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Combined solutions

6.1 Introduction

It was shown in chapter 5 that the polar gap and the coloured noise significantly contribute to a badly
conditioned normal matrix. As we have seen the low orders are especially affected. Since potential
coefficients up to degree and order 180 are solved for, the downward continuation does not result in any
instability (compare figure 5.4). Satellite-to-satellite tracking data are reported to be less sensitive to
polar gaps and may compensate for the deficient sensitivity of SGG at the longer wavelengths (Schrama,
1990). Because a GPS receiver will be mounted on the GOCE satellite high-low SST data will become
available (ESA, 1999).

Besides SST other types of observations can be used to obtain better results, especially in the polar
regions. To this end the combination of SGG and/or SST data with gravity data in the polar areas is
studied. More specifically, a point grid of gravity anomalies at the Earth’s surface is assumed to be
available after the processing of airborne gravimetric data.

The outline of the chapter is as follows. The combination of SGG data with (i) SST data and (ii) gravity
anomalies is considered in sections 6.3 and 6.4 respectively. This should lead to a better appreciation
of the individual contribution of both data sets to the quality improvement. Section 6.5 describes the
combination of all three data types. First of all, however, SGG results for different mission scenarios
are described. Since in chapter 5 it is shown that the SGG simulation and error propagation results
are comparable if the error model is correct, only error propagation is used from now on. Using error
propagation, it is easier to study longer mission periods and to study higher maximum degrees. For
reference purposes, appendix D contains results complementary to those of this chapter.

6.2 SGG results for different mission scenarios

In chapter 5 the GOCE SGG mission scenario consisted of the following constants: Nd � 29 days (�
1 month), L � ��
, I � �����. The simulations in chapter 5 are limited to these values to keep the
computations manageable. In the current chapter, however, instead of (simulated) observations, error
propagation is used and higher degrees and longer missions are manageable. Now Nd � 6 months and
L � ��
 as well as L � ��
 are considered.

This section and the results presented herein provide the link between chapters 5 and 6. Therefore,
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Table 6.1: MSE and bias of the different SGG-only solutions. The first two columns list the mission
number and the mission parameters, the third column lists the � yielding the minimal MSE. Tikhonov
regularisation with signal constraint is used in all occasions.

mission
no. parameters � MSEa BNR max(BSR)b

1 1 m, L � ��
, cnc 2.4 4.0 0.2 0.20 (117.9)
2a 6 m, L � ��
, cn 5.1 1 0.06 0.18 (61.4)
2b 6 m, L � ��
, cn 1.5 4.2 0.4 0.68 (�� �
�)
3 6 m, L � ��
, wn 5.3 0.5 2.0 0.18 (386.4)

aIn proportion to mission 2a.
bThe maximum BSR based on the OSU91A degree-order variances. The maximum BSR between brackets has been computed

using the OSU91A coefficients.
cThe abbreviations cn and wn represent coloured noise and white noise respectively, m stands for month or months.

the GOCE SGG solution is considered first using the chapter 5 mission scenario (for the circular, inclined
orbit). Then the mission length is increased from 1 month to 6 months. Although the maximum degree
remains L � ��
 for most cases, the case L � ��
 is considered as well. At this maximum degree the
error degree variances tend to equal to signal degree variances and the downward continuation starts to
be more important, whereas it is not when L � ��
 (see also the section ‘Error degree variances’ below).
The SGG coloured noise model of chapter 5 is adopted.

Bias. Table 6.1 summarises the MSE and bias of the different SGG only solutions. Comparing missions
1 and 2a it becomes clear that � increases by a factor 2, while the number of observations increases by
a factor 6 from 1 to 2a. Note that, if Nr � �L and the along track sampling is dense enough, a mission
length increase of a factor 6 yields a scaling of ATPA by a factor 6. Effectively this means that mission
2a is less regularised than mission 1, although � is larger. Since more observations have been used to
obtain the same number of unknowns, this is also what one would expect. The derivative of the MSE with
respect to � is

�MSE

��
�

nX
i��

��i��hx� vii � ���

��i � ���

compare table 2.1 and section 2.3.3. The minimum MSE for a single i is obtained for � � ��	hx� vii.
Therefore, if the number of observations increases, �� decreases and � decreases.

Mission 3 has the same mission parameters as mission 2a except for the coloured noise. The regu-
larisation parameter � � ��� seems to be only slightly larger than � � ��� for mission 2a. However, the
unknowns will have a smaller propagated error Qx because of the white noise observations of mission
3. Since �K , which is proportional to the bias, is about equal for 2a and 3, the BNR will be larger for
mission 3 compared to 2a, see below.

Mission 2b is the final SGG only mission discussed. Gravitational potential coefficients up to degree
and order L � ��
 are solved for, which is roughly twice the number of coefficients when L � ��
. It
is somewhat difficult to compare the normal matrix and the regularisation of mission 2b with the other
missions since everything changes. Since the number of unknowns increases by roughly a factor 2 going
from L � ��
 to L � ��
, one could say that half of the observations have been used for 2b to solve
up to degree 180 compared to mission 2a, while the regularisation of 2b is about a third of the mission
2a regularisation (� � ��� and � � ��� respectively). The regularisation, therefore, is somewhat less
for mission 2b for the degrees up to 180. Compare also figure 6.1 where the bias variance per degree
and order is plotted for missions 2a and 2b. The order variance is a summation over l, and the bias order



6.2. SGG results for different mission scenarios 67

variance of 2b is less than the bias order variance of 2a for most orders. Hence, the degrees up to 180 are
less regularised in the 2b solution, which is in agreement with the smaller regularisation for 2b.

The fourth column of table 6.1 lists the MSE, that is, the trace of the MSEM, with respect to mission
2a. From a pure least-squares solution one would expect an error decrease from 1 to 2a of a factor 6
(
p
� for the standard deviation). Clearly, the MSE decrease is smaller here, which must be due to the

regularisation and the bias in the solution. The effect of the coloured noise on the MSE is large: the MSE

for the white noise case is half of that of the coloured noise case. Also the increase of the maximum
degree has a profound effect. While the number of unknowns nearly doubles, the MSE of mission 2b is
more than four times larger than the MSE of mission 2a. Specifically, the downward continuation starts
to play its role, amplifying noise, and the effect of the polar gap is more pronounced (compare figure
5.4).

The bias-to-noise ratio (BNR) is shown in column 5. With respect to the noise, the bias can be
neglected for mission 2a, whereas the bias is not negligible for the other missions. In mission 2b, for
example, the bias is a third �
��	���
��� � 
��� of the total error (see also appendix D, figure D.5). The
large bias for the SGG white noise case can be explained by the small noise component, as stated above.

Figures 6.2 and 6.3 display the bias-to-signal ratio (BSR) for missions 1, 2a and 2b. The scales of all
figures is fixed between �
�	 and �
� in order to make the comparison easier (note that the BSR scale
is logarithmic). Column 6 of table 6.1 gives the maximum of the relative bias. The maximum BSR of
mission 1 between brackets differs from table 5.2 since OSU91A is used as signal here, whereas in table
5.2 the solved coefficients have been used.

If more observations are available the bias is reduced. Figure 6.2, left, is for 1 month of observations
and 6.2, right, is for 6 months of observations. This is in agreement with the findings above. The
relative bias is the largest for the low order coefficients, being the coefficients affected by the polar gap.
Furthermore, all high degree coefficients are biased more than the lower degrees, which is caused by the
regularisation (�
��l	), the size of the coefficients and the downward continuation. The bias reduction
due to the increase of the number of observations is restricted to the coefficients not affected by the polar
gap. The effect of the polar gap becomes more evident if one solves up to degree and order L � ��
,
figure 6.3, right. Moreover, the bias increases for increasing degree.

Figure 6.3, left, displays the bias of the SGG white noise solution with respect to the SGG coloured
noise solution. It is evident that the sectorial and neighbouring coefficients experience the coloured noise
(see also section 5.4). The BSR itself of mission 3 is shown in figure D.1.

Error degree variances. In figure 6.4 the error degree variances of missions 1, 2a, 2b and 3 are dis-
played. The signal degree variances and error degree variances of OSU91A have been depicted for
reference as well. For all SGG only missions it holds that the low degrees have large degree variance,
especially for the coloured noise cases. The error degree variance is the smallest for the medium wave-
lengths and increases for the higher degrees. The white noise case and coloured noise case show large
differences up to degree 30, and tend to be equal from there on. Thus, the coloured noise cause the error
degree variances for low degrees to be large. At degree 240 the signal is still larger than the noise, but
the degree for which the SNR becomes 1 will not be much higher.

Propagated errors. The propagation of the MSEM to geoid heights and gravity anomalies yields es-
timates of their uncertainties or errors and the correlations. The MSEM has a block-diagonal structure,
where the �Clm part equals the �Slm part and even and odd degrees are separated. The propagated errors,
therefore, are rotational symmetric and symmetric with respect to the equator. Due to the bias, however,
these symmetries are not perfect but the differences turned out to be negligible. For this reason it is suf-
ficient to draw just one longitude from north pole to equator, see figure 6.5. Shown are the geoid height
and gravity anomaly errors.

The lack of data in the polar regions is responsible for the large errors there. The errors have a
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Figure 6.1: Degree (left) and order (right) bias variances. The variances of the L � ��
 solution were
computed using terms up to degree and order 180.
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Figure 6.2: BSR: SGG only solutions for 1 month (left) and for 6 months (right), L � ��
. Logarithmic
scale.
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Figure 6.3: Bias of the SGG white noise solution with respect to the SGG coloured noise solution (left).
BSR: SGG only solution up to degree and order 240 (right). Logarithmic scale.
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Figure 6.4: The error degree variances for the different SGG mission scenarios.
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Figure 6.5: Geoid and gravity anomaly errors according to error propagation, SGG measurements only.
The geoid heights are on the left, the gravity anomalies on the right.
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Table 6.2: Propagated errors for the SGG solutions.

mission geoid height error (cm) grav. anomaly error (mGal)
no. parameters RMS mean max min RMS mean max min
1 1 m, L � ��
, cn 12.3 6.1 70.8 1.9 1.48 0.71 6.98 0.22
2a 6 m, L � ��
, cn 9.7 3.5 58.8 0.8 1.26 0.43 6.70 0.08
2b 6 m, L � ��
, cn 11.9 6.2 54.6 1.9 2.23 1.56 10.50 0.63
2b lmax � ��
 10.8 4.1 59.8 0.9 1.55 0.57 8.66 0.13
3 6 m, L � ��
, wn 8.3 2.4 47.1 0.3 1.18 0.41 6.73 0.08

minimum around the maximum latitude of the satellite ground track. Since there are relatively less mea-
surements at low latitudes, the error gradually increases towards the equator. The geoid errors decrease
from mission 1 to 3 (ignoring 2b). On the one hand the number of measurements increases and on the
other hand the coloured noise affects the long wavelengths. Solving up to degree L � ��
 increases
the maximum geoid error in the measurement area from 2 cm to 5 cm. The anomaly error increase is
much larger going from L � ��
 to L � ��
: 0.2 mGal becomes 1 mGal. Of course this is what could
be expected since gravity anomalies are more sensitive to short wavelengths and especially the high de-
grees are difficult to obtain, that is, they have a relatively large uncertainty. A comparison of mission 2b
(L � ��
), truncated at lmax � ��
, with mission 2a (L � ��
) shows that the effect of the polar gap
is larger for larger L: the RMS errors increase (table 6.2). Finally, it appears that the coloured noise has
less effect on the gravity anomalies. The blue and red line in the right panel of figure 6.5, corresponding
to white and coloured noise respectively, are almost equal. This can be explained by the smaller long
wavelength sensitivity of the gravity anomalies and exactly these wavelengths are disturbed most by the
coloured noise. Table 6.2 summarises the errors.

6.3 Combination of SGG and SST

Satellite-to-satellite tracking (SST) is reported to be complementary to the satellite gravity gradiometry
measurements (Schrama, 1990). It is, therefore, natural to expect that the inclusion of SST observations
will improve the overall quality of the gravity field solution, that is, smaller propagated errors, and bias.
However, the SST normal equations are usually set up for a maximum degree of L � ��
 (e.g. Schrama,
1990). Increasing the maximum degree for SST might increase the effect of the polar gap as is the case
for SGG.

The high-low SST normal equations are set up to degree L � ��
. In principle all these coefficients
are present in the signal. As pointed out in chapter 4, a block-diagonal approach is used for the SST

observations as well. This is certainly not recommended for a real life situation where one wants to
obtain a gravity field model, since this approach is not good enough as shown by (Van den IJssel et al.,
2000). However, in this study only error propagation will be used and a block-diagonal normal matrix
is supposed to give reasonable error estimates, that is, using the block-diagonal matrix one should get a
fair idea of the possibilities and limitations of the SST observations. Past experience showed that a block-
diagonal approach of the GEM-T1 normal matrix and a full normal matrix yield the same geoid error
magnitude (Bouman, 1993). Furthermore, the SGG-SST combination results using a full error matrix can
be very well compared with the results presented here (Van den IJssel et al., 2000).

The error model as shown in figure 6.6 is assumed for the SST observations. The maximum errors
are at 1 cpr, the along track error, x, is the largest due to the larger impact of surface forces in that
direction. Since GOCE is drag compensated, the PSD may be considered as one that represents a drag
compensation that is not perfect. This PSD has been derived from Topex orbit residuals (Sneeuw 1999,
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Figure 6.6: The square root of the error PSD for SST.

Table 6.3: MSE and bias of the SGG+SST solutions.

mission
no. parameters � MSEa BNR max(BSR)b

2a SGG, L � ��� 5.1 2.9 0.06 0.18 (61.4)
4 SGG+SST, L � ��
 3.6 0.9 1.2 0.18 (223.0)
5a SGG+SST/10, L � ��
 4.3 1 1.6 0.18 (493.0)
5b SGG+SST/10, L � ��
 1.4 9.7 0.3 0.66 (�� �
�)
6 SGG+SST/100, L � ��
 4.9 1.2 1.8 0.18 (539.4)

aIn proportion to mission 5a.
bThe maximum BSR based on the OSU91A degree-order variances. The maximum BSR between brackets has been computed

using the OSU91A coefficients.

private communication). Because the error PSD is fairly optimistic above 3 cpr (Visser et al., 2000), also
a 10 times and 100 times more pessimistic error model are considered, denoted as SST/10 and SST/100
respectively. Most of the results in this section are presented by Bouman and Koop (1999).

Bias. Minimisation of the trace of the MSEM yields the � values as listed in table 6.3. (Mission 2a is
repeated for reference, the old values are in italic.) The less weight the SST observations get the more
the value of the regularisation parameter tends to that of the SGG only value, missions no. 4, 5a and 6.

The MSE of the three SGG-SST missions 4, 5a and 6 does not change much from one mission to
another. The high-low SST contributes only to the, relatively few, low degree and order coefficients. The
accuracy of the SST observables is, therefore, less important. What really matters is that to the SGG

observations measurements are added, sensitive to the low degrees and orders. SGG is less sensitive to
those due to the nature of the measurements themselves, the coloured noise and the polar gap, see also
figure 6.7.

The BNR becomes larger for smaller SST weights. Since the regularisation parameter becomes larger
for smaller SST weights, while the SST weights decrease one order of magnitude each time the regulari-
sation receives a relatively larger weight. The bias relative to the propagated error is much lower for the
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Table 6.4: Propagated errors for the combined SGG/ SST solutions.

mission geoid height error (cm) grav. anomaly error (mGal)
no. parameters RMS mean max min RMS mean max min
2a SGG, L � ��� 9.7 3.5 58.8 0.8 1.26 0.43 6.70 0.08
4 SGG+SST, L � ��
 5.9 1.9 32.7 0.3 0.99 0.36 5.71 0.08
5a SGG+SST/10, L � ��
 6.5 2.0 37.2 0.3 1.06 0.38 6.02 0.08
5b SGG+SST/10, L � ��
 9.0 5.2 41.8 1.8 2.06 1.50 9.47 0.63
5b lmax � ��
 7.6 2.6 42.1 0.5 1.38 0.51 7.96 0.13
6 SGG+SST/100, L � ��
 7.0 2.1 38.1 0.4 1.10 0.39 6.47 0.08

SGG only solution compared to the SGG + SST solution as a consequence of the larger propagated noise
for SGG. SST doubles the number of observations and it compensates for relatively large errors due to
coloured noise SGG, see ‘Propagated errors’ below. Since the SST/10 errors seem to be the most realistic,
these weights are adopted from now on (Davis, 1997; Visser et al., 2000).

The bias of the SGG only solution, missions 2a and 2b, has been compared with the SGG-SST solu-
tions, missions 5a and 5b, see figure 6.7. Especially the coefficients affected by the coloured noise and
the polar gap have more bias in the SGG only solution, while there is less bias for the low degree and
order tesseral coefficients. An explanation is as follows. The bias in standard form is

�x � ��ATA� I���Ix

which means that in general the weakly determined coefficients are biased the most. If SGG and SST are
combined ATA changes such that certain coefficients can be better determined and receive therefore less
bias. The total bias is not only reduced but also redistributed over other coefficients (of the same order
in this case) because these other coefficients gain relatively less from the additional SST measurements.
Note that the biases are very small for these tesseral coefficients, see figure 6.2 and 6.3. The bias increase
for these coefficients, therefore, is not as dramatic as it may appear at first sight. The BSR itself is shown
in figure D.2 for the SGG + SST missions.

Error degree variances. Figure 6.8 shows the error degree variances of the SGG-SST missions. The
combined solutions outperform the SGG only solution up to degree 100 approximately. The effect of
the changing SST weight is most visible in the low degrees. Since there are only a few low degree
coefficients, the effect on the total MSE is not very large as shown earlier. The error degree variances of
the L � ��
 solutions are above those of the L � ��
 solutions. Besides the fact that the same number
of observations is used to estimate a higher degree solution, i.e. more unknowns, the effect of the polar
gap becomes more evident. However, all propagated errors of missions 5a-b are smaller than those of
missions 5a-b (table 6.2 and 6.4), see the section ‘Propagated errors’ below.

Propagated errors. The propagated geoid errors are depicted in figure 6.9, left, the gravity anomaly
errors in figure 6.9, right. Since the propagated errors for missions 4 and 6 resemble those of mission 5a
very much, they are not shown. The combination of the SGG coloured noise measurements and the SST

measurements reduces the geoid error in the measurement area to the level of the SGG only, white noise
solution. SST, therefore, effectively compensates for the coloured SGG noise. This effect is, of course,
negligible for the anomaly errors since the coloured noise did not have a large impact on the anomalies
in the SGG only solutions. Because of the long wavelength sensitivity of SST and the high wavelength
nature of gravity anomalies, the overall advantage of SST is small for the gravity anomalies. See also
table 6.4 where the propagated errors have been summarised.
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Figure 6.7: Bias of the SGG solutions with respect to the SGG+SST solutions. Maximum degree is L �
��
 (left) and L � ��
 (right). Logarithmic scale.
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Figure 6.9: Geoid and gravity anomaly errors according to error propagation, SGG + SST measurements.
The geoid heights are on the left, the gravity anomalies on the right.
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Remarkably, the combination of SST and SGG reduces the geoid error in the polar area, although the
polar gap still exists. The maximum geoid error is 55% - 65% compared to SGG only, table 6.4, fifth
column. Effectively, the SST observations do not ‘feel’ the degrees above 100, see also figure 6.8. Since,
for low orders, especially the high degrees have much support in the polar areas, the high degrees are
affected most. Compare figure 6.10 where for m � 
 the Legendre functions for l � �
� �

 and 180
are shown. Thus the polar gap has less effect on the SGG+SST solution.

This is also supported by the increase of the minimum eigenvalues for the low orders. The right
panel of figure 6.10 displays the eigenvalues of the combined SGG - SST solution with respect to those
of the SGG only solution. The effect of coloured noise and polar gap have been separated. Shown are
the first 12 blocks, m � 
� � � � � �, the eigenvalues are ordered increasing within each block. Comparing
white noise with coloured noise and the combination with SGG alone, one may conclude that a few of
the smallest eigenvalues become larger while the largest eigenvalues remain unchanged.

6.4 Combination of SGG and airborne gravimetry

The results presented in this section are an extension of the work in Bouman and Koop (1998c). There
it was concluded that, to obtain geoid heights with a globally homogeneous error, two polar caps of ��

radius with additional gravity data suffice to constrain the solution in case of a GOCE orbit, that 5-10
mGal accuracy of the gravimetric observations is sufficient, and that larger areas with gravity anomalies
hardly improve the solution because of the relatively low accuracy of the anomalies compared to the SGG

measurements. However, in order to obtain a block-diagonal matrix, an equi-angular grid with a spacing
of 
����� has been used and white noise was assumed, the maximum degree was L � ��
. One final
result to be mentioned is that if the gravity anomalies are given in a grid with a spacing of 
���� with 5
mGal anomaly accuracy, this yields the same geoid precision as gravity anomalies given in a grid with a
spacing of 
����� with 10 mGal anomaly accuracy.

Instead of a regular grid based on an angular scale, however, it would be more realistic to use a regular
grid based on a metric scale (K. Schwarz and C. Tscherning 1998, private communication). Furthermore
there is along-track correlation. Present day airborne gravimetry has an accuracy of 2-6 mGal with half
wavelengths of 5-10 km as determined from cross-over points and compared to sparse upward continued
data (Schwarz and Li, 1997). When cross-overs can be computed the white noise assumption is more
realistic.

Based on this information the approach is as follows. It is assumed that two polar caps of ���� radius
with gravity anomalies are available. The precision is 2.5 or 5 mGal for the lowest latitudes, that is for
�����, but it decreases towards the pole as a function of latitude:

����� �
cos��
cos�

�������

Thus, this is equivalent to ‘thinning out’ the equi-angular grid towards the poles and approximates an
equi-distance grid. The grid distance at �� � ����� is 8.25 km which corresponds to 
����. The decrease
of this distance in km, behaving like cos�, is compensated by the weight decrease. This approach is
motivated by the earlier findings that a weight decrease of a factor 2 and a grid spacing increase of
a factor 2 have exactly the same effect (Bouman and Koop, 1998c). In summary: although an equi-
angular grid has been used, preserving the block-diagonal structure, the weight decrease towards the
poles effectively compensates for the point density increase. Solving up to degree 240 a smaller grid size
has to be chosen to fulfil the condition of chapter 4, L 
 N , with L the maximum degree of the spherical
harmonic expansion and N the number of points in longitude direction. In this case the grid distance at
�� � ����� is 7.25 km which corresponds to 
����.

Instead of the airborne gravimetric observations themselves, a grid of anomalies, at the Earth’s sur-
face, is used. As with the SST normal equations, quality assessment using a block-diagonal normal matrix
should give a fair idea of the possibilities and limitations of the gravity anomaly measurements.
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Table 6.5: MSE and bias of the SGG+�g solutions.

mission
no. parameters � MSEa BNR max(BSR)b

2a SGG, L � ��� 5.1 2.9 0.06 0.18 (61.4)
5a SGG+SST/10, L � ��� 4.3 1 1.6 0.18 (493.0)
7a SGG+�g, L � ��
 0.8 1.5 �
�	 0.00 (5.7)
7b SGG+�g, L � ��
 1.2 8.5 0.07 0.55 (121.7)
8 SGG+�g,c L � ��
 1.2 1.5 �� �
�	 0.01 (25.1)

aIn proportion to mission 5a.
bThe maximum BSR based on the OSU91A degree-order variances. The maximum BSR between brackets has been computed

using the OSU91A coefficients.
cThe standard deviation of the gravity anomalies is � � ��� mGal except for mission no. 8 with � � ��� mGal.

Bias. The optimal �’s for the three SGG-�g solutions, 7a, 7b and 8, are approximately 1, see table 6.5.
The BNR as well as the BSR is very small, see figure 6.11. (The BSR of mission 8 is almost identical to
that of 7a, compare appendix D, figure D.1. For the BNR see figure D.6.) Although the accuracy of the
�g observations is relatively poor, they are very important for constraining the low order coefficients.
The effect that remains is the downward continuation of the satellite data when L � ��
, figure 6.11,
right.

Error degree variances. The error degree variances are displayed in figure 6.12 left and right for the
L � ��
 and L � ��
 solutions respectively. The error degree variances of mission 8 are almost equal
to those of 7a and are shown in appendix D, figure D.3. The degrees between l � �� and l � ��

are biased most due to the polar gap as shown earlier (figure 6.1). The error degree variances of these
degrees, therefore, benefit most from the gravity anomaly measurements.

Propagated errors. The geoid and gravity anomaly errors displayed in figures 6.13, left and right,
show that the �g observations only have a local effect in the space domain. The coloured noise effect on
the geoid error from SGG only is not compensated for. This is also not to be expected since the additional
measurements are not globally distributed and do not provide sufficient information for long wavelengths,
for which the coloured noise is the most apparent. Interestingly, the maximum gravity anomaly error in
the polar areas (as obtained from error propagation) is 0.5 mGal for mission 7a and 1.0 mGal for mission
7b, cf. figure 6.13 and table 6.6, while the precision of the local anomaly measurements is 2.5 mGal and
5.0 mGal respectively. Because of the correlation between the unknowns, the SGG precision ‘leaks’ to
the polar regions.

Clearly, the gravity anomalies have a local effect only in the space domain, that is the polar areas,
whereas they have a global effect in the frequency domain concerning bias reduction. The geoid error
for the combination of SGG with the 2.5 mGal and 5.0 mGal anomalies stays below 4 cm and 8 cm
respectively (L � ��
). See figure D.4 for the propagated errors of mission 8. The SNR of missions 7a
and 7b is shown in figure D.8, and the BNR in figure D.6.

6.5 Combination of SGG, SST and gravimetry

The combination of SGG with SST and gravity anomalies yields the most accurate gravity field solutions.
The polar gaps are compensated by the gravity anomalies, whereas the SGG coloured noise is compen-
sated by the SST observations. Only the combination of the three data types gives a nearly homogeneous
quality. There are no excessive geoid height or gravity anomaly errors and the quality of the potential



76 6. Combined solutions

80 82 84 86 88 90
−0.5

0

0.5

1

latitude

P
l,0

 (
si

n 
φ)

l = 50
l = 100
l = 180
cutoff

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

index

ei
ge

nv
al

ue
 r

at
io

(SGG, wn)/(SGG, cn)         
(SGG + SST/10, wn)/(SGG, wn)

Figure 6.10: Legendre functions for m � 
. The degree is l � �
� �

 and ��
 (left panel). The
eigenvalues of SGG with coloured noise and of SGG + SST/10 with respect to SGG with white noise
(right panel). Shown are the first five orders or 12 blocks. The eigenvalues increase from left to right
within each block.

−4

−3

−2

−1

0

50 100 150
0

20

40

60

80

100

120

140

160

180

degree

or
de

r

−4

−3

−2

−1

0

50 100 150 200
0

50

100

150

200

degree

or
de

r

Figure 6.11: BSR: Combination of SGG and �g, L � ��
 (left) and L � ��
 (right). Logarithmic scale.

0 20 40 60 80 100 120 140 160 180

10
−11

10
−10

10
−9

10
−8

degree

OSU91A                                
σ(OSU91A)                        
SGG, L = 180                          
SGG + ∆ g (σ = 2.5), L = 180
SGG + SST/10, L = 180                 

0 50 100 150 200

10
−11

10
−10

10
−9

10
−8

degree

OSU91A                                
σ(OSU91A)                        
SGG, L = 240                          
SGG + ∆ g (σ = 2.5), L = 240
SGG + SST/10, L = 240                 

Figure 6.12: The error degree variances for the SGG-�g combination. Maximum degree is L � ��

(left) and L � ��
 (right).



6.5. Combination of SGG, SST and gravimetry 77

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

co−latitude (deg)

er
ro

r 
(m

)

SGG, L = 180                          
SGG + SST/10, L = 180                 
SGG + ∆ g (σ = 2.5), L = 180
SGG + ∆ g (σ = 2.5), L = 240

0 10 20 30 40 50 60 70 80 90
0

1

2

co−latitude (deg)

er
ro

r 
(m

G
al

)

SGG, L = 180                          
SGG + SST/10, L = 180                 
SGG + ∆ g (σ = 2.5), L = 180
SGG + ∆ g (σ = 2.5), L = 240

Figure 6.13: Geoid and gravity anomaly errors according to error propagation, SGG + �g measure-
ments. The geoid heights are on the left, the gravity anomalies on the right.

Table 6.6: Propagated errors for the SGG+�g solutions.

mission geoid height error (cm) grav. anomaly error (mGal)
no. parameters RMS mean max min RMS mean max min
2a SGG, L � ��� 9.7 3.5 58.8 0.8 1.26 0.43 6.70 0.08
5a SGG+SST/10, L � ��� 6.5 2.0 37.2 0.3 1.06 0.38 6.02 0.08
7a SGG+�g, L � ��
 1.7 1.5 3.9 0.7 0.18 0.16 0.53 0.07
7b SGG+�g, L � ��
 3.7 3.6 4.6 1.5 1.14 1.11 1.45 0.49
7b lmax � ��
 1.6 1.5 3.1 0.7 0.17 0.16 0.42 0.08
8 SGG+�g, L � ��
 2.1 1.7 7.5 0.7 0.26 0.19 1.03 0.07
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Table 6.7: MSE and bias of the combined solutions.

mission
no. parameters � MSEa BNR max(BSR)b

2a SGG, L � ��� 5.1 2.9 0.06 0.18 (61.4)
5a SGG+SST/10, L � ��� 4.3 1 1.6 0.18 (493.0)
7a SGG+�g �L � ��� 0.8 1.5 ���� 0.00 (5.7)
9a SGG+SST/10+�g, L � ��
 0.8 0.2 �� �
�	 0.00 (5.6)
9b SGG+SST/10+�g, L � ��
 1.2 7.3 0.09 0.55 (121.8)

aIn proportion to mission 5a.
bThe maximum BSR based on the OSU91A degree-order variances. The maximum BSR between brackets has been computed

using the OSU91A coefficients.

Table 6.8: Propagated errors for the combined solutions.

mission geoid height error (cm) grav. anomaly error (mGal)
no. parameters RMS mean max min RMS mean max min
2a SGG, L � ��� 9.7 3.5 58.8 0.8 1.26 0.43 6.70 0.08
5a SGG+SST/10, L � ��� 6.5 2.0 37.2 0.3 1.06 0.38 6.02 0.08
7a SGG+�g �L � ��� 1.7 1.5 3.9 0.7 0.18 0.16 0.53 0.07
9a SGG+SST/10+�g, L � ��
 0.9 0.7 3.2 0.3 0.18 0.16 0.51 0.07
9b SGG+SST/10+�g, L � ��
 3.4 3.3 4.2 1.4 1.14 1.11 1.45 0.49
9b lmax � ��
 0.8 0.7 2.6 0.3 0.17 0.16 0.41 0.08

coefficients is homogeneous as well. Of course, the effect of downward continuation is still present. The
MSE and bias are listed in table 6.7, table 6.8 lists the statistics on the geoid height and gravity anomaly
errors. Figures 6.14 and 6.15 show the error degree variances for the combined solutions and the geoid
and anomaly errors according to error propagation respectively. The BSR and SNR are equal to that of
the SGG-�g combination, see appendix D (figures D.6 and D.8).

6.6 Summary

In this chapter the quality of gravity field solutions in a GOCE-like setting was investigated by means of
pure error propagation. The different SGG mission scenarios show that the more measurements of the
same kind are available, the smaller the bias becomes, at least for the gravity potential coefficients not
affected by the polar gaps or downward continuation. Furthermore, it is shown that coloured noise of
SGG observations has a large impact on the geoid errors, specifically in the area covered by observations,
whereas the impact on gravity anomalies is much smaller. This is caused by the fact that the anomalies
are less susceptible to long and medium wavelengths which are affected most by the coloured noise.

The SST observations reduce the bias for the coefficients affected by the coloured noise and the
low order, low to middle degree coefficients affected by the polar gap. If, however, only SGG and SST

observations are available, the bias cannot be neglected. While SST improves the quality of the spherical
harmonic coefficients only locally (low degrees and orders) it has a global effect in the space domain on
geoid errors. The improvement in the long wavelength coefficients is enough to decrease the total geoid
error for the whole Earth, compensating for the SGG coloured noise.

Gravimetry in the polar areas, on the other hand, only improves the geoid error locally, that is in
the polar areas. However, due to this local constraint, the quality of all low order spherical harmonic
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coefficients improves. The gravity anomalies fully compensate for the polar gap effect, although their
accuracy is low compared to the satellite observables.

To a certain extent, the accuracy of the SST and �g measurements is unimportant. The weights of the
SST observations varied between 0.5 and 50 cm/

p
Hz above 3 cpr and the weights of the anomalies varied

from 2.5 to 5 mGal without a large influence (note that an orbit disturbance of 10 cm corresponds to �
�	

E at this height). The accuracy of present day or near future state-of-the-art measurements, therefore,
seems to be sufficient. The value, therefore, of the SST and �g observations is that they enlighten a part
of the function space for which the SGG observations are blind.
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Conclusions and recommendations

Conclusions

The determination of a global model of the Earth’s gravity field from space borne observations is an ill-
conditioned inverse problem. The severeness of the ill-conditioning, due to the downward continuation
and the heterogeneous data coverage, depends on the resolution of the desired model. A stable system
of equations is obtained by regularisation at the expense of biased solutions. The total error of the
solution can be described by the MSEM which includes propagated observation noise and bias. Of the
discussed regularisation methods, the methods based on the SVD are not implemented since they involve
the decomposition of the design matrix which requires too much CPU-time and memory. Tikhonov
regularisation as well as biased estimation are better suited.

Although it is generally recognised that stable solutions as obtained by regularisation are biased, the
solution is nevertheless interpreted in the framework of unbiased constrained least squares. A proper
quality description, however, does take the bias into account. The quality assessment is based on a
number of quality measures. Propagation of the MSEM to geoid height uncertainties or gravity anomaly
uncertainties is of interest as well as several ratio measures such as the signal-to-noise ratio or the bias-to-
noise ratio. Three contribution measures have been derived which all seem to be of little additional value
in quality assessment compared to BSR for example. Of the three contribution measures, the two for
biased estimators do not show the proper convergence behaviour for large regularisation parameters, that
is, the contribution of the observations to the solution should go to zero but it does not. The contribution
measure for unbiased estimators, applied to the biased solutions, yields large contribution values. The
contribution of the observations to each spherical harmonic coefficient is more than 90%, using TR or
BE up to degree L � ��
. Nonetheless, a few coefficients suffer from large biases and propagated error
which would not be expected when looking at the unbiased contribution measure.

A simulation study for SGG only, solving up to spherical harmonic degree L � ��
 leads to the following
conclusions. The polar gaps yield an extremely large condition number, �
��, whereas the condition
number due to downward continuation is much smaller, �

. However, if almost perfect observations
are available, the almost exact solution is obtained even in presence of polar gaps. The circular orbit
approximation may be overcome by iteration. TR with signal, first and second derivative constraint, as
well as ordinary and generalised biased estimation have been used to compute a regularised solution. In
the presence of polar gaps, TR with signal constraint gives the smallest mean square error of all tested
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regularisation methods. The performance of TR with first derivative constraint equals that of TR with
signal constraint. TR with second derivative constraint is slightly worse, specifically the high degree
coefficients are more biased. Although generalised biased estimation (GBE) is designed to give the
smallest MSE, it does not perform well. This is a consequence of the polar gaps which cause the low
orders to be badly determined. Ordinary BE yields large errors in the polar regions, up to 20 m geoid
height errors. However, in the measurement area all methods have similar performance, if the maximum
degree is L � ��
.

The bias cannot be neglected. For the examples considered the bias is 15%-30% of the total error.
The maximum BSR based on degree-order variances is 0.2-4.2, that is, the bias is maximal 20%-420% of
the spherical harmonic coefficients. In the measurement area the bias can be neglected with respect to the
noise for L � ��
. The comparison of the simulated ‘true’ error and the error after error analysis shows
that for a proper error analysis a correct noise model is a prerequisite. Notwithstanding that the normal
matrix becomes block diagonal as a result of the model assumptions, the bias term of the MSEM does
not. However, using only the block diagonal of the bias term is sufficient as is shown by a comparison
with the simulated ‘true’ bias.

An error analysis for the combination of SGG with SST and/or �g, solving up to spherical harmonic
degree L � ��
 or L � ��
, using TR with signal constraint, leads to the following conclusions. The
combination of SST and SGG yields very accurate geoid heights and gravity anomalies in the surveyed
area. For a solution up to degree L � ��
 an RMS geoid error below 5 cm and an RMS gravity anomaly
error below 2 mGal, in the measurement area, seems to be realistic. Increasing the resolution from L �
��
 to L � ��
 means increasing the effect of the polar gap. The propagated geoid height and gravity
anomaly errors increase. The effect of coloured noise on the SGG only solutions may be quite large: geoid
height errors are up to a factor three larger in the measurement area, whereas gravity anomalies are nearly
not affected. The coloured noise effect, however, may be fully compensated by the SST data. The added
value of the latter is their sensitivity to frequencies for which SGG is less sensitive. Furthermore, SST

partially overcomes the effect of the polar gaps. The bias cannot be neglected using only satellite data.
Up to degree L � ��
 the bias-to-noise ratio is between 0.06 and 2.0, that is, the bias comprises 5%-65%
of the total error. The maximum bias is approximately 20% of the signal for all satellite solutions. If
L � ��
 then this maximum becomes 70%.

For a maximum degree of L � ��
 the combination of SGG and �g yields geoid errors between
1 and 4 cm, and anomaly errors below 0.5 mGal. The former numbers are 0.5 cm and 3 cm for the
combination of SGG, SST and �g. If the maximum degree is L � ��
, the geoid errors vary between 1.5
and 4.5 cm, whereas the anomaly errors are 0.5-1.5 mGal. The total power of the bias can be neglected
with respect to the measurement noise if L � ��
. Also compared to the signal the bias can be neglected.
However, if L � ��
 the maximum BSR is 55% and the bias is about 8% of the total error. The bias
due to the polar gaps disappears whereas the downward continuation cannot be compensated for. In
summary, assuming that the simplified error model is good enough, one can state that todays state-of-
the-art airborne gravimetric data in the polar regions effectively compensate for the polar gaps, although
their accuracy is relatively low compared to the satellite data. Only by these additional data a truly global
high quality gravity field model is obtained.

Recommendations

The regularisation parameter has been determined by minimising the mean square error. Although this is
sufficient to compare regularisation methods, it is not feasible in practice, because the true solution needs
to be known. The iterative procedure towards the minimum MSE based on the least-squares solution (Xu,
1998) or its modification based on BE might be of interest in the analysis of satellite data. The exact
relation of the L-curve and quasi-optimality with the MSE needs to be studied. The GCV method, which
is expected to give the minimum MSE, was not implemented, because, among others, it is reported to be
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sensitive to coloured noise. However, a combination of SST and SGG eliminates the effect of the coloured
noise SGG error. Thus GCV might work well for a combination of these measurements.

If one is interested in a high quality gravity field model for the whole Earth, additional gravity related
measurements in the polar areas to support GOCE are indispensable. To this end, a feasibility study
might prove useful. Another way to improve the quality of the low order coefficients, at least for the low
degrees, is to combine the GOCE solution with earlier determined gravity field models. If, however, a
high quality local gravity field is needed (apart from the polar regions), then GOCE provides it.

The bias towards zero of the high degree coefficients in todays satellite-only models is generally
recognised. In view of this coefficient bias, the choice of the regularisation parameter as well as the
quality assessment of these models needs to be re-addressed. Since the satellite-only models serve as
starting point for todays combined global gravity field models, also the combination of the satellite-only
models with surface gravity data and altimetric data needs to be reconsidered. Especially bias reduction
may become an important issue.

The errors in the potential coefficients studied in this thesis are either caused by measurement noise
or regularisation. However, there is signal present above the maximum degree and this signal will be
mapped onto the lower degrees. The precise nature and size of the errors caused by neglecting the
gravitational potential coefficients above L � ��
 need to be studied. To overcome this error, one
strategy might be to solve for more coefficients than needed or suggested by the SNR. The idea is that
the additional coefficients absorb most of the error. It is questionable, however, whether this is feasible.
Increasing the degree means increasing the influence of the polar gap and all low order coefficients will
be affected. Also the ill-conditioning due to the downward continuation increases. Moreover, the same
number of measurements is used to determine more coefficients, increasing the MSE. The trade-off
between a reduced effect of the neglected coefficients and the increased effect of polar gap/downward
continuation and MSE deserves further attention.
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Compact operators and spectral decomposition.

This appendix has been added to support chapter 2. A few definitions from functional analysis are listed
and an introduction to spectral decomposition is given.

A.1 A few definitions from functional analysis

Consider the operator equation
Af � g

of the first kind. The symbol A � F � G will mean a single valued mapping whose domain of definition
is F and whose range is contained in G. The range R�A� is the set R�A� �� fAf � f � Fg of all image
elements.

Injective, surjective and bijective. If for each g � R�A� there is only one element f � F withAf � g
then A is said to be injective and its inverse mapping A�� � R�A� � F is defined by A��g �� f . The
inverse mapping has domain R�A� and range F . It satisfies A��A � I on F and AA�� � I on R�A�
where I is the identity operator. If R�A� � G then the mapping is said to be surjective. If it is injective
and surjective the mapping is called bijective, that is, the inverse mapping A�� � G � F exists, e.g.
(Kress, 1989, p. 1).

Bounded operators. An operator A � F � G mapping a linear space F into a linear space G is called
linear if

A�c�f� � c�f�� � c�Af� � c�Af�

for all f�� f� � F and all c�� c� � R.

Definition A.1 (bounded). A linear operator A � F � G from a normed space F into a normed
space G is called bounded if there exists a positive number c such that

kAfkG � ckfkF

for all f � F . Each number c for which this inequality holds is called a bound for the operator A. �
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Definition A.2 (continuous). Consider the mapping A � F � G where F and G are metric spaces
with d the metric on G and �d the metric on F . The mapping A is said to be stable or continuous on the
spaces �F�G� if for every � � 
 there is a � � 
 such that

�d�Af�� Af�� � �d�g�� g�� 
 � � f satisfying d�f�� f�� 
 � (A.1)

where f�� f� � F and g�� g� � G. �

A linear operator is continuous if and only if it is bounded. Hence, for a linear operator boundedness
and continuity are equivalent concepts.

Compact operators. A linear operator A � F � G is compact if and only if for each bounded sequence
ffng in F the sequence fAfng contains a convergent subsequence in G. Compact linear operators are
bounded.

Theorem A.3. Let F�G�H be normed spaces and let A � F � G and B � G � H be bounded
linear operators. Then the product BA � F � H is compact if one of the two operators is compact. �

Theorem A.4. The identity operator I � F � F is compact if and only if F has finite dimension.
�

Therefore, the compact operator A cannot have a bounded inverse unless its range is finite. (A��A �
I is not compact in infinite dimensions due to theorem A.4 and because A is compact A�� has to be
unbounded in view of theorem A.3.) For a proof of these theorems see (Kress, 1989, chapter 2).

A.2 Spectral decomposition

An important tool when dealing with inverse problems is the spectral decomposition of the operator.
A spectrum gives clear insight in the behaviour of the operator for different frequencies and further
illuminates possible ill-posedness of the problem at hand. The main references here are Lanczos (1961);
Groetsch (1980); Kreyszig (1989), compare also Nashed (1976); Golub and van Loan (1996); Louis
(1989); Groetsch (1993); Engl et al. (1996).

Definition A.5 (eigenvalues, spectrum). Let T � F � G be a compact, symmetric (or self-adjoint,
T � T �) and semi-positive definite (hTf� fi � 
 � f � F ) linear operator. Then T has a finite or
countably infinite number of eigenvalues �n; in the latter case �n � 
 as n � � (the only possible
point of accumulation is zero which follows from the compactness of the operator (e.g. Kreyszig, 1989,
sec. 8.3)). The eigenvalues can be arranged in a sequence converging to zero

�� � �� � � � � � �n � � � � � 
 (A.2)

with corresponding (nonzero) orthonormal eigenvectors w�� w�� � � � � wn� � � �:

Twn � �nwn�

The set of eigenvectors fwn � �n �� 
g is a basis for R�T �.1

The set ��T � of numbers � for which the operator T � �I has no bounded inverse is called the
spectrum of T . In the case of a compact, symmetric, semi-positive definite operator the spectrum is
real, nonempty and every nonzero member of ��T � is an eigenvalue of T . The corresponding null space
N�T � �I� is finite dimensional. �

1Since spanfwng is complete and R�T � might not be complete. Thus the completion of R�T � is needed.
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The norm of T is equal to the spectral radius:

kTk � maxf� � � � ��T �g � ���

For every f � F we may write

Tf �

�X
n��

�nhf�wniwn�

Definition A.6 (singular values, singular system). Now consider the compact operators A � F � G,
A�A � F � F and AA� � G � G. The latter two are self-adjoint and have the same nonnegative
eigenvalues. If there are only nonzero eigenvalues, the spectra of both operators are the same ��A�A� �
��AA��.

Denote the eigenvectors of A�A as vn, and the eigenvectors of AA� as un. The eigenvalues, equal
for both operators, are �n, the ordering is as in (A.2). Let �n �

p
�n and un � ���n Avn. Then

Avn � �nun

and
A�un � �nvn�

The numbers �n are called the singular values for the operator A, the system fvn� un��ng is called a
singular system for A. �

From the last two equations above it follows that vn and un are indeed eigenvectors of A�A and AA�

respectively. The eigenvectors vn are a complete orthonormal system or basis for

R�A�� � R�A�A� � N�A��

and un are a complete orthonormal system for

R�A� � R�AA�� � N�A��� (A.3)

with N�A�� the space perpendicular to the null-space of A.
If and only if A has a finite-dimensional range, A has only finitely many singular values. If A is an

integral operator with infinitely many singular values, they accumulate (only) at 0

lim
n��

�n � 


as was the case for the eigenvalues. If there are finitely many singular values the kernel of the integral
operator is degenerate.

The norm of A is
kAk � ���

Theorem A.7 (Picard condition). The equation of the first kind Af � g has a solution if g � R�A�
and

�X
n��

���n jhg� unij� 
�� (A.4)

This is called the Picard condition. �

The Picard condition is a ‘smoothness condition’ for the right-hand side g. Since g � R�A� one can
write g �

P
n gnun. Because ���n �� for n�� the coefficients gn have to decay fast enough with

respect to the singular values in order to fulfil (A.4).
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Figure A.1: Singular value decomposition (solid lines), thin singular value decomposition (dashed lines).

Singular value decomposition in finite dimensions. Let A � R
m�n � with m � n. Then the singular

value decomposition of A is A � U	VT (figure A.1).
The matrices U and V are orthogonal, which means UTU � UUT � Im and V TV � V V T � In

respectively. Since the last m � n rows of 	 contain only zeros, the last m � n columns of U could
be cancelled. This is called the thin singular value decomposition (Golub and van Loan, 1996). The
resulting smaller matrix U becomes semi-orthogonal, UTU � In� UU

T �� Im, compare also Lanczos
(1961). The range of A is spanned by the first n columns of U , provided that all singular values are
non-zero. The domain of A is spanned by the columns of V . Therefore, the large singular values
denote the combination of unknowns xi that is well represented by the measurements y. In contrast,
the small singular values reveal which linear combination of unknowns are hardly recoverable from the
measurements.

Generalised singular value decomposition. The GSVD of the matrix pair �A�L� is a generalisation
of the SVD of A in the sense that the generalised singular values of �A�L� are the square roots of the
generalised eigenvalues of the matrix pair �ATA�LTL� (Hansen, 1997).

Let A � Rm�n and L � Rp�n with m � n � p. Then the GSVD is a decomposition of A and L in
the form

A � U

�
	 
p�n�p


n�p�p In�p

	
X��� L � V

�
M 
p�n�p

�
X��

where U � R
m�n � V � R

p�p and UTU � In� V
TV � Ip. X � R

n�n is nonsingular, and 	 and M
are p� p diagonal matrices with elements:


 � �� � � � � � �p � �� � � �� � � � � � �p � 


which are normalised such that
	T	�MTM � Ip�

Then the generalised singular values �i of �A�L� are defined as

�i � �i	�i� i � �� � � � � p

and they appear in non-decreasing order (opposite to the singular value ordering for historical reasons
(Hansen, 1997)).

The first p columns of X � �x�� � � � � xn� satisfy

��iA
TAxi � ��i L

TLxi� i � �� � � � � p
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hence ATAxi � ��i L
TLxi. Thus, the xi are called the generalised singular vectors of the pair �A�L�.

For p 
 n the matrix L � R
p�n always has a nontrivial null-space N�L� (Hansen, 1997). The last n� p

columns xi of X satisfy
Lxi � 
� i � p� �� � � � � n

and they are therefore basis vectors for the null-space N�L�.

Relation with SVD. Only when L is the identity matrix In, the matrices U�	 and V in the GSVD of
�A�L� are identical to U�	 and V of the SVD, except for the ordering of the singular values and vectors,
since p � n, X�� � M��V T and A � U	M��V T . In general there is no connection between the
singular values and vectors of SVD and GSVD. However, when L is well-conditioned (has a ‘small’
condition number, the smallest possible number is one) it can be shown that the matrix X is also well-
conditioned (Hansen, 1997). The diagonal matrix 	 displays therefore, the ill-conditioning of A.

Discrete Picard condition. Hansen (1990) introduces the Picard condition for finite dimensions, since
condition (A.4) is always fulfilled in finite dimensions. The unperturbed y in a discrete ill-posed problem
with regularisation matrix L (see section 2.2.2) satisfies the discrete Picard condition if the Fourier co-
efficients juTi yj decay faster on the average than the generalised singular values �i. A visual inspection
of a plot of the Fourier coefficients juTi yj and the generalised singular values �i could reveal the faster
decay. Alternatively, one may define the ratio

�i �� ���i



� i�qY

j�i�q

juTi yj
�
A

����q���

� i � q � �� � � � � n� q

which is the moving geometric mean, with q a small integer (Hansen, 1990). This ratio should decay
monotonically to zero.
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B j

A few remarks on local regularisation methods

Three local regularisation methods are briefly discussed. Because of the apparent shortcomings of these
methods, none of them has found further consideration in this thesis.

B.1 Spherical wavelets

Spherical harmonics localise ideally in the frequency domain, that is, any spherical harmonic corresponds
to a single frequency. They do not, however, show any space localisation. Better space localisation is
obtained by using spherical wavelets at the expense of worse frequency localisation (see, for example,
Schneider, 1997; Freeden and Schneider, 1998). Ignoring the whole theoretical background, spherical
wavelets turn out to be filtered versions of the discretised integral equation relating the gradiometer
values at satellite height to those at the Earth’s surface. The numerical examples presented so far (ibid)
use only Vzz in the space domain approach, assuming that the SGG measurements are contaminated with
white noise and that the satellite is in a polar orbit. In this study, however, all diagonal elements of the
gravity gradient tensor are of interest, as well as non-polar orbits and coloured noise. Spherical wavelets,
therefore, will further not be discussed here. Concerning ordinary wavelets, refer to, for example, Blatter
(1998).

B.2 Konopliv-Sjogren method

Besides the Earth’s gravity field, also the Moon’s (Lemoine et al., 1997; Konopliv et al., 1998), Mars’
(Konopliv and Sjogren, 1995), and Venus’ (Konopliv and Sjogren, 1996; Barriot et al., 1998) fields
have been modelled. Doppler tracking, from stations at the Earth, of satellites orbiting these celestial
bodies enables gravity field determination. Also here, like for the Earth, the spatial distribution of the
measurements is not homogeneous. Konopliv and Sjogren (1995, 1996) wish to avoid the standard
regularisation technique since this biases especially the high degree coefficients to zero, yielding lower
peak values in areas with large gravity signal. They therefore developed a method to partially overcome
this problem accounting for the spatial distribution. The Konopliv-Sjogren method is as follows.

At the surface, the radial acceleration, al, from all coefficients of degree l is given by (cf. section 3.2)

al��� �� � �GM
R�

�l � �� �Yl��� ���
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The expected RMS acceleration is, using Kaula’s rule (Kaula, 1966) and the orthogonality properties of
the base functions,

�al�rms �
GM

R�
K

r
�

l
(B.1)

where K is the constant for the particular planet (or Moon). Equation (B.1) is the square root of the
degree-order variance, which is

�����p
l

mGal and
��p
l

mGal

for Mars and Venus respectively (Konopliv and Sjogren, 1995, 1996). This is the first step.
The next step is to compute an unconstrained gravity field solution (�Clm and �Slm coefficients) trun-

cated at degree L. Sub-matrices up to degree � � � � l��� l� l��� � � � � L of the total error variance-covariance
matrix are propagated to acceleration uncertainties (errors) in a regular grid. The uncertainty for degree
l is then given as the difference of the cumulative errors to degree l and l � �. For each point the degree
where the acceleration error exceeds the expected acceleration signal (B.1) is called the degree strength
D. Thus, for the degrees D� � � � � L the noise exceeds the signal.

The final step is to introduce zero values for the acceleration coming from the coefficients above the
degree strength D at each point with an uncertainty approximately equal to the expected signal at the
degree strength. Specifically, the acceleration at a certain point for degree strength Di is

aDi
��i� �i� �

GM

R�

LX
l�Di

�l � ��

lX
m��l

�Klm
�Ylm��i� �i� (B.2)

where �Klm � 
 for l � Di� � � � � L. These ‘observations’ are merged with the original (linearised)
observation equations

Ef
�

y�
y�

	
g �

�
A�

A�

	
x� Df

�
y�
y�

	
g �

�
P��� 



 P���

	

with the least-squares solution

�x � �AT
� P�A� �AT

� P�A��
���AT

� P�y� �AT
� P�y��� (B.3)

The observation vector y� contains the differences of the satellite tracking data and the nominal data from
the nominal gravity field, while y� contains the differences of (B.2) computed with zero coefficients and
(B.2) computed with the nominal coefficients. The weight matrix P� is diagonal and is approximately
equal to the signal at the degree strength (10 to 20 mGal for Mars). Since actual signals at certain
locations can be much larger than the Kaula rule, the a priori observations y� over these regions are
relaxed, that is, they are either removed or their weight is decreased (Konopliv and Sjogren, 1995).

The above method has not been implemented for the following reasons:

	 The least-squares solution (B.3) combines the unconstrained l.s. solution with zero observations,
to which end the unconstrained l.s. solution needs to be evaluated explicitly. However, it might
occur that due to numerical instability such an unconstrained solution cannot be computed.

	 Konopliv and Sjogren (1995, 1996) claim that the main advantage of this spatial constraint instead
of a straight Kaula rule appears to be better determination of peak amplitudes. This is true as
far as the constraint is removed or relaxed. However, to do so one must know in advance the
gravity signal, for example from earlier gravity field solutions, DTM’s or from a first guess using
observations. In any case, this is not really straightforward.
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B.3 Additional constraints

In addition to the usual problem of minimising

J��x� � kAx� y�k�� � �kxk��
it is possible to define a (linear) side constraint of the form

Cx � s (B.4)

where C is an l � n matrix and s a known l vector. If for instance xi is a physical parameter that should
be positive then C � I and s � 
. One could think, for example, of the light intensity of a pixel in a
picture or of the distance between two points. The problem of minimising

J�x� � kAx� y�k��
the least-squares problem, with linear inequality constraint and a computation algorithm is treated by
Lawson and Hanson (1974). The total system of equations becomes non-linear and Lawson and Hanson
(1974) show how this can be solved iteratively. Hemmerle and Brantle (1978) discuss GBE with linear
inequality constraint.

A future application in geodesy might be gradiometric analysis. It is well known that SGG results
in badly determined low order gravitational potential coefficients (Van Gelderen and Koop, 1997). This
problem might partially be overcome by fixing the sign of the coefficients. One could for example adopt
the sign of an existing gravitational potential model when the SNR of a specific coefficient of this model
is larger than a certain threshold. This method, however, is not applied here. The side constraint as given
in (B.4) is deterministic, whereas the sketched application is of stochastic nature.
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C j

Synthesis of SGG observations

C.1 Interpolation

The direct computation of the gravity gradients Tij along the satellite orbit is time consuming. For each
observation point (new r� � and �) a new series expansion has to be evaluated. This means that for every
point one has to evaluate anew the Legendre functions and/or their derivatives together with cosm�
and sinm�. The direct computation can be avoided by pre-computing gravity gradients in regular grids
at several altitudes. The values are then obtained by interpolation. If the interpolation error is one or
more orders of magnitude smaller than the simulated observation error this approach is valuable and
acceptable. Hereafter the computation of the observations is discussed in more detail.

The approach followed does not demand much computer time and is accurate enough, that is, the
RMS interpolation error is 2 to 3 orders smaller than the measurement error as will be shown. The idea
is as follows (see also figure C.1).

	 Compute the actual orbit.

	 Subtract GRS80 from the ‘true’ gravity field (for example OSU91A). This reduces the size of the
signal, hence the interpolation error becomes smaller.

	 Compute grids with Tij in a north-east frame at four heights with FFT. The two middle grids are
at the minimum and maximum height of the orbit respectively. The other two grids are below and
above the orbit such that the height increment between the grids is constant (equidistant).

	 Interpolate horizontally, that is, in � and � in the four grids using Overhauser splines. An Over-
hauser spline is a non-smooth (C�) cubic spline, that is, it is one time continuously differentiable
at the data points (see Overhauser, 1968; Klees, 1999).

	 Interpolate in the vertical direction, again with Overhauser splines.

	 Add the GRS80 contribution to obtain Vij in the orbit points (optionally).

	 Rotate the gradients (full tensor) from the north-east frame to the local satellite frame.
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Figure C.1: Interpolation in grids, the grid points are given by �. These points are used for the two-
dimensional interpolation to obtain the interpolation points �. Thereafter, these points are used to inter-
polate in one-dimension and 	 is obtained.

C.2 Error test

The interpolated values were compared with gradients computed by direct evaluation of the series ex-
pansion at the measurement point to test whether the interpolation error is acceptable. In total the gravity
gradients in 10.000 points have been compared with a 5 second interval between them, figure C.2. The
average orbit height of GOCE is 250 km, and the vertical spacing using 4 grid levels is 15 km approxi-
mately, while �� � �� � �	�� which corresponds to 14 km at the equator. Both the exact and the inter-
polated gradients were computed in a north-east frame, using OSU91A up to degree and order 360. Since
the computation of Vxx involves the computation of the second derivative of the Legendre functions, it
is not computed directly. Instead, the harmonicity of V is exploited to compute Vxx � �Vyy � Vzz, and
the Legendre functions have to be computed up to the first derivative only.

The minimum obtainable error is �
�� E since the grids are stored as long integers to save disk space.
A long integer has 8 bytes or 32 bits on our computer, which means that the maximum number one can
store is 
���, one bit is needed for the sign. Therefore, gravity gradients up to 999 E can be stored
retaining 7 significant digits after the decimal point or �
�� E.

A first test with 4 grid levels in the radial direction gave an RMS difference of
�
�
 E with absolute
maxima of �
�	 E, compare figures C.3, C.4, C.5 and table C.1. Although this is well below the inte-
grated observation noise of approximately � � �
�	 E, a second test was conducted with 5 grid levels
instead of 4. This gave RMS differences of 
�
�� E, see table C.1. The vertical spacing is the half of the
previous vertical spacing and the interpolation uses the four grid levels closest to the observation point.

Since the interpolation error decrease, going from 4 to 5 grid levels, outweighs the additional effort
of computing 5 levels instead of 4, it was decided to use 5 grid levels in the radial direction. The spacing
in latitude and longitude direction turns out to be small enough. The interpolation error is uniform using
5 grid levels, i.e. it has the same magnitude for 3 directions.
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Figure C.2: The ground tracks of the tested interpolation points.

Table C.1: The interpolation error for Txx� Tyy and Tzz in Eötvös units (�
��s��). The measurement
noise in chapters 5 and 6 is at the 0.1 mE level.

Txx Tyy Tzz

4 grids 5 grids 4 grids 5 grids 4 grids 5 grids

RMS ��� � �
�� ��� � �
�� ��� � �
�� ��
 � �
�� ��
 � �
�
 ��� � �
��

max ��� � �
�
 ��� � �
�
 ��� � �
�	 ��� � �
�
 ��� � �
�	 ��� � �
�


mean �� � �
�� �� � �
�� � � �
�� � � �
�� �� � �
�� � � �
��
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Figure C.3: Signal and interpolation error for Txx in a north-east frame.
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Figure C.4: Signal and interpolation error for Tyy in a north-east frame.
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Figure C.5: Signal and interpolation error for Tzz in a north-east frame.
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Additional results

For reference purposes results in addition to those of chapter 6 are listed here. Furthermore, a few of
the results of chapter 6 are shown again, to facilitate the comparison. The tables and figures are listed
without discussion (see also chapter 6).

Table D.1: MSE and bias of all solutions.

mission
no. parametersa � MSEb BNR max(BSR)c

1 1 m, L � ��
, cn 2.4 11.8 0.2 0.20 (117.9)
2a 6 m, L � ��
, cn 5.1 2.9 0.06 0.18 (61.4)
2b 6 m, L � ��
, cn 1.5 12.3 0.4 0.68 (�� �
�)
3 6 m, L � ��
, wn 5.3 1.5 2.0 0.18 (386.4)
4 SGG+SST, L � ��
 3.6 0.9 1.2 0.18 (223.0)
5a SGG+SST/10, L � ��
 4.3 1 1.6 0.18 (493.0)
5b SGG+SST/10, L � ��
 1.4 9.7 0.3 0.66 (�� �
�)
6 SGG+SST/100, L � ��
 4.9 1.2 1.8 0.18 (539.4)
7a SGG+�g, L � ��
 0.8 1.5 �
�	 0.00 (5.7)
7b SGG+�g, L � ��
 1.2 8.5 0.07 0.55 (121.7)
8 SGG+�g, L � ��
 1.2 1.5 �� �
�	 0.01 (25.1)
9a SGG+SST/10+�g, L � ��
 0.8 0.2 �� �
�	 0.00 (5.6)
9b SGG+SST/10+�g, L � ��
 1.2 7.3 0.09 0.55 (121.8)

aExcept for mission no. 1 with a mission length of 1 month, the mission length is 6 months. The SGG observations are
subject to coloured noise with the exception of mission no. 3 where the noise is assumed to be white. The accuracy of the
gravity anomalies is � � ��� mGal, except for mission no. 8 with an accuracy of � � ��� mGal.

bIn proportion to mission 5a.
cThe maximum BSR based on the OSU91A degree-order variances. The maximum BSR between brackets has been computed

using the OSU91A coefficients.
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Figure D.1: BSR: SGG only solution for 6 months, white noise L � ��
 (left) and the combination of
SGG, 6 months, coloured noise and �g�� � ��
 mGal), L � ��
. Logarithmic scale.
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Figure D.2: BSR: Combination of SGG and SST/10, L � ��
 (left), and combination of SGG and SST/10,
L � ��
 (right). Logarithmic scale. The combined solutions SGG � SST or SST/100, L � ��
, yields
figures almost identical to the left panel.

0 50 100 150

10
−11

10
−10

10
−9

10
−8

degree

SGG, 1 month           
SGG, 6 months          
SGG + dg (σ = 2.5)
SGG + dg (σ = 5.0)

Figure D.3: Error degree variances.
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Figure D.4: MSEM propagated to geoid heights (left) and gravity anomalies (right). SGG + �g, L � ��
.

Table D.2: Propagated errors for all solutions.

mission geoid height error (cm) grav. anomaly error (mGal)
no. parameters RMS mean max min RMS mean max min
1 1 m, L � ��
, cn 12.3 6.1 70.8 1.9 1.48 0.71 6.98 0.22
2a 6 m, L � ��
, cn 9.7 3.5 58.8 0.8 1.26 0.43 6.70 0.08
2b 6 m, L � ��
, cn 11.9 6.2 54.6 1.9 2.23 1.56 10.50 0.63
2b lmax � ��
 10.8 4.1 59.8 0.9 1.55 0.57 8.66 0.13
3 6 m, L � ��
, wn 8.3 2.4 47.1 0.3 1.18 0.41 6.73 0.08
4 SGG+SST, L � ��
 5.9 1.9 32.7 0.3 0.99 0.36 5.71 0.08
5a SGG+SST/10, L � ��
 6.5 2.0 37.2 0.3 1.06 0.38 6.02 0.08
5b SGG+SST/10, L � ��
 9.0 5.2 41.8 1.8 2.06 1.50 9.47 0.63
5b lmax � ��
 7.6 2.6 42.1 0.5 1.38 0.51 7.96 0.13
6 SGG+SST/100, L � ��
 7.0 2.1 38.1 0.4 1.10 0.39 6.47 0.08
7a SGG+�g, L � ��
 1.7 1.5 3.9 0.7 0.18 0.16 0.53 0.07
7b SGG+�g, L � ��
 3.7 3.6 4.6 1.5 1.14 1.11 1.45 0.49
7b lmax � ��
 1.6 1.5 3.1 0.7 0.17 0.16 0.42 0.08
8 SGG+�g, L � ��
 2.1 1.7 7.5 0.7 0.26 0.19 1.03 0.07
9a SGG+SST/10+�g, L � ��
 0.9 0.7 3.2 0.3 0.18 0.16 0.51 0.07
9b SGG+SST/10+�g, L � ��
 3.4 3.3 4.2 1.4 1.14 1.11 1.45 0.49
9b lmax � ��
 0.8 0.7 2.6 0.3 0.17 0.16 0.41 0.08
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Figure D.5: BNR: SGG, maximum is �
�. Solution up to degree L � ��
 (left) and L � ��
 (right).
The combined solution SGG � SST/10, yields figures almost identical to the current ones. The maximum
BNR, however, is �
�.
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Figure D.6: BNR: SGG + �g, maxima are �
��, left, and �
�, right. Solution up to degree L � ��
 (left)
and L � ��
 (right). The combination of SGG, SST/10 and �g yields figures identical to the current
ones, with the same maximum values.
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Figure D.7: SNR: SGG only, maximum is �
	. Solution up to degree L � ��
 (left) and L � ��
 (right).
The coefficients with an SNR larger than or equal to one are shown in black, coefficients with an SNR

smaller than one are shown in white. The combination of SGG and SST/10 yields figures identical to the
current ones. The maximum SNR, however, is �
�.
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Figure D.8: SNR: SGG + �g, maximum is �
	. Solution up to degree L � ��
 (left) and L � ��

(right). The coefficients with an SNR larger than or equal to one are shown in black, coefficients with
an SNR smaller than one are shown in white. The combination of SGG, SST/10 and �g yields figures
identical to the current ones. The maximum SNR, however, is �
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