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Preface

It was in the beginning of the nineties that the first major steps for solving the problem
of GPS integer ambiguity resolution were made. Ten years later part of the problem
could be considered solved, as efficient algorithms were available for the estimation of
the integer ambiguities with the highest possible success rate. However, as a geodesist
one cannot be content with this result, since parameter resolution means estimation and
validation. The latter problem turned out to be very complex due to the non-standard
distributions of the parameters involved.

Prof. Peter Teunissen has made a major contribution to the solution of the integer
estimation problem with the introduction of the LAMBDA method in 1993. He made
me aware of the open problem with respect to integer validation, and - as I started to
work on this problem - has given me indispensable theoretical input.

This thesis starts with a description of the GNSS observation models, and then outlines
the theory on integer estimation and validation as it was available when I started to
work on this topic. This part does contain some relatively new results on the parameter
distributions, and some important comments on the validation procedures as proposed in
the past and used in practice. The remaining chapters are all devoted to ’new’ estimation
and validation algorithms.

In this place I would of course like to thank all of my (former) colleagues at MGP for
their support and contribution to a good research environment. A special thanks goes to
the following people: my promotor Peter Teunissen for the supervision, input, feedback,
comments and discussions; Kees de Jong, my supervisor in the first two years; Dennis
Odijk for proofreading this thesis; Peter Joosten for the computer support; Ria Scholtes
for the administrative support; the members of the examination committee for their
critical reviews and useful comments.

Finally, I would like to thank René for his help with the layout and graphics and of course
his overall support.
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Summary

The GNSS integer ambiguities: estimation and validation

Fast and high precision relative positioning with a Global Navigations Satellite System
(GNSS) is only possible by using the very precise carrier phase measurements. However,
these carrier phases are ambiguous by an unknown number of cycles. The knowledge
that the ambiguities are integer-valued has been exploited in the past 15 years for the
development of integer ambiguity resolution algorithms. Once the ambiguities are fixed
to their integer values, the carrier phase measurements start to act as if they were very
precise pseudorange measurements.

The estimation process consists then of three steps. First a standard least-squares
adjustment is applied in order to arrive at the so-called float solution. All unknown
parameters are estimated as real-valued. In the second step, the integer constraint on
the ambiguities is considered. This means that the float ambiguities are mapped to
integer values. Different choices of the map are possible. The float ambiguities can
simply be rounded to the nearest integer values, or conditionally rounded so that the
correlation between the ambiguities is taken into account. The optimal choice is to use
the integer least-squares estimator, which maximizes the probability of correct integer
estimation. Finally, after fixing the ambiguities to their integer values, the remaining
unknown parameters are adjusted by virtue of their correlation with the ambiguities.

Nowadays, the non-trivial problem of integer ambiguity estimation can be considered
solved. However, a parameter estimation theory is not complete without the appropriate
measures to validate the solution. So, fixing the ambiguities should only be applied if
there is enough confidence in their correctness. The probability of correct integer esti-
mation can be computed a priori – without the need for actual observations – and is
called the success rate. Only if this success rate is very close to one, the estimated fixed
ambiguities may be considered deterministic. In that case it is possible to define test
statistics in order to validate the fixed solution. If the success rate is not close to one,
in practice a user has to choose between two undesirable situations:

• Integer validation is based on wrong assumptions, since the randomness of the
fixed ambiguities is incorrectly ignored;
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• No attempt is made to fix the ambiguities because of the low success rate, although
there is still a probability that the ambiguities can be fixed correctly.

Examples of integer validation tests proposed in literature, are the ratio test, the projector
test, and the difference test. Some of these integer validation tests are defined such that
the invalid assumption of deterministic fixed ambiguities is avoided. However, these
tests lack a sound theoretical foundation. Moreover, often fixed critical values are used
based on experience. But that implies that in many situations the tests will either be
too conservative or too optimistic.

Obviously, validation of the integer ambiguity solution is still an open problem. In order
to avoid the above two situations, two approaches are investigated here.

The first method uses a new ambiguity estimator, which is in some sense always superior
to its float and fixed counterparts. This estimator is the Best Integer Equivariant (BIE)
estimator. It is best in the sense that it minimizes the mean squared errors of the
estimators. This is a weaker performance criterion than that of the integer least-squares
estimator, the maximization of the success rate. This might be an advantage if the
success rate is not high, since then a user would not use the fixed solution, but stick
to the float solution. The BIE ambiguity estimator is equal to a weighted sum over all
integer vectors, and the weights depend on the probability density function of the float
ambiguities. Therefore, the BIE estimator can be considered as a compromise between
the float and fixed solution; those are approximated in the extreme cases of very bad
or very good precisions, respectively. The disadvantages of BIE estimation are that an
exact probabilistic evaluation of the solution is still not possible, and the procedure is
computationally complex. Moreover, it was shown that the BIE estimator significantly
outperforms the float or fixed solution only in a limited number of cases.

Therefore, another new class of integer estimators is investigated: the class of Integer
Aperture (IA) estimators. IA estimation is an overall approach of integer estimation and
validation. This is the case because three a priori probabilities are distinguished: the
success rate, the fail rate, and the undecided rate. Around each integer an identically
shaped acceptance region, referred to as the aperture pull-in region, is defined, with
the size determined by the choice of a maximum allowed fail rate. With respect to the
shape of the regions different choices are possible. Examples are ellipsoids and scaled
versions of the integer bootstrapping or integer least-squares pull-in regions. It is also
shown that the acceptance regions corresponding to the ratio tests, the projector test
and the difference test are examples of aperture pull-in regions. Finally, the optimal IA
estimator is defined such that the success rate is maximized for a fixed fail rate.

IA estimation has several important advantages. The first is that it is an overall approach
to the integer estimation and validation problem, which makes exact probabilistic evalu-
ation of the final solution possible. Furthermore, the acceptance region is determined by
the choice of the maximum allowed fail rate, which is exactly what a user wants. This
means that the region depends on the model at hand, and thus on the precision. With
the traditional approaches this is not the case, so that in general the tests are either too
conservative or too optimistic. In the first case this leads to a unnecessarily long time
to first fix, in the second case the fail rate will be unacceptably high.
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Finally, it is shown that the popular ratio test and the difference test perform almost
as good as the optimal IA estimator if the fixed fail rate approach is used. So, a
theoretical justification is given for these tests, such that an appropriate choice of the
critical values is possible. Also the IA least-squares estimator, based on using down-
scaled integer least-squares pull-in regions, performs well. This estimator is identical to
the integer least-squares estimator combined with integer hypothesis testing, but with
the advantage that the acceptance region is determined by the choice of the fail rate
and not by the false alarm rate.
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Samenvatting (in Dutch)

De GNSS geheeltallige meerduidigheden: schatting en validatie

Hoge precisie relatieve plaatsbepaling met behulp van een Global Navigation Satellite
System (GNSS) is alleen mogelijk als de zeer precieze fasewaarnemingen van de draaggolf
gebruikt worden. Helaas zijn deze fasewaarnemingen meerduidig, omdat niet gemeten
kan worden hoeveel cycli er aan de waarneming zijn voorafgegaan. Wel is bekend dat de
meerduidigheden geheeltallig zijn, en deze kennis is uitgebuit voor de ontwikkeling van
algoritmes voor geheeltallige meerduidigheidsbepaling. Als de meerduidigheden eenmaal
geschat zijn, kunnen de fasewaarnemingen beschouwd worden als zeer precieze pseudo-
afstandsmetingen.

De schattingsprocedure bestaat dan uit drie stappen. Allereerst wordt er een standaard
kleinstekwadratenvereffening uitgevoerd, resulterend in de zogenaamde float oplossing.
Alle onbekende parameters worden in dit geval geschat als reëelwaardig. In de tweede
stap wordt er gebruik gemaakt van de voorwaarde dat de meerduidigheden geheeltallig
moeten zijn. Daarvoor kunnen verschillende schatters gebruikt worden. Het simpelst is
om de float meerduidigheden af te ronden naar de dichtstbijzijnde geheeltallige waarden
(integer rounding). Een andere mogelijkheid is om de meerduidigheden conditioneel af
te ronden, zodat de correlatie van de meerduidigheden betracht wordt (integer boot-
strapping). De optimale keuze is echter om de integer kleinstekwadraten schatter te ge-
bruiken, omdat deze de kans op correcte geheeltallige schatting maximaliseert. Tenslotte,
nadat de meerduidigheden bepaald zijn, worden de resterende parameters gecorrigeerd
op basis van hun correlatie met de meerduidigheden. De uiteindelijke oplossing wordt
de fixed oplossing genoemd.

Het niet-triviale probleem van geheeltallige meerduidigheidsschatting kan op dit moment
als opgelost beschouwd worden. Echter, zonder geschikte maten om de schatting te
valideren, is de oplossing nog niet compleet. De fixed meerduidigheidsoplossing mag
alleen gebruikt worden als er genoeg vertrouwen is in de correctheid ervan. De kans op
het correct schatten van de geheeltallige meerduidigheden kan a priori, dat wil zeggen
zonder dat waarnemingen nodig zijn, berekend worden. Deze kans wordt de success rate
genoemd. Alleen als de success rate zeer dichtbij één ligt, mogen de geschatte fixed
meerduidigheden als deterministisch beschouwd worden. In dat geval is het mogelijk om
toetsgrootheden te definiëren die validatie van de fixed oplossing mogelijk maken. Maar
als de success rate te laag is, zal een gebruiker in de praktijk een keuze moeten maken
tussen twee onwenselijke situaties:
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• Validatie van de geheeltallige oplossing gebaseerd op foute aannames, doordat de
fixed meerduidigheden onterecht als deterministisch beschouwd worden;

• Er wordt geen poging gedaan de meerduidigheden te bepalen omdat de success
rate te laag is, terwijl er toch een kans bestaat dat de juiste geheeltallige oplossing
gevonden zou worden.

Voorbeelden van integer validatietoetsen die in de literatuur zijn voorgesteld zijn de
ratio-toets, de projectortoets en de verschiltoets. Sommige van deze integer validatie
toetsen zijn zodanig gedefinieerd dat de foutieve aanname van deterministische fixed
meerduidigheden wordt vermeden. Deze toetsen ontberen echter een goede theoretische
basis. Bovendien worden vaak vaste kritieke waarden gebruikt die gebaseerd zijn op
ervaring. Maar dat betekent dat in veel situaties de toetsen ofwel te conservatief ofwel
te optimistisch zullen zijn.

In dit proefschrift is het onderzoek beschreven naar twee methodes om het geschetste
probleem op te lossen.

De eerste methode betreft het gebruik van een nieuwe schatter, de zogenaamde best
integer equivariant (BIE) schatter. Deze schatter maakt wel gebruik van de voorwaarde
van geheeltallige meerduidigheden, maar niet op de optimale manier. De schatter is
’best’ in de zin dat de mean-squared error (MSE) geminimaliseerd wordt. De BIE meer-
duidigheidsschatter is gelijk aan een gewogen som over alle integer vectoren, waarbij de
gewichten afhankelijk zijn van de kansdichtheidsfunctie van de float meerduidigheden.
De BIE schatter kan daarom beschouwd worden als een compromis tussen de float en
fixed oplossing; deze worden benaderd in de extreme gevallen van respectievelijk oneindig
slechte of oneindig goede precisie. Nadelen van BIE schatting zijn dat een exacte prob-
abilistische evaluatie van de oplossing nog steeds niet mogelijk is, en dat de procedure
nogal complex is en veel rekentijd vergt. Bovendien is aangetoond dat de BIE schatter
slechts in een beperkt aantal gevallen tot duidelijk betere resultaten leidt dan de float
of de fixed oplossing.

Daarom is ook onderzoek gedaan naar een andere nieuwe klasse van schatters: de klasse
van integer aperture (IA) schatters. Hierbij zijn schatting en validatie gëıntegreerd, door-
dat a priori drie kansen worden onderscheiden: de kans op correct fixen (success rate), de
kans op foutief fixen (fail rate), en de kans op niet fixen (undecided rate). Rondom elke
integer wordt een gelijkvormig acceptatiegebied (aperture pull-in region) gedefinieerd,
waarbij de grootte bepaald wordt door de keuze van een maximaal toelaatbare fail rate.
Met betrekking tot de vorm zijn verschillende keuzes mogelijk. Voorbeelden zijn el-
lipsöıdes en geschaalde pull-in regions (bootstrapping of integer least-squares). Verder
is aangetoond dat ook de acceptatiegebieden behorend bij de ratio-toetsen, de projec-
tortoets en de verschiltoets voorbeelden zijn van aperture pull-in regions. Tot slot is de
optimale IA schatter gedefinieerd zodanig dat voor een vaste fail rate de success rate
wordt gemaximaliseerd.

IA schatting heeft belangrijke voordelen. Ten eerste is het een overall aanpak voor het
integer schattings- en validatieprobleem, die tevens een exacte probabilistische evaluatie
van de uiteindelijke oplossing mogelijk maakt. Verder wordt het acceptatiegebied vast-
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gelegd door de keuze van de maximaal toelaatbare fail rate, precies wat een gebruiker
wil. Dit betekent dat het acceptatiegebied afhangt van het model, en dus de precisie,
waarmee op dat moment gewerkt wordt. Met de traditionele methodes is dat meestal
niet het geval en zijn de toetsen ofwel te conservatief of te optimistisch. In het eerste
geval leidt dat tot onnodig lange ’times to first fix’, in het tweede geval zal de fail rate
onacceptabel hoog zijn.

Tot slot is aangetoond dat de populaire ratio toets en de verschiltoets bijna net zo
goed presteren als de optimale IA schatter indien de kritieke waarde wordt bepaald
door de maximaal toelaatbare fail rate. Er is nu dus een theoretische basis beschikbaar
voor het gebruik van deze toetsen, zodanig dat ook een correcte keuze van de kritieke
waarde mogelijk is. Ook de IA kleinstekwadraten schatter, gebaseerd op het gebruik van
geschaalde integer least-squares pull-in regions, presteert goed. Deze schatter is identiek
aan de integer least-squares schatter in combinatie met de integer hypothese toetsing
zoals hiervoor beschreven, maar met als voordeel dat het acceptatiegebied bepaald wordt
door de keuze van de fail rate en niet van de kans op vals alarm.

Samenvatting (in Dutch) xiii





Notation and symbols

Mathematical notation and matrices

Ip identity matrix of order p
ep p-vector with ones
0 vector or matrix with zeros

|Q| determinant of matrix Q
‖x‖2

Q squared norm, with positive definite Q: ‖x‖2
Q = xTQ−1x

[x] x is rounded to the nearest integer
Cε

z ellipsoidal region centered at z and with radius ε

Signals

c velocity of light in vacuum: c = 299792458 m s−1

f frequency
λ wavelength: λ = c/f

GNSS observation model

¤
s refers to satellite s

¤r refers to receiver r
¤,j refers to frequency j
m number of satellites
f number of frequencies
k number of epochs

p, φ code and phase observation respectively
ts transmission time from satellite s
tr reception time at receiver r
τ signal travel time
e, ε code and phase noise respectively
dt, δt clock error of code and phase observations respectively
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d, δ instrumental delay for code and phase observations respectively
da, δa atmospheric delay for code and phase observations respectively
T tropospheric delay
I ionospheric delay
µj = λ2

j/λ
2
1

dm, δm multipath effect for code and phase observations respectively
M real-valued carrier phase ambiguity parameter
N integer-valued carrier phase ambiguity parameter
ρ satellite-receiver range
r position vector
u unit line-of-sight vector
ψ mapping function for tropospheric delays

P,Φ vector with code and phase observation respectively
ρ vector with satellite-receiver ranges
T vector with tropospheric delays
I vector with ionospheric delays
dt vector with lumped instrumental delays and clock errors
a vector with carrier phase ambiguities
Λ diagonal matrix with wavelengths as diagonal elements
G matrix with line-of-sight vectors
Ψ vector with mapping functions for tropospheric delays
D double difference operator

σp, σφ standard deviation of code and phase observation respectively
σI standard deviation of ionospheric pseudo-observation

Estimation

E{·} expectation operator
D{·} dispersion operator
y m-vector of observations
a n-vector with ambiguity parameters
b p-vector with real-valued parameters: baseline, atmospheric delays, etc.
e, ε noise parameters
A,B design matrices: E{y} = Aa+Bb+ e
Qx variance-covariance matrix of x
Qx|v conditional variance-covariance matrix: Qx|v = Qx −QxvQ

−1
v Qvx

σ2 variance factor
Gx cofactor matrix of x: Qx = σ2Gx

Q = LDLT LDLT -decomposition of Q with lower triangular matrix L,
diagonal matrix D

σi|I conditional standard deviation of ith entry of a parameter vector
conditioned on the I = 1, . . . , i− 1 entries
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Parameter distributions

fx̂(x) probability density function of random variable x̂
fx̂|v̂(x|v) conditional probability density function of random variable x̂
x̂ ∼ N(x,Qx) random variable x̂ is normally distributed with mean x and

variance-covariance matrix Qx

x̂ ∼ χ2(n, λ) random variable x̂ has χ2-distribution with n degrees of freedom
and non-centrality parameter λ

x̂ ∼ F (m,n, λ) random variable x̂ has F -distribution with m and n degrees of
freedom and non-centrality parameter λ

P (x̂ = x) probability that x̂ will be equal to the mean x
P (x̂ = x|v̂ = v) probability that x̂ will be equal to the mean x conditioned on v̂ = v
α false alarm rate or level of significance
γ detection power

Ambiguity resolution

x̂ float estimate of x (= least-squares estimate)
x̌ fixed estimate of x
ε̌ ambiguity residuals â− ǎ
x̃ best integer equivariant estimate of x
x̄ integer aperture estimate of x
Ps, Pf , Pu probability of success, failure, and undecided respectively
Ps,LS, Pf,LS integer least-squares success and fail rate respectively
Sz pull-in region centered at the integer z
sz(x) indicator function:

sz(x) = 1 ⇔ x ∈ Sz, sz(x) = 0 otherwise

Ω̂ squared norm of residuals of float solution:

Ω̂ = êTG−1
y ê

σ̂2 float estimate of variance factor:

σ̂2 = Ω̂
m−n−p

Ω̌ squared norm of residuals of fixed solution:
Ω̌ = ěTG−1

y ě
σ̌2 fixed estimate of variance factor:

σ̌2 = Ω̌
m−p

Ri squared norm of ambiguity residuals:

R1 = (â− ǎ)TG−1
â (â− ǎ) = Ω̌ − Ω̂

R2 = (â− ǎ2)
TG−1

â (â− ǎ2)
Ωz aperture pull-in region centered at the integer z
Ω aperture space: Ω = ∪

z∈Zn
Ωz

µ aperture parameter
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Acronyms

ADOP Ambiguity Dilution Of Precision
B integer Bootstrapping
BIE Best Integer Equivariant
CIR Cascade Integer Resolutoin
DIA Detection-Identification-Adaptation
DD Double Difference
DGNSS Differential GNSS
DGPS Differential GPS
EIA Ellipsoidal Integer Aperture
GLONASS GLObal NAvigation Satellite System (Russian)
GNSS Global Navigation Satellite System
GPS Global Positioning System
IA Integer Aperture
IAB Integer Aperture Bootstrapping
IALS Integer Aperture Least-Squares
IE Integer Equivariant
ILS Integer Least-Squares
ITCAR Integrated TCAR
LAMBDA Least-squares AMBiguity Decorrelation Adjustment
LOM Local Overall Model (test)
LOS Line-Of-Sight
LS Least-Squares
MDB Minimal Detectable Bias
MDE Minimal Detectable Effect
OIA Optimal Integer Aperture
OTF On-The-Fly
PDF Probability Density Function
PIA Penalized Integer Aperture
PMF Probability Mass Function
R integer Rounding
RTK Real-Time Kinematic
SD Single Difference
TCAR Three Carrier Ambiguity Resolution
TEC Total Electron Content
ZTD Zenith Tropospheric Delay
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Introduction 1
1.1 Background

In the past decade the Global Positioning System (GPS) has found widespread use
in different fields such as surveying, navigation and geophysics. The requirements on
precision, reliability and availability of the navigation system for these applications have
become higher and higher. Moreover, the positioning information often needs to be
obtained in (near) real-time. Without the development of integer ambiguity resolution
algorithms, it would never have been possible to meet these requirements with GPS.

Fast and high precision relative positioning with a Global Navigations Satellite System
(GNSS) is namely only possible by using the very precise carrier phase measurements.
However, these carrier phases are ambiguous by an unknown number of cycles. The
ambiguities are known to be integer-valued, and this knowledge has been exploited for
the development of integer ambiguity resolution algorithms. Once the ambiguities are
fixed on their integer values, the carrier phase measurements start to act as if they were
very precise pseudorange measurements.

The estimation process consists then of three steps. First a standard least-squares
adjustment is applied in order to arrive at the so-called float solution. All unknown
parameters are estimated as real-valued. In the second step, the integer constraint on
the ambiguities is considered. This means that the float ambiguities are mapped to
integer values. Different choices of the map are possible. The float ambiguities can
simply be rounded to the nearest integer values, or conditionally rounded so that the
correlation between the ambiguities is taken into account. The optimal choice is to use
the integer least-squares estimator, which maximizes the probability of correct integer
estimation. Finally, after fixing the ambiguities to their integer values, the remaining
unknown parameters are adjusted by virtue of their correlation with the ambiguities.

Nowadays, the non-trivial problem of integer ambiguity estimation can be considered
solved. However, a parameter estimation theory is not complete without the appropriate
measures to validate the solution. So, fixing the ambiguities should only be applied
if there is enough confidence in their correctness. The probability of correct integer
estimation can be computed a priori – without the need for actual observations – and is
called the success rate. Only if this success rate is very close to one, the fixed ambiguity
estimator may be considered deterministic. In that case it is possible to define test
statistics in order to validate the fixed solution. If the success rate is not close to one,
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in practice, a user has to choose between two undesirable situations:

• Integer validation is based on wrong assumptions, since the randomness of the
fixed ambiguities is incorrectly ignored;

• No attempt is made to fix the ambiguities because of the low success rate, although
there is still a probability that the ambiguities can be fixed correctly.

Some integer validations tests are defined such that the invalid assumption of a determin-
istic fixed ambiguity estimator is avoided. However, these tests lack a sound theoretical
foundation. Moreover, often fixed critical values are used based on experience. But that
implies that in many situations the tests will either be too conservative or too optimistic.

1.2 Objectives and contribution of this work

Obviously, validation of the integer ambiguity solution is still an open problem. In order
to deal with the above two situations, two approaches are investigated:

• A new class of ambiguity estimators is used, which results in estimators that in
some sense are always superior to their float and fixed counterparts.
This estimator is the Best Integer Equivariant (BIE) estimator. It is best in the
sense that it minimizes the mean squared errors of the estimators. This can be
considered a weaker performance criterion than that of the integer least-squares
estimator, the maximization of the success rate. This might be an advantage
if the success rate is not high, since then a user will generally not have enough
confidence in the fixed solution, and stick to the float solution. It is investigated
how BIE estimation can be implemented. The performance of this estimator is
then compared with the fixed and float estimators.

• A new ambiguity estimator is used by defining an a priori acceptance region, or
aperture space.
This new ambiguity resolution method is the so-called integer aperture estimation.
The problem of ambiguity validation is incorporated in the estimation procedure
with this approach. Instead of distinguishing only the probability of success and
of failure, also the probability of not fixing (undecided rate) is considered a pri-
ori. An integer acceptance region is then defined by putting constraints on the
three probabilities; only if the float ambiguities fall in the acceptance region, the
ambiguities will be fixed using one of the well-known integer estimators.

The theoretical aspects of all approaches are considered, as well as implementation
aspects. Thereby it is avoided to go into too much detail with respect to proofs and
derivations; these are only included if they contribute to the understanding of the theory.
The methods are implemented in Matlab R©.

Furthermore, it is investigated how the various methods will perform. For that purpose,
Monte-Carlo simulations are used, since then the ’true’ situation is known and it is
possible to compare the performance of different estimators and validators.
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The contribution of this thesis is that a clear overview of the traditional and the new
ambiguity resolution methods will be given, and it will be investigated why and when
a certain approach is to be preferred – from a theoretical point of view as well as by
comparing the performance of the methods. Furthermore, the implementation aspects
will be discussed, as well as the open issues in that respect.

1.3 Outline

The outline of this thesis is as follows. In chapter 2 a brief introduction to GNSS
positioning is given. The observations models are presented, as well as the general
theory of quality control for GNSS applications.

Chapter 3 is devoted to the problem of ambiguity resolution. Three integer estima-
tors are described: integer rounding, integer bootstrapping, and integer least-squares.
Furthermore, the probabilistic properties of the float and fixed estimators are analyzed.
Finally, the existing methods for integer validation are described and evaluated. The
pitfalls of these methods, both theoretical and practical, will be discussed.

Integer least-squares estimation is generally accepted as the method to be used for integer
ambiguity estimation. A disadvantage is, however, that it is not guaranteed that the
resulting baseline estimator is closer to the true but unknown baseline than the original
least-squares (float) estimator. Therefore, it is investigated in chapter 4 how the best
integer equivariant estimator performs, which is defined such that the resulting baseline
estimator always outperforms the least-squares solution in a certain sense.

The conclusions on the existing integer validation methods reveal the need for an integer
testing method, which is based on a sound theoretical criterion. For that purpose, an al-
ternative ambiguity resolution method, namely integer aperture estimation, is developed
in chapter 5. It is shown that integer estimation in combination with the well-known
ambiguity validation tests result in estimators, which belong to the class of integer
aperture estimators. Furthermore, some alternative integer aperture estimators are pre-
sented, among them the optimal integer aperture estimator. It is defined such that the
maximum success rate is obtained given a fixed fail rate.

Finally, the conclusions and recommendations are given in chapter 6.
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GNSS observation model and quality control 2
In this chapter the GNSS observation model is presented. An observation model consists
of the functional model, which describes the relation between the observations and
the unknown parameters of interest, and of the stochastic model, which describes the
stochastic properties of the observations. A great variety of GNSS models exists, which
are used in applications like surveying, navigation and geophysics. An overview of these
models can be found in textbooks like (Hofmann-Wellenhof et al. 2001; Leick 2003;
Parkinson and Spilker 1996; Strang and Borre 1997; Teunissen and Kleusberg 1998).

Here, first a brief overview of the current and future Global Navigation Satellite Systems
is given. In section 2.2 the GNSS observation equations are presented. Also, a description
of the different error sources is given. With this information it is then possible to set up
the functional model. Different types of models can be distinguished. Firstly, positioning
and non-positioning models. Secondly, depending on the differencing technique that is
applied.

The stochastic models corresponding to the different functional models, are presented
in section 2.4. Finally, section 2.5 presents the general quality control theory applicable
to GNSS models.

2.1 Global Navigation Satellite Systems

In the last decade the Global Positioning System (GPS) has found widespread use in all
kind of applications. It is the first Global Navigation Satellite System (GNSS) offering
the accuracy nowadays needed for e.g. surveying, navigation, and geophysics. More
or less synchronously to GPS, the former Soviet Union has been developing a similar
system under the name GLONASS. A third Global Navigation Satellite System is still
under development and should be operational in 2010. It is the European Galileo system.

2.1.1 Global Positioning System

Currently, the nominal GPS constellation consists of 24 satellites, divided over six orbital
planes, but more satellites are available at this moment (on average 28). The orbital
inclination is 55o and the orbital radius is 26,500 km.
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Table 2.1: Signal and frequency plan for modernized GPS.

frequency band frequency [MHz] civil precise military

L1 1575.42 C/A P M

L2 1227.60 C/A P M

L5 1176.45 I + Q

The principle of GPS is measuring distances between the GPS satellites and a receiver
antenna. The ranging signals are transmitted on two carriers centered at the L1 and
L2 frequency bands. Two types of Pseudo Random Noise (PRN) codes are modulated
on these carriers. Only the C/A code on the L1 band is freely available for civil users.
The P-codes are much more precise but are only available for military users; civil users
can just access the encrypted P-codes, referred to as P(Y)-codes. The encryption of the
P-codes is called Anti-Spoofing.

In the future a third frequency will be added, namely the L5 frequency. The codes
modulated on the L5 carrier will be freely available. Furthermore, a civil code on L2 will
become available, and military M-codes will be transmitted on L1 and L2. Table 2.1
gives an overview of the available signals.

2.1.2 GLONASS

The Russian equivalent to GPS is the GLObal NAvigation Satellite System (GLONASS).
Like GPS, the nominal constellation consists of 24 satellites but with an orbital inclination
of 64.8o and an orbital radius of 25,500 km. GLONASS also transmits on the L1 and
L2 frequency bands, but each satellite transmits its signals with a different frequency
offset.

The complete GLONASS constellation of 24 operational satellites has only been available
for a short time in 1996. Since then the number of satellites decreased and not enough
replacements were launched. It is planned that GLONASS should become completely
operational with a complete constellation in the period 2007-2022, and it is planned to
transmit on a third frequency as well in the band 1190-1212 MHz, including integrity
information.

2.1.3 Galileo

The Galileo satellite constellation will consist of 30 satellites, including three active
spares. The satellites are divided over three orbital planes using the Walker 27/3/1
constellation plus the spares. The inclination will be 56o and the orbital radius 29,600
km (Salgado et al. 2001; Zandbergen et al. 2004).

Galileo will transmit on four frequency bands. Table 2.2 gives an overview of the signals
and the services for which they are available (Erhard 2002).
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Table 2.2: Signal and frequency plan for Galileo. +: with integrity message; ++: with
commercial data.

frequency band frequency [MHz] OS SOL CS PRS

E2-L1-E1 1575.42 I/NAV I/NAV + I/NAV ++ G/NAV

E6 1278.75 C/NAV ++ G/NAV

E5b 1207.14 I/NAV I/NAV + I/NAV

E5 (E5a+E5b) 1191.795

E5a 1176.45 F/NAV F/NAV F/NAV

The open service (OS) provides basic navigation and timing functions, using freely ac-
cessible signals and data, which are the Open Access Navigation Signals (F/NAV) on
E5a, and the Integrity Navigation Signals (I/NAV) on E5b and E2-L1-E1 (also simply
referred to as L1), but without the commercial data or integrity messages.

The Safety-of-Life Service (SOL) provides access to the same signals as OS users, but
additionally SOL users have access to the I/NAV including the integrity messages trans-
mitted on the E5b and E2-L1-E1 bands.

The Commercial Service (CS) is also available at the same signals as the OS, but users
will have additional access to commercial data (for which they have to pay) transmitted
on the Integrity Navigation Signals on E5b and E2-L1-E1, and to the Controlled Access
Navigation Signals (C/NAV) on E6.

Finally, the Public Regulated Service (PRS) will include navigation and timing functions
through Restricted Access Navigation Signals (G/NAV) on E6 and E2-L1-E1.

2.2 GNSS observation equations

Processing of the GNSS signals results in two basic observations: code and phase. The
first is also referred to as pseudorange. The geometric distances between satellites and
receivers can, however, not be derived from these observations directly. First, several
bias terms have to be taken into account, as will be outlined in this section. Observation
equations, which are parameterized in terms of geometric ranges, will be referred to as
geometry-free observations equations. However, most users will not be interested in
these distances, but in the (relative) receiver positions. Therefore, it will also be shown
how the geometry-free observation equations must be linearized in order to arrive at
geometry-based observation equations.

2.2.1 Code observations

The code or pseudorange observation is a coarse measure of the receiver-satellite dis-
tance. It is derived from the time difference between signal reception at receiver r and
signal transmission at satellite s. The time of signal transmission is equal to the time
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of reception diminished with the signal travel time. This gives the following basic code
observation equation:

ps
r,j(t) = c [tr(t) − ts(t− τ s

r )] + es
r,j(t) (2.1)

with:

ps
r,j : code observation at receiver r from satellite s on frequency j [m]
t : time of observation in GPS time [s]
c : velocity of light in vacuum [m/s]
tr : reception time at receiver r [s]
ts : transmission time from satellite s [s]
τ : signal travel time [s]
e : code measurement error

Both the receiver clock time and satellite clock time are not exactly equal to GPS time.
Therefore, the respective clock errors dtr and dts need to be taken into account:

tr(t) = t+ dtr(t) (2.2)

ts(t− τ s
r ) = t− τ s

r,j + dts(t− τ s
r ) (2.3)

Inserting equations (2.2) and (2.3) in (2.1) yields

ps
r,j(t) = cτ s

r,j + c [dtr(t) − dts(t− τ s
r )] + es

r,j(t) (2.4)

In order to determine the geometric distance between the satellite and the receiver, the
signal travel time τ s

r,j needs to be corrected for instrumental delays at the satellite and
the receiver, and also for atmospheric effects and multipath:

τs
r,j = δτ s

r,j + dr,j + ds
,j (2.5)

δτ s
r,j =

1

c

[
ρs

r + das
r,j + dms

r,j

]
(2.6)

with:

δτ : signal travel time from satellite antenna to receiver antenna [s]
dr : instrumental code delay in receiver [s]
ds : instrumental code delay in satellite [s]
ρ : geometric distance between satellite and receiver [m]
da : atmospheric code error [m]
dm : code multipath error [m]

Insertion of equations (2.5) and (2.6) into (2.4) gives the following code observation
equation:

ps
r,j(t) =ρs

r(t, t− τ s
r ) + das

r,j(t) + dms
r,j(t)

+ c
[
dtr(t) − dts(t− τ s

r ) + dr,j(t) + ds
,j(t− τ s

r )
]
+ es

r,j(t)
(2.7)
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2.2.2 Phase observations

The phase observation is a very precise but ambiguous measure of the geometric distance
between a satellite and the receiver. The phase measurement equals the difference
between the phase of the receiver-generated carrier signal at reception time, and the
phase of the carrier signal generated in the satellite at transmission time. An integer
number of full cycles is unknown since only the fractional phase is measured. This integer
number is the so-called carrier phase ambiguity. The basic carrier phase observation
equation is given by:

ϕs
r,j(t) = ϕr,j(t) − ϕs

,j(t− τ s
r ) +Ns

r,j + εs
r,j(t) (2.8)

with:

ϕ : carrier phase observation [cycles]
N : integer carrier phase ambiguity
ε : phase measurement error

The phases on the right hand side are equal to:

ϕr,j(t) = fjtr(t) + ϕr,j(t0) = fj(t+ dtr(t)) + ϕr,j(t0) (2.9)

ϕs
,j(t) = fjt

s(t− τ s
r ) + ϕs

,j(t0) = fj(t− τ s
r,j + dts(t− τ s

r )) + ϕs
,j(t0) (2.10)

with:

f : nominal carrier frequency [s−1]
ϕr(t0) : initial phase in receiver at zero time [cycles]
ϕs(t0) : initial phase in satellite at zero time [cycles]

The carrier phase observation equation becomes:

ϕs
r,j(t) = fj

[
τs
r,j + dtr(t) − dts(t− τ s

r )
]
+
[
ϕr,j(t0) − ϕs

,j(t0)
]
+Ns

r,j + εs
r,j(t)

(2.11)

This equation must be transformed to obtain units of meters and is therefore multiplied
with the nominal wavelength of the carrier signal:

φj = λjϕj , with λj =
c

fj

The carrier signal travel time is expanded similarly as in equations (2.5) and (2.6). This
results in the following observation equation:

φs
r,j(t) =ρs

r(t, t− τ s
r ) + δas

r,j(t) + δms
r,j(t)

+ c
[
dtr(t) − dts(t− τ s

r ) + δr,j(t) + δs
,j(t− τ s

r )
]

+
[
φr,j(t0) + φs

,j(t0)
]
+ λjN

s
r,j + εs

r,j(t)

(2.12)

Note that the atmospheric delays, the multipath error, and the instrumental delays are
different for code and phase measurements. Hence the different notation used in (2.12)
(δ instead of d). Also note that the phase measurement error is multiplied with the
wavelength, but the same notation ε is still used.
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2.2.3 Signal travel time

In the preceding two sections the signal travel time τ s
r in equations (2.7) and (2.12) has

been assumed equal for code and phase measurements, as well as for measurements on
different frequencies. In reality, this is not true since the signal travel time of the code
actually is the group travel time. Moreover, the instrumental delays and atmospheric
effects are different for the code and phase observations and for different frequencies.
The difference between the travel times of different observation types and frequencies is,
however, less than 10−7 s corresponding to sub-millimeter satellite position differences
(Teunissen and Kleusberg 1998). Therefore, the travel times of all observation types are
considered equal here.

2.2.4 Instrumental delays and clock errors

The receiver and satellite clock errors are independent of the observation type. On the
other hand, the instrumental delays are different for code and phase measurements and
for different frequencies. Still, the instrumental delays and clock errors will be lumped
together because it is not possible to separate the effects in a least-squares adjustment.
Hence:

dtr,j(t) = dtr(t) + dr,j(t)
dts,j(t) = dts(t− τ s

r ) − ds
,j(t− τ s

r )
δtr,j(t) = dtr(t) + δr,j(t)
δts,j(t) = dts(t− τ s

r ) − δs
,j(t− τ s

r )

(2.13)

2.2.5 Atmospheric delays

GNSS signals have to travel through the earth’s atmosphere on their way from satellite
to receiver. In the atmosphere neutral atoms and molecules, and charged particles
are present that interact with the signals. This causes a propagation delay and signal
absorption. The latter effect is not considered here. The propagation delay is caused
by a deviation of the propagation speed from the velocity of light in vacuum, and an
indirect delay due to signal bending. The delay is indicated with da and δa in equations
(2.7) and (2.12) respectively.

The atmosphere can be divided in different ”layers” with different characteristics. For
GNSS especially the propagation characteristics are important, which means that the
atmosphere needs to be divided into two ”layers”: the troposphere and the ionosphere.

Tropospheric delays

The troposphere is the lower part of the earth’s atmosphere and ranges from the surface
to a height of approximately 9 km at the poles and to 16 km at the equator. In the
troposphere neutral atoms and molecules are present, which cause a signal delay. The
troposphere is a non-dispersive medium at the GNSS frequencies, which means that
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the propagation delay does not depend on the frequency of the signal. Moreover, the
tropospheric delays are equal for carrier phase and code observations.

Usually a distinction is made between a wet delay caused by water vapor, and a hydro-
static delay caused by a mixture of dry air and water vapor that is considered to be in a
hydrostatic equilibrium. The wet delay can be 0-40 cm in the zenith direction, and can
only be determined with an accuracy of 2-5 cm based on semi-empirical models. The
hydrostatic delay is much larger, 2.2-2.4 m in the zenith direction. However, it can be
predicted with high accuracy based on surface pressure observations.

The tropospheric delay parameter will be denoted as T s
r . A priori models can be used

to correct for the tropospheric delays, see (Hopfield 1969; Saastamoinen 1973). It is
necessary to estimate the tropospheric delay parameters if it is expected that one cannot
fully rely on these models, see (Kleijer 2004).

Ionospheric delays

The ionized part of the atmosphere ranges approximately from 80 to 1000 km altitude.
This atmospheric layer contains both uncharged and charged particles. The charged
particles are created when neutral gas molecules are heated and electrons are liberated
from them. This effect is called ionization. The rate of ionization depends on the density
of the gas molecules and the intensity of the radiation. Because of the varying intensity
of solar radiation, the free electron density is very variable in space and time.

The free electrons in the ionosphere affect the code and phase measurements differently.
That is because the phase velocity is advanced, whereas the group velocity is delayed.
So, the ionospheric effects on code and phase observations have opposite signs. Further-
more, the ionosphere is a dispersive medium, which means that the ionospheric effect is
dependent on the frequency of the signal. The effects are inversely proportional to the
square of the frequency of the signal. This allows for estimating the first order iono-
spheric effects by collecting measurements on different frequencies. Under worst-case
conditions the first order term may be tens of meters. According to Odijk (2002) the
higher order effects may be neglected in the case of relative positioning (see section
2.3.2) with inter-receiver distances up to 400 km.

The ionospheric effects on code and phase observations, respectively, are given by:

dIs
r,j = µjI

s
r ,

δIs
r,j = −µjI

s
r ,

(2.14)

with

µj =
f2
1

f2
j

=
λ2

j

λ2
1

. (2.15)

The atmospheric effects in equations (2.7) and (2.12) can now be written as:

das
r,j = T s

r + µjI
s
r

δas
r,j = T s

r − µjI
s
r

(2.16)
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2.2.6 Multipath

Ideally, a GNSS signal should arrive at the receiver antenna only via the direct path from
satellite to receiver. In practice, however, the signal often arrives at the antenna via
two or more paths because the signal is reflected on nearby constructions or the ground.
This effect is called multipath. It affects the phase and code measurements differently.
The resulting measurement error depends on the strength of the direct and the reflected
signals, and on the delay of the reflected signal.

Typically, the error induced by multipath on the code measurements varies between 1
and 5 meters. The effect on the phase measurements is 1-5 cm, and it will never be
more than a quarter of a cycle provided that the amplitude of the direct signal is larger
than the amplitude of the reflected signal.

Multipath is a systematic error and is very difficult to model. Although it is acknowledged
that it is one of the most important issues in the field of high precision GNSS positioning,
the multipath effect will be ignored here, i.e.

dms
r,j = δms

r,j = 0 (2.17)

2.2.7 Random errors or noise

The GNSS code and phase observations are of a stochastic nature, so that random
errors or observation noise must be taken into account in the observation equations.
In equations (2.7) and (2.12) the noise was denoted as e and ε for code and phase
respectively. The random errors are assumed to be zero-mean:

E{es
r,j(t)} = 0

E{εs
r,j(t)} = 0

(2.18)

2.2.8 The geometry-free observation equations

The observation equations (2.7) and (2.12) are parameterized in terms of the satellite-
receiver ranges ρs

r and are therefore referred to as non-positioning or geometry-free
observation equations. The final non-positioning observation equations are obtained by
inserting equations (2.13), (2.16), (2.17) into equations (2.7) and (2.12):

ps
r,j(t) = ρs

r(t) + T s
r (t) + µjI

s
r (t) + cdtr,j(t) − cdts,j(t) + es

r,j(t)

φs
r,j(t) = ρs

r(t) + T s
r (t) − µjI

s
r (t) + cδtr,j(t) − cδts,j(t) + λjM

s
r,j + εs

r,j(t)
(2.19)

For notational convenience the receiver-satellite range is denoted as ρs
r(t) instead of

ρs
r(t, t − τ s

r ). Furthermore, the initial phases of the signal are lumped with the integer
phase ambiguity, since these parameters are not separable. The resulting parameters in
Ms

r are real-valued, i.e. non-integer:

Ms
r,j = φr,j(t0) + φs

,j(t0) +Ns
r,j (2.20)

Here, they will still be referred to as ambiguities.
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2.2.9 The geometry-based observation equations

The geometry-based observation equations are obtained after linearization of equations
(2.19) with respect to the receiver position. The satellite-receiver range can be expressed
as function of the satellite and receiver positions as follows:

ρs
r = ‖rs − rr‖ (2.21)

where ‖ · ‖ indicates the length of a vector, r
s =

[
xs ys zs

]T
the satellite position

vector, and rr =
[
xr yr zr

]T
the receiver position vector.

In order to linearize the observation equations, approximate values of all parameters are
needed. These approximate parameters will be denoted with a superscript 0. It will be
assumed that the approximate values of all parameters are zero, except for the satellite-
receiver range, so that the observed-minus-computed code and phase observations are
given by:

∆ps
r,j(t) = ps

r,j(t) − ρs,0
r (t)

∆φs
r,j(t) = φs

r,j(t) − ρs,0
r (t)

(2.22)

The linearization of the increment ∆ρs
r is possible with the approximate satellite and

receiver positions r
s,0 and r

0
r:

∆ρs
r = −(us

r)
T ∆rr + (us

r)
T ∆r

s (2.23)

with

u
s
r =

r
s,0 − r

0
r

‖rs,0 − r0
r‖

(2.24)

the unit line-of-sight (LOS) vector from receiver to satellite.

This gives the following linearized observation equations:

∆ps
r,j(t) = −(us

r)
T ∆rr + (us

r)
T ∆r

s + T s
r (t) + µjI

s
r (t)

+ cdtr,j(t) − cdts,j(t) + es
r,j(t)

∆φs
r,j(t) = −(us

r)
T ∆rr + (us

r)
T ∆r

s + T s
r (t) − µjI

s
r (t)

+ cδtr,j(t) − cδts,j(t) + λjM
s
r,j + εs

r,j(t)

(2.25)

2.2.10 Satellite orbits

In order to compute approximate satellite-receiver ranges, approximate values of the
satellite positions are required. Several sources are available in order to obtain these
approximate values. Firstly, the information from the broadcast ephemerides can be
used, which is available in real-time. Secondly, more precise information is made available
by the International GPS Service (IGS). Finally, Yuma almanacs are freely available, e.g.
from the website of the United States Coast Guard. These almanacs are especially
interesting for design computations, but are not used for positioning. Table 2.3 gives an
overview of the availability and accuracy of the different orbit products.
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Table 2.3: Availability and accuracy of GPS satellite positions, after (Neilan et al. 2000).

Orbits Availability Accuracy

Yuma almanacs Real-time or earlier ??

Broadcast Real-time 5 m

IGS Ultra-rapid Near real-time 20 cm

IGS Rapid 17 hours 10 cm

IGS Final 10 days 5 cm

2.3 GNSS functional model

In this section different GNSS functional models will be presented. Both the non-
positioning or geometry-free models and the positioning or geometry-based models are
presented.

Different GNSS models can also be distinguished based on the differencing that is ap-
plied. Differencing means taking the differences between observations from e.g. different
receivers and/or different satellites. It is often applied in order to eliminate some of the
parameters from the observation equations.

2.3.1 General mathematical model

The functional model describes the relationship between the observations and the un-
known parameters. The m observation equations can be collected in the system y =
Ax + e, where y and e are random, e is the discrepancy between y and Ax. It is as-
sumed that the mean E{e} is zero, since e models the random nature of the variability
in the measurements, and this variability will be zero ’on the average’. This gives for
the expectation of y:

E{y} = Ax (2.26)

The probability density function of y describes the variability in the outcomes of the
measurements. For normally distributed data, it is completely captured by the dispersion:

D{y} = E{eeT } = Qy (2.27)

This is referred to as the stochastic model, with Qy the variance-covariance (vc-) matrix
of the observations. This matrix describes the precision of the observations and it
is needed in order to properly weigh the observations in the adjustment process, see
section 2.5. In section 2.4, the stochastic models corresponding to the functional models
described in this section will be given.

The functional and stochastic model of (2.26) and (2.27) together are referred to as
Gauss-Markov model.
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2.3.2 Single difference models

If observations fromm satellites are observed simultaneously at two receivers it is possible
to take the differences of these observations. In this way, some parameters will be
eliminated from the model. Here, only the model for a single epoch will be derived and
the index t will be left out for notational convenience. The set of single difference (SD)
observation equations for a single satellite, a single frequency, and two receivers q and r
is then given by:

ps
qr,j = ps

r,j − ps
q,j = ρs

qr + T s
qr + µjI

s
qr + cdtqr,j + es

qr,j

φs
qr,j = φs

r,j − φs
q,j = ρs

qr + T s
qr − µjI

s
qr + cδtqr,j + λjM

s
qr,j + εs

qr,j

(2.28)

with (·)qr = (·)r − (·)q.

Note that the lumped instrumental delays and clock errors of the satellite are eliminated.
Furthermore, the initial carrier phase parameters of the satellite, which were contained in
Ms

r and Ms
q , are cancelled out, so that M s

qr only contains the differenced carrier phase
ambiguity and the difference between the initial phases in the two receivers.

The observations of m satellites and two receivers observing on f frequencies will now
be collected in the geometry-free functional model. The vector of observations becomes:

y =

(
P
Φ

)

=

( [(
p1

qr,1 · · · pm
qr,1

)
· · ·

(
p1

qr,f · · · pm
qr,f

)]T

[(
φ1

qr,1 · · · φm
qr,1

)
· · ·

(
φ1

qr,f · · · φm
qr,f

)]T

)

(2.29)

The parameter vectors are defined as:

ρ =
(
ρ1

qr · · · ρm
qr

)T
(2.30)

T =
(
T 1

qr · · · Tm
qr

)T
(2.31)

I =
(
I1
qr · · · Im

qr

)T
(2.32)

dtqr = c ·
([
dtqr,1 · · · dtqr,f

]T

[
δtqr,1 · · · δtqr,f

]T

)

(2.33)

a =
([
M1

qr,1 · · · Mm
qr,1

]
· · ·

[
M1

qr,f · · · Mm
qr,f

])T
(2.34)

For notational convenience the Kronecker product is used, see appendix A.1, to arrive
at the geometry-free model:

E{y} = (e2f ⊗ Im) ρ+ (e2f ⊗ Im)T +

([
µ
−µ

]

⊗ Im

)

I

+ (I2f ⊗ em)dtqr +

([
0
Λ

]

⊗ Im

)

a

(2.35)
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with ep a p-vector with ones, Ip an identity matrix of order p, and:

µ =
(
µ1 · · · µf

)T
, Λ =






λ1

. . .

λf




 (2.36)

In the same way the geometry-based model is obtained, but the observations collected in
the vector y are now the observed-minus-computed observations from equation (2.22).
The model is given by:

E{y} = (e2f ⊗G) ∆rqr + (e2f ⊗ Im)T +

([
µ
−µ

]

⊗ Im

)

I

+ (I2f ⊗ em)dtqr +

([
0
Λ

]

⊗ Im

)

a

(2.37)

with

G =
[
−u

1
qr · · · −u

m
qr

]T
(2.38)

and
(
−(us

r)
T ∆rr + (us

r)
T ∆r

s
)
−
(
−(us

q)
T ∆rq + (us

q)
T ∆r

s
)

= −(us
qr)

T ∆rqr − (us
qr)

T ∆rq + (us
qr)

T ∆r
s

≈ −(us
qr)

T ∆rqr,

(2.39)

since the orbital uncertainty ∆r
s can be ignored if the baseline length ‖rqr‖ is small

compared to the satellite altitude (Teunissen and Kleusberg 1998). The term with the
receiver position error ∆rq is zero when the position of receiver q is assumed known. The
parameters in ∆rqr are referred to as the baseline increments; if the receiver position rq

is known, the unknown receiver position rq can be determined from the estimated ∆rqr.

Both single difference models (2.35) and (2.37) are rank deficient. The rank deficiencies
can be resolved by lumping some of the parameters and then estimate these lumped
parameters instead of the original ones. The parameters are lumped by performing
a parameter transformation, which corresponds to the so-called S-basis technique as
developed by Baarda (1973) and Teunissen (1984).

A first rank deficiency is caused by the inclusion of the tropospheric parameters. This
can be solved for the geometry-free model by lumping the tropospheric parameters with
the ranges:

ρ =
(
ρ1

qr + T 1
qr · · · ρm

qr + Tm
qr

)T
(2.40)

In the geometry-based case, the tropospheric delay parameter is first reparameterized
in a dry and wet component. The dry component is responsible for about 90% of the
tropospheric delay and can be reasonably well corrected for by using a priori tropospheric
models, e.g. (Saastamoinen 1973). The much smaller wet component is quite variable
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and difficult to predict. Therefore, the wet delays are commonly mapped to zenith
tropospheric delay (ZTD) parameters and these are then estimated. An overview of
available mapping functions can be found in Kleijer (2004).

For short time spans this ZTD parameter can be considered constant. The parameter
vector T consists then of the ZTD parameter of one receiver. The mapping function is
denoted as ψs

r . This gives for the partial design matrix related to the ZTD parameter:

e2f ⊗
[
ψ1

r · · · ψm
r

]T
= e2f ⊗ Ψ (2.41)

Note that the a priori tropospheric corrections and the ZTD of the reference station q
are added to the approximate observation equations in (2.22).

the ZTD is not estimated if it is assumed that the a priori model can be fully relied on.
This is referred to as the troposphere-fixed approach. If, on the other hand, the ZTD is
estimated, this is referred to as the troposphere-float approach.

The rank deficiency caused by the phase receiver clocks δtsr and the ambiguities is solved
by the following transformations:

dtqr =

([
cdtqr,1 + λ1M

1
qr,1 · · · cdtqr,f + λfM

1
qr,f

]T

[
cδtqr,1 + λ1M

1
qr,1 · · · cδtqr,f + λfM

1
qr,f

]T

)

(2.42)

a =
([
N12

qr,1 · · · N1m
qr,1

]
· · ·

[
N12

qr,f · · · N1m
qr,f

])T
(2.43)

Due to this reparameterization, the single difference ambiguities are transformed to
double difference ambiguities from which it is known that they are of integer nature
since the initial phases in receiver and satellite are cancelled out: M ts

qr,j = N ts
qr,j . Note

that the code receiver clock parameters are not transformed.

Finally, a rank deficiency is present due to the inclusion of the ionospheric parameters.
In Odijk (2002) it is described how to set up the so-called ionosphere-weighted model.
The approach is to include a vector of ionospheric pseudo-observations, consisting of a
priori estimates, to the vector of observations:

y =





P
Φ
I



 (2.44)

If the a priori information is considered exact, the a priori estimates can simply be sub-
tracted from the observations and there are no ionospheric parameters to be estimated.
This is referred to as the ionosphere-fixed model. If the baseline is shorter than 10 km,
it can be assumed that the ionospheric delay on the signal of one satellite to the two
receivers is identical, i.e. Is

r = Is
q . Also then the ionospheric parameters can be removed

from the single difference model. If, on the other hand, the ionospheric behavior must
be considered completely unknown, e.g. when the baseline is very long, the weight of
the ionospheric pseudo-observations is set equal to zero, which is equivalent to setting
the standard deviation of the pseudo-observations to infinity. This is referred to as the
ionosphere-float model.
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The single difference models can now be presented as follows. The full-rank geometry-
free model is given by:

E{y} =

([
e2f

0

]

⊗ Im

)

ρ+









µ
−µ
1



⊗ Im



 I

+

([
I2f

0

]

⊗ em

)

dtqr +









0
Λ
0



⊗
[

0
Im−1

]


 a

(2.45)

The observation vector is given by (2.44), the range vector ρ by (2.40), and the parameter
vectors I, dtqr, and a by equations (2.32), (2.42) and (2.43) respectively.

The ionosphere-weighted, troposphere-float, geometry-based model is obtained as:

E{y} =

([
e2f

0

]

⊗G

)

∆rqr +

([
e2f

0

]

⊗ Ψ

)

T +









µ
−µ
1



⊗ Im



 I

+

([
I2f

0

]

⊗ em

)

dtqr +









0
Λ
0



⊗
[

0
Im−1

]


 a

(2.46)

2.3.3 Double difference models

The number of parameters in the observation equations can be even further reduced
by also taking differences between observations of different satellites. In this double
difference (DD) approach, one reference satellite t is chosen and the single difference
observations of this satellite are subtracted from the corresponding single difference
observations of all other satellites. For one satellite-pair the geometry-free observation
equations become then:

pts
qr,j = ps

qr,j − pt
qr,j = ρts

qr + T ts
qr + µjI

ts
qr + es

qr,j

φts
qr,j = φs

qr,j − φt
qr,j = ρts

qr + T ts
qr − µjI

ts
qr + λjN

ts
qr,j + εts

qr,j

(2.47)

The instrumental delays and clock errors of the receivers have now also cancelled from
the observation equations, as well as the initial phases in the receivers. This leaves only
the integer carrier phase ambiguity as extra parameter in the phase observations. Only
if this ambiguity is resolved, the phase observations can be considered as very precise
pseudorange measurements, so that high precision positioning solutions can be obtained.
Therefore, the integer nature of the ambiguities must be exploited. Integer parameter
resolution is, however, a non-trivial problem, which will be the topic of the remaining
chapters.

If the first satellite is chosen as the reference satellite, the following transformation matrix
can be used to arrive at the double difference geometry-free model:

DT =
(
−em−1 Im−1

)
(2.48)
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The double difference observation vector and parameter vectors are now derived from
the single difference vectors (denoted with superscript sd) of equations (2.29)-(2.34) as
follows:

y =
(
I(2f+1) ⊗DT

)
ysd (2.49)

ρ = DT ρsd (2.50)

T = DTT sd (2.51)

I = DTIsd (2.52)

a =
(
If ⊗DT

)
asd (2.53)

This gives the ionosphere-weighted double difference geometry-free model:

E{y} =

([
e2f

0

]

⊗ Im−1

)

ρ+









µ
−µ
1



⊗ Im−1



 I +









0
Λ
0



⊗ Im−1



 a (2.54)

with ρ the lumped tropospheric and range parameters.

Similarly, the geometry-based model is obtained as:

E{y} =

([
e2f

0

]

⊗G

)

∆rqr +

([
e2f

0

]

⊗ Ψ

)

T +









µ
−µ
1



⊗ Im−1



 I

+









0
Λ
0



⊗ Im−1



 a

(2.55)

with G = DTGsd, and T contains the ZTD.

The double difference approach offers the advantage of less (or even no) rank deficiencies
in the mathematical model. However, rank deficiencies can also be resolved in other ways
as explained in the preceding section.

A disadvantage is that users will be interested in the undifferenced parameters, and
therefore one has to be careful with the interpretation of the results.

As double differencing eliminates the satellite and receiver clock errors, it is not possible
to estimate them explicitly. This implies that it is not possible to model their behavior
in time. But these parameters are rarely needed, so in many practical situations this will
not be considered as a problem.

An important disadvantage of the double difference approach is that all receivers must
track the same satellites. In practice this is not always the case, especially with long
baselines. But also when the receivers are located quite close to each other, one of the
receivers may not track some of the satellites tracked by the other receiver(s), e.g. due
to blocking of signals by local obstacles. In such cases using the double difference model
results in loss of information, as observations from a satellite only tracked by one of the
receivers cannot be used.
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The single difference approach can be seen as a kind of compromise. The amount of
observations is reduced with respect to the undifferenced approach, but not as much as
with the double difference approach. The same holds for the unknown parameters. An
advantage of the single difference approach is that in the case of a single baseline model
(two receivers) no correlation between the observations is introduced, see section 2.4.

As explained before, for high-precision applications it is important that the carrier phase
ambiguities are resolved as integers. It has been shown that the parameterization of
the unknown ambiguities is such that these parameters are known to be integers in the
single difference and double difference approach.

2.4 GNSS stochastic model

The stochastic model describes the precision of the observations. As a starting point
the following assumptions are made:

E{es
r,j(t)e

s
r,j(t)} = σ2

p,j no satellite dependent weighting

E{es
r,i(t)e

s
r,j(t)} = 0 no frequency dependent correlation (2.56)

E{es
r,j(t1)e

s
r,j(t2)} = 0 no time correlation

Often, the code standard deviation is chosen identical for all frequencies, σp,j = σp ∀j.
The same assumptions are made for the undifferenced phase observations, with the phase
standard deviation denoted as σφ.

The vc-matrix of the undifferenced observations of one satellite and one receiver becomes
then:

Cpφ = diag(σ2
p,1, . . . , σ

2
p,f , σ

2
φ,1, . . . , σ

2
φ,f , σ

2
I ) (2.57)

where σ2
I is the variance of the ionospheric pseudo-observation, which has to be included

if the ionosphere-weighted model is considered.

For the single differenced observations, the vc-matrices of the observations of both
receivers must be added according to the propagation law of variances, see appendix
A.2.1:

Csd
pφ = Cpφ,q + Cpφ,r (2.58)

If the standard deviations are assumed equal for both receivers, all variances must simply
be multiplied by 2.

The single difference vc-matrix corresponding to the functional models in equations
(2.45) and (2.46) becomes:

Qy = Csd
pφ ⊗ Im (2.59)

The vc-matrix of the double difference models in equations (2.54) and (2.55) is obtained
again with the propagation law of variances and the properties of the Kronecker product
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(appendix A.1):

Qy = Csd
pφ ⊗DTD (2.60)

with the transformation matrix DT as defined in (2.48).

2.4.1 Variance component estimation

The stochastic model as specified by the vc-matrix of the observations can be given as:

Qy = σ2Gy (2.61)

with σ2 the variance factor of unit weight, and Gy the cofactor matrix. If the variance
factor is assumed to be unknown, it can be estimated a posteriori. For that purpose
equation (2.61) can be generalized into:

Qy =

p
∑

α

σ2
αGα (2.62)

Hence, the stochastic model is written as a linear combination of unknown factors and
known cofactor matrices, (Tiberius and Kenselaar 2000). The factors σ2

α can represent
variances as well as covariances, for example variance factors for the code and phase
data, a variance for each satellite-receiver pair, and the covariance between code and
phase data. The problem of estimating the unknown (co-)variance factors is referred to
as variance component estimation.

2.4.2 Elevation dependency

Until now the standard deviations of a certain observation type were chosen equal for
all satellites, although it might be more realistic to assign weights to the observations of
different satellites depending on their elevation. That is because increased signal attenu-
ation due to the atmosphere and multipath effects will result in less precise observations
from satellites at low elevations. Therefore, Euler and Goad (1991) have suggested to
use elevation-dependent weighting:

σ2
ps

r
= (qs

r)
2σ2

p (2.63)

with σp the standard deviation of code observations to satellites in the zenith, and

qs
r = 1 + a · exp{−ε

s
r

ε0
}, (2.64)

where a is an amplification factor, εs
r the elevation angle, and ε0 a reference elevation

angle. The values of a and ε0 depend on the receiver that is used, and on the observation
type – the function q in equation (2.64) may be different for code and phase observations
as well as for observations on different frequencies.

Experimental results have shown that an improved stochastic model can be obtained if
elevation dependent weighting is applied, see e.g. (Liu 2002).
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2.4.3 Cross-correlation and time correlation

In equation (2.56) the assumption was made that there is no frequency dependent
correlation. Several studies have shown, however, that this assumption may not be
realistic, see e.g. (Bona 2000; Bona and Tiberius 2001; Liu 2002). It was shown that
the stochastic model can be refined by performing receiver tests or variance component
estimation, in order to determine the cross-correlation.

It was also assumed that no time correlation is present, although the observations col-
lected at different epochs may be correlated when the sampling frequency is high. In
Borre and Tiberius (2000) significant time correlation was found for 5 Hz data. If, on
the other hand, the sampling interval is larger than 30 s, according to Bona (2000) time
correlation can be neglected. So, time correlation does not play a role for instantaneous
applications.

2.5 Least-squares estimation and quality control

In sections 2.3 and s:stochastic, the GNSS functional models and stochastic models
were presented. In order to solve the observation model, a least-squares adjustment is
generally used, since it is simple to apply and, by definition, it has important optimality
properties. For a model written as equation (2.26) the least-squares estimator is defined
as:

x̂ = arg min
x

‖y −Ax‖2
Qy

(2.65)

and its solution is given by:

x̂ = (ATQ−1
y A)−1ATQ−1

y y

ŷ = Ax̂ (2.66)

ê = ŷ − y

The GNSS observations are generally considered to be normally distributed, and then
least-squares estimation is equivalent to maximum-likelihood estimation, and to best
linear unbiased estimation if the model is linear, (Teunissen 2000a).

The estimator x̂ is a random vector since it is functionally related to the random vector
y. Because of the linear relationship between the two vectors, x̂ will also have a normal
distribution like y. Therefore the distribution of the estimator can be characterized by
its mean and dispersion, which are given as:

E{x̂} = x (2.67)

D{x̂} = Qx̂ = (ATQ−1
y A)−1 (2.68)

This shows that the estimator is unbiased, i.e. that the expectation of the estimator
equals the unknown and sought for parameter vector x. The vc-matrix describes the
precision of the estimator, which is independent of the observations, so that the precision
is known without the need for actual measurements.
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The quality of the solution can then be measured by the precision of the estimators.
However, the precision does not give information on the validity of the model, so that
the unbiasedness of the estimators cannot be guaranteed. It is therefore important to
use statistical tests in order to get information on the validity of the model.

2.5.1 Model testing

Statistical testing is possible if there is a null hypothesis, H0, that can be tested against
an alternative hypothesis, Ha. These hypotheses can be defined as:

H0 : E{y} = Ax; D{y} = Qy

Ha : E{y} = Ax+ C∇; D{y} = Qy

(2.69)

where C is a known m × q-matrix that specifies the type of model error, and ∇ an
unknown q-vector. It is assumed that y is normally distributed, see appendix A.2.

H0 can be tested against Ha using the following test statistic:

T q =
1

q
êTQ−1

y C
(
CTQ−1

y QêQ
−1
y C

)−1
CTQ−1

y ê (2.70)

The test statistic T q has a central F -distribution with q and ∞ degrees of freedom under
H0, and a non-central F -distribution under Ha:

H0 : T q ∼ F (q,∞, 0); Ha : T q ∼ F (q,∞, λ) (2.71)

with non-centrality parameter λ:

λ = ∇TCTQ−1
y QêQ

−1
y C∇ (2.72)

The test is then given by:

reject H0 if T q > Fα(q,∞, 0), (2.73)

where α is a chosen value of the level of significance, also referred to as the false alarm
rate since it equals the probability of rejecting H0 when in fact it is true. Fα(q,∞, 0) is
the critical value such that:

α =

∞∫

Fα(q,∞,0)

fF (F |q,∞, 0)dF (2.74)

where fF (F |q,∞, 0) is the probability density function of F (q,∞, 0), see appendix A.2.3.

The value of λ = λ0 can be computed once reference values are known for the level
of significance α = αq, and the detection power γ = γ0, which is the probability of
rejecting H0 when indeed Ha is true:

γ =

∞∫

Fα(q,∞,0)

fF (F |q,∞, λ)dF (2.75)
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So, λ0 = λ(αq, γ0, q). From this value one can then compute the corresponding model
error C∇ from equation (2.72).

The vector ∇y = C∇ describes the internal reliability of hypothesis H0 with respect to
Ha. The internal reliability is thus a measure of the model error that can be detected
with a probability γ = γ0 by test (2.73). This measure can be computed by considering
certain types of model errors, as specified by the matrix C. In GNSS applications
common error types are for example carrier cycle slips and code outliers. In those cases,
q = 1, so that C reduces to a vector c, and ∇ to a scalar. From equation (2.72) follows
then that:

|∇| =

√

λ0

cTQ−1
y QêQ

−1
y c

(2.76)

|∇| is called the minimal detectable bias (MDB). With |∇| known, it is possible to
determine the corresponding impact of the model error on the estimates of the unknown
parameters, referred to as the external reliability . This impact can be computed as:

∇x̂ = (ATQ−1
y A)−1ATQ−1

y ∇y (2.77)

by using ∇y = c|∇|. ∇x̂ is referred to as the minimal detectable effect (MDE).

Note that the measures of the internal reliability and the external reliability can both be
computed without the need for actual observations, and hence can be used for planning
purposes before the measurements are carried out.

2.5.2 Detection, Identification and Adaptation

Once the observations are collected there will be several alternative hypotheses that need
to be tested against the null hypothesis. The DIA-procedure (detection, identification,
adaptation) can be used in order to have a structured testing procedure (Teunissen
1990).

The first step in DIA is detection, for which an overall model test is performed to diagnose
whether an unspecified model error has occurred. In this step the null hypothesis is tested
against the most relaxed alternative hypothesis:

Ha : E{y} ∈ R
m (2.78)

The appropriate test statistic for detection is then:

Tm−n =
êTQ−1

y ê

m− n
(2.79)

The null hypothesis will be rejected if Tm−n > Fαm−n
(m− n,∞, 0). In that case, the

next step will be the identification of the model error.

The most likely alternative hypothesis is the one for which

T qi

Fαqi
(qi,∞, 0)

(2.80)
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is maximum. The degrees of freedom qi may be different, and the level of significance
αqi

depends on λ(αqi
, γ, qi), which is chosen as:

λ(αqi
, γ, qi) = λ(αm−n, γ,m− n) (2.81)

This means that the non-centrality parameters and detection powers are chosen equal
for both the detection and the identification test, implying that a certain model error
can be found with the same probability by both tests. This approach is the B-method
of testing, (Baarda 1968).

In practice the identification step is started with the so-called data snooping, (Baarda
1968), which means that each individual observation is screened for the presence of an
outlier. In that case q = 1 and the matrix C reduces to a vector, denoted as c. The test
statistic of equation (2.70) becomes:

T 1 = (w)2

w =
cTQ−1

y ê
√

cTQ−1
y QêQ

−1
y c

(2.82)

The test statistic w has a standard normal distributionN(0, 1) underH0. An observation
j is suspected to be biased if:

|wj | ≥ |wi| ∀i and |wj | > N 1
2
α(0, 1) (2.83)

The final step in the DIA-procedure is adaptation, in which the model is corrected for one
or more of the most likely model errors identified in the previous step. This may involve
replacement of the erroneous data, e.g. by re-measurement, or a new null hypothesis is
set up which takes into account the identified model errors. After this step, one has to
make sure that the new situation will lead to acceptance of the null hypothesis, meaning
that the DIA-procedure needs to be applied iteratively.

2.5.3 GNSS quality control

In this section a general testing procedure was described that can be applied in the case
of linear estimation with normally distributed data, so that the parameter distribution
is completely captured by the vc-matrix of the estimators. Unfortunately, this approach
cannot be applied when integer parameters are involved in the estimation process, since
these parameters do not have a Gaussian distribution, and therefore the parameter dis-
tribution itself is needed to obtain appropriate test statistics in order to validate the
integer solution. This problem is the subject of section 3.5 and chapter 5.
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Integer ambiguity resolution 3
The problem of integer ambiguity resolution has drawn a lot of attention in the past
decades. Many ambiguity resolution algorithms have been published. Not all of these
algorithms will be discussed here; only a brief overview will be given. The first step
of ambiguity resolution is integer estimation. Therefore, section 3.1 starts with the
definition of admissible integer estimators. For the quality description and validation of
the estimators, their distribution functions are required. The distributional properties of
the float and fixed ambiguity will be given in section 3.2, where it is also shown how the
probability of correct integer estimation, the success rate, can be approximated. For the
purpose of validation, the parameter distribution of the ambiguity residuals is required.
This distribution function and its properties will be given in section 3.3. In section 3.4
it is shown how the quality of the fixed baseline estimator can be expressed. Section 3.5
gives an overview of currently available methods for the validation of the fixed ambiguity
solution and their shortcomings. Finally, in section 3.6 a completely different approach
of ambiguity resolution is described, namely the Bayesian approach.

3.1 Integer estimation

Any GNSS observation model can be parameterized in integers and non-integers. This
gives the following system of linear(ized) observation equations:

y
m×1

= A
m×n

a
n×1

+ B
m×p

b
p×1

+ e
m×1

(3.1)

where y is the GPS observation vector of order m, a and b are the unknown parameter
vectors of dimension n and p respectively, and e is the noise vector. The data vector
y usually consists of the observed-minus-computed DD phase and/or code observations
on one, two or three frequencies and accumulated over all observation epochs. The
entries of the parameter vector a will then consist of the unknown integer carrier phase
ambiguities, which are expressed in units of cycles rather than in units of range. It is
known that the entries are integers, so that a ∈ Z

n. The remaining unknown parame-
ters form the entries of the vector b. These parameters may be the unknown baseline
increments and for instance atmospheric (ionospheric, tropospheric) delays, which are
all real-valued, i.e. b ∈ R

p. These real-valued parameters are referred to as the baseline
parameters, although the vector b may thus contain other parameters than only the
baseline components.
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Figure 3.1: An ambiguity pull-in region of z = ǎ.

The classical linear estimation theory can be applied to models that contain real-valued
parameters. However, if the integerness of the ambiguity parameters is taken into ac-
count, a different approach must be followed which includes a separate step for ambiguity
resolution. The complete estimation process will then consist of three steps (Teunissen
1993). In the first step, the integerness of the vector a is discarded and the so-called
float solution is computed with a standard least-squares adjustment. This results in
real-valued estimates for a and b and their vc-matrix:
(
â

b̂

)

;

(
Qâ Q

âb̂

Q
âb̂

Q
b̂

)

(3.2)

In the second step the integer ambiguity estimate is computed from the float ambiguity
estimate â:

ǎ = S(â) (3.3)

where S : R
n 7→ Z

n is the mapping from the n-dimensional space of real numbers to the
n-dimensional space of integers. The final step is to use the integer ambiguity estimates
to correct the float estimate of b with

b̌ = b̂(ǎ) = b̂−Q
b̂â
Q−1

â (â− ǎ) (3.4)

This solution is referred to as the fixed baseline solution. Equations (3.3) and (3.4)
depend on the choice of the integer estimator. Different integer estimators are obtained
for different choices of the map S : R

n 7→ Z
n. This implies that also the probability

distribution of the estimators depends on the choice of the map.

In order to arrive at a class of integer estimators, first the map S : R
n 7→ Z

n will
be considered. The space of integers, Z

n, is of a discrete nature, which implies that
the map must be a many-to-one map, and not one-to-one. In other words, different
real-valued ambiguity vectors a will be mapped to the same integer vector. Therefore,
a subset Sz ⊂ R

n can be assigned to each integer vector z ∈ Z
n:

Sz = {x ∈ R
n | z = S(x)} , z ∈ Z

n (3.5)

This subset Sz contains all real-valued float ambiguity vectors that will be mapped to the
same integer vector z, and it is called the pull-in region of z (Jonkman 1998; Teunissen
1998c), see figure 3.1. This implies that ǎ = z ⇔ â ∈ Sz. The integer ambiguity
estimator can be expressed as1:

ǎ =
∑

z∈Zn

zsz(â) (3.6)

1From this point forward random variables are no longer underlined
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Figure 3.2: Left: Pull-in regions that cover R
2 without gaps and overlap. Right: An

example of integer translational invariant pull-in regions that cover R
2 without gaps and

overlap.

with the indicator function sz(x):

sz(x) =

{

1 if x ∈ Sz

0 otherwise
(3.7)

The integer estimator is completely defined by the pull-in region Sz, so that it is possi-
ble to define a class of integer estimators by imposing constraints on the pull-in regions.
This means that not all integer estimators are allowed, but only estimators that belong
to the class of admissible integer estimators. This class is defined as follows.

Definition 3.1.1 Admissible integer estimators

An integer estimator, ǎ =
∑

z∈Zn

zsz(â), is said to be admissible when its pull-in region,

Sz = {x ∈ R
n | z = S(x)}, z ∈ Z

n, satisfies:

(i)
⋃

z∈Zn

Sz = R
n

(ii) Int(Su) ∩ Int(Sz) = ∅, ∀u, z ∈ Z
n, u 6= z

(iii) Sz = z + S0, ∀z ∈ Z
n

where ’Int’ denotes the interior of the subset.

The motivation for this definition is illustrated in figure 3.2 and was given in Teunissen
(1999a). The first condition states that the collection of all pull-in regions should cover
the complete space R

n, so that indeed all real-valued vectors will be mapped to an
integer vector. The second condition states that the pull-in regions must be disjunct,
i.e. that there should be no overlap between the pull-in regions, so that the float
solution is mapped to just one integer vector. Finally, the third condition is that of
translational invariance, which means that if the float solution is perturbed by z ∈ Z

n,
the corresponding integer solution is perturbed by the same amount: S(â+z) = S(â)+z.
This allows one to apply the integer remove-restore technique: S(â− z) + z = S(â).
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Figure 3.3: Two-dimensional pull-in regions in the case of rounding.

Examples of integer estimators that belong to the class of admissible integer estimators
are integer rounding (R), integer bootstrapping (B), and integer least-squares (ILS).
Each of these estimators will be described briefly in the following sections.

3.1.1 Integer rounding

The simplest way to obtain an integer vector from the real-valued float solution is to
round each entry of â to its nearest integer. The corresponding integer estimator, ǎR,
reads then:

ǎR =






[â1]
...

[ân]




 (3.8)

where [·] denotes rounding to the nearest integer. It can be easily shown that this
estimator is admissible, see Teunissen (1999a).

Since each component of the real-valued ambiguity vector is rounded to the nearest
integer, the absolute value of the maximum difference between the float and fixed ambi-
guities is 1

2 . The pull-in region Sz,R that corresponds to this integer estimator is therefore
given as:

Sz,R =

n⋂

i=1

{

x ∈ R
n | |xi − zi| ≤

1

2

}

, ∀z ∈ Z
n (3.9)

So, the pull-in regions are the n-dimensional unit cubes centered at z ∈ Z
n. For the

two-dimensional case this is visualized in figure 3.3.
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Figure 3.4: Two-dimensional pull-in regions in the case of bootstrapping.

3.1.2 Integer bootstrapping

A generalization of the integer rounding method is the sequential integer rounding
method, also referred to as the integer bootstrapping method, see e.g (Blewitt 1989;
Dong and Bock 1989). In contrast to integer rounding, the integer bootstrapping es-
timator takes the correlation between the ambiguities into account. It follows from
a sequential conditional least-squares adjustment with a conditioning on the integer
ambiguity values from the previous steps (Teunissen 1993; Teunissen 1998b). The com-
ponents of the bootstrapped estimator are given as:

ǎ1,B = [â1]

ǎ2,B = [â2|1] = [â2 − σâ2â1
σ−2

â1
(â1 − ǎ1,B)]

... (3.10)

ǎn,B = [ân|N ] =

[

ân −
n−1∑

i=1

σânâi|I
σ−2

âi|I
(âi|I − ǎi,B)

]

where âi|I stands for the ith ambiguity obtained through a conditioning on the previous
I = {1, . . . , (i − 1)} sequentially rounded ambiguities. Since, the first entry is simply
rounded to the nearest integer, one should start with the most precise float ambiguity.
The real-valued sequential least-squares solution can be obtained by means of the trian-
gular decomposition of the vc-matrix of the ambiguities: Qâ = LDLT , where L denotes
a unit lower triangular matrix with entries

lj,i = σâj âi|I
σ−2

âi|I
(3.11)

and D a diagonal matrix with the conditional variances σ2
âi|I

as its entries. Since by

definition |âi|I − [âi|I ]| ≤ 1
2 , the pull-in region Sz,B that belongs to the bootstrapped
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estimator is given by:

Sz,B =

n⋂

i=1

{

x ∈ R
n | |cTi L−1(x− z)| ≤ 1

2
, ∀z ∈ Z

n

}

(3.12)

with ci the canonical vector having a one as its ith entry. Note that the bootstrapped
and rounded solution become identical if the ambiguity vc-matrix, Qâ, is diagonal.

The shape of the pull-in region in the two-dimensional case is a parallelogram, see figure
3.4. For more dimensions it will be the multivariate version of a parallelogram.

3.1.3 Integer least-squares

Optimizing on the integer nature of the ambiguity parameters, cf.(Teunissen 1999a),
involves solving a non-standard least-squares problem, referred to as integer least-squares
(ILS) in Teunissen (1993). The solution is obtained by solving the following minimization
problem:

min
z,ζ

‖y −Az −Bζ‖2
Qy
, z ∈ Z

n, ζ ∈ R
p (3.13)

The following orthogonal decomposition can be used:

‖y −Az −Bζ‖2
Qy

= ‖ê‖2
Qy

︸ ︷︷ ︸

(3.2)

+ ‖â− z‖2
Qâ

︸ ︷︷ ︸

(3.3)

+ ‖b̂(z) − ζ‖2
Q

b̂|â
︸ ︷︷ ︸

(3.4)

(3.14)

with the residuals of the float solution ê = y − Aâ − Bb̂, and the conditional baseline
estimator b̂(z) = b̂−Q

b̂â
Q−1

â (â− z).

It follows from equation (3.14) that the solution of the minimization problem in equation
(3.13) is solved using the three step procedure described in section 3.1. The first term
on the right-hand side follows from the float solution (3.2). Taking into account the
integer nature of the ambiguities means that the second term on the right-hand side of
equation (3.14) needs to be minimized, conditioned on z ∈ Z

n. This corresponds to
the ambiguity resolution step in (3.3), so that z = ǎ. Finally, solving for the last term
corresponds to fixing the baseline as in equation (3.4). Then the last term in equation
(3.14) becomes equal to zero, so that indeed the minimization problem is solved.

The integer least-squares problem focuses on the second step and can now be defined
as:

ǎLS = arg min
z∈Zn

‖â− z‖2
Qâ

(3.15)

where ǎLS ∈ Z
n is the fixed ILS ambiguity solution. This solution cannot be ’computed’

as with integer rounding and integer bootstrapping. Instead an integer search is required
to obtain the solution.

The ILS pull-in region Sz,LS is defined as the collection of all x ∈ R
n that are closer

to z than to any other integer grid point in R
n, where the distance is measured in the
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Figure 3.5: Two-dimensional pull-in regions in the case of integer least-squares.

metric of the vc-matrix Qâ. The pull-in region that belongs to the integer z follows as:

Sz,LS =
{
x ∈ R

n | ‖x− z‖2
Qâ

≤ ‖x− u‖2
Qâ
, ∀u ∈ Z

n
}

(3.16)

A similar representation as for the bootstrapped pull-in region can be obtained by using:

‖x− z‖2
Qâ

≤ ‖x− u‖2
Qâ

⇐⇒ (u− z)TQ−1
â (x− z) ≤ 1

2
‖u− z‖2

Qâ
, ∀u ∈ Z

n

With this result, it follows that

Sz,LS =
⋂

c∈Zn

{

x ∈ R
n | |cTQ−1

â (x− z)| ≤ 1

2
‖c‖2

Qâ

}

∀z ∈ Z
n (3.17)

The ILS pull-in regions are thus constructed as intersecting half-spaces, which are
bounded by the planes orthogonal to (u − z), u ∈ Z

n and passing through 1
2 (u + z).

It can be shown that at most 2n − 1 pairs of such half-spaces are needed for the con-
struction. The integer vectors u must then be the 2n − 1 adjacent integers. So, for the
2-dimensional case this means three pairs are needed, and the ILS pull-in regions are
hexagons, see figure 3.5.

3.1.4 The LAMBDA method

The ILS procedure is mechanized in the LAMBDA (Least-Squares AMBiguity Decorrela-
tion Adjustment) method, see (Teunissen 1993; Teunissen 1995; De Jonge and Tiberius
1996).

As mentioned in section 3.1.3, the integer ambiguity solution is obtained by an integer
search. Therefore, a search space is defined as:

Ωa =
{
a ∈ Z

n | (â− a)TQ−1
â (â− a) ≤ χ2

}
(3.18)
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Figure 3.6: Two-dimensional example of the search space before (left) and after (right)
the decorrelating Z-transformation. The float ambiguity vector is depicted with a +-sign.

with χ2 a positive constant that needs to be chosen. The search space is an n-
dimensional ellipsoid centered at â. Its shape is governed by the vc-matrix Qâ and
its size by χ2. Due to the high correlation between the individual ambiguities, the
search space in the case of GNSS is extremely elongated, so that the search for the
integer solution may take very long. Therefore, the search space is first transformed to a
more spherical shape by means of a decorrelation of the original float ambiguities. This
decorrelation is attained by a transformation:

ẑ = ZT â, Qẑ = ZTQâZ and ǎ = Z−T ž (3.19)

This transformation needs to be admissible,i.e. Z and Z−1 must have integer entries,
so that the integer nature of the ambiguities is preserved and the Z-transformation is
volume-preserving with respect to the search space, since the determinant of Z is equal
to ±1. The transformed search space is then given by:

Ωz =
{
z ∈ Z

n | (ẑ − z)TQ−1
ẑ (ẑ − z) ≤ χ2

}
(3.20)

Figure 3.6 shows a two-dimensional example of the search space before and after the
decorrelating Z-transformation. Obviously, the search tree that is required to find the
three integers in the search space will be much smaller after decorrelation.

Using the LDLT -decomposition of Qẑ, the left-hand side of equation (3.20) can be
written as a sum-of-squares:

n∑

i=1

(ẑi|I − zi)
2

σ2
i|I

≤ χ2 (3.21)

with the conditional LS-estimator ẑi|I , and the conditional variances σ2
i|I that come from
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matrix D. From equation (3.21) the n intervals that are used for the search follow as:

(ẑ1 − z1)
2 ≤ σ2

1χ
2

(ẑ2|1 − z2)
2 ≤ σ2

2|1(χ
2 − (ẑ1 − z1)

2

σ2
1

) (3.22)

...

Besides the shape of the search space, also the size is important in order for the search
to be efficient. That means that it should not contain too many integer grid points. The
choice of χ2 should therefore be such that the search space is small but at the same time
such that it is guaranteed that it contains at least one integer, or two integers in the
case the solution will be validated, see section 3.5. Since the bootstrapped solution gives
a good approximation of the ILS estimator and is easy to compute, and by definition
‖ẑ − žLS‖2

Qẑ
≤ ‖ẑ − žB‖2

Qẑ
, the size of the search space can be chosen as:

χ2 = (ẑ − žB)TQ−1
ẑ (ẑ − žB) (3.23)

If more than one candidate must be determined, bootstrapping can still be used to set
χ2. The conditional estimates ẑi|I are then not only rounded to their nearest integer, but
also to the second nearest integer. In this way n+ 1 conditionally rounded integers žB,j

are obtained, for which also the squared norms Rj = ‖ẑ− žB,j‖2
Qẑ

are determined. They
are collected in a vector (R1 · · · Rn+1) with the ordering Ri ≤ Ri+1, ∀i = 1, . . . , n. If
the requested number of candidates is l ≤ n+1, the size of the search space is chosen as
χ2 = Rl since it is then guaranteed that the search space contains at least l candidates.

Note that this approach to set the size of the search space is different from the one
described in De Jonge and Tiberius (1996), which is based on the relation between
the volume of the ellipsoid and the number of candidates it contains. This may result
in much larger search spaces. Note, however, that if more than n + 1 candidates are
requested, the approximation based on the volume of the search space must be used.
In Teunissen et al. (1996) it was shown that the volume, Vn, is a good indicator of the
number of integers, Nz, contained in an ellipsoidal region if this number is larger than
a few:

Nz ≈ [Vn] (3.24)

with

Vn = λnUn

√

|Qẑ| (3.25)

and Un the volume of the unit sphere in R
n which is given as Un = π

n
2 /Γ(n

2 +1), where
Γ(x) is the gamma function, see equation (A.11).

Once the size of the search space is set, the actual search can be carried out. In De Jonge
and Tiberius (1996), it is described how to do that in an efficient way.

Integer estimation 35



Table 3.1: Overview of ambiguity resolution methods.

Method Name References

Least-Squares Ambiguity Search Technique LSAST Hatch (1990)

Fast Ambiguity Resolution Approach FARA Frei and Beutler (1990)

Modified Cholesky decomposition Euler and Landau (1992)

Least-squares AMBiguity Decorrelation Ad-
justment

LAMBDA Teunissen (1993)

Null method Mart́ın-Neira et al. (1995);
Fernàndez-Plazaola et al. (2004)

Fast Ambiguity Search Filter FASF Chen and Lachapelle (1995)

Three Carrier Ambiguity Resolution TCAR Harris (1997)

Integrated TCAR Vollath et al. (1998)

Optimal Method for Estimating GPS Ambi-
guities

OMEGA Kim and Langley (1999)

Cascade Integer Resolution CIR Jung et al. (2000)

3.1.5 Other ambiguity resolution methods

Besides LAMBDA, several other ambiguity resolution methods have been described in
literature. Table 3.1.5 gives an overview of some well-known methods with references.
Only TCAR and CIR are based on the bootstrapping estimator, all other methods are
based on the ILS principle of minimizing the squared norm of residuals. The methods
essentially differ in the way the search space is defined. In Kim and Langley (2000),
some of the methods were conceptually compared. A comparison of LAMBDA with
CIR, TCAR, ITCAR and the Null-method is made in Joosten and Verhagen (2003),
Verhagen and Joosten (2004).

3.2 Quality of the integer ambiguity solution

The uncertainty of parameter estimators is captured by their parameter distribution.
For normally distributed data, the uncertainty is completely captured by the vc-matrix.
However, the GNSS model contains integer parameters to which this does not apply.
In this section, the distributional properties of both the real-valued and the integer
ambiguity parameters are described.

An important measure of the reliability of the fixed solution is the probability of correct
integer estimation, the success rate. Once the parameter distribution of the integer
estimator is given, the success rate can be determined. This will be the subject of
section 3.2.2.

36 Integer ambiguity resolution



3.2.1 Parameter distributions of the ambiguity estimators

The float ambiguities are assumed to be normally distributed, i.e. â ∼ N(a,Qâ), see
appendix A.2. The probability density function (PDF) of â reads then

fâ(x) =
1

√

|Qâ|(2π)
1
2
n

exp{−1

2
‖x− a‖2

Qâ
} (3.26)

where | · | denotes the determinant. The joint PDF of the float and fixed ambiguities is
given by:

fâ,ǎ(x, z) = fâ(x)sz(x), x ∈ R
n, z ∈ Z

n (3.27)

with sz(x) the indicator function of equation (3.7). For the proof see (Teunissen 2002).
The marginal distributions of â and ǎ can be recovered from this joint distribution by
integration or summation over respectively x and z. This gives the following distribution
function of the fixed ambiguities:

P (ǎ = z) =

∫

Rn

fâ,ǎ(x, z)dx =

∫

Sz

fâ(x)dx, z ∈ Z
n (3.28)

It is a probability mass function (PMF), and is referred to as the integer normal distri-
bution for the ILS estimator. The three top panels of figure 3.7 show the marginal and
joint distributions of â and ǎ.

The distribution of ǎ has some (desirable) properties, cf.(Teunissen 1998a; Teunissen
1998c). The first is that for all admissible integer estimators the distribution is symmetric
about a:

P (ǎ = a− z) = P (ǎ = a+ z), ∀z ∈ Z
n (3.29)

From this property it follows that all admissible estimators are unbiased:

E{ǎ} =
∑

z∈Zn

zP (ǎ = z) = a (3.30)

Another important property is that if a is the correct integer, the probability that this
integer is obtained as solution is always larger than the probability that another integer
is estimated:

P (ǎ = a) > P (ǎ = z, z ∈ Z
n\{a}) (3.31)

Finally, the vc-matrix of the fixed ambiguities follows from equation (3.28) as:

D{ǎ} =
∑

z∈Zn

(z − a)(z − a)TP (ǎ = z) = Qǎ (3.32)
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Figure 3.7: The joint and marginal distribution of â, ǎ and ε̌: PDF fâ(x) (top left); joint
PDF fâ,ǎ(x, z) (top middle); PMF P (ǎ = z) (top right); PDF fε̌,ǎ(x, z) (bottom middle);
PDF fε̌(x) (bottom right).

3.2.2 Success rates

The success rate, Ps, equals the probability that the ambiguities are fixed to the correct
integers. It follows from equation (3.28) as:

Ps = P (ǎ = a) =

∫

Sa

fâ(x)dx (3.33)

It is a very important measure, since the fixed solution should only be used if there is
enough confidence in this solution. In Teunissen (1999a) it was proven that:

P (ǎLS = a) ≥ P (ǎ = a) (3.34)

for any admissible integer estimator ǎ. Therefore, the ILS estimator is optimal in the
class of admissible integer estimators. Furthermore, it was shown in Teunissen (1998d)
that:

P (ǎR = a) ≤ P (ǎB = a) (3.35)

Unfortunately, it is very complicated to evaluate equation (3.33) for the integer least-
squares estimator because of the complex integration region. Therefore, approximations
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have to be used. The most important approximations will be outlined here. An evaluation
is given at the end of this subsection.

Lower bound based on bootstrapping

The bootstrapped estimator has a close to optimal performance after decorrelation of
the ambiguities using the Z-transformation of the LAMBDA method. Therefore, the
bootstrapped success rate can be used as lower bound for the ILS success rate as was
proposed in Teunissen (1999a), since it is possible to give an exact evaluation of this
success rate, (Teunissen 1998d):

Ps,B = P (
n⋂

i=1

|âi|I − ai| ≤
1

2
)

=

n∏

i=1

P ([âi|I ] = ai

∣
∣
∣ [â1] = a1, . . . , [âi−1|I−1] = ai−1)

=

n∏

i=1

1
2∫

− 1
2

1

σi|I
√

2π
exp{−1

2

(
x

σi|I

)2

}dx

=

n∏

i=1

(

2Φ(
1

2σi|I
) − 1

)

(3.36)

with Φ(x) the cumulative normal distribution of equation (A.7), and σi|I the standard
deviation of the ith least-squares ambiguity obtained through a conditioning on the
previous I = {1, ..., i− 1} ambiguities. These conditional standard deviations are equal
to the square root of the entries of matrix D from the LDLT -decomposition of the
vc-matrix Qâ. In order to obtain a strict lower bound of the ILS success rate, the
bootstrapped success rate in equation (3.37) must be computed for the decorrelated
ambiguities ẑ and corresponding conditional standard deviations. Hence:

Ps,LS ≥
n∏

i=1

(

2Φ(
1

2σi|I
) − 1

)

(3.37)

with σi|I the square roots of the diagonal elements of D from Qẑ = LDLT .

Upper bound based on ADOP

The Ambiguity Dilution of Precision (ADOP) is defined as a diagnostic that tries to
capture the main characteristics of the ambiguity precision. It is defined as:

ADOP =
√

|Qâ|
1
n =

n∏

i=1

σ
1
n

i|I (3.38)
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and has units of cycles. It was introduced in Teunissen (1997), and described and
analyzed in Teunissen and Odijk (1997). The ADOP measure has some desirable prop-
erties. First, it is invariant within the class of admissible ambiguity transformations,
which means for example that ADOP is independent of the chosen reference satellite
in the double difference approach, and ADOP will not change after the decorrelating
Z-transformation of the ambiguities. When the ambiguities are completely decorrelated,
the ADOP equals the geometric mean of the standard deviations of the ambiguities,
hence ADOP approximates the average precision of the transformed ambiguities.

In Teunissen (2000b) it was proven that an upper bound for the ILS success rate can be
given based on the ADOP:

Ps,LS ≤ P
(

χ2(n, 0) ≤ cn
ADOP 2

)

(3.39)

with

cn =

(
n
2 Γ(n

2 )
) 2

n

π

This upper bound is identical to the one presented without proof in Hassibi and Boyd
(1998).

Lower and upper bounds based on bounding the integration region

In Teunissen (1998c) lower and upper bounds for the ILS success rate were obtained by
bounding the integration region. Obviously, a lower bound is obtained if the integration
region is chosen such that it is completely contained by the pull-in region, and an upper
bound is obtained if the integration region is chosen such that it completely contains
the pull-in region. The integration region can then be chosen such that the integral is
easy-to-evaluate. In (ibid) the integration region for the lower bound was chosen as an
ellipsoidal region Ca ⊂ Sa.

The upper bound can be obtained by defining a region Ua ⊃ Sa, with Sa as defined in
(3.17):

Sa = {â ∈ R
n | |w| ≤ 1

2
‖c‖Qâ

, ∀c ∈ Z
n} with w =

cTQ−1
â (â− a)

‖c‖Qâ

(3.40)

Note that the w in this expression can be geometrically interpreted as the orthogonal
projection of (â−a) onto the direction vector c. Hence, Sa is the intersection of banded
subsets centered at a and having a width ‖c‖Qâ

. Any finite intersection of these banded
subsets encloses Sa, and therefore the subset Ua could be chosen as

Ua = {â ∈ R
n | |wi| ≤

1

2
‖ci‖Qâ

, i = 1, . . . , p} ⊃ Sa

with wi ∼ N(0, 1). The choice for p is still open, but a larger p will result in a sharper
upper bound for the success rate. However, if p > 1 the wi are correlated. This is
handled by defining a p-vector v as

v = (v1, . . . , vp)
T with vi =

wi

‖ci‖Qâ
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Then Ua = {â ∈ R
n |

p
∩

i=1
|vi| ≤ 1

2}. Therefore, the probability P (â ∈ Ua) equals

the probability that component-wise rounding of the vector v produces the zero vector.
This means that P (â ∈ Ua) is bounded from above by the probability that conditional
rounding, cf.(Teunissen 1998d), produces the zero vector, i.e.:

Ps,LS ≤ P (â ∈ Ua) ≤
p
∏

i=1

(

2Φ(
1

2σvi|I

) − 1

)

(3.41)

with σvi|I
the conditional standard deviation of vi. The conditional standard deviations

are equal to the diagonal entries of the matrix D from the LDLT -decomposition of the
vc-matrix of v. The elements of this vc-matrix are given as:

σvivj
=

cTi Q
−1
â cj

‖ci‖2
Qâ

‖cj‖2
Qâ

In order to avoid the conditional standard deviations becoming zero, the vc-matrix of
v must be of full rank, and thus the vectors ci, i = 1, . . . , p ≤ n need to be linearly
independent.

The procedure for the computation of this upper bound is as follows. LAMBDA is
used to find the q >> n closest integers ci ∈ Z

n \ {0} for â = 0. These q integer
vectors are ordered by increasing distance to the zero vector, measured in the metric
Qâ. Start with C = c1, so that rank(C) = 1. Then find the first candidate cj for which
rank(c1 cj) = 2. Continue with C = (c1 cj) and find the next candidate that results in
an increase in rank. Continue this process until rank(C) = n.

In Kondo (2003) the correlation between the wi is not taken into account, which means
that instead of the conditional variances, simply the variances of the vi are used. Then
the following is obtained:

p
∏

i=1

(

2Φ(
1

2σvi

) − 1

)

=

p
∏

i=1

Ps,i

with the Ps,i equal to

Ps,i =
2√

2πσvi

1
2∫

0

exp

{

−1

2

x2

σ2
vi

}

dx (3.42)

It is known, cf.(Teunissen 1998d), that

p
∏

i=1

(

2Φ(
1

2σvi

) − 1

)

≤ P (â ∈ Ua)

This means that it is only guaranteed that Kondo’s approximation of the success rate
is a lower bound if P (â ∈ Ua) is equal to the success rate. This will be the case if p is
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chosen equal to half the number of facets that bound the ILS pull-in region. So, it is
required to know this number, but in practice only the bounds are known:

n ≤ p ≤ 2n − 1

If p is chosen to be smaller than half the number of bounding facets, it is not guaranteed
that the approximation gives a lower bound. On the other hand, if p is chosen to be
larger than required in order to guarantee that P (â ∈ Ua) = P (â ∈ Sa), the lower bound
is less strict since the lower bound is defined as a product of probabilities which are all
smaller or equal to one. Note that p may become very large when many satellites are
visible. For instance, with 6 visible satellites and two frequencies available, the number
of unknown ambiguities for one epoch is n = 10, and p ≤ 2n − 1 = 1023.

It is possible to find all adjacent integers, but it is computationally demanding. First,
note that it is not always the case that the 2p adjacent integers are also the 2p closest
integers. Therefore, a large set of integers ci must be selected, in the same way as for
the computation of the upper bound described above, but now with q >> 2(2n − 1).
For each integer in this set it must be checked if it is adjacent, which is the case if 1

2ci
lies on the boundary of both the pull-in regions S0 and Sci

. This is the case if:

‖1

2
ci − 0‖2

Qâ
= ‖1

2
ci − ci‖2

Qâ
= min

z∈Zn
‖1

2
ci − z‖2

Qâ
(3.43)

Note that if cj is selected as adjacent integer, −cj must not be included in the set
C = (c1 . . . , cp) adjacent integers that is used to compute the lower bound.

Approximation based on ADOP

Until now only lower and upper bounds of the ILS success rate were given. If these
bounds are sharp, it is very useful to know whether an approximation is a lower or upper
bound, since in general a user will choose a minimum required success rate. If the
lower bound is below this minimum, the user will not have enough confidence in the
fixed solution – although there is still a probability that the actual success rate is large
enough. An upper bound could be used in a similar way: if it is below a certain threshold
value, one cannot expect ambiguity resolution to be successful.

Instead of a lower and/or upper bound, it is also possible to use the following approxi-
mation:

Ps,LS ≈ (2Φ(
1

2ADOP
) − 1)n (3.44)

In Teunissen (2003b) it was proven that this is an invariant upper bound of the boot-
strapped success rate, and it is equal to the bootstrapped success rate when all ambigu-
ities are completely decorrelated. Since the bootstrapped success rate is used as a lower
bound for the ILS success rate, the bootstrapped upper bound is expected to be a good
approximation of the ILS success rate. The reason is that the ADOP approximates the
average precision of the transformed ambiguities, and can therefore be used to replace
the individual conditional standard deviations in equation (3.37).
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Figure 3.8: Upper and lower bounds for the success rate in the 2-D case as function of f

with vc-matrix 1

f
Qâ,ref.

Evaluation of the approximations

In order to evaluate the lower and upper bounds of the success rate, simulations are
used. The procedure is explained in appendix B. The results were also presented in
Verhagen (2003).

First the two-dimensional case is considered, using:

Qẑ =
1

f

[
0.0216 −0.0091

−0.0091 0.0212

]

, 0 < f ≤ 1

for different values of f . The results are shown in figure 3.8. The left panel shows the
two upper bounds and the success rates from the simulations. Obviously, the ADOP-
based upper bound is very strict and is always much better than the upper bound based
on bounding the integration region. The panels on the right show the lower bounds. It
follows that for lower success rates (< 0.93) the bootstrapped success rate is the best
lower bound. For higher success rates the success rate proposed by Kondo works very
well and is better than the bootstrapped lower bound.

Table 3.2 shows the maximum and mean differences of the approximations with the
success rate from simulation. From these differences it follows that the ADOP-based
approximation, the bootstrapped lower bound and the ADOP-based upper bound are
best.

Because of its simplicity the geometry-free model is very suitable for a first evaluation,
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Table 3.2: Two-dimensional example. Mean and maximum difference between success rate,
Ps, based on simulations and the approximations. The success rate for which the maximum
difference is obtained is given in the last row.

LB bootstr. LB region UB ADOP UB region ADOP
mean difference 0.005 0.018 0.001 0.018 0.004
max. difference 0.010 0.105 0.003 0.065 0.009
Ps 0.805 0.388 0.833 0.559 0.805

Table 3.3: Approximated success rates using simulations (sim.), the lower bounds based on
bootstrapping (LB bootstr.) and bounding the integration region (LB region), the upper
bounds based on ADOP (UB ADOP) and bounding the integration region (UB region), and
the approximation based on ADOP (ADOP).

example sim. LB bootstr. LB region UB ADOP UB region ADOP
2-D 1.000 0.999 1.000 1.000 1.000 0.999
06 01 0.818 0.749 0.698 0.848 0.942 0.765
06 02 0.442 0.410 0.118 0.475 0.626 0.417
10 01 0.989 0.976 0.988 0.999 0.992 0.978
10 03 0.476 0.442 0.126 0.681 0.661 0.525

though it is more useful to know how well the approximations work in practice. Therefore,
simulations were carried out for several geometry-based models, see appendix B. The
resulting lower and upper bounds are shown in table 3.3. The first row shows the results
for the two-dimensional vc-matrix with f = 1.

The results show that Kondo’s lower bound works very well for a high success rate, but in
general the bootstrapped lower bound is much better. It can be concluded that Kondo’s
lower bound seems to be useful only in a few cases. Firstly, to obtain a strict lower bound
the precision should be high, so that the success rate is high. Even then, it depends
on the minimum required success rate whether or not it is really necessary to use the
approximation: if the bootstrapped success rate is somewhat lower than this minimum
required success rate, Kondo’s approximation can be used to see if it is larger. The
minimum required success rate could be chosen such that the fixed ambiguity estimator
can be considered deterministic. In this case, the discrimination tests as used in practice
can be used, see section 3.5.

An advantage of the bootstrapped success rate is that it is very easy to compute,
since the conditional variances are already available when using the LAMBDA method.
The computation of Kondo’s lower bound is more complex, since for high-dimensional
problems the number of facets that bound the pull-in region can be very large.

It is difficult to say which upper bound is best. For the examples with only four visible
satellites the ADOP-based upper bound is better than the one obtained by bounding
the integration region, but in the examples with more satellites the latter is somewhat
better. All bounds are best in the case of high precisions, i.e. high success rates. All
in all, one can have a little more confidence in the ADOP-based bound, since its overall
performance, based on all examples, is slightly better. An advantage of the ADOP-
based upper bound is that it is easy to compute, whereas using the upper bound based
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on bounding the integration region brings the problem of determining the n closest
independent integers to the zero vector.

The approximation based on ADOP performs quite well for the examples shown here.
Except for example 10 03, this approximation is smaller than the empirical success rate,
and better than the lower bound. The vc-matrix of example 10 03 is obtained for a
relatively long baseline and its dimension is equal to 10. This results in conditional
standard deviations of the transformed ambiguities that may differ considerably from
the approximate average given by ADOP. This explains why the approximation is not so
good in this case.

3.2.3 Bias-affected success rates

In section 2.5.1 the minimal detectable effect (MDE) was introduced as a measure of the
impact of a certain model error on the final solution. Using equation (2.77) the impact
on the float solution can be computed, but for high-precision GNSS applications it would
be more interesting to know the impact on the fixed solution. For that purpose, one
could compute the effect of a bias in the float ambiguity solution, ∇â, on the success
rate. This so-called bias-affected success rate can be computed once ∇â is known, see
(Teunissen 2001a). The bootstrapped success rate in the presence of biases, and after
decorrelation so that the bias is ∇ẑ = ZT∇â, becomes:

P∇(žB = z) =

∫

S0,B

1
√

|Qâ|(2π)
1
2
n

exp{−1

2
‖x−∇ẑ‖2

Qẑ
}dx

=

∫

F−1(S0,B)

1
√

|D|(2π)
1
2
n

exp{−1

2
‖y − L−1∇ẑ‖2

D}dy, (3.45)

where the transformation F : y = Lx was used, so that the bootstrapped pull-in region
is transformed as:

F−1(S0,B) = {y ∈ R
n | |cTi y| ≤

1

2
, i = 1, . . . , n}

with ci the vector with a one as ith entry and zeros otherwise. The transformed pull-in
region equals an origin-centered cube with all sides equal to 1. Since D is a diagonal
matrix, the multivariate integral can be written as:

P∇(žB = z) =
n∏

i=1

∫

|yi|≤ 1
2

1

σi|I
√

2π
exp{−1

2

(
yi − cTi L

−1∇ẑ
σi|I

)2

}dyi

=

n∏

i=1

1−2cT
i L−1∇ẑ

2σi|I∫

− 1+2cT
i

L−1∇ẑ

2σi|I

1√
2π

exp{−1

2
v2}dv

=

n∏

i=1

(

Φ

(
1 − 2cTi L

−1∇ẑ
2σi|I

)

+ Φ

(
1 + 2cTi L

−1∇ẑ
2σi|I

)

− 1

)

(3.46)
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The bias-affected success rate is a useful diagnostic tool in order to study the impact of
biases on ambiguity resolution. For example one could study the impact of unmodeled
ionospheric errors or multipath, see (Teunissen et al. 2000; Joosten et al. 2002).

3.3 The ambiguity residuals

The ambiguity residuals are defined as:

ε̌ = â− ǎ (3.47)

These residuals can be used as a measure of the inconsistency between the data and the
model. In order to measure the significance of the inconsistency also their probabilistic
properties are needed. In practice it is often assumed that the fixed estimator ǎ is
deterministic, so that the residuals simply take the same probability distribution as the
float ambiguities, i.e. a normal distribution. This assumption, however, is not correct.
It should only be used if the PDF of the float ambiguities is sufficiently peaked, so that
the probability mass in Sa is very close to one.

3.3.1 Parameter distribution of the ambiguity residuals

In Teunissen (2002) and Verhagen and Teunissen (2004c) it was shown how the PDF
of the ambiguity residuals can be constructed. Here a somewhat different approach will
be followed.

Let R ⊂ R
n be an arbitrary subset. Then

P (ε̌ ∈ R) = P (â− ǎ ∈ R)

=
∑

z∈Zn

P (â− ǎ ∈ R, â ∈ Sz)

=
∑

z∈Zn

P (â− z ∈ R, â ∈ Sz)

=
∑

z∈Zn

P (â ∈ {R + z} ∩ Sz)

=
∑

z∈Zn

∫

{R+z} T

Sz

fâ(x)dx use change of variable y = x− z

=
∑

z∈Zn

∫

R
T

S0

fâ(y + z)dy

=

∫

R

∑

z∈Zn

fâ(x+ z)s0(x)dx

with s0(x) the indicator function, see equation (3.7). Since the above equation holds
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for any R, it follows that the PDF of ε̌ is given as:

fε̌(x) =
∑

z∈Zn

fâ(x+ z)s0(x)

=
1

√

|Qâ|(2π)
1
2
n

∑

z∈Zn

exp{−1

2
‖x− a+ z‖2

Qâ
}s0(x) (3.48)

Note that fε̌(x) is only sensitive to the fractional part of a, that is the departure from
integerness if a /∈ Z

n. But in general it is of course assumed that a ∈ Z
n, and then a

can be eliminated from equation (3.48) because of the infinite sum over all integers.

As was shown in Teunissen (2002) and Verhagen and Teunissen (2004c), the joint PDF
of ǎ and ε̌ is given by fε̌,ǎ(x, z) = fâ(x + z)s0(x). Figure 3.7 shows all steps required
for the construction of the PDF of the ambiguity residuals in the one-dimensional (1-D)
case. The PDF of â (top left) is plotted along the x-axis, the PMF of ǎ (top right) along
the z-axis, and the joint PDF (top middle) is plotted in the xz-plane. Its construction
from the marginal PDF and PMF can be seen as follows. First, the parts of the PDF of â
are sliced out that correspond to all pull-in regions. For the 1-D case, the pull-in regions
simply are intervals with length 1, centered at the integers, Sz = {x ∈ R| |x− z| ≤ 1

2}.
These slices are then translated along the z-axis to the corresponding integers z. The
joint PDF of ε̌ and ǎ (bottom left) follows from another translation of the slices, but
now along the x-axis, so that they are all centered at the mean value x = 0. The PDF
of ε̌ (bottom right) is finally obtained by a summation over z, i.e. all slices are again
translated along the z-axis to the origin.

Unfortunately, it is not possible to evaluate the PDF of the ambiguity residuals exactly
because of the infinite sum over all integer vectors in Z

n. It is therefore required to
choose a finite subset Θ ⊂ Z

n that will give a good approximation, see (Verhagen and
Teunissen 2004b). This will be the case if:

∑

u∈Zn\Θ

1
√

|Qâ|(2π)
1
2
n

exp{−1

2
‖x− a+ u‖2

Qâ
} ≈ 0 (3.49)

In order to have a high probability that (3.49) holds, Θ should be chosen as:

Θ = {z ∈ Z
n | 1
√

|Qâ|(2π)
1
2
n

exp{−1

2
‖x− a+ z‖2

Qâ
} > λ} (3.50)

with λ very small, so that the contribution of all u ∈ Z
n\Θ to the infinite sum of

equation (3.48) can be neglected. This holds true if the probability

P (
1

√

|Qâ|(2π)
1
2
n

exp{−1

2
‖x− a+ z‖2

Qâ
} > λ)
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is close to one. This probability can be computed as follows:

P (
1

√

|Qâ|(2π)
1
2
n

exp{−1

2
‖x− a+ z‖2

Qâ
}

︸ ︷︷ ︸

=fâ(x+z)

> λ)

= P (‖x− a+ z‖2
Qâ

< −2 ln(λ
√

|Qâ|(2π)
1
2
n)

︸ ︷︷ ︸

χ2

) (3.51)

= P (‖â− a‖2
Qâ

< χ2)

This probability can be computed since ‖â− a‖2
Qâ

∼ χ2(n, 0), see appendix A.2.2.

Summarizing, this means that fε̌(x) can be approximated by:

fε̌(x) =
1

√

|Qâ|(2π)
1
2
n

∑

z∈Θ

exp{−1

2
‖x+ z‖2

Qâ
}s0(x) (3.52)

with

Θ = {z ∈ Z
n | ‖x+ z‖2

Qâ
< χ2} (3.53)

where a ∈ Z
n is eliminated from equation (3.48), and χ2 as defined in equation (3.51).

So, the integer set contains all integers z within the ellipsoid centered at −x and its size
governed by χ.

3.3.2 PDF evaluation

Figure 3.9 shows fε̌(x) under H0 for different values of σ in the one-dimensional case
(n = 1). Also the extreme cases, σ2 = 0 and σ2 → ∞, are shown. In the first case, an
impulse PDF is obtained, in the second case a uniform PDF. Note that the unit of σ is
cycles.

It can be seen that the PDF becomes peaked if the precision is better, i.e. σ ↓ 0. In
that case most of the probability mass of the PDF of â is located in the pull-in region
Sa. This is the case for σ = 0.1. For σ ≥ 0.3 (right panel) the distribution function
becomes flat, and already for σ = 1 the PDF is very close to the uniform distribution.

Figure 3.10 shows the PDFs of â, ẑ and ε̌ obtained for the three admissible estimators.
The following vc-matrices (original and Z-transformed) were used:

Qâ =

(
4.9718 3.8733
3.8733 3.0188

)

, Qẑ =

(
0.0865 −0.0364

−0.0364 0.0847

)

(3.54)

These vc-matrices are obtained for the dual-frequency geometry-free GPS model for
one satellite-pair, with undifferenced code and phase standard deviations of 30 cm and
3 mm, respectively. The results were evaluated in Verhagen and Teunissen (2004c).
Especially for the bootstrapped and the ILS estimator, the shape of the PDF of the
residuals ’fits’ the shape of the pull-in region quite well. The PDFs are multi-modal for
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Figure 3.9: PDF of ε̌ for different values of σ.

the untransformed vc-matrices, but not for the Z-transformed vc-matrices. However,
the shape of the PDF near the boundaries of the pull-in region is clearly different from
the shape of the PDF of â. This shows that in all cases the fixed ambiguity estimator
should not be considered deterministic, since that would result in the assumption that
fε̌(x) := fâ(x + ǎ). This is only true if all the probability mass of â is located in the
pull-in region Sa.

Figure 3.11 shows the ellipses that correspond to the vc-matrices of â and ẑ, and to the
vc-matrices of the ambiguity residuals.

Approximation

In section 3.3.1 it was explained that only an approximation of the PDF of ε̌ is possible by
replacing the infinite sum over all integers in equation (3.48) by a sum over a finite set of
integers. It is investigated here how good the approximations work for different choices
of λ, which determines the integer set, see equation (3.51). For that purpose, 10,000
samples of float ambiguities were generated using simulation for various vc-matrices, see
appendix B. The corresponding ambiguity residuals were determined, so that the PDF
of these parameters could be determined.

The results for the 2-D case are shown in figure 3.12. Besides Qẑ 02 01, also 1
4Qẑ 02 01

and 4Qẑ 02 01 were used in order to study the effect of higher/lower precision. The
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horizontal axis gives the value of α:

α = 1 − P (‖â− a‖2
Qâ

< χ2), (3.55)

see equation (3.51).

The ’correct’ values, f c
ε̌ (x), were computed for all samples using a very large integer set.

Then the difference with the approximations df = f c
ε̌ (x) − fα

ε̌ (x) were computed. The
top panels show along the vertical axes:

y =
df

N
, (mean error)

y = arg max
x

(df), (maximum error)

where N is the number of samples.

It follows that for lower precision – top panels – a large integer set is required in order
to get a good approximation. Note that the number of integers in the set Θ depends
on the sample value of ε̌, since the ellipsoidal region is centered at −ε̌.

The results for the geometry-based examples are summarized in table 3.4. For each
example, four different integer sets were chosen, based on the choice of α, see equation
(3.55). The corresponding value of λ in equation (3.51) is also given. The largest of
these sets was chosen such that the error in the approximation of the PDF was small
enough to be neglected. It follows that the approximation errors have the same order as
α. So, with α = 10−6 the errors are small, and the number of integers in the set Θ is
also small enough to guarantee reasonable computation times.

3.4 Quality of the fixed baseline estimator

The distributional properties of the ambiguity parameters were discussed in the preceding
sections. A user, however, will of course be mainly interested in the quality of the baseline
solution. In this section, the distributional properties of the fixed baseline estimator will
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Table 3.4: Order of the mean and maximum approximation errors in fε̌(x). Nz equals the
minimum and maximum number of integers used.

α λ mean maximum Nz

06 01 10−16 10−18 10−16 10−15 753-850

10−12 10−14 10−12 10−12 347-407

10−8 10−9 10−8 10−8 112-155

10−6 10−7 10−6 10−6 53-87

06 02 10−16 10−19 10−17 10−15 4730-4922

10−12 10−15 10−12 10−12 2203-2379

10−8 10−10 10−8 10−8 785-879

10−6 10−8 10−6 10−6 357-442

10 01 10−16 10−18 10−16 10−14 274-345

10−12 10−14 10−12 10−12 80-121

10−8 10−9 10−8 10−8 11-31

10−6 10−6 10−6 10−6 2-14

10 03 10−16 10−20 10−17 10−15 44323-45452

10−12 10−16 10−12 10−12 14535-15048

10−8 10−11 10−8 10−8 2959-3330

10−6 10−9 10−6 10−6 1007-1215

be presented. Furthermore, some baseline probabilities will be given that can be used to
obtain a quality assessment of the fixed baseline solution.

3.4.1 Parameter distributions of the baseline estimators

The float baseline solution is assumed to be normally distributed, i.e. b̂ ∼ N(b,Q
b̂
).

The PDF of b̂ reads then

f
b̂
(x) =

1
√
|Q

b̂
|(2π)

1
2
p

exp{−1

2
‖x− b‖2

Q
b̂
} (3.56)

The conditional PDF is given by:

f
b̂|â(x|z) =

1
√

|Q
b̂|â|(2π)

1
2
p

exp{−1

2
‖x− b(z)‖2

Q
b̂|â

} (3.57)

with conditional mean b(z) = b − Q
b̂â
Q−1

â (a − z), and conditional variance matrix

Q
b̂|â = Q

b̂
−Q

b̂â
Q−1

â Q
âb̂

.

The distribution function of the fixed baseline parameters, fb̌(x), was derived in Teunis-
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Figure 3.13: Example of the multi-modal PDF of b̌ and the corresponding uni-modal PDF
of b̂.

sen (1998e;2002) as:

fb̌(x) =
∑

z∈Zn

f
b̂|â(x|z)P (ǎ = z) (3.58)

So, although the model (3.1) is linear and the observations are normally distributed,
the distribution of the fixed baseline solution is not normal, but multi-modal. Since
b̂(z) = b̂−Q

b̂â
Q−1

â (â−z) it follows that the peaks are centered at x = Q
b̂â
Q−1

â z, z ∈ Z
n

and their height depends on P (ǎ = z). Figure 3.13 shows an example of the multi-modal

PDF of b̌ and the corresponding PDF of b̂.

From equations (3.4) and (3.30) it follows that the fixed baseline estimator is unbiased:

E{b̌} = b−Q
b̂â
Q−1

â (a− E{ǎ}) = b (3.59)

When the propagation law of covariances is applied to equation (3.4), it follows that

Qb̌ = Q
b̂
−Q

b̂â
Q−1

â Q
âb̂

+Q
b̂â
Q−1

â QǎQ
−1
â Q

âb̂
(3.60)

= Q
b̂|â +Q

b̂â
Q−1

â QǎQ
−1
â Q

âb̂
(3.61)

So, only if Qǎ = 0 the precision of the fixed baseline estimator is equal to that of the
conditional baseline estimator. Equation (3.32) shows that Qǎ ≈ 0 if the probability
that a wrong integer is estimated can be neglected.

If the ambiguities are fixed incorrectly, this may result in a fixed baseline solution that
is worse than the float solution. In section 3.2.2 it was explained that it is therefore
important to check whether or not one can have enough confidence in the correctness
of the fixed ambiguity solution. But this does still not tell anything on the quality of the
fixed baseline.
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3.4.2 Baseline probabilities

The quality of the fixed baseline solution could be evaluated by means of the probability
that b̌ lies in a certain convex region Eb ⊂ R

p symmetric with respect to b. This
probability follows from equation (3.58) as:

P (b̌ ∈ Eb) =
∑

z∈Zn

∫

Eb

f
b̂|â(x|z)dxP (ǎ = z) (3.62)

The infinite sum in the equation cannot be evaluated exactly and therefore in practice
a lower and upper bound can be used, (Teunissen 1999b):

P (b̂(a) ∈ Eb)P (ǎ = a) ≤ P (b̌ ∈ Eb) ≤ P (b̂(a) ∈ Eb) (3.63)

These bounds become tight when the success rate P (ǎ = a) is close to one. In that
case also the following is true:

P (b̌ ∈ Eb) ≈ P (b̂(a) ∈ Eb) ≥ P (b̂ ∈ Eb) (3.64)

The vc-matrix of the conditional baseline estimator, Q
b̂|â is often used as a measure of

the fixed baseline precision. Therefore, this vc-matrix will be used in order to define the
shape of the confidence region Eb, so that it takes the ellipsoidal form:

Eb =
{

x ∈ R
n | (x− b)TQ−1

b̂|â(x− b) ≤ β2
}

(3.65)

The size of the region can thus be varied by the choice of β. Then:

P (b̌ ∈ Eb) = P (‖b̌− b‖2
Q

b̂|â
≤ β2) =

∑

z∈Zn

P (χ2(p, λz) ≤ β2)P (ǎ = z) (3.66)

with χ2(p, λz) the non-central χ2-distribution with p degrees of freedom and non-
centrality parameter λz:

λz = ‖∇b̌z‖2
Q

b̂|â
, ∇b̌z = Q

b̂â
Q−1

â (z − a) (3.67)

The interval of (3.63) becomes now:

α1 ≤ P (‖b̌− b‖2
Q

b̂|â
≤ β2) ≤ α2 (3.68)

with

α1 = α2P (ǎ = a) and α2 = P (χ2(p, 0) ≤ β2)

By choosing the confidence level α1, the success rate can be used to determine α2,
which finally can be used to compute β with the aid of the χ2-distribution.

Equation (3.68) is useful in order to decide whether or not one can have enough con-
fidence in the fixed solution, although it will be difficult to know what value of β is
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acceptable. Moreover, the bounds will only be tight if the success rate is high. Further-
more, it is also interesting to compare the ’quality’ of the float and the fixed baseline
estimators. For that purpose, the probabilities P (b̌ ∈ Eb) and P (b̂ ∈ Eb) can be con-
sidered, with Eb identical in both cases. But then the choice of the region Eb is not
so straightforward; with equation (3.65) it is not possible to give an exact evaluation of

P (b̂ ∈ Eb). Another option is therefore to consider the probabilities:

P (‖b̂− b‖2
Q

b̂
≤ β2) and P (‖b̌− b‖2

Qb̌
≤ β2) (3.69)

The first probability can be evaluated exactly since ‖b̂−b‖2
Q

b̂
has a central χ2-distribution.

The second probability, however, cannot be evaluated exactly.

Until now the quality of the complete baseline estimator was considered. However, a
user will be mainly interested in the baseline increments, whereas the baseline estimator
may contain other parameters as well, such as ionospheric delays. Therefore, it is more
interesting to look at the probabilities

P (‖b̂x − bx‖ ≤ β) and P (‖b̌x − bx‖ ≤ β) (3.70)

where the subscript x is used to indicate that only the baseline parameters referring to
the actual receiver position are considered, i.e. bx = rqr from equation (2.39). So,

‖b̂x − bx‖ is the actual distance to the true receiver position.

Examples

It is possible to evaluate the baseline probabilities using simulations. Examples 06 01
and 06 02 from appendix B will be considered here. A large number of float baseline
estimates was generated, and for each float sample the corresponding fixed baseline
was computed. The vc-matrix of the fixed baseline estimator was determined from the
samples. Figure 3.14 shows the various baseline probabilities. It can be seen that the
bounds of equation (3.68) are generally not strict (shown in grey), and it is difficult to
interpret the probabilities with Eb chosen as in equation (3.65). More examples and an
evaluation of the results will be given in chapters 4 and 5, when the performance of the
float and fixed estimators is compared to that of new estimators introduced in those
chapters.

3.5 Validation of the fixed solution

A parameter estimation theory cannot be considered complete without rigorous mea-
sures for validating the parameter solution. In the classical theory of linear estimation,
the vc-matrices provide sufficient information on the precision of the estimated parame-
ters. The reason is that a linear model applied to normally distributed (Gaussian) data,
provides linear estimators that are also normally distributed, and the peakedness of the
multivariate normal distribution is completely captured by the vc-matrix.
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Figure 3.14: Float (dashed) and fixed (solid) baseline probabilities for examples 06 01 (top)
and 06 02 (bottom).
Left: P (‖b̂ − b‖2

Q
b̂
≤ β2) and P (‖b̌ − b‖2

Q
b̌
≤ β2).

Center: P (‖b̂ − b‖2

Q
b̂|â

≤ β2) and P (‖b̌ − b‖2

Q
b̂|â

≤ β2).

Right: P (‖b̂x − bx‖ ≤ β) and P (‖b̌x − bx‖ ≤ β).

Validation of the fixed solution 57



Unfortunately, this relatively simple approach cannot be applied when integer parameters
are involved in the estimation process, since the integer estimators do not have a Gaussian
distribution, even if the model is linear and the data are normally distributed. Instead of
the vc-matrices, the parameter distribution itself has to be used in order to obtain the
appropriate measures that can be used to validate the integer parameter solution.

In the past, the problem of non-Gaussian parameter distributions was circumvented by
simply ignoring the randomness of the fixed ambiguity estimator. Several testing pro-
cedures for the validation of the fixed solution have been proposed using this approach.
This section will give an overview and evaluation of these procedures, taken from (Ver-
hagen 2004).

3.5.1 Integer validation

The first step in validating the float and fixed solution is to define three classes of
hypotheses, (Teunissen 1998b). In practice the following hypotheses are used:

H1 : y = Aa+Bb+ e, a ∈ R
n, b ∈ R

p, e ∈ R
m

H2 : y ∈ R
m, (3.71)

H3 : y = Aǎ+Bb+ e, b ∈ R
p, e ∈ R

m

with Qy = σ2Gy for all hypotheses.

In hypothesis H1 it is assumed that all unknown parameters are real-valued. In other
words, the constraint that the ambiguities should be integer-valued is ignored. The float
solution is thus the result of least-squares estimation under H1.

In the third hypothesis the integer constraint is considered by assuming that the correct
integer values of the ambiguities are known. The values are chosen equal to the fixed
ambiguities obtained with integer least-squares. Hence, the least-squares solution under
H3 corresponds to the fixed solution. Clearly, the first hypothesis is more relaxed than
the third hypothesis, i.e. H3 ⊂ H1.

The second hypothesis does not put any restrictions on y and is thus the most relaxed
hypothesis.

It will be assumed that the m-vector of observations y is normally distributed with a zero-
mean residual vector e. The matrix Gy is the cofactor matrix of the variance-covariance
matrix Qy, and σ2 is the variance factor of unit weight. The unbiased estimates of σ2

under H1 and H3 respectively are given by:

H1 : σ̂2 =
êTG−1

y ê

m− n− p
=

Ω̂

m− n− p

H3 : σ̌2 =
ěTG−1

y ě

m− p
=

Ω̌

m− p
(3.72)

The denominators in (3.72) are equal to the redundancies under the corresponding
hypotheses.
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Since H3 ⊂ H1 ⊂ H2, starting point is to test H1 against H2. This will answer the
question whether or not the model on the basis of which the float solution is computed
may be considered valid or not. This is important, since the data may be contaminated
by undetected errors and/or the model may not represent reality because some physical
or geometrical effects are not captured correctly (e.g. multipath, atmospheric delays).

The test statistic that allows to test H1 against H2 is given by σ̂2

σ2 , and H1 is accepted
when

σ̂2

σ2
< Fα(m− n− p,∞, 0) (3.73)

where Fα(m − n − p,∞, 0) is the critical value that corresponds to the central F -
distribution, F (m − n − p,∞, 0), and the chosen level of significance α. This test is
identical to the overall model test in section 2.5.2.

If the value of the test statistic has passed the test in expression (3.73), the next step
is to verify whether or not hypothesis H3 may be considered valid. This means testing
H3 against H1. Alternatively, one could test H3 against H2 in the case one is not sure
if the first hypothesis is true. This would result in the following test:

σ̌2

σ2
< Fα(m− p,∞, 0) (3.74)

However, testing H3 against H1 is more powerful and focuses on the question whether
the fixed ambiguity vector ǎ may be considered valid. The test statistic is given by
(â−ǎ)T G−1

â
(â−ǎ)

nσ2 , which is distributed under H3 as F (n,∞, 0). Hence, the fixed ambi-
guities are considered valid if:

(â− ǎ)TG−1
â (â− ǎ)

nσ2
=

R1

nσ2
< Fα(n,∞, 0) (3.75)

Note that from equation (3.14), with the last term equal to zero, it follows that:

R1 = (â− ǎ)TG−1
â (â− ǎ) = ěTG−1

y ě− êTG−1
y ê = Ω̌ − Ω̂

This shows that test (3.75) can also be expressed in terms of the test statistics of (3.73)
and (3.74).

The test in (3.75) is based on the distance - as measured by the metric Qâ - between the
float and fixed solution. This is reasonable, since one would not have much confidence
in the fixed solution if the distance to the float solution is large. In that case one should
not use the fixed solution and instead stick to the float solution and/or gather more data
so that the estimation and validation process can be repeated.

The value of the variance factor is not always known. In that case σ2 can be replaced
by σ̂2, so that the test becomes:

R1

nσ̂2
< Fα(n,m− n− p, 0) (3.76)

The means of the test statistics of (3.73), (3.74) and (3.75) are all equal to one, whereas
the mean of the test statistic of (3.76) equals (m − n − p)/(m − n − p − 2), which is
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always larger than one. This shows that the distributions of the tests (3.76) and (3.75)
approach each other in the case m − n − p is large. Note that the test statistic in
equation (3.76) is assumed to have an F -distribution, which is only the case if Ω̂ and
R1 are independent. In general this is not true.

3.5.2 Discrimination tests

The tests of (3.75) and (3.76) do not give information on the likelihood of the fixed
solution as compared to another set of integers. There might be another integer vector,
say ǎ′, that results in a value for the test statistic that passes test (3.75). Of course it is
known that the likelihood of the fixed solution ǎ is always larger than the likelihood of any
other integer vector in the case it was obtained with integer least-squares estimation.
However, if the likelihood of ǎ is not sufficiently larger than the likelihood of ǎ′, the
two solutions cannot be discriminated with enough confidence. Therefore, the ratio of
σ̌

′2/σ̌2 seems an intuitively appealing test statistic. If this ratio is significantly larger
than one, ǎ is considered far more likely than ǎ′. So, ǎ is validated against any other ǎ′

when:

σ̌
′2

σ̌2
=

Ω̌′

Ω̌
≥ k (3.77)

in which k > 1 is the chosen critical value. This test is referred to as the F -ratio test. It
only needs to be carried out with ǎ′ chosen as the second-best integer estimate obtained
with integer least-squares, which will be denoted as ǎ2 with corresponding σ̌2

2 . If the
test is passed in that case, it will pass for any other choice of ǎ′.

Note that the choice of the critical value is not trivial. In practice, it is often assumed
that the test statistic has an F -distribution, so that the critical value can be based on
a choice of the level of significance. However, as mentioned in Teunissen (1998b) this
is not correct since σ̌2

2 and σ̌2 are not independent. Still, the test in (3.77) is often
used and seems to work satisfactorily, see e.g. (Frei and Beutler 1990; Abidin 1993). In
Landau and Euler (1992) it is proposed to use the same test statistic but with a critical
value of 2.

Variations of test (3.77) are also proposed in literature. For example, Euler and Schaffrin
(1991) use the so-called ratio test given by:

R2

R1
≥ k (3.78)

with R2 = (â − ǎ2)
TG−1

â (â − ǎ2). This ratio test is derived by applying the classical
theory of hypothesis testing. Three hypotheses are considered:

H0 : a = â, H1 : a = ǎ H2 : a = ǎ2 (3.79)

The following test statistics are then defined:

Ti =
Ri

nσ̂2
∼ F (n,m− n− p, λi), i = 1, 2 (3.80)
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where F (n,m − n − p, λi) denotes the non-central F -distribution with non-centrality
parameter λi.

The probability of incorrectly accepting H0 when in fact Hi is true, βi, is given by:

βi =

Fα(n,m−n−p,0)∫

0

fTi
(x | n,m− n− p, λi)dx (3.81)

where fTi
(x|n,m − n − p, λi) is the PDF of Ti and Fα(n,m − n − p, 0) is the critical

value of a given false alarm rate, α.

By choosing α, β1, and β2, the corresponding non-centrality parameters, λi(α, βi), can
be determined. Finally, the critical value of test (3.78) is then determined as:

k =
λ2(α, β2)

λ1(α, β1)
(3.82)

However, the determination of the non-centrality parameters such that the probabilities
βi are obtained, is not straightforward. Moreover, the choice of these probabilities is not
obvious. Euler and Schaffrin (1991) used test computations, from which followed that a
critical value between 5 and 10 should be chosen depending on the degrees of freedom.

In literature it has also been proposed to use a fixed critical value instead of using
equation (3.82).

Wei and Schwarz (1995) propose to use the test with a critical value of k = 2. They
do not claim that there is a theoretical justification for using this test. Moreover, they
acknowledge that it is risky to apply the test to an individual epoch in the case of poor
satellite geometry or noisy observations. Therefore, it is proposed to apply the test to
all epochs in a time period of 30-60 seconds, and only accept the integer solution if the
same solution is accepted for all epochs. It is mentioned that the test is conservative.

Han and Rizos (1996a) showed that good results can be obtained with the ratio test
with a critical value of k = 1.5 if one can have confidence in the correctness of the
stochastic model. For their experiments this was accomplished by applying satellite
elevation-dependent weighting, with the weights determined for the receiver at hand.

In many software packages a fixed value for the ratio is used, e.g. k = 3 (Leick 2003).

An alternative test, proposed by e.g. (Han and Rizos 1996b), is to combine test (3.76)
with the following test:

R2

nσ̂2
> Fα′(n,m− n− p, 0) ≥ Fα(n,m− n− p, 0) (3.83)

Only if both tests are passed ǎ is accepted. For that purpose Fα′(n,m−n−p, 0) should
be chosen sufficiently larger than Fα(n,m − n − p, 0) in order to guarantee that ǎ2 is
much less likely than ǎ.

In Chen (1997) a similar approach is followed, but here the test is defined as:

Ω̌2 > χ2
α(m− p, 0) and Ω̌ < χ2

β(m− p, δ) (3.84)
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where χ2
α(m−p, 0) is the critical value corresponding to the central χ2-distribution with

level of significance α (= probability in right-hand tail); χ2
β(m − p, δ) is the critical

value corresponding to the non-central χ2-distribution with probability β (= probability
in left-hand tail) and non-centrality parameter:

δ = (ǎ− ǎ2)
TG−1

â (ǎ− ǎ2) (3.85)

Still another approach would be to look at the difference of the quadratic forms R1 and
R2, see (Tiberius and De Jonge 1995). First, test (3.76) is carried out. When it is
passed, the next step is to perform the difference test:

R2 −R1 ≥ σ2k (3.86)

It will be clear, that again the problem with this test is the choice of the critical value
k, only an empirically determined value can be used.

Another test worth mentioning is the one proposed in Wang et al. (1998):

Ω̌2 − Ω̌√
σ̂22

√
δ
> tα(m− n− p) (3.87)

where tα(m− n− p) is the critical value corresponding to the Student’s t-distribution,
see appendix A.2.4. In order to arrive at this result it is stated that the difference
d = Ω̌2 − Ω̌ = R2 − R1 has a truncated normal distribution. This is based on the
following derivation:

d = Ω̌2 − Ω̌

= 2(ǎ− ǎ2)
TQ−1

â â+ ǎT
2 Q

−1
â ǎ2 − ǎTQ−1

â ǎ

= 2(ǎ− ǎ2)
TQ−1

â

(
Q

b̂â
Qâ

)
ATQ−1

y y + ǎT
2 Q

−1
â ǎ2 − ǎTQ−1

â ǎ

= d1A
TQ−1

y y + d0

It is then assumed that the terms d1 and d0 are deterministic. This, however, is not true,
since both ǎ and ǎ2 depend on y. Therefore, the test statistic of (3.87) does actually
not have the t-distribution.

In Han (1997) yet another test was proposed. The null hypothesis that is used is H3 in
equation (3.71), the alternative hypothesis is defined as:

Ha : y = Aǎ+A(ǎ2 − ǎ)γ +Bb+ e, γ ∈ R, b ∈ R
p, e ∈ R

m

Testing the alternative hypothesis against the null hypothesis in this case means testing
how likely it is that an outlier in the direction of (ǎ2 − ǎ) occurred. The definition of
the test statistic is based on the assumption that:

γ

σ̂γ

∼ t(m− p− 1) (3.88)

with:

γ̂ =
(ǎ2 − ǎ)TG−1

â (â− ǎ)

δ
and σ̂2

γ =
Ω̌ − γ̂2δ

m− p− 1
(3.89)
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The test is then defined by the constraint that P (γ < 0.5 | Ha) > β. However, the
problem is again that the test statistic does actually not have a Student’s t-distribution
for the same reason as described above for test (3.87). Moreover, it can be easily shown
that γ̂ is always smaller than or equal to 0.5 so that the definition of the test is not
rigorous:

γ̂ =
(ǎ2 − ǎ)TG−1

â (â− ǎ)

(ǎ− ǎ2)TG−1
â (ǎ− ǎ2)

=
ǎT
2 G

−1
â â− ǎTG−1

â â− ǎT
2 G

−1
â ǎ− ǎTG−1

â ǎ

ǎT
2 G

−1
â ǎ2 − 2ǎT

2 G
−1
â ǎ+ ǎTG−1

â ǎ

=
R1 + Γ

R1 +R2 + 2Γ

≤ R1 + Γ

2(R1 + Γ)
=

1

2
(3.90)

with Γ = ǎT
2 G

−1
â â+ ǎTG−1

â â− ǎT
2 G

−1
â ǎ− âTG−1

â â.

It should be noted that in Wang et al. (1998) another test statistic was presented with
a similar form as that of Han (1997).

3.5.3 Evaluation of the test statistics

A problem with all of the above-mentioned tests is the choice of the critical values.
Either an empirically determined value has to be used, or they are based on the incorrect
assumption that the fixed ambiguity estimator ǎ may be considered deterministic. In
principle, this is not true. Firstly, because the entries of the vector ǎ depend on the same
vector y as used in the formulation of the hypothesis H3 in (3.71). So, if y changes,
also ǎ will change. Secondly, since the vector y is assumed to be random, also the fixed
ambiguities obtained with integer least-squares estimation will be stochastic.

Integer validation based on for example the ratio tests in (3.77) and (3.78) often work
satisfactorily. The reason is that the stochasticity of ǎ may indeed be neglected if there
is sufficient probability mass located at one integer grid point of Z

n, i.e if the success
rate is very close to one. So, one could use the additional constraint that the success rate
should exceed a certain limit. But this immediately shows that this will not be the case in
many practical situations. In those cases, the complete distribution function of the fixed
ambiguities should be used for proper validation. It would thus be better to define an
integer test that takes into account the randomness of the fixed ambiguities. Starting
point is to replace the third hypothesis in (3.71) with the following, see (Teunissen
1998b):

H3 : y = Aa+Bb+ e, a ∈ Z
n, b ∈ R

p, e ∈ R
m (3.91)

This hypothesis is more relaxed than the one used in (3.71), but makes it possible to
find a theoretically sound criterion to validate the integer solution.

Another point of criticism is that the combined integer estimation and validation solution
lacks an overall probabilistic evaluation.
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Table 3.5: Overview of all test statistics to validate the integer ambiguity solution as
proposed in literature. The fixed solution is accepted if both the integer test and the
discrimination test are passed.

integer test discrimination test equation

R1

nσ̂2 < Fα(n,m− n− p) Ω̌2

Ω̌
> Fα′(m− p,m− p) (3.77)

R1

nσ̂2 < Fα(n,m− n− p) R2

R1
> k (3.78)

R1

nσ̂2 < Fα(n,m− n− p) R2

nσ̂2 > Fα′(n,m− n− p) (3.83)

Ω̌ < χ2
β(m− p, δ) Ω̌2 > χ2

α(m− p) (3.84)

R1

nσ̂2 < Fα(n,m− n− p) R2 −R1 > k (3.86)

R1

nσ̂2 < Fα(n,m− n− p) R2−R1

2
√

σ̂2δ
> tα′(m− n− p) (3.87)

An overview of all test statistics described in this section is given in table 3.5. It can
be seen that there are three pairs of tests which have a similar ’structure’: the two
ratio tests of (3.77) and (3.78); two tests (3.83) and (3.84) that consider the best
and second-best integer solutions separately; and the two tests (3.86) and (3.87) that
look at the difference d = R2 − R1. Note, however, that the discrimination tests of
(3.78) and (3.86) have an important conceptual difference as compared to the other
tests. These two tests take only the float and fixed ambiguity solutions into account
for discrimination, whereas the other tests take the complete float solution into account
together with the fixed ambiguities.

It would be interesting to know which of the approaches works best in all possible situa-
tions. For this purpose in Verhagen (2004) simulations were used for a two-dimensional
example (geometry-free model with two unknown ambiguities). It followed that the ra-
tio test (3.78) and the difference test (3.86) perform well, provided that an appropriate
critical value is chosen. However, that is exactly one of the major problems in practice.

It should be noted that in practice the ratio tests are often applied without the integer test
(3.76), as it is thought that if one can have enough confidence in the float solution, the
discrimination test is sufficient to judge whether or not the likelihood of the corresponding
fixed ambiguity solution is large enough.

In chapter 5 it will be shown that it is possible to give a theoretical foundation for some
of the discrimination tests. The performance of the tests will also be evaluated, and it
will be shown that one can do better by applying the optimal integer aperture estimator
to be presented there.

3.6 The Bayesian approach

The Bayesian approach to ambiguity resolution is fundamentally different from the ap-
proach using integer least-squares, which is generally used in practice but lacks sound
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validation criteria. The fundamental difference is that in the Bayesian approach not only
the vector of observations y is considered random, but the vector of unknown parameters
x as well. The concept of Bayesian estimation was described in e.g. (Betti et al. 1993;
Gundlich and Koch 2002; Gundlich 2002; Teunissen 2001b).

According to Bayes’ theorem the posterior density p(x|y) is proportional to the likelihood
function p(y|x) and the prior density p(x):

p(x|y) =
p(y|x)p(x)

p(y)
(3.92)

The Bayes estimate of the random parameter vector is defined as the conditional mean

x̂Bayes = E{x|y} =

∫

xp(x|y)dx (3.93)

This estimate minimizes the discrepancy between x and x̂ on the average, where x̂ is
a function of y. So, if L(x, x̂) is the measure of loss (or discrepancy), this amounts to
solving the minimization problem

min
x̂
E{L(x, x̂)|y} = min

x̂

∫

L(x, x̂)p(x|y)dx (3.94)

If L(x, x̂) = ‖x− x̂‖2
Q it follows that the Bayes estimate x̂Bayes is indeed the solution to

this minimization problem.

In order to apply the Bayesian approach to ambiguity resolution, with the parameter
vector x = [bT aT ]T , a and b are assumed to be independent with priors






p(a) ∝ ∑

z∈Zn

δ(a− z) (pulsetrain)

p(b) ∝ constant
(3.95)

where δ is the Dirac function. From the orthogonal decomposition of equation (3.14)
follows that the likelihood function

p(y|a, b) ∝ exp{−1

2

(

‖â− a‖2
Qâ

+ ‖b̂(a) − b‖2
Q

b̂|â

)

} (3.96)

and the posterior density follows therefore as

p(a, b|y) ∝ exp{−1

2

(

‖â− a‖2
Qâ

+ ‖b̂(a) − b‖2
Q

b̂|â

)

}
∑

z∈Zn

δ(a− z) (3.97)

The marginal posterior densities p(a|y) and p(b|y) follow from integrating this joint
posterior density over the domains a ∈ R

n and b ∈ R
p respectively. Note that the

integration domain of a is not chosen as Z
n since the discrete nature of a is considered

to be captured by assuming the prior to be a pulsetrain.

The marginal posterior PDFs are then obtained as






p(a|y) = wa(â)
∑

z∈Zn

δ(a− z)

p(b|y) =
∑

z∈Zn

pb|a(b|a = z, y)wz(â)
(3.98)
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with the weight function

wz(â) =
exp{− 1

2‖â− z‖2
Qâ

}
∑

z∈Zn

exp{− 1
2‖â− z‖2

Qâ
} , z ∈ Z

n (3.99)

and conditional posterior

pb|a(b|a, y) =
1

√

|Q
b̂|â|(2π)

p
2

exp{−1

2
‖b̂(a) − b‖2

Q
b̂|â

} (3.100)

The Bayes baseline estimate can now be determined with equations (3.93) and (3.98)
as

b̂Bayes =

∫

bp(b|y)db = b̂−Q
b̂â
Q−1

â (â−
∑

z∈Zn

zwz(â)) (3.101)

So, with the Bayesian approach the ambiguities are not resolved as integers. Instead a
weighted sum over all possible ambiguities is used with proper weights derived from the
likelihood function. A discussion on the corresponding confidence regions can be found
in Gundlich and Koch (2002) and Gundlich (2002).
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Best Integer Equivariant estimation 4
The integer least-squares estimator is the optimal choice from the class of admissible
integer estimators as defined in definition 3.1.1, since it maximizes the success rate.
However, it is not guaranteed that the fixed baseline estimator is always closer to the
true but unknown baseline b than the float baseline estimator. Only if the success rate
is very close to one, the fixed baseline estimator has a higher probability of being close
to b than the float estimator, see section 3.4.2.

Since the success rate will not always be high, it might be interesting to have a baseline
estimator that in some sense will always outperform the float estimator. In Teunissen
(2003f) this estimator was introduced. It is the best integer equivariant (BIE) estimator
and is based on a new class of estimators.

In this chapter, first the theory of integer equivariant estimation is introduced. This
theory is then used to define the BIE estimators of the baseline parameters and ambi-
guities. The proofs were given in Teunissen (2003f). A more detailed description of the
theory can be found in appendix C. Section 4.2 describes how the BIE estimators can
be approximated. Finally, in section 4.3 the BIE estimator is compared with the float
and fixed estimators.

4.1 The BIE estimator

The new class of estimators will have to fulfill two conditions. Firstly, condition (iii) of
definition 3.1.1, which is the integer remove-restore property. Hence the name integer
equivariant that is assigned to all estimators belonging to this class. The second condition
is that if an arbitrary constant ς ∈ R

p is added to the float baseline, the fixed baseline
estimator should be shifted by the same amount. These conditions lead to the following
definition of integer equivariant estimators.

Definition 4.1.1 Integer equivariant estimators

The estimator θ̂IE = fθ(y) with fθ : R
m 7→ R is said to be an integer equivariant

estimator of θ = lTa a+ lTb b if

{

fθ(y +Az) = fθ(y) + lTa z ∀y ∈ R
m, z ∈ Z

n

fθ(y +Bς) = fθ(y) + lTb ς ∀y ∈ R
m, ς ∈ R

p
(4.1)
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IE

LU

IU

IEU

U

Figure 4.1: The set of relationships between the different classes of estimators: integer
equivariant estimators (IE), unbiased integer equivariant estimators (IEU), unbiased inte-
ger estimators (IU), and linear unbiased estimators (LU).

By its definition, the class of IE estimators is larger than the class of admissible estimators
defined in section 3.1, and thus all admissible estimators are also integer equivariant.
Recall that the admissible integer estimators are unbiased, and therefore this class is
referred to here as the class of integer unbiased (IU) estimators.

The class of IE estimators is also larger than the class of linear unbiased (LU) estimators.
Let fT

θ y be the linear estimator of θ = lTa a+ lTb b for some fθ ∈ R
m. This estimator is

unbiased if fT
θ Aa+ fT

θ Bb = lTa a+ lTb b, ∀a ∈ R
n, b ∈ R

m with E{y} = Aa+Bb. This
gives:

{

fθ(y +Aa) = fθ(y) + lTa a ∀y ∈ R
m, a ∈ R

n

fθ(y +Bb) = fθ(y) + lTb b ∀y ∈ R
m, b ∈ R

p
(4.2)

Comparing this result with (4.1) shows indeed that the condition of linear unbiasedness
is more restrictive than that of integer equivariance, since the first condition must be
fulfilled for all a ∈ R

n. Hence, the class of linear unbiased estimators is a subset of the
class of integer equivariant (IE) estimators, so that there must exist IE estimators that
are unbiased. Summarizing, this gives the following relationships: IEU = IE ∩ U 6= ∅,
LU ⊂ IEU , and IU ⊂ IEU (see figure 4.1).

The goal was to find an estimator that is ’best’ in a certain sense. The criterion of ’best’
that will be used is that the mean squared error (MSE) should be minimal. The reason
for this choice is that the MSE is a well-known probabilistic criterion to measure the
closeness of an estimator to its target value. Furthermore, the MSE-criterion is often
used as a measure for the quality of the float solution itself. With the MSE-criterion the
best integer equivariant (BIE) estimator, θ̃, is defined as:

θ̃ = arg min
fθ∈IE

E{(fθ(y) − θ)2} (4.3)

Note that the minimization is taken over all IE functions that satisfy the condition of
definition 4.1.1. The solution of this minimization problem is given by:

θ̃ =

∑

z∈Zn

∫

Rp

(lTa z + lTb ζ)fy (y +A(a− z) +B(b− ζ)) dζ

∑

z∈Zn

∫

Rp

fy (y +A(a− z) +B(b− ζ)) dζ
(4.4)
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where y ∈ R
m with mean E{y} = Aa+Bb and PDF fy(y), and θ̃ is the BIE estimator

of θ = lTa a+ lTb b.

The BIE estimator can also be written as:

θ̃ = lTa ã+ lTb b̃ (4.5)

with






ã =
∑

z∈Zn

zwz(y),
∑

z∈Zn

wz(y) = 1

b̃ =
∫

Rp

ζwζ(y)dζ,
∫

Rp

wζ(y)dζ = 1
(4.6)

where the weighting functions wz(y) and wζ(y) follow from equation (4.4). This shows
that the BIE estimator of the integer parameter vector a is also a weighted sum of all
integer vectors in Z

n, just like the admissible integer estimators of (3.6). However, in
this case the weights are not binary (1 or 0); their values are determined by y and its
PDF, so that the BIE weights are real-valued and nonzero for all integer vectors. This
implies that the estimator ã is real-valued, instead of integer-valued. Furthermore, it
implies that there is no need to apply a discrimination test.

In Teunissen (2003f) it was shown that the BIE estimator is unbiased and has minimum
variance, i.e. it has better precision than the best linear unbiased estimator. This result
applied to the baseline estimator gives:







D{b̃} ≤ D{b̌} and E{b̃} = E{b̌} = b

D{b̃} ≤ D{b̂} and E{b̃} = E{b̂} = b

(4.7)

Hence, the BIE baseline precision is always better than or as good as the precision of its
float and fixed counterparts.

In GNSS applications it is assumed that the data are normally distributed as mentioned
in section 3.1.3. It can be shown that in this case the BIE estimator is given by equation
(4.5) with the following estimators for the ambiguities and the baseline parameters:







ã =

P

z∈Zn
z exp{− 1

2
‖â−z‖2

Qâ
}

P

z∈Zn
exp{− 1

2
‖â−z‖2

Qâ
} =

∑

z∈Zn

zwz(â)

b̃ = b̂−Q
b̂â
Q−1

â (â− ã)

(4.8)

See appendix C.

Note that the formal expressions in (4.8) are identical to their Bayesian counterparts as
presented in section 3.6, but that the distributional properties of the BIE estimator and
its Bayesian counterpart of course differ. Since the functional form of the non-Bayesian
estimator is identical to the Bayesian solution in the special case of normally distributed
data, the theory of BIE estimation has provided the link with the Bayesian approach of
ambiguity resolution.
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4.2 Approximation of the BIE estimator

The BIE ambiguity estimator cannot be computed exactly because of the infinite sum in
(4.8). If the infinite sum is replaced by a sum over a finite set of integers, Θ, this might
result in an estimator that is not integer equivariant anymore. Therefore in this section
it will be described how this finite integer set should be chosen, see (Teunissen 2004c).

4.2.1 The integer set

In order to determine a finite set of integers for the approximation of the BIE ambiguity
estimator without spoiling the property of integer equivariance, this finite set Θ should
not be chosen as a fixed set, but as a set of integers that depends on the float ambiguity
vector â. This can be attained by defining an ellipsoidal region:

Cλ
0 =

{
x ∈ R

n | ‖x‖2
Qâ

< λ2
}

(4.9)

so that Cλ
0 +z = Cλ

z =
{
x ∈ R

n | ‖x− z‖2
Qâ

< λ2
}
. This set has the indicator function:

ωλ
z (x) =

{

1 if x ∈ Cλ
z

0 otherwise

Furthermore the following integer set is defined:

Θλ
x =

{
z ∈ Z

n | ‖x− z‖2
Qâ

< λ2
}

(4.10)

With this integer set the BIE estimator of (4.8) can be approximated as:

ãλ =

∑

z∈Zn

zωλ
z (â) exp{− 1

2‖â− z‖2
Qâ

}
∑

z∈Zn

ωλ
z (â) exp{− 1

2‖â− z‖2
Qâ

}

=

∑

z∈Θλ
â

z exp{− 1
2‖â− z‖2

Qâ
}

∑

z∈Θλ
â

exp{− 1
2‖â− z‖2

Qâ
} =

∑

z∈Θλ
â

zwλ
z (â) (4.11)

This estimator is still integer equivariant. Obviously, lim
λ→∞

ãλ = ã. The approximation

ãλ would become equal to the true BIE solution when the PDF of â would be given by
the truncated normal distribution:

fλ
â (x) =

ωλ
a (x) exp{− 1

2‖x− a‖2
Qâ

}
∫

Θλ
a

exp{− 1
2‖x− a‖2

Qâ
} (4.12)

with Θλ
a =

{
x ∈ R

n | ‖x− a‖2 < λ2
}
.

Since the BIE estimator is a weighted sum over all integers, the integer set should be
chosen such that the weights wu(â), ∀u /∈ Θλ

â are so small that wu(â)u ≈ 0. The
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difference between the BIE estimator and its approximation is:

ã− ãλ =
∑

z∈Zn

zwz(â) −
∑

z∈Θλ
â

zwλ
z (â)

=
∑

z∈Θλ
â

z(wz(â) − wλ
z (â)) +

∑

z∈Zn\{Θλ
â
}
zwz(â) (4.13)

Note that wλ
z (â) ≥ wz(â), since for the denominators of equations (4.11) and (4.8) it

follows that

∑

z∈Θλ
â

exp{−1

2
‖â− z‖2

Qâ
} ≤

∑

z∈Zn

exp{−1

2
‖â− z‖2

Qâ
}

Hence, the approximation error is not only the result of ignoring the last term on the
right-hand side of equation (4.13), but also due to the different weights assigned to the
integers in the set Θλ

â .

In order to get a good approximation, λ can be determined with:

P (â ∈ Θλ
a) = P (‖â− a‖2

Qâ
< λ2) = 1 − α (4.14)

since it is known that ‖â−a‖2
Qâ

has a central χ2-distribution with n degrees of freedom.

4.2.2 Z-transformation

In section 3.1.4 it was explained that the Z-transformation makes the search for inte-
gers within an ellipsoidal region much more efficient. For the approximation of the BIE
estimator also a set of integers within an ellipsoidal region must be determined. There-
fore, BIE estimation should be applied to the Z-transformed float ambiguities, since the
transformation is also admissible in this case:

z̃λ =

∑

z∈Θλ
ẑ

z exp{− 1
2‖ẑ − z‖2

Qẑ
}

∑

z∈Θλ
ẑ

exp{− 1
2‖ẑ − z‖2

Qẑ
}

=

∑

z∈Θλ
ẑ

ZTZ−T z exp{− 1
2‖â− Z−T z‖2

Qâ
}

∑

z∈Θλ
ẑ

exp{− 1
2‖â− Z−T z‖2

Qâ
}

=

∑

z∈Θλ
â

z exp{− 1
2‖â− z‖2

Qâ
}

∑

z∈Θλ
â

exp{− 1
2‖â− z‖2

Qâ
} (4.15)

= ZT ãλ (4.16)
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4.3 Comparison of the float, fixed, and BIE estimators

Although it is known that the BIE estimator outperforms its float and fixed counterparts
in terms of precision, it is not clear how large this difference will be under varying
measurement scenarios.

It follows that in the limits of the precision the following is true:

lim
σ→∞

ã = â and lim
σ→0

ã = ǎ (4.17)

with the vc-matrix factored as Qâ = σ2Gâ. The first limit corresponds to an integer
grid size which is very small in relation to the size and extend of the PDF of the float
ambiguities. This implies that the summation over all integers will be approximately
equal to the integration over the space of reals, and then:

ã =

∫

Rn

x exp{− 1
2‖â− x‖2

Qâ
}dx

∫

Rn

exp{− 1
2‖â− x‖2

Qâ
}dx =

â(2π)
n
2

√

|Qâ|
(2π)

n
2

√

|Qâ|
= â (4.18)

This shows that if the precision is low the BIE estimator will approximate the float
estimator. If, on the other hand, the PDF of the float ambiguities becomes very peaked
the BIE estimator will approximate the fixed estimator. This can be shown as follows.

Let the ILS pull-in region of z ∈ Z
n be given as Sz = {x ∈ R

n | ‖x − z‖2
Qâ

≤
‖x− u‖2

Qâ
, ∀u ∈ Z

n}. Then Sz is independent of σ, and the weight wz(x) is equal to
(see equation (4.8)):

wz(x) =
exp{− 1

2‖x− z‖2
Qâ

}
∑

u∈Zn

exp{− 1
2‖x− u‖2

Qâ
}

=
1

1 +
∑

u∈Zn\{z}
exp{− 1

2σ2 (‖x− u‖2
Gâ

− ‖x− z‖2
Gâ

)} (4.19)

It follows thus that lim
σ→0

wz(x) = 1 if x ∈ Sz, and since the sum of all weights must

equal one lim
σ→0

wu(x) = 0, ∀u 6= z if x ∈ Sz. So, wu(x) reduces to the indicator function

of the ILS pull-in region in the limit σ → 0.

Obviously, the limiting cases in equation (4.17) imply that also the following is true:

lim
σ→∞

‖â− ã‖2
Qâ

= 0 and lim
σ→0

‖â− ã‖2
Qâ

= ‖â− ǎ‖2
Qâ

(4.20)

It is now interesting to know how the BIE estimator performs in the intermediate cases
compared to the float and fixed estimators. In this section the three estimators are
therefore compared numerically. This also provides the possibility to compare their
distributional properties. The results were presented in Verhagen and Teunissen (2003).
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Figure 4.2: Examples of distributions of the different estimators. Top: â (solid), ǎ (bars),
ã (dashed); Bottom: b̂ (solid), b̌ (solid, multi-modal), b̃ (dashed).
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float estimator. Success rate as function of the number of epochs is also shown.

4.3.1 The 1-D case

Monte Carlo simulations were carried out to generate 500,000 samples of the float range
and ambiguity, using the geometry-free single frequency GPS model for k epochs, with
vc-matrix:

(
Qâ Q

âb̂k

Q
b̂kâ

Q
b̂k

)

=

(
σ2

p

kλ2 (1 + ε) − σ2
p

kλ2

− σ2
p

kλ2

σ2
p

1+ε
( 1

k
+ ε)

)

with λ the wavelength of the carrier; σ2
p and σ2

φ are the variances of the DD code

and phase observations respectively, and ε = σ2
φ/σ

2
p. For all simulations, the standard

deviations were chosen as σp = 30 cm and σφ = 3 mm. The number of epochs was
varied. Note that in the one-dimensional case the fixed ambiguity estimator is obtained
by simply rounding the float estimator to the nearest integer.

Figure 4.2 shows the parameter distributions of all three estimators for k = 20, based
on the simulation results. Note that the multi-modality of the distribution of the BIE
range estimator is less pronounced than that of the fixed range estimator. For smaller
k the distribution of the BIE ambiguity and range estimator would resemble the normal
PDF of the float estimators. For larger k, and thus higher precision, the distribution of
the BIE estimators would more and more resemble those of the fixed estimators.

From equation (4.7) follows that the BIE baseline estimator has smallest variance, but in
the limits of the precision the variance will become equal to the variance of the float and
fixed estimator. This is illustrated in figure 4.3, where the variance ratio of the different
estimators is shown as function of k. Also the success rate is shown. Indeed, for small
k the variance of the BIE and the float estimator are equal to each other (ratio equals
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one), and smaller than the variance of the fixed estimator. On the other hand, for large
k the variances of the BIE and fixed estimator become equal to each other, and smaller
than that of the float estimator. Only after 30 epochs, when the success rate is larger
than 0.9, the variance of the fixed baseline estimator becomes lower than the variance
of the float estimator.

It can be shown that in the one-dimensional case |â − ã| ≤ |â − ǎ|, ∀â, σ2. First note
that:

|â− ã| = 0 if â =
1

2
z, z ∈ Z (4.21)

Furthermore, ã is monotonically increasing with â, since:

dã

dâ
=

1

Γ2

[
∑

z∈Z

z(z − x)σ−2 exp{− 1

2σ2
(x− z)2}

∑

z∈Z

exp{− 1

2σ2
(x− z)2}−

−
∑

z∈Z

zσ−2 exp{− 1

2σ2
(x− z)2}

∑

z∈Z

(z − x)σ−2 exp{− 1

2σ2
(x− z)2}

]

=
1

σ2Γ2

∑

u∈Z

∑

z∈Z

[

u(u− x) exp{− 1

2σ2
(x− u)2} exp{− 1

2σ2
(x− z)2}

−u(z − x) exp{− 1

2σ2
(x− u)2} exp{− 1

2σ2
(x− z)2}

]

=
1

σ2Γ2

∑

u∈Z

∑

z∈Z

(u2 − uz) exp{− 1

2σ2
(x− u)2} exp{− 1

2σ2
(x− z)2}

︸ ︷︷ ︸

F (u,z)

≥ 0 (4.22)
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Figure 4.5: Ambiguity residuals for fixed (dashed) and BIE (solid) estimators for different
number of epochs.

with Γ2 =
∑

z∈Z

exp{− 1
2σ2 (x− z)2}. The inequality follows from:

{

F (z, z) = 0, ∀z ∈ Z

F (u, z) + F (z, u) ≥ 0, ∀u, z ∈ Z, u 6= z
(4.23)

The results in equations (4.17), (4.21) and (4.22) imply that ã will always fall in the
grey region in figure 4.4, and thus that indeed |â− ã| ≤ |â− ǎ|. This means that ã will
always lie in-between â and ǎ, and thus that the BIE and the fixed estimator are pulled in
the same direction in the one-dimensional case. This is shown in figure 4.5 for different
precisions (i.e. for different k). The ambiguity residuals are defined as ε̌ = â − ǎ and
ε̃ = â− ã.

Figure 4.6 shows the probability that the baseline estimators will be within a certain
interval 2ε that is centered at the true baseline b, again for different precisions. It can be
seen that for high success rates indeed relation P (b̌ ∈ Eb) ≥ P (b̂ ∈ Eb) is true, with Eb

a convex region centered at b, cf. (Teunissen 2003c), which means that the probability
that the fixed baseline will be closer to the true but unknown baseline is larger than that
of the float baseline. However, for lower success rates some probability mass for b̌ can be
located far from b because of the multi-modal distribution. Ideally, the probability should
be high for small ε and reach its maximum as soon as possible. For lower success rates,
the float and fixed estimators will only fulfill one of these conditions. The probability
for the BIE estimator always falls more or less in-between those of the float and fixed
estimators.
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(+-signs) for different number of epochs.

The probabilities shown in figure 4.6 are determined by counting the number of solutions
that fall within a certain interval, but it is also interesting to compare the estimators on
a sample by sample basis. In order to do so, one could determine for each sample which
of the three estimators is closest to the true b, and then count for each estimator how
often it was better than the other estimators.

In table 4.1 the probabilities

P1 = P (|b̌−b| ≤ |b̂−b|), P2 = P (|b̃−b| ≤ |b̂−b|), and P3 = P (|b̃−b| ≤ |b̌−b|)

are given for different number of epochs. It follows that the probability that b̃ is better
than the corresponding b̂ is larger or equal to the probability that b̌ is better than b̂. That
is because the ambiguity residuals that are used to compute the fixed and BIE baseline
estimator, see equations (3.4) and (4.8), have the same sign, and |â− ã| ≤ |â− ǎ| as was
shown in figure 4.5. If the float baseline solution is already close to the true solution,
it is possible that b̃ is closer to b, but that b̌ is pulled ’over’ the true solution such that
b̌− b has the opposite sign as b̂− b and |b̌− b| > |b̂− b|.

From the relationships between the BIE and the fixed ambiguity residuals it follows that
if b̌ is better than b̂, then also b̃ will be better than b̂. In the case of very low precision
ã ≈ â and b̃ ≈ b̂, so that P2 is approximately equal to one – in the example this is the
case for k = 1 and k = 2. If the precision is high, ã ≈ ǎ and as a result P3 becomes
very high.

Note that these results do not necessarily hold true for the higher dimensional case
(n > 1).
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Table 4.1: Probabilities P1 = P (|b̌ − b| ≤ |b̂ − b|), P2 = P (|b̃ − b| ≤ |b̂ − b|), and
P3 = P (|b̃ − b| ≤ |b̌ − b|).

k P (ǎ = a) P1 P2 P3

1 0.249 0.557 1.000 0.443
2 0.346 0.583 1.000 0.417
5 0.522 0.635 0.642 0.365
10 0.685 0.707 0.716 0.296
20 0.844 0.820 0.826 0.240
30 0.918 0.885 0.887 0.301
60 0.986 0.937 0.937 0.458
75 0.994 0.939 0.939 0.480
110 0.999 0.933 0.933 0.552
200 1.000 0.913 0.913 0.982

4.3.2 The 2-D case

A similar approach was followed to generate samples for the geometry-free dual-frequency
GPS model for one satellite-pair. The double difference standard deviations were chosen
such that success rates between 0.3 and 0.99 were obtained, see table 4.2.

Figure 4.7 shows an example of the BIE and fixed ambiguity estimates that correspond
to certain float ambiguity vectors (σp = 0.8m, σφ = 8mm). It can be seen that the
BIE estimator is pulled in approximately the same direction as the ILS estimator, but
the ambiguity residuals are always much smaller for this example. If the float solution
falls close to an integer grid point, the BIE estimator is pulled in that direction. On the
other hand, if the float solution falls close to the boundary of a pull-in region, which
means that the distance to at least two integer grid points is approximately the same,
the ambiguity residual is small and the BIE estimator is pulled in another direction.

Figure 4.8 shows a scatter plot of simulated float and corresponding BIE ambiguity
estimates (σp = 0.6m, σφ = 6mm). For higher precisions, the ’star’-shape of the
distribution of the BIE ambiguity estimator becomes even stronger; for lower precisions
the distribution becomes more ellipse-shaped like that of the float estimator.

Table 4.2 shows the probabilities

P1 = P (|b̌−b| ≤ |b̂−b|), P2 = P (|b̃−b| ≤ |b̂−b|), and P3 = P (|b̃−b| ≤ |b̌−b|)

This table only shows the probabilities that the estimators will perform better than or
equal to the other estimators. However, this does not say how much better, or how
much worse in the instances that they do not perform better. Therefore, one should
also consider the probabilities as shown in figure 4.9. From the table it follows namely
that P (|b̌ − b| ≤ |b̂ − b|) is larger than P (|b̃ − b| ≤ |b̂ − b|). On the other hand, figure
4.9 shows that if b̌ is not close to b, it will immediately be far from the true solution
(because of the step-wise function), whereas for the BIE estimator that is not necessarily
the case.
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Figure 4.8: Scatter plot of float ambiguities (black) and BIE ambiguity estimates (grey).
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Table 4.2: Probabilities Ps = P (ǎ = a), P1 = P (|b̌−b| ≤ |b̂−b|), P2 = P (|b̃−b| ≤ |b̂−b|),
and P3 = P (|b̃ − b| ≤ |b̌ − b|). Double difference code and phase standard deviations
respectively: σp = σm and σφ = σcm.

σ Ps P1 P2 P3

1.4 0.312 0.526 0.521 0.474
0.8 0.675 0.724 0.708 0.283
0.6 0.859 0.875 0.859 0.205
0.4 0.985 0.983 0.981 0.434

Table 4.3: Mean and maximum approximation errors in ‖ẑ− z̃‖2

Qẑ
. Nz equals the minimum

and maximum number of integers used.

α mean maximum Nz

06 01 10−16 753-850

10−12 10−11 10−11 347-407

10−8 10−7 10−6 112-155

10−6 10−6 10−5 53-87

06 02 10−16 4730-4922

10−12 10−12 10−12 2203-2379

10−8 10−7 10−7 785-879

10−6 10−6 10−6 357-442

10 01 10−16 274-345

10−12 10−11 10−8 80-121

10−8 10−7 10−4 11-31

10−6 10−5 10−2 2-14

10 03 10−16 44323-45440

10−12 10−11 10−10 14353-15048

10−8 10−7 10−6 2959-3330

10−6 10−5 10−4 1007-1215
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Figure 4.9: Probabilities P (|b̂ − b| ≤ ε] (dashed), P (|b̌ − b| ≤ ε] (solid), P (|b̃ − b| ≤ ε]
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4.3.3 The geometry-based case

Several geometry-based models were set up and corresponding float samples were gen-
erated. A description of the models is given in appendix B. Only the Z-transformed
vc-matrices, Qẑ nn xx, are used.

First, it is investigated how the integer set Θλ
x must be chosen in order to get a good

approximation for the BIE estimators. For that purpose, 10,000 samples of float ambi-
guities were generated and the integer set was determined using (4.10) and (4.14) for
different values of α. Then the corresponding z̃α were computed. Table 4.3 shows the
difference ‖ẑ− z̃α‖2

Qẑ
−‖ẑ− z̃αmin‖2

Qẑ
with αmin = 10−16. Also shown are the number of

integer vectors in the integer set. It follows that for all examples the solution converges
to the true BIE estimator for α < 10−8 .

The BIE estimators are compared based on the squared norms of the ambiguity residuals,
and based on the probability that the baseline estimators are within a certain distance
from the true baseline:

P (‖ḃ− b‖2
Q

ḃ
≤ ε) (4.24)

where ḃ is either the float, fixed, or BIE baseline estimator. The vc-matrices Qb̌ and Qb̃

are determined from the corresponding estimates. Since a user will be mainly interested
in the baseline coordinates, also the following probabilities were analyzed:

P (‖ḃx − bx‖ ≤ ε) (4.25)

where bx refers only to the three baseline coordinates. So, the distance to the true
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Table 4.4: Probabilities that float, fixed or BIE baseline estimator is best.
P1(ḃ) = P (‖ḃ − b‖Q

ḃ
≤ ‖b̂ − b‖Q

b̂
); P2 = P (‖b̃ − b‖Q

b̃
≤ ‖b̌ − b‖Q

b̌
);

P3(ḃ) = P (‖ḃ − b‖Q
ḃ
≤ ‖b̂ − b‖Q

b̂
, ‖ḃ − b‖Q

ḃ
≤ ‖b̈ − b‖Q

b̈
);

with b̈ the fixed or BIE estimator but b̈ 6= ḃ.

P1(b̌) P1(b̃) P2 P3(b̌) P3(b̃)

06 01 0.824 0.786 0.149 0.796 0.037

06 02 0.547 0.561 0.402 0.531 0.111

10 01 0.863 0.836 0.021 0.851 0.012

10 03 0.749 0.792 0.333 0.620 0.225

Table 4.5: Probabilities that float, fixed or BIE baseline estimator is best.
P1(ḃx) = P (‖ḃx − bx‖ ≤ ‖b̂x − bx‖); P2 = P (‖b̃x − b‖ ≤ ‖b̌x − bx‖);
P3(ḃx) = P (‖ḃx − bx‖ ≤ ‖b̂x − bx‖, ‖ḃx − bx‖ ≤ ‖b̈x − bx‖);
with b̈ the fixed or BIE estimator but b̈ 6= ḃ.

P1(b̌x) P1(b̃x) P2 P3(b̌x) P3(b̃x)

06 01 0.862 0.852 0.248 0.746 0.147

06 02 0.603 0.612 0.417 0.566 0.152

10 01 0.996 0.996 0.482 0.518 0.479

10 03 0.885 0.909 0.430 0.563 0.363

position is considered here.

The results are shown in figures 4.10 and 4.11. The ambiguity residuals, ‖ε̃‖2
Qẑ

=

‖ẑ − z̃‖2
Qẑ

and ‖ε̌‖2
Qẑ

= ‖ẑ − ž‖2
Qẑ

, are plotted for all samples, ordered by increasing

‖ε̃‖2
Qẑ

. It can be seen that BIE ambiguity residuals are always smaller or equal than the
ILS ambiguity residuals. Furthermore, the results can be explained as follows (compare
with figures 4.5 and 4.7 for the 1-D and 2-D case respectively):

• ‖ε̃‖2
Qẑ

is small in two cases:

1. ẑ is close to an integer; then ‖ε̌‖2
Qẑ

will also be small;

2. ẑ is close to the boundary of a pull-in region; then ‖ε̌‖2
Qẑ

will be large. In

this case ‖ε̌‖2
Qẑ

can take a large range of values, since the boundary of the
pull-in region is not ellipsoidal.

• ‖ε̃‖2
Qẑ

is large if ẑ takes a value halfway an integer and the boundary of the pull-in

region. In that case ‖ε̌‖2
Qẑ

is relatively small.

• ‖ε̃‖2
Qẑ

and ‖ε̌‖2
Qẑ

are approximately equal if ẑ is relatively close to an integer. If
the precision is poor the difference becomes larger.
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Note that since ‖ε̃‖2
Qẑ

≤ ‖ε̌‖2
Qẑ

also the test statistic in equation (3.76) is smaller for
the BIE estimator:

‖ε̃‖2
Qẑ

nσ̂2
≤

‖ε̌‖2
Qẑ

nσ̂2
(4.26)

Therefore the BIE ambiguity estimator is more likely to be accepted than the fixed
estimator. Moreover, there is no need for a discrimination test as there is only one
candidate, which is obtained by weighting all integer vectors.

For the baseline probabilities similar conclusions can be drawn as for the 2-D case. For
small ε the probability for the fixed baseline is generally much higher. Depending on
the precision, however, the probability for the BIE estimator is sometimes comparable
and increases faster for increasing ε, so that the probability of a large baseline error is
smaller.

From the probabilities in tables 4.4 and 4.5 it follows that there is always a higher
probability that the fixed estimator performs better than the other two estimators. The
probabilities that the fixed and BIE estimator perform better than the float estimator
are comparable.

4.4 Summary

If the ILS success rate is not close to one, the fixed ambiguity estimator may not be
considered deterministic and the integer validation procedures that are currently available
should not be used. So, in that case the ambiguities cannot be fixed reliably. But not
fixing means that no use is made of the information that the ambiguities should be
integer-valued. Therefore, the BIE estimator could be used as an alternative, since it
makes use of the information that ambiguities are integer-valued although not in an
optimal way, and it is defined such that it is best in the sense that the MSEs are
minimized. As such, the BIE estimator can be considered as a compromise between the
float and fixed estimator, since it approximates these estimators in the extreme cases of
very low precision and very high precision respectively. This is also what follows from
the examples shown in this chapter.

Disadvantages of BIE estimation are that it does still not provide an exact probabilistic
evaluation of the final solution, and that it is computationally complex. Moreover, the
results in this chapter indicate that only in a limited number of cases the BIE estimator
performs obviously better than either the float or the fixed estimator.
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Figure 4.10: Example 06 01 (left) and 06 02 (right). Top: squared norm of ambiguity
residuals for fixed estimator (grey +-signs) and BIE estimator (black x-sings). Center:
P (‖ḃ − b‖2

Q
ḃ
≤ ε). Bottom: P (‖ḃx − bx‖

2 ≤ ε). Dotted: ḃ = b̂; Dashed: ḃ = b̌; Solid:

ḃ = b̃.
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Figure 4.11: Example 10 01 (left) and 10 03 (right). Top: squared norm of ambiguity
residuals for fixed estimator (grey +-signs) and BIE estimator (black x-sings). Center:
P (‖ḃ − b‖2

Q
ḃ
≤ ε). Bottom: P (‖ḃx − bx‖

2 ≤ ε). Dotted: ḃ = b̂; Dashed: ḃ = b̌; Solid:

ḃ = b̃.

Summary 85





Integer Aperture estimation 5
In section 3.2 the success rate was introduced. This probability is a valuable measure
for deciding whether one can have enough confidence in the fixed solution. As soon
as the success rate is close enough to one, a user can fix the ambiguities, so that the
precise carrier phase measurements start to contribute to the solution. However, when
the success rate is considered too low with respect to a given threshold, it will not yet be
possible to benefit from the precise phase observations. This also means that there is a
probability that the user unnecessarily sticks to the float solution just because the fail rate
is too high. In practice, not only the success rate is considered to decide on acceptance
or rejection of the integer solution. The integer solution is also validated using one of
the methods described in section 3.5. Since no sound validation criterion exists yet, in
this chapter a new class of integer estimators is defined, the class of integer aperture
estimators. Within this class estimators can be defined such that the acceptance region
of the fixed solution is determined by the probabilities of success and failure.

The new class of integer estimators is defined in section 5.1. Then different examples
of integer aperture estimators are presented. First, the ellipsoidal aperture estimator in
section 5.2, for which the aperture space is built up of ellipsoidal regions. Then in section
5.3 it is shown that integer estimation in combination with the ratio test, difference test,
or the projector test belongs to the class of integer aperture estimators. When the
aperture space is chosen as a scaled pull-in region, the integer aperture bootstrapping
and least-squares estimators can be defined. This will be shown in section 5.4. Finally,
the penalized integer aperture estimator and optimal integer aperture estimator are
presented in sections 5.5 and 5.6. Section 5.7 deals with implementation aspects. A
comparison of all the different estimators is given in section 5.8, and examples in order
to show the benefits of the new approach are given in section 5.9.

In order to illustrate the principle of IA estimation, throughout this chapter a two-
dimensional (2-D) example will be used. Simulations were carried out to generate
500,000 samples of the float range and ambiguities, see appendix B, for the follow-
ing vc-matrix:

Q =

(
Q

b̂
Q

b̂â

Q
âb̂

Qâ

)

=





0.1800 −0.1106 0.0983
−0.1106 0.0865 −0.0364

0.0983 −0.0364 0.0847





Note that Qâ = Qẑ 02 01.
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5.1 Integer Aperture estimation

The problem described above is related to the definition of admissible integer estimators,
which only distinguishes two situations: success if the float ambiguity falls inside the
pull-in region Sa, and failure otherwise. In practice, a user will decide not to use the
fixed solution when the probability of failure is too high. This gives rise to the thought
that it might be interesting to consider not only the two above-mentioned situations,
but also a third, namely undecided. Actually, with combined integer estimation and
validation using a discrimination test, these three situations are also distinguished, but
the discrimination tests can only be used in the case of high precision. Therefore a
new class of integer estimators is defined that allows for the three situations mentioned
above. Then integer estimators within this class can be chosen which somehow regulate
the probability of each of those situations. This can be accomplished by considering
only conditions (ii) and (iii) of definition 3.1.1, stating that the pull-in regions must be
disjunct and translational invariant.

5.1.1 Class of IA estimators

The new class of ambiguity estimators was introduced in Teunissen (2003d;2003g), and
is called the class of Integer Aperture (IA) estimators. It is defined as:

(i)
⋃

z∈Zn

Ωz =
⋃

z∈Zn

(Ω ∩ Sz) = Ω ∩ (
⋃

z∈Zn

Sz) = Ω ∩ R
n = Ω

(ii) Ωu ∩ Ωz = (Ω ∩ Ωu) ∩ (Ω ∩ Ωz) = Ω ∩ (Su ∩ Sz) = ∅, u, z ∈ Z
n, u 6= z

(iii) Ω0 + z = (Ω ∩ S0) + z = (Ω + z) ∩ (S0 + z) = Ω ∩ Sz = Ωz, ∀z ∈ Z
n

(5.1)

Ω ⊂ R
n is called the aperture space. From (i) follows that this space is built up of

the Ωz, which will be referred to as aperture pull-in regions. Conditions (ii) and (iii)
state that these aperture pull-in regions must be disjunct and translational invariant.
Note that the definition (5.1) is very similar to the definition of the admissible integer
estimators (3.1.1), but that R

n is replaced by Ω.

The integer aperture estimator, ā, is now given by:

ā =
∑

z∈Zn

zωz(â) + â(1 −
∑

z∈Zn

ωz(â)) (5.2)

with the indicator function ωz(x) defined as:

ωz(x) =

{

1 if x ∈ Ωz

0 otherwise
(5.3)

So, when â ∈ Ω the ambiguity will be fixed using one of the admissible integer estimators,
otherwise the float solution is maintained. It follows that indeed the following three cases
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can be distinguished:

â ∈ Ωa success: correct integer estimation
â ∈ Ω \ Ωa failure: incorrect integer estimation
â /∈ Ω undecided: ambiguity not fixed to an integer

The corresponding probabilities of success (s), failure (f) and undecidedness (u) are given
by:

Ps = P (ā = a) =

∫

Ωa

fâ(x)dx

Pf =

∫

Ω\Ωa

fâ(x)dx =

∫

Ω0

fε̌(x)dx−
∫

Ωa

fâ(x)dx (5.4)

Pu = 1 − Ps − Pf = 1 −
∫

Ω0

fε̌(x)dx

These probabilities are referred to as success rate, fail rate, and undecided rate respec-
tively.

5.1.2 Distribution functions

From the definition of the new estimator in (5.2) it follows that the distribution function
will take a hybrid form, which means that it is a combination of a probability mass
function for all values within Ω, and a probability density function otherwise:

fā(x) =







fâ(x) if x ∈ R
n\{Ω}

∫

Ωz

fâ(y)dy = P (ā = z) if x = z, z ∈ Z
n

0 otherwise

= fâ(x)ω̄(x) +
∑

z∈Zn

∫

Ωz

fâ(y)dyδ(x− z) (5.5)

where δ(x) is the impulse function, ω̄(x) = (1−∑z∈Zn ωz(x)) is the indicator function
of R

n\Ω. Note that P (ā = z) ≤ P (ǎ = z).

Also the distribution function of the corresponding baseline estimator b̄ is different com-
pared to the PDF of b̌:

fb̄(x) =
∑

z∈Zn

f
b̂|â(x|z)P (ā = z) +

∫

Rn\{Ω}

f
b̂|â(x|y)fâ(y)dy (5.6)

In the 1-D case the aperture space is built up of intervals around the integers. As an
example, it is assumed that a = 0 and Ωa = [−0.2, 0.2] and thus Ωz = [−0.2+z, 0.2+z].
The top panel of figure 5.1 shows the PDF of â in black, the PMF of ǎ in dark grey,

Integer Aperture estimation 89



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
PDF ambiguities

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
PDF range

Figure 5.1: 1-D Example of the distribution functions of the different ambiguity estimators
(top) and baseline estimators (bottom). Black: float; Dark grey: integer rounding; Light
grey: IA.
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and the hybrid distribution of ā in light grey. The bars indicate probability masses. The
bottom panel in the figure shows the corresponding distributions of the three baseline
estimators. It can be seen that the PDF of ā always falls in between the PDFs of b̂ and
b̌.

5.1.3 IA estimation

It is now possible to design different IA estimators by defining the size and shape of
the aperture pull-in regions Ωz. In classical hypothesis testing theory the size of an
acceptance region is determined by the choice of the testing parameters: the false alarm
rate and the detection power. However, in the case of integer ambiguity resolution it is
not obvious how to choose these parameters. It is especially important that the proba-
bility of incorrect ambiguity fixing is small. Therefore the concept of Integer Aperture
estimation with a fixed fail rate is introduced. This means that the size of the aperture
space is determined by the condition that the fail rate is equal to or lower than a fixed
value. At the same time the shape of the aperture pull-in regions should preferably be
chosen such that the success rate is still as high as possible. In the following sections
several examples of IA estimators are presented.

Note that if all probability mass of â is located within the pull-in region Sa the fail rate
is automatically equal to zero, and thus the IA solution will always be equal to the fixed
solution.

It is very important to note that Integer Aperture estimation with a fixed fail rate is an
overall approach of integer estimation and validation, and allows for an exact and overall
probabilistic evaluation of the solution. With the traditional approaches, e.g. the ratio
test applied with a fixed critical value, this is not possible. Two important probabilistic
measures are the fail rate, which will never exceed the user-defined threshold, and the
probability that ǎ = a if ā = z:

Ps|ā=z = P (ǎ = a|ā = z)

=
P (ǎ = a, ā = z)

P (ā = z)
(5.7)

=
Ps

Ps + Pf

The success and fail rate, Ps and Pf , from equation (5.4) are used. Note that if
Pf << Ps:

Ps|ā=z ≈ 1 (5.8)

This is an important result, since it means that with IA estimation it is not only guar-
anteed that the fail rate will be below a given threshold, but also that if IA estimation
results in a fix, the probability that the integer solution is correct will be close to one if
Pf << Ps. Only if Ps is small, this is not necessarily the case, but then the probability
that the solution will be fixed is also very small, since this probability equals Ps + Pf .
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Figure 5.2: Examples of ellipsoidal aperture regions without overlap (left) and with overlap
(right).

5.2 Ellipsoidal integer aperture estimation

An easy way to define the aperture space would be to choose the aperture pull-in regions
Ωz as ellipsoidal regions, cf. (Teunissen 2003a).

Let the ellipsoidal region Cµ
0 be given as:

Cµ
0 = {x ∈ R

n | ‖ x ‖2
Qâ

≤ µ2} (5.9)

The aperture pull-in regions of the ellipsoidal integer aperture (EIA) estimator are then
defined as:

Ω0,E = S0 ∩ Cµ
0

Ωz,E = Ω0,E + z = {x ∈ Sz | ‖ x− z ‖2
Qâ

≤ µ2}, ∀z ∈ Z
n

(5.10)

This shows that the procedure for computing the EIA estimator is rather straightforward.
Using the float solution â, its vc-matrix Qâ, and the aperture parameter µ as input, one
only needs to compute the integer least-squares solution ǎ and verify whether or not the
inequality

‖ â− ǎ ‖2
Qâ

≤ µ2 (5.11)

is satisfied. If the inequality is satisfied then ā = ǎ, otherwise ā = â.

The simple choice of the ellipsoidal criterion (5.11) is motivated by the fact that the
squared-norm of a normally distributed random vector is known to have a χ2-distribution.
That is, if â is normally distributed then P (â ∈ Cµ

z ) = P
(
χ2 (n, λz) ≤ µ2

)
, with non-

centrality parameter λz = (z − a)TQ−1
â (z − a). This implies that one can give exact

solutions to the fail rate and to the success rate of the EIA estimator, provided the
ellipsoidal regions Cµ

z do not overlap. The EIA probabilities of failure, success and

92 Integer Aperture estimation



Figure 5.3: 2-D example for EIA estimation. Float samples for which ā = ǎ are shown
as black dots. Left: Pf = 0.001; Right: Pf = 0.025. Also shown is the IA least-squares
pull-in region for the same fail rates (in grey).

undecided are given as:







Pf =
∑

z∈Zn\{0}
P
(
χ2(n, λz) ≤ µ2

)

Ps = P
(
χ2(n, 0) ≤ µ2

)

Pu = 1 − Pf − Ps

(5.12)

The non-centrality parameter is given by λz = zTQ−1
â z.

Note that the region for which the EIA estimator outputs an integer as solution is given as
ΩE = ∪z∈ZnΩz,E. Since this region is independent of Sz it follows that ΩE = ∪z∈ZnCµ

z .
Thus ΩE equals the union of all integer translated copies of the origin-centered ellipsoidal
region Cµ

0 . Depending on the value chosen for the aperture parameter µ, these ellipsoidal
regions may or may not overlap, as illustrated in figure 5.2. The overlap will occur when
µ is larger than half times the smallest distance between two integer vectors. Thus
when µ is larger than half times the length of the smallest nonzero integer vector,
µ > 1

2 minz∈Zn\{0} ‖ z ‖Qâ
. In that case the probabilities given in equation (5.12) for

Pf and Ps become upper bounds. In order to obtain the corresponding lower bounds,

one has to replace µ by µ′ = 1
2 minz∈Zn\{0} ‖ z ‖Qâ

, since Cµ′

z ⊂ Ωz,E and Cµ′

z ⊂ Sz.

In the absence of overlap exact evaluation of the EIA estimator is possible. The steps for
computing and evaluating the EIA estimator are as follows. Depending on the application
the user will usually start by requiring a certain small and fixed value for the fail rate Pf .
Hence, the user will start by choosing the aperture parameter µ such that it meets his
requirement on Pf . For a certain value for Pf , the value of the aperture parameter µ
needs to be chosen smaller when the precision of the ambiguities becomes poorer. This
can be understood by looking at the non-centrality parameter λz = zTQ−1

â z, since a
poorer precision will result in a smaller value for λz and thus in a larger value for the
probability P

(
χ2(n, λz) ≤ µ2

)
.
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2-D example

Figure 5.3 shows in black all float samples for which ā = ǎ for two different fail rates.

5.3 Ratio test, difference test and projector test

In section 3.5 several integer validation tests as proposed in the past were described. It
was explained that the test criteria cannot be derived using classical hypothesis tests.
However, it can be shown that the ratio test (3.78), the difference test (3.86), and the
projector test, on which the test statistics (3.87) and (3.89) are based, are all examples
of Integer Aperture estimators, cf. (Teunissen 2003e; Verhagen and Teunissen 2004a).

5.3.1 Ratio test is an IA estimator

The ratio test of (3.78) is a very popular validation test in practice. Instead of (3.78)
the ’inverse’ of the ratio test is used here, i.e. accept ǎ if:

‖â− ǎ‖2
Qâ

‖â− ǎ2‖2
Qâ

≤ µ

This guarantees that the critical value is bounded as 0 < µ ≤ 1, since by definition
‖â− ǎ‖2

Qâ
≤ ‖â− ǎ2‖2

Qâ
.

It can now be shown that integer estimation in combination with the ratio test is an IA
estimator. The acceptance region is given as:

ΩR = {x ∈ R
n | ‖x− x̌‖2

Qâ
≤ µ‖x− x̌2‖2

Qâ
, 0 < µ ≤ 1} (5.13)

with x̌ and x̌2 the best and second-best ILS estimator of x. Let Ωz,R = ΩR ∩ Sz, i.e.
Ωz,R is the intersection of ΩR with the ILS pull-in region as defined in (3.16). Then all
conditions of (5.1) are fulfilled, since:







Ω0,R = {x ∈ R
n | ‖x‖2

Qâ
≤ µ‖x− z‖2

Qâ
, ∀z ∈ Z

n \ {0}}
Ωz,R = Ω0,R + z, ∀z ∈ Z

n

ΩR =
⋃

z∈Zn

Ωz,R

(5.14)

The proof was given in Teunissen (2003e) and Verhagen and Teunissen (2004a) and is
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as follows:

Ωz,R = ΩR ∩ Sz

= {x ∈ Sz | ‖x− x̌‖2
Qâ

≤ µ‖x− x̌2‖2
Qâ
, 0 < µ ≤ 1}

= {x ∈ Sz | ‖x− x̌‖2
Qâ

≤ µ‖x− u‖2
Qâ
, ∀u ∈ Z

n \ {x̌}, 0 < µ ≤ 1}
= {x ∈ Sz | ‖x− z‖2

Qâ
≤ µ‖x− u‖2

Qâ
, ∀u ∈ Z

n \ {z}, 0 < µ ≤ 1}
= {x ∈ R

n | ‖x− z‖2
Qâ

≤ µ‖x− u‖2
Qâ
, ∀u ∈ Z

n \ {z}, 0 < µ ≤ 1}
= {x ∈ R

n | ‖y‖2
Qâ

≤ µ‖y − v‖2
Qâ
, ∀v ∈ Z

n \ {0}, x = y + z, 0 < µ ≤ 1}
= ΩR ∩ S0 + z

= Ω0,R + z

The first two equalities follow from the definition of the ratio test, and the third from
‖x̂− x̌‖2

Qâ
≤ ‖x̂− x̌2‖2

Qx̂
≤ ‖x̂−u‖2

Qâ
,∀u ∈ Z

n \{x̌}. The fourth equality follows since
x̌ = z is equivalent to x ∈ Sz, and the fifth equality from the fact that 0 < µ ≤ 1. The
last equalities follow from a change of variables and the definition of Ω0,R = ΩR ∩ S0.
Finally note that

⋃

z∈Zn

Ωz,R =
⋃

z∈Zn

(ΩR ∩ Sz) = ΩR ∩ (
⋃

z∈Zn

Sz) = ΩR

This ends the proof of (5.14).

It has thus been shown that the acceptance region of the ratio test consists of an infinite
number of regions, each one is an integer translated copy of Ω0,R ⊂ S0. The acceptance
region plays the role of the aperture space, and µ plays the role of an aperture parameter.
The ratio test will be referred to as the RTIA estimator.

It can now be shown how the aperture pull-in regions for the ratio test are ’constructed’,
cf. (Verhagen and Teunissen 2004a). From the definition of Ω0 the following can be
derived:

Ω0,R : ‖x‖2
Qâ

≤ µ‖x− z‖2
Qâ
, ∀z ∈ Z

n \ {0}, 0 < µ ≤ 1

⇐⇒ ‖1 − µ

µ
x+ z‖2

Qâ
≤ 1

µ
‖z‖2

Qâ
, ∀z ∈ Z

n \ {0}

⇐⇒ ‖x+
µ

1 − µ
z‖2

Qâ
≤ µ

(1 − µ)2
‖z‖2

Qâ
, ∀z ∈ Z

n \ {0} (5.15)

This shows that the aperture pull-in region is equal to the intersection of all ellipsoids

with centers − µ
1−µ

z and size governed by
√

µ

1−µ
‖z‖Qâ

. In fact, the intersection region is

only determined by the adjacent integers, since ∀u ∈ Zn that are not adjacent, (5.15)
is always fulfilled ∀x ∈ S0. It follows namely from equations (5.13) and (5.14) that for
all x ∈ S0 on the boundary of Ω0:

‖x‖2
Qâ

= µ‖x− c‖2
Qâ
, c = arg min

z∈Zn\{0}
‖x− z‖2

Qâ

So, c is the second-closest integer and must be adjacent. Therefore the following is
always true:

‖x‖2
Qâ

= µ‖x− c‖2
Qâ

≤ µ‖x− z‖2
Qâ
, ∀z ∈ Z

n \ {0, c}
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Figure 5.4: Construction of RTIA aperture pull-in region. For all x that fall in the grey
region, the second-closest integer z2 = [−1 0]T . The boundary of the aperture pull-in region
within this grey region is then equal to the ellipsoid with center − µ

1−µ
z2 and size governed

by
√

µ

1−µ
‖z2‖Qâ

. Examples are shown for µ is 0.3, 0.5, and 0.8, respectively. Ellipsoids are
grey; aperture pull-in regions black.

so that the integers z do not have any influence on the boundary of the aperture pull-in
region.

This means that the integer least-squares pull-in region S0 can be split up into sectors, all
having another integer c as second-closest, i.e. ‖x‖2

Qâ
≤ ‖x− c‖2

Qx̂
≤ ‖x− z‖2

Qâ
,∀z ∈

Z
n \{0}. Within a sector, the aperture pull-in region is then equal to the intersection of

the sector with the ellipsoid with center − µ
1−µ

c and size governed by
√

µ

1−µ
‖c‖Qâ

. This
is illustrated for the 2-D case in figure 5.4.

It can be seen that especially for larger µ, the shape of the aperture pull-in region starts
to resemble that of the ILS pull-in region. The reason is that for larger µ the size of the
ellipsoid increases, and the center of the ellipsoid is further away, but in the direction of
[0,−c], and the ellipsoid has the same orientation as the ILS pull-in region.

2-D example

Figure 5.5 shows two 2-D examples of the construction of the aperture pull-in regions.
For a diagonal matrix the ILS pull-in region becomes square and there are only four
adjacent integers. It can be seen in the left panel that indeed only these four integers
determine the shape of the aperture pull-in region. For the vc-matrix Qẑ 02 01 there are
six adjacent integers that determine the shape.

Figure 5.6 shows in black all float samples for which ā = ǎ for two different fail rates.
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Figure 5.5: Construction of RTIA aperture pull-in region (grey); examples for different
covariance matrices. Left: identity matrix, µ = 0.5; Right: Qẑ 02 01, µ = 0.4.

Figure 5.6: 2-D example for RTIA estimation. Float samples for which ā = ǎ are shown
as black dots. Left: Pf = 0.001; Right: Pf = 0.025. Also shown is the IA least-squares
pull-in region for the same fail rates (in grey).

5.3.2 F -Ratio test

With the ratio test considered above the test is always accepted or rejected for a certain
value of the ambiguity residuals and for a certain µ. With the F -ratio test (3.77),
however, this is not the case. The test statistic namely depends on the residuals of the
complete float solution and on the ambiguity residuals. The fixed solution is accepted
if:

‖ê‖2
Qy

+ ‖â− ǎ‖2
Qâ

‖ê‖2
Qy

+ ‖â− ǎ2‖2
Qâ

≤ µ with 0 < µ ≤ 1

Still, it can be shown that the procedure underlying this test is a member from the class
of IA estimators. An integer perturbation of the observations y+Az, with z ∈ Z

n does
namely not propagate into the least-squares residuals, and â, ǎ, and ǎ2 all undergo the
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Figure 5.7: 2-D example for F -RTIA estimation. Float samples for which ā = ǎ are shown
as black dots. Left: Pf = 0.001; Right: Pf = 0.025. Also shown is the IA least-squares
pull-in region for the same fail rates (in grey).

same change, so that both â− ǎ and â− ǎ2 are invariant under the integer perturbation.
This IA estimator will be referred to as the F -RTIA estimator.

Similarly as for the RTIA estimator it can be shown how the aperture pull-in regions of
the F -RTIA estimator are constructed, (Verhagen and Teunissen 2004a):

Ω0,R : ‖x‖2
Qâ

+ ‖ê‖2
Qy

≤ µ(‖x− z‖2
Qâ

+ ‖ê‖2
Qy

), ∀z ∈ Z
n \ {0}, 0 < µ ≤ 1

⇐⇒ ‖x‖2
Qâ

≤ µ‖x− z‖2
Qâ

+ (µ− 1)‖ê‖2
Qy

⇐⇒ ‖x+
µ

1 − µ
z‖2

Qâ
≤ µ

(1 − µ)2
‖z‖2

Qâ
− ‖ê‖2

Qy
, ∀z ∈ Z

n \ {0} (5.16)

So, Ω0 is equal to the intersection of all ellipsoids with centers − µ
1−µ

z and size governed
by the square root of the term on the right-hand side of the last inequality in equation
(5.16). The shape of the aperture pull-in region is identical to that of the RTIA estimator.
Obviously, the difference with the RTIA estimator is that the sizes depend on the sample
value of ê. For the same value of µ they will be smaller than or the same size as the
ellipsoids that determine the RTIA aperture pull-in region.

2-D example

Figure 5.7 shows in black all float samples for which ā = ǎ for two different fail rates.
Since the size of the aperture pull-in regions depends on the sample values of ê, the
point clouds give an indication of the maximum size of the aperture pull-in regions; in
general they will be smaller for a certain sample.
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5.3.3 Difference test is an IA estimator

The difference test (3.86) as proposed by (Tiberius and De Jonge 1995) leads to accep-
tance of ǎ if:

‖â− ǎ2‖2
Qâ

− ‖â− ǎ‖2
Qâ

≥ µ (5.17)

The acceptance region of this test is given as:

ΩD = {x ∈ R
n | ‖x− x̌‖2

Qâ
≤ ‖x− x̌2‖2

Qâ
− µ} (5.18)

Let Ωz,D = ΩD ∩ Sz. Then:







Ω0,D = {x ∈ R
n | ‖x‖2

Qâ
≤ ‖x− z‖2

Qâ
− µ, ∀z ∈ Z

n \ {0}}
Ωz,D = Ω0,D + z, ∀z ∈ Z

n

ΩD =
⋃

z∈Zn

Ωz,D

(5.19)

The proof given in Teunissen (2003e) and Verhagen and Teunissen (2004a) is as follows:

Ωz,D = ΩD ∩ Sz

= {x ∈ Sz | ‖x− x̌‖2
Qâ

≤ ‖x− x̌2‖2
Qâ

− µ}
= {x ∈ Sz | ‖x− x̌‖2

Qâ
≤ ‖x− u‖2

Qâ
− µ, ∀u ∈ Z

n \ {x̌}}
= {x ∈ Sz | ‖x− z‖2

Qâ
≤ ‖x− u‖2

Qâ
− µ, ∀u ∈ Z

n \ {z}}
= {x ∈ R

n | ‖x− z‖2
Qâ

≤ ‖x− u‖2
Qâ

− µ, ∀u ∈ Z
n \ {z}}

= {x ∈ R
n | ‖y‖2

Qâ
≤ ‖y − v‖2

Qâ
− µ, ∀v ∈ Z

n \ {0}, x = y + z}
= ΩD ∩ S0 + z

= Ω0,D + z

The first two equalities follow from the definition of the difference test, and the third
from ‖x̂− x̌‖2

Qx̂
≤ ‖x̂− x̌2‖2

Qâ
≤ ‖x̂−u‖2

Qâ
,∀u ∈ Z

n \{x̌}. The fourth equality follows
since x̌ = z is equivalent to x ∈ Sz, and the fifth equality from the fact that µ ≥ 0. The
last equalities follow from a change of variables and the definition of Ω0,D = ΩD ∩ S0.
Finally note that

⋃

z∈Zn

Ωz,D =
⋃

z∈Zn

(ΩD ∩ Sz) = ΩD ∩ (
⋃

z∈Zn

Sz) = ΩD

This ends the proof of (5.19).

It has been shown that also in the case of the difference test the acceptance region
consists of an infinite number of integer translated copies of a subset of the ILS pull-in
region S0. And thus, the difference test is an IA estimator with aperture parameter µ.
It will be referred to as the DTIA estimator.

In a similar way as for the ratio test aperture pull-in region, it is possible to show how the
aperture pull-in region of the difference test is constructed, see (Verhagen and Teunissen
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Figure 5.8: Construction of DTIA aperture pull-in region (grey) for Qẑ 02 01.

2004a). From the definition of Ω0,D follows that:

Ω0,D : ‖x‖2
Qâ

≤ ‖x− z‖2
Qâ

− µ, ∀z ∈ Z
n \ {0}, µ ≥ 0

⇐⇒ xTQ−1
â z ≤ 1

2
(‖z‖2

Qâ
− µ)

⇐⇒ zTQ−1
â x

‖z‖Qâ

≤
‖z‖2

Qâ
− µ

2‖z‖Qâ

, ∀z ∈ Z
n \ {0} (5.20)

On the left-hand side of equation (5.20) the orthogonal projection of x onto the direction
z can be recognized. This shows that the aperture pull-in region Ω0,D is constructed as
intersecting half-spaces which are bounded by the planes orthogonal to z and passing
through the points 1

2 (1 − µ

‖z‖2
Qâ

)z.

The construction of Ω0,D is thus very similar to that of the ILS pull-in region S0, see
equation (3.17), which is also constructed of half-spaces bounded by the planes orthog-
onal to z. The difference is that these planes pass through the midpoint 1

2z, whereas
in the case of the difference test this point depends on the distance ‖z‖2

Qâ
and on µ.

This implies that the difference test aperture pull-in region is a down-scaled version of
the ILS pull-in region, but that the scaling is different in the various directions.

2-D example

Figure 5.8 shows a 2-D example of the construction of the aperture pull-in region. The
black lines are the planes orthogonal to c and passing through the point 1

2 (1− µ

‖c‖2
Qâ

)c,

where the c are the six adjacent integers.

Figure 5.9 shows in black all float samples for which ā = ǎ for two different fail rates.

100 Integer Aperture estimation



Figure 5.9: 2-D example for DTIA estimation. Float samples for which ā = ǎ are shown
as black dots. Left: Pf = 0.001; Right: Pf = 0.025. Also shown is the IA least-squares
pull-in region for the same fail rates (in grey).

5.3.4 Projector test is an IA estimator

The tests defined in Wang et al. (1998) and in Han (1997) are both based on testing:

H0 : E{â} = ǎ versus Ha : E{â} = ǎ+ c∇, with c =
ǎ2 − ǎ

‖ǎ2 − ǎ‖Qâ

ǎ2 is the second-best integer candidate. Ha can be tested against H0 using the w-test
of equation (2.82). The fixed solution is accepted if:

∣
∣
∣
∣

(ǎ2 − ǎ)TQ−1
â (â− ǎ)

‖ǎ2 − ǎ‖Qâ

∣
∣
∣
∣
≤ µ (5.21)

This test is referred to as the projector test since the term on the left-hand side of
equation (5.21) equals a projector which projects â− ǎ orthogonally on the direction of
ǎ2 − ǎ, in the metric of Qâ. Furthermore note that from equation (3.90) it follows that:

∣
∣
∣
∣

(ǎ2 − ǎ)TQ−1
â (â− ǎ)

‖ǎ2 − ǎ‖Qâ

∣
∣
∣
∣
≤ 1

2
‖ǎ2 − ǎ‖Qâ

(5.22)

This implies that the fixed solution is always accepted if µ ≥ 1
2‖ǎ2 − ǎ‖Qâ

.

The acceptance region of the projector test is given as:

ΩP = {x ∈ R
n | (x̌− x̌2)

TQ−1
â (x− x̌) ≤ µ‖x̌− x̌2‖Qâ

} (5.23)

In a similar way as for the difference test it can be proven that






Ω0,P = {x ∈ S0 | cTQ−1
â x ≤ µ‖c‖Qâ

, c = arg min
z∈Zn\{0}

‖x− z‖2
Qâ

}

Ωz,P = Ω0,P + z, ∀z ∈ Z
n

ΩP =
⋃

z∈Zn

Ωz,P

(5.24)
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Figure 5.10: Construction of projector test aperture pull-in region for Qẑ,02 01, µ = 1.

And thus also the projector test is an IA estimator, and will be referred to as the PTIA
estimator.

From equation (5.24) follows that Ω0,P is bounded by the planes orthogonal to c and
passing through µc, and these planes themselves are bounded by the condition that
c = arg min

z∈Zn\{0}
‖x− z‖2

Qâ
for all x on the plane, see (Verhagen and Teunissen 2004a).

2-D example

Figure 5.10 shows a 2-D example of the construction of the aperture pull-in region Ω0.
The black lines are the planes orthogonal to c and passing through µc. For the construc-
tion of Ω0,P, these planes are bounded by the condition that c = arg min

z∈Zn\{0}
‖x− z‖2

Qâ

for all x ∈ Ω0. Therefore, also sectors within the ILS pull-in region are shown as alter-
nating grey and white regions, with the sectors containing all x with a certain integer
c as second closest integer. The region Ω0,P follows as the region bounded by the in-
tersection of the black lines and the sectors, and by the boundaries of the sectors. This
results in the strange shape of the aperture pull-in regions in the direction of the vertices
of the ILS pull-in region.

Figure 5.11 shows in black all float samples for which ā = ǎ for two different fail rates.

5.4 Integer Aperture Bootstrapping and Least-Squares

A straightforward choice of the aperture pull-in regions would be to choose them as
down-scaled versions of the pull-in regions Sz corresponding to a certain admissible
integer estimator. This approach is applied to the bootstrapping and integer least-
squares estimators.
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Figure 5.11: 2-D example for PTIA estimation. Float samples for which ā = ǎ are shown
as black dots. Left: Pf = 0.001; Right: Pf = 0.025. Also shown is the IA least-squares
pull-in region for the same fail rates (in grey).

5.4.1 Integer Aperture Bootstrapping

Integer bootstrapping is an easy-to-evaluate integer estimator, for which exact evaluation
of the success rate is possible, see section 3.1.2. It will be shown that this is also the
case by defining the IA bootstrapped (IAB) estimator by choosing the aperture pull-in
regions as down-scaled versions of the bootstrapped pull-in region Sz,B as defined in
equation (3.12), cf. (Teunissen 2004a):

Ωz,B = µSz,B, ∀z ∈ Z
n (5.25)

with

{

µSz,B = {x ∈ R
n | 1

µ
(x− z) ∈ S0,B}

S0,B = {x ∈ R
n | |cTi L−1x| ≤ 1

2 , i = 1, . . . , n}
(5.26)

The aperture parameter is µ, 0 ≤ µ ≤ 1.

Like for the original bootstrapped estimator, computation of the IA bootstrapped solution
is quite simple. First the bootstrapped solution for the given float solution â is computed.
The aperture pull-in region ΩǎB,B is then identified, and one needs to verify whether or
not the float solution resides in it. This is equivalent to verifying whether or not

1

µ
(â− ǎB) =

1

µ
ε̌B ∈ S0,B (5.27)

This can be done by applying the bootstrapped procedure again, but now applied to
the up-scaled version of the ambiguity residuals, 1

µ
ε̌B. If the outcome is the zero vector,

then ā = ǎB, otherwise ā = â.

It is now possible to derive closed-form expressions for the computation of the IAB

Integer Aperture Bootstrapping and Least-Squares 103



success rate and fail rate. From equation (5.4) it follows that:

Pf =
∑

z∈Zn\{a}

∫

µSz,B

fâ(x)dx

=
∑

z∈Zn\{0}

∫

S0,B

1

(2π)
1
2
n
√

| 1
µ2Qâ|

exp{−1

2
‖ x+

1

µ
z ‖2

1

µ2 Qâ
}dx

=
∑

z∈Zn\{0}

∫

F−1(S0,B)

1

(2π)
1
2
n
√

| 1
µ2D|

exp{−1

2
‖ y +

1

µ
L−1z ‖2

1

µ2 D
}dy

where for the third equality the transformation F : x = Ly is used, with L the unit
lower triangular matrix of Qâ = LDLT . This gives the transformed pull-in region

F−1(S0,B) = {y ∈ R
n | | cTi y |≤ 1

2
, i = 1, . . . , n}

Note that 1
µ2D is a diagonal matrix having the scaled conditional variances 1

µ2σ
2
i|I as its

entries, and the transformed pull-in region has become an origin-centered n-dimensional
cube with all side lengths equal to 1. The multivariate integral can therefore be written
as a product of one-dimensional integrals:

Pf =
∑

z∈Zn\{0}

n∏

i=1

∫

|yi|≤ 1
2

1
1
µ
σi|I

√
2π

exp{−1

2

(

yi + 1
µ
cTi L

−1z
1
µ
σi|I

)2

}dy

=
∑

z∈Zn\{0}

n∏

i=1

∫ µ+2cT
i L−1z

2σi|I

−µ−2cT
i

L−1z

2σi|I

1√
2π

exp{−1

2
v2}dv

=
∑

z∈Zn\{0}

n∏

i=1

(

Φ

(
µ− 2cTi L

−1z

2σi|I

)

+ Φ

(
µ+ 2cTi L

−1z

2σi|I

)

− 1

)

(5.28)

In a similar way it can be shown that the IAB success rate is given as:

Ps =

n∏

i=1

(

2Φ

(
µ

2σi|I

)

− 1

)

(5.29)

2-D example

Figure 5.12 shows in black all float samples for which ā = ǎ for two different fail rates.

5.4.2 Integer Aperture Least-Squares

The IA Least-Squares (IALS) estimator can be defined in a similar way as the IAB
estimator, cf. (Teunissen 2004b). The aperture pull-in region is then defined as:

Ωz,LS = µSz,LS (5.30)
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Figure 5.12: 2-D example for IAB estimation. Float samples for which ā = ǎ are shown
as black dots. Left: Pf = 0.001; Right: Pf = 0.025. Also shown is the IA least-squares
pull-in region for the same fail rates (in grey).

with
{

µSz,LS = {x ∈ R
n | 1

µ
(x− z) ∈ S0,LS}

S0,LS = {x ∈ R
n | ‖x‖2

Qâ
≤ ‖x− u‖2

Qâ
, ∀u ∈ Z

n}
(5.31)

The aperture parameter is µ, 0 ≤ µ ≤ 1.

The first step for computing the IALS estimate is now to compute the ILS solution ǎ
given the float solution â, and then the ambiguity residuals are up-scaled to 1

µ
ε̌. This

up-scaled residual vector is used for verification of:

u = arg min
z∈Zn

‖ 1

µ
ε̌− z‖2

Qâ
(5.32)

If u equals the zero vector, the float solution resides in the aperture pull-in region Ω0,LS,
and thus ā = ǎ, otherwise ā = â.

Since the ILS estimator is optimal, the IALS estimator can be expected to be a better
choice than the IAB estimator. The IALS estimate can be computed using the LAMBDA
method, and, as for the IAB estimator, the shape of the aperture pull-in region is
independent of the chosen aperture parameter. Furthermore, in the Gaussian case it is
known that the aperture parameter acts as a scale factor on the vc-matrix, since

Ps =

∫

µS0,LS

fâ(x+ a)dx

= µn

∫

S0,LS

fâ(µx+ a)dx

=

∫

S0,LS

1
√

| 1
µ2Qâ|(2π)

n
2

exp{−1

2
‖x‖2

1

µ2 Qâ
}
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Figure 5.13: 2-D example for IALS estimation. Float samples for which ā = ǎ are shown
as black dots. Left: Pf = 0.001; Right: Pf = 0.025.

This shows that the IALS success rate can be computed in the same way as the ILS
success rate by replacing Qâ with the up-scaled version 1

µ2Qâ. As explained in section
3.2.2 exact evaluation of the ILS success rate is too complex, but the up-scaled version
of the vc-matrix can also be used to compute the lower and upper bounds of the IALS
success rate as given in section 3.2.2.

Lower and upper bounds for the IALS fail rate can be obtained by bounding the inte-
gration region with ellipsoidal regions. The lower bound can be obtained identically to
the one for EIA estimation as described in section 5.2. The upper bound follows in a
similar way by using µS0 ⊂ Cε

0 with Cε
0 an ellipsoidal region centered at 0 and with size

governed by ε = µmax
x∈S0

‖ x ‖Qâ
.

Summarizing, the following lower and upper bounds for the IALS success rate and fail
rate can be used:

Pf ≥
∑

z∈Zn\{0}
P

(

χ2(n, λz) ≤
1

4
µ2 min

z∈Zn\{0}
‖ z ‖2

Qâ

)

(5.33)

Pf ≤
∑

z∈Zn\{0}
P

(

χ2(n, λz) ≤ µ2 max
x∈S0

‖ x ‖2
Qâ

)

(5.34)

Ps ≥
n∏

i=1

[2Φ(
µ

2σi|I
) − 1] (5.35)

Ps ≤ P

(

χ2(n, 0) ≤ µ2cn
ADOP 2

)

(5.36)

with λz = zTQ−1
â z, and cn and ADOP as given in section 3.2.2. Note that the lower

bound of the success rate is equal to the IAB success rate.

If IALS estimation with a fixed fail rate is applied, especially the upper bound of the fail
rate is interesting. Unfortunately, equation (5.34) is not useful then, since max

x∈S0

‖ x ‖2
Qâ

must be known.
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2-D example

Figure 5.13 shows in black all float samples for which ā = ǎ for two different fail rates.

5.5 Penalized Integer Aperture estimation

Penalized Integer Aperture estimation (PIA) was introduced in Teunissen (2004e), and
is based on the idea to assign a penalty to each of the possible outcomes of a decision
process, and then to minimize the average penalty. In the case of the class of integer
aperture estimators defined in equation (5.1) there are three outcomes and the corre-
sponding penalties are denoted as ps for success, pf for failure, and pu for undecided.
The expectation of the penalty is given by:

E{p} = psPs + pfPf + puPu (5.37)

So, the average penalty is a weighted sum of the individual penalties, and depends on
the chosen penalties, and on the aperture pull-in region Ω0 since this region determines
the probabilities Ps, Pf and Pu as can be seen in equation (5.4). The goal is now to
find the Ω that minimizes this average penalty, i.e.

min
Ω
E{p} (5.38)

This implies that the aperture space depends on the penalties. The solution is obtained
by minimization of:

E{p} = ps

∫

Ω0

fâ(x+ a)dx+ pf





∫

Ω0

(fε̌(x) − fâ(x+ a))dx



+ pu



1 −
∫

Ω0

fε̌(x)dx





= (ps − pf )

∫

Ω0

fâ(x+ a)dx+ (pf − pu)





∫

Ω0

fε̌(x)dx



+ pu (5.39)

For the minimization of E{p} with respect to Ω only the first two terms on the right-
hand side of equation (5.39) need to be considered, i.e. Ω0 follows from the following
minimization problem:

min
Ω0

∫

Ω0

((pf − pu)fε̌(x) + (ps − pf )fâ(x+ a))
︸ ︷︷ ︸

F (x)

dx (5.40)

It follows thus that Ω0 must be chosen such that all function values of F (x) are negative:

Ω0,PIA = {x ∈ S0 | fε̌(x) ≤
pf − ps

pf − pu
︸ ︷︷ ︸

µ

fâ(x+ a)} (5.41)

Note that the aperture space still depends on the integer estimator that is used, since
the pull-in region S0 is different for rounding, bootstrapping and integer least-squares.
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Therefore, the average penalty also has to be minimized for S0. For that purpose the
average penalty is written as:

E{p} = pu + (ps − pu)(Ps + Pf ) + (pf − ps)Pf

= pu + (ps − pu)

∫

Ω

fâ(x)dx+ (pf − ps)
∑

z∈Zn\{a}

∫

Ω∩S0

fâ(x+ z)dx (5.42)

Hence, for this minimization problem, only the third term in equation (5.42) needs to be
considered. From the optimality of the ILS estimator, cf. (Teunissen 1999b), it follows
that

∫

S0,LS

fâ(x+ a)dx ≥
∫

S
′
0

fâ(x+ a)dx (5.43)

for any S
′

0 that fulfills the conditions in (3.1.1). Therefore also the following is true:
∫

Ω∩S0,LS

fâ(x+ a)dx ≥
∫

Ω∩S
′
0

fâ(x+ a)dx (5.44)

This result is used in the identity
∫

Ω

fâ(x+ a)dx =
∑

z∈Zn

∫

Ω∩Sz,LS

fâ(x+ a)dx =
∑

z∈Zn

∫

Ω∩S
′
z

fâ(x+ a)dx

so that

∑

z∈Zn\{0}

∫

Ω∩Sz,LS

fâ(x+ a)dx ≤
∑

z∈Zn\{0}

∫

Ω∩S
′
z

fâ(x+ a)dx (5.45)

and thus
∫

Ω∩S0,LS

∑

z∈Zn\{0}
fâ(x+ a+ z)dx ≤

∫

Ω∩S
′
0

∑

z∈Zn\{0}
fâ(x+ a+ z)dx (5.46)

This shows that the minimization problem is solved if S0 is chosen as:

S0,PIA = {x ∈ R
n | 0 = arg max

z∈Zn
fâ(x+ a+ z)} = S0,LS (5.47)

since (5.47) is independent of Ω, and thus (5.38) is indeed solved by choosing Ω0 and
S0 as in equations (5.41) and (5.47) respectively.

The steps to arrive at the PIA solution are as follows. First the ILS solution ǎ is computed
given the float solution â. Then the ambiguity residuals ε̌LS are used to verify whether
or not

fε̌(ε̌LS)

fâ(ε̌LS + a)
≤ µ (5.48)

If the inequality holds, ε̌LS ∈ Ω0,PIA, and ā = ǎ, otherwise ā = â.
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Figure 5.14: µ as function of the penalty pf with ps = 0 and pu = 1. Left: pf = 1, . . . , 2;
Right: pf = 2, . . . , 200.

2-D example

In order to get an idea of the shape of the aperture space, Qẑ 02 01 from appendix B
is chosen as the vc-matrix, the corresponding PDFs of the float ambiguities and the
ambiguity residuals are determined, and then the inequality (5.48) is used to find Ω0 as
function of µ.

Figure 5.15 shows the results. Furthermore, figure 5.14 shows µ as function of the
penalty pf > 1, where ps = 0 and pu = 1. In this case µ → 1 for pf ↓ pu. The
reasoning behind this choice is that it seems realistic that no penalty is assigned in
the case of correct integer ambiguity resolution, and also that the penalty in the case
of incorrect integer ambiguity estimation is larger than the penalty in the case of ’no
decision’ (undecided). This implies that in order to minimize the average penalty E{p},
the fail rate Pf should be as small as possible in all cases, and the probability of no
decision Pu should also be small, especially if pf ↓ pu. Thus the success rate should be
as large as possible in all cases, which is the case if the PDF of â is peaked. However,
for very small values of µ (close to one), the undecided rate will become large since then
the aperture space will be small. This results in lower success rates.

It can be seen that the shape of Ω0 is a mixture of an ellipse and the shape of the pull-in
region. The reason is that the contour lines of fâ(x) (see top panel of figure 5.15) are
ellipse-shaped, but those of fε̌(x) (center panels) are not. It is clear that for larger µ
the aperture space becomes larger.
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5.6 Optimal Integer Aperture estimation

The method of penalized IA estimation as described in section 5.5 is some way regulates
the probabilities of success and failure. As mentioned in the beginning of this chapter,
this is why the new class of integer estimators was defined. A disadvantage of PIA
estimation is that the user has to choose the values for the penalties that will be assigned
to the three cases success, failure and undecided. A user would like to choose the
penalties in such a way that he can be sure that the fail rate is below a certain value.
All other IA estimators described in previous sections are not optimal in the sense of
maximization of the success rate. Therefore, still another approach could be based on
the optimization problem defined as:

max
Ω0⊂S0

Ps subject to: Pf = β (5.49)

where β is a chosen value for the fail rate, (Teunissen 2003g). In words, this means that
the aperture space is defined such that the success rate is maximized subject to a fixed
fail rate. The solution of the optimization problem is given by:

Ω0 = {x ∈ S0 |
∑

z∈Zn

fâ(x+ z) ≤ µfâ(x+ a)} (5.50)

The proof was given in Teunissen (2004d), and is as follows.

Lemma 5.6.1 Let f(x) and g(x) be integrable functions over R
n. Then the region

Ω̂ = {x ∈ R
n |

∑

z∈Zn

f(x+ z) ≥ λ
∑

z∈Zn

g(x+ z), λ ∈ R} (5.51)

solves the constrained maximization problem:

max
Ω⊂Rn

∫

Ω

f(x)dx (5.52)

subject to:

∫

Ω⊂Rn

g(x)dx = c

Ω = Ω + z, ∀z ∈ Z
n

(5.53)

if λ ∈ R is chosen such that the integral constraint of equation (5.53) is satisfied.

Note the similarity with the Neyman-Pearson lemma, cf. (Rao 1965). The proof of
lemma 5.6.1 is as follows.
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Clearly, the region Ω̂ in (5.51) satisfies the constraints in (5.53). Let Ω be any region
that also satisfies both constraints. Then:
∫

Ω̂

f(x)dx−
∫

Ω

f(x)dx =

=
∑

z∈Zn

∫

Ω̂∩Sz

f(x)dx−
∑

z∈Zn

∫

Ω∩Sz

f(x)dx (a)

=

∫

Ω̂∩S0

∑

z∈Zn

f(x+ z)dx−
∫

Ω∩S0

∑

z∈Zn

f(x+ z)dx (b)

=

∫

(Ω̂\{Ω})∩S0

∑

z∈Zn

f(x+ z)dx−
∫

(Ω\{Ω̂})∩S0

∑

z∈Zn

f(x+ z)dx (c)

≥ λ

∫

(Ω̂\{Ω})∩S0

∑

z∈Zn

g(x+ z)dx− λ

∫

(Ω\{Ω̂})∩S0

∑

z∈Zn

g(x+ z)dx (d)

= λ

∫

Ω̂\{Ω}

g(x)dx− λ

∫

Ω\{Ω̂}

g(x)dx = 0 =⇒ (e)

∫

Ω̂

f(x)dx ≥
∫

Ω

f(x)dx

where the following properties were used:

(a)
⋃

z∈Zn

Sz = R
n

(b) Sz = S0 + z

(c) (Ω̂\{Ω}) ∩ S0 = (Ω̂ − Ω̂ ∩ Ω) ∩ S0 common part of Ω̂ and Ω subtracted

(d) use (5.51)

(e) Sz = S0 + z and use (5.53)

Recall that the success rate and fail rate can be expressed as:

Ps =

∫

Ω0

fâ(x+ a)dx, Pf =
∑

z∈Zn\{a}

∫

Ω0

fâ(x+ z)dx

so that

Ps + Pf =

∫

Ω

fâ(x)dx

Pf =

∫

Ω\{Ωa}

fâ(x)dx =

∫

Ω

fâ(x)(1 − sa(x))dx
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The optimization problem of (5.49) is thus equivalent to:

max
Ω0

(Ps + Pf ) subject to: Pf = β (5.54)

or to

max
Ω

∫

Ω

fâ(x)dx subject to:

∫

Ω

fâ(x)(1−sa(x))dx = β, Ω = Ω+z, z ∈ Z
n (5.55)

Lemma 5.6.1 can now be applied to obtain the following result:

Ω = {x ∈ R
n |

∑

z∈Zn

fâ(x+ z) ≥ λ
∑

z∈Zn

fâ(x+ z)(1 − sa(x+ z))}

Therefore

Ω0 = Ω ∩ S0

= {x ∈ R
n |

∑

z∈Zn

fâ(x+ z) ≥ λ(
∑

z∈Zn

fâ(x+ z) − fâ(x+ a)), x ∈ S0}

= {x ∈ R
n |

∑

z∈Zn

fâ(x+ z) ≤ λ

λ− 1
fâ(x+ a), x ∈ S0}

This ends the proof of (5.50).

The best choice for S0 is the ILS pull-in region. The reason is that Ps + Pf is in-
dependent of S0, but Ps and Pf are not. Therefore, any choice of S0 which makes Ps

larger, automatically makes Pf smaller. So indeed the best choice for S0 follows from:

max
S0

∫

Ω∩S0

fâ(x+ a)dx subject to Ω = Ω + z, ∀z ∈ Z
n

as the ILS pull-in region, see (Teunissen 1999a).

Recall that
∑

z∈Zn

fâ(x + z)s0(x) = fε̌(x). It follows thus that the aperture space is

defined in the same way as for PIA estimation, only that µ does not depend on the
penalties anymore, but on the choice of Pf = β. This new approach will be referred to
as Optimal IA estimation (OIA estimation).

In practice it will be difficult to compute µ for a certain choice of the fail rate. Instead,
one could use the following upper bound:

β = Pf =
∑

z∈Zn\{a}

∫

Ω0

fâ(x+ z)dx

≤
∫

Ω0

(µ− 1)fâ(x+ a)dx = (µ− 1)

∫

Ωa

fâ(x)dx

≤ (µ− 1)

∫

Sa

fâ(x)dx ≤ (µ− 1)Ps,LS (5.56)

Optimal Integer Aperture estimation 113



Figure 5.16: 2-D example for OIA estimation. Float samples for which ā = ǎ are shown
as black dots. Left: Pf = 0.001; Right: Pf = 0.025. Also shown is the IA least-squares
pull-in region for the same fail rates (in grey).

Finally, one could use the upper bound of the ILS success rate as defined in (3.39) in
order to find a value for µ so that the fail rate will be smaller than or equal to (µ−1)Ps,LS.
However, it can be expected that this upper bound is not tight enough, resulting in an
aperture space that is much smaller than actually needed, see the example below.

2-D example

In order to evaluate the accuracy of equation (5.56), the success and fail rates for two
values of µ were determined based on the simulations. The following was obtained:

µ = 1.01 : Pf = 0.0010 ≤ (µ− 1)Ps = 0.0016

µ = 1.25 : Pf = 0.0386 ≤ (µ− 1)Ps = 0.1773

which shows that already (µ− 1)Ps is not a strict upper bound. So, it will certainly not
make sense to use (µ− 1)Ps,LS as an upper bound for the fail rate.

Figure 5.16 shows in black all float samples for which ā = ǎ for two different fail rates.

The results obtained with all IA estimators are summarized in table 5.1; the penalized IA
estimator is not considered, since it is identical to the optimal IA estimator if the fixed
fail rate approach is applied. For the two fixed fail rates, the corresponding aperture
parameters and the success rates are given. Furthermore, the percentage of solutions
identical to the OIA solution is given. It follows that especially the RTIA estimator
performs almost equally well as the OIA estimator. But for this example also EIA, DTIA
and IALS estimation perform good. In section 5.8 the different IA estimators will be
compared more extensively using geometry-based models.
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Table 5.1: Comparison of IA estimators for 2-D example. Two fixed fail rates Pf are used;
µ is the aperture parameter, Ps the success rate, and Pid is the percentage of identical
solutions to the OIA solution.

Pf EIA RTIA F -RTIA DTIA PTIA IAB IALS OIA

µ 0.605 0.035 0.068 10.322 0.540 0.293 0.300 1.011

0.001 Ps 0.168 0.169 0.133 0.165 0.166 0.161 0.169 0.169

Pid 98.4 98.9 89.4 97.6 98.0 96.9 98.7 100

µ 1.414 0.314 0.386 4.432 1.336 0.690 0.700 1.147

0.025 Ps 0.632 0.634 0.611 0.632 0.629 0.615 0.633 0.634

Pid 97.5 99.2 92.5 97.5 96.5 92.7 97.7 100

5.7 Implementation aspects

The optimal IA estimator was defined such that the aperture space is constructed based
on the conditions that the fail rate is equal to a fixed value and at the same time the
maximum success rate is obtained. All other IA estimators can be used in the same way:
choose a fixed fail rate and determine the aperture space for which this fixed value of
the fail rate is obtained. However, these IA estimators are not optimal since the aperture
space is not defined such that the maximum success rate is obtained.

The problem with the approach of choosing a fixed fail rate, is the determination of the
aperture parameter. Only for the EIA estimator and the IAB estimator exact evaluation
of the fail rate as function of the aperture parameter is possible. For all other estimators it
will be necessary to determine the aperture parameter empirically or by using simulations.
Note that in practice often empirically determined critical values are used for the ratio
test and the difference test.

In this section it is first explained how the aperture parameter can be determined for
the EIA and IAB estimator. Then a method will be presented which uses simulations in
order to determine the aperture parameter. Finally, a procedure will be outlined which
can be used for applying IA estimation.

5.7.1 Determination of the aperture parameter using root finding methods

The fail rate in the case of EIA and IAB estimation can be evaluated exactly, see
equations (5.12) and (5.28) respectively. The problem is now to determine the aperture
parameter such that a fixed fail rate is obtained. For that purpose root finding methods
must be used, see appendix A.3. The procedure is then as follows. Choose the fixed fail
rate Pf = β and then find the root of

f(µ) = Pf (µ) − β

using one of the root finding methods.
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Figure 5.17: Aperture parameter for OIA estimation approximated using IAB estimation
with Pf,IAB = 0.025. y is an element of the boundary of both the IAB pull-in region and
the approximated OIA pull-in region. The dashed OIA pull-in region is the one for which
Pf,OIA = 0.025.

Since it is quite easy to determine the aperture parameter µ for a fixed fail rate in the case
of IAB or EIA estimation, it would be interesting to investigate whether this parameter
can be used to approximate the aperture parameter for e.g. Optimal IA estimation such
that Pf,OIA(µ′) ≈ Pf,IAB(µ) with µ′ the approximated aperture parameter.

One approach would be to determine the aperture parameter for IAB estimation using
a root finding method. Then an ambiguity vector on the boundary of the bootstrapped
aperture pull-in region Ω0,B is determined. From the definition of the bootstrapped pull-
in region in equation (3.12) it can be seen that S0,B is constructed as the intersection
of half-spaces which always pass through the points ± 1

2ci, with ci the canonical vector
with a one as its ith entry. From equation (3.10) follows then that â = 1

2cn will lie on
the boundary of S0,B and Scn,B since

ǎj,B =

[

âj −
j−1
∑

i=1

σâj âi|I
σ−2

âi|I
(âi|I − ǎi)

]

= 0, ∀j = 1, . . . , n− 1

ǎn,B =




ân −

n−1∑

i=1

σânâi|I
σ−2

âi|I
(âi|I − ǎi)
︸ ︷︷ ︸

=0 ∀i




 = [ân] =

[
1

2

]

=⇒
{

ǎB = 0 or

ǎB = cn

Now y is chosen as:

y = µ · 1

2
cn, (5.57)

since this will be an element of the boundary of the scaled bootstrapped pull-in region,
i.e. the IAB pull-in region. It must then be checked if y ∈ S0,LS, which will generally
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Figure 5.18: Aperture parameter for OIA estimation as function of the fail rate. Black:
determined with simulations; Grey solid: approximated using IAB estimation; Grey dashed:
approximated using EIA estimation.

be the case when the ambiguities are decorrelated, since then the bootstrapped and the
ILS pull-in regions largely overlap. If that is the case the aperture parameter for OIA
estimation is approximated as:

µ′ =
fε̌(y)

fâ(y)
, (5.58)

since then y is also an element of the boundary of Ω0,OIA. If the aperture pull-in regions
of IAB and OIA would have a similar shape, this approximation may work well. However,
it does not tell whether using µ′ will give a larger or smaller fail rate than the fixed value
that was used in order to determine µ′.

This approach is illustrated for the 2-D example in figure 5.17. The IAB pull-in region for
a fail rate of 0.025 is shown. The star shows y as determined with equation (5.57)1. The
resulting OIA pull-in region is shown with a solid line; y is an element of the boundary
of this pull-in region. This ’approximated’ OIA pull-in region is smaller than the one for
which Pf,OIA = 0.025 (dashed line).

Figure 5.18 shows the OIA aperture parameter as function of the fail rate, where the
aperture parameter is determined with simulations (see section 5.7.2), or approximated
using IAB estimation. It can be seen that the approximated aperture parameter is too
low, which means that Pf,OIA(µ′) < β. In other words, for this example the OIA pull-in
regions are always smaller than necessary if the aperture parameter is approximated using
IAB estimation.

A similar approach can be followed by using EIA estimation. Then a vector on the

1Note that if bootstrapping is applied, one starts with the first ambiguity which should be the most
precise float ambiguity as was explained in section 3.1.2. For the example shown here, the second
ambiguity is the most precise. Hence, y is permuted so that y = µ ·

1

2
c1.
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boundary of the aperture pull-in region Ω0,E could be chosen as:

y = % · 1

2
arg min

z∈Zn\{0}
‖z‖2

Qâ
with % =

µ
1
2 min

z∈Zn\{0}
‖z‖Qâ

(5.59)

since then ‖y‖2
Qâ

= µ2. Again the aperture parameter for OIA estimation is approxi-
mated with equation (5.58), so that y is also an element of the boundary of Ω0,OIA. It
is important to note that this approach will not work in the case the ellipsoidal pull-in
regions overlap, since then y /∈ S0. In that case % in equation (5.59) should be set equal
to one, so that y is on the boundary of S0.

Figure 5.18 also shows the OIA aperture parameter as function of the fail rate as approx-
imated using EIA. Instead of choosing y as in equation (5.59), one could also choose
y = % · 1

2u with u the adjacent integer with the largest distance to the true integer a = 0.
With the first option, the approximated aperture parameter will be too large, with the
second option the approximated aperture parameter will be too small. For this example,
approximation with IAB estimation works better, but still not good.

5.7.2 Determination of the aperture parameter using simulations

As explained at the beginning of this section, computation of the aperture parameter µ
for a fixed fail rate is not possible for most IA estimators. An alternative is to determine
µ numerically. Therefore, simulated data are required. The procedure will be described
here for the OIA estimator, but a similar approach can be followed for other IA estimators.

The procedure is as follows:

1. Generate N samples of normally distributed float ambiguities:
âi ∼ N(0, Qâ), i = 1, . . . , N

2. Determine the ILS solution:
ǎi, ε̌i = âi − ǎi, ri = fε̌(ε̌i)

fâ(ε̌i)

3. Choose the fail rate: Pf = β ≤ Pf,LS

The fail rate as function of µ is given by: Pf (µ) =
Nf

N

with Nf =
N∑

i=1

ω(ri, ǎi) and ω(ri, ǎi,) =

{

1 if ri ≤ µ ∧ ǎi 6= 0

0 otherwise

4. Choose:
µ1 = (min(ri) − 10−16) since this results in: Nf = 0 ⇒ Pf (µ1) = 0
µ2 = max(ri) since this results in: Pf (µ2) = Pf,LS

5. Use a root finding method to find µ ∈ [µ1, µ2] so that Pf (µ) − β = 0.
This will give the solution since Pf (µ1)− β < 0 and Pf (µ2)− β > 0, and the fail
rate is monotonically increasing for increasing µ, as will be shown below.
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In order to show that the fail rate is monotonically increasing with µ choose µj > µi.
Assume the aperture space Ω0,i is defined by µi, so that the following is true:

fε̌(x)

fâ(x)
≤ µi ∀x ∈ Ω0,i

Since µj > µi, the following is true:

fε̌(x)

fâ(x)
< µj ∀x ∈ Ω0,i and

fε̌(x)

fâ(x)
≤ µj ∀x ∈ Ω0,j

This means that Ω0,i ⊂ Ω0,j and thus also Ωz,i ⊂ Ωz,j ,∀z ∈ Z
n. From the definition

of the fail rate in (5.4) it follows that Pf,j > Pf,i ∀µj > µi.

5.7.3 Determination of the Integer Aperture estimate

In practice the problem of determining the aperture parameter for a given fail rate can be
circumvented as follows. First, the float and fixed solution are computed, and then it is
determined what the fail rate would be if the float solution would fall on the boundary of
the aperture pull-in region Ω′

ǎ. If this fail rate is larger than the user-defined threshold β,
obviously Ω′ is larger than allowed and the float solution lies outside the aperture space
Ω corresponding to Pf = β. The procedure is outlined below for the RTIA estimator,
but can also be applied for other IA estimators. For the IALS estimator this is not
completely straightforward, and therefore in appendix D the procedure for this estimator
is outlined.

1. Choose fixed fail rate: Pf = β

2. Collect observations and apply least-squares adjustment: â, Qâ;

3. Apply integer least-squares estimation: ǎ, ε̌, ‖â− ǎ‖2
Qâ

, ‖â− ǎ2‖2
Qâ

;

4. Choose µ′ =
‖â−ǎ‖2

Qâ

‖â−ǎ2‖2
Qâ

;

5. Generate N samples of float ambiguities x̂i ∼ N(0, Qâ);

6. For each sample determine the ILS estimate x̌i

and µi =
‖x̂i−x̌i‖2

Qâ

‖x̂i−x̌i,2‖2
Qâ

;

7. Count number of samples Nf for which: µi ≤ µ′ and x̌i 6= 0;

8. Compute fail rate with µ′ as critical value: Pf (µ′) =
Nf

N
;

9. If Pf (µ′) ≤ β: ā = ǎ, otherwise ā = â.

In order to get a good approximation of the fail rate in step 8 the number of samples
must typically be chosen large, N > 100, 000. But in order to reduce the computation
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Table 5.2: Comparison of IA estimators for geometry-based examples.

fail rate success rates

EIA RTIA F -RTIA DTIA PTIA IAB IALS OIA

06 01 0.001 0.158 0.165 0.131 0.163 0.162 0.134 0.166 0.166

06 01 0.008 0.370 0.390 0.365 0.383 0.375 0.316 0.388 0.392

06 02 0.012 0.044 0.044 0.037 0.042 0.042 0.040 0.043 0.044

06 02 0.050 0.129 0.130 0.119 0.124 0.124 0.116 0.127 0.131

10 01 0.001 0.649 0.921 0.923 0.932 0.799 0.846 0.914 0.932

10 01 0.004 0.847 0.968 0.969 0.970 0.892 0.923 0.968 0.970

10 02 0.006 0.111 0.191 0.179 0.208 0.179 0.154 0.176 0.219

10 02 0.012 0.174 0.289 0.279 0.301 0.251 0.236 0.270 0.314

10 03 0.020 0.052 0.074 0.070 0.076 0.071 0.066 0.073 0.084

10 03 0.060 0.117 0.161 0.154 0.160 0.145 0.142 0.159 0.170

time, which is important in real-time applications, it has been investigated how much
the results would differ with N much smaller so that the computation time becomes
acceptable. It followed that for all models described in appendix B, already with a few
thousand samples the results are quite good: same decision as with very large N in more
than 99% of the cases.

5.8 Comparison of the different IA estimators

In section 3.5 the integer validation tests as currently used in practice were described.
If an admissible integer estimator is used in combination with one of the discrimination
tests described in that section, the resulting estimator belongs to the class of integer
aperture estimators as was shown in section 5.3 for the ratio test, difference test and
projector test.

It is now interesting to compare the performance of all the different IA estimators using
the fixed fail rate approach. For that purpose simulations are used. It is then investigated
which of the IA estimators perform close to optimal. Furthermore, the OIA estimator
is conceptually compared with the ratio test and difference test, and with the IALS
estimator.

5.8.1 Examples for the geometry-based case

Simulations were carried out for several geometry-based models, see appendix B.

Table 5.2 shows success rates obtained for two different fixed fail rates for all examples.
From the results follows that OIA estimation indeed results in the highest success rates,
but often the ratio test and the difference test give almost the same results. In section
5.8.2 these estimators are compared in more detail. Also the IALS estimator performs
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Figure 5.19: Top: Success rate as function of the fail rate; Bottom: percentages of solutions
identical to OIA. Left: example 06 01. Right: example 06 02.

quite well. The EIA estimator only performs well for examples 06 01 and 06 02. The
performance of the F -RTIA estimator seems to be much worse than the performance of
the other estimators. The reason is that the F -RTIA estimator does not only consider
the ambiguity residuals, but also the residuals of the float solution, so that the aperture
space is not n-dimensional, but (m− p)-dimensional.

Figures 5.19 and 5.20 show the success rates as function of the fail rate for those IA
estimators that perform reasonably well; only low fail rates are considered. DTIA, RTIA
and IALS estimation perform well for all examples: the success rates are almost equal
to the OIA success rate, and the percentage of solutions identical to the OIA solution
is high. For examples 06 01 and 06 02 the RTIA estimator performs best after OIA
estimation; for examples 10 01 and 10 03 the DTIA estimator performs better than
RTIA estimation. EIA estimation only performs well for example 06 02.

Until now the performance of the IA estimators is solely based on the ambiguity success
rates and fail rates. Of course, a user is more interested in the probability that the
baseline estimate will be within a certain distance from the true baseline:

P (‖ḃ− b‖2
Q

ḃ
≤ ε) (5.60)

where ḃ is either the float, fixed, or IA baseline estimator. The vc-matrices Qb̌ and Qb̄

can be determined from the estimates corresponding to the simulated float ambiguities.
These probabilities are difficult to interpret, but will be considered for completeness,
because they tell something about the distributional properties of the baseline estimators.
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Figure 5.20: Top: Success rate as function of the fail rate; Bottom: percentages of solutions
identical to OIA. Left: example 10 01. Right: example 10 03.

A user will be mainly interested in the baseline coordinates, therefore also the following
probabilities are analyzed:

P (‖ḃx − bx‖ ≤ ε) (5.61)

where bx refers only to the three baseline coordinates. So, the distance to the true
position is considered here.

The results are shown in figures 5.21 and 5.22. For all examples the OIA estimates
corresponding to the largest fail rate in table 5.2 is used. Note that the same probabilities
were analyzed in section 4.3.3 for the float, fixed and BIE baseline estimators.

The probability that b̌ is close to the true b is highest for most examples. Note, however,
that in practice b̌ should only be used if the ILS success rate is close to one. This is the
case for example 10 01, but then the baseline probability of b̄ is comparable to that of
b̌. Another disadvantage of the fixed estimator is that if b̌ is not close to b, there is a
high probability that it will be very far from the true solution.

It follows that the baseline probabilities of b̄ often are better than those of b̂. In the
figures only the probabilities of the OIA estimator are shown; for the other IA estimators
the probabilities are somewhat lower. If the aperture parameter would be chosen larger
or smaller, the OIA baseline probability would be more like that of the fixed or float
baseline probability respectively.
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Figure 5.21: Top: P (‖ḃ−b‖2

Q
ḃ
≤ ε). Bottom: P (‖ḃx−bx‖

2 ≤ ε). Dotted: ḃ = b̂; Dashed:

ḃ = b̌; Solid: ḃ = b̄. Left: example 06 01. Right: example 06 02.

Besides the probabilities as defined in equations (5.60) and (5.61), it is also interesting
to know the probability that the IA baseline estimator is better than or identical to the
float estimator, i.e.

P (‖b̄x − bx‖ ≤ ‖b̂x − bx‖) (5.62)

As explained in section 3.4 the fixed baseline probabilities cannot be evaluated exactly;
the same is thus true for the IA estimators. The probability is plotted in figure 5.23 as
function of the fail rate for the different examples. The end points correspond to the
ILS fail rate and therefore the probability is equal to P (‖b̌x − bx‖ ≤ ‖b̂x − bx‖).

Especially for low fail rates the probabilities are high, and P (‖b̄x − bx‖ ≤ ‖b̂x − bx‖) >
P (‖b̌x − bx‖ ≤ ‖b̂x − bx‖). That is because then either the undecided rate will be high

and thus there is a high probability that b̄ = b̂, or the success rate is high so that there
is a high probability that b̌ is better than b̂ if b̄ = b̌. For examples 06 01 and 06 02 the
probability for the IA baseline estimator is always better than for the fixed estimator;
but that is not true for examples 10 02 and 10 03. Since a user will be interested in
low fail rates, these probabilities show that the IA aperture estimator is to be preferred
above the fixed estimator.
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Figure 5.22: Top: P (‖ḃ−b‖2

Q
ḃ
≤ ε). Bottom: P (‖ḃx−bx‖

2 ≤ ε). Dotted: ḃ = b̂; Dashed:

ḃ = b̌; Solid: ḃ = b̄. Left: example 10 01. Right: example 10 03.
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Figure 5.23: Probability P (‖b̄x − bx‖ ≤ ‖b̂x − bx‖) as function of the fail rate.
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5.8.2 OIA estimation versus RTIA and DTIA

The results in the preceding section have shown that the RTIA and the DTIA estimator
both perform close to optimal for most examples. Therefore, in this section the relation
between these estimators and the OIA estimator is investigated.

Recall that with the ratio test the fixed solution is accepted if and only if:

R1

R2
≤ µR

With the difference test the acceptance criterion is:

R2 −R1 ≥ µD

With OIA estimation the fixed solution is used if and only if:

fε̌(â− ǎ)

fâ(â− ǎ)
≤ µO

with

fε̌(â− ǎ)

fâ(â− ǎ)
=

∞∑

i=1

exp{− 1
2Ri}

exp{− 1
2R1}

= 1 +
exp{− 1

2R2}
exp{− 1

2R1}
+

∞∑

i=3

exp{− 1
2Ri}

exp{− 1
2R1}

(5.63)

where the i refers to the solution that is best (1), second-best (2), etcetera. This
expression follows from equations (3.26) and (3.48).

An important difference with the ratio test statistic and the difference test statistic is
that in this expression all Ri, i = 1, . . . ,∞ are taken into account and not just those
that correspond to the best and second-best integer solution. From equation (5.63)
follows that:

fε̌(â− ǎ)

fâ(â− ǎ)
≥ 1 + exp{−1

2
(R2 −R1)} (5.64)

So, if Ω′
0 is the aperture pull-in region corresponding to:

1 + exp{−1

2
(R2 −R1)} ≤ µO (5.65)

if follows that Ω0,O ⊂ Ω′
0. Equation (5.65) can be rewritten as:

R2 −R1 ≥ −2 ln(µO − 1) (5.66)

Equation (5.66) is identical to the difference test. Hence, it follows that Ω0,O ⊂ Ω0,D if
µD = −2 ln(µO − 1), and the fail rate and success rate of the DTIA estimator will be
higher than with OIA estimation.

If the precision as described by the vc-matrix Qâ is high the squared norms Ri, i > 1 will
be large and the last term on the right-hand side of equation (5.63) will become small.

Comparison of the different IA estimators 125



This means that the higher the precision, the more identical the aperture pull-in regions
of the difference test and the optimal test become. It follows from equation (5.66) that
then

µO ≈ exp{−1

2
µD} + 1 or µD ≈ −2 ln(µO − 1) (5.67)

In figures 5.26 and 5.27 the aperture parameter µO is shown as function of the fail rate for
different examples. The black solid lines show the µO that follow from the simulations,
the dashed grey line show the µ′

O as approximated with (5.67) as function of the DTIA
fail rate. For example 10 01, the precision is high and the results in table 5.2 already
showed that the DTIA estimator performs almost identical to the OIA estimator. It
could therefore be expected that µO ≈ exp{− 1

2µD} + 1, which is indeed shown in the
figure. On the other hand, for the other examples the DTIA estimator performs worse
than the OIA estimator. Because of the poorer precision the terms Ri, i > 3, and thus
the last term on the right-hand side of (5.63), cannot be ignored. Not surprisingly µO

is clearly different from µ′
O.

In the bottom panels of the figures, the OIA success rates as function of the ’fixed’ fail
rate are shown in the case µO would be used, and in the case µ′

O would be used. So,
in the latter case the success rate is shown as function of the DTIA fail rate which was
used to determine µ′

O. As expected, only for example 10 01 approximately the same
results are obtained.

From equation (5.66) follows that it is not possible to rewrite the OIA estimator in the
same form as the ratio test (3.78), but both tests depend on R1 and R2, which is the
reason that similar results can be obtained with RTIA and OIA estimation if it would be
possible to choose the critical value of the ratio test in an appropriate way. In practice
µR is often chosen equal to a fixed value and the ratio test should only be applied if the
precision is high. Figure 5.24 shows on the left the aperture parameter µR as function
of the fail rate for the different examples. It can be seen that for the examples where
n = 10 a small fail rate will be obtained when µR = 0.3; in the case of poorer precisions
on the other hand, it is not clear how the appropriate µR can be chosen such that the fail
rate will be low enough, but at the same time such that the test is not too conservative.

The F -ratio test

‖ê‖2
Qy

+R1

‖ê‖2
Qy

+R2
≤ µR

also looks at R1 and R2, but as explained this IA estimator is not really comparable
with all others because it also depends on the float residuals ê. In practice the aperture
parameter is often chosen equal to 1

2 or as 1/Fα(m− p,m− p, 0), see section 3.5. The
panels on the right of figure 5.24 show the aperture parameter as function of the fail
rate and as function of α in the case the F -distribution would be used to determine the
aperture parameter. As explained, the latter choice is actually not correct. It follows
that it is not obvious how α must be chosen, which confirms that it is better not to
incorrectly use the F -distribution. With µR = 1

2 the fail rate will generally be quite low.

The results of this section give an explanation for the fact that it is difficult to find
a good criterion to choose the critical value for the ratio test and the difference test:
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Figure 5.24: Aperture parameter µ as function of the fail rate. Left: RTIA; Right: F -RTIA.
Top: example 02 01; Center: examples 06 xx; Bottom: examples 10 xx.
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in order to guarantee a low fail rate the critical value should somehow depend on the
distance to all integer vectors in the neighborhood of â, where the distance is measured
in the metric of Qâ.

2-D examples

By comparing 2-D aperture pull-in regions of the RTIA, DTIA and OIA estimators, it is
possible to get a better idea of the differences in performance of the three estimators.

Therefore three aperture pull-in regions for are plotted for different vc-matrices in figure
5.25. The following vc-matrices are considered:

2

3
Qẑ 02 01, Qẑ 02 01, 4Qẑ 02 01, Qẑ 02 01 +

[
0.8 0
0 0

]

The regions correspond to the following three situations:

a : µ chosen such that for each estimator the fail rate is obtained for which the percentage
of RTIA / DTIA solutions identical to the OIA solution, Pid, is minimum;

b : Ratio Test with fixed critical value of µ = 0.5,
µ for DTIA and OIA chosen such that fail rates of all estimators are equal

c : all estimators with fixed fail rate of Pf = 0.025

It follows that the first situation, smallest Pid for the same fail rate, in general occurs
when the OIA pull-in region just touches the ILS pull-in region, and thus the aperture
parameter is large. The reason is that for a large aperture parameter the shape of the
RTIA and DTIA pull-in regions start to resemble the shape of the ILS pull-in region
and is larger in the direction of the corner points of the ILS pull-in regions where little
probability mass is located. The OIA pull-in region, on the other hand, touches the
ILS pull-in regions there where more probability mass is located in Sa, since the PDF
of â is elliptically shaped. The smallest Pid is not obtained for a large aperture pull-in
region when the precision is so high that the PDF of â is peaked since then there is little
probability mass close to the boundaries of the ILS pull-in region.

If the aperture pull-in regions are chosen even larger than shown in figure 5.25, the OIA
pull-in region is cut off by the ILS pull-in region. So, if µ is increased the OIA pull-in
region cannot expand in all directions, and therefore the fail rate will not change much.

The aperture pull-in regions of the RTIA and DTIA estimators are especially different
from those of the OIA estimator in the direction of the vertices of the ILS pull-in region.
That is because in those directions there are two integers, ǎ2 and ǎ3 with the same
distance to â, but only ‖â − ǎ2‖2

Qâ
is considered by the ratio test and difference test,

whereas with OIA estimation the likelihood of all integers is considered.

Using a fixed critical value for the ratio test (b) results in very different and sometimes
large fail rates, depending on the vc-matrix. The reason is that the size of the aperture
pull-in regions is not adjusted if the precision changes. This can be seen for the first
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Figure 5.25: Aperture pull-in regions for: a) the µ that results in the smallest percentage of
solutions identical to the optimal test; b) µR = 0.5; c) Pf = 0.025. Left: OIA (black) and
RTIA (grey); Right: OIA (black) and DTIA (grey). Top to bottom: 2

3
Qẑ 02 01; Qẑ 02 01;

4Qẑ 02 01; Qẑ 02 01 + diag(0.8, 0).
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Figure 5.26: Aperture parameter µO (top) and success rate (bottom) as function of the
fixed fail rate that is used to determine the aperture parameter. Black: µO determined from
simulations; Dashed grey: µ′

O = exp{− 1

2
µD} + 1; Solid grey: µ′

O approximated with IAB
estimation. Left: example 06 01. Right: example 06 02.
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Figure 5.27: Aperture parameter µO (top) and success rate (bottom) as function of the
fixed fail rate that is used to determine the aperture parameter. Black: µO determined from
simulations; Dashed grey: µ′

O = exp{− 1

2
µD} + 1; Solid grey: µ′

O approximated with IAB
estimation. Left: example 10 01. Right: example 10 03.
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three vc-matrices which are scaled versions of each other: the RTIA aperture pull-in
regions corresponding to situation b are all equal.

The fixed fail rate approach works much better than using a fixed critical value for the
ratio test, because the size of the aperture pull-in region is nicely adjusted in case of a
fixed fail rate, as can be seen by comparing the results corresponding to situation c for
the first three vc-matrices. In practice the choice of a fixed µ often works satisfactorily,
but that is because either the value is chosen very conservative, cf. (Han 1997), or it is
required that the ILS success rate is close to one before an attempt to fix the ambiguities
is made.

The aperture pull-in regions of the DTIA and OIA estimators become more and more
identical the higher the precision is, so that the relations in equation (5.67) become
valid, as can be seen by comparing these regions for the first three vc-matrices.

5.8.3 IAB and IALS estimation

From table 5.2 it follows that IALS estimation may perform close to optimal, but IAB
estimation does not perform so good. This can also be seen in the bottom panels of
figures 5.28 and 5.29. For a certain fail rate, the success rates with IAB estimation are
clearly lower than with IALS estimation.

The advantage of IAB estimation, however, is that exact evaluation of the fail rate and
success rate is possible. Moreover, the results in table 5.2 indicate that for a fixed fail
rate, the aperture parameters of both estimators do not differ that much. This can also
be seen in the top panels of figures 5.28 and 5.29. For all examples µB < µLS. This
gives rise to the idea to choose a maximum allowed fail rate, i.e. Pf < β, and compute
the aperture parameter µB such that Pf,IAB = β. Then apply IALS estimation with
µLS = µB. For this choice it follows from equations (5.29) and (5.35) that the IALS
success rate will always be larger than or equal to the IAB success rate. Based on the
examples it can be expected that the IALS fail rate will then be smaller than β. However,
this approach is not optimal since the corresponding success rate will also be lower than
the one obtained with the IALS fail rate equal to β. This is illustrated with two examples
in table 5.3. Moreover, it is not guaranteed that indeed Pf,IALS(µ) ≤ Pf,IAB(µ).

In section 5.7.1 an approximation of the OIA aperture parameter was given which makes
use of the IAB aperture parameter. For examples 06 01, 06 02, 10 01 and 10 03 the
results are shown in figures 5.26 and 5.27. The approximation does not work very well,
and the results are often too conservative: the aperture pull-in regions are smaller than
needed. Only for low fail rates the approximated aperture parameter is sometimes too
large, so that the actual OIA fail rate will be larger than allowed.

5.9 Performance of IA estimation

The examples in the preceding section aimed at showing the potentials of IA estimation
in general and comparing the different IA estimators. Based on the results it can be
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Figure 5.28: Comparison of IAB and IALS estimation, examples 06 01 (left) and 06 02
(right). Top: Aperture parameter µ as function of the fail rate for IAB (dashed) and IALS
(solid) estimation. Bottom: Success rate (black) and undecided rate (grey) as function of
the fail rate.
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Figure 5.29: Comparison of IAB and IALS estimation, examples 10 01 (left) and 10 03
(right). Top: Aperture parameter µ as function of the fail rate for IAB (dashed) and IALS
(solid) estimation. Bottom: Success rate (black) and undecided rate (grey) as function of
the fail rate.
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Table 5.3: Comparison of IAB and IALS estimation.

IAB IALS

µ 0.5322 0.5322 0.5500

06 01 Pf 0.0010 0.0008 0.0010

Ps 0.1336 0.1458 0.1657

µ 0.7867 0.7867 0.8000

10 01 Pf 0.0012 0.0010 0.0012

Ps 0.8456 0.9023 0.9137

concluded that the DTIA, RTIA, and the IALS estimators perform almost as well as the
OIA estimator. With the implementation as described in section 5.7.3 the DTIA and
RTIA estimators have the advantage to be computationally simple and less demanding
than the other two estimators. OIA estimation requires the approximation of fε̌(x)
which may involve the determination of and summation over a very large integer set, see
section 3.3. IALS estimation involves applying ILS estimation twice for each generated
sample.

In this section, examples are worked out which illustrate the benefits of IA estimation
with a fixed fail rate for practical use. Besides the OIA estimator only the RTIA estimator
will be considered, because of its attractive properties described above, and because it is
well-known and already often used in practice, albeit based on other acceptance criteria.

The vc-matrices of examples 06 02 and 10 03 are used. These vc-matrices correspond
to a single epoch model. For the following epochs it is simply assumed that

Qk =
1

k
Q1,

with k the epoch number. This relation is valid when the satellite geometry is not
changed.

The aperture parameters, success rates and fail rates as function of the number of epochs
are determined using simulations. The following approaches are considered:

• Optimal IA estimation, fixed fail rate Pf = 0.005;

• Ratio Test IA estimation, fixed fail rate Pf = 0.005;

• Ratio Test, fixed critical value µ = 1
3 ;

• Ratio Test, fixed critical value µ = 1
2 and

fixed solution is only accepted if Ps,LS ≥ 0.99;

• fixed solution is only accepted if Ps,LS ≥ 0.995.

If the ILS fail rate is smaller than 0.005, all solutions are accepted with the first two IA
estimators, i.e. Ω0 = S0. Note that the last approach also guarantees that the fail rate
will never exceed 0.005.
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Figure 5.30: Probabilities that solution will be fixed as function of the number of epochs
with 5 different tests. Left: 06 02, Right: 10 03.

For (near) real-time applications it is important that the time to first fix is as short as
possible. The probability that a fix is made at a certain epoch equals:

Pfix = Ps + Pf (5.68)

Figures 5.30 and 5.31 show Pfix and Ps|ā=z obtained with the 5 approaches as function
of the number of epochs. Obviously, IA estimation with a fixed fail rate result in the
highest Pfix. Again, it follows that only with the fixed fail rate approach the performance
of the RTIA estimator is close to optimal.

Applying the ratio test with a fixed critical value of 1
3 (stars) may give comparable

probabilities Pfix in the first epochs. Note that if the success rate is higher than the one
obtained with the fixed fail rate, this implies that the corresponding fail rate is higher
than 0.005. In later epochs the fixed critical value is far too conservative, so that the
time to first fix may be unnecessarily long.

For the first epoch the probability Ps|ā=z is always low for the examples considered here.
The reason is that the success rate Ps is very low, and thus the approximation (5.8) is
not valid. For later epochs Ps|ā=z becomes reasonably high with all approaches, and is
highest for the fixed critical value approach. Note, however, that this is only the case
because this approach is too conservative; Pfix is very low in the first epochs, so that if
the solution is fixed it can be expected to be correct since the aperture space, and thus
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Figure 5.31: Success rates conditioned on ā = z as function of the number of epochs with
5 different tests. Left: 06 02, Right: 10 03.

also the fail rate, is very small.

With the two approaches where it is required that the ILS success rate exceeds a certain
limit (x-signs and squares) no attempt is made to fix the solution in the first epochs. As
soon as a fix is made, the probability Ps|ā=z is high.

With the OIA and the RTIA estimator with a fixed fail rate there is a very high probability
that the solution will be fixed much faster than with the other approaches, and the RTIA
estimator performs close to optimal. At the same time it is guaranteed that the fail rate
will not exceed the user-defined threshold. This is not the case if the ratio test with a
fixed critical value is used. It can be concluded that the performance of the ratio test
with a fixed fail rate is much better than with a fixed critical value, especially when
more epochs of data become available. The reason is that using a fixed critical value
implies that the aperture pull-in region Ω0 does not change as function of the number
of epochs. Recall that the success rate is given by:

Ps =

∫

Ω0

fâ(x+ a)dx

So, if more epochs of data become available, the success rate only increases because
fâ(x+ a) becomes more peaked due to the improved precision. Using a fixed fail rate,
on the other hand, means that Ω0 becomes larger when the precision improves. This
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implies that the success rate increases more than with the fixed critical value approach,
since fâ(x+ a) is the same, but the integration region is larger.

5.10 Summary

In practice validation of the integer ambiguity solution is taken care of by using test
statistics, which lack a sound theoretical basis. The problem is then the choice of the
critical value.

As an alternative, in this chapter the concept of integer aperture estimation with a fixed
fail rate was presented. The advantages are:

• It is an overall approach: estimation and validation are not considered as separate
problems.

• An exact and overall probabilistic evaluation of the final solution is possible.

• The user only needs to choose the maximum allowable fail rate, which is exactly
the parameter on which a user wants to put restrictions. Moreover, this means that
the size of the acceptance region is really based on the model at hand. Choosing
a fixed critical value or a critical value based on incorrect assumptions on the
distribution of the test statistic, as is common practice, will only work when the
precision is high, and may even then result in a test that is either too conservative
or too optimistic.

• The discrimination tests – ratio tests, difference test, projector test – as used in
practice belong to the class of integer aperture estimators, and the performance
of the ratio test and difference test is shown to be close to optimal. So, based on
the theory of Integer Aperture inference the theoretical foundation as well as the
practical relevance of the ratio test and difference test have been shown.

• Using the fixed fail rate approach implies that the critical value depends on the
model (and thus the precision) at hand. This means that the time to first fix will
be shorter, and at the same time it is guaranteed that the probability of incorrect
fixing is below a user-defined threshold.

Several new IA estimators have been presented; the optimal IA estimator is one of them.
This estimator maximizes the success probability for a given fail rate. An overview of all
IA estimators is given in table 5.4. Unfortunately, for most IA estimators it is difficult
to determine the aperture parameter.

Simulations were used to evaluate and compare the IA estimators. It follows that the
ratio test IA estimator (RTIA), the difference test IA estimator (DTIA), and the IA
least-squares estimator (IALS) have a close to optimal performance. In practice often
the RTIA estimator is used, because it is known to work well if the success rate is high.
From the comparison with the OIA estimator, it is now explained why this estimator
and the DTIA estimator perform so well. The close to optimal performance of the IALS
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Table 5.4: Overview of IA estimators. The last column gives the methods that can be used
for the determination of the aperture parameter µ in the case of fixed fail rate IA estimation.

definition aperture space: determination µ

EIA ellipsoid ‖ â− ǎ ‖2
Qâ

≤ µ2 root finding method

RTIA ratio test
‖â−ǎ‖2

Qâ

‖â−ǎ2‖2
Qâ

≤ µ empirical/simulation

F -RTIA F -ratio test
‖ê‖2

Qy
+‖â−ǎ‖2

Qâ

‖ê‖2
Qy

+‖â−ǎ2‖2
Qâ

≤ µ empirical/simulation

DTIA difference test ‖â− ǎ2‖2
Qâ

− ‖â− ǎ‖2
Qâ

≥ µ empirical/simulation

PTIA projector test
(ǎ2−ǎ)T Q−1

â
(â−ǎ)

‖ǎ2−ǎ‖Qâ

≤ µ empirical/simulation

IAB bootstrapping 1
µ
ε̌B ∈ S0,B root finding method

IALS least-squares 1
µ
ε̌LS ∈ S0,LS = µB/simulation

OIA optimal fε̌(ε̌LS)
fâ(ε̌LS+a) ≤ µ simulation

estimator is also not surprising, since it makes use of the scaled ILS pull-in region as
aperture space, and the ILS estimator is known to be optimal in the class of admissible
integer estimators.

Which IA estimator to use?

The RTIA and DTIA estimator are easy to apply and computationally simple, since the
squared norms of the ambiguity residuals are already available after computing the ILS
solution. However, these estimators are only close to optimal if an appropriate aperture
parameter is used based on a fixed fail rate; and that is only possible by using simulations.

The IALS estimator might be a good alternative: close to optimal performance, and easy
to apply. The aperture parameter could be chosen equal to that of the IAB estimator
for a given fail rate. Unfortunately, this will make the IALS estimator less optimal. If
simulations are used for the determination of the aperture parameter, the computational
efficiency of the IALS estimator will be much less than that of the RTIA and DTIA
estimators, since ILS estimation has to be applied twice for each sample.

In theory, the OIA estimator is of course to be preferred since it maximizes the success
rate. However, computationally it is the most complex estimator because the probability
density of the ambiguity residual must be computed. Furthermore, it is only possible to
determine the aperture parameter for a given fail rate using simulations. If the aperture
parameter is approximated using the IAB estimator, the resulting estimator will not be
optimal.
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Conclusions and recommendations 6
6.1 Integer estimation and validation

The goal of this thesis was to evaluate different approaches to the integer estimation
and validation problem. In this thesis three approaches were considered, based on three
classes of integer estimators. The relationships between the estimators are shown in the
Venn diagram of figure 6.1.

The smallest, most restrictive class is the class of admissible integer estimators. Integer
rounding, bootstrapping, and integer least-squares are the well-known admissible estima-
tors. From this class, integer least-squares is the optimal estimator, since it maximizes
the probability of correct integer estimation. Therefore, almost all ambiguity resolution
methods currently used in practice are based on this estimator. A parameter resolution
theory can, however, not be considered complete without the appropriate measures to
validate the solution. For that purpose, many integer validation tests have been proposed
in literature, but all of these tests lack a sound theoretical foundation and most tests are
based on the invalid assumption that the integer ambiguity candidates are deterministic.

The largest class of integer estimators is the class of best integer equivariant (BIE)
estimators. This BIE estimator is in some sense always superior to its float and fixed
counterparts: it is best in the sense that it minimizes the mean squared errors of the
estimators. This is a weaker performance criterion than that of the integer least-squares
estimator, the maximization of the success rate. This might be an advantage if the
success rate is not close to one, since then the fixed ambiguities may not be considered
deterministic and the integer validation procedures that are currently available should
not be used. So, in that case the ambiguities cannot be fixed reliably.

The BIE ambiguity estimator is equal to a weighted sum over all integer vectors, and the
weights depend on the probability density function of the float ambiguities. Therefore,
the BIE estimator can be considered as a compromise between the float and fixed solu-
tion. These are approximated in the extreme cases of very bad or very good precision
respectively. The disadvantages of BIE estimation are that it does still not provide an ex-
act probabilistic evaluation of the final solution, and that it is computationally complex.
Moreover, the results in this chapter indicate that only in a limited number of cases the
BIE estimator performs obviously better than either the float or the fixed estimator.
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I

IA

IE

Figure 6.1: The set of relationships between integer estimators (I), integer aperture esti-
mators (IA), and integer equivariant estimators (IE): I⊂IA⊂IE.

Admissible integer estimation and BIE estimation both cannot provide us with satisfac-
tory measures to evaluate the probabilistic properties of the final solution. Therefore,
the third class of integer estimators was introduced: the class of integer aperture (IA)
estimators.

IA estimation is an overall approach of integer estimation and validation. This is the
case because three a priori probabilities are distinguished: the success rate, the fail
rate, and the undecided rate. Around each integer an identically shaped acceptance
region, referred to as the aperture pull-in region, is defined, with the size determined by
the choice of a maximum allowed fail rate. With respect to the shape of the regions
different choices are possible. Some ’simple’ choices are using ellipsoidal regions, or the
down-scaled pull-in regions of integer bootstrapping or integer least-squares. But other
choices are possible. The Optimal IA estimator is defined such that the success rate is
maximized for a given fixed fail rate.

Advantages of IA estimation with a fixed fail rate are:

• It is an overall approach: estimation and validation are not considered as separate
problems.

• An exact and overall probabilistic evaluation of the final solution is possible.

• The user only needs to choose the maximum allowable fail rate, which is exactly
the parameter on which a user wants to put restrictions. Moreover, this means that
the size of the acceptance region is really based on the model at hand. Choosing
a fixed critical value or a critical value based on incorrect assumptions on the
distribution of the test statistic, as is common practice, will only work when the
precision is high, and may even then result in a test that is either too conservative
or too optimistic.
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• The discrimination tests – ratio tests, difference test, projector test – as used in
practice belong to the class of integer aperture estimators, and the performance
of the ratio test and difference test is shown to be close to optimal. So, based on
the theory of Integer Aperture inference the theoretical foundation as well as the
practical relevance of the ratio test and difference test have been shown.

• Using the fixed fail rate approach implies that the critical value depends on the
model (and thus the precision) at hand. This means that the time to first fix will
be shorter, and at the same time it is guaranteed that the probability of incorrect
fixing is below a user-defined threshold.

A problem with IA estimation is the determination of the aperture parameter for a given
fail rate. For that purpose simulations must be used. More research is needed on the
consequences on the computation times and on the performance.

In theory, the Optimal IA estimator is of course to be preferred since it maximizes the
success rate. However, computationally it is the most complex estimator because the
probability density of the ambiguity residual must be computed.

The ratio test and difference test IA estimator are easier to apply and computationally
simple. These estimators have been shown to perform close to optimal, if and only if
the appropriate aperture parameter is determined by the fixed fail rate. The ratio test
is already often used in practice and seems therefore a logical choice.

The IALS estimator might be a good alternative: close to optimal performance, and
easy to apply, although computationally much more demanding than the ratio test and
difference test IA estimators.

More research is needed on the implementation aspects and on how the IA method will
work in practice for different applications. With respect to the implementation aspects
it will be important to find an efficient way of determining the aperture parameter such
that close to optimal solutions will be obtained. The approach followed in this thesis
was to use simulations with a fairly small number of samples. It must be investigated
how this will work in practice. Alternative methods would be to somehow determine
empirical values of the aperture parameter that can be used under certain conditions,
e.g. depending on the ILS success rate or the number of ambiguities. Or it may be
possible to obtain a good approximation of the appropriate aperture parameter based on
information from previous epochs.

6.2 Quality of the baseline estimators

Integer ambiguity validation focuses on the question whether or not the ambiguities
should be fixed. This decision is based on the residuals of the float and fixed solution. A
user, however, will be mainly interested in the impact of either decision on the baseline
solution. Therefore, in this thesis several baseline probabilities were evaluated using
simulations.

The first probability is the probability that a baseline estimate will be within a certain
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convex region symmetric with respect to the true baseline. It followed that the probability
that the fixed solution is close to the true solution is always larger than for any of the other
baseline estimators. At the same time, the fixed solution also has the highest probability
of being far from the true solution. The opposite is true for the float estimator: smallest
probability of being close to the true solution, but also small probability that it will be far
off. The probabilities of both the BIE and the IA estimators generally are inbetween those
of the fixed and float estimators. So, as could be expected the BIE and IA estimators
take the best of the float and fixed estimators.

Another probability considered here is the probability that a baseline estimator is better
than the corresponding float estimator. Especially if IA estimation with a small fixed
fail rate is used, this probability will be close to one and larger than for any of the other
estimators.

A problem is that the probabilities cannot be evaluated exactly, and no strict lower and
upper bounds are available, so that simulations are needed. It would be interesting to
have an easy-to-evaluate measure of the quality of the baseline solution. This is a point
of further research.

6.3 Reliability of the results

In this thesis simulations were used in order to assess the theoretical performance of
different estimators and to make comparison possible, since one can be sure that the
simulated data correspond to the mathematical model that is used. In practice, one can-
not be sure that this will be the case, whereas the reliability of the ambiguity resolution
results depends on the validity of the input. Only if one can assume that the input is
correct, one can trust the outcome of integer estimation and validation.

The input of the ambiguity resolution process consists of the float ambiguity estimates
and their vc-matrix, and thus depends on the functional as well as the stochastic model
that is used. Furthermore, it is important that the quality of the float solution is evalu-
ated, such that errors due to for example multipath and cycle slips are eliminated.

In practice the stochastic model is often assumed to be correct, although recent studies
have shown that in many cases a refinement is possible. Possible refinements are the
application of satellite elevation dependent weighting of the observations, and consider-
ing cross-correlation of the different observations. This means an appropriate stochastic
model must be determined for the receiver at hand.

Another assumption that was made is that the variance factor of unit weight, σ2, is
known. If, on the other hand, it is assumed that this variance factor is not known, it
must be estimated a posteriori by means of variance component estimation. It must be
investigated how this affects the results presented in this thesis.

Furthermore, it is assumed that the observations are normally distributed. The results
in this thesis are all based on this assumption, although it would also be possible to
apply the theory to parameters with different distributions. This is also an issue open
for further research.
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6.4 Bias robustness

In the preceding section it was stressed that it is important to eliminate errors in the
float solution as much as possible. In that respect it would be interesting to investigate
how ’common’ biases, such as multipath, outliers in the data, and cycle slips, propagate
into the final solution if they are not corrected for or eliminated. It is namely possible
that due to the bias the ambiguity is estimated to the wrong integer with IA estimation,
which might result in a baseline estimate that has a larger bias than the float baseline
estimate.
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Mathematics and statistics A
A.1 Kronecker product

The Kronecker product is defined as:

M ⊗N =






m11N · · · m1qN
...

...
mp1N · · · mpqN




 with M = [mij ] (A.1)

It has the following properties:

(M ⊗N)T = MT ⊗NT

(M ⊗N)−1 = M−1 ⊗N−1

(M1 ⊗N1)(M2 ⊗N2) = (M1M2 ⊗N1N2)

A.2 Parameter distributions

A.2.1 The normal distribution

The probability density function (PDF), fx(x), of a normally distributed n× 1 random
vector x is given by:

fx(x) = (2π)−
n
2 |Q|− 1

2 exp{−1

2
(x− µ)TQ−1(x− µ)} (A.2)

with Q a n×n positive definite matrix, and µ an n×1 vector. Once Q and µ are given,
the normal distribution is thus completely specified. The following notation is used:

x ∼ N(µ,Q) (A.3)

The expectation, E{x}, and the dispersion (or variance-covariance matrix), D{x}, of x
are:

E{x} = µ and D{x} = Q (A.4)
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Let x be normally distributed with expectation and dispersion as in (A.4), and let y
be defined as the m × 1 random vector given by y = Ax + a. Then according to the
propagation law of the mean and of variances:

E{y} = Aµ+ a and D{x} = AQAT (A.5)

and thus:

y ∼ N(Aµ+ a,AQAT ) (A.6)

The cumulative normal distribution is given by:

Φ(x) =

x∫

−∞

1√
2π

exp{−1

2
v2}dv (A.7)

Some useful remarks:

y∫

x

1√
2π

exp{−1

2
v2}dv = Φ(y) − Φ(x) (A.8)

Φ(−x) = 1 − Φ(x) (A.9)

A.2.2 The χ2-distribution

A scalar random variable, x, has a non-central χ2-distribution with n degrees of freedom
and non-centrality parameter λ, if its PDF is given as:

fx(x) =







exp{−λ
2 }

∞∑

j=0

( λ
2
)jx

n
2

+j−1 exp{− x
2
}

j!2
n
2

+jΓ( n
2
+j)

for 0 < x <∞

0 for x ≤ 0

(A.10)

with the gamma function:

Γ(x) =

∞∫

0

tx−1 exp{−t}dt, x > 0 (A.11)

The values of Γ(x) can be determined using Γ(x + 1) = xΓ(x), with Γ( 1
2 ) =

√
π and

Γ(1) = 1.

The following notation is used:

x ∼ χ2(n, λ) (A.12)

If λ = 0, the distribution is referred to as the central χ2-distribution.
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The expectation, E{x}, and the dispersion, D{x}, of x ∼ χ2(n, λ) are:

E{x} = n+ λ and D{x} = 2n+ 4λ (A.13)

If x ∼ N(µ,Q) and y = xTQ−1x then:

y ∼ χ2(n, λ) with λ = µTQ−1µ (A.14)

A.2.3 The F -distribution

A scalar random variable, x, has a non-central F -distribution with m and n degrees of
freedom and non-centrality parameter λ, if its PDF is given as:

fx(x) =







exp{−λ
2 }

∞∑

j=0

( λ
2
)jx

m
2

+j−1
m

m
2

+j
n

n
2 Γ( m

2
+ n

2
+j)

j!Γ( m
2

+j)Γ( n
2
)(n+mx)

m
2

+ n
2

+j for 0 < x <∞

0 for x ≤ 0

(A.15)

The following notation is used:

x ∼ F (m,n, λ) (A.16)

If λ = 0, the distribution is referred to as the central F -distribution.

The expectation, E{x}, and the dispersion, D{x}, of x ∼ F (m,n, λ) are:

E{x} =
n

n− 2
(n > 2) and D{x} =

2n2(m+ n− 2)

m(n− 2)2(n− 4)
(n > 4) (A.17)

If u
m×1

∼ N(u,Qu), v
n×1

∼ N(v,Qv), and u and v are uncorrelated, then

x =
uTQ−1

u u/m

vTQ−1
v v/n

is distributed as:

x ∼ F (m,n, λ) with λ = uTQ−1
u u (A.18)

The distribution of x = uTQ−1
u u/m is given as: x ∼ F (m,∞, λ).

A.2.4 Student’s t-distribution

A scalar random variable, x, has a Student’s t-distribution with n degrees of freedom,
if its PDF is given as:

fx(x) =
Γ
(

n+1
2

)

√
nπΓ

(
n
2

)

(

1 +
x2

n

)−n+1

2

for −∞ < x <∞ (A.19)
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The following notation is used:

x ∼ t(n) (A.20)

If u ∼ N(0, 1), and v ∼ χ2(n, 0), then

x =
u

√

v/n
∼ t(n)

A.3 Numerical root finding methods

In order to find the root of a function f(x), several methods can be used. The four
methods considered here are the bisection method, the secant method, the false position
method, and the Newton-Raphson method.

A.3.1 Bisection method

The bisection method is very simple and will never fail if the initial interval is chosen
such that it contains a root. However, the method may work very slowly. The procedure
is as follows.

Choose the interval [x−0 , x
+
0 ] such that f(x−0 )f(x+

0 ) < 0.

Choose the tolerance ε.

Compute the function value at the middle of the interval, i.e. choose xk+1 =
x+

0
−x−

0

2 ,
and evaluate whether or not:

|f(xk+1)| < ε, k = 0, 1, 2, . . .

If yes, the root is found, otherwise:
{

if f(xk+1)f(x+
k ) < 0 : x−k+1 = xk+1, x

+
k+1 = x+

k

else x−k+1 = x−k , x
+
k+1 = xk+1

and continue.

A.3.2 Secant method

The secant method converges faster to its solution than the bisection method, but it
may not converge at all if the function is not sufficiently smooth. The method namely
assumes that the function is approximately linear in the chosen interval and uses the
zero-crossing of the line that connects the limits of the interval as a new reference point.
The procedure is as follows.

Choose the interval [x0, x1] such that f(x0)f(x1) < 0.
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Choose the tolerance ε.

Determine the zero-crossing of the line connecting the limits of the interval:

xk+1 = xk − xk − xk−1

f(xk) − f(xk−1)
f(xk), k = 1, 2, 3, . . .

Compute the function value at xk+1, and evaluate whether or not:

|f(xk+1)| < ε

If yes, the root is found, otherwise continue.

A.3.3 False position method

The false position method works similar to the secant method, but instead of the most
recent estimates of the root, the false position method uses the most recent estimate
and the next recent estimate which has an opposite sign in the function value. The
procedure is then as follows.

Choose the interval [x−0 , x
+
0 ] such that f(x−0 )f(x+

0 ) < 0.

Choose the tolerance ε.

Determine the zero-crossing of the line connecting the limits of the interval:

xk+1 = x+
k − x+

k − x−k
f(x+

k ) − f(x−k )
f(x+

k ), k = 0, 1, 2, . . .

Compute the function value at xk+1, and evaluate whether or not:

|f(xk+1)| < ε

If yes, the root is found, otherwise:

{

if f(xk+1)f(x+
k ) < 0 : x−k+1 = xk+1, x

+
k+1 = x+

k

else x−k+1 = x−k , x
+
k+1 = xk+1

and continue.

A.3.4 Newton-Raphson method

The Newton-Raphson method determines the slope of the function at the current es-
timate of the root and uses the zero-crossing of the tangent line as the next reference
point. The procedure is as follows.

Choose the initial estimate x0.

Choose the tolerance ε.
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Determine the zero-crossing of the tangent line of the function at xk:

xk+1 = xk − f(xk)

f ′(xk)
, k = 0, 1, 2, . . .

Compute the function value at xk+1, and evaluate whether or not:

|f(xk+1)| < ε

If yes, the root is found, otherwise continue.

The Newton-Raphson method is in general much more efficient than other ’simple’
methods such as the bisection method, but it can only be used when it is possible
to compute the derivative of f(x) at the reference point. It is, however, possible to
simplify the method by replacing f ′(xk) by a constant, but this may corrupt the speed
of convergence.

A.3.5 Matlab function fzero

In this research the Matlab R© function fzero was used in order to find the root of a
function. The algorithm that is used is a combination of bisection, the secant method
and inverse quadratic interpolation, and is based on the Algol 60 version described in
(Brent 1973).
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Simulation and examples B
Throughout this work several examples are based on simulations for which the vc-matrix
of the float solution is required as input. In this appendix the method of simulation and
the underlying models for the input are described.

B.1 Simulation

Simulation is a useful method for evaluation of the success rate and fail rate. Although
in practice it would be too time-consuming, the method is used in this research in
order to evaluate the results of different ambiguity resolution methods. Simulation
goes as follows. Since it is assumed that the float solution is normally distributed, the
probabilities are independent of the mean, so one can use N(0, Q) and draw samples
from this distribution.

For example, if only float ambiguities need to be generated, the first step is to use a ran-
dom generator to generate n independent samples from the univariate standard normal
distribution N(0, 1), and then collect these in a vector s. This vector is transformed by
means of â = Gs, with G equal to the Cholesky factor of Qâ = GGT . The result is a
sample â from N(0, Qâ), and this sample is used as input for the integer estimator that
is considered. If the output of this estimator equals the null vector, then it is correct,
otherwise it is incorrect. This process can be repeated N number of times, and one can
count how many times the null vector is obtained as solution, say Ns times, and how
often the outcome equals a nonzero integer vector, say Nf times. The approximations
of the success rate and fail rate follow than as:

Ps =
Ns

N
, Pf =

Nf

N

In order to get good approximations, the number of samples N must be chosen suffi-
ciently large, see (Teunissen 1998c).

The random generator used in this research is the Matlab R© routine mvnrnd from the
Statistics toolbox.
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Table B.1: Time, location, number of satellites, ionospheric standard deviations and em-
pirical ILS success rates for the different Qâ nn xx.

nn xx σI [cm] success rate

02 01 0 0.869 Qâ =

[
4.9718 3.8733

3.8733 3.0188

]

, Qẑ =

[
0.0865 −0.0364

−0.0364 0.0847

]

06 01 0 0.818 10:05 am, 4◦ East, 52◦ North

06 02 1 0.442 4 visible satellites

08 01 0 0.999 10:15 am, 4◦ East, 52◦ North

08 02 1 0.874 5 visible satellites

10 01 1 0.989 17:00 am, 52◦ East, 4◦ North

10 02 2 0.774 6 visible satellites

10 03 3 0.477
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Figure B.1: Skyplots corresponding to examples 06 xx (left), 08 xx (center), and 10 xx

(right).

B.2 Examples

The names assigned to the different vc-matrices of the float ambiguities all have the
form Qâ nn xx and Qẑ nn xx. The number nn is equal to the number of ambiguities n,
and xx is an identification number.

The two-dimensional example (n = 2) corresponds to the double difference geometry-
free model for dual-frequency GPS for two satellites. The higher-dimensional examples
are all based on the single epoch geometry-based model for dual-frequency GPS. These
models are all set up based on the Yuma almanac for GPS week 184, 19-FEB-2003; a
cutoff elevation of 15◦; undiffenced code and phase standard deviations of 30 cm and 3
mm respectively.
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Theory of BIE estimation C
In chapter 4 the theory of Best Integer Equivariant estimation was developed. In this
appendix a more detailed description of the derivations is given based on (Teunissen
2003f).

C.1 Integer equivariant ambiguity estimation

Starting point is the integer estimator of the unknown integer ambiguities a ∈ Z
n. Let

this estimator be S(â) with S : R
n 7→ Z

n. The new class of integer estimators to be
defined here will be larger than the class of admissible integer estimators of definition
3.1.1. Only the third condition of that definition will be considered, i.e. S(â− z) + z =
S(â), ∀z ∈ Z

n. This means that the result of integer estimation should not change
when first an arbitrary integer z is removed from the float solution, then apply the
integer estimator, and then restore the integer. So, the requirement is equivalent to:

S(x+ z) = S(x) + z ∀x ∈ R
n, z ∈ Z

n (C.1)

Estimators that satisfy this property will be called integer equivariant (IE).

Lemma C.1.1

S(x+ z) = S(x) + z ∀x ∈ R
n, z ∈ Z

n ⇐⇒ S(x) = x+ g(x) (C.2)

with g(x) periodic: g(x+ z) = g(x).

Proof:
If S(x) = x+ g(x) with g(x+ z) = g(x), then S(x+ z) = S(x) + z.
If S(x+ z) = S(x) + z, then g(x) = x− g(x) is periodic and S(x) = x+ g(x).

¤

C.2 Integer equivariant unbiased ambiguity estimation

It follows that:

a = E{S(â)} = E{â+ g(â)} = a+ E{g(â)}
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So that:

0 = E{g(â)} =

∫

g(x)fâ(x)dx =

∫

g(x)fâ(x)dx

Thus if the PDF fâ(x+ a) is symmetric with respect to the origin, which is true in the
case of normally distributed data, then g(−x) = −g(x) implies unbiasedness.

C.3 Best integer equivariant unbiased ambiguity estimation

The least mean square estimator will be considered as the best integer equivariant
estimator.

Theorem C.3.1

Ŝ(x) = x−

∑

z∈Zn

(x+ z − a)fâ(x+ z)

∑

z∈Zn

fâ(x+ z)
=

∑

z∈Zn

zfâ(x+ a− z)

∑

z∈Zn

fâ(x+ a− z)
(C.3)

is the unique minimizer of
∫
‖S(x)−a‖2

Qâ
fâ(x)dx within the class of integer equivariant

estimators, S(x+ z) = S(x) + z

Proof:
Let ‖ · ‖2 = (·)TQ−1

â (·). Then:

∫

‖S(x) − a‖2fâ(x)dx

=

∫

‖x− a+ g(x)‖2fâ(x)dx

=

∫

‖x− a‖2fâ(x)dx+

∫

{2g(x)TQ−1
â (x− a) + ‖g(x)‖2}fâ(x)dx

154 Theory of BIE estimation



The first term on the right-hand side of the last equation is independent of g(x). If the
second term on the right-hand side is called K, the following can be derived:

K =

∫

{2g(x)TQ−1
â (x− a) + ‖g(x)‖2}fâ(x)dx

=
∑

z∈Zn

∫

Sz

{2g(x)TQ−1
â (x− a) + ‖g(x)‖2}fâ(x)dx

=
∑

z∈Zn

∫

S0

{2g(y)TQ−1
â (y + z − a)fâ(y + z) + ‖g(y)‖2fâ(y + z)}dy

=

∫

S0

{2g(y)TQ−1
â

∑

z∈Zn

(y + z − a)fâ(y + z)

︸ ︷︷ ︸

F (y)

+ ‖g(y)‖2
∑

z∈Zn

fâ(y + z)

︸ ︷︷ ︸

G(y)>0

}dy

=

∫

S0

{‖g(y) +
F (y)

G(y)
‖2

︸ ︷︷ ︸

≥0

− ‖F (y)

G(y)
‖2

︸ ︷︷ ︸

independent of g(y)

}dy

where Sz are arbitrary pull-in regions, and use is made of the fact that if x ∈ Sz then
y = x− z ∈ S0 and g(y + z) = g(y).

This shows that K is minimized for g(y) = −F (y)
G(y) , which is an admissible solution since

F (y)
G(y) is periodic.

¤

If fâ(x+ a) is symmetric with respect to the origin, then Ŝ(−x) = −Ŝ(x) from which
it follows that Ŝ(â) is unbiased. In that case the estimator Ŝ(â) is of minimum variance
and unbiased.

In practice, it is assumed that the float ambiguities are normally distributed. The BIE
ambiguity estimator, ã follows then from equation (C.3) as:

ã =

∑

z∈Zn

z exp{− 1
2‖x− z‖2

Qâ
}

∑

z∈Zn

exp{− 1
2‖x− z‖2

Qâ
} (C.4)

This shows that the BIE ambiguity estimator can be written in a similar form as equation
(3.6):

ã =
∑

z∈Zn

zwz(â) (C.5)

The weights wz(â) are given by equation (C.4), from which it follows that:

0 ≤ wz(â) ≤ 1 and
∑

z∈Zn

wz(â) = 1
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C.4 Best integer equivariant unbiased baseline estimation

In practice the interest is not so much in the ambiguity solution, but in the baseline
solution. Let T (â, b̂) with F : R

n × R
p 7→ R

p be the baseline estimator. Two types of
restrictions will be put on the function T (x, y). The first requirement is that the if an

arbitrary constant ς ∈ R
p is added to the float baseline b̂, the fixed baseline is shifted

by the same amount, i.e.

T (x, y + ς) = T (x, y) + ς ∀y, ς ∈ R
p (C.6)

It follows that if the constant is chosen ς = −y that

T (x, y) = y + f(x, 0) (C.7)

The second requirement is that the fixed baseline should not change if an arbitrary
integer z ∈ Z

n is added to the float ambiguities:

T (x+ z, y) = T (x, y) ∀x ∈ R
n, z ∈ Z

n (C.8)

This is equivalent to the integer remove-restore condition of (C.1).

From (C.7) and (C.8) the following representation of the baseline estimator is found:

T (x, y) = y + h(x) with h(x) periodic (C.9)

Along similar lines as in section C.3 the BIE baseline estimator can be obtained.

Theorem C.4.1

T̂ (x, y) = y + b−

∑

z∈Zn

E{b̂|x+ z}fâ(x+ z)

∑

z∈Zn

fâ(x+ z)
(C.10)

is the unique minimizer of
∫ ∫

‖T (x, y) − b‖2f
âb̂

(x, y)dxdy within the class of integer
equivariant estimators, T (x, y) = y + h(x) and h(x+ z) = h(x)

Proof:

∫ ∫

‖T (x, y) − b‖2f
âb̂

(x, y)dxdy

=

∫ ∫

‖y + h(x) − b‖2f
âb̂

(x, y)dxdy

=

∫ ∫

{‖y − b‖2 + 2h(x)TQ−1(y − b) + ‖h(x)‖2}f
âb̂

(x, y)dxdy

The first term on between the braces on the right-hand side of the last equation is
independent of h(x). If the remaining part is called L and q = x− z ∈ S0, the following
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can be derived:

L =

∫
∑

z∈Zn

∫

{2h(x)TQ−1(y − b) + ‖h(x)‖2}f
b̂|â(y|x)fâ(x)dxdy

=

∫ ∫

S0

{2h(q)TQ−1(y − b) + ‖h(q)‖2}
∑

z∈Zn

f
b̂|â(y|q + z)fâ(q + z)dqdy

=

∫

S0

{2h(q)TQ−1
∑

z∈Zn

∫

(y − b)f
b̂|â(y|q + z)dy

+ ‖h(q)‖2}
∑

z∈Zn

∫

f
b̂|â(y|q + z)dy}fâ(q + z)dq

=

∫

S0

{2h(q)TQ−1
∑

z∈Zn

(E{b̂|q + z} − b)fâ(q + z)

︸ ︷︷ ︸

F (q)

+ ‖h(q)‖2
∑

z∈Zn

fâ(q + z)

︸ ︷︷ ︸

G(q)

}dq

=

∫

S0

{‖h(q) +
F (q)

G(q)
− b‖2 − ‖F (q)

G(q)
− b‖2}G(q)dq

L is minimized for h(q) = −F (q)
G(q) + b, which is an admissible solution since F (q)

G(q) is

periodic.

¤

Note that T̂ in (C.10) is the BIE unbiased estimator if fâ(x + a) is symmetric with
respect to the origin.

If the float estimators are normally distributed the BIE baseline estimator, b̃, follows
from equation (C.10) as:

b̃ = b̂+ b−

∑

z∈Zn

E{b̂|â+ z} exp{− 1
2‖x− z‖2

Qâ
}

∑

z∈Zn

exp{− 1
2‖x− z‖2

Qâ
}

= b̂+ b−

∑

z∈Zn

(
b+Q

b̂â
Q−1

â (â− z)
)
exp{− 1

2‖x− z‖2
Qâ

}
∑

z∈Zn

exp{− 1
2‖x− z‖2

Qâ
}

= b̂−Q
b̂â
Q−1

â (â− ã) (C.11)

where the BIE ambiguity estimator of equation (C.4) is used.
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Implementation aspects of IALS estimation D
The procedure outlined in section 5.7.3 can also be applied for the IALS estimator, but
is more complicated as will be explained here. The problem is the determination of the
aperture parameter such that the float ambiguity estimate will be on the boundary of
the aperture pull-in region. From the definition of the ILS pull-in region in equation
(3.17) follows that x̂ will be on the boundary of Sx̌ if:
∣
∣
∣
∣
∣

(x̌2 − x̌)TQ−1
x̂ (x̂− x̌)

‖x̌2 − x̌‖2
Qx̂

∣
∣
∣
∣
∣
=

1

2
(D.1)

with x̌ and x̌2 the best and second-best integers in the integer least-squares sense.

From the definition of the IALS estimator in section 5.4.2 it follows that x̂ − x̌ is on
the boundary of the aperture pull-in region Ω0 if 1

µ
(x̂ − x̌) is on the boundary of S0.

Furthermore, the following will be used:






arg min
z∈Zn

‖ 1
µ
(x̂− x̌) − z‖2

Qx̂
= 0

arg min
z∈Zn\{0}

‖ 1
µ
(x̂− x̌) − z‖2

Qx̂
= u

(D.2)

These results are used in equation (D.1) to find an expression for µ:
∣
∣
∣
∣
∣

uTQ−1
x̂

1
µ
(x̂− x̌)

‖u‖2
Qx̂

∣
∣
∣
∣
∣
=

1

2
=⇒ µ =

∣
∣
∣
∣
∣

2uTQ−1
x̂ (x̂− x̌)

‖u‖2
Qx̂

∣
∣
∣
∣
∣

(D.3)

The problem is that u can only be determined if µ is known. Therefore as a first guess,
one could use u0 = x̌2 − x̌ and then compute the corresponding µ0 with equation (D.3)
by using u0 instead of u. If

arg min
z∈Zn\{0}

‖ 1

µ0
(x̂− x̌) − z‖2

Qx̂
= u (D.4)

and u = x̌2− x̌ it means that indeed µ0 = µ. If, on the other hand, u 6= x̌2− x̌ it means
that although 1

µ0 (x̂ − x̌) is on the plane that is bounding S0, this vector is not on the

boundary of S0. Hence, 1
µ0 (x̂− x̌) ∈ Su. This implies that µ0 < µ and that 1

µ
(x̂− x̌)

is on the boundary of Su and S0. Now that u is known, µ can finally be computed with
equation (D.3).

The procedure for IALS estimation is outlined below.
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1. Choose fixed fail rate: Pf = β

2. Collect observations and apply least-squares adjustment: â, Qâ;

3. Apply integer least-squares estimation: ǎ, ε̌, ǎ2;

4. Choose µ′ as described above;

5. Generate N samples of float ambiguities x̂i ∼ N(0, Qâ);

6. For each sample determine the ILS estimate x̌i

and ui = arg min
z∈Zn

‖ 1
µ
(x̂i − x̌i) − z‖2

Qx̂
;

7. Count number of samples Nf for which: ui = 0 and x̌i 6= 0;

8. Compute fail rate with µ′ as critical value: Pf (µ′) =
Nf

N
;

9. If Pf (µ′) ≤ β: ā = ǎ, otherwise ā = â;

Note that in step 6 ILS estimation has to be carried out twice for each sample. This
might be very time-consuming if the number of samples, N , is large.
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Géodésique, 105: 279-298, 106: 383-397, 107: 13-34.

Salgado G, Abbondanza S, Blondel R, Lannelongue S (2001). Constellation availability
concepts for Galileo. Proc. of ION NTM-2001, Long Beach CA: 778–786.

Strang G, Borre K (1997). Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge
Press, Wellesley MA.

Teunissen PJG (1984). Generalized inverses, adjustment, the datum problem and S-
transformations. Lecture notes International School of Geodesy, Erice, Italy, April 25
- May 10 .

Teunissen PJG (1990). An integrity and quality control procedure for use in multi-sensor
integration. Proc. of ION GPS-1990, Colorado Springs CO: 513–522.

Teunissen PJG (1993). Least squares estimation of the integer GPS ambiguities. Invited
lecture, Section IV Theory and Methodology, IAG General Meeting, Beijing .

Bibliography 165



Teunissen PJG (1995). The least-squares ambiguity decorrelation adjustment: a method
for fast GPS integer ambiguity estimation. Journal of Geodesy , 70: 65–82.

Teunissen PJG (1997). A canonical theory for short GPS baselines. Part IV: Precision
versus reliability. Journal of Geodesy , 71: 513–525.

Teunissen PJG (1998a). A class of unbiased integer GPS ambiguity estimators. Artificial
Satellites, 33(1): 4–10.

Teunissen PJG (1998b). GPS carrier phase ambiguity fixing concepts. In: PJG Teunissen
and A Kleusberg, GPS for Geodesy, Springer-Verlag, Berlin.

Teunissen PJG (1998c). On the integer normal distribution of the GPS ambiguities.
Artificial Satellites, 33(2): 49–64.

Teunissen PJG (1998d). Success probability of integer GPS ambiguity rounding and
bootstrapping. Journal of Geodesy , 72: 606–612.

Teunissen PJG (1998e). The distribution of the GPS baseline in case of integer least-
squares ambiguity estimation. Artificial Satellites, 33(2): 65–75.

Teunissen PJG (1999a). An optimality property of the integer least-squares estimator.
Journal of Geodesy , 73: 587–593.

Teunissen PJG (1999b). The probability distribution of the GPS baseline for a class of
integer ambiguity estimators. Journal of Geodesy , 73: 275–284.

Teunissen PJG (2000a). Adjustment theory; an introduction. Delft University Press,
Delft.

Teunissen PJG (2000b). ADOP based upperbounds for the bootstrapped and the least-
squares ambiguity success rates. Artificial Satellites, 35(4): 171–179.

Teunissen PJG (2001a). Integer estimation in the presence of biases. Journal of Geodesy ,
75: 399–407.

Teunissen PJG (2001b). Statistical GNSS carrier phase ambiguity resolution: a review.
Proc. of 2001 IEEE Workshop on Statistical Signal Processing, August 6-8, Singa-
pore: 4–12.

Teunissen PJG (2002). The parameter distributions of the integer GPS model. Journal
of Geodesy , 76: 41–48.

Teunissen PJG (2003a). A carrier phase ambiguity estimator with easy-to-evaluate fail-
rate. Artificial Satellites, 38(3): 89–96.

Teunissen PJG (2003b). An invariant upperbound for the GNSS bootstrapped ambiguity
success rate. Journal of Global Positioning Systems, 2(1): 13–17.

Teunissen PJG (2003c). GNSS Best Integer Equivariant Estimation. Accepted for pub-
lication in: Proc. of IUGG2003, session G.04, June 30 - July 11, Sapporo, Japan.

Teunissen PJG (2003d). Integer aperture GNSS ambiguity resolution. Artificial Satellites,
38(3): 79–88.

Teunissen PJG (2003e). Theory of integer aperture estimation with application to GNSS.
MGP report, Delft University of Technology.

Teunissen PJG (2003f). Theory of integer equivariant estimation with application to
GNSS. Journal of Geodesy , 77: 402–410.

166 Bibliography



Teunissen PJG (2003g). Towards a unified theory of GNSS ambiguity resolution. Journal
of Global Positioning Systems, 2(1): 1–12.

Teunissen PJG (2004a). Integer aperture bootstrapping: A new GNSS ambiguity esti-
mator with controllable fail-rate. Submitted to Journal of Geodesy .

Teunissen PJG (2004b). Integer Aperture Least-Squares estimation. Submitted to Arti-
ficial Satellites.

Teunissen PJG (2004c). On the computation of the BIE estimator. Submitted to Artificial
Satellites.

Teunissen PJG (2004d). Optimal Integer Aperture estimation. Submitted to Artificial
Satellites.

Teunissen PJG (2004e). Penalized GNSS ambiguity resolution. Journal of Geodesy, DOI:
10.1007/s00190-004-0393-2 .

Teunissen PJG, De Jonge PJ, Tiberius CCJM (1996). The volume of the GPS ambiguity
ambiguity search space and its relevance for integer ambiguity resolution. Proc. of
ION GPS-1996, Kansas City MO: 889–898.

Teunissen PJG, Joosten P, Tiberius CCJM (2000). Bias robustness of GPS ambiguity
resolution. Proc. of ION GPS-2000, Salt Lake City UT : 104–112.

Teunissen PJG, Kleusberg A (1998). GPS observation equations and positioning con-
cepts. In: PJG Teunissen and A Kleusberg, GPS for Geodesy, Springer-Verlag, Berlin.

Teunissen PJG, Odijk D (1997). Ambiguity Dilution of Precision: definition, properties
and application. Proc. of ION GPS-1997, Kansas City MO: 891–899.

Tiberius CCJM, De Jonge PJ (1995). Fast positioning using the LAMBDA method.
Proc. of DSNS’95, Bergen, Norway, paper no.30 .

Tiberius CCJM, Kenselaar F (2000). Stochastic model for GPS code and phase observ-
ables. Survey Review , 35: 441–454.

Verhagen S (2003). On the approximation of the integer least-squares success rate:
which lower or upper bound to use? Journal of Global Positioning Systems, 2(2):
117–124.

Verhagen S (2004). Integer ambiguity validation: an open problem? GPS Solutions,
8(1): 36–43.

Verhagen S, Joosten P (2004). Analysis of ambiguity resolution algorithms. Proc. of the
European Navigation Conference GNSS 2004, Rotterdam NL.

Verhagen S, Teunissen PJG (2003). Performance comparison of the BIE estimator with
the float and fixed GNSS ambiguity estimators. Accepted for publication in: Proc.
of IUGG2003, session G.04, June 30 - July 11, Sapporo, Japan.

Verhagen S, Teunissen PJG (2004a). A new GNSS ambiguity resolution method and its
comparison with existing approaches. Submitted to Journal of Guidance, Control,
and Dynamics.

Verhagen S, Teunissen PJG (2004b). On the probability density function of the GNSS
ambiguity residuals. Submitted to GPS Solutions.

Bibliography 167



Verhagen S, Teunissen PJG (2004c). PDF evaluation of the ambiguity residuals. In: F
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