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Summary

A processing strategy for the application of the GPS in networks

The objective of this thesis is the development of a geodetic data reduction model for the
use of the GPS for high precision relative positioning, with an emphasis on static network
applications. The following aspects can be distinguished: optimum use of available data, es-
timability of parameters, the use of an efficient estimation method for the estimation of both
the continuous and integer parameters, and the development of an efficient testing procedure
to detect gross errors in the data.

To enable the optimum use of the collected data we use the original observables instead of
the more common use of (double) differenced observables. This also enables the estimation
of parameters (receiver and satellite clocks) eliminated in the differencing approach. Instead
of the common use of linear combinations of the GPS observable types, we use the origi-
nal observable types. Again this enables the estimation of parameters otherwise eliminated
(ionospheric slant delays) and guarantees that the full information contained in the observ-
ables is preserved. Since, when using the original observables, the models for GPS relative
positioning are not of full rank, the rank defect is analyzed and resolved, and resulting es-
timable functions are given. In particular, an algorithm for resolving the rank defect due to
the GPS carrier phase ambiguities is described.

The use of the original observables asks for an efficient data reduction model. The data
reduction is therefore carried out in two steps. In the first step the local parameters, viz.
clocks and ionospheric slant delays are eliminated and only the global parameters (coordi-
nates, tropospheric zenith delays, ambiguities) are estimated using Cholesky factorization
of the sparse, reduced normal matrix. For the ordering of the global parameters during
the factorization an a priori ordering is given which to a large extent preserves sparsity. In
the second step the local parameters are computed, and the (sometimes tens of thousands)
observations are efficiently tested for gross errors (outliers and cycle slips). The testing of
observations lacks in the existing GPS data processing softwares for networks. The data
reduction for the original observations does in general not cost more time than the reduction
for the double differenced observations, and besides enables the quality analysis of single
observations instead of functions thereof.

For high precision relative positioning the integer estimation of the GPS phase ambiguities
and subsequent constraining of the ambiguities at their integer values (fixed solution) is
needed. The integer estimation is carried out using the LAMBDA (Least-squares AMBiguity
Decorrelation Adjustment) method. It consists of a general decorrelation of the ambiguities
materialized in a so-called Z-matrix, followed by a depth-first search in the hyper-ellipsoid
formed by the variance-covariance matrix of the ambiguities. The construction of the Z-
matrix (explicitly and implicitly) and the search are derived, and described in detail.

Results of the integer estimation are given for baselines up to 56 km, and for a small
network with three of the four stations allowed to be moving. The integer estimation method
was also ébplied to a regional network in California, set up for monitoring of crustal move-
ments. The results show the applicability of the method to both short baselines (up to 10-20
km) with an observation time span of the order of seconds, and regional networks with station
separation of up to hundreds of kilometers and an observation time span of the order of one
day.
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Samenvatting (in Dutch)

Een verwerkingsstrategie voor de toepassing van het GPS in netwerken

De doelstelling van dit proefschrift is de ontwikkeling van een gegevensverwerkingsmodel
voor het gebruik van het GPS voor zeer precieze relatieve plaatsbepaling, met een nadruk
op de statische netwerk toepassing. In het onderzoek kunnen de volgende aspecten worden
onderscheiden: optimaal gebruik van de data, schatbaarheid van de parameters, het gebruik
van een efficiénte schattingsmethode voor zowel de reéelwaardige als de geheeltallige para-
meters, en de ontwikkeling van een efficiénte procedure om grove fouten in de waarnemingen
te ontdekken.

Om optimaal gebruik van het waarnemingsmateriaal te waarborgen worden de originele
waarnemingen in plaats van de vaak toegepaste dubbele verschillen van de waarnemingen
gebruikt. Dit stelt ons tevens in staat om parameters te schatten die anders geélimineerd
worden (ontvanger- en satellietklokken). In plaats van de vaak toegepaste lineaire combi-
naties van GPS waarnemingstypen, gebruiken we de originele waarnemingstypen. Dit maakt
het weer mogelijk om parameters die anders geélimineerd worden te schatten (ionosferische
vertragingen), en garandeert het behoud van de volledige informatie aanwezig in de waarne-
mingen. Omdat voor de originele waarnemingen de modellen voor relatieve plaatsbepaling
met GPS niet van volle rang zijn, wordt het rangdefect geanalyseerd, en worden resulterende
schatbare functies gegeven. In het bijzonder wordt een algoritme voor de oplossing van het
rangdefect veroorzaakt door de GPS fase meerduidigheden beschreven.

De gegevensverwerking wordt uitgevoerd in twee stappen. In de eerste stap worden de
lokale parameters (klokken en ionosferische vertragingen) geélimineerd waarna de overige
parameters (codrdinaten, troposferische zenit vertragingen, meerduidigheden) geschat worden
met behulp van Cholesky factorisatie van de ijle, gereduceerde normaalmatrix. Voor de
ordening van de parameters gedurende de factorisatie, wordt een a priori methode gegeven,
die de ijlheid grotendeels behoudt. In de tweede stap worden de lokale parameters berekend
en worden de (soms tientallen duizenden) waarnemingen op efficiénte wijze getoetst op grove
fouten. De toetsing van waarnemingen ontbreekt in bestaande GPS verwerkingssoftware
voor netwerken. De gegevensverwerking kost in het algemeen niet meer tijd dan die voor de
dubbele verschilmetingen, en maakt een kwaliteitsanalyse van enkele waarnemingen in plaats
van functies van waarnemingen mogelijk.

Voor zeer precieze relatieve plaatsbepaling, is geheeltallige schatting van de GPS fase
meerduidigheden, en een daarop volgend vasthouden van de meerduidigheden op hun geheel-
tallige waarden, noodzakelijk. De geheeltallige schatting wordt uitgevoerd met de LAMBDA
methode. Deze bestaat uit een decorrelatie van de meerduidigheden gevolgd door een zoek-
procedure in de hyper-ellipsoide gevormd door de variantie-covariantie matrix van de meer-
duidigheden. De constructie van de decorrelerende matrix (zowel expliciet als impliciet) en
de zoekprocedure worden afgeleid en in detail beschreven.

Resultaten van de geheeltallige schatting worden gegeven voor basislijnen tot 56 km,
en voor een klein netwerk met drie van de vier stations bewegend. De geheeltallige schat-
tingsmethode is ook toegepast op een regionaal netwerk in Californié, opgezet om aardkorst-
bewegingen te bepalen. De resultaten laten zien dat de methode zowel toegepast kan worden
voor korte basislijnen (tot 10-20 km) en een waarnemingstijdsspan van enkele seconden, als
voor regionale netwerken met afstanden tussen stations van honderden kilometers en een
tijdsspan van een dag.
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Chapter 1

Introduction

1.1 The Global Positioning System

In this section we will give a short introduction into the Global Positioning System, for
more information we refer to (Leick 1995), (National Research Council 1995), (Parkinson
and Spilker Jr. 1996a), (Parkinson and Spilker Jr. 1996b), (Kleusberg and Teunissen 1996),
(Hofmann-Wellenhof et al. 1997), (Strang and Borre 1997).

The Global Positioning System, or GPS, is a development of the US military to provide
real-time, world wide absolute positioning with a high accuracy. The system as it was de-
veloped is based on the principle of the measurement of ranges between the unknown user
position to the (known) positions of 24 satellites orbiting the Earth in six orbit planes (A to
F) at a distance of approximately 26,000 km from its center. Currently the third generation
(Block IIR) of GPS satellites is being deployed (see Figure 1.1).

The position of the satellites can be computed using ephemerides that are contained in a
so-called navigation message which is part of the signal transmitted by the satellites. These
ephemerides are computed by the Control Segment (CS), consisting of five tracking stations

Figure 1.1: Block IIR GPS satellite.



2 Introduction

more or less equally distributed around the equator, and a master control center. The
extrapolated ephemerides (broadcast ephemerides) are regularly uploaded to the satellites
from the tracking stations.

The ranges are determined by comparing the time tag of transmission of the signal at
the satellite with the time tag of reception of the signal at the receiver. If the clocks of the
receiver and of the transmitter would be perfectly synchronized, and if the signal would travel
through vacuum, multiplication of the time difference with the speed of light would give the
range between the antenna phase center of the receiver and that of the satellite.

If these perfect, unbiased ranges would be available, the ranges between the unknown
user position and three satellites would be sufficient to obtain an estimate for that position!.

As in general neither the clocks of the satellites, nor those of the receivers are synchronized
with the official time of the GPS system (GPS time which equals UTC (Universal Coordinated
Time) at the start of the test phase of GPS, at January 6, 1980), the ranges become biased
by these unknown offsets. This basic GPS observable is called pseudorange.

Using pseudoranges instead of ranges, besides the position of the user, extra unknown
parameters have to be solved for (the offsets of the receiver and satellite clocks with respect
to GPS time). The offsets of the satellite clocks are however also computed by the CS
and uploaded to the satellites, thus only the offset of the clock of the receiver needs to be
estimated.

The GPS satellites transmit their signals at two frequencies (L1=1575.42 MHz, and
L2=1227.6 MHz) in the L-band. These carriers are modulated by so-called PRN (Pseudo
Random Noise) codes, which are unique for each satellite. In this thesis the GPS satellites
will be referred to by their PRN code. There are two types of codes, viz. a Precision (P) and
a Coarse/Acquisition (C/A) code. The P-code has a 10 times higher resolution than the C/A
code and thereby the determination of the pseudoranges can be done more precisely. The L1
carrier is modulated by the P (P1) and C/A code, the L2 carrier only by the P (P2) code.
The P-code was available to civilian users only in the test phase of the GPS system. It now is
encrypted to the so-called Y-code, to make spoofing of the code impossible (implementation
of Anti-Spoofing or A-S). The key is available only to the US military and their allies for
military use. The C/A code is available to all users.

Since the implementation of A-S several techniques have been developed to determine P-
code like pseudoranges, but the precision of these pseudoranges is still lower than the original
P-code pseudoranges, albeit higher than the C/A pseudoranges.

The time of transmission of the signal at the satellite is broadcast at an interval of six
seconds. Within this interval, time of transmission is determined by comparing the code on
the GPS signal with a copy of that code generated by the receiver. In this thesis pseudorange
observables will be denoted as pseudorange or code observables. The pseudorange at L1 will
be denoted as P1 irrespective if it is a C/A pseudorange, a genuine P1 pseudorange or a P1
like pseudorange. The pseudorange at L2 will accordingly denoted as P2.

Selective Availability or SA, is another measure taken to deprive civilian users from the
highest possible accuracy. In principle it consists of two parts, viz. a dithering of the satellite
clocks and degradation of the broadcast ephemerides. Currently the latter does not seem to
be implemented. Authorized users again can undo the effect of SA. As a result of A-S and

1Under the assumption that neither the positions of the three satellites, nor the user position and the
positions of two satellites lie at one line (low precision), and that a sufficient accurate approximate position
of the user position is available (since in general there are two possible solutions, i.e. for a user on Earth, one
solution is on Earth, and one outside).



1.2 Objective and outline of the thesis 3

SA, a civilian user can determine absolute position with a horizontal precision of some tens of
meters, whereas an authorized user can determine position with a precision of several meters. .

Positioning using carrier phase

From the start of the test phase of the GPS system, it was observed that instead of using
the pseudoranges one could use the carrier phase instead, in a similar fashion to the already
existing VLBI technique.

By measuring the incoming phase of the carrier and keeping track of the number of whole
cycles from one epoch to the next, an ambiguous or biased pseudorange is obtained. It is
ambiguous since it gives only the change of distance between receiver and satellite between
epochs. The unknown number of cycles that has to be added to make it a genuine pseudorange
is called the (GPS carrier phase) ambiguity. The carrier phase observable will be denoted in
this thesis as carrier phase or phase. The carrier phase observable on the L1 frequency will
be denoted as L1, and the one on the L2 frequency, as L2.

Using the model for the satellite clock error contained in the broadcast ephemerides,
carrier phase observations can be used for absolute positioning (Bock et al. 1984), but the
accuracy of the coordinates will be governed by the SA effect, and is therefore comparable
to the results obtained using pseudorange observations.

In a relative positioning setup, where two or more receivers simultaneously track a com-
mon set of satellites, corrections to both receiver and satellite clock errors may be estimated,
and very precise and accurate coordinate differences with respect to a known position are
obtained. Relative positioning has found successful application in fields like geodynamics,
surveying and navigation.

Since 1994 precise ephemerides (which are an order more precise than the broadcast
ephemerides) are estimated by a consortium of geodetic and geophysical institutes (Interna-
tional GPS Service for Geodynamics or IGS), to enhance the precision of crustal deformation
studies. In California and Japan, arrays of several hundreds of stations have been established
with the purpose of continuously monitoring plate movements on a daily basis.

For surveying and navigation purposes the precision requirements are less than for the
geodynamics case, but one would like to have a position in (near) real time.

1.2 Objective and outline of the thesis

The objective of this thesis is the development of a geodetic data reduction model for the use of
GPS for high precision relative positioning, with an emphasis on static network applications.
The following aspects can be distinguished: optimum use of available data, estimability of
parameters, the use of an efficient estimation method for the estimation of both the continuous
and integer parameters, and the development of an efficient testing procedure to detect gross
errors in the data.

The processing strategy. is in principle applicable to any network of receivers, irrespective
of the distance between the receivers. For longer distances however, the functional model will
have to contain more terms (e.g. orbital parameters, correction for solid Earth tides) than
for shorter distances.

As said before, the main focus is at the application in static networks, i.e. two or more?,
non-moving receivers, but most of the procedures described have also been applied to moving

2The two receiver or single baseline case is the limiting case of a network.



4 Introduction

receivers.

In Chapter 2 the functional model for both the pseudorange and carrier phase observable
types is given. The error sources affecting the observables are described, and ways to model
them are given. Emphasis lies on description of error sources that are not well covered in
existing literature. Nothing will be said about the GPS orbits; we presume to have available
broadcast or precise ephemerides.

Using the functional model of Chapter 2, in Chapter 3 an efficient procedure for the
estimation of the unknown parameters of interest, and a testing procedure for the detection
of outliers and cycle slips for the observations involved, will be presented for the case when
only one GPS observable type (pseudorange or carrier phase) is used.

To enable the optimum use of the collected data we use the original observables instead
of the more common use of (double) differenced observables. Using the original observables
is equivalent to applying the double difference technique when the same data is used in both
approaches. The undifferenced approach however, sometimes enables to use data that in the
double difference approach has to be discarded. Only for baselines it does not matter which
of the approaches is used. Furthermore the undifferenced approach enables the estimation
of parameters (receiver and satellite clocks) that are eliminated with the double difference
approach.

It will be shown that when using undifferenced observables, the system of observation
equations exhibits a rank defect that can be resolved by choosing an appropriate S-basis.
The resulting estimable functions of parameters will be given. In particular, an algorithm
for resolving the rank defect due to the GPS carrier phase ambiguities is described.

The use of the original observations asks for an efficient data reduction model. The data
reduction is therefore carried out in two steps. In the first step the local parameters, (receiver
and satellite clocks) are eliminated and only the global parameters (coordinates, tropospheric
zenith delays, ambiguities) are estimated using Cholesky factorization of the reduced normal
matrix. In the second step the local parameters are computed, and the observations are
tested for gross errors (outliers and for the phase observations also cycle slips). The data
reduction model proposed, does in general not cost more time than the data reduction for
the double differenced observations, and besides enables the testing of single observations,
instead of functions thereof.

Chapter 4 treats the case when more than one GPS observable type is used. Instead
of the common use of linear combinations of the GPS observable types, we have chosen to
use the original observable types. Again this enables the estimation of parameters otherwise
eliminated (ionospheric slant delays) and guarantees that the full information contained in
the observables is preserved.

Four different models are shown, and for these, the rank defect, a possible S-basis and
resulting estimable functions will be given. Again an efficient procedure for estimating the
parameters and testing the observations will be shown. As the normal matrices arising
from the processing of large time spans may be sparse, the influence of the ordering of the
parameters on preserving the sparsity in the subsequent Cholesky factorization will be shown.

In Chapter 5 integer estimation of the GPS double difference ambiguities will be treated.
For high precision relative positioning the integer estimation of the GPS phase ambiguities
and subsequent constraining of the ambiguities at their integer values (fixed solution) is
needed. The integer estimation is carried out using the LAMBDA (Least-squares AMBiguity
Decorrelation Adjustment). The method consists of a general decorrelation of the ambiguities
materialized in a so-called Z-matrix, followed by a depth-first search in the hyper-ellipsoid
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formed by the variance-covariance matrix of the ambiguities. Depending on the application
at hand, it may be more efficient to compute the Z-matrix implicitly. The construction of
the Z-matrix (explicitly and implicitly) and the search are derived, and described in detail.

In Chapter 6 ambiguity resolution for medium distances (10!~10® km) will be treated.
The ionospheric delays play a key role here. Two ways to constrain these delays, and results
obtained by them will be given. The LAMBDA method was applied to resolve the ambiguities
of a regional network in California. For this analysis the method was implemented in the
GAMIT software of MIT/Scripps Institution of Oceanography.

Most of the ideas of this thesis have been implemented in the GPS processing program
GPSvEQ developed by the author, and most of the examples have been computed using it.
A short description of the program can be found in Appendix A.
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Chapter 2

Functional model for the GPS observables

In this chapter we will develop the functional model for the GPS code and phase observables
in precise relative positioning. The observables are to be related to the unknown parameters
of interest (usually the receiver’s coordinates) and the bias parameters (e.g. clocks and phase
ambiguities). The structure of this chapter is the following. We will start with the non-linear
observation equations followed by the linearized ones needed for the (iterated) least-squares
adjustment. The underlying simplifications and assumptions will be described. For the
computation of the non-linear as well as the linearized equations we need the satellite position
and some quantities derived from it such as the topocentric distance and its derivatives. A
method for the computation of these quantities will be derived.

Some error sources affecting the GPS observables may be corrected for a priori. A number
of these error sources, viz. the satellite clock, phase center variation and offset, delays due
to the troposphere and ionosphere, solid Earth tides and phase wind-up, will (shortly) be
described. Emphasis lies on aspects that are not well covered in existing literature. Noth-
ing will be said about the GPS orbits; we presume to have available broadcast or precise
ephemerides. It will however not affect the applicability of processing methods proposed in
this thesis.

For reasons of legibility the stochastic character of the observables and estimated param-
eters is not denoted by any particular symbol.

2.1 The GPS observation equations

The non-linear observation equations for the carrier phase observables on L1 and L2 and the
pseudorange observables on L1 and L2 read respectively (in meters)

o7 () - (t ) =pl(ti = T ts) + Btipa (ts) — e8P (8 — 1) + pld (8 — 7, ) Ti(t)
— T () + AN, +eg (1) (2.1)
®1o(t:) — Sy (1) =pl(ti — 7, 1) + 05ti wa(ts) — e8Pt — 7)) + pl(ti ~ 7 ) Tilt:

— ")’I](t ) + AN, L2 + €(I>J 2(t1)
R‘J,.m(ti) - Epg;m (t:) =pl(t: — T}, ) + eStipr () — 6Pt — 7)) + pid (8 — 77, 1) Ti(ts)

+ I (t:) + epi, (t) (23)
Ploa(ts) = g (8) =pl(ti — 7 1) + Stipa(ts) — e8P (t; — f) + pl (1 — 7 ) Tilts)
+ ’)’Iij (ti) + €P;;'P2 (ti) (24)
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where

is Receiver, respectively satellite identification.

t; Time of reception of the signal at receiver ¢ in GPS time; t; = & — 6t;(¢;),
with ¢} the time of reception in receiver time (the time tag), and 6¢;(¢;) the
receiver clock error [s].

pl(t; — 7, t;) Topocentric distance between receiver i at time t and satellite j at time t; —77:
oLt — 711, t) = ||Ir¥(t; — 77) — ri(t;)||, where 77 and r; are defined in an Earth-
Centered Inertial (ECI) system [m].

ri(t;) Position vector of receiver i at time of reception ¢; of the signal [m].

ri(t; — )  Position vector of satellite j at time of transmission ¢; — 77 [m].

Tij Travel time of the signal, i.e. time needed for the signal to travel from the
satellite to the receiver [s].

0ti(ts) Receiver clock error at time of reception ¢; [s].

§t7(t; —7})  Satellite clock error at time t; — 77 of transmission of the signal [s].

c The speed of light in vacuum (299,792,458.0 m/s).

T;(t;) Delay due to the troposphere in the direction of the zenith [m].

p{ (t; — Tij t;) Function which maps the zenith delay into the receiver-satellite direction:
pl(ti — 7, t;) = pd (r9(t; — 77),m:(t;)). A different mapping function for the
hydrostatic (‘dry’) and the water vapor (‘wet’) zenith delay may be defined.

Ti(t:) Delay due to the ionosphere on L1 [m)].

y Factor relating the ionospheric delay experienced by the L1 and P2 observable
types to the delay experienced by the L1 and P1 observable types; v = f,2/ f2?

f Frequency of L1 = 1575.42 = 77 x 20.46 MHz.

fo Frequency of L2 = 1227.60 = 66 x 20.46 MHz.

Ay Wavelength of the Li-carrier: f—cl =~ 0.19 m.

Ao Wavelength of the L2-carrier: fiz =~ 0.24 m.

Nij Real valued ambiguity term for the carrier phase observable; Nij = Nij +¢i—¢7
[cycles].

oi, ¢ Initial phase at receiver, and satellite, respectively [cycles].

e(ts) Observation noise and unmodeled effects [m].

() A priori corrections for satellite clock, phase center variation, tropospheric and

ionospheric delays, solid Earth tides, and phase wind-up, (see Sections 2.3-
2.8) [m].
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In the observation equations quantities occur that are defined at the time of reception
of the signal ¢, at the time of transmission ¢ — 7, and at a combination of the two. The
ambiguity term that occurs in the equations for the carrier phase does not change with time.
Note that each receiver has its own time of reception (in GPS time); the difference between
the time of reception of two receivers is for a modern geodetic receiver at most 1 ms (see
Section 2.1.2). The time of transmission of the signals varies through the difference of the
time it needs to travel to two receivers that are not equidistant to the satellite. For each
observable a receiver and satellite clock error is defined, hence the term ‘pseudorange’. The
phase observables are also biased by an unknown number of cycles and are thus ambiguous
pseudoranges.

Although in principle the clock errors are equal for all observable types for a particu-
lar receiver-satellite combination, the lumping of unmodeled observable type-specific error
sources into the clock errors makes it necessary to introduce distinct clock errors for each
observable type for each epoch. So, strictly speaking, the term clock error is somewhat mis-
leading. Depending on the application at hand, some parameters may be omitted from the
observation equations.

2.1.1 Linearization of the observation equations

Since the equations for the GPS observables are non-linear it is necessary to linearize them,
e.g. for the L1 phase observable we have (hereafter we leave out the subscript ; for the time
of reception of the signal at receiver 3):

. 0d!
AL, () =) 52| Azt O(As?), (2.5)
z=x°
with z the unknowns we want to estimate, and the ‘observed’ minus ‘computed’ observation
as

A‘I)g,m(t) = q’?,m(t) - (I’g,m(t)o (2-6)
The computed observation &/, (t)° reads

®1 1) = P oty e + Bt (8)° — e8P (t — 7))°

1) iy e TOO° = T + NN (2.7)

We regard the position of the satellite 77(t) as a known function of time, i.e. we do
not estimate (corrections to) orbital parameters. The parameters to be estimated are then
the position vector of the receiver, the receiver clock error, the satellite clock error, the
tropospheric zenith delay, the ionospheric slant delay and the real valued ambiguity.

The receiver clock error appears two times in the observation equation. It is part of the
expression for the topocentric range to compute the position of the satellite at the time of
transmission: '

At =7 t) = P9 (8" = St () — 77) — mi(®)]]

and it appears as cdt;11(t) as a correction term to the biased pseudorange CD{:,LI. For the
topocentric range it is sufficient that the time of reception of the signal is known with an



10 Functional model for the GPS observables

accuracy of a few tenths of microseconds as this corresponds to a maximum change in the
topocentric range of a few tenths of mm. The maximum of the derivative of the topocentric
range with respect to the travel time of the signal is approximately 800 m/s, hence the
maximum error in the topocentric distance with an error in the time of reception of 1 us is
107% s x 800 m/s = 0.8 mm.

Although each observable type is biased by a different receiver clock error, for the topocen-
tric range we assume a common clock error for all types. This will not degrade the eventual
solution since the order of accuracy required for the time of transmission exceeds the order of
the differences between the clock errors by several orders (see Figure 4.3 where the maximum
difference between the L1 and L2 clock error equals a few cm or 0.1 ns).

For the receiver clock error as a correction term to the biased range, we need a higher
accuracy, since the eventual bias in it is multiplied by the speed of light. So for this purpose
we estimate for each observable type a different clock (see Egs. (2.1-2.4)).

If a priori approximate values for the parameters z° are not available or of low quality,
the least-squares adjustment needs to be iterated. The linearized observation equation for
the L1 observable for the current iteration step reads then (using (=) to indicate the previous
iteration):

: op] | ou
ARl () = (55 + 505 An()
: : ri(t—7] )i (8)()
op oyl ot , ,
peal : ——)ASt;11(t) — cASP (¢ — 7]
+(C+(at + at) . ‘ aétz) »Ll() ¢ ( z)
i (t=1]),ri(t))
+ /‘Hrj(t_rg'),r,-(t)(—) ATi(t) — AZ!(t)
+MAN (2.8)
which with a«sffm = -1, u{ the unit direction vector from receiver to satellite, and p and z

the time derivatives of the topocentric distance and the mapping function of the troposphere
respectively, turns into

o] )
('91",-T

A®Y (1) = (—ud” +

ATi(t)
i (t—7]);ri(t)0)
+(c— (4 + f‘Z)l,j(t_Tg'),r,-(t)(—))A‘StiyLl (t) - cASt (t—17)
+ ﬂg |rj(¢_fif'),n(t)(—) ATi(t) — AIZ (t)
+ MANY, ; (2.9)

The computed observation, and ‘observed’ minus ‘computed’ for the current iteration step
read

Q){Ll (t)(_) = plzlrj(t—'rg),r,'(t)(_) + C‘Sti,Ll(t)(_) - C5tj’L1 (t - Tg)(_)

. _ . _ L)
+ uglrj(t—rg),ri(t)(—) 7q’1'(t)( ) — IZ (t)( ) + )\IN'ZLI (210)

A%](t) =21(t) - 2}()") (211)
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The approximate values for the next iteration are computed as

ri(t) = () +An()
Stipa(t) = 6tipa (8) O+ A8t 11 (2)
SPLL(E) = st () D)+ AS (¢)
T,(t) = T.(t)  +AT()
) =ZO0 +AZ)(@)
N =N T waNd, (2.12)
The linearized observation equations and approximate observations for the other ob-

servable types can be derived analogously and are identical except for the frequency and
observable type dependent coefficients for the ionosphere and ambiguity parameters.

2.1.2 Assumptions and simplifications

Mapping function for tropospheric zenith delay:

The time derivative- of the mapping functions for the tropospheric zenith delay as well as
the derivative with respect to the position of the receiver, are so small compared with the
corresponding derivatives of the topocentric distance, that they can safely be omitted from
the linearized observation equation. It reads then

iT

AP, (t) = ~u] | Ari(t)

73 (t—r i (t)()
€ = Bl (emrty riy ) DOt () = DSt — 7

+ ul|ﬂ(t o ATH(E) = AT (t)

+ AlANi,Ll (2.13)

Receiver clock error:

As mentioned before, the receiver clock error appears two times in the observation equations:
firstly it is part of the expression for the time at which the topocentric distance has to
be evaluated, and secondly it is one of the biases which cause the GPS observables to be
pseudoranges instead of ranges.

For the evaluation of the topocentric distance, the accuracy required is of the order of
some tenths of us. Some receivers continuously adjust the receiver (quartz crystal) clock such
that its deviation from GPS time is of this order. This is done within the receiver software
using a single point pseudorange solution. Other possibilities to obtain a sufficiently accurate
receiver clock is to use an external clock with a higher stability. Clocks used for this purpose
are of the rubidium cell, cesium beam, or hydrogen maser type (see Table 2.1).

The third possibility to obtain accurate estimates for the receiver clock error is to use the
estimates from a previous pseudorange solution, which can either be a single point solution
or a solution from a relative positioning setup. In this solution the receiver clock error is set
to zero for the evaluation of the topocentric distance.

As we will show later, the receiver and satellite clock errors are not unbiased estimable.
When processing pseudoranges, each clock error is biased by some function of the rest of
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Clock Stability [s/s]

10 min 1 day 10 days
Quartz Crystal 1076 — 107" 107 — 10" 10°% — 10~10
Rubidium Cell 10713 10712 10-1!
Cesium Beam 10712 - 1078 10713
Hydrogen Maser 10~1% 10~ 10713

Table 2.1: Clock types and their stability (from McDonald (1991)).

the clock errors, depending on which function of clocks is constrained to resolve the rank
defect (see Section 3.3). When carrier phases are processed an additional bias in the form of
a function of the ambiguities is introduced.

One choice for the function of clocks to be constrained is e.g. the geometric average of the
satellite clock errors. If we have corrected the observations a priori with the a priori satellite
clock error model that is contained in the broadcast ephemerides, these corrections will be of
the order of 50 m or a few hundred ns for the pseudorange satellite clocks. The error caused
by the bias in the receiver clock error is then (with m the number of satellites)

gl = 0

7= ot — &6

o 2 )

This error will be partly absorbed by the receiver and satellite clock errors; more so when
the distances between receivers are short, since then the time derivative of the topocentric
distance is not too different for different receivers.

Now we have a sufficiently accurate estimate for the receiver clock error, it is regarded
as a deterministic parameter in the observation equation as far as the topocentric distance is
concerned, and hence no linearization with respect to this parameter is needed. The linearized
observation equation reads then

AL (t) = —UgT

)

) Ari(t)

rJ (t—-rij),r,'(t)(—
+ cA8t; 11 (t) — cASH (¢ — 77)

+ :“”rf(t—r{),r,-(t)(*) ATi(t) - AI&‘] (t)

+ MAN/ (2.14)

If we do not have an accurate estimate for the receiver clock error, the observation equation
remains as it is. This form can however only be used when also at least one pseudorange
observable type is included in the adjustment, and no ionospheric delays are included in the
model. For the evaluation of the topocentric distance, the receiver clock error belonging to
the pseudorange is used. The linearized observations equations for e.g. an adjustment with
L1 and P1 read then
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jT
1

Aq)g,m (t) = —u

Ar(t
i (t=rf)rs($)) rilf)
0= Py A0aaa(6) = ALt =)

+ Ng|rj(t;Tg),,i(t)(—) AT;(t)
+ AlANiLl
j _ g7 )
A})i,Pl(t) =y Tj(t—‘l'l-j),’l‘i(t)(_) A’I‘.L(t)

+ (e~ ’bg|rJ'(t—Tij),ri(t)(—))Aéti,})l(t) — cAST(t - 71])
+ ”Hr]’(t—-rj),ri(t)(—) AT;(t) (2.15)
with
t=1t; — Stipr
In practice often one uses c instead of ¢ — p. Because p is so small compared to ¢, and several

iterations are made, the result will be the same. The convergence will be slower, but the
construction of the design matrix is more simple.

Satellite clock error:
The implicit assumption we made (assuming the signals of the satellite are simultaneously
received by the receivers), is that the satellite clocks are sufficiently stable over a period of

miax |7 — 73| (2.16)

This is necessary since we compute only one clock parameter (per observable type) per epoch,
assuming that it is valid for all observables referring to that satellite. Since however in general
not all ranges from the satellite to the various receivers are equal, the travel time of the signal
will vary. This implies that if the signals are simultaneously received, their transmission times
and thus the accompanying satellite clock errors will differ.

As generally the signals are not simultaneously received by the receivers Eq. (2.16) changes
into

max ||(ta — 7) ~ (tiz = 7)) (2.17)

The clock errors are computed for a common time ¢, which is taken as the nominal time of
reception, e.g. the whole second. With

Vt, =t —t, (2.18)
and using the relation

=1t +0t; (2.19)
we have

ti = tc + Vti - 6t,’ (220)
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Figure 2.1: Maximum difference in travel time as function of the baseline length for a cut-off
of zero degrees (upper dotted curve), and for a cut-off of 10 degrees (lower dotted curve).
One receiver is observing the satellite at an elevation equal to the cut-off, the second receiver
is observing it at an elevation shown by the solid curve (only shown for the cut-off of zero
degrees).

Thus we have the condition that the satellite clock errors should be sufficiently stable over a
period of

max ||(t. + Vi — 6t — 74) — (te + Viig — 6tiy — 75)|| =
max ||(Vty — 8tin) — (Vi — 0tiz) — (7 — )| =
max ||Vt,~1 - (5ti1” + max ||Vti2 - (Sti2” + max ”Tfl — Tz]2” (221)

for any two receiver pair i1 and 2. The term
[Vt — tl| = ||t: — .|| (2:22)

is for most geodetic receivers at most 1 ms (Ashtech Z-XII3 and Trimble 4000 SSI: in principle
less than 1 ms, Turbo Rogue SNR-8000 and Leica SR399: in principle less than 0.3 us). The
maximum difference in travel time for one satellite to a pair of receivers on Earth depends
on the minimum elevation for which observations are made (cut-off angle). For a spherical
approximation of the Earth with a radius of 6,378 km, and a circular approximation of the
GPS satellite orbits with radius of 26,562 km, the maximum difference in travel time as
function of the baseline length is depicted in Figure 2.1. The two receivers and satellite
are in the same plane together with the geocenter, as this gives the maximum difference.
The difference is plotted for two cut-off angles; the upper dotted curve is for a cut-off of
zero degrees, the lower dotted curve for a cut-off of 10 degrees. One receiver observes at an
elevation equal to the cut-off angle; the solid line gives the elevation of the second receiver for
the cut-off of zero degrees. For slope distances until approximately 8,000 km, the maximum
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difference is obtained when the projection of the satellite on the line through the two receivers
is outside the interval formed by the receivers; for larger distances, the projection lies inside
the interval. Hence the sharp angle in the curve for the elevation for the second receiver. Due
to the actual satellite configuration, the computed scenarios are a little bit too pessimistic,
but give a fair idea of the size of the phenomenon.

The maximum {one receiver observes the satellite in the zenith, the other observes it
under an elevation angle of zero degrees) is approximately 19 ms. The satellite clock rate due
to the effect of Selective Availability is given in Rocken and Meertens (1991) as 2 Hz/nominal
frequency of the carrier, so for L1 we have ~ 1.27 107% s/s. Translating this to a range rate we
have to multiply it by ¢, yielding ~ 0.4 m/s. This value was confirmed by computations we
made. In Figure 2.2 delays due to the satellite clock error are plotted. They are biased by the
geometric average of all clocks; this bias is different at each epoch, but it is approximately
zero. In Figure 2.3 the first divided differences of the satellite clocks are plotted; with
an exception of one outlier, the computed clock rates are comparable to the values found
by (ibid.). The outlier is caused by the transition of one set of broadcast ephemerides to
another. This transition can also be observed in Figure 2.2. The size of the discontinuity
is a few meters, corresponding with approximately 0.01 us, which is in agreement with the
values found by Zumberge and Bertiger (1996).

Assuming a maximum difference between the time of reception of the signal by two
receivers of 2 X 1 ms, and adding the maximum difference in travel time of the signal to it,
SA will cause a bias in the range of approximately 8 mm ((19 + 2)ms x 0.4 m/s). When the
satellite clock error is evaluated at the geometric average of ¢; — 7], the actual maximum range
error may be smaller. Feigl et al. (1991) and Wu et al. (1992) give methods to minimize the
effect of Selective Availability.

2.2 Computation of the satellite position

In the linearized observation equation and the computed observations, quantities occur that
are a function of the position of the satellite at the time of transmission of the signal £ — 7;
viz. the topocentric distance p and the unit direction vector u. (Hereafter we leave out the
subscript and superscript indicating the receiver and the satellite.)

When using the broadcast ephemerides, the position of the satellite is computed from
information contained in the so called ‘navigation message’ which is part of the signal trans-
mitted by the satellites. When using precise ephemerides, the position is computed by a
Lagrange interpolation of positions which are given at an interval of 15 minutes. The broad-
cast ephemerides are given in WGS-84, the precise ephemerides in ITRFXX, where XX
depends on the reference system adopted at the date when the ephemerides were computed
(now, in 1998, we have ITRF96).

For the computation a common time ¢, (GPS time) is introduced for every epoch. The
advantage of this approach is that we need to evaluate the ephemerides of the satellite only
once per epoch.

The material in Teunissen and van der Marel (1992) has been the inspiration of the
procedures that will be described below.
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Topocentric distance.
We need the position of the satellite at time t, — 7 with 7 = p(t. — 7, t.)/c (for a receiver on
Earth 7 is on the order of 0.1 s). The topocentric distance p(t — 7,t) was defined as

plt—7,8) = Ir’(t —7) — r(®)l| (2.23)

with 79(t — 7) and r;(¢) defined in an arbitrary Earth-Centered Inertial (ECI) system. We
want however, to use r#(t — 7) and r;(t) defined in WGS-84 or in the system of the ITRF,
which both are Earth-Centered Earth-Fixed (ECEF) systems.

Coordinates from an ECEF system with the Z-axis along the nominal Earth’s spin axis,
positive in the northern hemisphere, coinciding with the Z-axis of an ECI system, and of
equal scale, are transformed to the ECI system as

r(t)gc; = R (H)gcer (2.24)
with
cos(Qet +V¥) — sin(Qet +3¥) 0
R(t) = [sin(Qet +T) cos(Qet +T) 0 (2.25)
0 0 1

with Q. the Earth’s rotation rate, and ¥ free to choose, giving an infinite number of ECI
systems. So we have

p(t—7,t) = ”Tj(t = Tecr — Til)gall (2.26)
= [|R(¢t — 7)r’(t — T)pcpr — R()T:i(t)pcerll (2.27)

For the common time t., with ¥ = —(,t, we have
p(te —7,tc) = “R(_T)Tj(tc - T)ECEF - Ti(tc)ECEFH (2.28)

As a first approximation for 7 we compute

7 = | (te)ecer — rilte)cerl/c (2.29)

With this approximated value we compute the first term of (2.28) as
R(-—T)’I‘j (tc — 7') = R(—’r)['f‘j (tc)ECEF - T ’f‘j (tc)ECEF + %7’2 Fj (tc)ECEF] (230)

The satellite position and its first and second time derivative are thus evaluated only once,
namely at t; its position at t — 7 = t, — (Vt — 6t) — 7 (see Eq. (2.20)) is found by a Taylor
series. For the computation of the satellite position and its time derivatives see Appendix B.
The value of (Vt — 4t) is at maximum 1 ms (see Section 2.1.2). Using the new position we
compute again a topocentric distance. If the difference between this and the previous dis-
tance is larger than a user defined threshold, a new travel time is computed from it, and with
it a new position of the satellite is computed. Usually three iterations are sufficient to get
differences between the topocentric distances of the last two iterations of the order of 108 m.
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Pold = Il (te)ecer — Ti(te)ecer||

T = Pold/¢
d= polq
while d > ¢

k=(Vt—-6t)+7 . ‘ .
p(t — 7,t) = | R(—7)[r7 (tc)ecer — £ 7 (tc)EcEF + 5K° 7 (tc)ECEF) — Ti(t)pCEF |l
T :p(t—T,t)/C
d=lp(t —7,t) ~ poiql
pold = At = 7,1)
end

Note that the increment for the Taylor series equals —k = —(Vt — t) — 7, but the argument
for the rotation equals —7.

Derivative of topocentric distance with respect to time.

Besides the topocentric distance sometimes also its time derivative is needed (viz. if we do
not regard the receiver clock error as a deterministic parameter, see Section 2.1.2). With the
time derivative of the inner product (z,z) as

d .
a(z,x) = 2(z, x)

it reads, in an ECI system

ple = rit) = 2 D 20O ey (2.31)

In an ECI system, the time derivative of r;(t) is non-zero, so we have

p(t —1,t) = (M (t — T)ec1 — 7i(t)ecr, 7 (t — 7)1 — ri(t)Ect) (2.32)

1
p(t -7 t)
With the satellite’s respectively the receiver’s velocity parameterized in ECEF coordinates
as

#(t — T)gcr = R(t — )7 (t — T)gcer + R(t — T)1%(t — T)BcEF (2.33)
and
7i(t)ect = R(t)7i()ecer + R()ri(t)ecer (2.34)
where
) = sin(Qet +¥) - cos(S:)et +¥) 0
R(t) = Qc | cos(Qet+¥) —sin(Qt+¥) 0f, (2.35)
0 0 0
we eventually get for the time derivative of the topocentric distance
. 1
A==y

(R(t - T)’f‘j (t —_ T)ECEF + R(t - T)T‘j (t — T)ECEF — R(t)f‘i(t)ECEF — R(t)?"i(t)gcgp,

R(t — 7)1 (t — Tgopr — Ti( O gcrr)
(2.36)
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Assuming that the receiver is stationary in the ECEF system, thus #;(¢)gcer = 0, and again

taking ¥ = —Q,t,, the time derivative of the topocentric distance for ¢, becomes
pte — 7, t0) = ————(R(~7)# (t; — T)ECcEF + R(—7)7(tc — T)ECEF — W X Tigopp:
,D(tc -7, tc)
R(~7)r(tc = T)gcer — Tigcer)
(2.37)
with
0
w= |0 (2.38)
(2

2.3 Satellite clock

In the broadcast ephemerides a polynomial model for the satellite clock error is included.
This clock error which is used as the approximated value for the estimated clock error, and
hence will be denoted by 6t/°(¢), is computed as

T), forP1

; 2.39
YTg, for P2 (2.39)

5t°(t) = a + al (t — t1,) + ab(t — t1,)? + Ath(t) — {
where ag, a; and a, are the coefficients of the polynomial, representing the offset, drift and
aging of the clock. Currently it seems that a, is always set to zero. The clock error is
evaluated a t in GPS time, and t — %, is the difference between the time of evaluation and
the reference time for the polynomial in seconds.

Since the satellite clock is moving with respect to the observing receiver, a relativistic
correction has to be added. The large part of this correction is taken care of by a small
change in the nominal frequency standard of the satellite clocks. This corrects the effect for
a nominal circular satellite orbit. A small correction has to be added to take care for the
actual velocity in the actual satellite orbit. A first order approximation for an ECEF observer
and a GPS satellite in a Keplerian orbit reads (Spilker Jr. 1996).

Ath(t) = —2 \/g—Me Asin E(t) (2.40)
= —2ﬁj(t)c+j(t))- (2.41)
where
GM Gravitational constant of the Earth.
c Speed of light in vacuum.
e Eccentricity of the satellite orbit.
E(t) Eccentric anomaly of the satellite orbit.
A Semi-major axis of the satellite orbit.

and where 79(t) and 77(t) are expressed in the ECI system.
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Figure 2.4: Correction for relativity for PRN’s 02, 05, 22, and 30.

The difference between expression (2.40) and (2.41) is so small that both may be used,
but for the perturbed Keplerian GPS satellite orbit (2.40) is an approximation. Note that
in Spilker Jr. (1996) the sign for (2.41) is misprinted. In Figure 2.4 the relativity correction
(in meters) for PRN’s 02, 05, 22, and 30 (all from orbit plane B) is plotted. The maximum
value for the correction is approximately 10 m or 35 ns.

The last term in Eq. (2.39) is a correction for the group delay difference in the satellite
transmission between P1 and P2 (also called differential instrumental delay bias, or differen-
tial equipment delay). It is based on a calibration prior to the launch of the satellite, and
hence in principle constant. Values for it were changed however, somewhere between Septem-
ber 1995 and December 1996. The coefficient ay of the clock polynomial is determined on the
basis of an observable made of a P1 and P2 observable in which the first order ionospheric de-
lay has been eliminated (ionosphere-free observable). This is equivalent to employing a model
for the P1 and P2 observables where for each epoch, for each receiver-satellite combination,
an ionospheric delay is included.

Although in Egs. (2.3) and (2.4) no group delays are included since they are not estimated
in our processing setup, they are in principle present:

Plpy = pl + cbtipr — 69?1 + T0 + dypy — PP (2.42)
-PZ{PQ = /717 + C(Sti,P? - C(Stj’PQ + ’}’IZ] + di,P2 — dj’P2 (243)

In Section 4.2.5 we will show that if these group delays are present, though not estimated,
the estimated receiver clock errors are biased.

If one uses a model in which ionospheric delays are not included, (and where for each
observable type a distinct clock is modeled), one has to correct the clock error for all code
observables types using the Tip parameter according to Eq. (2.39) to get unbiased estimates



2.3 Satellite clock 21

T T T T T T

e Broadcast Ephemerides
DLR May 1, 1997

>

Group delay difference [ns]

1 5 10 15 20 25 31
PRN Code

Figure 2.5: Values for differential group delay from DLR and from the broadcast ephemerides.

for the receiver clock errors. The Tgp parameter in the broadcast ephemerides is defined as
(Spilker Jr. 1996)

Tip = ﬁ(dﬁ’1 — dF?) (2.44)

Spilker Jr. (1996) states that if ionospheric delays are estimated, i.e. the same model is
used as at the CS, the clocks may be corrected, but do not need to. The estimates for the
ionospheric delays are biased however. So for the unbiased estimation of these delays, the
correction should still be applied.

Unbiased estimates for the receiver clock errors are needed to correct the time tag of
the observations (see Section 2.1.2). Unbiased estimates of satellite clock errors are useful
to monitor the SA effect (see e.g. Figure 2.2), and can be used in DGPS (Differential GPS)
systems. Unbiased estimates for ionospheric delays may be used for monitor purposes and
also in DGPS.

Independent estimates for the differential group delay have been published by several au-
thors (Wanninger and Sardon 1993), (Wanninger and Sardon 1994), (Georgiadiou 1994). At
the DLR (Deutsches Zentrum fiir Luft- und Raumfahrt) Fernkundungsstation in Neustrelitz,
Germany, group delays for all satellites and a number of receivers at (mainly European) per-
manent stations are estimated on a daily basis. Each group delay is biased by some function
of other group delays; e.g. the group delays for the satellites are biased by the average of the
group delay of all satellites. In Figure 2.5 the values for a particular day as computed by
DLR and the values from a set of broadcast ephemerides of 1997 are depicted. The values
of DLR are defined as dF? — d%F! and are therefore converted to the definition of Tgp as in
Eq. (2.44).

This a priori correction for the satellite clock error is for a relative positioning setup not
really necessary, since the satellite clock error can be estimated (in contrast to the single
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North FEast Height

L1 1.5 -12 75.1
L2 -1.1 1.7 69.2

Table 2.2: Offsets for Trimble Geodetic L1/L2 compact antenna with ground plane [mm)] in
a local level system.

receiver setup). It may still be applied to speed up convergence for the iterated least-squares
solution and to observe the effect of Selective Availability, since this is the only effect not
included in the clock model.

Clock errors are optionally present in the precise ephemerides; they are given at an interval
of 15 minutes. Clock errors for a desired epoch are computed by a Lagrange interpolation.

2.4 Phase center variation and offset

An ideal antenna has dimensions that are small compared to the wavelength of the transmit-
ted or received wave. The surface of equal phase, the so-called wave front is then perfectly
spherical, with the phase center in its center. Unfortunately, such a perfect antenna is equally
sensitive to all waves irrespective of the direction to, or from which the wave is transmitted
respectively received. For the GPS, antennas are used that are more sensitive in certain
directions. The transmitting antenna is designed such that most of the signal is transmitted
towards the Earth, the receiving antenna is designed such that almost no signal is received
from an elevation less than zero degrees. In order to design such type of antenna, the dimen-
sion of the antenna has to be of the order of the wavelength. This causes the outgoing or
incoming wave front to divert from the desired spherical form; every direction has its local
spherical wave front, and consequently its own phase center. This direction dependence is
mostly due to variations in elevation of the received signal because of the rotation symmetry
of the antenna with respect to its Z-axis. Small variations due<to azimuthal asymmetries are
calibrated during the production process, and are assumed equal for all antennas of a certain
make, provided that they are equally oriented with respect to a mark put on the antenna
during production. Hence the well known operational requirement to orient the antenna with
the mark pointing northward.

One of the most frequently correction tables in use nowadays is the one that is accepted
as the standard for the IGS community, where almost all antennas in use in the geodetic
community are calibrated with respect to the Dorne Margolin antenna (Rothacher and Mader
1996). Besides the elevation dependent phase center variation, also the fixed offsets of the
mean phase center of both frequencies from the so-called ‘Antenna Reference Point’, (ARP)
an easily identified and well documented mark at the receiver antenna, can be found in these
lists. An example of the offsets and elevation dependent corrections for the Trimble Geodetic
L1/L2 compact antenna with ground plane can be found in Table 2.2 and Figure 2.6. The
correction for the offsets has to be added to the height and horizontal offsets of the antenna.
The correction for the phase center variation has to be subtracted from the observations
(ibid.).

For the antennas of the satellites no elevation dependent corrections are available. As far
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Figure 2.6: Antenna phase center variation: elevation (E) dependent correction terms for the
Trimble Geodetic L1/L2 compact antenna with ground plane (mm).

€1 €2 €3

Block I 0.2100 0.0000 0.8540
Block II/ITA 0.2794 0.0000 1.0259

Table 2.3: Offsets between mass center of satellite and phase center of antenna [m], in the
local satellite-fixed system (see Section 2.8).

as the offsets are concerned, it depends if one uses the broadcast ephemerides or the precise
ephemerides. The broadcast ephemerides are defined for the nominal phase center of the
antenna, whereas the precise ephemerides are defined for the mass center of the satellite. In
the latter case, the position of the phase center depends on the position of the mass center,
the offsets of the antenna phase center with respect to the center of mass, and the orientation
of the satellite. The offsets are different for different generations of the GPS satellites; they
can be found in Table 2.3.

2.5 Tropospheric delay

The troposphere is the lower part of the Earth’s atmosphere, which extends to a height of
between 9 km at the poles and 16 km at the equator. The presence of neutral atoms and
molecules in it, delays the GPS signals traveling through it; this is called refraction.

The tropospheric delay T at zenith is usually divided in a dry or hydrostatic part 7} and
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a wet or water vapor part T,:
T=T,+T, (2.45)

It is mapped into a slant delay for a signal received at elevation E, using different mapping
functions for the hydrostatic () and the water vapor part (u.,)

T(E) = pn(E)Th + pu(E)Ty (2.46)

The hydrostatic part can be computed a priori as (Saastamoinen 1973), (Davis et al. 1985)

P
Ty, = 0.00227689— (2.47)
with
gm = 9.784(1 — 0.00266 cos 2¢ — 0.00028H) (2.48)

where P is the pressure at the station in mbar, ¢ its geocentric latitude, and H its orthometric
height.

There exist several models for the water vapor part too, using temperature, pressure and
relative humidity at the station, but they are far less accurate (Hopfield 1969), (Saastamoinen
1973). Therefore often zenith delays are estimated. If one has sufficiently accurate meteo
date available, the hydrostatic part can be computed a priori and corrected for, and the water
vapor part can be estimated. If this is not the case, only the hydrostatic part is estimated.
Since the mapping functions for the hydrostatic and water vapor part are quite similar, part
of the water vapor part will be absorbed by the estimate for the hydrostatic part (Davis et al.
1985). Estimating both, results in estimates of low precision that are highly correlated.

The estimate for the zenith delay is also highly correlated with the estimate for the height
of the station. It is therefore necessary to include data of low elevation angle, and the time
span should be of the order of one hour. If the total time span is longer, more than one
delay may be estimated. When the separation between stations is small, the zenith delays
are almost parallel to each other and this will again result in poor estimability. In that case,
one of the zenith delays should be kept fixed to a known value, using one of the a priori
models for the water vapor or the total zenith delay.

The most elementary mapping function for the zenith delay reads

1
FE) =
u(E) sin ¥

Better results, especially for data of low elevation, are obtained using mapping functions
consisting of a continued fraction:

(2.49)

w(E) = (2.50)
. (03]
sin £ +

Qg

sin £ +
(8%}

sinE + -
See e.g. Marini (1972), Herring (1992) and Niell (1996). For an overview of the performance
of several mapping functions see Mendes and Langley (1994).

sin E +
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2.6 lonospheric delay

The signals of the GPS satellites experience a delay when passing through the ionospheric
layer. This layer reaches from approximately 70 to 1000 kilometers above the Earth’s surface.
The carrier phase experiences an advance or negative delay, while the code on the carrier
experiences a positive delay of the same size. In a first order approximation, the size of the
delay in meters depends reciprocally on the squared frequency of the signal (and thus is a
dispersive effect), and linearly on the number of free electrons passed when traveling through
the ionospheric layer.

The number of free electrons depends among other things on the local time of the day, the
location on Earth, and where we are in the sun spot cycle. At daytime the Sun’s radiation
increases the number of free electrons. The maximum occurs at around 14.00 local time,
the minimum at around 2.00. When the sun spot number increases, so does the amount
of free electrons. The sun spot number passes through an eleven-year cycle, of which the
next maximum is to be expected around the year 2002. In general, there is a fair amount
of correlation both in time and in place for the ionospheric delay. At a lower elevation the
length of the path from satellite to receiver increases, and thus also the ionospheric delay
increases.

Besides the refraction part there is also diffraction, i.e. the path diverts from the straight
line from satellite to antenna. This effect is on the millimeter level, and largely cancels in
the relative positioning setup.

There are roughly three ways to handle the ionospheric delays. For short baselines the
delay experienced at both ends of the baseline is almost equal, since signals pass the iono-
spheric layer at paths close in distance, and also elevation angles at both end points of the
baseline are almost equal. Hence it will be absorbed by the satellite clock, and does not need
to be modeled.

For larger distances the delay can be modeled for each receiver-satellite combination as a
slant delay. Use is made of the fact that the ionospheric delay is dispersive. Commonly instead
of modeling the delay, it is eliminated: from two observable types, one at each frequency, a
so-called ionosphere-free observable is formed. When it is formed using the carrier phases it
is called LC or L3. As we will show in Chapter 4 this is equivalent to modeling ionospheric
slant delays

Another option is to model the ionospheric delay by a series in the local hour angle of
the Sun at the so-called ionospheric point and the geocentric latitude of this ionospheric
point. For the model the ionospheric layer is supposed to be concentrated in an infinites-
imal thin layer at an height of approximately 300-400 km above the Earth’s surface. The
ionospheric point is the point where the line receiver-satellite intersects the ionospheric layer.
In Figure 2.7 the ionospheric layer is depicted together with a schematic receiver-satellite
combination. Instead of a slant delay Iij at the receiver position, a vertical delay Z, at the
ionospheric point is then modeled. The relation between the two is

: 1
7= 7, 2.51
' cosz ( )

with

sinz' = sin z : (2.52)
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satellite

infinitesimal thin
ionospheric layer

geocenter

Figure 2.7: Geometry for modeling the ionospheric delay using an infinitesimal thin iono-
spheric layer.

where R is the Earth’s radius, h the height of the ionospheric layer, and z the zenith angle
at the receiver position.

Usually a Taylor series or a series in spherical base functions is used; it has a fairly low
resolution but only a limited set of parameters is introduced. The thus estimated model is
defined in an Earth-Centered Sun-Fixed system, i.e. the Earth rotates underneath it. The
temporal variation and spatial variation in latitude is modeled by it.

The modeling by slant delays inhibits a much higher resolution both in time and space,
but to the expense of the introduction of a large number of extra parameters. The latter can
be alleviated by constraining these parameters. Since the modeling by a series can capture
the long term effects, the slant delays only have to model the short term residual effects, and
can thus be tightly constrained. Instead of constraining the ionospheric delays in an absolute
sense, they can also be constrained in a between station sense, see Chapter 6.

Sometimes first a model is estimated using an independent data set, and consequently
applied to the data at hand, where the short term ionospheric delay is then modeled by
(constrained) slant delays. In this thesis the ionospheric delays are only modeled as slant
delays.

In Figure 2.8 a projection of the ionospheric points on the Earth’s surface (sub-ionospheric
points) is depicted for two stations and four satellites, for a time span of one day. It shows
that the space over which an antenna senses the ionosphere is quite large, and that for long
baselines the points are too far apart to benefit from the spatial correlation.

For an overview of the treatment of the effects caused by the ionosphere on GPS precise
positioning see Odijk (1997).

2.7 Solid Earth tides

The gravitational attraction of the Sun and the Moon, and the fact that the Earth is an
elastic body, impose periodic displacements to stations on the Earth. This phenomenon
is called solid Earth tides. Without going into great detail, the size and direction of the
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Figure 2.8: Ionospheric points for Algonquin and Kootwijk for PRN 1,2,3 and 4 for an
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displacement depends on the position of the station with respect to the Sun and the Moon,
the accelerating forces of the Sun and the Moon, and the rheology of the Earth.

The tidal potential W for a point ¢ on the Earth due to a celestial body b is given by
(VaniGek and Krakiwsky 1986)

Wb = GM, Z (Hnll) . (cos 23) (2.53)

il [l
where
P,(x) The Legendre polynomials (n = 2,3,...).
GM, Gravitational constant of the celestial body.
T Unit vector from the geocenter to station ¢.
Th Unit vector from the geocenter to the center of celestial body b.
2 Angle between the geocentric position vectors of station i and the center of

celestial body b.

(The celestial bodies involved are the Sun and the Moon.)
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The largest contribution comes from the second-order harmonic term:

[l
l[7s]1®

To an accuracy of a few percent for the combined effect of the Sun and the Moon, it
suffices to include only the second-order terms; inclusion of the third order term for the
Moon improves the accuracy to about 0.03 % (ibid.). In geocentric coordinates ¢, A and R
(latitude, longitude, radius), the tidal displacements read (ibid.)

W2 = GM, (2 cos? z, — 1) (2.54)

I, OW? ly, oW} 1%
® el d\ o5 0N R =h, ; (2.55)

where h; and [; are the Love and Shida number of second degree. With

ow

w 1 ax 9y 9z] |8X
3¢ — 9¢ 0p 99| |ow
1w | T 1 | lex oy oz |av (2.56)
cos¢p O cos ¢ ax  8x  8x oW
oz
and
X 98X 8X
dX 26 or or| |99
_|lax ar sy
dY | = %6 ox or| |dA (2.57)
9z 9z 9z
where
% % g—)é —sin¢gcos A —cos@sin A cos@cos A
& % Z5| =|-singsind cosgcosA cosésinA (2.58)
%i— %% g_zzz cos ¢ 0 sin ¢

and g is approximated as GM/||r;||?, where GM is the gravitational constant of the Earth,
one gets for the tidal displacement vector in the Cartesian system

_ GM, |Iri|I*

dX dY dz T =22
[ e AT

{h21 (3cos® 2, — 1) ; + 3ly cos 2z (rp — TicOS 25)}  (2.59)

Substitution of cos 2, = (ry, ) in Eq. (2.59) gives the equation as given in McCarty (1992).

In Figure 2.9 the movement of Delft (the Netherlands), and Alonquin (Canada) with
respect to Kootwijk (the Netherlands) due to the solid Earth tides is depicted, for a time
span of one day. The distance between Delft and Kootwijk is approximately 100 km, the
distance between Alonquin and Kootwijk is approximately 5,620 km.

2.8 Phase wind-up

In contrast to ordinary radio links on Earth that use linearly polarized electro magnetic
waves, links between (high orbiting) satellites and the Earth use a circular polarization for
the wave. The reason lies in the fact that the waves have to cross the ionospheric layer,
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Figure 2.9: Movement of station due to solid Earth tides during one day. Alonquin with
respect to Kootwijk (left), and Delft with respect to Kootwijk (right).

where its polarization through an interaction with the free electrons starts to rotate. This
phenomenon is called Faraday rotation.

The intensity of the rotation depends on the total electron concentration, which is highly
variable. For a linearly polarized wave received by a fixed dipole this would result in a highly
fluctuating signal.

When using a circular polarization, the electric field makes a spiral movement from the
transmitter to the receiver (see Figure 2.10). If the field, looking into the direction of the
propagation of the wave, rotates clockwise, it is called a right-hand circular polarization. The
GPS uses this type of polarization; the Faraday rotation does not effect the intensity of the
received signal, but when using only one dipole, only half of the signal strength is received.

For the determination of the signal strength of a circularly polarized wave received by
one dipole, we can decompose the circularly polarized wave into two linear polarized waves;
one with an electric field in a plane parallel to the dipole, and one with an electric field
perpendicular to that plane. The phase difference between the two electric fields is 90°,
and the energy of the wave is equally divided over the two linear polarized waves. As a
consequence, the signal strength received with one dipole is half of the total signal strength.
To receive the total signal strength, an extra dipole has to be added, perpendicular to ‘the
first dipole (crossed dipole). The signal of the extra dipole is combined with the first dipole
after the phase difference of 90° is removed by the electronics in the antenna (de Jong 1989).

Since the electric field is permanently rotating, the carrier phase observation made by the
receiver at two subsequent epochs is not only a function of the change in distance between
receiver and satellite, but it is also a function of the rotation of the receiver and satellite
antenna. In kinematic applications this phenomenon can clearly be observed, see e.g. Tiberius
et al. (1997). Due to the rotation of the Earth and the changing attitude of the satellite
needed to keep the antenna pointed towards the geocenter, and the solar panel support
beam perpendicular to the satellite-Sun direction, also phase observations made in static
applications exhibit a small bias.
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Figure 2.10: Linearly polarized wave (left), and circularly polarized wave (right) (from de
Jong (1989)).

The effect is called phase wind-up, and it is different for observations made at one receiver
to two different satellites, and for observations made at two different receivers to one satellite.

Consequently the effect is only partly absorbed by the estimates for the satellite and
receiver clock error; the constant part is absorbed by the estimate for the phase ambiguity.

In Wu et al. (1993), the effects of the phase wind-up are evaluated and a method to
correct it are given. The effect is negligible for short baselines, but for a 4,300 km baseline
the peak to peak effect may be as large as 4 cm at the L1 frequency for an elevation cut-off
of 10 degrees.

The correction is based on the change of the angle between two so-called effective dipoles,
one at the receiver, and one at the satellite. For the receiver the dipole is defined in a local
North, West, Up system, whose axes are denoted by e;. The dipole for the satellite is defined
in a satellite-centered coordinate system, denoted by e;. The choice for the axes of this system
is driven by the fact that the antenna of the satellite is kept pointed towards the geocenter,
and that the solar panel support beam is designed to be perpendicular to the satellite-Sun
direction. The system is defined (Lichten and Border 1987) in such a way that the third axis
is positive along the antenna direction towards the geocenter:

—yd
€3 ] (2.60)
The second axis is taken along the solar panel beam, normal to the satellite-Sun direction
(rS —r7) and the third axis; i.e. normal to the plane containing satellite, Earth and Sun:
ez x (r¥ —19)

= = ey > (5~ )] (200

And the first axis completes the right-hand system (see Figure 2.11).
€ X e3
lle2 x es|

(2.62)

€1

The effective dipoles which represent the resultants of the crossed dipole antennas are
defined as:

D=¢ — v{v,e;) +v X ey | (2.63)
0 (i) |
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Figure 2.11: Satellite fixed coordinate system (left), and receiver fixed coordinate system
(right) for the computation of phase wind-up correction.

at the satellite, and

D=e'—vive)Y —vxe (2.64)
S

at the receiver, with e; and e;’ the unit vectors defining the local system at the satellite,
respectively the receiver, and ¥ = —u the unit vector in the direction satellite-receiver. The
two dipoles constituting the crossed dipole are defined to be coinciding with the e; and e
axis, but can be chosen to be any pair of unit vectors in the e;-e; plane, obtained by rotating
the pair e, e;. In this way the signal of the second dipole is delayed by 90° with respect to
the signal of the first dipole. In Egs. (2.63) and (2.64), (i) and (i') are the projections of the
first dipole onto a plane normal to v, whereas (ii) and (ii’) are the projections of the second
dipole onto the same plane rotated by 90°.

The phase wind-up correction is defined as the angle between the two effective dipoles,
while it is taken care of that the transitions from —7 to 7 radians are taken into account by
adding 27 radians to the correction for each transition.

With the effective dipole of the satellite denoted by D and that of the receiver by D' , the
fractional part of the phase wind-up correction is then defined by

9;(tx) = sign(€) arccos(D', D) (2.65)
where
¢ = (v, (D' x D)) (2.66)
and sign() is the function that gives the sign of a number. The integer part is defined as

29f(tlc) - 19}'(%—1)
2

9i(tx) = ning( )27 (2.67)

where nint() is the nearest integer function. The total phase wind-up correction is then
9(t) = 9i(t) + 94(t) where implicitly it is assumed that the difference of the total correction
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for two subsequent epochs is smaller than 7, a condition that in practice for a static receiver
and a normal sampling rate, always is fulfilled.

In Figure 2.12 the between-receiver single difference phase wind-up corrections for two
baselines computed with the model above are depicted, viz. for the baseline between the
IGS stations Algonquin and Kootwijk with a length of approximately 5,620 km, and for the
baseline between Kootwijk and Wettzell with a length of approximately 600 km. For the
5,620 km baseline the maximum double differenced phase wind-up correction is of the order
of 0.2 cycle, (4 cm for the L1 phase), whereas for the 600 km baseline the maximum is of the
order of 0.02 cycles (4 mm for the L1 phase).

Another phenomenon closely related to the phase wind-up that needs to be corrected for,
is the yawing of the satellites when they are in eclipse. In eclipse, the attitude of the satellites
with respect to the Sun is not maintained, since the satellite is unable to ‘see’ the Sun. As
a consequence the satellite starts to rotate around the third axis (along the antenna that
is pointing towards the geocenter). This will cause an additional phase wind-up, but since
it is equal for all observing receivers, it will be absorbed into the estimate for the satellite
clock. The error in the range due to the offset of the phase center will in general be different
however, for each receiver-satellite combination. This phenomenon will not be treated here,
and a correction for it has not been implemented in the software. It has been implemented
however in the software suites that are used by the IGS community. For more information
we refer to Bar-Sever (1994) and Bar-Sever (1995).

2.9 Computation of Sun and Moon position

The position of the Sun and the Moon as needed for the computation of solid earth tides, as
well as for the determination of the attitude of the GPS satellites (Sun only) can be computed
using JPL’s (Jet Propulsion Laboratory) Planetary and Lunar Ephemerides DE403/LE403
(Standish et al. 1995). The positions are defined in the J2000 reference frame of the Inter-
national Earth Rotation Service (IERS).

The transformation from the inertial celestial frame J2000 to the Earth-Fixed frame ITRF
consists of four separate transformations, viz. a precession rotation P, a nutation rotation
N, a siderial time rotation T and a polar motion rotation Z (Bock 1996).

TR = ZTNP 759000 (2.68)

Precession and nutation represent the motion of the pole of the rotation axis of the Earth
around the pole of the ecliptic, and are thus movements in the inertial celestial system. The
rotations due to siderial time and polar motion are movements with respect to the (semi-
inertial) terrestrial system itself. Polar motion is the rotation of the true celestial pole as
defined by the precession and nutation model with respect to the Z-axis of the terrestrial
reference frame. The rotation T around the true celestial pole gives the relation between a
rotating, semi-inertial system at the date of epoch and the Earth-Fixed system.

The transformation matrices are computed according to McCarty (1992). Additional data
needed for the computation of the polar motion and siderial time matrix are interpolated
from Bulletin A or B of the IERS.
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Figure 2.12: Effects of phase wind-up, for between-stations single differences for Algonquin
and Kootwijk (above) and Kootwijk and Wettzell (below), for all satellites in view at May

12, 1997 (elevation cut-off of zero degrees).
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2.10 Concluding remarks

The tides cause a non-moving antenna, for which we want to determine a set of coordinates
for a defined time span, to move around. We want, however, to estimate only one set of
coordinates for it.

In Section 2.7 it was indicated how this movement can be modeled. The correction is
applied as follows. For each epoch the tide correction is added to the a priori coordinates.
These coordinates are used to compute the topocentric range.

The values of the coordinates for the purpose of constraining one or more sets of coordi-
nates to well known a priori coordinates and the computation of partials for the design matrix
are not corrected. The correction is not necessary since we already corrected the range.

For the offset of the antenna we have a similar problem. Since the offsets commonly are
not equal for both frequencies, there are two sets of coordinates for each antenna, one for the
L1 phase center and one for the L2 phase center. Again, we want to estimate only one set of
coordinates. We proceed therefore as follows. The topocentric range for the observables on
L1 is computed between the L1 phase center and the satellite, the range for the observables
on L2 is computed between the L2 phase center and the satellite. The constraining and
computation of the partials is made with respect to the L1 phase center.

The list of error sources treated in this chapter is not complete. A prominent error source
is e.g. multipath, caused by reflection of the signal in the neighborhood of the transmitting
and receiving antenna. It is omitted, since in general it is neither possible to model it a
priori (for continuously operating stations some modeling is possible, since the multipath
signal repeats after one approximately one day) , nor to estimate it (i.e. not together with
the coordinate parameters). Other (small) effects are e.g. (Bock 1996) the displacement of
a station due to ocean loading (the elastic response of the Earth’s crust to ocean tides) and
atmospheric loading (the elastic response of the Earth’s crust to a time-varying atmospheric
pressure distribution).
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Chapter 3

GPS relative positioning: the undifferenced
approach

3.1 Introduction

Processing of GPS observables for relative or interferometric positioning is usually done using
a ‘double differencing’ technique. The differencing technique finds its origin in the field of
VLBI (Counselman III et al. 1972). In short, the double difference (DD) scheme boils down
to elimination of common bias parameters by subtracting one observable from an other. In
GPS from four observables, made from two receivers to two satellites, a new DD observable
can be formed which is not biased by receiver and satellite clock errors. Coming from VLBI
where between-station (single) differences are made, it seems logical to apply the differencing
to the GPS observables too. Looking at GPS from the perspective of geodetic adjustment
where often large systems with many unknown parameters have to be solved, it seems less
logical. We have chosen for the more general technique of using the original or undifferenced
observables directly. In this chapter we will show how using a single undifferenced GPS
observable type, the unknown parameters of interest can be estimated. In Chapter 4 we will
then show how the technique works for more than one observable type.

We will start from the linearized observation equation that was derived in Section 2.1,
for the case that atmospheric delays are assumed to be absent. Collecting all observation
equations reveals the structure of the design matrix. This design matrix is rank defect, and we
will give for a number of models the rank defect and ways to resolve it by adding constraints,
or equivalently by specifying an appropriate S-basis. In particular resolving the rank defect
caused by the ambiguities will be treated. It will be shown that the S-basis and the resulting
estimable functions of parameters can be found in a straightforward way by introducing an
associated graph to represent the measurements made between the receivers and satellites.

As a comparison, the DD approach will be treated. It will be shown that the design
matrix for the double differences before lumping together the original ambiguities is also
rank defect.

With the design matrix as a base the normal matrix and the so-called right-hand side
will be given. This information is sufficient to perform the estimation of the parameters
we are interested in. The estimation of the parameters is done in two steps: first the local
parameters (i.e. the receiver and satellite clocks) are eliminated, and only the global param-
eters (coordinates and ambiguities) are estimated. In a second step, the local parameters
are estimated and the observations are tested for outliers and cycle slips. For the testing we
need (parts of) the variance-covariance matrix @)z of the residuals. We will show that we
can compute the information that is needed in an efficient way. This makes the testing of
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sometimes tens of thousands of observations feasible.

In the elimination of the local parameters the projector matrix plays a key role. An
efficient way to compute it will be given. In the case of a single baseline, it will be shown
that the projector does not need to be computed explicitly.

The chapter will be concluded with a comparison of some double difference generating
algorithms with the undifferenced approach on an observation scenario stemming from a
global network. It demonstrates that in some cases data has to be discarded in the DD
approach, that still can be used in the undifferenced approach.

3.2 Classification of parameters

3.2.1 Global and local parameters

In our estimation process we make a distinction between global and local parameters. Global
parameters (z;) are parameters that are constant over at least some epochs, i.e. coordinates
of the receiver, ambiguity parameters, tropospheric delay parameters, and orbit parameters.
Orbit parameters will not be treated in this thesis, and in this chapter the global parameters
will be restrained to coordinates and ambiguity parameters. Local parameters (z2) are those
parameters that change on an epoch-by-epoch basis, i.e. receiver and satellite clocks, and
ionospheric delays.

The distinction between global and local parameters is made since we may treat each
group differently: e.g. we can eliminate the local parameters on an epoch-by-epoch basis, as
will be described in Section 3.8.

We will denote, as before, the number of receivers as r, the number of satellites as m, and
the number of epochs as n. The argument of time () is replaced by a subscript , indicating
epoch k. The subscript indicating the observable type is also omitted here, as in this chapter
we will use only one observable type, viz. one phase or one code (pseudorange) observable
type. From the context it will be clear what observable type is used. For the time being it
is assumed that the observation scenario does not change from epoch to epoch.

The system of linearized observation equations reads

x
n A1,1 A2,1 33211
A A '
| y=| ™ 22 T2 (3.1)
Yn Al,n A2,n ~T2,n
where y; are the observations of epoch &
T
Yk = [ y1T,k yg:k y;r,k ] (3:2)
and y; x the observations at epoch k of receiver i:
® [ 0!, @2 ’ (Phase)
ik = + . e m ase
Yig = Y &,k i,k i,k ]T (33)

Pu=[Py P34 - P3| (Code)
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The global parameters consist of the coordinates of the receivers and, in case of the carrier
phase, the ambiguities:

T
[ 7778 - sT ANTANE - AN AN - ANT® ] (Phase)
T = T (3.4)
[ Tl oot ] (Code)
The quantity Nij is real valued; the integer valued phase ambiguity Nij has been lumped
together with the real valued initial phase delays ¢; and ¢’.

The local parameters of epoch k consist of the receiver and satellite clocks of that epoch:

Tog = [ cOtip COtog -+ COtrp cOt* cot*k ... ct™k ]T (3.5)

The geometric part of the design matrix at epoch k consisting of the unit direction vectors
from the receivers to the satellites at epoch k is denoted by the rm by 3r matrix g;. The
ambiguity part of the design matrix is covered by the identity matrix I, of dimension rm.
The clock part of epoch k is denoted by the rm by r + m sub-matrix d. With this notation
the design matrix reads:

A
nrm x 3r+rm+n(r+m)
Aqq A2,1 g Im|d
A‘1,2 A2,2 ' _ 9‘2 Ir.m d ' (3.6)
Al,n A?,n gn Irm d
where T
only for Il)pase
9Nk Uik
92,k ik —u,ﬂ;;
gk — ’ . 2, — y
rmx3r with mx3 : (37)
grk —uZ‘kT
and ufk the unit direction vector from receiver i to satellite j at epoch k, and
€m —In 1
e -1 1
d = " ™ with o= (3.8)
rmxr+m : mx1 :
em —Im 1

3.2.2 Coordinate and bias-parameters

Apart from the distinction between global and local parameters, we can make a distinction
between coordinates of the receivers or functions thereof on the one hand (z;), and bias or
nuisance parameters, viz. receiver and satellite clock errors and ambiguity parameters on the
other hand (z77). The system of linearized observation equations can then be written as

Trr

E{y} = [ArAn] [ o ] (3.9)
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with the composed design matrix as

rlam = | 7|7 N (3.10)

only for phase

the coordinate part of the parameters as
= [rrf ~~rT]T (3.11)

and the bias part of the parameters as

T
[ ANIANZ - ANPANY oo ANy, 22, T | (Phase)

[ T21,%22," " " Tan ]T (Code)

Try = (312)

The reason for making this distinction is that the system (3.10) is not of full rank, but
since A; and A;; are complementary (see e.g. Schaffrin and Grafarend (1986)) the rank and
the rank defect of both parts can be examined separately. Complementarity of A; and A;y
implies that

1. there is no linear combination of the columns of A; that equals a linear combination of
the columns of A;;, and that

2. the rank of A equals the rank of A; plus the rank of A;;, and the rank defect of A
equals the rank defect of A; plus the rank defect of A;;.

A processing method which annihilates the problem of the large amount of parameters but
not the rank defect, is differencing of the observations. By differencing twice, we get double
differenced observables. Differencing between both receivers and satellites eliminates all
receiver and satellite clock terms, but there is still a rank defect that is usually resolved by
lumping the original ambiguities into double differenced ambiguities, see Section 3.6.

Another method to process the GPS observations is using undifferenced observations. To
be able to do this, we have to investigate what the rank defect is, and how to deal with it,
see e.g. Lindlohr and Wells (1985).

A rank defect makes that not all parameters are ‘unbiased estimable’; with the help of the
theory of the S-transformations (Teunissen 1984), we can investigate what linear functions
of parameters are unbiased estimable.

3.3 Resolving the rank defect of the bias parameters

In this section we will investigate the rank of some simple models for relative positioning with
GPS, and show how it can be resolved. First we will have a look at the case of pseudoranges;
with the one epoch case as starting point the general case of n epochs is derived. From
there we go to the case of one epoch using carrier phases (which can only be solved when no
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coordinate parameters are included in the model), and the more general case of n epochs of
carrier phase.

Pseudo range
The bias part of the observation equations for the pseudorange observable reads:

cdt; — ct? (3.13)

Consequently, the bias part of the design matrix for one epoch only reads

€m I,
An _ €m ~Im |
rmxr+m : =d (3.14)
em —Inm

and is not of full rank. The addition of the first r columns multiplied by —1 gives the same
result as addition of the last m columns. There is a rank defect of 1. We have thus the rank
deficient system

E {y} = Anr Trr
™m X 1 rmxr+m r+mx1 (3.15)
with a rank of 7 + m — 1. To make it uniquely solvable, one constraint of the form
SJ‘T xrr =0, with R™™ = R(S) EBN(A”) (316)

I1xr4+m r+mx1

has to be added to the model (Teunissen 1984). SL"z;; is called the S-basis. Here R? denotes
the vector space of all p-tuples with real coordinates, AN'(A;;) denotes the null space of Ay,
which consists of all vectors in R™™ that are mapped into the null vector in R™ under Ay,
i.e.

N(A”) = {U I A”’U = 0} (317)

and R(S) is the range space of the r +m x r +m —-1 matrix S, which consists of the vectors
in R™™~1 which can be written as Sz for some z in R™™:

R(S) ={w | w= Sz for some z in R"™*™} (3.18)

There is an infinite number of bases for N'(A;r) possible, of which one can arbitrarily choose
one; but they all span the same vector space. The base for the null space will be denoted as
V, thus R(V) = N(A;). For the model above we may e.g. choose

Vv

r+mx1 = [er+m] (319)

For S we may also choose from an infinite number of possibilities, e.g.

S = [Orem=s (3.20)
r+mxr+m-—1 Lrm—1
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with 0, a null-vector with length ¢, which results in

s —[O 1 ] (3.21)

r+mx1 r+m-—1

where ¢ can be any real number. The resulting estimable functions are then

T
[I,+m - V(SLTV)—‘S”] T = [ 0 0r+m—1] T (3.22)

—€rim—1 Ir+m—-1

or,

céti — cétl ) ;é 1
ctd — o8ty (3.23)
Usually one takes ¢ = 1 (although it has no effect on the eventual estimable functions), which
gives an S-basis consisting of the parameter S+" 7, viz. in this case cdty.

Other choices for the S-basis may be any of the other clock errors, or e.g. the average
of all clock errors or a subset thereof. One could e.g. take the average of the satellite clock
errors. With V' as before and

S _ T st _Jo,
r+mxr+m—-1 _Ie’"‘l andr+mx1‘[em] (3:24)
m—1
we get
_1
[I,+m— V(SLTV)*S”] T = [1, I _mf%m ]x,, (3.25)
or

m

cbt; — %Zcéti
i=1
m

cét! — %Zc&tj
=1

Different choices for the S-basis give different sets of estimable functions of parameters,
the coordinate-parameters, however, are not influenced by it.

(3.26)

For n epochs the bias part of the design matrix reads

d
Anr _ d
nrm X n(r +m) (3.27)

d

Since the n parts of Aj; relating to one epoch are all complementary, the rank defect of Aj;
is n times the rank defect of one epoch:
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1 epoch n epochs
nunkAj; r+m n(r +m)
rnkdAry 1 n
rankAr; r+m—1 n(r+m-—1)

where nunkA is the number of columns of A4, or the number of unknowns involved, rnkdA is
the rank defect of A, and rankA the rank of A.

The rank defect of » means that one linear combination of clock terms per epoch cannot
be estimated. If we take at each epoch the clock of the first receiver cdt;; for the S-basis,
the following functions of parameters become unbiased estimable:

C(Sti’k - C(Stl,k 1 7é 1

cOtik — bty (3.28)
Carrier phase
The bias part of the observation equations for the carrier phase observable reads:
AN? 4 cbt; — c5t9 (3.29)
which gives for one epoch the following bias part of the design matrix:
A [Irm d] (3.30)

rmXrm+r+m

There are again r + m clock errors as we saw in the case for the code observable, but there
are also rm ambiguities. Besides the rank defect of 1 for the clocks there is an additional
rank defect of 7 + m — 1 for the ambiguities. Note that to be able to solve this system A;
cannot be present; i.e. the coordinate parameters are assumed to be known. A possible basis

for the null space of Ajy is:
v [ —d ] (3.31)

rmAr4+mxr+m Liim

For S and S* we may choose e.g.

S S,
rm+r+m><(r—1)(m—1)+r+m_1—[ 'Sd] (3.32)
with
-Om,m—l i
]
Sa - Im—l
rmx (r—1)(m-1)" (3.33)
01
L Im—l |
Sa _ -0$+m—1
r+mxr+m—1" |Lima (3:39)
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and
S+ St
rm+r+m><r+m——[ St (3.35)
with
I
1
st oo
rmxr+m—1" Om -1 ) (3-36)
| o]
Sy [ 1
r+mx1 _O,+m_1] (3.37)
The S-basis is thus
it [AN/ i#£1Vi#£1
S T = {C(Stl (338)
which gives the following unbiased estimable functions of parameters:
MN/ =N} = (M -ND))  i#1nj#1
[I,m+r+m - V(S”V)*S”] zrp =1 e8t; — cbty — A(N} — N}) i£1
e8! — bty — AN}
(3.39)
For n epochs the bias part of the design matrix reads:
Ly d
A” Irm d
nrm X rm + n(r + m) : (340)
I d

For each epoch there are again r + m clock errors, giving a rank defect of 1 per epoch. The
inclusion in the model of the rm ambiguities which are common for all epochs, causes an
additional rank defect of 7 + m — 1, resulting in a total rank defect of r + m — 1 + n:

1 epoch n epochs
nunkAjr rm+r+m rm + n(r +m)
rnkdAr; r+m—1+1 r+m-—1+n
rankArs (r=1)(m-1)+r4+m-1 (r—D(m-1)+n{r+m

A possible basis for the null space of A;j; is:

—d

Irm
174 +

=il e
rm+n(r+m)Xr+m—1+n rtm i

Ir+m

_]_)

(3.41)

€rim
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As before, we have to choose one linear combination of clock terms per epoch, and additionally
another r + m — 1 parameters for the S-basis. Let us take e.g.

AN} i£1Vji#£1
o6t 4 (3.42)
which corresponds to choices for S and S+ as e.g.
Sa
S
S - ‘ (3.43)
rm+n(r+m)x(r—1)(m—-1)+n(r+m-—1)
Sa
and
SJ_
s _| s (3.44)
rm+n(r+m)xr+m-—1+n
Sz
The unbiased estimable functions of parameters are then:
MN? = N} = (M = N})) i#L1Nj#1
Céti’k - C(Stl’k - )\(1\711 - Nzl) 1 # 1 (345)

cOt9* — bty — ANY

In contrast to the individual ambiguities Nl’ , the function of ambiguities N/ — N} — (N7 — N1)
is integer valued. Since we have defined N as

Nl =N +¢i— ¢ (3.46)

it is real valued. If however, we substitute Eq. (3.46) into N/ — N! — (N} — N1) we get a
function that is integer valued:

N} - N} = (N{ - N}) = Nij +; —¢
- N} —¢i +¢!
-§ —¢1 +¢! (3.47)
+N 11 +¢ —¢1
= Nz’j _Nil - (Nf —Nf)
Note that the (r — 1){m — 1) functions of ambiguities are equal to the functions one obtains
when applying a certain double difference operator (‘pivoting’ with the first receiver and the

first satellite). Therefore we will compare the solution with the undifferenced observations
with this DD solution.

3.4 Finding an S-basis for the ambiguities

In Section 3.3 we have seen that to obtain the integer double differenced ambiguities as
unbiased estimable function, we have to choose one clock error for each epoch and r +m — 1
ambiguities for the S-basis.
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In choosing this set of ambiguities one is bounded by some restrictions: each satellite and
each receiver should exclusively be represented in the set of S-basis ambiguities. When we
say exclusively we mean that if an ambiguity AN/ is chosen, it represents either receiver i or
satellite j. There is one exception to this rule: one of the S-basis ambiguities represents both
the receiver and the satellite. For rm ambiguities, involving r receivers and m satellites, it
gives us 7 +m — 1 ambiguities for the S-basis, where the —1 comes from the exception above.

Here we have implicitly assumed that the receiver-satellite combinations form one con-
nected component, which is usually the case. One such an occasion might be e.g. two small
networks at opposite sides of the Earth, where the set of satellites tracked by the receivers
of the first network do not overlap the set of satellites tracked by the receivers of the second
network. In such a case two separate S-bases have to be chosen, but it does not make much
sense to process the networks together anyhow, since processing the networks separately gives
the same results.

There are a large number of ways to choose the set of ambiguities as defined above, each
giving a different set of unbiased estimable functions of ambiguities. We can for instance
choose the set of ambiguities such that the eventual set of estimated functions of ambiguities
becomes equal to the set of double differenced ambiguities one obtains by applying a pivoting
scheme in defining the DD combinations. Let us take e.g. the case with r = 3 receivers and
m = 4 satellites,

1 2 3 4

1 AN! AN2 AN} AN

2 AN} ANZ AN AN?

3 AN! ANZ AN ANZ

We choose as S-basis: {AN], ANZ, AN3 AN}, ANZ, AN1}. In the scheme below we indicate

that a receiver or satellite is represented by an ambiguity in the S-basis by putting a box
around the sub- or superscript of the ambiguity concerned.

(3.48)

(3.49)

It gives us indeed the same double differenced ambiguities we obtain if we form double
differenced observables with receiver 1 and satellite 1 as pivot:

MN; = N = N, + N) AN} = N} = N3 + N;)
AN} — N} — Nj + N3) A(N{ — N} — N3 + N3) (3.50)
MNi = Nj = Np + Ny) MM} — Ni = N3 + Ny)
Another valid choice would be: {AN], ANZ AN2Z AN3 AN3 ANj}.
4
AN

(3.51)
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Figure 3.1: Associated graph for the observation scenario of (3.48). Receivers are indicated
by diamonds, satellites by circles.

The estimable functions this choice gives are still of integer nature, however they do not all
have the form of the classic double differenced ambiguities consisting of 4 ambiguities:

M~=N}+ N2+ N7 — N3) M~N3 + N + N2 — N3)
M=N2+ N} 4+ N2 - N} 4+ N3 —-N;j) M-N}+ N —NZ+N;+N;—N3)
AM~—=N}! 4+ N? + N; — N2) M~=NZ + N3+ N2 - N3 (3.52)

Which ambiguities may be chosen for the S-basis, and the resulting set of estimable func-
tions, can be determined using an undirected graph to represent the receivers and satellites
involved.

A graph G = G(V, E) consists of a set of n nodes or vertices V, together with a set
of edges E, where an edge is a pair of nodes belonging to V. If no distinction is made
between the edge from node v; to node vy and the edge from node v, to node vy, the graph
is called directed. Two nodes are called adjacent if they are connected by an edge. A path
is an ordered set of distinct nodes (vy,vs, ..., Unms1) such that v, and vy, are adjacent for
k=1,2,...,m; a path is a cycle when v; equals v,,.1. A graph is connected if every pair of
distinct nodes is connected by at least one path. An undirected graph which is connected,
and has no cycles, is called a tree. In a tree there is exactly one path connecting any two
nodes (Pissanetzky 1984).

We may define an associated graph for an observation scenario: each receiver and satellite
is represented by a node, and each ambiguity belonging to a phase observation made by a
receiver to a satellite is represented by an edge. The associated graph for the observation
scenario of (3.48) is depicted in Figure 3.1.

We found that the S-basis for the ambiguities can be formed by taking the ambiguities
associated to the edges of a so-called ‘minimum spanning tree’ (MST). A minimum spanning
tree is an undirected connected graph consisting of n nodes and n — 1 edges. It has the
property that of all connected graphs the sum of the weights of the edges is minimal. In this
case we define the weights of all edges to be equal, and we speak of a ‘spanning tree’. An
algorithm to build a minimum spanning tree is called Prim’s algorithm.
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Prim’s algorithm for building an MST:

1. Take the edge with the highest weight, and put the two nodes connected by it, in set
V.

2. Consider the set of edges that connect a node from V — V] to a node from V;, and select
the edge with the highest weight,

3. Add the node belonging to V' — V] of the edges selected in 2. to V;.
4. Aslongas V —V; # 0 go to 2.

In selecting the edge with the highest weight, ties are broken arbitrarily. No matter how
ties are broken, the resulting sum of weights is always minimum, although actual trees may
differ. In Figure 3.2 two such trees are depicted, the edges of the tree are drawn as solid
lines, the remainder of the edges of the associated graph are drawn as dotted lines. The
S-basis consists of the ambiguities represented by the edges of the tree, viz. for the tree at
left {AN], ANZ, ANE, AN, AN}, AN} as in the example of (3.49), and for the tree at right
{AN},ANE, ANZ, AN3, AN3, AN$} as in the example of (3.51).

Each of the estimable functions due to the S-basis consist of one ambiguity not in the
S-basis plus a function of ambiguities from the S-basis. This function is found by traversing
a path in the spanning tree. For an ambiguity /\Nij which is not in the S-basis the path
to be traversed is the path from receiver i to satellite j, or from satellite j to receiver i.
The estimable function consists of ambiguity )\Nij plus all ambiguities encountered while
traversing the path. While traversing the path, the sign for the ambiguities is changed at
each edge, starting with a minus sign at the first ambiguity. For the observation scenario of
(3.48) with as S-basis the ambiguities associated with the edges of the trees in Figure 3.2 we
obtain:

Tree at left:

A(NZ — Ny'+ N} = N?)
AN — Ny + N} — N3?)
A(Ny — Nz + N{ — Ny)
MNZ — N} + N} = N}
AN — N3 + N} — N?)
MN{ — N} + Nl — N}

Tree at right:

AN — N? + N3 — N)

MN{ — N2+ Nf — N2 + N2 - N}))
A(N; — N7 + Nf — Ny)

A(N; — N + Nj — Ny)

MN; — N3+ N3 — N2 + N2 - N})
A(N; — N3 + Nj — N3)

(3.53)

The functions of ambiguities at left can be transformed into those at right by multiplying
with the invertible, volume preserving transformation matrix

(1 -1
1 -1 1 -1
5 (3.54)
-1 1 1 -1 '
-1 1 -1
-1 1 1 -1

If we denote the S-transformation matrix [I — V(Si" V)~1S1”] originating from the first
S-basis as ), and the one originating from the second S-basis as Sy = [I — V(S£"V)~15+"],
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Figure 3.2: Two spanning trees for the observation scenario of (3.48). Receivers are indicated
by diamonds, satellites by circles. The edges of the tree are drawn as solid lines, the remainder
of the edges of the associated graph are drawn as dashed lines.

the matrix to transform the estimable functions from the first S-basis to the second S-basis
is computed as:

S.8] (3.55)

where T denotes the pseudo inverse (SS'S = S and St'SS* = St).

If we choose one of the receiver or satellite clocks for the S-basis for the clocks, estimable
functions are formed consisting of two parts, viz. a differential clock (receiver or satellite clock
minus the clock in the S-basis) minus a function of ambiguities. This function of ambiguities
can again be determined using the spanning tree.

The two clocks that form the differential clock are the end points of a path in the tree.
The function of ambiguities is found by traversing this path, starting at the clock that is part
of the S-basis. Again the sign for the ambiguities is changed at each edge, starting with a
minus sign at the first ambiguity. If we choose, e.g., the receiver clock of the first receiver for
the S-basis, the following estimable functions are obtained:
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Figure 3.3: Spanning trees for the observation scenario of (3.57). Receivers are indicated by
diamonds, satellites by circles. The edges of the tree are drawn as solid lines, the remainder
of the edges of the associated graph are drawn as dashed lines.

Tree at left: Tree at right:

c(8tag — Strg) + M=N{ + N3)  c(tar — 0t1 k) + A(—NZ + NZ)

c(Otag — Otrg) + A(=NT + N3)  c(6tzg — St1 ) + A(—=N? + N2 — N3 + N3)
(8t — 0ty 1) — AN} c(6t4% — 6t1 1) — AN}

c(6t*F — 6ty 1) — AN, c(6t2% — §t14) — AN,

c(6t3F — 6t 4) — AN] c(6t3* — 8t 4) + A(— N} + Ni — N3 + N3)
(0t — §t1 ) — AN} c(6t** — 6t14) + M(=N? + N — N3 + N; — Ny)

(3.56)

Also cases as described in e.g. Blewitt (1993), where 3 receivers each track 2 satellites

from a total of 3 observed satellites, are easily handled. The ambiguities (and an S-basis
chosen by the aforementioned rules) for this case are:

(3.57)

The resulting estimable function of ambiguities is then (see Figure 3.3)

AN} — N} + N2 - N} — N; + N3) (3.58)
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Figure 3.4: Spanning tree for the case of cycle slips in the observation scenario of (3.48). At
left a cycle slip occurs in the receiver-satellite combination 1, at right a cycle slip occurs in
all combinations of receiver 1. Receivers are indicated by diamonds, satellites by circles. The
edges of the tree are drawn as solid lines, the remainder of the edges of the associated graph
are drawn as dashed lines. The edges associated with new ambiguities due to a cycle slip are
drawn in grey.

There are in this case 6 possible sets of 5 ambiguities, giving 2 functions of ambiguities which
differ only by their sign:

{ ANZ, ANZ, AN$, AN}, AN3)
{AN], ANT, ANZ, ANj, AN{} MN! = N2+ N2 — N} — N} + N9)
{ANI, ANT, ANZ, AN, AN; }
{ANT, ANZ, AN3, AN}, AN3}
{AN1, ANE, AN, AN;, AN3} —MN} — N2+ N2 - N} — N} +N3)
{AN1, ANE, ANZ, AN, AN}

For a more realistic case see Section 3.15.

3.5 Changing observation scenarios

In Section 3.4 we described how to choose an S-basis for the ambiguities assuming that
the observation scenario does not change from epoch-to-epoch. In that case the S-basis is
determined once at an arbitrary epoch. In practice, due to rising and setting of satellites,
and unrepaired cycle slips for which new ambiguity parameters have to be included, we may
have different sets of ambiguities for different epochs. The determination of an S-basis is still
fairly simple, but it may be necessary to extend it at some epochs.

At the first epoch an S-basis is determined according to the rules given in Section 3.4:
each satellite and receiver has to be represented exclusively by one of the ambiguities in the
S-basis, with the exception of one ambiguity that represents both a receiver and a satellite.

If there is a change in the observation scenario, it is compared with the scenarios of the
previous epochs. The S-basis is extended when
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1. a satellite is observed that was not observed in a previous epoch.
2. a receiver starts to observe that did not observe in any of the previous epochs.

3. a slip occurs in all receiver-satellite combinations of a certain satellite. This could e.g.
occur when a regional network is observing for 24 hours; then there are time spans that
the satellites are not seen by any of the receivers.

4. aslip occurs in all receiver-satellite combinations of a certain receiver. This will happen
more frequently: malfunctioning of the receiver or blocking of the signals.

So, if at a certain epoch a receiver-satellite combination is not observed, the S-basis
remains as it is, if a new receiver-satellite combination or a slip occurs, the S-basis may be,
but not always is, extended.

To clarify the procedure, let us have a look at the observation scenario in (3.48). The first
case we will take is a slip in the receiver-satellite combination ] at an epoch k. None of the
cases above applies, and consequently the S-basis need not be extended. In Figure 3.4 the
tree and associated graph for this case is depicted. The new ambiguity Nik for epoch &k and
beyond, is drawn in grey. As far as the ambiguities are concerned, the estimable functions
are the ones we already determined for the observation scenario in which no slip occurs, plus

AMWNig = Niy) (3.59)

which follows from applying the same rules as given in Section 3.4. Note that this is also not
a classic double difference ambiguity, but that N}’k - N1171 is integer valued provided that the
size of slip is integer which is usually assumed to be so. The estimable functions involving
clocks remain as in the case where no slip occurred.

In a second case we assume a cycle slip in all combinations of receiver 1. Case 4 applies,
so one of the ambiguities in the combinations of the first receiver is added to the S-basis.
Again, for the ambiguities the estimable functions are the ones already determined for the
observation scenario in which no slip occurs plus

ANy — Ny + Nll,l - le,l)
MNPk = Nij+ Niy — V7)) (3.60)
MNig = Nig + Niy = Niy)

Again these are not the classic double differences, but they are still integer valued functions,

viz. they are differences between the slips of 2 receiver-satellite combinations. As far as the
clocks are concerned, from epoch & and beyond we have

c(8tak — 6t1k) + A(=Nj 4 + Nyy)

c(Otap — Ot1k) + A(— Nllk + N311)

c(6t* — 6t14) — AN

c(6t3F — 61 1) + A(— N1 x+ N1 — N (3.61)
(68 — 5ty 1) + )\(—N11,k + N11,1 - Nf,l)

C(5t4’k’ —Otie) + ’\(_Nll,k + N11,1 - Nf,l)

In a third case two new combinations are observed, e.g. 2, and 5. Case 1 applies, so one
of the accompanying ambiguities, e.g. 3 is added to the S-basis to represent satellite 5. If in
a later epoch, it disappears again and combination 3 is observed instead, the S-basis remains
as it is.
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3.6 Double differenced approach

To form (single) differences between observations generally two strategies exist, viz. ‘pivoting’
and ‘cycling’. In the pivoting strategy, differences are formed with respect to a chosen ‘pivot’
receiver or satellite. If we take e.g. as pivot the first receiver or satellite, the differencing
process can be denoted as

with Rq—l
-1 1
R -1 1
g—1xgq | (3.63)
-1 1

and ¢ the number of receivers or satellites. Any other receiver or satellite can be used as
pivot, as well.

When using the cycling strategy the reference receiver or satellite is obtained by cycling
through the range of receiver or satellites; i.e. each difference is formed with respect to a
different receiver or satellite. The transformation matrix for the cycling mechanism reads

R._ -1 1
q—‘i;q = . (3.64)

-1 1

In practice also often a combination of the two, or a pivoting scheme with more than
one pivot is used (cycling can be seen also as a pivoting scheme with ¢ — 1 pivots). The
whole process of differencing is sometimes also characterized as finding the maximum of
g — 1 independent differences that can be formed out of ¢ observations. Independence of the
differences implies that R,_; has full rank, i.e. a rank of ¢ — 1.

For the analysis that follows the departing point will be the pivoting scheme with the
first receiver or satellite as pivot.

Between-receiver SD observables are formed from the original observables through a pre-
multiplication by the (r — 1)m X rm matrix R,_; ® In,:

SDy = (Rr—l & Im)y (3'65)

and from it DD observables are formed through a pre-multiplication by the (r — 1)(m — 1) x
(r — 1)m matrix I,_; ® Rp_1:

DDy = (I, ® Rin-1)SDy
= (I;-1 ® Ru_1)(Rr—1 @ In)y
= (Rr-1 ® Rp1)y (3.66)

Since we have transformed the observables, we also have to transform their variance-covariance
matrix. With a variance-covariance matrix Q,, for the original observables of the form %I ,
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the variance-covariance matrix of the double differences becomes:

QDD = - (Rrs ® R} (Brr ® R

1
= E(Rr—le—l) ® (Rm-1Rp_y) (3.67)

It can be shown that
1

Qpp = [(Rr-1 ® Ry 1)(Rr1 ® Ry 1)"] ™
= w(R,1R7_1)™' ® (Rm-1 Ry )™ (3.68)

The product R, ;RI_, and its inverse are
Ry Rl = (Iy-1 + Eqy) (3.69)
(ngﬁ4f42<@4—$EPO (3.70)

So the weight matrix for the double differences equals

1 1
o = r—1 — —Lp— m—-1"—" —Em- 71
Qpp =vw (I 1 rE 1> ® <I 1 mE 1) (3.71)

Assuming the observation scenario does not change, the ambiguity part of the normal matrix
is equal for all individual epochs. The system of normal equations for the double differences
of epoch k reads then

1 1
Irm (R'r—l ® Rm—l)T (Ir—l - ;Er—l) ® (Im—l - EEm—l> (R'r—l ® Rm—l) IrmAxl =

Lm (Re—y ® Ry y)” (1,2 — lEr-1 & | Im-1— lEm—l (Rr—1 ® Rm—1) Ayx  (3.72)
r m

or
(Ry—1 ® Rmy)” (IH - %E,_l) ® (Im_1 - %Em_l) (Root ® Rpn_y) Ay =

1 1
(Rro1 ® Rm—l)T <Ir-—1 - ;Er—l) ® <Im—1 - EEm—l> ADDy; (3.73)

Through the differencing the clock parameters are eliminated, but the transformed design
matrix K,_; ® Rp,_; still inhibits a rank defect of r + m — 1. This rank defect is usually
solved by lumping together of the original ambiguities into double differenced ambiguities.
Instead of the rm-vector of original ambiguities

[ ANEANZ -2 ANPANE - ANm 1T (3.74)
a (r — 1)(m — 1)-vector of double differenced ambiguities
[ M(N!— N2 N}+N2) ... A(N}—NP—N}+Np)
AN} = N2—N}+N2) ... MN!—NP—NI+NP) ...
ANE— N2 = N!'+N2) .. A(N}=Nr—N'+N™ T (3.75)
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is obtained. The design matrix is changed accordingly from the (r — 1)(m — 1) x rm matrix
Rr_1® Rpp_y to the (r —1)(m — 1) x (r — 1)(m — 1) matrix I _1y(m—1). The resulting system
of normal equations is now of full rank:

1 1
<Ir—1 — _Er—1> ® (Im—l - _Em-l) Az =
T m

1 1
(Ir—l - "Er—l) ® <Im—l - _Em—l) ADDyk (376)
T m

The transformation that was applied to the observables is not an invertible one (invertible
transformation maintain the information content of the system). In the next section it will
be shown why it is still admissible.

3.7 Double differences: an alternative approach

In this section we will show how the system of undifferenced carrier phases

E{®}=[ Ar Ay ] [ o ] (3.77)
Trr

can be transformed by applying invertible transformations (which do not change the infor-

mation content of the system) only, into

3

& 1, [ 4 Ay o :
E{[DDé]}_[DDA, 0 DDAH] Dgla;” (3.78)

For reasons of legibility, and since here we are mainly interested in the biases, we will only
show the transformation of the bias part of the system. Also the expectation operator will be
omitted. The superscript M denotes the whole range of satellites 1,--- ,m, the superscript
M denotes the whole range of satellites except the first one 2, -+, m.

We start with the undifferenced phase observables, modeled by a clock term for the
receiver and for the satellite, and an ambiguity term:

C(Stl
C5t2

M cot,
® | o _,Im I _ oM (3.79)
- : - ANM

M

AN} ]

In a number of steps we will apply the following invertible transformation to this system of
observation equations

Tpp = (I ® Ru) (B, ® Im) (3.80)
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with
R,=|. . q (3.81)

Applying the second part of (3.80), thus (R, ® I,,), to Eq. (3.79) we form single differences
between recelvers (pivoting with the first receiver as pivot), while retaining the original
undifferenced observation equations belonging to the first receiver. In the so formed ‘single
differenced’ (SD) observation equations the satellite clock term has disappeared:

[ 05t1 1
C(StQ

oM —€m €m I I cot,
A L S c6tM (3.82)

ANM
@% —€m €m —Im Im )\N;I\/I

[ ANM |
where &/, = & — .

In the SD equations we lump together the clock of the first receiver with the clock of the
other receivers, and also the ambiguities of the first receiver with the ambiguities of the other
receivers:

[ C(Stl ]
C((Stg - (Stl)

(I)M em I C((Str - 6t1)
= , " c6tM (3.83)
. ‘. *. AN{M
@M €m Im )\N21l11

rl

ANM

where N}, = N/ — NJ.
Applying the first part of (3.80) to Eq. (3.83) double differences are formed (pivoting
with the first satellite as pivot). In the DD observation equations also the receiver clock term
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disappears:

where e = €1, O = Opu_1, and Iy, = [, 1.

1 [ANZ}J]
[—em Im]_ )‘N%

cétl
C(6t2 - 5t1)

C((Str — (5t1)
cot!
c6tM
AN}
ANM

AN},
ANM

(3.84)

In the DD equations the SD ambiguities of the first satellite are lumped together with

the SD ambiguities of the other satellites, giving

[ e 1 [ -1 1
q){VII €m —‘Im —€m Im
®}, 1
M| | O,

C(Stl
c(6t5 — 6t,)

c(dt, — 6ty)
cot!
c§tM
AN}
ANM

ANy
AN

(3.85)

)\N,h
| i)
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where N7 = N/' — N7, A re-arrangement of the system gives

C(Stl
C(6t2 e 6t1)
[ @] ] 71 -1 1 1 |e(6t, — 6t1)
@{Wl Em _I'ﬁl —€m Im C(Stl
Py 1 1 c6tM
: . AN}
@, | = 1 1 AN (3.0
M1 I ANy,
g | | L ANy
) . ANMY
AN

which falls apart into two independent subsystems (although the systems seem to be linked
together via the coordinate part, the first part, as we will show below, does not contribute
to the estimation of the coordinates):

c§t1
C((Stz - 5t1)
(I)j 1 -1 1 C((Str - (5t1)
sk em —Im —ep I cot!
P | =| 1 1 5t (3.87)
o AN}
®L, 1 1 ANM
ANL
RELCE
@i In AN
= : (3.88)
M1 In | [ANM

The second part of the system contains the DD equations modeled by the DD ambiguities.
Let us have a closer look at the first part of the system: there we have r +m — 1 observables,
r + m local parameters consisting of functions of the clock parameter, and r + m global
parameters consisting of functions of ambiguities. The system is obviously rank defect. By
pre-multiplying the system with the matrix

1
11
, r+m—1 (3.89)

1 1
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we obtain a system with undifferenced equations only:

C(Stl
c(6t2 - (5t1)

(I)i 1 -1 1 C((Str - (Stl)

oM em —In In cot!

P | =] 11 -1 11 c6tM (3.90)
: Do : AN}
1 M

® 1 1-1 1 1 AN!

AN},

AN,

Now we lump together the biased receiver clocks ¢(6t; — 6t;) with the SD ambiguities
(AN}), and the satellite clocks (c6¢7) with the ambiguities of the first receiver (AN} ):

1 _ coty

;I’Aa > P et — o) + AN,
1 m m .

@, | =] 11 -1 : 3.91
2 : e(8t, — 6t1) + ANY, (3:99)
. . B cdt' — AN}

& ! 1= ot — AN

In the resulting system there is still a rank defect of 1. To make the system of full rank
we lump together the clock error of the first receiver (cét;) together with the biased satellite
clocks (cdt? — ANY):

(P}_ -1 C(5t2 — 5t1) + )\N211

=1 -1 e(8t, — 6t1) + AN}, (3.92)
: P c(6t' — 6t1) — AN}

! 1-1 (6t — §t,) — AN

The result is a system of full rank, with only local parameters; i.e. at each epoch r+m—1
parameters have to be estimated using the r + m — 1 observables only. These observables
are called free variates. The observables in this system do not contribute to the estimation
of coordinates or DD ambiguities. If one is not interested in the local parameters, these
observables may be discarded.

The local parameters are equal to the unbiased estimable functions of parameters one
obtains when in the undifferenced approach the S-basis as in (3.42) is chosen.

3.8 Solution of the normal equations

As we showed in Section 3.3, the rank defect of the bias part of one phase observable type
(i.e. the ambiguity parameters and the clock errors) is r + m + n — 1, so we have to choose
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r+m+n—1 parameters to form an S-basis. One of the possible choices is to choose one clock
in every epoch (we chose the clock of the first receiver), and 7 +m ~ 1 ambiguity parameters.

In practice the choice of the clock of the first receiver means that we skip the columns
referring to this parameter. This means that we constrain the value for the clock of the first
receiver to zero. By doing this, matrix A, is altered into /_12,,0:

-1,
Agk _ | Em — I
rm X (r—1+m) : (3.93)
em —Ip
With the variance-covariance matrix of the observables as
Q le
v _ (3.94)
XNrm
Qyn
the normal matrix N and right-hand side h read
Z A{ka_klAlyk symmetric
N k=1
_ o . (3.95)
x3r +rm+ n(r +m) AQ,Ile Al A31Q, Ay
| A3,Q; A, AL Q)1 A, |
Z A{kQ;klAyk
L k=1
3r+rm+n(r+m)yx1 AT QA (3.96)
| AL,Q, 0y,

Since this normal matrix system will become very large for the number of epochs nor-
mally involved, the local parameters are first eliminated, and computed in a second step
by substitution of the global parameters in the observation equations. The elimination of
local parameters and thus the updating of the normal matrix and right-hand side is done
epoch-by-epoch, and can symbolically be described as follows:
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L 4 pﬁ)=10;h0::0
e for epoch k=1 to n:

Ny = Neor+ATQ; Ay — ALLQy [A2e (AT Q5  Ank) T AT, Q5] Avk
= Ng_1+ A{kQ;kl [Irm - 1‘_12,k(Ag,kQ;:Azk)_lfi{kQ;:] Arg
= N+ ADQ,) [Iom = Pa, | Aus
= Nio1+ALQ, Pi, Avk (3.97)

2k
he = hey + A{ka—:Ayk — AT,Q;! [AQ,k(Ag,ka_,}AZ,k)_IA%:I;Q;:] Ay

= hpo1 + ALQp) [Trm — A2k (A3,Q5, A2 k) T A74Q5 ] Ay

= he1+ ATQ;) [I,m . PAM] Ay

= hea + A{kQ;kle‘M Ay (3.98)

with N the normal matrix reduced for the clocks of epoch 1 to k, hj the right-hand
side reduced for the clocks of epoch 1 to k, and Ay, the vector of ‘observed’ minus
‘computed’ of epoch k.

So after n epochs we have the following reduced normal matrix system
n n
ST ATQIPE AvkAz = ATLQ, P, Ak (3.99)
k=1 k=1

In short hand notation we will denote it as
N, Az, = h, (3.100)

Since so far we only resolved part of the rank defect, viz. the rank defect relating to
the clock parameters, the normal matrix N, is still singular. The remaining rank defect of
r4+m — 1 is resolved by constraining r +m — 1 ambiguities to zero, resulting in an invertible
normal matrix N, and matching right-hand side h,:

N, = STN,S,
hn = STh, (3.101)

i.e. if we have chosen an S-basis for the ambiguities consisting of 7 + m — 1 ambiguities,
STN,S, is formed by deleting the columns and rows in N, and the entries in h, referring to
the ambiguities in that S-basis. For the definition of S, see Eq. (3.33). The selection of the
ambiguities is made according to the procedure described in Sections 3.4 and 3.5.

With the exception of global networks, the absolute position of the coordinates is poorly
estimable, and thus also the coordinates of one station are constrained to a priori values. This
makes that instead of absolute coordinates r;, relative so-called baseline coordinates r; — 70,
with i0 the station whose coordinates are constrained, are estimated. This is however, not
a real rank defect, so the values at which the coordinates are constrained, influence the
estimates.
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The global parameters are obtained through solution of the system
N, Az = h, (3.102)
by means of a Cholesky factorization! (Golub and Van Loan 1989) of the normal matrix,
N, =cCcT (3.103)
followed by a forward and backward substitution:

Cxy = hy, (3.104)
CTAZ, =z, (3.105)

The Cholesky factorization can be made in-place.
After we have computed the global parameters we compute the local parameters by
substitution of the global parameters into the ‘observed’ minus ‘computed’ quantity:

Ay = Ay — A ATy (3.106)
with
Ak =[gc Sa (3.107)

S, is formed from I,,, by deleting the columns referring to the ambiguities in the S-basis.
The solution of the local parameters AZ, of epoch k follows then from the solution of
the system

(A7xQut As k) AZay = AT, Q1 AyY (3.108)

Or, since Hy,, = (Ang;kIAQ,k)_lﬁng;cl becomes available during the computation of P/Ji},,c
(see Section 3.12).

AZyy = Hz, , Ays? (3.109)

3.9 Testing and reliability

In this section we will give a short description of the testing procedures that are employed in
all geodetic data processing software of the Section Mathematical Geodesy and Positioning
of the Faculty of Civil Engineering and Geosciences of DUT (B-method of testing). For a
more extensive description we refer to Teunissen (1989) and Beckers and Kenselaar (1996).
In Section 3.10 we will show some examples of these procedures applied to GPS data.

Testing.
The testing procedures are based on the confrontation of the null hypothesis

Hy:y~ N(Az,Q,) (3.110)

!Devised by André-Louis Cholesky, see (Benoit 1924)



3.9 Testing and reliability 63

with the alternative hypothesis
H,:y~ N(Az + C,V,Q,) (3.111)

The null hypothesis states that the data fit both the functional and the stochastic model,
whereas the alternative hypothesis states that the functional model should be extended, to
account for the model error C,V. The observables are assumed to have a normal distribution.

In the GPS data processing three tests are computed, viz. 1. the overall model test
(OMT), 2. the test for an outlier in a single observation, and 3. the test for a cycle slip in
a carrier phase observation. Slips occur when the receiver miscounts the number of whole
cycles. This can occur, e.g., when there is high ionospheric activity, or by some internal
failure inside the receiver hard- or software.

The overall model test is a general test on the validity of the chosen model. It analyzes
the squared perpendicular distance of the observation vector y to the model Az. The test
statistic reads

Tar = €7Q; ¢, (3.112)

and has under the null hypothesis a x? distribution with df = ‘number of observations’—‘rank
of the system’ degrees of freedom. The null hypothesis is accepted if

Tor < kys (3.113)

Besides the overall model test, each observation may be tested separately, by specifying a
one-dimensional alternative hypothesis for it. The test statistics so obtained are called w-test
statistics. For the GPS observable types, two alternative hypotheses are of importance, viz.
one that tests if an outlier has occurred in a pseudo range or carrier phase (specified by a
conventional alternative hypothesis), and one that tests if a slip occurred in the carrier phase
(specified by a non-conventional alternative hypothesis). The w-test statistic for the GPS
alternative hypotheses (with Cy = ¢, x) reads

T ~
cp,kae

VR Qe

Wpk = . (3.1’14)

y

The choice for ¢, for testing for an outlier, or a cycle slip will be treated in Section 3.10.
The squared w-test statistic has under the null hypothesis a central x? distribution with
one degree of freedom. H, is accepted if

why <k (3.115)

or consequently, if
=V < wpi < Vi (3.116)

If Hy is rejected the estimate for the error V, reads

. L Qe
Vo = pk2Y 3.117
p.k C?,:kQ;lQélecp,k ( )
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For the case that the size of the error [|V, || is known a priori, the w-test statistic reads
(Teunissen 1988)

llepxQuéll
gl = —==2= (3.118)
V2, QeQ; e
and Hj is accepted if
sl < 21/ Q51 QeQy et [V (3.119)
wpvk — 2 cp,k Yy exy cpvk Pk ‘
or
- 1
Vpi < illvp,kll (3.120)

Under the alternative hypothesis the OMT statistic and the squared w-test statistic have
a non-central x?(df, A¢) distribution with ) the non-centrality parameter.

The probability that Hy is rejected, while it is actually true, is specified by the ‘level of
significance’ of the test o ‘

a=P(T >k | Hy) = /:o x2(df, t)dt (3.121)

The probability that Hy is rejected, while in fact H, is true is specified by the ‘power’ of the
test vy

y=P(T >k | H,) = / X2(df, Xo, t)dt - (3.122)
k .

In the B-method of testing the power and the non-centrality parameter are set equal for all
tests. This guarantees that a model error of a certain size will cause Hy to be rejected with
equal probability for tests of different dimension. The level of significance is different however
for tests of different dimension. For all the examples in this thesis, the level of significance for
a one-dimensional hypothesis, a; was chosen as 0.001, and the power of all tests as 0.80. The
critical value k; for the one-dimensional tests is then computed from Eq. (3.121) with df=1
as 10.828, and using this value, the non-centrality parameter )y is computed from Eq. (3.122)
with df=1 as 17.075. For tests with a different dimension, oy and kg are computed using
Eq. (3.121) and Eq. (3.122) (Teunissen 1988).

2. Reliability.
Reliability is defined as the ability of detecting model errors by the testing procedure (in-
ternal reliability), and the influence undetected model errors have on the eventual estimates
(external reliability). For the computation of the reliability measures we do not need actual
data, i.e., they can be computed beforehand in the design stage.

For the one-dimensional hypothesis the size of the so-called minimal detectable bias

(MDB) V is computed as
Ao
v = 3.123
” p,k” \/CZ:,CQJIQéQ;le,k ( )

External reliability will not be treated in this thesis, we refer to Késters (1992).
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3.10 Computation of one-dimensional test statistics

For testing the conventional and non-conventional hypotheses we need the variance-covariance
matrix of the residuals Q. It is defined as

Qe=0Q,—Q (3-124)
With g, defined as
Ok = Apgdy + AspZop
= A1id1 + Ao p(A34Q;,) Ank) AT, Qp ) (ke — Avidi)
= A1 + P, , (yk — A1xds)

= Pi,,kfil,kfﬁl + P, Yk (3.125)
the variance-covariance matrix of the adjusted observables reads:
Qﬁl Q?)l@? T Q?h@n
Q= | Qe @ : (3.126)
: . an—lgn
Qingn ~ Qjacrin Qya
where
T by T
Qi :PI‘J{Z,kAl’inIA{kP/%Zk + PA2,kak ng,k +
1l 7 T =T 1T
PA_Z,kAl’inlyk PAM + Pfiz,k kai‘lAl,kPAz‘k
T s T
:Pjhz,kAl’inlA{kPA_Lz,k + Pfiszyk P%;,k +
L x AT N-1pl T 1T -1 71 AT plT
PAZ,kAl’ijlAl,kak Pfiz,kak PAM + PAz‘kakPALkak Al»inlAI,kPAZ,k
T 3 T
=Py, Ai1xQa, AT P, + Pa,, Qu, (3.127)
and

Q?)kﬁz :PﬁLg‘kALinlng,le_; +
Pg, AipQay PY,, + P Az,kamAszA{,
=Pi'2’kA1,in1A{1P§; +
Ph A1xQs AL,Qp PE QuPL + Ps,,Qu PE Qyl A14Qs, AT, P

=Pj2,kfll,thA}’:,Pj; (3.128)

(Note that Pz,,Qy Pj,, =0, and P, Q,P] =0.)

2
In the derivation above we used elements from the variance-covariance matrix of £;, and

yr, fork=1,...,n

5 Qs Qe AT\Q; PL Qu - QaAT,Q,) Pi, Q.
1 -1 4
D{ y:l } _ Qy1PA2’1Q:y1 Al,lQil le .
Yn Qu.PL, Qu1A1nQs, Qy.

(3.129)
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which follows from applying the propagation law of variances to

L Q@ A_{ngllp’i_?vl QilA{?Q?;;Piz,z T QﬁlA’{:nQJanIi_Z,n )1
I
"= 1 21 (3.130)
Yn I Un
n —_
where Qs, = (AT, QAT
k=1
The corresponding elements of (); read
Qék :ka - Pf‘—llz,k‘il’ijl‘/i{kP/%; - PA2,I¢ ka
T < T
= — P§, A1xQs, AT, PR, + Pi,, Qu, (3.131)
= T T
Qeve, = — Pizval,inlA’{:lefw (3.132)

The c-vector, belonging to the one-dimensional alternative hypothesis that the p-th observa-
tion at epoch k is an outlier, reads

k-1
/_/_ T
Cp i :[Orm o0 Opp CZ O -+ Orm] (3133)
nrm X 1
with
p—1
——
% =[0 - 010 0] (3.134)
rm X 1

Consequently the matrix product cngy‘ 1QéQ; ¢,k boils down to picking the p-th element
of the diagonal of Q,'Q;, @, i-e., from the diagonal of

-Qy.Ps,

2,k

AQa AT PE Q)L + Q) PE, (3.135)

The c-vector belonging to the one-dimensional alternative hypothesis that there is a slip in
the p-th observation at epoch k, reads

k-1
Cpk -~ . a T
s [Om o O g oo ] (3.136)
or, equivalently,
k-1
Cp.k . - .7 T
s 1 =0 =% =G Om Om o+ Opm ] (3.137)

The computation of the matrix product ¢!, Q,'Q:Q; ¢, for this hypothesis is more com-
plicated: we need the sum of £ x k elements of Q' Q.Q;":
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k

k
T -1 -1
i@y QeQy ok = Y Q) PR, Voo — D

i=1 i=1 j

M»

( P;{MAMQ@A{J.P;;Q;;)IJp (3.138)
1 3,

A serious threat for the feasibility of the algorithm is that at an epoch &k we need the design
matrix Al, and projector Pl i of epoch i = 1,...,k. It will be clear that this amount of
data, even for a modest number of receivers, satelhtes and epochs will not fit in the core
memory. Storing the data on disk will also slow down the processing.

We found a solution for it by recognizing that Eq. (3.138) can be rewritten as

k

cz:,kQ;lQéQ;lc;z,k = Z(Q 1PAL21 (Z lelP/-iL A Qs Z A 1 A2 ) (3.139)

i=1 PP

(This is also why we use Eq. (3.137) instead of Eq. (3.136) for the specification of the cycle
slip hypotheses.) Now we only have to compute and store the three matrices

1%
rm ;krm Z Q. A2 ; (3.140)
Wak 1p
rm X (7‘ — 1)( —_ 1 + 3T Z Qy, Al 1 (3141)
Ws pL
rm x (r—1)(m —1) + 3r ZQ 521141,in1 (3.142)

which are updated per epoch. At each epoch k the rm cycle slip hypotheses are computed
as

CZ:ngleélecpyk = (Wl,k - W37ng,1k)P,P p=1,...,rm (3143)

Since we have available the Cholesky factorization of the normal matrix N, = Q;' (see
Eq. (3.103)), we can compute Q; as

Q:=Cc7TCc™! (3.144)
Using this factorization Eq. (3.143) can be further simplified as
L@, Q:Q ook = Wik —WapW/l)po  p=1,...,rm (3.145)
with
Wik - i QP A,C7T (3.146)
rmx (r—1)(m—1)+3r & A2i™0

The efficiency when using one of the two expressions depends among other things on the
observable type and the length of the observation time span. In general when the time span
is short, and there are not too many changes in the observation scenario, (3.145) is preferred.
For larger time spans where inevitably the observation scenario will change many times,
(3.143) is the better choice.
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3.11 Example of the testing procedure

For an example of how the testing procedure works, we took L1 data collected at a baseline
of approximately 2250 m, between station YPO1 and YP09. Almost one hour of data was
collected (from 19:45:04 to 20:44:04, GPS time) with a sampling interval of 30 seconds giving
a total of 119 epochs. Six satellites were observed during the entire time span, while one
satellite was observed starting at epoch 17 until the end. The a priori standard deviation of
the observables was set to 3 mm.

Internal reliability

In Figures 3.5 and 3.6 the minimal detectable biases for respectively an outlier and a cycle
slip are plotted. The value of a MDB for an outlier is primarily a function of the number of
satellites that are simultaneously observed. The MDB for a cycle slip however, depends on
the time span a satellite is observed, and on the epoch in this time span that it is observed.
MDB’s for cycle slips in the middle of the time span are smaller than MDB’s at the begin or
end of the time span. Still the MDB for a cycle slip never exceeds the value of 2 cm, which
is far less than the size of one cycle (= 19 cm), so it is likely that with this setup we are able
to detect possible cycle slips.

Testing
The degrees of freedom for the OMT are 689, the OMT test statistic reads 330.2, with a
critical value of 673.9, hence Hj is accepted. The level of significance for the OMT is 0.653.

In Figures 3.7 and 3.8 the w-test statistics for respectively the test for an outlier and
the test for an cycle slip are plotted. Under the null-hypothesis the w-test statistics should
be between —y/k; and vk; = 3.29. The largest absolute value of the w-test statistics reads
6.464 for a cycle slip. The corresponding estimated error is however only 0.054 cycle; clearly
this cannot be a cycle slip. Instead, the signature of the w-test statistics is probably due to
an imperfect functional or stochastic model.

Indeed one is able to squeeze down the signature to within the bounds set by the critical
value, by extending the functional model with e.g. a number of tropospheric delay parameters.
This would however lead to a decrease of precision of the estimated parameters, and increased
values for the MDB'’s.

In a next case we simulated a cycle slip with a size of one cycle at the third epoch
(19:46:04) in the phase observation made at YPO9 to PRNO1.

The degrees of freedom for the OMT are 689, the OMT test statistic reads 3448.0, with
a critical value of 673.9, hence Hj is rejected. The level of significance for the OMT is 0.653.

In Table 3.1 the ten largest w-test statistics and their corresponding estimated error can
be found. The absolute value of largest w-test statistic is 55.842 for the non-conventional
hypothesis that a cycle slip occurred at 19:46:04 at the phase observation made at YPO1 or
YP09 to PRNO1. The estimated absolute value for the slip is 0.987 which is larger than 0.5,
hence either at YPO1 a cycle slip with a size of one cycle, or at YPO9 a slip with a size of
minus one cycle occurred. These two cases are indistinguishable, at least three stations need
to be involved to uniquely determine at which station the slip occurred.

In a subsequent run, an extra ambiguity parameter is introduced for the carrier phase at
YPO9 to PRNO1 at 19:46:04, and the test statistic for the OMT reads now 329.7 with df = 688
(one less than in the previous run, due to the introduction of an extra ambiguity). The
critical value is 672.9, hence Hj is accepted. The level of significance for the OMT is 0.652.
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Figure 3.5: Minimal detectable biases for the conventional hypothesis (test for outlier) for
all L1 carrier phases at YP09.

MDB [cm]
- N

1 1 " 1

0 = . R
20 40 60 80 100
Epoch {30 s]

Figure 3.6: Minimal detectable biases for the non-conventional hypothesis (test for cycle slip)
for all L1 carrier phases at YP09.
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Figure 3.7: Outlier w-test statistics (conventional hypothesis) for for all L1 carrier phases at
YP09.
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Figure 3.8: Cycle slip w-test statistics (non-conventional hypothesis) for for all L1 carrier
phases at YPO9.
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Figure 3.9: Cycle slip w-test statistics (non-conventional hypothesis) for for all L1 carrier
phases at YP09, with a simulated cycle slip at the third epoch.



3.12 The projector PdJ' 71

Epoch wyx  V (cycles) SiteID PRN  Conventional /
Non-conventional

19:46:04  55.842 987  YPO1 01 N
19:46:04 -55.842 -.987 YPO9 01 N
19:46:34  44.799 .654  YPO1 01 N
19:46:34 -44.799 -.654 YPO9 01 N
19:45:34  39.359 972 YPO1 01 C
19:45:34 -39.359 -972  YP09 01 C
19:45:34  38.698 956  YPO1 01 N
19:45:34 -38.698 -.956  YP0O9 01 N
19:45:04 -38.698 -956  YP09 01 C
19:45:04 38.698 956  YPO1 01 C

Table 3.1: Ten largest absolute values for the w-test statistics and estimated error for a
simulated cycle slip with a size of one cycle in the carrier phase observation from YPO1 to
PRNO1 at epoch 19:46:04.

3.12 The projector P;

3.12.1 Introduction

In this section we will have a closer look at the orthogonal projector Pj;-z K for Azyk =d. We

will see that if we work out this projector the structure of the reduced normal matrix becomes
very simple and fast to compute. We start with the design matrix for the local parameters
as in (3.93)

_Im
AZ,k _ €m "'Im 3
rmxr+m-—1 : =d (3.147)
em —In

Furthermore we assume that the variance-covariance matrix of the observables is a scaled
unit matrix, which is a simplification of what is believed to be the true stochastic model, see
e.g. Jin (1996) and (Tiberius 1998), but in accordance with the model used in many other
GPS processing softwares. The misspecification of the stochastic model is hardly noticeable
in the estimators, but it is likely to be noticeable in their variance-covariance matrix.

1
The product dQ;!d reads then:
JTQ‘%Z ml,_y —Er
y — r r—1,m
Xr + m’c 17" —FEpr1 rln, (3.149)

where we introduced E,, for a p by ¢ matrix filled with 1’s. By the choice of the clock of
the first receiver for the S-basis, this matrix has become of full rank and thus invertible (see
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appendix C):
1 L(-[1‘—1 + Er—l) %Er—l,m

TA-17-1 _ ©
(d Qy, d)~ = w gEm,r—l %(Im + T;_lEm) (3.150)
with E; = Eg,. Using this result, Hy = (d*Q,!d)"'d"Q,! can be evaluated:
(d'Qyld)'dT Q! _
r+m-—1xrm
_ LT 1,7
m m - m
i : L (3.151)
_%(Im + %Em) —%(Im - #Em) o _%(Im - #Em)
And eventually P} = L, — d(d"Q,!d)~'d"Q,
L 1 1
Fi _ (Ir - -E,) ® <Im - —Em) (3.152)
XTm T m

In this matrix we recognize two basic operators, viz. the identity operator I, and the ‘average

operator’ %Eq. In Section 3.13 it will be shown how this special structure can be used to ones

advantage to compute efficiently the solution for a single baseline.

Analogy between PJL and the weight matriz of the double difference observations.

Since we have chosen to solve for the rank defect of the ambiguities only after the normal
matrix has been constructed, the ambiguity part of the normal matrix is singular. We could
however also solve the rank defect during the updating of the normal matrix. We will show
now that if we do so, the projector is not a projector anymore, and that the ambiguity part of
the normal matrix becomes of full rank. Besides that, we will show that the ambiguity part
of the normal matrix under some restrictions equals the weight matrix of the DD ambiguities.
The restrictions are that the S-basis has to be compatible with the differencing scheme. This
means that the unbiased estimable functions resulting from the S-basis choice have to be same
as the DD ambiguities resulting from the differencing scheme. If we choose pivoting with the
first receiver and first satellite as pivot, the S-basis consists of all ambiguities referring to this
receiver and satellite, thus

AN/ i£1Vi#1 (3.153)

In practice it means for the ambiguity part of the normal matrix that the rows and columns
associated with the parameters of the S-basis are excluded from the normal matrix system.
It is easy to see that the ambiguity part changes from its singular form

N (1, _ lE,) ® (Im - lEm) (3.154)
T m

Xrm

to its full rank form

x(r — 1])V(m -1) - (Ir—l - %EH) ® (Im—1 - %qu) (3.155)

which equals the DD weight matrix.
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3.12.2 The general form of P}

The orthogonal projector PJl is based on the following assumptions:
1. All r receivers track the same m satellites.

2. The coefficient for the receiver clock error in the linearized observation equation equals
1.

3. The variance-covariance matrix of the observables is a scaled unit matrix.

1. All r receivers track the same m satellites.

In small networks all receivers generally are tracking the same satellites, however, sometimes

there are missing observations due to blocking of the signal, or rejecting an observation.

Furthermore rising and setting of satellites does not occur simultaneously for all receivers.
To describe the projector PJL for the case that not all receivers observe the same set of

satellites we introduce the coefficient p! which is defined as p! = 1 if satellite j has been

tracked by receiver 7, and p! = 0 if this is not the case (missing observation).

2. The coefficient for the receiver clock error is 1

If one for the computation of the topocentric distance in the observation equation does not
regard the receiver clock error as deterministic, the coefficient for the clock error is (1 — %f /c)
instead of 1. To describe the projector PdJ' for this case, the coeflicient for the clock er-

ror of receiver 7 in the linearized observation equation for observation yf will be denoted as
sl=1- %’fﬁ /c. Combining 1. and 2., d is denoted as

[—p}
! P
P15} —P3
d= sy _ ] (3.156)
pist| [Pt ]
i st | -] |

3. The variance-covariance matriz of the observables is a scaled unit matriz.
Instead of using %I for the variance-covariance matrix of the observables we would like to be
able to use an elevation dependent form; i.e. observations with low elevations are considered
to be less precise than observations with high elevations, see e.g. Jin (1996). We will denote
the variance of observable 3] as ¢].

With the introduced terminology, we can determine the structure of d”’ Qy‘klti. The result-
ing matrix preserves a very nice structure; from a computational part of view it is especially
convenient that the upper left and the lower right part of the matrix remain diagonal. This
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leads to an obvious partitioning of the matrix into:

R S
> ridlsl ~pigisy --- —ppPsy
m
S 2
> plgisl | —plalst .- —pPgrs?
JI’Q ld__ j=1 (3157)
-pyaisy - —prajst szq,
—pResy - —prgrsT Zp, g

3.12.3 An efficient method to compute the general Pgil
With the partitioning of d*Q,'d as

T n~1 kll kg'l
dQgla=| " 2 =K (3.158)

we can use the well known matrix inversion lemma.:
K1 = [kn + ki) k3 (ka2 — kzlkﬁlszl _1{“21’91—11 ~kii' kg (koo — k211k111k 17 1] (3.159)
— (ko2 — karkiy k3) kot ki (ka2 — knkii'k3,) ™"
[ (ks = KE i ) —(kny — Khyhztha) KR R ] (3.160)
—k3y ko (kv — kmkzzl.km)_l ka2 — kyy ka1 (k11 — kmkzzlkzl)_lkﬁk{zl

to compute its inverse. Because the inversion of both ki; and ks, is trivial since they are
diagonal, the main computational load is due to the inversion of either (k;; — k{l k{; k21) with
dimension r or (kyy — ko1 k7 k%) with dimension m. So depending on the number of receivers
and the number of satellites one of the schemes above may be chosen.

After having computed (d7Q,'d)~!, we compute the projector I — d(d"Q,'d)~'d"Q;!
Fortunately, the denial of the assumptions did not change the sparsity of d, which reduces
the computational load.

First we compute d(d7Q;!d)™*. Each row of this (rm) x (r +m — 1) matrix consists of
the addition of at most two scaled rows of (d” Q d)~'. Remember that d is still a sparse
matrix with at most two elements per row. Smce the latter matrix is symmetric and only
the lower triangle has been stored, the most convenient way to build d(d”Q,'d)™" is to find
the rows of (d"Q,'d)~! and the equivalent columns of d in increasing order and add them
after scaling to the appropriate row in d(d” Qy L)L,

The eventual product is computed in a snmlar way: each column of d(d” @y, 1d) IJT Q
is again the addition of two scaled columns of d(d” Qy ld)-1.

Of course the computation of the actual prOJector when not all receivers track the same
set of satellites will cost more time than the regular situation, but it does not cause a
computational burden.

In Beutler et al. (1986) an efficient computing scheme was described to compute the
weight matrix of the DD observables in case that not all receivers observe the same set of
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satellites. A straightforward approach would need the inversion of a matrix with dimension
p, the number of observed double differences. Using the proposed scheme, the matrix to be
inverted has dimension g, the number of missing double differences, and since usually ¢ < p
this computation method is preferred.

Compared to the effort it costs to construct the projector, however, in most cases the
computation of the DD weight matrix will cost more time. On the other hand, the dimension
of the projector equals the number of observations, whereas the dimension of the DD weight
matrix equals the number of DD ambiguities, which will always be less than the number of
observations.

This is however largely compensated by the fact that since a double difference observation
always refers to two receivers, one row of the geometric part of the DD design matrix has
2 x 3 nonzero entries, whereas one row of the geometric part of the design matrix for the
undifferenced setup only has 3 nonzero entries.

Consequently, the time needed for the construction of the normal matrix for the undif-
ferenced setup is of the same order as the construction of the DD normal matrix.

3.13 Special case: baseline

If we restrict ourselves to one baseline, i.e., r = 2, PJL becomes

Py = <1, - lE,) ® (Im - lEm>
T m
111 -1 1
= 3 [ 11 ] ® (Im - EEm> (3.161)
Pre-multiplication of a vector w of length m with the projector P;L yields:
PJ. _ 1 - J

—w—1b (3.162)

analogously we have

I
g
H
I
3=
IngE
8&.

wTP(;L
=wl — " (3.163)

with @ denoting the satellite average of vector w. Let us now have a look at Zle P‘ilw,c :

k k k 1 m
D Prwue=) w3 > w
i=1 =1 i=1 7=1
k k
1 i
=D we— D ) ui
i=1 m j=1 i=1

k
=P}y w (3.164)
=1
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As a matrix is a nothing else then a set of vectors this is also true for matrices:

k k
D Froe=Fi) g

and

k k
S TP (z gz") P
=1 =1

With Q,, = 1, we get for the reduced normal matrix and right-hand side epoch &:

w
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where “denotes the ‘satellite average’ defined as

m
-1 j
’LU—mE w

j=1

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)

(3.170)

Using the intermediate quantities g;, and Yi x> the construction of the reduced normal

matrix and right-hand side can thus be computed very efficiently.
The solution of the local parameters of epoch &

AZyy = HA;,,,CA?!;(:))
is with

1 1.7
2 —e.

Em) “%(Im_# m)

€

Hapn = (I +

D=
3~34

(3.171)

(3.172) .
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very simple computed as

COta — Bt — A(NE — N3) = —AG) + AGS)

Il

) : 1 (2 - i (2 -

o5tk — ety — AN = =3 (80,7 + a9 + 80,7 - A5)) 8179
In principle also networks solutions could be computed in a similar simple manner, but

all receivers should track the same set of satellites, which is not always the case. For a single

baseline it is, due to the prerequisite that a satellite has to be observed by at least two

receivers.

3.14 DD generating algorithms

In the literature several approaches to form double difference observations are proposed (Bock
et al. 1985), (Bock et al. 1986), (Goad and Mueller 1988), (Mervart et al. 1994), (Rothacher
and Mervart 1996).

In most double differenced approaches the first step is the formation of single differences
between receivers; this is usually done only once before the adjustment, by producing r — 1
single difference (SD) files. If the set of observed satellites of one file does not exactly match
the set of the second file, the data to the satellites that do not match are lost.

A simple strategy to use as much data as possible is to look at the number of single
differences that can be formed between every combination of receivers, and choose those
r — 1 combinations that give the highest number. The choice is restricted by the conditions
that each receiver has to be included in at least one single difference, and that the resulting
sequence of between-receiver differences must be connected.

A method to do this is to build a minimum spanning tree. As in this case we are looking for
the maximum number of single difference to be formed, we will make a ‘maximum spanning
tree’ instead.? The weight between two receivers is defined as number of single differences
that can be formed.

The minimum spanning tree algorithm is also described in Mervart et al. (1994), to
find all ‘independent’ baselines and in Rothacher and Mervart (1996) where it is called the
minimum path method.

The minimum spanning tree algorithm can also be used to find the set of independent
baselines with minimum total length. This is sometimes done to improve the precision of the
ambiguities. As we will see in Chapter 5 it is not necessary to do this since the precision of
the ambiguities can be improved by applying a more general decorrelating transformation to
it.

The method mentioned in Bock et al. (1985) and Bock et al. (1986) finds the maximum
number of double differences per epoch, and for large networks usually discards less data than
the schemes based on the spanning tree concept. In Section 3.15 we will show a comparison
of the two double difference generating methods with the undifferenced approach.

2There is no essential difference between the construction of a minimum and a maximum spanning tree.
Commonly the minimum spanning tree is introduced for nodes with weights equal to the Euclidian distance
in the 2-dimensional space of the edges between them. A minimum spanning tree is then planar, i.e. edges
do not cross when the graph is displayed at a plane.
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Site ID PRN code
01 020304050609 10141516 17 18 21 22 23 24 25 26 27 29 31

ALGO
GOLD
GOL2
TIDB
MADR
FAIR
HART
KOKB
KOSG
SANT
WETT
YAR1
YELL
TRCM

Table 3.2: Observations made on L2 by the 13 IGS core stations plus station GOL2 at May
12, 1997, 02:47:30.0, GPS time. Only satellites observed by at least two receivers have been
included. Legend: b: observed, S-basis.

3.15 The undifferenced approach compared to DD generating algorithms

In this section we will assess different methods to deal with the rank defect system of the
GPS phase observation equations using an existing observation scenario with stations spread
over the entire Earth. The assessment will be made with respect to the amount of data
that is used. The methods that will be used are the undifferenced approach as described in
Section 3.4, the DD generating algorithm as described in Bock et al. (1985) and Bock et al.
(1986) implemented in the GAMIT (GPS At MIT) software, and the DD generating algorithm
as described in Mervart et al. (1994) and Rothacher and Mervart (1996) implemented in the
Bernese software.

For the comparison we took an arbitrary epoch of L2 data of the 13 fiducial stations of
the IGS, plus an extra station at Goldstone (GOL2). The epoch is May 12, 1997, 02:47:30.0,
GPS time.

The observations that were made can be found in Table 3.2; only observations to satellites
observed by at least two receivers have been included. =~ The minimum spanning tree used
to find the S-basis and the estimable functions for the undifferenced approach, is depicted
in Figure 3.10. The number of receiver-satellite combinations and thus the number of ambi-
guities, is 86, and the dimension of the S-basis for the ambiguities is 35. Consequently, the
undifferenced approach forms 86 — 35 = 51 integer functions of ambiguities, and all obser-
vations are used. The estimable functions and the S-basis for the ambiguities can be found
in Table 3.4. Not all functions consist of 4 ambiguities as in the case of the classic double
differences; there are functions formed consisting of 4 (29 times), 6 (14 times), 8 (3 times),
10 (3 times), 12 (once), and 14 (once) ambiguities.
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Figure 3.10: Minimum spanning tree for the observation scenario of Table 3.2.
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Site ID Site ID Name Country
(short) (IGS)

1 ALGO Algonquin Canada

2 GOLD Goldstone USA

3 GOL2 Goldstone USA

4 TIDB Tidbinbilla Australia

5 MADR Madrid Spain

6 FAIR Fairbanks USA

7 HART Hartebeesthoek South-Africa
8 KOKB Kokee-Park USA (Hawaii)
9 KOSG Kootwijk The Netherlands
10 SANT Santiago Chile

11 WETT Wettzell Germany

12 YAR1 Yarragadee Australia

13 YELL Yellowknife Canada

14 TROM Tromso Norway

Table 3.3: Stations used for the analysis in this section.

In Table 3.5 the between-receiver single differences that may be recognized in the resulting
set of observable functions of ambiguities can be found, and in Figure 3.11 the polyhedron
formed by these baselines is depicted.

r%r 7 ,
Ky

NN

T

X

Figure 3.11: Polyhedron consisting of the between-receiver single differences formed in the
undifferenced approach. The WGS-84 ellipsoid is visualized by depicting some of its meridians

and parallels.
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Single difference

PRN codes of
satellites involved

Single difference PRN codes of

satellites involved

ALGO-GOLD
ALGO-MADR
ALGO-KOKB
ALGO-SANT
GOLD-GOL2
GOLD-KOKB
GOL2-SANT
TIDB-HART
TIDB-SANT
MADR-FAIR
MADR-KOSG
MADR-YELL
FAIR-KOKB
FAIR-WETT
FAIR-TROM
HART-SANT
KOKB-SANT

03,17,21,23
26

17,21,23

09

01,03
01,03

01,06

16

25

27
02,10,26,27
27

31

31

31

04,05,24

01

ALGO-GOL2
ALGO-FAIR
ALGO-KOSG
ALGO-YELL
GOLD-FAIR
GOLD-SANT

TIDB-KOKB
TIDB-YAR1
MADR-HART
MADR-WETT
MADR-TROM
FAIR-KOSG
FAIR-YELL

HART-YAR1

17,21,23
03,17,21,23,26
09,17,23
03,17,21,23,26
03

01

15,22
14,15,16,22,29
02,10
02,10,26,27
02,26,27

31

03,31

18

Table 3.5: Between-receiver single differences implicitly formed in the undifferenced approach.

ALGO

GOL2

12090 10589 10589 TIDB

3807
10969 12261 12261
4305
8141

6155 8583 8583
12549 11808 11808

2086 2986 11224
5388 7337 7337 11820

8390 12515 MADR
10527

KOKB

10104 X0sSG
. 10301 SANT

10358 603 10461 WETT

9498 11253 10918 10991 YAR1
5440 6013 9867 6473 11707 YELL
9426 8884 2055 11055 2296 10978 4776 TROM

Table 3.6: Slope distances between the stations of Table 3.2. A grey-boxed distance signifies
that this between-receiver single difference is formed in the undifferenced approach.
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The method to find the maximum number of double differences implemented in the
GAMIT software (Bock et al. 1985), (Bock et al. 1986), produces 47 double differences.
Of the total number of 86 observations, the following 3 are not used {TIDB-PRN25, SANT-
PRN25, SANT-PRN09}. And consequently, none of the observations made to PRN25 are used.

The formation of double differences in the Bernese software is based on between-receiver
single differences. The optimal set of single differences is found by building a minimum span-
ning tree. The weights may be defined in several ways, one of it being the maximum number
of single differences that may be formed, thus aiming to use as much data as possible. The
number of between-receiver single differences that can be formed from the data in Table 3.2,
can be found in Table 3.11.

In Table 3.8 one of the possible sets of between-receiver single differences produced by the
MST algorithm can be found. The corresponding MST is depicted in Figure 3.12. The total of
single differences formed in this way amounts to 57, and from it 57—13 = 44 double differenced
observations can be formed. From the total of 86 observations, 10 have to be discarded
because they are not used in the forming of the single differenced observations. The set
of unused observations is {ALGO-PRN0O9, KOSG-PRN09, TIDB-PRN25, YAR1-PRN18, SANT-PRNO9,
SANT-PRN25, HART-PRNO2, HART-PRN10, HART-PRN16, HART—PRNlS}. None of the observations
made to PRN0O9, PRN18 and PRN25 are used.

Another option is to construct an MST with as weights the distance between the sta-
tions. This is sometimes done to improve the performance of the ambiguity resolution (i.e.
if no decorrelating transformation is applied). The inter-station distances for the stations
of Table 3.2 can be found in Table 3.6, and the between-receiver single differences formed
in this way in Table 3.9. It gives a total of 52 single differences, of which one has to be
discarded, since only one satellite is related to it. From the remainder 51 — 12 = 39 double
differences can be formed. Only 66 observations are used, and no observations are used made
from station SANT, or to PRNO4, PRNOS, PRNO6, PRNO9, PRN18, PRN24 and PRN25.

Instead of selecting r — 1 between-receiver single differences combinations we could also
choose m—1 between-satellite single difference combinations, by applying the MST algorithm
to Table 3.12 (this is not an option in the Bernese software, there only between-receiver single
differences are formed).

A possible outcome of Prim’s algorithm with as input the between-satellite single dif-
ferences can be found in Table 3.10. The corresponding MST is depicted in Figure 3.13.
It gives a total of 67 single differences. The single differences between satellite 17 and 22,
satellite 2 and 5 and between satellite 1 and 25 have to be discarded since they only in-
volve one station and consequently no between-receiver difference can be made. That gives
then a total of 64 single differences from which 64 — 18 = 46 double difference combinations
can be formed. One observation involved in the three single differences that are discarded
(SANT-PRN25) is not part of any other single difference, and thus also has to be discarded.
There are 3 observations that are not involved in any single difference, which makes the set
of unused observations {TIDB-PRN25, KOSG-PRN31, SANT-PRNO9, SANT-PRN25}. None of the
observations made to PRN25 are used. The results for the different methods to form integer
functions of ambiguities are summarized in Table 3.7.
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Method Number of Number of Number of Number of
observations receivers satellites functions
Undifferenced 86 14 22 51
GAMIT 83 14 21 47
Between-satellite SD 82 14 21 46
Between-receiver SD 76 14 19 44
Minimum distance 66 13 15 39

Table 3.7: Results for the methods to form integer functions of ambiguities.

3.16 Concluding remarks

Although the DD approach at first sight seems to be advantageous over the undifferenced
setup since less parameters are involved, this advantage is to a large extent cosmetic.

The differencing scheme obscures the rank defect inherent to the relative positioning setup
with GPS, and sometimes not all available data are used.

When the clocks are modeled as shown in this chapter, and when an appropriate S-basis
is chosen, the undifferenced approach is equivalent to the DD approach when the same data is
used. However, using the undifferenced approach alternative choices for modeling the clocks
are still possible (e.g. using polynomials or spline functions).

As far as the computational load for determining the global parameters is concerned, the
undifferenced approach can compete with the DD approach.

The undifferenced approach has the advantage that individual observations can be tested,
and if more than two receivers simultaneously track the same satellite, possible errors in the
data can uniquely be located. It also opens the possibility for e.g. the estimation of variance
components per satellite or per receiver.
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Single difference  Number of PRN codes of
satellites involved  satellites involved

YELL-FAIR 7 03,17,21,23,26,27,31
ALGO-FAIR 5 03,17,21,23,26
KOKB-FAIR 5 03,17,21,23,31
KOSG-FAIR 5 17,23,26,27,31
GOLD-KOKB 5 01,03,17,21,23
GOL2-KOKB 5 01,03,17,21,23
WETT-KOSG 5 02,10,26,27,31
MADR-KOSG 4 02,10,26,27
TROM-K0SG 4 02,26,27,31
TIDB-KOKB 3 15,22,23
YAR1-TIDB 5 14,15,16,22,29
SANT-GOL2 2 01,06
HART-SANT 3 04,05,24

Table 3.8: Between-receiver single differences formed by Prim’s algorithm, with weights based
on maximum possible single differences.

Single difference Number of Distance
satellites involved

GOLD-GOL2 5 0
GOLD-YELL 4 2986
YELL-FAIR 7 1631
YELL-ALGO 5 2931
GOLD-KOKB 5 4305
YELL-TROM 3 4776
TROM-KOSG 4 2055
KOSG-WETT 5 603
KOSG-MADR 4 1512
MADR-HART 2 7525
KOKB-TIDB 2 7769
TIDB-YAR1 5 3197
ALGO-SANT 1 8105

Table 3.9: Between-receiver single differences formed by Prim’s algorithm, with weights based
on inter-station distance.
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Single difference  Number of Site ID’s of
stations involved  stations involved

17 - 23 7 ALGO,GOLD,GOL2,FAIR,KOKB,K0OSG, YELL
17 - 03 6 ALGO,GOLD,GOL2,FAIR,KOKB,YELL
17-21 6 ALGO,GOLD,GOL2,FAIR, KOKB,YELL
17 - 26 4 ALGO,FAIR KOSG,YELL

26 - 27 6 MADR,FAIR,KOSG,WETT,YELL, TROM
26 - 31 5 FAIR,KOSG,WETT,YELL, TROM

26 - 02 4 MADR,KOSG,WETT,TROM

02-10 4 MADR,HART ,KOSG,WETT

17 - 01 3 GOLD,GOL2,KOKB

17 - 09 2 ALGO,K0SG

01 - 06 2 GOL2,SANT

17 - 22 1 KOKB

22-15 3 TIDB,KOKB,YAR1

22 - 14 2 TIDB,YAR1

22 - 29 2 TIDB,YAR1

22 - 16 2 TIDB,YAR1

16 - 18 2 HART,YAR1

02 - 05 1 HART

05 - 04 2 HART,SANT

05 - 24 2 HART,SANT

01-25 1 SANT

Table 3.10: Between-satellite single differences formed by Prim’s algorithm, with weights
based on maximum possible single differences.
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Figure 3.12: Minimum spanning tree to form maximum of between-receiver single differences.

Figure 3.13: Minimum spanning tree to form maximum of between-satellite single differences.
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Table 3.11: The number of possible between-receiver single differences for the observation

scenario in Table 3.2.
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Chapter 4

Relative positioning using multiple GPS
observable types

4.1 Introduction

In Chapter 3 we described the estimation process for a single GPS observable type using
the undifferenced approach. In this chapter we will describe the estimation for more than
one observable type. When using more than one observable type at different frequencies,
it is possible to estimate first order ionospheric delays, due to the dispersive character of
the ionosphere. The ionospheric delay may be modeled by some function of the latitude of
the sub-ionospheric point and the local hour angle of the Sun, or by modeling a slant delay
for each receiver-satellite combination at each epoch. Only modeling by slant delays will
be treated in this chapter. Depending on the observable types that are employed it may
introduce an additional rank defect.

In this chapter we will investigate this rank defect for a number of models and show how
it can be resolved by an appropriate choice of S-basis. The alternative method is again to
take certain differences, or linear combinations of the observable types. We will show that
some of these linear combinations have their counterpart in the undifferenced approach, while
others do not preserve the information content of the system, and hence should be used with
care.

We will also show that although the number of observations and unknowns in the undif-
ferenced approach is much larger than in the case of using linear combinations, the compu-
tational load can be reduced to the same level as the latter, by making use of the intrinsic
symmetric properties of the product of the weight matrix of the observables and the PZELZ
projector. .

As the normal matrices arising from the processing of large time spans may be sparse,
the influence of the ordering of the parameters on preserving the sparsity in the subsequent
Cholesky factorization will be shown.

As said before, we will treat four different cases to handle the clocks and the ionospheric
delays. These cases with their corresponding system of linearized observation equations for
all four basic GPS observable types are given below.
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1. No estimation of ionosphere, distinct clocks for each observable type

’I‘i.
/\1Ni’1L1
_’\2NiJ,L2
i cot;
iﬁ"“ 91 ! 4 J cstill
B{| 5]} = g d .Céti,L2- (4.1)
Pp 9 cStL2
P, ‘]P2 9 d i
% C(sti,pl
cotPF1
C(Sti’PQ
| [cotiP2| |
2. No estimation of ionosphere, common clocks
Q{Ll g I d Tij
cpf 1| [P
E{ z],L2 } =19 d )\ZN,']L2 (4’2)
Pier I cét; |
Pz{PZ 9 d {cétj]

3. Estimation of ionosphere, distinct clocks for each observable type

r; ]
)‘1NiJ,L1
AoN]1
) cbti L1
@)1 g I d mI] | |cotit
AP g I d ml | | [edtirs]
Bl ‘Pz{Pl b= g d 3l 'cétj'mj (4.3)
Plp, g d ml] | [cdtipr
' cotiP1
.C(Sti,pg-
cotht?
|
4. Estimation of ionosphere, common clocks
. [ Tz |
(I)g_,Ll g 1 d ml ’\INi],Ll
iy g I d ml| | XN/
E L2y _ 2 24 %12 4.4
{ P,{P] } g d n3I C&ti ( )
Pp g d mal C‘St.j

Note that in this chapter the dimension of the unit matrix is only indicated by a subscript
if its dimension is not clear from the context. To facilitate the translation of models in this
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Case DD equivalent DD equivalent
distinct clock? common clocks?
P1or P2 yes n/a
L1orL2 yes n/a
P1 and P2 yes no
L1 and L2 yes no
(L1 or L2) and (P1 or P2) yes no
L1 and L2 and (P1 or P2) yes no
(L1 or L2) and P1 and P2 yes no
L1 and L2 and P1 and P2 yes no
p phase and ¢ — p pseudo- yes no

range observable types

Table 4.1: Overview of the possible models without estimation of ionosphere using the un-
differenced approach and their possible DD equivalents.

chapter to the terminology the reader may be using, the ionospheric delay is denoted here
as mZ for P1, noZ for P2, m3Z for L1 and nyZ for L2, where 7, = —n3, 72 = —mn4, and
m/m=v= f12/f22-

Throughout this chapter, (no) estimation of ionosphere refers to (no) estimation of iono-
spheric slant delays.

The fourth case is only included for the sake of completeness. As we will show it should
not be applied to the GPS, but it might be applied to GPS-like systems where no ionospheric
delays are expected, e.g. in-house GPS-like systems (Malagodi et al. 1995), and ground based
pseudolites-only systems.

For the models whére no ionospheric delays are estimated, we may use any set of GPS
observable types with a minimum of one type. For the models where ionospheric delays are
estimated the minimum number of observable types is two.

Some, but not all, models have a DD equivalent. An overview of the possible models
using the undifferenced approach and their DD equivalents can be found in Tables 4.1 and
4.2.

4.2 Resolving the rank defect of the bias parameters

4.2.1 introduction

In this section we will give the rank defect, and a way to resolve it by choosing an appropriate
S-basis, for the models of the previous section.

The most straightforward case is the model where no ionospheric delays are estimated,
and each observable type has its own clocks. "The rank defect is then the sum of the in-
dividual rank defects of the observable types, i.e. the part of the design matrix of the bias
parameters referring to one observable type are complementary to the parts referring to the
bias parameters of the other observable types, see Section 3.2.

Rank defect and S-basis are given for the case where all receivers track the same set of
satellites. For observation scenarios where this is not the case we refer to Section 3.5.
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Case DD equivalent DD equivalent
distinct clock? common clocks?

P1 and P2 yes yes
L1 and L2 yes yes
(L1 or L2) and (P1 or P2) no no
L1 and L2 and (P1 or P2) no no
(L1 or L2) and P1 and P2 no no
L1 and L2 and P1 and P2 yes no
p phase and ¢ — p pseudo- for some p and ¢ no

range observable types

Table 4.2: Overview of the possible models with estimation of ionosphere using the undiffer-
enced approach and their possible DD equivalents.

In Table 4.3 the number of unknown bias parameters and rank defect for the models
without estimation of ionosphere is given, for the cases of distinct clocks and common clocks.
In Table 4.4 the same is done for the models with estimation of ionosphere. S-basis and
resulting estimable functions are given in Tables 4.5-4.8. The S-basis is always chosen such
that, when applicable, double difference like estimable functions are produced by it. This is
important since they may possibly be constrained to an integer value in a subsequent integer
estimation step, which will in general improve the precision of the non-ambiguity parameters.
The integer estimation will be treated in Chapter 5.

As far as clock terms are concerned, always the clock of the first receiver is included in the
S-basis. This is done to prevent very long expressions for the estimable functions. Sometimes
one prefers to have an S-basis consisting of the average of the satellite clock terms. If the
a priori satellite clock model from the broadcast ephemerides is applied, for pseudorange
observable types the resulting bias due to the satellite clocks will then consist of the average
of the mismodeling of the clock model, the SA effect, and effects due to group delays. This is
e.g. applied to get (almost) unbiased estimates for the receiver clocks to correct the receiver
time tag.

It can be easily constructed by subtracting the average of the biased satellite clocks, from
all estimable functions in which the clock of the first receiver occurs. It is also subtracted
from the estimate for the clock term of the first receiver itself (which by being part of the
S-basis is set to zero).

The estimable functions that are affected by this change of S-basis are only those that
refer to clocks or ionosphere terms. The functions of ambiguities are not affected.

Although usually receiver clock, satellite clock and ionosphere terms are not separately
estimable, differences in time sometimes are. Again these functions are easily constructed
by subtracting the estimable function at one epoch from all subsequent epochs. This will
give the development in time of e.g. the ionospheric delay, or a clock. Likewise one can
make divided differences to find the derivative of ionospheric delays or clocks. Again the
ambiguities are not affected.
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Model nunkA” rndeU

Distinct clocks:

P1 or P2 n(r +m) n

L1lorL2 n(r+m)+rm n+(r+m-1)
P1 and P2 2n(r +m) 2n

L1 and L2 2n(r+m) +2rm 2n+2(r+m—1)
(L1 or L2) and (P1 or P2) 2n(r+m)+rm 2n+(r+m—1)
L1 and L2 and (P1 or P2) 3n(r+m)+2rm 3n+2(r+m—1)
(L1 or L2) and P1 and P2 3n(r+m)+rm 3n+(r+m—1)
L1 and L2 and P1 and P2 4n(r +m)+2rm 4n+2(r +m —1)
p phase and ¢ — p pseudo  gn(r+m)+prm qn+p(r+m—1)

range observable types

Common clocks:

P1 and P2

L1 and L2

(L1 or L2) and (P1 or P2)
L1 and L2 and (P1 or P2)
(L1 or L2) and P1 and P2
L1 and L2 and P1 and P2
p phase and ¢ — p pseudo
range observable types

n(r +m)

n(r + m) + 2rm

n(r +m) +rm

n(r +m)+2rm

n(r +m) +rm

n(r + m)+2rm
)

n(r +m) + prm

n
n+(r+m-—1)
n
n
n
n
n p=0
{n+(r+m—1) p>0

Table 4.3: Number of unknown bias parameters (nunkA;s), and rank defect for it (rnkdA,r)
for the models without estimation of ionosphere.



Relative positioning using multiple GPS observabie types

96

-a19ydsouot jo

UOIRUINS YA S[epou ay) 10f (IIypyus) 11 10} 100jep Yuel pue ‘(IIyyunu) sisjourered selq umouyun jo Bquny §'p 9[qeL

b#dvo#d (T—-w+4)+u
b=d wi(1—-d)+(1—w+4)+u
0=d . U

u

(1—w+a4)+u

(I—w+4)+u
(I—w+4)+u
we+ (T —w+d4)+u
u

(T —w+4)d+ (w+ L)u + u(] — b)
(T —w+ g+ (w+ Hu+ug
(T—w+ )+ (w4 Lu +ug

(1 —w+ )+ (w+ 2)u + ug
I-—w+u4)+ (w+Lu+u

Wit + wad + (W + 1)u

Wt + Wiy + (W + 4)u
Wt + w4+ (W + L)u
Wt + W + (W + 4)u
Wy + w4+ (W + 4)u
Wy + wag + (W + L)u
wau + (W + 4)u

Wiy + wad + (w + L)ub
W + wag + (W + 2)up
Wy + Wi + (W + 2)ug
Wl 4+ wag + (W + 2)ug
Wt + Wit + (W + 2)ug

sad £} a[qealssqo aduel
opnasd d — b pue aseyd d

¢d pue 1d pue g7 pue 7]
¢d pue 14 pue (g7 1o 117)
(¢d 10 14) pue g7 pue 1]
(2¢d 10 1d) pue (g7 10 1)

1 pue 1]

¢d PU®B 1d
SO0 UOWUIO))

sad£} s[qealssqo a8uel
opunasd d — b pue aseyd d
¢d Pu® Id pue g1 pue 17
¢d pue 1d pue (g7 10 1)
(zd 10 1d) pue g7 pue 17
(gd 10 1d) pue (g7 10 1)

Wa+ (T —w+4) + (W + U+ U wath + wag + (W + 4)ug 1 pue 11
(w+u+u wau + (w + 1)ug zd pue 14

SO0 JOULSI(]

Hypyud Hyyunu 9pop




4.2 Resolving the rank defect of the bias parameters 97

4.2.2 No estimation of ionospheric slant delays

This model is the standard model for short (up to 10 km) inter-station distances. Modeling of
ionosphere is not needed since the ionospheric delays are (almost) equal at the two stations,
and consequently are absorbed by the satellite clock term (see Section 4.2.6). '

Distinet clocks:

In Table 4.5 a possible S-basis and the resulting estimable function of parameters for the
models with distinct clocks and no estimation of ionosphere are given. Due to the comple-
mentarity of the observable types, it is given for the case of one single pseudorange or carrier
phase observable. When observable types are combined one may add S-basis and estimable
functions of the individual observable types.

As far as ambiguities are concerned, for each carrier phase observable type involved, DD-
like functions of ambiguities may be estimated. Taking the avérage of the satellite clocks as
S-basis for the pseudorange clocks will, as explained above, give estimates for the receiver
clock error that are only biased by the SA effect, mismodeling of the clock, and effects due
to group delays. This will be explained in detail in Section 4.2.5.

Common clocks:

In Table 4.6 the same is done for the case that common clocks are used. When only one
observable type is used, S-basis and estimable functions are of course equal to those for the
model with distinct clocks. When more than one observable type is involved, then there is
no complementarity anymore. Therefore in Table 4.6 also combinations of observable types
are included. As mentioned before, these models cannot be applied to the GPS, but only to
systems that employ signals not affected by the ionosphere.

4.2.3 Estimation of ionospheric slant delays

For distances larger than approximately 10 km, the ionospheric delays are no longer absorbed
by the satellite clock terms, and hence have to modeled.

Distinct clocks:

In Table 4.7 a possible S-basis and resulting estimable functions for the models with distinct
clocks and estimation of ionosphere are given, and in Table 4.8 for the models with a common
clock and estimation of ionosphere.

Although models with one carrier phase observable type and one or more pseudorange
observable types are also included, these models are not adequate for use with the GPS,
due to poor precision of the pseudoranges compared to the carrier phases. They are merely
included for the sake of completeness.

Integer double difference like functions of ambiguities can only be estimated if at least
one pseudorange observable type is included. Otherwise, only linear combinations of the L1
and L2 ambiguities, which are not integers anymore, can be estimated. They are of the form
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. . nl . .
M(NYy, - Nil,Ll - N, + Nll,Ll) - £A2(Ni],L2 - Nil,L2 - N{ o+ Nll,L2) =

. . M, . ‘
M{(N] L, - Nil,Ll - N, + Nll,Ll) - _1_(Ni],L2 - Ni1,L2 - N+ Nll,L2)} =

Mo A1
M{(N]p; = Njp = Nipy + Nip) - f_j(NiJ,L2 — Nlo— N+ Nipo)} (4.5)
Although
(Nl — Njpy — N+ Nll,Ll) - f—j(NiJ,LZ — Njpp— N o+ Nipo) (4.6)

is not an integer valued function, it still is a rational valued function, and hence can be
transformed into a integer function. Multiplication of (4.6) by 77 and dividing A; by the
same number, transforms (4.5) into

A . ) . )
ﬁ{77(NiJ,L1 - Nil,Ll - N, + Nll,Ll) — 60(N/ 1, — Nil,L2 — N+ Nll,L2)} (4.7)
Now we have obtained an integer function, which in principle could be integer estimated.
Unfortunately its synthetic wavelength is very small (= 2.5 mm) compared to the standard
deviation of the phase observables (= 3 mm), which renders a successful integer estimation
virtually impossible.

Common clocks:

In Table 4.8 S-basis and resulting estimable functions for the models with a common clock
and estimation of ionosphere are given. If only two observable types are used, rank and
estimates for the non-bias parameters equal those of the models with distinct clocks.

A nice property of, this model when applied to pseudorange observable types, is that for
the clocks and for the ionospheric delay estimable functions are obtained that are almost
unbiased (see Section 4.2.5).

When applied to carrier phase observable types, or a combination of these with pseudo-
range observable types, clocks and ionospheric delays are biased. However, since the biases
consist of functions of ambiguities, by taking differences in time, the behaviour in time of
these parameters can be monitored.

4.2.4 Constraining of ionospheric slant delays

Estimation of ionospheric delay parameters per receiver-satellite combination, per epoch,
or equivalently per epoch elimination of these parameters (the ionosphere-free solution, see
Section 4.3.1) implies that only a linear combination of the L1 and L2 ambiguity, which is
not integer anymore, can be estimated.

In Bock et al. (1986) it is shown that inclusion of stochastic constraints on the size of the
ionospheric delays, results again in DD like integer functions of ambiguities.

The constraints are implemented by adding pseudo observables of the form

E{l!} =nI! with D{ll}= af,_— = (4.8)
1 0
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Estimable functions

S-basis
C(&ti"pl - 5t1’p1) 1 7& 1
C(Stl’pl C((St]’Pl - 6t1’p1)
2 c(0tin — 0tiu) = NN = Niy) i #1
et L C(5tj’1fl — Otiu) — MNY
NN/, i=1vji=1 MN(NiL = Niy = NI+ NL) i£1Aj#1

Table 4.5: Possible S-basis and resulting estimable functions for some models with distinct
clocks and no estimation of ionosphere.

Estimable functions
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C((Sti - 6t1) ) 75 1
)‘1Nz‘J,L1
/\QNZ’LZ,

IPTad B2 (0t — ot1) i#£1
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)‘lNi],m
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Table 4.6: Possible S-basis and resulting estimable functions for some models with common
clocks and no estimation of ionosphere.
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The weights for the pseudo observables are chosen such that they reflect the size and vari-
ability of the ionospheric delay, which depend on geographic location, time of day, and sun
spot cycle.

The rank defect and resulting estimable functions equal those of the models where no
ionosphere is estimated, i.e. we have again DD like integer functions of ambiguities.

The precision of the estimates depends on the precision of the ionospheric pseudo ob-
servables. For olzj = 0, the precision equals that of the estimates from the model without
estimation of ionbsphere, for aﬁ- = o0 it equals that of the model with estimation of iono-
sphere. In the latter case, no in;;eger DD ambiguities are estimated.

If these ionospheric constraints are included, the minimum number of GPS observable
types is one, as in the case where no ionospheric delays are estimated.

4.2.5 Group delays

Estimation of satellite clock errors at the Control Segment (CS).

Although in Egs. (2.3) and (2.4) no group delays (also called instrumental delay biases, or
equipment delays) are included since they are not estimated in our processing setup, they are
in principle present. These delays are assumed to be constant, but different for P1 and P2.
They occur both in the receiver and the satellite. If we denote the receiver group delay for Pl
as d; p; and the satellite group delay for P! as d’F!] the augmented observation equations for
P1 and P2 for the model with common clocks and in which ionospheric delays are included,
read

Plo, = pl +cdty — ot + T} +dipyr + dPF! + Epi,, (4.9)
Ploy = pl + bty — 8 + 7T} + dipa + AP + Py, (4.10)
Inclusion of the group delays in the model causes an additional rank defect of 2(r + m),

i.e. the group delays itself are not estimable. If we choose for the S-basis all group delays
and the clock of one receiver, the resulting estimable functions are

1 .
c(6t; — 6ty) — T‘Z“:}j(di,Pl —dip1) + :(di,P2 — dyp2) i #1

C((st] - 5t1) + %(dﬁpl + dl,Pl) - 1—~
I + 1_1—(dj’P1 +d;p1r — AP — d; po)
-7

(P2 + d, py) (4.11)

Assuming the receiver clock errors and group delays are known, which e.g. for the receivers
of the CS is a valid assumption, we have:

2.4 i Y i,P1 1 P2
E{cé¥’} = cbt! + ~——d"" — ——d» 4.12
{cot’} T T (4.12)
B} =T + —— i'fy(dj’“ pre (4.13)

The polynomial clock model in the broadcast ephemerides is based on Eq. (4.12). To
enable a meaningful physical interpretation of the estimates of the clock error and ionospheric
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delays, this clock model has to be corrected. For this purpose in the broadcast ephemerides
for each satellite the parameter T, is provided, which is defined as (Spilker Jr. 1996)

. 1 . .
Tip = 1—= 7(dﬂf’1 — dF?) (4.14)

No estimation of ionosphere, distinct clocks.
If we correct P1 and P2 using the polynomial clock model only, we have

. 1
Ploy = ol + Btip — 3P + dipy + &P 4 < AT S R .

-7 1—v i P1
= pl + cbtipr — SN + dipr + A+ €ply, (4.15)
Ploy = pl + by — SO + dipy + 4372 4 @i ﬁd“’? vep
= ) + cOtpg — cOtPF? + dipy +yd’ + €pi,, (4.16)
with
& = ﬁ(d"’Pl —d*™) (4.17)

which equals the definition of the correction term T%;. The term c6t#F!,l = 1,2 contains
the mismodeling of the satellite clock by the CS, the SA effect, and part of the atmospheric
delays. (Since these delays are not modeled they are absorbed by the parameters that are.)

The resulting estimable functions for an S-basis consisting of the average of all satellite
clocks are then

c(8tip1 — —Zw 1) + dipy + df

7=1

c(8t9P — Zat%"l) (4.18)

1 e . .
C((Sti’PQ — EZ(St]’PQ) + di,P2 + yd?

j—-l

(8197 — Zét] F2) (4.19)

If we correct P1 and P2 using the polynomial clock model plus the correction term TéD,
we have

, P Y g 1 P2 j
Plp) = pl + cbtipr — BT + dipr + &7 + 1_7d’ 1——1_7d1 - Tép +epi,,
= p’ + codt;p1 — cSthFl 4 d;p1 +€55 4.20
1 ¥ Y P'» P1
: : V4P 1 ipe ]
Plp, = p7+C(5tzp2—05tjp2+dzP2+d]P2 1_7dJ - 1—'yd] —”YT(];D+5}3£;P2
= p7 + C(St,' P2 — Cgtj’Pz +d;p2 + €5 4.21
k3 » ¥ Pi,P2
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The resulting estimable functions for an S-basis consisting of the average of all satellite
clocks are then (I = 1,2):

1=z,
c(Stipr — EZ&J’PZ) + dipt

j—l

(B3P — Zét]*” (4.22)

Estimation of ionosphere, common clocks.
If we correct P1 and P2 using the polynomial clock model only, we have

P T qi 1 P
Plp, = pl +cdt; —cdt! + T] +dipy + PP + 1_7d“°1—i_—7d] Ptep

=g +ebti—cbt + T +dip+d +ep (4.23)

P2 | v i P1 1 i, P2 )
2 P2 p] + Cét — Cétj + ’}’I] -+ dz p2 + &’ 1 — ’Yd] - md] + 815:‘],P2

= p] + oty — o3t + VL] + dipp + 9 +ep5 (4.24)

The term ¢t/ contains now only the mismodeling of the satellite clock by the CS plus the
SA effect.

The resulting estimable functions for an S-basis consisting of the average of all satellite
clocks are then

1 mo ~ 1
5ti — — 5 08) — ——dipy + ——d;
c(dt; > ) T~ P17 5 i,P2

o1&
j_ = j
c(dt ij:15t ) (4.25)

. 1 )
Iz] + 1—(di7p1 — di,P2) +dJ
-
This shows that as far as the satellite clock terms are concerned, applying the correction
term T%p is not needed. To remove the bias in the estimates for the ionospheric delay one
should apply it, though.

If we correct P1 and P2 using the polynomial clock model plus the correction term T%p
we have:

¥ . 1 R .
Plp; = = pl + ety — bt + T +dipr + PP+ + 1o ’YdJ’P1 -1 ’yd”P2 —-Tip + €piy,
= pl +cbt; — o8 + I} +dipr + Epin, (4.26)

. 1 .
Pp, = =l + cbt; — cdt) + 4T} + dipo + T2+ 7 j Vd”Pl 1o Pyd”P2 — T + €pi,,
= gl + cbt; — cBt! + I + dipa + €p (4.27)



106 Relative positioning using multiple GPS observable types

The resulting estimable functions for an S-basis consisting of the average of all satellite
clocks are then

1 e ¥
c(dt,- - E;éﬁ) —_ mdi,Pl + 1= ’ydi’P2
o3t — -;—Zstf) (4.28)
j=1

S
I + 1—~ ,y(di,Pl ~ d; p2)

In Figure 4.1 we plotted the estimates for the correction to the satellite clock delay as
defined in (4.28) for all GPS satellites for the time spans during April 20, 1997 they were
visible by at least two stations out of the set Kootwijk, Brussels and Herstmonceux.

Between approximately 6:00 and 20:00 GPS time, SA was switched off or significantly
reduced for most satellites. In Figure 4.2 an enlargement of Figure 4.1 for PRN14 and PRN15
for the time span 16:00-24:00 is shown. One can clearly see the transition from SA off to SA
on, at approximately 20:00. For these two satellites we see that with SA off the nominal noise
level of the clock delays is of the order of a few meters, which corresponds to approximately
10 ns for the clock errors. The SA effect on PRN15 is comparatively small, an observation
which is confirmed by others, see e.g. Langley (1997).

4.2.6 Absorbing of atmospheric delays by the satellite clock

For short inter-station distances atmospheric delays are usually not modeled. Although the
coordinate and possible ambiguity parameters are not, or hardly influenced by omitting the
atmospheric delays from the model, the satellite clock parameters are. The tropospheric and
ionospheric delays are, depending on the inter-station distance, fully or partly absorbed by
the satellite clock parameters.

The observation equations for the L1 and L2 phase observables read (we do not apply a
mapping function for the tropospheric delay here)

1, =p] + cBtigs — S + TV — T+ NI +eg
q)g,L‘z =p] + cOtis — 6" + T! — 4T + Xo N i];LZ s, (4.29)
In the extreme case, viz. a zero baseline, the tropospheric and ionospheric delays sensed by

both receivers are by definition equal, since the signals are received by the same antenna.
Therefore the observation equations can be rewritten as

Ol =+ Stipa — O + T~ T+ MN]py +egy
(I){,Lz :p{ —+ C(Sti’L2 — C(Stj’L2 + Tj - ’)’IJ + A2Ni,L2 + E‘I){,Lz (430)
Note that the tropospheric and ionospheric delays are equal for a certain satellite for both

receivers (hence Z7 and 77 instead of IJ and TY). Since we have taken into account both
the initial phase at receiver and satellite (they are included in the definition for N’) and the
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Figure 4.1: Range errors due to SA for all GPS satellites visible from Kootwijk, Brussels and
Herstmonceux at April 20, 1997.
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Figure 4.2: Range errors due to SA for PRN14 and PRN15 on April 20, 1997, for the time span
16:00-24:00 (GPS time).
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atmospheric delays, we may replace the distinct clock errors 6t and §t12 by a common
clock error 87 5L

@], =p] + cbtira — (6t —T7 + ')+ MNJ, + £al,,

q>{,L2 zpz + céti,Lg - (cétj — Tj + ’}’IJ) + /\QNiJ;L2 + 54’3 s (431)
——— ’
cotIm?

This leads to the structure of the L1 and L2 model with distinct clocks without estimation
of ionospheric slant delay parameters. It has a rank defect of 2n+2(r +m —1), see Tables 4.3
and 4.6.

In Figure 4.3 the differences between the L1 and L2 phase clock delay estimates for a zero
baseline are plotted. They result from a zero baseline test using Trimble 4000 SSI receivers.
A solution was computed for the whole time span of 3596 seconds, with L1 and L2 phase data.
The estimated parameters were coordinates, receiver and satellite clocks, and ambiguities.
The time tags were corrected using clocks from a previous pseudorange solution, satellite
clock errors were corrected using the model in the broadcast ephemerides and an a priori
correction for the troposphere was computed using the Saastamoinen model. As S-basis the
average of the satellite clocks on L1 and the average of the satellite clocks on L2 was chosen.
As far as the receiver clocks of the first receiver is concerned, the resulting estimable functions
are then

ety — —Z (c6t) —T9 +T7) + AI—ZNI - (4.32)
Jj=1 j=1

Oty o — —Z(cétf T+ ~4T%) + ,\Q—X:N1 Lo (4.33)
j=1 j=1

Using the same argument as we used for the satellite clocks, we may replace the distinct
receiver clocks 6t;1; and 6t; 12 by a common clock 8t;. Subtracting (4.33) from (4.32) gives
then

m m
-(1- %Z + Al—ZNl . 2—ZN{’L2 (4.34)
= mé

To get rid of the bias due to the ambiguities, the value of the first epoch was subtracted
from the values of the subsequent epochs, which gives

~(1-7) ( ZIJ’ - %iﬂl) (4.35)

As long as the same set of satellites is tracked, and no slips occur, the obtained differences
are all biased by the same unknown value, which is a function of the ambiguities. Since
changes did occur, three time spans were selected where the configuration remained constant.
Note that each time span is biased by a different value, that was set arbitrarily to zero in
the plot. For this example, the maximum difference between the two clocks can be as large
as approximately 4 cm. These differences are mainly due to the unmodeled ionospheric
delay. The size of this effect is different for the two carrier phases because of the ionosphere’s
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Figure 4.3: Biased difference between L1 and L2 (phase) clock delay estimates for a zero
baseline.

Average ionospheric slant delay [m]

Figure 4.4: Biased average ionospheric slant delay estimates from

0.02

-0.02

s

"

1

1
600

1
1000

zoloo
Epoch [1s]

-
1600

solution with common clocks, for a zero baseline.

1
2600

an L1 and L2 (phase)



110 Relative positioning using muitiple GPS observable types

dispersive character. Subtracting the two delays gives —(1 — «y) & 0.65 times the ionospheric
delay at the L1 phase carrier.

The receiver clock errors are therefore biased by the average of the ionospheric delays.
Another effect that may play a role here are time varying, dispersive delays in the receiver
and satellite hardware.

As a comparison we processed the same data using a model in which ionospheric slant
delays are estimated, and where a common clock for the L1 and L2 is assumed. The resulting
estimates for the ionospheric slant delays are then biased by some function of the ambiguities.
Again this function remains constant as long as no change of configuration or cycle slip occurs.
In Figure 4.4 the average over the satellites of these estimates are plotted, for the same three
time spans as in Figure 4.3. The average of the ionospheric delays for the first receiver reads

_ZIJ <)‘2 ZNl L2~ I%ZN{,m) (4.36)
j=1

Again the unknown blases for each time span are set to zero analogously to what we did for
the plot of the difference of the clock errors. To facilitate comparison with Figure 4.3, the
delays are multiplied by —(1 — «), giving

I ir 1~
=) Tk N\ il 4.37
(5= -25) e

Comparing the two plots we see that the details in both plots are similar.

4.3 Linear combinations of observable types

In the DD setup, usually transformations to the original observable types are applied to elim-
inate model parameters (e.g. ionospheric slant delays), or to transform ambiguity parameters
(e.g. wide lane transformation).

Some of these transformations maintain the information content of the system since they
are invertible, but also transformations are used that do not. The latter should be used with
care, since information that contributes to the parameters of interest is lost.

In this section some of these transformations will be treated, and the connection with the
undifferenced approach will be shown (if existing).

4.3.1 The ionosphere-free linear combination

The equivalent of the model with distinct clocks and estimation of ionosphere is the ionosphere-
free linear combination. It is constructed from the L1 and L2 carrier phase observable types
(denoted as L3 or LC linear combination), or from the P1 and P2 pseudorange observable
types. As the name already indicates, the new observable type is not affected anymore by
the ionosphere.

We will show here the construction of the carrier phase ionosphere-free linear combination.
The construction of the pseudorange ionosphere-free linear combination is done analogously.
Starting with the non-linear observation equations for both carrier phases

(I){,Ll :p: + AlNl{Ll + C(Sti»Ll — o8Pt + ThIZ] + 84’{: L1
(I)g,m =pZ + )\QNZLQ + C(St,',]_g - C(Stj’L2 + 7]21? + 5¢{ Lo (438)
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the system of linearized observation equations reads

i )
AN,
®! PR Fie -

1,L1 9 ’ T cét,- L1
T : 4.
E{ [‘I’:,L;I } l:g I d 7’]2[:' el ( 39)
C(St,',Lg
coth?
7 |

The ionospheric delays can be eliminated by applying the transformation
7 -7 2 2
[7}2—2771 772—:}1] I= [f—li%f f_lf%f:' ®1 (4.40)

This transformation is not invertible, and thus it seems that information is lost. That it is
still allowed can be seen by looking at the extended invertible transformation

[_,,1_ ;,7_] eI (4.41)

n-m m—m

The transformed system reads then:

J

E { . q)i,Ll . } _

S/ T ¥ N | W % -
n2~m q)%Ll n2—m (p”L?

[g I d 7]1[ C(StiyLl (4 42)
12 —m 2 /) ; .
9 m-m I m—-m I N2—m d n2—m d C(st]’Ll

L7

Lumping together the ambiguities and clocks of L1 with the ionospheric delays in the first
set of equations, and in the second set of equations the clocks of L1 with the clocks of L2,
and the ambiguities of L1 with those of L2, gives:

;11 , .
Blm gy~ J—«b]} -
. Ti .
g mI Pelliia — Ny )
[g el ed ] [cét;:ti_ B st (4.43)
m

IIJ + 511—()‘1N1{L1 + Cfsti,Ll — C(stj’Ll)
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In the first set of equations we have for each observable one unknown function of bias pa-
rameters. These observables are free variates since they do not contribute to the coordinates
nor to the bias parameters involved in the second set of equations. If we are not interested
in the function of bias parameters of the first set of equations, we can discard this set. It
can easily be seen that we would have obtained the same result if we would have applied the
non-invertible transformation of (4.40).

The second set of equations has the form we saw already in Chapter 3, and can be
transformed in the same way as the ordinary phase observation equations into DD observation
equations.

4.3.2 The wide lane linear combination

To improve ambiguity resolution, often the wide lane linear combination (also called L5 or
LW linear combination) is formed from the L1 and L2 carrier phase observable types. The
transformation matrix reads

T= [fr}fz _f1—2f2] @I (4'44)

Again this transformation matrix is not invertible; an invertible transformation matrix might
read e.g.

1
T = [ f1 P :| ®1 (4.45)
fi—f2 fi—f2

Usually this transformation is applied to the short baseline model, where the ionospheric
delays are omitted. The system of linearized observation equations reads

s .
/\1N{’L1
j AN/
o I d 27%L2
E{ [(I)fm] } = [g I d:| cati,Ll (4'46)
3,2 g ARt
cét,-,Lg
| |cotit2] |
Applying (4.45) to it gives the transformed system
s ]
/\1Ni’,L1
j AN/
liodd q 1 d 24V5 Lo
E{ s oo p g 1}= [ ; ; f f edtipa] | (447)
fl—lfz(pngl - fxth)g,m 9 f1—1f21 _f1—2f21 fl—lfzd _f1—2f2d c5thL1
cOti L2
| [cotPl2] |
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Lumping together in the second set of equations the clocks of L1 and L2 and the ambiguities
of L1 and L2 gives:

[ T ' ]
MVl
) . y ;
(I)Z'Ll g I d fi-f2 (Ni,Ll - Ni,L?)
Hi—f2 74L1 T fi—f, T4,L2 g s
_h |t p fedtine
_fl_f2 C(Stj’Ll fi—f2 c(stij2 ]

In contrast to what we saw with the ionosphere-free linear combination, the two sets of trans-
formed observation equations can not be treated separately, since they have the geometric
parameters in common.

4.3.3 The Melbourne-Wiibbena linear combination

The Melbourne-Wiibbena linear combination (Melbourne 1985), (Wiibbena 1985) is a linear
combination of the L1 and L2 carrier phase plus the P1 and P2 pseudorange. Geometry,
troposphere, and ionosphere are eliminated by it.

The Melbourne-Wiibbena transformation is usually applied to the system of non-linear
observation equations. The system of non-linear observation equations reads

i
)‘1Ni],L1
Aoy,
C(Sti,Ll

&L
‘I?Z‘],m } =
Pi,P1
Plps

_nll
d —7]2]

coth
-cdti,m
cotit?
.C(Sti7p1-

(4.49)

c6tiPl
-C(Sti’pz.
cotF?

T

(Note that we have replaced here the coefficients for the ionospheric delay for the pseudor-
anges 73 and 7y, by —n; and —5.) Construction of this linear combination starts with the
following transformation matrix

1 _metm 2m
T=|" | " R el
n2—Mm 2—-m
_ h2+f? 2f»°
= [1 f12—1£2 fizlfzz] QI (4.50)
1 TR-RE RTRT

Again this is not an invertible transformation. An extended transformation matrix that is
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invertible might e.g. read

2 PR/ .

7)2;”1 7]2;"1
T=|, B Er|el (451)

17;2—771 n2—m
1 —=12 m2+m
m2—m 2—M

Applying (4.51) to (4.49) gives

72 J __m J
n2—m P’:,Pl 772;"1 PlzPQ
1 p __1 pJ
E{ . 712—771P’)P1 . 'l2—7I1P’7P2 . }=
@l _mtmpi . 2m_ pj
ne—m - HLPL T me—m ” §,P2

Jj 22 pJ n2+m pJ
;10 Plp, + Ppy

T2—m 2=
_ -
3
AlNiJ)Ll
2N,
I m_g g s
oM Tm M _c5t3’m_
mm® Tpomd 1 cOt Lo (4.52)
I d _kimg  _2m g cotil? :
I d -y mEng cbtipr
- - i,P1
n2—m m—mnm cét],PI
C(st,'7p2
6877
| T

Lumping together the clocks of the two pseudorange observable types with the topocentric
distances in the first set of equations, and in the second set of equations the ionospheric
delays together with the two pseudorange observable types gives

E{ Y @2#}?}; Wmﬁ’Piﬂ }= I p 1
L1 7 po—m T 4Pl T gy T 1,P2
®iL2 — n:??m Plp, + :’,thi Plp I d
ol + leim (12 (cOtipr — C‘W"F_,l) —m (cbtips — cdtjvm))'

)‘lNij,m
AoV} 1,

ﬁgzﬂ k= ﬁﬁﬁ;‘-z‘éi + Zgzﬁi"; (4.53)

ohila] = 2 L) 2

T+ ,,21,,1 ((cbtip1 — cBtFY) — (cbtspz — c6t7F?))

The system separates into four systems, each of which may be treated independently. As
this transformation is applied for the estimation of ambiguities, in a processing step prior
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or parallel to the estimation of geometric parameters, one usually discards the two first sets

of equations.
ambiguities.
though it is not invertible.

This is again allowed since they do not contribute to the estimation of the
It means that it is allowed to use the transformation matrix in (4.50) even

J 12 J 2m  pJ
E{ (bi.,Ll na— nIPlPI n2—m ‘PiZPQ } —
P . — 2m _pJ n2+m pI
i,L2 ne—m * %P1 ne~m "~ i,P2
[ ’\1Ni],L1 i
)\QNZIQ
1 d cOt; 11 cot; cbt;
2 _ mtm i,P1 2m i,P2 .
[ I d] st | T menn | etiPL | T e | cotiP2 (454)
c6t; Lo ons | COtip1 netm | COtip2
R =l P e i P e
As a last step a wide lane transformation, see Eq. (4.45) is applied to them, giving
J m2+m pJ 1
E{ J QZLI 2 nIPZPI_}_nQ 91PZP2 ] }:
fi— f2 q)z L1~ fl—f2 (Di,L2 fi+f2 F’l Pl f1+f2 Pl P2
[ AN ]
I d AN} i,L2
coti metm |COtip1 o |COtip2
[flf_lle ~i2nl wigd —f1f—2f2d:| cStrtt| T men | egprPt| Fmem | coti®? (4.59)
Ot L2 o |COtip1| | mam |COtip2
| |e6t9L2] — m—m | cotIP| T mmm | e6t9F?|

Lumping together in the last set of equations the ambiguities on L1 and L2, and the clock

terms gives eventually

B b @le__JL%%R{PFf",,%:;,TRW . ]}_[ d d}
fi—f2 T4,L1 fi—f2 TiL2 fi+fe" i,PL f1+f2 1,P2
[ ’\1Ni,L1 . ]
ﬁ_ffl,(Ni]_,m - Ni],LQ)
esitt] — e (] + v [ (459
e [céti)m} A [c&ti;m] A [cét?,pl] R [c&t,z,pg]
| fi=F2 {estilt | hi=F [c6tP12| T RtR |c6tPP T Aitfe |c6tP?] |

These two sets of equations can be transformed in the same way as the ordinary phase
observation equations into DD observation equations. Usually one only estimates the wide
lane ambiguities, although in this case this is not allowed, due to the correlation between the
L1 ambiguities and the wide lane ambiguities.

Moreover, other transformations may be applied to the ambiguities that give a more
favorable set of ambiguities in terms of precision and correlation (Teunissen 1996), (Jonkman
1998).

Frequently one even does the estimation per DD ambiguity. This can be done due to the
very weak correlation between the DD ambiguities and their homogeneous precision, contrary
to the case where one parameterizes in baseline coordinates.
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In Section 6.4 we will show that when certain receiver-satellite combinations are observed
less than others, as is usually the case for receivers in large networks that are continuously
observing, precision of the DD ambiguities is much more heterogeneous.

4.3.4 The linear combinations used in GAMIT

In Section 4.2.4 we stated that inclusion of constraints on the ionospheric slant delays in
the form of pseudo observables makes it possible to estimate integer DD-like functions of
ambiguities. In Schaffrin and Bock (1988) a transformation of the two phase observable
types on L1 and L2 and this ionospheric pseudo observable type is given that produces two
orthogonal linear combinations, in which the ionospheric delay is eliminated.

Starting with the original three sets of non-linear observation equations

U =nT! + €
‘b{,m =g + Ale;Ll + ebtipg — et T ey iy (4.57)

Q{,Lz = PZ + )‘2Ni];L2 + ebtige — ot + 7721? T,

the system of linearized observation equations reads

lf nol 5t
E{|® (Y=g I d mI| || (4.58)
q’g,Lz 9 I d ml

L 7 e

In Schaffrin and Bock (1988) the following transformation matrix is proposed:

0 m . __m
T = 72 +n3 mr;m "72;;711 Q1 (459)

T no(mtnz) mtme  miAne

(Note that in (ibid.) the transformation is given for the observation equations expressed in
cycles.) Since the transformation matrix is not invertible, it is extended with an extra row,
which will produce a third orthogonal linear combination.

0 M2 __ M
5, o n2—m 12—
T=|-—-Jin m QT (4.60)

nolm+n2) m+m  mine
i) m n2
nm+n2 m+n2 m+n2
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Applying (4.60) to (4.58) gives

N2 J m J

2 2 —M1 (DZ,LI m—m i,L2
__m +n3 ’] m J 2 7 —_
E{ )li + (I)z Lt (I)i,L2 } =

no(m+n2 771+7lz Tl1+1]2_
073 n J
m+n2 l' + m+n2 1 Lt 171+7]2 q)l,L?
o
A N?
14¥4 L1
J
g B —_mJ =g __Mm_g A Ni1o
"2"_17]1]_ "7%2_71} 7]27;‘17lld ”g{‘nld C(St L1
(2
g m+n2 m+n2 m+ne2 n+n2 2. 2. 2 cétf:“ (461)
g LT -3 § m ne_ g Tadut
m+mne m+n2 n+m2 M+ n1+n2 cOti Lo
coti?
]

Lumping together the ambiguities on L1 and L2 and the clock errors at L1 and L1 in all
three sets of equations gives

772 J m 5
-m (I)i,Ll 12— (I)z L2
__m +"2 3 m m _
{ no(m+m2) ¢ n1+n2 (I)z T+ 771+712 (I)l L2 }
_Mo_pJ j i
m-+nz l’ +; 7]1+n2 (I)z L1 + ,,1+,72 szLQ
T
_M2 j
772 7]1)\ NILI 7]2 m/\2 i,L2
g I d 771+172 )\lNZ L1 + 771+772 A2NZ 1.2
g 1 d 72 C(st?,Ll o m Cétl‘,LQ (462)
ng+ni+n3 n2-m | c§tild m—m |edthl?
g I d m-+n2
m C(Sti_,Ll 72 C(Sti"LQ
mAnz |ethl| T mAnz | eftil?
J
L I |

Since the three newly formed linear combinations are orthogonal they are uncorrelated, and
since the ionospheric delays are only involved in the last set of observation equations, and
therefore these linear combinations do not contribute to the estimation of the other param-
eters, they are free variates, and can be omitted from the system if one is not interested in
the value of the ionospheric delay.

It means that we may use the transformation matrix in (4.59) even though it is not
invertible. This gives then

n2 ]L __m_q)j
E{ B T}f+77232 lZ1+z 1 (17;2 n1+1L2 ) :|}:
no(m+n2) 't n1+n2 L1 T gty T aL2
T W
ﬁ/\ Nle q_;I?A2 1L2

)‘1N1, Lt 7;1+1,2)‘2 i,L2

g I d m +172
[9 I d] T m_ |COtiLe (4.63)
me-m |cSthLt| T mem [ cfthl2

n C(Sti.,Ll + 7 C(stzi’Lg
m+nz | chtHl! m+nz | edtil?
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These two sets of equations can be transformed in the same way as the ordinary phase
observation equations into DD observation equations.

In the GAMIT (GPS At MIT) software these linear combinations are implemented to
constrain the ionosphere for the purpose of ambiguity resolution (see Chapter 6).

4.4 Solution of the normal equations

In this section we will show how the system of normal equations for more than one observable
type can be computed in an efficient way. The part for the global parameters of the design
matrix for ¢ observable types (p phase observable types and ¢ — p code observable types) for
the case that all ¢ observable types are available for eagh receiver-satellite combination reads

g 1

A= | Yo I (4.64)
Gk

When besides coordinate parameters also other types of global parameters are involved, as

e.g. tropospheric zenith delays, ionospheric model parameters, or orbital parameters they are

added as extra columns next to gz. Apart from enlarging the system of normal equations it

will have no effect on the solution method for the system.
For the variance-covariance matrix of the observables we take:

Qr = e ® Qu, (4.65)

1

Wq

Note that this definition of the variance-covariance matrix makes e.g. elevation dependent
standard deviation for the observables possible, or even a full variance-covariance matrix for
each observable type.

The updated normal matrix system for n epochs reads:

Y ALQP PR AT A =Y ATQPL A (4.66)
k=1 k=1

In Table 4.10 Q;lPA—L“ for the four models for the temporal parameters as defined in Sec-

tion 4.1 can be found. A more detailed derivation of them is given in Appendix D.
For the models with distinct clocks Q,:lP/%2 , can be written as

Qi Py, =U®Q,'P} (4.67)
with U a ¢ x ¢ matrix. In short hand notation Eq. (4.66) reads

N,Azy = hy, (4.68)
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Using Eq. (4.67) the normal matrix N, and right-hand side h,, can be written as:
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(4.70)

This means that to construct the normal matrix, irrespective of the number of observable
types used, we only have to compute at each epoch

Q. Pi

Q IP_L

)

9% @y iy

(4.71)

For the right-hand side we have to compute at each epoch for all observable types (j =

11"'7q)

“1pl
P Ayik

% Qy P,

(4.72)
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g g
K = ij Ho = Zw]’"]j
j=1 j=1

q q 1
U3 = ijn]z Mg = Z Zwiwj (s
j=1

i=1 je=1

hij = nt=(us — pimi) (4 — pan;) Hy= (d"Q;'d)"'d"Q,"

kij =w;min; + hi; P;=d(d"Q,'d)"'d"Q;"

Zwk 77k) PdJ- =1- J(JTQJIJ)_IJTQJI

Table 4.9: Legend for Tables 4.10 and 4.11.

When no ionosphere is estimated, Uy; ;) = 0 for ¢ # j, so,
q
> Ui =

When ionosphere is estimated, we have

q
Z U (3,5) U)J’,L3 Z wz'rh'w]nj) w
i=1 i=1 K3
- (13 — Mitta) w;
Z U(w) wz,ub’ - Z wznzw]n]) E— (4.74)
j=1 H3
7 4 u
I i
i=1 j=1 H3
For the models with common clocks Q,;lPAL2 , can be written as
Q¢'Pi,, =U®Q,'P{ +U.®Q,/ (4.75)

with U and U, ¢ x ¢ matrices. The normal matrix system can be written as a sum of two
systems of the form as in Eqs. (4.69-4.70). Fortunately, only the parts of U, ® Q

~1 .
4. referring
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Aoy QEIP,@LZ',C =Q; (- Az,k(A{kQ;%?,k)‘lﬁ;’:inl)
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Table 4.10: Q_lez . for different models for the temporal parameters (Legend in Table 4.9).
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to the ambiguities may be nonzero, since all summations of elements of U, equal zero, as we
will show below.
When no ionosphere is estimated we have

q
> Uusp = ES > wiw; = w;
H1 5

1 q
Z U(i’]‘) = E Z W;w; = w; (476)
j=1

i=1 j=1
and

q 1 q
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q q
Z e(i,j) = wzﬂl szw]) =0 (4.77)
Jj=1 j=1

9 g
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When ionosphere is estimated we have

q q
i)
S Uy = Zwihu _ (13 = mipa);
i=1 i

U3
- — M) W;
Z U(id Z w;h T B (478)
j=1 j=1 13
9 q
Mips — uz Ha
D3 Uiy = Lt
i=1 j=1
and
9 q
> Ul = (w; = D wiki) = 0
i=1 i=1
q q
Z Ue(ig) = (wi = Zwiki,j) =0 - (4.79)
Jj=1 j=1
9 q
DD Uiy =0
i=1 j=1

In addition for the case of two observable types we have

Ueiiy = wi —wiki; =0 , Uy = —wiki2=0 , Ueggy) = —wakay =0 (4.80)
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The similarity of the structure of the normal matrix systems for different models enables us
to compute normal matrix systems for several models at almost no extra cost. Note that this
is only true if all observations are available for a particular receiver-satellite combination. This
is however not a severe restriction, since for most of the models with estimation of ionosphere
this is already a condition, since otherwise the ionospheric parameters can either not be
estimated or the observables involved will act as free variates, and thus do not contribute to
the estimation of the global parameters.

For the models without estimation of ionosphere it may be fruitful to apply all obser-
vations, irrespective of the circumstance that all observations for a certain receiver-satellite
combination are available. Then for each observable type we need to compute a normal
equation system as in Egs. (4.69-4.70) and add them together after all epochs have been
processed. Usually, however, these models are applied to only a few receivers, and hence the
size of the matrices is relatively small.

The system of normal equations is solved in a similar fashion as described in Egs. (3.102—
3.105) for one observable type, with the rank defect resolved as described in Section 4.2.

The temporal parameters, which now besides clock parameters may consist also of iono-
spheric slant delays, are computed according to the procedure in Egs. (3.108-3.109). The
vector of ‘observed’ minus ‘computed’ now of course consists of more than one observable
type. In Table 4.11 for the four models for the temporal parameters as defined in Section 4.1
an expression for Hj, , is given. A more detailed derivation of them is given in Appendix D.

Changing observation scenarios

Every epoch k the normal matrix system of that epoch is added to the system of the previous
epochs (Ng_1, hx—1). If at epoch k there is a change in the set of parameters involved, Nj_;
and hj;_; are permuted such, that the parameters of epoch & are in front. In this way, the
system of epoch k can be easily added to the existing normal matrix system. If N is stored
as a full triangular matrix, the permutation can be made in-place.

In Figure 4.5 the number of parameters per epoch for a time span of 24 hours for a
model where we have L1 and L2 ambiguities, coordinates, tropospheric zenith delays (1 per
station per hour), and orbital parameters (8 per satellite), for a global network of which the
characteristics can be found in Table 4.12 is given (upper black curve). The total number of
global parameters is 1369.

The normal matrix for one epoch is a full matrix, i.e. it does not contain zero entries. It is
a symmetric matrix, hence only the lower triangular part is computed and stored. Since the
set of parameters may change per epoch, the stacked normal matrix of all epochs, may not
be a full matrix. Especially when the observation time span is long (several hours to days),
a considerable part of the normal matrix may be zero. This is due to the fact that satellites
rise and set, and the limited time for which the tropospheric zenith delays are defined (e.g.
one hour).

A matrix that contains a substantial number of zero entries is called a sparse matrix.
If one uses appropriate algorithms and data structures, one can benefit from the sparsity
of the matrix; i.e. the same data can be processed in less time using less core memory. In
Section 4.6 we will show the gain in efficiency when applying sparse matrix techniques to the
normal matrices occurring in the GPS data processing,
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Table 4.11: Hy,, for different models for the temporal parameters (Legend in Table 4.9).
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Figure 4.5: Number of parameters per epoch (black, upper curve), idem, maximum (grey,
upper curve), and number of observations per epoch (black, lower curve), idem, maximum
(grey, lower curve) for the global network.

Global Network (Pol) Californian Network (Cal)
Site ID (IGS) Name Site ID (IGS) Name

ALGO Algonquin GOLD Goldstone
GOLD Goldstone CHIL Chilao Flats
MADR Madrid VNDP Vandenberg
FAIR Fairbanks DAM1 Pacoima Dam
HART Hartebeesthoek DAM2 Pacoima Dam
KOKB Kokee Park CMP9 Fire Camp 9
KOSG Kootwijk LEEP Mount Lee
SANT Santiago LONG Longdon Yard
WETT Wettzell TABL Table Mountain
YELL Yellowknife HOLP Hollydale
TROM Tromso GOL2 Goldstone

Table 4.12: Stations included in the global network (Pol), and stations included in the
Californian network (Cal).
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Figure 4.6: Map of the stations of the Californian network. The distance between VNDP and
GOLD is approximately 350 km, the distance between HOLP and GOLD is approximately 200
km.

4.5 Computation of the one-dimensional test statistics

In Section 3.10 we showed how the one-dimensional test statistics can be computed when
there is only one observable type .

In the general case of p phase observable types and a total of ¢ observable types, we
want to specify alternative hypotheses for outliers in all ¢ types, and for slips in the p phase
observable types. Although we have a system referring to more than one observable type,
the computation of the test statistics is still fairly simple, since the hypotheses only refer to
a single observable type at a time.

For an alternative hypothesis that there is an outlier in the I-th observation of epoch k
we have

clQy Qe ep = — Q) P5, ArpQa AT PR, Q1 + Q) Ph, (4.81)
= —VauVai + Q. P, (4.82)
With p
e N
9k Sa
A= |9 g S, (4.83)

9k



4.5 Computation of the one-dimensional test statistics 127

(for the definition of S, see Eq. (3.33)), we compute Vo = Q;:PA—LZ kfil,k as

ZU(l’J ka Azkgk U(l»l)Qy-klpriz,kS“ U(l’p)kaIPAsza
-1pl 1
Vo = ZU 99 Pa 9 Uen@yPA,Se -+ UenQyPi, S (4.84)
q
ZU(q,j)Q;:PAL?,kgk Uiga Q IPAHSa U(qyp)ka A” Sa
i=1

For the computation of —Q,! Pz A1 £Qa AT Pt Q;kl we need only the part of Q;,
which refers to the parameters 1nvolved in the current epoch. This part corresponds always
to a nonzero part of the normal matrix. Using sparse matrix techniques, (see Section 4.6) we
can compute a sparse inverse of the normal matrix which will contain the needed part.

For the example of the global network we have a total of n; = 1369 parameters. For
one particular epoch the number of parameters n, varies from 198 to 322 with an average
of approximately 273, see Figure 4.5. The number of observations for one observable type
varies from 49 to 76, with an average of 64. This means that for the example of the global
network, the maximal dimension of V, is 76q x 322.

The matrix products Vo4 = Q;' Py A1 kand Vap = Q. 1P Al xQz, can be computed
in parallel for all observable types 1nv01ved i.e. we only have to compute one mega-row of
Vo, and V3, where we take care to pass the appropriate (sum of) entries of Uy j) for each
observable type. We compute only the diagonal of —V; kV2 kT @y, lPJ‘ since that 1s the only
part we need to compute the alternative hypotheses.

As in the case of only one observable type, the alternative hypotheses for a cycle slip
can be computed efficiently from three matrices that are updated per epoch. Recalling these
matrices:

k

Wieg  _ ~1pdi
rmxrm Z; v Lha, (4.85)
W -
rm x (r—1)(m —1) + 3r ZQy, LAy (4.86)

W3k

1
rm X (T — 1)(m - 1 + 3r Z Qyz A2,A1 zQzl (487)

For an alternative hypothesis that there is a slip in the [-th observation of epoch k we have
c{kQJIQéQJIC[’k = (Wl,k - W3,kW{k)ll l=1,...,rm (4.88)

Matrices Wy i, Wy and Wj ) are updated with the already computed Q 1Pl VM and
V3. Here we have to take care that it is possible that though a certain recelver—satellite
combination is not observed in this epoch, it may have been observed at an earlier epoch
and will be observed again at a later epoch. This might e.g. occur when the number of
receivers observing a certain satellite, drops temporarily below two. Matrices Wy x, Wa and
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Wi should thus contain slots for all receiver-satellite combinations that were observed in
a previous epoch, and for which the elevation is still larger than the elevation cut-off. In
Figure 4.5 the maximum number of parameters and observations due to this condition for
the global network are plotted as the grey curves.

4.6 Sparsity considerations

For the solution of the system of normal equations there exist a number of methods. Three
of these will be described here since they are used in one of the large GPS software suites (or
should be used).

1. Direct inversion of the normal matriz.
The most straightforward way to solve the system of normal equations is to invert the normal
matrix, and multiply the right-hand side by it:

=N Qz=N"! (4.89)

An algorithm for the inversion of a symmetric semi-definite matrix is given in (Rutishau-
ser 1963). The inversion is done in-place, and the number of floating point operations or
flops (one flop being defined as one multiplicative and one additive operation) is of the order
O(3n®) where n is the dimension of the matrix. This operation count does not take into
account the administration part of the computation, nor the operations for the pivot search
needed for stability reasons. The operation count for the multiplication of the inverse of the
normal matrix with the right-hand side is of the order O(n?). This method is the only one

that needs a pivot search.

The two other methods are based on a Cholesky factorization of the normal matrix:
N =cC* (4.90)

with C a lower triangular matrix. The Cholesky factorization can be done in-place and the
operation count is of the order O(§n?).

2. Inversion of the Cholesky factor.
Using this method the Cholesky factor is first inverted. This can be done in-place (see
Dongarra et al. (1979)) and the operation count is of the order (’)(%ln3):

C—Ct : (4.91)
From the inverted Cholesky factor the inverse of the normal matrix is then computed as
N1'=Q;=CcTCc™! (4.92)

1t can also be done in-place and has an operation count of the order O(%n3). The solution is
eventually computed as in Eq. (4.89).
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Number of flops

Cholesky factorization 1
Inverse from Cholesky !
Inverting triangular matrix i
Multiplication CTC in
Direct inversion g

Table 4.13: Operation count (flops) for some operations on a full matrix.

3. Forward and backward substitution.
In the third method the solution is computed by forward and backward substitution:

CCTr=h Cholesky factorization of the normal matrix
Cu=nh Computation of auxiliary vector u via forward substitution (4.93)
CTz=u Computation of z via backward substitution

The forward and backward substitution can be done in-place (at the location of k), and
the operation count is of the order O(n?). The variance-covariance matrix @; is computed
column wise by a sequence of forward and backward substitutions on the columns of the unit
matrix of dimension n:

CCTQ; =1, (4.94)

This again can be done in-place and the operation count for it is of the order O(3n?).

Until now we only discussed solution techniques for full normal matrices, i.e. all entries
are treated as nonzeros and hence have to operated upon. Many normal matrices encountered
when solving problems within geodesy have a substantial number of nonzero entries. Geodetic
examples are e.g. the photogrammetric block-bundle adjustment, the adjustment of classic
geodetic (i.e. established by measuring directions and distances) networks.

Using the outer product formulation of the Cholesky factorization, it can be shown that
the number of nonzeros in the Cholesky factor is greater than or equal to the number of
nonzeros in the normal matrix, and that entries that are nonzero in the normal matrix
remain nonzero in the Cholesky factor, assuming that exact numerical cancellation does not
occur.! The gain in the number of nonzeros is called fill-in.

The amount of fill-in and its location depends on the order of the unknown parameters.
As for the Cholesky factorization we do not need to permute parameters for stability reasons,
we are free to apply a permutation specifically aiming at reducing fill-in. So, instead of solving
the system

Nz =h (4.95)
the equivalent permuted system

(PNPT)(Pz) = Ph (4.96)

1This assumption is made, since it is generally not predictable if, when or where it occurs.



130 Relative positioning using multiple GPS observable types

is solved. The permutation matrix P is orthogonal, thus P~! = PT. The solution vector Pz
is identical to the solution of (4.95), except for the order of the parameters in the solution
vector.

Summarizing, we have three methods for computing the solution vector = and its variance-
covariance matrix Q;, with, for a non-sparse matrix, equal operation count. However since
the direct inversion method needs a pivot search and does not profit from the presence of
zeros in the matrix, this alternative is dropped.

The second method (inversion of the Cholesky factor) needs always the full inverse of the
normal matrix to be computed, and inversion of the factor and computation of the inverse
of the normal matrix will only in special cases profit from zeros in the normal matrix.

The third method (forward and backward substitution) has an operation count for com-
putation of the solution only of the order O(n?). Computation of the solution as well as
computation of its variance-covariance matrix (or parts thereof) take advantage of the spar-
sity of the normal matrix.

Since the late sixties, research has been directed to the problem of establishing good a
priori orderings for the unknown parameters. For an overview see George and Liu (1980),
Pissanetzky (1984).

For some problems that exhibit a regular structure, simple a priori orderings can be
constructed (e.g. the determination of star abscissae on a great circle from data collected by
the astrometric ESA satellite Hipparcos, see van der Marel (1988)). For other problems one
has to use a heuristic algorithm. Among the most efficient and well-known algorithms are
the minimum-degree, the (nested) dissection, the reverse Cuthill-McKee (Cuthill and McKee
1969) and the family of banker’s algorithms (King 1970), (Levy 1971), (Snay 1976). For an
extensive description of the first three methods see George and Liu (1980), for a description
of the bankers’s methods (and comparison with the other methods when applied to geodetic
normal matrices) see de Jonge (1991) and de Jonge (1992).

The algorithms for minimizing fill-in can be divided into three groups, viz. those that
strive directly for a minimization of the fill-in (minimum degree), those that try to find
divisors that cut the matrix into independent parts (dissection methods) and those that try
to concentrate the nonzeros in the normal matrix around the diagonal (reverse Cuthill-McKee
and banker’s).

The a priori ordering we will describe below belongs to the last type. The reason that
it is beneficial when the nonzeros of the normal matrix are clustered around the diagonal is
that fill-in only occurs in the region defined by

N(i,j) with min{k | N(i,k) # 0} <j<i for i=1,...,n (4.97)

This region is called the envelope of a matrix, and the number of elements containing it is
called the profile. All elements inside the envelope, zero and nonzeros alike, are stored and
operated upon, and the matrix is called a profile matrix.

The number of elements in the intersection of column i with the envelope is called the
ith frontwidth, denoted by w;. The sum of w; for ¢ = 1 to n equals the profile. For a full
symmetric matrix of dimension n, w; equals n — 4. Using the frontwidth, the operation count
for the Cholesky factorization of a profile matrix can be given (see Table 4.14).

Forward and backward substitution also profit form the sparsity of the Cholesky factor.
Furthermore it is possible to compute only those elements of the inverse of the normal matrix
that correspond to the nonzero entries in the Cholesky factor (Golub and Plemmons 1980).
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scheme multiplicative  additive storage (excl.
operation count operation count administration)
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N (=

1
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Table 4.14: bperation count and storage for Cholesky factorization of a full and a profile
matrix (Pissanetzky 1984).

This inverse is denoted as sparse inverse. Depending on the sparsity of the Cholesky factor
the sparse inverse can be computed more efficiently than the full inverse.

Instead of using one of the heuristic algorithms to reduce the fill-in in the Cholesky factor
of the normal matrix originating from the processing of GPS data for relative positioning,
we use an optimal or near optimal ordering that can be defined a priori. In the sequel this
ordering will be denoted by ‘d3’, and is determined as follows.

For each parameter we know at which epoch it starts to be active and at which epoch it
stops being active. For the coordinate parameters of a network that is continuously observed
for one day with an interval of 30 seconds, we have e.g. that they are active from epoch 1
to 2880. If we define tropospheric zenith delays, for each hour, we have for each station 24
parameters that are active for 120 epochs, i.e. for epochs [1-120], [121-240], ... , [2661-2880].
Ambiguities are active for time spans that may vary considerably. In Figure 4.7 for the
ambiguities of both the global and the Californian network of Table 4.12, the length of the
time span for all ambiguities, sorted after increasing length of the time span is plotted. The
length of the time span for the global network varies from.1 to 842 epochs, with an average
of approximately 387 epochs. For the Californian network the length varies from 3 to 878,
with an average of 426.

If we denote the first epoch that a parameter is active by (i, and the last epoch that it is
active by (5, a near optimal ordering was found by first sorting the parameters in increasing
order of (;. If there are several parameters with equal (i, this batch is again sorted in
increasing order of (. The ordering was applied to four normal matrices:

Cal Californian network, L1 and L2, with ionospheric slant delays constrained via pseudo
observables.

Pol Global network, L1 and L2, with ionospheric slant delays constrained via pseudo ob-
servables.

Poli Global network, L1 and L2, and estimation of ionospheric slant delays (non-constrained).

Poln Global network, L1 and L2, with ionospheric slant delays constrained via pseudo ob-
servables, and coordinates, tropospheric zenith delays and orbits constrained to a priori
values (from e.g. the solution of Poli).

Both networks were observed for one day with an interval of 30 seconds, and had per station,
per hour a tropospheric zenith delay modeled. The orbits were modeled by 8 parameters per
satellite. ' :

In Table 4.15 for these normal matrices the CPU time is listed that was needed to compute
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Figure 4.7: Length of time span that an ambiguity is active for the ambiguities of the global
network (black curve), and the Californian network (grey curve). The ambiguities are sorted
according to the length of this time span.

1. the full Cholesky factor and the full inverse from it,

2. a profile Cholesky factor from the normal matrix ordered by d3, and the full inverse
from it,

3. a profile Cholesky factor from the normal matrix ordered by d3, and the sparse inverse
from it.

All timing was done on a Pentium 100 MHz PC.

For ‘Pol’,; ‘Poli’ and ‘Poln’, it was found that the ordering according to {; was arbitrary.
Except for ‘Poln’, the d3 ordering is not optimal in the sense that it produced a small amount
of fill-in. It gave however a smaller fill-in than the heuristic algorithms. Whether there exist
an optimal ordering is impossible to say, see Garey and Johnson (1979).

The nonzero structures of the normal matrices of ’Cal’ and ‘Pol’ are depicted in Fig-
ures 4.8 and 4.9. The parameters are ordered as L1 ambiguities, L2 ambiguities, coordinates,
tropospheric zenith delays, orbit parameters. One tropospheric delay per station per hour
was modeled, i.e. 24 delays per station. The orbits were modeled with 8 parameters per
satellite. With 25 satellites observed, the total number of global parameters is 1275 for ‘Cal’,
and 1369 for ‘Pol’.

Figure 4.10 shows for ‘Pol’ in the lower triangle the lower triangular part of the normal
matrix ordered by d3, and in the upper triangle the resulting (transposed) Cholesky factor.
There is some, though not much, fill-in in the Cholesky factor, and all of it is contained
within the envelope. Figure 4.11 shows the same for the normal matrix ‘Poli’. As ionospheric
slant delays were modeled, the number of ambiguities equals half the number of ambiguities
in ‘Pol’. The total number of parameters is 933.
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Cal Pol Poli Poln

C full 120.0 1489 46.3 375
N~ full from C full 240.0 297.8 926 75.0
Total 360.0 446.7 138.9 1125
C profile 140 218 98 18
N~ from C profile 123.1 169.2 60.1 26.5
Total 137.1 191.0 699 283
C profile 14.0 218 9.8 1.8
Sparse N~! from C profile 49.4 786 34.6 4.8
Total 63.4 1004 444 6.6

Table 4.15: CPU time (in seconds on a Pentium 100 MHz PC) for some operations on the
normal matrix from the Californian network, and the global network. For the operations on
the profile matrix, the parameters were ordered according to a priori ordering d3.

Figure 4.12 shows the normal matrix and resulting Cholesky factor for the normal matrix
‘Poln’, where we only have ambiguities. The number of ambiguity parameters is 872. At right
the normal matrix is in the original ordering, at left it is ordered by d3. For the ordering by
d3, there is no fill-in.

These examples show that when the time span is large, and hence satellites set and rise
during the time span, it is worthwhile to order the parameters in order to minimize the fill-in
in the Cholesky factor and thereby reducing CPU time. A prerequisite is then of course
that the solution is computed via Cholesky factorization followed by forward and backward
substitution instead of direct inversion or inversion of the Cholesky factor.
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Figure 4.8: Nonzero structure of the lower triangular part of the normal matrix of the network
in California (Cal), original ordering (1275 parameters).
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Figure 4.9: Nonzero structure of the lower triangular part of the normal matrix of the global
network (Pol), original ordering (1369 parameters).
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Figure 4.10: Nonzero structure of the lower triangular part of the normal matrix of the
global network (Pol) ordered by d3, and the resulting (transposed) Cholesky factor (1369
parameters).
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Figure 4.11: Nonzero structure of the lower triangular part of the normal matrix of the
global network (Poli), ordered by d3, and the resulting (transposed) Cholesky factor (933
parameters).

Figure 4.12: Nonzero structure of the lower triangular part of the ambiguity part of the
normal matrix of the global network (Poln), and the resulting (transposed) Cholesky factor.
Left: original ordering, right: ordered by d3 (872 parameters).
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Chapter 5

Integer ambiguity estimation

5.1 Introduction

High precision relative GPS positioning is based on the very precise carrier phase measure-
ments. As we saw in Chapter 2 these carrier phase observations are ambiguous, and hence
extra model parameters, the carrier phase ambiguities, are introduced.

For short time spans, these ambiguities are strongly correlated, and the estimates for the
geometric parameters have a poor precision (float solution). To achieve highest precision
the integer nature of the DD ambiguities has to be exploited, i.e. one has to constrain the
ambiguity parametefs to their integer values (fixed solution).

As an example, Figure 5.1 shows, for a baseline of 12.7 km, by how much the precision of
the baseline can improve, once one fixes the ambiguities. The three-dimensional scatter-plots
shown, concern instantaneous positioning (single epoch baseline solutions) using dual fre-
quency code and phase data (standard deviation code 30 cm, phase 3 mm). The coordinates
are expressed in a local North, East, Height system. One hundred experiments were carried
out (one at every 30 seconds) each represented by an asterisk; the dots are the projections
on the walls of the grid. The scatter-plot at left contains the float solutions, the one at
right the corresponding fixed solutions. Thus in the first case, the carrier phase ambiguities
were treated as real numbers, whereas in the second case, they were solved for as integers.
The figure clearly shows the dramatic improvement in precision with ambiguity resolution
(note the difference in scale). The empirical standard deviation of the baseline coordinates
before ambiguity fixing are oy = 35 ¢cm, o = 20 cm and oy = 63 cm and after oy = 4.4
mm, og = 3.8 mm and oy = 11.4 mm. So, for this example, by fixing the ambiguities, the
precision of the position coordinates improves by a factor of more than 50.

Although the improvement for short time spans is largest, an improvement in precision
of the geometric parameters is achieved even for time spans up to 24 hours, see e.g. Mervart
(1995).

Unfortunately, the estimation of the integer values for the ambiguities has proven to be a
particularly hard and time-consuming problem, and several methods to tackle the problem
have been proposed.

Traditionally, these methods have been developed for two different applications. On the
one hand methods have'been devised for applications where a multiple of stations are occupied
for several hours until several days, and maximum inter-station distance can be of the order
of thousands of kilometers, (Dong and Bock 1989), (Blewitt 1989), (Mervart 1995). On the
other hand methods have been developed for rapid-static and navigation applications, where
usually only two stations are involved, the maximum distance is some tens of kilometers,
and time of occupation is of the order of seconds to minutes, or the receiver is moving:
the Ambiguity Function Method (AFM) (Counselman and Gourevitch 1981), the Least-

141
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Figure 5.1: Scatter of float (left) and fixed solution (right) for a 12.7 km baseline (differential
atmospheric delays assumed to be zero). The sampling rate was 1 second, and one epoch
of dual frequency code and phase data of 7 satellites was used every 30 seconds during 50
minutes for instantaneous positioning. First sample at 14:10:00 (GPS time) on December 22,
1996.

Squares Ambiguity Search Technique (LSAST) (Hatch 1990), the Fast Ambiguity Resolution
Approach (FARA) (Frei 1991), optimized search using Cholesky (Euler and Landau 1992)
and the Least-squares AMBiguity Decorrelation Adjustment LAMBDA (Teunissen 1993).

At first sight it seems that ambiguity estimation for regional networks is treated as an
entirely different problem, although conceptually there is no real difference with the short
baseline case, as far as the estimation of the integer ambiguities is concerned. Of course, for
longer inter-station distances more adequate mathematical models for e.g. tropospheric and
ionospheric delays, as well for the orbital parameters have to be employed.

For regional networks applies that, due to their hybrid character with inter-station dis-
tances from some to several thousands of kilometers, and with some receiver-satellite combi-
nations less well observed than others, the probability to find a valid integer solution for the
complete vector of ambiguities is decreased. Consequently one sometimes has to resort to a
proper subset for which such a solution exists.

Another difference between the regional network and the short baseline algorithms, is that
in the former no validation step is involved, other than repeatability of the fixed coordinates
between the days. The baseline algorithms that are used in rapid static and navigation
applications have some sort of validation step which is based on the data itself, and thus can
be computed and evaluated as soon as the data are collected and processed. It usually needs
next to the best solution, the second best solution.

There are, however, similarities between some of the algorithms applied to the regional
networks, and some of those applied to the short baselines. The methods described in Dong
and Bock (1989), Blewitt (1989) as well as the ‘sigma’ and QIF (Quasi-Ionosphere Free)
methods (Rothacher and Mervart 1996) all use a sequential conditioning (fixing) of ambi-
guities. The conditioning makes subsequent ambiguities become more precise, and usually
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pushes the values of the ambiguities conditioned at the previous ambiguities towards integer
values. The schemes differ in the criteria that are used for selecting the next ambiguity to be
fixed, and in the way parameters are modeled and constrained in the preceding float solution.

This principle of conditioning of ambiguities is also found in the sequential conditional
least-squares adjustment which is part of the LAMBDA method, which will be the main
focus of this chapter. The latter differs from the methods above in the sense that if the
resolution or adjustment is finished with a complete or partial vector of integer ambiguities,
it is guaranteed that this vector minimizes the integer least-squares criterion, i.e. it guarantees
that the fixed solution is an integer least-squares solution.

In Teunissen (1993) it was shown that the DD ambiguities are strongly correlated, espe-
cially when the observation time span is short, due to the small change in the receiver-satellite
geometry. Since this correlation makes the estimation of the integer ambiguities via a sequen-
tial conditioning of the ambiguities far from efficient, a method to construct a decorrelating
transformation for the ambiguities was proposed in (ibid). Alternative decorrelating methods
can be found in Han and Rizos (1995), and in Li and Gao (1997), where it is also shown
that decorrelating the ambiguities often has a favorable influence on the efficiency of other
resolution methods too.

The ambiguities of the one day solutions for the large regional networks are less correlated,
but still can be improved upon. This most likely will produce more ambiguities that will pass
the criteria that allow them to be fixed, thereby further improving the eventual fixed solution.
Possibly it could also reduce the time span for which a fixed solution can be computed. For
monitoring coseismic and postseismic deformation with magnitudes up to several decimeters,
and several mm/day, respectively, shortening these time spans would be very useful. The
integer estimation in regional networks will be the topic of Chapter 6.

In this chapter, the LAMBDA method will be treated. The method can be divided into
two parts. The first part consists of a general decorrelation of the ambiguities materialized
in a so-called Z-matrix. The second part consists of the sequential conditional least-squares
adjustment materialized by a depth-first search in the hyper-ellipsoid formed by the variance-
covariance matrix of the ambiguities. Depending on the application at hand, if may be more
efficient to compute the Z-matrix implicitly. The construction of the Z-matrix (explicitly
and implicitly) and the search are derived, and described in detail.

Timing results for the integer estimation are given for a short baseline and for a small
network with three of the four stations allowed to be moving.

5.2 The least-squares ambiguity decorrelation adjustment

The LAMBDA method has been developed for efficiently estimating the integer values of
the GPS double difference ambiguities or DD-like functions of ambiguities. The method was
introduced in Teunissen (1993), and fast positioning results using it were given in Teunissen
(1994), de Jonge and Tiberius (1994) and Tiberius and de Jonge (1995).

The two main features of the method are

1. the decorrelation of the ambiguities, realized by a transformation of the original ambi-
guities, and

2. the actual integer ambiguity estimation
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By the transformation, the existing large correlation between the ambiguities is reduced
to a great extent. The construction of this decorrelating transformation, is the most time-
consuming part of the method (albeit still very modest compared with other methods for
ambiguity resolution, see Han (1995)).

The actual integer estimation is made for the transformed ambiguities. In practice this
amounts to a search over grid points inside the n-dimensional ambiguity hyper-ellipsoid (with
n the number of ambiguities), defined by the variance-covariance matrix of the ambiguities.

The shape and orientation of the ellipsoid are governed by the variance-covariance matrix
of the ambiguities; the decorrelation realizes an ellipsoid that is very much more sphere-like
than the original one, and therefore can be searched more efficiently.

The volume of the ellipsoid, which can be computed prior to the search, gives an indication
of the number of candidates contained in the ellipsoid. Therefore, a limited number of
candidates may be output of which one is the integer least-squares estimate for the vector of
ambiguities.

The efficiency of the method through the decorrelation step has been explained in detail
by analysis of the precision and correlation of the GPS double difference ambiguities in
Teunissen and Tiberius (1994), Teunissen et al. (1994) and Teunissen (1995c).

5.3 The three-step estimation procedure

In Section 3.2 we divided the parameters into two groups, viz. global parameters z, and local
parameters z,. The system of linearized observation equations reads

Bt =4 4 |7 (5.1

For the purpose of the integer estimation of the ambiguity parameters the global parame-
ters are again subdivided into two groups, viz. n, parameters b that remain real valued, and
n double difference ambiguity parameters a that may take integer values.

Parameters belonging to the first group are the parameters that are functions of the station
and/or satellite coordinates (e.g. station coordinates, tropospheric zenith delays, ionospheric
model parameters, and orbit parameters).

The system of linearized observation equations reads then

b
E{y}=[4 Ad 4] |a (5.2)

()

The design matrix [Ab A, Az] is assumed to have full rank, i.e. the rank defect has been
resolved (see Section 4.2), and the redundancy is greater than or equal to zero. The vector of
observations may include all of the available GPS observable types, with at least one carrier
phase type present. All of the models of Section 4.1 may be applied, as long as in the set
of estimable functions, integer (or at least rational) DD-like functions of ambiguities occur.
In the following the DD-like functions of ambiguities will be denoted as ‘DD ambiguities’ or
simply ‘ambiguities’.
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The least-squares principle is used to compute estimates for the real valued parameters
and the integer valued ambiguities:

min ||y — Ayb — Asa — A2$2||2Q-1 with b € R™, 2, € R™2 and a € Z" (5.3)
Y

b,a,x2

The parameter estimation is carried out in three steps, see Teunissen (1995b). These
steps are: 1. the computation of the float solution, 2. the integer ambiguity estimation and
3. the computation of the fixed solution.

1. Float solution

First the minimization (5.3) is carried out with b € R™ 1, € R"2,0 € R". Real valued
estimates for the ambiguities will be obtained. This full rank least-squares problem is solved
via a Cholesky factorization of the normal matrix reduced for the local parameters z, (see
Section 3.8).

If the system of normal equations is small and hence there is no need for ordering the
unknowns for reasons of sparsity, the parameters are ordered as: 1. real valued parameters,
2. ambiguity parameters.

The system of normal equations for (5.2) reads then

o 5l = 12 6
The estimates and the variance-covariance matrix for the global parameters are:
o e % &
2. Integer ambiguity estimation
The second step consists of
main lla — al|é&_1 with a € Z" (5.6)

This minimization yields the integer least-squares estimate for the vector of ambiguities: a.
The computation of the integer estimate will be treated in detail in Section 5.5.

Due to the strong correlation that exists between the ambiguities, a decorrelating trans-
formation is applied to them:

z2=2% (5.7)

This is done by a systematic pair-wise decorrelation of the ambiguities. The construc-
tion of this transformation is treated in detail in Section 5.4. Through this so-called Z-
transformation the variance-covariance matrix is transformed accordingly:

Q:=2"QiZ (5.8)

The actual integer minimization is made upon the transformed ambiguities. In practice
the minimization (5.6) (but now for the transformed ambiguities z), amounts to a search
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over grid points inside the n-dimensional ambiguity hyper-ellipsoid, defined by the variance-
covariance matrix of the ambiguities

(z-2)7TQ;'(2—-2) <X° (5.9)

The search results in the grid point that is nearest to the real valued estimate, with nearness
measured in the metric of the variance-covariance matrix, see Teunissen (1993). x? is a
positive constant which should be chosen such that at least one (or two if one also needs
the second best solution) grid point is contained in the ellipsoid. On the other hand not too
many more grid points should be contained in the ellipsoid, since that would slow down the
search. Methods to determine a suitable x2 will be given in Section 5.6.

Depending of the computation scheme that is used, the integer estimate Z has to be back-
transformed to &. It is however also possible to continue with 2. In Section 5.9 we will show
in which circumstances what computation scheme should be chosen.

3. Fized solution R
The final solution b = b|a, with the ambiguities fixed to their integer least-squares estimates
a, reads

Iy = 22 — Qs,aQ5" (@ — d) (5.10)

The least-squares estimates b, &, and Z, are the solution to the constrained minimization
(5.3). Note that in practice b is not computed using (5.10), see Section 5.9, and I, is often
not computed at all.

5.4 Integer ambiguity estimation: transformation

5.4.1 The decorrelating or Z-transformation, introduction

To explain the concept of the decorrelating transformation we decompose the variance-
covariance matrix (); into

Qa=L"TTD'L! (5.11)

Note that this corresponds to the inverse of the LDLT decomposition of Q;' which is easily
derived from the already computed Cholesky factor, see Eq. (5.17). The principle of the
decorrelation is to find a matrix Z, which is an integer approximation of matrix L. If we
would be able to find a matrix Z that fulfills the requirements in Teunissen (1995a) i.e. all
entries of Z as well of its inverse are integer valued (= |Z| and |Z~!| = £1), and that exactly
equals L, then with (5.8)

Q:=2"Q:Z=2"L"TD'L'Z=D"! (5.12)

The transformed ambiguities 2 are fully decorrelated and the integer minimization reduces to
a simple rounding of the real valued estimates, see Teunissen (1995b). In practice, a matrix
with integer entries that transforms the variance-covariance matrix to a diagonal matrix is
seldom found, and hence the transformed ambiguities are still (weakly) correlated.
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The result of the decorrelation process is the square n x n transformation matrix Z. The
estimate 2 follows from 2 = ZT&. The factors of the variance-covariance matrix are updated
in the decorrelation process: D! and L~!. They satisfy

Q:=LTD '[! (5.13)
The problem (5.6) has now been transformed into the following minimization

min |2 — 2|[3-. with z € Z" (5.14)

Inversion of L~ yields L and inversion of D! yields D. They satisfy
Q;'=LDLT (5.15)
This decomposition into L and D is then used in the search, see Section 5.5.

5.4.2 Decomposition of the variance-covariance matrix

The ambiguity decorrelating transformation can be computed in several ways depending on
the matrix one starts with, and on the type of factorization one uses. One can either use
the variance-covariance matrix of the ambiguities, or its inverse, and the factorization can be
either an LDLT, or an LT DL factorization. Schematic we have

Q;'=LD,LT ; Q,=Li"D{'Li'  cf. (Teunissen 1993)
Qi'=LiD:Ly ; Qa=L;'Dy'L;T

Qa=LID:Ly 5 Q;'=L;'DtLsT

Qa=LsDyLT 5 Q7' =L;"D{'L;' cf. (Teunissen 1995b)

(5.16)

where:
L; is a unit lower triangular matrix (i.e. with ones on the diagonal) and
D, is a diagonal matrix with elements ds, ... ,d,

Note that Ly = L3',L, = L;' and that D, = D;!, D, = D;'. In Teunissen (1993) the
LDLT factorization of the inverse of the variance-covariance matrix is used, and in Teunissen
(1995b) the LDLT factorization of the variance-covariance matrix itself.

Here we depart from the LDLT factorization of the inverse of the variance-covariance ma-
trix. The reason for it is, that depending on the chosen computation scheme, the Cholesky
factor C, of the inverse of the variance-covariance matrix of the ambiguities is already avail-
able in the float solution. With the Cholesky factor C of the normal matrix referring to the
global parameters partitioned as

Jc, o
c-[@ o] o1

with C, a lower triangular matrix of dimension n, we have Q;' = C,CT. The Cholesky
factor C, becomes thus available at no extra cost in the float solution.
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The LDLT decomposition of ;" is easily constructed from the Cholesky factor. It holds
that

C,=LVD (5.18)

Note that matrix Q;' is symmetric positive definite: for the diagonal elements of D it holds
thatd; >0Vi=1,...,n.
The corresponding factorization of the variance-covariance matrix reads

Q:s=L"TD'L! (5.19)

An interpretation can be given to the elements of matrix D!, see Teunissen (1993): they
are the conditional variances of the double difference ambiguities.
-1 2
di = Oaii41,m (5'20)
Conditioned means here that one or more ambiguities are constrained (conditioned) at an
in principle arbitrary value. In the context of integer ambiguity estimation this value will

be the integer found for a particular ambiguity. The conditional estimate for ambiguity ¢,
conditioned at ambiguities ¢ + 1,... ,n, is denoted by

Qifit1,...,n (5.21)

Instead of inverting the LDLT decomposition, one can compute Q; = L™TD7'L™! di-
rectly. This should be done when the factor L is not already available. An algorithm for
this factorization in an outer product formulation which is used to explain some features of
the construction of the transformation matrix Z in Section 5.4.3, reads in stylized MATLAB
notation:

Given the symmetric-positive definite matrix @, an LTDL factorization is computed by
the outer product method. Matrix L may over write matrix @; the latter is destroyed during
the computation. Only the lower triangular part of @) is accessed.

fori=n:-1:1
D(i,1) = Q(i, 1)
L(i,1:7) = Q(i,1:1)//Q(¢,1)
forj=1:1-1
QU,1:5) =Q(,1:5) — L(i,1: )L(i,4)
end
L(,1:¢)=L(1:¢)/L(5,1) .
end
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5.4.3 Modifying the decomposition

Note: the construction of the transformation matriz Z is based on the variance-covariance
matriz Qs. To simplify notation we will assume for the remainder of this section that we
have the LTDL factorization of Qs (the third option of (5.16) instead of the first), thus
di = 0'2

Qilit1,... 0"

The construction of the n x n Z matrix in (5.8) consists of a sequence of integer approx-
imated Gauss transformations (see Section 5.4.4) and permutations. Both are admissible
ambiguity transformations, see e.g. Teunissen (1995a). The actual decorrelation is carried
out by the integer Gauss transformation. If necessary the ambiguities are reordered to allow
for further decorrelation.

Before we continue, we will discuss the triangular decomposition after transformation,
analogously to the decomposition discussed in Teunissen (1995b) (Egs. 47-49 at page 79).

The unit lower triangular matrix L and the diagonal matrix D are partitioned into

L Dy,
L= L21 L22 and D = Dgg (522)
L3; L3y Ljs D33

Sub-matrix Loy is of order 2, Ly, of order 2 — 1, and L33 of order n — i — 1. The dimension of
the other sub-matrices in L and D are determined accordingly. If we apply a two-dimensional
ambiguity transformation to the i-th and the (: + 1)-th ambiguity, with the block-diagonal
matrix

In—i—l

with Zyy a square and full rank 2 x 2 matrix, we get the new triangular decomposition
L'"D'L', with

I_’ll _ Dll _
L, = L21 I_/22 and D, = D22 (524)
L3 Lj; L D33

The fact that only Lg;, Lys, L3z and D,y change, can be explained by looking at the outer
product form of the LT DL factorization as given in Section 5.4.2. We have (the variance-
covariance matrix is symmetric):

Qu Qu
Z'QuZ = |Z25Qn Z5QnZx = |Qn Qn (5.25)
Qa1 QR32Z2 Qs Q@ @ Qs

Let us look at the updating step of the algorithm i.e. the part where an outer product is
subtracted from the matrix. The parts of the outer product that are affected by Z always
coincide with the parts of @ affected by Z. So the ‘reduced’ @ has the same structure as
in (5.25). Since L is basically obtained from extracting rows from the reduced @ divided by
the square root of the corresponding diagonal element, and D is set equal to the diagonal
element, the modified decomposition will be as indicated in (5.24).
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The modified factor can be related to the original one. We know that

L"'DL =ZTL'DLZ (5.26)
From this relation we easily derive for Lso
LEDyyLyy = L3, D33 L3y Zss (5.27)
or,
L3y = L3y Za (5.28)
For Ly, holds that
LEDyyLog + LY, D3 Lay = 7y (LL, Dao Loy + L3, D33 La2) Zas (5.29)
or, using (5.28)
L33DosLyy = Z3y(L3yDay Lg) Z (5.30)
And for Ly; holds that
L DooLyy + LT, DygLay = Z5 (LT, Doy Lyy + L3, D33Lay) (5.31)

from which can be derived after substituting (5.28)
L33DyoLgy = Z3 L33 Doz Ly (5.32)

Using the relation ZL LT, Dyy = LY, Doy Los(L22Z2,) ™" which follows from Eq. (5.30) we finally
get

Lyt = Loo(LysZn) 'Ly (5.33)

Thus, once matrix Q is factored as Q@ = LTDL, the factorization of ZTQZ with Z
defined in (5.23), can be efficiently computed from the existing factorization. In the unit
lower triangular matrix L only the rows ¢ and i + 1 and the columns ¢ and ¢+ 1 change. The
modification of the diagonal matrix D is limited to the elements (i,7) and (i +1,i+1). The
transformation of the variance-covariance matrix can be realized by updating the factors L
and D.

5.4.4 The integer Gauss transformation

The relations found in Section 5.4.3 (Egs. (5.28), (5.30), and (5.33)) can be further simplified
if we restrict the transformation (sub-)matrix to a single Gauss-transformation (see Golub
and Van Loan (1989) Section 3.2.1):

T = B ﬂ (5.34)

Then

livo;+alizoivr Livain

livai+ aligaivr lizsin

Egg = (535)

lni + aly i1 st
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= 1 0 = d 0
Ly = [lm,i o 1] and Dy, = [ 0 dm} (5.36)
l_/21 == L21 (537)

We see that only the unit lower triangular matrix L changes. The diagonal matrix D is left
unchanged by a single Gauss transformation. In other words: the conditional variances do
not change, only the conditional covariances and thus the unconditional variances change.
This can intuitively be understood since the order of ambiguities was not changed.

To achieve full decorrelation we would like to choose & = —l;y1,. In general l;;,; & Z.
To meet the requirements for the construction of the Z-matrix, o is approximated by
—nint(li;1,;), where nint stands for the nearest integer operator. With this integer approxi-
mation, we can make the absolute value of any non-diagonal element of L less than or equal
to 1. The integer Gauss transformation was discussed in Teunissen (1994) and Teunissen
(1995a).

In general, if we take for Z the unit matrix with an additional « at position (4, j), with

t > j, the elements that change are

lij=lj+a
Vpj=lj+al; for k=i+1,...,n (5.38)

The detailed algorithm for the computation of a Z-transformation matrix, that will make
the absolute value of all non-diagonal elements of L less than or equal to 3, can be found
in de Jonge and Tiberius (1996). Given the unit lower triangular factor L from the LTDL
factorization of the variance-covariance matrix @3, it computes a Z-transformation matrix.
Z will be lower triangular on output if set to the unit matrix on input. The computation of
this matrix is performed column wise from n to 1. Instead of decorrelating all n columns,
one can apply the algorithm to only one column. The vector with estimates & is transformed
to 2 = ZTa. The original factor L is transformed to L' = LZ for which holds: L'" DL’ = Q;.

Factor L remains lower triangular.

5.4.5 Reordering of the ambiguities

As was explained in Teunissen et al. (1994) and Teunissen (1995b), the signature of the
conditional variances shows, in the case of a single baseline, a distinctive discontinuity when
passing from the third to the fourth ambiguity encountered in the search or conditioning
process (see Figure 5.2). In general for a network of r receivers with the coordinates of one
receiver fixed, this discontinuity is found when passing from the (3r — 3)-th to the (3r — 2)-
th ambiguity (see Figure 5.3). The size of this discontinuity is governed by the length of
the observation time span. In Section 5.5.3 it will be shown that it is this discontinuity
in the signature that causes the search to be highly inefficient. Carrying out the integer
estimation (5.6) will be a very time-consuming task (Teunissen et al. 1994), (Teunissen
1995c¢).

As we saw in Section 5.4.4, the integer Gauss transformation decorrelates the ambiguities,
but it leaves the conditional variances, and thus the discontinuity, intact. Looking at the
definition of conditional variance, it seems logical to change the order of the ambiguities if
we want to change the signature. In Teunissen et al. (1994), Teunissen et al. (1995) and
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Figure 5.2: Conditional variances of the L1 and L2 ambiguities for a single baseline, with 7
satellites observed and a time span of 1 second.

L

P TP DS e

LA B

|IRASLAN B

f

coud v coned 0y

3
E
<

| IR Y N

1Osgr""I"'w"
£, 1000 |
k) 3
o 100 |
2 :
g 0F
=1 E
> E
5 0.01 F
& 03¢
g 10
1074 T
5 10

15 20 25 30 35

Ambiguity
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7 satellites observed and a time span of 1 second.
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Figure 5.4: Conditional variances of the L1 and L2 ambiguities for a single baseline before
(dotted line, cf. Figure 5.2) and after transformation (solid line).
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Teunissen (1996) this problem, and the solution for it, is explained geometrically in terms of
the form and orientation of the ambiguity search space.

To change the order of the i-th and the (i + 1)-th ambiguity we again apply a local
transformation but now using the 2-by-2 permutation matrix P for Zy,. With (5.28), (5.30)
and (5.33) we have

L3y = L3, P (5.39)
LY DogLyg = PTLL, Dyy Loy P (5.40)
L21 = LQQ(LQQP)_1L21 (541)
where
_or J0 1
P=PT= [1 0 (5.42)

Working out these relations we get

livoiv1 liyos
- livsivr liva
Ly = |70 7 (5.43)

ln,i+1 ln,i

- 1 0 1 0
L22 = [ } = [ li+1,idi+1 1:| (544)

!
; 1 4412 do.
ll+l,l 1 di+lf,, din

12 . .d?
_ dl 0 d _ i4+1,ii41 O
Dy = |:OZ d = |l i+l din R (545)
i+1 0 dz + li+1,idi+1
i 1
_ +1,2
Ly = | -8, .dina bipridin | Lo (5.46)
T2 . T N
di+l,-+1‘idi+1 di+l,’+1,idi+1

Simplifying Eqs. (5.44-5.46) gives

dip1 = di + 12 1din (5.47)
& = %ldm (5.48)
lip1i = g,iilllHl,i (5.49)
and
Ly = [_ZT_M ll_l } Ly (5.50)
T, il

The factors L and D are updated, as shown in (5.24) and (5.25), as to correspond to the
transformed (permuted) ambiguities.
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5.4.6 Putting it all together

For the actual integer minimization we strive for largely decorrelated ambiguities, and fur-
thermore we want to have the most precise ambiguity at position n where the search starts
(see Section 5.5.3). In other words, we strive for

dy, <...<d; with d; from D of Q; = LTDL (5.51)
and therefore we interchange two conditional variances if
d;+1 < dip (552)

Alternatingly we will have a decorrelation and a reordering step. We start with the last
ambiguity and we try to reach the first one. At each step ¢ we check whether the interchange of
d; and d;,; will decrease the value for the latter. After each interchange we start again at the
last ambiguity. The algorithm ends if during one sweep from n to 1 no further interchanges
can be performed.

The algorithm requires element ;11 to be as small as possible. Therefore we take care
that the absolute values of the off-diagonal elements of columns ¢...n are less than or equal
to %, by applying the column wise decorrelating Z-transformation of Section 5.4.4. Figure 5.4
shows the signature of conditional variances before and after decorrelation for a single base-
line case. The decorrelating transformation has effectively removed the discontinuity in the
signature, thereby enabling a much more efficient search.

In Teunissen (1994) the ambiguity decorrelation number was introduced as a measure for
the decorrelation between the ambiguities. With the correlation matrix of @; defined as

Ri = {diag(Qa)} 3 Qa{diag(Qa)} 7 (5.53)

where diag(Q;) is a diagonal matrix with elements equal to those of the diagonal of Qs, it
reads

ra = /| Ral (5.54)

By definition 0 < r; < 1. When the ambiguities are uncorrelated r; equals 1; the more
correlation exists between the ambiguities, the smaller the ambiguity decorrelation number
becomes. Alternatively, the ambiguity decorrelation number is computed as

n

T,
rg =[] i (5.55)

T4
=1 i

If the ambiguities are uncorrelated, os,,,, . = Oa and hence r; = 1. The ambiguity
decorrelation number can be used to compare the measure of correlation of two variance-
covariance matrices of the same dimension, i.e. it may be used to compare the correlation
between the ambiguities before and after the decorrelating transformation.

As an illustration of the Z-transformation we will apply it to an artificial three-dimensional
example. The synthetic variance covariance matrix results from the addition of a scaled unit
matrix and a rank-2 matrix with elements that are significantly larger than the scale factor
of the first matrix, see also Teunissen et al. (1994).

6.290 5.978 0.544
Qs = |5.978 6.292 2.340 (5.56)
0.544 2.340 6.288
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The ambiguities have large variances and in particular a; and a, are strongly correlated.

04 = 2.508  pasa, = 0.950
04y = 2.508  paa, = 0.086 (5.57)
Og5 — 2.508 Pazas = 0.372

The matrix Z7 reads

1 -1 0
ZT=|-2 3 -1 (5.58)
3 -3 1

Note that the matrix Z7 given here is not unique. Reflections (change of sign) and
permutations (reordering) of the ambiguities do not change the amount of correlation between
the ambiguities.

Matrix Z” indeed has integer elements and |Z7| = 1. The variance covariance matrix of
the transformed ambiguities z reads

0.626 0.230 0.082
Q: = |0.230 4.476 0.334 (5.59)
0.082 0.334 1.146

and it can be seen that the ambiguities are largely decorrelated.

gz = 0.791 Pii3y = 0.137
03, =2.116  ps,s, = 0.097 (5.60)
T35 = 1.071 Piozs = 0.147

5.4.7 Back transformation

Once the transformed integer minimization problem (5.14) has been solved, we have to back
transform the integer estimate Z, in order to obtain the integer least-squares estimate @. The
relation reads

ZTa =z (5.61)

The inverse of the matrix Z” does not need to be computed explicitly. Matrix Z7 has only
integer elements, has full rank, with |Z7| = %1, and is square and usually dense, as the
transformation is truly a multi-satellite transformation (Teunissen 1995a). Therefore an LU
factorization can be made by Gaussian elimination with partial pivoting, see Chapter 3 of
Golub and Van Loan (1989) and Chapter 1 of Dongarra et al. (1979) (the LINPACK routines
DGEFA and DGESL). Then the integer least-squares estimate @ is obtained via forward and
backward substitution. Note that the intermediate result, after the forward substitution, is
in general not an integer vector. The forward and backward substitution can be repeated for
any other candidate, e.g. the second best &’.

One can also compute instead of Z, the matrix Z~7 directly, it involves only a minor
change in the algorithm, and takes the same number of operations to compute.
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With other alternatives, the transformation is constructed in an implicit manner. The
fixed solution (5.10) can be computed using the transformed integer ambiguities Z directly,
cf. Eq. (3) in Teunissen (1995b). Instead of starting with Z = I on the input and computing
matrix Z, one can insert matrix ¢);, and transform it into Q;;. Matrix Q3" is obtained from
the updated factors L and D (see Section 5.9).

5.5 Integer ambiguity estimation: search

5.5.1 Introduction

In this section the actual integer ambiguity estimation will be discussed. The integer esti-
mation is also referred to as search. Based on the results of the float solution a search will
be performed in order to come up with the most likely integer candidate! for the vector of
ambiguities.

Decorrelating the ambiguities, as discussed in the previous section, is not a prerequisite
for the integer ambiguity estimation. The search can be performed on the original ambiguities
a as well, instead of on the transformed ambiguities z. The decorrelation, however, is highly
beneficial to the efficiency of the search. In the sequel the ambiguities are denoted by a,
whether or not they represent transformed ambiguities.

The implementation of the search is based on the correspondence of the LDLT decompo-
sition of matrix ;' (the first option of (5.16)) and the sequential conditional least-squares
estimation, see section 5 of Teunissen (1993). The input of this step consists of matrices L
and D and the real valued estimate a. The output is the integer least-squares estimate a.

5.5.2 Sequential conditional least-squares estimation

As discussed in Teunissen (1993), no standard techniques are available for solving (5.6). A
discrete search is employed instead. An ellipsoidal region in R™ is taken, on the basis of
which a search is performed for the minimizer of (5.6):

@-a)'Q;'(@—a) <x* (5.62)

For a discussion on the value for x2, the constant that controls the size of the ellipsoidal
region, see Section 5.6, and also Teunissen et al. (1996).
With the LDLY decomposition of matrix Q;', expanding (5.62) gives
n n 2
Zdi (ai - &z) + Z lji (aj e &]) S X2 (563)
i=1 j=itl
Equation (5.63) is just an algebraic development of (5.62). In Section 5.5.3 we will
continue this development, as the algorithm for the integer estimation is based on (5.63).
As mentioned above, the search can also be given a statistical interpretation: the sequen-
tial conditional adjustment. The term between the square brackets is the difference of a; and
Gijit1,... » and together with (5.20), (5.63) can be rewritten in
n ~
(@i — Gijit1,..., )2
> L] <2 (5.64)

=1 Qilitl,...,n

'What is a candidate? It is a grid point that is inside or on the ambiguity search ellipsoid; it satisfies
Eq. (5.62).
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see also Eq. (25) of Teunissen (1993). The conditional estimate @ii+1,...,n 1S the estimate for

a; conditioned at a; with j = ¢+ 1,... ,n. The conditional estimate for ambiguity ¢ thus
reads
n
@i(z'+1,...,n =a; — Z lji(aj - dj) (5~65)
Jj=t+1
Equation (5.65) clearly shows that conditioning on a; for j = i+1,... ,n affects the estimate

for a; due to the correlation between the ambiguities. Only in case there is no correlation,
L =1, we have

Qifiv1,....n = O; (5.66)

In the integer ambiguity estimation using the sequential conditional least-squares ad-
justment, the ambiguities a; are conditioned at integers. The variance of the conditional

estimator equals o2 dittm = =d;!, see (5.20).

5.5.3 Computation of the bounds

By means of a sequential conditional adjustment, the full ellipsoid will be searched for can-
didates for the vector of ambiguities. From (5.63) we can construct the following bounds for
ambiguity a;11; the ambiguities a, through a;;, are already conditioned, the ambiguities a;
through a, are not conditioned yet.

2
n
(@is1 — Gig1) + Z Liri(a; — &j)] <

L j=i+2 B
left,+1
2
2 n
3 all
- d | (@ — &) Zzﬂ a; —a;)|  (5.67)
dis1  digy 1=it2 j=i+1

~ 7

right,

Once ambiguity i+ 1 has been fixed to integer a;;;, we compute the bounds for ambiguity

(@i —a) + Y Li(a; —d;)| <

j=i+l

left

S = di |(ar — @) Z lia; —a5)|  (5.68)

l=i+1 F=i+1

ri;hti
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Equations (5.67) and (5.68) hold for 7 € [1,n — 1]. To show that the bounds can be
computed recursively, we split off the term [ = 7 + 1 from the summation on the right-hand
side of (5.68),

(ai — fl,) + z lji (aj — (AJ,])} <

j=i+1
left,
2
d;
l+1 Z dl al - al) + Z l]l - a]
di H'l H_11 i+2 j=i+1

- i

rzght

i+1

- [(aiﬂ — Gi41) + Z biiv (a; — dj)} b (5.69)

7

le];t:.+1

Recognizing on the right-hand side the terms right, ,, see (5.67) and left;,,, the equation can
be simplified to

2
N . ~ d;
(a; — @;) + Z Lii(a; — aj)] < d+1 (right; ., — left;,) (5.70)
J=i+1 — _
l;],’t, rz’ghti

This shows that, in the sequential conditional adjustment, the bounds for the ambiguities
n — 1 through 1 can be computed recursively. The recursion starts with the conditioning of
a, (substitution of i = n in (5.63)):

2
(an — @) < X (5.71)
N —— n
~—~——
left, right

The interval with valid integers for ambiguity a; follows now from elaboration on (5.70)

I(a: — &) Z Li(a; — a;)|| < v/right; (5.72)
j=i+1
or

—+/right; < (a; — @;) Z lLii(a; — a;) < +/right; (5.73)

j=i41

Equation (5.73) can be further developed into

—+/right; — Z Lii(a; — @) < a; — a; < +/right; — Z lii(a; — a;) (5.74)

Jj=i+1 J=i+l1
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and

&i RV Tighti - Z lji(aj — é]) S a; S &i + RV4 Tlghtl - Z lji(aj - é]) (575)

Jj=i+l F=i+1

This defines the interval for ambiguity i. It will be searched in a straightforward manner
from left to right, i.e. from the lower to the upper bound. Once a valid integer is found, the
adjustment proceeds with the next ambiguity a;_; (the so-called depth-first search). If for a
certain ambiguity a; no valid integers can be found, one returns to the previous ambiguity
ai+1 and takes the next valid integer for this ambiguity. Once an integer is encountered
that satisfies interval (5.75) for ambiguity a;, a full candidate vector is found. The search
terminates when all valid integers encountered, have been treated and one is back at the last
ambiguity a,. The full ellipsoid has been searched.

To summarize: the sequential adjustment starts with a conditioning on a, and ends with a
conditioning on a;. In this way the bounds for the ambiguities a,, through a; are constructed
in a recursive way. When the sequential adjustment is at ambiguity ¢, with the definition of
the conditional estimate (5.65), the interval (5.73) can be rewritten into

—/right; < (a; - @ijiv1,..n) < \/Tight; (5.76)

which shows that the interval for a; is centered at the conditional estimate Q4fiy1,... n- At this
moment the integer nearest to the conditional estimate, nint(d;;t1,..,), is the most likely
candidate for ambiguity i. From (5.64) it can be seen that the conditional variances play
a decisive role in the bounds for the ambiguities. The smaller the conditional variance, the
smaller the interval (5.75).

Since in the case of the original ambiguities, the conditional variances of the first three
ambiguities encountered in the search, are usually of a large order, the bounds for these first
three ambiguities will be rather loose. This implies that quite a number of integer triples
satisfy these bounds. For all these triples one has to compute the bounds for the fourth
ambiguity. The bounds for the fourth ambiguity, however, are very tight due to the steep
decrease in value of the conditional variances, and hence we have a high likelihood that no
integer is contained by them. The potential of halting is therefore significant when one goes
from the third to the fourth ambiguity in the search. As a consequence a large number of
incomplete candidates are generated, for which bounds have to computed, before one is able
to move on to the next ambiguity.

In case the search is performed on the original ambiguities a, they should be ordered
according to their conditional precision (Teunissen 1993):

o2 >,...,>02 (5.77)

ai2,.. .n =7 P T

The sequential adjustment should start with the most precise ambiguity.

5.5.4 Computation of the norm

In the previous section the full ellipsoid was searched and as a result we have available all
grid points that are inside the ellipsoid. One of them, the one which yields the minimum for
(5.6), is the integer least-squares estimate @.
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The squared norm t(a) = [|@ — a||? -, of a candidate can be computed by substitution of

a into (5.62). It can also be computed ‘from the bounds for ambiguity ¢, at the moment the
candidate is encountered in the search. The squared norm, the left-hand side of (5.63), can
be rewritten into (by respectively adding and subtracting x? and splitting off the first term)

t(a) = Zd" I:(ai — ;) + Z Lia; — &j)}

=1 j=it1
X2 1 n 2
= 2 . b — P . ..  — P .
=x"—d & d; Zdz |:(a, a;) + Z Li(a; a])]
. =2 j=i+1 !
rig;ztl
n 2
- {(01 — )+ lel(a]‘ - &j)jl } (5.78)
j=2
left,

The squared norm ¢(a) is less or equal to x?, as the grid point is on or inside the ellipsoid.

If, at level ¢ = 1, more than one candidate is available, the squared norm of successive
candidate vectors o’ can be computed very easily once the squared norm of one candidate a
has been computed already. This is because a} = a; for i = 2,... ,n and a} = a; + V (where
V can be chosen to be any integer). So now the squared norm becomes

t(a') = t(a) + d1{2V|(a1 — a1) + 2": Lir(a; — &;)] + V?} (5.79)
dist, =
lef,

5.6 Integer ambiguity estimation: setting the volume

In this section we will elaborate on how to control, prior to the search, the size of the
ambiguity search space. We will recognize the relation between the volume of the ellipsoid
and the number of candidates contained. By this relation, the straightforward search is an
effective instrument in solving the minimization problem (5.6).

5.6.1 The volume of the ellipsoidal region

The volume, expressed in [cycles™], of the ellipsoidal region (5.62) is given by

E, = X"V|QalVa (5.80)

see Apostol (1969). The volume function in (5.80) is

(5.81)
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valid integers

A

some valid integer
conditional estimate

estimate

lieft,

dist,

lef,
Jright, Jright,

Figure 5.5: The relation between some variables used in this chapter. An arrow pointing to
the right indicates a positive number, an arrow pointing to the left a negative number, and
a two-sided arrow indicates that the number is intrinsically positive.

where I' is the gamma function, defined as

[(z) = / e ‘" dt for z > 0 (5.82)
0

The volume function can be computed recursively for n > 3 by

2
with
Vi=2and Vo =7 (5.84)

For the determinant of the variance covariance matrix we have the following relations

n

Qal =[TN=11%,. . (5.85)
i=1

=1

where ); is the i-th eigenvalue of matrix ;. The volume E,, can thus easily be computed,
as the conditional variances are available from matrix D, see Eq. (5.20).

5.6.2 Setting x2, |

The volume E, turns out to be a good indicator for the number of candidates (grid points)
contained in the ellipsoid. A volume of E,, cycles” corresponds to approximately k = nint(E,)
candidates. The mismatch is caused by the discrete nature of the grid points. Centering the
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Figure 5.6: Number of candidates inside ellipsoid versus volume; left: single frequency phase
data, right: dual frequency phase data.

same ellipsoid at a different location, may result in a different number of candidates, &k € Z,
while the volume F, € R, remains unchanged.

The value x? can be taken such that a certain number of candidates will be inside the
ellipsoidal region. A straightforward search can then be performed to obtain the requested
number of candidates. A list with the best k candidates, possibly ordered after their norms,
can be set up and updated during the sequential adjustment. In this way the size of the
ellipsoid is controlled prior to the search. To some extent one can already infer the quality
of the integer estimator in advance.

Figure 5.6 concerns 10 experiments each with two epochs (sampling rate 1 second) of
single frequency data (left) and dual frequency phase data (right) to seven satellites on a 2.2
km baseline (with dual frequency this gives 12 ambiguities). The actual number of candidates
contained in the ambiguity search ellipsoid is given as function of the volume of the ellipsoid
[cycles'?]. The volume ranges from 1 to 100. The volume turns out to be a good indicator
for the actual number of candidates in the ambiguity search ellipsoid. The inset shows the
quotient of the number of candidates and the volume, i.e. the relative error of the volume as
a predictor for the number of candidates.

5.6.3 Setting X2, Il

Another method to set the value for x? such that at least two candidates are contained in
the ellipsoidal search space, was proposed in Teunissen et al. (1997), see also Teunissen et al.
(1996). Since the decorrelated ambiguities have such a high precision (typically some tenths
of a cycle), rounding to the nearest integer will produce a candidate with a norm close to the
minimum. So setting x? equal to the squared norm of this candidate will guarantee at least
one and most likely not more than a few candidates. Other candidates with small norms can
be found through rounding all ambiguities but one to their nearest integer, and one ambiguity
to the next-nearest integer. If we have n ambiguities, this will give us n more candidates
with likely small norms. Setting x? to the next-smallest squared norm, will guarantee now
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at least two candidates, and most likely not more than a few.
These n + 1 squared norms can be computed in an efficient way using again the LDLT
decomposition of Q;'. Re-arranging the first part of Eq. (5.78) gives

ta) =2 di [Z i (a5 — dj)] (5.86)
~Sae @87

(Note that €2 equals left;.) Eq. (5.79) showed an efficient way for computing the squared norm
t(a') for a candidate which differs V in the last ambiguity a; from a candidate with known
squared norm t(a). We will now generalize this for the case that an arbitrary ambiguity &k
differs V:

ay=a+cV (5.88)

with ¢ a vector with zeros on all positions with exception of position & which has the value

one:
= (0,0,...,1,0,0,... ,O)T 5.89
&7 ( ( )

k—1 n—k

The squared norm for the vector a; can be written as

k n
t(a,k) = Z di(ei + lk,'V)2 + Z die?
=1

i=k+1

k n
= Z di(e? + 2e,~lk,-V + l,z,V2) + Z d,-e?
i=1 i=k+1

k
= t(a) + Z di(2e,-lk,-V + li,Vz) (590)

i=1
Compare this result with that of Eq. (5.79). There we used (dist; + lef;) instead of e; since
these are available during the search process. The form shown here is more efficient when we

have only the LDLT decomposition of Q;", as is the case prior to the search.
We start by taking for a

a = (nint(ay), nint(as), . . . , nint(a,)) (5.91)

and once we have computed its squared norm t(a), we can compute very efficiently other n
likely small norms ¢(a ) with (5.90) by taking for V

V= 1 if nint(dk) —ar <0
- -1 if nint(&k) —ar >0

with k& from 1 to n. During the computation of the n+ 1 norms we keep track of the smallest
and next-smallest value. x? is set to the next-smallest value for the norm. The ellipsoid will
contain at least two candidates.
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Figure 5.7: Volume of the ambiguity search space containing at least k ‘near’ candidates;
left: transformed ellipsoid, right: original ellipsoid.

To illustrate this strategy, the following experiment was done: we computed the squared
norm belonging to the vector one gets when rounding all ambiguities to their nearest integer.
We also computed the n squared norms one gets when rounding all ambiguities but one to
the nearest integer: the remaining one is rounded to the next-nearest integer. With x2 set
to these norms, the volume of the ambiguity search ellipsoid was computed.

This was done for the same 10 dual frequency experiments for which the relation between
volume and number of candidates was demonstrated (see Figure 5.6). Per experiment the
volumes were sorted after increasing order, and plotted in Figure 5.7, i.e. the smallest volume
is plotted at k = 1, the second smallest at 2, etc. At left we plotted the results for the
transformed problem, at right those for the original problem. Looking at the experiments with
the transformed ambiguities, one can see that the next-smallest volume (which guarantees at
least two candidates) never exceeds the value of 10. This translates into a maximum number
of candidates of approximately 10 (see Figure 5.6).

For the original ambiguities the volumes are of the order 10°-10'?, which shows that no
acceptable volumes are obtained if the ambiguities are not decorrelated. Searching ellipsoids
with such large volumes would mean that we have to cope with an enormous number of
candidates.

For the case of the transformed ambiguities, we actually set x? to the next-smallest
squared norm. In Table 5.1 one can find the epoch numbers for the 10 experiments, the
resulting volume and the number of candidates inside the ellipsoid. This number is below 10
for all experiments.

The same was done for a 10.4 km baseline (measured simultaneously with the 2.2 km
baseline, observing the same 7 satellites; the baselines have one station in common). Al-
though here we find in some experiments up to 14 candidates, the procedure is still capable
to determine the two minimum candidates in an efficient way due to the almost lack of
correlation between the ambiguities.
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2.2 km 10.4 km
Epochs Volume Number of Volume Number of
candidates candidates
1 - 2 0.38 2 8.76 14
31 - 32 0.11 2 1.36 2
61 - 62 1.41 2 13.95 14
91 - 92 6.76 4 5.58 9
121 - 122 1.89 2 1.59 3
151 - 152 1.85 4 2.89 2
181 - 182 2.07 2 0.67 2
211 - 212 0.53 2 0.90 3
241 - 242 0.89 2 9.50 7
271 - 272 0.18 2 1.83 3

Table 9.1: Volume and number of candidates inside the ambiguity search ellipsoid, by setting
x? to the next-smallest squared norm.

5.6.4 Setting %2, Il

Although the method described in the previous section performs quite well, an even more
tight value for a x? such that at least k candidates are contained in the ellipsoidal search
space can be obtained.

This is done by setting x? to the norm of a candidate obtained by rounding the conditional
estimates to their nearest integer. Since the conditional estimates are more precise than their
unconditional counterparts, it is more hkely that a candidate will be obtained with a norm
close to its minimum.

To obtain other n small norms we proceed as in the previous section: all but one condi-
tional estimates are rounded to the nearest integer, and one is rounded to the next-nearest
integer.

The computational load is slightly higher than for the case where we round the esti-
mates, but still modest. Again best results are obtained when applying the procedure to the
decorrelated ambiguities.

The norm of a candidate can be computed as, see Eq. (5.78)

t(a) = x* — dyright,left, (5.92)
'The definition for left; reads, see Eq. (5.70)

left, = |a; —a; + Z Lii(aj — a )

F=i+1

= [ai - &i|i+1,...,n]2 (5.93)
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In our case we take for a; the nearest integer to G;ji41,.. » Which gives

n 2
lefti = [nint(d“i“,m,n) e &i + Z lj,'(aj — (Al])jl

j=i+l
n n 2
= [m’nt (fli - Z lj,-(aj - d])> - fL,‘ + Z lj,‘((lj - d])j| (594)
j=i+1 j=i+l
The definition for right; reads
right, = d;fl (right; ., — left,y) (5.95)

and can be computed recursively. The recursion starts with

2
right, = (5.96)
dn
and proceeds until the first level is reached. The norm is then computed using Eq. (5.92).
For x? an arbitrary value can be chosen.

The other n small norms where one of the conditional estimates is rounded to the next-
nearest integer, are computed analogously. We start with computing the norm t1(a) where
d1j2,..n (the last ambiguity, conditioned at all other ambiguities) is rounded to the next-
nearest integer, and end with the norm t,(a) where d, (the first ambiguity, which is not yet
conditioned at any ambiguity) is rounded to the next-nearest integer. We proceed in this
order since then for ¢;(a) we only have to compute left; and right; for i = j —1 to 1, since left;
and right; for i = n to j are not affected by the constraining of ;;41,... n to the new value.

5.7 Example ambiguity search

The search in the ambiguity ellipsoid will be illustrated using the original ambiguities a of
the three-dimensional example of Section 5.4. Next, in order to show what is gained by
the decorrelating transformation, also the search with the transformed ambiguities 2z will be
demonstrated. This section is concluded by comparing a search with original and transformed
ambiguities for a GPS baseline.

The (real valued) estimates for the ambiguities a are:

ay = 3.10 (5.97)
as = 2.97

The so-called search tree is depicted in Figure 5.8 at left, and should be read from left to
right. Per level, i.e. per ambiguity, the candidates encountered are represented by a node. A
full candidate vector, i.e. a grid point inside the ellipsoid, is found when a node on level a,
is connected with a node on level ay, which in turn is connected with a node on level as.

The search starts with ambiguity a3. The interval is centered at a3 = 2.97 and ranges
from 0.462 to 5.478. Valid integers for a3 are thus [1,2,3,4,5]. This interval is scanned from
left to right. Ambiguity as is conditioned at a3 = 1. Equation (5.75) applied to ambiguity



5.7 Example ambiguity search 167

1 2 3 4 5 3 zz 9 10 11
1231234123452345345  ay zz -5-6 -5 -4 -3-5-4
56 4567 a 2 223232

Figure 5.8: The search tree for the original problem (left) and for the transformed problem
(right).

Figure 5.9: The ellipsoid in 3-D and its perpendicular projection onto the 2-3 plane for the
original problem (left) and for the transformed problem (right).
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as, gives the integers [1,2,3]. After conditioning ambiguity a; = 1, it is not possible with
(5.75) applied to ambiguity a;, to find valid integers for ambiguity a;. Conditioning a, to
an integer will result in a grid point that is outside the ambiguity search ellipsoid, no matter
which integer is taken. We proceed with the second candidate for ambiguity a; = 2. For this
candidate we find the integer a; = 5. As we have reached level 1, we have found a full integer
vector, that satisfies (5.62), i.e. a grid point that is inside the ambiguity search ellipsoid. The
vector is (@, = 5,a2 = 2,a3 = 1), see also Figure 5.9. The process is continued until no
integers are left on any level. The search is terminated and six candidate vectors have been
found. The volume of this ambiguity search ellipsoid is E3 = 7.3 cycles®.
The (real valued) estimates for the ambiguities z are:

5 = 235
2, = —4.57 (5.98)
23 = 10.02

The search tree for the transformed problem is depicted in Figure 5.8 (right), the ambi-
guity search ellipsoid in Figure 5.9 (right). In comparing the tree on the left with the tree
on the right in Figure 5.8, it can be seen that the search in the transformed problem can be
performed much more efficiently. In the tree at left, there are 13 so-called ‘dead ends’, in the
tree at right only 3. For a dead end, computations have to be carried out (the bounds), that
do not result in a full candidate vector. The discontinuity in the signature of conditional
variances causes the so-called ‘halting’ of the search.

The solution, the integer least-squares estimate, is ¢ = (5,3,4). In the transformed
problem we obtain Z = (2, —5, 10). This solution has to be transformed by Z ~T and results
in exactly the same solution. The squared norm is t(a) = 0.218.

The differences between original and transformed ambiguities are even much larger for real
GPS examples. In Figure 5.10 we give the number of valid integers per ambiguity, encountered
during the full search. They are given for both the original and transformed ambiguities. The
data are from a 2.2 km baseline with dual frequency data to seven satellites. Two epochs of
data were taken, separated by one second.

For this baseline (three coordinate unknowns), observed for a short time span, three
conditional variances of the original ambiguities are very large and the remaining nine ones
are very small. From Figure 5.10 we see that at level ¢ = 10 (the third ambiguity in the
search) there are over 3.10° candidates. After having proceeded to ambiguity a; there are
only 2 full candidate vectors left, which implies that there are very many dead ends. The
volume of the ambiguity search ellipsoid is E;, = 2.8 cycles'?. By the transformation, the
signature of conditional variances is flattened, and so is the graph of the number of candidates
per level: the search on the transformed ambiguities can be performed very efficiently, there
are only a few dead ends left.

5.8 Alternative search procedures

5.8.1 Alternating search around the conditional estimate

In this and the following section, we will describe two other implementations, that are alter-
natives to the straightforward search.
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after transformation.

Instead of scanning the interval per ambiguity (5.75) from left to right for integers, one can
search in an alternating way around the conditional estimate. In the conditional estimation
we will start by conditioning ambiguity a; to integer nint(Ggiq1,.. ). Next, the second nearest,
third nearest, etc are tried. The candidates for a; are chosen in a sequence, that starts with
the one closest to the center of the interval (5.76) and goes alternatingly towards the bounds,
see Section 2.4 in Teunissen (1995b).

With this strategy one tries, in each step of the sequential conditioning, to stay as far as
possible from the borders of the ellipsoidal region (5.62).

When all candidates contained in the ellipsoid are required, this strategy has no benefit
over the straightforward search in which the candidates per interval are taken from ‘left to
right’. When used in connection with a shrinking strategy (see next section), and when only
one of a great number of candidates within the ellipsoid is required, the strategy of searching
alternatingly around the conditional estimate will have benefit.

5.8.2 Shrinking the ellipsoidal region

The best candidate, the grid point nearest to @, is the integer least-squares estimate for the
vector of ambiguities. As we are in principle interested in only this candidate, the search
can be designed to find it as quickly as possible. The sequential conditional estimation aims
in the first place at constructing a complete n-dimensional vector with integers that fulfills
(5.64), or in other words aims at finding a grid point that is inside the ellipsoid.

As soon as such a vector a is found, the corresponding squared norm ||& — a||? -1 is taken

as a new value for x2. We shrink the ellipsoidal region. The sequential conditional estimation
is then continued (not started over!) in this shrunken ellipsoid, see Section 5 of Teunissen
(1993). If one, possibly after repeated shrinking, fails to find a candidate in the ellipsoid, the
last found integer vector is the sought for integer least-squares estimate, @ = @, see Teunissen
(1995b).
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5.9 Efficient computation schemes for the three step procedure

Methods for computing the fixed solution can be divided in two groups: (i) those that need
explicit computation of the integer least-squares estimates @, and (ii) methods that do not.
This influences the way the decorrelating Z-transformation is computed. It is either computed
explicitly as Z or Z~T to be used for (5.104) or in (5.111), or implicitly, viz. as @, (or Niz)s
see (5.108) or (5.109).

Both methods start with the inversion of the (n; + n) Cholesky factor C of Eq. (5.17):

cit

-1 _
CT = criowet ot

(5.99)
The part for the ambiguities, C; !, is then used in the decorrelation step, which is carried
out, prior to the actual integer estimation.
The variance-covariance matrix of the fixed baseline coordinates 13|d can easily be obtained
in-place with the lower triangular matrix Cy 1 of dimension ny, see Eq. (5.17). For the
ambiguities absent case, we have:

E{y — Ad} = Byb (5.100)

with @ the integer least-squares estimate for the vector of ambiguities, and consequently @
equals C;TC;

The variance-covariance matrix of the float solution can also be efficiently computed using
the sub-matrices of C~!. As Q3, equals C~TC!:

Q; Q] _[CTCT + CyTCCTC Oyt =G TCreCT ! (5.101)
Qs @Qa] —-C.TC CuCy crer! '
matrix @;, can be written as
Qi =-C, TCLCTC! 5.102
béa b a

This matrix will be needed for the implicit computation schemes (see Section 5.9.2). Its trans-
pose, @,;, can be computed in-place using the sub-matrices of C~1; in this way —C;1C,Cyt
is replaced row-by-row by ;.

5.9.1 Explicit computation of d

The most efficient way, if one wants to have available the values of @ explicitly, is to compute
directly Z-T. The original integer ambiguities are then computed from the decorrelated
ambiguities as

a=2"Tz (5.103)

Starting from here, two routes are possible to obtain the fixed solution. First there is the
explicit computation by constraining the, now considered known, integer ambiguities:

b=b—Q;,Q:" (a—a) (5.104)

a
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The second method starts from the normal matrix system of (5.4) in which the ambiguities
are no longer unknown parameters. Substituting @ into the first n equations of (5.4), we get

Nyb = hy — Npolt (5.105)

Note that in the first scheme @);; needs to be stored, and Q;" has to be computed. In the
second scheme Ny, (part of the normal matrix for the float solution) has to be stored (before
computing the float solution), and furthermore either C, (baseline part of the Cholesky factor
of the normakmatrix), or @; has to be stored. The scheme depicted in Figure 5.11 is based
on (5.105).

5.9.2 Implicit computation of a

If we look at the complete system, i.e. the baseline coordinates and the ambiguities, the
following transformation is applied to the parameters by the Z-transformation:

[2] = [I ZT] [ZJ (5.106)

Applying this transformation to the variance-covariance matrix of (5.5) gives:
Q; @l ] [Qi, Qg»]
a = < 5.107
[ZTQ@,; 77Quz] T Qs Q: (5107
Using (5.103), Eq. (5.104) can now be rewritten as
b=1b-Q;Q:"(@—a)
QuZZ27'Q;' 27727 (a—a)
= b- Q5 (2 - 2) (5.108)

This shows that it is not necessary to explicitly compute matrix Z or its inverse. The fixed
solution is computed with the transformed ambiguities. The computation scheme based on
(5.108) is shown in Figure 5.12.

i
o
I

Intermezzo
As an alternative, one can operate upon N, instead of on Q;,. With (5.105) we obtain:

Nyb = hy — Nyt
=hy— NpuZ T2%a
= hy — Ny, 3 : (5.109)

End of intermezzo
Starting from Eq. (5.108) we can make a distinction between the following two cases:

1. np<n

In the normal case the number of ambiguity parameters is larger than the number of baseline
coordinates. Then, instead of transforming a matrix of unity to Z, it is more efficient to
transform Q;; directly to Q;,. This saves memory since Z becomes now superfluous. It also
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saves CPU time, since the column dimension of @Q;; equals the number of baseline coordi-
nates ny, whereas the column dimension of Z equals the number of ambiguities n. The row
dimension of both matrices is equal. Since the construction of Z, (or @;;) is essentially a
sequence of column manipulations, less operations are needed and CPU time will be saved.
CPU time is also saved because the matrix product @);;Z does not need to be evaluated
explicitly anymore. In this way, the decorrelating transformation is computed implicitly.

b=1b-Q;Q:' (2~ 2)
=b- Qi (LDLT)(2 - 2) (5.110)

2.y >n

If the number of non-ambiguity parameters is larger than the number of ambiguity parame-
ters, it is more efficient to compute Z explicitly and use it to transform @, into Q;;. The
fixed baseline coordinates are then computed as

b=b—-Q;,Q7' (2~ %)
=b—(Q;,Z2)(LDLT) (% — 2) (5.111)

Again we need to have stored Q;;.

5.10 Timing results

To show the performance of the alternatives proposed in the previous section, we applied
them to a number of different measurement scenarios. The following comparisons are made

1. Single baseline versus a 4-station Network
2. Dual frequency versus Single frequency
3. Phase-only versus Phase-and-code

4. Static versus Kinematic

In all experiments we used two epochs of data, while varying the observation time span (from
instantaneous to 300 seconds). As shown in Teunissen (1994) it is the time span that largely
influences the amount of correlation between the ambiguities, and therefore the CPU time
needed for their decorrelation. Enlarging the sampling rate has a much smaller effect. The
ambiguity search ellipsoid is characterized by its elongation and the ambiguity decorrelation
number, (ibid.).

The same 7 satellites, all with elevation above 10 degrees, were tracked in all experiments.
The weights for the phase observables were chosen to be equal (in meters) for both the L1
and the L2 frequency. When code observables were included, their weight relative to that of
the phase observable was set to 1/10000.

The measurements were made at Ypenburg in the Netherlands (¢ = 52° N, A = 4°24' E),
on May 5, 1994, between 20:00 and 20:05 (GPS time) using Trimble 4000 SSE receivers. The
length of the baseline used for the single baseline experiments (YP01-BRO01) is approximately
10.4 km, while the inter-station distances for the network experiments vary between 2.3 and
10.4 km.

Timing was done on a 486-66 MHz-PC under MS-DOS. The implementation was in
Fortran 77 using the Microsoft Power station compiler with maximum optimization applied.
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Figure 5.11: Explicit computation scheme for the GPS relative positioning float/fixed solu-
tion, via Eq. (5.105).
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Figure 5.13: CPU time in milliseconds for decorrelation, for a varying time span and two
epochs of data. Dual frequency, phase-only, static baseline.

5.10.1 Single baseline, dual frequency

In Figure 5.13 the two main schemes for computing the decorrelating transformation are
compared for the single static baseline using dual frequency phase measurements. The white
bars show the time for computing the Z~T-matrix, the superimposed hatched bars, the
time for directly transforming @;,. In this figure and in the ones that follow, CPU time is
only shown if indeed the correct integer ambiguities were found; so in this figure the one
second time span is left blank. The correctness of the integer estimation was checked using
a validated ground truth obtained with a time span of 15 minutes. The figure shows that by
enlarging the time span, the time needed for decorrelation of the ambiguities decreases. The
larger the time span, the more the receiver-satellite geometry changes. The original double
difference ambiguities are then less correlated. The figure also demonstrates that working
directly upon the, in this case 3-by-12 (Jp; matrix, takes less time than computing the full
12-by-12 Z-T-matrix. The time is approximately 20-25% less.

Figure 5.14 at left shows the results for the same experiments as in Figure 5.13, but now
for a roving receiver. Allowing one of the stations to be moving from epoch to epoch increases
the correlation between the ambiguities and therefore the CPU time needed for decorrelation.
Again we see the beneficial effect on the correlation of an enlarged time span. As we have
now a roving receiver, matrix Q;; has dimension 6-by-12, (there are 2 times 3 coordinates).
The reduction in CPU time as compared with computing Z~T explicitly, is therefore less
than for the static case (now about 15%).

In Figure 5.14 (right) the results of the same experiments are plotted, but now using also
code observations. The inclusion of the code observables has two effects on the correlation.
Firstly it lowers the absolute level, and secondly it removes to a large extent the effect of
enlarging the observation time span. As a consequence the CPU time for decorrelation is
almost equal for all experiments; enlarging the time span, only slightly decreases the CPU
time. The reduction of the CPU time when operating on Q;; instead of constructing Z—T
explicitly, is of the same order as without code, since the dimensions of Qj; did not change.
There is one exception, viz. for the instantaneous case (0 s). Then the dimension of Qs 1s
3-by-12. Here we see a reduction of the same order as we saw for the static scenario.
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Figure 5.14: CPU time in milliseconds for decorrelation, for a varying time span and two
epochs of data. Dual frequency, phase-only, kinematic baseline (left). Dual frequency, phase-
and-code, kinematic baseline (right).
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Figure 5.15: CPU time in milliseconds for decorrelation, for a varying time span and two
epochs of data. Dual frequency, phase-only, static network of 4 stations.

5.10.2 Network, dual frequency

Now we will show the results obtained for a small network of 4 stations. Experiments were
done in static as well as in kinematic mode. In the kinematic mode, 3 of the 4 stations were
allowed to be roving.

In Figure 5.15 the results for the static case are shown. With the 7 satellites tracked
on two frequencies, we have a total of 36 ambiguities, i.e. 3 times as much as for the single
baseline case. The time needed for decorrelation is roughly 15 times the time needed for one
baseline. The gain when using Q;, is larger than for the single baseline case (about 30%).

The network counterpart of the kinematic baseline, Figure 5.14, is given in Figure 5.16,
(left). A gain of approximately 20% is observed. Figure 5.16 (right), the dual frequency
phase and code case with roving receivers, can be compared to Figure 5.14. The average gain
using Q;, is equal to the one we saw in Figure 5.16 (left). Again the instantaneous case forms
an exception, for the same reason as given for the baseline case. The CPU time needed for
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Figure 5.16: CPU time in milliseconds for decorrelation, for a varying time span and two
epochs of data. Dual frequency, phase-only, kinematic network of 4 stations (left). Dual
frequency, phase-and-code, kinematic network of 4 stations (right).

decorrelation is almost equal for all experiments.

5.10.3 Single baseline, single frequency

In Figure 5.17 only observation time spans larger than or equal to 45 seconds are considered.
With single frequency phase observations on a 10.4 km baseline, it was not possible to obtain
the correct integer vector for shorter time spans. Comparison with F igure 5.13, the dual
frequency case, directly reveals that the CPU times are very little. In the single frequency case
there are only 6 ambiguities, whereas there are 12 in the dual frequency case. Furthermore,
the ambiguities, on the input, are less correlated in the single frequency than in the dual
frequency case, see Teunissen (1994). The average gain when using @, is about 15%.

Figure 5.17 (right) shows the case with single frequency phase and code for the kinematic
baseline. Here we see almost no gain since Z~7 and Q;; have the same dimension of 6-by-6.
The little improvement that can be seen stems from the fact that no initialization is needed
for the Z~T-matrix when working with Q- Note again that for the instantaneous case where
Qj; has dimension 3-by-6 there is on improvement of about 15%.

5.10.4 Overall procedure

To place the timing results in perspective, we will consider for all cases, the time needed for
the full procedure of parameter estimation for the implicit scheme, see Table 5.2.  We give
the experiment with the shortest and with the longest observation time span. The latter is
limited to 300 seconds.

The normal equations were taken as a point of departure. The column ‘Total CPU time’
is the time needed for computing the float solution, performing the decorrelation plus the
integer estimation, and computing the fixed solution. The two constituents of the second
step are also specified on an individual basis. For the dual frequency cases, the decorrelation
takes between 60% and 80% of the total time.
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Baseline, Dual frequency
L1L2 static 2 175 0.4 20.7|300 6.2 0.2 9.2 21-23
L1L2 kinematic 10 14.7 0.2 18.6(300 10.0 0.2 13.9]|13-16
L1L2P1P2 static 0 8.7 0.2 11.7{300 5.3 0.2 8.3

L1L2P1P2 kinematic 0 87 0.2 11.7|300 7.1 0.2 11.1|13-16

4-station Network, Dual frequency

L1L2 static 1 221.3 16.4 271.0(300 858 3.1 124.5|27-35
L1L2 kinematic 5 253.4 8.9 315.5|300 144.7 0.9 201.8| 20-23
L1L2P1P2 static 0 1344 1.8 170.6 {300 84.7 1.7 122.1
L1L2P1P2 kinematic 0 134.4 1.8 170.6 300 127.4 1.9 185.8| 19-21
Baseline, Single frequency
L1 static 45 1.2 0.1 19|30 07 01 24]|11-17
L1 kinematic 300 1.2 0.1 29
L1P1 static 0 1.0 01 23(30 07 01 19 7-15
L1P1 kinematic 0 1.0 01 23(300 08 01 26! 0-5

Table 5.2: CPU times in milliseconds for decorrelation of the ambiguities, integer estimation
and overall procedure. Reduction in CPU time when operating on Q;; instead of working on
zZ T,
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Figure 5.17: CPU time in milliseconds for decorrelation, for a varying time span and two
epochs of data. Single frequency, phase-only, 7 satellites tracked, static baseline (left). Single
frequency, phase-and-code, 7 satellites tracked, kinematic baseline (right).

5.10.5 Summary

The computation of the decorrelating transformation is by far the most time consuming task
in the computation of the float and fixed solution. This is however no drawback for the
LAMBDA method, since the CPU time gained in the integer estimation by decorrelating
the ambiguities, exceeds the time needed to compute it by orders of magnitude. For a dual
frequency phase and code kinematic baseline, the CPU time for the overall procedure is at the
10 ms level, and thus very fast anyway. Approximately 70% is taken by the decorrelation. The
time needed for the decorrelation of the ambiguities, depends on 1. the number of ambiguities
n, i.e. the dimension of the problem, and 2. the amount of correlation of the original double
difference ambiguities. Important factors that influence the amount of correlation are whether
or not code observations are included, whether we have a kinematic or a static setup, and
the observation time span.

When the number of ambiguity parameters is larger than the number of non-ambiguity
parameters, the ‘implicit’ scheme is more efficient; both in terms of CPU time as in terms
of the use of core memory. The latter seems trivial in a time where computer memory is
becoming abundant, but it will prove its usefulness when treating large networks, where the
number of ambiguities reach from hundreds to thousands. Using the implicit scheme, the
whole process of decorrelation, integer estimation and constraining the ambiguities can be
done in-place. For single baseline cases, the difference between the explicit and the implicit
computation is small.

For a dual frequency phase and code 4-station kinematic network (i.e. 3 roving receivers)
a fixed solution is computed in less than 0.2 seconds.
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Chapter 6

Ambiguity resolution at medium distances

6.1 Introduction

As a definition for medium distance we will use here the one given by Bock (1996). It can
be summarized as being the distance for which it is necessary to model the ionospheric and
tropospheric delays, and for which the broadcast ephemerides are not of sufficient quality
anymore. On the other hand, dual frequency ambiguity resolution with the ionosphere in
some way constrained, is still feasible, and reference frame errors are not yet dominant. This
definition limits the medium distance to somewhere between 10! and 10° km. For the lower
bound of the distance, with the good quality of the broadcast ephemerides nowadays, use of
precise ephemerides, or modeling of orbit parameters is not necessary. Ambiguity resolution
in medium distance networks is treated in e.g. Blewitt (1989), Dong and Bock (1989), Mervart
et al. (1994), Mervart (1995), Mervart et al. (1996).

The delays caused by the ionosphere play a key role. If one models the ionosphere as
slant delays, or equivalently uses the ionosphere-free combination, a function of ambiguities
is estimated, that is a rational number rather than an integer number. As pointed out in
Section 4.2.3 it can be converted to an integer valued function, but that would produce an
observable with a synthetic wavelength that is too small for successful integer resolution.

Constraining the ionospheric slant delays in some fashion, renders again integer estimable
L1 and L2 ambiguities (see Section 4.2.4).

In this chapter we will show results using two types of models for constraining the iono-
spheric delay. In the first model the delays are (hard) constrained to zero by simply omitting
them from the model (short baseline model). In Section 6.2 some results from the application
of this model will be given.

In the second model the ionospheric slant delays are stochastically constrained both in
an absolute and in a relative station sense.

As the software developed in the framework of this thesis is neither equipped for the
estimation of orbital parameters nor for estimation of constrained ionosphere parameters,
the LAMBDA method has been implemented in the GAMIT software of the Massachusetts
Institute of Technology/Scripps Institution of Oceanography. In Section 6.3 and 6.4 a short
description of the GAMIT software, and the current ambiguity resolution strategy employed
by it, will be given. In Section 6.5 the implementation of the LAMBDA method in GAMIT
will be treated, and in Section 6.6 some results will be shown of both the original and the
LAMBDA aided ambiguity resolution strategy for a network in California.

183



184 Ambiguity resolution at medium distances

6.2 The short baseline model

The simplest form of constraining the ionosphere is to omit the ionospheric delays from
the model, i.e., the constraints are that the ionospheric delays are zero. This is generally
referred to as the short baseline model, which is in widespread use for so-called ‘rapid static’
positioning. The generally accepted maximum distance for this type of application during
daytime, is 10 km or less for time spans up to 1 minute.

For distances longer than this, for some parts of the day, the ionospheric delays, and, more
important, the between-station differences of ionospheric delays, may still be small enough
to allow successful ambiguity resolution. However, the delays may be already of a size that
they bias the fixed solution.

As an example, we computed for a baseline of approximately 12.7 km in the Netherlands,
fixed solutions using dual frequency phase and code data of only one epoch. Using 50 minutes
worth of data, starting at 17:35:00 GPS time (18:35:11 local time) December 22, 1996, 3000
solutions were obtained. Trimble 4000 SSI receivers were used; the standard deviation for
the phase observables was set to 3 mm and the standard deviation for the code observables
to 30 cm. No attempt was made to estimate tropospheric zenith delays (due to the zero
length time span), but the hydrostatic delays were modeled using the mapping function of
Niell (1996) and the model for the hydrostatic zenith delay of Davis et al. (1985) with a
standard model for the atmosphere.

For all of the 3000 experiments, with an elevation cut-off of 10 degrees, 8 satellites were
observed, and the correct integer ambiguities were estimated. In Figure 6.1 at left, for North,
East, and Height, the relative frequency of the estimates for the increments to the a priori
coordinate values is given.

The histograms show a peculiar behaviour, which leads to the suspicion that the modeling
was not adequate. To remedy this, we computed the fixed solution using the same integer
ambiguities as estimated before, but now we included the ionospheric slant delays in the
model. Two types of models were used, one using dual frequency phase and code, and one
using dual frequency phase only (since the ambiguities are resolved, one epoch of data suffices
also for the latter model). In Figure 6.1 at right we plotted the histograms for the increments
using the extended models. The histograms in black are for the model with code included,
the histograms in grey are for the model without code. Comparing the histograms at left
with those at right, we see that the inclusion of the ionospheric slant delays in the model,
renders estimates that are approximately normal distributed (as they should be). In addition
it can be observed that the code observables do not contribute much to the fixed solution.

The a priori coordinates come from a solution that has an accuracy of few centimeters,
hence no conclusions should be drawn about the bias in the estimates. Furthermore, to
show most clearly the differenice between the models, the width of the bins is equal for
the increments referring to one coordinate for the different models, but they differ among
coordinates.

In Figure 6.2 for the model with dual frequency phase and modeling of the ionosphere,
histograms for the increments for the three coordinates using an equal bin width are given.
The empirical standard deviations for the baseline coordinates are oy = 5.0 mm, o = 2.8
mm, and oy = 7.6 mm.

About the distance and the circumstances for which ambiguity resolution using a zero .
constraint for the ionosphere is still feasible, remarkably little is known (SSG 1.157 1997).
The maximum distance will however inevitably depend on the ionospheric conditions, and
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Figure 6.1: Histograms (relative frequency) for the increments in North, East and Height for
the fixed solution of a 12.7 km baseline (3000 experiments). At left for the model without

ionospheric slant delays modeled, at right for the models with ionospheric slant delays.
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Figure 6.2: Histograms (relative frequency) for the increments in North, East and Height for
the fixed solution of a 12.7 km baseline (3000 experiments).

particularly on the between-station difference of the ionospheric delay. At night these differ-
ences are considerably smaller than during daytime.

To show how well during the nighttime ambiguities can be resolved, we computed every
30 seconds during one day (April 5 1998), the fixed solution for a baseline of approximately
56.5 km in Southern California between Pinyon (PIN1) and Temecula (BILL). We used only
one epoch of dual frequency code and phase data from two-Ashtech Z-XII3 receivers, with
the observables weighted as above. There is a considerable difference in height between
the two stations, the (WGS-84) ellipsoidal height for Pinyon is approximately 1256 meter,
and for Temecula 470 meter so that the meteorological circumstances and thus also the
tropospheric delays vary considerably for both stations. The hydrostatic tropospheric delays
were corrected a priori using Niell’s mapping function combined with Davis’ model for the
zenith delay. With an elevation cut-off of 7 degrees, between 5 and 10 satellites were observed,
viz. 5 satellites for 0.4% of the experiments, 6 (18.7%), 7 (29.9%), 8 (19.7%), 9 (25.9%), 10
(5.4%). The a priori coordinates came from a one day network solution computed with the
GAMIT software (see the next sections).

In Figure 6.3 the slant ionospheric delays at Pinyon, computed using dual frequency code
data with a common clock are depicted. The epochs refer to GPS time, local time is GPS
time minus 8 hours. The diurnal cycle can clearly be observed.

At each epoch between epoch 510 and 1466 (20:14:30 - 04:12:30 local time) ambiguity
resolution was successful. Outside this interval, except for some isolated epochs, the ambigu-
ity resolution failed. The interval of successful ambiguity resolution nicely corresponds with
the period at night with low ionospheric activity.

In Figure 6.4 the time series for the increments in North, East and Height are plotted for
the fixed solution. The dotted line represents the model of dual frequency phase and code,
without estimation of ionospheric slant delays, the solid line the model of dual frequency
phase only, with estimation of slant delays. The signatures of the time series for both models
show a different behaviour. Those originating from the model without ionospheric slant delays
show a stronger long term variation due to the unmodeled ionosphere, those originating from
the model with ionospheric slant delays show a short term variation, which is probably due
to phase multipath (Genrich and Bock 1992). In the height, a long term variation is visible,
caused by the unmodeled water vapor tropospheric delay.

In Figure 6.5 the increments for the model with ionospheric slant delays are grouped into
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Figure 6.5: Histograms (relative frequency) for the increments in North, East and Height for
the fixed solution of a 56.5 km baseline (957 experiments).

histograms. The empirical standard deviation and mean for the coordinates are: oy = 8.8
mm, meany = 1.2 mm, og = 6.3 mm, meang = 1.7 mm, oy = 25.0 mm, meany = 12
mm. Taking into account the distance of the baseline, the North and East components
are remarkably well estimated, coupling high precision to a very small bias. The height is
considerably less well established, which is mainly due to remaining tropospheric delays. One
has to bear in mind however that the difference in height between the two station is almost
800 meter.

6.3 The four-step bootstrapping procedure of GAMIT

The estimation process within GAMIT is based on the use of DD carrier phase and ionospheric
pseudo observables. To keep the size of the system of normal equations within bounds, as
soon as a new ambiguity parameter needs to be introduced for a certain receiver-satellite
combination, the present ambiguity parameter is eliminated (implicitly solved for). For time
spans of one day this will typically happen when a satellite rises again after it had set at an
earlier epoch. For the float solution this has no consequences, since eliminating a parameter
is equivalent to solve for it explicitly. For the fixed solution, however, it means that even
if one fixes all ‘explicit’ ambiguities, in the fixed solution still the ‘implicit’ ambiguities are
present. For a time span of a day the number of implicit ambiguities equals approximately
the number of explicit ambiguities.

Not all ambiguities are resolved together in GAMIT. First the wide lane (NLg — N11)
ambiguities are resolved, and then the narrow lane (Ny;) ambiguities. The procedure is de-
. scribed in Dong and Bock (1989), Feigl et al. (1993), and Bock (1996):

Step 1:

Using the ionosphere-free linear combination of carrier phase (LC), the geometric parame-
ters b, viz. baseline coordinates, tropospheric zenith delay parameters and orbital parameters
are estimated together with the LC ambiguities arc. To impose a reference frame, tight
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constraints are applied to the station coordinates and orbits r. The model reads

E{y(l)} = [A,, AaLC] [GEC] : D{y(1>} _ Q;U
E{y}=r ; D{y2} = Qy, (6.1)

[?Eii] (6.2)

arc

and results in

Step 2:

With all geometric parameters constrained to the values from step 1, the wide lane ambigu-
ities are resolved in a sequential way. This is done using the so-called ionospheric constraint
formulation, see Section 4.3. The inclusion of constraints for the ionospheric delays, by
introducing pseudo observables ensures the integer nature of the ambiguities.

For the pseudo observables a distance dependent variance-covariance matrix is chosen,
which constrains the ionosphere in both absolute and relative between-station sense (Schaffrin
and Bock 1988). ' ‘

For the pseudo observables of a single baseline #J, %, 1} and & constituting a single DD
observable, the variance-covariance matrix reads

TN

D{ 1 } = ﬂ2 coshd (63)
l% coslhé 0 1 0
l; 0 coslhzi 0 1

where (3 is a user defined constant, depending on the ionospheric activity, and § the arc length
between stations scaled such, that for baseline lengths up to 10,000 km it will never exceed
the value of In(1 + v/2) = 0.88 radians:

R n=nl oo In=ml

107 R R

with R the Earth’s radius in meters. The scaling is necessary since 1/ cosh has a point of
inflection at In(1 + v/2) which has no physical meaning for this application.
The variance of the DD ionospheric pseudo observable follows then as

1
6.5
cosh é ) (65)
i.e. the variance increases with increasing baseline length.
The two orthogonal linear combinations due to the transformation of Section 4.3, Eq. (4.63)
read

5 =In(1+ V) (6.4)

D{ljs} =48*(1 -

2 & — n D1
M2 —" 2 —"T
2, .2 v
m+ PR 2 By, (6.6)

- P, +
no(m + n2) ™ + 2 H T + 72
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The precision of the second linear combination is governed by the precision of the ionospheric
constraints, which is for the baseline lengths involved in the regional networks at least one
order less precise than the phase observables.

They result in the following functions of ambiguities

L ANy — n A2Npo

Te— T 2 — "
)
ANV + PV 6.7
mAm R (67)
which for the purpose of ambiguity resolution are rewritten as
A1 —mA
BN Ny~ =B p(Nip — Npg)
e —" e —"
AL + Ay M2
———Np + Ao(Npy — Ny 6.8
-+ 72 H m+ 2(Mz ) : (68)

to obtain wide lane type ambiguities.
One has to bear in mind however, that there is a difference with the case when one applies
the classic wide lane transformation of Section 4.3.2:

1
Tz[ b }@I (6.9)
fi—fe fi-fa

If we look at the synthetic wavelengths of the ambiguities in (6.8), we have

¢ cfz
v h T e )
o+ 13) cf? _ ,
RRFE D R+ e~ ) (6.10)
with

i 7 ~107em —ffcf N 3TT em (6.11)

AR+ ) et
RRFF R SR pmegp e (6.12)

In fact we have a mixture of wavelengths. The only thing that can be said about it (if we
want to hold on to the concept of wavelengths), is that the (N, — Ni,;) ambiguity in the first
linear combination (which is more precise than the second combination, since the precision of
the latter is governed by the less precise ionospheric pseudo observables) possesses a longer
wavelength than the Np; ambiguity.

With a,, = N2 — Np; and a, = Ny, the model reads

E{y® - 4V} = [A,, A,,] [Z’”} ; D{y?} = Q) (6.13)

which results in the float solution

~(2) Q Q
(2] &(2) s A(2)

; w G Gy 6.14
[&53’] [Q 0] Q&g) ] ( )

@Gy
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The subsequent integer estimation step reads
a2 ; Q0 = (6.15)

Step 3:

With the wide lane ambiguities constrained to the integer values from step 2, the narrow lane
ambiguities are estimated together with all geometric parameters from the ionosphere-free
linear combination. The station coordinates are constrained as in step 1. This solution is
followed by integer estimation of the narrow lane ambiguities.

Only the narrow lane ambiguities that have a successfully resolved wide lane counterpart,
are candidates to be resolved here. The remainder of the narrow lane ambiguities form
together with their unresolved wide lane counterparts again LC type of ambiguities.

With the LC linear combination as in Eq. (4.43) we have for the resulting ambiguity

Nic = (A2 Ni2 — "—)\INLI) (6.16)

22—
For the receiver-satellite combination for which we have a successful resolved wide lane am-
biguity it is rewritten as

e — 17 2 '“771 ™

f
= a(Mia = Nu) + g

The integer estimate for the wide lane ambiguity is inserted in Eq. (6.18), which results in
ambiguities with a wavelength of ~ 10.7 cm.
The model reads

] b
E{y® - Apdn} = [As A, [a ] ; D{yV} = QY

(6.18)

E{y}=r i D{ye} = Qu (6.19)
which results in the float solution
Bh3) ” .
[ZS"] ; [QQ”:) Q”:;i’] (6.20)
The subsequent integer estimation step reads
a® Qo = @n (6.21)

Step 4:

With the wide and narrow lane ambiguities fixed to the integer values from step 2 and 3,
the geometric parameters are estimated using the ionosphere-free linear combination. The
model reads

E{yV — Agy iy — Ag,@n} = Ash ; D{y®D} = QY (6.22)
which results in the eventual fixed solution
b Q; (6.23)
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Figure 6.6: In the area below the curve, the probability of making a type 1 error is less than
0.001 while the probability of making a type 2 error is minimized.

6.4 Ambiguity resolution in GAMIT

The strategy applied in the GAMIT software to resolve the ambiguities is described in Dong
and Bock (1989). It is primarily based on a sequence of roundings to the nearest integer.
The criterion for rounding is based on the Neyman-Pearson criterion. It yields

k< a (6.24)

with

\/5%,- \/§U&i

and a the level of significance. The complementary error function erfc(z) is defined for all
complex x by

. g [erfc (n — (a; — nz’nt(&i))> ~erfe (n + (@ — nint(di)))} (6.25)

2 T
erfe(z =1——/ e Vdt 6.26
@=1-2 (6.20

This criterion differs from the one in Dong and Bock (1989) by the use of the single sigma
value instead of the 5;, = 305, value.

In Figure 6.6 the region is depicted where the probability of making a type 1 error (i-e.
rounding an ambiguity to the wrong integer value) is less than o = 0.001 (level of significance,
see Section 3.9), and the probability of making a type 2 error (decision not to round to
the nearest integer, while in fact. it is the correct integer value (1 — v), see Section 3.9) is
minimized. The probability of ambiguities being rounded that are close to an integer but
have a large standard deviation, as well of those far from an integer value, but with a small
standard deviation, is decreased by the use of a so-called ‘taper’ function T. The taper
function currently used, differs from the one described in Dong and Bock (1989):

0 if ||@; — nint(a;)|| > 0.15 or o5, > 0.15,

T= b —nint(a)|\ 2
3 (1 - |“"‘(')“’l"; “")”) (0.15 — 0;,) otherwise

(6.27)
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Figure 6.7: Area (below the curve), where the ambiguities are rounded to their nearest integer
value.

The resulting decision function d is then
d(a; — nint(@;),04,) =T/k (6.28)

The ambiguity resolution takes place sequentially: for all ambiguities that have not been
resolved so far, the decision function (6.28) is computed. The ambiguity with the highest
value exceeding 1000 will be constrained to its rounded integer value. In Figure 6.7 the area
is depicted where the decision function is larger than 1000, and consequently rounding of
the real valued ambiguity is performed. As the figure shows, the decision function is hardly
anymore based on the Neyman-Pearson principle. The heuristic taper function dominates
the resolution criterion.

To constrain the value of the selected ambiguity, the vector of ambiguities and the
variance-covariance matrix generally have to be permuted such that this ambiguity is at
the last position. By constraining an ambiguity to the integer value found for it, the re-
mainder of the ambiguities and their variance-covariance matrix are updated. Instead of the
estimates of the ambiguities, we get then the conditional estimates of the ambiguities. The
vector of conditional estimates, and its variance-covariance matrix, after n — ¢ ambiguities
have been constrained, are denoted as

d|i+1,...,n ; Qé|,‘+1 n (6'29)

yore

After that, the decision function is again computed with now the conditional estimates and
their conditional standard deviation as input for it.

Despite its shortcomings, the procedure sketched here, has proved to work very satisfac-
tory, and ambiguities for a number of regional networks are resolved operationally at a daily
basis.

If no more ambiguities can be found that satisfy the criterion set for the decision function,
two other methods are tried. The first method is to use the Melbourne-Wiibbena (MW)
combination. It is only used in the case of wide lane ambiguities (step 2), and needs precise
pseudorange data to be successful. It is computed for one ambiguity only at a time, and
hence we are dealing here with the unconditional estimates. As in general not all ambiguities
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Figure 6.8: Conditional standard deviation of decorrelated MW wide lane ambiguities (solid
grey curve), and standard deviation (sorted in increasing order) of the original (dashed black
curve) and decorrelated (solid black curve) MW wide lane ambiguities.

are observed for the same time span, and some of them have been observed for only a very
short time span, estimation of the MW combination for all ambiguities together, followed by
a constraining of resolved ambiguities, might help the resolution of the ambiguities that were
observed for only a small time span.

In Figure 6.8 for the Californian network of Figure 4.6 plus one extra station, the standard
deviation of the original MW wide lane ambiguities as well as the standard deviation and
conditional standard deviation of the decorrelated wide lane ambiguities are plotted. Since
they come from a simulation study they are scaled by an unknown scale factor. The standard
deviations are sorted in increasing order.

The solution is for a period of 24 hours and hence the time spans that ambiguities are
observed, show a large variation. The plot shows that for this type of network the Z-
transformation also improves the standard deviation of the MW ambiguities, and that con-
ditioning the ambiguities in a sequential way gives an extra improvement. Although the
improvement is not as large as in the case where the modeling is done in terms of coordinates
instead of ranges, it still might be of help to resolve these ambiguities.

In the second strategy, a search is performed analogously to the one employed by the
LAMBDA method. For a small set of ambiguities (typically 5-10) the following minimization
problem is solved

min(a — a)’Q;'(6—a) acZ (6.30)



196 Ambiguity resolution at medium distances

6.5 LAMBDA implementation in GAMIT

The LAMBDA method was implemented in the four-step procedure. Besides the normal
bootstrapping strategy an alternative strategy was devised:

Standard Bootstrapping.

Instead of using the decision function, the MW combination, and search, the ambiguities are
resolved using the LAMBDA method. Since it was impossible to interfere too much in the
existing software, it was not possible to fix only a subset of the ambiguities. The LAMBDA
method is used to resolve both the wide lane (in step 2), and the narrow lane (in step 3)
ambiguities. This will be referred to as standard bootstrapping.

Alternative Bootstrapping.
All ambiguities (both wide and narrow lane) are resolved in step 2 using the LAMBDA
method. It will be referred to as alternative bootstrapping. Step 2 is replaced by:

~ oy
B - Ad0) = [ Aa] ] i D) = 0P (6:31)
which results in the float solution
~(2) Q Q
Qw . &21,2) awaS?) 6.32
I:dSLZ)] ) [Q&n&g) Q&g) } ( . )
The subsequent integer estimation step reads
~(2) Q Q o
G 5(2) o) Gy
; w Gwln ™ =5 | 6.33
ng)} [Qana,ﬁ?) Qe ] [an] (6:33)

And step 3 is omitted.

6.6 Results for a regional network

The use of the LAMBDA method within GAMIT has been tested on a one day data set
(day 260 of 1996) of a network in California, see Figure 6.9. The network consists of 21
permanent stations from the permanent GPS arrays SCIGN (Southern Californian Integrated
GPS Network), CORS (Continuously Operating Reference Stations) and BARD (Bay Area
Deformation Array), and occupies an area of roughly 250 by 800 km. It is tied to 4 stations
outside the Californian region to enable estimation of orbital parameters, and provide a
reference frame.

The ambiguities related to the baselines FARB-KOKB, ALGO-DRAO, ALGO-RCM5, and BRIB-
DRAO were kept floating.

Before we will analyze the performance of LAMBDA we will have a look at rounding
the ambiguities using the decision function strategy. In Figure 6.10 the conditional standard
deviation is plotted as function of the distance of the conditional estimate to the nearest
integer at time of fixing. The ambiguities that were allowed to be fixed according to the
decision function are marked by stars; at left the wide lane ambiguities are plotted, at right
the narrow lane ambiguities.
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Site ID (IGS) Name Site ID (IGS) Name
Algonquin, Canada BLYT Blythe
BRIB Briones CARR Carr Hill
CASA Mammoth Lakes CICE Ensenada
C0so China Lake CRFP Yucaipa
DHLG Durmid Hill Penticton, Canada
FARB Farallon Goldstone 2
HARV Harvest Platform Kokee Park, Hawaii
MATH Lake Mathews MONP Monument Peak
PBL1 Pt. Blunt PIN1 Pinyon Flat 1
PLO1 Pt. Loma PVEP Palos Verdes
Richmond, Florida SI03 Scripps 3
TIBB Tiburon TRAK Bommer Canyon
VNDP Vandenberg

Table 6.1: Names and site ID’s of the stations in the network used in the experiments, a grey
box indicates that the station is not in the California area.

FARB,

36

32F

Figure 6.9: Map of the network used in the

. . . 320

220

experiments,

depicted, at left in detail the California part is shown.

at right the whole network is
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Figure 6.10: Conditional standard deviation as function of the distance of the conditional
estimates to the nearest integer at time of fixing by the decision function (stars). The circles
refer to the ambiguities that could not be fixed (i.e. after 443 wide lane ambiguities and 440
narrow lane ambiguities, respectively were fixed). Left: wide lane ambiguities, right: narrow
lane ambiguities.

By definition, all data points marked by a star are inside the region plotted in Figure 6.7.
Of the 470 wide lane ambiguities 443 were allowed to be fixed; of the 443 narrow lane
ambiguities 440 could be fixed (27 narrow lane ambiguities were kept floating, since the wide
lane counterpart could not be fixed). The circles refer to the ambiguities that could not be
fixed, and hence they are conditioned on the 443 wide lane and 440 narrow lane ambiguities,
respectively that could be fixed.

Similar plots were made for the ambiguities that were resolved using the LAMBDA
method with the standard bootstrapping method. Recall that with the current implementa-
tion we can only resolve the whole set of ambiguities. In Figure 6.11 at left the conditional
standard deviation versus the distance of the conditional estimate to the estimated integer
value for it, (which was in all cases also the nearest integer) for the decorrelated wide lane am-
biguities is plotted. At first sight the results seem worse than those obtained by the decision
function approach (Figure 6.10), but we have to keep in mind that. here all 470 ambiguities
were fixed.

We see that there are five apparent outliers with a large conditional standard deviation.
A total of 460 ambiguities satisfy the criterion of having a decision function value greater
than 1000. So with the current criterion (which is a heuristic one that may or may not be
applied on the decorrelated ambiguities) 17 more functions of ambiguities could have been
fixed. This is of course only true if the ambiguities outside the ‘decision region’ were the last
ones to be fixed, which is not the case here. If the decision region were a little bit enlarged
however, i.e. if it would allow ambiguities to be fixed with a deviation from the nearest integer
of up to 0.17 cycles, all but five ambiguities (the ones related to the outliers in conditional
standard deviation) could be fixed, since these were the last ambiguities to be fixed.

Figure 6.11 at right shows the conditional standard deviation versus the conditional es-
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Figure 6.11: Conditional standard deviation as function of the distance of the conditional
estimate to the nearest integer at time of fixing for the decorrelated ambiguities. Left: wide
lane ambiguities, right: narrow lane ambiguities.

timate of the decorrelated narrow lane ambiguities. The plot is somewhat more erratic than
the one for the wide lanes, but again five apparent outliers are visible. If we again would
allow ambiguities to be fixed with a deviation to the nearest integer of up to 0.17 cycles, the
450 first resolved ambiguities would fall inside the region of the decision function. (Again we
have to be a little careful here, since in the preceding wide lane ambiguity resolution all 470
ambiguities were fixed, the results for the narrow lanes might change if only the 465 wide
lane ambiguities with a conditional standard deviation less than or equal to 0.17 cycles were
fixed.)

The size of the fractional parts of the (conditional) estimates and the size of the (condi-
tional) variance is decreased by two processes: 1. the decorrelating Z-transformation, and 2.
the conditioning forced by the sequential least-squares estimation.

Effect of the decorrelation on the unconditional estimates.

To show that the decorrelating Z-transformation also has an advantageous effect on the un-
conditional estimates, we made histograms of the fractional parts (i.e. the float value minus
its nearest integer value) of the estimates. Figure 6.12 shows the fractional parts for the orig-
inal ambiguities for both the wide lanes and the narrow lanes. In Figure 6.13 the fractional
parts of the decorrelated ambiguities for the wide and narrow lanes are shown.

For the decorrelated ambiguities, the nearest integer always turned out to be the integer
estimate. This demonstrates that instead of the search process a simple rounding scheme
could have been applied to the decorrelated ambiguities.

For the original ambiguities, the distance between the unconditional float estimate and
the integer estimate sometimes exceeds % cycle, see Figure 6.14.
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Figure 6.12: Histogram of the fractional parts of the unconditional estimates for the original
ambiguities. Left: wide lane ambiguities, right: narrow lane ambiguities.
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Figure 6.13: Histogram of the fractional parts of the unconditional estimates for the decor-
related ambiguities. Left: wide lane ambiguities, right: narrow lane ambiguities.

Effect of the conditioning on the estimates.
In Figure 6.15 histograms of the fractional parts of the conditional estimates of the decorre-
lated wide and the narrow lanes as estimated by the LAMBDA method are given.

If we compare the histograms of the fractional parts of the conditional estimates of the
decorrelated ambiguities in Figure 6.15 with the histograms of the fractional parts of the
unconditional estimates in Figure 6.13, an overall decrease in distance to the nearest integer
can be observed, due to the sequential conditioning.

Effect of the decorrelation on the conditional variances.

In Figure 6.16 the conditional variances for both the original and the decorrelated wide
lane ambiguities are plotted. The original ambiguities are ordered according to the order
in which they were fixed by the GAMIT decision function, the decorrelated ambiguities are
ordered according to order in which they were fixed using the LAMBDA method. Since only
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Figure 6.14: Histogram of the differences between the unconditional estimates and the in-
teger estimates for the original ambiguities. Left: wide lane ambiguities, right: narrow lane
ambiguities.
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Figure 6.15: Histogram of the fractional parts of the conditional estimates for the decorrelated
ambiguities as determined by the LAMBDA method. Left: wide lane ambiguities (470), right:
narrow lane ambiguities (470).
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Figure 6.16: Conditional variances of the wide lane ambiguities. Black curve: decorrelated
ambiguities in the order in which they were fixed by the LAMBDA method, grey curve:
original ambiguities in the order in which they were fixed by the GAMIT decision function
(443 ambiguities).

443 of the 470 ambiguities were fixed by the decision function, the curve for the original
ambiguities ends with ambiguity 27. The plot clearly shows that over all the decorrelation
renders ambiguities with smaller conditional variances than those of the original ambiguities.

Effect of the conditioning on the variances.

Figure 6.17 shows the effect the conditioning has on the variances. In the figure both the
variances and the conditional variances of the decorrelated wide lane ambiguities are plotted.
By definition, for ambiguity 470, the first ambiguity that is fixed, the variance equals the
conditional variance. Since it is the first ambiguity that is fixed, it cannot profit from the
conditioning of previous ambiguities. For the whole range of ambiguities that follow, the
conditional variances are smaller than their unconditional counterparts.

6.6.1 Comparison of the bootstrapping strategies

As we mentioned before, an alternative bootstrapping scheme was implemented. It aims at
performing the integer estimation for the whole set of ambiguities.

This alternative was not successful; the correlation between the decorrelated ambiguities
remains still rather high. This causes an enormous amount of incomplete integer vectors to
be generated, rendering the strategy extremely inefficient.

An indication for the correlation that is still present after the Z-transformation is the
size of the ambiguity decorrelation number r;. In Table 6.2 these numbers are given for both
strategies, for the original as well as the decorrelated ambiguities. The ambiguity decorre-
lation number ranges between 0 (full correlation causing singularity) and 1 (no correlation);
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Figure 6.17: Variances and conditional variances of the decorrelated wide lane ambiguities.
Black curve: conditional variances, grey curve: variances.

we strive for low correlation.

We see that the Z-transformation succeeds in decreasing the correlation, but that the
remaining correlation for the alternative strategy is still quite high. We have to be a little bit
careful with comparing the decorrelation numbers, since they depend also on the number of
ambiguities n. Looking at the definition of the ambiguity decorrelation number (Egs. (5.54—
5.55)), we can define the average logarithmic ratio of the conditional and the unconditional
standard deviation as

1 Taijis1,... n
" Z 10310(*%) = logyo({/7a) (6.34)
i=1 @i

which is independent of the number of ambiguities. As can be seen in Table 6.2, for all
ambiguities together this measure is larger than for the wide lane or narrow lanes.

The signature of conditional variances is also an indication for the efficiency of the search
process. This signature should preferably be flat, without large discontinuities; if not flat, the
values of the conditional variances should be increasing when going through the search process
from n to 1. In Figure 6.18 we have plotted the conditional variances of the decorrelated wide
lanes using the standard bootstrapping strategy, together with the conditional variances for
all decorrelated ambiguities using the alternative strategy. Although not entirely without
discontinuities, the values of the conditional variances for the decorrelated wide lanes are
reasonably constant at the beginning, and increase at the end. This increase is probably due
to the fact that some of the ambiguities are only observed for a very small time span.

The signature of conditional variances for the alternative strategy on the other hand, has
a larger variation at start, and makes a rather large jump to a minimum at approximately
ambiguity 440. This seems to cause that ‘halting’ starts to occur approximately at this level.
Inspection of some intermediate results confirms this. In fact, even after hours (!) of CPU
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Normal bootstrapping Alternative bootstrapping
Wide lane Narrow lane Wide and narrow lane

l0g10(Ta -176.2 -235.0 -507.9
logyq (7)™ 728 -82.4 9324
logyo(r:)™*) n/a n/a 2115
logo(/Te) -0.375 -0.500 ~0.540
logy(/72)™ -0.155 0.175 _0.247
logyq( ¢/r2)*) n/a n/a -0.225

Table 6.2: Some diagnostic quantities from the ambiguity resolution for the three alternative
bootstrapping strategies. *): no a priori ordering of the original ambiguities, **): original
ambiguities a priori ordered according to decreasing value of variance.

time, still not one complete integer vector was found. For the wide lanes only case, the search
rendered two complete integer vectors in less than 1 second CPU time (HP-UX 9000/735).

The reason that the decorrelated ambiguities are still so much correlated must lie in the
fact that the ionospheric constraints are rather loose. In the limiting case, with constraints
with an infinitesimal small weight, there is full correlation between the wide lane and the
narrow lane ambiguities.

We also investigated whether the a priori order of the ambiguities has an influence on the
ability to decorrelate the ambiguities. Much to our surprise, since it was never observed for
the short baseline model where we usually have some tens of ambiguities, this was the case. A
priori ordering the original ambiguities according to decreasing value of variance, resulted in a
less correlated set of ambiguities after decorrelation. The ambiguity decorrelation number for
the decorrelated ambiguities decreased from 232.4 to 211.5. In Figure 6.19 the signatures of
the conditional variances resulting from a decorrelation upon the ambiguities in the original
order, and those resulting from a decorrelation upon the sorted ambiguities is depicted.
Since the decorrelating process consists of a repeatedly treating of two ambiguities at a
time, a global optimization with respect to decorrelation is not guaranteed. At least for this
example, the a priori ordering of the ambiguities, helped to lower the decorrelation.
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Figure 6.18: Conditional variances of the decorrelated wide lane ambiguities (black curve),
and of the decorrelated wide and narrow lane ambiguities together (alternative bootstrapping,
grey curve).
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Figure 6.19: Conditional variances of the decorrelated wide and narrow lane ambiguities
together (alternative bootstrapping). Black curve: original ambiguities a priori ordered ac-
cording to decreasing value of variance, grey curve: original ordering.
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6.7 Concluding remarks

Although the ambiguities are most correlated when the observation time span is very short,
even for a time span of one day applied for the daily solution of permanent GPS arrays, a
decorrelation of the ambiguities has a significant effect. The decorrelation makes it possible
to apply techniques developed in the context of rapid static surveying to these networks,
thereby effectively removing the artificial border between both applications.

On the other hand, rapid static surveying applications could benefit from techniques
developed for the regional networks. Especially methods to constrain the ionospheric de-
lays might enable the enlargement of the distance for which using a very short time span,
ambiguity resolution is successful.

Due to the hybrid character of the regional networks with ambiguities observed for time
spans that may differ considerably, there is clearly a need to enable the determination of a
subset of the ambiguities which can be fixed with sufficient reliability. Validation techniques
for the integer estimates (which we did not treat in this thesis) that are developed for the
rapid static applications might also be applied to the network case.

Thus, for the rapid static application, the challenge lies in extending the distance while
maintaining the short time spans. For the regional networks the challenge lies in reducing
the time span while maintaining the large distances involved in it. Eventually then the rapid
static surveying and the regional network application may be merged into one general method
for ambiguity resolution based on the same theory and techniques.
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Appendix A
GPSVEQ

Most of the ideas and concept in this thesis have been implemented in the GPS network pro-
cessing software GPSVEQ. It is based on using the original GPS phase and code observable
types, instead of forming differences between observables and forming linear combinations
of observable types. It has been in use as a research tool since 1994, and the results in the
majority of the papers on the LAMBDA method for ambiguity resolution were computed
using it. In principle any set of observable types may be used as long as the chosen model
allows its use.

Parameters that may be estimated are 1. station coordinates, 2. hydrostatic and/or wet
tropospheric zenith delays, 3. ambiguities, 4. receiver and satellite clocks, 5. ionospheric
slant delays.

Station coordinates, tropospheric zenith delays and ambiguities may be defined for a part
of the total time span. In practice this means that one or more of the stations may be moving,
that zenith delays may be estimated that are valid for only a part of the total time span, and
that cycle slips are neutralized by introducing a new ambiguity parameter. Since all these
global parameters are estimated in one batch the amount of memory available at a particular
computer limits the number of parameters. The program is at the first place developed with
static applications in mind, but for research purposes small kinematic networks have been
computed with it.

Again for research purposes the data may be divided in multiple time spans, where for
each of these time spans a separate adjustment may be performed. The solution may be
iterated for non-linearity. For static solutions this is usually not needed, but for kinematic
solutions using only phase data and a small time span, it was found to be necessary.

When by testing an outlier or cycle slip is found, the model may be adapted (i.e. removing
an observation, or inserting an extra ambiguity parameter), after which a new adjustment
may be performed. In this way the removal of outliers and cycle slips is automated.

After the float solution ambiguities may be resolved. The fixed solution may be computed
using the same model as for the float solution (but with the ambiguities constrained to
integers), or an extended model may be used (e.g. one where ionospheric slant delays are
estimated). In that case, another do-while loop is inserted after the fixed solution for an
adjustment using the extended model (see Figure A.1 where the main structure of GPSveQ
in stylized MATLAB notation can be found).
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GPSVEQ

for i = 1 : number of time spans
do
for j = 1 : number of iterations
for k = 1 : number epochs
eliminate the local parameters
update system of normal equations
end
compute the global parameters
for k¥ = 1 : number of epochs
compute the local parameters
if j=number of iterations then
compute the one-dimensional test statistics
update e7Q,'é
end
end
end
Do the testing, and if necessary adapt the model
while OMT is rejected
ambiguity resolution
fixed solution
end

Figure A.1: Main structure of GPSVEQ.



Appendix B

rS(t), 75(t), and #5(¢) in ECEF WGS-84

Corrected mean motion, Time from epoch, and Mean anomaly:

_ K
n= Z‘g-{-A’n
te =1t — e
My, = My + nty,

Eccentric anomaly:

Ey = M + esin Ey (solved by iteration)

n
Er=-—r—
k 1 —ecos E;

True anomaly:

V1 —e?sin E,

Vv, = arctan

cosE, —e
. \Y4 1- €2Ek
Yk = 1 —ecosE;
. _ —2eV1—e%sinEy -,

(1 — ecos Ex)?
Argument of latitude:
Or = U +w
Argument of latitude correction:

duy = Cys8in 2 + Cye cOS 20

Sug = 2 7 (Cys €08 265 — Clye 5in 2¢)

Sup = —4572(Cys 8in 2¢y, + Cye €O 260 ) + 20 (Cys cos 2¢ — Cyesin 2¢)
Radius correction:

01k = Crssin 2¢h + Cy. cos 2¢;

b7 = 2 0k(Crs c05 21 — Chesin 26)

ory = —472(Crs 8in 20 + Cre c0s 2¢4) + 20 (Cys c08 2 — Chesin 2¢)
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212 r5(t), #5(t), and #(t) in ECEF WGS-84

Inclination correction:

01y = Cjssin 2¢y + C. cos 2¢,
bix = 2 Uk (Cis cos 2y — Cicsin 26y
Six = — 402 (Ciq sin 2¢% + Cic c0s 2¢) + 20 (Cis cos 2 — Cic sin 26 (B.7)

Corrected argument of latitude:

up = @ + dug
Uy = U + Suk
fip = Ug + Ouy (B.8)

Corrected radius:

rr = A(1 — ecos Eg) + 01
’f‘k = Ae Ek sin Ek + 51"k
. Ae(cos E}, —e)

= EX+4 B.9
T (1 — e cos Ey) kO (B-9)

Corrected inclination:

T = 10 + tgottx + Otk
’ik = 4ot + Sik
i = Oix (B.10)

Satellite position in orbital plane:

| cos u |
| vk | k1 sinug ]
r -1 7 9 .
T . | cosug .| —sinug
f =T . + Tk Uk
A sin uy COS Uy
r et | B .
I cos U, . —sinu
k w . 2 k .. . k
.. = (g — TR . + (27,0 + TRU B.11
Ly;c i ( k k k) L Sin Ug ] ( K%k k k) COS Uy, ( )

Corrected longitude of ascending node:

Qr =Qo + (Q — Qe)tk — Qetoe
Q=0-Q, (B.12)
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Rotation matrix from orbital plane to ECEF:

[ cosQ  — cos i sin O

Ry = | sin),  cosi;cos
| O sin 1
[ —QsinQ  —§ cos iy, cos Q. + o sin i sin
Ry =| QcosQ —8 cosiysin Qg — 2 sin ix cos O
| 0 ik COos ik
[ —Q%cos (0% +4}) cos iy sin Q + 26,82 sin i, cos QU + i sin ix sin O
Ry = | —Q%sinQ  —(02 +12) cos iy cos Qi + 24,82 sin i sin O — 3 sin iy, cos Qi
i 0 —12 sin i, + 1, COS iy
(B.13)

Satellite position in ECEF coordinates:

Tk z
r@) = | w =Rk[ 5‘]
| 2 |

. -

Tk . z i
@) = | % Rk[ f“J-FRk[yZ}

| 2]6 | yk
T (t) =]t | =R y! + 27 7! + Ry i (B.14)
% k k k

To obtain the satellite position in ECI coordinates, the corrected longitude of the ascending
node and its derivative (Eq. (B.12)) are replaced by

Qe = Qo + Qe
Q=0 (B.15)






Appendix C

Inverting dr'd

For the inverse of matrix

N= [”“ 2 ] (C.1)
Nig1  Ta2
yields
_ -1 _ _ —1
Nl = ("11 - ”51"221"21) . —nyng, ("22 - n21n111fl1§1) (C.2)
—T5y Ny (nn - n?ln;;nzl) (Tl22 - nzmﬁlnrﬂ)
where
_ _ 13T _ _ _
[_”111"%"1(”22 - n21"111n2:>rl) 1} = —n221n21(n11 - ”2Tln221n21) ! (C.3)
With
N - mIr—I —Lir—1m (C 4)
—Lmpr-1 TIm

where E), ; stands for a p by ¢ matrix filled with 1’s, and I, for the matrix of unity of dimension
p, we evaluate

(P11 — nflnizlnzl)‘l (C.5)
as
1 -1
(mIr—l - ;Er—l,mImEm,r—l) (C6)
which using E,, ;E,,, , = mE, transforms into:
m 1 1 1
r—1— —Lr- =—(Ir-1 — ~Er_ .
(mI 1 ’I‘E 1) m(I 1 r 1) (C 7)
Using the matrix lemma 2.3.3 from Golub and Van Loan (1989) at page 59
(IT—-A=I+> AFif |4 <1 (C.8)
k=1

where ||.|| is a norm satisfying the sub-multiplicative property like e.g. the Frobenius norm:

lAllF =
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and

_ 1
(B)t =¢"'E, ; ||—E.,||F=§ (C.10)
we find

1 o1 — 1 -
(mIr—l - ;Er—l,mImEm,r—l) = _’I’;L- (Ir—l + Z T_k (1” - 1)k ! Er—l)

k=1
1 1 S /r-1\*
=E(I,_1+ _12( - ) E,_l)
k=1
1 1 ® /r—1\*
= {I_;+— - - 11
m(1,1+ — ;( - ) 1)E 1> (C.11)
With
ia}k= 1 -l1<z<1 (C.12)
l1—2z

we eventually obtain

1 - 1
(mIr—l - "Er—l,mImEm,r—l) == (Ir—l +
T m

r—

1
1 ('I" - 1) E,-_l)
=~ (1 + Ben) (C.13)

Another way to obtain this result is to recognize that this is a so-called combinatorial matrix
(Knuth 1973), page 36. Such a p x p matrix is defined as

aij =y + (5,']'(1} (014)
and its inverse is given by
—y + 8i;(z + py)
bi; = C.15
o z(z + py) (C-15)

Analogously we find for

1
Im - _'Em,r—II —lEr—l,m)—1
m

(r
-1
e
r rm
1
T

(1,,, 41 - 1Em) (C.16)

(g2 — naniyng;) ™

Now we can easily determine

- - _ 1
—n221n21(n11 - nglnnlngl) 1= ;'T—nImEm,r_l (Ir_1 + E,-_l) (017) ’

1
- _Em,r—l
m
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and
- _ _ 1
_nlllngl(n22 - n21n111ng1) l= EET—I,m (C.18)
Putting everything together eventually leads to
-1
mIr—l “Lr—1m _ % (Ir——l + Er—l) % r—1,m
~Bmr1 rln ] - [ LEmrt  (Im+ 2 En) (C.19)
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Appendix D

Computation of HA2 and Q_leQ

D.1 No estimation of ionosphere, distinct clocks for each observable type

d; _ Q;ll .
_ d -
Ay = ’ . Q7 = “ .. ‘ (D.1)
d, Q)
4 Q' ds ]

‘ZzTQ;;dz

A7Q7'A, = (D.2)

(7)™ 1
dfQ71dy)”
(AIQ'4,) ™" = (595 (D.3)

Hgl
H_
Hy, = o : (D.4)
H,;q
b
P_
P, = . (D.5)
£y, |
P
P
Pi = v (D.6)
P} |
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220 Computation of Hj, and Q‘lei-2

Qy_llp;; Q 1pl
~1pJ
Q7'Pt = vk (D.7)

-1pl
Yq © dg
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D.2 No estimation of ionosphere, common clocks
d vy
- Wsa
A= ];Q "= . ®Q;" (D.8)
d w,
AQ7 Ay = indQ;'d (D.9)
_ _ = 1 _
(AZQ14;)™" = o (dQ, d)~" (D.10)
1
1
Hj, = o [wiH; woHy -+ woHy] (D.11)
1
w); We Wy
1 |wy w
Pi,=—|. 1 ®P; (D.12)
Myt o :
w; wWe Wyq
w wy - Wy M—w —wy e =W
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Pt=—1|. 7 . 'lePt+ v ‘ (D.13)
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wi wiwy - wiw,
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_w.2w1 w2(ul._ w) it (D.14)

—Waw; —wewy - we(p — W)



222 Computation of Hy, and Q™' P{
D.3 Estimation of ionosphere, distinct clocks for each observable type

B ml w1
_ d I
B=" "lier=| . e (D.15)
d n,l Wy
wydTQy'd warpd” Q!
ATQ 1A, = _ ; D.16
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pz — Wi ~mw2nz2 Tt T ThWelg
Pi = 1 “772?171771 H3 — WaTpy —TRWqTlq ® P; (D.22)

2
3 :
—TqWith  —NgWale H3 — qu3
wi(ps ~win})  —wimweny - — W1 WeTlq
_ 1 — WM W1 w2(/i3 - w27l2) —WaTWqT), -

Q7Ps, = o . g e (D23)

—WyTlgW1 —WqTgWall2 wq(u3 — wen?)



224 Computation of Hz, and Q"' Py

D.4 Estimation of ionosphere, common clocks

d: mi Wy
- d mol w
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