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Summary

A processing strategy for the application of the GPS in networks

The objective of this thesis is the development of a geodetic data reduction model for the
use of the GPS for high precision relative positioning, with an emphasis on static network
applications. The following aspects can be distinguished: optimum use of available data, es-
timability of parameters, the use of an efficient estimation method for the estimation of both
the continuous and integer parameters, and the development of an efficient testing procedure
to detect gross errors in the data.

To enable the optimum use of the collected data we use the original observables instead of
the more common use of (double) differenced observables. This also enables the estimation
of parameters (receiver and satellite clocks) eliminated in the differencing approach. Instead
of the common use of linear combinations of the GPS observable types, we use the origi-
nal observable types. Again this enables the estimation of parameters otherwise eliminated
(ionospheric slant delays) and guarantees that the full information contained in the observ-
ables is preserved. Since, when using the original observables, the models for GPS relative
positioning are not of full rank, the rank defect is analyzed and resolved, and resulting es-
timable functions are given. In particular, an algorithm for resolving the rank defect due to
the GPS carrier phase ambiguities is described.

The use of the original observables asks for an efficient data reduction model. The data
reduction is therefore carried out in two steps. In the first step the local parameters, viz.
clocks and ionospheric slant delays are eliminated and only the global parameters (coordi-
nates, tropospheric zenith delays, ambiguities) are estimated using Cholesky factorization
of the sparse, reduced normal matrix. For the ordering of the global parameters during
the factorization an a priori ordering is given which to a large extent preserves sparsity. In
the second step the local parameters are computed, and the (sometimes tens of thousands)
observations are efficiently tested for gross errors (outliers and cycle slips). The testing of
observations lacks in the existing GPS data processing softwares for networks. The data
reduction for the original observations does in general not cost more time than the reduction
for the double differenced observations, and besides enables the quality analysis of single
observations instead of functions thereof.

For high precision relative positioning the integerestimation of the GPS phase ambiguities
and subsequent constraining of the ambiguities at their integer values (fixed solution) is
needed. The integer estimation is carried out using the LAMBDA (Least-squares AMBiguity
Decorrelation Adjustment) method. It consists of a general decorrelation of the ambiguities
materialized in a so-called Z-matrix, followed by a depth-first search in the hyper-ellipsoid
formed by the variance-covariance matrix of the ambiguities. The construction of the Z-
matrix (explicitly and implicitly) and the search are derived, and described in detail.

Results of the integer estimation are given for baselines up to 56 km, and for a small
network with three of the four stations allowed to be moving. The integer estimation method
was also *llpnea to a regional network in California, set up for monitoring of crustal move-
mentS. The results show the applicability of the method to both short baselines (up to 10-20
km) with an observation time span of the order of seconds, and regional networks with station
separation of up to hundreds of kilometers and an observation time span of the order of one
day.
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Samenvatt ing ( in Dutch)

Een verwerkingsstrategie voor de toepassing van het GPS in netwerken

De doelstelling van dit proefschrift is de ontwikkeling van een gegevensverwerkingsmodel
voor het gebruik van het GPS voor zeer precieze relatieve plaatsbepaling, met een nadruk
op de statische netwerk toepassing. In het onderzoek kunnen de volgende aspecten worden
onderscheiden: optimaal gebruik van de data, schatbaarheid van de parameters, het gebruik
van een efficiEnte schattingsmethode voor zowel de reijelwaardige als de geheeltallige para-
meters, en de ontwikkeling van een efficiijnte procedure om grove fouten in de waarnemingen
te ontdekken.

Om optimaal gebruik van het waarnemingsmateriaal te waarborgen worden de originele
waarnemingen in plaats van de vaak toegepaste dubbele verschillen van de waarnemingen
gebruikt. Dit stelt ons tevens in staat om parameters te schatten die anders geiilimineerd
worden (ontvanger- en satellietklokken). In plaats van de vaak toegepaste lineaire combi-
naties van GPS waarnemingstypen, gebruiken we de originele waarnemingstypen. Dit maakt
het weer mogelijk om parameters die anders gedlimineerd worden te schatten (ionosferische
vertragingen), en garandeert het behoud van de volledige informatie aanwezig in de waarne-
mingen. Omdat voor de originele waarnemingen de modellen voor relatieve plaatsbepaling
met GPS niet van volle rang zijn, wordt het rangdefect geanalyseerd, en worden resulterende
schatbare functies gegeven. In het bijzonder wordt een algoritme voor de oplossing van het
rangdefect veroorzaakt door de GPS fase meerduidigheden beschreven.

De gegevensverwerking wordt uitgevoerd in twee stappen. In de eerste stap worden de
lokale parameters (klokken en ionosferische vertragingen) ge6limineerd waarna de overige
parameters (cocirdinaten, troposferische zenit vertragingen, meerduidigheden) geschat worden
met behulp van Cholesky factorisatie van de ijle, gereduceerde normaalmatrix. Voor de
ordening van de parameters gedurende de factorisatie, wordt een a priori methode gegeven,
die de ijlheid grotendeels behoudt. In de tweede stap worden de lokale parameters berekend
en worden de (soms tientallen duizenden) waarnemingen op efficiEnte wijze getoetst op grove
fouten. De toetsing van waarnemingen ontbreekt in bestaande GPS verwerkingssoftware
voor netwerken. De gegevensverwerking kost in het algemeen niet meer tijd dan die voor de
dubbele verschilmetingen, en maakt een kwaliteitsanalyse van enkele waarnemingen in plaats
van functies van waarnemingen mogelijk.

Voor zeer precieze relatieve plaatsbepaling, is geheeltallige schatting van de GPS fase
meerduidigheden, en een daarop volgend vasthouden van de meerduidigheden op hun geheel-
tallige waarden, noodzakelijk. De geheeltallige schatting wordt uitgevoerd met de LAMBDA
methode. Deze bestaat uit een decorrelatie van de meerduidigheden gevolgd door een zoek-
procedure in de hyper-ellipsoide gevormd door de variantie-covariantie matrix van de meer-
duidigheden. De constructie van de decorrelerende matrix (zowel expliciet als impliciet) en
de zoekprocedure worden afgeleid en in detail beschreven.

Resultaten van de geheeltallige schatting worden gegeven voor basislijnen tot 56 km,
en voor een klein netwerk met drie van de vier stations bewegend. De geheeltallige schat-
tingsmethode is ook toegepast op een regionaal netwerk in Californi6, opgezet om aardkorst-
bewegingen te bepalen. De resultaten laten zien dat de methode zowel toegepast kan worden
voor korte basislijnen (tot 10-20 km) en een waarnemingstijdsspan van enkele seconden, als
voor regionale netwerken met afstanden tussen stations van honderden kilometers en een
tijdsspan van een dag.
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Chapter 1

Introd uction

1.1 The Global  Posi t ioning System

In this section we will give a short introduction into the Global Positioning System, for
more information we refer to (Leick 1995), (National Research Council 1995), (Parkinson
and Spilker Jr. 1996a), (Parkinson and Spilker Jr. 1996b), (Kleusberg and Teunissen 1996),
(Hofmann-Wellenhof et al. 1997), (Strang and Borre 1997).

The Global Positioning System, or GPS, is a development of the US military to provide
real-time, world wide absolute positioning with a high accuracy. The system as it was de-
veloped is based on the principle of the measurement of ranges between the unknown user
position to the (known) positions of 24 satellites orbiting the Earth in six orbit planes (A to
F) at a distance of approximately 26,000 km from its center. Currently the third generation
(Block IIR) of GPS satellites is being deployed (see Figure 1.1).

The position of the satellites can be computed using ephemerides that are contained in a
so-called navigation message which is part of the signal transmitted by the satellites. These
ephemerides are computed by the Control Segment (CS), consisting of five tracking stations

, 

,'.1.

;,<.
,, )s:-/ ;,"
;z'l- ,.::. /.

IIR GPS satellite.

I

Figure 1.1: Block



Introduction

more or less equally distributed around the equator, and a master control center. The
extrapolated ephemerides (broadcast ephemerides) are regularly uploaded to the satellites
from the tracking stations.

The ranges are determined by comparing the time tag of transmission of the signal at
the satellite with the time tag of reception of the signal at the receiver. If the clocks of the
receiver and of the transmitter would be perfectly synchronized, and if the signal would travel
through vacuum, multiplication of the time difference with the speed of light would give the
range between the antenna phase center of the receiver and that of the satellite.

If these perfect, unbiased ranges would be available, the ranges between the unknown
user position and three satellites would be sufficient to obtain an estimate for that positionr.

As in general neither the clocks ofthe satellites, nor those ofthe receivers are synchronized
with the official time of the GPS system (GPS time which equals UTC (Universal Coordinated
Time) at the start of the test phase of GPS, at January 6, 1980), the ranges become biased
by these unknown offsets. This basic GPS observable is called pseudorange.

Using pseudoranges instead of ranges, besides the position of the user, extra unknown
parameters have to be solved for (the offsets of the receiver and satellite clocks with respect
to GPS time). The offsets of the satellite clocks are however also computed by the CS
and uploaded to the satellites, thus only the offset of the clock of the receiver needs to be
estimated.

The GPS satellites transmit their signals at two frequencies (Ll:1575.42 MHz, and
L2:1227.6 MHz) in the L-band. These carriers are modulated by so-called PRN (Pseudo
Random Noise) codes, which are unique for each satellite. In this thesis the GPS satellites
will be referred to by their PRN code. There are two types of codes, viz. a Precision (P) and
a Coarse/Acquisition (C/A) code. The P-code has a 10 times higher resolution than the C/A
code and thereby the determination of the pseudoranges can be done more precisely. The Ll
carrier is modulated by the P (P1) and C/A code, the L2 carrier only by the P (P2) code.
The P-code was available to civilian users only in the test phase of the GPS system. It now is
encrypted to the so-called Y-code, to make spoofing of the code impossible (implementation
of Anti-Spoofing or A-S). The key is available only to the US military and their allies for
military use. The C/A code is available to all users.

Since the implementation of A-S several techniques have been developed to determine P-
code like pseudoranges, but the precision ofthese pseudoranges is still lower than the original
P-code pseudoranges, albeit higher than the C/A pseudoranges.

The time of transmission of the signal at the satellite is broadcast at an interval of six
seconds. Within this interval, time of transmission is determined by comparing the code on
the GPS signal with a copy ofthat code generated by the receiver. In this thesis pseudorange
observables will be denoted as pseudorange or code observables. The pseudorange at Ll will
be denoted as P1 irrespective if it is a C/A pseudorange, a genuine Pl pseudorange or a P1
like pseudorange. The pseudorange at L2 will accordingly denoted as P2.

Selective Availability or SA, is another measure taken to deprive civilian users from the
highest possible accuracy. In principle it consists of two parts, viz. a dithering of the satellite
clocks and degradation of the broadcast ephemerides. Currently the latter does not seem to
be implemented. Authorized users again can undo the effect of SA. As a result of A-S and

rUnder the assumption that neither the positions of the three satellites, nor the user position and the
positions of two satellites lie at one line (low precision), and that a sufficient accurate approximate position
of the user position is available (since in general there are two possible solutions, i.e. for a user on Earth, one
solution is on Earth, and one outside).



1.2 Objective and outl ine of the thesis

SA, a civilian user can determine absolute position with a horizontal precision of some tens of
meters, whereas an authorized user can determine position with a precision of several meters.

Positi,oni,ng using carrier phase
From the start of the test phase of the GPS system, it was observed that instead of using
the pseudoranges one could use the carrier phase instead, in a similar fashion to the already
existing VLBI technique.

By measuring the incoming phase of the carrier and keeping track of the number of whole
cycles from one epoch to the next, an amb'iguous or biased pseudorange is obtained. It is
ambiguous since it gives only the change of distance between receiver and satellite between
epochs. The unknown number of cycles that has to be added to make it a genuine pseudorange
is called the (GPS carrier phase) ambiguity. The carrier phase observable will be denoted in
this thesis as carrier phase or phase. The carrier phase observable on the Ll frequency will
be denoted as L1, and the one on the L2 frequency, asL2.

Using the model for the satellite clock error contained in the broadcast ephemerides,
carrier phase observations can be used for absolute positioning (Bock et al. 1984), but the
accuracy of the coordinates will be governed by the SA effect, and is therefore comparable
to the results obtained using pseudorange observations.

In a relative positioning setup, where two or more receivers simultaneously track a com-
mon set of satellites, corrections to both receiver and satellite clock errors may be estimated,
and very precise and accurate coordinate differences with respect to a known position are
obtained. Relative positioning has found successful application in fields like geodynamics,
surveying and navigation.

Since 1994 precise ephemerides (which are an order more precise than the broadcast
ephemerides) are estimated by a consortium of geodetic and geophysical institutes (Interna-
tional GPS Service for Geodynamics or IGS), to enhance the precision of crustal deformation
studies. In California and Japan, arrays ofseveral hundreds ofstations have been established
with the purpose of continuously monitoring plate movements on a daily basis.

For surveying and navigation purposes the precision requirements are less than for the
geodynamics case, but one would like to have a position in (near) real time.

L.2 Objective and outl ine of the thesis

The objective of this thesis is the development of a geodetic data reduction model for the use of
GPS for high precision relative positioning, with an emphasis on static network applications.
The following aspects can be distinguished: optimum use of available data, estimability of
parameters, the use of an efficient estimation method for the estimation of both the continuous
and integer parameters, and the development of an efficient testing procedure to detect gross
errors in the data.

The processing strategy is in principle applicable to any network ofreceivers, irrespective
of the distance between the receivers. For longer distances however, the functional model will
have to contain more terms (e.g. orbital parameters, correction for solid Earth tides) than
for shorter distances.

As said before, the main focus is at the application in static networks, i.e. two or more2,
non-moving receivers, but most of the procedures described have also been applied to moving

2The two receiver or single baseline case is the limiting case of a network.



lntroduction

recelvers.
In Chapter 2 the functional model for both the pseudorange and carrier phase observable

types is given. The error sources afecting the observables are described, and ways to model
them are given. Emphasis lies on description of error sources that are not well covered in
existing literature. Nothing will be said about the GPS orbits; we presume to have available
broadcast or precise ephemerides.

Using the functional model of Chapter 2, in Chapter 3 an efficient procedure for the
estimation of the unknown parameters of interest, and a testing procedure for the detection
of outliers and cycle slips for the observations involved, will be presented for the case when
only one GPS observable type (pseudorange or carrier phase) is used.

To enable the optimum use of the collected data we use the original observables instead
of the more common use of (double) differenced observables. Using the original observables
is equivalent to applying the double difference technique when the same data is used in both
approaches. The undifferenced approach however, sometimes enables to use data that in the
double difference approach has to be discarded. Only for baselines it does not matter which
of the approaches is used. Furthermore the undifferenced approach enables the estimation
of parameters (receiver and satellite clocks) that are eliminated with the double difference
approach.

It will be shown that when using undifferenced observables, the system of observation
equations exhibits a rank defect that can be resolved by choosing an appropriate S-basis.
The resulting estimable functions of parameters will be given. In particular, an algorithm
for resolving the rank defect due to the GPS carrier phase ambiguities is described.

The use of the original observations asks for an efficient data reduction model. The data
reduction is therefore carried out in two steps. In the first step the local parameters, (receiver
and satellite clocks) are eliminated and only the global parameters (coordinates, tropospheric
zenith delays, ambiguities) are estimated using Cholesky factorization of the reduced normal
matrix. In the second step the local parameters are computed, and the observations are
tested for gross errors (outliers and for the phase observations also cycle slips). The data
reduction model proposed, does in general not cost more time than the data reduction for
the double differenced observations, and besides enables the testing of single observations,
instead of functions thereof.

Chapter 4 treats the case when more than one GPS observable type is used. Instead
of the common use of Iinear combinations of the GPS observable types, we have chosen to
use the original observable types. Again this enables the estimation of parameters otherwise
eliminated (ionospheric slant delays) and guarantees that the full information contained in
the observables is preserved.

Four different models are shown, and for these, the rank defect, a possible S-basis and
resulting estimable functions will be given. Again an efficient procedure for estimating the
parameters and testing the observations will be shown. As the normal matrices arising
from the processing of large time spans may be sparse, the influence of the ordering of the
parameters on preserving the sparsity in the subsequent Cholesky factorization will be shown.

In Chapter 5 integer estimation of the GPS double difference ambiguities will be treated.
For high precision relative positioning the integer estimation of the GPS phase ambiguities
and subsequent constraining of the ambiguities at their integer values (fixed solution) is
needed. The integer estimation is carried out using the LAMBDA (Least-squares AMBiguity
Decorrelation Adjustment). The method consists of a general decorrelation of the ambiguities
materialized in a so-called Z-matrix, followed by a depth-first search in the hyper-ellipsoid
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formed by the variance-covariance matrix of the ambiguities. Depending on the application
at hand, it may be more efficient to compute the Z-matrix implicitly. The construction of
lhe Z-matrix (explicitly and implicitly) and the search are derived, and described in detail.

In Chapter 6 ambiguity resolution for medium distances (101-103 km) will be treated.
The ionospheric delays play a key role here. Two ways to constrain these delays, and results
obtained by them will be given. The LAMBDA method was applied to resolve the ambiguities
of a regional network in California. For this analysis the method was implemented in the
GAMIT software of MlT/Scripps Institution of Oceanography.

Most of the ideas of this thesis have been implemented in the GPS processing program
GPSvUQ developed by the author, and most of the examples have been computed using it.
A short description of the program can be found in Appendix A.
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Cha pter 2

Functional model for the GPS observables

In this chapter we will develop the functional model for the GPS code and phase observables
in precise relative positioning. The observables are to be related to the unknown parameters
of interest (usually the receiver's coordinates) and the bias parameters (e.g. clocks and phase
ambiguities). The structure of this chapter is the following. We will start with the non-linear
observation equations followed by the linearized ones needed for the (iterated) least-squares
adjustment. The underlying simplifications and assumptions will be described. For the
computation of the non-linear as well as the linearized equations we need the satellite position
and some quantities derived from it such as the topocentric distance and its derivatives. A
method for the computation of these quantities will be derived.

Some error sources affecting the GPS observables may be corrected for a priori. A number
of these error sources, viz. the satellite clock, phase center variation and offset, delays due
to the troposphere and ionosphere, solid Earth tides and phase wind-up, will (shortly) be
described. Emphasis lies on aspects that are not well covered in existing literature. Noth-
ing will be said about the GPS orbits; we presume to have available broadcast or precise
ephemerides. It will however not affect the applicability of processing methods proposed in
this thesis.

For reasons of legibility the stochastic character of the observables and estimated param-
eters is not denoted by any particular symbol.

2.I The GPS observation equations

The non-linear observation equations for the carrier phase observables on L1 and L2 and the
pseudorange observables on L1 and L2 read respectively (in meters)

ato,"r( to) -  !* j . " ,  ( t i ) :di \ i -  r ! , t r)  *  c6t; ; ; ( t6) -  cSt i 'Lr( tr-  t / )  + plr( t r-  r l , t )Ti( t i )

- f! (t) + )rl(,r.r * r.1,", (t,) (2 .  1 )

a tn , r r ( tn ) -Eo i , " " ( t ) :dQn- r ! , t i )+c6 t6 ; -2 ( t ) -c6 t i ,L2( t i - i l+p ln ( tn - r l , t i )T , ( t i )

- f l !( t) + ^2Nl,L2* er1.,,(tn) (2.2)

P!,rr( tn) -  Er j ," ,  ( t i ) :di \ i -  r l , tn) + c6t; ,p1(t)  -  c6t i 'Pr(h- r)  + t \ (h- r l , t i )Ti( t i )

+Il(t) + €p1p,(t i) (2.3)

Pi,rr(t) - E 
"i.."(t.i) 

: dnftt - r!,tn) + c6t6,p2(t;) - cSti'P2 (h - ri) + p!r@ - r!,t)T"(t)

+ .y f l i ( t )+ep i , p2 ( t i ) (2.4)
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where

t,i Receiver, respectively satellite identification.

ti Time of reception of the signal at receiver z in GPS time; t1 - t; 6ti(t;),
with fi the time of reception in receiver time (the time tag), and dl;(f;) the
receiver clock error [s].

doQn - r!,t;) Topocentric distance between receiver z at time I and satellite j attimeti-rl:

d(tr-r l , t ) : l l r i ( tn-r f)-r{ t ) l l ,  where r j  and r1 are def ined in an Earth-
Centered Inertial (ECI) system [m].

ri(ti) Position vector of receiver f at time of reception ,r of the signal [m].

yi(to - r!) Position vector of satellite j at time of transmission t1 - r/ [-].

,{ Travel time of the signal, i.e. time needed for the signal to travel from the
satellite to the receiver [s].

6ti(ti) Receiver clock error at time of reception l; [s].

51i(1n - r!) Satellite clock error at time ti - r! of transmission of the signal [s].

c 'Ihe speed of light in vacuum (299,792,458.0 m/s).

Tt(t;) Delay due to the troposphere in the direction of the zenith [m].

p!,t(tt - r!,ta) Ftnction.which maps the zenith delay into the receiver-satellite direction:
plr(tr - ,!,to) : plu ?i\o - ril,rnft)). A different mapping function for the
hydrostatic ('dry') and the water vapor ('wet') zenith delay may be defined.

Il(tu) Delay due to the ionosphere on L1 [m].
^l Factor relating the ionospheric delay experienced by the Ll and P2 observable

types to the delay experienced by the Ll and P1 observable types; j : frz I f22

ft Frequency of Ll : 1575.42:77 x 20.46 MHz.

h Frequency of L2 : 1227.60: 66 x 20.46 MHz.

)r Wavelength of the Ll-carrier: f, t 0.19 m.

)2 Wavelength of the L2-carrier: f; x 0.24 m.

Nl Real valued ambiguity term for the carrier phase observable; .nf : N! +h-f
[cycles].

dr,f Initial phase at receiver, and satellite, respectively [cycles].

€(ti) Observation noise and unmodeled effects [m].

t(r,;) A priori corrections for satellite clock, phase center variation, tropospheric and
ionospheric delays, solid Earth tides, and phase wind-up, (see Sections 2.3-
2.8) [m].



2.1 The GPS observation equations

In the observation equations quantities occur that are defined at the time of reception
of the signal f, at the time of transmission t - r, and at a combination of the two. The
ambiguity term that occurs in the equations for the carrier phase does not change with time.
Note that each receiver has its own time of reception (in GPS time); the difference between
the time of reception of two receivers is for a modern geodetic receiver at most 1 ms (see
Section 2.1.2). The time of transmission of the signals varies through the difference of the
time it needs to travel to two receivers that are not equidistant to the satellite. For each
observable a receiver and satellite clock error is defined, hence the term 'pseudorange'. The
phase observables are also biased by an unknown number of cycles and are thus ambiguous
pseudoranges.

Although in principle the clock errors are equal for all observable types for a particu-
lar receiver-satellite combination, the lumping of unmodeled observable type-specific error
sources into the clock errors makes it necessary to introduce distinct clock errors for each
obseruable type for each epoch. So, strictly speaking, the term clock error is somewhat mis-
leading. Depending on the application at hand, some parameters may be omitted from the
observation equations.

2.1.1 Linearization of the observation equations

Since the equations for the GPS observables are non-linear it is necessary to linearize them,
e.g. for the Ll phase observable we have (hereafter we leave out the subscript 1 for the time
of reception of the signal at receiver i):

,  -  ao l ,  . l
A@1,",(r) :t "if l  Lr+o(Lrz),

I r=ro

(2 .5)

with r the unknowns we want to estimate, and the 'observed' minus 'computed' observation
AS

A@i,",(f) : of,",(t) - ol,r,(l)o

The computed observation Of,rr(t)0 reads

(2.6)

ol,"r (t)o : dl,, 1r-,1 1,r i1t1o * c5ti,y1(t)0 - cdti'Lr (t - rl )o

+ plrl,ia-4t,,ntqoTi(t)' -T!(t)o + )rt(,r,O (2.7)

We regard the position of the satellite rr(t) as a known function of time, i.e. we do
not estimate (corrections to) orbital parameters. The parameters to be estimated are then
the position vector of the ieceiver, the receiver clock error, the satellite clock error, the
tropospheric zenith delay, the ionospheric slant delay and the real valued ambiguity.

The receiver clqck error appears two times in the observation equation. It is part of the
expression for the topocentric range to compute the position of the satellite at the time of
transmission:

dr\ - fu ,t) : llri Q. - 6ti,Lr(t) - rf) - rtl)ll

and it appears as cdfa,11(t) as a correction term to the biased pseudorange {,rr. For the
topocentric range it is sufficient that the time of reception of the signal is known with an
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accuracy of a few tenths of microseconds as this corresporlds to a maximum change in the
topocentric range of a few tenths of mm. The maximum of the derivative of the topocentric
range with respect to the travel time of the signal is approximately 800 m/s, hence the
maximum error in the topocentric distance with an error in the time of reception of 1 ps is
10-o s x 800 m/s : 0.8 mm.

Although each observable type is biased by a different receiver clock error, for the topocen-
tric range we assume a common clock error for all types. This will not degrade the eventual
solution since the order of accuracy required for the time of transmission exceeds the order of
the differences between the clock errors by several orders (see Figure 4.3 where the maximum
difference between the L1 andL2 clock error equals a few cm or 0.1 ns).

For the receiver clock error as a correction term to the biased range? we need a higher
accuracy, since the eventual bias in it is multiplied by the speed of light. So for this purpose
we estimate for each observable type a different clock (see Eqs. (2.1-2.4)).

If a priori approximate values for the parameters r0 are not available or of low quality,
the least-squares adjustment needs to be iterated. The linearized observation equation for
the Ll observable for the current iteration step reads then (using (-) to indicate the previous
iteration):

aotlr(r) : (:+ + ̂ 94-ll ,r,",(r)- -  r ,LL \- '  '  
0rrT ArrT t I

l r i  ( t- l ) ,r i ( t1t-\

.  .ad 0u1.1 at
k * (# * #)l ffi)mtr,',(t) 

- cL6tt'L'(t - ,l)
l r t  ( t - l  ) , r ; ( t ) t - \  

"

+ plrl,ia-dtri(r)(-) Lr{t) - LT (t)

1)1AN/,;r  (2.8)

which with #i 
: -7, uli the unit direction vector from receiver to satellite, and p and p

the time derivatives of the topocentric distance and the mapping function of the troposphere
respectively, turns into

Aot,Ll(r) : (-u!n' . #rl Lr6(t)
"  l r i  ( t - r . ! ) , r i ( t ) ( - )

+ (c - (d + i$l,i1t-,i1,,n1t,-,)Adti,Ll(t) - 
"65f'r'r(t 

- rii)

+ pil, ip_11,r;(r)(_) LTift) - Mi(t)

1)1Al(, ; r (2.e)

The computed observation, and 'observed' minus 'computed' for the current iteration step
read

oi"r 1r;t-l : dnl,, a-,!l,r;(r)r-) + c6t6s;Q)e) - 
"51i'Lr 

(t - r17ct

+ plrl,i a-,i ),r; (t)( - ) r,(qt-l - T{ Qlcl + ) 1,^(L J- 
)

^oi(r) :of(r) - of (r;t-r

(2 .10)

(2 .11 )
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The approximate values for the next iteration are computed as

r i( t1 :  r1(t ; t - t  +Ari( t )

lti,r-?) : 6tr,rr (l)(-)+A6tr,rt (t)

6{'L' (t) : 51i'Lr 111G1 a451i'11 (i)

Ti( t) :Tr(t1t-)  +.A4(t)

r l ( t) :r lQ1et +Lrl( t)

N/,"t : lri"tt-' +AN;''rr

The linearized observation equations and approximate observations for the other ob-

servable types can be derived analogously and are identical except for the frequency and

observable type dependent coefEcients for the ionosphere and ambiguity parameters.

2.1.2 Assumptions and simpl i f icat ions

Mapping function for tropospheric zeni,th delay:
The time derivative-of the mapping functions for the tropospheric zenith delay as well as

the derivative with respect to the position of the receiver, are so small compared with the
corresponding derivatives of the topocentric distance, that they can safely be omitted from

the linearized observation equation. It reads then

Aor,Lr (r) : -ui' 
1,, u-d ),ri(t)e) 

L'r4(t)

+ (c - dl, ,1r-" i1,,n1,yr-r)Adfr,r.r(t) - cL6ti 'Lt(t - ' l )

-t trlrl,irr-"!1,r,(,x-) LTiQ) - LTI(t)

a )1AN/,1r

Receiuer cloclc error:
As mentioned before, the receiver clock error appears two times in the observation equations:
firstly it is part of the expression for the time at- which the topocentric distance has to

be evaluated, and secondly it is one of the biases which cause the GPS observables to be
pseudoranges instead of ranges.

For the evaluation of the topocentric distance, the accuracy required is of the order of

some tenths of ps. Some receivers continuously adjust the receiver (quartz crystal) clock such
that its deviation from GPS time is of this order. This is done within the receiver software

using a single point pseudorange solution. Other possibilities to obtain a sufficiently accurate
receiver clock is to use an external clock with a higher stability. Clocks used for this purpose

are of the rubidium cell, cesium beam, or hydrogen maser type (see Table 2.1).
The third possibility to obtain accurate estimates for the receiver clock error is to use the

estimates from a previous pseudorange solution, which can either be a single point solution
or a solution from a relative positioning setup. In this solution the receiver clock error is set

to zero for the evaluation of the topocentric distance.
As we will show later, the receiver and satellite clock errors are not unbiased estimable.

When processing pseudoranges, each clock error is biased by some function of the rest of

(2.r2)

(2 .13)
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-cl

10 min 1 day 10 days

Quartz Crysta l  10-6 -  10-r r  10-6 -  10-11 10-5 -  10*10
Rubid ium Cel l  10-13 10-12
Cesium Beam 10-12
Hydrogen Maser 10-15

10* 13
1 0 - 1 1

1 0 - 1 3

l0- r4 10-13

Table 2.1: Clock types and their stability (from McDonald (1991)).

the clock errors, depending on which function of clocks is constrained to resolve the rank
defect (see Section 3.3). When carrier phases are processed an additional bias in the form of
a function of the ambiguities is introduced.

One choice for the function of clocks to be constrained is e.g. the geometric average of the
satellite clock errors. If we have corrected the observations a priori with the a priori satellite
clock error model that is contained in the broadcast ephemerides, these corrections will be of
the order of 50 m or a few hundred ns for the pseudorange satellite clocks. The error caused
by the bias in the receiver clock error is then (with m the number of satellites)

1 m

da f ta r , -d r ro )t ' ^ ? -  '

This error will be partly absorbed by the receiver and satellite clock errors; more so when
the distances between receivers are short, since then the time derivative of the topocentric
distance is not too different for different receivers.

Now we have a sufficiently accurate estimate for the receiver clock error, it is regarded
as a deterministic parameter in the observation equation as far as the topocentric distance is
concerned, and hence no linearization with respect to this parameter is needed. The linearized
observation equation reads then

AoLr, (t) : -rt ' l  . Ar;(t)
"  l r iQ-r ! ) , r i ( i l t - \

* cA,\t i,y1(t) - cL,6tj 'rtQ - r!)

+ pl.l,ta_dl,,i(t)e) LTi(t) - LriQ)

1)1Al(,;r

Ifwe do not have an accurate estimate for the receiver clock error, the observation equation
remains as it is. This form can however only be used when also at least one pseudorange
observable type is included in the adjustment, and no ionospheric delays are included in the
model. For the evaluation of the topocentric distance, the receiver clock error belonging to
the pseudorange is used. The linearized observations equations for e.g. an adjustment with
L1 and P1 read then

(2.r4)
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Aot,Lr(r)

LP:,Pt(t)

: - ui' 
1,, a-ri ),r i(t)e) 

Lr i(t)

+  (c  -  do l , ,a- , ! l , ,n t t ( - ) )Ad

+ Ptnl,, a-,i l,r;(t)(-) LTi(t)

1)1Al(pr

: - u!o' 
1,, a-d ),r i(t)e\ 

L'r i(t)

+ (c -  d l , ,p-" i1, ,1,yr-r)Ad
+ Pil,i a-,: l,ri(t)e) LTi(t)

_ 
"65si,Lr(t 

_ r!)

- r55f'e11t - r!)

h,u.(t)

f,;,pr (f )

with

t : t i - 6 h , p t

In practice often one uses c instead of c- p. Because p is so small compared to c, and several
iterations are made, the result will be the same. The convergence will be slower, but the
construction of the design matrix is more simple.

Satellite clock error:
The implicit assumption we made (assuming the signals of the satellite are simultaneously
received by the receivers), is that the satellite clocks are sufficiently stable over a period of

maxly'!, - rlrll (2.16)

This is necessary since we compute only one clock parameter (per observable type) per epoch,
assuming that it is valid for all observables referring to that satellite. Since however in general
not all ranges from the satellite to the various receivers are equal, the travel time of the signal
will vary. This implies that if the signals are simultaneously received, their transmission times
and thus the accompanying satellite clock errors will differ.

As generally the signals are not simultaneously received by the receivers Eq. (2.16) changes
into

max ll(t;1 - ,!r) - (tn - ,!r)ll (2.r7)

The clock errors are computed for a common time f", which is taken as the nominal time of
reception, e.g. the whole second. With

Y t a : 1 \  -  1 "  ( 2 ' 1 8 )

and using the relation

(2 .15)

(2 .1e)

(2.20)

t i : t t * \ t t

t r : t . * Y t t - 6 t ;

we have
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Figure 2.1: Maximum difference in travel time as function of the baseline length for a cut-off
of zero degrees (upper dotted curve), and for a cut-off of 10 degrees (lower dotted curve).
One receiver is observing the satellite at an elevation equal to the cut-off, the second receiver
is observing it at an elevation shown by the solid curve (only shown for the cut-off of zero
degrees).

Thus we have the condition that the satellite clock errors should be sufficientlv stable over a
period of

max ll(t" * Vtn - 6tn - 1) - (t. * Ytn - 6t;z - rlr)ll :

max ll(Vfi1 - drrr) - (Vtn - 6tn) - ?i, - rlr)ll:
max jlVtl1 - 6rrrll * max llYtu, - 6ti2ll + maxllr!, - frll

fior any two receiver pair i1 and i,2. The term

(2.2r)

l l v t n - d t ' l l  : l l t n - t A (2.22)

is for most geodetic receivers at most 1 ms (Ashtech Z-XII3 and Trimble 4000 SSI: in principle
less than 1 ms, Turbo Rogue SNR-8000 and Leica SR399: in principle less than 0.3 ps). The
maximum difference in travel time for one satellite to a pair of receivers on Earth depends
on the minimum elevation for which observations are made (cut-off angle). For a spherical
approximation of the Earth with a radius of 6,378 km, and a circular approximation of the
GPS satellite orbits with radius of 26,562 km, the maximum difference in travel time as
function of the baseline length is depicted in Figure 2.1. The two receivers and satellite
are in the same plane together with the geocenter, as this gives the maximum difference.
The difference is plotted for two cut-off angles; the upper dotted curve is for a cut-off of
zero degrees, the lower dotted curve for a cut-off of 10 degrees. One receiver observes at an
elevation equal to the cut-offangle; the solid line gives the elevation ofthe second receiver for
the cut-off of zero degrees. For slope distances until approximately 8,000 km, the maximum
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difference is obtained when the projection ofthe satellite on the line through the two receivers
is outside the interval formed by the receivers; for larger distances, the projection Iies inside
the interval. Hence the sharp angle in the curve for the elevation for the second receiver. Due
to the actual satellite configuration, the computed scenarios are a little bit too pessimistic,
but give a fair idea of the size of the phenomenon.

The maximum (one receiver observes the satellite in the zenith, the other observes it
under an elevation angle of zero degrees) is approximately 19 ms. The satellite clock rate due
to the effect of Selective Availability is given in Rocken and Meertens (1991) as 2 Hz/nominal
frequency of the carrier, so for L1 we have x 7.27 10-e s/s. Translating this to a range rate we
have to multiply it by c, yielding x 0.4 mf s. This value was confirmed by computations we
made. In Figure 2.2 delays due to the satellite clock error are plotted. They are biased by the
geometric average of all clocks; this bias is different at each epoch, but it is approximately
zero. In Figure 2.3 the first divided differences of the satellite clocks are plotted; with
an exception of one outlier, the computed clock rates are comparable to the values found
by (ibid.). The outlier is caused by the transition of one set of broadcast ephemerides to
another. This transition can also be observed in Figure 2.2. 'Ihe size of the discontinuity
is a few meters, corresponding with approximately 0.01 ps, which is in agreement with the
values found by Zumberge and Bertiger (1996).

Assuming a maximum difference between the time of reception of the signal by two
receivers of 2 x 1 ms, and adding the maximum difference in travel time of the signal to it,
SA will cause a bias in the range of approximately 8 mm ((19 * 2)ms x 0.4 m/s). When the
satellite clock error is evaluated at the geometric average of ti-r!, the actual maximum range
error may be smaller. Feigl et al. (1991) and Wu et al. (1992) give methods to minimize the
effect of Selective Availabilitv.

2.2 Computation of the satell i te position

In the linearized observation equation and the computed observations, quantities occur that
are a function of the position of the satellite at the time of transmission of the signal f - r;
viz. the topocentric distance p and the unit direction vector u. (Hereafter we leave out the
subscript and superscript indicating the receiver and the satellite.)

When using the broadcast ephemerides, the position of the satellite is computed from
information contained in the so called 'navigation message' which is part of the signal trans-
mitted by the satellites. When using precise ephemerides, the position is computed by a
Lagrange interpolation of positions which are given at an interval of 15 minutes. The broad-
cast ephemerides are given in WGS-84, the precise ephemerides in ITRFXX, where XX
depends on the reference system adopted at the date when the ephemerides were computed
(now, in 1998, we have ITRF96).

For the computation a common time l" (GPS time) is introduced for every epoch. The
advantage of this approach is that we need to evaluate the ephemerides of the satellite only
once per epoch.

The material in Teunissen and van der Marel (1992) has been the inspiration of the
procedures that will be described below.

l-5



16 Functional model for the GPS observables

a

! O

d

2000 2500 3000

Figure 2.2: Range errors due to Selective Availability.

a
cO.5

o

o

o
o
E 0

o

:0.5

ffi
500 1000 1500 2000 2500 3000 3500

Epoch [1s ]

Figure 2.3: Divided difference of range errors due to Selective Availability.



2.2 Computation of the satell i te position

Topocentric distance.
We need the position of the satellite at time l" - r with r : p(t" - r,t")f c (for a receiver on
Earth r is on the order of 0.1 s). The topocentric distance p(t - r,i) was defined as

p(t - r,t) : l lrr (t - r) - r{t)l l (2.23)

with rr(f - r) and r;(l) defined in an arbitrary Earth-Centered Inertial (ECI) system. We
want however, to use ,t(t - r) and r;(l) defined in WGS-84 or in the system of the ITRF,
which both are Earth-Centered Earth-Fixed (ECEF) systems.

Coordinates from an ECEF system with the Z-axis along the nominal Earth's spin axis,
positive in the northern hemisphere, coinciding with the Z-axis of an ECI system, and of
equal scale, are transformed to the ECI system as

r ( t)  r .ct  : ,R(t)  r  ( f  )u"uo l ,  o A \

L7

with

fcos(O"t + \[) - sin(O"f + V) 0l
f i( t) :  lsin(f)"r + v) cos(Cl"r + i lr) 0l Q.25)

1 0 0 1 . l

with 0" the Earth's rotation rate, and ilr free to choose, giving an infinite number of ECI
systems. So we have

p(t - r, t) :  l l rr (t  - z)Bcr - rn(r)Bc,l l
:  l l ,q(, - r)r j  1t - r)BcBp - .R(i)r1(r)""""11

For the common time f", with V - -Q"t" we have

p(t, - r,t") : l lR(-r)rj (t" - r)BcBn - rr(t")BcBrll

As a first approximation for r we compute

7 :  l l r i ( t")ecep- rr( f")B."r l l l "

With this approximated value we compute the first term of (2.28) as

(2.26)

(2.27)

(2.28)

(2.2e)

R(-r)ri (t" - r) : R(-r)[rj (t")"c", - r ij (t,)sssp + f,r2 rj Q"7"""r1 (2.30)

The satellite position and its first and second time derivative are thus evaluated only once,
n a m e l y a t l " ;  i t s p o s i t i o n a t t - r : t . - ( V t - 6 t ) - r ( s e e E q . ( 2 . 2 0 ) )  i s f o u n d b y a T a y l o r
series. For the computation of the satellite position and its time derivatives see Appendix B.
The value of (Vt - 6f) is at maximum 1 ms (see Section 2.7.2). Using the new position we
compute again a topocentric distance. If the difference between this and the previous dis-
tance is larger than a user defined threshold, a new travel time is computed from it, and with
it a new position of the satellite is computed. Usually three iterations are sufficient to get
differences between the topocentric distances of the last two iterations of the order of 10-8 m.
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Pold : ll"'(1")"""r - rr(f")Bcee ll
r : Pold/c
d: pold
while d > e

K : ( v t _ 6 t ) + r
p(t - r,t) : l ln(-r)["r(t")"""" - nii(t")Bser * ln2 fi(t")""".] - 

",;(r)eceellr :  p ( t  -  r , t ) f c
a: l lp( t  -  r , t )  -  potal l
P o l d :  P ( t - r , t )

end

Note that the increment for the Taylor series equals - K : -(Vt - 6t) - r, but the argument
for the rotation equals -r.

Deriuat'iue of topocentric distance w'i,th respect to t'ime.
Besides the topocentric distance sometimes also its time derivative is needed (viz. if we do
not regard the receiver clock error as a deterministic parameter, see Section 2.1.2). With the
time derivative of the inner product (r, r) as

a ,
* \ r , r )  

: 2 ( i , r )

it reads, in an ECI system

i(t - r,t) : --L-e(rr (t - !) 
- r{t)) 

.ri (t - r) - r1(t)} (2.31)' )  " t  p ( t  -  r , t ) \  A t  "  \ "

In an ECI system, the time derivative of ra(t) is non-zero, so we have

i(t - ,,t) : ,--J-gi (t - r)ncr - r;(t)eo, ,, (t -r)ecr - rr(t)scr) (2.32)
P\ t  -  r , t )

With the satellite's respectively the receiver's velocity parameterized in ECEF coordinates
as

i j ( t  -  r)ecr:  R(t  -  r)niQ - r)ecer + hQ -r)r j ( t  -  r)ncpr '  (2.33)

and

"r(t)ecr 
: R(t)i{t)scor * rB(t)rr(t)ecer Q.34)

where

f- sin(A"t + V) - cos(Q"t + itr) 0'l
E1t; : o" l "or(o"r + v) - sin(Q"t + v) 01 , (2.35)

1 0 0 0 1
we eventually get for the time derivative of the topocentric distance

1
i ( t - r , t ) :  ^p(t - r, t)

(R(t -r)ij(t - r)ncor, + a1t - r)rj(t - r)ocnr - n(r)ri(r)Ecop -.R(t)ro(r)ecs",

R(t - r)ri (t - r)ecor - rn(t)scse)
(2.36)
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Assuming that the receiver is stationary in the ECEF system, thus r;(f)B6EF : 0, and again
taking V : -O"f", the time derivative of the topocentric distance for f" becomes

b( t . - r , t " ) :  t - l  - (  R( - r ) i i ( t " -  r )econ +  i l ( - r ) r i ( f "  -  r )ecnr  -a  x  r i *cn , ,
p\ t "  -  T , t r )  

'

R(-r)rr (t" - r)Bcer - tn"""")

(2.37)

with

(2.38)
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2.3 Satell i te clock

In the broadcast ephemerides a polynomial model for the satellite clock error is included.
This clock error which is used as the approximated value for the estimated clock error, and
hence will be denoted by 6li01t;, is computed as

ltl

5tj0 Q) : o,i + a'r(t - t1"") + alz(t - ti")'+ af*(t) - 
{iru,

where o6, 01 &nd a2 &re the coefficients of the polynomial, representing the offset, drift and
aging of the clock. Currently it seems that a2 is always set to zero. The clock error is

evaluated a t in GPS time, and t - to" is the difference between the time of evaluation and
the reference time for the polynomial in seconds.

Since the satellite clock is moviirg with respect to the observing receiver, a relativistic
correction has to be added. The large part of this correction is taken care of by a small
change in the nominal frequency standard of the satellite clocks. This corrects the effect for
a nominal circular satellite orbit. A small correction has to be added to take care for the
actual velocity in the actual satellite orbit. A first order approximation for an ECEF observer
and a GPS satellite in a Keplerian orbit reads (Spilker Jr. 1996).

for Pl

for P2
(2.3e)

(2.40)

(2.4r)

where

GM

c

e

E(t)

tf^(t) : -rry et/Asin E(t)
bj ( t \ .  t j  ( t \ )

_ - ' \  \ / /  \ / ,
' c 2

Gravitational constant of the Earth.

Speed of light in vacuum.

Eccentricity of the satellite orbit.

Eccentric anomaly of the satellite orbit.

A Semi-major axis of the satellite orbit.

and where 7r(t) and rr(t) are expressed in the ECI system.
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Figure 2.4: Correction for relativity for PRN's 02, 05, 22, and 30.

The difference between expression (2.a0) and (2.a1) is so small that both may be used,
but for the perturbed Keplerian GPS satellite orbit (2.40) is an approximation. Note that
in Spilker Jr. (1996) the sign for (2.41) is misprinted. In Figure 2.4the relativity correction
(in meters) for PRN's 02, 05, 22, and 30 (all from orbit plane B) is plotted. The maximum
value for the correction is approximately 10 m or 35 ns.

The last term in Eq. (2.39) is a correction for the group delay difference in the satellite
transmission between P1 and P2 (also called differential instrumental delay bias, or differen-
tial equipment delay). It is based on a calibration prior to the ladnch of the satellite, and
hence in principle constant. Values for it were changed however, somewhere between Septem-
ber 1995 and December 1996. The coefficient ae of the clock polynomial is determined on the
basis of an observable made of a P1 and P2 observable in which the first order ionospheric de-
lay has been eliminated (ionosphere-free observable). This is equivalent to employing a model
for the P1 and P2 observables where for each epoch, for each receiver-satellite combination,
an ionospheric delay is included.

Although in Eqs. (2.3) and (2.4) no group delays are included since they are not estimated
in our processing setup, they are in principle present:

Pl,p,.: d
P|pz:  d

I c5t6,p1 - c6ti'Pr + Ilt + d;,p1 - di'Pl

I c6ti,p2 - c6ti'P2 + 1I! + di,p2 - fli'P2

(2.42)

(2.43)

In Section 4.2.5 we will show that if these group delays are present, though not estimated,
the estimated receiver clock errors are biased.

If one uses a model in which ionospheric delays are not included, (and where for each
observable type a distinct clock is modeled), one has to correct the clock error for all code
observables types using the 76p parameter according to Eq. (2.39) to get unbiased estimates
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Figure 2.5: Values for differential group delay from DLR and from the broadcast ephemerides.

for the receiver clock errors. The ?cl parameter in the broadcast ephemerides is defined as
(Spilker Jr. 1996)

T"o: -J-14j,H - di,P2)
L _  T

(2.44)

Spilker Jr. (1996) states that if ionospheric delays are estimated, i.e. the same model is
used as at the CS, the clocks may be corrected, but do not need to. The estimates for the
ionospheric delays are biased however. So for the unbiased estimation of these delays, the
correction should still be applied.

Unbiased estimates for the receiver clock errors are needed to correct the time tag of
the observations (see Section 2.1.2). Unbiased estimates of satellite clock errors are useful
to monitor the SA effect (see e.g. Figure 2.2), and ian be used in DGPS (Differential GPS)
systems. Unbiased estimates for ionospheric delays may be used for monitor purposes and
also in DGPS.

Independent estimates for the differential group delay have been published by several au-
thors (Wanninger and Sardon 1993), (Wanninger and Sardon 1994), (Georgiadiou 1994). At
the DLR (Deutsches Zentrum fiir Luft- und Raumfahrt) Fernkundungsstation in Neustrelitz,
Germany, group delays for all satellites and a number of receivers at (mainly European) per-
manent stations are estimated on a daily basis. Each group delay is biased by some function
of other group delays; e.g. the group delays for the satellites are biased by the average of the
group delay of all satellites. In Figure 2.5 the values for a particular day as computed by
DLR and the values from a set of broadcast ephemerides of 1997 are depicted. The values
of DLR are defined as di,P2 - di'Pr and are therefore converted to the definition of ?6p as in
Eq. (2.aq.

This a priori correction for the satellite clock error is for a relative positioning setup not
really necessary, since the satellite clock error can be estimated (in contrast to the single

o BroadcastEphemerides

" DLR Mav 1.1997
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North East Height

L1
L2

1.5 - t .2 75.7
-1 .1  r .7  69 .2

Table 2.2: Offsets for Trimble Geodetic L7lL2 compact antenna with ground plane [mm] in
a local level system.

receiver setup). It may still be applied to speed up convergence for the iterated least-squares
solution and to observe the effect of Selective Availability, since this is the only effect not
included in the clock model.

Clock errors are optionally present in the precise ephemerides; they are given at an interval
of 15 minutes. Clock errors for a desired epoch are computed by a Lagrange interpolation.

2.4 Phase center variation and offset

An ideal antenna has dimensions that are small compared to the wavelength of the transmit-
ted or received wave. The surface of equal phase, the so-called wave front is then perfectly
spherical, with the phase center in its center. Unfortunately, such a perfect antenna is equally
sensitive to all waves irrespective of the direction to, or from which the wave is transmitted
respectively received. For the GPS, antennas are used that are more sensitive in certain
directions. The transmitting antenna is designed such that most of the signal is transmitted
towards the Earth, the receiving antenna is designed such that almost no signal is received
from an elevation less than zero degrees. In order to design such type of antenna, the dimen-
sion of the antenna has to be of the order of the wavelength. This causes the outgoing or
incoming wave front to divert from the desired spherical form; every direction has its local
spherical wave front, and consequently its own phase center. This direction dependence is
mostly due to variations in elevation of the received signal because of the rotation symmetry
of the antenna with respect to its Z-axis. Small variations dueto azimuthal asymmetries are
calibrated during the production process, and are assumed equal for all antennas of a certain
make, provided that they are equally oriented with respect to a mark put on the antenna
during production. Hence the well known operational requirement to orient the antenna with
the mark pointing northward.

One of the most frequently correction tables in use nowadays is the one that is accepted
as the standard for the IGS community, where almost all antennas in use in the geodetic
community are calibrated with respect to the Dorne Margolin antenna (Rothacher and Mader
1996). Besides the elevation dependent phase center variation, also the fixed offsets of the
mean phase center of both frequencies from the so-called 'Antenna Reference Point', (ARP)
an easily identified and well documented mark at the receiver antenna, can be found in these
lists. An example of the offsets and elevation dependent corrections for the Trimble Geodetic
Ll/L2 compact antenna with ground plane can be found in Table 2.2 and Figure 2.6. The
correction for the offsets has to be added to the height and horizontal offsets of the antenna.
The correction forthe phase center variation has to be subtracted from the observations
(ibid.).

For the antennas of the satellites no elevation dependent corrections are available. As far
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Figure 2.6: Antenna phase center variation: elevation (E) dependent correction terms for the
Trimble Geodetic LllL2 compact antenna with ground plane (mm).

Block I 0.2100 0.0000 0.8540
Block II/IIA 0.2794 0.0000 1.0259

Table 2.3: Offsets between mass center of satellite and phase center of antenna [m], in the
local satellite-fixed system (see Section 2.8).

as the offsets are concerned, it depends if one uses the broadcast ephemerides or the precise
ephemerides. The broadcast ephemerides are defined for the nominal phase center of the
antenna, whereas the precise ephemerides are defined for the mass center of the satellite. In
the latter case, the position of the phase center depends on the position of the mass center,
the offsets of the antenna phase center with respect to the center of niass, and the orientation
of the satellite. The offsets are different for different generations of the GPS satellites; they
can be found in Table 2.3.

2.5 Tropospheric delay

The troposphere is the lower part of the Earth's atmosphere, which extends to a height of
between 9 km at the poles and 16 km at the equator. The presence of neutral atoms and
molecules in it, delays the GPS signals traveling through it; this is called refraction.

The tropospheric delay 7 at zenith is usually divided in a dry or hydrostatic part 4, and

20
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a wet or water vapor part T.:

T : T n l T . (2.45)

It is mapped into a slant delay for a signal received at elevation .8, using different mapping
functions for the hydrostatic (p6) and the water vapor part (p.)

T(E) : ttn(E)Tn * p.(E)T. (2.46)

The hydrostatic part can be computed a priori as (Saastamoinen 1973), (Davis et al. 1985)

Tn:0-0022768L
9*

g^:9.784(1 -  0.00266 cos2$ - 0.00028H)

with

(2 .47)

(2.48)

where P is the pressure at the station in mbar, / its geocentric latitude, and 11 its orthometric
height.

There exist several models for the water vapor part too, using temperature, pressure and
relative humidity at the station, but they are far less accurate (Hopfield 1969), (Saastamoinen
1973). Therefore often zenith delays are estimated. If one has sufficiently accurate meteo
date available, the hydrostatic part can be computed a priori and corrected for, and the water
vapor part can be estimated. If this is not the case, only the hydrostatic part is estimated.
Since the mapping functions for the hydrostatic and water vapor part are quite similar, part
of the water vapor part will be absorbed by the estimate for the hydrostatic part (Davis et al.
1985). Estimating both, results in estimates of low precision that are highly correlated.

The estimate for the zenith delay is also highly correlated with the estimate for the height
of the station. It is therefore necessary to include data of low elevation angle, and the time
span should be of the order of one hour. If the total time span is longer, more than one
delay may be estimated. When the separation between stations is small, the zenith delays
are almost parallel to each other and this will again result in poor estimability. In that case,
one of the zenith delays should be kept fixed to a known value, using one of the a priori
models for the water vapor or the total zenith delay.

The most elementary mapping function for the zenith delay reads

p(E) : (2.4e)

using mapping functionsBetter results, especially for data of low elevation, are obtained
consisting of a continued fraction:

p ( E ) : (2.50)
sin,E *

sin.E *

1
j

sln.t,

A1

Q2

s inE*  . - *=
s l n - b  - F . . .

See e.g. Marini (1972), Herring (1992) and Niell (1996). For an overview of the performance
of several mapping functions see Mendes and Langley (1994).



2.6 lonospher ic  delay

2.6 lonospher ic delay

The signals of the GPS satellites experience a delay when passing through the ionospheric
layer. This layer reaches from approximately 70 to 1000 kilometers above the Earth's surface.
The carrier phase experiences an advance or negative delay, while the code on the carrier
experiences a positive delay of the same size. In a first order approximation, the size of the
delay in meters depends reciprocally on the squared frequency of the signal (and thus is a
dispersive effect), and linearly on the number of free electrons passed when traveling through
the ionospheric layer.

The number of free electrons depends among other things on the local time of the day, the
location on Earth, and where we are in the sun spot cycle. At daytime the Sun's radiation
increases the number of free electrons. The maximum occurs at around 14.00 local time,
the minimum at around 2.00. When the sun spot number increases, so does the amount
of free electrons. The sun spot number passes through an eleven-year cycle, of which the
next maximum is to be expected around the year 2002. In general, there is a fair amount
of correlation both in time and in place for the ionospheric delay. At a lower elevation the
Iength of the path from satellite to receiver increases, and thus also the ionospheric delay
increases.

Besides the refraction part there is also diffraction, i.e. the path diverts from the straight
line from satellite to antenna. This effect is on the millimeter level, and largely cancels in
the relative positioning setup.

There are roughly three ways to handle the ionospheric delays. For short baselines the
delay experienced at both ends of the baseline is almost equal, since signals pass the iono-
spheric layer at paths close in distance, and also elevation angles at both end points of the
baseline are almost equal. Hence it will be absorbed by the satellite clock, and does not need
to be modeled.

For larger distances the delay can be modeled for each receiver-satellite combination as a
slant delay. Use is made of the fact that the ionospheric delay is dispersive. Commonly instead
of modeling the delay, it is eliminated: from two observable types, one at each frequency, a
so-called ionosphere-free observable is formed. When it is formed using the carrier phases it
is called LC or L3. As we will show in Chapter 4 this is equivalent to modeling ionospheric
slant delays

Another option is to model the ionospheric delay by a series in the local hour angle of
the Sun at the so-called ionospheric point and the geocentric Iatitude of this ionospheric
point. For the model the ionospheric layer is supposed to be concentrated in an infinites-
imal thin layer at an height of approximately 300-400 km above the Earth's surface. The
ionospheric point is the point where the line receiver-satellite intersects the ionospheric layer.
In Figure 2.7 the ionospheric layer is depicted together with a schematic receiver-satellite
combination. Instead of a slant delay Iln at the receiver position, a vertical delay T, at the
ionospheric point is then modeled. The relation between the two is

25

T l : L  . 2 ,- cos z'

sin z, : ffi"in "

(2 .51)

with

(2.52)
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infinitesimal thin
ionospheric layer

Figure 2.7: Geometry for modeling the ionospheric delay using an infinitesimal thin iono-
spheric layer.

where R is the Earth's radius, h the height of the ionospheric layer, and z the zenith angle
at the receiver position.

Usually a Taylor series or a series in spherical base functions is used; it has a fairly low
resolution but only a limited set of parameters is introduced. The thus estimated model is
defined in an Earth-Centered Sun-Fixed system, i.e. the Earth rotates underneath it. The
temporal variation and spatial variation in latitude is modeled by it.

The modeling by slant delays inhibits a much higher resolution both in time and space,
but to the expense of the introduction of a large number of extra parameters. The latter can
be alleviated by constraining these parameters. Since the modeling by a series can capture
the long term effects, the slant delays only have to model the short term residual effects, and
can thus be tightly constrained. Instead ofconstraining the ionospheric delays in an absolute
sense, they can also be constrained in a between station sense, see Chapter 6.

Sometimes first a model is estimated using an independent data set, and consequently
applied to the data at hand, where the short term ionospheric delay is then modeled by
(constrained) slant delays. In this thesis the ionospheric delays are only modeled as slant
delays.

In Figure 2.8 a projection of the ionospheric points on the Earth's surface (sub-ionospheric
points) is depicted for two stations and four satellites, for a time span of one day. It shows
that the space over which an antenna senses the ionosphere is quite large, and that for long
baselines the points are too far apart to benefit from the spatial correlation.

For an overview of the treatment of the effects caused by the ionosphere on GPS precise
positioning see Odijk (1997).

2.7 Solid Earth tides

The gravitational attraction of the Sun and the Moon, and the fact that the Earth is an
elastic body, impose periodic displacements to stations on the Earth. This phenomenon
is called solid Earth tides. Without going into great detail, the size and direction of the
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Figure 2.8: Ionospheric points for Algonquin and Kootwijk for PRN 1,2,3 and 4 for an
elevation cut-off of zero degrees, and a time span of one day.

displacement depends on the position of the station with respect to the Sun and the Moon,
the accelerating forces of the Sun and the Moon, and the rheology of the Earth.

The tidal potential W for a point e on the Earth due to a celestial body b is given by
(Vanicek and Krakiwsky 1986)
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(2.53)

The Legendre polynomials (n :  2,3,. . . ) .

Gravitational constant of the celestial body.

Unit vector from the geocenter to station i.

Unit vector from the geocenter to the center of celestial body b.

Angle between the geocentric position vectors of station i and the center of
celestial body b.

(The celestial bodies involved are the Sun and the Moon.)

wu:11 ,%1 ,i(i,",b]i)" Pn(cosz6)

where

P"(r)

GMu

r ,' x

T6

pb
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The largest contribution comes from the second-order harmonic term:

(2.54)

To an accuracy of a few percent for the combined effect of the Sun and the Moon, it
suffices to include only the second-order terms; inclusion of the third order term for the
Moon improves the accuracy to about 0.03 % (ibid.). In geocentric coordinates d, ) and .R
(latitude, longitude, radius), the tidal displacements read (ibid.)

w! : cttrffi($ cos2 "u 
- L)

)r bAWt r\ 12 AWt
d Q : -  _  i  c i A :'  

S dO scos@0)
(2.55)

where h2 and 12 are the Love and Shida number of second degree.

I

with

(2.56)

and

(2.57)

where

(2.58)

and g is approximatedas GMlllrill2, where GM is the gravitational constant of the Earth,
one gets for the tidal displacement vector in the Cartesian system

I dx dY dz lr : #ffi*z! 
(3cos2 zt - t) ri * 3I2cos 26(16 - r6cos z6)\ (2.59)

Substitution of cosz6 : \rtrr) in Eq. (2.59) gives the equation as given in McCarty (1992).
In Figure 2.9 the movement of Delft (the Netherlands), and Alonquin (Canada) with

respect to Kootwijk (the Netherlands) due to the solid Earth tides is depicted, for a time
span of one day. The distance between Delft and Kootwijk is approximately 100 km, the
distance between Alonquin and Kootwijk is approximately 5,620 km.

2.8 Phase wind-up

In contrast to ordinary radio links on Earth that use linearly polarized electro magnetic
waves, links between (high orbiting) satellites and the Earth use a circular polarization for
the wave. The reason lies in the fact that the waves have to cross the ionospheric layer,

;  d,R: or '3

l:*l :['#] [# xf,lffi)

l\l:l#-rr#lli.l
l% K # l  f -s indcos)  -cos@sin)  cos@cos) l

l H  K  H l :  l - s i n @ s i n )  c o s @ c o s )  c o s @ s i n ) l

tff i  K ff i l  I cosd 0 sin@ I
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Figure 2.9: Movement of station due to solid Earth tides during one day. Alonquin with
respect to Kootwijk (left), and Delft with respect to Kootwijk (right).

where its polarization through an interaction with the free electrons starts to rotate. This
phenomenon is called Faraday rotation.

The intensity of the rotation depends on the total electron concentration, which is highly
variable. For a linearly polarized wave received by a fixed dipole this would result in a highly
fluctuating signal.

When using a circular polarization, the electric field makes a spiral movement from the
transmitter to the receiver (see Figure 2.10). If the field, looking into the direction of the
propagation of the wave, rotates clockwise, it is called a right-hand circular polarization. The
GPS uses this type of polarization; the Faraday rotation does not effect the intensity of the
received signal, but when using only one dipole, only half of the signal strength is received.

For the determination of the signal strength of a circularly polarized wave received by
one dipole, we can decompose the circularly polarized wave into two linear polarized waves;
one with an electric field in a plane parallel to the dipole, and one with an electric field
perpendicular to that plane. The phase difference between the two electric fields is 900,
and the energy of the wave is equally divided over the two linear polarized waves. As a
consequence, the signal strength received with one dipole is half of the total signal strength.
To receive the total signal strength, an extra dipole has to be added, perpendicular to the
first dipole (crossed dipole). The signal of the extra dipole is combined with the first dipole
after the phase difference of 900 is removed by the electronics in the antenna (de Jong 1989).

Since the electric field is permanently rotating, the carrier phase observation made by the
receiver at two subsequent epochs is not only a function of the change in distance between
receiver and satellite, but it is also a function of the rotation of the receiver and satellite
antenna. In kinematic applications this phenomenon can clearly be observed, see e.g. Tiberius
et al. (1997). Due to the rotation of the Earth and the changing attitude of the satellite
needed to keep the antenna pointed towards the geocenter, and the solar panel support
beam perpendicular to the satellite-Sun direction, also phase observations made in static
applications exhibit a small bias.
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Figure 2.10: Linearly polarized wave (left),
Jong (1989)).
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and circularly polarized wave (right) (from de

The effect is called phase wind-up, and it is different for observations made at one receiver
to two different satellites, and for observations made at two different receivers to one satellite.

Consequently the effect is only partly absorbed by the estimates for the satellite and
receiver clock error; the constant part is absorbed by the estimate for the phase ambiguity.

In Wu et al. (1993), the effects of the phase wind-up are evaluated and a method to
correct it are given. The effect is negligible for short baselines, but for a 4,300 km baseline
the peak to peak effect may be as large as 4 cm at the L1 frequency for an elevation cut-off
of 10 degrees.

The correction is based on the change of the angle between two so-called effective dipoles,
one at the receiver, and one at the satellite. For the receiver the dipole is defined in a local
North, West, Up system? whose axes are denoted by 

"o'. 
The dipole for the satellite is defined

in a satellite-centered coordinate system, denoted by e1. The choice for the axes ofthis system
is driven by the fact that the antenna of the satellite is kept pointed towards the geocenter,
and that the solar panel support beam is designed to be perpendicular to the satellite-Sun
direction. The system is defined (Lichten and Border 1987) in such a way that the third axis
is positive along the antenna direction towards the geocenter:

_rJ
er: 

ff i
The second axis is taken along the solar panel beam, normal to the satellite-Sun direction
(rs - ril and the third axis; i.e. normal to the plane containing satellite, Earth and Sun:

e 2 :
e z x ( r s  - r i )

(2 .61)
l l e 3 x ( r s - " i ) l l

And the first axis completes the right-hand system (see Figure 2.11).

€ 2 X e 3
P a : -

lle2 x qll

The effective dipoles which represent the resultants of the crossed dipole antennas are
defined as:

D : e t - u ( u , e 1 ) l u x e 2

(2.60)

(2.62)

E,cos (olt)

( i ) ( i i )

(2.63)
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Figure 2.11: Satellite fixed coordinate system (left), and
(right) for the computation of phase wind-up correction.

at the satellite, and

where

receiver fixed coordinate system

(2.64)

(2.65)

(2.66)

(i ') (ii ')

at the receiver, with ea and e1' the unit vectors defining the local system at the satellite,
respectively the receiver, and u: -z the unit vector in the direction satellite-receiver. The
two dipoles constituting the crossed dipole are defined to be coinciding with the e1 and e2
axis, but can be chosen to be any pair ofunit vectors in the e1-e2 plane, obtained by rotating
the pair €r, €2. In this way the signal of the second dipole is delayed by 900 with respect to
the signal of the first dipole. In Eqs. (2.63) and (2.64), (i) and (i') are the projections of the
first dipole onto a plane normalto u, whereas (ii) and (ii') are the projections of the second
dipole onto the same plane rotated by 900.

The phase wind-up correction is defined as the angle between the two effective dipoles,
while it is taken care of that the transitions from -zr to zr radians are taken into account by
adding 2zr radians to the correction for each transition.

With the effective dipole of the satellite denoted by D and that of the receiver by D', the
fractional part of the phase wind-up correction is then defined by

s ilt o) : si'sn(4) atccos(-d',,0)

€: (r,10, x D1y

and sfgnQ is the function that gives the sign of a number. The integer part is defined as

(2.67)

where nint0 is the nearest integer function. The total phase wind-up correction is then
d(r): di(r)+t91(t) where implicitly it is assumed that the difference of the total correction

re i(t k) : nint(A$l4&!-!)211



32 Functional model for the GPS observables

for two subsequent epochs is smaller than n, a condition that in practice for a static receiver
and a normal sampling rate, always is fulfilled.

In Figure 2.12 the between-receiver single difference phase wind-up corrections for two
baselines computed with the model above are depicted, viz. for the baseline between the
IGS stations Algonquin and Kootwijk with a length of approximately 5,620 km, and for the
baseline between Kootwijk and Wettzell with a length of approximately 600 km. For the
5,620 km baseline the maximum double differenced phase wind-up correction is of the order
of 0.2 cycle, (4 cm for the L1 phase), whereas for the 600 km baseline the maximum is of the
order of 0.02 cycles (4 mm for the L1 phase).

Another phenomenon closely related to the phase wind-up that needs to be corrected for,
is the yawing of the satellites when they are in eclipse. In eclipse, the attitude of the satellites
with respect to the Sun is not maintained, since the satellite is unable to 'see' the Sun. As
a consequence the satellite starts to rotate around the third axis (along the antenna that
is pointing towards the geocenter). This will cause an additional phase wind-up, but since
it is equal for all observing receivers, it will be absorbed into the estimate for the satellite
clock. The error in the range due to the offset of the phase center will in general be different
however, for each receiver-satellite combination. This phenomenon will not be treated here,
and a correction for it has not been implemented in the software. It has been implemented
however in the software suites that are used by the IGS community. For more information
we refer to Bar-Sever (1994) and Bar-Sever (1995).

2.9 Computat ion of  Sun and Moon posi t ion

The position of the Sun and the Moon as needed for the computation of solid earth tides, as
well as for the determination of the attitude of the GPS satellites (Sun only) can be computed
using JPL's (Jet Propulsion Laboratory) Planetary and Lunar Ephemerides DE403/LE403
(Standish et al. 1995). The positions are defined in the J2000 reference frame of the Inter-
national Earth Rotation Service (IERS).

The transformation from the inertial celestial frame J2000 to the Earth-Fixed frame ITRF
consists of four separate transformations, viz. a precession rotation P, a nutation rotation
.ly', a siderial time rotation T and a polar motion rotation Z (Bdck 1996).

rrTRF : ZTNP rnssg (2.68)

Precession and nuta,tion represent the motion of the pole of the rotation axis of the Earth
around the pole of the ecliptic, and are thus movements in the inertial celestial system. The
rotations due to siderial time and polar motion are movements with respect to the (semi-
inertial) terrestrial system itself. Polar motion is the rotation of the true celestial pole as
defined by the precession and nutation model with respect to the Z-axis of the terrestrial
reference frame. The rotation ? around the true celestial pole gives the relation between a
rotating, semi-inertial system at the date of epoch and the Earth-Fixed system.

The transformation matrices are computed according to McCarty (1992). Additional data
needed for the computation of the polar motion and siderial time matrix are interpolated
from Bulletin A or B of the IERS.



2.9 Computation of Sun and Moon position 33

c)
I

U

600 800

Epoch [60 s]

Figure 2.12: Effects of phase wind-up, for between-stations single differences for Algonquin
and Kootwijk (above) and Kootwijk and Wettzell (below), for all satellites in view at May
72, L997 (elevation cut-off of zero degrees).
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2.t0 Concluding remarks

The tides cause a non-moving antenna, for which we want to determine a set of coordinates
for a defined time span, to move around. We want, however, to estimate only one set of
coordinates for it.

In Section 2.7 it was indicated how this movement can be modeled. The correction is
applied as follows. For each epoch the tide correction is added to the a priori coordinates.
These coordinates are used to compute the topocentric range.

The values of the coordinates for the purpose of constraining one or more sets of coordi-
nates to well known a priori coordinates and the computation of partials for the design matrix
are not corrected. The correction is not necessary since we already corrected the range.

For the offset of the antenna we have a similar problem. Since the offsets commonly are
not equal for both frequencies, there are two sets of coordinates for each antenna, one for the
L1 phase center and one for the L2 phase center. Again, we want to estimate only one set of
coordinates. We proceed therefore as follows. The topocentric range for the observables on
L1 is computed between the L1 phase center and the satellite, the range for the observables
on L2 is computed between the L2 phase center and the satellite. The constraining and
computation of the partials is made with respect to the Ll phase center.

The list of error sources treated in this chapter is not complete. A prominent error source
is e.g. multipath, caused by reflection of the signal in the neighborhood of the transmitting
and receiving antenna. It is omitted, since in general it is neither possible to model it a
priori (for continuously operating stations some modeling is possible, since the multipath
signal repeats after one approximately one day) , nor to estimate it (i.e. not together with
the coordinate parameters). Other (small) effects are e.g. (Bock 1996) the displacement of
a station due to ocean loading (the elastic response of the Earth's crust to ocean tides) and
atmospheric loading (the elastic response of the Earth's crust to a time-varying atmospheric
pressure distribution).
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Chapter 3

GPS relative posit ioning: the undifFerenced
a pproach

3.1 Introduct ion

Processing of GPS observables for relative or interferometric positioning is usually done using
a 'double differencing' technique. The differencing technique finds its origin in the field of
VLBI (Counselman III et al. 1972). In short, the double difference (DD) scheme boils down
to elimination of common bias parameters by subtracting one observable from an other. In
GPS from four observables, made from two receivers to two satellites, a new DD observable
can be formed which is not biased by receiver and satellite clock errors. Coming from VLBI
where between-station (single) differences are made, it seems logical to apply the differencing
to the GPS observables too. Looking at GPS from the perspective of geodetic adjustment
where often large systems with many unknown parameters have to be solved, it seems less
logical. We have chosen for the more general technique of using the original or undifferenced
observables directly. In this chapter we will show how using a single undifferenced GPS
observable type, the unknown parameters of interest can be estimated. In Chapter 4 we will
then show how the technique works for more than one observable type.

We will start from the linearized observation equation that was derived in Section 2.1,
for the case that atmospheric delays are assumed to be absent. Collecting all observation
equations reveals the structure of the design matrix. This design matrix is rank defect, and we
will give for a number of models the rank defect and ways to resolve it by adding constraints,
or equivalently by specifying an appropriate S-basis. In particular resolving the rank defect
caused by the ambiguities will be treated. It will be shown that the S-basis and the resulting
estimable functions of parameters can be found in a straightforward way by introducing an
associated graph to represent the measurements made between the receivers and satellites.

As a comparison, the DD approach will be treated. It will be shown that the design
matrix for the double differences before lumping together the original ambiguities is also
rank defect.

With the design matrix as a base the normal matrix and the so-called right-hand side
will be given. This information is sufficient to perform the estimation of the parameters

we are interested in. The estimation of the parameters is done in two steps: first the local
parameters (i.e. the receiver and satellite clocks) are eliminated, and only the global param-

eters (coordinates and ambiguities) are estimated. In a second step, the local parameters
are estimated and the observations are tested for outliers and cycle slips. For the testing we
need (parts of) the variance-covariance matrix Qp of the residuals. We will show that we
can compute the information that is needed in an efficient way. This makes the testing of

37
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sometimes tens of thousands of observations feasible.
In the elimination of the local parameters the projector matrix plays a key role. An

efficient way to compute it will be given. In the case of a single baseline, it will be shown
that the projector does not need to be computed explicitly.

The chapter will be concluded with a comparison of some double difference generating
algorithms with the undifferenced approach on an observation scenario stemming from a
global network. It demonstrates that in some cases data has to be discarded in the DD
approach, that still can be used in the undifferenced approach.

3.2 Classification of parameters

3.2.1 Global and local parameters

In our estimation process we make a distinction between global and local parameters. Global
parameters (r1) are parameters that are constant over at least some epochs, i.e. coordinates
of the receiver, ambiguity parameters, tropospheric delay parameters, and orbit parameters.
Orbit parameters will not be treated in this thesis, and in this chapter the global parameters
will be restrained to coordinates and ambiguity parameters. Local parameters (r2) are those
parameters that change on an epoch-by-epoch basis, i.e. receiver and satellite clocks, and
ionospheric delays.

The distinction between global and local parameters is made since we may treat each
group differently: e.g. we can eliminate the local parameters on an epoch-by-epoch basis, as
will be described in Section 3.8.

We will denote, as before, the number of receivers as r, the number of satellites as rn, and
the number of epochs as n. The argument of time (f) is replaced by a subscript 3, indicating
epoch &. The subscript indicating the observable type is also omitted here, as in this chapter
we will use only one observable type, viz. one phase or one code (pseudorange) observable
type. From the context it will be clear what observable type is used. For the time being it
is assumed that the observation scenario does not change from epoch to epoch.

The system of linearized observation equations reads

ArJ AzJ
A ,  

"  
A " "

:
A

n7,n

(3 .1 )

Az,n
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3.2 Classification of parameters

The global parameters consist of the coordinates of the receivers and, in case of the carrier
phase, the ambiguities:

The quantity ,nf is real valued; the integer valued phase ambiguity
together with the real valued initial phase delays $i and f.

(Phase)
(3.4)

(Code)

F/ has been lumped

The local parameters of epoch k consist of the receiver and satellite clocks of that epoch:

rz,k : I c6t11, c5t2,1, c6t,,p c6t1'k c5t2'k 
"6t^'k l'

(3.5)

The geometric part of the design matrix at epoch fr consisting of the unit direction vectors
from the receivers to the satellites at epoch k is denoted by the rm by 3r matrix 91. The
ambiguity part of the design matrix is covered by the identity matrix I,^ of dimension rrn.
The clock part of epoch k is denoted by the rm by r * m sub-matrix d. With this notation
the design matrix reads:
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3.2.2 Coordinate and bias-parameters

I
1

:
1

(3.8)

Apart from the distinction between global and local parameters, we can make a distinction
between coordinates of the receivers or functions thereof on the one hand (ry), and bias or
nuisance parameters, viz. receiver and satellite clock errors and ambiguity parameters on the
other hand (r1r). The system of linearized observation equations can then be written as

E{y} : lArA,, l l : : ,1 (3.e)
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with the composed design matrix as

IAI  lArr )  :

Ir* d

t
only for phase

the coordinate part of the parameters as
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and the bias part of the parameters as
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The reason for making this distinction is that the system (3.10) is not of full rank, but
since A7 and A11are complementary (see e.g. Schaffrin and Grafarend (1986)) the rank and
the rank defect of both parts can be examined separately. Complementarity of A1 and A11
implies that

1. there is no linear combination of the columns of l.1 that equals a linear combination of
the columns of A11, and that

2. the rank of A equals the rank of ,47 plus the rank of A77, and the rank defect of ,4
equals the rank defect of .4.1 plus the rank defect of A17.

A processing method which annihilates the problem of the large amount of parameters but
not the rank defect, is differencing of the observations. By differencing twice, we get double
differenced observables. Differencing between both receivers and satellites eliminates all
receiver and satellite clock terms, but there is still a rank defect that is usually resolved by
lumping the original ambiguities into double differenced ambiguities, see Section 3.6.

Another method to process the GPS observations is using undifferenced observations. To
be able to do this, we have to investigate what the rank defect is, and how to deal with it,
see e.g. Lindlohr and Wells (1985).

A rank defect makes that not all parameters are 'unbiased estimable'; with the help of the
theory of the S-transformations (Teunissen 1984), we can investigate what linear functions
of parameters are unbiased estimable.

3.3 Resolving the rank defect of the bias parameters

In this section we will investigate the rank of some simple models for relative positioning with
GPS, and show how it can be resolved. First we will have a look at the case of pseudoranges;
with the one epoch case as starting point the general case of n epochs is derived. From
there we go to the case of one epoch using carrier phases (which can only be solved when no
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coordinate parameters are included in the model), and the more general case of n epochs of
carrier phase.

Pseudo range
The bias part of the observation equations for the pseudorange observable reads:

c6t; - c6tl

Consequently, the bias part of the design matrix for one epoch only reads

(3 .13)
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and is not of full rank. The addition of the first r columns multiplied by -1 gives the same
result as addition of the last rn columns. There is a rank defect of 1. We have thus the rank
deficient system

E { v } : Arr rtt (3 .15)
r m x l  r m x r + m  r ] - m x l

with a rank of r + m - 1. To make it uniquely solvable, one constraint of the form

sa' rrr  :0,  with Rr+m - R(S)O N(A,,) (3 .16)
I x r * m  r * m x 7

has to be added to the model (Teunissen 1984). St' rrr is called the S-basis. Here Rp denotes
the vector space of all ptuples with real coordinates, N(Arr) denotes the null space of A77,
which consists of all vectors in R'+- that are mapped into the null vector in R'- under,477,
i .e.

N ( A , , ) :  { u  I  A 1 1 u : 0 } (3 .17)

and R(^9) is the range space of the r * m x r * rn --1 matrix ,9, which consists of the vectors
in Rr+,n-r which can be written as .92 for some z in R"*-:

R(S):  {*  |  , :  Sz for some z in R'+-} (3 .18)

There is an infinite number of bases for N(A11) possible, of which one can arbitrarily choose
one; but they all span the same vector space. The base f<rr the null space will be denoted as
V, thus R(V) : N(Atr). For the model above we may e.g. choose

v  - t ^  r
T - t m ;  . l -  l c r + m )

For ,S we may also choose from an infinite number of possibilities, e.g.

s  f o l - , ' l
r + m r l * * - t :  L ; : ; ; - ; l

(3.20)
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with 0o a null-vector with length q, which results in

s r  ' : f ^ s  I  ( 3 ' 2 1 )
r * m x l  1 0 , * - - t l

where g can be any real number. The resulting estimable functions are then
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Usually one takes q : 1 (although it has no effect on the eventual estimable functions), which
gives an S-basis consisting of the parameter ,Sr'r17 , viz. in this case cdt1.

Other choices for the S-basis may be any of the other clock errors, or e.g. the average
of all clock errors or a subset thereof. One could e.g. take the average of the satellite clock
errors. With Y as before and
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lr,**-v(sL"v1-tsL')rrr:1" r: i" it ,^1r,, 
(3.25)

or

c6tr - liciti
i=t  (3.26)

cstj _ *\),tr,
J = t

Different choices for the S-basis give different sets of estimable functions of parameters,
the coordinate-parameters, however, are not influenced by it.

For n epochs the bias part of the design matrix reads

l a  I
A r r l d l

n r m x n ( r * m ) : l  |  
( 3 ' 2 7 )

L  d l

Since the n parts of A17 relatingto one epoch are all complementary, the rank defect of All
is n times the rank defect of one epoch:



3.3 Resolving the rank defect of the bias parameters

1 epoch n epochs
n u n k A l l  r + m  n ( r * m )
rnkd,A11 | n
r a n k A l 1  r * m - l  n ( r * m - l )

where nunkA is the number of colirmns of ,4, or the number of unknowns involved, rnkdA is
the rank defect of A, and rankA the rank of A.

The rank defect of n means that one linear combination of clock terms per epoch cannot
be estimated. If we take at each epoch the clock of the first receiver c5t1,p for the S-basis,
the following functions of parameters become unbiased estimable:

c5t6,1, - c6t1,1, i,+ |
c6ii"i - ,urr,o 

(3'28)

Carrier phase
The bias part of the observation equations for the carrier phase observable reads:

).^q + c6t6 - c61t (3.29)

which gives for one epoch the following bias part of the design matrix:

Arr
r r n x r m * r r m  

:  l I , *  d ]  ( 3 . 3 0 )

There are again r * m clock errors as we saw in the case for the code observable, but there
are also rrn ambiguities. Besides the rank defect of 1 for the clocks there is an additional
rank defect of r * m - | for the ambiguities. Note that to be able to solve this system Ar
cannot be present; i.e. the coordinate parameters are assumed to be known. A possible basis
for the null space of All is:

(3 .31)

For ,9 and Sr we may choose e.g.

(3.32)

with

q
v a

r m x ( r - 1 ) ( r n - t )
(3.33)
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s _ fs ,  I
r m + r l m x ( r - I ) ( m - 1 ) + r * m - 1 -  L  S d l

v  i  -d ' l
r m * r ] - m x r * m : 1 1 " * , , , l

0*,^-l

l?;:l
lofi-'l
L1--rl

sa - fol*--'l
r + r n x r + m - 1 -  l / " + - - r l

(3.34)
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and

with

sa
r m + r * m x r * m

: 
[t* ,]] (3.35)

(3.36)

(3.37)

(3.38)

(3.3e)

.gr
" a

r m x r * m - l -

Q Ip )

r l m x T -

The S-basis is thus

o L r _  [ ^ N !  i + r v j + rJ _  r t t :  
l c d r ,

which gives the following unbiased estimable functions of parameters:

|  , 4  - 1  ( t ( N i - , ^ i j - ( N i - N i ) )

lI,-*,*^-v(sL'v)-'^s"l ",,: t :tr|-_"!]ri,-_l$,t 
- 
"t,

For n epochs the bias part of the design matrix reads:

i + 1 ^ j + 1
i , +  1

Arr l ' ; , :o o I
nrrn x rm I n(r * m) : 

lr_ ,l
(3.40)

For each epoch there are again r + m clock errors, giving a rank defect of 1 per epoch. The
inclusion in the model of the rrn ambiguities which are common for all epochs, causes an
addit ional rank defect of  r*  m-I,  result ing in a total  rank defect of  r*  m-l+n:

1 epoch
nunkAl l  rrr l+r+nx
r n k d , A 1 1  r + m - 1 + 1

n epochs
rm -l n(r * m)
r  + m - I * n

ran leA l l  ( r  -  l ) (m -  1 )  +  r  *m- l  ( r  - l ) (m -  1 )  +  n ( r  - t rn - l )

A possible basis for the null space of A11 is:

V
r m * n ( r * m ) x r + r n - 1 * n

l;i-
: l lr*^ 

er+m

l'''** er+m

(3 .41)
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As before, we have to choose one linear combination of clock terms per epoch, and additionally
another r +m - 1 parameters for the S-basis. Let us take e.g.

^ N !  i + r v  j  + r
c6t1,p

which corresponds to choices for ^9 and Sr as e.g.

(3.42)

s
r m  *  n ( r  *  m )  x  ( r  -  I ) ( m -  1 )  +  n ( r  - t  m -  1 )  

: (3.43)

and

sr
r m l n \ r * m ) x r + m -

(3.44)

The unbiased estimable functions of parameters are then:

) (Ni  -  r { , ' -  ( r (  -  r / i ) )  i+L  ̂  j  +1
c6t;,1, - c6tt,o - )(,^ii - ,^/c1) i. + | (3.45)
c6 t t ' k -c | f i ,p - ) l ' ( ,

In contrast to the individual ambiguities l( , the function of ambiguities N/ - l/i - (Ni - lil )
is integer valued. Since we have defined .A( as

f,s,'
l s ;

r + n :  I
L s,'

N l : N : + d r - f

it is real valued. If however, we substitute Eq. (3.46) into l/i - l4
function that is integer valued:

N / - l i n ' - ( r / i - r / i )  :  N r
-Fi

*Q;
-Qt

(3.46)

- (lii - lil) we get a

-d
+0,

+d Q.47)
_6r

-Ni -d'
+Fi *6t

: ivi - lvi - (lvf - lvi)

Note that the (r - 1)(- - 1) functions of ambiguities are equal to the functions one obtains
when applying a certain double difference operator ('pivoting' with the first receiver and the
first satellite). Therefore we will compare the solution with the undifferenced observations
with this DD solution.

3.4 Finding an S-basis for  the ambigui t ies

In Section 3.3 we have seen that to obtain the integer double differenced ambiguities as
unbiased estimable function, we have to choose one clock error for each epoch and r * rn - 1
ambiguities for the S-basis.
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In choosing this set of ambiguities one is bounded by some restrictions: each satellite and
each receiver should exclusively be represented in the set of S-basis ambiguities. When we
say exclusively we mean that if an ambiguity )N/ is chosen, it represents either receiver ? or
satellite j. There is one exception to this rule: one of the S-basis ambiguities represents both
the receiver and the satellite. For rm ambiguities, involving r receivers and m satellites, it
gives us r*rn- 1 ambiguities for the S-basis, where the -1 comes from the exception above.

Here we have implicitly assumed that the receiver-satellite combinations form one con-
nected component, which is usually the case. One such an occasion might be e.g. two small
networks at opposite sides of the Earth, where the set of satellites tracked by the receivers
of the first network do not overlap the set of satellites tracked by the receivers of the second
network. In such a case two separate S-bases have to be chosen, but it does not make much
sense to process the networks together anyhow, since processing the networks separately gives
the same results.

There are a large number of ways to choose the set of ambiguities as defined above, each
giving a different set of unbiased estimable functions of ambiguities. We can for instance
choose the set of ambiguities such that the eventual set of estimated functions of ambiguities
becomes equal to the set of double differenced ambiguities one obtains by applying a pivoting
scheme in defining the DD combinations. Let us take e.g. the case with r : 3 receivers and
m : 4 satellites,

1 2 3 4
1 )N11 )Nr' )Nrt )lrf
2 ^N; ^N? )r/t ^Nt
3 )N31 )Nr' )trj )Nrn

(3.48)

We choose as S-basis: {)Nrt, )N12, ).1y'13, )N14, )16, )lG} In the scheme below we indicate
that a receiver or satellite is represented by an ambiguity in the S-basis by putting a box
around the sub- or superscript of the ambiguity concerned.

t 2 3 4

1 )Nm )nff )r/ff )Nff
2 ^NM ANA )Nr' )Nrn
3 )Nfu )Nr, )Nrt )Nrn

It gives us indeed the same double differenced ambiguities we obtain if we form double
differenced observables with receiver 1 and satellite 1 as pivot:

) (N i -n i -n ;  +N; )
) ( r / i -N i -N;+r { t )
) (N i -N i - rq+r / t )

) (Ni- t ' r i - t i / r ' * t / r , )
)(t{i - Ni - Nr'+ ri;)
)(Ni - t( - l/r'* l/rn)

(3.4e)

(3.50)

Another valid choice would be: {)l[r1, ̂ N?, ̂ Nt,)Nt, )N33, )l#]

1 2 3 4

1 )N$ffi ),^.l,ffi ).^/P
ffi

^N; )"fu ,\nry
)Nrt )Nr, ^"fu

2

3

)Nrn

^Nl

)lvff

(3 .51)
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Figure 3.1: Associated graph for the observation scenario of (3.48). Receivers are indicated
by diamonds, satellites by circles.

The estimable functions this choice gives are still of integer nature, however they do not all
have the form of the classic double differenced ambiguities consisting of 4 ambiguities:

,\(-r/i + /vf + N; - Nl.) )(-Nr'+ /vj + Nj - r/r')
) ( - r / i+ ,^(+ N3-  N3 +r / i -Nf )  ) ( - r { i+Ni -  Nl+w} +r /31 - .^ / j )
)(-r/i +.^/i + N; - Nil )(-Nr'+ NN + M - t/r') (3.b2)

Which ambiguities may be chosen for the S-basis, and the resulting set of estimable func-
tions, can be determined using an undirected graph to represent the receivers and satellites
involved.

A graph G : G(V,.B) consists of a set of n nodes or vertices I/, together with a set
of edges .8, where an edge is a pair of nodes belonging to l/. If no distinction is made
between the edge from node u1 to node ?12 and the edge from node u2 to node u1, the graph
is called directed. Two nodes are called adjacent if they are connected by an edge. A path
is an ordered set of distinct nodes (o1,'t)2,... ,u-11) such that u6 and u611 are adjacent for
k: ! ,2, . . .  , rn;  a path is a cycle when u1 equals un+t.  A graph is connected i f  every pair  of
distinct nodes is connected by at least one path. An undirected graph which is connected,
and has no cycles, is called a tree. In a tree there is exactly one path connecting any two
nodes (Pissanetzky 1984).

We may define an associated graph for an observation scenario: each receiver and satellite
is represented by a node, and each ambiguity belonging to a phase observation made by a
receiver to a satellite is represented by an edge. The associated graph for the observation
scenario of (3.a8) is depicted in Figure 3.1.

We found that the S-basis for the ambiguities can be formed by taking the ambiguities
associated to the edges of a so-called 'minimum spanning tree' (MST). A minimum spanning
tree is an undirected connected graph consisting of n nodes and n - 1 edges. It has the
property that of all connected graphs the sum of the weights of the edges is minimal. In this
case we define the weights of all edges to be equal, and we speak of a 'spanning tree'. An
algorithm to build a minimum spanning tree is called Prim's algorithm.

47
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Prim's algorithm for building an MST:

1. Take the edge with the highest weight, and put the two nodes connected by it, in set
w.

2. Consider the set ofedges that connect a node from I/ -Vto a node from V1, and select
the edge with the highest weight,

3. Add the node belonging toV - [ of the edges selected in 2. to V1.

4 .  As  long as  V -  V  +Ago to  2 .

In selecting the edge with the highest weight, ties are broken arbitrarily. No matter how
ties are broken, the resulting sum of weights is always minimum, although actual trees may
differ. In Figure 3.2 two such trees are depicted, the edges of the tree are drawn as solid
lines, the remainder of the edges of the associated graph are drawn as dotted lines. The
S-basis consists of the ambiguities represented by the edges of the tree, viz. for the tree at
left {)Nrl,)Nrz,)Nr3,)1y'r4,)1y'21,)Nr1} as in the example of (3.49), and for the tree at right

{)l/,t, ^N?,^N3,)Nt,)Ni,),n/r4} as in the example of (3.51).
Each of the estimable functions due to the S-basis consist of one ambiguity not in the

S-basis plus a function of ambiguities from the S-basis. This function is found by traversing
a path in the spanning tree. For an ambiguity )N/ which is not in the S-basis the path
to be traversed is the path from receiver i to satellite j, or from satellite j to receiver i.
The estimable function consists of ambiguity ^Nl plus all ambiguities encountered while
traversing the path. While traversing the path, the sign for the ambiguities is changed at
each edge, starting with a minus sign at the first ambiguity. For the observation scenario of
(3.48) with as S-basis the ambiguities associated with the edges of the trees in Figure 3.2 we
obtain:

Tree at right:

)(r / i -  Nl+Nl -r / i )
)(r{i - Nl + Nl -,vj + N; - Nr')
) ( N ; -  N l + w l  - N i )
)(Nrn -,nrj +.nrf - Nrt) (3.53)
)(l/r' -.nri +.nrf - Ni + l/i - Nl)
)(Nr'-,nri +.nri - NZ)

z -

1
1

- 1
(3.54)- l  I

- 1  1
- 1  I  I

If we denote the S-transformation matrix lI -V(S+'V)-tSi"] originating from the first
S-basis as 51, and the one originating from the second S-basis as.52 - lI -V(S+'V)-tSrt'],

Tree at left:

A(N; -.nrrl'+,nri - I/i)
)(l/t -.nrrl +,nrl - Ni)
)(l/i -,nrrl + lri - lrf)
Xlr; - .nrr1 +.nrl - Ni)
)(Nj -,nrr1 +,nr| - Ni)
)(Nj -,nrr1 +,nrf - Nf )

The functions of ambiguities at left can be transformed into those at right by multiplying
with the invertible, volume preserving transformation matrix

- 1
- l I  - 1

I  - 1
- 1
- 1
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Figure 3.2: Two spanning trees for the observation scenario of (3.48). Receivers are indicated
by diamonds, satellites by circles. The edges of the tree are drawn as solid lines, the remainder
of the edges of the associated graph are drawn as dashed lines.

the matrix to transform the estimable functions from the first S-basis to the second S-basis
is computed as:

5'5J (3.55)

where i denotes the pseudo inverse (SSIS:.S and .St.S.9t :.S1).
If we choose one of the receiver or satellite clocks for the S-basis for the clocks, estimable

functions are formed consisting of two parts, viz. a differential clock (receiver or satellite clock
minus the clock in the S-basis) minus a function of ambiguities. This function of ambiguities
can again be determined using the spanning tree.

The two clocks that form the differential clock are the end points of a path in the tree.
The function of ambiguities is found by traversing this path, starting at the clock that is part
of the S-basis. Again the sign for the ambiguities is changed at each edge, starting with a
minus sign at the first ambiguity. If we choose, e.g., the receiver clock of the first receiver for
the S-basis, the following estimable functions are obtained:
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Figure 3.3: Spanning trees for the observation scenario of (3.57). Receivers are indicated by
diamonds, satellites by circles. The edges of the tree are drawn as solid lines, the remainder
of the edges of the associated graph are drawn as dashed lines.

Tree at left:

c(6t23 - 6tui + )(-Ni * Nrt)

c(643 - 'tu) + )(-.^q1 + Nrt)

c(6t1,k - 6h,x) - )l/i

c(6t2'k - 6tux) - )Nrt

c(6t3,k - lh,x) - )Nrt

c(6ta'k - 6h,*) - )Nnt

Tree at right:
c(6t2p - 6h,x) + )(-.^/i * Nr')
c(6ts,p - lh,x) + )(-Ni + N3 -,nrN +.nrj)
c(6t1'k - 6h,*) - )t/i

c(5t2,k - 6h,r,) - )Nrt

c(6t3'k - 6h,x) + l(-,^rli + N; -,nrj + lrf )
c(6ta'k - dtr,*) + )(-.^/i + N3 -,nrj +.nfj - N.t)

(3.56)

AIso cases as described in e.g. Blewitt (1993), where 3 receivers each track 2 satellites
from a total of 3 observed satellites, are easily handled. The ambiguities (and an S-basis
chosen by the aforementioned rules) for this case are:

I 2 3

1 )Nm )Nff
2 ),^rfu )/vff
3 )r/fu )N3

The resulting estimable function of ambiguities is then (see Figure 3.3)

(3.57)

)(l/i - Nl + w| - Nt -,nrrr +,nrj) (3.58)
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I
t

Figure 3.4: Spanning tree for the case of cycle slips in the observation scenario of (3.48). At
left a cycle slip occurs in the receiver-satellite combination l, at right a cycle slip occurs in
all combinations of receiver 1. Receivers are indicated by diamonds, satellites by circles. The
edges of the tree are drawn as solid lines, the remainder of the edges of the associated graph
are drawn as dashed lines. The edges associated with new ambiguities due to a cycle slip are
drawn in grey.

There are in this case 6 possible sets of 5 ambiguities, giving 2 functions of ambiguities which
differ only by their sign:

{ )Nrr, AN;, )lq, )1y'31, )lri}
{)Nrt, )Nrr, )Nt, )Nrt, )l/3}
{)Nrt, )Nrr, ^NB, )l/t, )Nrt }

)(Ni - wl + ul - Ni - nl +.nrj)

{)Nr',
{)Nrt, )Nr,,

{)Nrt, )l/i,

)l/t, lNJ,
)rq,

)r/t,

)r€)
)I€}
)Nt)

^N3,
^N l ,
^N3 ,

-)(t/i - t{,'+ N3 - N; - lrrl +,nri)

For a more realistic case see Section 3.15.

3.5 Changing observation scenarios

In Section 3.4 we described how to choose an S-basis for the ambiguities assuming that
the observation scenario does not change from epoch-to-epoch. In that case the S-basis is
determined once at an arbitrary epoch. In practice, due to rising and setting of satellites,
and unrepaired cycle slips for which new ambiguity parameters have to be included, we may
have different sets of ambiguities for different epochs. The determination of an S-basis is still
fairly simple, but it may be necessary to extend it at some epochs.

At the first epoch an S-basis is determined according to the rules given in Section 3.4:
each satellite and receiver has to be represented exclusively by one of the ambiguities in the
S-basis, with the exception of one ambiguity that represents both a receiver and a satellite.

If there is a change in the observation scenario, it is compared with the scenarios of the
previous epochs. The S-basis is extended when
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1. a satellite is observed that was not observed in a previous epoch.

2. a receiver starts to observe that did not observe in any of the previous epochs.

3. a slip occurs in all receiver-satellite combinations of a certain satellite. This could e.g.
occur when a regional network is observing for 24 hours; then there are time spans that
the satellites are not seen by any of the receivers.

4. a slip occurs in all receiver-satellite combinations of a certain receiver. This will happen
more frequently: malfunctioning of the receiver or blocking of the signals.

So, if at a certain epoch a receiver-satellite combination is not observed, the S-basis
remains as it is, if a new receiver-satellite combination or a slip occurs, the S-basis may be,
but not always is, extended.

To clarify the procedure, let us have a look at the observation scenario in (3.48). The first
case we will take is a slip in the receiver-satellite combination I at an epoch k. None of the
cases above applies, and consequently the S-basis need not be extended. In Figure 3.4 the
tree and associated graph for this case is depicted. The new ambiguity ,A(,0 for epoch ,k and
beyond, is drawn in grey. As far as the ambiguities are concerned, the estimable functions
are the ones we already determined for the observation scenario in which no slip occurs, plus

)(Nn1n - Ni,,) (3.5e)
which follows from applying the same rules as given in Section 3.4. Note that this is also not
a classic double difference ambiguity, but that N,1n - Nrr., is integer valued provided that the
size of slip is integer which is usually assumed to be so. The estimable functions involving
clocks remain as in the case where no slip occurred.

In a second case we assume a cycle slip in all combinations of receiver 1. Case 4 applies,
so one of the ambiguities in the combinations of the first receiver is added to the S-basis.
Again, for the ambiguities the estimable functions are the ones already determined for the
observation scenario in which no slip occurs plus

) (Ni* -Ni ,o+Ni , , -Ni , )
)(Nio - Ni,u + Ni,, - Ni,,)
) (N iu -N io+N i , , -N i , )

Again these are not the classic double differences, but they are still integer valued functions,
viz. they are differences between the slips of 2 receiver-satellite combinations. As far as the
clocks are concerned, from epoch & and beyond we have

c(6t23 - drr,r) + ^(-.^/i,ft + Nrt,r)

c(6ts,p - 6h,*) + )(-Ni* + Nrt,,)

c(6t1,k-drr , r )  - )Ni ,n

c(6t2,k - 6h,*) + )(-Ni,ft + Ni,, - Ni,)

c(5t3'k - 6h,x) + )(-.^/i,ft * 
"i, 

- Ni,)

c(6ta'k - 6h,x) + )(-,^\/i,ft + l(r - Ni,)

In a third case two new combinations are observed, e.g. i, and !. Case 1 applies, so one
of the accompanying ambiguities, e.g. I is added to the S-basis to represent satellite 5. If in
a later epoch, it disappears again and combination ! is observed instead, the S-basis remains
as it is.

(3.60)

(3 .61)
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3.6 Double difFerenced approach

To form (single) differences between observations generally two strategies exist, viz. 'pivoting'

and 'cycling'. In the pivoting strategy, differences are formed with respect to a chosen 'pivot'

receiver or satellite. If we take e.g. as pivot the first receiver or satellite, the differencing
process can be denoted as

SDY : Rn-tU (3.62)

with Rq-r

Rq-r
q - l x q

(3.63)

and g the number of receivers or satellites. Any other receiver or satellite can be used as
pivot, as well.

When using the cycling strategy the reference receiver or satellite is obtained by cycling
through the range of receiver or satellites; i.e. each difference is formed with respect to a
different receiver or satellite. The transformation matrix for the cycling mechanism reads

Rq-r
q - r x q

- 1  1
- 1  1

(3.64)

- 1  1

In practice also often a combination of the two, or a pivoting scheme with more than
one pivot is used (cycling can be seen also as a pivoting scheme with q - 1 pivots). The
whole process of differencing is sometimes also characterized as finding the maximum of
q - 1 independent differences that can be formed out of q observations. Independence of the
differences implies that Rq-r has full rank, i.e. a rank of q - 1.

For the analysis that follows the departing point will be the pivoting scheme with the
first receiver or satellite as pivot.

Between-receiver SD observables are formed from the original observables through a pre-
multiplication by the (r - 7)m x rrn matrix R"-1 @ 1-:

SDY: (&-r& I^)Y (3.65)

and from it DD observables are fermed through a pre-multiplication by the (r - 7)(m - 1) x
(r - I)m matrix I,-r @ R"r-1:

DDA-(1 , - r8R- - r )SDy
: (1,- t  O E--r)(& -r  I  I^)Y
: ( & - r q R " - t ) a (3.66)

Since we have transformed the observables, we also have to transform their variance-covariance

matrix. With a variance-covariance matrix Quo for the original observables of the form jI,

53

- 1  1
- 1  1

- 1
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the variance-covariance matrix of the double differences becomes:

I
Qll  :  

;@,-te 
R^-t)(R *r I  B--,)"

1: :(R,_rRf_,)s (P*_,nil_,) (3.67)

It can be shown that

QDb :  , l (&-, I  R^-)(&-r  8 .R-- , )" ] - '
: w(R,tRL,)-' I (R^-fiT)-t (3.63)

The product RqtR[-t and its inverse are

Rn-rR[-t :  ( Iq-r  + Eq-) (3.69)

(an-f i [ - t )  '  :  ( ro- , -  1t  - ' )  (3.T0)
U q /

So the weight matrix for the double differences equals

.  /  I  \  /  1 ,  
\QDb : u (r"-r 

- 
;E'-, )* (t-- ' 

- 
*t*- ' ) 

(3'71)

Assuming the observation scenario does not change, the ambiguity part of the normal matrix
is equal for all individual epochs. The system of normal equations for the double differences
of epoch /c reads then

r ,*(&-ra E*-r)" (r ,- ,  -  1u,-,)  q (h-,-  1r--,)  (R.-r I  R^-) r ,*a,r1:
\ r / \ m /

I,^(&-t q R*-,,)r ( ,,-, - 1a-,) a ( h-r- lr--,) (&-r I R^-) Ly* (s.72)
\ r / \ m /

or

- /  1  \  /  1  \
( f t , - r  o  R* - r ) '  (  1 , - r  -  )E , - r l  I  |  1 - - t  -  )E* - t l  (A- t  o&" - r )Ar1  :

\ r / \ m /

(f t"-r  8 R^-,) '  (  , , - ,  -  1a-,)  a (  h-,-  l r -- , )  ADDy; (3.73)
\ r / \ r n /

Through the differencing the clock parameters are eliminated, but the transformed design
matrix &-r 8 .E--r still inhibits a rank defect of r * m - I. This rank defect is usually
solved by Iumping together of the original ambiguities into double differenced ambiguities.
Instead of the rm-vector of original ambiguities

[ )Nl )Ni ... )Ni" )Nr' ... )tq" ]t @.74)

a (r - I)(* - l)-vector of double differenced ambiguities

I r (n l -N i -  N ]+Ni l  ) (N i -N i " -N;  +Nt r )
)(Ni - l/i - Nrt + Ni) ^(lr,t -,^/i" - N31 + Nfl)

)(Ni - Ni - N; + ry) ...)(Ni - Ni" - N,' * ry") ]' (3.75)
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is obtained. The design matrix is changed accordingly from the (r - 1)(m - 1) x rm matrix
f t"- i  8 R*-1to the (r  - l ) (*  -  1) 

"  
(r  - l ) (m - 1) matr ix 16-9@-r).The result ing system

of normal equations is now of full rank:

/ 1 \ / t \
I  I ,_ ,  -  :E ,_r  I  g  |  / -_ ,  -  1E*_r  I  Ar1  :
\ r / \ m /

/ 1 \ / 1 \
( '"- ' 

- 
;u'- ')* (t-- ' 

- 
iE*-' ) 

Lntux (3'76)

The transformation that was applied to the observables is not an invertible one (invertible
transformation maintain the information content of the system). In the next section it will
be shown why it is still admissible.

3.7 Double difFerences: an alternative approach

In this section we will show how the system of undifferenced carrier phases

can be transformed by applying invertible transformations (which do not change the infor-
mation content of the system) only, into

"r | ,3. ]t : [ ,#o, 
u{ o},q,,,] | "f;,. ]

(3.78)

For reasons of legibility, and since here we are mainly interested in the biases, we will only
show the transformation of the bias part of the system. Also the expectation operator will be
o_mitted. The superscript M denotes the whole range of satellites 1,... , m, the superscript
M denotes the whole range of satellites except the first one 2, ... ,n'1.

We start with the undifferenced phase observables, modeled by a clock term for the
receiver and for the satellite. and an ambisuitv term:

E { O } : l A r  O , , l l : : , 1

-I^ I^
-I^ I*

en -I* , ]

c6t1
c6t2

cht,
c6tM
^Ny
^Ny

^Ny

(3.77)

(3.7e)

f o r
l o Y
t -

t :
LoY

: 
l- 

em

In a number of steps we will apply the following invertible transformation to this system of
observation equations

?no : Q,8 R-)(R" 8I^) (3.80)
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with

(3 .81)

Applying the second part of (3.80), thus (8, 61-), to Eq. (3.79) we form single differences
between receivers (pivoting with the first receiver as pivot), while retaining the original
undifferenced observation equations belonging to the first receiver. In the so formed 'single

differenced' (SD) observation equations the satellite clock term has disappeared:

fol'l | "* 
-I* I*

l ay r l  l - " ^ r *  - I * I ^
l : l : l : ' . : ' .
t l l

L Al{ J l-"^ en -I* I^

I^

I^

em| : ; ]

cdtl
c6t2

c6t,
c6tM
)Nl'
^Ny

(3.82)

\ A/M

where Or1 : O, - 1p1.
In the SD equations we lump together the clock of the first receiver with the clock of the

other receivers, and also the ambiguities of the first receiver with the ambiguities of the other
receivers:

*I* I*

c|t1
c(5t2 = 6t1)

:
c(6t, - 6t1)

c6tM
)t4n
^NX

(3.83)

where N/, : N/ - Nf .
Applying the first part of (3.80) to Eq. (3.83) double differences are formed (pivoting

with the first satellite as pivot). In the DD observation equations also the receiver clock term

:
t  n lM/ r r  I  r l
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disappears:

c6t1
5t2 - 'tr)

6t, - 6t1)
c6tl
c6ttu
)Nl
)Nfl
l)r/il
L^ri#l

:

l)rq'l
L)1/#j

u,:u! *ul
dr" - drl) |

cStt I
c6ttu |)r/i I
^lt/,M I

l#r1'l I: l

[^i.Ti,] l

c(

c(

(3.84)

lumped together with

(3.85)

,^f
,^)

f r l
t l

Lo-l

H]
. 0 1  

I
of" I
lo l , I  I
L.i{'ll:

b--i'tl

,*]

I ' l
Lo-J

H]
ol
ol"
lo i , l
Lo,{'l

:

f  ol ' l
Loff'l

c(

c(

f r
l-"^

w h e r e  € m :  € m - t , 0 n : 0 ^ - t ,  a n d  1 6 r :  I m - r .
In the DD equations the SD ambiguities of the first satellite are

the SD ambiguities of the other satellites, giving

- 1  1
em -Im -en In

- 1  I
em -Im -em Im

I r
I
L-en

[ '

F I
I, I^l
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where Nll : Nir - lqt. A re-arrangement of the system gives

- 1  1
em -In -em Im

c|t1
c(6t2 - 6t)

In

1fr,

ol
ay'
ol'

o},
ox'

:
aYtt

:
c(6t, - 6t1)

c6tr
c6ttu
)Nrt
^Ny
)N,\

)N,"
ANX'

)N#'

(3.86)

(3.87)

which falls apart into two independent subsystems (although the systems seem to be linked
together via the coordinate part, the first part, as we will show below, does not contribute
to the estimation of the coordinates):

lyl
I  - 1  1

em -In -en In
1 1

c5t7
c(5t2 - 6ty)

c(6t, - 6tr)
cStr
c6ttu
)r/i
)t4n
)N,\

^ri;,

l:;,] :1',.] ffi:] (3.88)

The second part of the system contains the DD equations modeled by the DD ambiguities.
Let us have a closer look at the first part of the system: there we have r+m- 1 observables,
r + nx local parameters consisting of functions of the clock parameter, and r * m global
parameters consisting of functions of ambiguities. The system is obviously rank defect. By
pre-multiplying the system with the matrix

f l , l l
l ,  l l ' + m - I
Li 'J,|

(3.8e)
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we obtain a system with undifferenced equations only:

- 1

- 1

I  - 1

,,,1']

1
_1fr, lfr,

1 1

:  " .
1 1

1
w n

1 1

1lil

lylll

c6t1
c(5t2 - 6tt)

c(6t,  -  6tr)
c6tl
c5ttu
)lii
)t4o
)Nrtt

:
)N"tt

(3.e0)

Now we lump together the biased receiver clocks c(|ti - dl1) with the SD ambiguities

()lfi), and the satellite clocks (cdri) with the ambiguities of the first receiver (),^():

(3.e1)

In the resulting system there is still a rank defect of 1. To make the system of full rank
we lump together the clock error of the first receiver (cdl1) together with the biased satellite
clocks (c6t, - )Nf ):

lT] :l' ,,1 'l
(3.e2)

The result is a system of full rank, with only local parameters; i.e. at each epoch r * rn - 1
parameters have to be estimated using the r * m - I observables only. These observables
are called free variates. The observables in this system do not contribute to the estimation
of coordinates or DD ambiguities. If one is not interested in the local parameters, these
observables may be discarded.

The local parameters are equal to the unbiased estimable functions of parameters one
obtains when in the undifferenced approach the S-basis as in (3.42) is chosen.

3.8 Solution of the normal equations

As we showed in Section 3.3, the rank defect of the bias part of one phase observable type
(i.e. the ambiguity parameters and the clock errors) is r* m*n - 1, so we have to choose

c6t1
c(6t2 - di1) +.\Nrl,

:
c(,t, - drl)+ )l/"11

cdtl - )Nrl
ctttu - xw{
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r+m+n- 1 parameters to form an S-basis. One of the possible choices is to choose one clock
in every epoch (we chose the clock of the first receiver), and r-Fm- 1 ambiguity parameters.

In practice the choice of the clock of the first receiver means that we skip the columns
referring to this parameter. This means that we constrain the value for the clock of the first
receiver to zero. By doing this, matrix A23 is altered into A2.p:

Ar,n
r m x ( r - I + m )

em

-I^
-I^

em -I^

AS

(3.e3)

(3.e4)

(3.e5)

(3.e6)

Qu _lo"  I
x n r m _  

|  

. .  

A r ^ )

the normal matrix ly' and right-hand side h read

With the variance-covariance matrix of the observables

.A/

x 3 r * r m * n ( r * m )

h
3 r * r m * n ( r * m ) x l :

iAT,oa;la,,r
fr:1

AT,rQ;,tAt,t AT,Q;,'Ar,,

:
Ar,"QilA',^ AT,Q;}4,,"

L, AT,.Q;)ta*
r c = t

AT,,Q;,'Ly,

AT,,e;) ta^
Since this normal matrix system will become very large for the number of epochs nor-

mally involved, the local parameters are first eliminated, and computed in a second step
by substitution of the global parameters in the observation equations. The elimination of
local parameters and thus the updating of the normal matrix and right-hand side is done
epoch-by-epoch, and can symbolically be described as follows:

symmetric
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A h : 0 ;  h o : o

for epoch k: I to n:

N e :

:

h p :

Nr-r * AT,uQilA'* - eT,oail lAr,o(AT,uQilAr,i-'AT,uQill A',0
l/r-r * AT,.A;: lI,^ - Ar,o(AT,oQi] Ar,u)-'AT,oQil) ar,o

lL-r * aT,oail lr,^ 
- Pu,,o) Ar,o

AL-r * tl,oq;)et',.r't.,x (3.e7)

h*-t t AT,oQil Lvo - nT,oai) lA,,k(AT,kQ;: A,,i-'AT,oQill tao
ht -t * eT,oail lI,* - Ar,o(AT,oQi| Ar,o)-'AT,oQi)) tao

h*-r * aT,oQ;) lr,* 
- Pu,,r) Lau

(3.e8)

with AI* the normal matrix reduced for the clocks of epoch 1 to k, hr the right-hand
side reduced for the clocks of epoch 1 to k, and Agl the vector of 'observed' minus
'computed' of epoch k.

So after n epochs we have the following reduced normal matrix system

D, oT,rq;: P!".rAr,xar, : i .+l,ug;) r!",rn yo
/c=l /c=l

In short hand notation we will denote it as

(3.ee)

NnAr l : 1 , (3.100)

Since so far we only resolved part of the rank defect, viz. the rank defect relating to
the clock parameters, the normal matrix l/" is still singular. The remaining rank defect of
rtrn- 1 is resolved by constraining r*rn- 1 ambiguities to zero, resulting in an invertible
normal matrix N, and matching right-hand side h';

Nn: sTNnso

h, :  STh^ (3.101)

i.e. if we have chosen an S-basis for the ambiguities consisting of r * m - \ ambiguities,
STN^S" is formed by deleting the columns and rows in N' and the entries in h, referring to
the ambiguities in that S-basis. For the definition of So see Eq. (3.33). The selection of the
ambiguities is made according to the procedure described in Sections 3.4 and 3.5.

With the exception of global networks, the absolute position of the coordinates is poorly
estimable, and thus also the coordinates of one station are constrained to a priori values. This
makes that instead of absolute coordinates 16, relative so-called baseline coordinates ri-ri1,
with z0 the station whose coordinates are constrained, are estimated. This is however, nof
a real rank defect, so the values at which the coordinates are constrained, influence the
estimates.

: hn-r * ll,og;rr e[",ra'yo
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The global parameters are obtained through solution of the system

Nna'rr :  11n (3.102)

by means of a Cholesky factorizationl (Golub and Van Loan 1989) of the normal matrix,

Nn:  cc r  (3 .103)

followed by a forward and backward substitution:

Cr l r :  f i n

cr a,i, : an
(3.104)

(3.105)

The Cholesky factorization can be made in-place.
After we have computed the global parameters we compute the local parameters by

substitution of the global parameters into the 'observed' minus 'computed' quantity:

tvf) : Lvu_ Ar*L'nt (3 .106)

with

Ar3: lgt"  s ' ]  (3.102)

S, is formed from I,^ by deleting the columns referring to the ambiguities in the S-basis.
The solution of the local parameters Af2,1 of epoch ,t follows then from the solution of

the system

(AT,uei i Ar.x) Lrz* : AT,oeii Laf) (3 .108)

Or, since H Ar,o : (AT,rQ;J Ar,r)-t AT*Qi) becomes available during the computation of pl

( see  sec t i on  3 .12 ) .  

E l sk  L ' t u /  - - z 'Kaak  
" ' " "  " ' -  Az ' t

Lrz,* - H ar.nLyf,) (3.10e)

3.9 Testing and reliabil i ty

In this section we will give a short description of the testing procedures that are employed in
all geodetic data processing software of the Section Mathematical Geodesy and Positioning
of the Faculty of Civil Engineering and Geosciences of DUT (B-method of testing). For a
more extensive description we refer to Teunissen (1939) and Beckers and Kenselaar (1996).
In Section 3.10 we will show some examples of these procedures applied to GPS data.

Testing.
The testing procedures are based on the confrontation of the null hypothesis

H o :  A  -  N ( A r , Q u )

IDevised by Andr6-Louis Cholesky, see (Benoit 1924)

(3 .110)
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with the alternative hvpothesis

H o t A - N ( A r + C y V , Q v ) ( 3 . 1 1 1 )

The null hypothesis states that the data fit both the functional and the stochastic model,
whereas the alternative hypothesis states that the functional model should be extended, to
account for the model error CrV. The observables are assumed to have a normal distribution.

In the GPS data processing three tests are computed, viz. 1. the overall model test
(OMT), 2. the test for an outlier in a single observation, and 3. the test for a cycle slip in
a carrier phase observation. Slips occur when the receiver miscounts the number of whole
cycles. This can occur, e.g., when there is high ionospheric activity, or by some internal
failure inside the receiver hard- or software.

The overall model test is a general test on the validity of the chosen model. It analyzes
the squared perpendicular distance of the observation vector g to the model ,4r. The test
statistic reads

Tar: aTQ;'a, (3 .112)

and has under the null hypothesis a X2 distribution with df : 'number of observations'-'rank
of the system' degrees of freedom. The null hypothesis is accepted if

Ta1 1 le61 (3 .113)

Besides the overall model test, each observation may be tested separately, by specifying a
one-dimensional alternative hypothesis for it. The test statistics so obtained are called tu-test
statistics. For the GPS observable types, two alternative hypotheses are of importance, viz.
one that tests if an outlier has occurred in a pseudo range or carrier phase (specified by a
conventional alternative hypothesis), and one that tests if a slip occurred in the carrier phase
(specified by a non-conventional alternative hypothesis). The u-test statistic for the GPS
alternative hypotheseb (with C, : cp,r) reads

w p , k : (3.1. i4)

The choice for cp,n for testing for an outlier, or a cycle slip will be treated in Section 3.10.
The squared tr.r-test statistic has under the null hypothesis a central 12 distribution with

one degree of freedom. Ils is accepted if

w|,1,3 kt (3 .115)

or consequently, if

- JE !wp , *<JE (3 .116)

If flo is rejected the estimate for the error Vr.,r reads

6,oQuc

$3Q;'QeQ;'"r,n

.- i{.oQucYP'k: q,ralanTrrh (3.117)
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For the case that the size of the error llVp,*ll is known a priori, the u.r-test statistic reads
(Teunissen 1988)

1;u.'o,*ll : 116*Q,ell (3 .118)

$,xQ;'QeQ;'c,,x

and f/e is accepted if

l l trel l l  S
1
,

ve,*1 j l to, ,* t t

(3 .11e)

(3.120)

Under the alternative hypothesis the OMT statistic and the squared 'u-test statistic have
a non-central y2(df,)e) distribution with )s the non-centrality parameter.

The probability that I/s is rejected, while it is actually true, is specified by the 'level of
significance' of the test a

a : P ( T > k  I y2 1af, tlat (3 .121)

The probability that I/s is rejected, while in fact f1o is true is specified by the 'power' of the
tes t ' y

l : P ( T > k  I y21df, )o,t1dt (3.r22)

In the B-method of testing the power and the non-centrality parameter are set equal for all
tests. This guarantees that a model error of a certain size will cause f16 to be rejected with
equal probability for tests of different dimension. The level of significance is different however
for tests of different dimension. For all the examples in this thesis, the level of significance for
a one-dimensional hypothesis, o1 was chosen as 0.001, and the power of all tests as 0.80. The
critical value /r1 for the one-dimensional tests is then computed from Eq. (3.121) with df:1
as 10.828, and using this value, the non-centrality parameter )s is computed from Eq. (3.122)
with df:l as 17.075. For tests with a different dimension, o6s and k41 are computed using
Eq. (3.121) and Eq. (3.122) (Teunissen 1988).

2. Reli,abi,lity.
Reliability is defined as the ability of detecting model errors by the testing procedure (in-
ternal reliability), and the influence undetected model errors have on the eventual estimates
(external reliability). For the computation of the reliability measures we do not need actual
data, i.e., they can be computed beforehand in the design stage.

For the one-dimensional hypothesis the size of the so-called minimal detectable bias
(MDB) V is computed as

; ;Vrr l l  :

,d: Iu*

,"): Iu*

6,oQi'QuQi'"r,0

41,Q;'QeQ;'g,r'

External reliability will not be treated in this thesis, we refer to Kijsters (1992).

(3.123)
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3.10 Computation of one-dimensional test statistics

For testing the conventional and non-conventional hypotheses we need the variance-covariance
matrix of the residuals Qe. It is defined as

Q e :  Q o  -  Q a (3.r24)

With ik defined as

0x
At,x i t )

(3 .125)

the variance-covariance

(3 .126)

where

Qro :Pi,.oAr*Q^,AT,rP[,* * Pa",oQro4",n I

Pir,oAr,rQ rrs* 4r.r" * P Ar,oQ nrr, AT,o P {,^
: Pi,.nAr,ue r, AT,o P {.0 + Pa,,re, o 4,,0 t

P i r,n A r,uQ r, AT*Q ; -' 
p ir,nQ o o 4 r, o + P a r, n Q r, P {, rQ i ot A r,oQ r, AT,o P {, r

:Pi,,oAr,uQr,AT,oPil.rt  PA",oQro @.127)

and

Ar,xi, * 42,1,i2,1,

Ar,*i, + A2,k(AT,kQirt Ar,r)-'AT,uQi)@r -

Ar,ni ,  + PAz,n(ax -  At,x ir)

Pi2,kAt,kh * PA,*a*

matrix of the adjusted observables reads:

I Qo, Qi,u, Qi,,i,^ l
qo: I Qo*' Qo" : 

I
I  :  "  Q a ^ - , a ^ |
L Quo" Qi^-,u, Qo" I

Q ooo, : Pir,oAr,ug r, Al,, r {,, +

Pi,,oAr,uQ r,r, 4,,,, * P A"*Q vne', AT,, P [,,
: P i",o Ar,nQ ^, Al,, e {., +

P i,, r A r,uQ r, AT,,Q ;,t P i,,Q o, 4 
",, 

+ P a,, rQ n o P {,rQ ; : At,k Q r, AT,, P {,,
:Pi,,oAr,uQr,AT,,P[,, (3.128)

(Note that Pa,,rQuoPil,o: 0, and Pi",,Qu,$^, :0.)
In the derivation above we used elements from the variance-covariance matrix of i1, and

y * , f . o r  k : ! , . . . , n

le,'l I Ar, Qr,Al,rQ;,tPj".,Qv, Qr,AT,"Q;)Pi,,,Q*l

,tlril r: I 
Q,,P{,,Q;:A','Q" Qu, 

I
lr"J lA,"eii..AilA,,^e,, eo^ 

fr.Lrrl
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Y r l
Y z l: l
a " )

lows from applying the propagation law of variances to

I Qo,AT,.Q-,'Pt,., Qr,AT,rQilPi,,2 Q*,AT,^Q;)P*",.
l r- t  I- t
l r

which fol

IT (3 .130)

where Q^, : fL,AT,re;: AT,)-'.
,t:1

The corresponding elements of. Qp read

Q eo :Qar - Pi,,rAr,oQr,AT,uPd,r - PA,,oQrn

: - Pi,,nAr,oe^,AT,uP{,r * Pi",neur

Q eoe, : - P i",rAr,uQ ^, AT,, Pil,,

The c-vector, belonging to the one-dimensional alternative hypothesis that the pth observa-
tion at epoch k is an outlier, reads

J - '
cp,k : lT'G "T o,^ o,^ l' (3.133)

n r m x l

p - L

_ j o _  , , :  [ - . . .  o - '  1  o  . . .  o  ] tT M X  I  L

Consequently the matrix product $,oQi'QuQ;lco,* boils down to picking the pth element
of the diagonal of QiotQuoQ#, i."., from the diagonal of

-Q;rr et',,-ar,uQr,AT,uP*l.nA;: + Q;l Pi,,- (3.135)

The c-vector belonging to the one-dimensional alternative hypothesis that there is a slip in
the pth observation at epoch k, reads

with

(3 .131)

(3.132)

(3.134)

(3.136)

k - 7

n!,;*,Jffi q q ql'

or, equivalently,
k - 1

,r|*rr:|ff i  o,^ o,* o,^f' (3.132)

The computation of the matrix product $,oQi'QuQrlcr,x for this hypothesis is more com-
plicated: we need the sum of & x k elements of Q;1Q6Q;|:
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k k k

63Qi'QuQo'"o,0:L,{Q;,'r1,.,)o,r-tt (Q;,'et',,,Ar,nQ,,AT,iP{,,Qi, ')r,o (3.138)
i = l  i = r  j = I

A serious threat for the feasibility of the algorithm is that at an epoch k we need the design
matrix 11,; and projector Pi".n of epoch i - 1,.. . ,k,. It will be clear that this amount of

data, even for a modest number of receivers, satellites and epochs will not fit in the core
memory. Storing the data on disk will also slow down the processing.

We found a solution for it by recognizing that Eq. (3.138) can be rewritten as

k  
/ . k  

o _ _ _  
, r  . \

6,oQ;'QuQy'co,1, :D,@;,t pi,.,)r,o - 
lD,q;,t ri.nAr,oQt,D AT,tPil,,,a;: I 

(3.139)
i= r  \  i= r  j= r  /  o , ,

(This is also why we use Eq. (3.137) instead of Eq. (3.136) for the specification of the cycle
slip hypotheses.) Now we only have to compute and store the three matrices

67

wz,*
r m x ( r - l ) ( * - 1 ) + 3 r

W,*
r m x ( r - I ) ( ^ - 1 ) + 3 r

which are updated per epoch. At each epoch fr
AS

f f fvv I,k _ \- n-r p!
r m  X  T m -  L Y U ;  

'  A z , i
; - 1

k

: D,Q;nt Pi,,,Ar,i
; - t

k

:DQ;,'Pi,, A,,;Qe,
t - l

the rm cycle slip hypotheses are computed

$ ,uQ; 'QuQu ' "o ,0 :  (w r , x -wr ,uw{ * )p , ,  P : r , ' . ' , rm  (3 .143 )

Since we have available the Cholesky factorization of the normal matrix 16 : Qlt (see
Eq. (3.t03)), we can compute Q6 as

(3.140)

(3.141)

(3.142)

Q e :  C - r C - l

Using this factorization Eq. (3.1a3) can be further simplified as

61Q; 'QuQnt "o ,o  :  (wr ,o  -  wn,ow[ ,u ) r , ,  p  :  r , ' . . ' rm

with

(3.r44)

(3.145)

(3.146)Wq,r, 
k

rm x (r - r)(*- 1) + ," 
: 

I 
Q;,t PLu,' At'oc-r

The efficiency when using one of the two expressions depends among other things on the
observable type and the length of the observation time span. In general when the time span
is short, and there are not too many changes in the observation scenario, (3.145) is preferred.
For larger time spans where inevitably the observation scenario will change many times,
(3.143) is the better choice.
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3.11 Example of the testing procedure

For an example of how the testing procedure works, we took Ll data collected at a baseline
of approximately 2250 m, between station YP01 and YP09. Almost one hour of data was
collected (from 19:45:04 to 20:44:04, GPS time) with a sampling interval of 30 seconds giving
a total of 119 epochs. Six satellites were observed during the entire time span, while one
satellite was observed starting at epoch 17 until the end. The a priori standard deviation of
the observables was set to 3 mm.

Internal reliabi,lity
In Figures 3.5 and 3.6 the minimal detectable biases for respectively an outlier and a cycle
slip are plotted. The value of a MDB for an outlier is primarily a function of the number of
satellites that are simultaneously observed. The MDB for a cycle slip however, depends on
the time span a satellite is observed, and on the epoch in this time span that it is observed.
MDB's for cycle slips in the middle of the time span are smaller than MDB's at the begin or
end of the time span. Still the MDB for a cycle slip never exceeds the value of 2 cm, which
is far less than the size of one cycle (= 19 cm), so it is likely that with this setup we are able
to detect possible cycle slips.

Testing
The degrees of freedom for the OMT are 689, the OMT test statistic reads 330.2, with a
critical value of 673.9, hence f/s is accepted. The level of significance for the OMT is 0.653.

In Figures 3.7 and 3.8 the tu-test statistics for respectively the test for an outlier and
the test for an cycle slip are plotted. Under the null-hypothesis the Trl-test statistics should
be between -t/E and, 1/fi : 3.29. The largest absolute value of the tu-test statistics reads
6.464 for a cycle slip. The corresponding estimated error is however only 0.054 cycle; clearly
this cannot be a cycle slip. Instead, the signature of the u-test statistics is probably due to
an imperfect functional or stochastic model.

Indeed one is ablq to squeeze down the signature to within the bounds set by the critical
value, by extending the functional model with e.g. a number of tropospheric delay parameters.
This would however lead to a decrease of precision of the estimated parameters, and increased
values for the MDB's.

In a next case we simulated a cycle slip with a size of one cycle at the third epoch
(19:46:04) in the phase observation made at YP09 to PRN01.

The degrees of freedom for the OMT are 689, the OMT test statistic reads 3448.0, with
a critical value of 673.9, hence lls is rejected. The level of significance for the OMT is 0.653.

In Table 3.1 the ten largest ur-test statistics and their corresponding estimated error can
be found. The absolute value of largest tu-test statistic is 55.842 for the non-conventional
hypothesis that a cycle slip occurred at 19:46:04 at the phase observation made at YP01 or
YP09 to PRN01. The estimated absolute value for the slip is 0.987 which is larger than 0.5,
hence either at YP01 a cycle slip with a size of one cycle, or at YP09 a slip with a size of
minus one cycle occurred. These two cases are indistinguishable, at least three stations need
to be involved to uniquely determine at which station the slip occurred.

In a subsequent run, an extra ambiguity parameter is introduced for the carrier phase at
YP09 to PRN01 at 19:46:04, and the test statistic for the OMT reads now 329.7 with df : 688
(one less than in the previous run, due to the introduction of an extra ambiguity). The
critical value is 672.9, hence fls is accepted. The level of significance for the OMT is 0.652.
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OU

Epoch [30 s]

Figure 3.5: Minimal detectable biases for the conventional hypothesis (test for outlier) for
all L1 carrier phases at YP09.

bU

Epoch [30 s]

Figure 3.6: Minimal detectable biases for the non-conventional hypothesis (test for cycle slip)
for all L1 carrier phases at YP09.
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60
Epoch [30 s]

Figure 3.7: Outlier u-test statistics (conventional hypothesis) for for all L1 carrier phases at
YPO9.

1 0

60 80
Epoch [30 s]

(non-conventional hypothesis)

1 0 0

flor for all L1 carrierFigure 3.8: Cycle slip tu-test statistics
phases at YP09.

20

Figure 3.9: Cycle slip tu-test statistics
phases at YP09, with a simulated cycle

60
Epoch [30 s]

(non-conventional hypothesis) for for all L1 carrier
slip at the third epoch.
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Epoch up3 V (cycles) Site ID PRN Conventional /
Non-conventional

19:46:04
19:46:04
19:46:34
19:46:34
19:45:34
19:45:34
19:45:34
19:45:34
19:45:04
19:45:04

55.842
-55.842
44.799

-44.799

39.359
-39.359

38.698
-38.698
-38.698

38.698

.987 YP01
-.987 YP09
.654 YP01

-.654 YP09
.972 YP01

-.972 YP09
.956 YP01

-.956 YP09
-.956 YP09
.956 YP01

0i
01
01
01
01
01
01
01
01
01

N
N
N
N
C
C
N
N
C
C

Table 3.1: Ten largest absolute values for the to-test statistics and estimated error for a
simulated cycle slip with a size of one cycle in the carrier phase observation from YP01 to
PRN01 at epoch 19:46:04.

3.L2 The projector

3.L2.L Introduct ion

In this section we will have a closer look at the orthogonal projector Pir.r, fo, Az,n: d-. We

will see that if we work out this projector the structure of the reduced normal matrix becomes
very simple and fast to compute. We start with the design matrix for the local parameters
as in (3.93)

Pi

| -t^
_ l

Ar.o | "* 
-I*

r T n x r * m - l  |  :
| 

"* 
-I^

L

Furthermore we assume that the variance-covariance matrix of the observables is a scaled
unit matrix, which is a simplification of what is believed to be the true stochastic model, see
e.g. Jin (1996) and (Tiberius 1998), but in accordance with the model used in many other
GPS processing softwares. The misspecification of the stochastic model is hardly noticeable
in the estimators, but it is likely to be noticeable in their variance-covariance matrix.

- d (3.r47)

(3.148)Q n n :  l I

The product FQ;rla reads then:

(3.14e)

where we introduced, Eo,o for a p by q matrix filled with 1's. By the choice of the clock of
the first receiver for the S-basis, this matrix has become of full rank and thus invertible (see

"ffi! t :.1 S;;:_, -";;- 
I
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appendix C):

(Fe:ra\-r: t  i  i( t"- '  * E,-)
\ *  Yyk  * )  

w  |  *E^ , r _ ,

with En : Eq,q.Using this result, na: (FQirtil-tFa;) can be evaluated:

@a;id)-rFa;|
r * m - l x r m

- L o T  L o r
m - n  m - m

:
- f-oT

m " f f i-l(t* + *n; -l(r* - *s*)

*,"-)

to its full rank form

' 1" - fi- - r1 : (+-' - lu'-') * (t--' - *"^-')
which equals the DD weight matrix.

r p  I

Tri-'i-+"-l I 
(3150)

t ^ T
i t *-l(t^ - *n^)

(3 .151)

(3.154)

And eventually P/ : Irm - d@a;]d)-tl'Q;:,

(3 .152)

In this matrix we recognize two basic operators, viz. the identity operator 10, and the 'average

operator' f,nn. m Section 3.13 it will be shown how this special structure can be used to ones
advantage to compute efficiently the solution for a single baseline.

Analogy between Pt and the wei,ght matrir of the double di,fference obseruations.
Since we have chosen to solve for the rank defect of the ambiguities only after the normal
matrix has been constructed, the ambiguity part of the normal matrix is singular. We could
however also solve the rank defect during the updating of the normal matrix. We will show
now that if we do so, the projector is not a projector anymore, and that the ambiguity part of
the normal matrix becomes of full rank. Besides that, we will show that the ambiguity part
of the normal matrix under some restrictions equals the weight matrix of the DD ambiguities.
The restrictions are that the S-basis has to be compatible with the differencing scheme. This
means that the unbiased estimable functions resulting from the S-basis choice have to be same
as the DD ambiguities resulting from the differencing scheme. If we choose pivoting with the
first receiver and first satellite as pivot, the S-basis consists of all ambiguities referring to this
receiver and satellite, thus

^ N :  i + r v  j  + 1 (3.153)

In practice it means for the ambiguity part of the normal matrix that the rows and columns
associated with the parameters of the S-basis are excluded from the normal matrix system.
It is easy to see that the ambiguity part changes from its singular form

:f; : (,,-'r",)* (t - *,"-)

*l* : (', -'r",) * (t -

(3.155)
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3.L2.2 The general form of Pt

The orthogonal projector Prl is based on the following assumptions:

1. All r receivers track the same m satellites.

2. The coefficient for the receiver clock error in the linearized observation equation equals
1 .

3. The variance-covariance matrix of the observables is a scaled unit matrix.

1. AU r rece'iuers track the same n'L satelli,tes.
In small networks all receivers generally are tracking the same satellites, however, sometimes
there are missing observations due to blocking of the signal, or rejecting an observation.
Furthermore rising and setting of satellites does not occur simultaneously for all receivers.

To describe the projector Pt for the case that not all receivers observe the same set of

satellites we introduce the coefficient t'n which is defined as t'n : 1 if satellite j has been
tracked by receiver i, and d:0 if this is not the case (missingobservation).

2. The coeffici,ent for the rece'iuer clock error is L
If one for the computation of the topocentric distance in the observation equation does not
regard the receiver clock error as deterministic, the coefficient for the clock error is (t - ffi lc)
instead of 1. To describe the projector PrI for this case, the coefficient for the clock er-

ror of receiver z in the linearized observation equation for observation g/ will be denoted as

4 : t - t# 1". Combining 1. and 2., d is denoted as

-pi

-pr,
-pT

-8d - ff,'.1 (3 .156)

ffi] l-el ,r)
3. The uariance-couariance matrix of the obseruables is a scaled un'it matri,r.
Instead of using jl for the variance-covariance matrix of the observables we would like to be
able to use an elevation depend'ent form; i.e. observations with low elevations are considered
to be less precise than observations with high elevations, see e.g. Jin (1996). We will denote
the variance of observable t'n as t'n.

With the introduced terminology, we can determine the structure of Fg;)d. The result-
ing matrix preserves a very nice structure; from a computational part of view it is especially
convenient that the upper left and the lower right part of the matrix remain diagonal. This
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leads to an obvious partitioning of the matrix into:

it ni,i'
j= r

Lf,nt,tt'
FQ;:d:

-pTqTsT

-pTqTsT

(3 .157)
-plql'l T

-pTqTsT -p?qisT

3.12.3 An efficient method to compute the general Prl

With the partitioning of FQ;)d as

d,a;:d: u:,|,
we can use the well known matrix inversion lemma:

to compute its inverse. Because the inversion of both k11 and ft22 is trivial since they are
diagonal, the main computational load is due to the inversion of either (kn-k\k;2rk21) with
dimension r or (k22- kz&trrkT) with dimension rn. So depending on the number of receivers
and the number of satellites one of the schemes above may be chosen.

After having computed (FQ;la)-t, we compute the projector I - d(F_Q;1il-tFa;1.
Fortunately, the denial of the assumptions did not change the sparsity of d, which reduces
the computational load.

First we compute d@a;!d)-l. Each rowrf this (rrn) x (r * rn - l) matrix consists of
the addition of at most two-icaled rows of @a;Jil-. Remember that d is still a sparse
matrix with at most two elements per row. Since the latter matrix is symmetric and only
the lower triangle has been stored, the most convenient way to build d-(flQ;)d)-t is to find
the rows of @Q;]Q-r and the equivalent columns of d in increasing ordei, and add them
after scaling to the appropriate row in d@a;)d)a.

The eventual product is computed in a simila_r way:_each column of d(ilQ;)Q-tarQ;:
is again the addition of two scaled columns of a(FQ;)d)-r.

Of course the computation of the actual projector when not all receivers track the same
set of satellites will cost more time than the regular situation, but it does not cause a
computational burden.

In Beutler et al. (1986) an efficient computing scheme was described to compute the
weight matrix of the DD observables in case that not all receivers observe the same set of

- l

t-T 1
rrrl I ts
, - -  |  : . t \
Kct I

(3.158)

K-r _ | 
*,,t * ktrlkTt(kz2 - kr*rikD-'krrkrl -ktLlkTL(kzz - k[.r,1rrkT)-t f r,3 l

L -(rc2,){rrtrr ' iTri : t irrn;} (tr,-trrt , l l ' r i \- f" j  (3'159)

_ | (ft,, - kTtk;;kil-t -(k,, - kTLk;;k2t)-lkTrkir', l o ,: 
| -*;i'i,,&;; - k1,k1,'\k,,1-'\ k,, - k;j';,,6i,'li!ii;;n,ii:i'n;,n;; I 

(3'160)



3.13 Special case: baseline

satellites. A straightforward approach would need the inversion of a matrix with dimension
p, the number of observed double differences. Using the proposed scheme, the matrix to be
inverted has dimension q, the number of missing double differences, and since usually q ( p

this computation method is preferred.
Compared to the effort it costs to construct the projector, however, in most cases the

computation of the DD weight matrix will cost more time. On the other hand, the dimension
of the projector equals the number of observations, whereas the dimension of the DD weight
matrix equals the number of DD ambiguities, which will always be less than the number of
observations.

This is however largely compensated by the fact that since a double difference observation
always refers to two receivers, one row of the geometric part of the DD design matrix has
2 x 3 nonzero entries, whereas one row of the geometric part of the design matrix for the
undifferenced setup only has 3 nonzero entries.

Consequently, the time needed for the construction of the normal matrix for the undif-
ferenced setup is of the same order as the construction of the DD normal matrix.

3.13 Special  case: basel ine

If we restrict ourselves to one baseline, i.e., r : 2, Prl becomes

(3 .161)

Pre-multiplication of a vector u of length rn with the projector Pol yields:

75

(,.-1",)' (r - *"-)
;  [  - "  ; ' ]  *  ( ' * -  * " ^ )

analogously we have

1 f r

P l w : ,  -  '  
\ - r j

" m a
l = L

: W - f r

1 f l

, r P * : ' u T - a ) - r j- m -

: w T  - f r T

(3 .162)

(3.163)

with ur denoting the satellite average of vector w. Let us now have a look at lf=retw1,:

k k k l n

Dpi.o: Iro -D,;D.i
i= l  i= l  i= l  j= r

k l m k

:  D'u -; tD' ' r
i = r  " ' i = r  t : t

k

: ef lwn
i = l

(3.164)
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As a matrix is a nothing else then a set of vectors this is also true for matrices:

k k

Drinu: PiDsu (3.165)
; - l  ; - 1

and

k / fr \

\ oTe i : { toT l r l  (3 .160)
i= r  \  l= r  /

With Qsfr : *, we get for the reduced normal matrix and right-hand side epoch k:

Ah:AL_, *.1rff i |r ,WI
I g'r,o'gr,o symmetric I

: ry'*_r -;|-ol;r,ot'* t,:r,::: 
r*_ *E^ | 

tr.rurl
L -gi,o sL,x -Q^ - fin^1 I* - *E* J

hx :hx - t * . 1  f  l r i r -
L ' r n  - J

I oT,u@l* - aL,x) I
, ,  u  I  s T , o e a ' r , o + a L , o )  |: hk_t * ; 1",.i,r,i '! rL,;'"' l 

(3.108)

l, -yi.r + yL.x .l
with

where-denotes the'satellite average' defined as

a: * i .r i  (3.120)

Using the intermediate quantities g'n,u and y'n,*, the construction of,the reduced normal
matrix and right-hand side can thus be computed very efficiently.

The solution of the local parameters of epoch k

LEz,* - Ha".oLyf) (3.121)

is with

f  _ l o T  l o T  I
H_ _ r  ^ "n !  -  n "m.  . ,  1  ( J . lT2 ) ."A^* - 

l ,  - iU^+ *n; - iQ*- *E*, t
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very simple computed as

c6t2,1, - c6t1,1, -)(l/i - Nj) : -Lg\?) + nE\|}

c6ti,k _ c5t1,1, _ ).^\ri : _tU (ortr,r, + Lglr) + Lytr,r@ - Lgt?) (3.173)

In principle also networks solutions could be computed in a similar simple manner, but
all receivers should track the same set of satellites, which is not always the case. For a single
baseline it is, due to the prerequisite that a satellite has to be observed by at least two
receivers.

3.14 DD generat ing algor i thms

In the literature several approaches to form double difference observations are proposed (Bock
et al. 1985), (Bock et al. 1986), (Goad and Mueller 1988), (Mervart et al. 1994), (Rothacher
and Mervart 1996).

In most double differenced approaches the first step is the formation of single differences
between receivers; this is usually done only once before the adjustment, by producing r - 1
single difference (SD) files. If the set of observed satellites of one file does not exactly match
the set of the secend file, the data to the satellites that do not match are lost.

A simple strategy to use as much data as possible is to look at the number of single
differences that can be formed between every combination of receivers, and choose those
r - 1 combinations that give the highest number. The choice is restricted by the conditions
that each receiver has to be included in at least one single difference, and that the resulting
sequence of between-receiver differences must be connected.

A method to do this is to build a minimum spanning tree. As in this case we are Iooking for
the maximum number of single difference to be formed, we will make a 'maximum spanning
tree' instead.2 The weight between two receivers is defined as number of single differences
that can be formed.

The minimum spanning tree algorithm is also described in Mervart et al. (1994), to
find all 'independent' baselines and in Rothacher and Mervart (1996) where it is called the
minimum path method.

The minimum spanning tree algorithm can also be used to find the set of independent
baselines with minimum total length. This is sometimes done to improve the precision of the
ambiguities. As we will see in Chapter 5 it is not necessary to do this since the precision of
the ambiguities can be improved by applying a more general decorrelating transformation to
i t .

The method mentioned in Bock et al. (1985) and Bock et al. (1986) finds the maximum
number of double differences per epoch, and for large networks usually discards less data than
the schemes based on the spanning tree concept. In Section 3.15 we will show a comparison
of the two double difference generating methods with the undifferenced approach.

2There is no essential difference between the construction of a minimum and a maximum spanning tree.

Commonly the minimum spanning tree is introduced for nodes with weights equal to the Euclidian distance
in the 2-dimensional space of the edges between them. A minimum spanning tree is then planar, i.e. edges

do not cross when the graph is displayed at a plane.
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Site ID PRN code
01 02 03 04 05 06 09 10 14 15 16 17 18 2t 22 23 24 25 26 27 29 3L

ALGO

GI]LD

GOL2

TIDB

MADR

FAIR

HART

KOKB

KOSG

SANT

IJETT

YARl

YELL

TROM

ffi

ffiffi tr!ffi
b b  f f i

ffi
b
b

$ffi

W
b
b

W
b
b

f f i W
W f f i
f f i b f f i

ffi.tr

ffiffi

ffiffiffi

#ffi

ffitffi

ffi

ffi

ffi

ffiffiffi

ffi
b b b

b

b

ffi

b b

b
b

b
bb b

b b b b
b

b b

b b

b b
b b

f f i l  b
ffi

Table 3.2: Observations made on L2 by the 13 IGS core stations plus station G0L2 at May
12, 1997, 02:47:30.0, GPS time. Only satellites observed by at least two receivers have been
included. Legend: b: observed, ffi: S-basis.

3.15 The undifFerenced approach compared to DD generating algorithms

In this section we will assess different methods to deal with the rank defect system of the
GPS phase observation equations using an existing observation scenario with stations spread
over the entire Earth. The assessment will be made with respect to the amount of data
that is used. The methods that will be used are the undifferenced approach as described in
Section 3.4, the DD generating algorithm as described in Bock et al. (1985) and Bock et al.
(1986) implemented in the GAMIT (GPS At MIT) software, and the DD generating algorithm
as described in Mervart et al. (1994) and Rothacher and Mervart (1996) implemented in the
Bernese software.

For the comparison we took an arbitrary epoch of L2 data of the 13 fiducial stations of
the IGS, plus an extra station at Goldstone (COLZ). The epoch is May 12,1997,02:47:30.0,
GPS time.

The observations that were made can be found in Table 3.2; only observations to satellites
observed by at least two receivers have been included. The minimum spanning tree used
to find the S-basis and the estimable functions for the undifferenced approach, is depicted
in Figure 3.10. The number of receiver-satellite combinations and thus the number of ambi-
guities, is 86, and the dimension of the S-basis. for the ambiguities is 35. Consequently, the
undifferenced approach forms 86 - 35 : 51 integer functions of ambiguities, and all obser-
vations are used. The estimable functions and the S-basis for the ambiguities can be found
in Table 3.4. Not all functions consist of 4 ambiguities as in the case of the classic double
differences; there are functions formed consisting of. 4 (29 times), 6 (14 times), 8 (3 times),
10 (3 times), 12 (once), and 14 (once) ambiguities.
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Figure 3.10: Minimum spanning tree for the observation scenario of Table 3.2.
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Site ID Site ID Narne
(short) (IGS)

Country

1
2
3
A

6
7
8
9
1 0
1 1
7 2
1 3
74

ALGO
GOLD
GOL2
TIDB
MADR
FAIR
HART
KOKB
KOSG
SANT
!lETT
YARl
YELL
TROM

Algonquin
Goldstone
Goldstone
Tidbinbilla
Madrid
Fairbanks
Hartebeesthoek
Kokee-Park
Kootwijk
Santiago
Wettzell
Yarragadee
Yellowknife
Tromsri

Canada
USA
USA
Australia
Spain
USA
South-Africa
USA (Hawaii)
The Netherlands
Chile
Germany
Australia
Canada
Norway

Table 3.3: Stations used for the analvsis in this section.

In Table 3.5 the between-receiver single differences that may be recognized in the resulting
set of observable functions of ambiguities can be found, and in Figure 3.11 the polyhedron
formed bv these baselines is depicted.

Figure 3.11: Polyhedron consisting of the between-receiver single differences formed in the
undifferenced approach. The WGS-84 ellipsoid is visualized by depicting some of its meridians
and parallels.
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Single difference PRN codes of Single difference PRN codes of
satellites involved satellites involved

ALG0-G0LD 03,77,21,23 ALG0-G0L2 17,21,23
ALGO-MADR 26 ALGO-FAIR 03,17,2I,23,26
ALG0-KoKB 17,27,23 ALGO-K0SG 09,17,23
ALGO-SANT 09 ALGO-YELL 03,T7,21,23,26
GOLD-GOL2 01,03 GOLD-FAIR 03
GOLD-KOKB 01,03 GOLD-SANT 01
GOL2-SANT 01,06
TIDB-HART 16 TIDB-KOKB 15,22
TIDB-SANT 25 TIDB-YARI 14,75,16,22,29
MADR-FAIR 27 MADR-HART 02,10
MADR-K0SG 02,10,26,27 MADR-WETT 02,10,26,27
MADR-YELL 27 MADR-TROM 02,26,27
FAIR-KOKB 31 FAIR-KOSG 31
FAIR-rrilETT 31 FAIR-YELL 03,31
FAIR-TROM 31
HART-SANT 04,05,24 HART-YAR1 18
KOKB-SANT 01

Table 3.5: Between-receiver single differences implicitly formed in the undifferenced approach.

ALGO

W GOLD

ffi ffi col2
12090 10589 10589 TrDB

i{ffi 8390 8390 12515 MADR
3807 10527 ffim FArR

10e6e 12261 12261 mm ffiffiffiffi 11998 HARr
4305 ffi 10671 ffim{!$ 12723 K0KB

8141 8141 12273 w ffi*# 8195 10104 K0sG

ffi $ffi ffiffi ffi e43o lo6eo mm Xffiffi 10301 sANr
6155 8583 8583 12157 ffi mffi$ 7832 10358 603 10461 wErr
12549 11808 11808 ffi 11547 10968 m*m 9498 11253 10918 10991 YAR1
ffiffi 2986 2986 11224 ffiffiffi ffiiffi 11795 5440 6013 9867 6473 rr707 YELL
5388 7337 7337 11820 ffi ffiffiffi 9426 8884 2055 11055 2296 10978 4776 rROt[

Table 3.6: Slope distances between the stations of Table 3.2. A grey-boxed distance signifies
that this between-receiver single difference is formed in the undifferenced approach.



3.15 The undifferenced approach compared to DD generating algorithms

The method to find the maximum number of double differences implemented in the
GAMIT software (Bock et al. 1985), (Bock et al. 1986), produces 47 double differences.
Of the total number of 86 observations, the following 3 are not used {ffDn-fnUZs, SANT-
PRN25, SANT-PRNO9). And consequently, none of the observations made to PRN25 are used.

The formation of double differences in the Bernese software is based on between-receiver
single differences. The optimal set of single differences is found by building a minimum span-
ning tree. The weights may be defined in several ways, one of it being the maximum number
of single differences that may be formed, thus aiming to use as much data as possible. The
number of between-receiver single differences that can be formed from the data in Table 3.2,
can be found in Table 3.11.

In Table 3.8 one ofthe possible sets ofbetween-receiver single differences produced by the
MST algorithm can be found. The corresponding MST is depicted in Figure 3.12. The total of
single differences formed in this way amounts to 57, and from it 57-13 : 44 double differenced
observations can be formed. From the total of 86 observations, 10 have to be discarded
because they are not used in the forming of the single differenced observations. The set
ofunused observations is {mco-rRNog, K0SG-PRN09, TIDB-PRN2s, YAR1-PRN18, SANT-PRNo9,
SANT-PRN2s, HART-PRNO2, HART-PRN10, HART-PRN16, HART-PRN18). None ofthe observations
made to PRN09, PRN18 and PRN25 are used.

Another option is to construct an MST with as weights the distance between the sta-
tions. This is sometimes done to improve the performance of the ambiguity resolution (i.e.
if no decorrelating transformation is applied). The inter-station distances for the stations
of Table 3.2 can be found in Table 3.6, and the between-receiver single differences formed
in this way in Table 3.9. It gives a total of 52 single differences, of which one has to be
discarded, since only one satellite is related to it. From the remainder 51 - 12 : 39 double
differences can be formed. Only 66 observations are used, and no observations are used made
from station SANT, or to PRN04, PRN05, PRN06, PRN09, PRN18, PRN24 and PRN25.

Instead of selecting r - 1 between-receiver single differences combinations we could also
choose rn- 1 between-satellite single difference combinations, by applying the MST algorithm
to Table 3.12 (this is not an option in the Bernese software, there only between-receiver single
differences are formed).

A possible outcome of Prim's algorithm with as input the between-satellite single dif-
ferences can be found in Table 3.10. The corresponding MST is depicted in Figure 3.13.
It gives a total of 67 single differences. The single differences between satellite 77 and 22,
satellite 2 and 5 and between satellite 1 and 25 have to be discarded since they only in-
volve one station and consequently no between-receiver difference can be made. That gives
then a total of 64 single differences from which 64 - 18 : 46 double difference combinations
can be formed. One observation involved in the three single differences that are discarded
(Sn*f-enUZS) is not part of any other single difference, and thus also has to be discarded.
There are 3 observations that are not involved in any single difference, which makes the set
of unused observations {rror-rRu2s, K0SG-PRN31, SANT-PRN09, SANT-PRN2S}. None of the
observations made to PRN25 are used. The results for the different methods to form integer
functions of ambiguities are summarized in Table 3.7.
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Method Number of Number of Number of Number of
observations receivers satellites functions

Undifferenced 86
GAMIT 83
Between-satelliteSD 82
Between-receiver SD 76
Minimum distance 66

t4 22 51
14 21 47
14 2L 46
t4 19 44
13 15 39

Table 3.7: Results for the methods to form integer functions of ambiguities.

3.16 Concludingremarks

Although the DD approach at first sight seems to be advantageous over the undifferenced
setup since less parameters are involved, this advantage is to a large extent cosmetic.

The differencing scheme obscures the rank defect inherent to the relative positioning setup
with GPS, and sometimes not all available data are used.

When the clocks are modeled as shown in this chapter, and when an appropriate S-basis
is chosen, the undifferenced approach is equivalent to the DD approach when the same data is
used. However, using the undifferenced approach alternative choices for modeling the clocks
are still possible (e.g. using polynomials or spline functions).

As far as the computational load for determining the global parameters is concerned, the
undifferenced approach can compete with the DD approach.

The undifferenced approach has the advantage that individual observations can be tested,
and if more than two receivers simultaneously track the same satellite, possible errors in the
data can uniquely be located. It also opens the possibility for e.g. the estimation of variance
components per satellite or per receiver.
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Single difference Number of PRN codes of
satellites involved satellites involved

YELL.FAIR
ALGO-FAIR
KOKB-FAIR
KOSG-FAIR
GOLD-KOKB
GOL2-KOKB
WETT-KOSG
MADR-KOSG
TROM-KOSG
TIDB-KOKB
YARl-TIDB
SANT-GOL2
HART-SANT

03,17,21,23,26,27,31
03,17,2r,23,26
03,17,21,23,31
17,23,26,27,31
0L,03,L7,27,23
0r,03,L7,27,23
02,70,26,27,3\
02,70,26,27
02,26,27,37
75,22,23
74,75,76,22,29
01,06
04,05,24

7
5
5
5
5
5
5
A

A

3
5
2
3

Table 3.8: Between-receiver single differences formed by Prim's algorithm, with weights based
on maximum possible single differences.

Single difference Number of
satellites involved

Distance

GOLD-GOL2
GOLD-YELL
YELL-FAIR
YELL-ALGO
GOLD-KOKB
YELL-TROM
TROM-KOSG
KOSG-WETT
KOSG-MADR
MADR-HART
KOKB-TIDB
TIDB-YAR1
ALGO-SANT

5
4
7
5
5
3
4
5
4
2
2
5
I

0
2986
1631
2937
4305
4776
2055
603
75t2
7525
7769
3r97
8105

Table 3.9: Between-receiver single differences formed by Prim's algorithm, with weights based
on inter-station distance.
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Single difference Number of Site ID's of
stationsinvolved stationsinvolved

t 7 - 2 3
1 7 - 0 3
1 7 - 2 7
1 7 - 2 6
2 6 - 2 7
2 6 - 3 1
2 6 - 0 2
0 2 - 1 0
1 7 - 0 1
1 7 - 0 9
0 1 - 0 6
1 7  - 2 2
2 2 - 1 5
2 2 - 1 4
2 2 - 2 9
2 2 - 1 6
1 6 - 1 8
0 2 - 0 5
0 5 - 0 4
0 5 - 2 4
0 1 - 2 5

7
6
6
4
6
5
4
4
3
2
2
1
3
2
2
2
2
I
2
2
1

ALG0,G0LD,G0L2,FATR,K0KB,K0SG,YELL
ALG0,G0LD,G0L2,FAIR,K0KB,YELL
ALG0,G0LD,G0L2,FATR,K0KB,YELL
ALGO,FAIR,KOSG,YELL
MADR,FA TR,K0SG,IIETT,YELL,TROM
FA IR,KOSG,l.lETT,YELL,TROM
MADR,K0SG,WETT,TRoM
MADR,HART,K0SG,WETT
GOLD.GOL2.KOKB
ALG0,K0SG
c0L2,sANT
KOKB
TIDB.KOKB.YARl
TIDB,YARl
TTDB,YARl
TTDB,YARl
HART,YARl
HART
HART,SANT
HART,SANT
SANT

Table 3.10: Between-satellite single differences formed by Prim's algorithm, with weights
based on maximum possible single differences.
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Figure 3.12: Minimum spanning tree to form maximum of between-receiver single differences.

Figure 3.13: Minimum spanning tree to form maximum of between-satellite single differences.



88 GPS relative positioning: the undifferenced approach

4rs$

,s
'ov*

*tt
s d

-K

0  0 4
0 3 0
0 4 0

1 q
5 C
0 c
b L

4 C

c$
!v- 

"sr94 g" .q,
4 b crs'.sg
0 0 0 { ' ^ 3
1 0 0 0 $ Y ^ +
5 4 4 o Z t v ; ;
0 0 0 1 2 0 $ \ ' . ,
4  5  5  2  0  5  0 ^ t - s
4 2 2 0 4 5 2 3
t 1 2 1 0 0 3 1
1 0 0 0 4 3 2 1
0 0 0 5 0 0 2 2
5 4 4 0 2 7 0 5
1 0 0 0 3 3 1 1

Table 3.11: The number of possible between-receiver single differences for the observation
scenario in Table 3.2.

Table 3.12: The number of possible between-satellite single differences for the observation
scenario in Table 3.2.

.)
o*S n,

o d"-e
3 o jqt -ab
1 I o l3t.'"ot -
1 1 0 2 { s - o b
2 0 1 1 1 3 9 . r . o q
1 1 I I 1 1 3it.\to
0 4 0 1 1 0 1 1 3 ' - $
0 0 0 0 0 0 0 0 9 e . r > e
1 0 1 0 0 0 0 0 2 i 9 o l b
o t o 1 l o o r 2 2 i c i f , $
3  1  6  0  0  r  2  |  O  1  0 1 9 ^ 3 v s
0 1 0 1 1 0 0 1 l 7 2 O {c" $>
3 o 6 o o r I o o I o 6 033' o'o'l '
1  0  I  0  0  0  0  0  2  3  2  |  1  13$ ) -o , . 'P
3  r  6  o  0  1  2  |  0  |  0  7  0  6  I  j 1 * -oP
1  I  0  2  2  r l  I  0  0  1  0  I  0  0  O f - < r , 6
1  0  0  1  1  1  1  0  1  1  1  0  0  0  1  0  t 3 9 5 v b
o  4  3  o  o  o  2  3  o o  o  4  0  3  0  4  0  o l a ' . s ' 4
0 4 2 0 0 0 1 3 0 0 0 3 0 2 0 3 0 0 6 f dr"
0  0  0  0  0  0  o  o  2  2  2  o  I  o  2  0  0  I  0  o  1 ' " 1
1  3  3  0  0  0 ' 1  2  0  1  0  4  0  3  1  4  0  0  5  5  0  j $



References

References

Beckers, G. W. J. and F. Kenselaar (1996). Adjust 3.3. Technical report, Delft Geodetic Com-
puting Centre, Delft University of Technology.

Benoit, E. (1924). Note sur une m6thode de r6solution des 6quations normales provenant de
I'application de la m6thode des moindres carr6s a un systbme d'6quations lin6aires en nombre
inf6rieur a celui des inconnues. - Application de la m6thode a la r6solution d'un systbme defini
d'6quations lin6aires. Bulletin G4oddsique (2),67-77. (Proc6d6 du Commandant Cholesky).

Beutler, G., W. Gurtner, L Bauersima, and M. Rothacher (1986). Efficient computation of the
inverse of the covariance matrix of simultaneous GPS carrier phase difference observations.
manuscripta geodaetica 1 1, 249-255.

Blewitt, G. (1993). Advances in Global Positioning System technology for geodynamics investi-
gations: 1978-1992. In D. E. Smith and D. L. Tirrcotte (Eds.), Crustal Dynamics, Volume 25
of Contributions of Space Geodesy to Geodynami,cs. LGU.

Bock, Y., R. I. Abbot, C. C. Counselman III, R. W. King, and S. A. Gourevitch (1985). Three-
dimensional geodetic control by interferometry with GPS: processing of GPS phase observ-
ables. In C. C. Goad (Ed.), Proceedi,ngs of the First International Symposium on Precise
Positioning with the Global Positi,oning System, Rockville, Maryland, pp. 255-261. National
Geodetic Survey.

Bock, Y., S. A. Gourevitch, C. C. Councelman III, R. W. King, and R. I. Abbot (1986). Inter-
ferometric analysis of GPS phase observations. manuscripta geodaetica 11,282-288.

Counselman III, C. C., H. F. Hinteregger, and I. L Shapiro (1.572). Astronomical applications of
differential interferometry. S cience 1 7 8, 607 -608.

Goad, C. C. and A. Mueller (1988). An automated procedure for generating an optimum set
of independent double difference observables using Global Positioning System carrier phase
measurements. manuscripta geodaetica 19, 365-369.

Golub, G. H. and C. F. Van Loan (1989). Matrix Computations, second edition. Johns Hopkins
Series in the Mathematical Sciences. The Johns Hopkins University Press.

Jin, X.-X. (1996). Theory of Cam'ier Adjusted DGPS Positioning Approach and Some Erperi-
mental Results. Ph. D. thesis, Delft University of Technology.

Ktisters, A. J. M. (1992). Some aspects of a 3-dimensional reference system for surveying in the
netherlands - quality analysis of GPS phase observations. Technical Report 92.1, Section
Mathematical and Physical Geodesy, Depa,rtment of Geodetic Engineering, Delft University
of Technology.

Lindlohr, W. and D. Wells (1985). GPS design using undifferenced carrier beat phase observations.
manuscripta geodaetica 1 0, 255-28I.

Mervart, L., G. Beutler, M. Rothacher, and U. Wild (1994). Ambiguity resolution strategies using
the results of the International GPS Geodynamics Service (IGS). Bulletin G6od6,sique 68,29-
38.

Pissanetzky, S. (1984). Sparse rnatrix technology. Academic Press, London.

Rothacher, M. and L. Mervart (1996). Bernese GPS software version 4.0. Technical report, As-
tronomical Institute University of Berne.

Scha,ffrin, B. and E. Grafarend (1986). Generating classes of equivalent linear models by nuisance
parameter elimination. Applications to GPS observations. manuscripta geodaetica 11,262-
27L.

89



90 GPS relative positioning: the undifferenced approach

Teunissen, P. J. G. (1984). Generalized inverses, adjustment, the datum problem and S-

transformations. Technical Report 84.1, Faculty of Geodetic Engineering, Dept. of Mathe-

matical and Physical Geodesy. Delft University of Technology, The Netherlands.

Tounissen, P. J. G. (19SS). Toetsing en betrouwbaarheid voor een bekende V. Internal research

memo, Mathematical Geodesy and Positioning.

Teunissen, P. J. G. (1989). Mathematische Geodesie IL lnleiding Toetsingstheorie. Lecture Notes
(in English) GE-31b, Faculty of Geodetic Engineering, Delft University of Technology, The

Netherlands.

Tiberius, C. C. J. M. (1998). Recursiae data processi,ng for kinematic GPS surueying. Ph. D.

thesis, Delft University of Technology.



Chapter 4

Relat ive posit ioning using mult iple GPS
observa ble types

4.t lntroduction

In Chapter 3 we described the estimation process for a single GPS observable type using
the undifferenced approach. In this chapter we will describe the estimation for more than
one observable type. When using more than one observable type at different frequencies,
it is possible to estimate first order ionospheric delays, due to the dispersive character of
the ionosphere. The ionospheric delay may be modeled by some function of the latitude of
the sub-ionospheric point and the local hour angle of the Sun, or by modeling a slant delay
for each receiver-datellite combination at each epoch. Only modeling by slant delays will
be treated in this chapter. Depending on the observable types that are employed it may
introduce an additional rank defect.

In this chapter we will investigate this rank defect for a number of models and show how
it can be resolved by an appropriate choice of S-basis. The alternative method is again to
take certain differences, or linear combinations of the observable types. We will show that
some of these linear combinations have their counterpart in the undifferenced approach, while
others do not preserve the information content of the system, and hence should be used with
care.

We will also show that although the number of observations and unknowns in the undif-
ferenced approach is much larger than in the case of using linear combinations, the compu-
tational load can be reduced to the same level as the latter, by making use of the intrinsic
symmetric properties of the product of the weight matrix of the observables and the Pur,
projector.

As the normai matrices arising from the processing of large time spans may be sparse,
the influence of the ordering of the parameters on preserving the sparsity in the subsequent
Cholesky factorization will be shown.

As said before, we will treat four different cases to handle the clocks and the ionospheric
delays. These cases with their corresponding system of linearized observation equations for
all four basic GPS observable types are given below.
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(4 .1 )

1. No estimation of ionosphere, distinct clocks for each observable type
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Case DD equivalent DD equivalent
distinct clock? common clocks?

Pl or P2
Ll or L2
Pl and P2
Ll and L2
(L1 or L2) and (Pl or P2)
Ll and L2 and (P1 or P2)
(L1 or L2) and P1 and P2
L1 and L2 and Pl and P2
p p h a s e a n d q - p p s e u d o -
range observable types

yes
yes
yes
yes
yes
yes
yes
yes
yes

n l a
n l a
no
no
no
no
no
no
no

Table 4.1: Overview of the possible models without estimation of ionosphere using the un-
differenced approach and their possible DD equivalents.

chapter to the terminology the reader may be using, the ionospheric delay is denoted here
as rllT for P1, r12T for P2, rpT for L1 and qaT for L2, where Qt : -Tbt Q2 - -\a, aud
qz l ry : ' ' r :  f t2 l f22 .

Throughout this chapter, (no) estimation of ionosphere refers to (no) estimation of iono-
spheric slant delays.

The fourth case is only included for the sake of completeness. As we will show it should
not be applied to the GPS, but it might be applied to GPS-like systems where no ionospheric
delays are expected, e.g. in-house GPS-like systems (Malagodi et al. 1995), and ground based
pseudolites-only systems.

For the models whbre no ionospheric delays are estimated, we may use any set of GPS
observable types with a minimum of one type. For the models where ionospheric delays are
estimated the minimum number of observable types is two.

Some, but not all, models have a DD equivalent. An overview of the possible models
using the undifferenced approach and their DD equivalents can be found in Tables 4.1 and
4.2 .

4.2 Resolving the rank defect of the bias parameters

4.2.L lntroduction

In this section we will give the rank defect, and a way to resolve it by choosing an appropriate
S-basis, for the models of the previous section.

The most straightforward case is the model where no ionospheric delays are estimated,
and each observable type has it$ own clocks. 'The rank defect is then the sum of the in-
dividual rank defects of the observable types, i.e. the part of the design matrix of the bias
parameters referring to one observable type are complementary to the parts referring to the
bias parameters of the other observable types, see Section 3.2.

Rank defect and S-basis are given for the case where all receivers track the same set of
satellites. For observation scenarios where this is not the case we refer to Section 3.5.
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Case DD equivalent DD equivalent
distinct clock? common clocks?

P1 and P2
L1 and L2
(L1 or L2) and (Pl or P2)
Ll and L2 and (Pl or P2)
(L1 or L2) and P1 and P2
Ll and L2 and Pl and P2
p p h a s e a n d q - p p s e u d o -
range observable types

yes
yes
no
no
no
yes

for some p and q

yes
yes
no
no
no
no
no

Table 4.2: Overview of the possible models with estimation of ionosphere using the undiffer-
enced approach and their possible DD equivalents.

In Table 4.3 the number of unknown bias parameters and rank defect for the models
without estimation of ionosphere is given, for the cases of distinct clocks and common clocks.
In Table 4.4 the same is done for the models with estimation of ionosphere. S-basis and
resulting estimable functions are given in Tables 4.5-4.8. The S-basis is always chosen such
that, when applicable, double difference like estimable functions are produced by it. This is
important since they may possibly be constrained to an integer value in a subsequent integer
estimation step, which will in general improve the precision of the non-ambiguity parameters.
The integer estimation will be treated in Chapter 5.

As far as clock terms are concerned, always the clock of the first receiver is included in the
S-basis. This is done to prevent very long expressions for the estimable functions. Sometimes
one prefers to have an S-basis consisting of the average of the satellite clock terms. If the
a priori satellite clock model from the broadcast ephemerides is applied, for pseudorange
observable types the resulting bias due to the satellite clocks will then consist of the average
of the mismodeling of the clock model, the SA effect, and effects due to group delays. This is
e.g. applied to get (almost) unbiased estimates for the receiver clocks to correct the receiver
time tag.

It can be easily constructed by subtracting the average ofthe biased satellite clocks, from
all estimable functions in which the clock of the first receiver occurs. It is also subtracted
from the estimate for the clock term of the first receiver itself (which by being part of the
S-basis is set to zero).

The estimable functions that are affected by this change of S-basis are only those that
refer to clocks or ionosphere terms. The functions of ambiguities are not affected.

Although usually receiver clock, satellite clock and ionosphere terms are not separately
estimable, differences in time sometimes are. Again these functions are easily constructed
by subtracting the estimable function at one epoch from all subsequent epochs. This will
give the development in time of e.g. the ionospheric delay, or a clock. Likewise one can
make divided differences to find the derivative of ionospheric delays or clocks. Again the
ambiguities are not affected.
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Model nunkAlT mkdA11

Distinct clocks:
Pl or P2
Ll or L2
Pl and P2
L1 and L2
(L1 or L2) and (Pl or P2)
L1 and L2 and (P1 or P2)
(Ll or L2) and P1 and P2
L1 and L2 and P1 and P2
p p h a s e a n d q - p p s e u d o
range observable types

Common clocks:
Pl and P2
Ll and L2
(Ll or L2) and (Pl or P2)
L1 and L2 and (P1 or P2)
(Ll or L2) and P1 and P2
L1 and L2 and Pl and P2
p p h a s e a n d q - p p s e u d o

+ m )
* m ) * r m
r  * m )
r * m ) * 2 r m
r + m ) l r m
r  +  m)  *2rm
r + m ) + r m
r  *  m )  * 2 r m
r * m ) * p r r n

n
n *  ( r  + m -  I )
2n
2 n * 2 ( r + m - L )
2 n * ( r + m * l )
3 n + 2 ( r + m - l )
3 n * ( r + m - l )
4 n + 2 ( r + m - L )
q n * p ( r + m - I )

n
n * ( r + m - l )
n
n
n
n

n(r
n(r
2n
2n
2n
3n
3n
4n
qn

n l r + m
n(r -f m
n ( r * m
n(r * rn
n ( r * m
n ( r * m

* 2 r m
t r m
I 2 r m
* r m
* 2 r m

ranqe observable t
n ( r + m ) * p r m

n  P : 0
n * ( r * m - 1 )  p > 0

Table 4.3: Number of unknown bias parameters (nunkA11), and rank defect forit (rnkdA11)
for the models without estimation of ionosohere.
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4.2 Resolving the rank defect of the bias parameters

4.2.2 No estimation of ionospheric slant delays

This model is the standard model for short (up to 10 km) inter-station distances. Modeling of
ionosphere is not needed since the ionospheric delays are (almost) equal at the two stations,
and consequently are absorbed by the satellite clock term (see Section 4.2.6).

Distinct clocks:
In Table 4.5 a possible S-basis and the resulting estimable function of parameters for the
models with distinct clocks and no estimation of ionosphere are given. Due to the comple-
mentarity of the observable types, it is given for the case of one single pseudorange or carrier
phase observable. When observable types are combined one may add S-basis and estimable
functions of the individual observable types.

As far as ambiguities are concerned, for each carrier phase observable type involved, DD-
like functions of ambiguities may be estimated. Taking the average of the satellite clocks as
S-basis for the pseudorange clocks will, as explained above, give estimates for the receiver
clock error that are only biased by the SA effect, mismodeling of the clock, and effects due
to group delays. This will be explained in detail in Section 4.2.5.

Common clocks:
In Table 4.6 the same is done for the case that common clocks are used. When only one
observable type is used, S-basis and estimable functions are of course equal to those for the
model with distinct clocks. When more than one observable type is involved, then there is
no complementarity anymore. Therefore in Table 4.6 also combinations of observable types
are included. As mentioned before, these models cannot be applied to the GPS, but only to
systems that employ signals not affected by the ionosphere.

4.2.3 Estimation of ionospheric slant delays

For distances larger than approximately 10 km, the ionospheric delays are no longer absorbed
by'the satellite clock terms, and hence have to modeled.

Di,stinct clocks:
In Table 4.7 a possible S-basis and resulting estimable functions for the models with distinct
clocks and estimation of ionosphere are given, and in Table 4.8 for the models with a common
clock and estimation of ionosphere.

Although models with one carrier phase observable type and one or more pseudorange
observable types are also included, these models are not adequate for use with the GPS,
due to poor precision of the pseudoranges compared to the carrier phases. They are merely
included for the sake of completeness.

Integer double difference like functions of ambiguities can only be estimated if at least
one pseudorange observable type is included. Otherwise, only linear combinations of the L1
and L2 ambiguities, which are not integers anymore, can be estimated. They are of the form

97
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)1(N/pr - Nn1"' - Nf,"' + Ni"') -ftXtN,,"r- Nn',"r- Ni,"r* Ni,"r) :

),{(N{", - Nn1", - Ni,", + Ni,",) - 
ft11N1,", 

- Nn',r, - Ni,rr+ Ni,"r)} :

)'{(N{"' -,n(Ll - Nf,"' + Ni,r,) - 
ftf*1,-- 

Nr',",- Ni,t + Ni"r)} (4'5)

Although

(N1", - N,1", - N1,", + Ni,",) - 
fttivl,*- 

N],rr- N'r,rr+ Ni"r) (4.6)

is not an integer valued function, it still is a rational valued function, and hence can be
transformed into a integer function. Multiplication of (4.6) by 77 and dividing )1 by the
same number, transforms (4.5) into

\ .j1zz1v1.rr- Nn1", - Ni,", + Ni"r) - 60(.^ry,1, - N|", - Ntr,rr+ Ni,"r)) (4.7)
t ( '

Now we have obtained an integer function, which in principle could be integer estimated.
Unfortunately its synthetic wavelength is very small (= 2.5 mm) compared to the standard
deviation of the phase observables (n; 3 mm), which renders a successful integer estimation
virtually impossible.

Common clocks:
In Table 4.8 S-basis and resulting estimable functions for the models with a common clock
and estimation of ionosphere are given. If only two observable types are used, rank and
estimates for the non-bias parameters equal those of the models with distinct clocks.

A nice property of.this model when applied to pseudorange observable types, is that for
the clocks and for the ionospheric delay estimable functions are obtained that are almost
unbiased (see Section 4.2.5).

When applied to carrier phase observable types, or a combination of these with pseudo'
range observable types, clocks and ionospheric delays are biased. However, since the biases
consist of functions of ambiguities, by taking differences in time, the behaviour in time of
these parameters can be monitored.

4.2.4 Constraining of ionospheric slant delays

Estimation of ionospheric delay parameters per receiver-satellite combination, per epoch,
or equivalently per epoch elimination of these parameters (the ionosphere-free solution, see
Section 4.3.1) implies that only d linear combination of the L1 and L2 ambiguity which is
not integer anymore, can be estimated.

In Bock et al. (1986) it is shown that inclusion of stochastic constraints on the size of the
ionospheric delays, results again in DD like integer functions of ambiguities.

The constraints are implemented by adding pseudo observables of the form

E{ti} : qoTl with D{I|t} : o7 : !,i wo
(4.8)
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Estimable functions
S-basis

c(6ta,p1-  df  r ,pr)
c6ty,p1 c(6$'Pt - dfr,pr)

"Wffi c(6ti;-1- 6h,rr) - )r(l/rt,"r - N,1r,)
c6t1,y1 c(6ti'rt - Mr,rt) - )rl(,"r
\ tN!.r , ,  i , :1,Y j  :7 )r(N/. , . ,  -  Nn1", -  Ni.r ,  + Nrt . t , )

Table 4.5: Possible S-basis and resulting estimable functions for some models with distinct
clocks and no estimation of ionosphere.

i , +  |

o 7 - L

i + 7 ^  j  + r

W
S-basis

Estimable functions

W
c6t1

W
c6t1
) t l ( , r ,  i :  l V  j  : 7

c6ty

c(6ti - 6t1)
c(6tt - 6t1)

a(\ti - 6tr) - )t (Nr1", - Nu1"r)
c(6tj  .- drr) -, \ , l / i ,r_,

)zNrr,rz- )t (Nr1r,, - Ni,", + Ni,",)
ArNto,r., * )1N;r,r,r
)1(t(,6 - r(r.r - Nf,", + Ni,",)

c(6t6 - 6t1)
c(6ti - 6tr)

)1N1r,r,r

\zNtt,r,

i . +  r

i , +  |

i + 1 ^ j + r
i . : I Y j : l
i + r ^  j  + 1

i + r

c(6ti - 5t1)
c(6tr - 6tt)
)1N;J,r,r
\zN!.

Table 4.6: Possible S-basis and resulting estimable functions for some models with common
clocks and no estimation of ionosphere.

i . +  1
c6ty
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4.2 Resolving the rank defect of the bias parameters

The weights for the pseudo observables are chosen such that they reflect the size and vari-
ability of the ionospheric delay, which depend on geographic location, time of day, and sun
spot cycle.

The rank defect and resulting estimable functions equal those of the models where no
ionosphere is estimated, i.e. we have again DD like integer functions of ambiguities.

The precision of the estimates depends on the precision of the ionospheric pseudo ob-
servables. For oli : 0, the precision equals that of the estimates from the model without

estimation of ionosphere, for oli : oo it equals that of the model with estimation of iono-

sphere. In the latter case, no inleger DD ambiguities are estimated.
If these ionospheric constraints are included, the minimum number of GPS observable

types is oneT as in the case where no ionospheric delays are estimated.

4.2.5 Group delays

Estimati,on o! satellite clock errors at the Control Segment (CS).
Although in Eqs. (2.3) and (2.4) no group delays (also called instrumental delay biases, or
equipment delays) are included since they are not estimated in our processing setup, they are
in principle present. These delays are assumed to be constant, but different for Pl and P2.
They occur both in the receiver and the satellite. If we denote the receiver group delay for Pl
as d;,p1 and the satellite group delay for P/ as 4i,Pl, the augmented observation equations for
Pl and P2 for the model with common clocks and in which ionospheric delays are included,
read

103

Inclusion of the group delays in the model causes an additional rank defect of 2(r +m),
i.e. the group delays,itself are not estimable. If we choose for the S-basis all group delays
and the clock of one receiver, the resulting estimable functions are

P|n: fn + c6to - c6ti + Iri + dr,pr -t- di'Pr + €"i.,,

Pi,rr: dn + ,6tu - c6ti + -yq + dr,pz * di,P2 + ePl,r,

E{ciltil : c6ti + rlrait' 
-,!rai,"

E{ii} :ri + 
*(0,'"' 

- di,P2)

(4.e)

(4 .10)

( 4 . 1 1 )

c(6ti -dtr) - ,1=(0n,", - d,,pr) + .!1a,," z - d+z) i,+ |
L -  I  L _  I

c@ti -dr l )  + -  f -14i ,er +dr,pr) -  -1-16i,r2+d,,pz)
L -  l  L -  l

. 1
T! + ;: (di,Pr + d,,pr - d/,P2 - dr,pz)

"  I  -  t '

Assuming the receiver clock errors and group delays are known, which e.g. for the receivers
of the CS is a valid assumption, we have:

(4.12)

(4 .13)

The polynomial clock model in the broadcast ephemerides is based on Eq. (a.12). To
enable a meaningful physical interpretation of the estimates of the clock error and ionospheric
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delays, this clock model has to be corrected. For this purpose in the broadcast ephemerides

for each satellite the paramet er T[, is provided, which is defined as (Spilker Jr. 1996)

TL^ :  
t  

, o ' ' " t - d i 'P2 )' G D - 1 - ?

No esti,mati,on of ionosphere, distinct clocks.

If we correct Pl and P2 using the polynomial clock model only, we have

P ! , r r :  y ' r+c6 t i , p r -  6 i 1 j ' r r  *d , , p r  +d r 'P r  1 -1 -6 j ' e r  -  ,  
t  

o ' ' " 2  +e  o i ^ .I - 1  I - 1  r i ' P t

:  d+c6 t6 ,p1 -g$ i ,Y t  *dz ,p r  +d i  *e  p i , r ,

Pi,r, : y'n + c6t6,r, - citi,P2 I dt,pz + di,P2+ 
frar'"t 

- 
+d''P2 

I € pl.r"

:  d+c5t6,p2-  c | t i 'P2 : -dr ,pz+1di  *e" i . " ,  (4.16)

(4.r4)

(4 .15)

(4.r7)

(4 .18)

with

which equals the definition of the correction term {o. The term c6ti'Pt,l :1,2 contains
the mismodeling of the satellite clock by the CS, the SA effect, and part of the atmospheric
delays. (Since these delays are not modeled they are absorbed by the parameters that are.)

The resulting estimable functions for an S-basis consisting of the average of all satellite
clocks are then

a i : | - , 1 6 : ' e r - 6 r ' e z ;
L -  I

c(6h.pt- 1f5-rr'"1) * d.i,pr + dr

c(61lYt - . lforr," '1' m ?
J - L

c(lt i .pz- l f  ;rr," 2) + di,pz + .ydr
m 7

J - t

c6ti,pz_ lf5rr,"ry
'  

rn4
(4 .1e)

j = 1

lf we correct P1 and P2 using the polynomial clock model plus the correction term ftp,
we have

Pl,rr: fn + 
"it 'r, 

- s$1i'er * d,,pr + di'Pl a -J-di'er
I - 1

: d + c6t;,p1 - c6tj'PL * d;,p1 * €pi

Pl,r,:  y'n+chta,r,-s$l i ,vz*d,,pz +i lP2 + 
r]rai 'Yt 

- 
*o' '" 

- lTA,,*uu1,,"

- 
*ot"' 

- r&, * r r,,", 
rn.ro,

: di + c6t6,p2 - c6ti,P2 * dr,pz l, p1", (4.2r)
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The resulting estimable functions for an S-basis consisting of the average of all satellite
clocks are then ( l  :  L,2):
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Estimation of ionosphere, cornn'Lon clocks.
If we correct P1 and P2 using the polynomial clock model only, we have

P! , r r :  fo+c ; l to -c6 t i  +  T i  +d , i ,p1+d i ,P l+  / "a i ,e t  
-  

t  l ;0 , 'P '+6p, , . " ,

: d + c 6 t t - c | t i +  I r r * d r , p t * d i * e p , , ,  ( 4 . 2 3 )

Pi,rr: y', + c6tn - cSti + "yTtt +di.pz * di'P2 + Jto,'"t 
- ja''"'+ rplo,

L - . y  t - . y  
- t , P z

: d + c\t; - c6ti +.yTri + dr,pz t ldi + epi.r, (4.24)

The term cdJj contains now only the mismodeling of the satellite clock by the CS plus the
SA effect.

The resulting estimable functions for an S-basis consisting of the average of all satellite
clocks are then

c(6ti - L^itr l  - 
{,on,r, + 

!d0,,,

c6tj _li;,,t
' 

171z-t

1

t !  + ,  _  r (d r .p ,  
-  d1 ,p2)  +  d r

This shows that as far as the satellite clock terms are concerned, applying the correction
term Qo is not needed. To remove the bias in the estimates for the ionospheric delay one
should apply it, though.

If we correct P1 and P2 using the polynomial clock model plus the correction term fto
we have:

^ i  i  c 6 t i  +  T r n + d , i , p 1 + d i ' P r + ;  ?  6 i ' r t - ; l - a ' ' P 2 - T [ o + e u tf i , p r : 4 + c ) t i - c ) t " +  L i - t c l i , p 1  * <  
l _ 7  I _ 1  . i , p r

: d + cSti - c6ti + T! + da,p1*uui", (4.26)

Pi,r, : y', + cStn - c6ti + flro +d,,pz * di,P2 + 
fror,"t 

- 
*or'"' 

- tT3o * rp,',,"

:  d i+c6t6-c5t i  +f i  +d; ,vz*ep1.r ,  (4.27)

(4.22)

(4.25)
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The resulting estimable functions for an S-basis consisting of the average of all satellite
clocks are then

c(5t6 - *irrl - -L, _ ron,,,* frd,,",

c(6ti - 
*irtt

T i + + ( d r , p r - d , , p z )
L -  I

(4.28)

(4.2s)

(4.30)

In Figure 4.1 we plotted the estimates for the correction to the satellite clock delay as
defined in (4.28) for all GPS satellites for the time spans during April 20, L997 they were
visible by at least two stations out of the set Kootwijk, Brussels and Herstmonceux.

Between approximately 6:00 and 20:00 GPS time, SA was switched off or significantly
reduced for most satellites. In Figure 4.2 an enlargement of Figure 4.1 for PRN14 and PRN15
for the time span 16:00-24:00 is shown. One can clearly see the transition from SA off to SA
on, at approximately 20:00. For these two satellites we see that with SA off the nominal noise
level of the clock delays is of the order of a few meters, which corresponds to approximately
10 ns for the clock errors. The SA effect on PRN15 is comparatively small, an observation
which is confirmed by others, see e.g. Langley (1997).

4.2.6 Absorbing of atmospheric delays by the satellite clock

For short inter-station distances atmospheric delays are usually not modeled. Although the
coordinate and possible ambiguity parameters are not, or hardly influenced by omitting the
atmospheric delays from the model, the satellite clock parameters are. The tropospheric and
ionospheric delays are, depending on the inter-station distance, fully or partly absorbed by
the satellite clock parameters.

The observation equations for the L1 and L2 phase observables read (we do not apply a
mapping function for the tropospheric delay here)

Qtrp, :d * c6ti;.1 - c6ti,L1 + T! - I! + )rAry,Lr * r.i,",

Qtr,", :d I c5t6;-2 - c6ti'Lz + T: - "yTri + )rNti,r, * ,*i,",

In the extreme case, viz. a zero baseline, the tropospheric and ionospheric delays sensed by
both receivers are by definition equal, since the signals are received by the same antenna.
Therefore the observation equations can be rewritten as

Qtr,rr, :d * c6t6,y, - c6ti'L1 + Ti - Ti + \Nto,r, * r"1,",

Qi,"r:d * c6ta,1,2- c6ti'L2 +Ti -.yTr + ArNti,rr* rri,",

Note that the tropospheric and ionospheric delays are equal for a certain satellite for both
receivers (hence Ii and ?j instead of T! and {). Since we have taken into account both
the initial phase at receiver and satellite (they are included in the definition for lf/) and the
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Figure 4.1: Range errors due to SA for all GPS satellites visible from Kootwijk, Brussels and
Herstmonceux at April 20,1997.
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Figure 4.2: Range errors due to SA for PRN14 and PRN15 on April 20, 1997 , for the time span
16:00-24:00 (GPS t ime).
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atmospheric delays, we may replace the distinct clock errors dfi'Ll and 6ti'L2 by a common

clock error dfi: g.gg,Lt

c[$'t'z

This leads to the structure of the L1 and L2 model with distinct clocks without estimation
of ionospheric slant delay parameters. It has a rank defect of 2n-12(r**-I), see Tables 4.3
and 4.6.

In Figure 4.3 the differences between the L1 and L2 phase clock delay estimates for a zero
baseline are plotted. They result from a zero baseline test using Trimble 4000 SSI receivers.
A solution was computed for the whole time span of 3596 seconds, with L1 and L2 phase data.
The estimated parameters were coordinates, receiver and satellite clocks, and ambiguities.
The time tags were corrected using clocks from a previous pseudorange solution, satellite
clock errors were corrected using the model in the broadcast ephemerides and an a priori
correction for the troposphere was computed using the Saastamoinen model. As S-basis the
average of the satellite clocks on Ll and the average of the satellite clocks on L2 was chosen.
As far as the receiver clocks of the first receiver is concerned, the resulting estimable functions
are then

ei,r,, :do * c6t6;-y - (ffi) + )rtf'.r * rr,n.",

Qtn,r, :d t c6t6;,2 - (:6ti - ri + flt) + Xrw1,"" * rr,n,",

c6t1p1- *in"t 
-ri +riy + t,),f N{,^

(4 .31)

(4.32)

(4.33)

Using the same argument as we used for the satellite clocks, we may replace the distinct

receiver clocks df1,11 and 5t;,y2by a common clock dt1. Subtracting (4.33) from (4.32) gives

then

c6t;1,2 - 
*iU"i 

- ri + {i) + t,L*ixl,-

-u - r*ir' + t,jiNi,,, - x,|iNt,- (4.34)
; - l ; - 1

To get rid of the bias due to the ambiguities, the value of the first epoch was subtracted
flrom the values of the subsequent epochs, which gives

- ( 1 (4.35)

As long as the same set of satellites is tracked, and no slips occur, the obtained differences
are all biased by the same unknown value, which is a function of the ambiguities. Since
changes did occur, three time spans were selected where the configuration remained constant.
Note that each time span is biased by a different value, that was set arbitrarily to zero in
the plot. For this example, the maximum difference between the two clocks can be as large
as approximately 4 cm. These differences are mainly due to the unmodeled ionospheric
delay. The size of this effect is different for the two carrier phases because of the ionosphere's

-"GEv*-*n",)
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dispersive character. Subtracting the two delays gives -(1 -'y) x 0.65 times the ionospheric

delay at the L1 phase carrier.
The receiver clock errors are therefore biased by the average of the ionospheric delays.

Another effect that may play a role here are time varying, dispersive delays in the receiver
and satellite hardware.

As a comparison we processed the same data using a model in which ionospheric slant
delays are estimated, and where a common clock for the L1 andL2 is assumed. The resulting
estimates for the ionospheric slant delays are then biased by some function of the ambiguities.
Again this function remains constant as Iong as no change of configuration or cycle slip occurs.
In Figure 4.4 the average over the satellites of these estimates are plotted, for the same three
time spans as in Figure 4.3. The average of the ionospheric delays for the first receiver reads

Comparing the two plots we see that

(4.36)

Again the unknown biases for each time span are set to zero analogously to what we did for
the plot of the difference of the clock errors. To facilitate comparison with Figure 4.3, the
delays are multiplied by -(1 - 7), giving

- (1  -  r ) (4.37)

4.3 Linear combinations of observable types

In the DD setup, usually transformations to the original observable types are applied to elim-
inate model parameters (e.g. ionospheric slant delays), or to transform ambiguity parameters
(e.g. wide lane transformation).

Some of these transformations maintain the information content of the system since they
are invertible, but also transformations are used that do not. The latter should be used with
care, since information that contributes to the parameters of interest is lost.

In this section some of these transformations will be treated, and the connection with the
undifferenced approach will be shown (if existing).

4.3.1 The ionosphere-free linear combination

The equivalent of the model with distinct clocks and estimation of ionosphere is the ionosphere-
free linear combination. It is constructed from the Ll and L2 carrier phase observable types
(denoted as L3 or LC linear combination), or from the Pl and P2 pseudorange observable
types. As the name already indicates, the new observable type is not affected anymore by
the ionosphere.

We will show here the construction of the carrier phase ionosphere-free linear combination.
The construction of the pseudorange ionosphere-free linear combination is done analogously.
Starting with the non-linear observation equations for both carrier phases

Qto' r:d a A1l(,1r * c6tip1- c6ti,L1 + q{!i * r*i.",

Qi,", :d * \zNl,1, * c6t6,y2 - c6ti'L2 + qzTrr * r*1,r,

! i."+, ! ( r!i.1,, - ),1i"1',)
7 7 1 2 - z  1 - ^ l  I  

' m z - r  L \ L z  ' m Z - /
" " j = t  '  /  \  " ' j = t  " " j = 1  /

( ti"-- lir,')
\-7 *7--, /
the details in both plots are similar.

(4.38)
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the system of linearized observation equations reads

rv11
d n , I l

t -  
)

'r [3i;;]r : l s l  d
l b I

, 2

)11(,r,r
)zI{tt,rz

l"o-to,'l!l
t u v b -  I

lclh.rz1
Lc6ti't-21

r!

(4.3e)

(4.40)

That it is

(4.4r)

(4.42)

The ionospheric delays can be eliminated by applying the transformation

l#^ ff i lqr: l#+ vf i lar
This transformation is not invertible, and thus it seems that information is lost.
still allowed can be seen by looking at the extended invertible transformation

lh ;+l*'
The transformed system reads then:

, rl* r,,,?,:'#^ *,,,,], :

d
n r d

q2-nr

lo I

Ls ffir
-qr  r

n2-nr
-qr 

'l
nz -nr  *

, x

)rNto,",
)zN!.t z
lc6ti.y1l
l"6tt'"t 

tt

lc6ti,y2f
Lc6ti'rz 1

ri

i ^,", ", Jny^,*,,", l
I l:l:;r; _fiill,ztl I
Lr! + +QLN,,1t c6t;,y1 - c6g'rt11

,rrl

Lumping together-the ambiguities and clocks of L1 with the ionospheric delays in the first
set of equations, and in the second set of equations the clocks of L1 with the clocks of L2,
and the ambiguities of L1 with those of L2, gives:

trrl . oi,", l, -"'l#aoi,r, - ffia',"rlt 
-

P q'If
Ls ihr iha J (4.43)



tL2 Relative positioning using multiple GPS observable types

In the first set of equations we have for each observable one unknown function of bias pa-

rameters. These observables are free variates since they do not contribute to the coordinates
nor to the bias parameters involved in the second set of equations. If we are not interested
in the function of bias parameters of the first set of equations, we can discard this set. It

can easily be seen that we would have obtained the same result if we would have applied the
non-invertible transformation of (4.40).

The second set of equations has the form we saw already in Chapter 3, and can be

transformed in the same way as the ordinary phase observation equations into DD observation
equations.

4.3.2 The wide lane l inear combinat ion

To improve ambiguity resolution, often the wide lane linear combination (also called L5 or
LW linear combination) is formed from the L1 and L2 carrier phase observable types. The
transformation matrix reads

, : l*, -#nl*, (4.44)

Again this transformation matrix is not invertible; an invertible transformation matrix might
read e.g.

(4.45)

Usually this transformation is applied to the short baseline model, where the ionospheric
delays are omitted. The system of linearized observation equations reads

f 1 IT : l  L  _  / ,  l a I
L Jr- Iz h- Iz.J

T6

)1l(,r,r
)zNtr.t

fcdt;,111
lc6il'rt 1
lc6ti,y2]
lc6ti'tz 1

, tl#u,,,"1:A,,,,,), : Yn &,

" f3 i i l l  , : I t r '  , ' ;
r .

)1N/,rr

)zNtr,rz

lclti,y1]
klil'rt1
l  r . h t '  ,  . 1

l.^ri,i i l
I

Applying (a.45) to it gives the transformed system

-frr &, -rh']

(4.46)

(4.47)
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Lumping together in the second set of equations the clocks of Ll and L2 and the ambisuities
of L1 and L2 gives:

1 1 3

'r l#or,,"!: '#orr,",]t:[| ' , ' ,]

c\t6p1

c6$'t'r
c6t ' ,  ,
6[7i,Lz

c\t6,p1

c,[Si'Pt

c6t6,p2

[r -qz*ry zn' 1
r : I- | _nTn!' iffil a r

L '12-rh n2-nr )

fr _li"_,I, ffii*,:L 
| -77-,7 trr?l

Again this is not an invertible transformation. An extended transformation

t i

)1t(pr

T-w!l' - N!,")
" '- 

lc6ti,y1l
' lclti'rt 1

h lc6ti;-1] lz lcStis-2]
7.8 lcoti,Lrl- fn lc6ti',r21

(4.48)

(4.4s)

(4.50)

matrix that is

In contrast to what we saw with the ionosphere-free linear combination, the two sets of trans-
formed observation equations can not be treated separately, since they have the geometric
parameters in common.

4.3.3 The Melbourne-Wiibbena linear combination

The Melbourne-Wilbbena linear combination (Melbourne 1985), (Wiibbena 1985) is a linear
combination of the Ll and L2 carrier phase plus the Pl and P2 pseudorange. Geometry,
troposphere, and ionosphere are eliminated by it.

The Melbourne-Wiibbena transformation is usually applied to the system of non-linear
observation equations. The system of non-linear observation equations reads

d
)1N{r.r

),Ntn,"

l.i,',] lr r d qJ j' , l} i , ,] ' :Li I dootIA

c6ti'Pz

r!
(Note that we have replaced here the coefficients for the ionospheric delay for the pseudor-
anges [3 and. r1a, by -rlt and -42.) Construction of this linear combination starts with the
following transformation matrix
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invertible might e.g. read

I
IT :  L
L

Applying (a.51) to (4.49) gives

n2
n 2  - n r

I

nr-rlt
na +n\
qz-nt

- 2rlz
n2-q|

nr 
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- 
,r-r^ |- w l q r

rlr-nr Iq2+ni 
I

42-nr )
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(4 .51)

(4.52)

| *_---^Pi,Y' - ffie!,r, l
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c6ti,p1
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c6t,' r,
c6ti,P2
rl

Lumping together the clocks of the two pseudorange observable types with the topocentric
distances in the first set of equations, and in the second set of equations the ionospheric
delays together with the two pseudorange observable types gives

(4.53)

The system separates into four systems, each of which may be treated independently. As
this transformation is applied for the estimation of ambiguities, in a processing step prior
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or parallel to the estimation of geometric parameters? one usually discards the two first sets
of equations. This is again allowed since they do not contribute to the estimation of the
ambiguities. It means that it is allowed to use the transformation matrix in (4.50) even
though it is not invertible.
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o, f.i.r, - ffie1,",+ #P|n]\ -". 1.i,", - ffi r1,r, + mP|Pr)'

"'l+o*,'"

_ n2+nr
nz-r lr

- 2nz
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. (4.45)
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(4.55)
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These two sets of equations can be transformed in the same way as the ordinary phase
observation equations into DD observation equations. Usually one only estimates the wide
lane ambiguities, although in this case this is not allowed, due to the correlation between the
Ll ambiguities and the wide lane ambiguities.

Moreover, other transformations may be applied to the ambiguities that give a more
favorable set of ambiguities in terms of precision and correlation (Teunissen 1996), (Jonkman
1ee8).

Frequently one even does the estimation per DD ambiguity. This can be done due to the
very weak correlation between the DD ambiguities and their homogeneous precision, contrary
to the case where one parameterizes in baseline coordinates.
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In Section 6.4 we will show that when certain receiver-satellite combinations are observed
less than others, as is usually the case for receivers in large networks that are continuously
observing, precision of the DD ambiguities is much more heterogeneous.

4.3.4 The l inear combinat ions used in GAMIT

In Section 4.2.4 we stated that inclusion of constraints on the ionospheric slant delays in
the form of pseudo observables makes it possible to estimate integer DD-like functions of
ambiguities. In Schaffrin and Bock (1988) a transformation of the two phase observable
types on Ll and L2 and this ionospheric pseudo observable type is given that produces two
orthogonal linear combinations, in which the ionospheric delay is eliminated.

Starting with the original three sets of non-linear observation equations

I ! : q s I r i * e , i

Qt '"r :  y 'o + l , r l1,rr  t  c6t i ,y,  *  c6{,L1 + qf l i  *  ,* i , " ,

ei,t, : f, + l,rVt'r, * c6t6;.2 - c6ti'L2 + qzTrt * t*i.""

the system of linearized observation equations reads

ln Schaffrin and Bock (1988) the following transformation matrix is proposed:
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(Note that in (ibid.) the transformation is given for the observation equations expressed in
cycles.) Since the transformation matrix is not invertible, it is extended with an extra row,
which will produce a third orthogonal linear combination.

(4.60)
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Applying (4.60) to (4.58) gives
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Ll in all

(4.62)
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rl
Since the three newly formed linear combinations are orthogonal they are uncorrelated, and

since the ionospheric delays are only involved in the last set of observation equations, and

therefore these linear combinations do not contribute to the estimation of the other param-

eters, they are free variates, and can be omitted from the system if one is not interested in

the value of the ionospheric delay.
It means that we may use the transformation matrix in (a.59) even though it is not

invertible. This gives then

E,r | . ffio',l,- ffio1,', lr :" 'l-ffhri + #n,oi,a + #,t,ori,L2)'

liI

,]l l ' , d (4.63)
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These two sets of equations can be transformed in the same way as the ordinary phase
observation equations into DD observation equations.

In the GAMIT (GPS At MIT) software these linear combinations are implemented to
constrain the ionosphere for the purpose of ambiguity resolution (see Chapter 6).

4.4 Solut ion of  the normal equat ions

In this section we will show how the system of normal equations for more than one observable
type can be computed in an efficient way. The part for the global parameters of the design
matrix for q observable types (p phase observable types and q - p code observable types) for
the case that all g observable types are available for eac$ receiver-satellite combination reads

A t , * : (4.64)

When besides coordinate parameters also other types of global parameters are involved, as
e.g. tropospheric zenith delays, ionospheric model parameters, or orbital parameters they are
added as extra columns next to 96. Apart from enlarging the system of normal equations it
will have no effect on the solution method for the system.

For the variance-covariance matrix of the observables we take:

Q * : & Qyn (4.65)

Note that this definition of the variance-covariance matrix makes e.g. elevation dependent
standard deviation for the observables possible, or even a full variance-covariance matrix for
each observable type.

The updated normal matrix system for n epochs reads:

,T:I

1
U I

I

a ,

1
uq

D tT*e;' e!,.A!*lr, : D AT,oe;' Pi,,r1a n
k= l  k=r

In Table 4.70 Q;LPir,n for the four models for the temporal parameters as defined in Sec-
tion 4.1 can be found. A more detailed derivation of them is given in Appendix D.

For the models with distinct clocks Q;'Pi,u can be written as

Q;'Pi,,r :'(J & Q;rt Prt

with U a q x q matrix. In short hand notation Eq. (4.66) reads

(4.66)

(4.67)

NnA,r1 :6n (4.68)
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Using Eq. (4.67) the normal matrix 1V" and right-hand side h, can be written as:
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(4.6e)

(4.70)

This means that to construct the normal matrix, irrespective of the number of observable
types used, we only have to compute at each epoch

a;:Pk sTa;:Pi, sTQ;:Pisk (4.7r)

For the right-hand side we have to compute at each epoch for all observable types (j :
1 , " ' , q )

Q;r'efi4t,o , sTQ;: Pilyj,k (4.72)
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r r  :  Iu i  t rz:Tu16
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Table 4.9: Legend for Tables 4.10 and 4.11.

When no ionosphere is estimated, U6,i1 : 0 for i, f j, so,
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For the models with common clocks Qi'Ptr,n can be written as

Q;'Pi".o : (J & A;: Pi + U" e Q;: (4.75)

with U and (J" q x q matrices. The normal matrix system can be written as a sum of two
systemsof theformasinEqs. (4.69-4.70).  Fortunately,onlythepartsof U.8Q;: referr ing
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Table 4.10: Q-'Pir.n for different models for the temporal parameters (Legend in Table 4.9).
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to the ambiguities may be nonzero, since all summations of elements of U" equal zero) as we
will show below.

When no ionosphere is estimated we have
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In addition for the case of two observable types we have

Ue$ , i )  :  w4  -  w i k i 1  :  Q ,  Uee ,2 )  :  -w rk t , z  :  0 ,  ( Jee , t )  :  -wzkzJ  :  0  (4 .80 )
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The similarity of the structure of the normal matrix systems for different models enables us
to compute normal matrix systems for several models at almost no extra cost. Note that this
is only true if all observations are available for a particular receiver-satellite combination. This
is however not a severe restriction, since for most of the models with estimation of ionosphere
this is already a condition, since otherwise the ionospheric parameters can either not be
estimated or the observables involved will act as free variates, and thus do not contribute to
the estimation of the global parameters.

For the models without estimation of ionosphere it may be fruitful to apply all obser-
vations, irrespective of the circumstance that all observations for a certain receiver-satellite
combination are available. Then for eoch observable type we need to compute a normal
equation system as in Eqs. (4.69-4.70) and add them together after all epochs have been
processed. Usually, however, these models are applied to only a few receivers, and hence the
size of the matrices is relatively small.

The system of normal equations is solved in a similar fashion as described in Eqs. (3.102-
3.105) for one observable type, with the rank defect resolved as described in Section 4.2.

The temporal parameters, which now besides clock parameters may consist also of iono-
spheric slant delays, are computed according to the procedure in Eqs. (3.108-3.109). The
vector of 'observed' minus 'computed' now of course consists of more than one observable
type. In Table 4.11 for the four models for the temporal parameters as defined in Section 4.1
an expressionfor H4* is given. A more detailed derivation of them is given in Appendix D.

C h an gi,n g o b s eru at'i on s cen ari o s
Every epoch ft the normal matrix system of that epoch is added to the system of the previous
epochs (I/r-t, hk-). If at epoch /c there is a change in the set of parameters involved, ly'r-r
and hr-r are permuted such, that the parameters of epoch /c are in front. In this way, the
system of epoch k can be easily added to the existing normal matrix system. If N is stored
as a full triangular matrix, the permutation can be made in-place.

In Figure 4.5 the number of parameters per epoch for a time span of 24 hours for a
model where we have Ll and L2 ambiguities, coordinates, tropospheric zenith delays (1 per
station per hour), and orbital parameters (8 per satellite), for a global network of which the
characteristics can be found in Table 4.72is given (upper black curve). The total number of
global parameters is 1369.

The normal matrix for one epoch is a full matrix, i.e. it does not contain zero entries. It is
a symmetric matrix, hence only the lower triangular part is computed and stored. Since the
set of parameters may change per epoch, the stacked normal matrix of all epochs, may not
be a full matrix. Especially when the observation time span is long (several hours to days),
a considerable part of the normal matrix may be zero. This is due to the fact that satellites
rise and set, and the limited time for which the tropospheric zenith delays are defined (e.g.
one hour).

A matrix that contains a substantial number of zero entries is called a sparse matrix.
If one uses appropriate algorithms and data structures, one can benefit from the sparsity
of the matrixl i.e. the same data can be processed in less time using less core memory. In
Section 4.6 we will show the gain in efficiency when applying sparse matrix techniques to the
normal matrices occurring in the GPS data processing,

L23
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Table 4.11: Hnr.nfor different models for the temporal parameters (Legend in Table 4.9).
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Figure 4.5: Number of parameters per epoch (black, upper curve), idem, maximum (grey,

upper curve), and number of observations per epoch (black, Iower curve), idem, maximtrm

(grey, lower curve) for the global network.

Global Network (Pol) Californian Network (Cal)

Site ID (IGS) Name Site ID (IGS) Name

ALGO
GOLD
MADR
FAIR
HART
KOKB
KOSG
SANT
hIETT
YELL
TROM

GOLD
CHIL
VNDP
DAMl
DAM2
CMP9
LEEP
LONG
TABL
HOLP
GOL2

Algonquin
Goldstone
Madrid
Fairbanks
Hartebeesthoek
Kokee Park
Kootwijk
Santiago
Wettzell
Yellowknife
Tromsri

Goldstone
Chilao Flats
Vandenberg
Pacoima Dam
Pacoima Dam
Fire Camp 9
Mount Lee
Longdon Yard
Table Mountain
Hollydale
Goldstone

Table 4.12: Stations included in the global network (Pol), and stations included in the
Californian network (Cal).



L26 Relative positioning using multiple GPS observable types

gold
go12

cnp9. .tabl
atanl' chil
afan2

leep long

'ho1p

4.5 Computation of the one-dimensional test statistics

In Section 3.10 we showed how the one-dimensional test statistics can be computed when
there is only one observable type .

In the general case of p phase observable types and a total of q observable types, we
want to specify alternative hypotheses for outliers in all q types, and for slips in the p phase
observable types. Although we have a system referring to more than one observable type,
the computation of the test statistics is still fairly simple, since the hypotheses only refer to
a single observable type at a time.

For an alternative hypothesis that there is an outlier in the l-th observation of epoch k
we have

Figure 4.6: Map of the stations of the Californian network.
GOLD is approximately 350 km, the distance between HOLP
km.

with p

v a

\
v a

The distance between VNDP and
and GOLD is approximately 200

€,xet' e eet' ", r _ _T:ri,i:ri;0e,, 
4* p ii ra; : + e; ̂' p i, r (4 .81)

(4.82)

A t j : l{l (4.83)
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(for the definition of ̂ 9o see Eq. (3.33)), we compute Vz3:Q;]P),rAr,r, as

V z , * :

Duo,,ta;) Pi",reo
j = r

q

Duo,,ta;) Pi,nsr
4 - t

un.aQ;]Pt,.*s" u6r1Q;)Pf,*5"

U1z,4Q;) Pt',,rS" tJp,olQ;] Pj,.oS"

Wt,t,
r m x T m

Dua,,ta;lPi,,oen U1ns1Q;)P!,,05" rJln*1Q;)PLu",rS,
; - l

For the computation ot -Q;) P),,oAr,oQr,AT,uP{,_Q;: we need only the part of Q6,
which refers to the parameters involved in the current epoch. This part corresponds always
to a nonzero part of the normal matrix. Using sparse matrix techniques, (see Section 4.6) we
can compute a sparse inverse of the normal matrix which will contain the needed part.

For the example of the global network we have a total of rt1 - 1369 parameters. For
one particular epoch the number of parameters n" varies from 198 to 322 with an average
of approximately 273, see Figure 4.5. The number of observations for one observable type
varies from 49 to 76, with an average of 64. This means that for the example of the global
network, the maximal dimension of V2,1, is 76q x 322.

The matrix products Vz,r: Q;:Pir,rAL,6 and V3,7, : Q;:Pi,,*A1,tQi, can be computed
in parallel for all observable types involved, i.e. we only have to compute one mega-row of
V2,p and V3,1 where we take care to pass the appropriate (sum of) entries of UU,il for each
observable type. We compute only the diagonal of -Vs1V{*+Qi:Pi,., since that is the only
part we need to compute the alternative hypotheses.

As in the case of only one observable type, the alternative hypotheses for a cycle slip
can be computed efficiently from three matrices that are updated per epoch. Recalling these
matrices:

k

:  \ -  o -1p l
L  n U ;  -  a z , ;

rc

: \- 0-. tP+ A, ,
Z--/ - Ci A2,i

i : l

K

:  DQ;, 'Pi,,NA,'tQI,
; - 1

For an alternative hypothesis that there is a slip in the /-th observation of epoch k we have

€, rQ; 'QuQ; t " , ,0 :  (w, , ,x  -  wqxw{ , * )u  l :1 , . . .  l r rn (4.88)

Matrices W1,1r,W2,1, and Ws,1, are updated with the already computed Q;] Pir,*,V2,p and
Vz,*. Here we have to take care that it is possible that though a certain receiver-satellite
combination is not observed in this epoch, it may have been observed at an earlier epoch
and will be observed again at a later epoch. This might e.g. occur when the number of
receivers observing a certain satellite, drops temporarily below two. Matrices W1,1r,W23 and

wz,x
r m x ( r - l ) ( ^ - 1 ) + 3 r

Wt,rc
r m x ( r - I ) ( * - 1 ) + 3 r

(4.84)

(4.85)

(4.86)

(4.87)
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Ws,* should thus contain slots for all receiver-satellite combinations that were observed in

a previous epoch, and for which the elevation is still larger than the elevation cut-off. In
Figure 4.5 the maximum number of parameters and observations due to this condition for
the global network are plotted as the grey curves.

4.6 Sparsity considerations

For the solution of the system of normal equations there exist a number of methods. Three
of these will be described here since they are used in one of the large GPS software suites (or

should be used).

1. Di,rect inuersion of the normal matrir.
The most straightforward way to solve the system of normal equations is to invert the normal
matrix, and multiply the right-hand side by it:

i :  N - r h  Q e , :  N - \ (4.8e)

An algorithm for the inversion of a symmetric semi-definite matrix is given in (Rutishau-
ser 1963). The inversion is done in-place, and the number of floating point operations or
flops (one flop being defined as one multiplicative and one additive operation) is of the order
O(i"") where n is the dimension of the matrix. This operation count does not take into
account the administration part of the computation, nor the operations for the pivot search
needed for stability reasons. The operation count for the multiplication of the inverse of the
normal matrix with the right-hand side is of the order O(nz). This method is the only one
that needs a pivot search.

The two other methods are based on a Cholesky factorization of the normal matrix:

N : C C r (4.e0)

with C a lower triangular matrix. The Cholesky factorization can be done in-place and the
operation count is of the order (?(|n3).

2. Inuers'ion of the Cholesky factor.
Using this method the Cholesky factor is first inverted. This can be done in-place (see

Dongarra et al. (1979)) and the operation count is of the order O(|n3):

C -+ C-l (4.e1)

From the inverted Cholesky factor the inverse of the normal matrix is then computed as

N- l  -  ea :  C- rC- l (4.s2)

It can also be done in-place and has an operation count of the order O (t"t) . The solution is
eventually computed as in Eq. (4.89).
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Number of floos

Cholesky factorization
Inverse from Cholesky
Inverting triangular matrix
Multiplication CrC
Direct inversion

ln3
lr'

n,"
?

n"
n,"

Table 4.13: Operation count (flops) for some operations on a full matrix.

3. Forward and bacltward substituti.on.
In the third method the solution is computed by forward and backward substitution:

(4.e3)

The forward and backward substitution can be done in-place (at the location of h), and
the operation count is of the order O(n2). The variance-covariance matrix Q6 is computed
column wise by a sequence of forward and backward substitutions on the columns of the unit
matrix of dimension n:

CCrgr:  1n (4.e4)

This again can be done in-place and the operation count for it is of the order O(i"t).
Until now we only discussed solution techniques for full normal matrices, i.e. all entries

are treated as nonzeros and hence have to operated upon. Many normal matrices encountered
when solving problems within geodesy have a substantial number of nonzero entries. Geodetic
examples are e.g. the photogrammetric block-bundle adjustment, the adjustment of classic
geodetic (i.e. established by measuring directions and distances) networks.

Using the outer product formulation of the Cholesky factorization, it can be shown that
the number of nonzeros in the Cholesky factor is greater than or equal to the number of
nonzeros in the normal matrix, and that entries that are nonzero in the normal matrix
remain nonzero in the Cholesky factor, assuming that exact numerical cancellation does not
occur.l The gain in the number of nonzeros is called fill-in.

The amount of fill-in and its location depends on the order of the unknown parameters.
As for the Cholesky factorization we do not need to permute parameters for stability reasons,
we are free to apply a permutation specifically aiming at reducing fill-in. So, instead of solving
the system

N r :  h (4.e5)

the equivalent permuted system

eN P\(Pr) :  Ph

CCr r :  h
C u :  h

C T r :  u

Cholesky factorization of the normal matrix

Computation of auxiliary vector u via forward substitution

Comoutation of s via backward substitution

tThis assumption is made, since it is generally not predictable if, when or where it occurs.

(4.e6)
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is solved. The permutation matrix P is orthogonal, thus P-1 - PT. The solution vector Pr
is identical to the solution of (4.95), except for the order of the parameters in the solution
vector.

Summarizing, we have three methods for computing the solution vector r and its variance-
covariance matrix Q3, with, for a non-sparse matrix, equal operation count. However since
the direct inversion method needs a pivot search and does not profit from the presence of
zeros in the matrix, this alternative is dropped.

The second method (inversion of the Cholesky factor) needs always the full inverse of the
normal matrix to be computed, and inversion of the factor and computation of the inverse
of the normal matrix will only in special cases profit from zeros in the normal matrix.

The third method (forward and backward substitution) has an operation count for com-
putation of the solution only of the order 0(n'). Computation of the solution as well as
computation of its variance-covariance matrix (or parts thereof) take advantage of the spar-
sity of the normal matrix.

Since the late sixties, research has been directed to the problem of establishing good a
priori orderings for the unknown parameters. For an overview see George and Liu (1980),
Pissanetzky (1984).

For some problems that exhibit a regular structure, simple a priori orderings can be
constructed (e.g. the determination of star abscissae on a great circle from data collected by
the astrometric ESA satellite Hipparcos, see van der Marel (1988)). For other problems one
has to use a heuristic algorithm. Among the most efficient and well-known algorithms are
the minimum-degree, the (nested) dissection, the reverse Cuthill-McKee (Cuthill and McKee
1969) and the family of banker's algorithms (King 1970), (Levy 1971), (Snay 1976). For an
extensive description of the first three methods see George and Liu (1980), for a description
of the bankers's methods (and comparison with the other methods when applied to geodetic
normal matrices) see de Jonge (1991) and de Jonge (1992).

The algorithms for minimizing fill-in can be divided into three groups, viz. those that
strive directly for a minimization of the fill-in (minimum degree), those that try to find
divisors that cut the matrix into independent parts (dissection methods) and those that try
to concentrate the nonzeros in the normal matrix around the diagonal (reverse Cuthill-McKee
and banker's).

The a priori ordering we will describe below belongs to the Iast type. The reason that
it is beneficial when the nonzeros of the normal matrix are clustered around the diagonal is
that fill-in only occurs in the region defined by

l / l n , i l  w i t h  m i n { k  | { , , 0 1  + 0 } < i < i  f o l i : 1 , . . . , n (4.e7)

This region is called the envelope of a matrix, and the number of elements containing it is
called the profile. All elements inside the envelope, zero and nonzeros alike, are stored and
operated upon, and the matrix is called a profile matrix.

The number of elements in the intersection of column z with the envelope is called the
ith frontwidth, denoted by ,r The sum of ur; for i : 1 to n equals the profile. For a full
symmetric matrix of dimension n, t,,,i equals n - z. Using the frontwidth, the operation count
for the Cholesky factorization of a profile matrix can be given (see Table 4.14).

Forward and backward substitution also profit form the sparsity of the Cholesky factor.
Furthermore it is possible to compute only those elements of the inverse of the normal matrix
that correspond to the nonzero entries in the Cholesky factor (Golub and Plemmons 1980).
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scheme multiplicative additive storage (excl.
operationcount operationcount administration)

Full ln3 + ln2 - ln L"" - i" f,n2 + f,n
n-l n-l n-!

Profile iDrn{u,n * l) tDrnit",n * t) n +\ut

Table 4.14: bperation count and storage for Cholesky factorization of a full and a profile
matrix (Pissanetzky 1984).

This inverse is denoted as sparse inverse. Depending on the sparsity of the Cholesky factor
the sparse inverse can be computed more efficiently than the full inverse.

Instead of using one of the heuristic algorithms to reduce the fill-in in the Cholesky factor
of the normal matrix originating from the processing of GPS data for relative positioning,
we use an optimal or near optimal ordering that can be defined a priori. In the sequel this
ordering will be denoted by 'd3', and is determined as follows.

For each parameter we know at which epoch it starts to be active and at which epoch it
stops being active. For the coordinate parameters ofa network that is continuously observed
for one day with an interval of 30 seconds, we have e.g. that they are active from epoch 1
to 2880. If we defiire tropospheric zenith delays, for each hour, we have for each station 24
parameters that are active for 120 epochs, i.e. for epochs [1-120], [l2l-240],. . . , [2661-2880].
Ambiguities are active for time spans that may vary considerably. In Figure 4.7 for the
ambiguities of both the global and the Californian network of Table 4.72, the length of the
time span for all ambiguities, sorted after increasing length of the time span is plotted. The
length of the time span for the global network varies from. L to 842 epochs, with an average
of approximately 387 epochs. For the Californian network the length varies from 3 to 878,
with an average of.426.

If we denote the first epoch that a parameter is active by (1, and the last epoch that it is
active by (2, a near optimal ordering was found by first sorting the parameters in increasing
order of (1. If there are several parameters with equal (1, this batch is again sorted in
increasing order of (2. The ordering was applied to four normal matrices:

Cal Californian network, Ll and L2, with ionospheric slant delays constrained via pseudo
observables.

Pol Global network, Ll and L2, with ionospheric slant delays constrained via pseudo ob-
servables.

Poli Global network, L1 and L2, and estimation of ionospheric slant delays (non-constrained).

Poln Global network, Ll and L2, with ionospheric slant delays constrained via pseudo ob-
servables, and coordinates, tropospheric zenith delays and orbits constrained to a priori
values (from e.g. the solution of Poli).

Both networks were observed for one day with an interval of 30 secondS, and had per station,
per hour a tropospheric zenith delay modeled. The orbits were modeled by 8 parameters per
satellite.

In Table 4.15 for these normal matrices the CPU time is listed that was needed to compute
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200 400

Ambiguity

Figure 4.7: Length of time span that an ambiguity is active for the ambiguities of the global
network (black curve), and the Californian network (grey curve). The ambiguities are sorted
according to the length of this time span.

1. the full Cholesky factor and the full inverse from it,

2. a profile Cholesky factor from the normal matrix ordered by d3, and the full inverse
from it,

3. a profile Cholesky factor from the normal matrix ordered by d3, and the sparse inverse
from it.

All timing was done on a Pentium 100 MHz PC.
For 'Pol', 'Poli' and 'Poln', it was found that the ordering according to (2 was arbitrary.

Except for 'Poln', the d3 ordering is not optimal in the sense that it produced a small amount
of fill-in. It gave however a smaller fill-in than the heuristic algorithms. Whether there exist
an optimal ordering is impossible to say, see Garey and Johnson (1979).

The nonzero structures of the normal matrices of 'Cal' and 'Pol' are depicted in Fig-
ures 4.8 and 4.9. The parameters are ordered as Ll ambiguities, L2 ambiguities, coordinates,
tropospheric zenith delays, orbit parameters. One tropospheric delay per station per hour
was modeled, i.e. 24 delays per station. The orbits were modeled with B parameters per
satellite. With 25 satellites observed, the total number of global parameters is 1275 for 'Cal',

and 1369 for 'Pol'.

Figure 4.10 shows for 'Pol' in the lower triangle the lower triangular part of the normal
matrix ordered by d3, and in the upper triangle the resulting (transposed) Cholesky factor.
There is some, though not much, fill-in in the Cholesky factor, and all of it is contained
within the envelope. Figure 4.11 shows the same for the normal matrix'Poli'. As ionospheric
slant delays were modeled, the number of ambiguities equals half the number of ambiguities
in 'Pol'. The total number of parameters is 933.
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Cal Poli PolnPol

C full
l/-1 full from C full
Total

C profile
N-r from C profile
Total

C profile
Sparse ly'-1 from C profile
Total

120.0 148.9 46.3 37.5
240.0 297.8 92.6 75.0
360.0 446.7 138.9 rr2.5

74.0 2r.8
t23.1 169.2
t37.7 191.0

9.8
60.1
69.9

1 . 8
26.5
28.3

14.0 27.8 9.8 1.8
49.4 78.6 34.6 4.8
63.4 100.4 44.4 6.6

Table 4.15: CPU time (in seconds on a Pentium 100 MHz PC) for some operations on the
normal matrix from the Californian network, and the global network. For the operations on
the profile matrix, the parameters were ordered according to a priori ordering d3.

Figure 4.12 shows the normal matrix and resulting Cholesky factor for the normal matrix
'Poln', where we only have ambiguities. The number of ambiguity parameters is872. At right
the normal matrix is in the original ordering, at left it is ordered by d3. For the ordering by
d3, there is no fill-in.

These examples show that when the time span is large, and hence satellites set and rise
during the time span, it is worthwhile to order the parameters in order to minimize the fill-in
in the Cholesky factor and thereby reducing CPU time. A prerequisite is then of course
that the solution is computed via Cholesky factorization followed by forward and backward
substitution instead of direct inversion or inversion of the Cholesky factor.
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Figure 4.8: Nonzero structure of the lower triangular part of the normal matrix of the network
in California (Cal), original ordering (1275 parameters).
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Figure 4.9: Nonzero structure of the lower triangular part of the normal matrix of the global
network (Pol), original ordering (1369 parameters).
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Figure 4.10: Nonzero structure of the lower triangular part of the normal matrix of the
global network (Pol) ordered by d3, and the resulting (transposed) Cholesky factor (1369
parameters).
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Figure 4.11: Nonzero
global network (Pol i ) .
parameters).

structure of the lower triangular
ordered by d3, and the resulting

part of the normal matrix of the
(transposed) Cholesky factor (933

Figure 4.12: Nonzero structure of the lower triangular part
normal matrix of the global network (Poln), and the resulting
Left: original ordering, right: ordered by d3 (872 parameters).

of the ambiguity part of the
(transposed) Cholesky factor.
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Chapter 5

Integer ambiguity estimation

5.1 Introduct ion

High precision relative GPS positioning is based on the very precise carrier phase measure-
ments. As we saw in Chapter 2 these carrier phase observations are ambiguous, and hence
extra model parameters, the carrier phase ambiguities, are introduced.

For short time spans, these ambiguities are strongly correlated, and the estimates for the
geometric parameters have a poor precision (float solution). To achieve highest precision
the integer nature of the DD ambiguities has to be exploited, i.e. one has to constrain the
ambiguity parameteis to their integer values (fixed solution).

As an example, Figure 5.1 shows, for a baseline of 12.7 km, by how much the precision of
the baseline can improve, once one fixes the ambiguities. The three-dimensional scatter-plots
shown, concern instantaneous positioning (single epoch baseline solutions) using dual fre-
quency code and phase data (standard deviation code 30 cm, phase 3 mm). The coordinates
are expressed in a local North, East, Height system. One hundred experiments were carried
out (one at every 30 seconds) each represented by an asterisk; the dots are the projections
on the walls of the grid. The scatter-plot at left contains the float solutions, the one at
right the corresponding fixed solutions. Thus in the first case, the carrier phase ambiguities
were treated as real numbers, whereas in the second case, they were solved for as integers.
The figure clearly shows the dramatic improvement in precision with ambiguity resolution
(note the difference in scale). The empirical standard deviation of the baseline coordinates
before ambiguity fixing are oar : 35 crr, oB :20 cm and ou : 63 cm and after oN : 4.4
rrrrt, oB : 3.8 mm and oy : 11.4 mm. So, for this example, by fixing the ambiguities, the
precision of the position coordinates improves by a factor of more than 50.

Although the improvement for short time spans is largest, an improvement in precision
of the geometric patameters is achieved even for time spans up to 24 hours, see e.g. Mervart
(1ee5).

Unfortunately, the estimation of the integer values for the ambiguities has proven to be a
particularly hard and time-consuming problem, and several methods to tackle the problem
have been proposed.

Traditionally, these methods have been developed for two different applications. On the
one hand methods have'been devised for applications where a multiple of stations are occupied
for several hours until several days, and maximum inter-station distance can be of the order
of thousands of kilometers, (Dong and Bock 1989), (Blewitt 1989), (Mervart 1995). On the
other hand methods have been developed for rapid-static and navigation applications, where
usually only two stations are involved, the maximum distance is some tens of kilometers,
and time of occupation is of the order of seconds to minutes, or the receiver is moving:
the Ambiguity Function Method (AFM) (Counselman and Gourevitch 1981), the Least-
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I H I H

1 cm

Figure 5.1: Scatter of float (left) and fixed solution (right) for a12.7 km baseline (differential
atmospheric delays assumed to be zero). The sampling rate was 1 second, and one epoch
of dual frequency code and phase data of 7 satellites was used every 30 seconds during 50
minutes for instantaneous positioning. First sample at 14:10:00 (GPS time) on December 22,
1996.

Squares Ambiguity Search Technique (LSAST) (Hatch 1990), the Fast Ambiguity Resolution
Approach (FARA) (Frei 1991), optimized search using Cholesky (Euler and Landau 1992)
and the Least-squares AMBiguity Decorrelation Adjustment LAMBDA (Teunissen 1993).

At first sight it seems that ambiguity estimation for regional networks is treated as an
entirely different problem, although conceptually there is no real difference with the short
baseline case, as far as the estimation of the integer ambiguities is concerned. Of course, for
longer inter-station distances more adequate mathematical models for e.g. tropospheric and
ionospheric delays, as well for the orbital parameters have to be employed.

For regional networks applies that, due to their hybrid character with inter-station dis-
tances from some to several thousands of kilometers, and with some receiver-satellite combi-
nations less well observed than others, the probability to find a valid integer solution for the
complete vector of ambiguities is decreased. Consequently one sometimes has to resort to a
proper subset for which such a solution exists.

Another difference between the regional network and the short baseline algorithms, is that
in the former no validation step is involved, other than repeatability of the fixed coordinates
between the days. The baseline algorithms that are used in rapid static and navigation
applications have some sort of validation step which is based on the data itself, and thus can
be computed and evaluated as soon as the data are collected and processed. It usually needs
next to the best solution, the second best solution.

There are, however, similarities between some of the algorithms applied to the regional
networks, and some of those applied to the short baselines. The methods described in Dong
and Bock (1989), Blewitt (1989) as well as the 'sigma' and QIF (Quasi-Ionosphere Free)
methods (Rothacher and Mervart 1996) all use a sequential conditioning (fixing) of ambi-
guities. The conditioning makes subsequent ambiguities become more precise, and usually
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pushes the values of the ambiguities conditioned at the previous ambiguities towards integer
values. The schemes differ in the criteria that are used for selecting the next ambiguity to be
fixed, and in the way parameters are modeled and constrained in the preceding float solution.

This principle of conditioning of ambiguities is also found in the sequential conditional
least-squares adjustment which is part of the LAMBDA method, which will be the main
focus of this chapter. The latter differs from the methods above in the sense that if the
resolution or adjustment is finished with a complete or partial vector of integer ambiguities,
it is guaranteed that this vector minimizes the integer least-squares criterion, i.e. it guarantees
that the fixed solution is an integer least-squares solution.

In Teunissen (1993) it was shown that the DD ambiguities are strongly correlated, espe-
cially when the observation time span is short, due to the small change in the receiver-satellite
geometry. Since this correlation makes the estimation of the integer ambiguities via a sequen-
tial conditioning of the ambiguities far from efficient, a method to construct a decorrelating
transformation for the ambiguities was proposed in (ibid). Alternative decorrelating methods
can be found in Han and Rizos (1995), and in Li and Gao (1997), where it is also shown
that decorrelating the ambiguities often has a favorable influence on the efficiency of other
resolution methods too.

The ambiguities of the one day solutions for the large regional networks are less correlated,
but still can be improved upon. This most likely will produce more ambiguities that will pass
the criteria that allow them to be fixed, thereby further improving the eventual fixed solution.
Possibly it could also reduce the time span for which a fixed solution can be computed. For
monitoring coseismic and postseismic deformation with magnitudes up to several decimeters,
and several mmf day, respectively, shortening these time spans would be very useful. The
integer estimation in regional networks will be the topic of Chapter 6.

In this chapter, the LAMBDA method will be treated. The method can be divided into
two parts. The first part consists of a general decorrelation of the ambiguities materialized
in a so-called Z-matrix. The second part consists of the sequential conditional least-squares
adjustment materialized by a depth-first search in the hyper-ellipsoid formed by the variance-
covariance matrix of the ambiguities. Depending on the application at hand, if may be more
efficient to compute the Z-matrix implicitly. The construction of the Z-matrix (explicitly
and implicitly) and the search are derived, and described in detail.

Timing results for the integer estimation are given for a short baseline and for a small
network with three of the four stations allowed to be moving.

5.2 The least-squares ambiguity decorrelation adjustment

The LAMBDA method has been developed for efficiently estimating the integer values of
the GPS double difference ambiguities or DD-like functions of ambiguities. The method was
introduced in Teunissen (1993), and fast positioning results using it were given in Teunissen
(1994), de Jonge and Tiberius (199a) and Tiberius and de Jonge (1995).

The two main features of the method are

1. the decorrelation of the ambiguities, realized by a transformation of the original ambi-
guities, and

2. the actual integer ambiguity estimation
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By the transformation, the existing large correlation between the ambiguities is reduced

to a great extent. The construction of this decorrelating transformation, is the most time-

consuming part of the method (albeit still very modest compared with other methods for

ambiguity resolution, see Han (1995)).
The actual integer estimation is made for the transformed ambiguities. In practice this

amounts to a search over grid points inside the n-dimensional ambiguity hyper-ellipsoid (with

n the number of ambiguities), defined by the variance-covariance matrix of the ambiguities.

The shape and orientation of the ellipsoid are governed by the variance-covariance matrix

of the ambiguities; the decorrelation realizes an ellipsoid that is very much more sphere-like

than the original one, and therefore can be searched more efficiently.
The volume of the ellipsoid, which can be computed prior to the search, gives an indication

of the number of candidates contained in the ellipsoid. Therefore, a limited number of

candidates may be output of which one is the integer least-squares estimate for the vector of

ambiguities.
The efficiency of the method through the decorrelation step has been explained in detail

by analysis of the precision and correlation of the GPS double difference ambiguities in

Teunissen and Tiberius (1994), Teunissen et al. (1994) and Teunissen (1995c).

5.3 The three-step estimation procedure

In Section 3.2 we divided the parameters into two groups, viz. global parameters 11 and local

parameters 12. 'Ihe system of linearized observation equations reads

E{y}: lA1 
"lb:l

(5 .1 )

For the purpose of the integer estimation of the ambiguity parameters the global parame-

ters are again subdivided into two groups, viz. n6 parameters b that remain real valued, and

n double difference ambiguity parameters a that may take integer values.
Parameters belonging to the first group are the parameters that are functions of the station

and/or satellite coordinates (e.g. station coordinates, tropospheric zenith delays, ionospheric

model parameters, and orbit parameters).
The system of linearized observation equations reads then

E{y}: lAu Ao lr) (5.2)

The design matrix [,46 Ao 42] is assumed to have full rank, i.e. the rank defect has been

resolved (see Section +.2), andthe redundancy is greater than or equal to zero. The vector of

observations may include all of the available GPS observable types, with at least one carrier
phase type present. All of the models of Section 4.1 may be applied, as long as in the set

of estimable functions, integer (or at least rational) DD-like functions of ambiguities occur'

In the following the DD-like functions of ambiguities will be denoted as 'DD ambiguities' or

simply 'ambiguities'.
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The least-squares principle is used to compute estimates for the real valued parameters
and the inteqer valued ambieuities:

#t_i lty - Aab - Aoa - A2r2ll'r-' with b € R'0, 12 € ftn'z and a e Z" (5 3)

The parameter estimation is carried out in three steps, see Teunissen (1995b). These
steps are: 1. the computation of the float solution, 2. the integer ambiguity estimation and
3. the computation of the fixed solution.

1. Float solut'ion
First the minimization (5.3) is carried out with 6 e R"o, rz €Rn,z,a € R'. Real valued
estimates for the ambiguities will be obtained. This full rank least-squares problem is solved
via a Cholesky factorization of the normal matrix reduced for the local parameters ,2 (see
Sect ion 3.8).

If the system of normal equations is small and hence there is no need for ordering the
unknowns for reasons of sparsity, the parameters are ordered as: 1. real valued parameters,
2. ambiguity parameters.

The system of normal equations for (5.2) reads then

lArb
LALu

(5.4)

The estimates and the variance-covariance matrix for the global parameters are:

(5 .5 )

2. Integer ambiguity estimation
The second steo consists of

m,in lld - "llle;, 
with a € Z" (5.6)

This minimization yields the integer least-squares estimate for the vector of ambiguities: d.
The computation of the integer estimate will be treated in detail in Section 5.5.

Due to the strong correlation that exists between the ambiguities, a decorrelating trans-
formation is applied to them:

z :  Z T a (5.7)

This is done by a systematic pair-wise decorrelation of the ambiguities. The construc-
tion of this transformation is treated in detail in Section 5.4. Through this so-called Z-
transformation the variance-covariance matrix is transformed accordingly:

Qz: zrQaz (5.8)

The actual integer minimization is made upon the transformed ambiguities. In practice
the minimization (5.6) (but now for the transformed ambiguities z), amounts to a search

rir,l fbl lnol
^Ll L,J 

: 
ln"l

16l I ai, Ql,al
Lal 

' 
LQat Qul
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over grid points inside the n-dimensional ambiguity hyper-ellipsoid, defined by the variance-
covariance matrix of the ambiguities

( z - ' ) ' Q ; ' Q - " ) < x ' (5.e)

The search results in the grid point that is nearest to the real valued estimate, with nearness
measured in the metric of the variance-covariance matrix, see Teunissen (1993). y2 is a
positive constant which should be chosen such that at least one (or two if one also needs
the second best solution) grid point is contained in the ellipsoid. On the other hand not too
many more grid points should be contained in the ellipsoid, since that would slow down the
search. Methods to determine a suitable 12 will be given in Section 5.6.

Depending of the computation scheme that is used, the integer estimate Z has to be back-
transformed to a. It is however also possible to continue with Z. In Section 5.9 we will show
in which circumstances what computation scheme should be chosen.

3. Fi,red solut'ion
The final solution b:61a, with the ambiguities fixed to their integer least-squares estimates
d, reads

b : b - Q n Q ; ' @ - a )
iz: iz - Qe,,aQi'(a - it) (5 .10)

The least-squares estimates b, d, and i2 are the solution to the constrained minimization
(5.3). Note that in practice b is not computed using (5.10), see Section 5.9, and i2 is often
not computed at all.

5.4 Integer ambiguity estimation: transformation

5.4.1 The decorrelating or Z-transformation, introduction

To explain the concept of the decorrelating transformation we decompose the variance-
covariance matrix Q6 into

Qa :  L-r  D-r L- l ( 5 . 1 1 )

Note that this corresponds to the inverse of the LDLT decomposition of Q|l which is easily
derived from the already computed Cholesky factor, see Eq. (5.17). The principle of the
decorrelation is to find a matrix Z, which is an integer approximation of matrix .L. If we
would be able to find a matrix Z that fulfills the requirements in Teunissen (1995a) i.e. all
entries of Z as well of its inverse are integer valued (+ lZl and lZ-rl: tl), and that exactly
equals tr, then with (5.8)

Qz: zrQaz -  zrL-rD-rL-rz :  D-r (5 .12)

The transformed ambiguities 2 are fully decorrelated and the integer minimization reduces to
a simple rounding of the real valued estimates, see Teunissen (1995b). In practice, a matrix
with integer entries that transforms the variance-covariance matrix to a diagonal matrix is
seldom found, and hence the transformed ambiguities are still (weakly) correlated.



5.4 Integer ambiguity estimation: transformation L47

The result of the decorrelation process is the square n x n transformation matrix Z. -the

estimate 2 follows from 2 : ZTd. The factors of the variance-covariance matrix are updated
in the decorrelation process: D-l and i-t. They satisfy

gu :  i - r  P - r i - t

The problem (5.6) has now been transformed into the following minimization

m,in ll2 - ,llle;, with z € Z"

Inversion of L-l yields i and inversion of D-1 yields D. They satisfy

Q;, : LDLT (5 .15)

This decomposition into Z and D is then used in the search, see section 5.5.

5.4.2 Decomposition of the variance-covariance matrix

The ambiguity decorrelating transformation can be computed in several ways depending on
the matrix one starts with, and on the type of factorization one uses. One can either use
the variance-covariance matrix of the ambiguities, or its inverse, and the factorization can be
either an LDLT, or an Lr DL factorization. Schematic we have

Q; t :  hDtLT ;  Qa:  L l rDr lL r r  c f .  (Teun issen 1993)
Q;' : LT D2L2 ; Qa : t'|r o11t';r
Qa : LT DtLt ; Q;t : Li'D;t Lir
Qa: L+D+LT ;  Q;t  :  Ln'D; 'Ln'  cf .  (Teunissen 1995b)

(5 .16)

where:

,Li is a unit lower triangular matrix (i.e. with ones on the diagonal) and

D6 is a diagonal matrix with elements d1,... ,dn

Note that Lt : Lir, Lz : Lsr and that Dt : Dir , Dz : Dir . In Teunissen (1993) the
LDLT factorization of the inverse of the variance-covariance matrix is used, and in Teunissen
(1995b) the LDLT factorization of the variance-covariance matrix itself.

Here we depart from the LDLT factorization of the inverse of the variance-covariance ma-
trix. The reason for it is, that depending on the chosen computation scheme, the Cholesky
factor C" of the inverse of the variance-covariance matrix of the ambiguities is already avail-
able in the float solution. With the Cholesky factor C of the normal matrix referring to the
global parameters partitioned as

C _ (5 .17)

with C" a lower triangular matrix of dimension rr, we have Qu 
1 : C"CT . The Cholesky

factor Co becomes thus available at no extra cost in the float solution.

(5 .13)

(5 .14)

l3: i.l



148 Integer ambiguity estimation

The LDLT decomposition of Q;1 is easily constructed from the Cholesky factor. It holds

that

Co: Lt/D (5 .18)

Note that matrix 8;t ir symmetric positive definite: for the diagonal elements of D it holds

t h a t d ; > 0 V i : 1 , . . . , n .
The corresponding factorization of the variance-covariance matrix reads

Q6: t r  rP- t t r - t (5 . ie)

An interpretation can be given to the elements of matrix D-1, see Teunissen (1993): they
are the conditional variances of the double difference ambiguities.

dn '  :  oZ4o* r , . . . , ^ (5.20)

Conditioned means here that one or more ambiguities are constrained (conditioned) at an
in principle arbitrary value. In the context of integer ambiguity estimation this value will

be the integer found for a particular ambiguity. The conditional estimate for ambiguity i,
conditioned at ambiguities i * 1,... ,n, is denoted by

dt |+ r , . . . ,n (5 .21)

Instead of inverting the LDLT decomposition, one can compute Qa: L-TD-l L-l di-
rectly. This should be done when the factor ,L is not already available. An algorithm for
this factorization in an outer product formulation which is used to explain some features of
the construction of the transformation matrix Z in Section 5.4.3, reads in stylized Merl,ee
notation:

Given the symmetric.positive definite matrix Q, an LTDL factorization is computed by
the outer product method. Matrix L may over write matrix Q; the latter is destroyed during
the computation. Only the lower triangular part of Q is accessed.

f o r i : n : - l : 1
D( i , i )  :  Q( i , i )
L ( i . , 1 :  i ) :  Q ( i , I :  i , ) l
f o r j : 7 : i ' - l

Q ( j , I ,  j )  :  Q ( j , I  :  j )  -  L ( i , 7
end
L( i , , r  :  i )  :  L ( i , r  :  i )  lL ( i , , i , )

:  j )L( i , , j )

end

QU.,i.)
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5.4.3 Modifying the decomposition

Note: the construction of the transformation matrir Z i,s based on the uariance-couariance
matri'r Q6. To simplify notat'ion we wiII assurne for the rema'inder of this sect'ion that we
haue the LTDL factorizati,on of Q6 (the third option of (5.16) 'instead of the first), thus
dt :  oZnv*r, . . . ,^.

The construction of the n x n Z matfix in (5.8) consists of a sequence of integer approx-
imated Gauss transformations (see Section 5.4.4) and permutations. Both are admissible
ambiguity transformations, see e.g. Teunissen (1995a). The actual decorrelation is carried
out by the integer Gauss transformation. If necessary the ambiguities are reordered to allow
for further decorrelation.

Before we continue, we will discuss the triangular decomposition after transformation,
analogously to the decomposition discussed in Teunissen (1995b) (Eqs. 47-49 at page 79).

The unit lower triangular matrix.L and the diagonal matrix D are partitioned into

lD" 1and D: 
l- 

Dzz 
,*j

(5.22)

Sub-matrix L22 is of order 2, -L11 of order i - 1, and Ls of order n - i - L. The dimension of
the other sub-matrices in "L and D are determined accordingly. If we apply a two-dimensional
ambiguity transformation to the z-th and the (, + 1)-th ambiguity, with the block-diagonal
matrix
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':l'*' zzz 
r,-,-,]

with 222 a square and full rank 2 x 2 matrix, we get the new triangular decomposition
L'T D'L" WiTh

and D,: 
l''' 

D,, 
,,,]

The fact that only Lzr, Lzz, Ls2 and D22 change, can be explained by looking at the outer
product form of the Lr DL factorization as given in Section 5.4.2. We have (the variance-
covariance matrix is symmetric):

':li:i i::,,,]

' :liti i::,,. ]

I  Q,,z'euz : 
ltr6?,^

(5.23)

(5.24)

I fQ"
ZTrQrZr, | : lOrt

QzzZzz QmJ LQet

(5.25)

Let us look at the updating step of the algorithm i.e. the part where an outer product is
subtracted from the matrix. The parts of the outer product that are affected by Z always
coincide with the parts of Q affected by Z. So the 'reduced' 

Q has the same structure as
in (5.25). Since .L is basically obtained from extracting rows from the reduced Q divided by
the square root of the corresponding diagonal element, and D is set equal to the diagonal
element, the modified decomposition will be as indicated in (5.24).

_ t
Q r l
Qsz QeeJ
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The modified factor can be related to the original one. We know that

trtT pt trt : zT LT DLZ

From this relation we easily derive for Ls2

oft

For L22 holds that

LLD22L22 + LLD$h, : ZTTQLDzz Lzz + LLDnhz) 222

or,  using (5.28)

And for Za holds that

LL DzzLzz : ZLQLDzz Lzz) Z *

LLDrrLr, + L[rnrrr'r: ZT2QLDzzLu r LLhsh)

from which can be derived after substituting (5.28)

LLD22L21: ZTTLLDT"L^

LT,sD,oLr2: L{,D*LpZ2

Ls2 : Ls2Z22

(5.26)

(5.27)

(5.28)

(5.2e)

(5.30)

(5 .31)

(5 .32)

Using the relation ZilLLDz2 : LTrDrrLrr(LrrZrr)-t which follows from Eq. (5.30) we finally
get

Lrt  :  Lrr(LrrZrr)- 'Lx (5.33)

Thus, once matrix Q is factored as Q : L'|DL, the factorization of Z'QZ with Z
defined in (5.23), can be efficiently computed from the existing factorization. In the unit
lower triangular matrix.L only the rows i and i * 1 and the columns i, and i. * 1 change. The
modification of the diagonal matrix D is limited to the elements (i, i) and (i + 1, z + 1). The
transformation of the variance-covariance matrix can be realized by updating the factors tr
and D.

5.4.4 The integer Gauss transformation

The relations found in Section 5.4.3 (Eqs. (5.28), (5.30), and (5.33)) can be further simplified
if we restrict the transformation (sub-)matrix to a single Gauss-transformation (see Golub
and Van Loan (1989) Section 3.2.1):

(5.34)

Then

t*:l: ?]

l',nr,, 
* ol,i+z.t+t l,r*r,n*r]

f 

l;+a,, + o,lr+s,r+r ,,.rir*t 

I
I I",i + aln1+t l,,i+r J

L , , : (5.35)
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i _u22 - lan
L0

f r
lliayi * a ?] *o Dzz:

L z r :  L n

o l
dr+r)

(5.36)

(5.37)

We see that only the unit lower triangular matrix .L changes. The diagonal matrix D is left
unchanged by a single Gauss transformation. In other words; the conditional variances do
not change, only the conditional covariances and thus the unconditional variances change.
This can intuitively be understood since the order of ambiguities was not changed.

To achieve full decorrelation we would like to choose a : -l+t,t. In general l*t,t / Z.
To meet the requirements for the construction of the Z-matrix, o is approximated by
-nint(lia1,;), where n'int stands for the nearest integer operator. With this integer approxi-
mation, we can make the absolute value of any non-diagonal element of tr less than or equal
to ]. The integer Gauss transformation was discussed in Teunissen (1994) and Teunissen
( 1995a).

In general, if we take for Z the unit matrix with an additional o at position (2, j), with
i > j, the elements that change are

I ' 6 , i : l i , i * u

l ' k , j  :  l p , i  I  a l p l  f o r  k  : ' i  +  7 , . . . , n (5 .38)

The detailed algorithm for the computation of a Z-transformation matrix, that will make
the absolute value of all non-diagonal elements of .L less than or equal to j, can be found
in de Jonge and Tiberius (1996). Given the unit lower triangular factor ,L from the Lr DL
factorization of the variance-covariance matrix Q6, it computes a Z-transformation matrix.
Z will be lower triangular on output if set to the unit matrix on input. The computation of
this matrix is performed column wise from n to l. Instead of decorrelating all n columns,
one can apply the algorithm to only one column. The vector with estimates d is transformed
to 2: Zra. The original factor.L is transformed to L' : LZ for which holds: L'T DL' : Qa.
Factor .L remains lower triangular.

5.4.5 Reordering of the ambiguities

As was explained in Teunissen et al. (1994) and Teunissen (1995b), the signature of the
conditional variances shows, in the case of a single baseline, a distinctive discontinuity when
passing from the third to the fourth ambiguity encountered in the search or conditioning
process (see Figure 5.2). In general for a network of r receivers with the coordinates of one
receiver fixed, this discontinuity is found when passing from the (3r - 3)-th to the (3r - 2)-
th ambiguity (see Figure 5.3). The size of this discontinuity is governed by the length of
the observation time span. In Section 5.5.3 it will be shown that it is this discontinuity
in the signature that causes the search to be highly inefficient. Carrying out the integer
estimation (5.6) will be a very time-consuming task (Teunissen et al. 1994), (Teunissen
1995c).

As we saw in Section 5.4.4, the integer Gauss transformation decorrelates the ambiguities,
but it leaves the conditional variances, and thus the discontinuity, intact. Looking at the
definition of conditional variance, it seems logical to change the order of the ambiguities if
we want to change the signature. In Teunissen et al. (1994), Teunissen et al. (1995) and
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Figure 5.2: Conditional variances of the L1 and L2 ambiguities for a single baseline, with 7

satellites observed and a time span of 1 second.
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Figure 5.3: Conditional variances of the L1 and L2 ambiguities for a 4-station network, with

7 satellites observed and a time span of 1 second.

1 0 "

3  ' u

;  1 o o
I

E  r o'tr
d .
> l

E  0 1
. l i  n nr
€  v , v l

O  r n - J

1 0- '
2  4  6  8  1 0  1 2

Ambiguity

Figure 5.4: Conditional variances of the Ll and L2 ambiguities for a single baseline before
(dotted line, cf. Figure 5.2) and after transformation (solid line).
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Teunissen (1996) this problem, and the solution for it, is explained geometrically in terms of
the form and orientation of the ambiguity search space.

To change the order of the i-th and the (z + 1)-th ambiguity we again apply a local
transformation but now using the2-by-2 permutation matrix P for 222. With (5.28), (5.30)
and (5.33) we have

Ln :  LszP

LLD22L,2: Pr LLDzzLzzP
Lrt :  Lrr(LrrP)-t L^

where

(5.42)

Working out these relations we get

f _u32 - (5.43)

(5.3e)
(5.40)

(5 .41)

P:P t :  
[ ?  ; ]

Itn*r,o*, l+2,i1

l';:l' ":,'^,')
,  | . r  o ' l  I  t  o l
"": L''n*r,, rl : La;t#i; tl

D-:lt 40.,] : 
[a'.' 

- 
#:* o,*,1,,,0*,)

2, ,  : l  - ,7 ; : ; : . ' ;0 , , , , * , ,1n , * ,  f  , ^
Lalj*,!u, - ' aliil];l

Simplifying Eqs. (5.44-5.46) gives

d +r : di * ll*r,ndi,,1

u d t
a  i :  1 ; - d i l tu  i + l

1r - di+t ,Li+t,i - 
rl;oi+r,t

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.4e)

and

, | -tn*',n
ur r :  

I  h
The factors tr and D arc updated, as shown in
transformed (permuted) ambiguities.

(5.50)

(5.25), as to correspond to the

,r],,,)",
(5.24) and
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5.4.6 Putting it all together

For the actual integer minimization we strive for largely decorrelated ambiguities, and fur-

thermore we want to have the most precise ambiguity at position n where the search starts
(see Section 5.5.3). In other words, we strive for

dn 1 . . .  1 dt with 4 from D of Qu: Lr DL

and therefore we interchange two conditional variances if

(5 .51)

(5.52)

(5.55)

d,';*1 l diy1

Alternatingly we will have a decorrelation and a reordering step. We start with the last

ambiguity and we try to reach the first one. At each step i we check whether the interchange of

di and d111 will decrease the value for the latter. After each interchange we start again at the

Iast ambiguity. The algorithm ends if during one sweep from n to 1 no further interchanges

can be performed.
The algorithm requires element lia1,.; to be as small as possible. Therefore we take care

that the absolute values of the off-diagonal elements of columns i . . . n are less than or equal

to |, by applying the column wise decorrelating Z-transformation of Section 5.4.4. Figure 5.4

shows the signature of conditional variances before and after decorrelation for a single base-

line case. The decorrelating transformation has effectively removed the discontinuity in the

signature, thereby enabling a much more efficient search.

In Teunissen (1994) the ambiguity decorrelation number was introduced as a meastrre for

the decorrelation between the ambiguities. With the correlation matrix of Q6 defined as

R6 : {dias(Q u)}-  i  Q u{dt as(Q 6)}-  i (5.53)

where di,ag(Q) is a diagonal matrix with elements equal to those of the diagonal of Q6, it

reads

,u: 1f@ul (5.54)

By definition 0 ( 16 I l. When the ambiguities are uncorrelated ra equals 1; the more

correlation exists between the ambiguities, the smaller the ambiguity decorrelation number

becomes. Alternatively, the ambiguity decorrelation number is computed as

If the ambiguities are uncorrelated, o6,.*r,...,, : o6n, arrd hence 16 : l. The ambiguity

decorrelation number can be used to compare the measure of correlation of two variance-

covariance matrices of the same dimension, i.e. it may be used to compare the correlation
between the ambiguities before and after the decorrelating transformation.

As an illustration of the Z-transformation we will apply it to an artificial three-dimensional
example. The synthetic variance covariance matrix results from the addition of a scaled unit

matrix and a rank-2 matrix with elements that are significantly larger than the scale factor

of the first matrix, see also Teunissen et al. (1994).

,u:fi"X-

5.978
6.292
2.340

0.544.l
2.3401
6.2881

fo.zoo
| 5.e78
10.544

Q a : (5.56)
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The ambiguities have large variances and in particular 01 and a2 ara strongly correlated.
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O6.r

" a 2

Oa3

:  2.508
: 2.508
: 2.508

ozt :0.797
oz, :2 '176
ozs : l'071

Para" : 0.950
Parag : 0.086
Pa.ra" :0.372

Pz'2" :0.137

Phz, :0.097

Pzza" :0 '747

(5.57)

(5.60)

The matrix Zr reads

(5 .58)

Note that the matrix ZT given here is not unique. Reflections (change of sign) and
permutations (reordering) of the ambiguities do not change the amount of correlation between
the ambiguities.

Matrix ZT indeed has integer elements and lZTl: 1. The variance covariance matrix of
the transformed ambiguities z reads

(5.5e)

and it can be seen that the ambiguities are largely decorrelated.

n:lt: i +]

fo.ozo 0.230 o.o82l
qr :  10.230 4.476 0.3341

fo.osz 0.334 r.146.]

5.4.7 Back transformation

Once the transformed integer minimization problem (5.14) has been solved, we have to back
transform the integer estimate Z, in order to obtain the integer least-squares estimate a. The
relation reads

ZTtt,: z (5 .61)

The inverse of the matrix ZT does not need to be computed explicitly. Matrix ZT has only
integer elements, has full rank, with lZ'l : *1, and is square and usually dense, as the
transformation is truly a multi-satellite transformation (Teunissen 1995a). Therefore an LU
factorization can be made by Gaussian elimination with partial pivoting, see Chapter 3 of
Golub and Van Loan (1989) and Chapter 1 of Dongarra et al. (1979) (the LINPACK routines
DGEFA and DGESL). Then the integer least-squares estimate a is obtained via forward and
backward substitution. Note that the intermediate result, after the forward substitution, is
in general not an integer vector. The forward and backward substitution can be repeated for
any other candidate, e.g. the second best o'.

One can also compute instead of Z, the matrix Z-T directlv, it involves only a minor
change in the algorithm, and takes the same number of operations to compute.
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With other alternatives, the transformation is constructed in an implicit manner. The
fixed solution (5.10) can be computed using the transformed integer ambiguities Z directly,
cf. Eq. (3) in Teunissen (1995b). Instead of starting with Z:1on the input and computing
matrix Z, one can insert matrix Q66 and transform it into Q62. Matrix 8;t ir obtained from
the updated factors -L and D (see Section 5.9).

5.5 Integer ambiguity estimation: search

5.5.1 Introduct ion

In this section the actual integer ambiguity estimation will be discussed. The integer esti-
mation is also referred to as search. Based on the results of the float solution a search will
be performed in order to come up with the most likely integer candidater for the vector of
ambiguities.

Decorrelating the ambiguities, as discussed in the previous section, is not a prerequisite
for the integer ambiguity estimation. The search can be performed on the original ambiguities
a as well, instead of on the transformed ambiguities z. The decorrelation, however, is highly
beneficial to the efficiency of the search. In the sequel the ambiguities are denoted by a,
whether or not thi:y represent transformed ambiguities.

The implementation of the search is based on the correspondence of the LDLT decompo-
sition of matrix Qjl (the first option of (5.16)) and the sequential conditional least-squares
estimation, see section 5 of Teunissen (1993). The input of this step consists of matrices .L
and D and the real valued estimate d. The output is the integer least-squares estimate a.

5.5.2 Sequential conditional least-squares estimation

As discussed in Teunissen (1993), no standard techniques are available for solving (5.6). A
discrete search is employed instead. An ellipsoidal region in R" is taken, on the basis of
which a search is performed for the minimizer of (5.6):

@ - d'Q;'G'- o) a x' (5.62)

For a discussion on the value for y2, the constant that controls the size of the ellipsoidal
region, see Section 5.6, and also Teunissen et al. (1996).

With the LDIr decomposition of matrix Qit, expa.tding (5.62) gives

n
S - '
) a t
; - 1 lr, 

- ur*,L I1t(ai - u,)) = r' (5.63)

Equation (5.63) is just an algebraic development of (5.62). In Section 5.5.3 we will
continue this development, as the algorithm for the integer estimation is based on (5.63).

As mentioned above, the search can also be given a statistical interpretation: the sequen-
tial conditional adjustment. The term between the square brackets is the difference of o; and
dnt;+r,'.,n and together with (5.20), (5.63) can be rewritten in

(5.64)

lWhat is a candidate? It is a grid point that is inside or on the ambiguity search ellipsoid; it satisfies
Eq. (5.62).

3 (oo - oorn+r.....n)'
)  '  1 Y 2

af:
i = l  

"  o i l i + I , . . . , "
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see also Eq. (25) of Teunissen (1993). The conditional estimate 0,;1;a1,...,, is the estimate for
a; condit ioned at a7 with j  : ' i *  1, . . . ,n.  The condit ional est imate for ambiguity z ' thus
reads

L57

n
\-\

a i , * t . . . . ,n  -  t t i  -  
|  I r i@i  -  a1)

j= i+ r

n

T

(c .oc)

Equation (5.65) clearly shows that conditioning on ai for j :,i11,... ,n affects the estimate
for a; due to the correlation between the ambiguities. Only in case there is no correlation,
L: I ,  we have

A ; t ; t t  h  :  A ; (5.66)

In the integer ambiguity estimation using the sequential conditional least-squares ad-
justment, the ambiguities a7 are conditioned at integers. The variance of the conditional
est imator equals o| ,an*r, . . . ,^:  dt ' ,  see (5.20).

5.5.3 Computat ion of the bounds

By means of a sequential conditional adjustment, the full ellipsoid will be searched for can-
didates for the vector of ambiguities. From (5.63) we can construct the following bounds for
ambiguity 4a..1; the ambiguities a, through (riLr2 &te already conditioned, the ambiguities a;
through o1 &r€ not conditioned yet.

(5.67)

rightu*,

Once ambiguity z* t has been fixed to integer a,;1r1, we, compute the bounds for ambiguity

l1{ai

[ , , , * ' -  
4+ , ) *

- ̂)l

_ u,)] =lr,- ur*,L

i  -;,*,0,1r,, - a,r+ tltt, - u)f

rightn

(5.68)
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Equations (5.67) and (5.68) hold for z
computed recursively, we split off the term
side of (5.68),

l n f '
l ,  \ - ,

l @ t - i l +  )  I i ; @ 1 - a i ) l  S
L i:t+t I

+
Ieftn

j= i+7

Equation (5.73) can be further developed into

du*, , x' 1
4 'e- t  -  

e- t

ffronoq*, 
- teft,*,)

l l ( rn-  d+f  l1 t (a i -a i ) l l  <  ' / ; t r i ,
j : i+1

-\/;tshh < (on -a,) + t tir(ai - a) < \/;ishq

e [1, n - 1]. To show that the bounds can be
I : i, * 1 from the summation on the right-hand

(5.72)

(5.73)

, * ,0 ' [ ' ' '  
-u"

rightn*,

- 

[,,,*'

[,,, 
- u,, * 

,t_*,t1r(ai 
-u,l] .

^))

Recognizing on the right-hand side the terms rightn*' , see (5.67) and lefto*t, the equation can
be simplified to

(5.70)

This shows that, in the sequential conditional adjustment, the bounds for the ambiguities
n - 1 through 1 can be computed recursively. The recursion starts with the conditioning of
o,,  (subst i tut ion of i :  n in (5.63)):

,
( o n _  d n ) ' <  +  ( 5 . 7 1 )

teft, \'/
" ri,ght^

The interval with valid integers for ambigrity ai follows now from elaboration on (5.70)

ri'ghtn

- J iN , -  
I  t i r ( a i -d )Son-d t l J r t sh t  -  

t  t 1 i (a1 -d )  (5 .74 )

1 )

-  a i* , )  .  i  l i , i+t(aj-  ar l l  )  (b.oe)
j=i+z I

Ieft,*,

j : i+ l j=i+r
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and

ao- Jri ,shtn- t tp(ai - 6,) < on 10,t* \FW- t t1r(a1- di) (5.75)

This defines the interval for ambiguity z. It will be searched in a straightforward manner
from left to right, i.e. from the lower to the upper bound. Once a valid integer is found, the
adjustment proceeds with the next ambiguity a6-1(the so-called depth-first search). If for a
certain ambiguity o1 no valid integers can be found, one returns to the previous ambiguity
o1r.1 and takes the next valid integer for this ambiguity. Once an integer is encountered
that satisfies interval (5.75) for ambiguity a1, a full candidate vector is found. The search
terminates when all valid integers encountered, have been treated and one is back at the last
ambiguity an. 'Ihe 

full ellipsoid has been searched.
To summarize: the sequential adjustment starts with a conditioning on oz and ends with a

conditioning on 01. In this way the bounds for the ambiguities o, through 01 are constructed
in a recursive way. When the sequential adjustment is at ambiguity z, with the definition of
the conditional estimate (5.65), the interval (5.73) can be rewritten into

- { rightn I (oo - drtr+r,...,n) S \/;ighq (5.76)

which shows that the interval for o; is centered at the conditional estimate dtlt+r,...,n. At this
moment the integer nearest to the conditional estimate, nint(6r4r+t,...,,,), is the most likely
candidate for ambiguity z. From (5.64) it can be seen that the conditional variances play
a decisive role in the bounds for the ambiguities. The smaller the conditional variance, the
smaller the interval (5.75).

Since in the case of the original.ambiguities, the conditional variances of the first three
ambiguities encountered in the search, are usually of a large order, the bounds for these first
three ambiguities will be rather loose. This implies that quite a number of integer triples
satisfy these bounds. For all these triples one has to compute the bounds for the fourth
ambiguity. The bounds for the fourth ambiguity, however, are very tight due to the steep
decrease in value of the conditional variances, and hence we have a high likelihood that no
integer is contained by them. The potential of halting is therefore significant when one goes
from the third to the fourth ambiguity in the search. As a consequence a large number of
incomplete candidates are generated, for which bounds have to computed, before one is able
to move on to the next ambiguity.

In case the search is performed on the original ambiguities a, they should be ordered
according to their conditional precision (Teunissen 1993):

o3r,r , . . . ,^  ) , '  '  '  ,2 o?^ (o .  /  / /

The sequential adjustment should start with the most precise ambiguity.

5.5.4 Computation of the norm

In the previous section the full ellipsoid was searched and as a result we have available all
grid points that are inside the ellipsoid. One of them, the one which yields the minimum for
(5.6), is the integer least-squares estimate o.
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The squared norm t(a) : l la - all 'zo-, of a candidate can be computed by substitution of

a into (5.62). It can also be computed from the bounds for ambiguitf ay at the moment the

candidate is encountered in the search. The squared norm, the left-hand side of (5.63), can

be rewritten into (by respectively adding and subtracting 12 and splitting off the first term)

tlai - a1)f
n f n

s-  '  I  t+  \ -t \ a )  :  L d i  l \ a i  
-  a i ,  u

i=r L j=i+r

:x2 - o,{*- i, ,D_r,

-f,,'
L

[,,, 
- u,l *,*,Ii^'i - ai))

right

" 1 ,^ ,  \ - ,  z-  dr )  + y t1@i -  a i )  
|

j =2  I

(5.78)

left,

The squared norm t(a) is less or equal to X2, as the grid point is on or inside the ellipsoid.

If, at level ,i : 1, more than one candidate is available, the squared norm of successive

candidate vectors a' carr be computed very easily once the squared norm of one candidate a

has  been  compu ted  a l ready .  Th i s  i s  because  a l t :  a t  f o r i : 2 , . . . , nanda ' r : o r *V  (whe re

V can be chosen to be any integer). So now the squared norm becomes

t(a') : t(a) + d'{2vt(' '  - jt +lt i lai - ai)l + V'z}

T L -
(5.7e)

Ief,

5.6 Integer ambiguity estimationr setting the volume

In this section we will elaborate on how to control, prior to the search, the size of the

ambiguity search space. We will recognize the relation between the volume of the ellipsoid
and the number of candidates contained. By this relation, the straightforward search is an

effective instrument in solving the minimization problem (5.6).

5.6.1 The volume of the ellipsoidal region

The volume, expressed in [cycles"], of the ellipsoidal region (5.62) is given by

see Apostol.(1969). The volume function in (5.80) is

En: y" J lQ6lv, (5.80)

(5.81)
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Figure 5.5: The relation between some variables used in this chapter. An arrow pointing to
the right indicates.a positive number, an arrow pointing to the left a negative number, and
a two-sided arrow indicates that the number is intrinsicallv oositive.

where f is the gamma function, defined as

(5.82)

(5.83)

with

V :2 and V2 :  v (5.S4)

For the determinant of the variance covariance matrix we have the following relations

f 6
l@) : 

J, 
e-tf-ld,t for r > 0

The volume function can be computed recursively for n ) 3 by

u, : Tv,-,
n

(5.85)

where )6 is the i-th eigenvalue of matrix Q6. The volume En can thus easily be computed,
as the conditional variances are available from matrix D, see Eq. (5.20).

5.6.2 Sett ing 12, I

The volume .8" turns out to be a good indicator for the number of candidates (grid points)
contained in the ellipsoid. A volume of En cyclesn corresponds to approximately k : ni,nt(En)
candidates. The mismatch is caused by the discrete nature of the grid points. Centering the

lQal: ff l, : il3Z**' ,^



162 Integer ambiguity estimation

t 5 0150

o
e€

E

=  l o n

0.)
- c  

O U

z

q{.)

€  r00

L
C)

3 < ^
E " t

z

40 60

Volume

40 60

Volume

Figure 5.6: Number of candidates inside ellipsoid versus volume; left: single frequency phase
data, right: dual frequency phase data.

same ellipsoid at a different location, may result in a different number of candidates, k e Z,
while the volume E, g R, remains unchanged.

The value yz can be taken such that a certain number of candidates will be inside the
ellipsoidal region. A straightforward search can then be performed to obtain the requested
number of candidates. A list with the best k candidates, possibly ordered after their normsT
can be set up and updated during the sequential adjustment. In this way the size of the
ellipsoid is controlled prior to the search. To some extent one can already infer the quality

of the integer estimator in advance.
Figure 5.6 concerns 10 experiments each with two epochs (sampling rate 1 second) of

single frequency data (left) and dual frequency phase data (right) to seven satellites ona2.2
km baseline (with dual frequency this gives 12 ambiguities). The actual number of candidates
contained in the ambiguity search ellipsoid is given as function of the volume of the ellipsoid

[cyclesl2]. The volume ranges from 1 to 100. The volume turns out to be a good indicator
for the actual number of candidates in the ambiguity search ellipsoid. The inset shows the
quotient of the number of candidates and the volume, i.e. the relative error of the volume as
a predictor for the number of candidates.

5.6.3 Sett ing 12, l l

Another method to set the value for 12 such that at least two candidates are contained in
the ellipsoidal search space, was proposed in Teunissen et al. (1997), see also Teunissen et al.
(1996). Since the decorrelated ambiguities have such a high precision (typically some tenths
of a cycle), rounding to the nearest integer will produce a candidate with a norm close to the
minimum. So setting X2 equal to the squared norm of this candidate will guarantee at least
one and most likely not more than a few candidates. Other candidates with small norms can
be found through rounding all ambiguities but one to their nearest integer, and one ambiguity
to the next-nearest integer. If we have n ambiguities, this will give us n more candidates
with likely small norms. Setting 12 to the next-smallest squared norm, will guarantee now

20 40 60 80 100
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at least two candidates, and most likely not more than a few.
These n * 1 squared norms can be computed in an efficient way using again the LDLT

decomposition of Qu 
r. Re-arranging the first part of Eq. (5.78) gives

163

n  f  n  1 '
t (a) :  Io ,  l l t i i (a i  

-  a i ) l
i :7 Li=t I

:fon"?
; - 1

(5.86)

( b . 6  / )

(5.e0)

(Note that ef equals leftn.) Eq. (5.79) showed an efficient way for computing the squared norm
t(a') for a candidate which differs V in the last ambiguity o1 from a candidate with known
squared norm f(a). We will now generalize this for the case that an arbitrary ambiguity k
differs V:

a ,k :  a  +  c f tV (5.88)

with cs a vector with zeros on all positions with exception of position fr which has the value
one:

(5.8e)

The squared norm for the vector o,1 con be written as

k n

t (a1) :Dao@n*t1,1Y)2 + |  aoe|
i = l t=fr+l

k n

:Dank? -r 2e6l1,av + I7iv2) + | ane!
i= l  i=k*7

k

: t(a) +larQeolkiv + llnv')
i :7

Compare this result with that of Eq. (5.79). There we used (dish* ld) instead of e1 since
these are available during the search process. The form shown here is more efficient when we
have only the LDLT decomposition of Qu1, as is the case prior to the search.

We start by taking for a

a : (nint(d,1), ni,nt(d2),. . ., ni,nt(6,")) (5 .e1)

and once we have computed its squared norm f(a), we can compute very efficiently other n
likely small norms t(a;,) with (5.90) bV taking for V

n _ l  1  i f  n i n t Q t l , ) - d r < 0
" - 

| -r if nint$rp) - dr > 0

with k from 1 to n. During the computation of the n * 1 norms we keep track of the smallest
and next-smallest value. 12 is set to the next-smallest value for the norm. The ellipsoid will
contain at least two candidates.
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Figure 5.7: Volume of the ambiguity search space containing at least k 'near' candidates;

left: transformed ellipsoid, right: original ellipsoid.

To illustrate this strategy, the following experiment was done: we computed the squared

norm belonging to the vector one gets when rounding all ambiguities to their nearest integer'

We also computed the n squared norms one gets when rounding all ambiguities but one to

the nearest integer: the remaining one is rounded to the next-nearest integer. With X2 set

to these norms, the volume of the ambiguity search ellipsoid was computed.
This was done for the same 10 dual frequency experiments for which the relation between

volume and number of candidates was demonstrated (see Figure 5.6). Per experiment the

volumes were sorted after increasing order, and plotted in Figure 5.7, i.e. the smallest volume

is plotted at ls : 1, the second smallest at 2, etc. At left we plotted the results for the

transformed problem, at right those for the original problem. Looking at the experiments with

the transformed ambiguities, one can see that the next-smallest volume (which guarantees at

least two candidates) never exceeds the value of 10. This translates into a maximum number

of candidates of approximately 10 (see Figure 5.6).
For the original ambiguities the volumes are of the order 1010-1012, which shows that no

acceptable volumes are obtained if the ambiguities are not decorrelated. Searching ellipsoids

with such large volumes would mean that we have to cope with an enormous number of

candidates.
For the case of the transformed ambiguities, we actually set y2 to the next-smallest

squared norm. In Table 5.1' one can find the epoch numbers for the 10 experiments, the

resulting volume and the number of candidates inside the ellipsoid. This number is below 10

for all experiments.
The same was done for a 10.4 km baseline (measured simultaneously with the 2.2 km

baseline, observing the same 7 satellites; the baselines have one station in common). Al-

though here we find in some experiments up to 14 candidates, the procedure is still capable

to determine the two minimum candidates in an efficient way due to the almost lack of

correlation between the ambiguities.
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Epochs Volume Number of Volume Number of
candidates candidates

1
31
61
91

127
1 5 1
181
211
247

2
32
62
92

r22
152
r82
2t2
242

0.38
0 . 1 1
1.47
6.76
1.89
1.85
2.07
0.53
0.89
0.18

8.76
1.36

13.95
5.58
1.59
2.89
0.67
0.90
9.50
1.8327r - 272

2
2
2
A

2
4
2
2
2
2

I4
2

L4
9
3
2
2
3
7
3

Table 5.1: Volume and number of candidates inside the ambiguity search ellipsoid, by setting
y2 to the next-smallest squared norm.

5.6.4 Setting y2, ll l

Although the method described in the previous section performs quite well, an even more
tight value for a y2 such that at least /c candidates are contained in the ellipsoidal search
space can be obtained.

This is done by setting y2 to the norm of a candidate obtained by rounding the conditional
estimates to their nearest integer. Since the conditional estimates are more precise than their
unconditional counterparts, it is more likely that a candidate will be obtained with a norm
close to its minimum

To obtain other n small norms we proceed as in the previous section: all but one condi-
tional estimates are rounded to the nearest integer, and one is rounded to the next-nearest
integer.

The computational load is slightly higher than for the case where we round the esti-
mates, but still modest. Again best results are obtained when applying the procedure to the
decorrelated ambiguities.

The norm of a candidate can be computed as, see Eq. (b.ZS)

t(a): yz - drrightrteyt,

The definition for leftn reads, see Eq. (5.70)

(5.e2)

leftn:
1",-u,*rL 

trt@r-a)f

lo, - d4n*r,...,nf' (5.e3)
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In our case we take for o6 the nearest integer to A'6y;',1,...,, which gives

teftn:lnmt{aan*r,.

:1,*,(u,-
,,) - d;* i t1lo1- a)l

j=i+7 I

f  , r ,oto,-  
"  , )  -  dr*

The definition for righ\ reads

a i+ t
rightn: 

ff?iOhti+, 
- l"fto*r)

and can be computed recursively. The recursion starts with

i , ' ,u@,-ur,] (5.e4)

(5.e5)

rightn: (5.e6)

and proceeds until the first level is reached. The norm is then computed using Eq. (5.92).

For 12 an arbitrary value can be chosen.
The other n small norms where one of the conditional estimates is rounded to the next-

nearest integer, are computed analogously. We start with computing the norm t1(a) where

drp,...,n (the last ambiguity, conditioned at all other ambiguities) is rounded to the next-

nearest integer, and end with the norm f,(o) where d" (the first ambiguity, which is not yet

conditioned at any ambiguity) is rounded to the next-nearest integer. We proceed in this

order since then for t1@) we only have to compute lefto and ri,ghtofor i: i - 1 to 1, since leJto

and ri,ght; for i : n to j are not affected by the constraining of d,i1ia1,...,n to the new value.

5.7 Example ambiguity search

The search in the ambiguity ellipsoid will be illustrated using the original ambiguities a of

the three-dimensional example of Section 5.4. Next, in order to show what is gained by
the decorrelating transformation, also the search with the transformed ambiguities z will be

demonstrated. This section is concluded by comparing a search with original and transformed
ambiguities for a GPS baseline.

The (real valued) estimates for the ambiguities a are:

i l : 5 . 4 5
d z : 3 . 7 0
fu :2 '97

(5.e7)

The so-called search tree is depicted in Figure 5.8 at left, and should be read from left to
right. Per level, i.e. per ambiguity, the candidates encountered are represented by a node. A
full candidate vector, i.e. a grid point inside the ellipsoid, is found when a node on level a1
is connected with a node on level a2, which in turn is connected with a node on level a3.

The search starts with ambiguity o3. The interval is centered at d3 - 2.97 and ranges
from 0.462 to 5.478. Valid integers for o3 are thus 11,2,3,4,51. This interval is scanned from
left to right. Ambiguity a.3 is conditioned at at : l. Equation (5.75) applied to ambiguity

,
L

d"
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02, gives the integers [1,2,3]. After conditioning ambiguity a2 : l, it is not possible with

(5.75) applied to ambiguity a1, to find valid integers for ambiguity a1. Conditioning ol to

an integer will result in a grid point that is outside the ambiguity search ellipsoid, no matter

which integer is taken. We proceed with the second candidate for ambiguity a2 :2. For this

candidate we find the integer or : 5. As we have reached level 1, we have found a full integer

vector, that satisfies (5.62), i.e. a grid point that is inside the ambiguity search ellipsoid. The

vector is (a1 :  5,a2:2,aJ:1),  see also Figure 5.9. The process is cont inued unt i l  no

integers are left on any level. The search is terminated and six candidate vectors have been

found. The volume of this ambiguity search ellipsoid is ,83 : 7'3 cycles3.

The (real valued) estimates for the ambiguities z are:

21 : 2.35
22 : -4.57

2s : 10'02
(5.e8)

The search tree for the transformed problem is depicted in Figure 5.8 (right)' the ambi-

guity search ellipsoid in Figure 5.9 (right). In comparing the tree on the left with the tree

on the right in Figure 5.8, it can be seen that the search in the transformed problem can be

performed much more efficiently. In the tree at left, there are 13 so-called 'dead ends', in the

tree at right only 3. For a dead end, computations have to be carried out (the bounds), that

do not result in a full candidate vector. The discontinuity in the signature of conditional

variances causes the so-called 'halting' of the search.
The solution, the integer least-squares estimate, is a: (5,3,4). In the transformed

problemweobtain 2:(2,-5,10).  Thissolut ionhastobetransformedby Z-r andresults

in exactly the same solution. The squared norm is t(A) : 9.216.
The differences between original and transformed ambiguities are even much larger for real

GPS examples. In Figure 5.10 we give the number of valid integers per ambiguity, encountered

during the full search. They are given for both the original and transformed ambiguities. The

data are from a 2.2km baseline with dual frequency data to seven satellites. Two epochs of

data were taken, separated by one second.
For this baseline (three coordinate unknowns), observed for a short time span, three

conditional variances of the original ambiguities are very large and the remaining nine ones

are very small. From Figure 5.10 we see that at level i : 10 (the third ambiguity in the

search) there are over 3.108 candidates. After having proceeded to ambiguity al there are

only 2 full candidate vectors left, which implies that there are very many dead ends. The

volume of the ambiguity search ellipsoid is Ee - 2.8 cyclesl2. By the transformation, the

signature ofconditional variances is flattened, and so is the graph ofthe number ofcandidates
per level: the search on the transformed ambiguities can be performed very efficiently, there

are only a few dead ends left.

5.8 Alternative search procedures

5.8.1 Alternating search around the conditional estimate

In this and the following section, we will describe two other implementations, that are alter-

natives to the straightforward search.
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Figure 5.10: Number of candidates per level; dashed line: before transformation, solid line:
after transformation.

Instead ofscanning the interval per ambiguity (5.75) from left to right for integers, one can
search in an alternating way around the conditional estimate. In the conditional estimation
we will start by conditioning ambiguity a; to integer nint(d,t1tat,...,,). Next, the second nearest,
third nearest, etc are tried. The candidates for a; are chosen in a sequence, that starts with
the one closest to the center of the interval (5.76) and goes alternatingly towards the bounds,
see Section 2.4 in Teunissen (1995b).

With this strategy one tries, in each step of the sequential conditioning, to stay as far as
possible from the borders of the ellipsoidal region (5.62).

When all candidates contained in the ellipsoid are required, this strategy has no benefit
over the straightforward search in which the candidates per interval are taken from 'left to
right'. When used in connection with a shrinking strategy (see next section), and when only
one of a great number of candidates within the ellipsoid is required, the strategy of searching
alternatingly around the conditional estimate will have benefit.

5.8.2 Shrinking the el l ipsoidal region

The best candidate, the grid point nearest to d, is the integer least-squares estimate for the
vector of ambiguities. As we are in principle interested in only this candidate, the search
can be designed to find it as quickly as possible. The sequential conditional estimation aims
in the first place at constructing a complete n-dimensional vector with integers that fulfills
(5.64), or in other words aims at finding a grid point that is inside the ellipsoid.

As soon as such a vector a is found, the corresponding squared norm lla - dllL;, is taken

as a new value for X2. We shrink the ellipsoidal region. The sequential conditional estimation
is then continued (not started over!) in this shrunken ellipsoid, see Section 5 of Teunissen
(1993). If one, possibly after repeated shrinking, fails to find a candidate in the ellipsoid, the
last found integer vector is the sought for integer least-squares estimate, d, : -a, see Teunissen
(1ee5b).
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5.9 Efficient computation schemes for the three step procedure

Methods for computing the fixed solution can be divided in two groups: (i) those that need

explicit computation of the integer least-squares estimates o, and (ii) methods that do not.

This influences the way the decorrelatin g Z-transformation is computed. It is either computed

explicitly as Z or Z-r to be used for (5.104) or in (5.111), or implicitly,v\2. asQi,2 (ot l/a,),

see  (5 . r08)  o r  (5 .109) .
Both methods start with the inversion of the (na * n) Cholesky factor C of Eq. (5.i7):

n - 1 (5.ee)

The part for the ambiguities,C;r,is then used in the decorrelation step, which is carried

out, prior to the actual integer estimation.
The variance-covariance matrix of the fixed baseline coordinates blo can easily be obtained

in-place with the Iower triangular matrix Cor of dimension 26, S€€ Eq. (5.17). For the

ambiguities absent case, we have:

E { y - A o a } : 3 0 6 (5.100)

with a the integer least-squares estimate for the vector of ambiguities, and consequently Q5

equals C;'C;'.
The variance-covariance matrix of the float solution can also be efficiently computed using

the sub-matrices of C-l. As Qa, equals C-TC-r:

l c ; ' l
l-c;'c"oc;' c;'l

I Qt Q'aa\ - lc;'c;' + c;rc6"c;rc;1c"6c;t -c;'cu:c;|c;'1
lqil a;l: l, -c;rc;1c,6c;' c;'c;' J

matrix Qi,6 can be written as

(5 .101)

Qi,u: -c;rc6"c;Tc;l (5 .102)

This matrix will be needed for the implicit computation schemes (see Section 5.9.2). Its trans-

pose, Qu6, can be computed in-place using the sub-matrices of c-l; in this way -c;rco6c;r

is replaced row-by-row by Qau.

5.9.1 Explicit computation of a

The most efficient way, if one wants to have available the values of a explicitly, is to compute

directly Z'r . The original integer ambiguities are then computed from the decorrelated

ambiguities as

- -- 'r -
a : L  - z (5.103)

Starting.from here, two routes are possible to obtain the fixed solution. First there is the

explicit computation by constraining the, now considered known, integer ambiguities:

6 : 6 - Q * Q i ' @ - d ) (5 .104)
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The second method starts from the normal matrix system of (5.4) in which the ambiguities
are no longer unknown parameters. Substituting a into the first n equations of (5.4), we get

AL6 :  h6 -N6od , (5 .105)

Note that in the first scheme 866 needs to be stored, and Qu' has to be computed. In the
second scheme N6, (part of the normal matrix for the float solution) has to be stored (before
computing the float solution), and furthermore either C6 (baseline part of the Cholesky factor
of the normalmatrix), or Q;, has to be stored. The scheme depicted in Figure 5.11 is based
on (5.105).

5.9.2 lmpl ic i t  computat ion of d

If we look at the complete system, i.e. the baseline coordinates and the ambiguities, the
following transformation is applied to the parameters by the Z-transformation:

l,l : fr _l f6l
l,l I z') l"l

Applying this transformation to the variance-covariance matrix of (5.5) gives:

I at, Qi,uz I - | ai, Qrul
Lz,em z,euz)- le,i, e,]

Using (5.103), Eq. (5.104) can now be rewritten as

b : b - Q n Q ; ' @ - a )
: E - QauZ z-rQ-l z-r zr @ - d)
: u - Q * Q ; t Q - z )

(5.106)

(5.107)

(5.108)

This shows that it is not necessary to explicitly compute matrix Z or its inverse. The fixed
solution is computed with the transformed ambiguities. The computation scheme based on
(5.108) is shown in Figure 5.12.

Intermezzo
As an alternative, one can operate upon N6o instead of on Q6u. With (5.105) we obtain:

A66 :  h6 -N6od ,
- h6 - N6oZ-r ZT tt

: ha - NorZ (5.10e)

End of intermezzo

Starting from Eq. (5.108) we can make a distinction between the following two cases:

l .  n 6  < n
In the normal case the number of ambiguity parameters is larger than the number of baseline
coordinates. Then, instead of transforming a matrix of unity to Z, it is more efficient to
transform Q6u directly to Qb.This saves memory since Z becomes now superfluous. It also
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saves CPU time, since the column dimension of Qn equals the number of baseline coordi

nates n6, whereas the column dimension of Z eqtals the number of ambiguities n. The row

dimension of both matrices is equal. Since the construction of. Z, (or Q*) is essentially a

sequence of column manipulations, less operations are needed and CPU time will be saved.

CPU time is also saved because the matrix product Qi,6Z does not need to be evaluated

explicitly anymore. In this way, the decorrelating transformation is computed implicitly.

6 : b - Q a u Q ; t G - z )
:E -Q* (LDL r11z -21

2 .  n 6 >  n
If the number of non-ambiguity parameters is larger than the number of ambiguity parame-

ters, it is more efficient to compute Z explicitly and use it to transfor^ Qi,a into Q5r. The

fixed baseline coordinates are then computed as

b : b - e * e ; , e - z )
:E- (Q*z11LDLr11z-27

Again we need to have stored Q;,u.

(5 .110)

( 5 . 1 1  1 )

5.10 Timing resul ts

To show the performance of the alternatives proposed in the previous section, we applied
them to a number of different measurement scenarios. The following comparisons are made

1. Single baseline versus a 4-station Network

2. Dual frequency versus Single frequency

3. Phase-only versus Phase-and-code

4. Static versus Kinematic

In all experiments we used two epochs of data, while varying the observation time span (from
instantaneous to 300 seconds). As shown in Teunissen (1994) it is the time span that largely
influences the amount of correlation between the ambiguities, and therefore the CPU time
needed for their decorrelation. Enlarging the sampling rate has a much smaller effect. The
ambiguity search ellipsoid is characterized by its elongation and the ambiguity decorrelation
number, (ibid.).

The same 7 satellites, all with elevation above 10 degrees, were tracked in all experiments.
The weights for the phase observables were chosen to be equal (in meters) for both the L1
and the L2 frequency. When code observables were included, their weight relative to that of
the phase observable was set to 1/10000.

The measurements were made at Ypenburg in the Netherlands (Q:52'N, ) : 4o24' E),
on May 5,1994, between 20:00 and 20:05 (GPS time) using Trimble 4000 SSE receivers. The
length of the baseline used for the single baseline experiments (YPO1-BR01) is approximately
10.4 km, while the inter-station distances for the network experiments vary between 2.3 and
10.4 km.

Timing was done on a 486-66 MHz-PC under MS-DOS. The implementation was in
Fortran 77 using the Microsoft Power station compiler with maximum optimization applied.
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Figure 5.13: CPU time in milliseconds for decorrelation, for a varying time span and two
epochs of data. Dual frequency, phase-only, static baseline.

5.10.1 Single basel ine, dual f requency

In Figure 5.13 the two main schemes for computing the decorrelating transformation are
compared for the single static baseline using dual frequency phase measurements. The white
bars show the time for computing the Z-T-matrix, the superimposed hatched bars, the
time for directly transformin1Qta. In this figure and in the ones that follow, CpU time is
only shown if indeed the correct integer ambiguities were found; so in this figure the one
second time span is left blank. The correctness of the integer estimation was checked using
a validated ground truth obtained with a time span of 15 minutes. The figure shows that by
enlarging the time span, the time needed for decorrelation of the ambiguities decreases. The
larger the time span, the more the receiver-satellite geometry changes. The original double
difference ambiguities are then less correlated. The figure also demonstrates that working
directly upon the, in this case 3-by-12 Q66 matrix, takes less time than computing the full
12-by-I2 Z-r-matrix. The time is approximately 20-2b% less.

Figure 5.14 at left shows the results for the same experiments as in Figure 5.13, but now
for a roving receiver. Allowing one of the stations to be moving from epoch to epoch increases
the correlation between the ambiguities and therefore the CPU time needed for decorrelation.
Again we see the beneficial effect on the correlation of an enlarged time span. As we have
now a roving receiver, matrix Q66 has dimension 6-by-72, (there are 2 times 3 coordinates).
The reduction in CPU time as compared with computing Z-T explicitly, is therefore less
than for the static case (now about 1b%).

In Figure 5.14 (right) the results of the same experiments are plotted, but now using also
code observations. The inclusion of the code observables has two effects on the correlation.
Firstly it lowers the absolute level, and secondly it removes to a large extent the effect of
enlarging the observation time span. As a consequence the CPU time for decorrelation is
almost equal for all experiments; enlarging the time span, only slightly decreases the CpU
time. The reduction of the CPU time when operating on Q66 instead of constructing Z-T
explicitly, is of the same order as without code, since the dimensions of Qaa did not change.
There is one exception, viz. for the instantaneous case (0 s). Then the dimension of e6u is
3-by-12. Here we see a reduction of the same order as we saw for the static scenario.
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Figure 5.14: CPU time in milliseconds for decorrelation, for a varying time span and two

epochs of data. Dual frequency phase-only, kinematic baseline (left). Dual frequency, phase-

and-code, kinematic baseline (right).

a a u ) a a a a a c h ( A a v ) : : : :

dc. ,eov. ' )= :R3€gg5ExFi
Figure 5.15: CPU time in milliseconds for decorrelation, for a varying time span and two

epochs of data. Dual frequency, phase-only, static network of 4 stations.

5.10.2 Network, dual frequency

Now we will show the results obtained for a small network of 4 stations. Experiments were

done in static as well as in kinematic mode. In the kinematic mode, 3 of the 4 stations were

allowed to be roving.
In Figure 5.15 the results for the static case are shown. With the 7 satellites tracked

on two frequencies, we have a total of 36 ambiguities, i.e. 3 times as much as for the single

baseline case. The time needed for decorrelation is roughly 15 times the time needed for one

baseline. The gain when using 866 is larger than for the single baseline case (about 30%).

The network counterpart of the kinematic baseline, Figure 5.14, is given in Figure 5.16,

(left). A gain of approximately 20% is observed. Figure 5.16 (right), the dual frequency
phase and code case with roving receivers, can be compared to Figure 5.14. The average gain

using Q6u is equal to the one we saw in Figure 5.16 (left). Again the instantaneous case forms

atr e*ception, for the same reason as given for the baseline case. The CPU time needed for

t n v ) o a a a a a u ) a c n a : : : :
F r ^ r c o s , o = g R 3 5 g g 5 E X =

a a  cn  a  rn  ra  a  o  cD a  a  u )  -  
: : : :

o H o , e c $ ' o = P R B S 8 8 I = X H
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Figure 5.16: CPU time in milliseconds for decorrelation, for a varying time span and two
epochs of data. Dual frequency, phase-only, kinematic network of 4 stations (left). Dual
frequency, phase-and-code, kinematic network of 4 stations (right).

decorrelation is almost equal for all experiments.

5.10.3 Single basel ine, s ingle frequency

In Figure 5.17 only observation time spans larger than or equal to 45 seconds are considered.
With single frequency phase observations on a 10.4 km baseline, it was not possible to obtain
the correct integer vector for shorter time spans. Comparison with Figure 5.13, the dual
frequency case, directly reveals that the CPU times are very little. In the single frequency case
there are only 6 ambiguities, whereas there are 12 in the dual frequency case. Furthermore,
the ambiguities, on the input, are less correlated in the single frequency than in the dual
frequency case, see Teunissen (1994). The average gain when using e6u is about 15%.

Figure 5'17 (right) shows the case with single frequency phase and -de for the kinematic
baseline. Here we see almost no gain since Z-r and Q6u have the same dimension of 6-by-6.
The little improvement that can be seen stems from the fact that no initialization is needed
for the Z-T-matrixwhen working with Q66. Note again that for the instantaneous case where
Q66 has dimension 3-by-6 there is on improvement of about 15%.

5.10.4 Overal l  procedure

To place the timing results in perspective, we will consider for all cases, the time needed for
the full procedure of parameter estimation for the implicit scheme, see Table 5.2. We give
the experiment with the shortest and with the longest observation time span. The latter is
limited to 300 seconds.

The normal equations were taken as a point of departure. The column 'Total CPU time'
is the time needed for computing the float solution, performing the decorrelation plus the
integer estimation, and computing the fixed solution. The two constituents of the second
step are also specified on an individual basis. For the dual frequency cases, the decorrelation
takes between 60% and B0% of the total time.

a a c n a a r n a a a c n a a a a a a
- = A r 6 + r - o r l r o o o o R = = =i  - o . l  c . ( o o r : l = N ;
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Baseline, Dual frequency

LIL2 static
LIL2 kinematic
L1L2P1P2 static
LLL2PIP2 kinematic

0.4 20.7 | 300 6.2
0.2 18.6 | 300 10.0
0 .2  11 .71300  5 .3
0 .2  11 .71300  7 .1

t7 .5
t4.7
8 .7
8 .7

4-station Network, Dual frequency

L1L2 static | 221.3 16.4 271.01300 85.8
LIL2 kinematic 5 253.4 8.9 315.51300 L44.7
L1L2P1P2 stat ic 0 134.4 1.8 i70.61300 84.7
LlL2PlP2 kinematic 0 134.4 1.8 170.6 | 300 127 '4

static
kinematic
static
kinematic

1 .0  0 .1
1.0 0.1

0.2 9.2
0.2 13.9
0.2 8.3
0 .2  11 .1

3.r 724.5
0.9 201.8
7.7 122.1
1.9 185.8

0.1 2.4
0.1 2.9
0 .1  1 .9
0.1 2.6

27-23
13-16

13-16

27-35
20-23

19-21

IT-17

7-15
0-5

2
10
0
0

Baseline, Single frequency

L1
L1
L1P1
L1P1

0.1t .2 1.e | 300 0.7
1300  r .2

2.3 | 300 0.7
2.3 | 300 0.8

0
0

Table 5.2: CPU times in milliseconds for decorrelation of the ambiguities, integer estimation

and overall procedure. Reduction in CPU time when operating on Qi,a instead of working on

2-r.
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Figure 5'17: CPU time in milliseconds for decorrelation, for a varying time span and two
epochs ofdata' Single frequency, phase-only, 7 satellites tracked, static baselin"lt"t;. Single
frequency, phase-and-code, 7 satellites tracked, kinematic baseline (right).

5.10.5 Summary

The computation of the decorrelating transformation is by far the most time consuming task
in the computation of the float and fixed solution. This is however no drawback for the
LAMBDA method, since the CPU time gained in the integer estimation by decorrelating
the ambiguities, exceeds the time needed to compute it by orders of magnitude. For a dual
frequency phase and code kinematic baseline, the CPU time for the overall procedure is at the
10 ms level, and thus very fast anyway. Approximat ely 70% is taken by the decorrelation. The
time needed for the decorrelation of the ambiguities, depends on 1. the number of ambiguities
n, i.e. the dimension of the problem, and 2. the amount of correlation of the original double
difference ambiguities. Important factors that influence the amount of correlation are whether
or not code observations are included, whether we have a kinematic or a static setup, and
the observation time span.

When the number of ambiguity parameters is larger than the number of non-ambiguity
parameters, the 'implicit' scheme is more efficient; both in terms of CPU time as in terms
of the use of core memory. The latter seems trivial in a time where computer memory is
becoming abundant, but it will prove its usefulness when treating large networks, where the
number of ambiguities reach from hundreds to thousands. Using the implicit scheme, the
whole process of decorrelation, integer estimation and constraining the ambiguities can be
done in-place. For single baseline cases, the difference between the explicit and the implicit
computation is small.

For a dual frequency phase and code 4-station kinematic network (i.e. 3 roving receivers)
a fixed solution is computed in less than 0.2 seconds.

O (h v) a a rh 0 a U) a a A a 
(12 a a V)
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Chapter 6

Ambiguity resolution at medium distances

6.1 lntroduct ion

As a definition for medium distance we will use here the one given by Bock (1996). It can
be summarized as being the distance for which it is necessary to model the ionospheric and
tropospheric delays, and for which the broadcast ephemerides are not of sufficient quality
anymore. On the other hand, dual frequency ambiguity resolution with the ionosphere in
some way constrained, is still feasible, and reference frame errors are not yet dominant. This
definition limits the medium distance to somewhere between 101 and 103 km. For the lower
bound of the distance, with the good quality of the broadcast ephemerides nowadays, use of
precise ephemerides, or modeling of orbit parameters is not necessary. Ambiguity resolution
in medium distance networks is treated in e.g. Blewitt (1989), Dong and Bock (1989), Mervart
et al. (1994), Mervart (1995), Mervart et al. (1996).

The delays caused by the ionosphere play a key role. If one models the ionosphere as
slant delays, or equivalently uses the ionosphere-free combination, a function of ambiguities
is estimated, that is a rational number rather than an integer number. As pointed out in
Section 4.2.3 it can be converted to an integer valued function, but that would produce an
observable with a synthetic wavelength that is too small for successful integer resolution.

Constraining the ionospheric slant delays in some fashion, renders again integer estimable
Ll and L2 ambiguities (see Section 4.2.4).

In this chapter we will show results using two types of models for constraining the iono-
spheric delay. In the first model the delays are (hard) constrained to zero by simply omitting
them from the model (short baseline model). In Section 6.2 some results from the application
of this model will be given.

In the second model the ionospheric slant delays are stochastically constrained both in
an absolute and in a relative station sense.

As the software developed in the framework of this thesis is neither equipped for the
estimation of orbital parameters nor for estimation of constrained ionosphere parameters,
the LAMBDA method has been implemented in the GAMIT software of the Massachusetts
Institute of Technology/Scripps Institution of Oceanography. In Section 6.3 and 6.4 a short
description of the GAMIT software, and the current ambiguity resolution strategy employed
by it, will be giveri. In Section 6.5 the implementation of the LAMBDA method in GAMIT
will be treated, and in Section 6.6 some results will be shown of both the original and the
LAMBDA aided ambiguity resolution strategy for a network in california.
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resolution at medium distances

6.2 The short baseline model

The simplest form of constraining the ionosphere is to omit the ionospheric delays from

the model, i.e., the constraints are that the ionospheric delays are zero. This is generally

referred to as the short baseline model, which is in widespread use for so-called 'rapid static'

positioning. The generally accepted maximum distance for this type of application during

daytime, is 10 km or less for time spans up to 1 minute.
For distances longer than this, for some parts of the day, the ionospheric delays, and, more

important, the between-station differences of ionospheric delays, may still be small enough

to allow successful ambiguity resolution. However, the delays may be already of a size that

they bias the fixed solution.
As an example, we computed for a baseline of approximately 12.7 km in the Netherlands,

fixed solutions using dual frequency phase and code data of only one epoch. Using 50 minutes

worth of data, starting at 17:35:00 GPS time (18:35:11 local time) December 22,1996' 3000

solutions were obtained. Trimble 4000 SSI receivers were used; the standard deviation for

the phase observables was set to 3 mm and the standard deviation for the code observables

to 30 cm. No attempt was made to estimate tropospheric zenith delays (due to the zero

length time span), but the hydrostatic delays were modeled using the mapping function of

Nieil (1996) and the model for the hydrostatic zenith delay of Davis et al. (1985) with a

standard model for the atmosphere.
For all of the 3000 experiments, with an elevation cut-off of 10 degrees, 8 satellites were

observed, and the correct integer ambiguities were estimated. In Figure 6.1 at left, for North,

East, and Height, the relative frequency of the estimates for the increments to the a priori

coordinate values is given.
The histograms show a peculiar behaviour, which leads to the suspicion that the modeling

was not adequate. To remedy this, we computed the fixed solution using the same integer

ambiguities as estimated before, birt now we included the ionospheric slant delays in the

model. Two types of models were used, one using dual frequency phase and code, and one

using dual frequency phase only (since the ambiguities are resolved, one epoch of data suffices

also for the latter model). In Figure 6.1 at right we plotted the histograms for the increments

using the extended models. The histograms in black are for the model with code included,

the histograms in grey are for the model without code. Comparing the histograms at left

with those at right, we see that the inclusion of the ionospheric slant delays in the model,

renders estimates that are approximately normal distributed (as they should be). In addition

it can be observed that the code observables do not contribute much to the fixed solution'

The a priori coordinates come from a solution that has an accuracy of few centimeters,

hence no conclusions should be drawn about the bias in the estimates' Furthermore, to

show most clearly the difference between the models, the width of the bins is equal for

the increments referring to one coordinate for the different models, but they differ among

coordinates.
In Figure 6.2 for the model with dual frequency phase and modeling of the ionosphere,

histograms for the increments for the three coordinates using an equal bin width are given.

The empirical standard deviations for the baseline coordinates &r€ oly : 5.0 mm, oe :2-8

mm, and on :7 '6 mm.
About the distance and the circumstances for which ambiguity resolution using a zero

constraint for the ionosphere is still feasible, remarkably little is known (SSG 1.157 1997)'

The maximum distance will however inevitably depend on the ionospheric conditions, and
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Figure 6.1: Histograms (relative frequency) for the increments in North, East and Height for
the fixed solution of a 72.7 km baseline (3000 experiments). At left for the model without
ionospheric slant delays modeled, at right for the models with ionospheric slant delays.
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Figure 6.2: Histograms (relative frequency) for the increments in North, East and Height for

the fixed solution of a 12.7 km baseline (3000 experiments).

particularly on the between-station difference of the ionospheric delay. At night these differ-

ences are considerably smaller than during daytime.
To show how well during the nighttime ambiguities can be resolved, we computed every

30 seconds during one day (April 5 1998), the fixed solution for a baseline of approximately

56.5 km in Southern California between Pinyon (PIN1) and Temecula (Sfrl). We used only

one epoch of dual Trequency code and phase data from two'Ashtech Z-XII3 receivers, with

the observables weighted as above. There is a considerable difference in height between

the two stations, the (WGS-84) ellipsoidal height for Pinyon is approximately 1256 meter,

and for Temecula 470 meter so that the meteorological circumstances and thus also the

tropospheric delays vary considerably for both stations. The hydrostatic tropospheric delays

were corrected a priori using Niell's mapping function combined with Davis' model for the

zenith delay. With an elevation cut-off of 7 degrees, between 5 and 10 satellites were observed'

viz.  5 satel l i tes for 0.4% of the experiments, 6 (18.7%),7 (29.9%),8 (19.7%),9 (25.9%)'  10

(5.4%). The a priori coordinates came from a one day network solution computed with the

GAMIT software (see the next sections).
In Figure 6.3 the slant ionospheric delays at Pinyon, computed using dual frequency code

data with a common clock are depicted. The epochs refer to GPS time, local time is GPS

time minus 8 hours. The diurnal cycle can clearly be observed.
At each epoch between epoch 510 and 1466 (20:14:30 - 04:12:30 local time) ambiguity

resolution was succbssful. Outside this interval, except for some isolated epochs, the ambigu-

ity resolution failed. The interval of successful ambiguity resolution nicely corresponds with

the period at night with low ionospheric activity.
In Figure 6.4 the time series for the increments in North, East and Height are plotted for

the fixed solution. The dotted line represents the model of dual frequency phase and code,

without estimation of ionospheric slant delays, the solid line the model of dual frequency

phase only, with estimation of slant delays. The signatures of the time series for both models

show a different behaviour. Those originating from the model without iono$pheric slant delays

show a stronger long term variation due to the unmodeled ionosphere, thobe originating from

the model with ionospheric slant delays show a short term variation, which is probably due

to phase multipath (Genrich and Bock 1992). In the height, a long term variation is visible,

caused by the unmodeled water vapor tropospheric delay.
In Figure 6.5 the increments for the model with ionospheric slant delays are grouped into
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Figure 6.5: Histograms (relative frequency) for the increments in North, East and Height for
the fixed solution of a 56.5 km baseline (957 experiments).

histograms. The empirical standard deviation and mean for the coordinates are: o7r,, : g.g
llIII, lll€8lliy : 1.2 mm, op : 6.3 11l11l, 11I€&Il4 : 1.7 mm, On : 25.0 [Ifl], t11€&Itg : l!
mm. Taking into account the distance of the baseline, the North and East components
are remarkably well estimated, coupling high precision to a very small bias. The height is
considerably less well established, which is mainly due to remaining tropospheric delays. One
has to bear in mind however that the difference in height between the two station is almost
800 meter.

6.3 The four-step bootstrapping procedure of GAMIT

The estimation process within GAMIT is based on the use of DD carrier phase and ionospheric
pseudo observables. To keep the Size of the system of normal equations within bounds, as
soon as a new ambiguity parameter needs to be introduced for a certain receiver-satellite
combination, the present ambiguity parameter is eliminated (implicitly solved for). For time
spans of one day this will typically happen when a satellite rises again after it had set at an
earlier epoch. For the float solution this has no consequences, since eliminating a parameter
is equivalent to solve for it explicitly. For the fixed solution, however, it means that even
if one fixes all 'explicit' ambiguities, in the fixed solution still the 'implicit' ambiguities are
present. For a time span of a day the number of implicit ambiguities equals approximately
the number of explicit ambiguities.

Not all ambiguities are resolved together in GAMIT. First the wide lane (Nr,, - I/r,r)
ambiguities are resolved, and then the narrow lane (N11) ambiguities. The procedure is de-
scribed in Dong and Bock (1989), Feigl et al. (1993), and Bock (1996):

Step 1:
Using the ionosphere-free linear combination of carrier phase (LC), the geometric parame-
ters b, viz. baseline coordinates, tropospheric zenith delay parameters and orbital parameters
are estimated together with the LC ambiguities a1s. To impose a reference frame, tight
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constraints are applied to the station coordinates and orbits r. The model reads

E{yoty: lAo Ao""l

E{Yr} :  '

; D{y{t)y : QN)

; D{vz} : Qy,
l.:"1

t;il

f  l  ? g ' * l
L + *  i  ? l

and results in

(6 .1 )

(6.2)

Step 2:
With all geometric parameters constrained to the values from step 1, the wide lane ambigu-
ities are resolved in a sequential way. This is done using the so-called ionospheric constraint
formulation, see Section 4.3. The inclusion of constraints for the ionospheric delays, by
introducing pseudo observables ensures the integer nature of the ambiguities.

For the pseudo observables a distance dependent variance-covariance matrix is chosen,
which constrains the ionosphere in both absolute and relative between-station sense (Schaffrin
and Bock 1988).

For the pseudo observables of a single baseline l!,lf,It and I$ constituting a single DD
observable, the variance-covariance matrix reads

_ p 2 (6.3)

where p is a user defined constant, depending on the ionospheric activity, and d the arc length
between stations scaled such, that for baseline lengths up to 10,000 km it will never exceed
the value of ln(l + rt) ry 0.88 radians:

d:rn(1 +r / r )#ry=0.56ry (6.4)

with,R the Earth's radius in meters. The scaling is necessary since l/cosh has a point of
inflection at ln(l + \/, which has no physical meaning for this application.

The variance of the DD ionospheric pseudo observable follows then as

I
D{Fr|}  :40'( I  -  

; rno)
(6.5)

i.e. the variance increases with increasing baseline length.
The two orthogonal linear combinations due to the transformation of Section 4.3, Eq. (4.63)

read

Q' o", - Tt ot
T z - r h  r l z - T t

_ rl? + rB _t + \., Qr, + LQn
r lo \ \ r+ \z )  h+r lz  T t+Tz

"llii)'

(6.6)
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The precision of the second linear combination is governed by the precision of the ionospheric
constraints' which is for the baseline lengths involved in the regional networks at least one
order less precise than the phase observables.

They result in the following functions of ambiguities

191

L\rN", -  Tt ^rN*
T z - Q r  \ z - T r

f f i^ '* ' ,+ff i i ,Nt,
which for the purpose of ambiguity resolution are rewritten as

+#r/'r - 
f;,^,{*,2 - r/r.r)

WNt'r* ff i^ '{* 'z-NLr)

' : lh -#,1*,
If we look at the synthetic wavelengths of the ambiguities in (6.g), we have

ll r*,,- ffiwz - Nr.r)

(6.7)

(6.8)

to obtain wide lane type ambiguities.
One has to bear in mind however, that there is a difference with the case when one applies

the classic wide lane transformation of Section 4.3.2:

c(fi + f3)
f,fdf? + fl)

(6.e)

(6.10)

with

c
c  ,  r  = 1 0 . Z c m

J l  
- 1 -  

J 2

c( f,3 + f^3)

T;f f ix22'4cm

cf,
V;E x 37.7 cm
J I  

_  
J 2

c t :

f f i  
=15'2cm

(6 .11)

(6.12)

In fact we have a mixture of wavelengths. The only thing that can be said about it (if we
want to hold on to the concept of wavelengths), is that the (N", -.n/11) ambiguity in the first
linear combination (which is more precise than the second combination, since the precision of
the latter is governed by the less precise ionospheric pseudo observables) possesses a longer
wavelength than the N11 ambiguity.

With a, : Nrz - Nlr and a,, : NL1, the model reads

E{ae) - Auioty : lAo_ o,"ll3] ; D{y{z)y : etr)
which results in the float solution

(6.13)

l;FrllI:u,oa:;!il

Nrr* 
W#Brr i2-NLi)

(6.14)
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Step 3:
With the wide lane ambiguities constrained to the integer values from step 2, the narrow lane

ambiguities are estimated together with all geometric parameters from the ionosphere-free

linear combination. The station coordinates are constrained as in step 1. This solution is

followed by integer estimation of the narrow lane ambiguities.
Only the narrow lane ambiguities that have a successfully resolved wide lane counterpart,

are candidates to be resolved here. The remainder of the narrow lane ambiguities form

together with their unresolved wide lane counterparts again LC type of ambiguities.

With the LC linear combination as in Eq. (4.43) we have for the resulting ambiguity
-n I  Tlq

ly'r.c : ----11- ()2,A[z - z)t l/r,r)
Ilz - ?lt \'r

For the receiver-satellite combination for which we have a successful resolved wide lane am-

biguity it is rewritten as

The subsequent integer estimation step reads

i ' f f ) ; Q u 1 4 + a *

Step /1:
With the wide and narrow lane ambiguities fixed
the geometric parameters are estimated using the
model reads

ry'r.c : 
ffi^r{*"2 

- N') * *L, _ rr{x, 
- 

ffsr1 
N",

(6 .15)

(6 .16)

(6 .17)

(6.1e)

(6.20)

(6.21)

to the integer values from step 2 and 3,
ionosphere-free linear combination. The

(6.22)

(6.23)

:  c  ,o f '  ,o (Nrz  _  Nr - r )+  .  *  "  
Nr r  (6 '18)

J ; - J i '  J t + J z

The integer estimate for the wide lane ambiguity is inserted in Eq. (6.18), which results in

ambiguities with a wavelength of ry 10.7 cm'
The model reads

E{Y'} :  '

which results in the float solution

; D{ytr)1 : Qf;)

; D{vz]r : Qs"

The subsequent integer estimation step reads

6 , f ) ; Q ^ e t + i t ,

E{ao - A"-d*} : lA, ̂ "")l:"1

[nr] '[oT:, o;:;')

E{ao - Ao-d. -  Ao^dn} :  Aab; D{ylr)1:  QN)

which results in the eventual fixed solution

b() ; Qi,
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Figure 6.6: In the area below the curve, the probability of making a type 1 error is less than
0.001 while the probability of making a type 2 error is minimized.

6.4 Ambigui ty resolut ion in GAMIT

The strategy applied in the GAMIT software to resolve the ambiguities is described in Dong
and Bock (1989). It is primarily based on a sequence of roundings to the nearest integer.
The criterion for rounding is based on the Neyman-Pearson criterion. It yields

n { a (6.24)

with

t/2ou,
(6.25)

and a the level of significance. The complementary error function erfc(r) is defined for all
complex r by

(6.26)

This criterion differs from the one in Dong and Bock (1989) by the use of the single sigma
value instead of the oa :3oa; value.

In Figure 6.6 the region is depicted where the probability of making a type 1 error (i.e.
rounding an ambiguity to the wrong integer value) is less than a : 0.001 (level of significance,
see Section 3.9), and the probability of making a type 2 error (decision not to round to
the nearest integer, while in fact it is the correct integer value (1 - 7), see Section 8.9) is
minimized. The probability of ambiguities being rounded that are close to an integer but
have a large standard deviation, as well of those far from an integer value, but with a small
standard deviation, is decreased by the use of a so-called 'taper' function 7. The taper
function currently used, differs from the one described in Dong and Bock (19s9):

f

| 0 if l lac - nint(d)ll > 0.15 or 06, ) Q.lg,
' : 

lt (t - l la'-r,.' l i(ar)ll)'{o.tt - ou,) orherwise 
(6'27)

n - ( d t - n i n t ( 6 , 1 ) )":: 1".'(

er fc( r ) : I -#1o"" - "a t

Absolute deviation from integer [cycles]
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Figure 6.7: Area (below the curve), where the ambiguities are rounded to their nearest integer

value.

The resulting decision function d is then

d(du - ni.ntQt ;), o6,) : T f n (6.28)

The ambiguity resolution takes place sequentially: for all ambiguities that have not been

resolved so far, the decision function (6.23) is computed. The ambiguity with the highest

value exceeding 1000 will be constrained to its rounded integer value. In Figure 6.7 the area

is depicted where the decision function is larger than 1000, and consequently rounding of

the real valued ambiguity is performed. As the figure shows, the decision function is hardly

anymore based on the Neyman-Pearson principle. The heuristic taper function dominates

the resolution criterion.
To constrain the value of the selected ambiguity, the vector of ambiguities and the

variance-covariance matrix generally have to be permuted such that this ambiguity is at

the last position. By constraining an ambiguity to the integer value found for it, the re-

mainder of the ambiguities and their variance-covariance matrix are updated. Instead of the

estimates of the ambiguities, we get then the conditional estimates of the ambiguities. The

vector of conditional estimates, and its variance-covariance matrix, after n - i ambiguities

have been constrained, are denoted as

6 '1 i+ t , . . . ,n  i  Qa1nar , . . . . ^ (6.2e)

After that, the decision function is again computed with now the conditional estimates and

their conditional standard deviation as input for it.
Despite its shortcomings, the procedure sketched here, has proved to work very satisfac-

tory, and ambiguities for a number of regional networks are resolved operationally at a daily

basis.
If no more ambiguities can be found that satisfy the criterion set for the decision function,

two other methods are tried. The first method is to use the Melbourne-Wiibbena (MW)

combination. It is only used in the case of wide lane ambiguities (step 2), and needs precise

pseudorange data to be successful. It is computed for one ambiguity only at a time, and

hence we are dealing here with the unconditional estimates. As in general not all ambiguities
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Ambiguity

Figure 6.8: Conditional standard deviation of decorrelated MW wide lane ambiguities (solid
grey curve), and standard deviation (sorted in increasing order) ofthe original (dashed black
curve) and decorrelated (solid black curve) MW wide lane ambiquities.

are observed for the same time span, and sorie of them have been observed for only a very
short time span, estimation of the MW combination for all ambiguities together, followed by
a constraining of resolved ambiguities, might help the resolution of the ambiguities that were
observed for only a small time span.

In Figure 6.8 for the Californian network of Figure 4.6 plus one extra station, the standard
deviation of the original MW wide lane ambiguities as well as the standard deviation and
conditional standard deviation of the decorrelated wide lane ambiguities are plotted. Since
they come from a simulation study they are scaled by an unknown scale factor. The standard
deviations are sorted in increasing order.

The solution is for a period of 24 hours and hence the time spans that ambiguities are
observed, show a large variation. The plot shows that for this type of network the Z-
transformation also improves the standard deviation of the MW ambiguities, and that con-
ditioning the ambiguities in a sequential way gives an extra improvement. Although the
improvement is not as large as in the case where the modeling is done in terms of coordinates
instead of ranges, it still might be of help to resolve these ambiguities.

In the second strategy, a search is performed analogously to the one employed by the
LAMBDA method. For a small set of ambiguities (typically 5-10) the following minimization
problem is solved

.9 o.e
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E o.u
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E 0.4
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400100

m i n ( d  - a 1 r Q | r @ - a 1  a e  Z (6.30)
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6.5 LAMBDA implementat ion in GAMIT

The LAMBDA method was implemented in the four-step procedure. Besides the normal
bootstrapping strategy an alternative strategy was devised:

Standard B ootstrapp'ing.
Instead of using the decision function, the MW combination, and search, the ambiguities are
resolved using the LAMBDA method. Since it was impossible to interfere too much in the

existing software, it was not possible to fix only a subset of the ambiguities. The LAMBDA
method is used to resolve both the wide lane (in step 2), and the narrow lane (in step 3)
ambiguities. This will be referred to as standard bootstrapping.

A lt em ati,u e B o otstrap p in g.
All ambiguities (both wide and narrow lane) are resolved in step 2 using the LAMBDA
method. It will be referred to as alternative bootstrapping. Step 2 is replaced by:

(6 .31)

which results in the float solution

(6.32)

The subsequent integer estimation step reads

(6.33)

And step 3 is omitted.

6.6 Results for a regional network

The use of the LAMBDA method within GAMIT- has been tested on a one day data set
(day 260 of 1996) of a network in California, see Figure 6.9. The network consists of 21
permanent statioris from the permanent GPS arrays SCIGN (Southern Californian Integrated
GPS Network), CORS (Continuously Operating Reference Stations) and BARD (Bay Area
Deformation Array), and occupies an area of roughly 250 by 800 km. It is tied to 4 stations
outside the Californian region to enable estimation of orbital parameters, and provide a
reference frame.

The ambiguities related to the baselines FARB-K0KB, ALGO-DRA0, ALG0-RCMS, and BRIB-
DRA0 were kept floating.

Before we will analyze the performance of LAMBDA we will have a look at rounding
the ambiguities using the decision function strategy. In Figure 6.10 the conditional standard
deviation is plotted as function of the distance of the conditional estimate to the nearest
integer at time of fixing. The ambiguities that were allowed to be fixed according to the
decision function are marked by stars; at left the wide lane ambiguities are plotted, at right
the narrow lane ambiguities.
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Site ID (IGS) Name Site ID (IGS) Name

'ffi
BRIB
CASA
c0s0
DHLG
FARB
HARV
MATH
PBLl
PLOl

ffi
TIBB
VNDP

BLYT
CARR
CICE
CRFP

*Hffif;WJ
GOL2

ffiffiffi
MONP
PIN l
PVEP

sr03
TRAK

Algonquin, Canada
Briones
Mammoth Lakes
China Lake
Durmid Hill
Farallon
Harvest Platform
Lake Mathews
Pt. Blunt
Pt. Loma
Richmond, Florida
Tiburon
Vandenberg

Blythe
Carr Hill
Ensenada
Yucaipa
Penticton, Canada
Goldstone 2
Kokee Park, Hawaii
Monument Peak
Pinyon Flat 1
Palos Verdes
Scripps 3
Bommer Canyon

Table 6.1: Names and site ID's of the stations in the network used in the experiments, a grey
box indicates that the station is not in the California area.

Figure 6.9: Map of the network used in the experiments, at right the whole network
depicted, at left in detail the California part is shown.
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Figure 6.10: Conditional standard deviation as function of the distance of the conditional

estimates to the nearest integer at time of fixing by the decision function (stars). The circles
refer to the ambiguities that could not be fixed (i.e. after 443 wide lane ambiguities and 440

narrow lane ambiguities, respectively were fixed). Left: wide lane ambiguities, right: narrow

lane ambiguities.

By definition, all data points marked by a star are inside the region plotted in Figure 6.7.

Of the 470 wide lane ambiguities 443 were allowed to be fixed; of the 443 narrow lane

ambiguities 440 could be fixed (27 narrow lane ambiguities were kept floating, since the wide

lane counterpart could not be fixed). The circles refer to the ambiguities that could not be

fixed, and hence they are conditioned on the 443 wide lane and 440 narrow lane ambiguities,
respectively that could be fixed.

Similar plots were made for the ambiguities that were resolved using the LAMBDA

method with the standard bootstrapping method. Recall that with the current implementa-
tion we can only resolve the whole set of ambiguities. In Figure 6.11 at left the conditional
standard deviation versus the distance of the conditional estimate to the estimated integer

value for it, (which was in all cases also the nearest integer) for the decorrelated wide lane am-

biguities is plotted. At first sight the results seem worse than those obtained by the decision

function approach (Figure 6.10), but we have to keep in mind that.here all 470 ambiguities
were fixed.

We see that there are five apparent outliers with a large conditional standard deviation.

A total of 460 ambiguities satisfy the criterion of having a decision function value greater

than 1000. So with the current .criterion (which is a heuristic one that may or may not be

applied on the decorrelated ambiguities) 17 more functions of ambiguities could have been

fixed. This is of course only true if the ambiguities outside the 'decision region' were the last

ones to be fixed, which is not the case here. If the decision region were a little bit enlarged
however, i.e. if it would allow ambiguities to be fixed with a deviation from the nearest integer

of up to 0.17 cycles, all but five ambiguities (the ones related to the outliers in conditional
standard deviation) could be fixed, since these were the last ambiguities to be fixed.

Figure 6.11 at right shows the conditional standard deviation versus the conditional es-
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Figure 6.11: Conditional standard deviation as function of the distance of the conditional
estimate to the nearest integer at time of fixing for the decorrelated ambiguities. Left: wide
Iane ambiguities, right: narrow lane ambiguities.

timate of the decorrelated narrow lane ambiguities. The plot is somewhat more erratic than
the one for the wide lanes, but again five apparent outliers are visible. If we again would
allow ambiguities to be fixed with a deviation to the nearest integer of up to 0.17 cycles, the
450 first resolved ambiguities would fall inside the region of the decision function. (Again we
have to be a little careful here, since in the preceding wide lane ambiguity resolution all 470
ambiguities were fixed, the results for the narrow lanes might change if only the 465 wide
lane ambiguities with a conditional standard deviation Iess than or equal to 0.17 cycles were
fixed.)

The size of the fractional parts of the (conditional) estimates and the size of the (condi-
tional) variance is decreased by two processes: 1. the decorrelatin g Z-transformation, and, 2.
the conditioning forced by the sequential least-squares estimation.

Effect of the d,ecorrelation on the unconditional estimates.
To show that the decorrelating Z-ftansformation also has an advantageous effect on the un-
cond,i,ti,onal estimates, we made histograms of the fractional parts (i.e. the float value minus
its nearest integer value) of the estimates. Figure 6.12 shows the fractional parts for the orig-
inal ambiguities for both the wide lanes and the narrow lanes. In Figure 6.13 the fractional
parts of the decorrelated ambiguities for the wide and narrow lanes are shown.

For the decorrelated ambiguities, the nearest integer always turned out to be the integer
estimate. This demonstrates that instead of the search process a simple rounding scheme
could have been applied to the decorrelated ambiguities.

For the original ambiguities, the distance between the unconditional float estimate and
the integer estimate sometimes exceeds I cycle, see Figure 6.14.
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Figure 6.12: Histogram of the fractional parts of the unconditional estimates for the original

ambiguities. Left: wide lane ambiguities, right: narrow lane ambiguities.
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Figure 6.13: Histogram of the fractional parts of the unconditional estimates for the decor-

related ambiguities. Left: wide lane ambiguities, right: narrow lane ambiguities.

Effect of the conditi,oni,ng on the estimates.
In Figure 6.15 histograms of the fractional parts of the conditional estimates of the decorre-

lated wide and the narrow lanes as estimated by the LAMBDA method are given.

If we compare the histograms of the fractional parts of the conditional estimates of the

decorrelated ambiguities in Figure 6.15 with the histograms of the fractional parts of the

unconditional estimates in Figure 6.13, an overall decrease in distance to the nearest integer

can be observed, due to the sequential conditioning.

Effect of the decorrelation on the conditional uariances'
In Figure 6.16 the conditional variances for both the original and the decorrelated wide

lane ambiguities are plotted. The original ambiguities are ordered according to the order

in which they were fixed by the GAMIT decision function, the decorrelated ambiguities are

ordered according to order in which they were fixed using the LAMBDA method. Since only

t 5 0

t 0 0r00

t 0 0

t 5 0
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ambiguities as determined by the LAMBDA method. Left: wide lane ambiguities (470), right:
narrow lane ambiguities (470).
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443 of the 470 ambiguities were fixed by the decision function, the curve for the original
ambiguities ends with ambiguity 27. The plot clearly shows that over all the decorrelation
renders ambiguities with smaller conditional variances than those of the original ambiguities.

Effect of the condi,tioning on the uariances.
Figure 6.17 shows the effect the conditioning has on the variances. In the figure both the

variances and the conditional variances of the decorrelated wide lane ambiguities are plotted.

By definition, for ambiguity 470, the first ambiguity that is fixed, the variance equals the

conditional variance. Since it is the first ambiguity that is fixed, it cannot profit from the

conditioning of previous ambiguities. For the whole range of ambiguities that follow, the

conditional variances are smaller than their unconditional counterparts.

6.6.1 Comparison of the bootstrapping strategies

As we mentioned before, an alternative bootstrapping scheme was implemented. It aims at
performing the integer estimation for the whole set of ambiguities.

This alternative was not successful; the correlation between the decorrelated ambiguities
remains still rather high. This causes an enormous amount of incomplete integer vectors to

be generated, rendering the strategy extremely inefficient.
An indication for the correlation that is still present after the Z-transformation is the

size of the ambiguity decorrelation number 12. In Table 6.2 these numbers are given for both

strategies, for the original as well as the decorrelated ambiguities. The ambiguity decorre-
lation number ranges between 0 (full correlation causing singularity) and 1 (no correlation);
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Figure 6.17: Variances and conditional variances of the decorrelated wide lane ambiguities.
Black curve: conditional variances, grey curve: variances.

we strive for low correlation.
We see that the Z-transformation succeeds in decreasing the correlation, but that the

remaining correlation for the alternative strategy is still quite high. We have to be a little bit
careful with comparing the decorrelation numbers, since they depend also on the number of
ambiguities n. Looking at the definition of the ambiguity decorrelation number (Eqs. (5.54-
5.55)), we can define the average logarithmic ratio of the conditional and the unconditional
standard deviation as

0.ot
a

a
I

U

i2t r*t%fij:rog,s(ffi) (6.34)

which is independent of the number of ambiguities. As can be seen in Table 6.2, for all
ambiguities together this measure is larger than for the wide lane or narrow lanes.

The signature of conditional variances is also an indication for the efficiency of the search
process. This signature should preferably be flat, without large discontinuities; if not flat, the
values of the conditional variances should be increasing when going through the search process
from n to 1. In Figure 6.18 we have plotted the conditional variances ofthe decorrelated wide
lanes using the standard bootstrapping strategy, together with the conditional variances for
all decorrelated ambiguities using the alternative strategy. Although not entirely without
discontinuities, the values of the conditional variances for the decorrelated wide lanes are
reasonably constant at the beginning, and increase at the end. This increase is probably due
to the fact that some of the ambiguities are only observed for a very small time span.

The signature ofconditional variances for the alternative strategy on the other hand, has
a larger variation at start, and makes a rather large jump to a minimum at approximately
ambiguity 440. This seems to cause that 'halting' starts to occur approximately at this level.
Inspection of some intermediate results confirms this. In fact, even after hours (!) of CPU

''ff

ffi*,*',*;*"*;r"jlr*u", fu J*",.-,",l1 -r.,h\
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Normal bootstrapping
Wide lane Narrow lane

Alternative bootstrapping
Wide and narrow lane

logro (r")
Iog,o (r,)(*)
logro (r,) (**)

log,r(@)
log,o(/r ,)( . )
log,o( i f ; ) t - . )

-776.2
-72.8

n l a
-0.375
-0.155

n l a

-235.0
-82.4

n l a
-0.500
-0.175

n /a

-507.9
-232.4
-27t.5
-0.540
-0.247
-0.225

Table 6.2: Some diagnostic quantities from the ambiguity resolution for the three alternative
bootstrapping strategies. (*): no a priori ordering of the original ambiguities, (**): original
ambiguities a priori ordered according to decreasing value of variance.

time, still not one complete integer vector was found. For the wide lanes only case, the search
rendered two complete integer vectors in less than 1 second CPU time (HP-UX 9000/735).

The reason that the decorrelated ambiguities are still so much correlated must lie in the
fact that the ionospheric constraints are rather loose. In the limiting case, with constraints
with an infinitesimal small weight, there is full correlation between the wide lane and the
narrow lane ambiguities.

We also investigated whether the a priori order of the ambiguities has an influence on the
ability to decorrelate the ambiguities. Much to our surprise, since it was never observed for
the short baseline model where we usually have some tens of ambiguities, this was the case. A
priori ordering the original ambiguities according to decreasing value ofvariance, resulted in a
less correlated set of ambiguities after decorrelation. The ambiguity decorrelation number for
the decorrelated ambiguities decre'ased from 232.4 to 211.5. In Figure 6.19 the signatures of
the conditional variances resulting from a decorrelation upon the ambiguities in the original
order, and those resulting from a decorrelation upon the sorted ambiguities is depicted.
Since the decorrelating process consists of a repeatedly treating of two ambiguities at a
time, a global optimization with respect to decorrelation is not guaranteed. At least for this
example, the a priori ordering of the ambiguities, helped to lower the decorrelation.



6.6 Results for a regional network 205

0 . 1

0()
()

Jf
C)(.)

. F

U

lo-4

q i

ifrr.l'*u. r r r "  q  i
i t '1,{i,'

I Jrrr l1: 
'

uts'ull,t*r'

i flf
|41,

r  n - 5

200 400 600 800

Ambiguity

Figure 6.18: Conditional variances of the decorrelated wide lane ambiguities (black curve),
and ofthe decorrelated wide and narrow lane ambiguities together (alternative bootstrapping,
grey curve).

1 0 - 3

10 -4

10 -5
200 400 600 800

Ambiguity

Figure 6.19: Conditional variances of the decorrelated wide and narrow lane ambiguities
together (alternative bootstrapping). Black curve: original ambiguities a priori ordered ac-
cording to decreasing value of variance, grey curve: original ordering.

0 . 1

0 1
o
C)
o
>l
O

c)()

' F



Ambiguity resolution at medium distances

6.7 Concluding remarks

Although the ambiguities are most correlated when the observation time span is very short,
even for a time span of one day applied for the daily solution of permanent GPS arrays, a
decorrelation of the ambiguities has a significant effect. The decorrelation makes it possible
to apply techniques developed in the context of rapid static surveying to these networks,
thereby effectively removing the artificial border between both applications.

On the other hand, rapid static surveying applications could benefit from techniques
developed fo the regional networks. Especially methods to constrain the ionospheric de-
lays might enable the enlargement of the distance for which using a very short time span,
ambiguity resolution is successful.

Due to the hybrid character of the regional networks with ambiguities observed for time
spans that may differ considerably, there is clearly a need to enable the determination of a
subset of the ambiguities which can be fixed with sufficient reliability. Validation techniques
for the integer estimates (which we did not treat in this thesis) that are developed for the
rapid static applications might also be applied to the network case.

Thus, for the rapid static application, the challenge lies in extending the distance while
maintaining the short time spans. For the regional networks the challenge lies in reducing
the time span while maintaining the large distances involved in it. Eventually then the rapid
static surveying and the regional network application may be merged into one general method
for ambiguity resqlution based on the same theory and techniques.
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Appendix A

GPSvnQ

Most of the ideas and concept in this thesis have been implemented in the GPS network pro-
cessing software GPSvnQ. It is based on using the original GPS phase and code observable
types, instead of forming differences between observables and forming linear combinations
of observable types. It has been in use as a research tool since 1994, and the results in the
majority of the papers on the LAMBDA method for ambiguity resolution were computed
using it. In principle any set of observable types may be used as long as the chosen model
allows its use.

Parameters that may be estimated are 1. station coordinates, 2. hydrostatic and/or wet
tropospheric zenith delays, 3. ambiguities, 4. receiver and satellite clocks, 5. ionospheric
slant delays.

Station coordinates, tropospheric zenith delays and ambiguities may be defined for a part
of the total time span. In practice this means that one or more of the stations may be moving,
that zenith delays may be estimated that are valid for only a part of the total time span, and
that cycle slips are neutralized by introducing a new ambiguity parameter. Since all these
global parameters are estimated in one batch the amount of memory available at a particular
computer limits the number of parameters. The program is at the first place developed with
static applications in mind, but for research purposes small kinematic networks have been
computed with it.

Again for research purposes the data may be divided in multiple time spans, where for
each of these time spans a separate adjustment may be performed. The solution may be
iterated for non-linearity. For static solutions this is usually not needed, but for kinematic
solutions using only phase data and a small time span, it was found to be necessary.

When by testing an outlier or cycle slip is found, the model may be adapted (i.e. removing
an observation, or inserting an extra ambiguity parameter), after which a new adjustment
may be performed. In this way the removal of outliers and cycle slips is automated.

After the float solution ambiguities may be resolved. The fixed solution may be computed
using the same model as for the float solution (but with the ambiguities constrained to
integers), or an extended model may be used (e.g. one where ionospheric slant delays are
estimated). In that case, another do-while loop is inserted after the fixed solution for an
adjustment using the extended model (see Figure A.1 where the main structure of GPSveQ
in stylized M,q,tI,ee notation can be found).
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2L0 GPSvoQ

for i : 1 : number of time spans
do

for j :1 : number of iterations
f o r k : 1 : n u m b e r e p o c h s

eliminate the local parameters
update system of normal equations

end
compute the global parameters
for k : 1 : number of epochs

compute the local parameters
if j:1u-5"t of iterations then

compute the one-dimensional test statistics
update C'Q;te

end
end

end
Do the testing, and if necessary adapt the model

while OMT is rejected
ambiguity resolution
fixed solution

end

Figure A.1: Main structure of GPSvnQ.



Appendix B

, ' ( t),  i ' ( t),  and f '( t) in ECEF WGS -84

Corrected mean motion, Time from epoch, and Mean anomaly;

TNn : l p + L ' n

t k : t - t o .

Mk: Ms * ntp (B.1)

Eccentric anomaly.:

E*: Mr * esin,E; (solved by iteration)

! - :  
'

r  -  ecosEs 
(B'2)

Ttue anomaly:

uk : arctanth 
- P-sin E*

COS ttp - €

. ,/T=Eno
- r c  -  

7 -I  -  ecosEp

" -2efi=@sin41'; '
'o:  -  

( t  -  
""*EFbi 

(B'3)

Argument of latitude:

S p : u p * a  ( B . 4 )

Argument of latitude correction:

\ux - C,, sin 2d* I Cu"cos26r

iiro : 2 Lt (Cu, cos 2$1, - Cu"sin2$1,)

6uo - -4r1(C,,sin24e * C,," cos 2dx) + 2ilk(C,, cos2Q1, - C,"sin2g1,) (8.5)

Radius correction:

6rp: Crrsin2Qp -t  Cr"cos2Qp

8r,, : 2 tx(C * cos 2$1, - C," sin 2S1r)

8r1, : -4721C," sin 2$1, * Crscos2Ql,) -t 2il1,(C," cos2$1, - C,"sin2$1,) (8.6)

2tr



2t2 r ' ( t ) ,  i ' ( t ) ,  and rs(r )  in  ECEF WGS-84

Inclination correction:

| ip :  g ' ,s in26x * Ci6cos2Q6

iio : 2 ilr(C n" cos 2Q1, - C,;" sin 2$1,)

5i1, : -4;z1C;" sin 2d* -t Ctcos2$v) + 2ik(Ci"cos2$p - Ci"sin2$p) (B'7)

Corrected argument of latitude:

u y : Q y I 6 u p

i t ' x : i x + | u t '

u x : i l * * 6 u t

Corrected radius:

r * : A ( l - e c o s E p ) * 6 r p

it : Ae,O; sin Ex * 6r*

.. Ae(cos Ex - e) ;, ';
rk : 

(l - e cos Ek) 
'b1' t org

Corrected inclination:

f ; t
l * k
L ltL
f - t

I  
n k

I i)L

Corrected longitude of ascending node:

Or : Oo + (CI - {l")tp - (l"to"

o .  - c ) - o
u ! f ,  -  c o  u l e

'it : io * i,aottx -l 5ix

i * : ' i a o t * 6 i x
' io:  

6i ,u (B.10)

Satellite position in orbital plane:

l " l l _ -  f c o s u r l
L ,l I 

: 
"o | ' in'o I

:r* 
[:ffff ] *r1,'it1,[ ;:',",i- I

: (i* - ,-rill:ffff 
] + (2ikitk + rkuk) 

[ ;:',",i- 1

(B.B)

(B.e)

( 8 . 1 1 )

(B .12)
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Rotation matrix from orbital plane to ECEF:

f cos O;, - cos i1 sin Q; I
ft6 : I sin O1 cos i1 cos Q; I

L 0 sinfl  J
f -O sin O1 -Ql cos i6 cos O3 * i* sin f6 sin Os I

Eo:  
I  

OcosO;,  -O;cos i ls inO7,  - . i l ,s in ipcosOl  
I

L 0 ipcos'i1, I

.. | -O2 cos O1 th2 + i2)cos fl sin Qx * 2i*Qsin i,, cos O* * ir sin zl sin O1 I
Ro : | 

-O2 sin Q* -(O' + ifl) cos i6 cos Q1 + 2ik?sin f; sin Q+ -'iosin zs cos Op I
L 0 -i! sin it, -r'ixcos it .l

(8 .13)

Satellite position in ECEF coordinates:

l  r o l  r  - ,  1r ' ( t ) : l r : l = * r l ; i l
L z *  J
I  ' 'o lr,(r) :  l ; ;  I  u-l*] *"-t; ,)
L z o  l
l ; o li'(t): | ,; | : u- [ 

';].rrrl;i] * "- l?:il (B 14)
L z u  l

To obtain the satellite position in ECI'coordinates, the corrected longitude of the ascending
node and its derivative (Eq. (B.tZ)) are replaced by

Q r : Q o * Q t *

o .  - c ) (B.15)
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Appendix C

f nverti ng F d,

(c.1)

For the inverse of matrix

yields

where

with

*:l::: :::)
Ir-r - | _l"rt 

- nTrr-rr\rrl-t 
, _, 

-rrrt,rT, (nr" - 
"?r\i(r)-'

L 
-rilnrt (rr, - nlrnl}n21)-' (rr, - nvnrlnlr)-

l- n;l n[r(n22 - n21n ] nTr)- tl' : - ni} nn (ry1 - nl,nlrr rrr)- t

^, I mlr-r - Er-t.* f
" 

: 
L -E*,r-r rI^ l

where ,Or,o stands for a p by q matrix filled with 1's, and 1o for the matrix of unity of dimension
p, we evaluate

/  
' f  - l  \ - t

(n r r  -  n )1n2. in21)  -

1
(mIr-,  -  I  Er-r,*I^E*,, - t)-1

which using E*,rE^,, - mE, transforms into:

(mI,- ,  - ! -E,-r)- ' :  1(r , - ,  -  1""- , ) - t
T m r

Using the matrix lemma 2.3.3 from Golub and Van Loan (1989) at page b9

(r - A)- '  :  r * i  r- i f  l lAl l  < 1
fr=1

where ll.ll is a norm satisfying the sub-multiplicative property like e.g. the Robenius norm:

l l / l l "  :  \ l t t  locj l '

(c.2)

(c.3)

(c.4)

(c.5)

(c.6)

(c.7)

(c.8)

i = r  j = l

2L5

(c.e)



2L6 Inverting fld

and

(Eo)o:qk-tEo ; tt lnrltr:f ,  (c.10)

we find

r  r /  
e  1  \

(mr,-t - |r,-,,^r^E*,,-t)-t: * (t-, . 
E ; (" - 1)o-' n,-,)

:1(,,-,* -!i fd)*'.-,)- \ - ' - ' ' " - t f , 1  \  r  /  /
t ( , _,* _1= (i rr__t)- _ ,\ 4_,) (c 11): - \ ' " - t + ' - ' \ 3 \ - "  

/  /  /
with

o o 1

I " o : r .  
- 1 < c < 1  ( c ' 1 2 )

/c=0

we eventually obtain

(*1,-, - ' ;8,-r,^t*E^,,-r)-r : 
*(r,-r* 

-L (" - l) E -t)

:  
)Q,- ,  

+ E,-r)  (c '13)

Another way to obtain this result is to recognize that this is a so-called combinatorial matrix

(Knuth 1973), page 36. Such a p x p matrix is defined as

a i j :  Y  l6 ; i r  (C '14)

and its inverse is given by

bni:-Ei&ip (c.lb)
r(r + pd

Analogously we find for

(n, - n2fiinTr)-r : (rI* - 
*E^,,-rt,-rE,-\^)-r

: i('^-#"^)-'
: L (r*1 d6'-) (c'16)

r \  n ' L  /

Now we can easily determine

-n22n21(n11- n[rn;]n21)-r = 
fir^r^,,-, 

(/"-, + E,-r) (C.17)

: LE^.,_,
n1



2t7

and

-"rl"Tr(rr, - nzlnrrtnlr)-l :

Putting everything together eventually leads to

I ml,-t -8,-r,^ l-t | * (r.-, + E,-)
t l

l , -E^,,- ,  r I* I  
-L 

*n^,,- t

1
lEr-r .^
m

1 p '
lnur-  I ,m

| (r^ + *n^)

(c.18)

(c.1e)
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Appendix D

Computation of and A-'rtnHA,

D.1 No estimation of ionosphere, distinct clocks

ld, = 1 lQ;;
a , : l  d 2  

l , o - ' : l
L d O ) L

,r a_, 7 lila;"a' 6a;;a,'qTQ-'A, : I
t

r -r l(ila;"a'.,-' (6a;;a,1-,
(ATa-tA,)-' : 

I
I
I
L

for each observable type

Q;,' I
q;:]

l
I

4e;]a,)

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(uorr,) ']

H A , :

D _ _t  A z -

Hd"

Pa,

Pi

I na,

I
L

l"
l.p + -

' A z -

2I9
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lQ;"Pi
e-'P*^: I a;:Pi

I

t , r : r f )
(D.7)
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D.2 No estimation of ionosphere, common clocks

(D.8)

(D.e)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

I  Q; '

ATQ-t Ar: p,rFg;ld
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(F e;' a)-'



Computation of H4 and Q-l Pf,

ere, distinct clocks for each observable typeionosph

I'
L

D.3 Estimation of

(ATQ-'A,)-' :

| *,1F9;'d1-'
. lq",n(FQ;'d)-'I I

r l  :wtni 
1rysry2(ilQ;td)-l
| -n'QuH[

I,u,: 
I
L#lr

ls - *#n'it
I  urqtn2 P+

P A " : l  ' " .  "

| "y'rr

(D.15)

(D.16)
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