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General summary

Troposphere Modeling and Filtering for Precise GPS Leveling

In the Netherlands, a precision of 5 mm for estimated GPS height differ-precision

ences is required to achieve comparable accuracy as geoid height differences. This
precision can be achieved for 24-hour data sets when applying a proper modeling.
Precise leveling with GPS requires a judicious modeling of tropospheric delays,
which has physical, functional, and stochastic aspects.

The physical modeling comprises zenith delays for the hydrostatic and wetmodeling
aspects component and zenith angle dependent mapping functions. Because the amount

of water vapor in the atmosphere fluctuates widely and because the water-vapor
induced signal delays affect the height component strongly, a-priori modeling
of these delays results in an insufficient precision of height differences. Param-
eterizing the tropospheric delay in the functional model is therefore necessary,
at least for medium and long baselines. The observation model can further
be strengthened by pseudo-observations. These pseudo-observations may be
spatiotemporal constraints on tropospheric delay differences, or constraints on
residual slant delays. With the latter type of constraint the isotropy assumption
is loosened. An existing theoretical model is revised to obtain the corresponding
covariance matrix. The stochastic modeling of both types of constraints is based
on the assumption of Kolmogorov turbulence.

The observation models can be implemented in a recursive filter like thefiltering

Kalman Filter or the SRIF. Several variations of these filters are described.
For fast computations the most suitable recursive filtering technique is the
Kalman–Cholesky Filter with pre-elimination of temporal GPS parameters, such
as clock errors and ionospheric delays. Some tests and reliability descriptions are
worked out for this filter. For practical implementation the temporal behavior
of the zenith wet delay is to be assumed a random-walk process, which gives a
fair description. The zenith wet delay can be estimated every epoch or every
pre-defined batch of epochs.

The effect of several model components on mainly the height is analyzedimpact of
model
components

by simulation software. Special attention is given to the residual-slant-delay
model because it is potentially precision and reliability improving. The impact of
this model does however depend on the precision level of the observations and it
still needs to be validated. Although observations to low-elevation satellites have
a large contribution to the precision of the height, the residual-slant-delay model
implies a strong down weighting of observations to satellites below ten degrees
elevation. The highest accuracy can be obtained when the phase ambiguities
are fixed. Even for long observation time spans this makes a difference of up
to 15–20%. Batch size and spatiotemporal constraints turned out to have little
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effect on the formal precision of the height, but they have a large influence on the
precision of the filtered zenith delays. Because overconstraining (with constraints
that are too tight) can have a large precision-deteriorating effect, spatiotemporal
constraints are not recommended for GPS leveling. Further, short batches are
preferred to avoid biases. To prevent the presence of near rank deficiencies, the
zenith delays of one station are often fixed. From a precision point of view this
is not necessary and is not recommended because this can also introduce biases.
Even larger biases can be introduced when the zenith delays of all stations are
fixed to their a-priori values. For very short baselines (< ±1 km), this model is
however justifiable because the formal precision improves considerately, keeping
the effect of the biases in balance.



Algemene samenvatting

Troposfeermodellering en -filtering voor precieze GPS-waterpassing

Om in Nederland een vergelijkbare precisie te krijgen als van de Neder-precisie

landse geöıde, is voor geschatte GPS-hoogteverschillen een precisie nodig van
5 mm. Deze precisie kan bij adequate modellering gehaald worden voor datasets
van 24 uur. Precieze GPS-waterpassing vereist een zorgvuldige modellering van
troposferische vertragingen, welke fysische, functionele en stochastische aspecten
heeft.

De fysische modellering omvat zenitvertragingen voor de hydrostatische enmodellerings-
aspecten natte component en zenithoekafhankelijke ‘mapping’-functies. Omdat de hoe-

veelheid waterdamp in de atmosfeer sterk fluctueert en omdat de hierdoor
veroorzaakte vertragingen van de GPS-signalen de hoogtecomponent sterk
bëınvloeden, resulteert a priori modellering van deze vertragingen in een onvol-
doende precisie van de hoogteverschillen. Parameterizeren van de troposferische
vertraging in het functionele model is daarom nodig, althans voor middellange
en lange basislijnen. Het waarnemingsmodel kan verder worden versterkt met
pseudowaarnemingen. Deze pseudowaarnemingen kunnen spatieel-temporele
troposfeer-constraints zijn of constraints op schuine restvertragingen. Met het
tweede soort constraints wordt de troposferische isotropieaanname losgelaten.
Voor de corresponderende covariantiematrix is een bestaand theoretisch model
herzien. De stochastische modellering van beide typen constraints is gebaseerd op
de aanname van Kolmogorov-turbulentie.

De waarnemingsmodellen kunnen worden gëımplementeerd in een recursieffilteren

filter zoals het Kalman-filter of het SRIF. Diverse versies van deze filters wor-
den beschreven. Voor snelle berekeningen is het Kalman-Cholesky-filter met
pre-eliminatie van temporele parameters, zoals klokfouten en ionosferische ver-
tragingen, het geschiktst. Enige toetsen en betrouwbaarheidsbeschrijvingen zijn
voor dit filter uitgewerkt. Voor praktische implementatie moet voor het temporele
gedrag van de natte zenitvertraging een random-walkproces worden aangenomen,
hetgeen een redelijk goede beschrijving geeft. De natte zenitvertraging kan elke
epoche of elke vooraf gedefinieerde batch (reeks) van epochen geschat worden.

Het effect van diverse modelcomponenten op met name de hoogte is meteffect van
model-
componenten

simulatieprogrammatuur geanalyseerd. Speciale aandacht is gegeven aan
het model voor schuine restvertragingen omdat dit potentieel precisie- en
betrouwbaarheidsverbeterend is. De invloed van dit model is echter afhankelijk
van het precisieniveau van de waarnemingen en het model moet nog gevalideerd
worden. Hoewel waarnemingen naar lage-elevatiesatellieten een grote bijdrage
aan de precisie van de hoogte hebben, impliceert het model voor schuine
restvertragingen dat waarnemingen naar satellieten met een elevatie lager dan
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tien graden een laag gewicht krijgen. Echter, de hoogste nauwkeurigheid kan
worden verkregen als de fasemeerduidigheden worden vastgehouden. Zelfs voor
lange waarnemingstijden scheelt dit tot 15–20%. Batch-grootte en spatieel-
temporele constraints bleken weinig effect te hebben op de formele precisie van
de hoogte maar ze hebben een grote invloed op de precisie van de gefilterde
zenitvertragingen. Omdat overconstraining (met te strakke constraints) een groot
precisie-verslechterend effect kan hebben, worden spatieel-temporele constraints
niet aangeraden voor GPS-waterpassen. Korte batches hebben verder de voorkeur,
om onzuiverheden te vermijden. Om bijna-rangdefecten te voorkomen worden
vaak de zenitvertragingen van één station vastgehouden. Voor de precisie is dit
niet nodig, en het wordt ook niet aangeraden omdat ook dit onzuiverheden kan
introduceren. Nog grotere onzuiverheden kunnen gëıntroduceerd worden als de
zenitvertragingen van alle stations worden vastgehouden op hun a priori waarden.
Voor hele korte basislijnen (< ±1 km) is dit model echter te rechtvaardigen omdat
de formele precisie aanzienlijk verbetert, hetgeen hiertegenop weegt.
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Chapter 1

Problem area

The Global Positioning System (GPS) is a satellite-based radio positioning systemGPS

that has been fully operational since 1994. Although GPS was originally designed
for (military) navigation purposes, the system has shown to be of great interest for
surveying. Where for navigation applications meter-level accuracy is desired using
GPS’ pseudo-range observations, surveyors aim at centimeter-level accuracy. To
obtain this accuracy, they use the GPS phase observations and relative positioning
techniques. The highest accuracy can be obtained with long observation times,
by resolving the phase ambiguities, and by using accurate orbits in postprocessing.

For most survey purposes, cm-level accuracy is sufficient. For the height
component however, the demands are often somewhat stricter than for the
horizontal coordinates. Unfortunately, the intrinsic precision of GPS-derived
heights is worse than that of the horizontal coordinates. This is caused by a
combination of satellite geometry with all satellites on one side (above) the
receiver, the presence of receiver clock errors, and disturbances in the neutral
atmosphere, also referred to as troposphere, that cause delays of the GPS signals.troposphere

The first aspect can only partly be overcome by using low-elevation satellites, but
the observations to these satellites are of lower accuracy and are more sensitive
to error sources like multipath. The second aspect can only be overcome by using
accurate atomic clocks, which would be too expensive to make GPS receivers
suitable for every-day use. But by a sophisticated modeling of the delays caused
by the troposphere, the accuracy of GPS-derived heights can become ‘as good as
it gets’.

The GPS is expected to be(come) a cost-effective addition to, or replace-
ment of, (part of) the relatively expensive spirit and hydrostatic levelings of
Rijkswaterstaat. Levelings have always been used by Rijkswaterstaat to maintain
the Dutch height reference datum NAP. From the Second Primary LevelingNAP

(1926–1940) to the Fifth Primary Leveling (1996–1999), the precision of primary
levelings (±1 mm/

√
km) has not changed much [Murre, 1985]. Although the

amount of required manpower is reduced considerably, leveling is still considered
a rather expensive technique. In the primary levelings, the heights of under-
ground benchmarks are measured.1 Because all other NAP heights are derived
from these reference benchmarks and because accurate heights are of utmost
importance in a low and watery country like the Netherlands, the highest pos-
sible accuracy for the underground benchmarks is desired against reasonable costs.

GPS heights are geometric (ellipsoidal) heights which only have a mathe-ellipsoidal
heights

1The connection of underground benchmarks to nearby positioned GPS receivers can be done
with mm precision.
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matical, but no physical meaning. Leveling-derived heights on the other hand do
have a more significant physical meaning. The exact definition of our leveling-
derived heights is of minor importance in a flat country like the Netherlands.
They may, for example, be orthometric or normal heights. In both cases we needorthometric

heights to apply corrections to the leveling observations up to only a few millimeters.
In the Second Primary Leveling a maximum orthometric correction of 1.5 mm
was applied for the leveling line Roermond–Maastricht [Waalewijn, 1979]. Once
the corrections are applied, the derived heights basically (very nearly) tell us the
direction of flowing water.

Because we are usually more interested in heights with a physical meaning,
the use of GPS for deformation analysis seems to be most appealing, since thedeformation

analysis velocities we find from repeated GPS and leveling campaigns are (except for
possible biases and noise) effectively the same. In the period 1994–1997 several
GPS campaigns were conducted in the Groningen area [Beckers et al., 1996],
[Beckers et al., 1998]. This area has been subsiding since the start of the gas field
exploitation in 1964. The Dutch Oil Company NAM has monitored the subsidence
behavior by repeated spirit-leveling campaigns because of possible damage claims.
From the additional GPS campaigns a somewhat disappointing baseline precision
was found that showed a distance-dependent behavior (±0.5 mm/km) and a
relatively large minimum standard deviation (±5 mm). The baselines were up to
about 10 km and observation times were used of about one hour; no troposphere
parameters were estimated.

The Fifth Primary Leveling of the Netherlands not only included spirit andFifth
Primary
Leveling

hydrostatic leveling campaigns, but also a GPS campaign. In this campaign the
baselines had a mean length of about 20 km and the observation times were
about five days. By using these longer baselines and observation times, one strove
toward a precision of the GPS-derived heights that is comparable with that of
the leveling-derived heights. One tropospheric zenith-delay parameter per station
per two hours was estimated. The tropospheric delay showed to be one of the
precision-limiting factors.

Since 1996 also the Active GPS Reference System network of the Nether-
lands (AGRS.NL) started to continuously collect GPS data [Brouwer et al., 1996].AGRS.NL

In the period 1997–1999 this network had five operational stations with baseline
lengths of about 100–300 km. Daily solutions of the station coordinates were
computed using one troposphere zenith-delay parameter per station per two
hours. In [Kleijer, 2002] a standard deviation of the daily coordinate solutions
was demonstrated of ±5 mm in the height component and 1.5–2 mm in the
horizontal coordinates. The time series of the coordinates did not only show a
stochastic behavior and a linear trend, but also a clear and significant cyclic signal
with a wavelength of about a year; see Fig. 1.1. The amplitude is in the order
of 1–2 mm for the height component, whereas the horizontal coordinates have
amplitudes below 1 mm. Because of the seasonal weather changes, this amplitude
may be troposphere related, but other causes may be present.

The obtainable precision of GPS coordinates has been improving gradually in
time [Bock, 1998]. Hardware improvement and new modeling techniques have con-
tributed to this. In the near future, GPS will be modernized [Eisfeller et al., 2002]modernization

and a European satellite system (Galileo) is likely to see the light (the future
of the Russian positioning system Glonass is still uncertain). These satellite
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Figure 1.1 Time series (1997-1999) of the height component of the baseline Kootwijk-Delft. The
heights are relative to the estimated height at the start of the time series. The plotted cyclic
function is the best fit in a network adjustment after outlier elimination.

positioning systems use radio signals penetrating the earth’s atmosphere. Ongoing
research on the troposphere’s behavior is therefore necessary while the precision
of an integrated GPS/Galileo will further improve the precision of, for example,
the height component [Van der Marel and De Haan, 2001].

While the precision of GPS-derived coordinates is improving, also the pre-
cision of the Dutch geoid that forms the link between ellipsoidal and orthometric
heights had been improved with the ‘De Min’ geoid. This geoid has a precision ofDe Min

geoid 1–2 cm and was expected to be improvable to about 5–10 mm [De Min, 1996].
The relative precision of two close points was expected to be even better. A new
geoid [De Bruijne and Crombaghs, 2002], now likely to be named NLGEO2004,
will replace the De Min geoid and gives a relative precision of about 5 mm.

At Rijkswaterstaat one strives toward an increased use of satellite position-
ing systems for height determination, mainly as replacement of the existing
levelings. Especially the technique of hydrostatic leveling is considered toohydrostatic

leveling expensive. This technique has been the only accurate technique for leveling
large distances over water in the Netherlands since its introduction in the 1950s
[Waalewijn, 1959]. It has, for example, been used for levelings from the Dutch
coast to the Frisian islands and to ‘Nulpalen’, benchmarks at a distance of about
a kilometer from the coast for monitoring sea-level changes. For several decades
the Dutch ship ‘De Niveau’ has been the only ship with which a specialist team
conducted these levelings on a regular basis. Now that the ship is out of use
[Scheele, 2002], it seems unlikely that this technique will ever be used again.

With the aim to replace hydrostatic levelings by GPS, Rijkswaterstaat car-
ried out GPS test campaigns (IJssel, 2000; Huibertsgat en Wierumergronden,
2000/2001; Westerschelde, 2001) to investigate the achievable precision of
GPS with existing commercial software. Observation time spans were used of
3–24 hours (and 3 × 24 hours for the reference stations) for baselines up to 25 km;
no troposphere parameters were estimated. The errors of the baseline heights
after transformation to NAP were about 2 cm peaking up to 3–4 cm, which is
larger than the desired precision of about 1 cm: roughly 5 mm repeatability of
GPS heights and 5 mm for the transformation to NAP. This endorses the need to
estimate troposphere parameters.
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Chapter 2

Outline

In view of the in Chap. 1 mentioned developments and the recognized precision-
limiting troposphere error for GPS height determination, this research concentrates
on modeling the tropospheric delay in GPS observation models. The central
question is:

How can the height component be improved by a more sophisticated tropo-
sphere modeling?

We aim at the 5-mm precision level or better, assume a classic network ap-
proach, and bear in mind the Dutch applications, although this has not really
limited the covered area. By ‘improving’ we mean: faster (shorter sessions) or
more precise than what is possible with most commercial software (applying
an a-priori correction model). In fact ‘faster’ and ‘more precise’ are equivalent,
since longer observation times result in more precise estimates (up to a certain
level). Because of the high precision demand, faster does not necessarily mean:
fast ambiguity resolution. To find possible improvements, we need to know what
modeling possibilities there are.

A subdivision was made into five topics that are described in separate parts. The
first three parts deal with the three aspects of troposphere modeling, namely
physical, functional, and stochastic modeling. The fourth part deals with the
recursive estimation/filtering of parameters (coordinates, troposphere parameters,
etc.); a recursive technique allows us to analyze the precision of coordinates as
function of time. The first four parts can, to a certain degree, be read separately.
The notation is specific for each of the parts, but it is made consistent between
parts as much as possible. Fairly all important model components are described,
and the ideas and assumptions in the various model components are discussed.
In Parts II and III we have worked toward a comparison of functional/stochastic
models by means of simulation in Part V; in this part we look for the sensitivity
of the height component to the model choices we make.

Physical modeling of the tropospheric delay (Part I) concentrates on a descriptionI.Physical
modeling in terms of physical parameters. A-priori correction models are given, which can

be used for ground-based space geodetic observation techniques such as GPS. We
distinguish hydrostatic (dry) and nonhydrostatic (wet) delays. The hydrostatic
delay is caused by atmospheric gases that are in hydrostatic equilibrium. This
is usually the case for dry gases and part of the water vapor. This part of the
delay can very well be modeled based on the surface air pressure. The wet delay,
caused by water vapor that is not in hydrostatic equilibrium, is the source ofwet delay

our problems. We can derive models for this delay based on the partial pressure
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Figure 2.1 Schematic representation of the connection between the topics of Parts I–IV with respect to
GPS data processing.

of water vapor or relative humidity at the surface, but these models have a low
accuracy and need empirical constants that may vary widely with location and
time of year.

Both the wet and dry delays are usually expressed as the product of the
delay in the zenith direction and a mapping function, which depends on themapping

functions zenith angle of the signal. The wet and dry-delay mapping functions differ
because of the thickness of both parts of the troposphere. Water vapor is more
concentrated near the surface than dry gases. The thicknesses may vary with time
and location, and mapping functions therefore depend on physical parameters
like surface temperature, total air pressure or partial pressure of water vapor, or
by parameters like height, day of year, and latitude. Because physical parameters
such as pressure and temperature are often not given or measured, they are
usually modeled by a standard atmosphere, which gives them as a function of
height under mean atmospheric conditions.

Functional modeling of the tropospheric delay (Part II) involves the param-II.Functional
modeling eterization of the tropospheric delay and the functional relation with the GPS

observables or additional pseudo-observables. Troposphere parameters may be
zenith delays, gradients, or residual slant delays. GPS observables may be GPS
phase and code observables, and pseudo-observables may be residual slant delays
and time differenced zenith delays. Part II gives the functional relations between
all parameters (troposphere, ionosphere, and clock parameters; ambiguities, co-



2.Outline 9

ordinates) and the (pseudo-)observables. Full-rank observation models are derived.

If we do not parameterize the tropospheric delay and just apply an a-priori
correction model, we speak of a troposphere-fixed model. In this model, which
is used in many less-sophisticated software packages, residual (unmodeled)
tropospheric delays deteriorate the precision of the height component. In the
troposphere-float model, we do parameterize the tropospheric delay. The bulk of
the residual delays is then modeled by a wet zenith-delay parameter per station
per time interval, using the wet mapping function as functional relation. The
model is strengthened by extra pseudo-observables in the troposphere-weighted
model, which is implemented in the scientific software packages and some
commercial packages as well. These packages do however not always allow for any
number of parameters. The observation model can be refined by parameterization
of gradients or residual slant delays. Gradients have become more popular in
recent years and are already implemented in, for example, the Bernese software,
version 4.2 [Beutler et al., 2000]. The main gain of modeling gradients however
seems to be for the horizontal coordinates [Rothacher et al., 1998]. Modeling of
(residual) slant delays is still in a research phase.

Part III deals with the stochastic model of the tropospheric pseudo-observables.III.Stochastic
modeling If we think of the refractive index of water vapor as a spatial stochastic process,

the stochastic properties of this process can be (approximately) characterized by
a power-law function. The wet delay is an integral over the refractive index and
can also be characterized by a power-law function. Spatial correlation can be
modeled in GPS observation models by polynomial approximations.

Under the assumption of a frozen troposphere (the troposphere refractivity
is fixed and moves with constant velocity), the stochastic properties of time-
differenced zenith delays can also be approximated by a power-law function. No
easy way to use the correlation efficiently in the data processing exists however.
One needs to assume that these differences form a white-noise process, a special
form of a power-law process.

We show a numerical stochastic model of the residual slant delays as de-
rived in [Emardson and Jarlemark, 1999], which is based on a power-law process
and the delay-defining integral over the refractivity. The covariance matrix,
which is based on a polynomial approximation of a double integral, turned out
to be (probably intrinsically) indefinite for all tested satellite configurations.
A new positive-definite model was found in the form of a double-summation
model. It could be promising because it involves stronger correlation between
delays in nearby directions. The old and new model both imply a form of
zenith-angle-dependent weighting when correlations are discarded.

Part IV describes recursive estimation and testing procedures as can be used inIV.Recursive
estimation GPS data processing. Similar procedures exist for VLBI [Herring et al., 1990].

Both the Kalman Filter and the Square Root Information Filter are described.
In the most general (troposphere-weighted) model, there are three types of
parameters: global, temporal, and constrained (batch) parameters. Because the
temporal parameters are of no interest for our goal, they are pre-eliminated, and
thus not solved for. Two pre-elimination methods exist: one using a projector
onto the orthogonal subspace of the partial design matrix of the temporal
parameters, and one using the orthogonal subspace itself. The latter method is
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more appealing in terms of computation time, but can only be used because this
orthogonal subspace can indeed be found analytically. A recursive estimation
procedure was chosen instead of a batch procedure because it was expected to
give a better insight in the models. An advantage is that filter results can easily
be plotted and interpreted as function of observation time.

Part V gives a selection of simulation results. This part first describes theV.Simulation

software implementation based on the theory in the preceding parts. Then some
criteria are shown for judging the results: errors, precision, test values, and relia-
bility measures. The results are first shown for a default scenario. Then several
scenarios are analyzed mainly based on the precision. The troposphere-fixed
model is treated separately.

Much of the given theory was already developed earlier. The main contri-
bution herein is probably the consequent approach to obtain a consistentcontribution

mathematical framework for troposphere modeling and estimation in geodetic
networks using a full matrix-vector notation. This is of special interest for
software developers who think in terms of procedures to implement. Because
this dissertation aims at bringing the theory consistently, it is sometimes hard to
distinguish between known theory and new contribution. Therefore each of the
first four parts contains a concluding chapter in which also the major advances
are specified. In the last part the results follow from simulation software by the
author.
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TROPOSPHERE DELAY
MODELING FOR SPACE

GEODETIC MEASUREMENTS





Symbols and units in Part I

symbol meaning unit

a, b, c parameters of mapping function [-]
α specific volume [m3kg−1]
α azimuth [rad]
α cos(z0) [-]

βd,sat temperature lapse rate [K (k)m−1]
Ds,z

d,h,t,v,w tropospheric delay5,7 [m]

e0,sat partial pressure of water vapor [mbar]
ε constant Rd/Rv [-]
φ latitude [rad]
gm gravitational acceleration4 [m s−2]
hT height above msl [(k)m]

Hm scale (or effective) height4 [km]

k1, k2, k
′

2 constants [K mbar−1]

k3, k
′

3 constants [K2mbar−1]
L latent heat [J kg−1]
λ empirical constant [-]
md,v mass5 [kg]
Md,i,v molecular mass1,5 [kg mol−1]
Mh,w(.) mapping function7 [-]
µ constant gm/(Rdβ) − 1 [-]
n refractive index [-]
Nd,h,v,w,T refractivity5,7 [-]
P0,d air pressure [mbar]
q specific humidity [-]
Q empirical constant IPWV/Dz

w [-]

Table 0.1 Frequently used symbols. The symbols may have one or more subscripts or superscripts (see
Table 0.3). Sometimes a subscript or superscript may have more than one meaning, as
indicated with the numbers1,...,8. These numbers correspond with the numbers in Table 0.3.
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symbol meaning unit

r0,i,T radius (distance to center of the earth)2 [km]
rh0 relative humidity [-]
R universal gas constant [J mol−1K−1]
Rd,i,m,v gas constant1,3,5 [J kg−1K−1]
ρd,m,v,w density3,5,8 [kg m−3]
T0,m,v,T temperature4,6 [K, (◦C)]
wsat mixing ratio [-]
z0,i zenith angle2 [rad]
Zd,v compressibility factor5 [-]

Table 0.2 Frequently used symbols (continuation of Table 0.1).

index meaning

·0 at base of tropospheric layer (usually at surface)
·d of dry air
·h of hydrostatic part of the atmosphere
·i of the ith constituent1

·i of the ith layer2

·m of moist air3

·m mean value for h = 0...∞4

·sat of saturated air
·t total
·T of tropopause
·v of water vapor5

·v virtual6

·w wet (nonhydrostatic) part of atmosphere7

·w of water8

·s slant
·z zenith

Table 0.3 Subscripts and superscripts as used for the symbols of Tables 0.1 and 0.2.

unit composition dimension

Joule [J] N m energy
millibar [mbar] 100 N m−2 ≡ hPa pressure
Newton [N] kg m s−2 force
degrees Celcius [◦C] K - 273.16 temperature

Table 0.4 Units.



Chapter 3

Introduction to Part I

Many space geodetic measurement techniques, like VLBI and GPS, use the
propagation time of radio waves multiplied with the speed of light as a measure
of range. When a signal passes the earth’s atmosphere, it affects the wave in
three ways: (1) it causes a propagation delay; (2) it causes a bending of the ray
path; and (3) it absorbs the signal. In this ‘Part I’ only the propagation delay
in the neutral atmosphere (or troposphere) is considered, including an indirect
delay caused by the bending. Derivations and descriptions are given of several
(components of) delay models that can be used to a priori correct the measured
ranges.

Part I can be used as a reference work or as a first introduction to the
subject. The aim is to give an overview of the most important results in
modeling the propagation delay as can be found in literature. The frequently used
Saastamoinen model and some of the important new(er) models are described.
The intension is not to give all the existing models, since an extensive overview
can be found in, for example, [Mendes, 1999].

Modern delay models usually distinguish a hydrostatic and a wet delay, where
the hydrostatic delay can be determined more precisely by far. Slant tropospheric
delays are usually modeled by the sum of products of zenith-angle-dependent
mapping functions and zenith delays:

Ds
t = Mh(z)Dz

h + Mw(z)Dz
w, (3.1)

Ds
t : Slant Tropospheric/Total Delay (STD) [m];

Mh(z) : hydrostatic mapping function [-];
Dz

h : Zenith Hydrostatic Delay (ZHD) [m];
Mw(z) : wet mapping function [-];
Dz

w : Zenith Wet Delay (ZWD) [m];
z : zenith angle [rad].

Zenith-delay models are given in Chap. 5; some slant-delay models are described
in Chap. 6 with a focus on the mapping functions; and Chap. 7 deals with gradi-
ent delays caused by azimuthal asymmetry in the troposphere. Because all delay
models are based on several physical laws and assumptions, Chap. 4 first gives
some necessary theoretical background about the physics of the atmosphere. Con-
clusions are given in Chap. 8.
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Chapter 4

Physics of the atmosphere

4.1 Introduction

This chapter deals with the physical background that is needed to derive tropo-
sphere delay models. After we have described the atmospheric layers in Sect. 4.2,
in Sect. 4.3 we first give some basic physical laws. Section 4.4 then gives some
water-vapor related quantities and definitions. We end with general formulas for
the refractivity as function of pressure and temperature in Sect. 4.5, and describe
these quantities as function of height for a standard atmosphere in Sect. 4.6.

4.2 Atmospheric layers

The earth’s atmosphere can be coarsely subdivided in several concentric layers.
The characterization of these layers depends on the purpose for which the subdi-
vision is made. Well-known characteristic features are: temperature, ionization,
and propagation [Seeber, 1993]. Characterizing the atmosphere by the way radio
waves are propagated leads to a subdivision of a troposphere and ionosphere. Thetroposphere

ionosphere, the upper part of the atmosphere, is a dispersive medium (the propa-
gation delay is frequency dependent), whereas the troposphere is nondispersive.
The troposphere is also referred to as neutral atmosphere to distinguish with
its original definition, which is actually based on the characterizing temperature
profile.

In general, the temperature in the troposphere decreases almost linearly
with height. At the top of the troposphere, at about 9–16 km above mean
sea level (msl), the temperature stays constant for about another 10 km. Thismsl

part of the neutral atmosphere is called tropopause. Above the tropopause thetropopause

temperature increases again in the stratosphere up to about 50 km altitude.
Between 50 and 80 km above msl the temperature drops again in the mesosphere;
see Fig. 4.1.

When we speak of the troposphere, it will be clear from the context whether this
is the neutral atmosphere or the layer with decreasing temperature.

4.3 Physical laws for the atmosphere

In this section the following physical laws and equations are given: the gas equation
(equation of state), hydrostatic equilibrium, and Snell’s law. In the sections to
follow, these laws will be applied.
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Figure 4.1 Possible subdivision schemes of the earth’s atmosphere; after [Seeber, 1993].

4.3.1 Equation of state

In general, both volume and pressure increase when a gas is heated. In a closed sys-
tem however, the volume or pressure may be kept constant. In [Champion, 1960]
three laws for gases are given:

1. Charles’ constant pressure law: “At constant pressure, for a rise in temperature
of 1◦C, all gases expand by a constant amount, equal to about 1/273 of their
volume at 0◦C.”

2. Charles’ constant volume law: “If the volume is kept constant, all gases undergo
an increase in pressure equal to 1/273 of their pressure at 0◦C for each degree
Centigrade rise of temperature.”

3. Boyle’s law: “At constant temperature the product of pressure and volume is
constant.”

Based on these laws, the gas equation or equation of state is formulated for perfectequation of
state (ideal) gases:

αP = RiT , (4.1)

with

α : specific volume [m3kg−1];

P : pressure [N m−2];

Ri : specific gas constant [J kg−1K−1];
T : temperature [K];

[N] : [kg m s−2];
[J] : [N m].

The specific volume α is defined as:specific
volume

α
.
=

1

ρ

.
=

V

m
, (4.2)
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with

ρ : density [kg m−3];

V : volume [m3];
m : mass [kg].

The specific gas constant Ri (for the ith gas) is related to the universal gas constantspecific gas
constant by:

RiMi
.
= R, (4.3)

with

Mi : (mean) molecular mass [kg mol−1];

R : universal gas constant [8.31434 J mol−1K−1].

Although there are no perfect gases, the gases in the troposphere are nearly perfect
and can often be treated as such. The equation of state does not only hold for
one specific gas, but also for a mixture of gases. In that case, P is the sum of
the partial pressures, Ri is the specific gas constant of the mixture, and Mi is the
mean molecular mass of the mixture.

4.3.2 Hydrostatic equilibrium

The atmosphere is said to be in hydrostatic equilibrium if the net vertical
force on any slice of a column of air with thickness dh is equal to zero
[Haltiner and Martin, 1957]. If one thinks of a slice with unit area, the verti-
cal forces can be expressed in terms of pressure (force per area). The downward
force is equal to the force at the top of the slice P +dP plus the force due to gravity
g ρ dh; see Fig. 4.2. The upward force is equal to the pressure at the bottom of
the slice P . The hydrostatic equation therefore reads:

g ρ dh + (P + dP ) = P. (4.4)

P

P + dP

g ρ dh

dh

Figure 4.2 Vertical forces on a unit slice of thickness dh in hydrostatic equilibrium.

Rewriting Eq. (4.4) gives:

dP = −g ρ dh or
dP

dh
= −gρ, (4.5)
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with

g : gravitational acceleration [m s−2];
h : height above msl [m].

Using the definition of Eq. (4.2), this may also be written as:

g dh = −α dP. (4.6)

4.3.3 Snell’s law

A radio signal passing through the earth’s atmosphere suffers a change in direction
owing to refraction. If we consider the neutral atmosphere to be horizontally
stratified and neglect the ionospheric refraction, the total bending can be found
by repeatedly applying Snell’s law for each layer [Smart, 1936]. Snell’s law statesSnell’s law

(see Fig. 4.3):

ni+1 sin zi+1 = ni sin zi = ni sinψi, (4.7)

where zi and zi+1 are the zenith angles of the arriving radio signal in the layers i
and i + 1, and ni and ni+1 are the corresponding refractive indexes. By applying
Snell’s law for each layer, one finds:

n0 sin z0 = sin zm, (4.8)

where the index 0 denotes the lowest layer and the index m denotes the highest
layer, where the refractive index reduces to 1. This formula holds for any
refractivity profile.
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Figure 4.3 Illustration of Snell’s law (left panel) and Snell’s law in spherical coordinates (right panel) for
horizontally stratified layers. zi: zenith angle of layer i; ni: refractive index of layer i.

For a spherical earth with a spherically layered atmosphere we may formulate
Snell’s law in spherical coordinates [Smart, 1936]. Application of the sine rule in
the triangle MPiPi+1 of Fig. 4.3 gives:

ri

sinψi
=

ri+1

sin(π − zi)
=

ri+1

sin zi
, (4.9)
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where ri and ri+1 are the distances MPi and MPi+1, with M the center of mass of
the earth. Combining Eqs. (4.7) and (4.9) gives Snell’s law in spherical coordinates:

ni+1ri+1 sin zi+1 = niri sin zi = n0r0 sin z0, (4.10)

or simply:

nr sin z = constant. (4.11)

4.4 Water vapor

The troposphere contains both dry air and water vapor. Dry air has no significant
variation in composition with latitude and height [Smith and Weintraub, 1953].
The amount of water vapor, on the other hand, varies widely, both spatially and
temporally. Most of the water vapor is contained in the boundary layer, the
lowest 2 km of the troposphere.

Water also appears in the troposphere in liquid phase (fog, clouds, rain)
and solid form (snow, hail, ice), and is the most important constituent in relation
to weather processes, not only because of rain- and snowfall but also because
large amounts of energy are released in the condensation process.

In this section, we deal with some water-vapor related measures like mixing
ratio, partial pressure of water vapor, virtual temperature, and relative humidity.
Most definitions follow [Haltiner and Martin, 1957].

4.4.1 Mixing ratio

The mixture of dry air and water vapor is called moist air. A measure of moisture
content is the mixing ratio, which is defined as the quotient of water-vapor massmixing ratio

per unit mass dry air [Haltiner and Martin, 1957]:

w
.
=

mv

md
=

mv/V

md/V
=

ρv

ρd
, (4.12)

w : mixing ratio [-];
mv : mass of water vapor [kg];
md : mass of dry air [kg];

V : volume [m3];

ρv : density of water vapor [kg m−3];

ρd : density of dry air [kg m−3].

If we apply the equation of state, Eq. (4.1), for both water vapor and dry air, weequations of
state obtain with use of Eq. (4.2):

e = ρvRvT ; Pd = P − e = ρdRdT, (4.13)

e : partial pressure of water vapor [N m−2];

Pd : partial pressure of dry air [N m−2];

P : total pressure of (moist) air [N m−2];

Rv : specific gas constant of water vapor [J kg−1K−1];

Rd : specific gas constant of dry air [J kg−1K−1].
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Another expression for the mixing ratio can be obtained from Eqs. (4.12) and
(4.13) as:

w =
e/RvT

(P − e)/RdT
= ε

e

P − e
≈ ε

e

P
, (4.14)

Rd = 287.06 ± 0.01 J kg−1K−1;
Rv = 461.525 ± 0.003 J kg−1K−1;
ε

.
= Rd/Rv = 0.622.

The approximation is allowed because the partial pressure of water vapor is
typically about 1% of the total pressure. The constants in Eq. (4.14) are taken
from [Mendes, 1999].

An alternative way to express the humidity is the specific humidity:specific
humidity

q =
ρv

ρm
≈ w. (4.15)

4.4.2 Virtual temperature

We can also apply the equation of state for moist air. In that case we have:

P = ρmRmT, (4.16)

ρm : density of moist air [kg m−3];

Rm : specific gas constant of moist air [J kg−1K−1].

Since ρm = ρv+ρd, combining Eqs. (4.12), (4.13), and (4.16) gives Rm as a function
of the mixing ratio:

Rm =
Rd + wRv

1 + w
=

Rd(1 + 1.61w)

1 + w
≈ Rd(1 + 0.61w). (4.17)

Substituting Eq. (4.17) in Eq. (4.16) gives:

P = ρmRdTv, (4.18)

where

Tv
.
= (1 + 0.61w)T, (4.19)

is the virtual temperature in kelvin. In Eq. (4.18) the fixed gas constant Rd is usedvirtual
temperature instead of Rm. The presence of moisture is accounted for by the use of a fictitious

temperature. The virtual temperature is the temperature that dry air at pressure
P would have when its density would equal that of moist air at temperature T ,
pressure P , and mixing ratio w [Haltiner and Martin, 1957].

4.4.3 Partial pressure of saturated air

In a closed system with no air, an equilibrium will be established when equal
numbers of water molecules are passing from liquid or solid to vapor, and vice
versa. Under these circumstances the vapor is said to be saturated. When the
vapor is mixed with air, the mixture of air and water vapor under equilibrium con-
ditions is referred to as saturated air. When saturated air comes in contact withsaturated air

unsaturated air, diffusion takes place in the direction toward lower values of vapor.
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The partial pressure of saturated water vapor is a function of temperature.
Larger amounts of water vapor can be contained by warmer air. By cooling
saturated air, the surplus of water vapor above the saturation value at the
new temperature condensates. The energy released (per unit mass) in the
condensation is called latent heat. The same amount of energy is required forlatent heat

vaporization. We also have the latent heat of fusion, which is the amount of
energy required in the change of a unit mass of ice to liquid water, and the latent
heat of sublimation, which is the sum of the latent heats of vaporization and fusion.

A relation between latent heat, partial pressure of water vapor, and temperature,
is given by the Clausius–Clapeyron equation [Haltiner and Martin, 1957]:Clausius–

Clapeyron
1

esat

desat

dT
=

L

RvT 2
, (4.20)

esat : partial pressure of saturated water vapor [N m−2];
L : latent heat of fusion [0.334 · 106J kg−1] or

latent heat of vaporization [2.500 · 106J kg−1] or
latent heat of sublimation [2.834 · 106J kg−1];

Rv : specific gas constant of water vapor [461.525 J kg−1K−1].

Integration of Eq. (4.20) gives the partial pressure of water vapor as function of
temperature:

esat = esat(0) exp

[
− L

Rv

(
1

T
− 1

T (0)

)]
, (4.21)

with L either the latent heat of vaporization (T > 0◦C) or sublimation (T < 0◦C).
The integration constants are given at 0◦C:

esat(0) = 6.11 mbar ≡ 611 N m−2;
T (0) = 273.16 K.

The Clausius–Clapeyron equation is a theoretical model. Slightly different values
were derived by [Baby et al., 1988] using a least-squares fit on laboratory tabulated
esat data from [Queney, 1974]:

esat = exp

[
A − B

T

]
[mbar], (4.22)

A = 21.3195 and B = 5327.1157 K for T < T (0);
A = 24.3702 and B = 6162.3496 K for T > T (0).

This expression is similar to Eq. (4.21) and is shown graphically in Fig. 4.4.

We may also define a saturation mixing ratio; cf. Eq. (4.14). This is given as
[Haltiner and Martin, 1957]:

wsat
.
= ε

esat

P − esat
≈ ε

esat

P
, (4.23)

wsat : saturation mixing ratio [-].
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Figure 4.4 Partial pressure of saturated air according to [Baby et al., 1988].

4.4.4 Relative humidity

The relative humidity rh is defined as the quotient of the mixing ratio and satu-relative
humidity ration mixing ratio:

rh
.
=

w

wsat
≈ e

esat
, (4.24)

rh : relative humidity [-].

The relative humidity is often multiplied by hundred to express it in percentages.

4.5 Propagation delay and refractivity

The total delay of a radio signal caused by the neutral atmosphere depends on
the refractivity along the traveled path, and the refractivity depends on pressure
and temperature. The basic physical law for the propagation is Fermat’s principle:Fermat

Light (or any electro-magnetic wave) will follow the path between two points in-
volving the least travel time. We define the electro-magnetic (or optical) distance
between source and receiver as:

S
.
=

∫
c dt =

∫
c

v
ds =

∫

s
n(s) ds, (4.25)

S : electro-magnetic distance [m];
s : electro-magnetic path [m];
c : speed of light in vacuum [m s−1];
v = ds/dt : propagation speed [m s−1];
n = c/v : refraction index [-].

In general n is considered a complex number. The imaginary part then re-
lates to absorption whereas the real part relates to the delay and bending
[Hall et al., 1996]. If we denote the geometrical distance by:

L =

∫

l
dl, (4.26)

L : geometrical distance [m];
l : geometrical path [m],
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the excess path length becomes

Ds
t

.
= S − L =

∫

s
(n(s) − 1) ds + {

∫

s
ds −

∫

l
dl}, (4.27)

Ds
t : excess path length (Delay) in the slant direction

caused by the troposphere [m].

The first term on the right-hand side is the excess path length caused by the
propagation delay, whereas the second term (between braces) is the excess path
length caused by ray bending. From now on we will just speak of a delay, insteadray bending

of ‘excess path length’. So when we speak of a delay, it is in terms of distance. In
[Mendes, 1999] a model (called dg.v1) is given for the delay caused by the bending
based on raytracing results: a exp(−ε/b), with a = 2.256 ± 0.0092 m, b = 2.072 ±
0.0054◦, and ε the elevation angle; see Fig. 4.5.
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Figure 4.5 Delay caused by ray bending; model dg.v1 by [Mendes, 1999].

Because the value of the refractive index is close to 1, often the refractivity N
(Neper) is used:

N
.
= (n − 1) · 106, (4.28)

N : refractivity [-].

Values for N in the atmosphere range between 0 and 300.

Since the neutral atmosphere contains both dry air and water vapor, the refrac-
tivity can also be split into a dry and a vapor part [Smith and Weintraub, 1953]:

N = Nd + Nv, (4.29)

Nd : refractivity of dry air [-];
Nv : refractivity of water vapor [-].

This makes sense because the mixing ratio of dry-air constituents remains nearly
constant in time while the water-vapor content fluctuates widely, both spatially
and temporaly. According to [Thayer, 1974], for frequencies up to 20 GHz we may
write the refractivities as a function of temperature and partial pressures:

Nd
.
= k1

Pd
T Z−1

d ;

Nv
.
=

[
k2

e
T + k3

e
T 2

]
Z−1

v ,
(4.30)
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ki : constants [K mbar−1 for i = 1, 2; K2mbar−1 for i = 3];
Zd : compressibility factor of dry air [-];
Zv : compressibility factor of water vapor [-].

The constants ki have been determined empirically. Different values are given in
for example [Bevis et al., 1994]; see also Table 4.1. The dry refractivity and the
first term of the vapor refractivity are the result of induced molecular polarizationinduced

molecular
polarization

of air and water vapor molecules respectively. The second and much larger term
of the vapor refractivity represents the effects of the permanent dipole moment
of the water vapor molecule [Thayer, 1974]; see Fig. 4.6. None of the primarypermanent

dipole
moment

constituents of dry air possess such a permanent dipole moment. The permanent
dipole constitutes the main part of the delay caused by water vapor.
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Figure 4.6 Contribution of both parts of the wet refractivity for saturation pressures; k2 and k3

according to [Thayer, 1974].

The (inverse) compressibility factors are given by the empirical formulascompressi-
bility [Owens, 1967]:

Z−1
d = 1 + Pd[57.90 · 10−8 − 9.4581 · 10−4 · T−1 + 0.25844 · T−2];

Z−1
v = 1 + e[1 + (3.7 · 10−4)e]·

[−2.37321 · 10−3 + 2.23366 · T−1 − 710.792 · T−2 + 7.75141 · 104 · T−3].

(4.31)

These factors account for the nonideal behavior of dry air and water vapor. Under
normal circumstances these are close to unity.

With these compressibility factors the general equation of state becomes:equation of
state

Pi = ZiρiRiT, (4.32)

Pi : partial pressure of the ith constituent [N m−2];
ρi : mass density of the ith constituent [kg m−3];

Ri : specific gas constant of the ith constituent [J kg−1K−1].

Often, dry air and water vapor are considered to be ideal gases with unit com-
pressibility factors:

Nd = k1
Pd
T ;

Nv = k2
e
T + k3

e
T 2 .

(4.33)
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Instead of splitting the refractivity into a dry and a vapor part, we can also split it
into a hydrostatic and a nonhydrostatic part [Davis et al., 1985]. With Eq. (4.30)hydrostatic

refractivity and the equation of state for dry air and water vapor (i = d, v), Eq. (4.29) becomes:

N = k1Rdρd + k2Rvρv + k3
e

T 2 Z−1
v

= k1Rdρm − k1Rdρv + k2Rvρv + k3
e

T 2 Z−1
v

= k1Rdρm + (k2 − k1
Rd
Rv

)Rvρv + k3
e

T 2 Z−1
v ,

(4.34)

where we used the density of moist air ρm = ρd + ρv. If we define

k
′

2
.
= k2 − k1

Rd

Rv
= k2 − k1ε, (4.35)

k
′

2 : constant [K mbar−1],

and use the equation of state for water vapor, Eq. (4.34) becomes:

N = k1Rdρm + (k
′

2
e
T + k3

e
T 2 )Z−1

v
.
= Nh + Nw.

(4.36)

The first term, Nh, is the hydrostatic refractivity. The second term, Nw, is the
nonhydrostatic refractivity, but usually this is called wet refractivity, although thiswet

refractivity term is often also used for the earlier defined Nv.

Reference k1 k2 k3 k
′

2

[K mbar
−1] [K mbar

−1] 105[K2
mbar−1][K mbar

−1]

[Boudouris, 1963] 77.59 ± 0.08 72 ± 11 3.75 ± 0.03 24 ± 11

[Smith and Weintraub, 1953] 77.61 ± 0.01 72 ± 9 3.75 ± 0.03 24 ± 9

[Thayer, 1974] 77.60 ± 0.01 64.79 ± 0.08 3.776 ± 0.004 17 ± 10

Table 4.1 Empirical values of coefficients used in this section according to different publications; see
also [Mendes, 1999].

4.6 Atmospheric profiles

In this section, theoretical profiles are given for the temperature, dry-air pressure,
and the partial pressure of water vapor in saturated air. Based on the first two, a
refractivity profile is given of dry air.

As we have seen in the previous section, the propagation delay depends on
the refractivity along the ray path, and the refractivity on its turn depends on
temperature and pressure. To determine the propagation delay, we therefore
need information on the temperature and pressure along the ray path. Although
real profiles of temperature, pressure, refractivity, and partial pressure of water
vapor can only be determined by actual measurements, obtained by, for example,
radiosondes, idealized or standard profiles can be given based on the temperature
lapse rate and theoretical assumptions.lapse rate

4.6.1 Temperature and pressure profile

Figure 4.7 shows a model temperature profile of the neutral atmosphere. Thetemperature
profile troposphere is characterized by a decreasing temperature. The measure of
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decrease β
.
= −dT/dh is called lapse rate. The lapse rate varies throughout the

atmosphere, but is frequently constant in thick layers [Haltiner and Martin, 1957].
Some physical background on the temperature lapse rate is given in App. A.

For the derivation of a pressure profile we need to know the temperaturepressure
profile profile. The derivation is based on the dry-air differential equation:

1

Pd
dP = − gm

RdT
dh, (4.37)

which is obtained by the equation of state Eq. (4.1), the assumption of hydrostatic
equilibrium Eq. (4.5), and Eq. (4.2). We considered the gravitation to be constant
with height and equal to a mean valuemean gravity

gm
.
=

∫ ∞
h0

ρm(h)g(h)dh
∫ ∞
h0

ρm(h)dh
. (4.38)

For isothermal layers like the tropopause, the pressure profile is found by integra-isothermal
layer tion of Eq. (4.37):

Pd = Pd0 exp

(
−h − h0

H

)
; H =

RdT

gm
, (4.39)

Pd0 : pressure of dry air at the base of the layer [mbar];
h : height above msl [km];
h0 : height above msl at the base of the layer [km];
H : scale height [km].

scale height
In case of a polytropic layer like the troposphere and stratosphere, with the as-
sumption of a constant lapse rate, dh = −dT/β, we integrate the right-hand side
of Eq. (4.37) over dT :

Pd = Pd0

(
T

T0

)µ+1

; µ
.
=

gm

Rdβ
− 1, (4.40)

T0 : temperature at the base of the layer [K].

Troposphere delay models often use standard values for the temperature and pres-standard
atmosphere sure. An example of a standard atmosphere is the 1976 US Standard Atmosphere

[Stull, 1995]:

troposphere: T = 288.15 − 6.5h 0 < h < 11 km;
tropopause: T = 216.65 11 < h < 20 km;
stratosphere: T = 216.65 + h − 20 20 < h < 32 km;

troposphere: Pd = 1013.25(288.15/T )−5.255877 0 < h < 11 km;
tropopause: Pd = 226.32 exp(−0.1568(h − 11)) 11 < h < 20 km;
stratosphere: Pd = 54.749(216.65/T )34.16319 20 < h < 32 km.

(4.41)

These profiles are plotted in Fig. 4.7.
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Figure 4.7 Temperature and dry-air pressure in the 1976 US Standard Atmosphere.

4.6.2 Refractivity profile of dry air

From Eqs. (4.33), (4.39), and (4.40), we can also derive the theoretical refractivity
profiles of dry air. For polytropic layers we have:refractivity

profile

Nd

Nd0
=

k1Pd/T

k1Pd0/T0
=

Pd

Pd0

T0

T
=

(
T

T0

)µ

, (4.42)

Nd0 : dry refractivity at the base of the layer [-].

In an isothermal layer (T = T0) we find:

Nd

Nd0
=

Pd

Pd0
= exp

(
−h − h0

H

)
. (4.43)

In Fig. 4.8, the refractivity profile is given for the 1976 US Standard Atmosphere
(with k1 = 77.604).
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Figure 4.8 Refractivity profiles. Left: Dry-air refractivity profile of the 1976 US Standard Atmosphere.
Right: Wet refractivity profile for a surface pressure of 15◦C, a constant relative humidity of
50%, a lapse rate of 6.5 K/km, and the constants of Thayer (1974).

Profiles of the hydrostatic refractivity are nearly the same as those of dry air.
Instead of for the real temperature, we have to assume a profile for the lapse rate
of the virtual temperature in the formulas above. The virtual temperature is only
the same as the real temperature for a mixing ratio of 0.
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4.6.3 Saturation pressure profile

From Model (4.22) and the assumption of a constant lapse rate, the partial pressure
of saturated air esat is given as function of height by:

esat = exp

[
A − B

T0 − β(h − h0)

]
, (4.44)

T0 : surface temperature [K];
h0 : height of the surface above msl [km].

Since hardly any water vapor is present in or above the tropopause, it is sufficient
to consider only a tropospheric profile. Three different profiles are given in
Fig. 4.9. Figure 4.8 shows an example of a wet refractivity profile based on
Eq. (4.44).
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Figure 4.9 Profiles of saturated water-vapor pressure at different surface temperatures for a lapse rate of
6.5 K/km and h0 = 0 km.

The thickness of the troposphere is often expressed by the effective height, aeffective
height refractivity-weighted mean height, see App. C. For exponential profiles, the ef-

fective height is equal to the scale height. The effective height of the dry and wet
troposphere are about 8 km and 2 km respectively. The latter value holds if the
relative humidity is independent of height as in Fig. 4.8. The smaller effective
height of the wet troposphere causes the wet refractivity to drop much faster with
increasing altitude than the dry refractivity. The contribution of the wet part to
the total refractivity is therefore at higher altitudes smaller than at the surface.



Chapter 5

Zenith-delay models

5.1 Introduction

In this chapter we describe models for the zenith delays. In Sect. 5.2, we give an
expression of the Zenith Hydrostatic Delay and Sect. 5.3 shows two models for
the Zenith Wet Delay. Finally, in Sect. 5.4, the Zenith Total Delay is given as
proposed by Saastamoinen. This model is still frequently used.

5.2 Zenith Hydrostatic Delay

The Zenith Hydrostatic Delay (ZHD) is the delay of a radio signal arriving fromZHD

the zenith caused by the neutral hydrostatic atmosphere. This section gives a
derivation of an expression for the ZHD based on surface pressure, latitude, and
height above msl.

The ZHD is defined as the integral over the hydrostatic refractivity:

Dz
h

.
= 10−6

∫ ∞

h0

Nh(h) dh, (5.1)

Dz
h : Zenith Hydrostatic Delay [m];

h : height above msl [m];
h0 : height of the surface above msl [m].

With Eq. (4.36), the ZHD can be written as:

Dz
h = 10−6k1Rd

∫ ∞

h0

ρm(h)dh. (5.2)

Under the condition of hydrostatic equilibrium we can use the hydrostatic equation:

dP

dh
= −ρm(h)g(h), (5.3)

where g(h) is the acceleration due to gravity as a function of height. Integrating
Eq. (5.3) yields

∫ 0

P0

dP = −
∫ ∞

h0

ρm(h)g(h)dh = −P0, (5.4)

where P0 is the surface value of the air pressure. Using a mean gravity as in
Eq. (4.38), with Eqs. (5.4) and (5.2) the ZHD becomes:

Dz
h = 10−6k1

Rd

gm
P0. (5.5)
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The mean gravity depends on height and latitude. Based on an approximation by
[Saastamoinen, 1972], the mean gravity is given as [Davis et al., 1985]:

gm
.
= g0

m · f(φ, h), (5.6)

gm : acceleration due to gravity at the center

of mass of the vertical column [m s−2];
φ : geodetic latitude [rad],

where

f(φ, h) = 1 − 0.00266 cos 2φ − 0.00000028 h ≈ 1 (5.7)

is a weak function of φ and h.

In [Davis et al., 1985] the following constants are used:

k1 = 77.604 K mbar−1;
R = 8.31434 kg m2s−2mol−1K−1;
Md = 28.9644 · 10−3 kg mol−1;
g0
m = 9.784 m s−2,

to derive the expression:

Dz
h = [0.0022768 m/mbar] · P0

f(φ, h)
. (5.8)

So, for any location on earth for which the surface pressure is given, one can
compute the ZHD with Eq. (5.8). No assumptions were made about temperature
or air-pressure profiles. The accuracy of the constant between brackets is given inaccuracy

[Davis et al., 1985] as 0.5 mm/bar. The expression of [Davis et al., 1985] is slightly
more accurate as the one given in [Saastamoinen, 1972]. In [Elgered et al., 1991],
another slightly different constant is given, based on the value of k1 = 77.64±0.08
K/mbar by [Boudouris, 1963]:

Dz
h = [0.0022779 m/mbar] · P0

f(φ, h)
. (5.9)

They state that although this value is less precise (2.4 mm/bar), it does not rely
on assumptions about the frequency dependence of the dry refractivity.

5.3 Zenith Wet Delay

In this section, two models are given for the Zenith Wet Delay (ZWD) as derivedZWD

in [Askne and Nordius, 1987] and [Baby et al., 1988]. Both models need empirical
parameters and are based on the defining integrals of Sect. 5.3.1.

5.3.1 Zenith Wet Delay and Integrated Water Vapor

The ZWD is defined as:

Dz
w

.
= 10−6

∫ ∞

h0

Nw(h) dh, (5.10)
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in which Nw is (see Sect. 4.5):

Nw
.
= k

′

2

e

T
+ k3

e

T 2
, (5.11)

assuming unit compressibility. A mean temperature of water vapor can be definedmean
temperature as:

Tm
.
=

∫ ∞
h0

e/T dh
∫ ∞
h0

e/T 2 dh
. (5.12)

Using Eqs. (5.11) and (5.12) in Eq. (5.10) then gives another expression for the
ZWD:

Dz
w = 10−6(k

′

2 + k3/Tm)

∫ ∞

h0

e

T
dh. (5.13)

One needs expressions for water-vapor pressure e and temperature T as functions
of height to determine the ZWD.

For meteorological applications, the ZWD is sometimes expressed in terms
of Integrated Water Vapor [Bevis et al., 1992]IWV

IWV
.
=

∫ ∞

h0

ρv dh (5.14)

or Integrated Precipitable Water Vapor

IPWV
.
= IWV/ρw, (5.15)

with ρw = 1000 kg m−3 the density of water. Using the equation of state
Eq. (4.13), we have:

∫ ∞

h0

e

T
dh = Rv

∫ ∞

h0

ρv dh. (5.16)

So, if we define a factor Q as

Q
.
= 10−6(k

′

2 + k3/Tm)Rvρw, (5.17)

the ZWD can be expressed as:

Dz
w = Q · IPWV. (5.18)

The dimensionless quantity Q is about 6.5, but varies spatially and temporally.
In [Bevis et al., 1992] an empirical formula is given for the mean temperature
as function of the surface temperature, Tm ≈ 70.2 + 0.72 T0, with which Q
can be determined to about 2% accuracy. Other empirical formulas for Tm

were derived by [Mendes et al., 2000]. Empirical formulas for Q are given in
[Emardson and Derks, 1998].

5.3.2 The ZWD model of Askne and Nordius

Askne and Nordius (1987) developed a ZWD model in which they assumed a
constant lapse rate. They used a model for the partial pressure of water vapor of
[Smith, 1966]:

e = e0

(
P

P0

)λ+1

, (5.19)
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λ : constant [-].

In this model the water-vapor pressure decreases much faster with increasing
height than the total pressure. This should be the case because the decreasing
temperature also causes the saturation pressure to drop. The constant λ varies
with season and location and typically ranges between 1 and 5. Mean values of λ
for 47 stations, mainly in the northern hemisphere, are given in [Ifadis, 1993].

With Eqs. (5.13) and (5.19) the ZWD is expressed as:

Dz
w = 10−6(k

′

2 + k3/Tm)
e0

P0

∫ ∞

h0

(
P

P0

)λ P

T
dh. (5.20)

When we use the mean gravity as defined in Eq. (4.38), the differential Eq. (4.37)
may be written as:

P

T
dh = −Rd

gm
dP. (5.21)

Substitution of Eq. (5.21) in Eq. (5.20) and evaluating the integral then gives the
model for the ZWD as a function of mean temperature Tm and surface pressure
e0:

Dz
w = 10−6(k

′

2 + k3/Tm)
Rd

(λ + 1)gm
e0. (5.22)

From the assumption of a constant lapse rate for the troposphere we have the
relationship of Eq. (4.40), which we will write as (the surface is the base of the
layer):

(
P

P0

)
=

(
T

T0

)µ+1

. (5.23)

Substitution of Eq. (5.23) into Eq. (5.19) gives:

e = e0

(
T

T0

)(λ+1)(µ+1)

. (5.24)

With Eq. (5.24) substituted in Eq. (5.12) one finds an expression for the mean
temperature after integration:

Tm = T0

[
1 − 1

(λ + 1)(µ + 1)

]
, (5.25)

which can be used in Eq. (5.22) to determine the ZWD.

5.3.3 The ZWD model of Baby et al.

Another semi-empirical model was derived in [Baby et al., 1988]. For tropospheric
temperatures in the range of 230 to 310 K the factor k

′

2 +k3/T does not vary more
than 0.1%. Therefore they replaced this expression by the simpler expression k

′

3/T
such that:

k
′

3/T
.
= k

′

2 + k3/T for T
.
= 273 K, (5.26)

k
′

3 = 3.81 · 105 K2/mbar.
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The ZWD is thus written as:

Dz
w = 10−6k

′

3

∫ ∞

h0

e

T 2
dh. (5.27)

In [Baby et al., 1988], a constant lapse rate, T (h) = T0−β(h−h0), and a constant
relative humidity (e = rh0 ·esat) is used. In combination with Eq. (4.22) this leads
to:

Dz
w = 10−6k

′

3

rh0

β

esat(T0)

B0
, (5.28)

where B0 is the value of B in Eq. (4.22) corresponding to the surface temperature.
The model given in [Baby et al., 1988] was slightly more complicated because they
assumed a maximum height of 11 km to which water vapor was present, but the
difference with the above given model is small. A more general form for Eq. (5.28)
is:

Dz
w = a(T0)rh0, (5.29)

where a(T0) is a slope factor that can be determined theoretically as in Eq. (5.28)
or it can be derived from radio sounding profiles from all over the world and
covering as long a period as possible. In [Baby et al., 1988] a database of a one-
year campaign carried out in 1979 was used to derive a global semi-empirical model.
The general formulation for the model is:

Dz
w = ν10γ(T0−273.16)rh0, (5.30)

where ν and γ are empirical coefficients depending on various factors such as
latitude, climate, time, etc. Some mean values are given in Table 5.1.

ν [mm] γ [K−1]

global model 72.84 0.0236
continental 73.27 0.0235
oceanic 54.88 0.0291
equatorial 65.47 0.0273

Table 5.1 Empirical coefficients in the ZWD model of [Baby et al., 1988].

An advantage of the semi-empirical model in [Baby et al., 1988] over the model in
[Askne and Nordius, 1987] is that no parameter fits are needed for each observing
station. Both models, however, give an accuracy of only about 2 to 5 cm at zenith.accuracy

5.4 The Zenith Tropospheric Delay of Saastamoinen

The total Zenith Tropospheric Delay (ZTD) is the sum of the ZHD and the ZWD:ZTD

Dz
t

.
=

∫ ∞

h0

N(h) dh =

∫ ∞

h0

Nh(h) + Nw(h) dh = Dz
h + Dz

w. (5.31)

By using the Models (5.5) and (5.22), a general formulation for the ZTD is found
as:

Dz
t = 10−6k1

Rd

gm

[
P0 +

(
k3

k1(λ + 1 − βRd/gm)T0
+

k
′

2

k1(λ + 1)

)
e0

]
. (5.32)
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In [Saastamoinen, 1972] the following constants were used:

k1 = 77.624 K mbar−1; Rd = 287.04 m2s−2K−1;
k2 = 64.7 K mbar−1; gm = 9.784 m s−2;

k
′

2 = k2 − 0.622k1 K mbar−1; β = 0.0062 K m−1;
k3 = 371900 K2mbar−1; λ = 3.

With these values substituted in Eq. (5.32), the ZTD model of Saastamoinen reads:

Dz
t = 0.002277

[
P0 +

(
1255

T0
+ 0.05

)
e0

]
, (5.33)

where P0 and e0 are in [mbar], T0 is in [K], and Dz
t is in [m]. The constants

ki, i = 1, 2, 3, as used by Saastamoinen, were given in [Essen and Froome, 1951]
and were adopted by the International Association of Geodesy in 1963 [IAG, 1963].
Model (5.32) is a two-parameter model. Both β and λ are place and time depen-
dent. The model given by Saastamoinen uses mean values.



Chapter 6

Slant-delay models

6.1 Introduction

The slant tropospheric delay is often modeled as the product of the delay in the
zenith direction and a zenith angle dependent mapping function. Section 6.2 de-
scribes a basic integral expression for the slant delay, Sect. 6.3 describes the slant
delay model by Saastamoinen, and Sect. 6.4 gives a derivation of continued frac-
tions based mapping functions. Finally, Sect. 6.5 shows examples of these mapping
functions based on atmospheric parameters, and Sect. 6.6 describes the computa-
tion of slant delays from Numerical Weather Prediction (NWP) models.

6.2 Slant Tropospheric Delay

So far, only zenith delay models have been considered. In general, however, a
radio signal will not arrive from a zenith direction, but from slant directions. If
we neglect the delay caused by the ray bending and assume a horizontally layered
atmosphere (where the refractivity n is only a function of height), the expression
for the Slant Tropospheric Delay (STD) can be found by Eqs. (4.27) and (4.28)STD

as:

Ds
t = 10−6

∫ ∞

0
Nds = 10−6

∫ ∞

r0

N
ds

dr
dr. (6.1)

As can be seen in Fig. 6.1, for an infinitesimal thin layer we have:

ds

dr
=

1

cos z
≡ sec z, (6.2)

where dr is the difference in radius (distance to the center of the earth) of the two
layers and z is the zenith angle at an arbitrary layer. Because of the curvature of
the atmosphere, this zenith angle changes along the ray.

z

dr ds

Figure 6.1 Relation between radius difference dr, distance difference ds, and zenith angle z.
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Application of Snell’s law in spherical coordinates (Sect. 4.3.3) gives:

n2r2 = n2r2 cos2 z + n2r2 sin2 z
= n2r2 cos2 z + n2

0r
2
0 sin2 z0

}
⇒ sec z =

nr

n0r0

[(
nr

n0r0

)2

− sin2 z0

]− 1

2

, (6.3)

where the zero index refers to the bottom layer. Approximating (nr)/(n0r0) by
r/r0 and combining Eqs. (6.1–6.3), gives an integral expression for the STD:

Ds
t = 10−6

∫ ∞

r0

N(r)
r

r0

[(
r

r0

)2

− sin2 z0

]− 1

2

dr. (6.4)

Considering the geometry of Fig. 6.2, the same result could have been derived by:

s = (r2 − r2
0 sin2 z0)

1

2 − r0 cos z0, (6.5)

and

ds

dr
= r(r2 − r2

0 sin2 z0)
− 1

2 . (6.6)

In general, the integral of Eq. (6.4) can be evaluated in closed form. In
[Yionoulis, 1970] was noticed that for the refractivity profiles given in the
two-quartic model of Hopfield [Hopfield, 1969], rounding errors were significant
for high elevations. Nowadays, for any given refractivity profile, the integral
of Eq. (6.4) can easily be computed by computer algebra systems. In do-
ing so however, there result numerous large terms. Since these terms are much
larger than the total integrated value, Eq. (6.4) suffers from a numerical instability.numerical

instability

To deal with this problem, two different approaches are used to model the
STD. The first approach is to form a Taylor expansion of sec z(r) and thenTaylor

integrate the different terms. The other approach uses continued fractions.continued
fractions The Saastamoinen and some Hopfield-related models belong to the first cat-

egory. The Saastamoinen models are given in [Saastamoinen, 1972] and in
[Saastamoinen, 1973]. Hopfield-related models are given in [Yionoulis, 1970],
[Morduch, 1978], and [Goad and Goodman, 1974]. Because most of the modern
models use continued fractions, no extensive discussion on the latter type of
models will be given here. As an illustration of the first approach, the widely used
Saastamoinen model [Saastamoinen, 1972] is dealt with in the next section.

6.3 The Saastamoinen model

The ZTD model of Saastamoinen is given in Sect. 5.4. Here we give the STD
model as shown in [Saastamoinen, 1972]. The derivation starts with a truncated
Taylor expansion of sec z:

sec z = sec z0 + sec z0 tan z0∆z. (6.7)

Figure 6.2 shows that ∆z
.
= z − z0 = −φ and tan z = r0φ/(r − r0). So by

approximating tan z ≈ tan z0, Eq. (6.7) becomes:

sec z = sec z0(1 − tan2 z0
r − r0

r0
). (6.8)
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Figure 6.2 Geometry of a ray arriving through a spherical atmosphere. s: traveled distance through
atmosphere; r0: radius of the earth; z: zenith angle at the top of the atmosphere; z0: zenith
angle at the surface.

With this expression the STD reads:

Ds
t = 10−6

∫ ∞
r0

N sec z dr

= 10−6 sec z0

[∫ ∞
r0

Ndr − r−1
0 tan2 z0

∫ ∞
r0

N(r − r0)dr
]
.

(6.9)

The first term between the brackets is the zenith delay. The second term is a cor-
rection term of which the integral part can be subdivided into three sub-integrals:

∫ ∞

r0

N · (r − r0)dr =

∫ rT

r0

N · (r − r0)dr

+

∫ ∞

rT

N · (r − rT )dr (6.10)

+ (rT − r0)

∫ ∞

rT

Ndr,

where rT is the radius of the tropopause. Saastamoinen assumed the neutral at-
mosphere to consist of only two layers: the troposphere and the stratosphere. In
this model the troposphere is a polytropic layer reaching up to rT and the strato-
sphere is an isothermal layer, which for practical integration can be considered
infinitely high. Each of the three integrals can be evaluated on the basis of the
refractivity profiles associated with the temperature profile. Appendix B shows
that the evaluation of these integrals results in:

Ds
t = 10−6k1

Rd

gm︸ ︷︷ ︸
0.002277

sec z0

[
P0 + (

1255

T0
+ 0.05)e0 − B(r) tan2 z0

]
, (6.11)

where

B(r)
.
=

1

r0

gm

Rd

1

k1

∫ ∞

r0

N(r − r0)dr. (6.12)
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Sometimes an additional term is used to account for the delay caused by the
ray bending; tables are given in [Saastamoinen, 1973]. Tabular values for the
correction term B(r) are given in [Saastamoinen, 1972]. Saastamoinen does not
mention the exact theoretical standard atmosphere he uses to find the tabular
values of B(r). However, the standard values at msl as also later used in the 1976
US Standard Atmosphere (Tmsl = 288.15 K, Pmsl = 1013.25 mbar), as well as the
values r0 = 6360 km and hT = 15 km, fit quite well.

The Saastamoinen model was developed for high elevation angles. For low
elevation angles the increment ∆z becomes too large. The omission of higher-
order terms causes an error of about 0.1 m in the range correction at a maximum
zenith angle of 80◦ [Saastamoinen, 1972].

6.4 Continued fractions and mapping functions

In a parallel development to Saastamoinen, expressions for tropospheric corrections
were derived and published in [Marini, 1972]. Marini was the first one who came up
with the idea to use continued fractions. Continued fractions have the advantage
over models with Taylor expansions like the Saastamoinen model that they fit for
nearly the whole range of zenith angles. Starting point of the derivation is the
approximation of Eq. (6.4) by

Ds ≈ 10−6

∫ ∞

r0

N(r)

[(
r

r0

)2

− sin2 z0

]− 1

2

dr (6.13)

and the assumption of an exponential profile:

N(r) = N0 exp

(
−r − r0

H

)
. (6.14)

The slant delay may be either the hydrostatic or wet delay. The assumption of
an exponential refractivity profile is justified for the hydrostatic refractivity. The
effective height H is then close to the scale height as shown in App. C. For the
wet refractivity profile this assumption is weaker.

The zenith delay corresponding to the exponential profile follows from inte-
gration as the two-parameter expression:

Dz = 10−6N0H. (6.15)

By reparameterizing

u
.
=

r − r0

H
; du =

1

H
dr ; k

.
= 2

H

r0
, (6.16)

and approximating

(
r

r0

)2

≈ 1 + 2
r − r0

r0
= 1 + ku, (6.17)

the slant delay can be rewritten as:

Ds = 10−6N0H

∫ ∞

0
exp(−u)[cos2 z0 + ku]−

1

2 du. (6.18)
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Now it is convenient to write the slant delay as the product of the zenith delay
and a mapping function. The mapping function is thus defined as:mapping

function

M(z0)
.
=

Ds(z0)

Dz
. (6.19)

Further reparameterizing

α
.
= cos z0 ; x

.
= k · α−2, (6.20)

then gives an integral expression of the mapping function:

M(α) = α−1

∫ ∞

0
exp(−u)[1 + xu]−

1

2 du. (6.21)

To evaluate this integral, a computational trick is used, as given in [Wall, 1948] at
page 352, that starts by writing this integral as

M(α) =
α−1

Γ(a)

∫ ∞

0
exp(−u)ua−1[1 + xu]−bdu ; a = 1, b =

1

2
, (6.22)

where

Γ(a)
.
=

∫ ∞

0
exp(−u)ua−1du = (a − 1) · Γ(a − 1)

a∈IN+

= (a − 1)! (6.23)

is the well-known Gamma function. Expanding the denominator of Eq. (6.22) andGamma
function integrating each term using Eq. (6.23) leads to:

M(α) =
α−1

Γ(a)

∫ ∞

0
[1 − bux + b(b + 1)

u2x2

2!
− b(b + 1)(b + 2)

u3x3

3!
+ ...] ·

· exp(−u)ua−1du

=
α−1

Γ(a)
[Γ(a) − Γ(a + 1)bx + Γ(a + 2)b(b + 1)

x2

2!
− ...]

= α−1[1 − abx + a(a + 1)b(b + 1)
x2

2!
− ...]

.
= α−1P (a, b). (6.24)

By comparing term by term, one may find the following relation:

P (a, b) = P (a, b + 1) + axP (a + 1, b + 1). (6.25)

This relation holds for any a and b. If we choose a ← b and b ← a (‘←’ denotes
assignment), we also have the relation:

P (b, a) = P (b, a + 1) + bxP (b + 1, a + 1). (6.26)

Here we may assign b ← b+1 and apply the obvious relation P (p1, p2) = P (p2, p1)
for all three terms:

P (a, b + 1) = P (a + 1, b + 1) + (b + 1)xP (a + 1, b + 2). (6.27)

Now, after defining

P2n
.
= P (a + n, b + n);

P2n+1
.
= P (a + n, b + n + 1), n = 0, 1, 2, ...,

(6.28)
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and assigning a ← a + n and b ← b + n in Eqs. (6.25) and (6.27), more general
relations can be found:

P2n = P2n+1 + (a + n)xP2n+2;
P2n+1 = P2n+2 + (b + n)xP2n+3.

(6.29)

For n = 0, after multiplying with α and back substitution of k/α2 = x, the first
relation of Eq. (6.29) becomes:

αP0 = αP1 + akP2/α ⇒ α
P0

P1
= α +

ak

αP1/P2
. (6.30)

And similarly for the second relation of Eq. (6.29) we have:

α
P1

P2
= α +

bk

αP2/P3
. (6.31)

Returning to the mapping function of Eq. (6.24), with a = 1 and b = 1/2 we can
apply these relations to find the continued-fractions expression:

M(α) = α−1P (1,
1

2
) = α−1P (

1

2
, 1) = α−1 P (1

2 , 1)

P (1
2 , 0)

.
=

P1

αP0
|a= 1

2
,b=1

=
1

αP0/P1
=

1

α +
ak

αP1/P2

=
1

α +
ak

α +
bk

αP2/P3

. (6.32)

This fraction continues in the term αP2/P3 by applying the relations of Eq. (6.29)
with n = 1, 2, .... By back substitution of cos z0 = α, we finally find a general
expression for the mapping function as also found in [Marini, 1972]:

M(z0) =
1

cos z0 +
a

cos z0 +
b

cos z0 +
c

...

, (6.33)

with a, b, and c newly defined constants. Theoretically these would have to be
a ← ak = H/r0, b ← bk = 2H/r0, c ← (a + 1)k = 3H/r0.... Equation (6.33) may
also be written in the convenient notation:

M(z0) =
1

cos z0+

a

cos z0+

b

cos z0+

c

...
. (6.34)

One of the disadvantages of this mapping function is that it is not equal to unity in
the zenith direction. This is an immediate result of the approximation of Eq. (6.13).
To overcome this problem, in [Chao, 1974] the following type of mapping functionChao

mapping
function

was suggested:

M(z0) =
1

cos z0+

a

cot z0 + b
. (6.35)

The wet mapping function has constants a = 0.00035 and b = 0.017.

For elevations in the range of 20◦ − 60◦, cot z0 does not approach cos z0 quickly
enough, even if the fraction is extended with another term as in [Davis et al., 1985]:Davis

mapping
function M(z0) =

1

cos z0+

a

cot z0+

b

cos z0 + c
. (6.36)
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Figure 6.3 Example of a mapping function: Chao’s wet mapping function.

The most recent mapping functions are those of Ifadis (1992), Herring (1992), andMapping
functions of
Ifadis,
Herring,
Niell

Niell (1996). They use the following type of the mapping function:

M(z0) =
1 + a/(1 + b/(1 + c))

cos z0+

a

cos z0+

b

cos z0 + c
. (6.37)

Apart from different representations, the mapping functions may differ in para-
meterization of the coefficients a, b, and c. Since these parameters depend on
the quotient of the scale height and the radius of the earth (the constant k), best
fits are to be found from either standard profiles or profiles from radiosonde data.
From now on the index 0 of the zenith angle will be omitted.

6.5 Modern troposphere mapping functions

Most of the recently developed troposphere delay models use mapping functions
in the form of continued fractions. The model of [Saastamoinen, 1972] does not
use a mapping function in the same sense as the models with continued fractions.
Only after the development of models that do make use of continued fractions,
the term mapping function has become current. Most of the modern models have
separated mapping functions for the hydrostatic and the wet part. The total slant
delay thus becomes:total slant

delay

Ds
t = Mh(z)Dz

h + Mw(z)Dz
w. (6.38)

In this section four models with modern mapping functions are given
[Davis et al., 1985], [Ifadis, 1992], [Herring, 1992], [Niell, 1996]. Davis’ model is
limited to a hydrostatic mapping function. Those of Ifadis, Herring, and Niell
each include a hydrostatic and a wet mapping function. The models of Davis,
Herring, and Niell are named CfA-2.2, MTT, and NMF respectively.

6.5.1 The CfA-2.2 mapping function

The CfA-2.2 mapping function [Davis et al., 1985] was designed to achieve sub-CfA-2.2

centimeter accuracy at 5◦ elevation. The parameters a, b, and c in Eq. (6.36)
are determined by a least-squares fit on 57 raytrace analyses for various values
of a limited number of atmospheric conditions. Their raytrace algorithm was
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based on a spherically symmetric, layered atmosphere. The temperature profile
was taken to have a linear dependence with height up to the tropopause above
which the temperature was assumed constant. Other assumptions are: hydrostatic
equilibrium, constant relative humidity up to 11 km and zero above that height,
and an acceleration due to gravity that is independent of height. The constants in
the CfA-2.2 mapping function read:

a = 0.001185[1 + 0.6071 · 10−4(P0 − 1000) − 0.1471 · 10−3e0

+ 0.3072 · 10−2(T0 − 20) + 0.1965 · 10−1(β − 6.5)
− 0.5645 · 10−2(hT − 11.231)];

b = 0.001144[1 + 0.1164 · 10−4(P0 − 1000) + 0.2795 · 10−3e0

+ 0.3109 · 10−2(T0 − 20) + 0.3038 · 10−1(β − 6.5)
− 0.1217 · 10−1(hT − 11.231)];

c = −0.0090,

(6.39)

with:

P0 : total surface pressure [mbar];
e0 : surface partial pressure of water vapor [mbar];
T0 : surface temperature [◦C];

β : temperature lapse rate [K km−1];
hT : height of the tropopause [km].

6.5.2 The Ifadis mapping functions

In [Ifadis, 1992] a hydrostatic mapping function is presented that can be used down
to 2◦ elevation. Ifadis raytraced real weather profiles from various sites distributed
over large areas of the world and with different climatic conditions. For most of
the stations, Ifadis had a three-years database in the period 1978–1984. The global
hydrostatic mapping function derived from raytracing these data has the following
constants:

a = 0.1237 · 10−2 + 0.1316 · 10−6(P0 − 1000) + 0.8057 · 10−5√e0

+ 0.1378 · 10−5(T0 − 15);
b = 0.3333 · 10−2 + 0.1946 · 10−6(P0 − 1000) + 0.1747 · 10−6√e0

+ 0.1040 · 10−6(T0 − 15);
c = 0.078.

(6.40)

The nonhydrostatic mapping function has the constants [Mendes, 1999]:

a = 0.5236 · 10−3 + 0.2471 · 10−6(P0 − 1000) − 0.1328 · 10−4√e0

+ 0.1724 · 10−6(T0 − 15);
b = 0.1705 · 10−2 + 0.7384 · 10−6(P0 − 1000) + 0.2147 · 10−4√e0

+ 0.3767 · 10−6(T0 − 15);
c = 0.05917,

(6.41)

with:

P0 : total surface pressure [mbar];
e0 : surface partial pressure of water vapor [mbar];
T0 : surface temperature [◦C].

6.5.3 The MTT mapping functions

The MTT mapping functions [Herring, 1992], based on the type given byMTT



I 6.Slant-delay models 47

Eq. (6.37), can be used to represent the elevation angle dependence of the tro-
pospheric delay with an RMS of less than 0.2 mm for elevation angles larger than
3◦. Herring determined expressions for the coefficients in Eq. (6.37) from ray-
tracing radiosonde data at ten locations in the US located near VLBI stations.
“The raytracing was performed at sixteen elevation angles between 3◦ and 90◦.
(...) For each raytrace the pressure was determined assuming hydrostatic equilib-
rium, and the path of the integration was determined from the total refractivity
and its gradients at each point along the path. The delays along the path were
accumulated separately for the part of the refractivity associated with the hydro-
static component of the refractivity, the residual wet component, and geometric
contribution from the bending of the ray. The first ray was in the zenith direction
and these zenith delays were used to determine the hydrostatic and wet mapping
functions. The geometric bending terms were added to the hydrostatic delay part.
After each set of ray traces was performed, the coefficients in the mapping function
were determined by a least squares fitting, separately for the hydrostatic and wet
components. The RMS fit of the mapping to hydrostatic delay was consistently to
about 0.15 mm and to the wet delay typically less than 0.1 mm. The coefficients
from each location were analyzed and deduced as a function of latitude (range
used: 27◦ N to 65◦ N), height of the site (range used: 0 to 1.6 km) and surface
temperature.” The coefficients for the hydrostatic mapping function are:

a = [1.2320 − 0.0139 cos φ − 0.0209 h0 + 0.00215(T0 − 10)] · 10−3;
b = [3.1612 − 0.1600 cos φ − 0.0331 h0 + 0.00206(T0 − 10)] · 10−3;
c = [71.244 − 4.293 cos φ − 0.149 h0 − 0.0021(T0 − 10)] · 10−3.

(6.42)

For the wet mapping function the coefficients are:

a = [0.583 − 0.011 cos φ − 0.052 h0 + 0.0014(T0 − 10)] · 10−3;
b = [1.402 − 0.102 cos φ − 0.101 h0 + 0.0020(T0 − 10)] · 10−3;
c = [45.85 − 1.91 cos φ − 1.29 h0 + 0.015(T0 − 10)] · 10−3,

(6.43)

where:

φ : latitude [deg];
h0 : height of the observing station [km];
T0 : surface temperature [◦C].

6.5.4 The NMF and IMF mapping functions

Niell (1996) recognized that mapping functions like those of CfA-2.2, MTT, and
Ifadis (1992) all depend on surface temperatures, which are much more variable
than those at higher altitudes both diurnally and on longer time scales, resulting
in an error in the mapping. Therefore, Niell aimed at developing New Mapping
Functions (NMF) that are independent of surface meteorological parameters.
As shown in Sect. 6.4, the coefficients of the mapping functions depend on the
thickness of the troposphere (ratio of scale height and radius of the earth). This
thickness varies with latitude and season. The hydrostatic mapping function
(NMFh) of Niell only depends on latitude, day-of-year (DOY), and height. Thelatitude,

DOY, height wet mapping function (NMFw) varies solely with latitude because the water
vapor is not in hydrostatic equilibrium and the height distribution of the water
vapor is not expected to be predictable from the station height. Niell used nine
temperature and relative humidity profiles of the US Standard Atmospheres,
one for north latitudes of 15◦ for the whole year, and two for north latitudes
of 30◦, 45◦, 60◦, and 75◦, for the months January and July as tabulated in
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[Cole et al., 1965]. These profiles and relative humidities accompanying them
cover almost the full range of latitude north of the equator and represent averages
over longitude (for North America). Mapping functions developed from them may
provide a global description of the variation of path lengths with elevation angle if
assumed that the southern and northern hemispheres are anti-symmetric in time.
The nine profiles were raytraced at (also) nine different elevation angles between
3◦ and 90◦ to give both the hydrostatic and wet path delays. A least-squares fit
to the values of each of the elevation angles was made for the three coefficients
for each of the profiles with residuals not larger than 1 mm. The NMF mappingNMF

functions [Niell, 1996] can, like those of MTT, be used for elevation angles down
to 3◦.

coeff. φ = 15◦ φ = 30◦ φ = 45◦ φ = 60◦ φ = 75◦

aavg 1.2769934e-3 1.2683230e-3 1.2465397e-3 1.2196049e-3 1.2045996e-3

bavg 2.9153695e-3 2.9152299e-3 2.9288445e-3 2.9022565e-3 2.9024912e-3

cavg 62.610505e-3 62.837393e-3 63.721774e-3 63.824265e-3 64.258455e-3

aamp 0.0 1.2709626e-5 2.6523662e-5 3.4000452e-5 4.1202191e-5

bamp 0.0 2.1414979e-5 3.0160779e-5 7.2562722e-5 11.723375e-5

camp 0.0 9.0128400e-5 4.3497037e-5 84.795348e-5 170.37206e-5

awet 5.8021897e-4 5.6794847e-4 5.8118019e-4 5.9727542e-4 6.1641693e-4

bwet 1.4275268e-3 1.5138625e-3 1.4572752e-3 1.5007428e-3 1.7599082e-3

cwet 4.3472961e-2 4.6729510e-2 4.3908931e-2 4.4626982e-2 5.4736038e-2

Table 6.1 Coefficients of the NMF hydrostatic and wet mapping functions.

The coefficient a of the hydrostatic mapping function is calculated as:

ahyd(φi, DOY) = aavg(φi) + aamp(φi) cos

[
2π

DOY − 28

365.25

]
, (6.44)

with φi the tabular latitude (Table 6.1) and DOY the time from January 0.0 in
UT days. Similar expressions can be given for the other two coefficients.

The sensitivity of the hydrostatic mapping function to height above mslsensitivity to
height was determined by beginning the raytrace of each of the nine standard profiles

with the values of pressure, temperature, and relative humidity at 1 km and 2 km
altitude. The height correction is given as:

∆M(z) =
dM(z)

dh
h0, (6.45)

with

dM(z)

dh
= sec(z) − M(z, aht, bht, cht), (6.46)

as an empirically chosen form. The coefficients aht = 2.53e − 5, bht = 5.49e − 3,
and cht = 1.14e−3 were determined by a least-squares fit to the height corrections
at the nine elevation angles.

To use the mapping function for any latitude, linear interpolation betweenlinear
interpolation the coefficients is required. Above 75◦ the same coefficients may be used as

those at 75◦. Between 15◦ N and 15◦ S, the coefficients may be considered constant.
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Recently, Niell demonstrated new mapping functions of the form of Eq. (6.37)
called IMFh and IMFw (Isobaric Mapping Functions); [Niell, 2000], [Niell, 2001].IMF

Especially IMFh showed a clear improvement. The coefficients are evaluated in
cos(2φ) terms and geopotential heights of the 200-mbar isolines, the minimum
pressure level that seemed available that also showed the highest correlation
with radiosonde-derived mapping functions of 28 sites at 5◦ elevation. Exact
parameterizations were not yet published.

6.6 NWP-derived slant delays

Numerical Weather Prediction (NWP) models like HIRLAM (High Resolution
Limited Area Model) provide an external source for determining STDs. Combining
Eqs. (5.1) and (5.2) gives for the ZHD:

Dz
h = 10−6k1Rd

∫ P0

0

1

g
dP, (6.47)

and combining Eqs. (5.10), (5.11), (5.16), (5.2), and (4.15) gives for the ZWD:

Dz
w = 10−6Rv

∫ P0

0
(k

′

2 +
k3

T
)

q

g
dP. (6.48)

In NWPs at a pressure level i, the temperature Ti, specific humidity qi, and pres-
sure Pi are known. The gravity gi can be computed from a standard function. The
ZHD and ZWD can thus be approximated by:

Dz
h ≈ 10−6k1Rd

∑

i

1

gi
∆Pi (6.49)

and

Dz
w ≈ 10−6Rv

∑

i

(k
′

2 +
k3

Ti
)

qi

gi
∆Pi, (6.50)

where ∆Pi = P
1/2
i+1 − P

1/2
i is the difference of the pressures at half levels: P

1/2
i+1 =

1
2(Pi+1 − Pi). The slant delays can be derived by [De Haan et al., 2001]:

Ds
h ≈ 10−6k1Rd

∑
i

∆si

∆hi

1

gi
∆Pi;

Ds
w ≈ 10−6Rv

∑
i

∆si

∆hi
(k

′

2 +
k3

Ti
)
qi

gi
∆Pi,

(6.51)

where ∆hi is the thickness of layer i and ∆si is the slant distance through the layer.

NWPs can also be used to improve the mapping functions, especially the hydro-
static one. They can be obtained by raytracing the more realistic atmospheric
profiles from the NWP. These direct mapping functions [Rocken et al., 2001] are
especially important when low-elevation observations are used.
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Chapter 7

Azimuthal asymmetry and gradient
parameters

Up till now the atmosphere was considered to be horizontally layered and az-
imuthal symmetric. Although for most applications this assumption is appropriate,
azimuthal asymmetry may introduce significant errors in geodetic measurementsazimuthal

asymmetry where high precision is required. Some of the first publications about the effect of
horizontal refractivity gradients were [Gardner, 1977] and [Iyer and Bufton, 1977].
A way to model the asymmetry is to assume a tilted atmosphere; see Fig. 7.1. In a
tilted atmosphere the refractivity N as function of height h and horizontal position
~x reads:

N(~x, h) = N(0, h) + ∇ ~N · ~x, (7.1)

where the gradient vector is defined as:

∇ ~N
.
=

∂N

∂~x

∣∣∣∣
~x=0

. (7.2)

The dot in Eq. (7.1) denotes an inproduct. The tropospheric delay in an azimuthal
asymmetric atmosphere can be given as the sum of the delay we would have in a
symmetric atmosphere and a correction term owing to the azimuthal asymmetry:

Dasym(α, z) = Dsym(z) + Daz(α, z). (7.3)

The correction term follows from Eq. (7.1) as:

Daz = 10−6

∫ ∞

0
∇ ~N · ~x ds. (7.4)

The vector ~x is in the projected slant direction (projection on the surface). Because
we have both |~x| ≈ h tan z and ds ≈ M(z)dh, Daz can be approximated as:

Daz ≈ M(z) tan z ~γ · ~e, (7.5)

where ~e
.
= [cosα; sinα] is a unit vector in the direction of ~x, and

~γ
.
= 10−6

∫ ∞

h0

∇ ~N h dh (7.6)

is the gradient vector in the opposite direction of the projected normal with com-
ponents ~γ

.
=

[
γN , γE

]
. The first part of Eq. (7.5), M(z) tan z, is a (mapping)

function of the zenith angle. The second part is the azimuth (α) dependent gra-
dient part:

γ(α)
.
= ~γ · ~e = γN cos α + γE sin α. (7.7)
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The gradient delay is thus composed of a north and an east parameter describ-
ing the azimuth dependence. The combined Model (7.5)/(7.7) was given in
[MacMillan, 1995] and [MacMillan and Ma, 1997]. Using the above given defi-
nition, a slant gradient delay is a product of a gradient mapping function Maz(z)
and gradient delay γ(α):

Daz(α, z) = Maz(z) γ(α). (7.8)

satellite

zenith

normal

z

∈

↑

→

h

x

N
1

N
2

surface

satellite

East

normal

North

α

β

Figure 7.1 Tilted atmosphere with lines of equal refractivity N1 and N2.

In analogy to the symmetric case, the ‘asymmetric’ delay in the slant direction is
also a product of a mapping function and, in this case, the delay in the direction
of the normal Dn ≈ Dz [De Munck, 1991]:

Dasym = M(z − ε cos β)Dn ≈ [M(z) − dM(z)

dz
ε cos β]Dz, (7.9)

where β is the angle between the projected normal and the projected slant direc-
tion. The approximation is allowed because ε cos β is small. From Eqs. (7.3) and
(7.9) now follows:

Daz ≈ −dM(z)

dz
· Dzε cos β. (7.10)

So, if the radio signal is received from the same direction as the normal, the total
delay is smallest, caused by a thinner atmosphere. Because the mapping function
is approximately M(z) ≈ sec z, and so dM(z)/dz ≈ sec z tan z, from Eqs. (7.5),
(7.7), and (7.10) can be seen that ~γ · ~e = |~γ| · 1 · cos β ≈ −Dzε cos β. So the
length of the gradient vector is about |~γ| ≈ Dz |ε|, which is an upper bound of theupper bound

gradient delay for a particular azimuth.

In [Chen and Herring, 1997] an azimuthal mapping function is given as:azimuthal
mapping
function Maz(z) =

1

cos z cot z+

C1

cos z cot z+

C2

cos z cot z + ...
. (7.11)

The derivation of this mapping function is however not done in the same strict
way as in Sect. 6.4. In fact, they truncated this mapping function after the first
constant:

Maz(z) =
1

cos z cot z + C
, (7.12)
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where C = 0.0032. The same type of mapping function could have been found
by truncating M(z) tan z after the first constant. In [Bar-Sever et al., 1998]
M(z) tan z was chosen as a mapping function. They stated that essentially no
different results were found in GPS Precise Point Positioning with M(z) the wet
or hydrostatic mapping function.
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Figure 7.2 Gradient mapping function of Chen and Herring.

Hydrostatic gradients produced by pressure or dry temperature gradients have a
large spatial scale of about 100 km and a temporal scale of days. Wet atmosphere
gradients have a smaller spatial scale (<10 km) and can vary more rapidly on timespatial and

temporal
scale

scales of hours or less and are a function of water vapor content and temperature
[MacMillan, 1995]. GPS or VLBI estimates of gradient delays cannot be separated
into a wet and a hydrostatic component. With WVRs however, estimates of only
wet gradients can be derived. In [Davis et al., 1993], average values were found
of approximately 1 mm for |~γ| in Onsala. The largest value was approximately
8 mm. Bar-Sever et al. (1998) report hydrostatic gradients of about 0.6 mm
from GPS estimates by comparing total gradients with wet gradients obtained by
WVR-based estimates.

The model of [Davis et al., 1993] was slightly more complicated. They rec-
ognized that symmetric mapping functions are evaluated at unrefracted zenith
angles, where in fact tan z depends on the refracted zenith angle. They used an
approximation for the bending:

τ ≈ − tan z∆n = − tan z · 10−6N0. (7.13)

The tangent of the refracted zenith angle then is:

tan(z + τ) = tan z + sec2 z · τ = tan z[1 − 10−6N0 sec2 z]. (7.14)

Therefore, instead of the mapping function M(z) tan z, they used the function
M(z) tan z[1 − 10−6N0 sec2 z]. As can be seen from Fig. 7.2, gradients become
increasingly influential at lower elevation angles.

In Part II the parameterization of troposphere gradients in GPS observa-
tion models is given.
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Chapter 8

Conclusions of Part I

The neutral part of the atmosphere delays radio signals like those used in space
geodetic measurements. The delay is caused by the refractivity of dry-air and
water-vapor molecules. Both are the result of induced molecular polarization, but
water vapor also has a permanent dipole moment. Usually a distinction is made
between a hydrostatic delay and a wet delay. The hydrostatic delay is caused by
a mixture of dry air and water vapor that is considered to be in a hydrostatic
equilibrium. The remaining delay is caused by water vapor.

We express these delays in metric units by multiplying them with the speed of
light. The hydrostatic delay is about 2.20–2.40 m in the zenith direction, whereas
the wet delay can range from 0–40 cm. Based on the surface pressure, the
hydrostatic delay can be predicted with high accuracy. The zenith wet delay can
only be determined with an accuracy of 2–5 cm based on semi-empirical models.

Air at a certain temperature can only hold a limited amount of water va-
por; the surplus of water vapor condensates. At higher temperatures, the air can
contain more water vapor. Since the temperature in the troposphere generally
decreases with height, the saturated water-vapor pressure also decreases with
height. This causes the water-vapor pressure to drop faster with increasing
height than the pressure of dry air. The effective height or thickness of the wet
troposphere is therefore smaller than the effective height of the dry troposphere.

The wet and hydrostatic slant tropospheric delays can be modeled as prod-
ucts of a zenith delay and a mapping function. In a flat horizontally layered
atmosphere the mapping function is the secant of the zenith angle. In a curved
atmosphere the mapping function is smaller, especially at larger zenith angles.
How much smaller depends on the thickness of the atmosphere. Because the
effective height of the dry troposphere is larger than the effective height of the
wet troposphere, different mapping functions should be used for the wet and
hydrostatic delays. Several mapping functions have been developed in the last
three decades. Most of them, especially the newer ones, are described by a
continued fraction. The constants in these mapping functions are functions of
parameters like temperature, pressure, latitude, height, etc. The effective heights
are also functions of these parameters, but are not explicitly derived.

All these mapping functions are based on the assumption of a symmetric,
horizontally stratified, atmosphere. Because this assumption generally does not
hold, the delay models are sometimes refined by gradients. Gradients and zenith
wet delays are often parameterized in observation models used for space geodetic
measurements (see Part II and Part IV for parametrization and estimation of
GPS parameters).
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component model/author(s) Eq./Table parameters

STD Saastamoinen Eq. (6.11) P0, T0, e0, B(r)

ZHD Davis et al. Eq. (5.8) P0, h0, φ
ZHD Elgered et al. Eq. (5.9) P0, h0, φ

ZWD Askne & Nordius Eqs. (5.22) and (5.12) T0, e0, λ, µ
ZWD Baby et al. Eq. (5.30); Table 5.1 T0, rh0, γ

Mw(z) Ifadis Eqs. (6.37) and (6.41) P0, T0, e0

Mw(z) Herring (MTT) Eqs. (6.37) and (6.43) T0, h0, φ
Mw(z) Niell (NMFw) Eq. (6.37); Table 6.1 φ

Mh(z) Ifadis Eqs. (6.37) and (6.40) P0, T0, e0

Mh(z) Herring (MTT) Eqs. (6.37) and (6.42) T0, h0, φ
Mh(z) Niell (NMFh) Eqs. (6.37) and (6.44–

6.46); Table 6.1
φ, DOY, h0

Mh(z) Davis et al. (CfA2.2) Eqs. (6.36) and (6.39) P0, T0, hT

P0, T0 US 1976 Eq. (4.41) -
e0 = rh0·esat Baby/US 1976 Eq. (4.44) T0, rh0, h0, β

Table 8.1 Discussed model components. The parameters are: P0: surface pressure; T0: surface
temperature; e0: surface partial pressure of water vapor; rh0: surface relative humidity; h0:
station height above msl; hT : height of tropopause above msl; φ: station latitude; DOY :
Day Of Year; B(r): tabular value; γ, λ, µ: model constants; β: temperature lapse rate.

Table 8.1 shows the most important model components as given in this part.state of the
art Several good mapping functions exist, but the mapping functions NMFh and

NMFw of Niell (1996) are nowadays most often used and considered ‘state of the
art’. Their popularity is mainly due to the parameterization in latitude, height,
and DOY instead of in meteorological parameters. New developments, however,
show possible improvements by using actual atmospheric data. The ZHD of
Elgered et al. (1991) is now used most often and can also be considered ‘state of
the art’. It is however important to have good (surface) pressure values available
to determine this ZHD. For the ZWD several models exist, but none of them is
good enough for precise applications.

Part I is mainly the result of study of literature and consists of a compila-contribution

tion and overview of the important model components and the retrieval of their
origin. Especially the derivation of the general form of a mapping function as
continued fraction is clarified with respect to the Marini (1972) paper.



Appendix A

Temperature lapse rate

In this appendix derivations are given of the dry-adiabatic lapse rate and the
saturated-adiabatic lapse rate. The first one is a(n ideal) lapse rate in unsaturated
air. The latter one is the lapse rate in saturated air. The derivation follows
[Haltiner and Martin, 1957] and is based on the first law of thermodynamics, which
is displayed here first.

A.1 First law of thermodynamics

The first law of thermodynamics states that “heat added to a system must equal
the change in the internal energy of the system plus the work1 done by the system”
[Haltiner and Martin, 1957]. Expressed in unit mass this reads:

δH = dU + δW, (A.1)

δH : infinitesimal amount of heat per unit mass [J kg−1];

dU : change in internal energy per unit mass [J kg−1];

δW : work done by unit mass of the system [J kg−1].

A.2 Dry-adiabatic lapse rate

If we consider a closed system and allow a nonviscose gas to undergo a small
expansion dV , the work done by the expansion equals (in units of mass)
[Haltiner and Martin, 1957]:

δW = Pdα. (A.2)

By differentiating the equation of state Eq. (4.1), we find another expression for
the right-hand side of Eq. (A.2):

Pdα = RidT − αdP. (A.3)

Combining these two equations gives:

δW = RidT − αdP. (A.4)

For perfect gases, which satisfy the equation of state, the internal energy is a
function of temperature alone. If the volume is kept constant while an infinitesimal
amount of heat δH is added to the gas, this heat becomes internal energy. This
added internal energy is:

dU = cvdT ; cv
.
=

(
dH

dT

)

V =constant

, (A.5)

1force × distance.
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cv : specific heat at constant volume [J kg−1K−1];
dT : change in temperature [K].

(A.6)

The specific heat is a slowly varying function of the temperature, but can bespecific heat

considered constant for atmospheric temperatures. Substituting Eqs. (A.4) and
(A.5) into Eq. (A.1) gives:

δH = (cv + Ri)dT − αdP. (A.7)

For an isobaric process we have: dP = 0. In this case we find from Eq. (A.7) byisobaric

definition the specific heat at constant pressure:

cv + Ri =

(
dH

dT

)

P=constant

.
= cp, (A.8)

cp : specific heat at constant pressure [J kg−1K−1].

Using Eqs. (4.6) and (A.8) in Eq. (A.7) gives:

δH = cpdT + gdh. (A.9)

If there is no heat exchange between the system and its environment (δH = 0),
the process is considered adiabatic. In this case Eq. (A.9) becomesadiabatic

g

cp
= −dT

dh

.
= β, (A.10)

where β is called the temperature lapse rate2. According to Eq. (A.10), the dry-lapse rate

adiabatic lapse rate is equal to:

βd =
g

cpd
≈ 9.8 K km−1, (A.11)

βd : dry-adiabatic lapse rate;

cpd : specific heat at constant pressure for dry air [1003 J kg−1K−1];

g : gravitational acceleration [9.8 m s−2].

A.3 Lapse rate in saturated air

Since external work is done when the gas expands, the loss in energy results in
a cooling of the gas. If saturated air expands adiabatically, water vapor will
condense to liquid or ice as the temperature decreases. For each gram of dry
air, the saturated air contains wsat gram water vapor. The amount of vapor
condensed during an infinitesimal change from (T, P ) to (T +∆T, P +∆P ) equals
−dwsat gram. So, the amount of water vapor decreases in the condensation process.
The latent heat released, equals −Ldwsat per (1 + wsat) gram saturated air. The
saturated-adiabatic lapse rate can now be found from (compare with Eq. (A.9)):

−Ldwsat/(1 + wsat) = cpmdT + gdh, (A.12)

with

cpm =
1

1 + wsat
cpd +

wsat

1 + wsat
cpv, (A.13)

2Sometimes the temperature lapse rate is defined as β
.
= +dT/dh.
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cpm : specific heat at constant pressure for moist air [J kg−1K−1];

cpv : specific heat at constant pressure for water vapor [1810 J kg−1K−1].

By rearranging Eq. (A.12) we find the lapse rate of saturated air:

βsat =
Lc−1

pm

1 + wsat

dwsat

dh
+

g

cpm
, (A.14)

βsat : saturated-adiabatic lapse rate [K/km].

Differentiation of the approximation Eq. (4.23) with respect to h, together with
Eqs. (4.6), (4.16), and (4.20) gives:

dwsat

dh
= −wsatL

RvT 2
βsat +

wsatg

RmT
. (A.15)

Combining Eq. (A.14) and Eq. (A.15) and using the approximations 1 + wsat ≈ 1
and Rm ≈ Rd, finally gives the following expression for the saturated-adiabatic
lapse rate:

βsat = βd
1 + Lwsat/RdT

1 + L2wsat/cpmRvT 2
. (A.16)
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Figure A.1 Saturated-adiabatic temperature lapse rate.

In Fig. A.1, Eq. (A.16) is shown graphically for P = 1000 mbar. Note the jump
at 0◦C caused by the different values for the latent heat.
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Appendix B

Saastamoinen integrals

Based on the three integrals of Eq. (6.11), Saastamoinen obtained his zenith-delay
model.

For the first integral we have:

N = N0

(
T

T0

)µ

and T = T0−β(r−r0) ⇒
{

r − r0 = −
(

T0

β

) (
T
T0

− 1
)

;

dr = − 1
β dT.

(B.1)

After some straightforward computations this results in:
∫ rT

r0

N(r − r0)dr =

∫ TT

T0

N0

(
T

T0

)µ

· −
(

T

β

) (
T

T0
− 1

)
· 1

β
dT (B.2)

=
Rd

g2
m(1 − Rdβ/gm)

[N0T
2
0 − NT T 2

T ] − Rd

gm
(rT − r0)NT TT ,

where the index T stands for values at the tropopause.

The second integral can be evaluated by using the profile of Eq. (4.43):

N = NT exp

(
−r − rT

H

)
; H =

RdTT

gm
, (B.3)

and results in:
∫ ∞

rT

N(r − rT )dr =
R2

d

g2
m

NT T 2
T . (B.4)

The third integral is similar to Eq. (5.1) and results in:

(rT − r0)

∫ ∞

rT

Ndr = (rT − r0)10−6k1
Rd

gm
PT =

Rd

gm
(rT − r0)NT TT . (B.5)

Summation of the three integral results gives the total integral:

∫ ∞

r0

N(r − r0)dr =
R2

d

g2
m

[
N0T

2
0 − (Rdβ/g2

m)NT T 2
T

1 − Rdβ/gm

]
. (B.6)

With Eqs. (5.32) and (5.33) the total Saastamoinen model then becomes:

Ds
t = 10−6 sec z0

[∫ ∞

r0

Ndr − 1

r0
tan2 z0 ·

∫ ∞

r0

N(r − r0)dr

]
⇒

Ds
t = 10−6k1

Rd

gm︸ ︷︷ ︸
0.002277

sec z0

[
P0 + (

1255

T0
+ 0.05)e0 − B(r) tan2 z0

]
, (B.7)

where

B(r)
.
=

1

r0

gm

Rd

1

k1

∫ ∞

r0

N(r − r0)dr. (B.8)
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Appendix C

Effective height

The effective height or thickness of the atmosphere is defined as:

Hm
.
=

∫ ∞
h0

(h − h0) N(h)dh
∫ ∞
h0

N(h)dh
. (C.1)

In case of an exponential refractivity profile the effective height Hm is the same
as the scale height H. But for the refractivity profile of Eq. (4.42), we have with
T = T0 − βh and the definition for µ from Eq. (4.40):

N(h) = N0

(
1 − βh

T0

)µ

⇒ lnN(h) = lnN0 + µ ln

(
1 − βh

T0

)
. (C.2)

Since ln(1−βh/T0) ≈ −βh/T0, this refractivity profile can be approximated as an
exponential one:

N(h) = N0 exp(−βh

T0
µ) = N0 exp(− h

H
), (C.3)

where

1

H
=

gm

RdT0
− β

T0
. (C.4)

H is a(n approximate) generalization of the scale height H as defined in
Eq. (4.39): for β = 0 K km−1, we have H = H. For gm = 9.784 m s−2,
Rd = 287.06 J kg−1K−1, and T0 = 288 K, we find: H = 8.45 km.
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PARAMERIZATION OF THE
TROPOSPHERIC DELAY IN

GPS OBSERVATION MODELS





Symbols in Part II

symbol meaning

A(k) partial design matrix of global parameters
A real-valued lumped phase ambiguities
α azimuth
br(k) receiver hardware delay
bs(k) satellite hardware delay
B(k) partial design matrix of batch parameters
β(k) batch parameters
c speed of light
cn n × 1 vector [1, 0, . . . , 0]′

Cn n × (n − 1) matrix with zeros and ones
d(k) differences between ZTDs
D(k) STDs
∆D(k) residual STDs
Dz(k) ZTDs
D partial design matrix of clock errors

δ(k) lumped (receiver and satellite) clock errors
δr(k) receiver clock errors
δs(k) satellite clock errors
en n × 1 vector with ones
φr initial receiver phases
φs initial satellite phases
G, G2 partial design matrices of geometry
γ(k) gradients
Γ(k) partial design matrix of gradients
Im m × m identity matrix
ı(k) ionospheric delays
k epoch number (k = 1, ..., p)
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symbol meaning

.,l index for observation type (l = 1, ..., 4 means L1, L2, P1, P2)
L 2 × 2 matrix with zeros and wavelengths
λ1, λ2 GPS carrier wavelengths
Λ 4 × 2 matrix with zeros and wavelengths
m number of satellites
M(k) partial design matrix of ZTDs (with mapping functions)
µ 4 × 1 vector with quotients of wavelengths
n number of stations
N integer phase ambiguities
IN+ space of natural numbers (1,2,...)
ν 3 × 1 vector [−µ2

2, 1, µ2
2]
′

p number of epochs
p̃ number of epochs per batch
Qy covariance matrix of y
r station coordinates
.r receiver index (r = 1, ..., n)
ρ receiver–satellite range
.s satellite index (s = 1, ..., m)
t(k) temporal parameters
T (k) partial design matrix of temporal parameters
T (k)⊥ null space of T (k)′

τ travel time of GPS signal
vk vector of predicted residuals
x global parameters
x̂ estimates of x
x lumped parameters (with no significant meaning)
x1..n [x1, ..., xn]′

x12 x2 − x1

x12..n x2..n − x1

y observations
y observables (both GPS and pseudo-observables)

y
,

GPS observables

z zenith angle



Chapter 9

Introduction to Part II

In this part, GPS observation models are described for data processing of static
geodetic networks. We focus on the functional model and discuss the stochastic
model only briefly; more about the stochastic model can be found in Part III.
Parameter estimation and hypothesis testing with these models is described
in Part IV. Special attention is given to the inclusion of troposphere parame-
ters. An extensive description of (undifferenced) observation equations without
troposphere parameters is given in [De Jonge, 1998]. This part starts with a
review. Like in [De Jonge, 1998], we distinguish global parameters, which are
constant for some time span, and temporal parameters, which change every epoch.

In Chap. 10 the nonlinear and linearized GPS observation equations are
derived and presented in matrix-vector notation. The system is rank deficient and
therefore in Chap. 11 first a full-rank model is derived. In this chapter we assume
the troposphere to be a priori corrected for (the troposphere-fixed models). We
show that the redundancy is not sufficient to estimate slant tropospheric delays
every epoch, unless the less precise code observables are used or additional
assumptions are made.

Chapter 12 deals with several kinds of parameterization of the troposphere
in the troposphere-float and weighted models. In these models the zenith delays
are the primary parameters, and gradient parameters and residual slant delays
may be estimated additionally. In the latter case we need extra soft-constraints,
whereas in the troposphere-weighted case also differences between consecutive
zenith delays are soft-constrained. Chapter 12 ends with an overview of the
possible parameterizations of the tropospheric delay.

Chapter 13 describes some troposphere and geometry-related near rank de-
ficiencies. These rank deficiencies do not occur when the satellite clocks are a
priori known as in Precise Point Positioning.

Chapter 14 shows analytic expressions of a transformation with which the
temporal parameters are pre-eliminated to obtain a smaller observation model.
The transformation is often used in GPS data-processing software and includes
double differencing and forming linear combinations to eliminate ionosphere
parameters.

This part ends with conclusions in Chap. 15.
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Chapter 10

GPS observation equations

10.1 The nonlinear functional model

In precise GPS positioning, carrier phase and often also pseudo-range observa-
tions are being used. We will assume that two pseudo-range and two carrier phase
observations are available per receiver-satellite combination at each epoch. Fur-
thermore, we assume that the satellite orbits are sufficiently known, so that we do
not need to parameterize them. We denote the observations and observables by

ys
r,l(t) and ys

r,l
(t),

respectively, where r = 1, ..., n refers to the receiver, s = 1, ..., mr refers tor, s, n

the satellite, l = 1, ..., 4 refers to the observation type and t is the time ofl
measurement in GPS time. We use l = 1 and l = 2 for the L1 and L2 carrier phaseL1, L2

observations/observables and l = 3 and l = 4 for the L1 and L2 pseudo-range or
code observations/observables (P1 and P2).P1, P2

The basic GPS observation equation reads [Teunissen and Kleusberg, 1998],
[De Jonge, 1998]:

ys
r,l(t) − ỹs

r,l(t) = ρs
r(t, t − τ s

r )

+ Ds
r(t)

+ ısr,l(t)

+ c · δtr(t)
− c · δts(t − τ s

r )
+ brr,l(t)
− bss

,l(t − τ s
r )

+ λ,l · N s
r,l

+ λ,l · φrr,l

− λ,l · φss
,l

+ dms
r,l(t)

+ εs
r,l(t),

(10.1)

where

ỹs
r,l(t) : sum of a-priori corrections [m];

ρs
r(t, t − τ s

r ) : geometric range [m];
Ds

r(t) : tropospheric delay [m];
ısr,l(t) : ionospheric delay [m];
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c · δtr(t) : receiver clock error [m];
c · δts(t − τ s

r ) : satellite clock error [m];
c : speed of light in vacuum [299 792 458 m/s]∗;
brr,l(t) : receiver hardware delay [m];
bss

,l(t − τ s
r ) : satellite hardware delay [m];

N s
r,l : integer-valued phase ambiguity [-];

λ,l : observation-type dependent factor [m];
φrr,l : initial phase at receiver [-];
φss

,l : initial phase at satellite [-];

dms
r,l(t) : sum of unmodeled errors [m];

εs
r,l(t) : observation noise [m].

∗ The SI value of c was defined to be this number exactly

at the 1983 Conference Generale des Poids et Mesures.

The a-priori correction term may include corrections for the satellite clock, phase
center variations, tropospheric and ionospheric delay, phase wind-up, ocean tide
loading, and solid earth tides. Unmodeled errors like multipath may occur in the
term dms

r,l(t). We assume that dms
r,l(t) = 0.

Except for the geometric range, the tropospheric delay, and the clock er-geometric
range rors, the parameters are observation-type dependent. The geometric range is

defined as the distance between the position of a satellite (rs) at time t − τ s
r and

the position of a receiver (rr) at time t:

ρs
r(t, t − τ s

r )
.
=‖ rs(t − τ s

r ) − rr(t) ‖, (10.2)

where rs and rr are 3 × 1 vectors with coordinates in an Earth Centered Inertial
system and τ s

r is the travel time, which can be approximated by

τ s
r ≈ ρs

r(t, t − τ s
r )

c
, (10.3)

if we neglect atmospheric and instrumental delays.

Like the position of the satellites, the satellite clocks and hardware delays
are also evaluated at time t − τ s

r . We assume that the satellite clocks and
hardware delays are sufficiently stable, so that observations of different receivers
have common satellite clock errors and hardware delays, although the travel time
to different receivers may differ.

The observation-type dependent factor λ,l is defined as:λ,l

λ,1
.
= λ1;

λ,2
.
= λ2;

λ,3
.
= 0;

λ,4
.
= 0,

(10.4)

where λ1 ≈ 0.19 m and λ2 ≈ 0.24 m are the wavelengths of the L1 and L2 carriers
with respective frequencies of f1 = 154 · 10.23 MHz and f2 = 120 · 10.23 MHz. In
other words, the carrier phase ambiguities and initial phases are (of course) only
present in the phase observations.

The ionospheric delay is dispersive (frequency dependent) and has a differ-
ent sign for carrier phase and pseudo-range observations. In fact, the phase
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is advanced. The relation between the ionospheric delays reads in first orderionospheric
delays approximation:

1

λ2
1

· ısr,1(t) =
1

λ2
2

· ısr,2(t) = − 1

λ2
1

· ısr,3(t) = − 1

λ2
2

· ısr,4(t). (10.5)

10.2 Linearization

In this section the nonlinear observation equations are linearized, and a matrix-
vector representation of the linearized functional model is derived. We assume
that the observation noise has zero (mathematical) expectation: E{εs

r,l(t)} = 0.E{.}
Linearizing Eq. (10.1) then gives the mathematical expectation of the observed-
minus-computed observables:

E{∆ys
r,l

(t)} =
dρs

r

dr′r
∆rr (coordinates)

+ ∆Ds
r(t) (troposphere)

+ ∆ısr,l(t) (ionosphere)

+ c · ∆δtr(t) (rec. clock errors)
− c · ∆δts(t − τ s

r ) (sat. clock errors)
+ ∆brr,l(t) (rec. hardware delays)
− ∆bss

,l(t − τ s
r ) (sat. hardware delays)

+ λ,l · ∆N s
r,l (ambiguities)

+ λ,l · ∆φrr,l (rec. init. phase)
− λ,l · ∆φss

,l (sat. init. phase),

(10.6)

where

dρs
r

dr′r
= − rs

r(t)
′

‖ rs
r(t) ‖

. (10.7)

These equations are evaluated in GPS time, whereas the actual observations are
in receiver time tr:

tr = t + δtr(t). (10.8)

Evaluation in receiver time gives rise to several more terms in the linearization of
the observation equations. For a more elaborate discussion, see [De Jonge, 1998].
We ignore the additional terms and assume that our observation equation is
equally applicable in GPS time as in receiver time. This is the case if we have
sufficient approximate values for the clock parameters (for example obtained by a
code-only solution).

Before we proceed to derive a matrix-vector representation, first some nota-
tional simplifications are made. Instead of the time instant t = tk, from now on
we refer to the epoch number k = 1, ..., p. The ∆ signs are dropped and the clockk, p

parameters are denoted by:

δrr(k) ← c · ∆δtr(t);
δss(k) ← c · ∆δts(t − τ s

r ).

The 1 × 3 matrix that describes the geometry is written as:

Gs
r(k) ← − rs

r(t)
′

‖ rs
r(t) ‖

.
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The dispersion of the ionospheric delay will be caught in a separate factor µ,l:µ,l

µ,l · ısr(k) ← ∆ısr,l(t),

where

µ,1
.
= µ1

.
= λ1/λ2 = 120/154;

µ,2
.
= µ2

.
= λ2/λ1 = 154/120;

µ,3
.
= −µ1

.
= −λ1/λ2 = −120/154;

µ,4
.
= −µ2

.
= −λ2/λ1 = −154/120,

(10.9)

and

ısr(k)
.
= µ2 · ısr,1(k)

.
= µ1 · ısr,2(k). (10.10)

So, we introduce an ionosphere parameter that is neither an ionospheric delay
(advance) at L1 nor at L2.

Introducing all of these notational simplifications in Eq. (10.6) then gives
the following linearized observation equation:

E{ys
r,l

(k)} = Gs
r(k) · rr (coordinates)

+ Ds
r(k) (troposphere)

+ µ,l · ısr(k) (ionosphere)
+ δrr(k) (rec. clock errors)
− δss(k) (sat. clock errors)
+ brr,l(k) (rec. hardware delays)
− bss

,l(k) (sat. hardware delays)

+ λ,l · N s
r,l (ambiguities)

+ λ,l · φrr,l (rec. init. phase)
− λ,l · φss

,l (sat. init. phase).

(10.11)

10.3 Matrix-vector notation

Next, we derive the functional observation model displayed in matrix-vector nota-
tion. For simplicity, we assume that at all receivers, measurements are obtained
to the same satellites, m ≡ m1 = · · · = mn, and that m does not change in time
(the latter assumption is relaxed in Part IV). For the vector of all m observablesm

from receiver r of observation type l at epoch k, the observation equations then
read:

E{y
r,l

(k)} = Gr(k) · rr (coordinates)

+ Im · Dr(k) (troposphere)
+ µ,l · Im · ır(k) (ionosphere)
+ em · δrr(k) (rec. clock errors)
− Im · δs(k) (sat. clock errors)
+ em · brr,l(k) (rec. hardware delays)
− Im · bs,l(k) (sat. hardware delays)
+ λ,l · Im · Nr,l (ambiguities)
+ λ,l · em · φrr,l (rec. init. phase)
− λ,l · Im · φs,l (sat. init. phase),

(10.12)

where Im is an m×m identity matrix, em is an m× 1 vector with all ones and theIm, em
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superscript s is dropped to denote all satellites. This is done for the observables

yr,l(k)
.
= [y1

r,l(k), . . . , ym
r,l(k)]′ ≡ y1..m

r,l (k), (10.13)

as well as for the satellite-dependent parameters (tropospheric and ionospheric
delays, satellite clock errors, hardware delays, initial phases, and ambiguities):

Dr(k) ≡ D1..m
r (k) ; δs(k) ≡ δs1..m(k) ; φs,l ≡ φs1..m

,l ;

ır(k) ≡ ı1..m
r (k) ; bs,l(k) ≡ bs1..m

,l (k) ; Nr,l ≡ N1..m
r,l .

(10.14)

The scalar parameters of Eq. (10.11) are replaced by these m × 1 vectors; the
equations are kept consistent by placing the matrices Im and em. For the receiver
clock errors, hardware delays, and initial phases we used the vector em to keep
the equations consistent, since they are not satellite dependent, and the identity
matrix Im is placed in front of the satellite-dependent parameters, whereas the
geometry matrix Gr(k) replaces Gs

r(k):

Gr(k)
.
= [G1

r(k)′, . . . , Gm
r (k)′]′ (m × 3). (10.15)

Generalizing the observation equations for all n stations gives an mn × 1 vector
of observables of observation type l at epoch k, using the Kronecker product ⊗
[Rao, 1973], see App. D:⊗ Kronecker

E{y
,l
(k)} = G(k) · r (coordinates)

+ [In ⊗ Im] · D(k) (troposphere)
+ µ,l · [In ⊗ Im] · ı(k) (ionosphere)
+ [In ⊗ em] · δr(k) (rec. clock errors)
+ [−en ⊗ Im] · δs(k) (sat. clock errors)
+ [In ⊗ em] · br,l(k) (rec. hardware delays)
+ [−en ⊗ Im] · bs,l(k) (sat. hardware delays)
+ λ,l · [In ⊗ Im] · N,l (ambiguities)
+ λ,l · [In ⊗ em] · φr,l (rec. init. phase)
+ λ,l · [−en ⊗ Im] · φs,l (sat. init. phase),

(10.16)

with

G(k)
.
= diag[G1(k), . . . , Gn(k)] (mn × 3n), (10.17)

and

y,l(k) ≡ y1..n,l(k) (mn × 1) ; δr(k) ≡ δr1..n(k) (n × 1) ;
r ≡ r1..n (3n × 1) ; br,l(k) ≡ br1..n,l(k) (n × 1) ;
D(k) ≡ D1..n(k) (mn × 1) ; φr,l ≡ φr1..n,l (n × 1) ;
ı(k) ≡ ı1..n(k) (mn × 1) ; N,l ≡ N1..n,l (mn × 1) .

(10.18)

The index r is dropped (to denote all receivers) for the observables, the geometry
matrix, and all receiver-dependent parameters.

We kept the equations consistent by placing the vector en for the satellite-related
parameters and the matrix In for the other (nongeometry) parameters.

The matrix-vector notation can be taken a step further by collecting all
(four) observable types for epoch k. The observation equations then read (see
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Fig. 10.1):

E{y
,
(k)} = [e4 ⊗ G(k)] · r (coordinates)

+ [e4 ⊗ In ⊗ Im] · D(k) (troposphere)
+ [µ ⊗ In ⊗ Im] · ı(k) (ionosphere)
+ [e4 ⊗ In ⊗ em] · δr(k) (rec. clock errors)
+ [e4 ⊗−en ⊗ Im] · δs(k) (sat. clock errors)
+ [I4 ⊗ In ⊗ em] · br(k) (rec. hardware delays)
+ [I4 ⊗−en ⊗ Im] · bs(k) (sat. hardware delays)
+ [Λ ⊗ In ⊗ Im] · N (ambiguities)
+ [Λ ⊗ In ⊗ em] · φr (rec. init. phase)
+ [Λ ⊗−en ⊗ Im] · φs (sat. init. phase),

(10.19)

where

y,(k) ≡ y,1..4(k) (4mn × 1);
br(k) ≡ br,1..4(k) (4n × 1);
bs(k) ≡ bs,1..4(k) (4m × 1);
N ≡ N,1..2 (2mn × 1);
φr ≡ φr,1..2 (2n × 1);
φs ≡ φs,1..2 (2m × 1);
µ ≡ µ,1..4 (4 × 1);

Λ
.
=




λ1 0
0 λ2

0 0
0 0


 (4 × 2).

(10.20)

r D(k) ι (k)

δr(k) δs(k)

br(k) bs(k) N φr φs

y
,1

(k)

y
,2

(k)

y
,3

(k)

y
,4

(k)

Figure 10.1 Sparsity structure of rank-deficient design matrix of Eq. (10.19) for m = 6 satellites and
n = 3 stations. Corresponding parameters are shown at the top; corresponding observations
are shown at the right.

Note that we left the comma as index of the ‘stripped’ y,(k) vector. Thisy,(k)

notation is used for the GPS observables. We may also add pseudo-observables
to our observation equations. A vector with both GPS observables and pseudo-
observables for epoch k is written as y(k) without comma. Since there are no
pseudo-observables introduced yet, y,(k) ≡ y(k) for the moment.

The stochastic model of the observables at epoch k is written symbolically
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as:

D{y
,
(k)} = Qy,(k), (10.21)

where D{.} denotes the mathematical dispersion.D{.}

The last step in deriving a model in matrix-vector notation is collecting all
epochs. The vector of all GPS observables then reads:

y
,
≡ y

,
(1..p) (4mnp × 1). (10.22)

We assume there is no correlation between the epochs:

D{y
,
} = diag[Qy,(1), . . . , Qy,(p)]. (10.23)

We can distinguish global and local parameters, as suggested in [De Jonge, 1998].global
parameters Global parameters are considered constant over the complete time span whereas

local parameters are estimated for each epoch. Instead of local parameters we will
speak of temporal parameters, which gives a better feel for the behavior of thesetemporal

parameters parameters in time. Coordinates, ambiguities, and initial phases are considered to
be global parameters; clock parameters and tropospheric, ionospheric, and hard-
ware delays are considered to be temporal parameters. With these assumptions
the complete functional model for all epochs now reads:

E{y
,
} = G · r (coordinates)

+ [Ip ⊗ e4 ⊗ In ⊗ Im] · D (1..p) (troposphere)
+ [Ip ⊗ µ ⊗ In ⊗ Im] · ı (1..p) (ionosphere)
+ [Ip ⊗ e4 ⊗ In ⊗ em] · δr (1..p) (rec. clock errors)
+ [Ip ⊗ e4 ⊗ −en ⊗ Im] · δs (1..p) (sat. clock errors)
+ [Ip ⊗ I4 ⊗ In ⊗ em] · br (1..p) (rec. hardware delays)
+ [Ip ⊗ I4 ⊗ −en ⊗ Im] · bs (1..p) (sat. hardware delays)
+ [ep ⊗ Λ ⊗ In ⊗ Im] · N (ambiguities)
+ [ep ⊗ Λ ⊗ In ⊗ em] · φr (rec. init. phase)
+ [ep ⊗ Λ ⊗ −en ⊗ Im] · φs (sat. init. phase),

(10.24)

where

G
.
= [e′4 ⊗ G(1)′, . . . , e′4 ⊗ G(p)′]′ (4mnp × 3n). (10.25)

For the global parameters we introduced the vector ep, and for the temporal pa-
rameters we used the matrix Ip. A very similar model can be derived when only
the phase observables are used. The model then reads:

E{y
,
} = G2 · r (coordinates)

+ [Ip ⊗ e2 ⊗ In ⊗ Im] · D (1..p) (troposphere)

+ [Ip ⊗
(

µ1

µ2

)
⊗ In ⊗ Im] · ı (1..p) (ionosphere)

+ [Ip ⊗ e2 ⊗ In ⊗ em] · δr (1..p) (rec. clock errors)
+ [Ip ⊗ e2 ⊗ −en ⊗ Im] · δs (1..p) (sat. clock errors)
+ [Ip ⊗ I2 ⊗ In ⊗ em] · br (1..p) (rec. hardware delays)
+ [Ip ⊗ I2 ⊗ −en ⊗ Im] · bs (1..p) (sat. hardware delays)
+ [ep ⊗ L ⊗ In ⊗ Im] · N (ambiguities)
+ [ep ⊗ L ⊗ In ⊗ em] · φr (rec. init. phase)
+ [ep ⊗ L ⊗ −en ⊗ Im] · φs (sat. init. phase),

(10.26)
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where:

G2
.
= [e′2 ⊗ G(1)′, . . . , e′2 ⊗ G(p)′]′ (2mnp × 3n);

y, ≡ y,(1..p) (2mnp × 1);
br(k) ≡ br,1..2(k) (2n × 1);
bs(k) ≡ bs,1..2(k) (2m × 1);
L

.
= diag[λ1, λ2] (2 × 2).

(10.27)

Both models contain rank deficiencies. In other words, there is more than one
solution to these equations. In the next chapter, we start with a simpler model
where the tropospheric delays are considered to be a priori corrected for, and derive
a full-rank model with estimable parameters.



Chapter 11

Eliminating rank deficiencies in
troposphere-fixed models

11.1 Introduction

In troposphere-fixed models, the GPS observations are a priori corrected for
tropospheric delays. This means that instead of parameterizing the tropospheric
delays, as in a troposphere-float model, some a-priori model, like Saastamoinen’s
[Saastamoinen, 1972], is used to correct the observations (for an elaborate
discussion on these kinds of models, see Part I). In Eq. (10.1), the term ỹs

r,l(t)
includes such a correction. Although this correction term may also be used in
a troposphere-float model, in troposphere-fixed models this a-priori model is
assumed errorless. The troposphere-fixed models are typically applicable for small
baselines, whereas troposphere-float models are suitable for long baselines.

In this chapter, full-rank troposphere-fixed models are described. In Sect. 11.2
we point out the rank-deficient parts of the design matrix and describe full-rank
models. Since the troposphere-float model is an extension of the troposphere-fixed
model, these rank deficiencies are common for both types of models.

The definitions for ‘fixed’ and ‘float’ can also be applied for the ionosphere
[Odijk, 2000]. Our troposphere-fixed model for the moment will in fact be an
ionosphere-float model. The ionosphere-fixed and ionosphere-weighted models are
briefly discussed in Sect. 11.3. The full-rank partial design matrices are shown in
Tables 11.1–11.3. In Sect. 11.4 we show the redundancy that is left to model the
troposphere. Finally, in Sect. 11.5, we show how the partial design matrices can
be gathered in matrix blocks for global, temporal, and batch parameters.

11.2 Eliminating basic rank deficiencies (ionosphere-float)

For a rank-deficient matrix A = [A1, A2, A3], where the columns of A1 are a linearA1, A2

combination of the columns of A2, for some V 6= 0 holds:V

A1 = A2V. (11.1)

Eliminating the columns of A1 leaves a design matrix [A2, A3] with a smaller rank
deficiency. The linear combination y = A1x1 + A2x2 + A3x3 then transforms into
y = A2x + A3x3, wherex

x ← x2 + V x1. (11.2)
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The parameters x3 are left unchanged and new parameters x are formed. If
[A2, A3] is of full rank, the parameters x are estimable, otherwise we need to
continue reparameterizing.

We have successively discriminated columns in the design matrix that are
dependent on other sets of columns, labeled these parts of the design matrix
by ‘A1’ and ‘A2’ respectively, found a matrix V for which Eq. (11.1) holds, and
gave explicit expressions of the newly formed lumped parameters x. Note that
we may shuffle the columns of the design matrix as we wish without altering the
model, as long as the parameters are shuffled in the same way. Although the
choices we make are arbitrary, other full-rank models are easier to find when we
have performed this exercise once. According to Eq. (10.24) there are ten types
of parameters. Because in this chapter we assume the troposphere parameters
to be known and because there is no (real) rank deficiency related to the ge-
ometry part of the model, we concentrate on the remaining eight parameter groups.

The steps we need to take to determine a full-rank model with correspond-
ing parameters are given in App. E. In Table E.3 this is done for the model with
phase and code observations. Table E.4 shows a similar procedure in case only
the phase observables are used. A graphical representation of the steps with the
resulting parameters is given in Figs. E.1 and E.2, next to the tables. Tables E.1
and E.2 show the lumped parameters in words, rather than in mathematical
notation.

In our notation, lumped parameters are usually denoted by an overbar (x)
suggesting that they have no significant meaning, but whenever Single Differences
(SD) are formed, we use the notation x12..n for x2..n − x1 or x12..m for x2..m − x1.
Undifferenced or Zero Differenced (ZD) parameters usually have no index unless
it is considered useful. Double Differenced (DD) parameters (ambiguities) have
both a lower and upper index.

Tables E.3 and E.4 show the steps to be taken when the satellite hardware
delays:
(a) change in time and differ for the observation types, as assumed in Eqs. (10.24)
and (10.26), and when we assume them to be stable;
(b) are common for the L1 and L2 phase observables as well as for the P1 and P2
code observables (which is a reasonable assumption [Han et al., 2001]).
In the latter case we have for respectively the phase + code Model (10.24) and
the phase-only Model (10.26):

[ep ⊗ J ⊗−en ⊗ Im] ·
[

bs,phase

bs,code

]
;

[ep ⊗ e2 ⊗−en ⊗ Im] · bs,phase ,
(11.3)

using the definitionJ

J
.
= [J1, J2]

.
=




1 0
1 0
0 1
0 1


 . (11.4)

In the tables, we repeatedly use the matricesCn, cn
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Cn

n×(n−1)

.
=




0
1

. . .

1


 and

cn

n×1

.
=




1
0
...
0


 , (11.5)

for which the following property holds:

en − Cnen−1 = cn. (11.6)

Below, we give some examples to clarify the tables, and define some matrices
along the way.

Receiver clocks and satellite clocks (4th step)Example 1:

In Eq. (10.24), for each epoch there are n receiver clock errors δr(k) ≡ δr1..n(k)
and m satellite clock errors δs(k) ≡ δs1..m(k). According to Eq. (10.16), the part
of the model that corresponds to these parameters looks like:

y,l(k) = [In ⊗ em, −en ⊗ Im] ·
[

δr(k)
δs(k)

]
+ A3 · x3, (11.7)

with x3 the remaining parameters. The matrix [In⊗em, −en⊗Im] is rank deficient
and we may write Eq. (11.7) as

y,l(k) − A3 · x3 = [−en ⊗ cm︸ ︷︷ ︸
A1

, In ⊗ em,−en ⊗ Cm︸ ︷︷ ︸
A2

] ·




δs1(k)
δr(k)
δs2..m(k)




}
x1}
x2 . (11.8)

If we use the form of Eq. (11.1), we obtain:

[
In ⊗ em, −en ⊗ Cm

]
︸ ︷︷ ︸

A2

[
−en ⊗ 1
1 ⊗ −em−1

]

︸ ︷︷ ︸
V

= [−en ⊗ cm]︸ ︷︷ ︸
A1

, (11.9)

where we made use of Eqs. (D.6) and (11.6).

The column [−en ⊗ cm] corresponds to the satellite clock error of the first
satellite. Eliminating this column from the design matrix reduces the rank
deficiency. The matrix [A1, A2] is now replaced by D ≡ A2,D

D .
=

[
In ⊗ em, −en ⊗ Cm

]
; (mn × m + n − 1), (11.10)

to obtain a model with a lower rank deficiency (there may still be a rank deficiency
in A3). Each time a new partial design matrix is formed, in this case [−en ⊗Cm],
this is indicated in the tables.

Both receiver and satellite clock errors are lumped by this operation and
the lumped clock parameters are denoted by δr(k) and δs12..m(k):δr(k),

δs12..m(k) [
δr(k)
δs12..m(k)

]

︸ ︷︷ ︸
x

←
[

δr(k)
δs2..m(k)

]

︸ ︷︷ ︸
x2

+

[
−en

−em−1

]

︸ ︷︷ ︸
V

· δs1(k)︸ ︷︷ ︸
x1

. (11.11)

Receiver clocks and ionosphere (6th step)Example 2:
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After the receiver clocks are lumped with satellite clocks as in Example 1,
they are lumped with the hardware delays. Because the hardware delays differ for
the observation types, the lumped receiver clocks also differ for the observation
types. In the 6th step in Table E.3 we have the following model elements:

[Ip ⊗ I4 ⊗ In ⊗ em] · δr(1..p) (rec. clocks);
[Ip ⊗ µ ⊗ In ⊗ Im] · ı,1..4(1..p) (ionosphere).

The rank deficiency is contained in the second matrices of these Kronecker products
(I4 and µ, respectively). We may split the identity matrix into I4 = [c4, C4], and
see that:ν




0
1

1
1




︸ ︷︷ ︸
C4



−µ2

2

1
µ2

2




︸ ︷︷ ︸
ν

+µ2




µ1

µ2

−µ1

−µ2




︸ ︷︷ ︸
µ

=




1
0
0
0




︸ ︷︷ ︸
c4

. (11.12)

The remaining partial design matrices in

A2 = [Ip ⊗ C4 ⊗ In ⊗ em︸ ︷︷ ︸
rec. clocks

, Ip ⊗ µ ⊗ In ⊗ Im︸ ︷︷ ︸
ionosphere

]

do not change in the lumping steps that follow. The parameters δr,2..4(1..p)
and ı(1..p) are lumped with the L1 receiver clock errors δr,1(1..p). Although we
already used the notation with a bar for the lumped receiver clock parameters
(see Example 1), we continue to use this notation for newly lumped receiver
clock parameters because these parameters have no physical meaning and are
considered nuisance parameters.

Ambiguities and hardware delays (steps 3 and 7a)Example 3:

In Table E.3, the integer ambiguities are first lumped with the receiver and
satellite initial phases. The lumped ambiguities do not have an integer nature
and are denoted by A. By writing down this vector elementwise, we see that eachA
element reads:

As
r,l = N s

r,l + φrr,l − φss
,l. (11.13)

A vector with double-differenced ambiguities remains once we eliminate the rank
deficiency in the ambiguity part of the design matrix caused by the dependencies
with receiver and satellite hardware delays1 (case (a) in Table E.3). These double-
differenced ambiguities have an integer nature, since:double-

differenced
ambiguities

A1s
1r,l = As

1r,l −A1
1r,l

= (As
r,l −As

1,l) − (A1
r,l −A1

1,l)

= +N s
r,l + φrr,l − φss

,l − N s
1,l − φr1,l + φss

,l

−N1
r,l − φrr,l + φs1

,l + N1
1,l + φr1,l − φs1

,l

= (N s
r,l − N s

1,l) − (N1
r,l − N1

1,l)

= N1s
1r,l.

(11.14)

End of Examples

1We chose the first receiver and satellite as pivots.
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In each of the four cases in the tables, only four out of the eight original parameter
groups remain after the final step in the full-rank model: ambiguities, receiver and
satellite clocks, and ionosphere parameters. These matrices and parameters are
given in Table 11.1. All parameters are lumped and the notation for the parameters
is more symbolic than strict. The ionosphere parameters in case (a), for example,
are not the same parameters as in case (b), because in case (b) these parameters
are lumped one more time. The ambiguities in case (b) are not integer, nor are
the ambiguities in the ionophere-float model with phase observations only.

11.3 Ionosphere-fixed and weighted models

11.3.1 The ionosphere-fixed model

In small networks, the ionospheric delays are nearly equal for all stations and may
in fact be considered equal. In this case the ionosphere part of the model reads

[Ip ⊗ µ ⊗ en ⊗ Im] · ı(1..p) and[
Ip ⊗

(
µ1

µ2

)
⊗ en ⊗ Im

]
· ı(1..p)

for the model with phase and code observables, and the model with phase observ-
ables only, respectively. This has consequences for the lumping of the parameters.
The steps 6 and 9a in Table E.3 and the steps 6, 7, 8a, and 10a in Table E.4 can no
longer be applied. Instead, in all four cases2 the ionosphere part of the model can
be eliminated and the satellite clocks are lumped with the ionosphere parameters.
The design matrices and corresponding parameters are given in Table 11.2.

11.3.2 The ionosphere-weighted model

The ionosphere-weighted model [Odijk, 2002] is an extension of the ionosphere-
float model. The model is suited for medium scaled networks with typical baseline
lengths between 10 and 200 km. If we have a-priori information about the iono-
spheric delays, we may add this information in the form of pseudo-observables.
The vector of observables and corresponding covariance matrix for epoch k then
read

y(k) =

[
y

,
(k)

ı(k)

]
; Qy(k) =

[
Qy,(k) 0

0 Qı(k)

]
. (11.15)

Because of the extra constraints, the ionosphere parameters cannot be lumped
with other parameters. The steps in Table E.3 and E.4 that involve the ionosphere
parameters are therefore not applicable for the ionosphere-weighted model. The
design matrices and corresponding parameters are given in Table 11.3.

11.4 Redundancy

Table 11.4 gives the number of observables, parameters, and the corresponding
redundancy: for the three ionosphere models, for the two cases (a) and (b), and
for phase + code observables and phase observables only.

The redundancies for all twelve models are also plotted in Fig. 11.1. The redun-
dancies of the phase-only cases are shown here because the strength of the model

2Phase only (a, b), phase + code (a, b).
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obs. (a) (a) (b) (b)
type design matrix parameters design matrix parameters

L+P [ep ⊗ Λ ⊗ Cn ⊗ Cm] N12..m
12..n [ep ⊗ Λ ⊗ In ⊗ Cm] Ā12..m

[Ip ⊗ C4 ⊗ In ⊗ em] δr,2..4(1..p) [Ip ⊗ C4 ⊗ In ⊗ em] δr,2..4(1..p)

[Ip ⊗ C4 ⊗−en ⊗ Cm] δs
12..m
,2..4 (1..p) [Ip ⊗ e4 ⊗−en ⊗ Cm] δs

12..m
(1..p)

[Ip ⊗ µ ⊗ In ⊗ Im] ı(1..p) [Ip ⊗ µ ⊗ In ⊗ Im] ı(1..p)

L [ep ⊗

„
0
λ2

«

⊗ Cn ⊗ Cm] Ā12..m
12..n,2 [ep ⊗

„
0
λ2

«

⊗ In ⊗ Cm] Ā12..m
,2

[Ip ⊗ C2 ⊗ In ⊗ em] δr,2(1..p) [Ip ⊗ C2 ⊗ In ⊗ em] δr,2(1..p)

[Ip ⊗ C2 ⊗−en ⊗ Cm] δs
12..m
,2 (1..p) [Ip ⊗ e2 ⊗−en ⊗ Cm] δs

12..m
(1..p)

[Ip ⊗

„
µ1

µ2

«

⊗ In ⊗ Im] ı(1..p) [Ip ⊗

„
µ1

µ2

«

⊗ In ⊗ Im] ı(1..p)

Table 11.1 Partial design matrices and parameters of full-rank troposphere-fixed and ionosphere-float
models. (a): changing satellite hardware delays (different for each observation type) and (b):
stable satellite hardware delays (common values for L1 and L2 and for P1 and P2). Top:
Phase and code observables. Bottom: Phase observables only.

obs. (a) (a) (b) (b)
type design matrix parameters design matrix parameters

L+P [ep ⊗ Λ ⊗ Cn ⊗ Cm] N12..m
12..n [ep ⊗ Λ ⊗ In ⊗ Cm] Ā12..m

[Ip ⊗ I4 ⊗ In ⊗ em] δr(1..p) [Ip ⊗ I4 ⊗ In ⊗ em] δr(1..p)

[Ip ⊗ I4 ⊗−en ⊗ Cm] δs
12..m

(1..p) [Ip ⊗ e4 ⊗−en ⊗ Cm] δs
12..m

(1..p)

L [ep ⊗ L ⊗ Cn ⊗ Cm] N12..m
12..n [ep ⊗ L ⊗ In ⊗ Cm] A12..m

[Ip ⊗ I2 ⊗ In ⊗ em] δr(1..p) [Ip ⊗ I2 ⊗ In ⊗ em] δr(1..p)

[Ip ⊗ I2 ⊗−en ⊗ Cm] δs
12..m

(1..p) [Ip ⊗ e2 ⊗−en ⊗ Cm] δs
12..m

(1..p)

Table 11.2 Partial design matrix and parameters of full-rank troposphere-fixed and ionosphere-fixed
models. (a): changing satellite hardware delays (different for each observation type) and (b):
stable satellite hardware delays (common values for L1 and L2 and for P1 and P2). Top:
Phase and code observables. Bottom: Phase observables only.

obs. (a) (a) (b) (b)
type design matrix parameters design matrix parameters

L+P [ep ⊗

„
Λ
0

«

⊗ Cn ⊗ Cm] N12..m
12..n [ep ⊗

„
Λ
0

«

⊗ In ⊗ Cm] Ā12..m

[Ip ⊗

„
I4
0

«

⊗ In ⊗ em] δr(1..p) [Ip ⊗

„
I4
0

«

⊗ In ⊗ em] δr(1..p)

[Ip ⊗

„
I4
0

«

⊗−en ⊗ Cm] δs
12..m

(1..p) [Ip ⊗

„
e4

0

«

⊗−en ⊗ Cm] δs
12..m

(1..p)

[Ip ⊗

„
µ
1

«

⊗ In ⊗ Im] ı(1..p) [Ip ⊗

„
µ
1

«

⊗ In ⊗ Im] ı(1..p)

L [ep ⊗

„
L
0

«

⊗ Cn ⊗ Cm] N12..m
12..n [ep ⊗

„
L
0

«

⊗ In ⊗ Cm] A12..m

[Ip ⊗

„
I2
0

«

⊗ In ⊗ em] δr(1..p) [Ip ⊗

„
I2
0

«

⊗ In ⊗ em] δr(1..p)

[Ip ⊗

„
I2
0

«

⊗−en ⊗ Cm] δs
12..m

(1..p) [Ip ⊗

„
e2

0

«

⊗−en ⊗ Cm] δs
12..m

(1..p)

[Ip ⊗

0

@

µ1

µ2

1

1

A ⊗ In ⊗ Im] ı(1..p) [Ip ⊗

0

@

µ1

µ2

1

1

A ⊗ In ⊗ Im] ı(1..p)

Table 11.3 Partial design matrices and parameters of full-rank troposphere-fixed and
ionosphere-weighted models. (a): changing satellite hardware delays (different for each
observation type) and (b): stable satellite hardware delays (common values for L1 and L2
and for P1 and P2). Top: Phase and code observables. Bottom: Phase observables only.
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L/P ionosphere-float ionosphere-fixed ionosphere-weighted

L+P observables 4mnp 4mnp 5mnp

coordinates 3n 3n 3n

ionosphere mnp 0 mnp

ambiguities (a) 2(m−1)(n−1) 2(m−1)(n−1) 2(m−1)(n−1)

ambiguities (b) 2(m−1)n 2(m−1)n 2(m−1)n

clocks (a) 3(m+n−1)p 4(m+n−1)p 4(m+n−1)p

clocks (b) (3n+m−1)p (4n+m−1)p (4n+m−1)p

redundancy (a) (3p−2)(m−1)(n−1)−3n 2(2p−1)(m−1)(n−1)−3n 2(2p−1)(m−1)(n−1)−3n

redundancy (b) ((3n−1)p−2n)(m−1)−3n ((4n−1)p−2n)(m−1)−3n ((4n−1)p−2n)(m−1)−3n

L observables 2mnp 2mnp 3mnp

coordinates 3n 3n 3n

ionosphere mnp 0 mnp

ambiguities (a) (m−1)(n−1) 2(m−1)(n−1) 2(m−1)(n−1)

ambiguities (b) (m−1)n 2(m−1)n 2(m−1)n

clocks(a) (m+n−1)p 2(m+n−1)p 2(m+n−1)p

clocks(b) (m+n−1)p (2n+m−1)p (2n+m−1)p

redundancy (a) (p−1)(m−1)(n−1)−3n 2(p−1)(m−1)(n−1)−3n 2(p−1)(m−1)(n−1)−3n

redundancy (b) ((n−1)p−n)(m−1)−3n ((2n−1)p−2n)(m−1)−3n ((2n−1)p−2n)(m−1)−3n

Table 11.4 Redundancy count of troposphere-fixed models. L+P: phase and code observables; L: phase
observables only; (a): changing satellite clocks (and different for all observables); (b): stable
satellite clocks (common values for L1 and L2 and for P1 and P2).

is dominated by the phase observables, which are in the order of a hundred times
more accurate (standard deviation) than the pseudo-range observables. Nearly
all information that is contained in the ionosphere-float model (a) to determine
the coordinates is given by (f − 1)(p − 1)(m − 1)(n − 1) four-times-differenced
observables (with f = 2 the number of frequencies), that is, by differences of ob-
servables between satellites, receivers, epochs, and frequencies. If we would also
fully parameterize the tropospheric delays, our model would be under-determined
as shown in Fig. 11.1. We therefore need to find sufficient (soft-)constraints to
model the troposphere.

11.5 Global, temporal, and batch parameters

In Sect. 10.3, global and temporal parameters were introduced. In the models of
the previous section, coordinates and ambiguities are global parameters, and clock
and ionosphere parameters are temporal parameters. We will continue to use
this distinction, and introduce a third parameter group: the batch parameters.
Batch parameters have a hybrid nature. They describe a process for which thebatch

parameters realizations change in time like the temporal parameters, but the changes are in
general not large, so that we may assume them to be constant for several (say p̃)
epochs. Satellite hardware delays can very well be modeled by batch parameters.p̃

In fact, up till now we have considered these delays both global (case (a)) and
temporal parameters (case (b)). In both cases the delays were lumped with other
parameters.

If we gather all global parameters in the vector x, all batch parameters inx

the vector β, and all temporal parameters in the vector t, each GPS modelβ, t
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Figure 11.1 Solid lines: Redundancy of troposphere-fixed models (m = 4 satellites, n = 2 stations) for
different ionosphere models (fixed, weighted, float) and phase-only (L) and phase+code
observables (L+P). (a): changing satellite clocks (different for all observables); (b): stable
satellite clocks (common values for L1 and L2 and for P1 and P2). Dashed: Number of
tropospheric slant delays (mnp). Lines instead of points are plotted for clarity.

without pseudo-observables can be described by the general form

E{y
,
} = Tt + Bβ + Ax ; D{y

,
} = Qy, , (11.16)

where

A
.
= [A(1)′, . . . , A(p)′]′;

x
.
= [x(1)′, . . . , x(p)′]′;

β
.
= [β(1)′, . . . , β(p/p̃)′]′;

T
.
= diag[T (1), . . . , T (p)];

t
.
= [t(1)′, . . . , t(p)′]′;

Qy, = diag[Qy,(1), . . . , Qy,(p)];
p/p̃ ∈ IN+,

and B
.
=




B(1)
...

B(p̃)
B(p̃ + 1)

...
B(2p̃)

. . .




. (11.17)

As an example, the partial design matrices for the ionosphere-float model, case (a)
with phase and code observables read:A(k), T (k)

A(k) = [Λ ⊗ Cn ⊗ Cm, e4 ⊗ G(k)] (global parameters);
T (k) = [µ ⊗ In ⊗ Im, C4 ⊗D ] (temporal parameters),

(11.18)

where we made use of the upper-left matrices from Table 11.1, the definition for
D in Eq. (11.10), and the partial design matrix for the geometry as introduced in
Eq. (10.19). The corresponding parameters are

x = [N12..m
12..n

′
, r′]′ (global parameters);

t(k) = [ı(k)′, δ(k)′]′ (temporal parameters),
(11.19)

with all clock parameters in a vector:δ(k)

δ(k) = [δr,2..4(k)′, δs
12..m
,2..4 (k)′]′. (11.20)

Batch parameters are introduced in the next chapter, where we start to parame-
terize the tropospheric delay.



Chapter 12

Troposphere-float and weighted
models

12.1 Introduction

In troposphere-float models, the tropospheric delay is parameterized. Troposphere
parameters may be zenith tropospheric delays, slant tropospheric delays, and tro-
posphere gradients. These parameters may be global, temporal, or batch param-
eters. In the troposphere-weighted models, extra pseudo-observables for time-
differenced zenith tropospheric delays are added to the troposphere-float models.
In this chapter we only consider the ionosphere-float model, case (a), with phase
and code observables. An extension to the other models can easily be made.

12.2 Zenith Tropospheric Delays

The total slant tropospheric delay is the sum of a hydrostatic and a wet slant
delay. Both parts can be approximated by a mapping function multiplied with
the delay in the zenith direction (isotropy assumption to determine the azimuthal
symmetric slant delay; see Part I). So, for one slant delay between receiver r and
satellite s at epoch k, we may write:

Ds
r(k) = Mh(zs

r(k)) · Dz
rh(k) + Mw(zs

r(k)) · Dz
rw(k) + ∆Ds

r(k)
.
= Ds

r,sym(k) + ∆Ds
r(k),

(12.1)

whereSTD, ZHD,
ZWD

Ds
r(k) : Slant Total (Tropospheric) Delay (STD) [m];

Ds
r,sym(k) : azimuthal symmetric STD [m];

∆Ds
r(k) : residual STD [m];

Mh(zs
r(k)) : hydrostatic mapping function [-];

Mw(zs
r(k)) : wet mapping function [-];

zs
r(k) : zenith angle [rad];

Dz
rh(k) : Zenith Hydrostatic Delay (ZHD) [m];

Dz
rw(k) : Zenith Wet Delay (ZWD) [m].

This equation holds for absolute delays, but also for the observed-minus-computed
∆ quantities if we neglect the partial derivatives of the mapping functions with
respect to the receiver coordinates. Since we have already derived a linearized
model in absence of troposphere parameters and dropped the ∆ signs, Eq. (12.1)
will refer to the ∆ quantities. With the definitions of Eq. (10.14) and Eq. (10.18)
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we may write the slant delays in matrix-vector notation as:

Dr(k)
.
= Mhr(k) · Dz

hr(k) + Mwr(k) · Dz
wr(k) + ∆Dr(k);

D(k)
.
= Mh(k) · Dz

h(k) + Mw(k) · Dz
w(k) + ∆D(k),

(12.2)

where

Dz
h(k) ≡ Dz

h1..n(k) (n × 1);
Dz

w(k) ≡ Dz
w1..n(k) (n × 1);

∆Dr(k) ≡ ∆D1..m
r (k) (m × 1);

∆D(k) ≡ ∆D1..n(k) (mn × 1);
Mhr(k) ≡ Mh(z1..m

r (k)) (m × 1);
Mwr(k) ≡ Mw(z1..m

r (k)) (m × 1);
Mh(k)

.
= diag[Mh1(k), . . . , Mhn(k)] (mn × n);

Mw(k)
.
= diag[Mw1(k), . . . , Mwn(k)] (mn × n).

(12.3)

From Sect. 11.5 and Eq. (10.19), we find that extending the functional model with
troposphere parameters gives:

E{y
,
(k)} = T (k) · t(k) + [e4 ⊗ Imn] · D(k) + A(k) · x, (12.4)

for the model with phase and code observables.1 Using Eq. (12.2), we find that
the troposphere extension to our model reads:

[e4 ⊗ Imn] · [1 ⊗ Mh(k), 1 ⊗ Mw(k), 1 ⊗ Imn] ·




Dz
h(k)

Dz
w(k)

∆D(k)


 =

[
e4 ⊗ Mh(k), e4 ⊗ Mw(k), e4 ⊗ Imn

]
·




Dz
h(k)

Dz
w(k)

∆D(k)


 .

(12.5)

Since the hydrostatic and wet mapping functions do not differ much, Mh(k) ≈
Mw(k), the design matrix is near rank deficient:

[
e4 ⊗ Mw(k)

]
︸ ︷︷ ︸

A2

· [1 ⊗ In]︸ ︷︷ ︸
V

≈
[
e4 ⊗ Mh(k)

]
︸ ︷︷ ︸

A1

. (12.6)

Therefore we cannot estimate both the hydrostatic and wet delay. But if we
remove, for example, the columns corresponding to the hydrostatic delay, the sum
of both delays is left in the model:

Dz(k)︸ ︷︷ ︸
x

← Dz
w(k)︸ ︷︷ ︸
x2

+ In︸︷︷︸
V

·Dz
h(k)︸ ︷︷ ︸
x1

. (12.7)

This sum is called the ZTD (Zenith Total Delay or Zenith Tropospheric Delay).ZTD

From now on, we drop the index of the mapping functions and assume
that we map the ZTD by the wet mapping function:

M(zs
r(k)) ← Mw(zs

r(k)) (1 × 1);
Mr(k) ≡ M(z1..m

r (k)) ← Mwr(k) (m × 1);
M(k)

.
= diag[M1(k), . . . , Mn(k)] ← Mw(k) (mn × n).

(12.8)

The reason for this is that the a-priori hydrostatic delay can be modeled with
much higher accuracy than the wet delay. The residual delays are therefore more

1If only phase observables are used, the vector e4 is replaced by e2.



II 12.Troposphere-float and weighted models 93

likely to be (mainly) wet delays.

The functional model now reads:

E{y
,
(k)} = T (k) · t(k)+ [e4 ⊗ M(k), e4 ⊗ Imn] ·

[
1 ⊗ Dz(k)
1 ⊗ ∆D(k)

]
+A(k) ·x. (12.9)

This model is still under-determined. Often the residual tropospheric delays
are therefore assumed zero and left unmodeled. More about residual delays in
Sect. 12.4.

We will now consider three different cases: ZTDs as temporal parameters,
as global parameters, and as batch parameters.

If we estimate ZTDs as temporal parameters, the matrix A(k) remains asZTDs as
temporal
parameters

in Eq. (11.18), and the matrix T (k) and vector t(k) are extended to:

T (k) = [e4 ⊗ M(k), µ ⊗ Imn, C4 ⊗D ];

t(k) = [Dz(k)′, ı(k)′, δ(k)′]′.
(12.10)

Although this is the most obvious extension of our model, the amount of
parameters is extended by one per epoch per station.

To reduce the amount of parameters, one may assume that the ZTDs doZTDs as
global
parameters

not change much in time. Often, in geodetic data processing, one ZTD is
estimated every few hours. If, for example, only two hours of data are available,
one may consider the ZTDs to be global parameters. The temporal parameters
and corresponding design matrix are then the same as in Eq. (11.18). The design
matrix A(k) and the vector of global parameters can be extended for the ZTDs
as follows:

A(k) = [Λ ⊗ Cn ⊗ Cm, e4 ⊗ G(k), e4 ⊗ M(k)] ;

x =
[
N12..m

12..n
′
, r′, Dz ′

]′
.

(12.11)

Equation (12.11) already illustrates some analogy between the geometry and
troposphere. In Chap. 13 this becomes more apparent.

For long observation time spans, one ZTD parameter per epoch may ex-ZTDs as
batch
parameters

tend the model by too many parameters, and one parameter for the total time
span is unrealistic under changing weather conditions. In some GPS data pro-
cessing software, like the Bernese software [Beutler et al., 2000], batches are used.
The ZTD is then considered to be constant for the duration of the batch of several
(say p̃) epochs. A(k) and T (k) are both as in Eq. (11.18), B(k) = [e4 ⊗M(k)], theB(k)

vectors of global and temporal parameters are as in Eq. (11.19), and the batch
parameters are formed by β = [Dz(1)′, . . . , Dz(p/p̃)′]′, if p/p̃ ∈ IN+.

12.3 Gradient parameters

Model (12.1) with zero residual slant delays is valid for an azimuthal symmetric and
horizontally layered atmosphere. This model may be refined by the assumption
of a tilted atmosphere [MacMillan, 1995]. The extra delay term ∆Ds

r(k) should
then describe the asymmetry. This correction term can be parameterized as (see
Part I):

∆Ds
r(k) = Maz(α

s
r(k)) · γ(αs

r(k)), (12.12)
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where Maz(α
s
r(k)) is the azimuthal mapping function, as function of the azimuthMaz(α

s
r(k))

α, from receiver r to satellite s, at epoch k, and

γ(αs
r(k)) = γr;N (k) · cos(αs

r(k)) + γr;E(k) · sin(αs
r(k)), (12.13)

with γr;N (k) and γr;E(k) the gradient parameters in north and east direction. In
matrix-vector notation we now write:

∆Dr(k)
.
= Γr(k) · γr(k) ; ∆D(k)

.
= Γ(k) · γ(k), (12.14)

with

Γr(k)
.
=




Maz(z
1
r (k)) · cos(α1

r(k)) Maz(z
1
r (k)) · sin(α1

r(k))
...

...
Maz(z

m
r (k)) · cos(αm

r (k)) Maz(z
m
r (k)) · sin(αm

r (k))


 (m× 2), (12.15)

andΓ(k), γ(k)

γr(k)
.
= [γr;N (k)′, γr;E(k)′]′ (2 × 1);

Γ(k)
.
= diag [Γ1(k), . . . ,Γn(k)] (mn × 2n);

γ(k)
.
= [γ1(k)′, . . . , γn(k)′]′ (2n × 1).

(12.16)

If we estimate gradient parameters every epoch, the partial design matrices read
(in the ionosphere-float model, case (a), phase+code observables):

A(k) = [

ambiguities︷ ︸︸ ︷
Λ ⊗ Cn ⊗ Cm,

coord.︷ ︸︸ ︷
e4 ⊗ G(k)];

T (k) = [e4 ⊗ M(k)︸ ︷︷ ︸
ZTDs

, e4 ⊗ Γ(k)︸ ︷︷ ︸
gradients

, µ ⊗ In ⊗ Im︸ ︷︷ ︸
ionosphere

, C4 ⊗D︸ ︷︷ ︸
clocks

],
(12.17)

and the vector of temporal parameters reads:

t(k) = [Dz(k)′, γ(k)′, ı(k)′, δ,2..4(k)′]′. (12.18)

Considering both ZTDs and gradients to be temporal parameters is however not
very practical because the redundancy reduces by 2np with the introduction of
gradient parameters. The gradient model is better suitable when both kinds
of parameters (ZTDs, gradients) are considered global or batch, or when extra
pseudo-observables are used as in the troposphere-weighted model; see Sect. 12.5.
We do not describe the models where gradients and ZTDs are global or batch
parameters here. Instead, these models can be found in an outline in Sect. 12.6.

gradients type of ZTD parameter number of extra parameters

no temporal np
no global n
no batch np/p̃
yes temporal 3np
yes global 3n
yes batch 3np/p̃

Table 12.1 Number of extra troposphere parameters in the troposphere-float model with respect to the
troposphere-fixed model when modeling ZTDs and gradients; n stations, p epochs, p̃ epochs
per batch.
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12.4 Residual Slant Tropospheric Delays

Instead of extending the model of ZTDs with gradients, one can also extend the
model with the original residual STDs. Modeling slant delays is only possible when
they are considered temporal parameters (or maybe batch parameters for short
batches) because of the changing satellite configuration. Because for each receiver-
satellite combination an extra parameter is included per epoch, the amount of
extra parameters is mnp. Since the redundancy for the model with residual STDs
can only be sufficient for the model with code observables (see Table E.3), this
model may at first not seem to be very practical. But at the same time we may
introduce the same amount of pseudo-observables for the extra parameters we
introduced. Since we know that the residual STDs may not deviate much from
zero, these pseudo-observables are constraints on the residual STDs. We assume
these constraints uncorrelated with the GPS observables. Our 5mn × 1 vector of
observables for the kth epoch and its dispersion then read:

y(k) =

[
y

,
(k)

∆D(k)

]
; D{y(k)} =

[
Qy,(k) 0

0 Q∆D(k)

]
, (12.19)

where ∆D(k) = [∆D1(k), ...,∆Dn(k)]′ is the mn × 1 vector with pseudo-
observables with sample values ∆D(k) = 0. For a derivation of a model for
Q∆D(k), see Part III. If the stations are sufficiently far separated, we can
assume the slant delays of different stations to be uncorrelated: Q∆D(k) =
diag[Q∆D1

(k), ..., Q∆Dn(k)]. The design matrices of global and temporal parame-
ters read:

A(k) =

[
Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k)

0 0

]
;

T (k) =

[
e4 ⊗ In ⊗ Im µ ⊗ In ⊗ Im C4 ⊗D

In ⊗ Im 0 0

]
,

(12.20)

where one of these matrices may be extended with a partial design matrix that
takes into account the ZTDs, depending on whether we estimate the ZTDs as
global or temporal parameters.

12.5 The troposphere-weighted model

The equations for the troposphere-float model follow from Eqs. (12.9) as:

E{y(k)} =
[
T (k), B(k), A(k)

]



t(k)
β(k)
x


 , (12.21)

where B(k) = [e4 ⊗ M(k)] and β(k) = Dz(k). In a(n absolute) troposphere-
weighted model, extra observation equations of the form E{Dz(k)} = Dz(k) result
in the augmented model:

E{
[

y(k)

Dz(k)

]
} =

[
T (k) B(k) A(k)

0 In 0

] 


t(k)
Dz(k)
x


 . (12.22)

This would imply that we have knowledge about the absolute ZTDs. Unless we
have some external source, like Water Vapor Radiometer data, this will generally
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not be true. But what we do know is that the ZTDs only change in time within
bounds. Therefore, except for the first epoch, for each epoch an n × 1 vector of
pseudo-observables d(k) is formed for which we have the observation equations
[Rothacher, 1992]:

E{d(k)} = Dz(k) − Dz(k − 1). (12.23)

As sample values we use d(k) = 0. Instead of Model (12.22) we rather use the
following relative troposphere-weighted model:

E{




y(k − 1)

d(k)
y(k)


} =




T (k − 1) B(k − 1) 0 0 A(k − 1)
0 −In 0 In 0
0 0 T (k) B(k) A(k)







t(k − 1)
β(k − 1)
t(k)
β(k)
x




,

(12.24)

in which, for notational convenience, the parameters relating to epochs other than
k and k − 1 are ignored. We assume that the pseudo-observables d(k) are uncor-
related with other (pseudo-)observables:

D{




...
d(k − 1)
y(k − 1)

d(k)
y(k)
...




} =




. . .

Qd(k − 1) 0
Qy(k − 1)

Qd(k)
0 Qy(k)

. . .




. (12.25)

A more explicit derivation of the structure of the Qd(k) can be found in Part III.

12.6 Observation scenarios

As discussed in the previous chapter we can distinguish troposphere-fixed, float,
and weighted models. In both the troposphere-float and weighted model we
may estimate zenith delays as well as gradients or slant delays. The slant delays
are temporal parameters, but the zenith delays and gradients may be temporal,
batch, or global parameters. Because in the troposphere-weighted model relative
constraints are formed between batches or epochs (batches of one epoch), the
troposphere-weighted model does not make sense in the case where ZTDs are
global parameters. This model will be referred to as the troposphere-constanttroposphere-

constant model.

An overview of possible models is given in tables. Table 12.2 shows the
partial design matrices and corresponding parameters, Table 12.3 gives a sum-
mary of all different models, and Table 12.4 gives the corresponding design
matrices for the models of Table 12.3 with numbers 1–10.

The batch cases 11–16 of Table 12.3 are mixed models, where in the first p̃
epochs the ZTD parameters are considered to be constant. For these epochs the
models are in fact the same as the model where ZTDs are global parameters.
Then, in the (p̃ + 1)th epoch, new ZTD parameters are introduced. This is the
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type of global/batch parameters partial design number of
parameters temporal matrices parameters

ambiguities global N12..m
12..n Λ ⊗ Cn ⊗ Cm 2(m − 1)(n − 1)

geometry global r e4 ⊗ G(k) 3n

ZTDs batch Dz, Dz(k) e4 ⊗ M(k) n

gradients batch γ, γ(k) e4 ⊗ Γ(k) 2n

residual STDs temporal ∆D(k) e4 ⊗ Imn, Imn mn

ionospheric delays temporal ı(k) µ ⊗ Imn mn

clocks temporal δ,2..4(k) C4 ⊗D 3(m + n − 1)

Table 12.2 Partial design matrices and corresponding parameters. Recall the definitions of Λ in
Eq. (10.20), Cn in Eq. (11.5), G(k) in Eqs. (10.17) and (10.15), M(k) in Eq. (12.8), Γ(k) in
Eqs. (12.16) and (12.15), µ in Eqs. (10.9) and (10.20), and D in Eq. (11.10). Note that,
because of near rank deficiencies, the matrices G(k), M(k), and Γ(k) are redefined in
Eq. (13.7).

same as in the model where ZTDs are temporal parameters. The model matrices
keep alternating in this way for the troposphere-float models. The batch cases
refer to the most general models; the ZTDs as temporal or global parameters are
special cases of the model with the ZTDs as batch parameter.

temporal ← batch → global
p̃ = 1 1 ≤ p̃ ≤ p p̃ = p

troposphere
-float ← -weighted → -constant

Qd(k) = ∞ ∞ > Qd(k) > 0 Qd(k) = 0

In much the same way, we can consider the troposphere-constant and float models
special cases of the troposphere-weighted model. In the troposphere-constant case
we use hard constraints Qd(k) = 0, and in the troposphere-float case we use very
loose constraints: Qd(k) = ∞.



98 II 12.Troposphere-float and weighted models

nr. model delay parameters ZTD parameter

1. troposphere-fixed none none

2. troposphere-constant zenith global
3. troposphere-constant zenith and gradient global
4. troposphere-constant zenith and slant global

5. troposphere-float zenith temporal
6. troposphere-float zenith and gradient temporal
7. troposphere-float zenith and slant temporal

8. troposphere-weighted zenith temporal
9. troposphere-weighted zenith and gradient temporal
10. troposphere-weighted zenith and slant temporal

11. troposphere-float zenith batch
12. troposphere-float zenith and gradient batch
13. troposphere-float zenith and slant batch

14. troposphere-weighted zenith batch
15. troposphere-weighted zenith and gradient batch
16. troposphere-weighted zenith and slant batch

Table 12.3 Parameterization of the tropospheric delay. The numbers correspond with Table 12.4.

nr. A(k) B(k) T (k)

1.
ˆ

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k)
˜

-
ˆ

µ ⊗ Imn C4 ⊗D
˜

2.
ˆ

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k) e4 ⊗ M(k)
˜

-
ˆ

µ ⊗ Imn C4 ⊗D
˜

3.
ˆ

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k) e4 ⊗ M(k) e4 ⊗ Γ(k)
˜

-
ˆ

µ ⊗ Imn C4 ⊗D
˜

4.
»

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k) e4 ⊗ M(k)
0 0 0

–

-
»

e4 ⊗ Imn µ ⊗ Imn C4 ⊗D
Imn 0 0

–

5.
ˆ

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k)
˜

-
ˆ

e4 ⊗ M(k) µ ⊗ Imn C4 ⊗D
˜

6.
ˆ

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k)
˜

-
ˆ

e4 ⊗ M(k) e4 ⊗ Γ(k) µ ⊗ Imn C4 ⊗D
˜

7.
»

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k)
0 0

–

-
»

e4 ⊗ M(k) e4 ⊗ Imn µ ⊗ Imn C4 ⊗D
0 Imn 0 0

–

8.
ˆ

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k)
˜ ˆ

e4 ⊗ M(k)
˜ ˆ

µ ⊗ Imn C4 ⊗D
˜

9.
ˆ

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k)
˜ ˆ

e4 ⊗ M(k) e4 ⊗ Γ(k)
˜ ˆ

µ ⊗ Imn C4 ⊗D
˜

10.
»

Λ ⊗ Cn ⊗ Cm e4 ⊗ G(k)
0 0

– »

e4 ⊗ M(k)
0

– »

e4 ⊗ Imn µ ⊗ Imn C4 ⊗D
Imn 0 0

–

Table 12.4 Partial design matrices in different models. The numbers correspond with Table 12.3.



Chapter 13

Near rank deficiencies

13.1 Introduction

In the preceding chapters, full-rank models were derived by lumping as many
parameters as needed. The models that were derived in this way, may however
still be near rank deficient. An example of a near rank deficiency was shown in
Sect. 12.2 for the ZHD and ZWD, which was solved by lumping the delays the
same way as in case of a real rank deficiency. A near rank deficiency may cause
numerical instability and a poor precision of the (estimated) parameters. Lumping
parameters in case of a near rank deficiency on the other hand, may cause biases in
the estimated parameters. The near rank deficiencies that are still present in our
models concern the geometry and troposphere parameters. This chapter shows in
Sect. 13.2 how they appear in ‘standard’ network processing and, in Sect. 13.3,
why they do not appear when the concept of Precise Point Positioning is used.

13.2 Revealing the near rank deficiencies

In small networks the zenith angles and azimuths of the satellites are approxi-
mately equal for all stations. This means that for the matrices with values of
mapping functions holds: M1(k) ≈ M2(k) ≈ · · · ≈ Mn(k) or M(k) ≈ [In ⊗Mr(k)],
for any receiver r. But also for the geometry holds: G1(k) ≈ G2(k) ≈ · · · ≈ Gn(k)
or G(k) ≈ [In⊗Gr(k)]; and for the gradient matrices: Γ1(k) ≈ Γ2(k) ≈ · · · ≈ Γn(k)
or Γ(k) ≈ [In ⊗ Γr(k)]. These near equalities, in combination with the partial
design matrices of the ionosphere and receiver clock errors, cause near rank
deficiencies.

In the ionosphere-float model with four observation types, case (a), the de-
sign matrix of the temporal parameters T (k) reads (see Table 11.1):

T (k) = [µ ⊗ In ⊗ Im︸ ︷︷ ︸
ionosphere

, C4 ⊗ In ⊗ em︸ ︷︷ ︸
rec. clocks

, C4 ⊗−en ⊗ Cm︸ ︷︷ ︸
sat. clocks

], (13.1)

which is in fact not time dependent as long as the number of satellites or stations
does not change. If we now define

v
.
=




µ2 ⊗ en ⊗ Mr(k)
(ν + e3) ⊗ en ⊗ c′m · Mr(k)
(ν + e3) ⊗ −1 ⊗ (−em−1, Im−1) · Mr(k)


 (mn+3n+3(m−1)×1), (13.2)

with ν as defined in Eq. (11.12), we can verify that:

T (k) · v = [e4 ⊗ en ⊗ Mr(k)]. (13.3)
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Using Eq. (13.3), in the troposphere-float model with ZTDs as global parameters,troposphere-
float
model

one (near) rank deficiency can be shown as:

[ep ⊗ e4 ⊗ Cn ⊗ Mr(k), Ip ⊗ T (k)]︸ ︷︷ ︸
A2

[
1 ⊗ 1 ⊗−en−1 ⊗ 1

ep ⊗ v

]

︸ ︷︷ ︸
V

=

[ep ⊗ e4 ⊗ cn ⊗ Mr(k)]︸ ︷︷ ︸
A1

. (13.4)

And the lumped parameters read:
[

Dz
12..n

t(1..p)

]

︸ ︷︷ ︸
x

←
[

Dz
2..n

t(1..p)

]

︸ ︷︷ ︸
x2

+

[
−en−1

ep ⊗ v

]

︸ ︷︷ ︸
V

· Dz
1︸︷︷︸

x1

, (13.5)

where t(1..p) stands for the vector of all temporal parameters in all epochs. We
can thus solve the near rank deficiency by lumping the ZTDs into between-station
single-differenced ZTD parameters. When the ZTDs are temporal parameters,
the same rank deficiency is present, since this is a special case in which p = 1.
More generally, the number of rank deficiencies for the ZTDs is one per batch.

The near rank deficiency as shown above may look a bit complicated becausealternatively
shown rank
deficiencies

of the complicated partial design matrices for the ionosphere and receiver clock
parameters. An alternative way to show the near rank deficiency starts with the
still rank-deficient design matrix of Eq. (10.24). First we may lump the satellite
clock errors and satellite hardware delays into [I4 ⊗ −en ⊗ Im] · δs(k) for each
epoch (this may be done for both case (a) and (b)). Next, as an example, the rank
deficiency in the troposphere-float model with ZTDs as temporal parameters can
then be shown, using Eq. (11.6):

[
I4 ⊗−en ⊗ Im, e4 ⊗ Cn ⊗ Mr(k)

]
︸ ︷︷ ︸

A2

[
e4 ⊗−1 ⊗ Mr(k)
1 ⊗−en−1 ⊗ 1

]

︸ ︷︷ ︸
V

= [e4 ⊗ cn ⊗ Mr(k)]︸ ︷︷ ︸
A1

.

(13.6)

Only because we started with another sequence of lumping parameters, we ended
up with a (near) rank deficiency that was also related to the ionosphere and receiver
clock parameters, since these parameters were lumped with the satellite clock
errors (steps 4 and 6 in Figs. E.1 and E.2). If the (lumped) satellite clocks would
be know beforehand, the near rank deficiencies would not have been present. In
fact we see the same (near) rank deficiency occur over and over again in the receiver
dependent parameters. Completely analogue to the shown rank deficiencies in the
ZTDs, we could show rank deficiencies for the geometry (3) and the gradients
(2/batch). Eliminating the near rank deficiencies by forming inter-station single
differences, results in the following partial design matrices:

G(k) =




0
G2(k)

. . .

Gn(k)


 ;

M(k) =




0
M2(k)

. . .

Mn(k)


 ; Γ(k) =




0
Γ2(k)

. . .

Γn(k)


 .

(13.7)
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parameters solved near rank deficiencies partial design matrices

coordinates 3 G(k)
ZTDs 1/batch M(k)
gradients 2/batch Γ(k)

Table 13.1 Number of solved near rank deficiencies.

In the troposphere-weighted model, the near rank deficiency that appears in thetroposphere-
weighted
model

troposphere-float model seems to be resolved by the partial design matrix of the
constraints. Considering the third and fourth column of the design matrix of
Eq. (12.24) and only the lumped satellite clocks as in Eq. (13.6), we have an
apparently full-rank design matrix

A
.
=

[
0

I4 ⊗−en ⊗ Im︸ ︷︷ ︸
sat. clocks

1 ⊗ In ⊗ 1
e4 ⊗ In ⊗ Mr(k)

]

︸ ︷︷ ︸
ZTDs

(13.8)

for the satellite clocks and ZTDs at epoch k. Matrix A does not have a real rank
deficiency because

[
0 1 ⊗ Cn ⊗ 1

I4 ⊗−en ⊗ Im e4 ⊗ Cn ⊗ Mr(k)

]

︸ ︷︷ ︸
A2

[
e4 ⊗−1 ⊗ Mr(k)
1 ⊗−en−1 ⊗ 1

]

︸ ︷︷ ︸
V

=

[
−Cnen−1

e4 ⊗ cn ⊗ Mr(k)

]

︸ ︷︷ ︸
Ā1

6=
[

−cn

e4 ⊗ cn ⊗ Mr(k)

]

︸ ︷︷ ︸
A1

,

(13.9)

where Ā1 is not a column of A. A rank deficiency would have been shown if
A2V = A1. A near rank deficiency is still present because A1 and Ā1 make a small
angle γ:

cos(γ) =
A′

1Ā1

‖ A1 ‖ · ‖ Ā1 ‖ =
4Mr(k)′Mr(k)

({n − 1 + 4Mr(k)′Mr(k)}{1 + 4Mr(k)′Mr(k)}) 1

2

.

(13.10)

The larger the product Mr(k)′Mr(k), the smaller γ. In other words, a closer near
rank deficiency occurs if we are observing too many satellites or satellites with
too low elevations (large mapping values).

This near rank deficiency translates into a strong correlation of estimatedcorrelation
of ZTDs ZTDs. This is shown below for a simple case. Consider the short baseline case

n = 2. Furthermore, assume that we have only one observation type1 and the
following covariance matrices:

Qd(k) = σ2
d

[
1 ρ
ρ 1

]
;

Qy(k) = σ2
y(I2 ⊗ Im);

Q(k) = diag[Qd(k), Qy(k)].

(13.11)

If the satellite clocks and ZTDs of epoch k were the only parameters, the parti-
tioned normal matrix N = A′Q(k)−1A reads:

[
N11 N12

N21 N22

]
= σ−2

y

[
2 ⊗ Im −e′2 ⊗ Mr(k)

−e2 ⊗ Mr(k)′ I2 ⊗ Mr(k)′Mr(k)

]
+

[
0 0
0 Qd(k)−1

]
. (13.12)

1The near rank deficiency generalizes to more observation types.
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The covariance matrix of the least-squares estimates of the ZTDs can now be
obtained from:

QD̂z

.
=

[
σ2

D̂z
1

σD̂z
1
D̂z

2

σD̂z
1
D̂z

2

σ2
D̂z

2

]
=

(N−1)22 = (N22 − N21N
−1
11 N12)

−1 = Det−1

[
α + σ−2

d α − σ−2
d ρ

α − σ−2
d ρ α + σ−2

d

]
,

(13.13)

where α
.
= 1

2σ−2
y Mr(k)′Mr(k) and Det

.
= σ−4

d (1 − ρ2) + 2ασ−2
d (1 + ρ). From

the covariance matrix of Eq. (13.13) we find the following correlation coefficient
between the ZTDs of the stations:

σD̂z
1
D̂z

2

σD̂z
1

σD̂z
2

=
α − σ−2

d ρ

α + σ−2
d

. (13.14)

The correlation is large if σ−2
d ¿ α, which will generally be the case when σ2

y and
σ2

d are of the same order of magnitude.

From Eq. (13.13) we can also derive the precision of the relative ZTD:precision
relative
ZTDs

σ2
D̂z

12

= σ2
D̂z

1

+ σ2
D̂z

2

− 2σD̂z
1
D̂z

2

= (α +
1

2
σ−2

d (1 − ρ))−1, (13.15)

which shows a better accuracy if α is large, that is, when more satellites and when
low-elevation satellites are used.

Numerically more stable estimates are obtained by fixing one of the ZTDs,
or estimating single-differenced ZTDs instead of one ZTD per station. As a
consequence of eliminating columns of the design matrix, not only the matrix
M(k) (or G(k), Γ(k)) are altered in Eq. (13.7), but also the constraints change to
an alternative form of Eq. (12.23):

E{d(k)} = Cn β(k) − Cn β(k − 1) ; D{d(k)} = Qd(k). (13.16)

Although the first constraint does not have a functional relation with any of the pa-
rameters, it may still be correlated with the other constraints and should therefore
remain in the observation model. One should however realize that in the original
Model (12.24) we have β(k) = [Dz

1(k), ..., Dz
n(k)]′, and eliminating the first column

of B(k) is equivalent with lumping the parameters to β(k) = [Dz
12(k), ..., Dz

1n(k)]′

as in Eq. (13.16), cf. Eq. (13.5).

13.3 Precise Point Positioning

A method that has become more and more popular in recent years is ‘Precise
Point Positioning’ (PPP). The method as described in [Zumberge et al., 1997]PPP

makes it possible to (post)process large networks and is also useful for GPS
users with a single receiver. Two steps can be distinguished in the PPP method.
First, precise GPS satellite positions and clock corrections are determined from a
globally distributed network of receivers. These satellite positions and clock errors
are made available by the International GPS Service (IGS) with a certain intervalIGS

(for example, every 5 minutes). For a higher sampling rate, these positions and
clock errors need to be interpolated. Since Selective Availability (SA) was turned
off (May, 2000), the satellite clock errors have a smooth behavior and can be
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interpolated with a higher precision [Han et al., 2001]. Second, once the satellite
clock errors are known or assumed known, the GPS data of a local network or
single station can be processed in a second step.

An exact description of the PPP method will not be given here. But if the
satellite hardware delays are assumed constant and equal for L1 and L2 and for
P1 and P2 (case(b), see Table E.3) in the first step, then the satellite clocks are
lumped with the hardware delays and only relative clock errors can be estimated;
see Figs. E.1 and E.2. Absolute clock corrections can be determined with the
aid of one or more stable external clocks. For a more elaborate description, see
[Kouba et al., 1995], [Kouba and Springer, 2001].

With absolute satellite clocks errors, we can process the data of a single
station or a (local) network. As we can see in Table 11.1, case (b), the remaining
parameters have partial design matrices for which the Kronecker product has
an identity matrix (In) in place for the stations, while for the geometry and
troposphere we have block-diagonal partial design matrices. As long as there is
no stochastic correlation between the stations, we may therefore process the data
one station at a time.
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Chapter 14

Pre-elimination transformations

By a transformation of Eq. (12.21), an alternative model can be derived in
which there are no temporal parameters. The temporal parameters are thus
pre-eliminated. This has the advantage that a smaller system has to be solved
to obtain estimates of the nontemporal parameters. Analytic expressions of the
transformation are given below.

The pre-elimination transformation is of the form:

T (k)⊥
′
E{y(k)} = T (k)⊥

′ [
B(k), A(k)

] [
β(k)
x

]
, (14.1)

where T (k)⊥
′
T (k)

.
= 0. No information about the batch or global parameters is

lost when T (k)⊥ spans the null space of T (k)′. In the most general case of theT (k)⊥

troposphere-weighted model, two different cases can be distinguished: the model
with ZTDs (+ gradients) and the model with ZTDs and residual STDs, respectively
corresponding with the cases 8/9 and 10 in Table 12.3. One can easily verify that
in the first case1 (we assume the ionosphere-float model):

T (k)⊥ =

[
ν ′

I3

]
⊗D⊥ (4mn × 3(m − 1)(n − 1)) , (14.2)

and in the second case:

T (k)⊥ =

[
I4mn

−e′4 ⊗ Imn

]
· (

[
ν ′

I3

]
⊗D⊥) (5mn × 3(m − 1)(n − 1)) , (14.3)

with D⊥′
the double-difference operator (D⊥′D = 0):D⊥′

D⊥′
= [−en−1, In−1] ⊗ [−em−1, Im−1] ((m − 1)(n − 1) × mn) . (14.4)

Premultiplying the observables with the T (k)⊥
′
of Eq. (14.3) then gives the trans-transfor-

mation of
observables

formed observables:

T (k)⊥
′
y(k) = ([ν, I3] ⊗D⊥′

) · [I4mn, −e4 ⊗ Imn]

[
y

,
(k)

∆D(k)

]

.
= ([ν, I3] ⊗D⊥′

) · ySTD−free(k).

(14.5)

Now we can distinguish two multiplications. The first multiplication results in
residual STD-free observables, and the second multiplication results in DD (clock
error-free) observables y12..m

12..n,l
. The latter multiplication is combined with forming

1Recall the definitions of D and ν from Eqs. (11.10) and (11.12).



106 II 14.Pre-elimination transformations

ionosphere-free observables.

The residual STD-free observables read:

ySTD−free(k)
.
= y

,
(k) − e4 ⊗ ∆D(k). (14.6)

But because we assume ∆D(k) = 0, this product does not actually have to be
computed to obtain the STD-free observations. In both cases the transformed
observations are:

T (k)⊥
′
y(k) = ([ν, I3] ⊗D⊥′

) · y,(k). (14.7)

In the second case however, the covariance matrix of the STD-free observables has
an additional term:

QSTD−free
y (k) = Qy,(k) + e4e

′
4 ⊗ Q∆D(k). (14.8)

The transformations on the right-hand side of Eq. (14.1), T (k)⊥
′
A(k) andanalytical

design-
matrix
transforma-
tions

T (k)⊥
′
B(k), can be done analytically. If the residual STDs are modeled as in

case 10 of Table 12.4, the first part of the transformation simply reads:

[I4mn, −e4 ⊗ Imn] · A(k) = [Λ ⊗ Cn ⊗ Cm, e4 ⊗ G(k)] ;
[I4mn, −e4 ⊗ Imn] · B(k) = [e4 ⊗ M(k)] .

(14.9)

In other words, the first part of this design-matrix transformation reduces the
design matrices to those of the case where no residual STDs are modeled (case
8). Continuing with the second part of the transformation, we find the following
useful analytical expressions:

[ν, I3] · e4 = ν + e3;
[ν, I3] · Λ = [λ1ν, λ2c3] ;

D⊥′ · (Cn ⊗ Cm) = I(n−1)(m−1),

(14.10)

with which the analytical design-matrix transformations become:

T (k)⊥
′
A(k) =

[
[λ1ν, λ2c3] ⊗ I(n−1)(m−1), (ν + e3) ⊗D⊥′

G(k)
]
;

T (k)⊥
′
B(k) = (ν + e3) ⊗D⊥′

M(k).
(14.11)

The covariance matrix of T (k)⊥
′
y(k) can also be computed analytically, if we haveanalytical

covariance-
matrix
transforma-
tion

a simple model for Qy,(k), like Qy,(k) = diag[σ2
φI2, σ2

pI2] ⊗ Imn, with σ2
φ and σ2

p

the variances of the phase and code observables respectively. In that case we have,
with T (k)⊥ as in Eq. (14.2):

T (k)⊥
′
QSTD−free

y (k) T (k)⊥ =

T (k)⊥
′
Qy,(k) T (k)⊥ + T (k)⊥

′
(e4e

′
4 ⊗ Q∆D(k)) T (k)⊥ =

(σ2
φνν ′ + diag[σ2

φ, σ2
p, σ

2
p]) ⊗ ([en−1e

′
n−1 + In−1] ⊗ [em−1e

′
m−1 + Im−1])

+ (ν + e3)(ν + e3)
′ ⊗D⊥′

Q∆D(k)D⊥,

(14.12)

where the first term refers to the model where no residual slant delays are modeled.
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Conclusions of Part II

To facilitate GPS data processing, the observations have to be expressed in terms
of (unknown) parameters. Several observation models are derived in this part.
Because the models with all parameters present are rank deficient, full-rank
models with fewer parameters are derived by reparameterizations. We restricted
ourselves to the functional model and give only a very general description of the
stochastic model. An overview is given of models that can be used to parameterize
the tropospheric delay.

By extensive use of the Kronecker product, partial design matrices are ob-
tained in a very compact notation. Each partial design matrix corresponds with
a parameter group. We use these matrices as building blocks and distinguish
global, batch, and temporal parameters. Global parameters remain constant over
the complete time span, whereas batch parameters change from batch (several
epochs) to batch, and temporal parameters change from epoch to epoch. For
static geodetic networks the coordinates are global parameters, at least for the
duration of a run of one day. Batch and temporal parameters are considered
nuisance parameters.

Three types of troposphere parameters are introduced: residual Slant Tro-
pospheric Delays (STDs), Zenith Tropospheric Delays (ZTDs), and gradients.
Residual STDs are temporal parameters, whereas ZTDs and gradient parameters
can be considered batch parameters. This gives the possibility to use batches of
just one epoch (temporal parameters), all epochs (global parameters) or anything
in between. If neither ZTDs nor gradients are parameterized and only an a-priori
model is used, we speak of a troposphere-fixed model. In the troposphere-float and
weighted models, ZTDs are estimated with a possible addition of either gradients
or residual STDs. In the latter case we also introduce additional constraints
for the residual STDs. The troposphere-weighted model is an extension of the
troposphere-float model with soft constraints on ZTD differences between batches.
Table 15.1 gives an overview of the modeling options that are dealt with in this
part.

In principle one ZTD per station per batch can be parameterized. But be-
cause of a near rank deficiency, in small networks it may be advisable to constrain
one ZTD per batch (or model only single-differenced ZTDs) to obtain estimates
with higher precision. Similar near rank deficiencies occur for the geometry
(baseline coordinates) and gradients (single-differenced gradients). Solving for
the near rank deficiencies by fixing parameters (one ZTD, three coordinates, two
gradients) has the disadvantage that biases are introduced when these parameters
are fixed to a wrong value.
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observables: phase + code; phase only
ionosphere: fixed; float; weighted
satellite clocks: changing; constant
troposphere parameters: none; ZTDs; ZTDs+gradients; ZTD+residual STDs
troposphere: fixed; float (constant); weighted
ZTDs: global; batch; temporal

Table 15.1 Described modeling options. The top three rows are considered in the troposphere-fixed
model. Only the italicized options are assumed in the troposphere-float and weighted models.

By means of transformations, smaller GPS observation models can be derived
in which the temporal parameters are pre-eliminated and therefore not solved
for. Analytical expressions can be found for these transformations (double
differencing, ionosphere-free linear combinations). If residual STDs are modeled,
pre-elimination of these parameters boils down to using the same observables and
design matrices as the model with no residual STDs, however, the covariance
matrix of the observables will have an additional term.

The troposphere-fixed model is widely used, mainly in commercial software;state of the
art and
contribution

the troposphere-constant, weighted, and float models are implemented in most
scientific software. Although these models are not new, the terminology is by
the author. Estimation of troposphere gradients is possible with recent versions
of scientific software. The modeling of residual STDs is introduced in this part.
Undifferenced observation models and the presence of several rank deficiencies
in these models were earlier shown in [De Jonge, 1998]. The systematics in
deriving rank deficiencies in the troposphere-fixed model and the derivation of
partial design matrices is by the author in cooperation with Odijk (2002). The
classification of models in Tables 12.3 and 12.4 is by the author. The near
rank deficiencies shown in Chap. 13 were generally known, but the derivation
is by the author. The known method of double differencing and inter-frequency
linear combinations are formalized as a pre-elimination transformation in this part.

Based on the theory given in this chapter, several questions can be askedPossible im-
provements to which we come back in Part V: What is the impact of troposphere weighting;

should we use a troposphere-weighted model or the troposphere-constant or
float model? What is the impact of the batch size? Over what distances is the
troposphere-fixed model preferred? What improvements can be reached by mod-
eling residual STDs? How ‘bad’ is the near rank deficiency of Chap. 13? A related
question is: How do model choices compare as to the known precision-improving
ambiguity fixing and increasing the zenith cut-off angle? Before we can answer
these questions, the stochastic model of the troposphere-weighted model and the
covariance matrix of the residual STDs needs to be specified. We do so in Part III.



Appendix D

The Kronecker product

The following definition and the results, Eqs. (D.2–D.10), are taken from
[Rao, 1973].

definition. Let A = (aij) and B = (bij) be m × n and p × q matrices
respectively. Then the Kronecker product

A ⊗ B
.
= (aijB) (D.1)

is an mp × nq matrix expressible as a partitioned matrix with aijB as the (i, j)th
partition, i = 1, . . . , m and j = 1, . . . , n. ¥

The following results are consequences of Definition (D.1):

0 ⊗ A = A ⊗ 0 = 0; (D.2)

(A1 + A2) ⊗ B = (A1 ⊗ B) + (A2 ⊗ B); (D.3)

A ⊗ (B1 + B2) = (A ⊗ B1) + (A ⊗ B2); (D.4)

aA ⊗ bB = abA ⊗ B; (D.5)

A1A2 ⊗ B1B2 = (A1 ⊗ B1)(A2 ⊗ B2); (D.6)

(A ⊗ B)−1 = A−1 ⊗ B−1, if the inverses exist; (D.7)

(A ⊗ B)− = A− ⊗ B− using any generalized inverses; (D.8)

(A ⊗ B)′ = A′ ⊗ B′; (D.9)

(A ⊗ B)(A−1 ⊗ B−1) = I. (D.10)

Repeated application of Eq. (D.6) gives:

A1A2 · · ·Ak ⊗ B1B2 · · ·Bk = (A1 ⊗ B1)(A2 ⊗ B2) · · · (Ak ⊗ Bk). (D.11)

This rule can of course only be applied if the dimensions of the matrices are such
that the matrix multiplications on the left-hand side are allowed.
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Appendix E

Tables on elimination of rank
deficiencies

step parameters lumped parameters

1. initial phases and integer ZD ambiguities real-valued ZD ambiguities

2. receiver and satellite hardware delays receiver hardware delays and SD satellite
hardware delays

3. real-valued ZD ambiguities and receiver
hardware delays

SD ambiguities and receiver hardware delays

4. receiver and satellite clocks receiver clocks and SD satellite clocks

5. receiver hardware delays and receiver clocks receiver clocks

6. receiver clocks (4 observation types) and
ionosphere

receiver clocks (3 observation types) and
ionosphere

7a. SD ambiguities and satellite hardware delays DD ambiguities and satellite hardware delays

8a. satellite hardware delays and SD satellite
clocks

SD satellite clocks

9a. SD satellite clocks (4 observation types) and
ionosphere

SD satellite clocks (3 observation types) and
ionosphere

7b. satellite hardware delays (phase and code)
and SD satellite clocks

satellite hardware delays (phase) and SD
satellite clocks

8b. SD ambiguities and satellite hardware delays
(phase)

SD ambiguities

Table E.1 Lumping steps of Fig. E.1.

step parameters lumped parameters

1. initial phases and integer ZD ambiguities real-valued ZD ambiguities

2. receiver hardware delays and satellite hard-
ware delays (phase)

receiver hardware delays and SD satellite
hardware delays (phase)

3. real-valued ZD ambiguities and receiver
hardware delays

SD ambiguities and receiver hardware delays

4. receiver and satellite clocks receiver clocks and SD satellite clocks

5. receiver hardware delays and clocks receiver clocks

6. receiver clocks (2 observation types) and
ionosphere

receiver clocks (1 observation type) and iono-
sphere

7. SD ambiguities (2 frequencies) and iono-
sphere

SD ambiguities (1 frequency) and ionosphere

8a. SD ambiguities and satellite hardware delays DD ambiguities and satellite hardware delays

9a. satellite hardware delays and SD satellite
clocks

SD satellite clocks

10a. SD satellite clocks (2 observation types) and
ionosphere

SD satellite clocks (1 observation type ) and
ionosphere

8b. satellite hardware delays and SD satellite
clocks

SD satellite clocks

Table E.2 Lumping steps of Fig. E.2.
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Table E.3 Different lumping steps for model with phase + code observables and two model
assumptions: (a) changing satellite hardware delays; (b) stable satellite hardware delays
(common delays for phase observables and code observables). The rank-deficient systems
A1x1 + A2x2 for which A2V = A1 are transformed into the systems A2x, where
x ← x2 + V x1. ‘new’: newly formed partial design matrix. ‘final’: partial design matrix that
is no longer changed (part of full-rank model). This table corresponds with Fig. E.1.
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Figure E.1 Lumping of the parameters. Phase + code observables. Top: General steps. Bottom: (a)
changing satellite hardware delays (different for all observation types); (b) constant satellite
hardware delays (common values for phase and code). Zeros indicate parameters that exist
no more after lumping. This figure corresponds with Table E.3.
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Table E.4 Different lumping steps for model with phase observables only and two model assumptions:
(a) changing satellite hardware delays; (b) stable satellite hardware delays (common delays
for phase observables). The rank-deficient systems A1x1 + A2x2 for which A2V = A1 are
transformed into the systems A2x, where x ← x2 + V x1. ‘new’: newly formed partial design
matrix. ‘final’: partial design matrix that is no longer changed (part of full-rank model). This
table corresponds with Fig. E.2.
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Figure E.2 Lumping of the parameters. Phase observables only. Top: General steps. Bottom: (a)
changing satellite hardware delays (different for all observation types); (b) constant satellite
hardware delays (common delays for phase observables). Zeros indicate parameters that exist
no more after lumping. This figure corresponds with Table E.4.
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STOCHASTIC MODELING OF
(SLANT) TROPOSPHERIC

DELAYS OBSERVED BY GPS





Symbols in Part III

symbol meaning

∀ for all
α azimuth
C2

X constant (scaling of power-law structure function of X(r))
d(k) constraints on Dz(k) − Dz(k − 1)
DX(r) structure function of X(r)
Dz(k) zenith delay(s) on epoch k
D(α, z) Slant Tropospheric Delay
∆D(α, z) (scalar) residual STD as function of α, z
∆D(k) (vector) of residual STDs at epoch k
Γ(a) Gamma function of a
h height
H effective height
j imaginary unit:

√
−1

k kth epoch
κ angular frequencies [rad m−1]
M(z) mapping function
N refractivity
p power of power-law structure function
p number of epochs
QX(t1, t2) autocovariance function of X(t1) and X(t2)
QXY (t1, t2) cross-covariance function of X(t1) and Y (t2)
r distance |r2 − r1|
RX(t1, t2) autocorrelation of X(t)
RX(τ) autocorrelation of (stationary) X(τ)
RXY (t1, t2) cross-correlation of X(t) and Y (t)
SX(ω) Power Spectral Density of X(t)
t time
τ time lag |t2 − t1|
x(t) representation of stochastic process X(t)
X(ω) spectral representation of process X(t)
X ij difference X(rj) − X(ri)

y
k

observables at epoch k

z zenith angle
ω angular frequencies [rad s−1]
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Chapter 16

Introduction to Part III

Besides the actual GPS observables, GPS observation models may also contain
pseudo-observables to improve the quality of the parameters of interest. A
good stochastic model for both types of observables is needed for weighting
the observables and for hypothesis testing. Part III describes stochastic models
of tropospheric pseudo-observables, based on stochastic characteristics of the
tropospheric refractivity. Other types of pseudo-observables are beyond our scope.

We consider an observation model with two types of pseudo-observables, cf.
Part II:

1. spatiotemporal constraints1 on Zenith Tropospheric Delays (ZTDs);

2. constraints on residual Slant Tropospheric Delays (STDs): differences between
actual STDs and mapped ZTDs.

For both types of constraints the mathematical expectation is assumed zero and
in the actual processing of the GPS data, zero sample values are used. It is
therefore sufficient to find auto- and cross-correlation functions to describe the
covariance matrices of these constraints.

The derivations of the covariance matrices of the constraints are given in
Chap. 18. First a model is derived for inter-station differenced tropospheric
delays. Then, based on this model and the assumption of a ‘frozen troposphere’,
a model is given for the inter-epoch single differences. And finally, a model is
given of the residual STDs. Because these models rely on several assumptions
and definitions, in Chap. 17 first a review is given on definitions and terminology
concerning stochastic processes. Three distribution functions are described: the
autocorrelation function, the power spectral density function, and the structure
function. Our special interest goes to power-law processes, more specifically the
fractional Brownian motions, because they are believed to describe the stochastic
behavior of the tropospheric refractivity. The distribution functions for power-law
processes are given in Chap. 17 and applied in Chap. 18. Chapter 19 gives the
conclusions of this part.

1Models using these constraints are referred to as troposphere-weighted models.
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Chapter 17

Power-law processes

17.1 Definitions and terminology

In this section we introduce some basic statistical concepts. The most important
definitions are given and three important representations are shown of wide-sense
stationary stochastic processes: the power spectral density function, the autocor-
relation function, and the structure function.

A signal can be presented in either the time domain or frequency domain
(spectrum). Their representations are written as x(t) and X(ω) respectively,
where t is the time [s], ω

.
= 2πf the angular frequency [rad s−1], and f the

frequency [s−1].

The Fourier transform of a signal x(t) is given by [Peebles, 1987]:Fourier
transform

X(ω)
.
=

∫ ∞

−∞
x(t) exp(−jωt)dt, (17.1)

and the inverse Fourier transform is given by:

x(t)
.
=

1

2π

∫ ∞

−∞
X(ω) exp(jωt)dω, (17.2)

with j
.
=

√
−1.

The factor 1/2π is sometimes included in the first equation and sometimes
equally distributed over both equations. We continue with the definition as
above because it seems to be most frequently used. Sufficient but not necessary
conditions for the existence of a Fourier pair are [Peebles, 1987]:

1. x(t) is bounded with at most a finite number of maxima and minima and a
finite number of discontinuities in any finite time interval, and

2.

∫ ∞

−∞
|x(t)|dt < ∞.

Equations (17.1) and (17.2) can also be written as:

X(ω) = F{x(t)};
x(t) = F−1{X(ω)}, (17.3)

where F{·} and F−1{·} are symbolic notations for the Fourier and inverse FourierF{.}
transform. Note that if F{x(t)} = X(ω), then F{x(−t)} = X(−ω) follows from
the definition.
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The mathematical expectation of a continuous, random (stochastic) process
X(t) is defined as [Peebles, 1987]:E{.}

E{X(t)} .
=

∫ ∞

−∞
x · pX(x; t)dx, (17.4)

where pX(x; t) is the probability density function of X(t), and x(t) denotes a rea-
lization of X(t). The autocorrelation function of X(t) is defined as [Peebles, 1987]:auto-

correlation
RX(t1, t2)

.
= E{X(t1)X(t2)

∗}, (17.5)

where ∗ denotes the complex conjugate. The autocovariance function of X(t) isauto-
covariance defined as

QX(t1, t2)
.
= E{(X(t1) − E{X(t1)})(X(t2) − E{X(t2)})∗}, (17.6)

and the cross-correlation and cross-covariance function between two processes X(t)cross-
correlation and Y (t) are respectively:
cross-
covariance RXY (t1, t2)

.
= E{X(t1)Y (t2)

∗};
QXY (t1, t2)

.
= E{(X(t1) − E{X(t1)})(Y (t2) − E{Y (t2)})∗}.

(17.7)

For a real process X(t) = X(t)∗, and the autocorrelation, cross-correlation, auto-
covariance, and cross-covariance function read respectively:

RX(t1, t2) = E{X(t1)X(t2)};
RXY (t1, t2) = E{X(t1)Y (t2)};
QX(t1, t2) = E{(X(t1) − E{X(t1)})(X(t2) − E{X(t2)})};
QXY (t1, t2) = E{(X(t1) − E{X(t1)})(Y (t2) − E{Y (t2)})}.

(17.8)

X(t) is called wide-sense stationary if [Peebles, 1987]:wide-sense
stationary

1. E{X(t)} = µ = constant (not a function of time);
2. RX(t1, t2) = RX(τ), τ

.
= |t2 − t1|.

(17.9)

The autocovariance function of a real wide-sense stationary process X(t) is:

QX(t1, t2) = E{(X(t1) − µ)(X(t2) − µ)}
= RX(t1, t2) − µ2

= RX(τ) − µ2

≡ QX(τ).

(17.10)

The variance of this process is defined as QX(0) = RX(0) − µ2.

Often a process is considered to be ergodic, in which case [Peebles, 1987]:ergodic

E{X(t)} = < x(t) >;
E{X(t)X(t + τ)} = < x(t)x(t + τ) >,

(17.11)

using the time average notation

< · >
.
= lim

T→∞

1

2T

∫ T

−T
· dt. (17.12)

Generally, when integrating over any dimension (time, distance), we speak of anensemble
average ensemble average.
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Now, let xT (t) be the following function:

xT (t)
.
=

{
x(t) for − T < t < T ;
0 elsewhere.

The power spectral density function or power spectrum of X(t) is then defined aspower
spectral
density

[Peebles, 1987]:

SX(ω)
.
= lim

T→∞

1

2T
E{|XT (ω)|2}. (17.13)

Since x(t) is limited, there exists a Fourier transform X(ω) and

SX(ω) = lim
T→∞

1

2T
E{

∫ T

−T
X(t1) exp(jωt1) dt1

∫ T

−T
X(t2) exp(−jωt2) dt2}

= lim
T→∞

1

2T

∫ T

−T

∫ T

−T
E{X(t1)X(t2)} exp(−jω(t2 − t1)) dt2 dt1

= lim
T→∞

1

2T

∫ T−t

−T−t

∫ T

−T
RX(t, t + τ) dt exp(−jωτ) dτ

=

∫ ∞

−∞
lim

T→∞

1

2T

∫ T

−T
RX(t, t + τ) dt exp(−jωτ) dτ

=

∫ ∞

−∞
< RX(t, t + τ) > exp(−jωτ) dτ,

(17.14)

using Eqs. (17.13), (17.1), and (17.8) as well as the change of variables t = t1,
τ = t2 − t1. If X(t) is a wide-sense stationary and ergodic process, the power
spectral density function reads:

SX(ω) = F{RX(τ)} ≡
∫ ∞

−∞
RX(τ) exp(−jωτ)dτ, (17.15)

and from the inverse Fourier transform follows:

RX(τ) = F−1{SX(ω)} ≡ 1

2π

∫ ∞

−∞
SX(ω) exp(jωτ)dω. (17.16)

If X(t) is real, Eq. (17.16) can also be written as

RX(τ) =
1

2π

∫ ∞

−∞
SX(ω) cos(ωτ)dω

=
1

π

∫ ∞

0
SX(ω) cos(ωτ)dω,

(17.17)

since RX(τ) and SX(ω) are even.

The average power of a wide-sense stationary and ergodic process is:average
power

RX(0) =
1

2π

∫ ∞

−∞
SX(ω)dω, (17.18)

which is the same as the variance for a zero-mean process.

The time derivative of x(t) is:

ẋ(t) =

∫ ∞

−∞
X(ω)jω exp(jωt)dω. (17.19)
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Therefore, ẋ(t) and jωX(ω) form a Fourier pair, and from Eq. (17.14) follows that:

SẊ(ω) = ω2SX(ω). (17.20)

This is of special interest for processes with a power-law behavior:power-law

SX(ω) = S0 · |ω|−1−p, with S0 some scaling factor. The spectrum of the
time derivative is then shifted by a power 2: SẊ(ω) = S0 · |ω|1−p. The case p = 1
corresponds to a random-walk process and is also called Brownian motion. Therandom walk

time derivative of this process has a spectral power of zero, which corresponds to
white noise, and the Power Spectral Density (PSD) is a constant (S0). The total
range 0 < p < 2 is referred to as ‘fractional Brownian motion’ [Agnew, 1992].fractional

Brownian
motion We may also think of stochastic processes that are functions of distance in-

stead of time. The above given definitions are then equally applicable if we
replace t1 and t2 by r1 and r2, and τ by r = |r2 − r1|; where r1, r2, and r are in
distance units (we use [m]). The spectrum of a wide-sense stationary process is
then given in terms of angular frequency κ [rad/m]:

SX(κ) =

∫ ∞

−∞
RX(r) exp(−jκr)dr. (17.21)

Random functions of three variables are called random fields. The concept ofrandom
fields stationarity then generalizes to the concept of homogeneity [Tatarski, 1961]. A
homogeneity random field is called homogeneous if:

1. E{X(~r)} = µ = constant;
2. RX(~r1, ~r2) = RX(~r1 + ~r0, ~r2 + ~r0).

(17.22)

By choosing ~r0 = −~r1, one can see that RX(~r1, ~r2) = RX(~r2 −~r1)
.
= RX(~r), where

~r
.
= ~r2−~r1. A homogeneous random field is called isotropic if RX(~r) = RX(|~r|). Aisotropic

random field is locally homogeneous in a region G if the conditions of Eq. (17.22)
hold for any ~r1 and ~r2 in G, and locally isotropic in the region G if RX(~r) = RX(|~r|)
for any ~r in G [Tatarski, 1961].

The structure function or variogram of X(~r) is defined as [Tatarski, 1961]:structure
function

DX(~r)
.
= < [x(~r2) − x(~r1)]

2 >
= < x(~r2)x(~r2) > + < x(~r1)x(~r1) > −

< x(~r1)x(~r2) > − < x(~r2)x(~r1) > .
(17.23)

For a (locally) homogeneous and ergodic random field the structure function re-
duces to:

DX(~r) = 2[RX(0) − RX(~r)], (17.24)

and for a(n) (locally) isotropic and ergodic random field the structure function
reads:

DX(r) = 2[RX(0) − RX(r)], with r = |~r|. (17.25)

If RX(∞) = 0, which is reasonable for many physical processes, then

DX(∞) = 2RX(0). (17.26)

In other words, the structure function approaches some constant (sill) value as it
approaches infinity. From Eqs. (17.25) and (17.26) follows that the normalized
autocorrelation function then reads:

RX(r)

RX(0)
= 1 − DX(r)

DX(∞)
. (17.27)
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17.2 Power-law distribution functions

A special class of stochastic processes is formed by processes with power-law
distribution functions. Three distribution functions were introduced in the
previous section: the structure function, the autocorrelation function, and the
power spectral density function. We start with the power-law formulation of the
structure function and derive the other two.

Suppose we have a real, isotropic, and ergodic random process X(r) (or
random field X(~r) if r = |~r|) with a power-law structure function

DX(r) = C2
Xrp, (17.28)

where 0 < p < 2 and C2
X is a positive constant [m2−p]. From Eq. (17.25) then

follows that the autocorrelation function reads:

RX(r) = RX(0) − 1

2
DX(r), (17.29)

and the power spectral density function reads (see App. F):

SX(κ) = F{RX(r)} = F{RX(0) − 1
2DX(r)}

= F{RX(0) − 1
2C2

X |r|p}
= 2πRX(0)δ(κ) + C2

XΓ(p + 1) sin(pπ/2)|κ|−(p+1),

(17.30)

with δ(.) the Dirac function1. So this random field has infinite spectral density at
κ = 0 and infinite average power, and is in fact not realizable.

The random field can however be realizable if we assume that the spectrum is
limited to frequencies larger than some (positive low) frequency κmin [rad m−1].
Based on this assumption, we approximate the autocorrelation function and the
structure function. Since we always work with finite length processes, this means
we make an assumption about the behavior of the autocorrelation function beyond
the length rmax of the process, if κmin ≤ 2π/rmax. Based on this assumption
we can start with the power-law formulation of the Power Spectrum and again
derive the other two distribution functions.

Assume we have the following power spectrum of a real, wide-sense station-
ary, and ergodic stochastic process X(r) [m]:

SX(κ) =

{
S0 · |κ|−(p+1) for |κ| ≥ κmin;

S0 · κ−(p+1)

min for |κ| ≤ κmin,
(17.31)

for which 0 < p < 2, S0
.
= Γ(p+1) sin(pπ/2)C2

X a positive constant, and κminr ¿ 1
for 0 < r < rmax. The autocorrelation function of X(r) then reads (see App. G):

RX(r) ≈ (p + 1)S0

pπκp

min
− S0

2Γ(p + 1) sin(pπ/2)
rp. (17.32)

This autocorrelation function is of the form

RX(r) = c0 − c1r
p, (17.33)

1
R ∞

−∞
f(t − x)δ(x)dx

.
= f(t); δ(x) = 0, ∀x 6= 0;

R ∞

−∞
δ(x)dx = 1.
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Figure 17.1 Relation between power p of the structure function (and autocorrelation function) and the
spectral power −(p + 1) (left panel) and constant Γ(p + 1) sin(pπ/2) (right panel) in the
range 0 < p < 2. The case p = 1 corresponds to a random-walk process. p = 2/3 and
p = 5/3 correspond to the extreme cases of the structure function of Sect. 18.3.

with c0 and c1 positive constants:

c0 = RX(0) = π−1(p + 1)Γ(p) sin(
pπ

2
)C2

Xκ−p

min ; c1 =
1

2
C2

X . (17.34)

This autocorrelation function has a finite variance that strongly depends on κmin:
when κmin → 0 then c0 → ∞. For p = 1 we have the well-known case of
the autocorrelation function of Baarda’s criterion matrix [Baarda, 1973] for the
description of the coordinate precision in geodetic networks. In that case c0 =
2C2

X/πκmin. Clearly, for a small κmin, c0 becomes large, but it is not in the
structure function we started with2:

DX(r) = 2[RX(0) − RX(r)]
= 2[c0 − (c0 − c1r

p)]
= 2c1r

p

= C2
Xrp.

(17.35)

In other words, contrary to the autocorrelation function, the structure function is
not sensitive for the value of κmin.

17.3 Power-law cross-correlation of differences

Suppose we have a real, wide-sense stationary, and ergodic process X(r) with the
power-law structure function of Eq. (17.35). We form differences Xij

.
= X(rj) −

X(ri) and Xkl
.
= X(rl) − X(rk). Using the equality

(a − b)(c − d) =
1

2
[(a − d)2 + (b − c)2 − (a − c)2 − (b − d)2], (17.36)

2Baarda noticed that the S-transformed (Similarity transform to obtain a nonstochastic basis)
criterion matrix did not depend on c0 either.
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the cross-correlation of X ij and Xkl can be found as:

RXijXkl
= E{[X(rj) − X(ri)][X(rl) − X(rk)]}
= < [x(rj) − x(ri)][x(rl) − x(rk)] >
= 1

2 < [x(rj) − x(rk)]
2 + [x(ri) − x(rl)]

2−
[x(rj) − x(rl)]

2 − [x(ri) − x(rk)]
2 >

= 1
2 [DX(rjk) + DX(ril) − DX(rjl) − DX(rik)]

= 1
2C2

X [rp
jk + rp

il − rp
jl − rp

ik],

(17.37)

with rij
.
= |rj − ri|.

There are several special cases. The case k = i 6= j 6= l corresponds to
the S-transform where all differences are with respect to X(ri), like X12, X13, X14,
etc. The case i < j = k < l corresponds to a transform to obtain a sequence of
differences: X12, X23, X34, etc. And in case k = i 6= l = j, we have the auto-
correlation of a difference, which is by definition equal to the structure function.
Another special case is the random-walk process (p = 1). The cross-correlation
then becomes zero when i < j ≤ k < l. Table 17.1 gives eight different cases; the
four cases at the right-hand side are special cases of the four at the left-hand side.

case (0 < p < 2) cross-correlation case (p = 1) cross-corr.

i 6= j 6= k 6= l 1
2C2

X [rp
jk +rp

il−rp
jl−rp

ik] i < j < k < l 0

i 6= j = k 6= l 1
2C2

X [rp
il − rp

jl − rp
ij ] i < j = k < l 0

k = i 6= j 6= l 1
2C2

X [rp
il + rp

ij − rp
jl] k = i < j, l C2

X min(rij , rkl)

autocorrelation autocorr.

k = i 6= l = j C2
Xrp

ij k = i 6= l = j C2
Xrij

Table 17.1 Cross-correlation and autocorrelation of differences Xij = X(rj) − X(ri) and

Xkl = X(rl) − X(rk) for a process X(r) with structure function DX(r) = C2
X rp.
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Chapter 18

Stochastic modeling of
troposphere constraints

18.1 Troposphere constraints in the GPS observation model

Based on stochastic models for differences of tropospheric delays, we can compile
a stochastic model for pseudo-observables (constraints) in a GPS observation
model. In GPS observation models we can distinguish global, temporal, and
batch parameters. Global parameters are constant for the complete time span,
temporal parameters change on an epoch-to-epoch basis, and batch parameters
change slowly from epoch to epoch and may therefore be considered constant for
a batch of several epochs. Batch parameters may also be estimated every epoch,
but they can still be considered a different parameter group than the temporal
parameters if we use relative constraints (this is of no use for the quickly changing
temporal parameters). This is what is applied in a troposphere-weighted model.troposphere-

weighted
model

For a more elaborated discussion on different types of parameters, see Part II.

We assume that the ZTDs are the only batch parameters. In static GPS
data processing of GPS observations and pseudo-observations the following
functional model can be given for three consecutive epochs1 k − 1, k, and k + 1:

E{




y(k − 1)

d(k)
y(k)

d(k + 1)
y(k + 1)



} =




Tk−1 Bk−1 0 0 0 0 Ak−1

0 −In 0 In 0 0 0
0 0 Tk Bk 0 0 Ak

0 0 0 −In 0 In 0
0 0 0 0 Tk+1 Bk+1 Ak+1







t(k − 1)
β(k − 1)
t(k)
β(k)
t(k + 1)
β(k + 1)
x




. (18.1)

This model includes the following parameters:

x : global parameters: ambiguities, coordinates;
β(k) : batch parameters of epoch k: (absolute) ZTDs;
t(k) : temporal parameters of epoch k: ionospheric,

residual STD, and clock parameters.

The vector of observables y(k) is a concatenated vector: y(k) = [y
,
(k)′, ∆D(k)′]′.

So there are in total three different types of (pseudo-)observables:

y
,
(k) : GPS code and phase observables;

∆D(k) : pseudo-observables of residual STDs;
d(k) : pseudo-observables of differences of ZTDs.

1This model generalizes for more epochs but only three epochs are shown for clarity.
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Model (18.1) is a linearized troposphere-weighted model with ‘observed-minus-
computed’ observables. The GPS observables are a priori corrected for STDs
based on a model like the one in [Saastamoinen, 1972], see also Eq. (6.11) in
Part I. Zero sample values are taken as pseudo-observations when estimating
the parameters; β(k) = [Dz

1(k), ..., Dz
n(k)]′ is an n × 1 vector of undifferenced

ZTDs (with n is the number of stations); Tk, Bk, and Ak in Eq. (18.1) are the
partial design matrices for epoch k of the temporal, batch, and global parameters
respectively; and In is an n × n identity matrix.

The following stochastic model of untransformed observables is assumed as
in Part II:

D{




y(k − 1)

d(k)
y(k)

d(k + 1)
y(k + 1)



} =




Qy(k − 1)
Qd(k)

Qy(k)
Qd(k + 1)

Qy(k + 1)




;

Qy(k) =

[
Qy,(k)

Q∆D(k)

]
.

(18.2)

In other words, the observation types are uncorrelated and there is no correlation
between the observables of different epochs. The parameters in this model can
be solved in a batch processing or in a recursive filtering procedure. In the first
case, time correlation makes the parameter estimation very time consuming and
therefore impractical. In the second case the absence of time correlations is a req-
uisite. Generally, the observables are correlated and the block diagonal structure
is a simplifying assumption. Still, autocovariance functions are needed to describe
the matrices Qd(k) and Q∆D(k) (we assume Qy,(k) is known). These are derived
in this chapter.

18.2 Atmospheric turbulence

To derive the stochastic properties of a tropospheric delay, we need the stochastic
properties of the refractivity first. The STD, D(α, z), of a radio signal from a
satellite that arrives at a ground receiver is a function of the refractivity along the
ray path:

D(α, z) = 10−6M(z)

∫ hmax

0
N(~r(h)) dh, (18.3)

where ~r(h) is a vector with coordinates of a point along the ray path as function
of height; hmax is the top of the (wet) troposphere, α and z are the azimuth and
zenith angle of the ray, and M(z) ≈ sec(z) is the mapping function (we assume a
horizontally stratified atmosphere).

Tatarski (1961) showed that based on atmospheric turbulence theory, the
structure function of the refractivity has a power-law behavior:

DN (r) = DN (~r1, ~r2)
.
=< [N(~r2) − N(~r1)]

2 >= C2
Nr

2

3 , l0 ≤ r ≤ L0, (18.4)

where r = |~r2 − ~r1|, CN [m− 1

3 ] some constant under certain atmospheric condi-
tions, and l0 and L0 the inner and outer scale of the turbulence. The refractivity
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is thus considered a locally isotropic random field. Equation (18.4) was first ob-
tained (in a slightly different form) in [Kolmogorov, 1941] and [Obukhov, 1941],
and is known as the two-thirds law. Although this function grows with larger
values of r, there should be a saturation point where the function becomes con-
stant.2 The structure function is therefore only valid between the lower and upper
bound. A probably better approximation for the complete range of r is given in
[Treuhaft and Lanyi, 1987]:

DN (r) =
C2

Nr
2

3

1 + (r/L)
2

3

; L = 3000 km → DN (∞) = C2
NL

2

3 . (18.5)

Both functions, Eq. (18.4) and Eq. (18.5), are illustrated in Fig. 18.1. In
[Gradinarsky, 2002] a more refined model was shown where the expectation and
structure function of the refractivity have a different dependence of distance in
vertical and horizontal direction. Although this is a more reasonable assumption,
it contradicts the assumption of isotropy.
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Figure 18.1 Structure function according to Kolmogorov (solid line) and Treuhaft and Lanyi (dashed line)

as function of distance. CN = 0.24 m− 1

3 was assumed as by Treuhaft and Lanyi.

Based on Eq. (18.4) or Eq. (18.5) we can develop stochastic models for single
differenced tropospheric delays as described in the sections that follow.

18.3 Inter-station troposphere single difference

For two stations (say 1 and 2) sufficiently close to each other, the zenith angles are
approximately equal and the difference of the ZTDs, Dz

12
.
= Dz

2 − Dz
1, then reads:

Dz
12 = 10−6M(z)

∫ hmax

0
[N(~r2(h)) − N(~r1(h))] dh. (18.6)

From Eqs. (18.6) and (17.37) then follows that (see Fig. 18.2):

< [Dz
2 − Dz

1]
2 >=

10−12M2(z)

∫ hmax

0

∫ hmax

0
< [N(~r2(h1)) − N(~r1(h1))]·

[N(~r2(h2)) − N(~r1(h2))] > dh1dh2 =

10−12M2(z)

∫ hmax

0

∫ hmax

0

1
2DN (|~r2(h1) − ~r1(h2)|) + 1

2DN (|~r1(h1) − ~r2(h2)|)
− 1

2DN (|~r2(h1) − ~r2(h2)|) − 1
2DN (|~r1(h1) − ~r1(h2)|) dh1dh2.

2This would be physically reasonable to obtain zero autocovariance at infinity. And zero
autocovariance is sufficient to prove the ergodic property [Yaglom, 1962].
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(18.7)

r

ρ

∆h

1 2

ρ

~r1(h2) ~r2(h2)

~r1(h1) ~r2(h1)

Figure 18.2 Geometry of two parallel zenith rays of a radio signal arriving from one satellite at two
receiving stations (1, 2). The refractivity structure function is evaluated at a distance r
between two points along the rays and at a distance ∆h along one of the rays.

From Fig. 18.2 we can also see that:

|~r2(h2) − ~r1(h1)| = |~r1(h2) − ~r2(h1)| = r;
|~r2(h2) − ~r2(h1)| = |~r1(h2) − ~r1(h1)| = ∆h,

(18.8)

with ∆h
.
= h2 − h1 and r = [∆h2 + ρ2]

1

2 .

The structure function of the delays at two receivers, as function of their
distance ρ over the surface, therefore reads:

DDz(ρ)
.
=< [Dz

2 − Dz
1]

2 >=

10−12M2(z)

∫ hmax

0

∫ hmax

0
DN ([∆h2 + ρ2]

1

2 ) − DN ([∆h2]
1

2 ) dh1dh2.
(18.9)

This integral was given in [Treuhaft and Lanyi, 1987]; even a more general integral
was given for arbitrary slant directions. They replaced hmax by the effective
height H. Although only about (1−exp(−1))×100% ≈ 63% of the delay is caused
by the atmosphere up to the effective height in case of an exponential refractivity
profile, this may be reasonable if one only considers the stochastic properties; the
Kolmogorov turbulence may not be valid at large altitudes. In fact, Gradinarski
(2002) experimentally showed a height dependence of the refractivity structure
function.

Using the structure function of Eq. (18.4) and Eq. (18.5), we obtain:

DDz(ρ) = 10−12C2
N

∫ H

0

∫ H

0
[∆h2 + ρ2]

1

3 − [∆h2]
1

3 dh1dh2 (18.10)

and

DDz(ρ) = 10−12C2
N

∫ H

0

∫ H

0

[∆h2 + ρ2]
1

3 − [∆h2]
1

3

1 + L− 2

3 [∆h2 + ρ2]
1

3

dh1dh2, (18.11)

respectively. By changing to the dimensionless variables x1
.
= h1/H, x2

.
= h2/H,

and u
.
= ρ/H, Eqs. (18.10) and (18.11) may be replaced by:u

.
= ρ/H
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DDz(ρ) = 10−12C2
NH

8

3

︸ ︷︷ ︸ DDz(u);
.
= C2

D DDz(u),
(18.12)

where C2
D is in [m2] and the (dimensionless) normalized structure functions arenormalized

structure
functions

given as:

DDz(u)
.
=

∫ 1

0

∫ 1

0
[∆x2 + u2]

1

3 − [∆x2]
1

3 dx1dx2 (18.13)

and

DDz(u)
.
=

∫ 1

0

∫ 1

0

[∆x2 + u2]
1

3 − [∆x2]
1

3

1 + (H/L)
2

3 [∆x2 + u2]
1

3

dx1dx2, (18.14)

respectively. Since for any even function holds [Tatarski, 1961]:
∫ b

0

∫ b

0
f(x2 − x1) dx1dx2 = 2

∫ b

0
(b − x)f(x) dx, (18.15)

we may replace the double integral of Eq. (18.13) by a single integral:

DDz(u) = 2

∫ 1

0
(1 − x) · {[x2 + u2]

1

3 − [x2]
1

3 } dx. (18.16)

This integral and the integral of Eq. (18.13) do not give simple analytical expres-
sions. The result was first presented in [Treuhaft and Lanyi, 1987] and is shown in
Fig. 18.3. This figure also shows the integral of Eq. (18.14). Treuhaft and Lanyi
(1987) also gave a polynomial approximation of Eq. (18.13). A similar polynomial
can be given for Eq. (18.14), and is of the same form:

log(DDz(u)) =

10∑

i=0

ai(log(u))i, (18.17)

where the constants ai are as in Table 18.1; see also Fig. 18.5. This model will
be referred to as the TL2 model; see Part V. Contrary to the polynomial ofTL2

[Treuhaft and Lanyi, 1987] the constants depend on H.

i a(i) i a(i)

0 -0.24642825974092
1 0.99652032780210 6 -0.00169423152584
2 -0.23032140825582 7 0.00079874140271
3 0.02014514419047 8 0.00002208367722
4 0.01957239963592 9 -0.00003423986001
5 -0.00672815490738 10 0.00000318042977

Table 18.1 Constants a(i) corresponding to Model (18.17) for H = 2 km (TL2 model).

For u ¿ 1, the function DDz(u) = up shows a power-law behavior with a powershort
distance
regime

of p = 5/3 (right panel of Fig. 18.3), which was shown earlier in [Tatarski, 1961]
for a horizontal planar wave. The integral of Eq. (18.16) can be computed ana-
lytically by a computer algebra system. With the symbolic toolbox of matlabTM

[Moler and Costa, 1997] the following expression was found:

6

5
F (−1

3
,−5

6
;
1

6
;−u2) − 9

20
− 3

4
(1 + u2)

4

3 +
3

4
u

8

3 +
4
5π

3

2

Γ(5
6)Γ(2

3)
u

5

3 , (18.18)
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Figure 18.3 Left panel: Normalized structure function DDz (u). Right panel: Power p of DDz (u) = up.
Dashed lines: based on Eq. (18.13). Solid lines: based on Eq. (18.14) with H = 2 km.
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Figure 18.4 Three distribution functions of the ZTD. The range 10 km < r < 400 km is shown where
p ≈ 2

3 (p = 2
3 was assumed) and κmin = 0.1/400 rad km−1 is used. CN = 0.24 m− 1

3 , H =
1 km. (a) Autocorrelation function RDz (ρ) = c0 − c1ρ

p; (b) Power spectral density function
SDz (κ) = S0κ

−(p+1); (c) Structure function DDz (ρ) = 10−12C2
NH2ρp.

where Γ(.) is the Gamma function3 and

F (a, b; c; f(u))
.
=

Γ(c)

Γ(a)Γ(b)

∞∑

n=0

Γ(a + n)Γ(b + n)

Γ(c + n)

f(u)n

n!
(18.19)

is a Gauss hypergeometric series [Abramowitz and Stegun, 1970]. For f(u) = −u2

→ 0 this series approaches 1, and the expression of Eq. (18.18) is dominated by
the last term, which confirms the 5/3th-power behavior of the structure function
for u ¿ 1.

For u À 1 ≥ x, the integral of Eq. (18.16) must approach 1
2u

2

3 because thelarge
distance
regime

expression between braces is approximately u
2

3 . In other words, for large u
the normalized structure function becomes DDz(u) = u

2

3 . This was confirmed
numerically.

Similar results, with a transition of power from 5/3 to 2/3, can numerically
be found for other α and z than the zenith direction [Treuhaft and Lanyi, 1987].
Note that this type of power-law behavior was confirmed in [Hanssen, 2001] based
on InSAR data. A power of p = 1 (log(u) ≈ 0) is reached when ρ ≈ H; see Fig. 18.3.

Figure 18.5 shows the correlation between two delays as function of the

3Γ(a)
.
=

R ∞

0
exp(−x)xa−1dx.
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distance based on the TL2 model and follows from Eq. (17.27) as:

QDz
.
=

RDz(ρ)

RDz(0)
= 1 − DDz(ρ)

DDz(∞)
= 1 − DDz(u)

DDz(∞)
, (18.20)

where DDz(∞)/2 = RDz(0) = 5 cm2. In fact, the value of L = 3000 km was

chosen in [Treuhaft and Lanyi, 1987] such that for H = 2 km and CN = 0.24 m− 1

3

this value was consistent with annual fluctuations of the tropospheric delay at
mid-latitudes.
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Figure 18.5 Left panel: Correlation between two zenith delays as function of the distance ρ for an
assumed effective height of H = 2 km. Right panel: Structure function of zenith delay as
function of distance according to the TL2 model of Eq. (18.17) and Table 18.1.

18.4 Inter-epoch troposphere single difference

The structure function of inter-epoch troposphere single differenced de-
lays can be derived by assuming a ‘frozen turbulence’ [Taylor, 1938],
[Treuhaft and Lanyi, 1987]. In this case we may think of the troposphere as pass-
ing over a station with a constant wind velocity v = ρ/τ , where τ is the time lag.
With u = vτ/H, the structure function is then in terms of τ :

DDz(τ) = C2
D

vp

Hp τp. (18.21)

For typical values of H = 2 km and v = 8 m/s, a power of p = 1 (u ≈ 1) is
reached when τ = 250 s, or about 4 minutes. The corresponding value of the PSD
= C2

Dv/H is then about 1.5 · 10−7m2/s.PSD

If we form a sequence of differences in time, d(k)
.
= Dz(k)−Dz(k− 1), d(k + 1)

.
=

Dz(k + 1) − Dz(k), etc., the cross-correlation function between any d(k) and d(l)
reads:

Rd(k)d(l) =
1

2

vp

Hp C2
D[τp

k+1 l + τp
k l+1 − τp

k+1 l+1 − τp
kl], (18.22)

where τkl = |tl − tk|; cf. Eq. (17.37). This function is in general not equal to
zero, which frustrates a recursive filtering approach of GPS data processing. Only
in case of a random-walk process, there is no correlation between any d(k) and
d(l 6= k); cf. Table 17.1. But, as shown in Fig. 18.6, the correlation is small
for p = 2/3. Since E{d(k)} = 0 for all k, Eq. (18.22) also describes the cross-
covariance function. In the random-walk case we therefore have the following
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Figure 18.6 Normalized cross-correlation between troposphere differences d(k) and d(l) for power
p = 2/3. Lines between values are shown for clarity.

stochastic model for constraints d(k):

D{




d(1)
...

d(p)


} = PSD · diag[τ01, ..., τp−1p]. (18.23)

If, like is assumed in the previous section, ZTDs are also spatially correlated and
d(k)′ = [Dz

1(k), ..., Dz
n(k)] − [Dz

1(k − 1), ..., Dz
n(k − 1)], the stochastic model reads

D{




d(1)
...

d(p)


} .

= diag[Qd(1), ..., Qd(p)] = PSD · diag[τ01QDz , ..., τp−1pQDz ].

(18.24)

with QDz obtained from Eq. (18.20).

18.5 Residual Slant Tropospheric Delays

This section describes the development of a stochastic model of residual STDs. A
residual STD, ∆D(α, z), is the difference between an actual slant delay D(α, z)
and a mapped ZTD, Dz:

∆D(α, z)
.
= D(α, z) − M(z)Dz, (18.25)

where D(α, z) and Dz are in fact already residuals when we subtract an
a-priori model like the one by Saastamoinen (1972). Because we assume
E{∆D(α, z)} = 0, the cross-covariance function of two residual STDs of the same
station, which we want to obtain, equals the cross-correlation function and reads
[Emardson and Jarlemark, 1999]:

Q∆D([α1, z1], [α2, z2])
.
=< ∆D(α1, z1) · ∆D(α2, z2) >=

< [D(α1, z1) − M(z1) · Dz][D(α2, z2) − M(z2) · Dz] >=
M(z1)M(z2) < [M(z1)

−1D(α1, z1) − Dz][M(z2)
−1D(α2, z2) − Dz] >=

1
2M(z1)M(z2)

(
< [M(z1)

−1D(α1, z1) − Dz]2 > +
< [M(z2)

−1D(α2, z2) − Dz]2 > −
< [M(z1)

−1D(α1, z1) − M(z2)
−1D(α2, z2)]

2 >
)
,

(18.26)
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Figure 18.7 Geometry of two slant rays in the same vertical plane.

where we made use of Eq. (17.36); see also the third case of Table 17.1. This
autocorrelation function is given as function of:

< [M(z1)
−1D(α1, z1) − M(z2)

−1D(α2, z2)]
2 >=

10−12

∫ H

0

∫ H

0

1
2DN (|~r2(h1) − ~r1(h2)|) + 1

2DN (|~r1(h1) − ~r2(h2)|)
−1

2DN (|~r1(h1) − ~r1(h2)|) − 1
2DN (|~r2(h1) − ~r2(h2)|) dh1dh2 =

10−12

∫ H

0

∫ H

0
DN ([h2

1 sec2(z1) + h2
2 sec2(z2) − 2h1h2 sec(z1) sec(z2) cos(θ)]

1

2 )

−1
2DN ([∆h2 sec2(z1)]

1

2 ) − 1
2DN ([∆h2 sec2(z2)]

1

2 ) dh1dh2 =

10−12C2
NH

8

3

∫ 1

0

∫ 1

0
[x2

1 sec2(z1) + x2
2 sec2(z2) − 2x1x2 sec(z1) sec(z2) cos(θ)]

1

3

−1
2 [∆x2 sec2(z1)]

1

3 − 1
2 [∆x2 sec2(z2)]

1

3 dx1dx2,

(18.27)

with θ the angle between both slant directions and x1
.
= h1/H, x2

.
= h2/H. The

geometry of this derivation is shown in Fig. 18.7, where both rays are in the
same vertical plane, θ = |z1 − z2|, which is in general not the case. In both
[Treuhaft and Lanyi, 1987] and [Emardson and Jarlemark, 1999] the constants

CN = 0.24 m− 1

3 and H = 1 km were used.
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Figure 18.8 Left panel: < [M(z)−1 · D(α, z) − Dz]2 > as function of z for CN = 0.24 m− 1

3 , H = 1 km,
and α fixed. Right panel: Error in approximation (real minus model) of same function by
[Emardson and Jarlemark, 1999] (solid line) and as in Eq. (18.31) (dashed line).

In Eq. (18.27), we have obtained an integral that cannot be solved analyt-
ically. Numerical integration with z2 = 0 and θ = z1 gives the result
of Fig. 18.8. This is a special case where M(z2)

−1D(α2, z2) = Dz, and
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was presented in [Treuhaft and Lanyi, 1987]. A Taylor expansion was given in
[Emardson and Jarlemark, 1999]:

<
[
M(z1)

−1D(α1, z1) − M(z2)
−1D(α2, z2)

]2
> = 10−7

12∑

i=1

a(i)ki [m2]. (18.28)

The a(i) and ki are given in Table 18.2. An error plot of the above given model is
given in Fig. 18.8. Emardson and Jarlemark (1999) gave an expansion in the map-
ping functions M(z1) and M(z2). The Lanyi (wet) mapping function [Lanyi, 1984]
was used to derive the constants of Eq. (18.28) [Jarlemark, 2002], but the choice
of mapping function is not critical. The model is based on 480 double integrals of
combinations (α1, z1) and (α2, z2) [ibid]. In degrees they are:

α1 = e480 ⊗ 0;
α2 = e48 ⊗ [0 20 40 60 80 100 120 140 160 180]′;
z1 = [83 82 80 74 58 19 ]′ ⊗ e80;
z2 = e6 ⊗ [85 80 75 70 60 40 20 0]′ ⊗ e10,

(18.29)

where ⊗ denotes the Kronecker product (see Part II) and en is an n × 1 vector
with ones.

i a(i) i a(i) i a(i)

1 -0.2463797631 5 0.0057411608 9 -0.0000245648
2 0.2306443703 6 -0.0021812591 10 0.0000070851
3 -0.1178244362 7 0.0017793703 11 -0.0000069178
4 0.0179544380 8 -0.0003054072 12 0.0000012543

i ki i ki i ki

1 θ 5 θ2 9 θ3

2 θ[M(z1) + M(z2)] 6 θ2[M(z1) + M(z2)] 10 θ3[M(z1) + M(z2)]
3 θ[M(z1) · M(z2)] 7 θ2[M(z1) · M(z2)] 11 θ3[M(z1) · M(z2)]
4 θ[M(z1) + M(z2)]

2 8 θ2[M(z1) + M(z2)]
2 12 θ3[M(z1) + M(z2)]

2

Table 18.2 Constants a(i) and function ki as in the model of [Emardson and Jarlemark, 1999],
Eq. (18.28); θ in degrees.

Unfortunately, tests with the model of [Emardson and Jarlemark, 1999] for actual
satellite configurations all over the world resulted in covariance matrices that were
indefinite. Probably this is caused by the crude polynomial approximation. This
may not be seen from Fig. 18.8, but for arbitrary θ the errors become larger. One
way to overcome this problem is neglecting the correlations. In fact, this is what
is usually done in GPS data processing. The variances can then be described by
some zenith angle dependent function. Using Eq. (18.26), we find for z ≡ z1 = z2

and α ≡ α1 = α2:

σ2
∆D =< [∆D(α, z)]2 >= M(z)2· < [M(z)−1D(α, z) − Dz]2 >, (18.30)

as shown in Fig. 18.9. We do not need a very sophisticated polynomial to approx-
imate this structure function, as in this case: θ = z. Figure 18.8 shows the error
of the following model, with z in degrees:

< [∆D(α, z)]2 > = 0.0128 · z · (1 + sec(z)) − 0.0003 · z · (1 + sec(z))2, (18.31)
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which seems to be a good (theoretical) approximation.

In GPS data processing, residual slant delays are usually not modeled ex-
plicitly. They are considered to be one of the noise terms of the observations.
If the variance of a phase observable φ is σ2

φ, then φ − ∆D(α, z) has variance

σ2
φ + σ2

∆D, which gives an apparent zenith angle dependent variance of the phase
observation. Other zenith angle dependent noise terms, like multipath or antenna
phase center variations, may be present.
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Figure 18.9 Standard deviation of residual slant delay as function of zenith angle; M(z) = sec(z) used.

A better way to prevent indefiniteness of the covariance matrix is computing the
integrals explicitly. In actual data processing this would cost a lot of computation
time, which makes it impractical. This was the reason for the polynomial approx-
imation in [Emardson and Jarlemark, 1999] in the first place. The integral terms
do however not need to be determined exactly; the integrals may be approximated
by summations. Combining Eqs. (18.26) and (18.27) then gives the model for
station r:

Q∆Dr([α1, z1], [α2, z2]) = 1
2 · 10−12C2

NH
8

3 M(z1)M(z2) · {n−2
∑

x1

∑
x2

[x2
1 sec2(z1) + x2

2 − 2x1x2]
1

3 + [x2
1 + x2

2 sec2(z2) − 2x1x2]
1

3

−[x2
1 + x2

2 − 2x1x2]
1

3

−[x2
1 sec2(z1) + x2

2 sec2(z2) − 2x1x2 sec(z1) sec(z2) cos(θ)]
1

3 },

(18.32)

where x1, x2 = 1/2n, 3/2n, ..., (2n− 1)/2n. Tests with n = 5 and n = 10 at several
locations around the world showed it to be positive definite every 30 s for a com-
plete day. Random checking of Model (18.32) showed better approximations than
the model from [Emardson and Jarlemark, 1999], even for n = 5. Model (18.32)
is expected to be a reasonable model to be used in GPS data processing as long
as a correct scaling (C2

D = 10−12C2
NH

8

3 ) can be assumed.
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Chapter 19

Conclusions of Part III

The tropospheric (wet) refractive index can be considered a locally isotropic
random field1, with power-law distribution functions. The structure function, or
ensemble autocorrelation function of differences, follows a two-thirds power-law
behavior: C2

Nrp, with C2
N some constant, r the distance between two points in

the troposphere, and p = 2/3 the power. This is a special case of the fractional
Brownian motion where the power is between 0 and 2. Although, strictly
speaking, these kinds of stochastic processes are not wide-sense stationary (or
isotropic), because of the local validity of this structure function and assumptions
on the power spectral density for low frequencies, we may treat them as such.
Unlike the autocorrelation function, the structure function is not sensitive to the
low-frequency behavior. Under the assumption of ergodicity (ensemble averages
equal statistical averages), which is generally assumed reasonable, not only
autocorrelations but also cross-correlations of differences can be obtained, based
on the structure function.

Because the tropospheric delay is an integral function of the refractivity,
the auto- or cross-correlation functions of tropospheric delay differences follow
from double integration. And since the tropospheric delay differences are
zero-mean, the obtained correlation matrices also serve as covariance matrices of
constraints that can be added to a GPS observation model to strengthen it. The
double integrals cannot be solved analytically but can be computed numerically.
Three types of single-differenced tropospheric delays are considered: inter-station
and inter-epoch single differences, and residual STDs.

Inter-station single-differenced tropospheric delays do not have a strict con-
stant power-law behavior, but a power that declines from 5/3th to 2/3th over
increasing distances with a turn-over point at about the same distance as the
(effective wet) tropospheric height of a few kilometers. Within certain distance
regimes smaller or larger than the turn-over point, we can consider the structure
function to have a (nearly) strict power-law behavior.

To obtain a structure function for the inter-epoch single-differenced tropo-
spheric delays (relative ZTD observable) we need to assume a certain constant
wind velocity. The structure function is a function of time with a turn-over point
that depends on the wind velocity. Only in case of a random-walk process, a
power-law process with power 1, efficient processing of GPS data is possible in
the presence of relative constraints on zenith delays.

1Stochastic process of three variables with an autocorrelation function that depends only on
distance.
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Based on the stochastic properties of the wet refractive index, one can also
derive a stochastic double-integral model for residual STDs. A numeric, poly-
nomial, model was derived in [Emardson and Jarlemark, 1999], but this model
turned out to be (probably intrinsically) indefinite for all tested satellite con-
figurations. Approximating the double integrals by (crude) summations gave a
satisfying positive-definite covariance matrix for the same tested configurations.
If the correlations are discarded, one is left with a positive-definite covariance
matrix that implies zenith angle dependent weighting.

The covariance matrices of the constraints depend on the scaling parameter
C2

N and effective height H. Although we assumed these parameters to be con-
stant, under different atmospheric conditions they may vary and are therefore still
weak points in the described models when estimated parameters are sensitive to it.

An overview of the most important models as derived in this part is given
in Table 19.1.

relative ZTD constraints Eqs. (18.24), (18.20), (18.12) and (18.17);
Table 18.1

residual STDs (EJ) Eqs. (18.26) and (18.28); Table 18.2
residual STDs (summation model) Eqs. (18.32) and (18.4)

Table 19.1 Equations/tables with described stochastic models. EJ: model of [Emardson and Jarlemark,
1999].

The power-law behavior of the tropospheric delay is known and the use ofstate of the
art and
contribution

temporal constraints in GPS data processing is common practice in scientific
GPS software. The spatiotemporal constraints based on the new TL2 model
are by the author. Most of the derivations are based on what is present
in literature, but the framework of derivations is by the author as well as
App. G. The derivation of a covariance matrix for residual STDs is after Emard-
son and Jarlemark (1999), but the positive-definite Model (18.32) is by the author.

Now that we have obtained stochastic models for the residual STDs, and
the spatiotemporal constraints of the troposphere-weighted model, all model
components are available to be built in a filter. The next part describes several of
these filters for the models at hand.



Appendix F

Fourier transform of a power-law
function

This appendix gives a derivation of F{|r|p}. For a more complete description of
these kinds of Fourier transforms and their existence, see [Lighthill, 1959].

The Fourier transform of rp exp(−εr)H(r), with

H(r)
.
=

{
0, r < 0;
1, r ≥ 0,

(F.1)

the Heaviside function and ε some constant, reads

F{rp exp(−εr)H(r)} =

∫ ∞

0
rp exp(−r(ε + jκ))dr

= (ε + jκ)−p−1Γ(p + 1),
(F.2)

since for some constant c = ε + jκ:

∫ ∞

0
rp exp(−cr)dr = c−p−1

∫ ∞

0
rp exp(−r)dr = c−p−1Γ(p + 1). (F.3)

If we let ε → 0, we have:

F{rpH(r)} = (jκ)−p−1Γ(p + 1);
F{(−r)pH(−r)} = (−jκ)−p−1Γ(p + 1).

(F.4)

And finally:

F{|r|p} = F{rpH(r) + (−r)pH(−r)}
= [(jκ)−p−1 + (−jκ)−p−1] · Γ(p + 1)
= [jp+1 + j−p−1] · |κ|−p−1 · Γ(p + 1)

= [exp(1
2πj(p + 1)) + exp(−1

2πj(p + 1))] · |κ|−(p+1) · Γ(p + 1)

= 2 cos(1
2π(p + 1)) · |κ|−(p+1) · Γ(p + 1)

= −2 sin(pπ
2 )Γ(p + 1) · |κ|−(p+1).

(F.5)



148 III F.Fourier transform of a power-law function



Appendix G

Autocorrelation function in case of
a power-law spectrum

Assume we have the following power spectrum of a real and wide-sense stationary
stochastic process X(r) [m]:

SX(κ) =

{
S0 · |κ|−(p+1) for |κ| ≥ κ0;

S0 · κ−(p+1)
0 for |κ| ≤ κ0,

(G.1)

for which 0 < p < 2, S0 a positive constant [m2−p], and κ0r ¿ 1 for 0 < r < rmax.
The autocorrelation function of X(r) then reads:

RX(r)
.
=

1

π

∫ ∞

0
cos(κr)SX(κ)dκ

=
1

π

∫ κ0

0
cos(κr)S0κ

−(p+1)
0 dκ +

1

π

∫ ∞

κ0

cos(κr)S0κ
−(p+1)dκ

.
= I1 + I2.

(G.2)

The first integral is easily obtained as:

I1 =
S0κ

−p
0

π
· sinκ0r

κ0r
. (G.3)

For the second integral we use the change of variables u
.
= κr and cos u = 1 −

2 sin2(u/2) to obtain:

I2 =
S0

π
rp

∫ ∞

κ0r
u−(p+1)(1 − 2 sin2(

u

2
))du

=
S0

π
rp

[∫ ∞

κ0r
u−(p+1)du − 2

∫ ∞

0
u−(p+1) sin2(

u

2
)du + 2

∫ κ0r

0
u−(p+1) sin2(

u

2
)du

]

.
=

S0

π
rp [I21 + I22 + I23] .

(G.4)

Because p > 0 we have:

I21 =

[
u−p

−p

]∞

κ0r

=
(κ0r)

−p

p
. (G.5)

The second integral reads [Gradsteyn et al., 1994], formula 3.823:

I22 = −2 · −Γ(−p) cos(−pπ
2 )

21−p · (1
2)−p

= Γ(−p) cos(pπ
2 )

=
−π

2Γ(p + 1) sin(pπ
2 )

.

(G.6)



150 III G.Autocorrelation function in case of a power-law spectrum

The last integral is found by the change of variables u ← u/2:

I23 = 2

∫ 1

2
κ0r

0
21−pu1−p sin2(u)2du

= 21−p

∫ 1

2
κ0r

0
u1−pu−2 sin2(u)du.

(G.7)

Since we integrate from 0 to 1
2κ0r ¿ 1, for all u we have u−2 sin2(u) ≈ 1. The

integral may therefore be approximated by:

I23 ≈ 21−p

∫ 1

2
κ0r

0
u1−pdu

= 21−p

[
u2−p

2 − p

] 1

2
κ0r

0

=
(κ0r)

2−p

2(2 − p)
,

(G.8)

since 2 − p > 0. Combining the results of Eqs. (G.2–G.6) and (G.8) and approxi-
mating by using κ0r ¿ 1 gives:

RX(r) =
S0κ

−p
0

π
· sin(κ0r)

κ0r
+

S0

π
rp

(
(κ0r)

−p

p
− π

2Γ(p + 1) sin(pπ
2 )

+
(κ0r)

2−p

2(2 − p)

)

≈ S0κ
−p
0

π
+

S0κ
−p
0

pπ
− S0

2Γ(p + 1) sin(pπ
2 )

rp

=
(p + 1)S0

pπκp
0

− S0

2Γ(p + 1) sin(pπ
2 )

rp.

(G.9)
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RECURSIVE GPS DATA
PROCESSING





Symbols in Part IV

symbol meaning

Ak design matrix of measurement update
Ak mk × n partial design matrix of global parameters
Āk Cholesky-factor transformed Ak

∀ for all
αq level of significance (for q-dimensional test)
Bk mk × nβ partial design matrix of batch parameters
BAk combined partial design matrix [Bk, Ak]
βk constrained (batch) parameters

β̂k|k−1 predicted value of βk

β̂k|k filtered value of βk

βxk concatenated vector [β′
k, x′]′

Cv model-error specifying matrix
γ power
dk pseudo-observable of β

k
− β

k−1

δk latency δk = k − k0 of model error
∂xAk(x

0) Jacobian (gradient matrix) of global parameters evaluated in x0

∆x increments/observed-minus-computed (x − x0)
ε convergence criterion
ε residuals
Φk,k−1 state transition matrix, epoch k − 1 to k
Ψk,k−1 state transition matrix Ψk,k−1 = diag[Φk,k−1, In]
H0 null hypothesis
HA alternative hypothesis
Im m × m identity matrix
k current epoch number (k = 1, ..., p)
k0 first epoch a model error occured
κ running epoch counter (κ = k0, ..., k)
Kk Kalman gain matrix
λ noncentrality parameter
mk number of observations at epoch k
mk mk − ntk , number of transformed observations at epoch k
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symbol meaning

n number of global parameters
nβ number of constrained parameters
ntk number of temporal parameters (of epoch k)
N phase ambiguities
p number of epochs
PTk

projector on Tk

P⊥
Tk

projector on orthogonal subspace of Tk

P permutation matrix
q degrees of freedom of test statistic
Qy covariance matrix of y
Q, QI , Q1, ... orthonormal matrices (Q factors)
r station coordinates
Rx̂ upper-triangular matrix
Rβ̂x̂ rectangular matrix as part of upper-triangular matrix

IRm m-dimensional space of reals
tk temporal parameters
Tk mk × ntk partial design matrix of temporal parameters
T⊥

k null space of T ′
k

Θ(q) q-dimensional test statistic
Θ0

k(q) q-dimensional local test statistic of epoch k

Θδk
k (q) q-dimensional global test statistic of epochs k − δk to k

T ambiguity transformation matrix (to change pivot satellite)
vk vector of predicted residuals
x global parameters
x0 approximate value of x
x̂ estimates of x
xk vector with all parameters at epoch k
Xδk

k|k−1, X
δk
k|k response matrices

yk observations at epoch k
yk stacked vector; in SRIF: yk = [y′k, z

′
β̂xk|k−1

]′

yk Cholesky-factor transformed yk

y
k

observables at epoch k

zx̂ transformed state vector
∇ model error



Chapter 20

Introduction to Part IV

As mentioned in the ‘General introduction’, high quality GPS-derived heightsmodels of
interest are our main interest. We aim at a 5-mm accuracy. To obtain this accuracy,

we need static networks and use long observation time spans. The tropospheric
delay is our main concern because of its strong correlation with the height.
In our observation models of interest, heights, horizontal coordinates, and
ambiguities are unchanging/global parameters, and the slowly changing Zenith
Tropospheric Delays (ZTDs) form a second group of parameters, which are
(soft-)constrained in the troposphere-weighted models; see Part II. An extreme
case of the troposphere-weighted model is the troposphere-float model, which does
not include constraints. In the troposphere-fixed model the ZTDs are assumed
a-priori known.

Although strictly speaking GPS (pseudo-)observables are time correlated,
they are usually assumed uncorrelated because implementation of correlation
would make a batch processing very time consuming.1 For recursive estimation,
uncorrelated observables are a condition. Normally, the very argument for usingrecursive

estimation a recursive processing method is the need for parameter estimates in real-time.
Although for static network processing a batch procedure may be more efficient,
recursive estimation has the advantage that the impact of the observation time
span is easier to analyze in the stage of model design. Intermediate estimates of
global parameters can be obtained as well as the final estimates. Especially for
this reason, estimation (and testing) procedures are developed. An advantage of
recursive processing is that the software is more flexible in the sense that new
parameters can be introduced when needed and old parameters can be discarded
when not needed anymore. Another advantage is that the normal matrices are
smaller than in batch processing. But when temporal parameters, forming the
third group of parameters, are pre-eliminated, this size difference only concerns
batch parameters and ambiguities. (Although there may be many of these in large
networks, especially for long observation times and frequent ZTD estimation.)
For those applications where one is only interested in real-time estimates of ZTDs,
a recursive procedure is even indispensable.

Because of the presence of the quickly changing temporal parameters inpre-
elimination untransformed GPS observation models, a straightforward implementation of

standard recursive methods is not possible. We consider two recursive methods:
the Kalman Filter (KF) in Chap. 21, and the recursive Square Root Information
Filter (SRIF) in Chap. 22. Since temporal parameters are (usually) not the
parameters of interest (nuisance parameters) they are pre-eliminated in the

1Exponential correlation is an exception.
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extended procedures of Chaps. 21 and 22.

The Kalman Filter method of Chap. 21 uses an orthogonal projector onoutline

the column space of the temporal parameters, whereas the recursive SRIF of
Chap. 22 only solves the lower-right part of an upper-triangular system, which
concerns the nontemporal parameters. Chapter 23 deals with some technical
implementation problems like nonlinearity, computation speed, and changing
satellite configurations. Chapter 24 gives a pre-elimination transformation using
the actual null space of the column space of the temporal parameters. This
null space is in fact the same space as spanned by the orthogonal projector of
Chap. 21. This method is rather commonly used, but rarely put in a more general
perspective. In an observation model where receiver and satellite clock errors and
ionospheric delays are temporal parameters, this boils down to double differencing
and obtaining linear inter-frequency combinations. Chapter 24 also describes
testing and reliability aspects in Kalman filtering. Both the estimation and
testing benefit from Cholesky-factor transformations to avoid matrix inversions.
Finally, Chap. 25 ends with the conclusions.

All displayed procedures are in terms of partial design matrices of the three typesassumption

of parameters and covariance matrices of the observables and constraints. These
matrices are assumed known when implementing a procedure in software. In
Part II the partial design matrices are given for several models, and in Part III
the covariance matrices of troposphere constraints are given.



Chapter 21

Kalman filtering with
pre-elimination

21.1 Introduction

In this chapter we describe recursive parameter estimation in linear models using
a Kalman Filter procedure with observation equations. We start with a review
on least-squares (LSQ) estimation in Sect. 21.2. In the sections that follow we
consider three different partitioned models for which we formulate a recursive es-
timation method. In the first model (Sect. 21.3) there are only global parameters.
These are the parameters we are after, so they are all to be determined. The
second model (Sect. 21.4) also incorporates temporal parameters. These param-
eters are considered nuisance parameters and are not explicitly solved for by the
described procedure. Our troposphere-fixed and float models are of this type. The
third and last model (Sect. 21.5) incorporates constrained parameters as well as
global and temporal parameters. Our troposphere-weighted model is of this type.
The constrained parameters are also considered nuisance parameters but they are
treated differently. An estimation procedure for the latter two models, in which
temporal parameters are pre-eliminated, is what we aim at. The first model serves
as a steppingstone. By partitioning our observation model, the vector of LSQ
estimates of the global parameters is derived. The concepts in this chapter date
back to [Kalman, 1960] and we will therefore speak of a Kalman Filter, althoughKalman

this is not strictly what was described by Kalman. This term is however used to
distinguish it from the SRIF method as described in the next chapter.

21.2 Least-squares estimation

The Best Linear Unbiased Estimator (BLUE) of parameters x in the full-rankBLUE

Gauss–Markov model

E{y} = Ax ; D{y} = Qy, (21.1)

with A an m × n design matrix (m ≥ n) is known to be [Koch, 1987]:

x̂ = Qx̂A′Q−1
y y ; Qx̂ = (A′Q−1

y A)−1. (21.2)

This estimator is also the least-squares estimator if we use Q−1
y as weight matrix

in the LSQ method. Because we will further assume this is the case, we speak of
LSQ estimation.LSQ

If ε
.
= y − Ax is the vector of residuals, then x = x̂ is the vector that

minimizes the sum of squared residuals ‖ ε ‖2 .
= ε′Q−1

y ε. LetPA
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PA
.
= A(A′Q−1

y A)−1A′Q−1
y (21.3)

be a projector that projects onto the range space of A, PAA = A, and let P⊥
A

.
=P⊥

A

I − PA be its orthogonal complement for which P⊥
A A = 0. The sum of squared

residuals is then:

‖ ε ‖2 = ‖ PAε ‖2 + ‖ P⊥
A ε ‖2 = ‖ PAy − Ax ‖2 + ‖ P⊥

A y ‖2 . (21.4)

Since ‖ PAy − Ax̂ ‖2= 0, x̂ minimizes ‖ ε ‖2, and the sum of least-squares resid-
uals reads ‖ ε̂ ‖2=‖ P⊥

A y ‖2. The product PAy has a meaning in itself. This
projection of the observations on the column space of A is the LSQ estimate of
the observations:

ŷ = Ax̂ = PAy;
Qŷ = PAQyP

′
A = PAQy.

(21.5)

21.3 The model with global parameters only

Let the full-rank Gauss–Markov model of Eq. (21.1) be partitioned as
A = [A′

1, ..., A
′
p]
′, y = [y′1, ..., y

′
p]
′, and Qy = diag[Qy1

, ..., Qyp ]. In this model, yk

is an mk × 1 vector of observations at epoch k = 1, ..., p, with corresponding
covariance matrix Qyk

; Ak is an mk × n partial design matrix, and x is the n × 1
vector of global parameters.

We consider the following partitioned system to find a LSQ estimate of x
recursively [Teunissen, 2001]:

E{
[

y
k

x̂k−1

]
} =

[
Ak

In

]
x ; D{

[
y

k
x̂k−1

]
} =

[
Qyk

Qx̂k−1

]
, (21.6)

where x̂k−1 is the LSQ estimator of x, based on the first k−1 epochs of data, that
is combined with the new observables of epoch k. Straightforward application of
Eq. (21.2) then gives:

x̂k = Qx̂k
Q−1

x̂k−1
x̂k−1 + Qx̂k

A′
kQ

−1
yk

yk, (21.7)

where the covariance matrix of x̂k reads:

Qx̂k
=

(
Q−1

x̂k−1
+ A′

kQ
−1
yk

Ak

)−1
. (21.8)

Equation (21.7) may also be written as:

x̂k = Qx̂k

(
Q−1

x̂k−1
+ A′

kQ
−1
yk

Ak

)
x̂k−1 + Qx̂k

A′
kQ

−1
yk

(yk − Akx̂k−1)

= x̂k−1 + Qx̂k
A′

kQ
−1
yk

(yk − Akx̂k−1)

= x̂k−1 + Kkvk,

(21.9)

where Kk is the Kalman gain matrix and vk is the vector of predicted residuals,Kk, vk

also called innovations:

Kk = Qx̂k
A′

kQ
−1
yk

;

vk = yk − Akx̂k−1.
(21.10)

The left panel in Fig. 21.1 shows the complete estimation procedure.
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?
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vk = yk − Akx̂k−1

Qx̂k
= (Q−1

x̂k−1
+ A′

kQ
−1
yk

Ak)
−1

Kk = Qx̂k
A′

kQ
−1
yk
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?

6

k = p

k < p

filter result

x̂p ; Qx̂p
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k = 0 ; x̂0 ; Qx̂0

?
k ← k + 1 measurement update

vk = yk − Akx̂k−1

Qx̂k
= (Q−1
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+ A′

kQ
−1
yk

P⊥
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⊥′
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filter result

x̂p ; Qx̂p

Figure 21.1 Recursive Kalman Filter procedures corresponding with the linear model. Left panel: With
global parameters only. Right panel: With global and temporal parameters.

The covariance matrix of the predicted residuals follows from the propaga-
tion law of (co-)variances:Qvk

Qvk
= Qyk

+ AkQx̂k−1
A′

k. (21.11)

Application of the matrix lemma Eq. (H.2) of App. H, using the expressions for
Qx̂k

and Kk of Eqs. (21.8) and (21.10), gives a useful analytic expression for the
inverse of this matrix:

Q−1
vk

= Q−1
yk

(Imk
− AkKk), (21.12)

which has a special significance in the testing for model errors; see Chap. 24.

21.4 Including temporal parameters

In this section the formulas for recursive parameter estimation are derived for the
model with both global and temporal parameters. Both the troposphere-fixed and
the troposphere-float model are of this form. The model reads:

E{y} = [T, A]

[
t
x

]
; D{y} = diag[Qy1

, ..., Qyp ], (21.13)

with A as in the previous section, T
.
= diag([T1, ..., Tp]), and t

.
= [t′1, ..., t

′
p]
′. Tk is an

mk ×ntk partial design matrix, and tk is an ntk ×1 vector of temporal parameters.
After solving the parameters of the first k−1 epochs in the above given model, the
solutions for the global parameters can be updated with the following observation
model:

E{
[

y
k

x̂k−1

]
} =

[
Tk Ak

0 In

] [
tk
x

]
; D{

[
y

k
x̂k−1

]
} =

[
Qyk

Qx̂k−1

]
. (21.14)

Model (21.6) is thus extended with temporal nuisance parameters we do not wish
to solve for. Two partial design matrices can be distinguished in the partitioned
Model (21.14):

AI =

[
Tk

0

]
; AII =

[
Ak

In

]
. (21.15)
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Solving for the global parameters only, gives the following LSQ estimate
[Teunissen, 1999]:

x̂k = (Ā′
kQ

−1
yk

Āk)
−1Ā′

kQ
−1
yk

yk, (21.16)

where yk
.
= [yk

′, x̂′
k−1]

′ is the stacked vector of all observations with covariance ma-
trix Qyk

.
= diag[Qyk

, Qx̂k−1
] and the design matrix Āk is the orthogonal projection

of the second partial design matrix onto the first:

Āk
.
= P⊥

AI
AII with P⊥

AI

.
= Imk+n − AI(A

′
IQ

−1
yk

AI)
−1A′

IQ
−1
yk

. (21.17)

Straightforward computation now gives the design matrix Āk and projector P⊥
AI

:

Āk =

[
P⊥

Tk
Ak

In

]
; P⊥

AI
=

[
P⊥

Tk

In

]
, (21.18)

where we use the orthogonal projector on Tk:PTk
, P⊥

Tk

P⊥
Tk

.
= Imk

− PTk
with PTk

.
= Tk(T

′
kQ

−1
yk

Tk)
−1T ′

kQ
−1
yk

. (21.19)

With Eq. (21.18), the LSQ estimate of the vector of global parameters from
Eq. (21.16) is worked out as:

x̂k = Qx̂k

(
Q−1

x̂k−1
x̂k−1 + A′

kP
⊥′

Tk
Q−1

yk
yk

)
. (21.20)

And its covariance matrix reads:

Qx̂k
=

(
Q−1

x̂k−1
+ A′

kQ
−1
yk

P⊥
Tk

Ak

)−1
. (21.21)

Compare these results with Eqs. (21.7–21.8). The only difference is the presence
of the orthogonal projector on Tk. In a similar way as in the previous section,
Eq. (21.20) may also be written as:

x̂k = x̂k−1 + Kkvk, (21.22)

where Kk and vk are again the Kalman gain matrix and the vector of predicted
residuals respectively:

Kk = Qx̂k
A′

kP
⊥′

Tk
Q−1

yk
;

vk = yk − Akx̂k−1.
(21.23)

The right-hand panel in Fig. 21.1 shows the complete procedure for this model.
Contrary to the model with global parameters only, Eq. (H.2) cannot be applied
to obtain a simple expression for Q−1

vk
as in Eq. (21.12).

21.5 The model with constrained parameters

When time constraints are included in the model, we have the following Gauss–
Markov model:

E{
[

d
y

]
} =

[
0 E 0
T B A

]


t
β
x


 ; D{

[
d
y

]
} =

[
Qd

Qy

]
, (21.24)
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with B
.
= diag([B1, ..., Bp]), d

.
= [d′1, ..., d

′
p]
′, and Qd

.
= diag[Qd1

, ..., Qdp
]. The first

row of the functional model looks like (cf. Part II, where Φk,k−1 = Inβ
):

E{




d1
...
dp




︸ ︷︷ ︸
d

} =




−Φ1,0 Inβ

−Φ2,1 Inβ

. . .
. . .

−Φp,p−1 Inβ




︸ ︷︷ ︸
E




β0
...

βp




︸ ︷︷ ︸
β

, (21.25)

with βk an nβ × 1 vector of constrained ZTD parameters at the kth epoch, Bk

the corresponding mk ×nβ partial design matrix, Φk,k−1 (k = 1, ..., p) the nβ ×nβ

state transition matrices, and dk = 0 an nβ × 1 vector of constraints. In thistransition
matrix model we use constraints on the β parameters every epoch.

The recursive processing can now be split into two steps per epoch: a time
update and a measurement update. At the kth epoch we have the following
observation model:

E{




β̂
k−1|k−1

x̂k−1

dk

y
k


} =




Inβ

In

−Φk,k−1 Inβ

Tk Bk Ak







tk
βk−1

βk

x


 ;

D{




β̂
k−1|k−1

x̂k−1

dk

y
k


} =




Qβ̂k−1|k−1
Qβ̂k−1|k−1x̂k−1

Qx̂k−1β̂k−1|k−1
Qx̂k−1

Qdk

Qyk


 .

(21.26)

The first index of β̂
k−1|k−1

indicates the epoch for which the estimator holds andβ̂
k−1|k−1

the second index refers to the last epoch that is used to determine the estimator.
The model therefore implies that we have an estimator of βk−1 based on all
observations up to and including epoch k − 1.

In the first step, the time update, we solve for the partial system of thetime update

first three rows:

E{




β̂
k−1|k−1

x̂k−1

dk


} =




Inβ
0 0

0 0 In

−Φk,k−1 Inβ
0







βk−1

βk

x


 . (21.27)

Because we have a square and invertible matrix here, the estimators simply follow
by inversion:




β̂
k−1|k−1

β̂
k|k−1

x̂k


 =




Inβ
0 0

Φk,k−1 0 Inβ

0 In 0







β̂
k−1|k−1

x̂k−1

dk


 , (21.28)

where β̂
k|k−1

is the predicted estimator of βk; we only used the observations upβ̂
k|k−1

to epoch k − 1 and the additional constraints to determine this estimator. Since
β̂

k−1|k−1
is not used in the measurement update that follows, we can restrict the

time update to the last two rows of Eq. (21.28):

[
β̂

k|k−1

x̂k

]
=

[
Φk,k−1 0
0 In

] [
β̂

k−1|k−1

x̂k−1

]
+

[
dk

0

]
. (21.29)
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Although the estimator β̂
k|k−1

differs from β̂
k−1|k−1

by dk, the estimates are the

same if Φk,k−1 = Inβ
, since dk = 0.

We now introduce the following short-hand notation:β̂x
k|k−1

BAk

β̂x
k|k

Ψk,k−1
β̂x

k|k−1

.
=

[
β̂

k|k−1

x̂k

]
; BAk

.
=

[
Bk, Ak

]
;

β̂x
k|k

.
=

[
β̂

k|k

x̂k

]
; Ψk,k−1

.
=

[
Φk,k−1 0

0 In

]
.

(21.30)

With this notation the stochastic model for Eq. (21.29) becomes:

D{β̂x
k|k−1

} .
= Qβ̂xk|k−1

= Ψk,k−1Qβ̂xk−1|k−1
Ψ′

k,k−1 +

[
Qdk

0
0 0

]
, (21.31)

which simply follows from application of the propagation law of (co)variances.
A specification of the matrix Qdk

is given in Part III. Using the predicted
states and the new measurements of the kth epoch we find the model for the
measurement update as:measurement

update

E{
[

y
k

β̂x
k|k−1

]
} =

[
Tk BAk

0 Inβ+n

] 


tk(
βk

x

)

 ;

D{
[

y
k

β̂x
k|k−1

]
} =

[
Qyk

Qβ̂xk|k−1

]
.

(21.32)

The approach for deriving the formulas for the gain matrix and the vector of
predicted residuals is similar to the one in Sect. 21.4. Model (21.32) is in fact the
same as Model (21.14) if

BAk ← Ak ; β̂xk|k−1 ← x̂k−1 ; Qβ̂xk|k−1
← Qx̂k−1

. (21.33)

The measurement update therefore reads:

β̂xk|k = β̂xk|k−1 + Kkvk, (21.34)

with gain matrix and vector of predicted residuals:

Kk = Qβ̂xk|k
BA′

kP
⊥′

Tk
Q−1

yk
;

vk = yk − BAk β̂xk|k−1.
(21.35)

The complete recursive estimation procedure for the model with constrained pa-
rameters is given in Fig. I.1 in App. I.



Chapter 22

Pre-elimination in a recursive SRIF

22.1 Introduction

Because Kalman filtering involves matrix inversions of squared design-matrix
terms1, it is sensitive to roundoff errors and therefore the algorithm may not
be stable when the design matrices are ill-conditioned. An alternative is given
by the recursive Square Root Information Filter (SRIF) [Bierman, 1977]. ThisSRIF

method does not propagate a covariance matrix like Qx̂k
, but a square root Rx̂k

of its inverse: Q−1
x̂k

= Rx̂k

′Rx̂k
. An extensive description, which includes testing

aspects, is given in [Tiberius, 1998]. In this chapter, we review the estimation
part for linear models, and deal with the pre-elimination of temporal parameters.

Section 22.2 gives a short review of the use of QR decomposition in the SRIFQR

method. As in the previous chapter, we deal with three different models: the model
with global parameters only (Sect. 22.3), the model with global and temporal
parameters (Sect. 22.4), and the model with global, temporal, and constrained
parameters (Sect. 22.5).

22.2 Least squares and QR decomposition

Consider the general full-rank Gauss–Markov model:

E{y} = Ax ; D{y} = Im, (22.1)

where A is an m × n matrix, y is an m × 1, and x an n × 1 vector.

The more general model where D{y} = Qy can be transformed to obtain
Model (22.1) as follows:

y ← (R−1
y )′y = Ry

′\y;

A ← (R−1
y )′A = Ry

′\A,
(22.2)

with Ry = Chol(Qy) the upper-triangular Cholesky factor of Qy = Ry
′Ry. The

backslash stands for substitution; in other words, no actual matrix inversion issubstitution,
\ needed to apply this transformation.

The LSQ estimate of x can be obtained by a QR decomposition
[Golub and Van Loan, 1989] of the information array [A, y]:

Q

[
R
0

]
= [A, y]. (22.3)

1Ak
′Q−1

yk
Ak in the model of observation equations as described in the previous chapter or

AkQx̂k−1
Ak

′ in the model of condition equations as described in Chap. 24.
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R is an upper-triangular matrix and Q is an orthonormal and square m × morthonormal
Q matrix: QQ′ = Q′Q = I.

QR decomposition is a computationally simple method that utilizes either
repeated Householder or Givens transformations [Golub and Van Loan, 1989].
Figure 22.1 shows matlab code [Matlab, 1997] to apply this decomposition
without explicitly determining the Q matrix. In fact, a column number may be
transported into this subroutine up to where the decomposition should be applied
(incomplete decomposition).

If we split Q into [QI , QII ], with an m× (n+1) matrix QI and an m× (m−n−1)
matrix QII , and premultiply Eq. (22.3) by Q′, we find:

[
R
0

]
=

[
QI

′A QI
′y

QII
′A QII

′y

]
=




Rx̂ zx̂

0 ρ̂
0 0


 , (22.4)

where ρ̂ is a scalar. The upper row just follows by definition: QI
′A

.
= Rx̂,

and QI
′y

.
= zx̂. The middle row of the right-hand side is a consequence of the

upper-triangular structure of R, which also means that Rx̂ must be upper trian-
gular. Note that Rx̂ may have negative diagonal elements unlike a Cholesky factor.

If ε
.
= y−Ax is the vector of residuals, x̂ is the vector x that minimizes ‖ ε ‖2 and

ε̂
.
= y − Ax̂ is the vector of LSQ residuals. Using the property QQ′ = I and the

QR decomposition of Eq. (22.4), we find [Bierman, 1977]:

‖ ε ‖2 = ε′ε = ε′QQ′ε =‖ Q′ε ‖2 = ‖ Q′ [A, y]

[
−x

1

]
‖2

= ‖




Rx̂ zx̂

0 ρ̂
0 0




[
−x

1

]
‖2 = ‖ zx̂ − Rx̂x ‖2 + ρ̂2.

(22.5)

Since Rx̂ is a square and invertible matrix, x̂ = R−1
x̂ zx̂ ≡ Rx̂\zx̂ sets

‖ zx̂ −Rx̂x̂ ‖2= 0, and therefore minimizes ‖ ε ‖2. Consequently, ρ̂2 =‖ ε̂ ‖2 is the
sum of squared LSQ residuals. The hat notation in Rx̂, zx̂, and ρ̂ is now apparent.

QR decomposition of the information array [A, y] is very practical to ob-
tain the observation equation zx̂ = Rx̂ x̂. From a theoretical point of view,

a decomposition of the design matrix into A = [QI , QII ]

[
Rx̂

0

]
is easier to

understand (with different QII as above). Since QI spans the column space of
A, and QI and QII are orthonormal, we have the projectors PA = QIQI

′ and
P⊥

A = QIIQII
′. The vector of LSQ residuals then reads ε̂ = QIIQII

′y, and thus
QI

′ε̂ = 0. Therefore:

y = A x̂ + ε̂
y = QI Rx̂ x̂ + ε̂

zx̂
.
= QI

′y = Rx̂ x̂ .
(22.6)

In fact we can obtain this equation by an incomplete QR decomposition of the
first n columns of [A, y], that is, without the last column.

Since Rx̂ and zx̂ are the result of a QR decomposition of [A, y], the sym-
bolic notation:

[Rx̂, zx̂] ← QR([A, y]) (22.7)

is used henceforth.
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function [A] = qrpart(A,n1);

[m,n] = size(A);

if n>m, A = [A;zeros(n-m,n)]; m=n; end

if nargin==1, n1=n; end

v = zeros(m,1);

for j=1:n1

v(j:m) = house(A(j:m,j));

A(j:m,j:n) = rowhouse(A(j:m,j:n),v(j:m));

A(j+1:m,j) = 0;

end

A = A(1:n1,1:n1);

function v = house(x);

n = length(x);

normx = norm(x);

v = x;

s = sign(x(1));

if s==0, s=1; end

if normx

beta = x(1) + s*normx;

v(2:n) = v(2:n)/beta;

end

v(1) = 1;

function A = rowhouse(A,v);

beta = -2/(v’*v);

w = beta*A’*v;

A = A + v*w’;

Figure 22.1 Partial QR decomposition in matlab code using Householder transformations (after Golub
and van Loan). An in-place memory technique is used; the output A is in fact the
upper-triangular matrix R.

22.3 The model with global parameters only

The partitioned model with global parameters only reads:

E{y} = Ax ; D{y} = Imp, (22.8)

where y
.
= [y′1, ..., y

′
p]
′ and A

.
= [A′

1, ..., A
′
p]
′. In this model, yk is an mk × 1 vector

of observations at epoch k, Ak is an mk × n partial design matrix, and x is the
n × 1 vector of global parameters.

This model may be solved recursively by using repeated QR decompositions. We
assume that m1 > n and that A1 is of full rank. Although this is not strictly
necessary, since we can also start the recursion after a few epochs, this assures that
the first epoch of data is sufficient to obtain the following observation equations:

E{zx̂1
} = Rx̂1

x ; D{zx̂1
} = In, (22.9)
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where zx̂1

.
= QI,1

′ y1, and A1 = Q1R1 is the QR decomposition of A1. Q1

is an orthonormal m1 × m1 matrix, QI,1 is an m1 × n submatrix of Q1 (com-
pare with Sect. 22.2), R1 = [Rx̂1

′, 0]′, and Rx̂1
is an upper-triangular n×n matrix.

After processing k − 1 epochs of data (k ≥ 2), the following measurement-update
model incorporates all information until epoch k:

E{
[

y
k

zx̂k−1

]
} =

[
Ak

Rx̂k−1

]
x ; D{

[
y

k
zx̂k−1

]
} =

[
Imk

0
0 In

]
. (22.10)

The QR decomposition of the information array now becomes:

[
Ak yk

Rx̂k−1
zx̂k−1

]
= QkRk ; Rk

.
=




Rx̂k
zx̂k

0 ρ̂k

0 0


 . (22.11)

Or symbolically:

[Rx̂k
, zx̂k

] ← QR(

[
Ak yk

Rx̂k−1
zx̂k−1

]
). (22.12)

So both Rx̂k
and zx̂k

now result as part of the larger matrix Rk. The computation of
Qk may again be omitted and the global parameters are regained by x̂k = Rx̂k

\zx̂k
.

22.4 Incorporation of temporal parameters

Incorporation of temporal parameters leads to an extension of Model (22.8):

E{y} = [T, A]

[
t
x

]
; D{y} = Imp, (22.13)

where T
.
= diag([T1, ..., Tp]) and t

.
= [t′1, ..., t

′
p]
′. The dimensions are the same as

in the previous section. Tk is an mk × ntk partial design matrix, and tk is an
ntk × 1 vector of temporal parameters. Like in the previous model, we assume
that after only one epoch of data processing we arrive at the general model of the
measurement update for epoch k:

E{
[

y
k

zx̂k−1

]
} =

[
Tk Ak

0 Rx̂k−1

] [
tk
x

]
; D{

[
y

k
zx̂k−1

]
} =

[
Imk

0
0 In

]
. (22.14)

Again, the design matrix can be augmented to obtain an information array for the
QR decomposition:

[
Tk Ak yk

0 Rx̂k−1
zx̂k−1

]
= QkRk ; Rk

.
=




Rt̂k
Rt̂kx̂k

zt̂k
0 Rx̂k

zx̂k

0 0 ρ̂k

0 0 0


 . (22.15)

The LSQ estimates of both the global and temporal parameters can be regained
from the (transformed) observation equations:

E{
[

z t̂k
zx̂k

]
} =

[
Rt̂k

Rt̂kx̂k

0 Rx̂k

] [
tk
x

]
; D{

[
z t̂k
zx̂k

]
} =

[
Intk

0

0 In

]
. (22.16)
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But since we are only interested in the global parameters, we may include only
the last row in the next measurement-update step. This would not have been
possible directly if the vector of parameters would have been in the order [x′, t′k]

′

instead! Mind that we cannot recover the covariance matrix of the temporal pa-
rameters by Rt̂k

alone: Qt̂k
6= R−1

t̂k
(R−1

t̂k
)′, whereas for the global parameters:

Qx̂k
= R−1

x̂k
(R−1

x̂k
)′.

22.5 Incorporation of constrained parameters

Extending Model (22.13) with constrained parameters gives:

E{
[

d
y

]
} =

[
0 E 0
T B A

]


t
β
x


 ; D{

[
d
y

]
} =

[
Inβp

Imkp

]
, (22.17)

with B, β, d, and E as in the previous chapter; the first row of the functional
model is shown in Eq. (21.25). Without the first row of equations in Eq. (22.17),
the model would basically be the same as in the previous section, but because we
make a distinction between β and x, the model for the measurement update of
epoch k reads (not using the first row of equations):

E{




y
k

zβ̂k|k−1

zx̂k−1


} =




Tk Bk Ak

0 Rβ̂k|k−1
Rβ̂k|k−1x̂k−1

0 0 Rx̂k−1







tk
βk

x


 ;

D{




y
k

zβ̂k|k−1

zx̂k−1


} =




Imk

Inβ

In


 .

(22.18)

Note that we use the predicted z vectors that result from a time-update step. The
QR decomposition leaves us with a smaller model of filtered z vectors:

E{




z t̂k
zβ̂k|k

zx̂k


} =




Rt̂k
Rt̂kβ̂k|k

Rt̂kx̂k

0 Rβ̂k|k
Rβ̂k|kx̂k

0 0 Rx̂k







tk
βk

x


 ;

D{




z t̂k
zβ̂k|k

zx̂k


} =




Intk

Inβ

In


 .

(22.19)

Because there is no need to solve for the temporal parameters, only the last two
rows are used in the time update for epoch k + 1, which also incorporates a row
from Eq. (21.25) [Tiberius, 1997]:

E{




dk+1

zβ̂k|k

zx̂k


} =



−Φk,k−1 Inβ

0

Rβ̂k|k
0 Rβ̂k|kx̂k

0 0 Rx̂k







βk

βk+1

x


 ;

D{




dk+1

zβ̂k|k

zx̂k


} =




Inβ

Inβ

In


 .

(22.20)
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The corresponding QR decomposition of this square system reads:

E{




zβ̂k|k

zβ̂k+1|k

zx̂k+1


} =




Rβ̂k|k
Rβ̂k|kβ̂k+1|k

Rβ̂k|kx̂k+1

0 Rβ̂k+1|k
Rβ̂k+1|kx̂k+1

0 0 Rx̂k+1







βk

βk+1

x


 ;

D{




zβ̂k|k

zβ̂k+1|k

zx̂k+1


} =




Inβ

Inβ

In


 .

(22.21)

Only the last two rows of these equations are used in the measurement update
of epoch k + 1, cf. Eq. (22.18). Note that the information array of Eq. (22.20)
is square and Rx̂k

is already upper triangular. A complete QR decomposition is
therefore not necessary. Transformation of the first 2nβ columns is sufficient and
Rx̂k+1

= Rx̂k
.



Chapter 23

Implementation aspects

23.1 Introduction

In the previous chapters, procedures are described for recursive estimation of pa-
rameters in linear observation models. In this chapter we review some technical
problems when implementing these procedures. First of all, the GPS observation
model is not linear because of the nonlinear coordinates. Section 23.2 illustrates
how to deal with this. Section 23.3 shows how to avoid matrix inversions and how
to speed up the computations. Finally, Sect. 23.4 shows how to handle ambigu-
ities under changing satellite configurations. This implies that: (1) ambiguities
are transformed when pivot satellites change; (2) old ambiguities are expired when
satellites set; and (3) new ambiguities are introduced when satellites rise.

23.2 Nonlinearity

Because the coordinates appear as nonlinear parameters in the observation models,
we need iterative estimation procedures for both the KF and the SRIF approach.
Since we have three different parameter combinations, two estimation methods,
and both linear and nonlinear versions, there are in total twelve different proce-
dures. In Table 23.1, the figure numbers are shown of the flow charts. Most of
them can be found in App. I.

Kalman Kalman SRIF
parameters linear nonlinear nonlinear

x 21.1 I.2 I.3
x, tk 21.1 I.4 I.5
x, tk, βk I.1 I.6 I.7

Table 23.1 Figure numbers of estimation procedures. No figures are shown of the linear SRIF procedures
(the QR decomposition is the only step in the measurement update).

Fortunately, the global parameters, more specifically the coordinates, are the
only nonlinear parameters. In the model with global parameters only, we may
form ‘observed-minus-computed’ observation increments ∆yk = yk − Ak(x

0) and
∆x̂k−1 = xk−1 − x0 for the ‘parameter observations’ of the previous epoch, where
x0 ≡ x0

k. Using a Taylor expansion we find that:Taylor
expansion

E{∆y
k
} = ∂xAk(x

0)∆xk + O(‖ ∆xk ‖2
Qxk

), (23.1)

with ∂xAk(x
0) the gradient matrix or Jacobian, ∆xk = xk − x0 the parameter

increments, and O(‖ ∆xk ‖2
Qxk

) an error term. The derivation of the estimation
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procedure is rather straightforward using the increments and the gradient matrix
as above. Figure I.2 shows the estimation procedure for the KF approach. Each
iteration step, the LSQ estimate is updated as x̂k = x0 + ∆x̂k. Because x̂k serves
as approximate values for the next iteration as well as for the next recursion step,
the update is written as x0 ← x0 + ∆x̂k. Only after the last recursion we find the
final estimate in the procedure: x̂p ← x0.

Each iteration step of Fig. I.2 ends with the convergence check:convergence
check

∆x̂′
kQ

−1
x̂k

∆x̂k < ε. (23.2)

The right-hand side of Eq. (23.2) is a dimensionless scalar that serves as a fixed
criterion. If the weighted sum of parameter increments on the left-hand side is
small enough, the iteration is ended, and the procedure continues with the next
epoch or ends when the last epoch is reached.

Figure I.3 shows the nonlinear SRIF procedure for the model with global
parameters only. In the linear SRIF procedures we propagate the vector zx̂k−1

instead of the state vector. This ‘z vector’ serves as ‘parameter observation’
vector, and like x̂k−1 in the KF approach, we need a linearized version in the
recursion. As long as there is no need to know the actual state vector, in the
linear SRIF there is also no need to compute it. In the nonlinear model however,
we must recover the state vector because we need it in the gradient matrix and
for the observation increments.

Since ∆x̂k = R−1
x̂k

∆zx̂k
and Q−1

x̂k
= Rx̂k

′Rx̂k
, the convergence check of Eq. (23.2)

is equivalent with:

∆zx̂k

′∆zx̂k
< ε. (23.3)

Figures I.4 and I.5 show the nonlinear KF and SRIF estimation procedures of
the model with both global and temporal parameters. These procedures do not
actually solve for the temporal parameters. Because they also occur as linear
parameters we do not need to have approximate values and we do not need to
update the observation increments ∆yk with Tk t0k.

Figures I.6 and I.7 show the procedures of the nonlinear models with all parameter
types. In these procedures we use the notation ∂βxBAk(βx0)

.
= [Bk, ∂xAk(x

0)].∂βxBAk(βx0)

In the latter figure we use the notation zβ̂xk|k

.
= [z′

β̂k|k
, z′x̂k

]′. The nonlinearityz
β̂xk|k

only plays a role in the measurement update. A slightly more complicated
convergence check than in Eq. (23.3) is used that prevents propagation of errors
in the constrained parameters: ‖ ∆zβ̂xk|k

‖2< ε.

23.3 Computation speed and sparsity considerations

23.3.1 Cholesky-factor transformation

As we have seen in Chap. 22, in the SRIF approach we need to compute theSRIF

Cholesky factor of the covariance matrix of the observables, and use it to trans-
form the observables and partial design matrices.1 Because the covariance matrix
is block diagonal, the Cholesky factor is also block diagonal and each of the blocks

1Alternatively we could also use generalized QR decompositions [Björck, 1996], but this is
beyond our scope.
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may be computed individually. The individual Cholesky factorizations and trans-
formations can be implemented in the recursion. The observation equations in the
time and measurement update,

E{y
k
} = Tktk + Bkβk + Akx ; D{y

k
} = Qyk

= Ryk

′Ryk
;

E{dk} = Inβ
βk − Φk,k−1βk−1 ; D{dk} = Qdk

= Rdk

′Rdk
,

(23.4)

with Cholesky factors Ryk
and Rdk

, are then transformed as

E{(R−1
yk

)′y
k
} = (R−1

yk
)′Tktk + (R−1

yk
)′Bkβk + (R−1

yk
)′Akx;

D{(R−1
yk

)′y
k
} = Imk

;

E{(R−1
dk

)′dk} = (R−1
dk

)′βk − (R−1
dk

)′Φk,k−1βk−1;

D{(R−1
dk

)′dk} = Inβ
.

(23.5)

In other words, new observations and partial design matrices result. Because we
use dk = 0, the transformation of dk is only formal. Recall from the previous
chapter that we do not actually compute the inverse of Cholesky factors but use
substitutions instead.

When using the KF approach, we do not necessarily have to transform theKF

observations and partial design matrices. In the measurement update however,
the inverse of the covariance matrix of the observations pops up several times. To
avoid this actual inversion and some matrix products, we can compute a Cholesky
factor here as well, and use it to transform the measurement-update equations.
In the KF procedures, Qyk

is then replaced by an identity matrix. More on this
topic can be found in Chap. 24.

Figure 23.1 shows typical sizes of the partial design matrices for the troposphere-example of
sizes weighted model without troposphere gradients or slant delay parameters, when

l = 4 observation types are used, m = 7 satellites (mk = m, for all k) are observed
in a network of n = 5 stations. In this case we have mnl = 140 observations,
3n = 15 coordinates + 2(m − 1)(n − 1) = 48 ambiguities (63 global parameters),
n = 5 ZTD parameters, and mn = 35 ionosphere + 3(m + n − 1) = 33 clock
parameters (68 temporal parameters).

operation flops kflops operation flops kflops

Chol(Qyk
) 1

6m3
k 457 Q−1

yk
m3

k 2744

R′
yk
\[Tk BAk yk] 1

2m2
k· 1392 Q−1

yk
· BAk m2

k(nβ + n) 1431

(ntk
+nβ+n+1)

T ′
k · Tk

1
2mkn2

tk
324 T ′

k · Q−1
yk

m2
kntk

1333

Chol(T ′
kTk) 1

6n3
tk

52 (T ′
kQ−1

yk
) · Tk

1
2mkn2

tk
324

R′
Tk
\T ′

k
1
2mkn2

tk
324 (T ′

kQ−1
yk

Tk)−1 n3
tk

314

R̃Tk
· BAk mkntk

(nβ + n) 695 PTk

1
2mkntk

(mk +ntk
) 990

R̃′
Tk

· (R̃Tk
BAk) mkn2

tk
647 PTk

· BAk m2
k(nβ + n) 1431

total: 3891 8567

Table 23.2 Operation count in floating point operations (1 flops = 1 multiplication + 1 addition
[Björck, 1996]) for two ways of computing. Left: With Cholesky factorization and
substitution. Right: By inverting and multiplying. The numbers in kiloflops are for the
example of page 173. mk: number of observations. ntk

: number of temporal parameters.
nβ : number of constrained parameters. n: number of global parameters.
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Figure 23.1 Mirror image of the sizes of the design matrix in the SRIF measurement update.
Troposphere-weighted model; l = 4 observation types, n = 5 stations, m = 7 satellites.

23.3.2 Computation of the product P
⊥
Tk

BAk

In the KF approach, the temporal parameters are pre-eliminated by using the
projector P⊥

Tk
. Because Tk is a large matrix, the computation of the projector

may be time consuming. Since we only use the product P⊥
Tk

BAk (or P⊥
Tk

Ak), this
section shows how this product can be computed efficiently.

If we use the Cholesky transformations of the previous subsection, we have
the projector PTk

= Tk(Tk
′Tk)

−1Tk
′. Instead of the time consuming inversion of

the matrix Tk
′Tk, we compute its Cholesky factor RTk

:

RTk

′RTk
= Tk

′Tk, (23.6)

with which the projector PTk
becomes:

PTk
= Tk R−1

Tk
(R−1

Tk
)′ Tk

′ = R̃′
Tk

R̃Tk
, (23.7)

where

R̃Tk

.
= (R−1

Tk
)′ Tk

′ ≡ RTk

′\Tk
′ (23.8)

follows from substitution. Note that R̃Tk
is not triangular.

Table 23.2 shows the smaller operation count for the approach with Cholesky
factorizations and transformations when compared with inversions and multipli-
cations.

If Qyk
is diagonal, which is often assumed, the Cholesky-factor transformed

Tk and BAk are sparse. In this case the products T ′
kTk and R̃Tk

BAk can be
computed faster. The computation time can than be further reduced by avoiding
fill-in elements in the Cholesky factorization of T ′

kTk with an ordering algorithm
like the column minimum degree ordering, see for example [George and Liu, 1989].
With this algorithm, we obtain a column permutation matrix 2 Pc. The projector

2Permutation matrices have the property P−1 = P ′.
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PTk
may be computed by replacing Tk by TkPc, since

PTk
= Tk (Tk

′ Tk)
−1 Tk

′

= Tk Pc P−1
c (Tk

′ Tk)
−1 (P−1

c )′ P ′
c Tk

′

= Tk Pc (Pc
′ Tk

′ Tk Pc)
−1 Pc

′ Tk
′.

(23.9)

In other words, PTk
is invariant for the column ordering of Tk. By using the per-

mutated matrix, the Cholesky factor is sparse and therefore also the substitution
step is faster. The most time consuming step is the full matrix multiplication of
Eq. (23.7), which generally results in a full matrix. Therefore we first compute the
still sparse product R̃Tk

BAk. Finally, the product is simply computed as:

P⊥
Tk

BAk = BAk − R̃′
Tk

(R̃Tk
BAk). (23.10)

Summarizing the steps above gives:

1. Tk ← TkPc;
2. RTk

= Chol(T ′
k Tk);

3. R̃Tk
= RTk

′\Tk
′;

4. P⊥
Tk

BAk = BAk − R̃′
Tk

(R̃Tk
BAk).

(23.11)

Some timing results are shown in Table 23.3.

operation time [ms] time [ms]
(with column ordering) (without column ordering)

RTk

′\Tk
′ 5.5 9.6

R̃Tk
· BAk 1.8 2.5

R̃′
Tk

· (R̃Tk
BAk) 14.3 19.1

Table 23.3 Computation time of operations in milliseconds for a diagonal covariance matrix of the
observations. The matrix sizes correspond to the example of page 173.

23.3.3 Sparse QR decomposition

In the SRIF approach, the QR decompositions are the most time consuming.
Especially the QR decomposition of the measurement update is slow because
of the large information array. When Tk, Bk, and Ak are sparse, it may pay
off to use a sparse QR decomposition. In [Matstoms, 1994] a multifrontal QR
decomposition is described. This method uses the sparsity of the system and
implies both a column (Pc) and row permutation (Pr).permutations

The system ∆yk = Ak ∆x̂k + ε̂k, with ∆xk
.
= [∆t′k, ∆β′

k, ∆x′]′ the vector
of all parameters at epoch k, ∆yk

.
= [∆y′k, ∆z′

β̂xk|k−1

]′ the vector with all

observations, and Ak the complete design matrix for epoch k (as in Fig. 23.1), is
solved as:

Pr ∆yk = Pr Ak Pc P ′
c ∆x̂k + Prε̂k

Pr ∆yk = QI Rk P ′
c ∆x̂k + Prε̂k

∆zk
.
= QI

′ Pr ∆yk = Rk P ′
c ∆x̂k ,

(23.12)

or symbolically: [RkP ′
c, ∆zk] ← QR(PrAkPc, Pr∆yk).
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initialization

?k ← k + 1

time update

?
sparse measurement update

?

6
‖ ∆zk ‖2< ε
yes

no

reordering QR

?

k = p

yes
no

6

filter result

Figure 23.2 Flow chart for sparse QR decomposition.

Although this method is useful for solving ∆x̂k = Pc R
−1
k ∆zk, it has some

disadvantages related to the permutation.

First, we cannot use the convergence check (see Fig. I.7)

‖ ∆zβ̂xk|k
‖2= ∆z′

β̂xk|k
∆zβ̂xk|k

< ε, (23.13)

because the ∆zk vector of Eq. (23.12) has mixed elements that are not directly
related to a lower-right part of an upper-triangular matrix. Therefore, we have
to check the norm of the complete ∆zk vector, and this implies that we have to
solve for the temporal parameters as well to meet the convergence check. Because
usually we do not have good approximate values for the temporal parameters,
since they are hard to obtain from the previous epoch, at least a second iteration
step is needed to meet the convergence criterion.

Second, in the next time update we need an unpermutated system to re-
late the upper-triangular matrix to the parameters. We can retain this
unpermutated system by a new reordering QR decomposition of the smallerreordering

QR matrix Rk P ′
c = QIRk:

∆zk = Rk P ′
c ∆x̂k

∆zk = QI Rk ∆x̂k

∆zk
.
= QI

′ ∆zk = Rk ∆x̂k

R−1
k ∆zk = ∆x̂k .

(23.14)

In other words, by using the (full) QR decomposition of the information array
[Rk P ′

c, ∆zk], we obtain the unpermutated array [Rk, ∆zk] = QR([RkP ′
c, ∆zk]).

This reordering QR decomposition is only needed once the convergence criterion
is met; see Fig. 23.2.

Despite the disadvantages of the sparse QR decomposition, it is still preferred in
terms of computation time for large systems. Table 23.4 shows some typical com-
putation times per epoch. In this case the sparse QR decomposition is preferred
in a network of five stations, whereas both methods are comparable for the base-
line case. If a looser convergence criterion were used of, for example, ε = 10−4,
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Figure 23.3 Sparsity of design matrix of Fig. 23.1. Left panel: Unpermutated design matrix for full QR
decomposition. Right panel: Permutated design matrix for sparse QR decomposition.

the full decomposition would be preferable, because then one iteration suffices.
In general, sparse decomposition is more attractive when the design matrix be-
comes larger. Clearly, in terms of computation time, the Kalman filtering has the
best performance. Note that the measurement update may be one of the most
time-consuming steps in the processing, but all methods have (nearly) the same
overhead.

measurement time/ n = 2 time/ n = 5
mk update calls call [s] time [s] call [s] time [s]

10 sparse QR 2 0.11 0.22 0.41 0.82
10 reordering QR 1 0.15 0.15 1.21 1.21
10 sparse + reordering QR 0.37 2.03

10 full QR 2 0.19 0.38 2.42 4.84

10 Kalman 2 0.01 0.02 0.13 0.26

7 sparse QR 2 0.08 0.16 0.27 0.54
7 reordering QR 1 0.09 0.09 0.51 1.02
7 sparse + reordering QR 0.25 1.56

7 full QR 2 0.11 0.22 0.89 1.78

7 Kalman 2 0.01 0.02 0.06 0.13

Table 23.4 Computation times of the measurement update of one epoch in matlab (version 6.1) on a
Pentium III, 450 MHz PC for the troposphere-weighted model with n = 2 and n = 5
stations, and mk = 7 and mk = 10 satellites (for all k). Convergence criterion: ε = 10−6.

23.4 Changing satellite configurations

23.4.1 Changing the pivot

Because of changing satellite configurations, new satellites rise and old ones set,
we need to change the pivot satellite of the double-differenced ambiguities once in
a while. When a new satellite serves as pivot for the ambiguities, it will also serve
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as pivot for the satellite clock errors. We assume that the network does not change
during the observation period and that there are no missing data. Therefore the
same reference station may be used as pivot for the whole time span. In principle,
it does not matter which (visible) satellite is used as pivot. It may however be
practical to use the satellite with the smallest zenith angle, because this satellite is
likely to have the least problems observing: high signal-to-noise ratio, no blocking
objects. Using the zenith angle as criterion for the choice of pivot means that
pivots are usually changed when we are still observing the old pivot and when we
have been observing the new pivot for some while.

Changing the pivot involves a transformation of the double-differenced am-
biguities. This transformation should precede the measurement update and can
either precede or follow the time update. How to draft the transformation matrix
is best understood with the help of an example. Suppose we process a baseline
(stations 1 and 2) and observe to five satellites3 (1,...,5) with four L1 ambiguities
using the second satellite as pivot. We now wish to transform the ambiguities so
that the fourth satellite becomes pivot. The transformation then reads:




N̂41
12,1

N̂43
12,1

N̂42
12,1

N̂45
12,1




︸ ︷︷ ︸
new amb.

=




1 0 −1 0
0 1 −1 0
0 0 −1 0
0 0 −1 1




︸ ︷︷ ︸
transf. matrix




N̂21
12,1

N̂23
12,1

N̂24
12,1

N̂25
12,1




︸ ︷︷ ︸
old amb.

. (23.15)

Clearly, we can always draft the transformation matrix in such a way that it is an
identity matrix with one column replaced by a vector of -1s, since in general:

N̂oj
rs,l − N̂op

rs,l = N̂pj
rs,l;

−N̂op
rs,l = N̂po

rs,l,
(23.16)

if p is the new pivot and o is the old pivot. The column with -1s always
occurs where the ambiguity is formed between the old and new pivot. When
the ambiguities are ordered, we can easily find the column for which this is the case.

Because in Eq. (23.15) the new vector of ambiguities is not ordered any
more, we need to premultiply this vector by a row permutation matrix. The
transformation matrix on the right-hand side of Eq. (23.15) therefore also has to be
premultiplied by this permutation matrix to obtain the final transformation ma-
trix, say T12,1. In a network with n stations where we observe on two frequencies,
the transformation matrix for all ambiguities becomes: T = In−1⊗I2⊗T12,1. If we
denote the old ambiguities by N̂ and the new ones by N̂new, the transformation
of the vector with all global and constrained parameters looks like:




β̂

N̂new

r̂


 =




I 0 0
0 T 0
0 0 I







β̂

N̂
r̂


 ; D{




β̂

N̂
new

r̂


} =




Qβ̂ T Qβ̂N̂ Qβ̂r̂

QN̂β̂T ′ T QN̂T ′ QN̂ r̂T ′

Qr̂β̂ T Qr̂N̂ Qr̂


 ,

(23.17)

where β̂ is either the vector of predicted or filtered ZTDs, depending on when the
transformation is applied, and r̂ is the vector with coordinates.

3As in Sect. 10.3 of Part II we assume that the same satellites are visible for all stations.
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In the SRIF approach, we do not use the (transformed) covariance matrix
explicitly. We then transform the root of its inverse:




zβ̂

zN̂
zr̂


 =




Rβ̂ Rβ̂N̂T −1 Rβ̂r̂

0 RN̂T −1 RN̂ r̂
0 0 Rr̂







β̂

T N̂
r̂


 . (23.18)

The z vector is thus left unchanged.

23.4.2 Expiring parameters

Ambiguities that are no longer active become dormant, when they refer to
satellites that are no longer visible. If one is not interested in these parameters,
they may be excluded from the processing [Wu and Muellerschoen, 1992].

Expiring these parameters is trivial in the KF approach. Since they occurKF approach

explicitly in the observation equations, the expired parameters and their corre-
sponding elements in the covariance matrix can be excluded in either the time or
measurement update.

In the SRIF approach the dormant parameters are not explicitly present inSRIF
approach the observation equations and expiring them would mess up the upper-triangular

system in which they are present. To exclude them from the processing, they
need to be (among) the first in the vector of parameters, which implies a column
permutation of the upper-triangular matrix, thus leaving the system intact.
Although the system is now not triangular anymore, this is not a problem because
after a reordering QR decomposition like in Eq. (23.14), the triangular system
is regained and the top rows may now be excluded from further processing. In
this reordering QR decomposition we thus combine two permutations: one to
regain the parameter order and to eliminate the temporal parameters, and one to
eliminate the dormant ambiguities.

If we name the second, expiring, permutation matrix Pexp, the reordering
QR decomposition is replaced by QI Rk = Rk Pc

′ Pexp
′, and instead of

Eq. (23.14) we have:

∆zk = Rk P ′
c Pexp

′ Pexp ∆x̂k

∆zk = QI Rk Pexp ∆x̂k

∆zk
.
= QI

′ ∆zk = Rk Pexp ∆x̂k

R−1
k ∆zk = Pexp ∆x̂k ,

(23.19)

or symbolically: [Rk, ∆zk] ← QR([RkP ′
cP ′

exp, ∆zk]). The vector Pexp ∆x̂k has
the temporal parameters and dormant ambiguities to be expired on top.

23.4.3 Introducing new parameters

Because every once in a while new satellites rise, new ambiguities have to be
introduced. Since they occur as linear parameters in the observation equations,
we do not need good approximate values. New parameters are introduced in the
measurement update.

The introduction is easiest in the SRIF approach. In the measurement up-SRIF
approach date, we use the observation equation zx̂old

k−1
= Rx̂old

k−1
xold, where the old global

parameters are denoted by xold.
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These observation equations may be extended for the new parameters as:

zx̂old
k−1

=
[
Rx̂old

k−1
0
] [

xold

xnew

]
. (23.20)

Because the complete information array also includes the matrix Ak with columns
referring to the new parameters, this does not introduce a rank deficiency.

In the KF approach, we have to consider the observation model with bothKF approach

old and new parameters. For example, the model with temporal and global
parameters reads:

E{
[

y
k

x̂old
k−1

]
} =

[
Tk Aold

k Anew
k

0 I 0

] 


tk
xold

xnew


 ; D{

[
y

k
x̂old

k−1

]
} =

[
Qyk

Qx̂old
k−1

]
. (23.21)

Like in Sect. 21.4, this model can be partitioned. We use the partition:

AI =

[
Tk

0

]
; AII =

[
Aold

k Anew
k

I 0

]
. (23.22)

After a derivation along the lines of Sect. 21.4, we find for the covariance matrix
of all (old and new) global parameters:

Qx̂k
=

([
Q−1

x̂old
k−1

0

0 0

]
+ A′

kQ
−1
yk

P⊥
Tk

Ak

)−1

, (23.23)

where Ak
.
= [Aold

k , Anew
k ]. The measurement update can be derived as:

[
x̂old

k

x̂new
k

]
=

[
x̂old

k−1

0

]
+ Kkvk, (23.24)

with gain matrix Kk and predicted residuals vk:

Kk = Qx̂k
A′

kP
⊥′

Tk
Q−1

yk
;

vk = yk − Aold
k x̂old

k−1.

(23.25)

In the actual software implementation, we would mix the old and new parame-
ters and use an index referring to them instead of appending the new parame-
ters. Maintaining a strict order is important for the ambiguity transformation of
Sect. 23.4.1.



Chapter 24

Condition equations, testing, and
reliability

24.1 Introduction

The Kalman-filtering procedures as described in Chaps. 21 and 22 were in terms
of observation equations. Temporal parameters were pre-eliminated using a
projector P⊥

Tk
.

The first part of this chapter, Sect. 24.2, deals with the linear Kalman con-
dition and observation equations. Section 24.2.1 shows the measurement-update
equations of the models with global and constrained parameters only. Sec-
tion 24.2.2 extends the equations with Cholesky-factor transformations to avoid
matrix inversions. When including temporal parameters, a matrix T⊥′

k that spans
the null space of Tk is needed in the condition equations. Section 24.2.3 then
shows that this matrix can be used to pre-eliminate the temporal parameters
instead of using the projector P⊥′

Tk
. This section also shows the pre-elimination in

the SRIF approach. The nonlinear versions of all the estimation procedures are
given in App. I.

Because the conditions in an observation model allow for testing, the sec-
ond part of this chapter, Sect. 24.3, deals with testing and reliability aspects in
Kalman filtering. For the SRIF implementation is referred to [Tiberius, 1998].
Strict procedures are worked out for the Kalman–Cholesky filtering with
pre-elimination. Flow charts of these procedures can also be found in App. I.

24.2 Condition equations

24.2.1 Kalman filtering

Section 21.2 showed a model of observation equations, Eq. (21.1), for which the
LSQ estimate of the observations in Eq. (21.5) was in terms of the m × n design
matrix A. There is also an equivalent model of condition equations:

A⊥′
E{y} = 0 ; D{y} = Qy, (24.1)

where A⊥ is the m× (m−n) orthogonal complement of A: A⊥′
A = A′A⊥ = 0 andA⊥

A ⊕ A⊥ spans IRm. As shown in [Teunissen, 1999], the projector PA can also be
written in terms of A⊥: PA = P⊥

QyA⊥ = Im −PQyA⊥ . With Eq. (21.5) we therefore



182 IV 24.Condition equations, testing, and reliability

find the following estimates for the observations in terms of A⊥:

ŷ = (Im − QyA
⊥(A⊥′

QyA
⊥)−1A⊥′

) y;

Qŷ = Qy − QyA
⊥(A⊥′

QyA
⊥)−1A⊥′

Qy.
(24.2)

The model of condition equations that corresponds to the kth epoch of the recursive
model with global parameters only, Eq. (21.6), reads:global

parameters

[Imk
, −Ak] E{

[
y

k
x̂k−1

]
} = 0 ; D{

[
y

k
x̂k−1

]
} =

[
Qyk

Qx̂k−1

]
, (24.3)

where [Imk
, −Ak] plays the role of A⊥′

in Eq. (24.1), and Ak is an mk ×n matrix.
Applying Eq. (24.2) then gives after some derivation the expressions on the right-
hand side of Fig. 24.1. Note that we use Q−1

vk
to compute Kk. We therefore need

to explicitly invert Qvk
and cannot use the expression of Eq. (21.12) that is used

in the observation equations.

vk = yk − Akx̂k−1
observation equations

Qx̂k
= (Q−1

x̂k−1
+ A′

kQ
−1
yk

Ak)
−1

Kk = Qx̂k
A′

kQ
−1
yk

Q−1
vk

= Q−1
yk

(Imk
− AkKk)

condition equations

Q−1
vk

= (Qyk
+ AkQx̂k−1

A′
k)

−1

Kk = Qx̂k−1
A′

kQ
−1
vk

Qx̂k
= (In − KkAk)Qx̂k−1

x̂k = x̂k−1 + Kkvk

Figure 24.1 Kalman measurement-update equations of the model with linear global parameters only.

In the model where also constrained parameters are included, the equations for theconstrained
parameters measurement update are basically the same as in Fig. 24.1; we use the predicted

state vector β̂xk|k−1 instead of the filtered state vector x̂k−1, and design matrix
BAk instead of Ak as in Sect. 21.5; see Fig. 24.2.

vk = yk − BAkβ̂xk|k−1
observation equations

Qβ̂xk|k
= (Q−1

β̂xk|k−1

+ BA′
kQ

−1
yk

BAk)
−1

Kk = Qβ̂xk|k
BA′

kQ
−1
yk

Q−1
vk

= Q−1
yk

(Imk
− BAkKk)

condition equations

Q−1
vk

= (Qyk
+ BAkQβ̂xk|k−1

BA′
k)

−1

Kk = Qβ̂xk|k−1
BA′

kQ
−1
vk

Qβ̂xk|k
= (Inβ+n − KkBAk)Qβ̂xk|k−1

β̂xk|k = β̂xk|k−1 + Kkvk

Figure 24.2 Kalman measurement-update equations of the model with linear global and constrained
parameters.

24.2.2 Kalman–Cholesky filtering

As mentioned in Sect. 23.3.1, we may avoid inversion of the covariance matrix
of the observations by computing its Cholesky factor and use it to transform the
observations and design matrix. This Kalman–Cholesky approach is suitable forKalman–

Cholesky the model of observation equations. In the model with condition equations this
Cholesky-factor transformation is of no use, because there is no Qyk

to be in-
verted, but instead we can avoid inversion of Qvk

.1 With the Cholesky factor

1In the model of observation equations, Q−1
vk

is explicitly computed without actually inverting,
whereas this is not possible in the model of condition equations.
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of Qvk
= R′

vk
Rvk

, the observations and the design matrix are transformed. Not
only the estimation speed benefits from these transformations but also the speed
of hypothesis testing. Figure 24.3 shows how the transformations are integrated
in the estimation procedure. Note that the predicted residuals are not explicitly
transformed, but new predicted residuals vk ≡ (R−1

yk
)′vk and vk ≡ (R−1

vk
)′vk are

directly obtained from the transformed observations and design matrix.

Cholesky-factor transformations

Ryk
= Chol(Qyk

)
yk ← R′

yk
\yk

BAk ← R′
yk
\BAk

Qvk
= Qyk

+ BAkQβ̂xk|k−1
BA′

k

Rvk
= Chol(Qvk

)
yk ← R′

vk
\yk

BAk ← R′
vk
\BAk

vk = yk − BAkβ̂xk|k−1
observation equations

Qβ̂xk|k
= (Q−1

β̂xk|k−1

+ BA
′
kBAk)

−1

Kk = Qβ̂xk|k
BA

′
k

Q−1
vk

= Imk
− BAkKk

condition equations

Kk = Qβ̂xk|k−1
BA

′
k

Qβ̂xk|k
= (Inβ+n − KkBAk)Qβ̂xk|k−1

β̂xk|k = β̂xk|k−1 + Kkvk

Figure 24.3 Kalman–Cholesky measurement update of the model with linear global and constrained
parameters. Overbars are shown for clarity; they indicate a difference with the original
quantities of Fig. 24.2 caused by the Cholesky-factor transformation.

When temporal parameters are included, we need the orthogonal complement T⊥
ktemporal

parameters to obtain the model of condition equations. T⊥
k spans the null space of T ′

k, or
stated otherwise: T⊥′

k Tk = 0, and Tk ⊕ T⊥
k spans IRmk . The model of condition

equations that now corresponds to the model of observation equations, Eq. (21.14),
reads:

T⊥′

k [Imk
, −Ak] E{

[
y

k
x̂k−1

]
} = 0 ; D{

[
y

k
x̂k−1

]
} =

[
Qyk

Qx̂k−1

]
. (24.4)

24.2.3 Pre-elimination transformation

Usually a null-space computation is numerically expensive. For GPS observation
models however, T⊥

k can be determined analytically; see Part II. Instead of this
strict model of condition equations, Eq. (24.4), we can also use T⊥

k to obtain an
alternative model of observation equations:

E{
[

T⊥′

k y
k

x̂k−1

]
} =

[
T⊥′

k Ak

In

]
x ; D{

[
T⊥′

k y
k

x̂k−1

]
} =

[
T⊥′

k Qyk
T⊥

k

Qx̂k−1

]
. (24.5)

We can now recognize the same model as Eq. (21.6) if we apply the pre-elimination
transformations: yk ← T⊥′

k yk, Qyk
← T⊥′

k Qyk
T⊥

k and Ak ← T⊥′

k Ak (in the modelpre-
elimination
transforma-
tions

with constrained parameters the last transformation becomes BAk ← T⊥′

k BAk).
Both approaches have the advantage over the Kalman filtering of Chap. 21 of
a smaller Qvk

to be inverted, since the number of observations, and therefore
also the number of predicted residuals, at epoch k reduces to mk

.
= mk − ntk ,mk

with ntk the number of temporal parameters. On the other hand, when Qyk
is
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sparse, its Cholesky factor is easily computed whereas the Cholesky factor of the
full covariance matrix of the transformed observations, T⊥′

k Qyk
T⊥

k , is more time
consuming. Combining the Cholesky and pre-elimination transformation results
in the flow charts of Figs. I.8 and I.10 (for all parameter types and nonlinear
global parameters).

In the SRIF approach, the double transformation can be applied in a simi-SRIF

lar way as in the Kalman–Cholesky approach. We use the following observation
model for the measurement update (all parameter types, linear global parameters):

E{
[

(R−1
yk

)′T⊥′

k y
k

zβ̂xk|k−1

]
} =

[
(R−1

yk
)′T⊥′

k BAk

Rβ̂xk|k−1

]
βxk;

D{
[

(R−1
yk

)′T⊥′

k y
k

zβ̂xk|k−1

]
} =

[
Imk−ntk

Inβ+n

]
,

(24.6)

where Ryk
is the upper-triangular Cholesky factor of T⊥′

k Qyk
T⊥

k = Ryk

′Ryk
. The

advantage of the transformation in Eq. (24.6) is that a much smaller matrix is used
in the QR decomposition. For the complete estimation procedure with nonlinear
global parameters, see Fig. I.12.

24.2.4 Observation equations or condition equations?

Often the choice for using observation equations or condition equations is based
on dimensional considerations. If the number of parameters is small compared
with the number of observations, the observation equations are preferred because
the covariance matrix of the parameters is easy to compute. Otherwise, especially
when testing is involved, the condition equations seem more appealing. In GPS
data processing there is another consideration that is more important. Whenever
a new satellite is tracked, a new (global) ambiguity parameter is introduced. The
observation model for epoch k is then of the form:

E{
[

y
k

x̂k−1

]
} =

[
Ak ak

I 0

] [
xold

k

xnew
k

]
. (24.7)

In this model we do not have an orthogonal complement of the design matrix that
is in terms of Ak, like in Eq. (24.3). This orthogonal complement therefore first
needs to be derived, which may be time consuming and complicates software im-
plementation. Therefore the observation equations are preferred over the condition
equations.

24.3 Testing and reliability

The concepts of testing and reliability [Baarda, 1968] are known for geodetic
networks for some time. A recursive approach for models with time-varying
parameters is given in [Teunissen and Salzmann, 1989], [Teunissen, 1990c],
[Teunissen, 1990a], and [Teunissen, 1990b]. Here a recursive description is given
for a GPS model which also includes global and temporal parameters.

To detect model errors we can do several hypothesis tests. Under the null
hypothesis we assume the observation model to be correct. Under an alternative
hypothesis we assume that something specific is wrong with the model or leave
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the model error unspecified. Either way, from the model of condition equations,
we see that under the null hypothesis H0, we assume:H0

H0 : E{v} = 0 ; D{v} = Qv, (24.8)

where v = [v′1, ..., v
′
p]
′ is the concatenated vector of predicted residuals of all epochs.

In [Teunissen and Salzmann, 1989], a proof is given that E{vkv
′
l} = 0, for all k 6= l;

in other words: Qv = diag[Qv1
, ..., Qvp ]. Under an alternative hypothesis HA, weHA

assume the (
∑p

κ=1 mκ) × 1 vector v to be contaminated with a bias caused by a
model error:

HA : E{v} = Cv∇ ; D{v} = Qv, (24.9)

with Cv = [C ′
v1

, ..., C ′
vp

]′ a (
∑p

κ=1 mκ) × q full-rank matrix that specifies the
location of the model error and ∇ the q × 1 model error itself.

Under the alternative hypothesis we have, cf. Eq. (21.2), the estimator of
the model error:

∇̂ = Q∇̂C ′
vQ

−1
v v ; Q−1

∇̂
= C ′

vQ
−1
v Cv. (24.10)

Because of the block-diagonal structure of Qv, this can also be written as:

∇̂ = Q∇̂ ·
p∑

κ=1

C ′
vκ

Q−1
vκ

vκ ; Q−1

∇̂
=

p∑

κ=1

C ′
vκ

Q−1
vκ

Cvκ . (24.11)

As shown in [Teunissen, 1990c], a Uniformly Most Powerful Invariant (UMPI) test
for testing H0 against HA can be given as:

Reject H0 in favor of HA if ∇̂′Q−1

∇̂
∇̂ > df1−α, (24.12)

where df1−α is the critical value corresponding to a level of significance α and

(cumulative) distribution function df . If we assume that v and, therefore also ∇̂,
are normally distributed, the q-dimensional test statisticΘ(q)

Θ(q)
.
= ∇̂′

Q−1

∇̂
∇̂ (24.13)

has a χ2 distribution:

H0 : Θ(q) ∼ χ2(q, 0) ; HA : Θ(q) ∼ χ2(q, λ), (24.14)

with λ = ∇′Q−1

∇̂
∇ the noncentrality parameter. In that case the critical valuenoncentrality

parameter df1−α ≡ χ2
1−α(q, 0) is the q-dimensional upper α probability point of the central

χ2 distribution.

We distinguish global and local tests [Teunissen and Salzmann, 1989]. In
global tests, Cvκ = 0 for κ < k0 and κ > k, where k is the current epoch of
recursive processing, and k0 < k is the first epoch some model error occurs. Then
δk

.
= k − k0 is the number of epochs before epoch k that a model error first

occurred. A local test statistic is a global test statistic for which δk = 0, which
means that Cvκ = 0, for all κ 6= k.

We also distinguish overall model and slippage tests. In overall model tests, we
assume there is a model error in one or more epochs without specifying it, whereas
in slippage tests the model error is specified.
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In the Global Overall Model (GOM) and Local Overall Model (LOM) testsGOM, LOM

we have: q =
∑k

κ=k0
mκ and q = mk respectively. In other words, [C ′

vk0
, ..., C ′

vk
]′

and Cvk
become square and invertible, and the GOM and LOM test statistic

reduce to:

GOM : Θδk
k (

k∑

κ=k0

mκ) =
k∑

κ=k0

v′κQ−1
vκ

vκ ; LOM : Θ0
k(mk) = v′kQ

−1
vk

vk. (24.15)

The GOM test value is suitable for a recursive computation (omitting the sizes ofrecursive
GOM the tests for readability):

Θδk
k (.) = Θδk−1

k−1 (.) + Θ0
k(.). (24.16)

If k = p and δk = p − 1 the most general Overall Model Test (OMT) is obtained.OMT

If we divide the χ2-distributed quantity of Eq. (24.15) by the degrees of freedom,
we obtain an F-distributed OMT. This OMT is in fact an unbiased estimate of
the variance factor of unit weight of the covariance matrix of the observations if
the observation model is correct; see for example [Teunissen, 2000]. Note that
the degrees of freedom are given as the sum of the transformed observations.
Strictly speaking this is only the case when no new ambiguities are introduced.2

Whenever new ambiguities are introduced the redundancy reduces by the same
amount.

In the Global Slippage (GS) tests and Local Slippage (LS) tests, the size ofGS, LS

q is respectively: q <
∑k

κ=k0
mκ and q < mk, but usually q = 1. The test

statistics reduce to:

GS : Θδk
k (q) = ∇̂δk

k

′
Q−1

∇̂δk
k

∇̂δk
k ; LS : Θ0

k(q) = ∇̂0
k

′
Q−1

∇̂0
k

∇̂0
k, (24.17)

where we use the following short-hand notation:

∇̂δk
k

.
= Q∇̂δk

k
·




Cvk0

...
Cvk




′ 


Q−1
vk0

. . .

Q−1
vk







vk0

...
vk


 = Q∇̂δk

k
· ∑k

κ=k0
C ′

vκ
Q−1

vκ
vκ;

Q−1

∇̂δk
k

.
=




Cvk0

...
Cvk




′ 


Q−1
vk0

. . .

Q−1
vk







Cvk0

...
Cvk


 =

∑k
κ=k0

C ′
vκ

Q−1
vκ

Cvκ .

(24.18)

Like the GOM test values, the GS test values can also be obtained recursively,recursive GS

but the procedure is less straightforward. The overall model test statistics of
Eq. (24.15) are in terms of the predicted residuals and their covariance matrix
that result from the recursive estimation. The slippage test statistics, on the other
hand, are still in terms of the estimator of the model error. Actual computation
of the test quantities therefore seems to involve filtering with the model under
the alternative hypothesis. However, a parallel processing can be implemented
to estimate the model errors without much computational effort; see for example

2We assume (good) a-priori values for the coordinates, which serve as observations in the first
epoch; in other words, the coordinates are both parameters and observables and therefore do not
affect the redundancy.
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[Salzmann, 1993]. In Eq. (24.9) we can recognize the model of global parameters
only, cf. Eqs. (21.1) and (21.6). The matrix Cvk

plays the role of Ak, vk plays the
role of yk, and ∇̂δk

k plays the role of x̂k. We know that in this model a recursive
estimation is possible. If we use observation equations, the update equation of the
as parameters occurring model errors reads:

∇̂δκ
κ = ∇̂δκ−1

κ−1 + Kδκ
κ (vκ − Cvκ∇̂δκ−1

κ−1 ), (24.19)

with

Kδk
κ = Q∇̂δκ

κ
C ′

vκ
Q−1

vκ
(24.20)

the gain vector, and

Q−1

∇̂δκ
κ

= Q−1

∇̂δκ−1

κ−1

+ C ′
vκ

Q−1
vκ

Cvκ . (24.21)

The way an error in the predicted residual is specified by Cvκ depends on the type
of model error we assume. Three types of model errors that seem to be reasonable
to test for are:
(a) an outlier in the observations;
(b) a slip in the state vector or constraints;
(c) a sensor slip.

Figure 24.4 shows how these model errors can be propagated with Cvκ ,
(κ = k0, ..., k) using response matrices Xκ|κ−1 and Xκ|κ. Because these matricesresponse

matrices depend on the epoch the first model error occurred, we use the superscripts δκ
(Cδκ

vκ
, Xδκ

κ|κ−1, and Xδκ
κ|κ). The matrices are obtained from the recursive formulas:

β̂xκ|κ−1 = Ψκ,κ−1β̂xκ−1|κ−1 +

[
dk

0

]
(time update);

vκ = yκ − BAκβ̂xκ|κ−1 (predicted residuals);

β̂xκ|κ = β̂xκ|κ−1 + Kκvκ (measurement update).

(24.22)

(a, c)

δκ = −1 ; κ = k0 − 1 ; Xδκ
κ|κ = 0

?
κ ← κ + 1
δκ ← δκ + 1

Xδκ
κ|κ−1 = Ψκ,κ−1X

δκ−1
κ−1|κ−1

Cδκ
vκ

= Cyκ − BAκXδκ
κ|κ−1

Xδκ
κ|κ = Xδκ

κ|κ−1 + KκCδκ
vκ

?κ = k

κ < k¾

testing/reliability

(b)

δκ = −1 ; κ = k0 − 1 ; Xδκ
κ|κ = 0

?
κ ← κ + 1
δκ ← δκ + 1

Xδκ
κ|κ−1 = Ψκ,κ−1X

δκ−1
κ−1|κ−1 + Cdκ

Cδκ
vκ

= −BAκXδκ
κ|κ−1

Xδκ
κ|κ = Xδκ

κ|κ−1 + KκCδκ
vκ

?κ = k

κ < k¾

testing/reliability

Figure 24.4 Recursive update of Cδκ
vκ

and response matrices Xδκ
κ|κ−1 and Xδκ

κ|κ for three different types of

tests. (a) Outlier in observation; Cyκ
= 0 for κ 6= k0, and Cyκ

6= 0 for κ = k0. (b) Slip in
state vector; Cdκ

= 0 for κ < k0, and Cdκ
6= 0 for κ ≥ k0. (c) A sensor slip: Cyκ

= 0 for
κ < k0, and Cyκ

6= 0 for κ ≥ k0.

Note that when all of the model errors are one dimensional, Cδκ
vκ

and the responseone
dimensional
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matrices are vectors, and ∇̂δκ
κ and Q∇̂δκ

κ
are scalars. The one-dimensional tests

are relatively easy to compute. Moreover, we may assume there is an outlier
in just one of the (pseudo-)observations or a slip in just one of the state-vector
elements. So for each of the (pseudo-)observations and state-vector elements
we formulate an alternative hypothesis. In other words, we have mk0

tests for
outliers (a), and nβ + n tests for slips (b). Although in the latter case the
most reasonable tests seem to concern the n global parameters, namely a slip in
one of the ambiguities or coordinates, the nβ tests for slips in the troposphere
constraints may detect errors in the stochastic model, more specifically whether a
correct Power Spectral Density is used. We have characteristic matrices Cyκ and
Cdκ

of the form [0, ..., 0, 1, 0, ..., 0]′, where the position of the ‘1’ corresponds with
the index of a (pseudo-)observation or state-vector element. This way of testing
is known as data snooping, although this usually only concerns the outlier tests (a).data

snooping

A method that has become more and more common in geodetic practice is
the B-method of testing [Baarda, 1968]. This procedure can also be implementedB-method

in a recursive data processing approach [Teunissen and Salzmann, 1989]. In the
B-method we choose a level of significance α1 and power γ for the one-dimensional
tests, and determine the corresponding noncentrality parameter λ0. If the vk are
normally distributed (as assumed), then:

√
λ0 = N1− 1

2
α1

+ Nγ , (24.23)

where N1− 1

2
α1

and Nγ are (positive) upper probability points of the standard

normal distribution. Often, α1 = 0.001 and γ = 0.8 are used, which corresponds to
λ0 = 17.0746. In the B-method all (q-dimensional) tests use the same noncentrality
parameter and power. The critical value for a q-dimensional test follows from the
noncentral χ2 distribution:

χ2
1−γ(q, λ0) = χ2

1−αq
(q, 0). (24.24)

As a consequence, the level of significance αq, which follows from the central χ2

distribution, differs for different q.

A nice property of the one-dimensional tests is that the size of a one-dimensional
model error ∇ that can just be detected by this test, can be computed uniquely
from λ0 = ∇′C ′

vQ
−1
v Cv∇, using Eq. (24.10):

|∇| =

(
λ0

C ′
vQ

−1
v Cv

) 1

2

=
√

λ0 · σ∇̂. (24.25)

This |∇| is also known as Minimal Detectable Bias (MDB) and is a measureMDB

of internal reliability. External reliability describes the impact of a model errorreliability

(MDB) on (functions of) the state-vector elements. Figure 24.5 shows how the
MDBs and external reliability are computed recursively along with the GS test
quantity, using both the Cholesky and pre-elimination transformations from the
previous section.

At any epoch k we can test for model errors that started occurring at any epoch
k0 < k. By actually doing these tests, the total number of (global) tests would
grow quadratically with the number of epochs. Instead, it was proposed in
[Teunissen and Salzmann, 1989] to use a windowing technique, in which we onlywindowing

test up to a fixed latency δk = k − k0. The idea is that after this latency the
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initialization
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Q−1
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Θδk
k (.) ≡ Θδκ

κ (.)

Θδk
k (1) = (∇̂δk

k /σ∇̂δk
k

)2

|∇δk
k | =

√
λ0 · σ∇̂δk

k

∇β̂x
δk

k|k = Xδk
k|k · |∇δk

k |

Figure 24.5 Recursive computation of a GOM test quantity Θδk
k (.), a one-dimensional GS test quantity

Θδk
k (1), MDB |∇δk

k |, and external reliability ∇β̂x
δk

k|k in the model with linear global and
constrained parameters. The left panel shows the procedure for the model of observation
equations where the observations and design matrix are transformed with the Cholesky factor
Ryκ

of the covariance matrix of the observations. The new predicted residuals are
vκ ≡ (R−1

yκ
)′vκ. Q−1

vκ
is computed and used explicitly. The panel on the right shows the

implementation for the condition equations where we use Cholesky-factor transformed
predicted residuals vκ ≡ (R−1

vκ
)′vκ; Qvκ

= Imk
. A specific example of outlier tests (a) is

given.

increase in detection power for model errors slows down rapidly. The number of
tests then only grows linear with the number of epochs.

The flow chart of Fig. 24.5 shows the recursion from a theoretic point of
view. We start at some epoch k0, let the epoch counter κ run to epoch k,
and compute the GS test quantity and reliability measures at this epoch. In a
practical implementation however, we need to do all computations at one specific
epoch k; we compute the GS test quantity and reliability measures with latency
δk, but also start the recursion for testing at δk epochs later, and continue the
recursion for the epochs between epochs k and k + δk. The flow charts of Figs. I.9
and I.11 show possible implementations where pre-elimination transformations
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are applied in the model with nonlinear global parameters. The running latency
counter δκ runs from the fixed δk down to and including 0. Although this reverse
order is not strictly necessary, it assures that an in-place computation technique
is possible. For example: ∇̂δκ

k replaces ∇̂δκ−1
k−1 in memory.



Chapter 25

Conclusions of Part IV

This part deals with recursive estimation and testing for GPS observation models
as given in Parts II and III. Recursive techniques are considered useful for
analyzing the performance of observation models in the design stage, because
estimates are obtained after each new epoch of data. Two filters are described: the
recursive Square Root Information Filter (SRIF) and the Kalman Filter (KF). The
latter one can be formulated in observation equations and in condition equations.
In both the SRIF and KF, we can apply Cholesky-factor and pre-elimination
transformations.

A transformation of observations and design matrices with the Cholesky
factor of the covariance matrix of the observations is a natural part of the
estimation procedure in the SRIF. In the KF with observation equations this is a
computation-time reducing technique. The KF with condition equations benefits
from another Cholesky-factor transformation: with the Cholesky factor of the
covariance matrix of the predicted residuals.

In the most general observation models, like the troposphere-weighted mod-
els, three types of parameters are present: global, constrained, and temporal
parameters. Because temporal parameters are considered nuisance parameters,
different pre-elimination methods are considered. In the SRIF we can solve for
part of a triangular system of equations. In the KF with observation equations
we can use a projector on the orthogonal subspace of the temporal parameters. In
both the SRIF and the KF, pre-elimination is however more straightforward using
the orthogonal subspace itself.1 For the latter method, testing procedures for the
KF are given as well as reliability measures that follow from these procedures.
An overview of methods and transformations as dealt with in this part are given
in Table 25.1.

The Kalman Filter and SRIF are known filters which have been used forstate of the
art and
contribution

GPS data processing for some time. Quality control for recursive models with
time-changing (batch) parameters has also been described before. The specific
design of the filters in this part are by the author. They combine techniques to
deal with (global and) temporal parameters, Cholesky-factor transformations and
implementation aspects. The reliability measures that can be obtained with these
filters are also by the author.

Now that filter procedures are available, we can build them into software
and analyze the results for different observation scenarios. This is done in the
next part, where we come back to the questions of Chap. 15.

1In the ionosphere-float model with both satellite and receiver clocks as temporal parameters,
this boils down to forming linear inter-frequency combinations and double differencing; see Part II.
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method pre-elimination testing Cholesky-factor
transformation transformation

Kalman, obs. eqs. P⊥
Tk

(I.6) no no

SRIF solve part of triangular no no (identity
system (I.7) matrix)

Kalman, obs. eqs. T⊥
k (I.8) yes (I.9) yes

Kalman, cond. eqs. T⊥
k (I.10) yes (I.11) yes

SRIF T⊥
k (I.12) no yes

Table 25.1 Main procedures as described in this part. All procedures involve three types of parameters:
global, constrained, and temporal parameters. Tk: partial design matrix of temporal
parameters; T⊥

k : space orthogonal to Tk; P⊥
Tk

: projector on space orthogonal to Tk. Between
parentheses are shown the figure numbers of flow charts.



Appendix H

Matrix lemmas

The inverse of a regular and square partitioned matrix reads:

[
N11 N12

N21 N22

]−1

=

[
(N11 − N12N

−1
22 N21)

−1; −N−1
11 N12(N22 − N21N

−1
11 N12)

−1

−N−1
22 N21(N11 − N12N

−1
22 N21)

−1; (N22 − N21N
−1
11 N12)

−1

]
,

(H.1)

where

(N11 −N12N
−1
22 N21)

−1 = N−1
11 + N−1

11 N12(N22 −N21N
−1
11 N12)

−1N21N
−1
11 . (H.2)

Proof: see, for example: [Koch, 1987].
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Appendix I

Flow charts

initialization

k = 0 ; β̂x0|0 ; Qβ̂x0|0

?
k ← k + 1 time update

β̂xk|k−1 = Ψk,k−1 β̂xk−1|k−1

Qβ̂xk|k−1
= Ψk,k−1Qβ̂k−1|k−1

Ψ′
k,k−1 +

[
Qdk

0
0 0

]

? measurement update

vk = yk − BAk β̂xk|k−1

Qβ̂xk|k
= (Q−1

β̂xk|k−1

+ BA′
kQ

−1
yk

P⊥
Tk

BAk)
−1

Kk = Qβ̂xk|k
BA′

kP
⊥′

Tk
Q−1

yk

β̂xk|k = β̂xk|k−1 + Kkvk

?

6

k < p

k = p
filter result

x̂p ; Qx̂p

Figure I.1 Recursive KF procedure corresponding with the linear model with constrained and temporal
parameters.
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initialization

k = 0 ; x0 ← x̂0 ; Qx̂0

?

k ← k + 1

measurement update

∆yk = yk − Ak(x
0)

∆x̂k−1 = x̂k−1 − x0

vk = ∆yk − ∂xAk(x
0)∆x̂k−1

Qx̂k
= (Q−1

x̂k−1
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0)′Q−1
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0))−1
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-
-
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‖ ∆x̂k ‖2
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< ε

yes

no

filter result

x̂p ← x0 ; Qx̂p

Figure I.2 Recursive KF algorithm for the model with nonlinear global parameters.

initialization
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, zx̂0
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k ← k + 1

measurement update

∆yk = yk − Ak(x
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x̂p
(R−1

x̂p
)′

Figure I.3 Recursive SRIF algorithm for the model with nonlinear global parameters. Qyk
= Imk

assumed.
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initialization

k = 0 ; x0 ← x̂0 ; Qx̂0

k ← k + 1
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Figure I.4 Recursive KF algorithm for the model with nonlinear global parameters and linear temporal
parameters.
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Figure I.5 Recursive SRIF algorithm for the model with nonlinear global parameters and linear temporal
parameters. Qyk

= Imk
assumed.
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k(βx0)′P⊥′

Tk
Q−1

yk

∆β̂xk|k = ∆β̂xk|k−1 + Kk vk

βx0 ← βx0 + ∆β̂xk|k

?

?

?

¾

6

-

¾

6

-

‖ ∆β̂xk|k ‖2
Q

β̂xk|k

< ε
no

yes

k < p

k = p
filter result

x̂p ← x0 ; Qx̂p

Figure I.6 Recursive KF procedure corresponding with the model with nonlinear global parameters and
linear constrained and temporal parameters.
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initialization

k = 0 ; βx0 ← β̂x0|0 ;
[
Rβ̂x0|0

zβ̂x0|0

]

?
k ← k + 1 time update




Rβ̂k−1|k−1
Rβ̂k−1|k−1β̂k|k−1

Rβ̂k−1|k−1x̂k|k−1
zβ̂k−1|k−1

0 Rβ̂k|k−1
Rβ̂k|k−1x̂k|k−1

zβ̂k|k−1

0 0 Rx̂k|k−1
zx̂k|k−1




= QR(




−Φk,k−1 Inβ
0 dk = 0

Rβ̂k−1|k−1
0 Rβ̂k−1|k−1x̂k−1|k−1

zβ̂k−1|k−1

0 0 Rx̂k−1|k−1
zx̂k−1|k−1


)

? measurement update

∆yk = yk − BAk(βx0)
∆zβ̂xk|k−1

= zβ̂xk|k−1
− Rβ̂xk|k−1

βx0




Rt̂k|k
Rt̂k|kβ̂xk|k

∆zt̂k|k

0 Rβ̂xk|k
∆zβ̂xk|k

0 0 ∆ρ̂k|k


 = QR(

[
Tk ∂βxBAk(βx0) ∆yk

0 Rβ̂xk|k−1
∆zβ̂xk|k−1

]
)

∆β̂xk|k = Rβ̂xk|k
\∆zβ̂xk|k

βx0 ← βx0 + ∆β̂xk|k

zβ̂xk|k
= Rβ̂xk|k

βx0

?

?

?

¾

¾

-

-6

6

k = p

k < p

‖ ∆z
β̂xk|k

‖2< ε

yes

no

filter result

x̂p ← x0 ; Qx̂p
= R−1

x̂p
(R−1

x̂p
)′

Figure I.7 Recursive SRIF algorithm for the model with nonlinear global parameters and linear
constrained and temporal parameters. Qyk

= Imk
and Qdk

= Inβ
assumed.
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initialization

k = 0 ; βx0 ← β̂x0|0 ; Qβ̂x0|0

?
k ← k + 1 time update

β̂xk|k−1 = Ψk,k−1β̂xk−1|k−1 = Ψk,k−1βx0

Qβ̂xk|k−1
= Ψk,k−1Qβ̂xk−1|k−1

Ψ′
k,k−1 +

[
Qdk

0
0 0

]

? transformation(1)

Ryk
= Chol(T⊥′

k Qyk
T⊥

k )

yk ← R′
yk
\(T⊥′

k yk)

? transformation(2)

BAk(βx0) ← R′
yk
\(T⊥′

k BAk(βx0))

∂βxBAk(βx0) ← R′
yk
\(T⊥′

k ∂βxBAk(βx0))

? measurement update

∆yk = yk − BAk(βx0)

∆β̂xk|k−1 = β̂xk|k−1 − βx0

vk = ∆yk − ∂βxBAk(βx0)∆β̂xk|k−1

Qβ̂xk|k
= (Q−1

β̂xk|k−1

+ ∂βxBAk(βx0)′∂βxBAk(βx0))−1

Kk = Qβ̂xk|k
∂βxBAk(βx0)′

Q−1
vk

= Imk−ntk
− ∂βxBAk(βx0)Kk

∆β̂xk|k = ∆β̂xk|k−1 + Kkvk

βx0 ← βx0 + ∆β̂xk|k

‖ ∆β̂xk|k ‖2
Q

β̂xk|k

< ε

? testing/reliability

see Fig. I.9

?

¾

6

-

¾

6

-

no

yes

k < p

k = p
filter result

x̂p ← x0 ; Qx̂p

Figure I.8 Recursive Kalman–Cholesky Filter procedure corresponding to the model with nonlinear
global parameters and linear constrained and temporal parameters using the model of
observation equations.
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filter initialization

k = 0 ; see Fig. I.8

?
k ← k + 1 filtering

see Fig. I.8

?

δκ ← min(δk, k − 1)

δκ > 0

δκ = 0 -

?

?

global recursion

Xδκ
k|k−1 = Ψk,k−1X

δκ−1
k−1|k−1 (nβ + n × 1)

Cδκ
vk

= −∂βxBAk(βx0)Xδκ
k|k−1 (mk0

− ntk0
× 1)

Xδκ
k|k = Xδκ

k|k−1 + KkC
δκ
vk

(nβ + n × 1)

Q−1

∇̂δκ
k

= Q−1

∇̂δκ−1

k−1

+ Cδκ′

vk
Q−1

vk
Cδκ

vk
(1 × 1)

K
δκ
k = Q∇̂δκ

k
Cδκ′

vk
Q−1

vk
(1 × mk0

− ntk0
)

∇̂δκ
k = ∇̂δκ−1

k−1 + K
δκ
k (vk − Cδκ

vk
∇̂δκ−1

k−1 ) (1 × 1)

¾

6

-

δκ ← δκ − 1

initialization

(a) Cyk
= [0, ..., 0, 1, 0, ..., 0]′ (mk × 1)

(a) Cyk
← R′

yk
\(T⊥′

k Cyk
) (mk − ntk × 1)

(a) C0
vk

= Cyk
(mk − ntk × 1)

(a) X0
k|k = KkC

0
vk

(nβ + n × 1)

(b) Cdk
= [0, ..., 0, 1, 0, ..., 0]′ (nβ + n × 1)

(b) X0
k|k−1 = Cdk

(nβ + n × 1)

(b) C0
vk

= −∂βxBAk(βx0)X0
k|k−1 (mk × 1)

(b) X0
k|k = X0

k|k−1 + KkC
0
vk

(nβ + n × 1)

Q−1

∇̂0
k

= C0′
vk

Q−1
vk

C0
vk

(1 × 1)

K
0
k = Q∇̂0

k
C0′

vk
Q−1

vk
(1 × mk − ntk)

∇̂0
k = K

0
kvk (1 × 1)

? ls or gs testing/reliability

Θδk
k (1) = (∇̂δk

k /σ∇̂δk
k

)2 (1 × 1 test quantity)

|∇δk
k | =

√
λ0 · σ∇̂δk

k
(1 × 1 MDB)

∇β̂x
δk

k|k = Xδk
k|k · |∇δk

k | (nβ + n × 1 external reliability)

?

¾

6

-

k < p

k = p

end

Figure I.9 Recursive computation of GS test quantities and reliability measures in the Kalman–Cholesky
Filter procedure corresponding to the model with nonlinear global parameters and linear
constrained and temporal parameters using the model of observation equations. Specific
examples of outlier testing (a) and slippage testing (b).
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initialization

k = 0 ; βx0 ← β̂x0|0 ; Qβ̂x0|0

?
k ← k + 1 time update

β̂xk|k−1 = Ψk,k−1β̂xk−1|k−1 = Ψk,k−1βx0

Qβ̂xk|k−1
= Ψk,k−1Qβ̂xk−1|k−1

Ψ′
k,k−1 +

[
Qdk

0
0 0

]

? transformation

Qvk
= T⊥′

k Qyk
T⊥

k

+∂βxBAk(βx0)Qβ̂xk|k−1
∂βxBAk(βx0)′

Rvk
= Chol(Qvk

)

yk ← R′
vk
\(T⊥′

k yk)

BAk(βx0) ← R′
vk
\(T⊥′

k BAk(βx0))

∂βxBAk(βx0) ← R′
vk
\(T⊥′

k ∂βxBAk(βx0))

? measurement update

∆yk = yk − BAk(βx0)

∆β̂xk|k−1 = β̂xk|k−1 − βx0

vk = ∆yk − ∂βxBAk(βx0)∆β̂xk|k−1

Kk = Qβ̂xk|k−1
∂βxBAk(βx0)′

Qβ̂xk|k
= (Inβ+n − Kk∂βxBAk(βx0))Qβ̂xk|k−1

∆β̂xk|k = ∆β̂xk|k−1 + Kkvk

βx0 ← βx0 + ∆β̂xk|k

‖ ∆β̂xk|k ‖2
Q

β̂xk|k

< ε

? testing/reliability

see Fig. I.11

?

¾

6

-

¾

6

-

no

yes

k < p

k = p
filter result

x̂p ← x0 ; Qx̂p

Figure I.10 Recursive Kalman–Cholesky Filter procedure corresponding to the model with nonlinear
global parameters and linear constrained and temporal parameters using the model of
condition equations.
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filter initialization

k = 0 ; see Fig. I.10

?
k ← k + 1 filtering

see Fig. I.10

?

δκ ← min(δk, k − 1)

δκ > 0

δκ = 0 -

?

?

global recursion

Xδκ
k|k−1 = Ψk,k−1X

δκ−1
k−1|k−1 (nβ + n × 1)

Cδκ
vk

= −∂βxBAk(βx0)Xδκ
k|k−1 (mk0

− ntk0
× 1)

Xδκ
k|k = Xδκ
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δκ
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k−1
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Cδκ

vk
(1 × 1)

K
δκ
k = Q∇̂δκ

k
Cδκ′
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(1 × mk0

− ntk0
)

∇̂δκ
k = ∇̂δκ−1

k−1 + K
δκ
k (vk − Cδκ
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∇̂δκ−1

k−1 ) (1 × 1)

¾

6

-

δκ ← δκ − 1

initialization

(a) Cyk
= [0, ..., 0, 1, 0, ..., 0]′ (mk × 1)

(a) Cyk
← R′

vk
\(T⊥′

k Cyk
) (mk − ntk × 1)

(a) C0
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= Cyk
(mk − ntk × 1)

(a) X0
k|k = KkC

0
vk

(nβ + n × 1)

(b) Cdk
= [0, ..., 0, 1, 0, ..., 0]′ (nβ + n × 1)
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k|k−1 = Cdk

(nβ + n × 1)
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= −∂βxBAk(βx0)X0
k|k−1 (mk × 1)

(b) X0
k|k = X0

k|k−1 + KkC
0
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∇̂0
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K
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k
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0
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? ls or gs testing/reliability

Θδk
k (1) = (∇̂δk
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)2 (1 × 1 test quantity)

|∇δk
k | =

√
λ0 · σ∇̂δk

k
(1 × 1 MDB)

∇β̂x
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k|k = Xδk
k|k · |∇δk

k | (nβ + n × 1 external reliability)
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-
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k = p

end

Figure I.11 Recursive computation of GS test quantities and reliability measures in the Kalman–Cholesky
Filter procedure corresponding to the model with nonlinear global parameters and linear
constrained and temporal parameters using the model of condition equations. Specific
examples of outlier testing (a) and slippage testing (b).



204 IV I.Flow charts

initialization

k = 0 ; βx0 ← β̂x0|0 ;
[
Rβ̂x0|0

zβ̂x0|0

]

?
k ← k + 1 transformation/time update



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0 0 Rx̂k|k−1
zx̂k|k−1




= QR(


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)′Φk,k−1 (R−1
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)′ 0 dk = 0

Rβ̂k−1|k−1
0 Rβ̂k−1|k−1x̂k−1|k−1

zβ̂k−1|k−1

0 0 Rx̂k−1|k−1
zx̂k−1|k−1


)

? transformation (1)

Ryk
= Chol(T⊥′

k Qyk
T⊥

k )

yk = R′
yk
\(T⊥′

k yk)

? transformation (2)

BAk(βx0) ← R′
yk
\(T⊥′

k BAk(βx0))

∂βxBAk(βx0) ← R′
yk
\(T⊥′

k ∂βxBAk(βx0))

? measurement update

∆yk = yk − BAk(βx0)
∆zβ̂xk|k−1

= zβ̂xk|k−1
− Rβ̂xk|k−1

βx0

[
Rβ̂xk|k

∆zβ̂xk|k

0 ∆ρ̂k|k

]
= QR(

[
∂βxBAk(βx0) ∆yk

Rβ̂xk|k−1
∆zβ̂xk|k−1

]
)

∆β̂xk|k = Rβ̂xk|k
\∆zβ̂xk|k

βx0 ← βx0 + ∆β̂xk|k

zβ̂xk|k
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?

?

¾

¾

-

-
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k < p

‖ ∆z
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...

transformation

x̂p ← x0 ; Qx̂p
= R−1

x̂p
(R−1

x̂p
)′

Figure I.12 Recursive SRIF algorithm for the model with nonlinear global parameters and linear
constrained and temporal parameters.
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SIMULATIONS





Symbols in Part V

symbol meaning

Ak partial design matrix of global parameters
βk constrained (batch) parameters

β̂k|k−1 predicted value of βk

β̂k|k filtered value of βk

βxk concatenated vector [β′
k, x′]′

Bk partial design matrix of batch (constrained) parameters
BAk combined partial design matrix [Bk, Ak]
Cn n × (n − 1) matrix [0, In−1]

′

CN constant
d, d(k), dk vector of spatiotemporal constraints
Dz(k) ZTDs at epoch k
δs satellite clock errors
∆D(k) residual STDs at epoch k
∆t sampling rate
en n × 1 vector with ones
H effective height
In n × n identity matrix
k current epoch number (k = 1, ..., p)
Kk gain matrix
mk number of satellites at epoch k
Mr mapping values for receiver r
Mw(.) wet mapping function
n number of stations
p number of epochs
p̃ batch size
PSD sim PSD as used in simulation
PSD est PSD as used in estimation
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symbol meaning

Qd, Qd(k), Qdk
covariance matrix of spatiotemporal constraints

Qd co-factor matrix of spatiotemporal constraints
Q∆D(k) covariance matrix of residual STDs
Qy(k), Qyk

covariance matrix of observations
Qy,(k) covariance matrix of observations in absence of residual STDs

Q̃ ‘real’ covariance matrix (instead of formal Q in filter)
Rd, Rd(k) Cholesky factor of Qd, Qd(k)
Ry(k) Cholesky factor of Qy(k)
ρ(k) vector of receiver–satellite ranges
σ2

d variance of spatiotemporal constraints
σ2

φ variance of phase observations

σ2
p variance of code observations

Tk partial design matrix of temporal parameters
T⊥

k null space of T ′
k

wd, wy generated standard normally distributed white noise
x global parameters
Xδk

k|k response matrix

y(k), yk vector of observations at epoch k
y,(k) observations in absence of residual STDs
z zenith angle



Chapter 26

Introduction to Part V

To analyze the impact of model choices on the height estimates, GPS analysis
software was written which simulates and filters GPS observations in the presence
of (simulated) tropospheric delays, based on the theory, models, and filtering
techniques as described in the previous parts.

Implementation of a filter for simulated GPS observations and delays is in
several ways easier than for actual observations. We do not need to read RINEX
data or compute accurate orbits; some error sources, like phase center variations
etc., do not need to be modeled; the observations can be assumed unbiased;
missing observations, outliers, and cycle slips do not need to be treated; the
number of stations can be considered constant (no missing data), but the changes
in the satellite configuration do need to be dealt with.

Chapter 27 describes the models that are implemented, why they are im-
plemented, and how this is done. We distinguish simulation and estimation
aspects. In Chap. 28 we give the results of a simulation with default settings. The
simulation results include precision, coordinate and ZTD errors, test quantities,
and reliabilities. The results are generally in good agreement with the theory
as presented in the previous parts. Chapter 29 covers a selection of simulations
where we vary some of the modeling aspects and study the sensitivity of some
of the simulation results, mainly the precision. Chapter 30 studies the baseline
length for which the troposphere-fixed model is applicable. We end this part with
some conclusions and recommendations in Chap. 31.

In contrast to the previous parts, this part cannot be read independently
of the other parts.
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Chapter 27

Software implementation

27.1 Introduction

This chapter describes the software as used for the simulations in Chaps. 28
and 29. The software is written in matlab [Matlab, 1997] because the models
and procedures of Parts II–IV are relatively easy to implement in matlab and
because it is sufficiently fast for research purposes.

Section 27.2 describes the modeling as implemented in the software, Sect. 27.3
describes the simulation part of the software, and Sect. 27.4 deals with the
estimation/filter part.

27.2 Modeling

No a-priori model was implemented because it does not play a role in the filter. As
mapping function we use NMFw [Niell, 1996], because we assume the hydrostatic
delay to be modeled correctly based on surface pressure values and because
NMFw is independent of surface meteorological parameters.

A recursive filtering approach was chosen to be implemented because the
impact of the observation time is easier analyzed than with a batch method.
Kalman–Cholesky Filtering was implemented instead of Square Root Information
Filtering1 because it is faster and because the testing and reliability aspects were
already worked out in Part IV. Temporal parameters are pre-eliminated using
the null space of their partial design matrix (double-differencing, ionosphere-free
linear combination) rather than with the orthogonal projector (undifferenced
observations) for the same reasons. The model with observation equations was
implemented rather than the model with condition equations because the latter
model has complications with respect to changes in the satellite configuration.

Only the troposphere-weighted and fixed models are implemented. The
float and constant models are simply special cases of the weighted model. Zenith
delays can be estimated every epoch or every predefined number of epochs
(batches). Spatiotemporal constraints on zenith delays can be applied with a
corresponding covariance matrix and a scaling Power Spectral Density (PSD).
The constraints may be spatially uncorrelated (classic approach) or correlated
according to the polynomial model of Eq. (18.17) and Table 18.1 of Part III.
This is called TL2 correlation after Treuhaft and Lanyi and the scale height ofTL2

H = 2 km. Residual STDs can be left unmodeled or be pre-eliminated. In the

1SRIF was only implemented in an early version.
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read input;

prepare settings;

read satellite coordinates for each epoch;

for k=1:p

compute ranges, zenith angles, etc.;

model design: Ry(k) = Chol(T⊥′

k Qy(k)T⊥
k ), Qd and

Bk ← Ry(k)′\(T⊥′

k Bk);
observation simulation yk;

observation transformation yk ← Ry(k)′\(T⊥′

k yk);
if k==1, initialization of Qβ̂x0|0

; end

time update;

if new pivot satellite, ambiguity transformation; end

while true

draft and transformation of design matrix:

Āk(x
0) ← Ry(k)′\(T⊥′

k ∂xĀk(x
0)),

∂βxBAk(βx0) ← [Bk, ∂xĀk(x
0))];

approximate values y0
k = BAk(βx0);

observation increment ∆yk = yk − y0
k;

measurement update;

update global parameters;

if stop criterion < ε
save standard deviations of state vector;

testing and reliability, save results;

break;

else

update ranges;

end

end

save filtered state vector;

end

make plots;

Figure 27.1 Software structure.

latter case the covariance matrix of the observables has an additional term. The
covariance matrix of the residual STDs is based on the summation model of
Eq. (18.32) in Part III, with CN = 0.24 m− 1

3 and H = 2 km. Gradient parameters
are not implemented because modeling STDs was expected to be more promising.

The ionosphere-float model (ionosphere-free linear combination) was implementedionosphere-
float and epoch-wise changing satellite clocks were assumed because these models

are most often used; other ionosphere or clock models were not implemented to
restrict the number of simulation options. Both phase and code observations are
simulated although the impact of the code observations is very small.

Although the software does not resolve integer ambiguities it can computeambiguities

both an ambiguities-fixed or float solution.

An overview of the chosen modeling aspects and their implementation is
given in Table 27.1. Figure 27.1 shows the structure of the software as imple-
mented, which is basically the flow chart of Fig. I.8 in Part IV.
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modeling aspect implementation

a-priori model none
mapping function NMFw
filtering technique Kalman–Cholesky, observation equations
pre-elimination temp. par. with null space of Tk

ZTD modeling troposphere-weighted or troposphere-fixed
batch size free choice
PSD free choice
temp. corr. troposphere random walk
spatial corr. troposphere TL2 correlation or uncorrelated
residual STDs unmodeled or pre-eliminated (summation model)
troposphere gradients no
ionosphere float
satellite clocks epoch-wise changing
observations dual-frequency phase and code
ambiguities float or fixed; no resolution
coordinates first station fixed

Table 27.1 Model implementation aspects.

27.3 Simulation

Two data types are simulated for each epoch: n absolute ZTDs and 4mkn
observations, where n is the number of stations and mk the number of satellites
at epoch k = 1, ..., p. Both data types are described in this section.

ZTDs can be simulated following any functional relation in time. However,ZTDs

a more realistic behavior of the ZTDs is assumed to be a random-walk process
driven by a Power Spectral Density ‘PSD sim’ [m2/s], with for each epoch either
spatially uncorrelated or spatially correlated values based on the TL2 model. New
simulated ZTD values, Dz(k), are generated every epoch k as:

Dz(k) = Dz(k − 1) + R′
dwd(k);

Qd = R′
dRd =

{
σ2

d Qd (TL2 correlation) or
σ2

d In (uncorrelated);

σ2
d = PSD sim · ∆t,

(27.1)

where Rd is the Cholesky factor of Qd, wd(k) is a generated Gaussian white-noiseRd, wd(k)

process with zero expectation and unit variance, and ∆t [s] is the sampling∆t
rate. Note that spatiotemporal constraints d(k) ≡ d and their covariance matrix
Qd(k) ≡ Qd do not change from epoch to epoch since d only depends on the
number of stations, Qd only depends on the station coordinates, and ∆t is a fixed
value. If either the number of stations or ∆t changes, we would have to write
d(k) and Qd(k). The co-factor matrix Qd may be an identity matrix as in the
‘classic’ approach of, for example, the Bernese software [Beutler et al., 2000], or a
full matrix based on Eqs. (18.17) and (18.20), and Table 18.1 in Part III.

Two-frequency phase and two-frequency code observations, y(k) =observations

[y,1(k), ..., y,4(k)]′, are simulated every epoch as the sum of actual ranges,
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tropospheric slant delays, and additional noise:

y(k) = e4 ⊗ ρ(k) + e4 ⊗ Mw(z(k)) · Dz(k) + Ry(k)′wy(k), (27.2)

where e4 = [1, 1, 1, 1]′. The ranges ρ(k) are computed from the known receiver
and satellite coordinates. The slant delays are computed from the simulated
zenith delays Dz(k) and the wet mapping function ‘NMFw’ of Niell, Mw(z(k))
[Niell, 1996]. Ambiguities are assumed zero and have therefore no active role in
the simulated observations. Other parameters, like clock errors and ionospheric
delays, do not need to be simulated because they are pre-eliminated. Note that
we may add an a-priori ZTD to the simulated observations, but this will have no
effect when the same delay is subtracted from the observations in the processing.
In the simulation we therefore do not need to account for an a-priori delay unless
we wish to analyze the impact of an incorrect one [Kleijer, 2001]. The effect of
using a sec z mapping function instead of NMFw is about 3 mm height difference
per 10 cm zenith delay difference by a cut-off angle of 80 degrees.2 The same
amount can be expected when using a hydrostatic mapping function like NMFh
instead of NMFw (difference between NMFh and NMFw is about the same as for
NMFw and sec z).

The additional observation noise is based on wy(k), a generated Gaussian
white-noise process with zero expectation and unit variance, and Ry(k), the
Cholesky factor of the covariance matrix of the observations, for which there are
four options:

1. Qy(k) = 0 (zero);
2. Qy(k) = Qy,(k) = diag[σ2

φI2mkn, σ2
pI2mkn] (unit);

3. Qy(k) = diagonal of (Qy,(k) + e4e
′
4 ⊗ Q∆D(k)) (diagonal);

4. Qy(k) = Qy,(k) + e4e
′
4 ⊗ Q∆D(k), (full)

(27.3)

where Qy,(k) is the covariance matrix of the GPS observables in absence of residual
STDs, and Q∆D(k) the covariance matrix of the residual STD pseudo-observables,
which loosens the isotropy assumption of the tropospheric delays introduced by
the mapping functions. Clearly, Qy(k) is epoch dependent because it depends on
the number of satellites in Qy,(k) and the satellite configuration in Q∆D(k).

The last option is assumed to be the most realistic one. The third option
discards any correlation between observations and reduces to a form of zenith
angle dependent weighting. The second option does not assume any STD-related
noise; the matrix Qy,(k) consists of two scaled unit matrices with variances for
phase observations (σ2

φ) and for code observations (σ2
p). All the zenith angle

dependent noise is thus assumed to be related to the troposphere. The first option
does not assume any noise at all and is only a benchmark option.

Table 27.2 shows all the simulation options as implemented in the software.

27.4 Estimation

Basically the flow charts of Fig. I.8 for estimation and Fig. I.9 for testing/reliability
measures of Part IV are implemented.

2This can be seen from a simulation with errorless observations and using the troposphere-float
model with absolute delays (no biases introduced).
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symbol range default unit description

Mw(z) NMFw NMFw - mapping function
∆t IR+ 30 [s] sampling rate/time interval of epochs
PSD sim (0–∞) 1.5e-7 [m2/s] Power Spectral Density

Qd TL2/uncorr. TL2 - cov. matrix spatiotemp. constraints
Qy(k) 1/2/3/4 4 - covariance matrix observations
σφ (0–∞) 0.002 [m] standard deviation phase observations
σp (0–∞) 0.2 [m] standard deviation code observations

Table 27.2 Simulation options. Options for Qy(k) correspond to Eq. (27.3). Units relate to the option
ranges, Qy(k) for example has unit [m2], but option 4 has no unit. The value for the PSD is
taken from Part III, but is considered too high (too ‘variable’) according to [Jarlemark et. al.,

1998], where a value of 1e-8 m2/s was found to be a moderate value, based on WVR data.

Table 27.3 summarizes the estimation options as implemented in the soft-
ware. Note that some of the defaults differ from what is considered ‘standard’
nowadays: The batch size is often larger, the spatiotemporal constraints are
usually uncorrelated, and the covariance matrix of the observations is often a
diagonal matrix with some zenith angle dependency.

In the measurement update, both observations y,(k) and residual STD pseudo-
observations ∆D(k) are processed with respective covariance matrices Qy,(k)
and Q∆D(k). Since pre-elimination of the residual STD pseudo-observations is
applied, the transformed observations have covariance matrix

T⊥′

k Qy(k)T⊥
k = T⊥′

k {Qy,(k) + e4e
′
4 ⊗ Q∆D(k)}T⊥

k (27.4)

according to the transformation of Eq. (14.12) in Part II, with T⊥′

k the trans-
formation matrix that pre-eliminates the temporal parameters. The analytic
expression for this covariance matrix is used in the software.

symbol range default unit description

zcut [0–90] 80 [deg] zenith cut-off angle
- 0/1 0 - ambiguities fixed (1) or float (0)
Mw(z) NMFw/sec NMFw - mapping function
- 0/1 0 - absolute (1) or relative (0) ZTD estim.
∆t 30*[1–p] 30 [s] sampling rate
p̃ [1–p] 1 [-] batch size
PSD est IR+ 1.5e-7 [m2/s] Power Spectral Density

Qd TL2/uncorr.TL2 - cov. matrix spatiotemp. constraints
Qy(k) 2/3/4 4 - covariance matrix observations
σφ IR+ 0.002 [m] standard deviation phase observations
σp IR+ 0.2 [m] standard deviation code observations
ε IR+ 1e-6 [-] convergence criterion
- IN+ 10 [-] maximum number of iterations

Table 27.3 Estimation/filter options. Options for Qy(k) correspond with Eq. (27.3). The mapping
function may be Niell’s wet mapping function (NMFw) or a simple sec z function.

In the time update, the spatiotemporal constraints d with covariance matrix Qd =time update
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σ2
dQd are processed. The scaling variance factor is obtained from:

σ2
d = PSD est · ∆t · p̃, (27.5)

where p̃ is the batch size, and PSD est the assumed PSD for the parameter esti-
mation. The variance factor σ2

d is independent of the baseline length. Like in the
simulation, Qd may be an identity matrix or imply full TL2 correlation. In the lat-
ter case, the covariance matrix depends on the baseline length. In the terminology
of Part II, the following troposphere models are distinguished:

0 < Qd = σ2
d Qd < ∞.

constant weighted float

A small value of PSD est can therefore be considered a troposphere-constant
model, and a large value of PSD est or p̃, a troposphere-float model.

Qd is an n × n matrix of n constraints on absolute ZTDs. As shown in
Part II, estimating absolute ZTDs introduces one near rank deficiency per batch.
When estimating relative ZTDs, the time update should therefore be based on
the observation Eq. (13.16) of Part II. The variance-update part of the time
update in this case is not implemented with Qd but with (C ′

nQ−1
d Cn)−1 instead,

as explained below.

The Gauss–Markov model of the time update when estimating relative ZTDs and
not considering global parameters reads:

E{
[

β̂
k−1|k−1

d

]
} =

[
In−1 0
−Cn Cn

] [
βk−1

βk

]
;

D{
[

β̂
k−1|k−1

d

]
} =

[
Qβ̂k−1|k−1

0

0 Qd

]
,

(27.6)

with the n× (n− 1) matrix Cn
.
= [0, In−1]

′. The LSQ estimators of βk, the vector
with relative ZTDs that act as batch parameters at epoch k, and corresponding
covariance matrix then read:

β̂
k|k−1

= β̂
k−1|k−1

+ (C ′
nQ−1

d Cn)−1C ′
nQ−1

d d;

Qβ̂k|k−1
= Qβ̂k−1|k−1

+ (C ′
nQ−1

d Cn)−1,
(27.7)

which means that if d = 0, the LSQ prediction of βk equals the filtered value at
epoch k − 1: β̂k|k−1 = β̂k−1|k−1.

Including the global parameters in the Gauss–Markov model of the time
update affects neither the estimates of the constrained nor the global parameters.
This can be shown by free variates as shown in App. J. The complete time update
then reads:

β̂xk|k−1 = β̂xk−1|k−1;

Qβ̂xk|k−1
= Qβ̂xk−1|k−1

+

[
(C ′

nQ−1
d Cn)−1 0
0 0

]
,

(27.8)

where βxk is a concatenated state vector with batch and global parameters.
Estimating relative instead of absolute ZTDs thus only involves replacing Qd by
(C ′

nQ−1
d Cn)−1, cf. Eq. (21.31) of Part IV.
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In the simple baseline case (n = 2), Qd reads

Qd = σ2
d

[
1 ρ
ρ 1

]
,

with |ρ| < 1 the correlation coefficient. As shown in Fig. 18.5 of Part III, for TL2
correlation, ρ > 0 decreases with baseline length. When estimating the relative
ZTDs, (C ′

2Q
−1
d C2)

−1 = σ2
d(1−ρ2) is used in the time update instead of Qd. Clearly,

this scalar is smaller for larger ρ. In other words, tighter constraints are applied
for shorter baselines.
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Chapter 28

Means of quality assessment

28.1 Introduction

The advantage of simulations over real data processing is that it is easier to study
the filter behavior itself. The sensitivity of the estimates, or other simulation
results, to any of the filter options can be analyzed. We can however not conclude
which of the models is best, based on simulations alone.

In this chapter, we study various ways to assess and evaluate a model on
the basis of a simulation with a benchmark model. One day of GPS data is
simulated for a baseline1 with the default simulation options of Tables 27.2 and
28.1. The default options of Tables 27.3 and 28.1 were used in the parameter
estimation. The filter defaults match the simulation defaults and are considered
reasonable options from a theoretical point of view, like the TL2 correlation and
residual STD model, or based on previous experiences with GPS data, like the
standard deviations of the observations.

We have an ideal situation where the filter options most likely result in the
best estimates since the chosen filter parameters match those used in the simula-
tion. By changing any of the filter options, the quality of the estimates is likely
to be degraded. In actual data processing, the results may be even worse because
of orbit errors and unmodeled or incorrectly modeled error sources like multipath
and loading effects.

Station 1: Delft (X=3924687.708, Y=301132.769, Z=5001910.770)
Station 2: Delft50 (50 km east of station Delft)
Date: 11 October 2000
Orbits: YUMA almanac (week 59; http://www.navcen.uscg.gov/gps/default.htm)

Table 28.1 Baseline, date, and orbits of the simulation with the benchmark model.

Figure 28.1 shows a sky plot for the 24-hour simulated data set and the number
of satellites for each of the 2880 epochs (30-second sampling). Figure 28.2 shows
the simulated ZTDs of the two stations and their differences. Note that the
ZTDs are residual delays (an a-priori delay has to be added) and may therefore
be negative. The rather negative value of about -10 cm at the end of the day
is caused by the random-walk assumption, which implies unbounded processes.
In actual tropospheric circumstances this is possible, but will not happen often.

1Simulation and filtering in a network of stations is also possible, but the results are harder
to interpret.
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Figure 28.1 Left panel: Sky plot of station Delft, 11 Oct. 2000. Right panel: Number of visible satellites.
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Figure 28.2 Left panel: Simulated ZTDs of stations Delft and Delft50. Right panel: Difference of
simulated ZTDs (Delft50 minus Delft).

As long as only relative constraints are used in the filter this does not affect the
simulation results.

The following means of quality assessment are discussed in this chapter:
1. errors of the estimated parameters;
2. precision of the estimated parameters;
3. test values;
4. MDBs (internal reliability);
5. external reliability measures.

These simulation results all depend on the chosen baseline and time of ob-
servation. The error and test values also depend on the actual noise generated.

Section 28.2 deals with the error and formal precision (standard deviation)
of the estimated parameters. The first one can be computed because we know
the simulated ‘real’ value and may be caused by the observation noise or biases.
Section 28.3 deals with testing and reliability aspects.
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28.2 Precision and error

The primary simulation output is the precision and error (difference between
simulated and estimated values) of the coordinate estimates, especially the
height component. Since we fixed the coordinates of the first station, the only
coordinates we are looking at are the coordinates of the second station; the errors
in these coordinates are in fact the baseline errors.
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Figure 28.3 Left panel: Error in filtered North, East, and Up component. Right panel: Standard deviation
of filtered North, East, and Up component. Plots start at epoch 300 (≡ 2.5 h) to avoid
‘empty plots’.

Figure 28.3 shows the errors and standard deviations of the filtered coordinates.
The errors in the North and Up component agree well with the 2σ boundaries.
The East component however, shows a significant (negative) deviation at the end
of the day. Since the baseline is east–west orientated this is a clear indication
of a scale error, which is caused by the error in the (also negative) absolute
troposphere delay, see Fig. 28.2, where a zero a-priori delay was assumed. A
similar error in the North component was found in a simulation for a north–south
orientated baseline using the same options and noise. The scaling effect of the
absolute delay error was earlier described in [Beutler et al., 1988]. In our case the
error is introduced by the fixing of the zenith delays of one station.

As shown in Part II, there is a near rank deficiency in small networks re-
lated to satellite clocks and ZTDs. A simplified model with only these parameters
and 1 observation type, 2 stations, m satellites, and 1 epoch reads:

E{
[

y
1

y
2

]
} =

[
Im M1 0
Im 0 M2

] 


δs
Dz

1

Dz
2


 =

[
Im 0 0
Im M12 M2

]


δs
Dz

1

Dz
12


 , (28.1)

where δs is the vector with satellite clock errors, y1 and y2 are the observa-
tions at stations 1 and 2 respectively, M1 and M2 are vectors with mapping
values, δs

.
= δs + M1D

z
1 are lumped satellite clock errors, Dz

12
.
= Dz

2 − Dz
1 and

M12
.
= M2 − M1. Eliminating the column with small mapping values M12 then

introduces a bias. The size of this bias changes with satellite configuration and
is large for either large Dz

1 or M12. The worst case for one specific satellite is
when the second station is in the same plane as the first station, the satellite, and
the earth’s center, as shown in App. K. Figure 28.4 shows the zenith angles as
function of distance for this case and the corresponding mapping difference M12

for a simple secant mapping function. Because in general the stations are not in
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the same plane, the bias is also azimuth dependent.
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Figure 28.5 Left panel: Filtered minus simulated relative ZTD. Right panel: Standard deviation of filtered
relative ZTD.

Figure 28.5 shows the error and standard deviation of the filtered relative ZTDs.
After an initialization phase where the standard deviations drop from 7 to 3–4
mm, they remain rather constant at this level owing to the variance-update part
of the time updates. Most of the errors in the ZTDs are within the 2σ boundaries
of 6–8 mm.

28.3 Testing and reliability

Because the filtered parameters may be deteriorated by model errors, hypothesis
tests are desired for detection of these errors. We distinguish six types of tests:
1. Global Overall Model (GOM) tests (1);
2. tests for outliers in the carrier phase observations (2mk0

n);
3. tests for outliers in the code observations (2mk0

n);
4. tests for slips in the ZTDs (n);
5. tests for (cycle) slips in the ambiguities (2(mk0

− 1)(n − 1));
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6. tests for slips in the coordinates (3n),
with the number of tests in epoch k shown between parentheses; n is the number
of stations2; mk0

is the number of satellites in epoch k0, the first epoch a model
error starts occurring. Each of these tests are computed δk + 1 times, with
δk = k − k0 the maximum latency.

Except for the GOM tests, all tests are one dimensional. For each of these
tests we may therefore compute the MDB as a measure of internal reliability.
The external reliability we are most interested in, is described by the impact of
an MDB on the height of the second station (coordinates of the first station are
kept fixed). Below, we show the MDBs and external reliability for tests 2–5, but
not for the last test because a change in antenna position is less likely to occur
in (only) 24-hour data sets. The fourth test can detect sudden changes in the
atmosphere, but is probably more theoretic than practical.

Although we may very well do these hypothesis tests in actual data pro-
cessing, the actual testing (comparing test values with critical values) is not
executed for our simulated data set since we do not introduce any outliers or slips
to be detected. The test values however may be of concern as an indication of
sensitivity to changes in the filter settings. For example: the values of the tests
for slips in the ZTDs give an indication of an error in the stochastic model of the
constraints, especially the PSD, when using zero latencies.

Because the simulation model matches the filter model, all tests have a
central χ2 distribution, and the ‘square roots’ of the test quantities (∇̂k/σ∇̂k

)
have standard normal distributions. Plots of the test values confirmed this and
are not shown.

More interesting to study are the plots of the MDBs. Because there are
many tests per epoch, visualization is restricted to showing only the maximum
values of the MDBs and external reliabilities for outliers and ambiguity (cycle)
slips. For the MDBs and external reliabilities of ZTD slips, one station suffices
because those of the other station are nearly the same (in this case). The
testing/reliability options are shown in Table 28.2.

symbol range default unit description

δk [0–p] 3 [-] maximum latency testing/reliability
α1 [0–1] 0.001 [-] level of significance
γ [0–1] 0.8 [-] power of all tests

Table 28.2 Testing/reliability options.

Figure 28.6 shows the maximum MDBs of the phase and code outliers. In both
cases the MDBs are smaller for larger latencies, which means that the outliers
can be better detected after a couple of extra epochs when more observations are
available. This makes sense and can be seen from the testing formulas of Part IV
since extra data causes Q−1

∇̂
to increase and therefore Q∇̂ and thus the MDBs

decrease. The MDBs of the phase outliers are sensitive to changes in the satellite
configuration; the large peaks occur where new satellites are being tracked. A
latency of just one epoch largely reduces these MDBs.

2In the notation of Part II, not Part IV.
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Contrary to the phase outliers, the MDBs of code outliers are insensitive to the
satellite configuration because of their much lower weighting in the filter.
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Figure 28.6 Internal reliability. Left panel: Maximum MDBs of phase outliers. Right panel: Maximum
MDBs of code outliers. The latency increases from 0 in the top graphs to 3 in the bottom
graphs.
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Figure 28.7 Internal reliability. Left panel: Maximum MDBs of ambiguity slips. Right panel: MDBs of
ZTD slips of station Delft50.

Figure 28.7 shows the maximum MDBs of ambiguity slips and the MDBs of
ZTD slips of one of the stations. Like for the MDBs of phase outliers, those of
ambiguity slips show peaks when new satellites are being tracked. The ambiguity
slips can only marginally better be detected after a couple of extra epochs since
little new information is gathered that can be used to determine (an expired)
ambiguity that has slipped immediately, that is, one epoch after tracking.
The MDBs of the ZTD slips have only a small dependence on the satellite geometry.

Figure 28.8 shows the maximum external reliabilities (impact on height
component only) of phase and code outliers for epoch 300 and higher. The
external reliabilities for the earlier epochs are much higher. Large observation
time spans have a clear positive influence on the reliability. Increasing the latency
has not much effect. Errors with the size of an MDB in the phase observations
have a significant impact; those in code observations are negligible.

Figure 28.9 shows the external reliabilities of ZTD and ambiguity slips.
Both decrease with larger observation time spans, but increase with the latency.
This can be explained as follows: Although the MDBs decrease, their impact on
the height increases, since the error is maintained for more epochs.
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Figure 28.8 External reliability. Left panel: Maximum error of phase outlier on the filtered (baseline)
height. Right panel: Maximum error of code outlier on the filtered (baseline) height. Plots
start at epoch 300.

500 1000 1500 2000 2500
0.2
0.4
0.6
0.8

Delft50 ambiguities , latency = 0...3

500 1000 1500 2000 2500
0.2
0.4
0.6
0.8

500 1000 1500 2000 2500
0

0.5
1

ex
t. 

re
l. 

U
p 

[m
m

]

500 1000 1500 2000 2500
0  
0.5
1  

500 1000 1500 2000 2500
0

1

500 1000 1500 2000 2500
0

1

500 1000 1500 2000 2500
0

1

epoch k
500 1000 1500 2000 2500

0

1

500 1000 1500 2000 2500

0.2
0.4

Delft50 troposphere , latency = 0...3

500 1000 1500 2000 2500

0.2
0.4

500 1000 1500 2000 2500
0

0.5

ex
t. 

re
l. 

U
p 

[m
m

]

500 1000 1500 2000 2500
0  

0.5

500 1000 1500 2000 2500
0

0.5

500 1000 1500 2000 2500
0  

0.5

500 1000 1500 2000 2500
0

0.5

epoch k
500 1000 1500 2000 2500

0  

0.5

Figure 28.9 External reliability. Left panel: Maximum error of ambiguity slip on the filtered (baseline)
height. Right panel: Maximum error of ZTD slip on the filtered (baseline) height. Plots start
at epoch 300.
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Chapter 29

Simulation scenarios

29.1 Introduction

This chapter describes a selection of simulation results as found with the software
described in Chap. 27. Section 29.2 first compares the formal precision of coordi-
nates and ZTDs for several models. Section 29.3 then compares the impact of a
wrong covariance matrix on the actual precision. Section 29.4 gives some of the
results of Sects. 29.2 and 29.3 for an increased standard deviation of the phase
observables.

29.2 Formal precision

In this section we only compare the formal standard deviations of the relative
ZTDs and coordinates in several scenarios. The scenarios are subdivided into
seven groups and are shown in Table 29.1. This table also shows Overall
Model Test (OMT) values of specific simulations per scenario; see Sect. 24.3
in Part IV. Especially interesting to compare are the scenarios within these groups.

As can be seen from Fig. 28.3, the standard deviations of the coordinatescoordinates

are slowly decreasing with the number of epochs. Except for the scenarios
where we mix fixed and float ambiguities (see Fig. 29.3), the quotients of
coordinate standard deviations of two scenarios do not depend on the observation
time strongly. Therefore only the values after 24 hours are presented in Table 29.1.

After an initial decrease, the standard deviations of the ZTDs fluctuateZTDs

around a stable value; see Fig. 28.5. The standard deviations in Table 29.1 are
therefore mean values after the initial decrease (the period 2.5–24 hours was used).

The OMT values are shown rather as estimates of the variance of unitOMT

weight than as test values. If we use them as test values, we need to know the
degrees of freedom. For the scenario indicated by ‘∗2’, for example, we have a
redundancy r=59708 and critical value for a 5% level of significance of 1.0095.
The precision of this estimate is [Koch, 1987]: σ̂OMT = OMT ·

√
2/r = 6e-3.

The OMT/variance of unit weight is sometimes used to scale the covariance matrix
of the observations and consequently also the covariance matrix of the estimated
parameters; the standard deviations are thus scaled with the square root of the
OMT. This gives a better precision description when the a-priori variance factor is
unknown. The formal standard deviations are unscaled, meaning that the a-priori
variance factor is assumed known.
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ZTD North East Up OMT
[mm] [mm] [mm] [mm] [-]

1. 1 epoch batch, tropo-float (∗5) 8.75 0.29 0.23 1.14 0.95
1 epoch batch, tropo-weighted (∗2) 4.81 0.29 0.23 1.13 1.00
12 epochs batch, tropo-float 4.23 0.29 0.23 1.13 (1.01)
12 epochs batch, tropo-weighted 3.85 0.29 0.23 1.13 (1.01)
240 epochs batch, tropo-float 1.29 0.28 0.23 1.09 (1.19)
240 epochs batch, tropo-weighted 1.29 0.28 0.23 1.09 (1.19)
2880 ep. batch, tropo-constant 0.50 0.28 0.23 1.08 (4.39)
tropo-fixed (∗4) 0.00 0.28 0.23 0.57 (5.12)

2. 250 km, absolute troposphere 4.95 0.29 0.33 1.21 1.00
250 km, relative troposphere 4.88 0.29 0.24 1.15 1.05
50 km, absolute troposphere 4.82 0.29 0.30 1.15 0.99
50 km, relative troposphere (∗2) 4.81 0.29 0.23 1.13 1.00
10 km, absolute troposphere 4.80 0.28 0.29 1.12 0.99
10 km, relative troposphere 4.80 0.28 0.23 1.12 0.99

3. 250 km, absolute troposphere 4.26 0.29 0.33 1.22 1.00
250 km, relative troposphere 3.95 0.29 0.24 1.15 1.05
50 km, absolute troposphere 3.54 0.29 0.30 1.15 0.99
50 km, relative troposphere 3.43 0.29 0.23 1.13 1.00
10 km, absolute troposphere 2.83 0.28 0.29 1.11 0.99
10 km, relative troposphere 2.80 0.28 0.23 1.11 0.99

4. tropo-float, amb.-float, abs. 9.46 0.30 0.34 1.28 0.90
tropo-float, amb.-float, rel. (∗5) 8.75 0.29 0.23 1.14 0.95
tropo-float, amb.-fixed, rel. 8.65 0.23 0.18 0.94 0.95
tropo-fixed, amb.-float (∗4) 0.00 0.28 0.23 0.57 (1.72)
tropo-fixed, amb.-fixed 0.00 0.23 0.18 0.47 (1.87)

5. Qy diag/H2, amb.-float (∗1) 6.97 0.56 0.43 2.43 0.75
Qy diag/H2, amb.-fixed 6.61 0.45 0.31 1.95 0.75
Qy full/H2, amb.-float (∗2) 4.81 0.29 0.23 1.13 1.00
Qy full/H2, amb.-fixed 4.68 0.23 0.18 0.94 1.00
Qy unit, amb.-float (∗3) 2.53 0.17 0.14 0.75 1.84
Qy unit, amb.-fixed 2.44 0.13 0.10 0.63 1.86

6. Qy diag/H2 (∗1) 6.97 0.56 0.43 2.43 0.75
Qy diag/H1 4.75 0.32 0.25 1.41 0.82
Qy full/H2 (∗2) 4.81 0.29 0.23 1.13 1.00
Qy full/H1 3.34 0.21 0.17 0.86 1.00
Qy unit (∗3) 2.53 0.17 0.14 0.75 1.84

7. Qy diag/H2, 70 deg 10.03 0.62 0.46 4.47 0.76
Qy diag/H2, 80 deg (∗1) 6.97 0.56 0.43 2.43 0.75
Qy full/H2, 70 deg 6.54 0.33 0.26 2.21 1.00
Qy full/H2, 80 deg (∗2) 4.81 0.29 0.23 1.13 1.00
Qy unit, 70 deg 5.14 0.25 0.19 1.75 1.25
Qy unit, 80 deg (∗3) 2.53 0.17 0.14 0.75 1.84

Table 29.1 Formal standard deviations of parameters, and Overall Model Test values. Standard
deviations after processing 24 hours for coordinates and mean values for ZTDs over 2.5–24
hours. Asterisks indicate identical scenarios (∗1–3) or near identical scenarios (∗4–5). The
scenarios are according to the defaults of Table 27.3 except for spatial correlation. A-priori
standard deviation of phase observables: 2 mm. Scenarios under 3 and 4: TL2 correlation,
otherwise uncorrelated (in simulation and estimation). Italicization: (near) default scenarios.
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Figure 29.1 Formal standard deviations of relative ZTDs for four different scenarios: the
troposphere-float and a troposphere-weighted model for a batch size of 1, the
troposphere-float model for a batch size of 240, and the troposphere-constant model.
Defaults of Table 27.3; no spatial correlation assumed.

When the filter model differs from the model used in the simulation, the expected
OMT value may deviate from 1. If this model difference is other than the a-priori
variance factor, scaling the covariance matrix by the OMT gives an estimated but
incorrect description.

In the first group, the troposphere-float, weighted, constant, and fixed models are1st group:
weighting
and batch
size

compared. The troposphere-float and weighted models have batch sizes of 1, 12,
and 240 epochs. The batch size has a strong influence on the formal precision
of the ZTDs: The more epochs/observations are used to estimate a ZTD, the
more precise this ZTD will be. Large batches show smaller differences between
troposphere-weighted and float models because the constraints are relatively
weaker.

The troposphere-constant model is a limiting case for both the weighted
and float models, cf. Fig. 29.1. The standard deviations of the horizontal
coordinates are hardly affected by the batch size or weighting. The Up component
is just slightly more affected. App. L shows why the troposphere weighting has so
little effect on the precision of the height. Only fixing the troposphere parameters
has a large effect on the formal precision of the Up component.

In the specific simulation of Table 29.1, we see that the troposphere-float
model performs best when the standard deviations are scaled with the square root
of the OMT (e.g.:

√
0.95 · 1.14 = 1.11 <

√
1.19 · 1.09 = 1.19). Because the OMT

values depend on the simulated troposphere, this is not necessarily so in general.
Especially the OMT value for the troposphere-fixed model depends heavily on
the (unbounded) random-walk simulated ZTDs. Because of this, in Chap. 30 we
reconsider the applicability of this model.

Figure 29.2 illustrates the effect of weighting and batch size on the ZTD precision.
The numbers differ from Table 29.1 because this figure is based on a processing
of only four hours and two-hour means to limit computation time.

With the scenarios of the second and third group we can compare the in-2nd/3rd
group:
baseline
lengths

fluence of the baseline length. In the third group TL2 correlation is assumed
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Figure 29.2 Mean formal standard deviations of ZTDs as function of batch size and Power Spectral
Density, based on simulations from 0.00–4.00 h and means over 2.00–4.00 h. Defaults of
Table 27.3; no spatial correlation assumed. Computed values only at asterisks; lines between
asterisks are shown for clarity.

(both in simulation and estimation), whereas in the second group no correlation
is assumed. For three baseline lengths, both absolute troposphere (one parameter
per station) and relative troposphere (parameters of one station fixed to zero) are
estimated, using different runs.

In the model without spatial correlation the precision of the ZTDs is only
slowly decreasing with increasing baseline length, probably due to the decreas-
ing number of visible low-elevation satellites common to both stations. The
same effect can be seen in the height component. In the model with spatial
correlation, the higher correlation between troposphere parameters for short
baselines causes the relative ZTDs to be more precise, but the precision of
the estimated heights is hardly affected. With or without correlation, in both
cases estimating relative delays instead of absolute delays results in only slightly
more precise ZTDs. The precision of the East component gains more from
estimating relative delays, which is due to the east–west orientation of the
baseline. By estimating relative delays, the formal precision of the baseline length
improves, but, as we saw in Sect. 28.2, this may cause a bias in the baseline length.

For the Up component, the difference in precision when estimating either
absolute or relative delays is very small. To avoid biases in the estimates,
estimating absolute delays is therefore preferred. This finding agrees with
[Brunner and McCluskey, 1991].

In the fourth group we compare the fixing and estimation of troposphere4th group:
fixing
parameters

and ambiguity parameters. (Note that the difference in OMT values for scenarios
∗4 in groups 1 and 4 are due to a different ZTD simulation.) Whereas in the
relative model only the ZTDs of one station are fixed, in the troposphere-fixed
model the ZTDs of all (both) stations are fixed. In other words, the standard
deviations of the (relative) ZTDs are zero by definition. Clearly, fixing both ZTDs
and ambiguities gives the best precision obtainable, especially for the height.
Fixing ZTDs has a larger impact than fixing ambiguities, but this is however only
true for long time spans as illustrated in Fig. 29.3. The observation model (∗2)
is strong enough for successful fixing of the ambiguities. After an initialization
time of 20 epochs a maximum probability of unsuccessful fixing (fail rate) of the
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ambiguities based on integer bootstrapping [Teunissen, 1998] was found to be
3e-5. When using the diagonal covariance matrix of the observations (model ∗1)
the fail rates are much higher. A maximum was found of 0.21 directly after the
rise of a new satellite; see Fig. 29.3. After a few epochs the fail rate gradually drops.
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Figure 29.3 Left panel: Formal standard deviation of filtered Up component in the ambiguity-fixed model
in percent of the standard deviations in the ambiguities-float model (troposphere-float model,
relative ZTDs estimated). Fixing ambiguities has a large effect on the standard deviation for
short time spans but the effect levels out to a fixed improvement for long time spans. Right
panel: Fail rates for model ∗1 (diagonal covariance matrix) for epochs 20–2880.

In the fifth to seventh group we compare the impact of different covariance5th–7th
group: cov.
matrix of
observations

matrices of the observations. The three covariance matrices correspond to
Eq. (27.3): a scaled unit covariance matrix for the phase and code observations,
a full covariance matrix in which residual STDs are stochastically modeled and
a diagonal covariance matrix with zenith angle dependent weighting. The latter
one is the diagonal part of the full covariance matrix. In Table 29.1, H2 and H1
indicate effective heights of 2 and 1 km.

The results of the fifth group show that, like in the fourth group, (correct)5th group

ambiguity fixing has a more beneficial effect on the coordinates than on the
ZTDs. Furthermore, they show that the unit covariance matrix gives the best
formal precision for both ZTDs and coordinates. This is however a too optimistic
covariance matrix as reflected in the OMT. That the unit covariance matrix,
Qy,(k), gives better formal parameter precision than the full covariance matrix,
Qy,(k) + e4e

′
4 ⊗ Q∆D(k), is understandable since the latter matrix is the sum of

two positive-definite matrices and therefore implies lower formal precision of the
observations. The diagonal covariance matrix turns out to give less precise formal
parameter estimates than the full covariance matrix, which is not so obvious
(scaling with the OMT does not change this). Apparently, the combination of
design matrix and the (positive) correlation between observations to different
slant directions and between observation types has a beneficial effect. We can un-
derstand this from the pre-elimination step where differences are formed between
observations to different satellites and between frequencies (linear combination).
When the undifferenced observations are positively correlated, the differenced
observations are more precise than when the undifferenced observations are
uncorrelated.

From the scenarios of the sixth group we can see the strong dependence of6th group

the effective height (2 km, 1 km) used in the stochastic modeling of the residual
slant delays. It acts as a scaling factor (power 8/3th) of the residual STD part of
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the covariance matrix. Note that the unit covariance matrix is actually either a
full or diagonal covariance matrix with an effective height of zero.

The seventh group shows the importance of the geometry-improving low-7th group

elevation satellites for both the precision of the ZTDs and the height. The
horizontal coordinates also improve in precision owing to the increase of the
number of observations. As can be seen from Table 29.2, which shows the
improvements in percentages, the improvement is largest for the unit covariance
matrix since in the other two cases, observations to low satellites are down
weighted. The effect is smaller when scaling with the OMT, because noisy
observations are then too highly weighted.

Qy ZTD Up
[%] [%]

diagonal/H2 31 46
full/H2 26 49
unit 51 (40) 57 (48)

Table 29.2 Percentages improvement in formal standard deviations, (1 − σ80/σ70) × 100%, when
increasing the zenith cut-off angle from 70 to 80 degrees for different covariance matrices of
the observations. Scenarios of seventh group of Table 29.1. Between parentheses:
percentages when taking the OMT into account.

In Table 29.3, different modeling options are compared that may improve thepercentage
improvement formal precision. The table shows the improvement in terms of percentage

of the parameter standard deviations. Since these numbers depend on com-
binations of options, they are only rough numbers that are derived from Table 29.1.

Table 29.3 shows that three options could be important for improving theimpact of
options precision of the height. Fixing the troposphere may be very beneficial for the

formal standard deviation, but this may deteriorate the actual precision when
(relative) troposphere values deviate from the fixed values, which is especially
likely for long baselines. Increasing the zenith cut-off angle is also very beneficial
for the precision of the height. Increasing it further than 80◦ is even more
beneficial, see Fig. 29.4. On the other hand this may introduce (larger) errors
caused by, for example, multipath. The last and most revealing improvement
option is the full covariance matrix that incorporates residual STDs. This option
not only improves the precision of the height, but also of the horizontal coordinates.

Fixing ambiguities also gives a significant improvement of the precision of heightsfixing
ambiguities and horizontal coordinates, but for long observation times this is less pronounced

than the first three options. Ambiguity resolution is also important in the
presence of many cycle slips (for example at low elevations).

The other three options are of smaller significance. The batch size hasbatch size

hardly any impact on the formal coordinate precision. This suggests that we
might as well use small batches to avoid mapping of troposphere errors in the
height component at small cost of formal precision reduction. In general, the
best batch size is hard to determine a priori, because it depends on the actual
troposphere behavior. Small batches avoid the errors introduced by the extreme
weather conditions, whereas on quiet days larger batches can be used. However,
to be on the save side, it is better to use small batches, as illustrated by the OMT
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Improvement ZTD N/E Up
[%] [%] [%]

Troposphere fixing vs. rel. troposphere est. 100 0–3 50
Cut-off angle (z = 80◦ vs. z = 70◦) 30 10 50
Residual STD model vs. diagonal (H = 2 km) 30 45 50
Ambiguities fixed vs. float 0–5 25 20
Batch size (1 day vs. 1 epoch) 94 0–3 5
Relative instead of absolute troposphere∗ 0–10 0–30 0–5
Spatial correlation∗ vs. no correlation 15–40 0–1 0–1

Table 29.3 Indicative percentage of improvement in formal standard deviation for different modeling
techniques. This table is based on Table 29.1. ∗ Baseline length: 10–250 km.

values in Table 29.1.
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Figure 29.4 Formal standard deviations of filtered parameters as function of zenith cut-off angles. Left
panel: Mean values for relative ZTDs over 2.5–24 h. Right panel: For height differences after
24 h. Solid lines: A-priori standard deviation of phase observables of 2 mm. Dashed lined:
A-priori standard deviation of phase observables of 10 mm. Defaults of Table 27.3; no spatial
correlation assumed.

Fixing the troposphere of one of the stations (estimating relative delays) intro-abs./rel.
troposphere duces a bias that depends on the size of the (error in the fixed) tropospheric delay,

whereas estimating absolute delays deteriorates the formal coordinate precision.
Either way the impact of estimating absolute or relative delays is largest on the
horizontal coordinates. The precision of the height is only weakly affected.

The impact of introducing spatial correlation on the coordinate precision isspatial
correlation very small. It has larger impact on the estimated ZTDs. Because of this small

effect most scenarios stick to the more conventional modeling without spatial
correlation assumed.

29.3 Impact of the stochastic model

In the previous section we showed that the formal parameter precision based on
the full covariance matrix of the observations is better than based on the diagonal
covariance matrix. Since a diagonal covariance matrix is ‘standard’ in GPS data
processing (although with a different zenith angle dependent weighting) it is
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interesting to see what happens with the actual precision when we assume the full
covariance matrix to describe the actual precision and use the diagonal matrix in
the filter. But since the full covariance matrix is still a theoretical model, it still
needs to be validated. If the diagonal matrix would actually describe a realistic
precision and the full matrix were to be used in the filter, what would then be
the impact on the coordinate precision? In both cases we would use another
covariance matrix than the ‘real’ one. So in both cases the parameter precision
would be lower than optimal, because only when the inverse of the real covariance
matrix is used as weight matrix, the least-squares filter gives minimum variance
[Teunissen, 1999].
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Figure 29.5 Standard deviations of filtered parameters for four scenarios: filtering with assumed real
covariance matrix of observations (full/diagonal) and with wrong covariance matrix (ditto).
Left panel: Relative ZTDs. Right panel: Baseline heights. Plots start at epoch 300 (≡ 2.5 h).

In the two above given situations, we want to compare the ‘actual’ covariance
matrices of the parameters using two different filters. A simultaneous computation
with different covariance propagation can be implemented as shown below.

The measurement-update equation reads in the notation of Part IV:propagation
of variances

β̂xk|k = Kk yk + (I − KkBAk) β̂xk|k−1, (29.1)

with Kk the gain matrix, BAk the design matrix, yk the observations, and β̂xk|k−1

and β̂xk|k the predicted and filtered state vector respectively. The covariance
matrix of the filtered state vector, Qβ̂xk|k

, can be found by using the propagation

law of variances as:

Qβ̂xk|k
= KkQyk

K ′
k + (I − KkBAk) Qβ̂xk|k−1

(I − KkBAk)
′. (29.2)

Since the gain matrix is computed with Qβ̂xk|k
itself, this equation is not used in

the processing. But if the actual precision of the observations can be described
by Q̃yk

, while we are filtering with an assumed covariance matrix Qyk
, then the

actual parameter precision can be described by:

Q̃β̂xk|k
= KkQ̃yk

K ′
k + (I − KkBAk) Q̃β̂xk|k−1

(I − KkBAk)
′, (29.3)

which can be computed simultaneously with the formal but assumed unrealistic
Qβ̂xk|k

.
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The standard deviations of the filtered ZTDs and heights, as computed bydiagonal or
full
covariance
matrix

Eq. (29.3), are shown in Fig. 29.5 for all four cases. Table 29.4 gives the standard
deviations of the coordinates after processing 24 hours and mean values for the
ZTDs (2.5–24 hours) as well as OMT values. Figure 29.5 and Table 29.4 confirm
that processing with the wrong covariance matrix deteriorates the parameter
precision. They also show that when we process with the diagonal covariance
matrix when the full matrix is realistic it would still give us a better precision
than when the diagonal matrix would be realistic. In other words, the correlation
between observations has a favorable effect on the precision whether we model
it or not. The OMT value of 0.75 confirms that the (transformed) observations
appear to be more precise when they are correlated. The actual precision
improvement when the full matrix would indeed be the true one reduces therefore
considerably (100× (1− 1.13/1.65) = 32% instead of 100× (1− 1.13/2.43) = 53%
in the height; see Table 29.4). But when we use the full covariance matrix when
the diagonal matrix is more realistic we would deteriorate the precision of the
parameters (100 × (1 − 3.42/2.43) = −41% for the height). These numbers (see
sixth column of Table 29.4) would be quite different when using the OMT for
scaling the covariance matrix, indicating the roughness this method.

Q̃yk
Qyk

ZTD North East Up OMT
(sim.) (filter) [mm] [mm] [mm] [mm] [-]

diag full 9.39 0.70 0.53 3.42 (2.04) 3.25
diag diag (∗1) 6.97 0.56 0.43 2.43 1.00
full diag 5.97 0.37 0.29 1.65 (2.10) 0.75
full full (∗2) 4.81 0.29 0.23 1.13 1.00

Table 29.4 Actual standard deviations (computed with Eq. (29.3)) and OMT values for four different

scenarios where covariance matrix Qyk
is used in the filter while Q̃yk

describes the precision
of the simulated observations. Standard deviations of coordinates after 24 hours and mean
values for ZTDs over 2.5–24 hours. Defaults of Table 27.3; no spatial correlation assumed.
Asterisks indicate scenarios in Table 29.1. Between parentheses in sixth column: standard
deviations we would get by scaling with the OMT (

√
3.25 · 1.13 = 2.04,

√
0.75 · 2.43 = 2.10).

Q̃yk
Qyk

ZTD North East Up OMT
(simulated) (filter) [mm] [mm] [mm] [mm] [-]

full/H2 full/H1 5.47 0.32 0.25 1.22 1.34
full/H1.9 full/H2 4.82 0.29 0.23 1.13 1.02
full/H2 full/H2 4.81 0.29 0.23 1.13 1.00
full/H2 full/H1.9 4.67 0.29 0.23 1.10 0.98
full/H1 full/H2 3.78 0.22 0.18 0.91 0.88
full/H1 full/H1 3.34 0.21 0.17 0.86 1.00

Table 29.5 Standard deviations and OMT values for six different scenarios where covariance matrix Qyk

is used in the filter while Q̃yk
describes the precision of the simulated observations. Standard

deviations of coordinates after 24 hours and mean values for ZTDs over 2.5–24 hours.
Defaults of Table 27.3; no spatial correlation assumed.

Table 29.5 shows the effect of using an effective height of 1 km and 1.9 kmimpact of
effective
heights

respectively, instead of 2 km. The precision of the estimates only shows to be
sensitive to a large difference in this parameter.

Above we saw the impact on the parameter precision when we filter with acov. matrix
of
constraints
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wrong covariance matrix of the observations. In a very analogue way we may
study the impact of a wrong covariance matrix of pseudo-observations like the
spatiotemporal constraints on ZTDs. If the ‘real’ covariance matrix is Q̃d whereas
Qd (or (C ′

nQ̃−1
d Cn)−1 and (C ′

nQ−1
d Cn)−1 respectively; see App. J) is used in the

filtering, the covariance matrix of the predicted state vector is computed by

Q̃β̂xk|k−1
= Q̃β̂xk−1|k−1

+

[
Q̃d 0
0 0

]
, (29.4)

with which the covariance matrix of the filtered state vector is computed using
Eq. (29.3).

Table 29.6 shows the impact of a wrong scaling of the covariance matrix ofPSD

these constraints caused by a wrongly assumed PSD.

PSD in sim. PSD in filter std. ZTD std. N/E std. Up test value OMT

[m2/s] [m2/s] [%] [%] [%] [-] [-]

1.5e-7 1.5e-7 100 100 100 0.99 1.00

1.5e-7 1.5e-5 (u) 169 100 100 0.79 0.96
1.5e-7 1.5e-6 (u) 129 100 100 0.80 0.98
1.5e-7 1.5e-8 (o) 137 101 104 1.20 1.02
1.5e-7 1.5e-9 (o) 249 128 149 1.56 1.08

1.5e-5 1.5e-7 (o) 632 107 121 4.10 2.13
1.5e-6 1.5e-7 (o) 213 101 102 1.56 1.10
1.5e-8 1.5e-7 (u) 80 100 100 0.91 0.99
1.5e-9 1.5e-7 (u) 78 100 100 0.91 0.99

Table 29.6 Actual standard deviations (using Eqs. (29.4) and (29.3), with Q̃yk
= Qyk

) in percentages of
reference case (top row) for different scenarios where some PSD is used in the filter while
another PSD describes the stochastic behavior of the simulated ZTDs. (u):
underconstraining; (o): overconstraining. Test value: Mean value of square root of
troposphere slippage tests, station Delft, latency 0 (test quantity has a standard normal
distribution). Standard deviations of coordinates after 24 hours and mean values for ZTDs
over 2.5–24 hours. Defaults of Table 27.3; no spatial correlation assumed.

In (most of) the previous simulations we assumed a filtering with a PSD of 1.5e-7
m2/s whereas the ZTDs were driven by a PSD of the same size. The second
to fifth row of Table 29.6 show the impact on the precision of the ZTDs and
coordinates when we filter with a ten or hundred times smaller or larger PSD.
The sixth to last row show the impact when the actual driving PSD is ten or
hundred times smaller or larger than in the filter.

The first five rows of Table 29.6 show that filtering with the wrong PSD
results in a lower parameter precision. The ZTD is the most sensitive parameter
to the choice of the PSD, and the Up component is more sensitive than the
horizontal coordinates. The precision of the Up component is hardly affected by
underconstraining. Overconstraining has more impact, but a factor ten still has
not much impact.

The last four rows again show the precision-deteriorating impact of over-
constraining, but they also show that the ZTDs can be estimated more precisely
when the troposphere has a less fluctuating behavior than assumed (the pseudo-
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observations/constraints are more precise than assumed). The impact on the Up
component is however negligible.

The results of Table 29.6 confirm the simulation results of [Jarlemark et al., 1998]
with the GIPSY software [Webb and Zumberge, 1993]. They used actual RMS
values of the parameter estimates after hundred troposphere simulations.

Table 29.6 also shows troposphere slippage tests for one specific simulation.
The stronger the overconstraining, the larger these test values. The slippage test
is a tool that can be used to detect and avoid overconstraining. A better tool
would however be an Overall Model Test for constraints only.

29.4 Increased noise level

The simulations of the previous section show that, in absence of biases, a (nearly)
baseline-length independent (at least up to 250 km) intrinsic accuracy of GPS
baseline heights is obtainable at the 1-mm level for 24-hour data sets. The
precision that was derived from a time series analysis of daily estimates in the
AGRS.NL network (see ‘General introduction’) was in order of 5 mm standard
deviation. The difference is probably due to several error sources that were not
considered in the simulations. Some important error sources are multipath and
unmodeled or incorrect phase center variations. Other error sources may be:
errors in the mapping function; wrongly used a-priori hydrostatic delays; wrong
fixing of coordinates of the reference station; orbit errors; atmosphere and ocean
loading effects; delays caused by rain drops, ice, etc.; higher order ionospheric
delays; undetected observation errors; and possibly antenna instability. Although
not all of these error sources are large and reasonable candidates to account for
the found difference in precision, they may accumulate in unexpected ways. The
sum of all these error sources add up to a lower precision of the observations.
Often this is modeled by a scaling of the covariance matrix of the GPS (phase)
observables. Although this is strictly not correct because these error sources
tend to give time-correlated observations, in this section we assume this to be
a reasonable choice to see what happens under these extreme conditions. In
Tables 29.7 and 29.9–29.11 the standard deviation of the phase observables is
assumed to be 1 cm. The other options are the same as in the previous sections.

Improvement ZTD N/E Up
[%] [%] [%]

Troposphere fixing vs. rel. troposphere est. 100 0–6 60
Cut-off angle (z = 80◦ vs. z = 70◦) 40 25 50
Residual STD model vs. diagonal (H = 2 km) 10 10 15
Ambiguities fixed vs. float 0–5 20 15
Batch size (1 day vs. 1 epoch) 85 5 5
Relative instead of absolute troposphere∗ 0–10 0–35 0–5
Spatial correlation∗ vs. no correlation 15–40 0–1 0–3

Table 29.7 Indicative percentage of improvement in formal standard deviation for different modeling
techniques. This table is based on Table 29.9. Standard deviation phase observables: 1 cm.
∗ Baseline length: 10–250 km.

In Table 29.9 we see how this increased standard deviation translates into a
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lower formal precision of the parameter estimates. Table 29.7 shows the impact
of modeling options on the formal precision. We see an increased impact of
troposphere fixing and a decreased effect of ambiguity fixing. Unfortunately the
impact of the residual STDs is also decreased largely. This is caused by the
relatively low weighting of these constraints with respect to the phase observables.
The covariance matrix is dominated by the diagonal part containing the variances
of the phase observables. This also has effect on the impact of the zenith cut-off
angle as can be seen in Fig. 29.4. Since the observations at lower elevations are rel-
atively less down-weighted, increasing this angle above 80 degrees has more impact.

Tables 29.10 and 29.11 show that the decreased impact of the residual STDs
also implies less sensitivity to a wrong choice of covariance matrix (full versus
diagonal; wrongly chosen effective height). The OMT values are closer to one,
indicating ‘less stress’ in the model. The Up component improves less by using
a full covariance matrix than in the scenarios with 2 mm standard deviation for
the phase observables: ±15% formal precision improvement and ±10% actual
improvement.

In Table 29.12 we see the impact of under- and overconstraining. Again,
overconstraining has a larger impact than underconstraining. The effect of
constraining is however not unambiguously larger or smaller than in Sect. 29.3.

29.5 MDBs

The better formal accuracy of the observations when using a full covariance matrix
instead of a diagonal one has consequences for the testing and reliability. As shown
by Figs. 29.6 and 29.7 in the model with a full covariance matrix, the MDBs for
both outlier and cycle slip detection are smaller than with the diagonal covariance
matrix. In other words, formally, smaller errors can be detected when modeling
residual STDs. Both the mean values of the maximum MDBs per epoch of phase
outliers and of cycle slips reduce (depending on the latency 1–4); see Table. 29.8.

std. phase obs. cov. matrix MDBs phase outlier MDBs ambiguity slip
[mm] [cm] [cm]

2 diag 26–38 101–150
2 full 7–20 64– 80

10 diag 29–41 108–163
10 full 14–27 80–110

Table 29.8 Means of maximum MDBs per epoch for outliers in phase observables and ambiguity slips for
four different covariance matrices (ranges for latencies 1–4). Defaults used of Table 27.3; no
correlation assumed.
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Figure 29.6 Maximum MDBs of outliers in phase observations for latencies 0–3. Left panel: With full
covariance matrix of observations. Right panel: With diagonal covariance matrix. Defaults
according to Table 27.3; no spatial correlation assumed.
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Figure 29.7 Maximum MDBs of ambiguity slips for latencies 0–3. Left panel: With full covariance matrix
of observations. Right panel: With diagonal covariance matrix. Defaults of Table 27.3; no
spatial correlation assumed.



242 V 29.Simulation scenarios

ZTD North East Up OMT
[mm] [mm] [mm] [mm] [-]

1. 1 epoch batch, tropo-float (∗5) 18.05 0.80 0.66 3.55 0.95
1 epoch batch, tropo-weighted (∗2) 7.32 0.79 0.65 3.44 1.00
12 epochs batch, tropo-float 8.79 0.79 0.65 3.47 (1.00)
12 epochs batch, tropo-weighted 6.71 0.79 0.65 3.43 (1.00)
240 epochs batch, tropo-float 2.64 0.76 0.63 3.25 (1.05)
240 epochs batch, tropo-weighted 2.63 0.76 0.63 3.25 (1.05)
2880 ep. batch, tropo-constant 1.14 0.75 0.62 3.23 (1.98)
tropo-fixed (∗4) 0.00 0.74 0.62 1.43 (2.12)

2. 250 km, absolute troposphere 7.70 0.82 1.01 3.64 1.00
250 km, relative troposphere 7.56 0.81 0.67 3.52 1.01
50 km, absolute troposphere 7.34 0.79 0.93 3.47 1.00
50 km, relative troposphere (∗2) 7.32 0.79 0.65 3.44 1.00
10 km, absolute troposphere 7.27 0.78 0.91 3.42 1.00
10 km, relative troposphere 7.27 0.78 0.64 3.41 1.00

3. 250 km, absolute troposphere 6.60 0.82 1.01 3.63 1.00
250 km, relative troposphere 6.04 0.80 0.66 3.47 1.01
50 km, absolute troposphere 5.32 0.79 0.92 3.42 1.00
50 km, relative troposphere 5.15 0.78 0.65 3.37 1.00
10 km, absolute troposphere 4.22 0.77 0.89 3.31 0.99
10 km, relative troposphere 4.17 0.77 0.63 3.30 0.99

4. tropo-float, amb.-float, abs. 23.75 0.85 1.12 4.18 0.90
tropo-float, amb.-float, rel. (∗5) 18.05 0.80 0.66 3.55 0.95
tropo-float, amb.-fixed, rel. 17.83 0.66 0.51 3.08 0.95
tropo-fixed, amb.-float (∗4) 0.00 0.74 0.62 1.43 (1.19)
tropo-fixed, amb.-fixed 0.00 0.62 0.50 1.22 (1.24)

5. Qy diag/H2, amb.-float (∗1) 8.26 0.92 0.72 4.12 0.89
Qy diag/H2, amb.-fixed 7.93 0.79 0.59 3.58 0.89
Qy full/H2, amb.-float (∗2) 7.32 0.79 0.65 3.44 1.00
Qy full/H2, amb.-fixed 6.97 0.65 0.51 3.00 1.00
Qy unit, amb.-float (∗3) 6.66 0.73 0.61 3.25 1.05
Qy unit, amb.-fixed 6.29 0.59 0.47 2.83 1.05

6. Qy diag/H2 (∗1) 8.26 0.92 0.72 4.12 0.89
Qy diag/H1 7.19 0.79 0.65 3.53 0.95
Qy full/H2 (∗2) 7.32 0.79 0.65 3.44 1.00
Qy full/H1 6.78 0.74 0.61 3.29 1.00
Qy unit (∗3) 6.66 0.73 0.61 3.25 1.05

7. Qy diag/H2, 70 deg 13.50 1.15 0.86 8.29 0.93
Qy diag/H2, 80 deg (∗1) 8.26 0.92 0.72 4.12 0.89
Qy full/H2, 70 deg 12.63 1.05 0.80 7.46 1.00
Qy full/H2, 80 deg (∗2) 7.32 0.79 0.65 3.44 1.00
Qy unit, 70 deg 12.40 1.02 0.78 7.31 1.01
Qy unit, 80 deg (∗3) 6.66 0.73 0.61 3.25 1.05

Table 29.9 Formal standard deviations of parameters, and Overall Model Test values. Standard
deviations after processing 24 hours for coordinates and mean values for ZTDs over 2.5–24
hours. Asterisks indicate identical scenarios (∗1–3) or near identical scenarios (∗4–5). The
scenarios are according to the defaults of Table 27.3 except for spatial correlation and a-priori
standard deviation of phase observables: 1 cm. Scenarios under 3 and 4: TL2 correlation,
otherwise uncorrelated (in simulation and estimation). Italicization: (near) default scenarios.
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Q̃yk
Qyk

ZTD North East Up OMT
(simulated) (filter) [mm] [mm] [mm] [mm] [-]

diagonal full 9.45 1.05 0.83 4.83 1.33
diagonal diagonal (∗1) 8.26 0.92 0.74 4.12 1.00
full diagonal 7.86 0.85 0.69 3.77 0.89
full full (∗2) 7.32 0.79 0.65 3.44 1.00

Table 29.10 Standard deviations and OMT values for four different scenarios where covariance matrix
Qyk

is used in the filter while Q̃yk
describes the precision of the simulated observations.

Standard deviations of coordinates after 24 hours and mean values for ZTDs over 2.5–24
hours. Defaults of Table 27.3; no spatial correlation assumed; a-priori standard deviation of
phase observables: 1 cm. Asterisks indicate scenarios in Table 29.1.

Q̃yk
Qyk

ZTD North East Up OMT
(simulated) (filter) [mm] [mm] [mm] [mm] [-]

full/H2 full/H1 7.39 0.80 0.66 3.47 1.03
full/H2 full/H2 7.32 0.79 0.65 3.44 1.00
full/H1 full/H2 6.85 0.75 0.62 3.31 0.97
full/H1 full/H1 6.78 0.74 0.61 3.29 1.00

Table 29.11 Standard deviations and OMT values for four different scenarios where covariance matrix
Qyk

is used in the filter while Q̃yk
describes the precision of the simulated observations.

Standard deviations of coordinates after 24 hours and mean values for ZTDs over 2.5–24
hours. Defaults of Table 27.3; no spatial correlation assumed; a-priori standard deviation of
phase observables: 1 cm.

PSD in sim. PSD in filter std. ZTD std. N/E std. Up test value OMT

[m2/s] [m2/s] [%] [%] [%] [-] [-]

1.5e-7 1.5e-7 100 100 100 0.99 1.00

1.5e-7 1.5e-5 (u) 195 101 102 0.64 0.96
1.5e-7 1.5e-6 (u) 130 100 101 0.86 0.98
1.5e-7 1.5e-8 (o) 135 105 108 1.11 1.01
1.5e-7 1.5e-9 (o) 241 154 142 1.30 1.04

1.5e-5 1.5e-7 (o) 653 130 179 3.17 1.51
1.5e-6 1.5e-7 (o) 219 103 110 1.34 1.04
1.5e-8 1.5e-7 (u) 79 100 99 0.95 0.99
1.5e-9 1.5e-7 (u) 76 100 99 0.95 0.99

Table 29.12 Standard deviations in percentages of reference case (top row) for different scenarios where
some PSD is used in the filter while another PSD describes the stochastic behavior of the
simulated ZTDs. (u): underconstraining; (o): overconstraining. Test value: Mean value of
square root of troposphere slippage tests, station Delft, latency 0 (test quantity has a
standard normal distribution). Standard deviations of coordinates after 24 hours and mean
values for ZTDs over 2.5–24 hours. Defaults of Table 27.3; no spatial correlation assumed;
a-priori standard deviation of phase observables: 1 cm.
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Chapter 30

The troposphere-fixed model

By fixing the ZTDs at both stations of a baseline, we introduce a bias when the
fixed values are incorrect. In Sect. 28.2 we saw that, as long as the ZTDs at
both stations are equally biased, this mainly has a scaling effect. A wrongly fixed
relative ZTD however, has impact on the estimated height differences. When the
fixed relative ZTDs are correct on the other hand, the precision of the estimated
parameters, such as the height component, is better.

If we denote the variances of the Up component for the troposphere-fixed
and weighted model by σ2

Up,fixed and σ2
Up,weighted respectively, and the height

bias introduced by the troposphere-fixed model by ∇Up, the mean square errorMSE

(MSE)1 for both models is equal when:

σ2
Up,fixed + ∇Up2 = σ2

Up,weighted. (30.1)

The distance for which the MSEs are equal, is the distance where it becomes
advantageous to switch from the troposphere-fixed model to the troposphere-
weighted model. We look for this distance.

In [Beutler et al., 1988] it was shown that the bias in the Up component is
about c = 3 times the bias in the relative ZTD, ∇Dz

12:

∇Up = c · ∇Dz
12. (30.2)

This constant c was derived for a 70 degrees zenith cut-off angle. The factor
three is a wide-spread rule-of-thumb value and is still quite reasonable for lower
elevations if a proper weighting is used.2 We found empirical values for this factor
for a zenith cut-off angle of 80 degrees and modeling residual STDs by simulation
of the 24-hour data set of the previous chapters, where we fixed the ZTDs of both
stations by different values and filtered with the troposphere-fixed model. These
c values are shown in Table 30.1.

If we assume that the ZTDs at both ends of the baseline are fixed to the
same value, while the actual difference is equal to a realistic mean value based
on the structure function of the TL2 model in Part III, Eqs. (18.12) and (18.17),
then:

(∇Dz
12)

2 ≈ σ2
Dz

12
≡ DDz(ρ), (30.3)

with ρ the baseline length. For ρ < 4 km we can approximate this function by the
linear relation:

σ2
Dz

12
≈ σ2

0 · ρ, (30.4)

1The MSE is defined as E{‖ x̂−x ‖2
2} for E{x̂} = x+∇x [Bain and Engelhardt, 1989]. In our

case x is the baseline Up component.
2In [Beutler et al., 1988] a sec2 z weighting of the observations was used, but their derivation

was intended for a more realistic cos2 z weighting, as later used in [Sjöberg, 1992].
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where σ2
0 ≈ 10 mm2/km. An empirical approximation of the variance of the Up

component as function of the number of epochs p = 300, ..., 2880 can be found as
(compare with the right panel of Fig. 28.3):

σ2
Up(p) ≈ s2

0

p
, (30.5)

for either the troposphere-fixed or weighted model. The empirical constants s0 are
determined by a LSQ fit; they are given in Table 30.1 for four scenarios.

σφ model c s0

[mm] [-] [mm]

2 troposphere-fixed (∗4) 2.8 32
2 troposphere-weighted (∗2) - 61

10 troposphere-fixed (∗4) 3.9 80
10 troposphere-weighted (∗2) - 188

Table 30.1 Empirical constants of Eqs. (30.2) and (30.5), and formal standard deviations of baseline
heights for four scenarios. Scenarios correspond to numbers ∗2 and ∗4 in Tables 29.1 and
29.9 (no correlation assumed).

Combining Eqs. (30.1–30.5) finally gives the distance for which Eq. (30.1) holds:

ρ =
(s2

0)weighted − (s2
0)fixed

p σ2
0 c2

. (30.6)

Figure 30.1 shows this relation between epochs p and distance ρ for a-priori stan-
dard deviations of the phase observations of 2 mm and 10 mm. Apparently, under
the assumptions in this chapter, for long observation time spans the troposphere-
weighted model is already advantageous for baseline lengths smaller than 2.5 km.
If the ZTD differences are not constant, but vary around a constant value, the
troposphere-fixed model may however be suitable for longer baseline lengths.

500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

epochs p [−]

di
st

an
ce

 ρ
 [k

m
]

σφ = 2 mm

σφ = 10 mm

Figure 30.1 Baseline length ρ as function of the number of epochs p (30-s sampling) for which the
troposphere-fixed model has the same MSE as the troposphere-weighted model for a
constant bias in the relative ZTD equal to its empirical standard deviation as function of
distance (TL2 model). Larger biases would give smaller distances and vice versa.
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Conclusions of Part V

The formal precision of the filtered baseline heights is not sensitive to the spa-spatiotemporal
constraints tiotemporal constraints. Spatial correlation has hardly any contribution and the

troposphere-float, weighted, and constant models give comparable formal preci-
sion. The batch size is also of minor influence on the formal height precision. The
only effect of the constraints that was shown is the severe precision-deteriorating
effect of overconstraining, although only when the constraints are more than
ten times too tight. Underconstraining has little effect, which suggests that
we might as well use the troposphere-float model to avoid overconstraining
(or the troposphere-weighted model with very soft constraints). The use of
spatiotemporal constraints showed a much larger impact on the filtered ZTDs,
which means that weather-prediction applications may benefit much more by an
advanced application of these constraints.

A much larger step in precision can be found between troposphere fixingtroposphere
fixing and estimating. Troposphere fixing gives a formal standard deviation of the

baseline height that is about twice as small as in the troposphere-float models.
The actual precision of the height, however, depends on the actual troposphere
delay differences, which generally increase with distance. Because we do not
know these delay differences beforehand, by using a troposphere-float model one
avoids large surprises; in general the precision may be lower, but a bias caused
by the troposphere can be avoided. Based on the assumption of a constant
delay difference under mean atmospheric conditions, maximum distances were
found for application of the troposphere-fixed model. As a rule of thumb,
the troposphere-fixed model should not be used for distances larger than ±1
km. Instead the troposphere-float model is preferred where absolute ZTDs are
parameterized.

The simulation results show that the residual STD model is promising. Aresidual
STDs formal coordinate precision improvement with respect to using a diagonal covari-

ance matrix was found of about 50% for default settings, where the standard
deviation of the phase observables was set to 2 mm. The actual improvement
was about 30%, because the assumed correlations have a positive effect whether
we model them or not. The exact improvement depends on the noise level of
the observations. For a standard deviation of the phase observables of 10 mm,
these percentages are only about 15% and 10% respectively. The improvement
also depends on the effective height. Real data analysis is necessary to validate
the model and a fine tuning of the model is needed. This validation may prove to
be a difficult task in the presence of unmodeled error sources. Since they were
not assumed in the simulations, the actual precision improvement depends on
them. Further research on the size, modeling, and filter propagation of other
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error sources, especially the zenith angle dependent errors, remains necessary.

Other model options that may improve the height precision are: increasing
the zenith cut-off angle and fixing the ambiguities. Because the increase ofcut-off angle

zenith cut-off angles above about 80 degrees may also cause biases, caused by,
for example, multipath, this should be done with care. Besides, when using
the residual STD model, the observations to low-elevation satellites are strongly
down-weighted. Correct ambiguity fixing should, if possible, always be strivenambiguity

fixing for. Even for long observation times it gives 15–20% improvement in the standard
deviations of the filtered baseline heights.



Appendix J

Time update for relative ZTD
estimation

The full Gauss–Markov model of the time update, including both constrained and
global parameters when estimating relative ZTDs, reads:

E{




d

β̂
k−1|k−1

x̂k−1


} =



−Cn Cn 0
In−1 0 0

0 0 Inx







βk−1

βk

x


 ;

D{


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d

β̂
k−1|k−1

x̂k−1


} =


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Qd 0 0
0 Qβ̂k−1|k−1

Qβ̂k−1|k−1x̂k−1

0 Qx̂k−1β̂k−1|k−1
Qx̂k−1


 ,

(J.1)

with C ′
n

.
= [0, In−1]. The observables x̂k−1 of the global parameters are stochas-

tically Related to β̂
k−1|k−1

but not functionally. These observables are called freefree variates

variates, a special type of yR variates as defined in [Teunissen, 1999].yR variates

The general model in which the free variates occur reads (in terms of the
weight matrix W ):

E{
[

y

yR

]
} =

[
A 0
0 I

] [
x

E{yR}

]
; D{

[
y

yR

]
} =

[
Wy WyR

WRy WR

]−1

. (J.2)

The normal equations of this model read [Teunissen, 1999]:
[

A′WyA A′WyR

WRyA WR

] [
x̂
ŷR

]
=

[
A′Wy A′WyR

WRy WR

] [
y
yR

]
. (J.3)

From the second row, we obtain:

WR ŷR = WR yR + WRy (y − Ax̂), (J.4)

or with ε̂
.
= y − Ax̂ and ε̂R .

= yR − ŷR:

ε̂R = −W−1
R WRy ε̂. (J.5)

If the LSQ corrections of the model without the yR variates are zero, ε̂ = 0, then
also the LSQ corrections of the yR variates are zero: ε̂R = 0. Since the LSQ
corrections of the observations in Eq. (27.6) are zero (with d = 0, verify), this also
holds for Model (J.1). In other words, including global parameters does not affect
the estimates in the time update:

β̂xk|k−1 = β̂xk−1|k−1. (J.6)
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The covariance matrix of the predicted estimates is also not affected by the exten-
sion of Model (27.6) with global parameters. First define:

[
Qβ̂k−1|k−1

Qβ̂k−1|k−1x̂k−1

Qx̂k−1β̂k−1|k−1
Qx̂k−1

]−1

=

[
Wβ̂k−1|k−1

Wβ̂k−1|k−1x̂k−1

Wx̂k−1β̂k−1|k−1
Wx̂k−1

]
. (J.7)

In terms of this weight matrix, the normal matrix of Model (J.1) reads:




Wβ̂k−1|k−1
+C ′

nQ−1
d Cn ; −C ′

nQ−1
d Cn ; Wβ̂k−1|k−1x̂k−1

−C ′
nQ−1

d Cn ; +C ′
nQ−1

d Cn ; 0
Wx̂k−1β̂k−1|k−1

; 0 ; Wx̂k−1


 . (J.8)

The covariance matrix of the estimated parameters of Model (J.1) now follows as
the inverse of the normal matrix:




Qβ̂k−1|k−1
Qβ̂k−1|k−1

Qβ̂k−1|k−1x̂k−1
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Qβ̂k−1|k−1

+ (C ′
nQ−1
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Qx̂k−1β̂k−1|k−1
Qx̂k−1β̂k−1|k−1

Qx̂k−1


 , (J.9)

which can be verified by using the definition of Eq. (J.7). The covariance matrix
of the total vector of predicted estimates therefore follows from the lower-right
corner of Eq. (J.9) as

D{
[

β̂
k|k−1

x̂k

]
} =

[
Qβ̂k−1|k−1

+ (C ′
nQ−1

d Cn)−1 Qβ̂k−1|k−1x̂k−1

Qx̂k−1β̂k−1|k−1
Qx̂k−1

]
. (J.10)

From Eqs. (J.6) and (J.10) therefore follows that the time update may be summa-
rized as:

β̂xk|k−1 = β̂xk−1|k−1;

Qβ̂xk|k−1
= Qβ̂xk−1|k−1

+

[
(C ′

nQ−1
d Cn)−1 0
0 0

]
.

(J.11)

To compute (C ′
nQ−1

d Cn)−1, we partition Qd and its inverse as:

Qd =

[
Qd11

Qd12

Qd21
Qd22

]
; Q−1

d =

[
(Q−1

d )11 (Q−1
d )12

(Q−1
d )21 (Q−1

d )22

]
, (J.12)

where Qd11
is a scalar and Qd22

is (n − 1) × (n − 1). Then we have C ′
nQ−1

d Cn =
(Q−1

d )22, and using the lemma of App. H of Part IV, we find:

(C ′
nQ−1

d Cn)−1 = Qd22
− Qd21

Q−1
d11

Qd12
, (J.13)

which is easily computed and needs to be computed only once.



Appendix K

Zenith angles

Consider two points P1 and P2 on the earth’s surface, the center of the earth M,
and satellite S. P2 is in the same plane as M, S, and P1 (see Fig. K.1). Let z1 and
z2 be the zenith angles of P1S and P2S. From the distance d between P1 and P2

and the earth’s radius R ≈ 6370 km, we derive the angle φ = d/R. The zenith
angle z2 can now be computed for known zenith angle z1 as follows.

P
1

P
2

M

S

R

R

r

l
z

1
z

2
π−z

1

φ ψ

d

τ

R

π−z
2

Figure K.1 Zenith angles z1 and z2 to satellite S for two stations P1 and P2 separated by distance d.

With the sine rule for triangle MP1S we obtain the top angle τ :

sin τ = R · sin z1/(R + r), (K.1)

where r ≈ 20200 km. From triangle MP1S we then obtain:

ψ = z1 − φ − τ. (K.2)

Applying the cosine rule on triangle MP2S then gives:

l2 = R2 + (R + r)2 − 2R(R + r) cosψ. (K.3)

And finally, with the sine rule for triangle MP2S:

sin z2 = (R + r) · sinψ/l. (K.4)
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Appendix L

Temporal ZTD constraints

Unlike what was expected beforehand, temporal ZTD constraints have little effect
on the baseline height precision. This appendix clarifies this by looking into the
normal matrix. We consider the following simplified Gauss–Markov model of p
epochs with mp single-differenced GPS observations y to m satellites, and p − 1
constraints d:

E{
[

d
y

]
} =

[
0 E
C S

] [
h

Dz

]
; D{

[
d
y

]
} =

[
σ2

dIp−1 0
0 σ2

yImp

]
, (L.1)

containing only the baseline height h and the p × 1 vector with zenith delays Dz.

When using a sec z mapping function, the partial design matrices read:

C ′ .
= [cos z(1)′, ..., cos z(p)′];

S
.
= diag[sec z(1), ..., sec z(p)];

E
.
=




−1 1 0
−1 1

. . .
. . .

0 −1 1


 , (L.2)

where z(k) is a vector with m zenith angles at epoch k and cos z(k) and sec z(k)
are vectors with cosine and secant values. The normal matrix then contains the
elements

C ′C =
∑p

k=1

∑m
s=1 cos2 zs(k)

.
= p m β;

S′S = diag[
∑m

s=1 sec2 zs(1), ...,
∑m

s=1 sec2 zs(p)] ≈ m γ Ip;
C ′S = m e′p,

(L.3)

where ep is a p×1 vector with all ones. We write the mean value of
∑m

s=1 cos2 zs(k)
over all epochs as mβ and approximate

∑m
s=1 sec2 zs(k) by a constant mγ for each

epoch. The normal matrix then reads:

N =

[
σ−2

y m β p σ−2
y me′p

σ−2
y mep σ−2

y mγ Ip + σ−2
d E′E

]
. (L.4)

The variance of the height can be computed using Eq. (H.1) as:

σ2
ĥ

= (σ−2
y mβ p − σ−4

y m2 e′p (σ−2
y mγIp + σ−2

d E′E)−1ep)
−1. (L.5)

We use Eq. (H.2) to find:

(σ−2
y mγ Ip+σ−2

d E′E)−1 = σ2
y γ−1 m−1(Ip−E′(EE′−σ2

dσ
−2
y mγIp−1)

−1E). (L.6)

Since E ep = 0 and e′p Ip ep = p, substituting Eq. (L.6) into Eq. (L.5) finally gives:

σ2
ĥ

= σ2
y m−1 p−1(β − γ−1)−1. (L.7)

In other words: the precision of the height component is insensitive to the value
of the constraint variance σ2

d. In the simulation there is a small effect of the
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constraint; see first group of Fig. 29.1, where the troposphere-float, weighted
and constant model are compared. This is because the approximation of S′S
by γ Ip is not exact. Also in the actual model, receiver clock parameters are
introduced. Although this does not change the structure of the normal matrix
(after pre-elimination), the correlation term becomes an approximation of a scaled
vector with ones.

We also see that the precision increases with the precision and the number
of observations. The constants β and γ−1 depend on the zenith cut-off angle.
Both decrease with increasing zenith cut-off angle (zcut), but the difference β−γ−1

increases. This means that the precision of the height increases with increasing
zenith cut-off angles. We can see this by approximating:

β = m−1
∑m

s=1 cos2 zs(k) ≈
∫ zcut

0 cos2 z sin z dz∫ zcut

0 sin z dz
=

1

3

1 − cos3 zcut

1 − cos zcut
;

γ ≈ m−1
∑m

s=1 sec2 zs(k) ≈
∫ zcut

0 sec2 z sin z dz∫ zcut

0 sin z dz
=

cos−1 zcut − 1

1 − cos zcut
,

(L.8)

using the Jacobian1 |∂(x, y, h)/∂(r, z, α)| = sin z that accounts for an assumed
equal distribution of satellites over the sky. For more on this technique, see
[Beutler et al., 1988] and [Santerre, 1991]. Figure L.1 shows β and γ−1 as function
of the zenith cut-off angle.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

γ−1

β

z
cut

 [deg]

Figure L.1 Constants β and γ−1 as function of the zenith cut-off angle.

With Eq. (H.2), the covariance matrix of the ZTDs can be derived as:

QD̂z = (σ−2
y mγ Ip + σ−2

d E′E)−1 + γ−2σ2
ĥ
ep e′p. (L.9)

We can now distinguish two extreme cases: (1) the troposphere-float case, where
σ−2

d → 0; and (2) the troposphere-constant case, where σ2
d → 0. From Eq. (L.9)

we inmediately see that in the first case:

QD̂z = σ2
y m−1 γ−1 Ip + γ−2σ2

ĥ
ep e′p. (L.10)

In the second case, we apply Eq. (L.6) and recognize that Ip − E(EE′)−1E =
p−1ep e′p, so that:

QD̂z = (σ2
y m−1 γ−1 p−1 + γ−2σ2

ĥ
)ep e′p. (L.11)

1With partial derivatives of Cartesian coordinates x, y, and h with respect to spherical coor-
dinates: radius r, zenith angle z, and azimuth α.



Bibliography

Bain, L.J., and M. Engelhardt (1989), Introduction to Probability and Mathemat-
ical Statistics, PWS-KENT Publishing Company, Boston.

Beutler, G., I. Bauersima, W. Gurtner, M. Rothacher, T. Schildknecht, and
A. Geiger (1988), Atmospheric refraction and other important biases in GPS
carrier phase observations, in Atmospheric effects on geodetic space measure-
ments, edited by F.K. Brunner, pp. 15–43, Monograph 12, The University of
NSW.

Beutler, G., E. Brockmann, R. Dach, P. Fridez, W. Gurtner, U. Hugentobler,
J. Johnson, L. Mervart, M. Rothacher, S. Schaer, T. Springer, and R. Weber
(2000), Bernese GPS Software, Version 4.2, software documentation, AUIB.

Brunner, F.K., and S. McCluskey (1991), Tropospheric zenith delay parameters:
How many should be estimated in GPS processing?, Aust. J. Geod. Photogram.
Surv., 55, 67–75.

Jarlemark, P.O.J., T.R. Emardson, and J.M. Johansson (1998), Wet delay vari-
ability calculated from radiometric measurements and its role in space geodetic
parameter estimation, Radio Science, 33, 719–730.

Kleijer, F. (2001), Mapping function induced bias in tropospheric delay estimation
using GPS, Phys. Chem. of the Earth (A), 26, 467–470.

Koch, K.-R. (1987), Parameter Estimation and Hypothesis Testing in Linear Mod-
els, Springer, Berlin.

Matlab (1997), The language of technical computing, The MathWorks, Inc.

Niell, A.E. (1996), Global mapping functions for the atmosphere delay at radio
wavelengths, Journal of Geophysical Research (B), 101, 3227–3246.

Santerre, R. (1991), Impact of GPS satellite sky distribution, Manuscripta Geo-
daetica, 16, 28–53.
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Chapter 32

Conclusions and recommendations

This thesis focused on troposphere modeling and filtering for precise GPS
leveling. GPS leveling is expected to be a cost-effective technique that can replaceGPS leveling

some of the traditional spirit and hydrostatic levelings. It is especially suited
for leveling over water and long distances and can be used for, for example,
subsidence monitoring and maintenance of national height datums. For the latter
application, the precision of GPS-derived orthometric (or normal) heights also
depends on the precision of the local (quasi-)geoid. The precision of GPS heights
differences is considered optimal when it is comparable to geoid height differences;
in the Netherlands this is in the order of 5 mm.

To obtain this precision in short observation time spans, a judicious mod-troposphere
modeling eling of the tropospheric delay is required because of the strong impact of

tropospheric errors on the height component. Although other error sources also
contribute to the precision, we restricted ourselves to the question: How should
the tropospheric delay be modeled to obtain the best precision? To answer this
question we investigated the existing modeling possibilities and classified them
by physical, functional, and stochastic aspects. For the best possible precision we
focused on a static network approach with dual-frequency receivers with which
(both code and) phase observables are acquired.

The hydrostatic part of the delay can be modeled with high accuracy ifphysical
modeling the surface pressure is known, but the more variable wet delay cannot be modeled

with enough precision based on meteorological parameters. Both delays can be
approximated as a zenith value multiplied by a mapping function. The mapping
functions differ for both parts because they depend on their respective layer
thicknesses. The wet layer thickness is smaller because of the temperature-
dependent saturation pressure value of water vapor. Several different mapping
functions were derived in the past decades. They rely on mean atmospheric
conditions or surface meteorological parameters and do not account for anisotropy.

In the troposphere-fixed models, a-priori corrections are applied for thefunctional
modeling tropospheric delays. These models are rank deficient, but by repeated reparame-

terizations full-rank (undifferenced) models can be obtained. To prevent errors in
the GPS heights by inadequate a-priori models, it is necessary to parameterize the
tropospheric delay. One can parameterize Zenith Tropospheric Delays (ZTDs),
gradients, and residual Slant Tropospheric Delays (STDs). The presence of
satellite clock errors causes near rank deficiencies in the ZTDs, coordinates, and
gradients. In the troposphere-float model, ZTDs are the most common parame-
ters; one ZTD per station is estimated for every batch of epochs, but sometimes
the ZTDs of one station are fixed because of this near rank deficiency. This
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does however introduce biases in the heights, and should therefore not be done.
Gradients or residual STDs can refine the parameterization. The latter parameters
loosen the isotropy assumption in the mapping. Each slant delay is parameterized,
but an equal amount of constraints is applied to prevent the model from be-
coming underdetermined. Residual STDs are temporal (time-varying) parameters.

A theoretic stochastic model for the constraints on residual STDs was de-stochastic
modeling rived by Emardson and Jarlemark (2001). Their polynomial turbulence model

turned out to be indefinite, but a summation model proved to be a positive-
definite alternative. This was found by tests with these covariance matrices on
several locations around the world using a full day of satellite configurations. The
models imply zenith angle dependent weighting, as well as correlations between
different observations of the same epoch, which seems more realistic than diagonal
covariance matrices.

The observation model could further be strengthened by relative constraints on
the ZTDs (troposphere-weighted model). Based on the assumption of Kolmogorov
turbulence, the Zenith Wet Delay can be considered a power-law process. For
practical implementation of relative constraints, a random-walk process can be
assumed.

With recursive filtering techniques, not only the parameters can becomefiltering

available in real time, but also the impact of observation time can be analyzed.
It is an appealing technique because parameters can be treated when they are
available. New ambiguities can be introduced when new satellites rise, and old
ambiguities expired when they become dormant; ambiguity transformations are
needed to change pivot satellites. Two filters are considered: the Kalman Filter
and the Square Root Information Filter (SRIF). The latter needs reordering
transformations in the expiring of parameters. The Kalman Filter turned out
to be much faster than the SRIF. Both filters benefit from Cholesky-factor
transformations and pre-elimination of temporal nuisance parameters, such as
clock and ionosphere parameters, and residual STDs. Two pre-elimination
methods exist: one uses a projector on the orthogonal subspace of the tem-
poral parameters and one uses the orthogonal subspace itself. The latter
method is faster and implies double-differencing, linear inter-frequency combi-
nations, and full covariance matrices for the original (untransformed) observations.

The filter finally built in simulation software is a Kalman–Cholesky Filtersimulations

with the latter pre-elimination method. The simulation software was used to
analyze the sensitivities of baseline heights to different model components. Er-
ror sources that involve a-priori corrections were not considered in the simulations.

Because the wet and hydrostatic part of the tropospheric delay are mapped
to the zenith differently, and because they can cause biases if we map with the
wrong function, we assume that a good a-priori model for the Zenith Hydrostatic
Delay is applied, which is possible with good surface pressure values. Only the
more variable Zenith Wet Delay is mapped this way.

Based on the simulation results we come to the following recommendationsrecommen-
dations for GPS leveling:

Do not use spatiotemporal constraints; the troposphere-float model is preferred.

Only use troposphere fixing of all stations for distances < ± 1–2 km.



V 32.Conclusions and recommendations 259

Do not fix Zenith Total Delays (ZTDs) of a reference station; estimate absolute
ZTDs.

Use small batches.

And further conclude that:

Possible improvement is obtainable by modeling residual Slant Tropospheric
Delays (STDs; 10–30%). The model should be proved however, because if it
turns out to be incorrect it can also deteriorate the precision.

Increasing the zenith cut-off angle (± 5%/degree in the range of 70–80 de-
grees) and ambiguity fixing (15–20%) have a relatively large contribution to
the precision.

A formal precision of 5 mm is certainly obtainable for 24-hour data sets. Howformal
precision much faster this precision can be obtained depends on the precision of the

observations. Several error sources other than the tropospheric delay contribute
to a lower precision. Figure 32.1 shows (approximate) baseline height precision
based on simulations for standard deviations of the phase observations of 2 mm
(realistic observation noise) and 10 mm (scaled value because of unmodeled error
sources) and for zenith angle dependent weighting and modeling residual STDs.
These scenarios relate to the conclusions above (troposphere-float model, absolute
ZTDs estimated, batch size of 1 epoch and ambiguity fixing). Note that the
actual precision may be lower when there are systematic errors.
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Figure 32.1 Approximated formal baseline height precision, using σ2
Up = s2

0/p (Eq. (30.5)), for the
troposphere-float model with ambiguity fixing and absolute ZTDs estimated; epochs
300–2880. Dashed line: Zenith angle dependent weighting, standard deviation phase
observables 10 mm (s0 = 225 mm). Dash-dot line: Residual STD estimation, standard
deviation phase observables 10 mm (s0 = 191 mm). Solid line: Zenith angle dependent
weighting, standard deviation phase observables 2 mm (s0 = 111 mm). Dotted line: Residual
STD estimation, standard deviation phase observables 2 mm (s0 = 54 mm). Other options
according to defaults of Table 27.3.

Because a good description of the observation precision is important for thefurther
research decision on the observation time to be used, quantifying the error sources remains

an important issue. Reducing these errors will of course also stay an ongoing task.

In recent developments external information from Numerical Weather Mod-
els are considered, mainly to reduce the error in the mapping of STDs to the
zenith. Further improvement can be achieved when large zenith cut-off angles
are used. Because of the impact of the observations to low-elevation satellites,
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especially the modeling of error sources for these observations leaves room for
further improvement.

The modeling of residual STDs showed possibilities of improving the preci-
sion of not only heights but also of horizontal coordinates and ZTDs. Validation
of this model can therefore be considered a task for further research. Points of
concern are the scaling of the covariance matrix and the assumption of height
independence of the refractivity structure function.
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