 is easiest to apply,
but is only applicable under limited conditions. These limited conditions are that
classification accuracy at t2 is high and that at t1 the relative areas of land cover classes
are systematically overestimated or underestimated (comparison between row and
column totals of the error matrix of tl1). Method 2 is applicable to a broader range of
conditions than method 1, accounting for confusion probabilities at both dates. Method
2 does not account for temporal correlation in confusion probabilities. If this correlation
is strong, then if possible one should use either method 3 or 4. How strong this
correlation should be before the use of these methods becomes advantageous is still a
matter of research. Practically, one should be aware of the fact that data producers
rarely report information on temporal correlation in classification accuracy, and they
rarely report confusion probabilities for one date conditioned on another date. If such
information is available, a choice is to be made between the use of either method 3 or
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method 4. The choice depends on the classification accuracy at the two dates. If it is
lowest at t1, then use method 4, if it is lowest at t2 then use method 3.

4.4 Conclusions

For most users improvement of land cover change estimates by selection of the
best change detection method or by improvement of data quality is often not an option.
These users buy classified land cover data sets of two dates, often accompanied by
quality descriptions such as the error matrix. This study showed that the error matrix
can be used for more purposes than only describing the quality of a single date data set:
it can also be used to improve land cover change estimates. The methods proposed in
this study can be used directly by users. For two case-studies it was shown that these
methods provided better land cover change estimates than the standard change
detection method (post classification comparison). The methods provided better
estimates than an existing model (MonGIS, by de Zeeuw et al., 1999) and are more
generally applicable.

Quality descriptions of the fitness of national land cover databases for monitoring
are generally lacking (de Zeeuw and Hazeu, 2001; Lunetta 2002). Producers of vector
data sets, for example topographical maps, tend to focus on quantifying positional
accuracy and rarely report error matrices. Error matrices cannot be derived from
standard measures of positional accuracy (e.g. Federal Geographic Data Committee,
1998b), since some but not all misregistrations result in misclassifications. If vector
data sets are to be used for monitoring purposes, then to allow for application of the
methods proposed in this study, the error matrices associated with these data sets
should also be reported. This study showed that estimates of land cover change between
two dates could be further improved by accounting for temporal correlation in
classification accuracy. In two of the methods proposed the probabilities of confusion
between two land cover classes at one date were conditioned on the confusion between
land cover classes that occurred at the other date. To my knowledge, producers of land
cover data sets do not report such conditional confusion probabilities. They can be
quantified when reference data sets have been collected from the same study area at
two dates.

In both case-studies presented in this chapter, I used exhaustive reference data sets
to quantify error matrices. In practice, error matrices supplied by data producers will be
derived from a reference data set that is only a sample of the total area mapped. Further
research should increase understanding of the effect of sample design on the reduction
of overestimation or underestimation of land cover change that can be achieved by
application of the methods proposed in this study.
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5. A variance and covariance equation for area

estimates

Abstract

Geographical Information Systems (GIS) automatically calculate the area of a
polygon from the coordinate values of the vertices that describe its boundary.
Uncertainty in these coordinate values results in uncertainty in area estimates. Earlier
papers showed how area uncertainty of individual polygons could be calculated. In this
chapter we propose a covariance equation to quantify the impact of uncertainty in the
position of a vertex on uncertainty in the area of all polygons sharing this vertex. The
approach is based on the assumption of absence of spatial correlation in positional
errors, but includes variation in the positional accuracy. The equations were
implemented and applied to a case study area, described by a set of 97 adjacent
polygons with different per unit area utility values (€/ha). We were then able to
calculate how uncertainty in the coordinate values propagated into uncertainty in the
utility value of the complete set of polygons.

5.1 Introduction

Geographical Information Systems (GIS) are increasingly used in forest science
(Heit and Shortreid 1991, Husch et al. 2003). A standard GIS operation is the
calculation of polygon area from the coordinates of the vertices that describe the
polygons’ boundaries. Uncertainty in the coordinate values results in uncertainty in area
estimates, which in turn results in uncertainty in the estimated utility value of the
polygons. So far, research has been limited to the calculation of uncertainty in the areas
of individual polygons (Chrisman and Yandell 1988, Griffith 1989, Bondesson et al.
1998, Magnussen 1996, Nasset 1999). The single exception appears to be the work by
Prisley et al. (1989). Their equation required the position of polygon centroids to be
known whereas this chapter presents an equation which is independent of the polygon
centroid.

In this chapter we propose a method to quantify the implications of uncertainty in
area estimates on the uncertainty in the utility value of a set Q of polygons p,, ¢ = 1,
..., N. Bach polygon has a, possibly different, utility value per unit area v,. One may
think of a set of forest stands at different growth stages, thus with different monetary
value, or of a set of polygons to which subsidies for nature conservation are assigned
depending on the type of nature present. The utility value of a polygon, U(p,), is the
product of the value per unit area, v,, and polygon area, 4(p,) (eq. 1). The utility value
of the set of polygons, U(Q), is the sum of values U(p,) of the N individual polygons
(eq. 2). For several reasons, knowledge of the uncertainty in U(Q) may be of interest:

e When two parties have a different estimate of U(QQ), then knowledge of the
uncertainty in U(QQ) may help in decide on what to do: accept the difference as
being caused by uncertainty in the data, or start to investigate the cause of the
difference in estimated U(QQ) by considering differences in data and methods used
by the two parties.
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e Knowing in advance how much uncertainty in U(QQ) is reduced as a result of
measuring A(p,) with greater accuracy may be of interest to the manager who has to
decide whether measurement of 4(p,) with greater accuracy is worth the costs.

Implications of uncertainty in v, on uncertainty in U(Q2) have been frequently
addressed (Buongiorno and Gilless 2003, Husch et al. 2003), implications of
uncertainty in A(p,) scarcely. Nasset (1999), in a study of uncertainty in timber volume
estimates, studied uncertainty in both v, and 4(p,). His study was limited to uncertainty
in individual polygons; our study assesses uncertainty in a set of adjacent polygons. In
this chapter the focus is entirely on implications of uncertainty in 4(p,) on uncertainty
in U(Q), var(U(€2)). The assumption is made that no uncertainty exists in v,. The case
study in the second part of the chapter provides an example of a case where this
assumption is valid. The uncertainty in the area of a single polygon is expressed by
var(A(p,)). The covariance cov(4(p,),4(p:)), r # g measures the relation between A(p,)
and A(p,). The uncertainty in U(QQ), as expressed by var(U(Q2)), depends on both

var(A(p,)) and cov(4(p,).4(p+)) (eq. 4):

Upy) =vy " Apy) @)
U(Q)ilf(pq) @
var(U(pS) =v,’ " var(4(p,)) 3)
var(U(Q)) = ﬁlvj var(A(p,))+2- sz v, -cov(A(p,), A(p,)) )

5.1.1 Aim and outline

The aim of this study is to develop a model to calculate var(U(Q2)). Ingredients for
this model are the equations for var(4(p,)) and cov(4(p,).A(p,)). Our derivation of the
equation for cov(4(p,),4(p.)) is based on the work by Chrisman and Yandell (1988). It
differs from the existing equation for cov(4(p,),4(p:)) by Prisley et al. (1989) in that it
is independent of polygon centroid coordinates. The following section presents an
overview of literature on methods to quantify var(4(p,)) and cov(4(p,),4(p,)). The
chapter consists of two parts. In part one of the chapter the equations in the model are
presented and a simple example serves as an illustration. The equations were derived
under a set of simplifying assumptions on error structure which are discussed in this
part of the chapter. Part two of the chapter provides a practical illustration of the use of
the model in a case study by the National Forest Service of the Netherlands (SBB). In
this case study, we consider the case of the manager, who has a limited budget to
increase the positional accuracy of the data set of the case study. The model is used to
quantify the reduction in var(U(Q)), as a result of increasing the positional accuracy of
the vertices causing the uncertainty in area estimates.

5.1.2 Uncertainty in area estimates

A polygon is described by a set of vertices connected by arcs. Each vertex has a set
of coordinates that describe its position, which in turn allow calculation of the area of
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the polygon. Uncertainty in polygon area may be caused by uncertainty in the
coordinate values of the recorded vertices and by incompleteness of the vertices (i.e.
not all vertices are recorded). Incompleteness of vertices may be unavoidable due to
fuzziness of the boundary (Magnussen 1996, de Groeve and Lowell 2001). There is no
crisp answer to the question on whether a boundary is crisp or fuzzy: it depends on the
level of detail at which the boundary is studied. As one zooms in on an apparently crisp
boundary more detail will become visible and one may conclude that it is in fact not
crisp but fuzzy. Magnussen (1996) included effects of fuzziness explicitly in his area
variance equation. Another approach of including fuzziness in the model is to use one
error term o, that includes both the effect of measurement error oy, and the effect of
fuzziness or generalisation 0., . Assuming independence between measurement and

generalisation, the error term o, is calculated as o, =,/c. +o. . - For example see

Blachut et al. (1979: 202) and Polman and Salzman (1996: p. 50 and p. 402; in Dutch).
In this chapter, we proceed with the assumption that var(4(p,)) and cov(4(p,),4(p,))
can be calculated solely from the error terms o, and o, assigned to the vertices
delineating polygons.

Two approaches exist to quantify uncertainty in area estimates: (1) by comparison
with another data set (e.g. Gross and Adler 1996, van Neil and McVicar 2001) or (2) by
error propagation analysis. The advantage of the first approach is that it does not make
any assumptions on the sources of uncertainty. The disadvantage of the approach is that
the estimation of the uncertainty in areas of polygons not included in the sample is
problematic because the approach does not directly address the sources of uncertainty.
If the major source of uncertainty in area estimates is uncertainty in coordinate values,
then var(4(p,)) and cov(4(p,),A(p-)) can be calculated directly from the uncertainty in
these coordinate values using error propagation analysis. The two most commonly
applied error propagation analysis methods are Monte Carlo Simulation (MCS) and
derivation from the area equation based on probability theory. In MCS the positions of
vertices are repetitively permutated, areas recalculated and the variance is calculated
from the total number of repetitions. MCS is computationally intensive due to the
number of repetitions needed (Naesset, 1999), but also because the permutations may
cause topological inconsistencies that have to be eliminated before areas can be
recalculated (Hunter et al. 1996). Variance and covariance equations based on
derivation from the area equation do not require repetitions and do not cause
topological inconsistencies. Prisley et al. (1989) derived variance and covariance
equations from an area equation that required the coordinate values of each polygon’s
centroid. Other studies used the trapezoid rule (Burrough and McDonnel 1998: 62-63,
Husch et al. 2003: 61) as the area equation, which is independent from the position of
the centroid. Equations of var(4(p,)) have been derived from this rule under a range of
model assumptions (Chrisman and Yandell 1988, Griffith 1989), but a derivation of the
equation of cov(4(p,),4(p,)) was never made. This chapter provides a derivation based
on the trapezoid rule, yielding an equation of cov(4(p,),A(p,)) which is independent of
the position of the polygon centroids.
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5.2 Part 1: equations
5.2.1 Notation

At the highest aggregation level, the vector data structure in a GIS contains a set 2
of N polygons p,, Q = {p,, ¢ = 1, ..., N}. Building blocks of these polygons are the
vertices. Vertices are connected by arcs which together form a closed loop. The
boundary of a polygon p, is described by vertices with labels s,(7) and coordinate pairs
x4().y4(0), i =1, ..., n,. The boundary of an adjacent polygon r # g from the same set QO
is described by vertices with labels s,(j) and coordinate pairs x,(j),y (), j =1, ..., n,,. As
polygons may share several vertices, we introduce the variable 8(s4(7),s,(j)): 8(s54(7),5:(/))
= 1 if vertex s,(i) = s4j) occurs in both polygon p, and p,, and 8(s,(i),s(j)) = 0
otherwise.

The polygon area is calculated from the coordinates of the vertices that describe
the polygon’s boundary. The trapezoid rule requires that the vertices are sorted in
counter clockwise direction so that vertex i—1 comes just before and vertex i+1 just
after vertex i. As a polygon is described by a closed loop of vertices, s5,(0) = s,(n,) and
sq(ngt+1) =s,(1). The polygon area A(p,) is calculated as:

A(pq>=%-in(i)-(Yq<z'+1)—Yq(i—1>) 5)

The true coordinates x,(7) and y,(i) are rarely known. Instead we have recorded
X,(7) and Y,(i) with unknown errors &(i) and #(i):

E(Xy(1)) = x,(i) + E(e(D)) s E(Yy(D) = y4(D) + E(n(2))

The estimated polygon area A(p,) can now be decomposed into the unknown true
area a(p,) and two error terms, B(p,) and C(p,):

Ap) =)+ Bp) + Cpy) ©)
a(pq>=%-qulxq@-(yq(i+1>—yq(i—1>)

B(p,) =3 2001, (+1) =T, =D)+70)- (X, (+1) =X, (=)

and

c(r,) =%-§‘,8(l’)-(n(i+l)—n(i—l))

5.2.2 Model assumptions

Derivation of the equations for var(4(p,)) and cov(4(p,).A(p,)) depends on the
assumptions made on the structure of errors ¢ and #. In this chapter we assume that &(7)
and #(i) are distributed according to a continuous distribution with mean 0 and
variances o%(i) and azy(i). We assume that the distribution of errors may be different in
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different vertices, that errors in the x- and y-direction of each individual vertex are
uncorrelated, and that the errors between vertices are uncorrelated:

E(e(i)) =0 E(() =0
E(&°(2)) = 0"x(0) ; E(rr (D) = 0°,(0) ; E(e(d)n(i)) =0
E(e(i)e(k) =0 V k=i B (k) =0V k=i :Be@)nk)=0Y k=i

In the absence of bias in x,(i) and y,(i), i.e. E(¢(i)) = 0 and E(5(i)) = 0, one finds
that E(B(p,)) = E(C(p,)) = 0. As a result, A(p,) 1s an unbiased estimate of the true area
a(p,). Bias may exist, however. If that is the case and the bias is known, then it can be
removed by subtracting it from the coordinate values X,(i) and Y,(i). Variance and
covariance equations can then be applied to the resulting unbiased coordinates. Nesset
(1999) found bias in errors in vertices, related to the length of shadows cast
perpendicular to the boundaries of patches of forest and found that this led to biased
areas estimates.

In the equations proposed in this chapter, we relax the assumption that the position
accuracy is the same for all vertices. In equations for var(4(p,)) based on the epsilon
band concept, this relaxation is impossible, as the concept presumes a fixed width of
the error-band describing the uncertainty in the position of an arc (Leung and Yan,
1998).

We assume that the errors in x- and y-direction in each individual vertex are
independent. Chrisman and Yandell (1988) examined the Digital Line Graph data set of
the U.S. Geological Survey and found a negligibly small correlation, p = 0.026.
Bondesson et al. (1998) showed that such dependency occurs if a vertex’s coordinates
are measured using trigonometry (i.e. using the angle and distance to other vertices),
but does not occur when measurements are made with GPS. Chrisman and Yandell
(1988) and Griffith (1989) derived a variance equation that included dependence of
errors in x- and y-direction.

The last assumption is that positional errors between different vertices are
independent. Examples of such dependency are (figures la and 1b):

e Errors caused by shadow may be positively correlated, because vertices located on
the same boundary have shadows casting into the same direction.

e If a road has a fixed width, then errors on either side of the road are positively
correlated. As a result, uncertainty in the area of a polygon on one side of the road
is correlated with uncertainty in the area of the polygon on the other side of the road
(e.g. py and p, in figure 1b). According to the equations proposed in this chapter, the
two are independent, because they do not share a single vertex with 8(s,(7),s(j)) = 1

Griffith (1989) derived the variance equation for the case where errors were
correlated between adjacent vertices. Keefer et al. (1991) quantified correlation
between adjacent vertices using time-series analysis. With the fitted model of
correlation between vertices, they then calculated variance in polygon area using Monte
Carlo Simulation. Naesset (1999) also measured serial correlation between adjacent
nodes, but did not include it explicitly in his computations. Implicitly it was included,
because random errors were added to segments, i.e. equal random errors to each of the
vertices defining the segment. To our knowledge, correlation between errors of non-
adjacent vertices (figure 1b) has not been addressed in literature. The difficulty in
modelling this correlation is due to the problem of identifying which vertices have
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correlated errors, as these cannot simply be identified on the basis of adjacency (as in
figure 1a).

(a) (b)
Pq

P,

Figure 1. Correlation in errors between vertices; (a) adjacent vertices, (b) non-adjacent
vertices. Arrows indicate errors, which are correlated in size and direction.

The review processes of the articles by van Oort et al. (2005) and Bogaert et al.
(2005) coincided and for this reason the two could not refer to each other. Reference to
the work by Bogaert et al. (2005) is now added in this chapter. Bogaert et al. measured
correlation in errors of GPS measurements. They found no correlation in errors in x-
and y-direction for individual vertices. They did however find correlation between
different vertices, depending on the time span between GPS measurements. Serial
correlation was absent at time spans larger than 30 seconds.

5.2.3 Variance and covariance equations

The variance and covariance in polygon areas are calculated as a function of the
variances in the vertex coordinate values. The variance equation (7) is defined as:

var(4(p,)) = E(4(py)) — {E(A(py)} (7)

Substitution of A(p,) with a(p,) + B(p,) + C(p,) and elimination of terms with
expectation zero yields:

var(A(p,)) = E(B*(p,)) + E(C(p,)) + 2-E(B(p,)-C(p,)) (8)
where:

E(B (pq))—% ( Sle@) (v, G+ -Y, -0 + 20 (x, G+ - X, (- 1))2]j

(Zq:[ez(i)'(77(1'+1)—f7(i—1))2 ]j

LI»—‘

E(C*(p,))=

and
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| Zlror- e -ni-n) 6+ D-v,6-))+
E(B(p) Cp, )= F 1 ~0

n

Z_q:[nz(i)-(5(i+1))—e(i—1))-(Xq (i+1)-X,Gi-1)]

Note that a(p,) is a constant and hence does not occur in an expression of the
variance. Substitution of E(£X(i)) = 6°.(i), E(77°(0)) = o°,(i), E(X()) = x(i) and E(¥(i)) =
(i), and elimination of terms with expectation zero yields the variance equation:

var(A(p,)) = % Z[az - (v, +D=,G =D +020)- (v, G+ D-x,G-D |
- ©)
_,_i.Z[o-f(i)-(o'yz(i+1)+0';(i_1))]

Although our derivation is similar to that in Chrisman and Yandell (1988), the final

form of (9) differs in two aspects:

1. their equation allowed for the errors x- and y-direction to be correlated, whereas we
assumed absence of correlation;

2. their equation did not allow for differences in the positional accuracy of vertices,
whereas (9) allows for such differences to exist.

The covariance equation is derived in a similar way as the variance equation, starting
from equation 10:

cov(A(py),A(pr)) = E(A(py)Ap,)) — E(4(py))-E(A(py)) (10)

Substitution of A(p,) = a(p,) + B(p,) + C(p,) and A(p,) = a(p,) + B(p,) + C(p,) and
elimination of terms with zero expectation yields:

cov(A(py).A(pr) = EBPy)B(p,) + E(Cpy) C(py) (11)
where

) -e(j) Y, G+ 1))=Y, i-DNY,(j+D-Y,(j-1
E(B(Pq),B(Pr))=i-E(zr(Z) £()- (£, G+ D=7, G =D¥,(F+D=Y,(-D)+ D

n@)-n()- (X, G+ D)= X, (= DYX, G +1)- X, (1)

E(C(p,)-C(p,)) = i E(X[e()- 2()- i+ D)= =1)- (aG+ )= = 1))

and summation is carried out over the vertices shared by both polygons.

Substituting  o°(i), o°(i), X,(0), y,i), x() and y() into E(B(p,)-B(p,) and
E(C(py)-C(pr)) we obtain the covariance equation (12). The binary (s,(i),s.7)) 1s used
to identify where substitution is possible. For example if 6(s,(i),s{7)) = 1 then
E(&(i) &) = o%(i), else E(&(i) &(j)) = 0. If S(s4(1),547)) = 1 and 8(s,(i+1),s,(—1)) = 1
then E(&(i) &) n(i+1)-n(j-1)) = o-(i)c’(i+1) in the term E(C(p,)-C(p,)). The
covariance equation under these conditions equals:
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cov(4(p,), 4(p,)) =

é-iié(sq (z‘),sru))-{

i=l j=1

o2(0)- (v, (+1)=3,G=D) (7, G+ D=, - D)+

o2(i)-(x, i+ D) =x, (i =1)-(x, G+ - x,(j - 1)) } (12
5(Sq(i+1),s,(j—l))-ayz(i+l)+

L(sq(i—l),s,(jﬂ)).aj(i—l) ]

Note that in this equation summation occurs twice over each vertex 6(s,(i),57)) = 1, so
the result is divided by 2, resulting in the (1/8) instead of (1/4).

- X YA, s, ()20

5.2.4 Illlustration

The equations presented in the previous section were implemented in a script in the
programming language AML of the GIS software package ArcInfo by ESRI. This
section serves as a simple illustration of the equations presented. Figure 2 shows two
adjacent polygons p,-1 and p,—,, with reference to the vertex numbers as stored in the
GIS. See the figure for notation. The axes show the coordinate values in x- and y-
direction.

A ...... ...... ...... ...... ...... ...... ...... Vertex |abe| numbers |n the
Y (m.): - figure as stored in the GIS.

Notation in equations:
i i é i i - For p1: let s1(i-1)=7, s1(i)=1 and
10 oo fontoadli s NG ()22
; : . For pz let s2(j-1)=2, s2(j)=1 and
29 o s(j+1)=8
© Then for the binary &:
; : : : : o 8(s1(i-1),s2(j+1))=8(7,8)=0
Y (A 20 D R R L 8(si(i),s2())=5(1,1)=1
5 5 5 5 : - 3(sa(i+1),82(-1))=8(2,2)=1

0 T x(my)
0 2 4 6 8 10 12
Figure 2. Two polygons with reference to vertex numbers.

Table 1 lists the contribution of each vertex to var(4(p;)), var(4(p,)) and
cov(4(p1),A(p2)), with elaborate notation for vertex s,(i) = s2(j) = 1. Note that for vertex
1 the binary 6(s;(i—1),s2(j+1)) equals 0 and that for vertex 4 the binary d(s;(i+1),s2(7—1))
equals 0. The contribution of vertex 2 to var(4(p;)) is equal to the contribution of vertex
2 to var(4(py)), both of which are equal to the contribution of vertex 2 to —
1-cov(4(p1),A(p2)). If the per unit area values of the polygons are v; and v, = v; + d,
then the contribution of uncertainty in the position of vertex 2 to uncertainty in the
utility value U(Q) is (eq. 4): var(U(Q)) = vi* - var(A(p))) + v> - var(4d(py)) +
2vivecov(A(p1),A(p)) = d*var(A(p))), where var(4(p))), var(4(p,)) and
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cov(A4(p1),A(p2)) refer to the individual contribution of this vertex. We notice in passing
that this is the contribution of the uncertainty in the polygons for that single vertex and
is therefore different from var(A(p;)) as calculated with 9, which expresses contribution
from all vertices delineating polygon 1. This also applies to var(4(p,)), cov(4(p1),4(p2))
and the notation in table 1. The result dz-var(A(pl)) implies that the larger the difference
between v, and v,, the greater is the vertex’s contribution to var(U(Q)). If the polygons
p1 and p, have the same per unit area value (d = 0), then uncertainty in the position of
vertices 2 and 3 does not contribute to var(U(Q2)).

Table 1. Contribution of uncertainty in the position the vertices in figure 2 to
var(4(p1)), var(A(pz)) and cov(A(p1),4(p2)). The table lists only the non-zero
contributions.

vertex 51(1) = s2(j) =1

var(A(py)) = 0.25[" (1) (8-2)" + 0 ,(i):(8-4)’] + 0.25:0° (i) [0"(i+1) + & (i-1)]
=9-¢°(i) + 4¢°,(i) + 0.25:0*,(i) [¢",(i+1) + & (i~1)]
var(A(p,)) =0.25[0",(j) (1-8)> + 0°,(j)- (12-8)°] + 0.25°0",(j) [0, (j+1) + o, (j~1)]

= 12.25:0°(i) + 4-0°,(i) + 0.25:0°(i)-[o* (i) + o*(i-1)]

cov(A(p1),A(p2)) = 0.25-1-[0°(i)-(8-2)-(1-8) + o7,(i)-(8—4)-(12-8)] —
0.25-1:0°(i)-[1-07(i+1) + 0-0°(i~1)]
=—10.5-0°(i) + 40°,(i) — 0.25-0%(i)-0",(i+1)

vertex 51(7) = s2(j) =2

var(4(p,)) = 16:0",(i) + 0.25:0°,(i) + 0.25:0°(i)- [0 (i*]) + 0", (i-1)]
var(4(p,)) = 16:0",(i) + 0.25:0°,(i) + 0.25:0°(i)-[ 0" (i]) + o",(i-1)]
cov(A(p),A(pr)  =-16:0"(3) — 0.250",(i) — 0.25-0",(i) [0°(i+]1) + o°,(i—1)]
vertex s1(7) = s5(j) = 3

var(4(p,)) =4-¢° (i) + 0.25:0°,(i) + 0.25-0",(i) [0 (i*+]) + o7, (i-1)]
var(4(p,)) =4-¢° (i) + 0.25:0°,(i) + 0.25-0" (i) [0 (i*+]) + o7, (i-1)]

cov(A(p))A(pr)) =—40"(i) —0.256°,(i) — 0.25:0°(i) [0" (i+]) + & (i—=1)]

vertex s1(7) = s,(j) = 4

var(A(p,)) = 1-0° (i) + 1'0°,(i) + 0.25:0°(i)-[0" (i+]1) + 0" (i-1)]

var(4(p,)) = 10" (i) + 12.250°,(i) + 0.25:0°,(i)-[ 0" (i) + 0" ,(i-1)]

cov(Ad(p),A(py)) = 1-0°(i) +3.50°,()) — 0.25:0° (i)-0° (i~1)

vertex s;(i) = 5

var(4(p,)) =25-0(i) + 9:0°,(i) + 0.25:0",(i) [0",(i+1) + o°,(i—1)]
vertex s1(i) = 6

var(4(p,)) =25-0,(i) + 0.25:0°,(i) + 0.25:0°(i)-[ 0", (i*]) + 0" ,(i—1)]
vertex s;(i) =7

var(4(p;)) =0-0",(i) + 6.25:0°,(i) + 0.25-0",(i) [0 (i+1) + o°,(i—1)]
vertex s,(j) = 8

var(A(p,)) =9-0°(j) + 9-0°,(j) + 0.25:0°,(j)-[¢",(j+1) + o, (j—1)]

vertex s,(j) =9

var(4(p,)) =30.25:0°,(j) + 6.25:0°,(j) + 0.25-0",(j) [0",(j+1) + ,(—1)]

As a numerical example consider positional accuracies equal to o.(i) = 0,(i) = 0.5 m for
all vertices. Then:

A(p) =47 m* ; A(p;) =46 m* ;
var(A(p))) = 25.47 m* ; var(4(p,)) =26.31 m* ;
cov(A(p1),A(p2)) = —5.72 m*
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With utility values per unit area v; = 10 €/m? and v, = 20 €/m’, the utility of the set Q =
{p1, p2} is: U(Q) =€ 1390 (eq. 2) and the uncertainty in U(Q) is (eq. 4): var(U(Q)) = €2
10784.38. Assuming normality, the 95% confidence interval on U(Q) is
[1186.46,1593.54] = (1£0.146)-U(Q2) = within *14.6% of U(Q)). Note that
cov(A4(p1),A(p2)) is negative, because the expansion of one polygon at the expense of
another leads to a negative covariance.

5.3 Part 2: case study

5.3.1 Introduction

Part 2 of the paper provides a practical illustration of the use of the equations
derived in part 1. The National Forest Service of the Netherlands (SBB) receives
subsidies from the ministry of agriculture, nature conservation and food quality for the
management and conservation of nature. The subsidy per unit area depends on the type
of nature. Figure 3 shows that 8 nature types are present in the study area, table 2 shows
the total subsidy (in €) received for each. The total area shown in figure 3 is 225 ha,
184 ha of which is covered by nature types for which subsidies are received. The data
set contains 1436 vertices, 1527 arcs and 97 polygons. The subsidy value of set of
polygons in the study area is U(QQ) = € 27455.

For convenience of notation we will report in this part of the paper standard
deviations instead of variances, thus ¢ instead of o%.(i) and azy(i) and std(U(Q)) instead
of var(U(Q)).

N == Nature types
m no data

- Deciduous forest on clay soils
|:| Reedbed marshland
|:| Nutrient rich meadows

- Flowery grasslands
|:| Waterbodies in fens and claysoil

™ B Hedgerows

=

O 25 50 100 Compounds
et Kilometers = i

Kilometers

Figure 3. Case study area with types of nature.
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Table 2. Nature in figure 3: description and subsidy value.

Description Area (ha) Subsidy (€)
Deciduous forest on clay soils 8.1 214
Reedbed marshland 11.1 5157
Nutrient rich meadows 147.5 20414
Flowery grasslands 33.7 0
Waterbodies in fens and claysoil 14.7 1170
Hedgerows 1.1 112
Standard orchards 1.6 387
Compounds 1.7 0

5.3.2 Data acquisition

Currently, data are acquired using the national topographical map, scale 1:10000,
and lines drawn upon this map during field visits by SBB employees. The positional
accuracy of the data is ¢ = 2.0 m for all vertices, according to SBB experts. Differences
exist in accuracy between the vertices, but it is currently impossible to identify subsets
of vertices with different accuracy. An accuracy of ¢ = 2.0 m is not unrealistic in the
field of forestry, for example Naesset (1999) reports o = 2.4 m, but most studies report
larger errors: Magnussen (1996): ¢ = 10 m (from 1:15,000 photographs), Gross and
Adler (1996): o = 6.5 m (from a 1:7,000 photograph).

The data acquisition procedure may be changed, for example:

e Await improvements in the data acquisition procedure of the national topographical
service and buy their updates;

e Switch from the national topographical map (scale 1:10000) to the use of
municipality maps (scale 1:2000), provided that these are complete for the study
area;

e Supply the employees with handheld GPS during their field visits;

e Revisit the study area with a map indicating the vertices which contribute most to
the uncertainty in the total subsidy claimed from the area and record the position of
these vertices with greater accuracy.

In terms of the terminology introduced in part 1 of the paper these changes may be
redefined as:

1. Increase/decrease in the positional accuracy of all vertices;

2. Increase in the positional accuracy of a subset of vertices.

A subset can be created using simple selection criteria based on equations 4, 9 and 12.
An alternative is to calculate each vertex’s individual contribution to std(U(Q2)) and
then select the vertices that contribute most to std(U(QQ)). The latter option is
computationally more intensive, so the question is if similar reductions in std(U(Q2))
can be realized with simple selection criteria. In the following sections we will compare
5 subsets.
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Aim

SBB would like to base decision making with regard to changes in the data
acquisition procedure on the expected implications on the uncertainty in the total
subsidy claimed from the ministry, std(U(Q2)). Our model is the whole set of equations
presented in part 1 of the paper and implemented in a GIS. Our aim is to show how this
model can support SBB in this aspect of their decision-making.

5.3.3 Methods

In two scenarios the effects of changing the positional accuracy on std(U(£2)) were
quantified. In scenario 1, the effect of increasing or decreasing the accuracy of all
vertices within the range ¢ = 1.0 m to 10.0 m was quantified. In scenario 2, we
increased the accuracy of five subsets of 500 vertices (35% of all) from ¢ =2.0 m to 0.5
m. The subsets are described in table 3. The first four subsets were created using simple
selection criteria, subset 2.5 was identified after calculation of the contribution of
individual vertices to std(U(Q)).

Table 3. Scenario 2: subsets of vertices for which the effect of increasing the positional
accuracy on std(U(QY)) is quantified.

Subset | Selection criterion Motivation

2.1 vertices on located on | The contribution of ‘inner’ vertices to
the outer boundary of | cov(4(p,).4(p,)) < 0; the contribution of ‘outer’
the study area vertices i1s 0 because these vertices have no

adjacent polygon.

2.2 vertices delineating the | Generally if A(p,) is larger var(4(p,)) is also
polygons  with  the | higher. A(p,) is weighted by v, in this subset
highest v, A(p,) because the reduction in var(U(QQ)) depends on

both var(4(p,)) and v, (eq. 4).

23 vertices part of arcs | The contribution of uncertainty in the position of a
with  longest  arc- | vertex s,(i) to var(4(p,)) depends on the distance
length* between the vertices s,(i+1) and s,(i—1) (eq. 9).

2.4 vertices part of arcs | For a vertex completely surrounded by polygons
with highest product | with the same utility value per unit area, i.e. v, = v,
(arc-length)-|v,—v,| t uncertainty in the position of the vertex does not

affect var(U(Q)) at all.

2.5 vertices with highest | Calculate directly the contribution of each vertex to
contribution to | var(U(€2)), then select the 500 vertices with the
var(U(Q))) highest contribution.

* the arc connecting vertices s,4(i) and s,(i+1) has length [(X,(7) — Xq(z”rl))2 + (Y,(0) —
Y(i+1))1"
where v, and v, are the per unit area utility values of the two polygons p, and p, on
either side of an arc
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5.3.4 Results

Contribution of individual vertices to std(U(Q2))

Figure 4 shows a part of the data set, with per vertex the contribution to std(U(€2))
in €. Inside the polygons are the per unit area values of the nature types in €/ha. The
figure shows that the contribution is larger for vertices delineating ‘valuable’ polygons,
vertices located on longer arcs and larger when the difference between the per-unit-area
values of polygons on either side of an arc is larger. The contribution to std(U(2)) is
exactly zero for vertices located on arcs which have on either side the same value per
unit area. The contribution of the 1436 vertices to std(U(Q2)) ranged from € 0.0 (330
vertices) to € 7.91, with a mean of € 0.61 a median of € 0.36. The contribution to
std(U(QY)) of the vertices in subset 2.5 (table 3) was at least € 0.57.

138 €/ha

138 €/ha

3.4 22
0.7
0.5

49
465 €/ha 31
o5 y

Figure 4. Contribution (in €) of individual vertices to std(U(€2)). Inside the polygons
are per unit area values in €/ha.

138 €/ha

Increasing the accuracy of all vertices

Recall that the subsidy value U(Q) of the study area is € 27455. With an accuracy
of ¢ = 2.0 m for all vertices std(U(Q)) = (3814 — 2276)"° = € 39.22 and the 95%
confidence interval [27377, 27531] = (1£0.0028)-U(Q2) = within +0.28% of U(Q).
Increasing or decreasing the positional accuracy of all vertices at the same time
(scenario 1), revealed the following relationship between std(U(€2)) and o:

std(U(Q)) = 19.96-¢ (13)

The 95% confidence limits are then: U(QQ) = 1.96-std(U(QQ)) = U(Q) £ 39.110.
Filling in ¢ = 10 m (Magnussen 1996) in (13) yields a 95% confidence interval of
(1£0.014)-U(Q). To realize a further reduction of the 95% confidence limits on U(QQ) to
(1£0.0010)-U(Q2), the positional accuracy should be increased to ¢ = 0.0010-U(QY) /
39.11=0.7 m.
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Increasing the accuracy of a subset of vertices

Figure 5 shows the upper limit of the two-sided 95% confidence interval on U(Q),
for each of the subsets defined in scenario 2. These limits were calculated from the
variances of each subset as computed with the model. A comparison between scenarios
1 and 2 shows that a 95% confidence limit of (1+£0.001)-U(QQ) can be obtained by either
increasing the accuracy of all vertices from 2.0 m to 0.7 m (scenario 1) or by increasing
the accuracy of 35% of the vertices to 0.5 m (scenario 2, subsets 2.4 and 2.5).

The lowest possible std(U(QQ)) given the subset size and the accuracy of the
vertices in the subset is calculated with subset 2.5. The question was if an equally low
std(U(€2)) could be achieved with subsets identified with simple selection criteria (table
3, subsets 2.1 to 2.4). The effectiveness of these criteria is now discussed. The fact that
subset 2.1 yielded the lowest reduction in std(U(Q2)) indicates that there exist vertices
inside the study area that contribute more to std(U(€2)) than vertices located on the
outer boundary of the study area. For example, a larger reduction in std(U({2)) was
obtained by increasing the accuracy of vertices delineating the most valuable polygons
(subset 2.2). The selection criterion for subset 2.2 however does not address the source
of the contribution of individual vertices to var(4(p,)) and cov(4(p,).A(p,)). For
example when a ‘valuable’ polygon is delineated by a relatively large number of
vertices s4(i), then the distance between vertices s,(i+1) and s,(i—1) is small. Equation 9
then shows that the contribution of these vertices to var(4(p,)) is small. The selection
criteria for subsets 2.3 and 2.4 were based on distances between vertices and as a result
yielded a larger reduction in std(U(QQ)). Yet however large the distance between
vertices is, the contribution to std(U(Q2)) remains zero if a vertex is shared by polygons
with identical per unit area values. This fact is accounted for in subset 2.4. Figure 5
shows that with a simple selection criterion as that applied to obtain subset 2.4, we
came very close to the lowest possible std(U(€2)) as defined by subset 2.5.

1.003 - == == o o o o o o o  — — — ————————— —————

1.003 = == 1.00240,) o o o o o o - —————— —————————— .

102 =l |em—m————— e —————

1.002 = = b e e 1.007140 cm o o o o o e e = —— '
1.00119

1,001 t= = b ——— S— —_— —-1.00093 _ _ — —1.00090m —.

Upper 95% confidence limit on U(Q) (-)

1.001 4= = b ——— R — ——— I— — —
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Subset of nodes

Figure 5. Upper 95% confidence limits on U(€2) for 5 subsets of vertices for which the
positional accuracy was increased. The vertical axis is scaled to U(2) so that 1.001
corresponds with (1+0.001)-U(Q).
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5.4 Conclusions and discussion

Our aim was to develop a model to calculate the uncertainty in the utility value of
an area described by a set of polygons with different per unit area utility values and
uncertainty in the area of these polygons. To achieve this, equations for the variance
and covariance were derived from a standard GIS area calculation. The equations were
implemented in a GIS and applied to case study by the National Forest Service of the
Netherlands (SBB). The following two sections provide a discussion on the relevance
of this study for SBB and recommendations for further research.

SBB receives subsidies for the management and conservation of the nature present
in a small study area. Knowledge of uncertainty reduction in these subsidies can
support SBB managers in decision-making with regard to resources spent on spatial
data quality. Two scenarios showed how much the uncertainty in the subsidy value
could be reduced as a result of increasing the positional accuracy. A comparison
between the scenarios showed that the same uncertainty reduction could be achieved by
either increasing the accuracy of all vertices to ¢ = 0.7 m or by increasing the accuracy
of 35% of the vertices to ¢ = 0.5 m. If different costs are associated with these two
options, then such a comparison may aid in selecting the cheapest option of the two.

Thus the model provides information that can support SBB in its decision-making.
To provide meaningful information for actual decision making on spatial data quality, a
cost-benefit analysis of the different options to increase/decrease data quality should be
added. Further, the model could be expanded by including measurements instead of
expert estimates of positional accuracy. The validity of the model assumptions
described in part 1 needs further checking. One assumption was that fuzziness could be
captured in the error-terms o, and 6. Although no evidence is given in this chapter, one
may expect that area variance is underestimated if existing fuzziness is not fully
captured in these terms (see also Magnussen 1996). Further, a number of assumptions
on the correlation of errors were made and require checking. This checking involves
measurement of correlation of errors in x- and y- direction and of correlation between
errors in different vertices. Keefer et al. (1991) provide an example of how correlation
between errors in different vertices can be measured and modelled. Complementary to
measurements, a covariance equation could be derived that includes these correlations,
just as Chrisman and Yandell (1988), Griffith (1989) and Bogaert et al. (2005) did for
the variance equation.
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6. Detection and risk in digging activities

Abstract

Digging activities are considered the largest cause of damage to underground
cables and pipelines. Contractors can reduce the risk through detection, which will cost
time and thus money. In the Netherlands, maps are the prime source of information on
the location of cables/pipelines and detection time strongly depends on whether maps
indicate the presence of cables and pipelines. Poor quality maps can contribute to
increased risk or higher risk avoidance costs. The objective of this chapter is to present
a model for calculating the trade-off between detection costs and risk and for
calculating implications of over- and incompleteness of maps. The model aims to find
the optimal detection time at which the sum of detection cost and risk is at its
minimum. A case-study showed that it is possible to parameterise the model with data
collected from contractors through a questionnaire. The case-study provides a
numerical example of calculation of the trade-off between risk and detection costs and
provides and example of calculation of costs of incompleteness. We conclude that the
model contributes valuable new insight. However, more and location specific data are
needed to enable operational use of the model.

6.1 Introduction

6.1.1 Damage to underground cables and pipelines

Underground cable and pipeline networks are used for transportation of utilities
such as gas, water, electricity, telecom, sewage and industrial liquids. Studies from the
U.S., UK., Australia, Germany, Japan and the Netherlands, reported in Muhlbauer
(2004) and in Pauwels en Wieleman (2004), indicate that damage to these networks is
in the order of at least tens of millions of euros per country per year. Figure 1, based on
Pauwels and Wieleman (2004), provides qualitative insight into the probability and
consequence of damage to the different types of cables and pipelines present in The
Netherlands. Five general causes of damage are distinguished by CONCAWE, the oil
companies European organisation for environmental and health protection: (1)
mechanical failures, (2) operational errors, (3) corrosion, (4) natural hazards and (5)
digging activities. Analyses of 30-years damage records on oil and gas pipeline
networks in Europe and the U.S. by Guijt (1998) and True (2004) indicate that digging
activities represent the largest cause of damage: between 30 to 50% of all damages
could be attributed to digging activities. These percentages are European and U.S.
averages for pipelines. Higher percentages may be expected where the frequency of
digging activities is higher, for example in more densely populated areas such as the
Netherlands. Also higher percentages may be expected for cables, which are buried less
deep and with higher densities inside urban areas.

VELIN, the Dutch organisation for owners of high-pressure (> 40 bar) pipelines,
analysed 262 incidents on 14,500 km of pipeline over a period of 4 years. 97% of the
damages was attributed to digging activities (VELIN 2004). Although this percentage
is exaggerated by the fact that the analysis also included near misses, the difference
with the 30-50% reported by True (1998) and Guijt (2004) is striking. It shows that the
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impact of digging activities is larger in more densely populated areas. With increasing
world population and increasing urbanisation the impact of digging activities may also
be expected to increase in other countries of the world.
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Figure 1. Probability and consequence of damage to all cables and pipelines in the
Netherlands, based on Pauwels and Wieleman (2004).

To reduce damage due to digging activities, understanding of the digging decision-
making process is needed. It is generally accepted that contractors can reduce damage
by spending efforts in detecting cables and pipelines. Nevertheless, there appears to be
hardly any quantitative research into the trade-off between detection costs and damage
reduction, nor research into characteristics of digging activities that affect this trade-off.
To make inferences on how characteristics of digging activities affect the probability of
damage one needs data about both those digging activities that did and those that did
not result in damage. Hardly any publication includes data on digging activities that did
not result in damage (the study by van Houten en Lourens (1995) is the single
exception known to us). Most studies however are based only on records in damage
registration systems (for example see Cooke and Jager 1998, True 1998 and Guijt
2004). In the analysis reported in this chapter, data on digging activities with no
damage are included.

Contractors, utility companies and researchers may benefit from each others
knowledge. Research may provide answers to questions and issues raised by these
companies, while addressing these questions can enrich the research agenda.
Contractors and utility companies are confronted with questions and issues on spatial
data quality (Dijkema en Zweistra 2001, Meeus en Schoof 2003, de Kruif 2004c, van
Oort 2004 and van der Stok 2005) and questions and issues on spatial data
infrastructures (which are called one-call systems in their terminology, see U.S. DoT
1999, Muhlbauer 2004, de Kruif 2004a, FGDC 2004). Many publications on spatial
data infrastructures (SDI) and spatial data quality (SDQ) can be found in geographical
information science journals, but none of these report on digging activities around
underground cable and pipeline networks. In this chapter we address the issue of SDQ.
Despite concerns about SDQ in digging activities around underground cables and
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pipelines, no conceptual model is available to provide insight into how exactly SDQ
can contribute to damage, no mathematical model is available to calculate the
implications of SDQ and little quantitative insight exists into the implications.

6.1.2 Aim and outline

Digging activities are a major cause of damage to underground cables and
pipelines. Contractors invest in reducing damage through detection. The trade-off
between detection and damage has to date never been quantified. Concerns have been
raised about the quality of maps, but it is unclear how consequences of errors in maps
can be quantified. The aim of this chapter is to develop a model that meets the
following criteria:

1. It must formalise (and thereby provide insight into) how contractors make the trade-
off between detection costs and risk reduction;

2. It can be used to quantify the trade-off between detection costs and risk reduction;

3. It can be used to quantify economic impacts of errors in cable/pipeline maps;

4. It must be possible to estimate the model parameters from questionnaires
distributed among contractors, since they are the only source of information on
without-damage digging activities.

Considering the lack of scientific research into how contractors make the trade-off
between detection costs and risk reduction, a major output of the research will be the
formulation of a model. The model presented in section 6.2 is widely applicable; the
case-study in section 6.3 is based on data from the Netherlands.

6.2 Model development

The conceptual model (§2.1) is based on interviews with contractors and utility
companies, articles in Dutch professional journals and consultancy reports. The
mathematical model (§2.2) is our formalisation of the conceptual model.

6.2.1 Conceptual model

Trade-off between detection and risk

We propose a model as depicted in figure 2. The positively sloping line shows the
detection costs which increase linearly with detection time. The lower curve shows the
risk which is the product of damage per hit and expected number of hits. The upper
curve is the total of detection cost and risk. Clearly, there is an optimal detection time
at which the total costs are at their minimum.

Normally, risk is defined as the probability of an event multiplied by the
consequence of the event. Here, because more than one cables can be present and can
be hit during one digging activity, risk is defined as the expected number of events
(=cable/pipeline hits) multiplied by their consequences. The expected number of hits
decreases non-linearly with detection time because detection starts with the most
efficient detection methods (map interpretation, aboveground detection, see Jeong and
Abraham 2004) and then proceeds to less efficient methods (underground detection).
The most common form of underground detection is to dig a number of transects
perpendicular to the expected trajectory of a cable/pipeline. With an increasing number
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of transects, the probability of encountering a deviation or extra cable in a new transect

decreases.
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Figure 2. Conceptual model of the trade-off between detection costs and risk.

Spatial data quality

The trade-off between detection costs and risk is affected by three spatial data

quality elements: completeness, vertical positional accuracy and horizontal positional
accuracy:

1.

Completeness. If a cable/pipeline is present but not shown, then this is a case of
incompleteness resulting in increased risk for the contractor who assumes that
detection is unnecessary. In the opposite case of overcompleteness the contractor
unnecessarily spends a certain amount of time on detection. Contractors can
anticipate on incompleteness by spending some time on detection even if according
to maps no cables/pipelines are present. But then they could needlessly be spending
time on detection in digging activities if conform the maps no cables/pipelines are
present.

2. Vertical positional accuracy. If the depth of a digging activity is less than the
depth of cables/pipelines shown on the map, then no hits are expected and the
optimal detection time is assumed to be zero. If an error exists in the vertical
position in the upwards direction then that can result in increased risk.

3. Horizontal positional accuracy. As indicated in figure 2, detection reduces risk.

The steepness of the slope of the risk curve depends amongst others on the relative
horizontal positional accuracy. A higher relative horizontal positional accuracy will
result in the slope being less steep. Relative positional accuracy is the accuracy of
the position of the cable/pipeline relative to other objects on the same map.
Absolute positional accuracy is the accuracy of objects in the map relative to a
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coordinate system. Currently it is not an issue for contractors. It would be an issue
if digging machinery were fully controlled by digital maps in combination with
positioning systems such as GPS, GALILEO or GLONASS.

Although the model presented in the next section could be used to calculate the
implications of all three elements, we have chosen to describe the procedure to
calculate implications only for the element completeness. Contractors and utility
companies pointed to this element as the most relevant element for further analysis,
because:

1. According to contractors, maps are used to find the approximate horizontal position
of cables and pipelines, not the exact position. Once their location has
approximately been found, other aboveground and underground detection methods
are used for finding the exact position.

2. According to utility companies, depth can easily change while they remain
uninformed about these changes. Depth may change due to people adding or
removing a layer of soil, or due to erosion. As a result, utility companies have little
control over the reliability of information on this attribute. In the Netherlands, as a
consequence of the lack of control, utility companies do not provide information on
depth. Good digging practice rules for depths of different cables and pipelines exist
but utility companies cannot be held accountable for deviations from these rules.

3. On the other hand, interviews made clear that completeness is an issue and can be
improved by the utility companies. For example, they could increase the speed with
which their records are updated and could develop protocols to increase the
completeness based on notifications from contractors.

6.2.2 Mathematical model

The conceptual model visualised in figure 2 consists of equations 1 to 5, with
definitions of variables and parameters in tables 1 and 2 respectively. The expected
costs for a contractor are calculated with equation 1. Equation 1 calculates the total
costs Cost,,; as the sum of detection costs Costy, (eq. 2) and risk Cost. (eq. 3).
Detection costs depend on detection time 7imeg,, and on detection costs Costy,p. The
fact that more than one cables and pipelines can occur on one digging location has
implications for the definition of risk (explained in §2.1.1) and for the definition of
parameters Prjeony(map,loc) and Prjeqdeaa(map,loc) (see §2.2.2). Note that these two
parameters depend on the number of cables/pipelines shown on the map(s) (variable
map) and on location (variable /oc). Risk (eq. 3) is calculated as the costs in case of a
hit Costy;; (eq. 4) times the expected number of hits E(kits) (eq. 5). In equation 5 an
exponential function is used to describe the non-linear decrease of the expected number
of hits E(hits) with detection time Time,.,. Note that a decrease of E(hits) with Time e,
implies negative values for par e, iiveonty and par e iivegdead-

Cost,,, = Cost,,, +Cost,, (1)
Cost,,, = Cost,, -Time,, 2)
Cost,,, = Cost,, - E(hits) 3)

Cost,, =Cost,, Pr,.. 4)

claim
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E(hits) =

parprsize ’ log(Tlme ) + pardet,liveonly ’ (Timedet /Timetot) +

tot

Pty oon b (map,loc) - Pr, . -exp| ¥l +
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Table 1. Variables in the model.
variable description unit
Time jor detection time hour
Timeyy project time = total time of the digging activity hour
Timey,; /Time,,; fraction detection time -
map number of cables / pipelines shown on map(s) -
loc location of the digging activity -
soil(i) binary indicating whether soil type i is present, with i = I,N -
and N the total number of soil types
Timegy optimum detection time, at which total costs are at their hour
minimum

Expected number of hits

The expected number of hits equals zero if digging occurs at a depth where no
cables pipelines are present (Pr,., = 0 in eq. 5) and on a location where not a single
cable or pipeline is present (Prjiveony(map,loc) = 0 and Prjvegdeaa(map,loc) = 0 in eq. 5).
If one or more cables/pipelines are present within the digging depth, then the expected
number of hits depends on the detection time (7ime ) conditional to the project size
(Time,y) and the soil type (soil(i)).

To allow for a comparison between digging activities of different size, detection
time is divided by the total project time to obtain the unit-free fraction detection time
(Timege; | Timeyy) in equation 5. Equation 5 takes the natural log of Time,, so that if
DParpsize = 1 then the expected number of hits increases linearly with project size. If 0 <
parysize < 1 then the odds of a hit are relatively large in smaller projects but still
increasing with project size. If pary,... < 0 then more hits are expected in smaller
projects. Pauwels and Wieleman (2004) have hypothesised relatively large risks in
smaller projects, thus par,... < 1. One reason to expect a relatively large probability in
smaller projects is that requests for maps to the one-call system are more frequently
omitted in smaller projects. Another reason occurs when in a larger project
cables/pipelines are only present in a small part of the total digging area.

Through Priiveonty 5 Priveqdead » PA¥derjive ANA PaAT ey ivesdeas the model recognises the
possible implications of presence of dead (out-of-order) cables and pipelines. Based on
our interviews, we expect that risks are less efficiently reduced if dead cables and
pipelines are present, because a contractor may stop his detection activities when first
finding a dead cable or pipeline, so that the probability of hitting the live cable or
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pipeline increases. Thus in terms of equation 5, we exXpect par e jiveonty < Pardet live&dead <
0.

Table 2 Parameters in the model.

parameter description unit

Costo; total costs euros

Costyap detection costs (mainly labour, but may also include euros/hour
other costs, e.g. costs of machinery)

Costigim damage claim paid by contractor in case of registered euros/hit
damage

Preigim probability that damage is registered immediately by -

the utility company. Only in that case is a damage
claim sent to the contractor.

Pryer probability that one or more cables are present within -
the digging depth.

Ptiiveony(map,loc) ~ probability that one or more live (active) and zero -
dead (out-of-order) cables or pipelines are present, at
location loc and with map indicating the number of
cables pipelines present according to available map(s)

Ptiveqdead(map,loc) probability that one or more live (active) and one or -
more dead (out-of-order) cables or pipelines are

present

Prje(map,loc) probability that one or more live (active) cables or -
pipelines are present. Ignoring out-of-order cables and
pipelines

DA pysize project size parameter 1/hour

DAY det liveonly detection parameter for when one or more live -

(active) and zero dead (out-of-order) cables or
pipelines are present

DAY det live&dead detection parameter for when one or more live -
(active) and one or more dead (out-of-order) cables or
pipelines are present

DA det live detection parameter for when one or more live -
(active) cables or pipelines are present.

parsi(i) soil type parameter -

N number of soil types -

Definition of parameters Prijjve, Priiveony and Priivesdead

Often, but not always, cables and pipelines lie buried close together at a single
digging location. This has implications for the definition of Prjie, Priiveonsy and Priiveqdeaa.
Consider the case where maps show 4 cables/pipelines on the digging location, while
actually 5 are present. Then two possible definitions of Pry;, are:

1. treat this as 4 cases of a complete map and 1 case of an incomplete map; or
2. treat this as one case of {>1 shown on the map(s), >1 actually present}.

In this chapter, the second definition is used. The first definition implies
determining per digging activity an optimum detection time for each of the individual
cables/pipelines and then summation of these optimum detection times to obtain the
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optimum detection time for the digging activity. However, if cables/pipelines are close

together, detection times for individual cables/pipelines will coincide so that one cannot

simply sum the optimum detection times for individual cables/pipelines. The two
motivations to choose for the second definition were:

1. Our interviews indicated that contractors do not distinguish between optimum
detection times per individual cable/pipeline but do try to apply optimum detection
times per digging activity. Since one of the criteria of the model was that it must be
possible to estimate the parameters from questionnaires distributed among
contractors, it was of great importance to choose a definition that is in-line with the
contractors’ perception of their decision-making processes.

2. It simplifies the model while retaining the most determining effect of over- and
incompleteness, namely the distinction between zero and more than zero
cables/pipelines present.

Ignoring possible implications of dead (out-of-order) pipelines, Prjieony(map,loc)
and Prjyedeaa(map,loc) can be written as Prj,.(map,loc). Based on our interviews and
the discussion above, we define the instances of map and loc as:

o map = [“>1 shown on the map(s)”, “0 shown on the map(s)”, “no map(s)
available™];
e Joc = [“inside built-up area”, “outside built-up area and along infrastructure”,

“outside built-up area and not along infrastructure”].

We can now define overcompleteness as Prj,.(“>1 shown on the map(s)”) = 0, that
is, in reality not a single cable or pipeline is present while according to map(s) one or
more cables or pipelines are present. Similarly, we can define incompleteness as
Prs:.(“0 shown on the map(s)”) = 1, that is in reality one or more cables or pipelines are
present while none are shown on the maps. We will use subscripts act and asm to refer
to the actual and assumed values of parameters Prjive, Priiveonsy and Prjeqdeqsa. Then note
that while the actual value of Prj;. 4 1n an individual digging activity is a binary event,
a contractor may assume for Prj.q.s any value between 0 and 1. If in k out of K
digging activities it happens that one or more cables/pipelines are present then a
plausible assumption for Pt 1S Ptiive asm = k/K.

Implications of over- and incompleteness

Assuming that contractors select optimum detection times the model can be used to
calculate implications of over- and incompleteness and the costs of making the wrong
assumption on the over- and incompleteness. With Pry,., the procedure to calculate the
extra costs of an assumption is, in three steps:

1. Calculate optimal detection times: Timep; asm g1ven Prije,qsm and Timep; g given
Prlive,act;

2. Calculate expected costs: Costiorasm given Timeqp, agm and Priive,qc; and Costior et
given Timep;acr and Prjjve,qe, (note: different detection times, same Prjjve,qcr);

3. calculate extra costs = Costract — COStior asm

The case-study in section 6.3 presents examples of calculations on the costs of
incompleteness.
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6.3 Case-study
6.3.1 Methods

Model

The introduction noted a general lack of data on digging activities that did not
result in damage. The only way to obtain such data is by attending digging activities or
to get the information from contractors through a questionnaire. As will be shown in
section 6.4, contractors and utility companies can benefit from a fully parameterised
model. However, these benefits do not necessarily occur at the level of individual
contractors. For individual contractors filling in questionnaires costs precious time with
no direct reimbursement foreseeable. For this reason we anticipated low response rates
and a need to limit the length of the questionnaire and thereby the size of the model.
Equation 7 is the model parameterised in the case-study. Equation 8 presents the
derivation of the optimal detection time for this model. Definitions of parameters and
variables of this model are found in tables 1 and 2.

Cost,, =Cost,,, -Pr,. -Pr. (map,loc)- o
eXp(parprsize ’ log(Timetot) + pardet,live ’ (Timedet /Timetot ))+ COStlab ’ Timedet
Cost,, -Time,,
) Time,, |logl — - - -
Tlme()pl = ’ COStclaim ’ Prclaim ’ Prlive (map’ IOC) ’ pardet,live (8)
pardet,live

parprsize ’ log(Timetot)

Parameter estimation

This section describes how each parameter was estimated, based on responses to a
questionnaire sent out by CUMELA (an organisation representing contractors in the
Netherlands). Bruil Ede b.v. and another contractor who chose to remain anonymous
gave access to their damage registration systems.

Parameter Cost.,;;, was calculated as the mean of damages from the damage
registration systems of two large contractors. The means of the two contractors are used
separately in two scenarios (table 3).

Parameter Pr,,. There are two ways to estimate parameter Pr;,,. The first (eq.
9) is based on data from utility companies and may underestimate Pr.;,;;, because the
annual number of failures also includes failures due to other causes than digging
activities. The second (eq. 10) is based on data from the questionnaire and may
overestimate Pr.;, if not all hits are reported. Both ways to estimate Pr.;, were
applied and used separately in two scenarios (table 3)

annual number of claims
Prclaim = . (9)
annual number of failures
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Pr - number of hits reported to utility company

claim —

(10)

number of hits

Parameter Prj.(map,loc). 1deally, parameter Prj..(map,loc) would be estimated
from the number of cables/pipelines actually present. The only way to be absolutely
sure about this number is to uncover the entire area, which is obviously very costly. As
an approximation, the number encountered during digging can be used. In the
questionnaire, contractors were asked to report per digging activity (1) the number of
cables/pipelines reported in/by the map(s), (2) the number of cables/pipelines
encountered during digging and (3) location (“inside built-up area”, “outside built-up
area and along infrastructure” or “outside built-up area and not along infrastructure”).

Parameters par,;. and par e ive. Contractors were asked to register per digging
activity values of Timeg.,, Time;y,, map, loc and hits. hits is a discrete variable, with a
high number of Os (no damage) and incidentally a positive discrete number of hits. For
such a data set, the appropriate method to estimate pary.. and pargeiive 15 through
Poisson regression (Neter et al. 1996). We may expect a contractor to apply a larger
detection time Timey., if he anticipates a high value of Cost.n . Parameters par,,siz.
and par e e are estimated from Timey.,, Time,, and hits and may be dependent on
contractors’ anticipated values of parameters Cost.iuim, P¥eiim and Prjy.(map,loc). We
would like to estimate par,... and pargeiv. independent of anticipated values of
Costeiaim, Prewim and Prj.(map,loc). Therefore, par,.si-. and parge,ive were estimated
only from recordings of digging activities where we were sure that the estimate of
Prive(map,loc) would be very close to one. A test showed no significant correlation
between the fraction detection time (7imeg ., / Time,,;) and the expected damage in case
of a hit (Cost, j4in). Interference of Pr,;, was not investigated.

Parameter Cost,p. Parameter Cost,, was calculated as the mean of personnel
costs per hour per contractor. Other costs (machinery) were not considered because
they are relatively small and because they can be quite difficult to estimate.

6.3.2 Results & discussion

400 contractors were sent a questionnaire, 19 contractors returned a total of 81
questionnaires. In the text below, the number of records from which parameters were
estimated is often lower than 81, because often not all fields in the questionnaire were
filled in.

Parameters

Table 3 shows parameter estimates. The two scenarios reflect the uncertainty on
the values of parameters Cost.,im and Preu,. Scenario 1 is the scenario with the lowest
risk, scenario 2 is the scenario with the highest risk. Parameter Cost, ., was estimated
from damage registration systems of two different contractors. Investigation of the
cause of the large difference was beyond the scope of this chapter. From de Kruif
(2004b), based on an interview with experts of a utility company, Pr.;, was estimated
as in equation 9: 1100/1700 = 0.65. From the questionnaire we obtained that 25 out of
29 damages were reported to the owner, thus Pr,, = 0.862.

For parameters par,... and parge. it was tested whether they deviated
significantly from zero. Note that since detection reduces risk parge. v must be lower
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than 0, so that the alternative hypothesis for parge e was Hi: parieiive < 0. Tests

yielded:

1. Test Ho: parysize = 0, Hi: pary,sz. # 0, result: par,,i.. = -0.3109, s.e. = 0.1349, p-
value 0.0212;

2. Test Ho: pargesiive = 0, Hi: pariesive < 0, result: parge; jive = -4.98609, s.e. = 4.4646, p-
value 0.1320.

Both null hypotheses were rejected at a = 0.15, suggesting that the expected
number of hits E(hits), equation 5, is as we proposed correlated with total project time
and with detection time. The standard errors however are so large that accurate
prediction of E(hits) is impossible. The negative value for par,,.. 1s consistent with
results from interviews by Pauwels and Wieleman (2004) which suggested that par,,i-.
< 1. Histogram 6, see the discussion in §3.2.4, suggests a possible underestimation of
DParprsize.

Table 3. Parameter estimates.

parameter estimate unit
scenario 1* | scenario 2*

Costejaim 407 894 euros

Pre1aim 0.65 0.862 -

Prive see table 4 -

DAV pysize -0.3109 -0.3109 1/hour

DAY det live -4.9869 -4.9869 -

Costyp 28 28 euros/hour

* the two scenarios reflect uncertainty in the parameters Cost i and Pr jp.

Table 4 lists for 48 digging activities whether 0 or >1 cables/pipelines were
encountered. From table 4, one can calculate the probability that >1 cables/pipelines are
encountered, given that one is inside built-up area, with 0 cables/pipelines shown on the
map. This probability is calculated as Pry,.(“0 shown on the map(s)”, “inside built-up

area”) =2/(2+3) = 0.4.

Table 4. Frequency of presence and absence of cables and pipelines.

Location
inside built-up outside built-up not specified
area area
number encountered* - >1 0 >1 0 >1 0
>1 shown on map(s) 15 1 11 9
0 shown on map(s) 2 3 1 4 1 1

* encountered during the digging activity

Trade-off between detection and risk

Figure 3 shows how the expected number of hits decreases with the fraction
detection time and with increasing project size. Figure 4(a) shows, for a project of size
Time,,; = 20 hours, the trade-off between detection and risk. The black and white
markers reflect the uncertainty in parameters Cost,j» and Pr.;, as in scenarios 1 and 2
(table 3). In scenario 1, the optimum fraction detection time is around zero. Scenario 2
would give an optimum fraction detection of approximately 0.2. The circles in figure
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4(b) show the expected number of hits associated with these optima, respectively 0.39
and 0.15. Although no alternative quantitative data are available to compare with, these
optima appear rather high. Further research should indicate whether they can be
explained by uncertainty in model parameters, or by other factors.

o I et o e
w IS o o ~

o
()

expected number of hits

0.1

4

0.4 45

5.5

. . 0.5 6
detection / total time (-) log(total project time) (hours)

Figure 3. Expected number of hits decreases with fraction detection time and is higher
in smaller projects.

With the scenario 2 parameters Cost.izim = 849, Ptejgim = 0.862, Prj(map,loc) = 1,
Parysize = -0.3109, pargeive = -4.9869 and Costy,, = 28 and with total project time
Time,,, = 20 hours the model yields (eq. 8) an optimal detection time of Time,, = 4
hours, corresponding with an optimal fraction detection time of Time,,, / Time;,; = 0.2.
At this optimum, the expected costs (eq. 7) are Cost,,, = 224 euros.
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Figure 4. Trade-off between detection and risk. Part a shows the costs, b shows the
expected number of hits. Black and white markers, corresponding with scenarios 1 and
2 (table 3), reflect the uncertainty in parameters Cost juin and Pt jgim.

Implications of over- and incompleteness

Continuing with the scenario 2 parameters and with total project time Time;,, = 20
hours, some calculations on incompleteness (Prjive 0 shown on the map(s)”,*) = 1).
The asterix (*) is used to indicate that the calculation applies for any location. The
subscripts act and asm are used for actual and assumed. For a contractor who assumes
error-free maps, following the procedure outlined in section 6.2.2, we obtain:

1. Optimum detection times given Pty 45m(“0 shown on the map(s)”,*) = 0 and
Ptiiveae(*“0 shown on the map(s)”,*) = 1 are: Time,p;asm = 0 hours and Timep; e = 4
hours;

2. Given Priiye 4“0 shown on the map(s)”,*) = 1 the expected costs are: Costyprasm =
304 euros and Costps 4t = 224 euros;

3. The extra costs due to assuming an error-free map are 304 - 224 = 80 euros.

Table 5 shows the expected total costs and extra costs for three different
assumptions Pty 4sm(““0 shown on the map(s)”,*), when in a digging activity maps are
complete and incomplete. From table 5, one can calculate the expected costs when
incompleteness occurs for example in 4 or in 0 out of 10 digging activities. Results of
these calculations are shown in table 6. In case of incompleteness in 4 out of 10 the best
thing to do is to assume Pty 45m(“0 shown on the map(s)”,*) = 0.4, with costs 1,211
euros. If maps are always error-free (0 out of 10 incomplete) then the best thing to do is
to assume Prjjeqsm(“0 shown on the map(s)”,*) = 0.0, with costs 0 euros. Over 10
digging activities of Time;,; = 20 hours the costs of incompleteness in 4 out of 10
digging activities are then at least 1,211 euros.
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Table 5. Total and extra costs depending on Prjiye 4sm and Priive gc: -

Costy (€q.7): total costs extra costs (euros) per
(euros) per digging activity' digging activity'
Prlive,asm Prlive,act (“0 Prlive,act (“O Prlive,act (“O Prlive,act (“0
(“0 shown on shown on shown on shown on
shown on map”) =1 map”) =0 map”) =1 map”) =0
map”) Time,pqsm | (Incomplete) (complete)® | (incomplete) (complete)’
0 0 304 0 80 0
0.4 0.3 290 9 66 9
1 4 224 112 0 112

' assuming parameters as in scenario 2 (table 3) and total project time Time,,; = 20
hours

? calculated as outlined in section 6.2.2

3 Ptiiveac: (O shown on map”) = 0 is complete because conform the map(s) no
cables/pipelines are present. The only costs are then the detection costs: Costz =
Timeopt, asm* COStiap

Table 6. Example of calculation of costs of incompleteness.

nr. of digging activities' with sum over all digging activities
Prlive,asm Prlive,act (“O Prlive,act (“O
(“0 shown on shown on
shown on map”) =1 map”’) =0 total costs’ extra costs’
map”) (incomplete) (complete)2 (euros) (euros)
0 4 6 1,215 319
0.4 4 6 1,211 315
1 4 6 1,566 670
0 0 10 0 0
0.4 0 10 88 88
1 0 10 1,117 1,117

" assuming parameters as in scenario 2 (table 3) and total project time Time;,; = 20

hours in all 10 digging activities

2 Ptiiveac: (O shown on map”) = 0 is complete because conform the map(s) no
cables/pipelines are present

? by multiplication of the number of digging activities in this table with costs in table 6

Actual and optimal fraction detection time

In the questionnaire, respondents filled in for individual digging activities the
actual detection time Timeg, . With the model, we can compute for each of these
individual digging activities the optimal detection time Time,, . Then, the difference
between the two can be calculated (shown in figure 5) and the extra costs due
deviations from the optimum can be calculated (figure 6). In both figures, the top and
bottom histogram reflect the uncertainty in parameters Cost., and Preu, as in
scenarios 1 and 2 (table 3). In figure 5 the top histogram (mean -0.0648) suggests that
contractors took slightly less risk than optimal, the bottom histogram (mean 0.0211)
suggests that contractors took slightly more risk than optimal. Visually, the histograms
in figure 5 suggest that contractors’ detection times are close to optimal. Figure 6
shows that generally, deviations from the optimum bring along extra costs of less than



88 Chapter 6

200 euro per digging activity. For the three digging activities with extra costs higher
than 500 euro a partitioning (not shown) into detection costs and expected risk revealed
that the extra costs were all due to excessive detection costs and not due to excessive
risks. This could mean either that par,,.. is underestimated in the model, or risk-
adverseness of contractors or their contractors. More data need to be collected in order
to determine which of the two is the case.
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Figure 5. Histograms of difference between optimal and actual fraction detection time
for the two scenarios (table 3). The top histogram (mean -0.0648) suggests that
contractors took slightly less risk than optimal; the bottom histogram (mean 0.0211)
suggests that contractors took slightly more risk than optimal. Expected extra costs due
to deviation from the optimum are shown in figure 6.
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Figure 6. Histograms of expected extra costs caused by deviations from the optimal
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Detection time and expected damage

Clearly, it is advantageous to spend more time on detection if the expected damage
in case of a hit is larger. The questionnaire also asked contractors to indicate how much
damage they expected in case of a hit. Expected economic damage categories (in euros)
were: (1) <500, (2) < 5,000, (3) <50,000 and (4) >50,000. Expected physical danger
categories were: (1) “no physical danger”, (2) “physical danger, non lethal” and (3)
“lethal”. We tested for correlation between fraction detection time and expected
damage and obtained very low correlation coefficients of 0.19 and 0.22, with one-sided
p-values of 0.19 and 0.16. There are two possible explanations for this inconsistency:
(1) the model does not correctly represent the digging decision-making process and (2)
contractors are poorly informed about damage in case of a hit. Results of van Houten
and Lourens (1995) support the second explanation.

6.4 Conclusions & further research

Digging activities represent the largest cause of damage to underground cables and
pipelines, but very little scientific research is available. Dutch professional journals,
consultancy reports and newspaper have raised concerns about spatial data quality.
There was a lack of insight in which element of spatial data quality (SDQ) was most
relevant and a lack of insight into how implications of SDQ could be quantified. Based
on this chapter seven conclusions can be drawn:

1. The formulation of the conceptual and mathematical model is general and therefore
widely applicable. The issue addressed occurs all over the world, the case-study
presented some quantitative results for the Netherlands;

2. The model provides insight into the trade-off between detection costs and risk;

The model can be used to calculate the optimal detection time;

4. Three spatial data quality parameters are relevant: completeness, horizontal
positional accuracy and vertical positional accuracy. Completeness is the most
relevant element;

5. The model could be used to calculate implications of all three elements. The
chapter presents and illustrates a procedure to calculate implications of over- and
incompleteness;

6. The case-study proved that it is possible to parameterise the model with data
derived from questionnaires among contractors;

7. The case-study results are consistent with our model of the contractor’s behaviour,
that is, histograms suggest that their detection times are close to optimal.

(98]

6.4.1 Beyond insight: applicability in decision-making
Once parameterised with acceptable accuracy, the following potential applications
of the model are foreseen:

1. At the start of a project contractors can use the model to decide on how much to pay
for detection. Or conversely, contractors may confront the contractor with the
expected damage and expected number of hits for the sum that the contractor offers
to pay for detection;
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2. The model could be used to substantiate claims by Dutch contractors (Dijkema en
Zweistra 2001, de Kruif 2004c, van der Stok 2005) who argue that they suffer the
consequences of poor quality maps;

3. For contractors that take more risk than optimal the model could be used to
convince them of the benefits of increasing their detection time;

4. When detection efficiencies and mean detection fractions per contractor are known,
they could become a selection criterion in bids for contracts. Through economic
competition this could lead to an overall increase in safety for public and
contractors;

5. Costs for utility companies can be included in the model. Once included in the
model, the model could be used to estimate the costs and benefits of
increasing/decreasing the spatial data quality of their maps (as already suggested in
van Oort 2004).

6.4.2 Further research

The case-study illustrated that the model could, as required, be parameterised with
data collected from contractors through a questionnaire. The previous section showed
that, once parameterised with acceptable accuracy, applications valuable for society
may be expected. The first recommendation is therefore to collect more data so that the
model can be put to use. Two modelling challenges lie ahead. Firstly, the challenge of
finding a method that accounts of the coincidence of detection times for individual
cables/pipelines. Secondly, to make parameters dependent on the type of cable or
pipeline, such as the size of the damage claim (Cost.,;,). Once more data have been
collected it will be a challenge to parameterise and validate the model.
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7. Do users ignore spatial data quality?

Abstract

Risk analysis (RA) has been proposed as a means of assessing fitness for use of
spatial data but is only rarely adopted. The proposal is that better decisions can be made
by accounting for risks due to errors in spatial data. Why is RA so rarely adopted? Most
Geographical Information Science (GISc) literature stresses educational and technical
constraints. In this chapter we propose, based on decision-theory, a number of
hypotheses for why the user would be more or less willing to spend resources on RA.
The hypotheses were tested with a questionnaire, which showed that the willingness to
spend resources on RA depends on the presence of feedback mechanisms in the
decision-making process, on how much is at stake and to a minor extent on how well
the decision-making process can be modelled.

7.1 Introduction

Spatial data are data about topography and specific themes of the earth's surface.
They are an ingredient in almost all public decision-making (Burrough and McDonnell
1998, Cornélis and Brunet 2002), a popular estimate is that 80% of the data used by
managers and decision-makers is spatial. Many researchers have stressed the need to
deal with issues of Spatial Data Quality (SDQ), as the risk of misuse of spatial data has
greatly increased (see conference proceedings: Lowell and Jaton, 1999; Heuvelink and
Lemmens, 2000; Mowrer and Congalton, 2000; Hunter and Lowell, 2002). Important
causes of this increased risk of misuse are the growing availability of spatial data,
greatly enhanced access to these data, enhanced possibilities of manipulating these data
and a growing group of inexperienced users (Aronoff 1989, Morrison 1995; Doucette
and Paresi 2000). Furthermore, producers of spatial data sets provide little information
regarding the quality of these data sets (Ostman 1997, Jakobsson and Vauglin 2001).
Geographical Information Systems (GIS) have limited functionality for visualisation of
SDQ (van der Wel 2000) and limited functionality for quantifying error-propagation
(Forier and Canters 1996, Heuvelink 1998, Duckham, 2002). Apart from these factors,
Openshaw (1989) noted that the traditional response of both researchers and users has
too often been to simply ignore SDQ. Agumya and Hunter (1999) categorised users
into three groups according to how they respond to SDQ in data:

1. Those who establish that the data are suitable prior to using the data;

2. Those who wish to chose the best among several suitable data sets;

3. Those who use data regardless of their suitability, either because they must use it or
they choose to ignore its SDQ.

According to Agumya and Hunter (1999), studies about the proportion of users in
each class are scant, but there is a general belief among researchers that most users fall
into the third class. Fitness for use can be established in various ways: consultation with
experts, trial and error, by assessing legal or other constraints to the use of a data set, by
assessing for which purposes the data set is already used and for which purposes it is
produced, to the most rigid method which is to establish fitness for use through risk
analysis (RA). In RA implications of errors or uncertainties on expected outcomes of a
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decision-making process are quantified and data sets are only used if the risks

generated are acceptable (Agumya and Hunter 2002). Several authors have shown that

RA can be used as a means of assessing fitness for use, see for example Li et al. (2000),

Crosetto and Tarantola (2001), de Bruin et al. (2001) and de Bruin and Hunter (2003).

Users are often assumed to 'ignore' SDQ if they did not establish fitness for use through

RA prior to using spatial data sets (Openshaw 1989, Agumya and Hunter 1999).

Knowledge of the risks caused by SDQ can contribute in several ways to decision-

making:

e It helps in finding out which level of SDQ is required for the decision, and this can
aid in selecting the data set to be used;

e It helps in deciding how many resources need to be reserved for mitigation;

e It helps in deciding on the deciding the risk-level of an investment;

e It helps in redesigning the decision-making process to reduce sensitivity to low
SDQ;

e By being candid towards stakeholders about the risks taken in a decision, it is
possible to preserve public trust in public decision-making.

Given these advantages, one may wonder why RA is so rarely adopted as a means
of establishing fitness for use. One possible explanation is the lack of time and money.
More informative explanations explain why the costs are considered to be too high and
why the benefits are considered to be too low. A full list of hypotheses or explanations
as to why users so rarely quantify risks due to SDQ prior to using spatial data in
decision making is rarely found in geographical information science (GISc) literature
(but see Openshaw 1989). Rather, most research articles briefly state that risks due to
SDQ are not quantified and that this may be a problem. The greatest part of such a
research article then addresses one or more of the following problems:

1. Lack of awareness that SDQ may cause risks;

2. Lack of practical examples illustrating the needs and benefits of RA;

3. Users lack the skills to conduct RA;

4. Earlier research has been limited to error propagation analysis on the geographical
analyses conducted using GIS, the outcomes of which are less tangible to users than
outcomes reported in terms of risks;

5. Lack of methodologies for calculating risks due to SDQ;

6. Lack of supporting tools in current GIS software (for example error-buttons,
visualisation, wizards);

7. Poor documentation of SDQ.

The seven problems mentioned above can be summarised as two classes of
hypotheses as to why users ignore SDQ: educational (1 to 4) and technical (5 to 7). The
origin of this chapter lies in an effort to address the problems as listed above. In 2002,
we conducted open interviews with GIS/spatial data users in public decision-making to
find case studies in which these problems could be addressed. Surprisingly, we noted in
these interviews that the users concerned were well aware of spatial data quality issues,
yet in many cases they considered quantification of implications of SDQ (= Risk
Analysis, RA) unnecessary or impossible. They deliberately chose to ignore SDQ. The
three problems addressed in this chapter are (1) that existing educational and technical
explanations could not fully explain these users’ motivations, (2) that there is hardly
any empirical research into why users ignore spatial data quality and (3) that there



96 Chapter 7

appears to be an unknown discrepancy between researchers and spatial data users in
public decision-making.

The aims of this chapter are therefore: (1) to propose new hypotheses as to why
users ignore SDQ, (2) to test these hypotheses in a questionnaire and (3) to test for
differences between respondents of the questionnaire.

7.2 Methods

7.2.1 Definitions and outline

Before proposing hypotheses, relevant definitions are given in Table 1. Section
7.2.2 then presents hypotheses based on decision-theory.

Table 1. Definitions

Decision (-making): a process consisting of five phases (from Cornélis and Brunet
2002)

1. DO: documentation and information = identification of data needs, problems,

objectives and knowledge of how these can be achieved;

DA: decision analysis = definition of alternative actions to achieve these objectives;

DT: decision taking = selection of one of the alternatives;

DI: decision implementation = implementation of the selected action and,

DE: decision evaluation = evaluation of the outcomes of the action in terms of

objective achievement.

SDQ: Spatial Data Quality. A general term, covering all aspects that affect the quality
of a spatial data set. Prominent elements of SDQ are positional accuracy, attribute
accuracy, completeness, logical consistency and lineage. See chapter 2 of this
thesis.

ol

RA: Risk-analysis. Quantification of risks by multiplying potential outcomes of a
decision with the probabilities of these outcomes. Probabilities of outcomes are
calculated, using error propagation analysis, from probabilities of errors.
Probabilities of errors are derived from SDQ reports of the input data set(s). If
necessary, additional inf