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CHAPTER 1.

INTRODUCTION

In the photogrammetric practice there is a need to automatize acquisition of topographic
information from aerial photographs. However, especially tasks involving interpretation
capabilities of human operators are hard to automate. Digital photogrammetry can benefit from
experiences with knowledge-based concepts in computer vision. Within this field our goal is to

investigate the potential of knowledge-based image processing techniques for interpretation of
aerial images for the purpose of updating road maps. Concepts are concretized and tested on a

case handling the extraction of new roads linked to existing motorways in large-scale aerial
photographs. In the first chapter the demand for automation of photogrammetric processing is

discussed as well as complications when using traditional image processing techniques for this
task. As a result the need for knowledge-based concepts becomes clear'

1.1 WHY PHOTOGRAMMETRY NEEDS COMPUTER VISION

Developments in photogrammetry have always been closely related with developments in other
fields of science and technology, as was pointed out by several authors, [e.g. Schenk 1988,
Torlegird 19881. Progress in cartography and computer science accelerated and increased the
interest in the current transition from analytical to digital photogrammetry. Relevant changes in
cartography will be discussed first, followed by their consequences for photogrammetry, which
will lead to reasons why new techniques in computer science need to be investigated.

In modern map production a shift took place from maps stored in analogue form on paper or
film to digital databases containing topographic information. Digital topographic databases are
an essential part of Geographic Information Systems (GIS). GIS supports the integration of
topographic information with other types of information, like administrative and thematic.
Besides it provides a number of sophisticated software tools, for instance for analysis and pre-
sentation of spatial data. This makes GIS into a powerful instrument for the purpose of
planning, monitoring tasks and management. Moreover it makes new technological develop-
ments possible like in-car navigation, where a car is equipped with a small computer which
plans and displays the route to a certain destination by using digital maps and other information
like locations of traffic-jams. Because of these advantages of GIS compared to paper maps,
there is a wider use of topographic information and therefore a larger demand.

However, to be effective, GIS is dependent on accurate and up-to-data input data. This does not
only apply for information users add themselves, but also for topographic information. The next
examples will make this clear:
- If a traffic accident happens on a newly constructed road, the service that registers these

accidents will need up-to-date road databases.
- Drivers who use in-car navigation will demand new roads to be included in their route-

planning as soon as possible.
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- Public utilities will need newly constructed houses
base when they deliver and map their services.

These are reasons why users strongly ask a more
information.

to be present in their topographic data-

frequent updating cycle of topographic

Photogrammetry established itself during this century as an efficient surveying and mapping
method. High-quality and up-to-date topographic information can be extracted from aerial
photographs. However, photogrammetric processing forms the bottleneck in speeding up the
topographic information supply. Especially measuring three dimensional coordinates by outlining
manually every object in the photograph is very labour-intensive and time-consuming. There-
fore, further automation of photogrammetric processing is highly desirable.

One approach for automation is to consider every task in the photogrammetric processing chain
and try to automate each of them [Heipke, 1993]. An extended overview of the state-of-the-art
of automation of photogrammetric tasks is given in appendix A. Summarizing, geometric tasks,
such as aerial triangulation and orientation, can at present nearly be solved automatically by
transferring experience from analytical to digital photogrammetry. However, tasks involving
interpretation capabilities of human operators are very difficult to solve by computers. In
particular interpretation tasks are very labour-intensive and time-consuming tasks in the mapping
process. In this thesis the notion "interpretation" refers to determination of the location and
outlining of objects in the image as well as recognition and classification of topographic objects.
Even unexperienced people can immediately recognize for example most roads and houses in
aerial images, but nobody can tell exactly how they did it. People unconsciously rely on knowl-
edge about properties of objects and their appearance in the aerial image. In order to perform
this task by computer this knowledge should be formulated exactly, together with techniques to
measure them in the image, since for a computer a digital image is only an array with numbers,
representing grey values.

A current development is to skip the mapping process and to integrate up-to-date image data
directly in GIS [Ehlers et al. 1989, Fritsch l99l]. In this way the user immediately possesses
new image data. Old GlS-information can be compared with the new situation and if necessary
updated by the user himself. As a result of the growing awareness that up-to-date imagery offers
good prospects for GIS to be more effective, many commercial GIS products have been adapted
to offer image display capabilities and some tools for image analysis [e.g. Laan 1991]. Thanks
to these possibilities for integration of GIS and image data another approach for automation of
photogrammetric processing became feasible: utilization of information from GIS to improve the
automatic extraction of new information from the image data for GlS-updating. Various research
shows that ancillary geographic information can improve satellite image classification for
thematic mapping, like land cover classification [e.g. Wilkinson/Burril 1991, Janssen 1994].
Also topographic mapping can benefit from GIS information [Cleynenbreugel et al., l99l]. It
seems to be a promising approach to solve the very hard task of interpretation by computers.

Interpretation of digital images in general is the subject of computer vision. A definition of this
discipline given is by Haralick and Shapiro ll992al:
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Computer vision is the science that develops the theoretical and algorithmic basis by
which useful information about the world can be autonatically extracted and analysed

from an observed image, image set, or image sequence from computations made by
special-purpose or general-purpose computers.

It includes techniques from many disciplines which can also be useful by themselves, like
digital image processing, statistical pattern recognition, and artificial intelligence. Applications
can be found in many areas like medicine, biology, robotics and remote sensing.
Photogrammetry can highly benefit from experiences with image interpretation in other fields.
For example:
- Image processing techniques suitable for tracking blood vessels in the medical domain can

probably also be used for tracking roads.
- Artificial intelligence techniques to order and control processing steps and represent

properties of objects will certainly be valuable when building systems for interpretation of
aerial images.

Summarizing, the increasing need for up-to-date topographic information in GIS requires faster
photogrammetric processing. Since especially the interpretation task is hard to automate, similar
experiences in computer vision with this problem can help to find solutions for digital
photogrammetry.

CONTRIBUTION OF COMPUTER VISION TO AERIAL IMAGE INTERPRETA.
TION

Aerial photographs are more complicated for interpretation than for example images taken rn an
industrial environment, often used in computer vision applications. Their specific characteristics
have direct consequences for the suitability of concepts and requirements on strategies from
computer vision to solve photogrammetric problems. In this section these complicating factors
will be presented together with consequences for computer vision.

I.2.I CoUpT,TcITING FAcToRs FoR INTERPRETATION OF AERIAL IMAGFS

The most important reason for disappointing results using traditional digital image processing
techniques is the complex contents of aerial images:
. Images of natural scenes contain many obijects which occur close to each other or even

partly overlap. Only a limited part is of interest for mapping.
. Many of the objects in the aerial image are a complex composition of parts. For example, a

road network consists of carriageways, traffic lanes, slip-roads, junctions, fly-overs, etc.
. Objects in general also belong to more specialized classes. For example, a road can be a

motorway, main road, street, etc., dependent of its functions.
. Some objects cannot be treated as independent objects, but become meaningful in their

context. A bridge for example is recognized as a part of the road which crosses the river.

1.2



CHAPTER 1

. Objects belonging to the same class, like houses, can appear in aerial images in a wide range
of representations, a different context and on different scale.

Two other sources also contribute to the complexity of aerial images interpretation:
- image acquisition
- computer limitations

Aerial photographs are taken under different conditions: season, weather, time, and altitude.
Different seasons and weather cause variations in grey value, colour and texture. Time of image
acquisition is related to the sun angle, which causes corresponding shadows. Altitude and focal
length of the camera determine the scale of the photograph.

A difficulty that the computer should handle is the fact that scanned aerial photographs occupy a
lot of disk space and memory. A photograph of 0.23x0.23 m2 scanned at a resolution of 100 pm
will take about 5 Mb and at a resolution of 10 pm even more than 500 Mb. In addition, there is
usually a complete block of photographs of an area and photographs may be taken in different
spectral bands. Intermediate results of image processing will also require multiple storage
capacity compared to the raw data.

1.2.2 CoNsEeuENcEs FoR TNTERrRETATToN oF AERTAL rMAcEs By coMpurER vrsroN

Fcirstner U99ll states that we should not worry about necessary hardware too much as because
of the rapid developments in computer science it will be available in speed and storage as soon
as we have specified what such systems are to be used for. For the time being it is sensible to
apply processing to restricted regions of interest. This is also advantageous when dealing with
many objects occurring close to each other in aerial images. Only a limited part is of interest for
mapping. By restricting the search area, features of uninteresting objects need not to be con-
sidered. Most knowledge-based systems have such facilities.

The bottleneck in the traditional three step paradigm of segmentation, feature extraction and
classification (see section 2.1.1) is the first step: segmentation. Separation of topographic objects
from their background is very hard due to among others partly occlusion, variations in radiomet-
ric properties and texture. Since segmentation and feature extraction followed by classification
heavily depend on each other, results will never be optimal for every object. Consequently, a
flexible control structure is required which allows combination of several segmentation
techniques and if necessary performs re-segmentation after feature extraction or classification
[Kestner/Rumpler, 1984]. A control strategy from computer vision should be chosen which
fulfils this condition. Selection and combination of segmentation techniques requires knowledge
about characteristics of image processing techniques to be included [Matsuyama, 1987].

The wide variety of objects and properties requires the use of knowledge-based concepts from
computer vision, including explicit representation of knowledge about objects in the scene.
However, building a formal model that includes all relevant knowledge about objects will be a
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difficult task. Firstly, properties of objects need to be collected from various sources and
subsequently be evaluated for their relevance. Secondly, the knowledge representation formalism
is required to organize and represent a wide variety of properties, which belong to objects
themselves or to the interrelationships between objects.

Map data of the area under investigation is recognized to be quite valuable to locate objects in a
complex situation [Matsuyama 19871. The map information can be considered as a good model
for the real situation even though it is out of date. Properties of unchanged objects can be used
to search new objects of the same class. Maps could also be used to guide image interpretation
based on expected contextual relationships between objects in the map and in the image.
Cleynenbreugel et al. tl990l proved that it can be profitable to incorporate knowledge from
maps. Nevertheless, maps have hardly been used as knowledge source in automated image
interpretation. A consequence of the use of maps is that both a priori general information about
objects and information belonging to specific objects in a certain scene need to be included in
the interpretation strategy.

1.3 THESIS SCOPE AND CONTRIBUTION

Within the context of automating the
extraction of topographic objects
from aerial images for map produc-
tion, this thesis focuses on the po-
tential of knowledge-based concepts
for this task. The aim is to design
and evaluate an interpretation strat-
egy (fig. 1.1) which is based on a
priori knowledge about both topo-
graphic objects and image processing
techniques together with information
from an outdated or incomplete map
of the scene under investigation. The
result of interpretation can be used
to update this map. First, the scope
of this thesis and requirements con-
cerning the input data (knowledge
base, road map and aerial image)
will be discussed.

knowledge*ffi
rcad map
old sltuatlon

mil#
Fig. 1.1 Input and output diagram for knowledge-based
interpretation of aerial images for map updating

Especially the contents of the knowledge base will be emphasized. This knowledge base should
reflect the complex contents of aerial images. Thus the object model must be able to include,
besides properties of topographic objects, also relationships between objects which represent
context, specialized classes and component parts. Because of the complexity to build a
knowledge base which includes complete descriptions, of all topographic objects and their
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interrelationships, the interpretation strategy is mainly designed for the extraction of one class of
topographic object: road networks. Roads are a means of communication between different loca-
tions. Since they express the principle structure of an area, they can form a logical framework to
search other topographic objects. Even though only roads are considered in this thesis, the
design of the knowledge base is required to allow easy extension for other topographic objects.
This requirement matches with the design philosophy of most knowledge-based systems. The
complexity of interrelationships within this class of topographic objects is comparable to other
classes and to relationships between classes. Models for roads are less complicated than for
most other topographic objects, because knowledge about the three-dimensional shape, which
varies depending on viewing angles, does not play an important part for flat objects like roads.
Consequently the use of single images instead of stereo pairs is feasible for extraction of road
networks. An original contribution is the insertion of standards for the construction of road
networks in the road model and the execution of tests to determine their contribution.

The development of specific low level digital image processing techniques is of minor concern.
Choices are mainly based on availability and easy implementation. The presented techniques are
fully automatic. However, the design of the interpretation strategy is required to be flexible in
order to make it possible to replace them by other segmentation techniques, among which semi-
automatic digital techniques. Therefore, choices for image processing techniques and knowledge
about optimal parameter settings should be expressed in the knowledge base.

Matsuyama t19871 notes four difficulties when using maps for image understanding:
l. processing of analogue map data in order to extract digital information;
2. establishing accurate image and map coffespondence;
3. design of a data structure to store maps during image processing;
4. design of a map guided interpretation strategy.
Because digital road databases are nowadays often available and their availability will grow in
the future, the first problem is not within the scope of this thesis. Correspondence between our
road databases and aerial images can be established by using manual indicated points and
orientation parameters calculated during aerial triangulation. The conespondence problem will
not be discussed further in this thesis and also automation of this task is not within the scope of
this thesis. The third and fourth problem will be highlighted within this thesis and yield another
original contribution. The interpretation strategy is based on the assumption that the road
database is outdated or incomplete and uses knowledge about possible changes.

In many previous work on road extraction described in literature satellite images or small-scale
aerial photographs are used. At this scale the road model is rather simple: a network of lines
and intersections. A requirement for the road model and interpretation strategy in this thesis is
that they have the potential for use at several scales. Especially the use of large and medium
scale aerial photographs and the objects that need to be mapped at those scales, will yield an
original contribution.

The Survey Department of the Ministry of public works, water management and transport in the
Netherlands is interested in road extraction since one of their tasks is to keep a digital database
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of the Dutch motorways up-to-date. Their users demand more frequent updating. The case study
in this thesis, which is used to concretize and evaluate the concepts, concentrates on updating of
road databases using scanned aerial photographs from their practice. Results of tests on this data
will be presented.

t.4 THESIS ORGANIZATION

The rest of this thesis is divided into three parts. The first part, chapter 2, 3, and 4, deals with
existing approaches towards image understanding in general and road extraction in particular
and discusses the designed knowledge-based interpretation strategy at a conceptual level.
Because concepts from computer vision like knowledge representation and reasoning strategies
will play an important role, chapter 2 discusses the theory of these issues. Readers familiar with
these topics may skip this chapter. Chapter 3 gives a review of previous work on road extrac-
tion. The interpretation strategy developed in this thesis for updating of topographic objects in
general and road extraction in particular will be outlined in chapter 4.

In the second part, chapter 5 and 6, the concepts are concretized by a case study that matches
with the photogrammetric practice at the Survey Department. Large-scale up-to-date photographs
(scale 1:4000) of parts of the Dutch motorways are used together with outdated digital topo-
graphic databases. One situation is regarded: the extraction of new roads linked to existing
motorways. Chapter 5 describes the different road models that are used in the case study.
Results of tests with these inodels are presented and discussed in chapter 6.

The last part, chapter 7, gives conclusions about the suitability of the developed interpretation
strategy for updating of road maps and discusses the potential of knowledge-based road
extraction for the photogrammetric practice. Finally, recommendations for further research are
given.



CHAPTER 1



PART I

THEORY AND CONCEPTS

In this part we discuss approaches for extraction of roads from aerial images that were

described in literature and present concepts of the designed interpretation strategy'

A conclusion from previous work is that a priori knowledge about the obiects in the scene and

their context are required. Relevant issues from artificial intelligence, like knowledge represen-

tation and reasoning strategy, are evaluated and selected for the purpose of aerial image

interpretation. They are incorporated into the strategy we develop for updating of road maps

from aerial images.
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CHAPTER 2

CONCEPTS IN KNOWLEDGE.BASED
IMAGE INTERPRETATION

In the first chapter reasons were given why computer vision can contribute to automation of

photogrammetric processing. Computer vision is confronted with similar problems when trying

to automate the interpretation task. It seems reasonable to analyse its concepts, strategies and

algorithms with the aim to judge which concepts may be useful for solving photogrammetric
problems. Therefore, we need to know what approaches have proven to be successful and under

which conditions. An overview of computer vision, its paradigms, basic concepts and strategies

is given in this chapter, ineant for readers not familiar with those topics.
Because knowledge-based techniques are most promising for interpretation of aerial images,

these techniques will be used within this thesis. This chapter will give an overview of their most

important concepts and approaches. Several strategies to control the interpretation process and to

represent a priori knowledge will be discussed.
General text books about computer vision, like [Ballard/Brown, 1982], [GonzalezlWoods, 19921,

[Haralick/Shapio, 1992a+b] and [Sonka et al., 1993] and books on artificial intelligence, like

[Ban/Feigenbaum, 1981] and [Rich/Knight, 1991] provide more details about these subjects.
Binford tl982l provides an extensive survey of several knowledge-based systems.

2.1 IMAGE INTERPRETATION BY COMPUTER VISION

2.I.I TRADITIONAL STRATEGIES FOR IMAGE INTERPRETATION

Difficulties in computer vision mainly arise from the lack of fundamental processing tools to get

from what is given (an array of pixels) to what is desired (a symbolic representation of the
image content). The first approaches to analyse images come from the field of digital image
processing and pattern recognition.

A commonly used approach to analyse images is the straightforward three step paradigm:
segmentation, feature extraction, classification (fig. 2.1). For each of these steps there is a large
assortment of digital image processing techniques to choose from. Most of them are domain
independent. Examples are techniques like edge detection and thresholding for segmentation and
using features like area, length or curvature for classification. It is often a matter of trial and
error to find for a certain task a feasible sequence of techniques and their parameter settings.
Within their limited task domains and in a controlled environment, like homogeneous back-
ground and same illumination, the three step paradigm has proven to be successful

[Groen/]vlunster, 19861. However, if the environment changes, image processing has to be
adapted as well. The condition of a controlled environment is not fulfilled for aerial images, for

1 1
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example because the same type of objects may appear on various
backgrounds. Results of this approach on aerial images [e.g Bajcsy/-
Tavakoli 19T6,WanglHowarth 19901 confirm that it is not feasible for
map making.

An inconsistency of the traditional three step paradigm is that general
algorithms and features are used, which use very little knowledge
about the domain, whereas special purpose systems are build. As a
consequence it is often not clear which parameters of the algorithm
correspond to which properties of an object and actually lead to
recognition. This fact contributes to the exhaustive trial-and-error
process necessary to develop a method. Often conditions like a black
object on a white background are defined implicitly within the algo-
rithm. If the environment changes, this may require a fundamental
adaptation of image processing techniques. This resulted in the design
philosophy to represent domain-dependent and object-specific know-
ledge explicitly and separate this knowledge from general problem-
solving computation [Hanson/Riseman 1978, Draper et al. 1989]. This
philosophy provides maximum flexibility during development of the
system and permits modification for other applications. This has led to
the notion "knowledge-based" systems, also referred to by the notion
"model-based" svstems. Fig. 2,1 Traditional

three step paradigm
for image analysis

2.1.2 KNowT,EDGE-BASED IMAGE TNTERpRETATToN

A priori knowledge is organized to form models or knowledge bases for each object class.
These models should clearly show the involved object properties. It has been proven that it is
very important to incorporate also more advanced features describing the context e.g. spatial
relationships between objects and objecrparts. The choice of a knowledge representation
formalism can seriously affect the performance of the system. Possibilities will be reviewed in
section 2.5.

Only if the domain is extremely simple and heavily constrained, the object knowledge can be
matched directly with the image (e.g. using template matching). In other cases digital image
processing techniques should extract information to fill in a symbolic description of the object,
which can be matched with the object knowledge. It may be necessary to compose new
structures by grouping, splitting and/or modification.

More complicated problems, like interpretation of natural scenes, require a combination of
several digital image processing techniques. One reason is that the scene often contains a large
number of different kind of objects with their own features [Wong/Frei 1992]. Another reason,
with drastic consequences, is that there is no set of parameter settings for any algorithm that
will extract the desired information perfectly [Matsuyama 1987]. Alternative techniques should
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be provided to cope with errors in a flexible way. As a consequence the sequence of processing

steps should allow iterative refinement of results, adaptation of parameters and feedback. All

theie conditions require a strategy that controls application of knowledge bases, activation of

image processing techniques and orders processing steps. Control strategies are a topic of

artificial intelligence and the suitability of several alternatives for analysis of aerial photographs

will be analysed in more detail in section 2.3'

2.2 LEVELS OF PROCESSING AND REPRESENTATION

Computer vision has to deal with a wide range of processes and representations to derive a

meaningful description of the scene from an array of pixels. In order to structure these processes

and representations the terms low level and high level were introduced. One should notice that

these terms are used with different meanings: as levels of processing or as levels of representa-

tion. Fig. 2.2 shows both hierarchies with their data representations and processing tasks.

rE!

Levels of
processlng

Levels of
representatlon

hlgh (LTM)

hlgh

lntermedlate
(srM)

,",,,s6ffinh.^IOW WffiP

Fig. 2.2 Levels of representation and processing

Ballard and Brown [1982] and
Sonka et al. [993] distinguish
two levels of processing: low and
high. Low level processing opera-
tes on digital image data and uses
very little knowledge about the
contents of the image. It performs
tasks like pre-processing, seg-
mentation, and feature extraction.
High level processing is based on
knowledge about the application
and goals for interpretation. It
includes capabilities like making
plans how to achieve those goals,
ordering of low level image pro-
cessing steps, matching of for-
malized models of the world with
the image content and inference
of sub-goals for further proces-
sing. Which processing will be
performed strongly depends on
the selected control strategy and

will be discussed in the next section. Other division of techniques into levels of processing are

used as well, e.g. into three levels by Gonzalez and Woods |9921, but the division into two

levels of processing fits best with the hereafter defined levels of representation.

Hanson and Riseman t19881 and Fdrstner tl993l define a hierarchy of three levels of repre-

sentation: a low, intermediate and high level. At the low level image data is stored. This can

13
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either be one image or multiple images e.g. of different resolutions, spectral bands or view
points. At the high level domain-dependent a priori knowledge and models are stored. Which
types of knowledge can be distinguished and alternatives for knowledge representation will be
the subject of section 2.4 and 2.5 respectively. If in addition a digital map is used, it should be
stored at the high level as well. The reason is that this map is not only the final result of inter-
pretation, but information from outdated digital maps can be considered as a priori knowledge.
The high level of representation is often called the long-term memory @TM), because it
embodies knowledge which needs to be stored for a long time and can be used for several
scenes. An additional intermediate level is defined to store for a specific scene its symbolic
representations for regions, lines and surfaces with their features that have been extracted from
the low level image data. Since it contains instantiations of objects in a specific scene, which
only need to be stored temporarily, this level is sometimes called short-term memory (STM).
The set of hypotheses constructed from the knowledge at the high level applies also for a
specific scene, so it should be stored at the STM as well.

2.3 CONTROL STRATEGIES

The choice of a control strategy dictates the direction of the flow of information between the
different levels of representation. Definition of a particular representation level as input or
output level results in quite a different type of processing and consequently influences funda-
mentally the interpretation process.
There are two major approaches of control [Haralick/Shapiro, 1992b] which are discussed in
more detail: hierarchical control and non-hierarchical. also called heterarchical control.

2.3.1 HrnnlncnrcAl coNTRoL

In this context hierarchy refers to levels of representation. In hierarchical control two extremes
can be distinguished:
- Bottom-up control or image data driven: from the low level to the high level of representati-

on
- Top-down control or model driven: from the high level to the low level of representation

Bottom-up control overlaps with traditional image processing techniques. First, segmentation of
the image produces binary primitives, such as lines or regions. Next, by feature extraction a
symbolic description of these primitives is constructed. Finally, classification based on these
features leads to recognition of topographic objects. Figure 2.1 aheady showed the general
outline of bottom-up processing. Input and output data are represented by boxes and processing
tasks are represented by ellipses.

There is no standard version of top-down control as presented for bottom-up control. A general
top-down process is visualized in figure 2.3. T\e general mechanism of top-down control is
hypotheses generation and its testing. Processing always starts with generation of a set of

t4
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hypotheses, based on stored knowledge about the object to be recognized. An object hypothesis

is defined as a statement about the presence of an object and can be either true or false. The

task to determine the sequence of object hypotheses, in order to arrive at (or infer) an interpreta-

tion of the scene, is called inference. The next step, usually, is to use for each object hypothesis

a focus-of-attention mechanism, which constrains for example the part of the image to be

processed and the range of attributes of extracted primitives. This information is input for a

goal-directed segmentation. If there is any accepted output, it is supposed to be of the hy-

pothesized type of object.

Vision systems based on pure top-down control do not exist. A common approach is to use

currently extracted objects in a bottom-up fashion to generate new hypotheses and to adjust the

sequence of the set of hypotheses.

Hybrid control mechanisms, that combine both bottom-up and top-down control strategies,

usually give better results than either basic control strategy applied separately. Fig. 2.4 gives an

overall scheme which integrates both bottom-up and top-down control. A common hybrid strar

egy is to start with a bottom-up initial segmentation of the image and extraction of a preliminary

set of features and relationships. On the basis of this preliminary symbolic description, the

identity of one or more objects is hypothesized. Now a top-down strategy can be used to verify

or disprove the existence of these objects.

classification

matching

feature
extraction

segmentation

focus of attention

goal-direct€d
segmentailon

inference

LTM

STM

Fig. 2.4 Hybrid control, a combination of bot'

tom-up and top-down
Fig. 2.3 Top-down
control
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Knowledge about relations of these verified objects allows new hypotheses to be generated. For
example, if parts of objects are recognized, more information can be deduced to build the com-
plete object. Or knowledge about spatial relationships in the scene can predict location and class
of other objects in the neighbourhood of the recognized object.

2.3.2 HnrnRARcHrcAL coNTRoL

Rather than looking at the levels of
representation as a hierarchy, the current
state of the data and acquired informa-
tion can be seen as activator of knowl-
edge sources operating at the same level,
called heterarchical control. Knowledge
sources are independently executable
procedures that contain domain-specific
knowledge. Each knowledge source can
communicate with some or all of the
other knowledge sources. For example,
the knowledge source to detect shadows
can activate the knowledge source to
extract houses, which in turn can activa-
te the knowledge source to track roads.
Because the objects present in the scene
dictate activation of knowledge sources,
the order in which the expertise should
be deployed is not fixed. Hence it is
difficult to keep track of the interpre-
tation process.

ffi-p--ffiiin
Uafffi

ffi*---ffiEH:l
@

tr-WfrEiiil-R
tiffiutdUfeRlii:l

Fig. 2.5 Heterarchical control by a blackboard
model

With the purpose to add some order in the heterarchy, the blackboard approach was introduced.
Figure 2.5 shows an example of a part of a possible structure of a blackboard for aerial image
interpretation. All communication between knowledge sources has to take place via a shared
database, called blackboard, which stores all the information extracted by knowledge sources.
The basic idea of the blackboard can be explained best by imagining a classroom full of
cooperating and competing experts, called knowledge sources. Each expert in turn can try to
contribute to interpretation of the scene if its preconditions, associated with each knowledge
source, are met. A kind of schoolmaster, called blackboard schedular, determines the order of
execution of competing experts. He asks assistance of the expert that can probably help most to
obtain the final solution. An expert can extract primitives or features from the image or he can
generate hypotheses or verify information using the knowledge base. Results are written on the
blackboard and can be used by other experts in this way working towards an incrementally
developing interpretation.
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2.4 TYPES OF KNOWLEDGE

A knowledge-based system is organized in such a way that knowledge about the problem

domain is separated from general processing routines. This collection of domain-dependent
knowledge is called the knowledge base. A general property of this knowledge is that it needs

to be specified in advance and needs to be stored for use in multiple scenes. Hence it is called a
priori knowledge and is represented in the LTM.
Properties of knowledge which are not generally valid need to be considered as well when

choosing an appropriate representation to formalize the knowledge. Therefore, different types of

knowledge will be defined in this section before alternatives for representation are discussed in

section 2.5.

The main classification is based on the nature of the knowledge. Distinction is made between

declarative and procedural knowledge.

Declarative knowledge specifies what is known about the task or about the objects to be

recognized. Exan'ples of declarative knowledge are:
- A motorway has more than two lanes at each carriageway.
- A lane is about 3,5 meters wide.

Procedural knowledge specifies how to perform a task, for example:
- To calculate the width of a road, divide its area by its length.
- To find a bridge, search at positions where roads cross rivers

Both types of knowledge will be discussed in more detail in order to emphasize other properties

within these classes that influence the representation. Fig. 2.6 shows an overall scheme of the

discriminated types of knowledge.

2.4.1 Dncr,autIvn KNowLEDcE

There are many possibilities to subdivide declarative knowledge. In this section types of
knowledge are discriminated if they influence the choice of a suitable representation. For this
reason a distinction is made between so-called object knowledge and relational knowledge. The
first describes knowledge about properties of indilidual objects, the second relational constraints
among objects.

Sometimes it is profitable to define classes of objects which contain general object knowledge.
Specific classes, sometimes called "children", inherit properties from general classes, called
"parents". Children add their own discriminating properties. [n order to suppoil inheritance,
objects must be arranged into classes and classes must be arranged into a generalization
hierarchy. Object knowledge arranged in such a hierarchy will be called inheritable knowledge

lRich/Knight, 1991], in contrast to non-inheritable object knowledge, which does not require
organization of objects into classes.



CHAPTER 2

Fig. 2.6 Types of knowledge

In [Hartog, 1995] three types of relationships are distinguished:
- optional;
- essential:
- negative.
Optional relationships are relations between two objects that are likely to be present, but not
necessarily. A factor indicating this likelihood may be attached, which can be used as a control
mechanism. Essential and negative relationships both define constraints among objects which
respectively either essentially need to be present or are not allowed to be present. They can be
used to detect inconsistencies.

2.4.2 PnocEDURAL KNowLEDcE

The procedural knowledge which should be represented explicitly is domain-dependent. Hence
inferential knowledge in order to exploit declarative knowledge will not be considered.
Procedural knowledge deals with operations like selecting image processing routines and setting
parameters for these routines. It consists of both heuristics and algorithms.

Algorithms produce the correct or optimal solution to a problem, based on physical laws. For
example, to model aspects of image formation, such as the projective transformation within a
camera, algorithms are used with domain-dependent parameters for among others focal length
and flight height.

18
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Heuristics are based on experience and aim to limit the search for solutions, however, often
there is no guarantee that they produce the correct solution. Image processing routines like line
detectors are examples of heuristics for the recognition of roads since not every line will be a
road.

2.5 TECTTNTQUES FOR KNOWLEDGE REPRESENTATION

A knowledge-based approach raises the problem of choosing a formalism to express knowledge.
Requirements for the formalism used in the knowledge-base are:
- it should be flexible in integrating new knowledge into the existing knowledge-base;
- it should be shown in a form which is easy to read;
- it should encourage to separate domain-dependent knowledge from general processing

knowledge;
- it should be able to cope with the types of knowledge discriminated in section 2.4.

The most common formalisms to represent knowledge in systems for computer vision are:
. production rules
. semantic networks
. frames or schemas
For each of these types their syntactic and semantic conventions will be described and further
illustrated by expressing knowledge with this formalism for the following example:

Using the represented knowledge the aim is to recognize which extracted roads
can be classified as motorway. Suppose the only criterium for a motorway is that
it is a road with more than two lanes. If lanes are not yet deJined as pans of the
road, a procedure needs to be activated which extracts regions. Suppose it needs
only a criterium for homogeneity, defined as a grey value variance of 5.0. The
extracted homogeneous regions are lanes if they are elongated and about 3.5
meter wide. FinaIIy, the number of lanes being part of each road needs to be
counted in order to determine which roads are motorwavs.

Since knowledge representation affects data and processing in the highest levels of representa-
tion, the contents of LTM and STM and high level processing will be described based on
example systems in which this representation type is used. Which of the above mentioned
requirements are met for each of the formalisms, will be discussed at the end of this section.

2.5.1 PnooucrroN RTJLES

Syntax and semantics
Production rules are expressed as condition-action pairs and have a standard form:

IF <conditions> THEN <actions>

19
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where the conditions and actions can be expressed as conjunctive clauses.
Fig.2.7 represents the knowledge in the example as production rules.
This form clearly shows the procedural character of the knowledge represented by production
rules. Production rules about which paths are most likely to lead quickly to a goal state can be
used as a control mechanism. A standard method is to add certainty factors to the rules
expressing probability of success. In this way the difference between heuristic and algorithmic
knowledge can be characterized.

Rule #1
lF a road consists ol more than 2 lanes
THEN the road is a "motonray*

Bule #2
lF a homogeneous re$ibn:

. is about 3,5 meterc wlde AND
- is elongated

THEN classify the region as nlaneo

Rule #3
lF the length of :a region is at least 10 times larger than its width
THEN a region is'elongated' 

,,

Rule #4
lF homogeneous regions are not yet extracted
THEN activate the proceduie i'Region-Extraction(homogeneity)n with

a vafiance of 5.0 as criterium forr h6mogeneity

Fig. 2.7 Knowledge for classification of highways represented as production rules

Example systems
A knowledge-based system using rules is called a production system. Production rules are the
most popular type of knowledge representation technique in expert systems [Waterman, 1986].
Nazif and Levine tl984l describe an expert system for low level image segmentation guided by
rules. Rules were used as well to represent specialized procedures to locate specific objects in
aerial images [Nagao/Ivlatsuyama, 1980]. SPAM is a rule-based system to interpret aerial images
of airport scenes [McKeown et al., 1985].

Representation in the LTM
Since production systems generally contain many rules, knowledge represented in the LTM is
often organized in classes. Nazif and Levine tl984l for example discriminate three different
types of rules:
l. Knowledge rules, describing object properties.
2. Control rules, which can be divided into:

a) Focus-of-attention rules, defining the sequence in which STM primitives will be checked.
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b) Meta-rules, defining the order in which different knowledge rules will be matched.
3. Strategy rules, selecting a set of control rules.

Representation in the STM
There is no specific form in which processing results of actions defined within the rules are
stored in the STM. Production systems often use a blackboard as STM [Gonzalez/Woods, 1992].
In this case the knowledge sources are rules. Nagao and Matsuyama [980] use tables with
properties and parameters to represent STM data on the blackboard. Nazif and Levine tl984l
store three types of primitives together with their features in the STM: regions, lines and areas,
which are aggregates of regions and lines with certain properties. McKeown et al. [1985] even
define a hierarchy of primitives in the STM, in which a primitive in the current level is an
aggregate of primitives of the lower level. From the lowest up to the highest level these
primitive are called regions, fragments, functional areas and models.

High level processing
Two different ways in which rules can be used in a production system are forward chaining and
backward chaining, corresponding to bottom-up and top-down reasoning respectively.
A production system based on forward chaining matches rules in the LTM against the symbolic
data stored in the STM. When a match occurs, the rule fires. This triggers an action to be
executed which usually involves modification of data in the STM. If data in the STM is
changed, conditions of rules in the LTM need to be matched again to check whether other
matches occur. If more than one match occurs, one rule is selected using control rules.
When using backward chaining a set of rules that leads to a (sub)goal is selected. Other rules
are searched of which the action parts yield conditions required by the first set of rules. This
process is repeated until all conditions are fulfilled by the current state of the data. Then the
complete processing chain leading to the (sub)goal is executed. [f alternative processing chains
are formed, certainty factors can help to select one chain.

2.5.2 SrulNTrc NETwoRKS

Syntax and semantics
Semantic networks were first introduced under that name as means of modelling human
associative memory [Quillian 1968], but are now a standard representation method in computer
vision. A semantic network represents objects and relations between objects as a graph structure,
i.e. a set of nodes connected by labelled arcs. Nodes usually represent objects and arcs represent
relationships between nodes. Common arcs are "is-a" and "has-part" relations. The first one
establishes inheritance in the network. Semantic networks describe knowledee in a declarative
fashion.

The a priori knowledge in the example that a motorway is a road which consists of at least two
lanes of about 3,5 meter wide can be modelled by the semantic network in fie. 2.8.
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Fig, 2.8 Knowledge for classification of highways represented as semantic network

Exarnple systems
Semantic networks were already early used in aerial image applications by Nevatia and Price
t1982] to construct a map-like sketch of the area which guides the segmentation. Nicolin and
Gabler [1987] apply semantic networks to represent knowledge about prototypes of scenes and
processing methods for the detection of houses and roads in aerial images of suburbs.

Representation in the LTM
Nicolin and Gabler t19871 subdivide knowledge in the LTM in two partitions, both represented
by a semantic network:

1. meta-knowledge about processing methods;
2. geneic knowledge about suburban scenes.

The first partition includes knowledge about existence, purpose, and interfacing. Processing
methods, method-specific parameters, and the kind of input/output data are represented as nodes
in the semantic network.
The second partition represents several different types of objects and scenes, structured by two
hierarchies of relations:

L specialization and generalization relations, called "is-a" and "is-generalization-of'
relations respectively, which provide an inheritance mechanism;

2. composition and decomposition relations, called "is-part-ofl' and "has-parts" relations,
reflecting the construction of complex structures from simple objects.

Nevatia and Price tl982l define in addition to these relations also spatial relationships, which
describe proximity (e.g. adjacent, nearby) and relative position (e.g. above, left, parallel).
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Representation in the STM
The standard solution to incorporate STM data in the semantic network is to define a specific
instance of a generic concept as node and connect it by an "element-of' relation [Ballard/Brown,
19821.

High level processing
Nevatia and Price t19821 as well as Nicolin and Gabler t19871 both apply bottom-up processing
and use the semantic network only for interpretation. In the first phase of interpretation, data in
the STM can easily be matched with the a priori knowledge in the LTM, because both are
represented by a semantic network. [n the second phase of interpretation predictions are made
and tested for missing objects, composite structures, and spatially related objects. Ambiguities
and inconsistencies are reduced bv relaxation labelline.

2.5.3 Fn,lMFs AND SCTIEMAS

Syntax and semantics
Frames can be considered as a means to assign more structure to nodes as well as to arcs of a
semantic network. Thus the complete collection of all defined frames can be represented by the
underlying semantic network. In a frame-based system the objects at each node in the network
is defined by a collection of attributes, called "slots", and values of those attributes, called
"fillers". Slots are either properties of objects or relations, like "is-a" and "has-part", of which
the first one establishes inheritance like in a semantic network. Each slot can have procedures
attached to it, which are executed when the information in the slot is changed. In this way the
consistency within the whole data structure is maintained. Procedures which are often attached
to slots are: "if-added", "if-removed", and "if-needed" [Waterman, 1986].
Frames contain both a declarative part and a procedural part and therefore frames occupy a
continuum from totally declarative to totally procedural. The term schema refers to "frames"
used in a visual context, however, in the literature [e.g. Haralick/Shapiro 1992b, Kasturi 1992]
both terms are used interchangeably. The example represented by frames is shown in fig.2.9.

Example systems
MISSEE [Glicksman, 1983] uses schemas which both control the interpretation process and
build the resulting interpretation. In SIGMA [Hwang et al., 1986] frames are used to generate
hypotheses about houses and roads in aerial images. The ACRONYM system [Brooks, 1983]
uses frames to model 3-dimensional airplanes collecting parameters of generalized cylinders in
the frame.

Representation in the LTM
The slots of frames in the LTM contain constraints on the values of properties or relations of
objects.
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frame MOTORWAY
slots:

is-a: ROAD
number-of-lanes: > 2

procedures:

[lq1b"r-oFlanes 
is needed then count the number ol I-ANES of parent

ROAD
end-frame

frame RO. AD
slots'has-part, 

LANE
is-generalization-of : MOTORWAY

procedures:
if ROAD has no LANES as parB then search HOMOGENEOUS REGION

end-frame

frame LAN€
slots:-'-*i"-", 

HoMocENEous iicror.r
is-part-of: ROAD
width:3.4O - 3.60 meter
elongatedness: i 10

o**,li[T;",edness 
is needed rhen calculate length(LANE)A,vidth(l-ANE)

end-frame

slob:-'-*i"-g"n"olization-of 
: LANE

homogeneity criterion: 5.0
procedures:

if HOMOGENEOUS REGION is needed then activate procedure
CegionExtraction (homogeneity crtterion)
ff HbMOGENEOUS REGION is added then investigaie if it is a gener-
alization of a LANE

end-frame

Fig. 2.9 Knowledge for classification of highways represented by Jrames

Representation in the STM
Usually instances of prototype objects are stored in the STM by making a copy of the frame and
assigning to the slots values which express properties of specific objects.

High level processing
Two different approaches can be discriminated:

1. Segmentation of all image structures and then classification by matching their appearan-
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ces with specified attributes, followed by a check of their relations. This corresponds to a

bottom-up approach.
2. Use of relationships to predict locations of objects related to already classified objects'

This corresponds to a top-down approach.
In SIGMA [Hwang et al., 1986] both approaches are integrated. Processing starts with an initial

segmentation to extract image structures by sequentially selecting hypotheses about primitive

objects. These hypotheses are constructed from frames. For each primitive which satisfies a

hypothesis, an instance is created by making a copy of the frame, of which the hypothesis is

constructed. The instance is inserted in the STM. The next purpose is to search new objects

related to instances, group instances, or find out to which more specialized class they belong.

Procedures defined in the frames of all instances are evaluated and if the condition part is

fulfilled, the corresponding action is put into an action list. These actions are scheduled and then

subsequently fired. The result is either an instance or nothing.

2.5.4 Drscussroll

The main difference between the three types of representation just outlined is the nature of the

knowledge they represent. Rules are better suitable to represent procedural knowledge, semantic

networks on the other hand clearly represent declarative knowledge. Frames or schemas
represent both declarative and procedural knowledge and can exploit the strength of both forms.

As a result, attributes of objects are easier to read and to modify in a semantic network, but it

may be hard to find out to which chain of procedures will be formed for a specific scene. It is

easier to find out which procedure will be performed in a production system, but different
attributes of the same object are not always stored together. Frames have the advantage that
procedures are stored with all attributes of an object class.

Even though it is possible to define a generalization hierarchy of objects in a production system

[e.g. McKeown et al., 1985], it is more natural and more clear to use an object-oriented
representation, like semantic networks or frames, when inheritable object knowledge is involved.
In semantic networks the distinction between object knowledge, represented by nodes, and
relational knowledge, represented by arcs, is also clearer. However, representation of essential
and negative relationships is clearer in frames, because procedures related to the presence or
absence of these relations can be stored together with the conditions'

Because production systems usually contain many rules, modification and incorporation of
knowledge is more difficult then for the other formalisms. Organization of knowledge in
different modules is essential.

Sometimes several formalisms to represent knowledge are used within one system. Fig. 2.9
already showed how rules can be incorporated in frames. In probably the best known knowl-
edge-based system, VISIONS, described in many publications [e.g. Hanson/Riseman 1978,
Draper et al. 1989, Hanson/Riseman 19881 even all three described formalisms are used.
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VISIONS operates on natural outdoor scenes. Declarative knowledge is represented in semantic
network style. The term "schema" is used to indicated the highest level of object structures in
the network. Rules and frames are supported within the VISIONS environment to control
processing.

The next chapter reviews previous work on road extraction. In some of it the described
formalisms will be used. Both reviews, in this chapter and the next one, will be used to make a
final choice for a knowledge representation especially suitable for road network updating.
Although the choice of a suitable knowledge representation is very important, the quality of the
domain-dependent knowledge still determines the success of a system. In the next chapter also a
review will be given of knowledge used to model roads.
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REVIEW OF PRBVIOUS WORK
ON ROAD EXTRACTION

An expansive literature has grown since the beginning of this decade on the problem of
interpretation of aerial images in general and extraction of roads in particular. In this chapter a
large number of relevant publications on road extraction (21) will be reviewed. If more papers
about the same road extraction procedure were published by the same group, for the overview
given in this chapter the most complete or latest one was selected. First, an overview of those
characteristics is given which influence the complexity of the problem and the suitability and
possibility to apply certain image processing techniques. Next, previous work will be reviewed,
categorized by the used control strategy. Finally an overview of road properties is made and it
will be shown how they are included in previous work.

3.1 OVERVIEW OF CHARACTERISTICS

When reviewing previous work one should realize that successful interpretation not only

depends on the strategy and techniques used for road extraction, but also on the type of images

on which they are applied. The following two factors affect the complexity of road extraction:
l. road appearance, which depends on factors like ground resolution, contrast with the

surroundings and amount of occluded parts;
2. road context, since depending on the scene under consideration (e.g. urban or rural), the road

network can have a different degree of complexity in e.g. density and shape (straight,

serpentine).
In section 3.1.1 and 3.1.2 overviews will be given of the geometric resolution and type of
landscape for which the reviewed publications were developed. Since we are especially
interested in knowledge-based approaches, section 3.1.3 lists which publications use this
approach. This information will be useful as look up tables to understand some choices made in
publications reviewed in the next sections.

3.1.1 Roln lppnlRANcE

Roads have different appearances at varying scales. In satellite images, which are of very low
scale, road extraction is usually viewed as linear feature detection. In large scale aerial
photographs the details on the road surface are clearly visible, so that a linear element can be
decomposed into detectable primitives such as lanes, fly-overs, or crossings. Consequently the
scale of the aerial image determines which road model and image processing techniques are
appropriate to use.
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? Groch [1982] 1.0x1.0 to
5,0x5.0 '1

Airault et al. [1994] 0.5x0.5 to
1.0x1 .0

McKeown and
Denlinger [1988]

1.0x1.0 or
3.5x3.5

Fua and Leclerc
[1eeo]

?

Vosselman and
Knecht [1995]

1 .6x1 .6 Garnesson et al.
[1eeo]

0.4x0.4 or
0.85x0.85'2

Zhu and Yeh
[1 e86]

3.0x3.0 to
4.0x4.0

Heipke et al.
[1ee4]

0.2x0.2 '1

Hwang et al.
[1 e86]

0.75x0.75'3

Lemmens et al.
[1e88]

0.28x0.28

Nagao and
Matsuyama ['1980]

0.5x0.5

Stilla and Hajdu
[1ee4]

0 .16x0 .16 '1

Table 3.2 Ground resolution of reviewed literature using aerial photographs
*l = calculatedfrom scale photograph and scan resolution
*2 = deduced from other paper using the same test images
*3 = calculated from estimated distances or sizes in reality
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In table 3.1 and 3.2 the reviewed literature on road extraction is categorized by the scale of the

aerial images used, indicated by the geometric resolution of test images used. This is the size of

the ground area to which one pixel in the image corresponds. Satellite images are subdivided

into Landsat and SPOT (table 3.1). Corresponding resolutions depend on the bands used'

The variety in scales of scanned aerial photographs is larger. They are subdivided (table 3.2)

into road extraction applied on test images with a ground resolution:
- smaller than or equal to that of satellite images, i.e. larger than 10 metre;
- between l0 and I metre;
- smaller than I metre.
The ground resolution is not always given directly, but can be deduced or else it is visually

estimated to which of the three categories the test images belong.

3.1.2 Roln coNTExr

The road context influences road properties and therefore also which image processing

techniques are suitable. Table 3.3 lists which types of landscape the test images used in each

reviewed publication depict. A discrimination is made between urban, suburban, rural and

uncultivated scenes.

3.1.3 KIowr,EDGE-BASED RoAD ExrRAcrIoN

Most of these publications use a traditional image processing approach. Only six of them use a

knowledge-based approach. Two types of knowledge representations are used: production rules

and frames. In [Nagao/Ivtatsuyama, 1980], [ZhulYeh, 1986] and [Stilla/Hajdu, 1994] production

rules are used. Garnesson et al. t19901 use their own object oriented language, based on LISP,

coupled with production rules, which produces definitions looking like frames. SIGMA,

described in [Hwang et al., 1986], is used in section 2.5.3 as an example of a system based on

frames. Cleynenbreugel et al. t19901 use an object-oriented environment for image understand-

ing (see [Fierens et al., 1991]), implemented on top of an existing knowledge engineering tool

KEE, which is frame-based. Control structures and search strategies of these knowledge-based

approaches will be discussed in the next section, together with the other publications.

3.2 CONTROL STRATEGIES FOR ROAD EXTRACTION

Because the control strategy influences the interpretation process, reviewed publications are

categorized by the different control strategy as presented in section 2.3. The first categories are

ways of hierarchical control: traditional bottom-up control, top-down control, in practice guided

by a map or a human operator, and hybrid control, which integrates the previous approaches.
The last category is heterarchical control, in particular the blackboard approach. For each of

these categories low and high level image processing techniques will be discussed which are
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used in the reviewed publications to build a road interpretation process.
A general characteristic of all road extraction procedures described in the reviewed literature is
that they run in a monoplotting mode, i.e. use a single aerial image.

Table 3.3 Types of landscape in test images of reviewed publications

Authors Landocap-e typgl

uffih eUEurban r$r€l unculttvat€d

Airault et al. [1994] X X

Bajcsy and Tavakoli [1976] X

Cleynenbreugel et al. [1990] X

Fischler et al. [ '1981] X

Fua and Leclerc [1990] X

Garnesson et al. [1990] X X

Groch [1982] X

Grun and Li [1994] X X X

Gunst et al. [1991] X

Heipke et al. [1994] X

Hwang et al. [1986] X

Lemmens et al. [1988] X

Maillard and Cavayas [1989] X X

McKeown and Denlinger [1988] X X X

Nagao and Matsuyama [1980] X X X

Sijmons [1987] X

Stilla and Hajdu [1994] X

Ton et al. [1989] X

Vosselman and Knecht [1994] X

Wang et al. [1992] X

Zhu and Yeh [1986] X X
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3.2.1 Borrou-up coNTRoL IN RoAD ExrRAcrIoN

Especially in early publications on road extraction a bottom-up approach is often used, since it
overlaps with the traditional three step paradigm for image analysis (section 2.1.1). The aim is
to achieve fully automatic road extraction. Table 3.4 summarizes the work discussed in this
section arranged in chronological order.

Except for [Lemmens et al., 1988] most of them have satellite images or low resolution aerial
images as input. Extraction of roads at this resolution is primarily approached as a problem of
delineation of linear features. Characteristic for bottom-up road extraction is a sequential pro-
cedure of line detection followed by thresholding and finally noise removal and linking pixels in
the binary image [e.g Bajcsy/Tavakoli 1976, Ton et al. 1989, Wang et al. 1992]. Since
properties of individual pixels are used instead of more global properties, the result looks more
like a collection of road pixels than like a logical road network. Dynamic programming offers
the possibility to obtain a more global solution based on grey value pixels within a region of
interest [Fischler et al. 1981, Lemmens et al. 1988].
A feature of bottom-up road extraction is that the whole image is in the same state of process-
ing. A drawback of such a procedure is that the quality of processing steps heavily depends on
each other, since it is a one-direction single track process. Fischler et al. [1981] partly handle
this problem by combining the output of several edge detectors in a cost array and Sijmons

t19871 combines the output of two parallel processes with a logical "or".
In general only few knowledge about roads is used, mainly based on radiometric properties and
the linear shape of roads. None of it is implicitly included. It should be noted that values of
radiometric properties needed for thresholding differ more or less for every image.

Bajcsy and Tavakoli [1976] structural thresholding on Landsat MSS followed by linking and
noise removal in the binary image

Fischler et al. [1981] minimum cost path determination in a cost array produced by
various edge detectors on low resolution aerial images

Sijmons [1987] median filtered image subtracted from original Landsat TM
image combined with thresholding based on spectral properties

Lemmens et al. [1988] comparison between two pairs of edge and line delectors on
high resolution aerial images and road recognition by shape
analysis of regions.

Ton et al. [1989] developed their own operator to detect lines which are
subsequently classified with the aim to detect minor roads in
Landsat TM images

Wang et al. [1992] analysis of a list of pixels along the gradient direction with addi-
tional thinning algorithms on SPOT images

Table 3.4 Reviewed literature on road extraction using a bottom-up approach
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3.2.2 Top-nowN RoAD ExrRAcrroN By urrLrzATIoN oF MAps

Although the use of geographic information as additional knowledge source for aerial image
interpretation has been widely recognized [Matsuyama, 1987], only a few publications make use
of maps. Maps could be used to improve and classify the road network extracted from an image,
however most publications [e.g. Roux et al. 1990, Li et al. 19921 do not go beyond the purpose
of matching the road networks from map and image.

In this section publications are reviewed in which maps are used to constrain where to look and
what to look for during interpretation of an image. In this case the map is used as a means to
control road extraction in a top-down fashion. This is called map-guidance. One possible
approach for map guidance is to search roads in the image with radiometric properties similar to
those of roads present in the overlayed map. However, often newly constructed roads do not
have equivalent radiometric properties, so no successful results are reported. [Maillard/Cavayas,
19891, [Cleynenbreugel et al., 1990] and [Stilla/Hajdu, 1994] are examples of publications in
which other map-guided approaches are used. Maillard and Cavayas tl989l use the road map as
a logical framework to search new roads, which are usually connected to existing roads. Roads
existing in the map are tracked on the image to search intersections with new roads. Next new
roads are tracked based on previously identified intersections. In [Cleynenbreugel, 1991], which
contains more details than [Cleynenbreugel et al., 1990], it became evident that existing roads
are not verified, but used as a logical framework when establishing relationships between
extracted line pieces. Apart from a road map, also a DTM is used to verify constraints on
maximum allowed slope for connectable line pieces. Stilla and Hajdu [1994] describe the
contents of the map in a so-called image description graph, which is input for knowledge-based
image analysis. Based on the knowledge described in this graph expectations are defined for
attribute values of objects in the image, like position and width of roads. The knowledge from
the map does not influence the result of image analysis, but rather the processing sequence in
which objects are searched dependent of their presence in the map. They state that map
knowledge reduces the processing time significantly. If the map is outdated and needs to be
updated, processing time will probably not reduce since expectations for changes are not
defined.

r,j,::::iil::iiiiiiiiiiiiiiiiiiiiiiiiiiii,,,,,ii,,,,t,,,,,,,,:,,:,.,,r,,::,,:,,,,,,r,uu,,,:
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Maillard and Cavayas [1989] map is used as logical framework to extract roads
from SPOT images

Cleynenbreugel et al. [1990] expert system which uses GIS information to verify
roads extracted from SPOT images

Stilla and Hajdu [1994] use maps to create a knowledge base from which
expectations about roads in aerial images of urban
scenes are inferred

Table 3.5 Reviewed literature on road extraction using a map-guided approach
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3.2.3 Top-oowN RoAD ExrRAcrIoN BY HUMAN INTERACTIoN

The purpose of semi-automatic road extraction approaches is to develop techniques, which can
be used to speed up manual tasks in map production, since full automation is not realistic in the
near future. In all reviewed papers about semi-automatic road extraction, summarized in table
3.6 in alphabetical order, interaction by a human operator is used to initiate the search for roads
in a top-down fashion. Although human interaction could also be used to evaluate extracted
roads or to classify the road, no examples of this approach were found.

Table 3.6 Reviewed literature on road extraction using a semi-automatic approach

When using human interaction to initiate road extraction, the control strategy can be character-
ized as top-down, since starting from the hypothesis that the indicated segments can be clas-
sified as roads, the exact locations are determined using the low level image data. As mentioned
in appendix A, basically there are two approaches in interactive initiated road extraction:
1. Extrapolation
2. Interpolation

lnteractive road extraction strategies based upon extrapolation extend a small road segment,
which a human operator indicates manually. Road trackers are applied to automatically extend
the small segment. Variations upon common road trackers based on profile analysis (see in
section 3.2.4 e.g. [Groch, 1982], [McKeown/Denlinger, 1988]) are also suitable to apply semi-
automatically. In [Gunst et al., 1991] dynamic programming is used to adjust the road point
predicted by such a profile analyser if no characteristic profile was found. Vosselman and
Knecht t19951 use Kalman filtering to provide the profile analyser with predictions of the
position of the road. In [Airault et al., 19941only one point on the road is indicated manually
from which paths with varying length and direction are hypothesized and next evaluated using a
criterion for homogeneity of the road surface. In [Heipke et al., 1994] the human operator

...*ufi ;.;;lliiiii.l;iiiill:ilj:iilill]li;..'lll:ll;:i:;rii'lri

Airault et al. [1994] extrapolation from one manually indicated point in the direc-
tion with most homogeneous surface

Fua and Leclerc [1990] deformation of a manual indicated polygon using snakes

Gunst et al. [1991] linear exlrapolation from road segment by combination of
profile analysis and dynamic programming

Grun and Li [1994] interpolation between a set ol manual indicated points by
dynamic programming

Heipke et al. [1994] road segment extension by edge-based road tracking in a
search window

Vosselman and Knecht [1995] extrapolation lrom road segment using a Kalman filter and
evaluation of the grey level profile
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provides the road tracker with a starting point and an initial direction. This road tracker is based
on edge detection and edge following within a small window, related to the search direction.
This tracker yields the road side whereas the other trackers are used to determine the axis of the
road. However, trackers based on profile analysis could produce the road side as well, if the
human operator indicates it.

Other strategies interpolate between a set of sparse points distributed along the complete road
which the human operator indicated to roughly describe the road. Dynamic programming is used
by Griin et al. ll994l to determine semi-automatically the exact location of the road by
maximizing a merit function. Fua and lrclerc t1990] use active contour models or snakes which
are deformed with the aim to minimize the total energy, which is a function of deformation and
photometric energy.

3.2.4 HvnnrD coNTRoL rN RoAD ExrRAcrroN

Reviewed literature on road extraction using hybrid control, which integrates bottom-up and top-
down processing, is summarized in table 3.7. The purpose of Hwang et al. [1986] is to develop
a general control strategy, which is tested on the case of interpretation of aerial images, while
the other authors design a procedure suitable for the detection and tracking of linear features in
general [Groch, 1982] and more [McKeown/Denlinger, 1988] or less [ZhulYeh, 1986] for roads
in particular. Knowledge is represented explicitly by [Hwang et al., 1986] and [ZhuYeh, 19861,
but incorporated in the probedure of Groch t19821 and McKeown and Denlinger [988].

Table 3.7 Reviewed literature on road extraction using hybrid control

[Groch, 1982] and [McKeown/Denlinger, 1988] both describe systems based on road trackers,
which sequentially extend roads by prediction and verification of parts of them. This method of
working justifies to define it as top-down control, even though the models of the road used for
prediction are not explicitly represented. The road tracker of Groch tl982l verifies predicted
road points by analysis of the characteristic grey level profile perpendicular to the predicted

r'ii{l|iiirii
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Groch [1982] starting point detection and road tracking by
analysis of perpendicular profiles

McKeown and Denlinger [1988] road tracking by profile analysis and edge linking
together with detection of road features

Zhu and Yeh [1986] criteria for edge-based seed selection, growing
and bridging gaps are expressed by production
rules

Hwang et al. [1986] bottom-up segmentation and top-down reasoning
about missing road parts using geometric and
spatial properties represented in frames
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direction of each road. In [McKeown/Denlinger, 1988] a sophisticated tracker based on profile
analysis as well as an edge-based tracker can be activated by high level routines. Detection of
road features, like road width changes, intersections, or vehicles, causes adaptation of parameters
for prediction and verification. Gaps are bridged while extending road pieces, independently of
other road pieces.

Road trackers are suitable for application in semi-automatic road extraction systems (see section
3.2.4), but when combined with detection of starting points, they operate fully automatic. Groch
tl982l describes a starting points detector based on analysis of grey-value profile along two
circular sample lines around each candidate point at the crossing of grid lines. McKeown and
Denlinger t19881 refer to a starting point detector described in [Aviad/Carnine, 1988] and later
also in [ZlotnicVCarnine, 1993]. This detector forms trajectories of pixels which lie in the
middle between two anti-parallel edges. Since the described detectors of starting points proceed
bottom-up, the complete road extraction system can be considered as driven by hybrid control.

[Hwang et al., 1986] and [ZhulYeh, 1986] both describe a knowledge-based system which
integrates bottom-up and top-down control. [Hwang et al., 1986] describes SIGMA, already dis-
cussed in section 2.5.3 as an example system which uses frames to represent knowledge. When
no specific goal is given, processing starts with activation of a simple bottom-up segmentation
based on grey-value thresholding which produces regions. To select candidate road pieces and
houses, criteria for shape and contrast expressed in frames are evaluated. Road pieces are
extended and linked, eventually by re-segmentation with another method within a small window
at a predicted location. Also the spatial relationships between houses and roads are used, for
example to search driveways. A drawback is that the segmentation methods are too simple to
yield results accurate enough for map production. Zhu and Yeh [1986] use the anti-parallelism
of edges to segment road pieces, with additional geometric and radiometric properties to select
reliable road pieces. Gaps are bridged and road pieces extended by evaluation of edges within a
small window. The consequences of various combinations of four criteria for the quality of
edges are expressed explicitly in production rules.

3.2.5 HnrnRARcHrcAL coNTRoL rN RoAD ExrRAcrroN

In both [Nagao/1t4atsuyama, 1980] and [Garnesson et al., 1990] the systems for knowledge-
based road extraction are based on a blackboard architecture, which is a way of heterarchical
control. I{owever, the blackboard of Nagao and Matsuyama [980] aims to recognize all
regions, extracted based on their spectral properties, while the blackboard of Garnesson et al.
tl990l aims to activate only these procedures which extract objects with a high probability to be
present. There discriminating features are summarized in table 3.8 and fig.3.1 and 3.2 depict
both blackboard confi gurations.

Nagao and Matsuyama [980] start with an initial smoothing and segmentation. The produced
regions are stored on the blackboard. The blackboard can activate two types of knowledge
sources:
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)

l . characteristic region ex-
tractors:
object-detection subsys-
tems.

Several characteristic regions
are first identified, like elon-
gated, homogeneous and
shadow regions. The subsys-
tem for road detection focuses
its attention on elongated
regions and applies special-
ized analysis methods such as
connection of candidate
regions only in those focused
areas. The control system tries
to correct segmentation errors
of inegularly shape regions
by split and merge and solves
conflicts if a certain region is
recognized as multiple differ-
ent objects.

Fig. 3.1 Blackboard configuration from [Nagao/Matsuyama,
r9801

Garnesson et al. [1990] present MESSIE: Multi Expert System for Scene Interpretation and
Evaluation. More details about MESSIE can be found in [Garnesson, l99l].

The blackboard can activate two types of knowledge bases:
1. Specialists, operating at the low level of processing to extract objects from the image;
2. Controllers, operating at the high level of processing in order to control the interpretation

strategy.
The strategy is to start searching the most salient objects in the scene, because it is assumed that
they can be recognized most reliably. [f one or more objects are found, the controller of location
uses knowledge about the context to generate hypotheses about the presence of a related object
within a defined search area. The supervisor r:hooses which specialists should be activated to
segment the hypothesized object. There is a separate specialist for the detection of roads, which
constructs boxes from anti-parallel edges. Hypotheses are evaluated by the scene controller.
Only conflicts which lead to identification of the same region as two different objects are
handled bv MESSIE.

SLACKBOARD

h,c8A-l
lPrcruRE I

tl------------l
| | PTPERTY I
| | rABEL I
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Fig. 3,2 Blackboard configuration from [Garnesson, ]991 l
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Nagao and Matsuyama [1980] characteristic regions are input for object-

detection subsystem

Garnesson et al. [1990] after salient objects are found, controller gen-
erates hypotheses about other objects in their
context and activates specialists

Table 3.8 Reviewed literature on road extraction using a blackboard approach
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3.3 ROAD CHARACTERISTICS

Because in this thesis the contents of the knowledge base will be emphasized, an overview is
given of the characteristics of roads used for road extraction in previous work. The next
subsections will list which properties are used to describe roads and, if they are used implicitly,
how these properties were used for road extraction in various publications. One should notice
the different functions of the properties: to search roads (inference), or to recognize extracted
primitives as roads (validation). In order to structure the description of road properties used in
the reviewed literature, we use the division defined by Garnesson et al. tl990l into four con-
cepts:
1. geometry, includes size and shape of road elements;
2. radiometry, includes grey value and colour of road elements and features determined from

the grey values in the image, like texture;
3. context, interaction of roads with other objects in the scene, including spatial relationships;
4. function, direct consequences of the function of road networks.
The last two concepts are most difficult to apply for road extraction. When a map is used for
road extraction the a priori road description is often limited or even absent, because extracted
properties of lines or regions are compared with properties in the map.

3.3.1 RoAD-spEcIFIC GEoMETRTC pRoPERTTES

Geometric properties are related to the coordinate description of the road. Therefore they differ
for lines and regions. Line-like properties can also be used for axes of regions.

a) Roads have constant width
Zhu and Yeh [1986] and Garnesson et al. tl990l both search candidate road pieces by trying to
find two parallel edges, thus separated by a constant distance, and use this width for road grow-
ing. The grey level profile depends on the width of the road and for that reason this property is
implicitly included in road trackers based on profile analysis. When bridging gaps between to
road regions Nagao and Matsuyama [980] check if their widths are about the same. Fua and
Leclerc t19901 include an additional term in the deformation energy, which enforces the parallel
constraint, defined as a minimization of the squared sum of width differences.

b) The width of the road is bounded at a certain resolution
Bajcsy and Tavakoli [1976] use the assumption that a road is one, two or three pixels wide in a
Landsat image to select road pieces. Lemmens et al. [988] select regions with a width between
2 and 12 metie on the ground.

c) Isolated roads have a minimal length
This property is used to justify removal of short segments in [Bajcsy/Tavakoli, 1976] and
[Wang et al., 1989].
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d) The path of the road is usually smooth and does not have small wiggles.
This property applies on resolutions where the road corresponds to a line, but also for the axis
of the road on higher resolutions. Groch tl982l and Gunst et al. [1991] model the path locally
by a polygon and McKeown and Denlinger tl988l by a parabola. Airault et al. ll994l predict
several paths from one point by polygons with multiple sides of variable length and direction.
Vosselman and Knecht tl994l use a Kalman filter for prediction of the next point of the road
during tracking to smoothen the path. Griin and LI |l994l include in their algorithm for dynamic
programming the property that the second derivatives of path coordinates attain a minimum to
prevent small wiggles. For that reason Lemmens et al. [988] include minus the cumulated
differences in the direction along the path in their maximization cost function for dynamic
programming. Ton et al. [1989] use the same measure for curvature together with the length of
road segments between junctions to discriminate major roads from minor roads.

e) The side of the road is fairly straight
The straightness of edges is often included in processing applied in combination with edge
detection. Approximation of a chain of pixels by polygon is done by Garnesson et al. tl990l,
Heipke et al. [994] and Wang et al. [989] resulting in a raster to vector conversion. McKeown
and Denlinger [1988] model edges, just like the road axis, locally by a parabola. Zhu and Yeh
t19861 indicate straightness by the second moment of the chain code, used to describe the edge
and classify it into high, medium and low. Fua and Leclerc t19901 approximate the edge by a
polygonal curve. Deformation energy is defined by the curvature in the energy minimization
function.

fl Roads are elongated regions
Lemmens et al. [1988] use elongatedness, defined as length divided by width, as one of the
criterion for road regions. Nagao and Matsuyama [980] and Hwang et al. [986] use elonga-
tedness as one of the properties to select candidate road regions and calculate it by dividing the
length and width of the region's bounding rectangle.

3.3.2 Ro,ln-spnclFrc RADToMETRTc pRopERTrEs

Properties directly based on grey values in black-and-white or colour images, as well as
properties of grey value differences used to extract edges, are both considered to be based on
radiometry.

a) Roads are build from materials, for example concrete and asphalt, that have specffic spectral
properties

Bajcsy and Tavakoli 11976l determine a range of grey values to threshold to image, based on
spectral properties of concrete and asphalt. The spectral property of asphalt and concrete is that
they correspond to high grey values in the red, green and blue band. Sijmons tlgS7l selects
pixels with among others high grey values in these spectral bands of a Landsat TM image.
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b) Road materials do not vary much and their spectral properties are similar within a short

distance
Griin and Li t19941 translate this property in their road model for dynamic programming by the

constraint that grey value differences along the road attain a minimum. Airault et al. [19941
choose a path which optimizes a surface homogeneity criterion: the minimal grey level variance

of pixels along the path. Nagao and Matsuyama [1980], Zhu and Yeh [1986] and Garnesson et

al. t19901 use this property during road extension by comparing the mean grey value of a part

of the road with the successive part before connecting them. Lemmens et al. [1988] merge

adjacent regions if the difference between their mean grey values in the three spectral bands is

below a certain threshold, set to 20.

c) Roads for the most part show significant contrast with their surroundings
Bajcsy and Tavakoli t19761 use a predefined value for the grey level difference to select road

pieces. Hwang et al. [1986] use a measure for contrast explicitly as one of the properties to

select candidate road regions. This property also leads to the fact that roads usually have sig-

nificant edges. Zhu and Yeh [1986] use the average magnitude of the edges and the number of

edge pixels below a threshold value for the magnitude as measure for the quality of the side of

a road. Fua and Leclerc t19901 use minus the average edge magnitude to represent photometric

energy, component of the total energy which is minimized. Airault et al. [1994] detect the edges

to adjust the axes during road tracking by surface homogeneity.

d) Roads are light-coloured linear features on a dark background
This property leads to the fact that edges at opposite sides of a consistent region have opposite

directions and can be taken together as anti-parallel pairs. Zhu and Yeh [986], Aviad and

Carnine [1988], Zlotnick and Carnine t19931 and Garnesson et al. tl990l all detect anti-parallel

edges to extract roads. This property is also implicitly assumed when applying a line detector

like in [Ton et al., 1989] or [Wang et al., 19921. For determination of the maximum cost path

by Fischler [l981l, lrmmens t1988], Griin and Li [994] and Gunst et al. [1991] the road

model includes that the sum of the grey values (or their second derivatives in the direction
perpendicular to the road) along the path attain a maximum, which is based on this property.

e) Roads have a characteristic grey level profile
This feature is the basis for all road trackers based on profile analysis. Since this profile is

characteristic, but different for every road, an initial profile model is obtained from manually
indicated or from automatically detected road pieces. Several measures are used to evaluate if an
extracted profile has this characteristic shape. Groch tl982l codes the shape of the profile and
uses this code for comparison. McKeown and Denlinger [1988] use the cross-correlation as
criterion. Gunst et al. [1991] use weighted root mean square difference and Vosselman and
Knecht tl994l use least squares matching in addition to the cross-correlation.

f) The grey level profile changes either very gradually or suddenly
To cope with gradual changes, McKeown and Denlinger [1988] and Gunst et al. [1991] update
the profile model by calculating a weighted average between the old model and the extracted
profile, Vosselman and Knecht tl994l do not, since this leaded to a bias in the estimated road
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position. Only McKeown and Denlinger t19881 detect sudden changes by anomaly detection and

activate in this case the edge-based tracker.

3.3.3 CoNrExruAL INFoRMATIoN

If relationships of roads with other types of objects, in particular cars, houses, and vegetation,

are included, this is considered as contextual information.

a) Cars drive on the roqd
Garnesson tl991l uses the previously detected road as search area to extract cars with the car

specialist. Identification of cars increases the confidence that the detected area is really a road.

b) Absence of vegetation on the road
Sijmons tl987l uses this property as one of the criteria when selecting pixels with a low Green

Vegetation Index, a measure for the amount of vegetation. Nagao and Matsuyama [1980] bridge

gaps between road regions only if the region in between does not have the spectral properties of

vegetation.

c) Roads are usually parallel to a row of houses
Hwang et al. u9861 show how previously detected houses can be used to define a search area

where to expect a road.

d) Houses and roads are usually connected by a driveway
In suburban scenes Hwang et al. [1986] use this property to define a search area where to

expect a driveway.

3.3.4 FuxcrIoNAL FEATURF,S

The most important function of a road is its function as a means of communication between

different locations such as cities, buildings, parks, rivers and lakes. This leads to the next
properties:

a) Roads are connected to form a network.
Widely used methods to provide connection and construct junctions are linking of line pieces,

assumed to be part of the road side or axis, if their distance and difference in direction is below

a threshold [e.g. Bajcsy/Tavakoli 1976, AviadlCarnine 1988, Ton et al., 1989] and bridging gaps

between regions, assumed to be part of the road surface, using geometric as well as radiometric
properties [e.g. Nagao/]vlatsuyama 1980, Hwang et al., 1986, ZhuYeh 1986]. Lemmens et al.

t19881 choose 25 metre on the ground as a maximum to bridge gaps. Ton et al. [1989] require
that the length of the segments on.both side of the gap is at least three times the length of the
gap. Cleynenbreugel et al. [1990] define that for particular types of images the roads intersect
perpendicular to form a grid pattern and use this fact to construct L-shaped, U-shaped and
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rectangular structures from road segments.

b) The slope along the track of the road has a maximum to allow cars to drive uphill.
Cleynenbreugel et al. 119901 use a constraint on the maximum tolerable slope, calculated from
an accompanied DTM, to verify line elements in mountainous terrain.

c) The local change in direction of the road is upward bounded from trffic flow requirements.
Griin and Li tl994l include in their road model for dynamic programming an upper bound for
the local curvature of the road. In [Heipke et al., 1994] edge tracking stops if the difference in
direction between successive edges is larger than a certain threshold value. Lemmens et al.
ll988l choose 0.3 rad. as threshold for the maximum difference in direction between the
principle axes of regions. The change in direction of the road during profile analysis is limited
by the width difference between the profile model and extracted profile. In [Gunst et al., 1991]
these widths are chosen such that the change in direction of the road is maximal 15 degrees.
Aviad and Carnine tl988l split axis after detection, if a sudden change in direction appears. In
[Vosselman/Knecht, 1994] the maximum road curvature is used to derive the system noise of
the Kalman filter.

3.4 RESULTS AND DISCUSSION

Roads in uncultivated areas are only extracted from low resolution imagery (see tables 3.1 ,3.2
and 3.3). This is also the most interesting application, since especially for those areas in for
example developing countries few up-to-date maps will be available. From rural and (sub)urban
areas usually maps with more detail are made and consequently large-scale imagery is required.
However, in most results roads are represented by a one-pixel thick line, in larger scale images
corresponding to the axis of the road. Exceptions are [Nagao/lvlatsuyama, 1980] in which roads
are represented by elongated regions and Hwang et al. [1986], Zhu and Yeh [986], Fua and
Leclerc t19901 and Stillaand Hajdu tl994l who detectparallel edges. Viewing road elements as
part of a stable network already during segmentation is only done by Maillard and Cavayas
[1989], while only McKeown and Denlinger [1988] recognize road features like intersections,
overpasses, surface material changes and road width changes.
As already noted by Cleynenbreugel [1991] validation of results is difficult, as well during road
extraction as afterwards. Because of the absence of an exact road model, roads of which the
appearance is not included in the used road model, will not be found. Segmentation is always
the weakest step in the interpretation process and errors in segmentation propagate into recogni-
tion. Results show that a combination of several road extractors performs better than either
extractor alone [e.g. McKeown/Denlinger 1988], because of the complex contents of aerial
photographs. Evaluation of the result by comparing it with a map or manual road extraction is
only done for bottom-up approaches. A problem is how to compare them. Statistical measures
like the percentage correctly classified pixels do not represent the practical suitability of a
method, because they do not make clear how much editing work is needed afterwards to
produce a map. Accuracy analysis is only done by Lemmens et al. [1988].



REVIEW OF PREVIOUS WORK ON ROAD EXTRACTION

The number of test images used in a publi-
cation is a nice indicator for practical suit-
ability of its developed road extraction
strategy. Fig. 3.3 shows in a histogram how
many reviewed publications use a certain
number of test images. It shows clearly that
in most cases only one or two test images
were used. The low number of test images
makes it likely that many results are
obtained by trial and enor. However, in
most publications no report is made about a
test procedure to tune parameters.
[McKeown/Denlinger, 1988] is the only
publication which describes an extensive
test procedure on many images. They used
35 roads in 26 training images to tune
parameters and another 35 roads in 18
images for testing. Besides they compare
profile analysis and edge tracking as single
and combined methods. Because of this
extensive test procedure, this method is
considered to be promising for our applica-
tion.

Semi-automatic techniques are mainly
applied on suburban or rural scenes.
Because results of interactive techniques
coincide best with results a human operator
achieves, these techniques are most suitable
for practical application. One reason is that they concentrate on relatively the easiest part: local
extraction of road elements between junctions. The more difficult part, reasoning about vali-
dation of extraction and construction of a road network, is done by a human operator. Especially
these tasks will require much attention during further automation. Results show that knowledge-
based techniques are most suitable. They are mainly applied on large-scale imagery.
It is striking that sophisticated reasoning like in [Hwang et al., 1986] is often combined with
simple image processing techniques like grey level thresholding whereas in case of more
advanced image processing techniques, like dynamic programming by Fischler et al. t19811,
weak mechanisms are provided to validate and rectify results by reasoning. The requirements
that combination of segmentation techniques and correction of segmentation errors put on the
control and reasoning strategy will be discussed in the chapter 4.

A lot of used road properties are very general and not very road-specific, but more line-specific.
Spatial relationships are only included by Hwang et al. [986] and Garnesson et al. [990].
Most advanced properties are implicitly included, also in knowledge-based approaches. Simple

Fig. 3.3 Number of publications using a certain
number test images
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properties like elongatedness and width are most often represented explicitly. Because functional
properties are poorly present, also distinction between functional parts of the road network, like
motorways versus dirt tracks and fly-overs versus crossings, is never made. Requirements for
the contents of the knowledge base will be defined in the next chapter.
Only few applications use maps as knowledge source and even fewer use maps to guide the
interpretation. Cleynenbreugel et al. [990] use maps to validate detected roads in contrast to
Maillard and Cavayas [l989l and Stilla and Hajdu 11994) who use information in the maps to
search new roads. Possible changes between the outdated map and the aerial image are not con-
sidered and consequently not explicitly modelled. This will be one of the contributions of the
map-guided interpretation strategy designed in the next chapter.
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CONCEPTS FOR KNOWLEDGE.BASED
ROAD EXTRACTION

In chapter I it is argued why knowledge-based techniques should be used for interpretation of
aerial images. The goal of this thesis is defined as design of a strategy for map-guided
interpretation of road networks in aerial images. In this chapter the concepts for the designed
strategy will be discussed, which are also briefly described in [Gunst/Hartog, 1994]. Based on
the reviewed literature in chapter 2 and 3 requirements for the interpretation strategy, contents of
the knowledge base and utilization of maps will be defined. Next, concepts for the designed
road model and interpretation strategy will be outlined. In order to illustrate the concepts, finally
examples of their application on large scale photographs will be given.

4.I REQUIREMENTS FOR INTERPRETATION OF AERIAL IMAGES

The concept of knowledge-based interpretation is to construct an interpretation strategy of low
level image processing and high level reasoning to search objects. Comparison of symbolic
descriptions of objects extracted from the image with a priori object knowledge yields recogni-
tion and may influence the interpretation strategy. This definition shows that choices, which
need to be made based on the reviewed literature in chapter 2 and 3, mainly concern the next
subjects:
l. Interpretation strategy:

- control of the process (4.1.1);
- low level processing (4.1.2);
- high level reasoning (4.1.3).

2. Contents of knowledge base:
- types of knowledge (4.1.4);
- representation formalism (4.1.5).

4.L.1 CoNrnor, STRATEGY

Because aerial images contain many objects with large variations within each object class, the
sequence of processing steps cannot be determined reliably beforehand. Consequently the tradi-
tional bottom-up approach of low level segmentation of the whole image followed by high level
reasoning [e.g. Bajcsy/Tavakoli 1976, Wang et al. 1992] yields many omission and commission
errors. The main reason is that especially segmentation is often weak and processing steps
heavily depend on each other. Blackboard systems and integration of bottom-up and top-down
control both offer possibilities for reprocessing to deal with this problem and yield more
promising results [e.g. Hwang et al. 1986, Garnesson et al. 1990]. A merit of the blackboard
model [Matsuyama, 19871 is that due to its modular system organisation, object detection
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modules can easily be appended. However, knowledge about objects is embedded in the
programs and is as a consequence more difficult to modify. In blackboard systems processes are
activated when certain conditions of the data are fulfilled. As blackboard systems become more
complex, it becomes harder to keep the interpretation process under control. In this case
sophisticated control structures are required [Nagao, 1984]. Because this is intrinsic to the
concept of heterarchical control which underlies the blackboard model, hierarchical control in
the sense of integrating bottom-up and top-down processing is favoured.

The importance of combining both bottom-up processing with top-down reasoning for complex
images like aerial photographs has been widely recognized [Matsuyama, 19871. In contrast to
[Cleynenbreugel et al., 1990] top-down control initiated by objects from the digital map is pro-
posed for initial processing. The advantage of initial top-down control is that only parts of the
road network are extracted from the image which are consistent with the road network in the
digital map. Accordingly the main drawback of initial bottom-up processing is that it is very
difficult to obtain a consistent road network from segmented road elements. Some of the prob-
lems are that the result may depend on the sequence in which initial road elements are
processed and that many non-road elements are included in the reasoning process. Often [e.g.
Cleynenbreugel et al. 1990, Stilla/Hajdu 19941 the control works on the symbolic level where it
reasons with extracted line elements and regions, without including the image data itself. This
drawback is handled in [Nicolin/Gabler, 1987] by including a feedback loop to extract missing
objects from the image, based on general properties of regions, before classification into real-
world objects is performed.

In conclusion hybrid control with initial top-down processing is proposed for road extraction.

4.1.2 Low LEvEL rMAGE PRocFssrNG

Image processing techniques can be used as tools to analyse the image. However, it has been
shown that none of the image processing operators are perfect and that we have to select useful
image processing operators and combine them into effective image analysis processes
[Matsuyama,1987]. One of the problems is how to integrate them. When the output of several
low level processing techniques is combined logically [e.g. Sijmons, 1987] or numerical [e.g.
Fischler et al., 19811, no optimal use is made of strength and weakness of a particular method
for a certain situation. This is also the case if during road following two trackers are alternated,
like in [Gunst et al., 1991] and [McKeown/Denlinger, 1988]. Therefore goal-directed segmenta-
tion was introduced. This means that a segmentation technique is performed depending on the
goal in a top-down object extraction process. By generation of multiple goals, combination of
several image processing techniques is realized. Nazif and Levine tl984l and Hwang et al.
tl986l propose an expert system which uses knowledge about image processing techniques and
the expected appearance of an object to select the most promising low level processing
technique from a pool. However, it is very difficult to define characteristics of image processing
techniques, which can be used as criteria for selection. Research on this topic is still going on
[e.g. Cldment/Thonnat, 1992], but is not within the scope of this thesis. The approach of
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Garnesson et al. [1990] who define specialized segmentators for specific objects, like houses and
roads, is more suitable for this work. However, the characteristics of a specific segmentator not
only depend on the type of object searched, but also on the relationship with the object from

which it is searched. For example: texture characteristics of a road can be included in a
segmentation algorithm to extract another road nearby, but the fact that roads often run along a
row of houses can be used to define a region of interest in which another segmentation
algorithm is applied. Therefore in the designed interpretation strategy there is a specific
segmentator for each relationship. A requirement for design is that it should be easy to replace
one image processing technique by another, for example a semi-automatic technique.

Beside selection and combination of low level image processing techniques there is also the
problem of determining appropriate values for parameters. Wrong parameters can cause errors in
interpretation. Another problem is related to the fact that goal-directed segmentation offers the
possibility to reduce the huge amount of computation at image level by defining a restricted part
of the image in which the technique is applied. The shape and location of this region of interest
can also be subject to errors. In order to handle these problems it is required that it is possible
to define alternatives for the region of interest, the image processing technique, and its
parameters.

4.1.3 Hrcs LEvEL REASoNING

The aim of high level reasoning in a hybrid control strategy is to recognize objects in the result
of low level processing and to generate goals for segmentation of other objects. Therefore it is
natural to use an object-oriented fashion of reasoning. An object is an entity which takes the
central position in the reasoning process. From a software engineering perspective object-
oriented reasoning provides the best solution for a modularity and thus allows extension of the
interpretation strategy with other topographic objects than road networks as was required in
section 1.3. From a model building point of view object-oriented reasoning offers the opportun-
ity to represent directly physical objects and their characteristics in the knowledge-base, which
provides more insight into the process of image understanding. Object-oriented reasoning is used
for road extraction in [Cleynenbreugel et al., 1990], [Garnesson et al., 1990], [Hwang et al.,
19861 in contrast to for example lZhuNeh, 19861 and [McKeown/Denlinger, 1988] who
generate processing tasks at the high level.

Since errors are inevitable in image analysis, verification of low level image processing results
as well as high level control are required. High level reasoning needs to decide when an
alternative segmentation technique, alternative parameters or an adapted region of interest are
used. Besides it needs to detect and solve inconsistencies in the classification of identified
objects, e.g. based on their context. An example of such an inconsistency is the detection of a
level road junction on a motorway. Verification of results is difficult because of the absence of
an exact road model.
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4.1.4 Tvprs oF KNowLEDGE

The types of knowledge included in the road model should reflect the complex contents of aerial
images as specified in section 1.2.1.

Because the density of objects in aerial images is very high, semantic information is necessary
to identify meaningful individual objects, rather than syntactic information to extract structures.
However, in previous work road extraction is primarily approached as a problem of linear
feature detection and grouping of lines to form a network. Consequently the work on road
extraction is mainly based on three knowledge sources:
- geometrical properties, concerning width and curvature of roads;
- radiometric statistics, based on contrast and homogeneity of intensity, represented by grey

values in the image;
- grouping rules, based on constraints like collinearity, parallelism and perpendicularity.
As a result roads cannot be recognized unambiguously, because these knowledge sources are too
simple to distinguish for example roads from railways. Therefore it is required that employed
knowledge sources are based on a more strict model, which explains the possibility to find
particular parts of the road network and uses intrinsic properties of roads for identification. For
that reason standards for road construction [Rijkswaterstaat, 19751 were studied and included in
our road model. These standards often differ for specialized classes of roads, like motorways or
streets, depending on their function. Therefore recognition of specialized classes is also
profitable if only general classes need to be mapped, because objects can be identified more
reliably with these specific object properties.

Beside knowledge concerning individual objects, the image contents also requires three types of
relational knowledge. The complex composition of parts of the road networks requires inclusion
of part-whole relationships. They can simplify recognition of complex objects. Specialization-
generalization relationships are not only useful for definition of more specific object properties,
but they also yield semantic constraints between objects. Motorways for example cross each
other by fly-overs and not by level road junctions. The need of context to interpret images of
complex object spaces, leads to the conclusion that spatial relationships need to be included.
Spatial relationships can help to determine where to expect a certain object, but also yield
constraints for the presence of objects.

Because of the object-oriented fashion of reasoning, procedural knowledge should be attached to
the relationship between the known and searched object type (see section 4.1.2). It consists of
knowledge about image processing techniques for goal-directed segmentation and requires that
the relation between the searched object type and appropriate segmentation techniques is known.

4.1.5 KNowr,nocE REpRESENTATToN FoRMALISM

The previous section shows that the knowledge which needs to be represented is enormously
varied. Because declarative as well as procedural knowledge are involved, frames are the most
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suitable representation formalism. Frames also support object-oriented reasoning, as was

required in section 4.1.3 and allow easy extension for other topographic objects. The underlying
semantic network reflects the discrimination between object and relational knowledge.

4.2 REQUIREMENTS FOR UPDATING AND UTILIZATION OF MAPS

From the four subjects which Matsuyama tl987l notes as yielding problems when using maps
for image understanding (section 1.3), within the scope of this thesis only requirements for the

data structure to store maps and the design of a map-guided interpretation strategy will be

discussed.

4.2.1 Dlu srnucruRn To sroRE MAPs

Digital map data needs to be stored during interpretation in a format which is accessible for
image analysis. The easiest way is to transform it to a raster image like is done in [Maillard/-
Cavayas, 19891. However, useful vector data is lost, which could have been used to calculate
accurate geometric attributes or to predict extended road elements. Cleynenbreugel et al. [1990]
and Stilla and Hajdu t19941 symbolically describe the map by lines and meaningful compila-
tions of lines like collinear and parallel structures. The same kind of primitives are extracted
from the image and can be compared. However, such a description complicates returning to the
image data for re-segmentation, using the previous result as approximate search area. Besides,
some properties (e.g. area) can easier be calculated from raster data. In this case the availability
of raster data would be advantageous. Therefore it is required that the digital map is stored in
such a format that vector as well as raster data can easily be retrieved.

4.2.2 MIp GUIDANCE

The question is how outdated or incomplete maps can be utilized during interpretation of aerial
images. Instead of using the map to verify segmentation results, like by establishing relations
with existing roads in [Cleynenbreugel et al., 1990] or by comparing attributes in [Stilla/Hajdu,
19941, our aim is to utilize the map as well for segmentation, like in [Maillard/Cavayas, 1989],
as for the detection of changes. The complexity of verifying whether a road segment from the
map changes or not is shown in [Gunst/Lemmens, 1992]. Since the number of possible changes
in outdated maps is limited, knowledge about possible changes in time should be used to detect
changed and new objects in order to update an outdated map. Changes are required to be
modelled explicitly in order to support maximum flexibility and modularity of the system. Also
incomplete maps can be used to guide image interpretation. Incomplete maps can originate from
another scale of mapping with less detail and more generalized object classes. The location of
objects in incomplete maps creates a logical framework to search new objects while their prop-
erties can tailor a priori knowledge for this specific situation. In this way new objects will be
found more reliable and more accurate. These objects can be used to update incomplete maps.
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4.3 OBJECT-ORIENTED MODEL FOR ROAD NETWORKS

As was required In 4.1.4 the road model should reflect the complex contents of aerial images.
The designed road model is restricted to motorways and other through roads and does not
include small (unpaved) roads in towns and villages like streets.
Important for an object-oriented approach is the definition of relevant object classes. They
should be chosen such that spatial, part-whole as well as specialization-generalization relations
can be modelled. The representation of the road network differs considerably for different
scales. At small scales, like satellite images, road networks can be represented by lines forming
a network of intersections and roads. However at large scales the road surface should be
represented in the digital map as a planar feature containing details like road markings.
Therefore it was decided
to discriminate between
three levels of detail in the
road mode ls :  smal l ,
medium and large scale.
Levels are connected by
part-whole relations. For
example: an object at
medium scale consists of
several objects at large
scale, while one of these
objects at large scale is
part of the object at
medium scale. The com-
plete part-whole hierarchy
is shown in fig. 4.1. Simi-
lar road terms in fig. 4.1
are used in this thesis with
a specific meaning, expres-
sing at which scale a part
of the road network is
defined.
Appendix B explains and
defines all road terms that are used in this thesis. Examples of the appearance of all objects in
frg. 4.1 are given in fig. 4.2 as a zoom on the same situation at various scales.

Objects at each level in their turn can be seen as generalized object classes at the top of a
specialization hierarchy. For example:
- junction is a generalization of crossing, fly-over and Y-junction;
- a crossing is specialization of ajunction.
Geometric and radiometric attributes are attached to generalized objects if they are valid for all
specialized objects. Atnibutes attached to specialized objects serve to discriminate them from
each other.

Fig. 4,1 Object classes defined at the three levels (small, medium
and large scale) of a part-whole hierarchy for road networks
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Interpretation of a particular aerial image
usually produces objects belonging to the same
level, which depends on the resolution of the
image and the objects wished to be present in
the digital map. Updating of an incomplete
digital map may involve more levels if the
map is acquired at a smaller scale than the
aerial image. Interpretation of aerial images
aims in this case to deliver a more detailed
and accurate digital map, using the map at the
smaller scale for prediction of parts of objects.
The definitions of the object classes at each
level of the part-whole hierarchy and their spe-
cialization of object classes will be given in
the next sections.

4.3.1 Svrlr,r, scALE oBJEcrs

At small scale a road network consists of
intersections and roads between those intersec-
tion. Intersections are considered to be points
and roads are represented by lines. The physi-
cal appearance is not considered. A road con-
sisting of physically separated carriageways is
seen functionally as a single connection
between two intersections. A single intersec-
tion may consist of multiple road elements and
junctions at the level of medium scale. Three
specialized types of roads are discriminated:
- motorways;
- main roads:
- other paved roads.
Motorways are especially constructed for fast
motor traffic and have limited access from
other roads by means of intersections. Main
roads are defined as those roads to which
traffic from motorways is able to flow to at
intersections. Places where other paved roads
pass over or under motorways look like an
intersection in 2D, but are actually no real
intersections because traffic cannot flow from
one road to the other and both roads continue
unchansed.

Fig. 4.2 Example of the same situation at
various scales with corresponding objects (a)
small scale, (b) medium scale, (c) large scale
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At this level only specialized types of intersections with motorways are specified, because these

become interesting in the case study (chapter 5 and 6), related to the practice of the Survey

Department of Rijkswaterstaat. The next terms for types of intersections are defined in order to

discriminate the following situations:
- motorway intersection: intersection between two motorways, which both continue;
- T-intersection: intersection between two motorways of which one ends at the other;
- interchange: intersection between a motorway and a continuing main road;
- T-interchange: intersection between a motorway and an ending main road;
- overpass: "intersection" between a motorway and another paved road at which traffic cannot

flow from one road to the other.
There are standard solutions [Rijkswaterstaat, 19751 for the construction of intersections. A

standard solution for a motorway intersection is a cloverleaf. The aerial image in fig. 5.1 depicts

a standard solution for a T-intersection. Standard solutions for (T-)interchanges are a semi-

cloverleaf (fig. 5.a) and a "Haarlemmermeer" solution (fig. 5.5), called after one of the places

where it is applied. At so-called overpasses traffic passes over or under the motorway.

4.3.2 MnuruM scALE oBJECTS

Intersections usually contain many road elements and road junctions to manage the traffic flow.

Roads, in the sense of small scale objects, are build from road elements at medium scale (fig.

4.2b). A road element is defined as a straight or curved stretch of road without any branches.

The branchpoints in the medium scale road network are called junctions. Road elements and
junctions are both represented by planes. The next types of junctions are discriminated:
- crossing: the place where flows of traffic in different directions meet each other at one level

and can interchange, usually guided by traffic lights;
- roundabout: traffic flows interchange by moving in one direction round a central island;
- Y-junction: the point where traffic joins or leaves the motorway by means of a link road.

Considering the configuration of the first parts of the road elements at this point, it has the

shape of a Y and is therefore called a Y-junction;
- fly-over: the place where a bridge carries one road over another road at a different level.

The main discrimination of road elements at this level is between main carriageways of a

motorway, link roads and service roads. The main carriageway is defined as the part of the road

intended for through traffic. If both carriageways are physically separated by a central reserva-

tion, each carriageway of such a so-called dual carriageway is represented by an individual road

element with one-way traffic only. There are dual carriageways with 2, 3, or 4 lanes in each

direction. Single main carriageways are defined as carriageways with two-way traffic. Within

this group a distinction can be made between 2x2 (two lanes for each direction), 2x3 and 2x4

lanes.
Link roads are road elements which enable traffic to flow from one motorway to another, which
intersects at a different level. They have one or two lanes and join or leave a main carriageway
at a Y-junction. Service roads run parallel to the main carriageway and have to be used to reach

houses, shops, etc.
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4.3.3 LIncB SCALE OBJECTS

The road side is the imaginary line that bounds the road pavement. A traffic area is defined as a
region on the road surface with a special function for traffic. The next traffic areas will be used

further:
- traffic lane: elongated region with parallel sides where one is supposed to drive;
- hard shoulder: lane on which only in exceptional circumstances traffic is allowed to drive or

stop;
- correction strip: narrow elongated region next to the road side meant to give drivers the

opportunity to correct their course in case there is no hard shoulder;
- slip-road: elongated taper lane used to join or leave the motorway at a Y-junction.
The width of these traffic areas is defined accurately in the standards for road construction

[Rijkswaterstaat, 1975], but differs depending on the fact if the traffic area is for example part

of a carriageway or link road at medium scales.

Road markings are symbols painted on the road surface in order to guide, warn and control the
traffic flow. There are many of them, but next (fig. 4.6) arc used in the example in this chapter:
- triangular mark, which indicates that a slip-road branches off the main caniageway by means

of a link road;
- edge line, a white unbroken line which marks the separation between the outermost lanes and

the hard shoulder or correction strip;
- lane line. a broken line between two traffic lanes;
- block line, row of square blocks to indicated the separation between a traffic lane and a slip-

road.

4.3.4 RELATIONS BETWEEN SPECIALIZED OBJECT TYPES

Spatial relationships are defined between specialized object classes, for example edge lines and
lane lines can be defined to run parallel. These relationships define spatial constraints between
objects on the same level, which can be used for recognition and to search one object from the
other. Specialization-generalization relations define semantic constraints. Semantic constraints
can be defined between objects on multiple levels and between objects on the same level.

Examples of constraints between objects on small, medium and large scale are:
- The type of intersection and solution at the small scale gives semantic clues for the detection

of road elements and junctions at the medium level. For example, if an intersection is
mapped at large scale as an interchange with a Haarlemmermeer solution, one should find at
the medium level: four Y-junctions with link roads, two crossings and a fly-over (frg.4.2b).

- The width of a caniageway constraints the possible number of lanes at large scale, while for
example the width of the correction strip can be used to discriminate between main
carriageways and link roads.
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The explanations with the various types of intersections at small scale already illustrate the
notion of semantic constraints at the same level. Main carriageways of motorways do not
intersect each other or other roads by crossings or roundabouts, but by a fly-over, usually in
combination with Y-junctions and link roads. Link roads start at a Y-junction and usually end at
a level crossing or another Y-junction. Traffic areas, road markings and the road side at large
scale are mutually heavily constrained. An example of a spatial constraint is the parallelism of
road side, edge lines and lane lines at distances constrained by the standardized width of the
traffic area in between. An example of a semantic constraint is that there is an edge line
between a hard shoulder and a traffic lane.

4.4 CONCEPTS FOR MAP.GUIDED INTERPRETATION

To update an outdated or incomplete digital map three different tasks can be distinguished:
1. Change detection (section 4.4.1): Determination for every (part of the) object from the

outdated map if and how it changed in the aerial image.
2. Component detection (section 4.4.2): Detection of parts from which the whole object in the

incomplete map is build up.
3. Contextual reasoning (section 4.4.3): Recognition of new objects which have a spatial

relationship with changed objects or with objects from the incomplete map.
How these tasks fit in the updating process of outdated and incomplete maps is the subject of
section 4.4.4.

4.4.1 CrnNcn DETEcrroN

The interpretation strategy to detect changes is based on the perception that there is a limited
number of possible changes of one object type into another. For example, a carriageway with
two lanes can get one or maybe two additional lanes and change into a three-lane or four-lane
carriageway, but will never be reduced to a carriageway with only one lane. Hypotheses to
detect changes are initiated by objects present in the outdated map.

4.4.2 CovtpoNENT DETEcrroN

Component detection assumes that the incomplete map is acquired on a smaller scale at which it
is not possiblb to map parts from which the whole objects are build. The current goal is to
detect in an aerial image of larger scale those objects which have part-whole relationships with
the mapped objects. Usually initial hypothesis generation based on part-whole relationships only
aims to detect some of the components with strong semantic constraints. The rest is searched by
contextual reasoning, in this way also including spatial constraints.
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4.4.3 CoNrExruAL REASoNTNG

The strategy of contextual reasoning is based on the perception that each object type is spatially
related to one or more other object types. For example, a road marking like an edge line has a
certain distance to another parallel edge line and eventually to one or more parallel lane lines.
These relations are used to generate hypotheses for top-down search of objects. Detection of one
of these new objects immediately generates hypotheses for the presence of other spatially related
objects. But also detected changed objects or objects from an incomplete map may generate
hypotheses for spatially related objects. Thus a chain of search actions emerges. The mechanism
to handle these search actions will be discussed in 4.5.1.

Spatial relationships are not only used for top-down hypothesis generation, but also for bottom-
up consistency verification. Verification is based on the fact that some spatial relationships yield
conditions between two objects. If the first object is found, the second object must be found or
is prohibited to appear in its vicinity. An example of such a condition is that the detected
change of a part of a motorway into a Y-junction needs to be confirmed by the presence of a
new link road. This case will be discussed extensively in chapter 5 and 6. If this condition is not
fulfilled, even after reprocessing, the classification of the first object is rejected.

4.4.4 lN{Ap-curDED TNTERpRETATToN STRATEGy

The interpretation strategy defines which tasks are performed and in which order. A requirement
for the interpretation strategy designed in this thesis is that the digital maps which are updated,
also guide the interpretation process. The interpretation strategy differs for outdated and incom-
plete maps. Change detection and contextual reasoning are the tasks performed in the interpreta-
tion strategy for updating of outdated maps, while in case of updating incomplete maps compo-
nent detection and contextual reasoning are used. The interpretation strategy for both cases will
be worked out in more detail.

In case outdated maps are updated, processing starts with change detection. Change detection
includes generation of hypotheses for possible changes, depending on which objects are present
in the map and verification of these hypotheses by starting top-down processes for segmentation
of the aerial image. Thus objects from outdated maps and the aerial image are input for change
detection. This results in either changed or unchanged objects. Unchanged objects will be part of
the new map. If changed objects are not spatially related to other objects, then the interpretation
process stops and changed objects are appended to the new map. An example of this case is that
the addition of an extra lane to a road without branches has no consequences for other roads.
This case will be shown in section 4.8.4 as an example of change detection only.

If, on the other hand, changed objects are spatially related to other objects, they are input for the
process of contextual reasoning to search spatially related objects, together with the aerial
image. This case is shown in fig. 4.3. Contextual reasoning results either in detection of a new
object or not. If after several adaptations there is no object detected, but there is a constraint for
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the presence of the new object in relation
to the changed object, the hypothesis for a
change is still rejected. This results in still
appending the unchanged object to the new
map. Each detected new object is appended
to the new map, but also restarts the cycle
of contextual reasoning until all related
objects are searched for. This case is the
subject of the case study in chapter 5 and
6.

In case incomplete maps need to be
updated, objects from this outdated map
and the aerial image are input for compo-
nent detection, followed by contextual
reasoning. An example of this case is
worked out in section 4.8.3.

Fig. 4.3 Process for updating of an outdated
digital map using an aerial image.

4.5 REALISATION OF THE INTERPRETATION STRATEGY

The interpretation strategy is based on the classic hypothesize and test paradigm. Within this

strategy top-down and bottom-up processes are integrated. The control cycle has four processing

steps (fig. 4.4):
- (alternative) hypothesis generation;
- goal-directed segmentation;
- object recognition;
- inconsistencydetection.
The requirements, which are described in section 4.l,are incorporated in this strategy. The next

56



CONCEPTS FOR KNOWLEDGE.BASED ROAD EXTRACTION

sections will outline these processing steps of the
designed interpretation strategy in more detail.

This implementation of concepts was primarily influ-
enced by some of the design criteria of the frame-
work for map interpretation by Hartog [1995]. Maps
can be seen as a simplified representation of the real
world depicted in the aerial photograph' Therefore it
is possible to use the same control strategy as for
searching objects in scanned maps, extended with
more sophisticated segmentation algorithms and spe-
cific knowledge about road networks. In order to
update outdated digital maps the interpretation strat-
egy needs to be modified such that not only
segmented objects, but also objects from the outdated
map can be input of the interpretation strategy.

4.4 Control cycle with processing

4.5.I HypOTTTBSS GENERATION

ln the context of map-guided interpretation, hypotheses concern changes or new objects which

are possibly present. Reason for their hypothesized presence is their relationship with objects in

the map or with objects detected in the previous processing step. For example, when the road

side is detected, the presence of road markings like edge or lane lines parallel to the road side

can be hypothesized. All possible relationships are defined in the frames. An example of a small

semantic network underlying the frames for searching road markings on a Y-junction is shown

in fig. 4.5.

A task during hypothesis generation is to determine which new hypotheses are relevant due to

the last processing step and in which order they should be verified, also considering previously

generated hypotheses. Realization of the hypothesis generation mechanism is done by means of

a search list, which can be regarded as an ordered list of processes to be activated. Search

actions to all objects, associated with just detected objects or objects in the map by an object

relation, are appended to the list. Actions in the list are ordered by their priorities, associated

with each object relation (see fig. a.$. These priorities are assigned a priori to the object

relations when constructing the knowledge base. Processing continues until all hypotheses in the

list are verified and the search list is empty.

Fig.
steps
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fig. 4.5 Semantic netvvork underlying frames for the detection of road sides and road
markings from a medium scale Y-junction in an incomplete map. Relations correspond to
hypotheses which can be generated.

Fig. 4.6 Artfficial large scale photograph of a Y-junction. Numbers relate to the sequence in
which road sides and road mnrkings are found according to the semantic network in fig. 4.5.

E road side

lE whitetriangle

E edge line

[!! laneline

@ block line

I Y-iunction
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Fig. 4.7 Tree representation of detected road sides and road markings associated with
the objects it caused and was caused by. The numbers correspond to fig. 4.6.

The process of hypothesis generation will be illustrated with an example. Consider the artificial
large-scale photograph of a Y-junction in tig. 4.6. Using the Y-junction originating from
medium scale, the aim is to complete this map with road sides and road markings extracted
from a large scale image. The semantic network in fig. 4.5 represents the relationships used for
generation of hypotheses. The hypothesis generated by the relationship with the highest priority,
corresponding to the lowest value, is put on top of the search list and will be activated first.
Two relationships are associated with the Y-junction: a triangular mark (priority 1) and the road
side (priority 2). This results in two generated hypotheses which are put in the action list. The
search action for a triangular mark is on top, since it has a higher priority. Assume that
activation of this hypothesis leads to detection of a triangular mark, number 1 in fig. 4.6. Next,
the hypothesis for detection of a block line is generated. It has a low priority (6) and is put at
the bottom of the list. Consequently, the action to search the road side is now activated first. It
results in the detection of four pieces of road side, number 2, 3, 4 and 5. Each of them gener-
ates a hypothesis for the search of an edge line. Because all four hypotheses have the same
priority (4), their sequence in the search list is arbitrary, but they will all be put above the
search action for the block line (prioriql 6). Assume that action associated with road side
number 2 will be on top of the list. It results in the detection of edge line number 6. Next the
hypothesis for a lane line is generated. Its priority (3) is higher than all the other actions in the
list and it will be activated first. The detection of a lane line (number 7) generutes hypotheses
for other lane lines, which are put on top of the list. However, no more lane lines are found.
The remaining actions for the search of edge lines are successively activated. Detection of each
edge line number 8, 9 and l0 also results in search actions for lane lines. Since no further lane
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lines are present, they will not be found. Finally, the action for search of a block line is on top
of the list. Although it results in detection of a block line (number ll), no more hypotheses are
appended to the action list because there is no relationship represented in the semantic network,
starting from a block line. Thus, the action list remains empty and processing stops. Another
representation of this process is given in fig. 4.7, where every object is connected to the one it
is detected from and the one it detects itself.

4.5.2 SEGMENTATIoN

Activation of generated hypotheses means goal-directed segmentation of the hypothesized object
in the aerial image. This requires segmentation techniques tailored specially for the optimal
detection of a particular object type. Their a priori specification, together with their parameters
and a search area, are associated with relations in the knowledge base between objects. A
specific goal-directed segmentation technique is only activated if the hypothesized object is
searched from the object with which the technique is associated in the knowledge base. Because
segmentation is never perfect, it is possible to define alternative parameters, alternative
segmentation techniques and an alternative search area. Hypotheses for re-segmentation are
generated if an inconsistency is detected.

4.5.3 Onrncr RECocNrrroN

After top-down segmentation, properties of the segmented object are compared with a priori
knowledge in a bottom-up process. Values of geometric and radiometric properties should be
within the range of values of the corresponding attributes of the a priori defined object.
Properties for object recognition can be defined in the object definitions as well as in the object
relation (see section 4.6). It properties are related to the segmentation technique, they are usually
defined in the object relation. Properties generally valuable for a certain object are usually
defined in the object definition.

4.5.4 INcoNSrsrENcy DETEcrroN

For realisation of inconsistency detection distinction is made between optional and essential
relations. An optional relationship between two objects indicates that if the first object is found,
it is likely to find the second in its vicinity. An essential relationship implies that if the first
object is found, the related object must be found also or else the first object is wrong. Essential
relations provide a mechanism to detect inconsistencies in the interpretation. These inconsist-
encies are handled by generation of alternative hypotheses, resulting in re-segmentation.
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4.6 KNOWLEDGEREPRESENTATION

4.6.1 BlsIc REPRESENTATIoN PRIMITIVES

The represented knowledge is divided into two differ-
ent types [Hartog, 1995]: object definition and object
relation.

The object definitions contain a description of geome-

tric and radiometric properties for each object type'
They are used to test hypotheses of goal-directed
segmentation.
The obiect relations describe spatial relationships
between object types and changes of one object type
into another, in this way constructing a complex
semantic network which describes both declarative
and procedural knowledge. The declaration part

describes the location of objects with respect to each
other, while the procedural part of the knowledge
specifies where to search and with which image pro-
cessing technique. Object relations are used to control
change detection and contextual reasoning.

Variations upon object definitions and relations,
which are used for generation of alternative hypoth-
eses in case of inconsistency detection, are called alternative object definitions and reprocessing

relations respectively. The contents of object definitions and object relations will be discussed in

more detail in the next sections. An overview of the types of knowledge they contain is given in

fig. 4.8.

4.6.2 Os.JE,cT DEFINITION

Object definitions contain a priori knowledge represented in frames. An object definition

consists of a name, an origin, and a set of numerical features. The origin discriminates objects

of the map from objects extracted by segmentation. In this way it is possible to search an object

from the map in the image by defining a relation between the object from the map and the

object in the segmented image. A standard set of geometric features is available [Hartog, 19951,

but it is also possible to define other features, like features based on radiometric properties'

These properties should be chosen such that tLrey depend as little as possible on a specific test

image. Only relevant properties are specified. A range of allowed values is attached to each

feature, providing a condition for recognition of the object. Because this range should be defined

a priori, extensive testing will be necessary to determine appropriate values. An example of an

object definition is given in fig. 4.9.

Fig. 4.8 Types of knowledge reqre-
sented in obiect definitions and obiect
relations
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DEFINE OBJECT
name: triangular mark
origin: segmentation

// geometric conditions;
ar€al(lengthxheight) [0.40, 0.60]

// radiometric conditions:
average grey value: [> 200]

ENDDEF

Fig. 4.9 Object definition triangular mnrk
Fig. 4.10 Alternative object definition for
triangular mark

This object definition contains one geometric and one radiometric property. Since road markings
in the Netherlands are always painted in white, the average grey value of the segmented object
will always be high in intensity images. In theory the area of the triangle divided by its height
times its base length is exactly 0.5. However, because of the discrete character of pixels, some
deviation should be allowed in this condition. Based on experience a deviation of 0.10 was
defined. For an acute-angled triangle the deviation due to discretisation may even be larger
(0.15). Therefore an alternative object definition can be used (fig.4.l0).

4.6.3 Onrncr RELATToN

Each object relation contains four parts:

- an identification part which specifies the type
of relationship and between which objects
the relation is defined:

- a part for goal generation containing the
priority of the relationship and characteristics
of the relationship (optional or essential) for
inconsistency detection;

- a part for goal-directed segmentation which
specifies an image processing technique, its
parameters and a search area;

- a part for object recognition, containing geo-
metric and radiometric features of the rela-
tionship or features associated with the spec-
ified image processing technique.

In the context of map updating there are three
types of relationships:

DEFINE ALTERNATIVE
name: triangular mark
origin: segmentation

// geometric conditions:
area/(lengfthxheight) [0.35; 0,65]
length [>,10 m.]

// radiometric conditions:
average grey value: [> 200]

ENDDEF

DEFINE RELATION
type: changed into
fromr two lane motorway
into: three lane motorway

ll parl tor goal generation
priority: 1
optional: YES

| / part tor goal-directed s€gmentation:
image processing technique:
- SearchExtraLane, about x m. width,
in y direction
parameters: x = 3,0 tI1,, y = vertical
search arcat parallel to the road
element, width = 3.5 m.

| | part lor object recognition
// spatial relationship

100% overlap
ENDDEF

Fig. 4.11 Deftnition of temporal relationship
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- "temporal" (fig.4.1l), between an object in the outdated map and an object in the image into
which it possibly changed;

- "spatial" (fig. aJD, between two objects in the image, which have a contextual relationship.
- "part-whole" (fig. 4.13), between an object from an incomplete map and an object in an

image which shows more details.
Either standard techniques for image processing (fig. 4.12 and 4.13) or a technique specially
developed for the goal specified in the relationship (fig.4.11) can be used.

DEFINE RELATION
type: spatially related to
from: road sid€
to: edge line

| | paft jol.hypotheses generation
pribiity: 2
essential: YES

| | paft lor goaldirected segm€niation:
image processing techniques:
- maximum cosi path calculation bY
dynamic programming
parameters: 15 pixels used to calculate
local direclion ol the road side
s..e1cn ary1: ^narallel to road side at
distance of 3.0 m.

ll part ior object recognition:
// geometdc conditions:

more vectors than road side [< 10 ti-
mesl

ENDDEF

Fig. 4.12 Definition of spatial relationship

DEFINE RELATION
type: consists of part
from: Y-junction
to: triangular mark

tl paft lorgoal generation
priority: 1
essential: YES

tl paft lorgoaFdirected segmenlation:
image processing techniques:
- thresholding grey values > x
- median littering
- remove objeds < y pixels
parameters: x = 200,tY = 5fl1
search area: inside Y-junction

ll parl lor object recognition:
empty

ENDDEF

Fis.
ship

4.13 Definition of part-whole relation'

Reprocessing relations define alternatives for essential object relations, which result in re-
segmentation if the object is not detected. Therefore they are associated with an object relation.
As a consequence they do not contain the part for goal generation and object recognition, but
only the part for goal-directed segmentation. Fig. 4.14 shows a reprocessing relation of 4.12
which defines an adapted search area. The example in section 4.8.2 illustrates the use of both
relationships to search an edge line from the road side in an aerial image. Fig. 4.15 shows an
alternative of relation 4.13 with adapted parameters. The example in section 4.8.3 uses these
relationships to illustrate the principle of alternative parameters and segmentation techniques on
another aerial image.
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DEFINE REPROCESSING
type; spatially related to
from: road side
to: edge line

| | pan lor goal-directed segm€ntation:
image processing techniques:
- maximum coCt':palh,by dynamic pro.
gramming
parameters: 15 pixels used to calculate
local direction of the road side
search area: parallel to road side al
distarrce 1,1 m.

ENDDEF

DEFINE REPROCESSING
type: consists of part
from: Y-junction
to: triangular mark

| | part lor goal-directed segmentation:
image processing techniques:
- thresholding grey values > x
- median filtering
- remove gbj€c{€ < y pixels
parameter$: x=220, y = 500
search area: insidb Y-junction

ENDDEF

Fig. 4,15 Definition of reprocessing relation
with alternative parameters for relation 4.13

Fig. 4.14 Definition of reprocessing relation
with alternative search area for relation
4.12

4.6.4 RrpnrsENTATroN oF SEGMENTED oBJEcrs

Objects extracted from the image should be stored in such a way that their properties can be
easily compared with the conditions for recognition defined in the object definitions, but also
such that raster information can easily be retrieved for example for definition of the search area
for low level processing. These instantiations of objects are only stored temporarily and are
therefore called STM objects. Also objects from the map are in advance converted to STM
objects, because they need to be compared with objects in the knowledge base to start hypoth-
esis generation.

STM objects are stored in a linked list, which allows fast searching for objects with specific
characteristics, which Nagao t19841 considered to be a problem. Each STM object has six
groups of attributes (fig. 4.16):
l. identification: concerns a unique label number which is assigneo;
2. classification: indicates of which defined object type the STM object is an instance after it is

recognized and what its origin is (map or segmentation);
3. iconic description: a raster image of the segmented object with the size of its minimum

bounding rectangle together with its location in the image;
4. symbolic description: geometric and radiometric attributes, which can be used for recogni-

tion;
5. vector description: coordinate descriptions of the contour and axis of the object, if they were

calculated during segmentation;
6. related objects: lists of label numbers of objects with a special relationship with the

concerned STM object, for example touching, near, part_of, resulted_in or caused_by.
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detected from:
Y-lunclion f2

resulted in:
block line #53

touch€s:
white line #9, #12
block line #53

average width - 6
min. width - 1
max. witfth - 11
length - 162
area - 1093

Fig. 4,16 Representation of a STM obiect

4.7 COMPLETEINTERPRETATIONPROCESS

A scheme for the complete interpretation process with associated knowledge sources, input and

output data is shown in fig. 4.17. lt is an integration of frg. 4.4 and 4.8. It relates particular

types of knowledge and input/output data to certain tasks in the interpretation strategy.

Hypothesis generation uses initially only objects from the outdated road map for which a

temporal relationship is established as object relation in the knowledge base or objects from the

incomplete map included in a part-whole relationship. Their object relations define which image
processing routines will be used for goal-directed segmentation of the aerial image, their
parameters and search area. Geometric and radiometric properties defined in the knowledge

based are compared with conesponding features of the STM objects created after segmentation.

If a priori defined properties correspond with properties of the segmented object, the object of

searched type is found and appended to the updated road map. If the object is not found, an

inconsistency is detected if the object relation is essential. In this case either an alternative

object definition is used for object recognition, or another search area and/or other (parameters

of the) image processing techniques are used for re-segmentation.
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INTERPRETATION STRATEGY KNOWLEDGE BASE

SEGMENTATION
PROCEDT'RE +
SEARCH AREA

Fig. 4,17 Complete interpretation process (thick arrows) with associated knowledge sources,
input and output data (thin arrows)

4.E EXAMPLES

This section presents examples of the application of the interpretation strategy on aerial images.
The contents of the knowledge bases used in these examples mainly consists of the object
definitions and relations used to illustrate the concepts in the previous sections. The first three
examples deal with contextual reasoning at large scale. The examples in section 4.8.1 and 4.8.2
aim to illustrate the use of alternative object definitions and reprocessing relationships. The third
example shows a complete interpretation of all road markings present in an aerial image using
their spatial relationships. The example in section 4.8.4 deals with change detection at medium
scale, not followed by contextual reasoning. Integration of both change detection and contextual
reasoning will be the subject of the case study in chapter 5 and 6.

Ranges of attributes in object definitions and parameters for goal-directed segmentation used in
these examples were not tested exhaustively, because the aim of these examples is only to
illustrate the concepts
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4.8.1 Exl*rpr,r oF ALTERNATTvE lryporrrEsEs cENERATToN

To illustrate the concept of alternative object
definitions, alternative parameters and segmenta-
tion techniques for goal directed segmentation,
the next example is used: searching a triangular
mark from a medium scale Y-junction. This
relationship is part of the semantic network in
fig. 4.5. The frame associated with this relation-
ship was already defined in fig. 4.13. Since road
markings in the Netherlands are always painted
in white, they can be extracted from an intensity
image by thresholding pixels with a high grey
value. The value 200 was chosen as threshold.
Next a median filter, size 3x3, is applied to
remove small holes and protrusions due to near
road markings. Finally small objects are
removed. Fig. 4.15 already showed a relation-
ship with adapted parameters for re-segmenta-
tion, using the value of 220 as threshold. Another relationship, which defines a different image
processing technique for re-segmentation, is shown in fig. 4.16. Thresholding a few percent of
pixels with the highest grey values is less sensitive for absolute grey values. From the standards
for road construction [Rijkswaterstaat, 19751it can be calculated that linear road markings cover
2-3Vo of the road surface. A threshold of 2.5Vo turns out to work quite well.

i:.,iriiiri,,:::::
::,:1.,,l t, ti: l:i l:l

i ,rilllllll r. '... ii.,.....ll . . ...........iiiiii.ii ..,1 iiiiii:ij ii : r,: iriiiiiiiiiiiiiiil tiijiiiii'iiiiiri

Area (in m2) 181 2s9 196 171

Length (in m.) 64 88 77 76

Width (in m.) 4.7 4.4 4.0 4.0

Area= > -
LenothxWidth

0.596 0.673 0.635 0.s68

Average grey value 244 239 246 249

Tabk 4,1 Relevant properties of resulting STM objects using altemative hypotheses

Fig. 4.19a shows a part of an aerial image, ground resolution 0.4 m., which contains two Y-
junctions. Activation of the hypothesis defined by the relation in fig. 4.13 results in two STM
objects (l and 2) drawn in black in fig. 4.19b and projected on top of the Y-junctions from a
digital map. These STM objects need to fulfil the conditions defined for a triangular mark in fig.
4.9. As can been seen in table 4.1 this condition is fulfilled for STM object 1, but not for 2.

DEFTNE.:nHPRpgf;SSlNG
type: consists of pad
from: Y-junction

, : : : , , : : . : , : td i . : : . : : , , , : . , , : , t t ia f l9Ulat r f iark, ,  l , , ,

| | part lor goJ,.directeC segmentation:
image,prqggsSing,tds66;Ouart,
', threshbldin$ hiQhCst x7!
- median filtering
- remove objects < y pixels
paiamEtersl,N ; 2i$ ,,,y,,= 500,,
Sseidh areal,.ih$ide,Y.j0nGlion,,

ENDDEF

Fig, 4,18 Relation for re-segmentation with
a different image processing technique
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Probably because the white truck which is merged with the segmented triangle. Hence STM
object 1 is recognized as white triangular mark, but for STM object 2 re-segmentation with an
adapted threshold value of 220, according to the relation in fig.4.15, is done. Fig.4.19c shows
the result. STM object 3 is still not recognized as triangular mark, unless the alternative object
definit ion of f ig.4.10 is used. Hypothesis generation based on the relation in fig.4.18, which
defines a different segmentation technique would already lead to recognition (STM object 4)
with the original object definition (fig. 4.19d). The radiometric condition, an average grey value
> 200, is fulfilled for all STM obiects.

Fig. 4.19 (a) Aerial image with 2 Y-junctions, (b) Result of thresholding with grey value 200,
(c) Idem with value 220, (d) Result of thresholding highest 2.5Vo

4.8.2 ExaupLE oF AN ALTERNATTvE sEARcH AREA

In order to illustrate adaptation of the search area, another example is used: search of an edge
line from the road sides of a dual carriageway of a motorway with two lanes each. The distance
between the road side and this line differs for the left and the right side of the road (right in the
sense of the side one drives at in the Netherlands). There is a hard shoulder of 3.0 m. wide at
the right side of the road, while at the left side there is only a narrow correction strip of 1.1 m.
wide. As a consequence two different search areas need to be defined for searching a edge line:
one parallel to the road side at a distance of 3.0, the other at a distance of 1.1 m. The corre-
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sponding semantic network is part of fig. 4.5 and the corresponding frames were already shown
in fip.4]2 and 4.14.

In this example a dynamic programming
algorithm [Gerbrands, 1988] is used, which
detects the maximum cost path in a region of
interest. A characteristic of this algorithm is that
the path is often erratic. The geometric property
defined in the object relation in fig. 4.12 is
related to dynamic programming. It defines that
the number of vectors after vectorization of the
path should not be more than l0 times larger
than the number of vectors of the road side.
Since they are parallel, a much larger number of
vectors indicates a very erratic path, which
should be rejected. The property defining that grey values along the path should be relatively
high is general valuable for edge lines, which are painted in white. These kind of properties
should be defined in the object definition $rg. a.20).

Another characteristic of dynamic programming is that always a path is found. Therefore during
object recognition it needs to be determined which of the two lines found at each side of the
road at a distance of 3.0 m. will be accepted as edge line. Actually the geometric condition that
the thickness of the edge line should be between 0.05 and 0.45 is not relevant in case of
dynamic programming, since this technique always produces a line of one pixel thick, in this
case 0.40 m corresponding to the resolution of the aerial image. In general it is a very valuable
property because in the standards for road construction [Rijkswaterstaat, 1975] an edge line is
defined to be 0.15 m. thick. For that reason it is added in the general valid object definition.

The result of processing the part of the aerial image in fig. 4.21a is shown in fig. 4.21b and
4.21c. Searching an edge line from the inner road side at a distance of 3.0 m. resulted in the
detection of the lines in fig. 4.21b, corresponding to STM object I and 2 in table 4.2. For both
the radiometric conditions are not fulfilled. At the inner road side of a Z-lane motorway the
distance between road side and edge line is actually 1.1 m. according to the standards for road
construction [Rijkswaterstaat, 19751. Consequently this hypothesis was correctly rejected.

rurilriiiriiii Xisri i iliiiiiiiiiiliiiiil$jiiiiiiii:ts'''.,

Times more vectors 7 8 2 6 5 1

Average grey value 170 180 247 244 235 218

o/o ol grey values > 200 1Oo/o 18Y" 96"/" 93Yo 9O"/" 72o/o

Table 4.2 Relevant properties of STM objects, which result from searching triangular marks

DEFINE OBJECT
name: edge line
origin: segmentation

// geometric conditions:
thickness 10.05 m.,0:45 m.I

// radiometric cpnditions:
average iniensity: t> 2001
o/o prxe! > 200 F 70%I

ENDDEF

Fig. 4.20 Object definition of edge lines
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Re-processing with a search area at a distance of 1.1 m. resulted in STM object 3 and 4 (fig.
4.21c), which were both accepted. STM objects 5 and 6 resulting from searching an edge line
from the outer road side at a distance of 3.0 m. were accepted as well.

Fig. 4.21 (a) Aerial image with 2-lane motorway, (b) Rejected edge lines
detectedfrom inner road sides, (c) Accepted edge lines at 3.0 and l.l m.
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4.8.3 Ex.lwrpLE oF coMpoNENT DETEcrroN AND coNTExruAL REASoNTNG

In this example the result of contextual reasoning is shown using the complete semantic network
in fig. 4.5. Actually it is a combination of the examples in section 4.8.1 and 4.8.2.
The same aerial photograph of the Y-junction (fig. 4.19a) was used as in section 4.8.1. Results
are projected in colours on the aerial image in fig. 4.22. The medium scale digital map of the
Y-junction (grey in fig. 4.19b) is used to detect triangular marks (blue in fig. 4.22) and road
sides (red). The road sides initiate the detection of edge lines (green), which on their turn lead
to detection of lane lines (yellow). Finally, from one of the triangular marks a block line (pink)
is found, since the other one is outside the image.

4.E.4 Exxvrpr,E oF cHANGE DETEcrroN

This example illustrates detection of a change at medium scale, which has no consequences for
the presence of other objects. The aim is to determine if a carriageway of a motorway with two
lanes changed into a carriageway with three lanes. There is only one object relation needed,
which was already given in fig.4.11. The image processing routine, SearchExtralane, is based
on area-based matching of an iteratively widening raster representation of the 2-lane carriageway
from the map. As criterium for comparison of matches an increase in the cross-correlation is
used. The object definitions for a Z-lane and 3-lane carriageway are respectively given in fig.
4.23 and 4.24. The geometric condition, width of the carriageway, is calculated from the
standards for road construction. Another way to detect this change, which is not considered
here, is to search traffic areas at large scale and use them to determine the specialized type of
road element at medium scale.

DEFINE OBJECT
name: two lane carriageway
ongrn: map

// geometric conditions:
width:  11.2 m.

Fig. 4.23 Object definition for motorway
with 2 lanes

DEFINE O&JECT
name: three lane carriageway
origin: segmentation

// geometric conditions:
width: 15.6 m.

Fig. 4.24 Object definition for motorway
with 3 lanes

Fig. 4.25a shows an aerial photograph of a carriageway with three lanes. The outdated map,
which contains a carriageway with two lanes, is projected on it in white. Applying the relation
in fig. 4.11 results in detection of a 3-lane carriageway, projected in white in fig. 4.25b. In case
the same relation is applied to an up-to-date map of 2-lane carriageways, projected in black on
the aerial image in fig.4.25c, the change is rejected.
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Fig. 4.25 (a) outdated map of 2-lane motorway projected in white on aerial image of 3-lane

motorway, (b) result of change detection, (c) result of change detection in case an up-to-date

map (in black) is used.

4.9 DISCUSSION

In general there are two possible errors in interpretation: missing object or misclassification. The

definition of essential and optional relationships is used as a mechanism to detect these types of

errors. If an essential relationship is not present, the missing object is searched using alternative
processing or object definitions. If it is still nLot found, the object which initiates the hypothesis

is supposed to be misclassified and its classification is rejected. To check if objects related by

an optional relationship are eventually missing, extra relations can be appended. Fig. 4.26 shows

a part of the semantic network of fig. 4.5 with an extra relationship (with priority 6) between a

lane and an edge line for the detection of eventually missing edge lines.
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Fig. 4.26 Semantic network with extra relationship to detect missing edge lines

There is no general procedure for adaptation of image processing technique, its parameters,
search area or using an alternative object definition. Which alternative hypotheses are defined
depends on the situation. The example in section 4.8.2 shows clearly that knowledge from the
standards for road construction can be used for this purpose.

In the current implementation it is not possible that an object will get two classifications. Also
the same object will not be segmented again, if it was already detected from another object.
This situation will for example occur if a lane line is searched on a two lane road, because it is
related to both edge lines. Fig. 4.27 shows the result of extracting the lane line from the aerial
photograph of fig. 4.21. As can be seen only one line was segmented. This is done by checking
first if the searched object type was already detected within the search area, before the
segmentation starts.

Another common problem in reasoning is the danger of infinite recursion. In order to prevent
this, identifications of searched objects are stored as related objects with the STM object.

In the next part of this thesis the presented concepts will be evaluated by concretizing them for
a certain case and by performing experiments on multiple aerial images.

Fig, 4.?:l Result of detection of one lane line related to two edge lines
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PART II

CASE STUDY:
EXTRACTION OF NEW ROADS

LINKED TO EXISTING MOTORWAYS

The aim of this pan of the thesis is twofold. On the one hand to test if our research objectives
are met: evaluate if knowledge-based concepts and the designed map-guided interpretation
strategy are suitable for updating road maps. On the other hand to concretize the concepts for a
certain case, which enables us to discuss details and implementation issues. This case study

focuses on the recognition of new link roads connected to an existing motorway at medium
scale. For this case experiments on multiple images were done to evaluate the research
objectives. This imagery is used in the photogrammetric practice of the Survey Department of
Rijkswaterstaat to produce large-scale road databases. Chapter 5 describes in detail the
contents of the knowledge base, image processing techniques and control strategy. Next, in
chapter 6, results are presented, discussed and evaluated.
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CONTENTS OF THE KNOWLEDGE.BASED
AND THE DESIGNED INTERPRETATION STRATEGY

In this case study we focus our interest on the extraction of medium scale objects: road elements
and junctions. The case is considered in which the outdated map only contains a motorway and
that connected link roads present in the aerial photograph are newly constructed. Junctions on
the main carriageway are changes which need to be detected, followed by extraction of the
accompanying link roads using contextual reasoning. In this way the outdated map is updated
corresponding to the new situation represented in the aerial photograph. The advantage of this
case is that it can also be seen as an interactive application, in which the main road is indicated
by a human operator.

This chapter describes details for this case, of which the results will be used in chapter 6 to
evaluate the map-guided interpretation strategy designed in chapter 4. Specifically the next
subjects are discussed:
- The contents of the knowledge base (section 5.3 and 5.4): which parts of the road network

are defined as objects, which properties are used for recognition and how their values are
determined, which standards for road construction are used and how are they incorporated;

- The interpretation strategy: which hypotheses are generated by the defined object relations
(section 5.5), the image processing techniques activated for change detection and contextual
reasoning and their parameter settings (section 5.6 and 5.7).

First, the objectives of the experiments are defined, because they determine the composition and
characteristics of the image set (section 5.2) and contents of the knowledge base.

5.1 OBJECTIVES

Besides evaluation of the knowledge-based concepts and the designed interpretation strategy in
general, our more specific objective in these experiments is to test whether incorporation of the
specialized knowledge from the standards for road construction can improve the performance.
Therefore, results are compared with those obtained when using general road properties.
Although speed is not used directly as performance criterium, it is considered in the sense that
experiments are done on images of reduced resolutions, because they are more suitable for
development of the interpretation strategy, especially for tuning parameters of image processing
routines and the composition of the contents of the knowledge base. As a result the influence of
the resolution on the performance should be investigated.
When testing the performance of the map-guided interpretation strategy discrimination should be
made between the ability to detect new junctions and road elements properly and the ability to
classify them correctly as for example Y-junction or fly-over.
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Summarizing, the objective of the experiments is to test the influence of the incorporation of
standards for road construction against general road properties and the influence of resolution on
detection and classification.

( t INPUT DATA

Aerial images and road databases are the input for the map-guided interpretation strategy. Its
performance is tested in chapter 6 on multiple images of different situations. In this section the
composition of the image data set and the contents of the road databases will be discussed.

5.2.1 Iruncn snr

The imagery used in this case study is from the photogrammetric practice of the Survey
Department of Rijkswaterstaat. All aerial photographs depict motorways in the Western part of
the Netherlands at scale 1:4000. Parts containing an intersection were selected. The fact if the
Y-junction of a link road is present within the limited range of the photograph is used as
criterium for selection. The photographs are located on parts of three different motorways:
- A12, between Utrecht and The Hague
- A4, between The Hague and Amsterdam
- A44, between the intersection with the ,A'4 and Leiden
They are taken during three different photo flights.

Fig. 5.1 Aerial image of T-intersection on 2-
lane motorway AI2, part of learning set Fig. 5.2 Aeriql image of T-intersection on 2-

lane motorway A4, part of learning set
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Fig. 5.3 Aerial image of part of T-intersection on 3-lane
motorway 44, part of learning set

Fig. 5.4 Aerial image of semi-cloverleaf
interchange of the 4-lane motorway A4,
part of learning set

Fig, 5.5 Aerial image of a interchange with
Haarlemmermeer solution at the 2-lane mo-
torway Al2, part of learning set

From the nine available scanned aerial photographs five were used to optimize the interpretation
strategy, called the learning set. They are shown in fig.5.1 - 5.5. Only these images were used
to determine the values for conditions in the knowledge base and parameters for image
processing. The remaining four images were used for testing and evaluation. The images of this
test set are shown in fis. 5.6 - 5.9.
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Fig. 5.6 Aerial image of T-intersection

on 2-lane motorway A4, part of test set

Fig. 5.7 Aerial image of interchange

with Haarlemmermeer solution at the 2-

lane motorway A44, part of test set

In all selected photographs the motorway consists of a dual carriageway. A condition for the

learning set is that it is composed such that it contains images with 2-, 3- and 4-lane carriage-

ways. Because there are far less motorways with 3 and 4lanes than with 2 lanes, the learning

set contains one image of 3-lane (fig. 5.3), one of 4-lane (fig. 5.a) and three of 2-lane carriage-

ways (fig. 5.1,5.2 and 5.5). These carriageways are part of two of the three different motor-

ways: the A12 and 44. Another condition for the learning set is that it contains the all possible

different types of intersections. Three main types (see section 4.3.1) are present:
- T-intersection (fig. 5.1, 5.2, 5.6)
- interchange, with Haarlemmermeer solution (fig. 5.5, 5.9) or semi-cloverleaf (fig. 5.4)
- part of T-intersection (fig. 5.3, 5.1) or interchange (fig. 5.8)

Fig.5.2 and 5.6 depict the same T-intersection with and without shadow. Fig.5.2, with shadow,

was chosen to be part of the learning set, while fig. 5.6 is part of the test set. Fig. 5.6-5.8 are

taken subsequently during the same photo flight and partly overlap each other.

Photographs were scanned with 100 pm pixel size and 8 bits per pixel, yielding a ground

resolution of 0.40 m. per pixel. Images with a lower resolution were obtained using the simplest

type of image pyramid construction [Rosenfeld, 1984]: averaging the grey values in non-

overlapping 2-by-2 blocks of pixels. Repeating this method two times yields images at a

resolution of 1.60 m. The motivation for using the lower resolution is that experiments with the

original resolution are very time-consuming. Therefore, most experiments are carried out on low
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resolution and the best setting is compared with results at the original resolution. Because the
photographs are in colour, they are scanned in red, green and blue. Intensity images are
generated by averaging the values from these three bands. These images are used for the

experiments.

Fig. 5.9 Aerial image of part of interchange of the

4-lane motorway A44, part of test set

Fig. 5.8 Aerial image of part of T-
intersection on 2-lane motorway 44,
part of test set

5.2.2 ROIn DATABASE

Because the present digital topographic database of the Survey Department represents objects
not as a whole, but only as line elements, the needed road elements cannot be selected directly.
Since their plan for the future is to convert to an object-oriented database, it was decided to
extract the road elements manually from the aerial images.

The roads are extracted from the up-to-date aerial images as if they represent an outdated
situation without link roads. If a slip-road is present, not the real road side is outlined, but a line
as if there is a hard shoulder instead of this lane. As an example in fig. 5.10 the corresponding
road database is projected as a raster image on the aerial photograph of fig. 5.1. For each aerial
image the road database contains two road elements: the separated carriageways of a motorway.
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Manual extraction results in coordinate lists,
representing the contour of road elements.
Before image interpretation can start, these
need to be converted to STM objects. STM
objects (see section 4.6.4) contain both an
iconic description, i.e. the raster image of the
road element, as well as a vector description,
i.e. the measured coordinate list. The com-
plete contour is split up into coordinate lists
representing the side of the road and the
border of the image. These are related to the
original road element by part-whole relation-
ships. The STM objects are not classified in
advance, but obtain their classification during
image interpretation. If they will be classified
simply as "road element from database" or if
discrimination will be made between 2-. 3-
and 4-lane carriageways depends on the
object definitions in the knowledge base,
which will be subject of the next section.

Fig. 5.10 Digital map of the motorway in the
outdated situation projected on the aerial ima-
ge in black

5.3 CHOICE OF OBJECTS

In this section the objects are listed, which are defined in the knowledge base for this case
study. Because one of our objectives is to test if incorporation of the standards improves the
performance of the interpretation strategy, two different sets of objects are defined. One set in
which the conditions for recognition are based on the standards for road construction [Rijks-
waterstaat, 19751 and another set in which general road properties are used. Inclusion of the
standards also leads to discrimination of more types of objects, because the standards contain
detailed information about properties of specializations of road elements, llke 2-,3- and 4-lane
carriageways of motorways. The terminology of section 4.3.2 (see also appendix B) is adopted,
in order to discriminate at medium scale generalized from specialized object classes. The defini-
tions of the objects in the specialized road network model are based on information from the
standards, while the definitions of the objects in the generalized road network model are based
on general road properties. This section describes which objects are chosen. Their properties,
used to recognize these objects, are described in section 5.4. The results of interpretation using
each of these road models are compared in chapter 6.
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5.3.1 GBNnrulrznD RoAD NETwoRK MoDEL

In the generalized model no discrimi-
nation is made between the main car-
riageways and link roads. Both are clas-
sified as road elements and have the
same general properties. The only differ-
ence is that one originates from the
database and the other from segmenta-
tion. Junctions are defined at every posi-
tion where two road elements are con-
nected. They are seen as build from two
parts: a part of a road element from the
database which changed into a junction
and the first part of a newly connected
road element (fig. 5.11). In this case
study all junctions originate from the
segmentation, since they are not present
in the databases and need to be detected.

EI oadelement

ffi lunclion: chang€d part
of rotd damnt

f Fnclion:tirslpartol
sllD 10Cd

Fig. 5.11 Y-junction build from two parts

In conclusion the next medium scale objects are defined in the generalized model;
- road element from database
- junction from segmentation
- road element from sesmentation

5.3.2 SpncrtLrzr,D RoAD NETwoRK MoDEL

In the specialized model all road elements from the database are dual main carriageways, part of
the specialized type "motorway" at small scale. They are divided into main carriageways with 2,
3, or 4 lanes. Single main carriageway could be added if needed. The specialized type of the
road in the database is not directly specified and needs to be inferred during the interpretation
process.
The new road elements, which need to be extracted by segmentation, are link roads. Discrimi-
nation is made between link roads with I lane and 2 lanes. Link roads branch off specializations
of junctions, in particular Y-junctions. These are again seen as build from two parts: a changed
part of a main carriageway and a part of a link road. The advantage of this viewpoint is that it
is easier to evaluate the geometric properties of Y-junctions, because both parts have their own
properties. The part of the main carriageway has a width related to the fact whether it consists
of 2,3 or 4 lanes, while the width of the part of the link road corresponds to the incorporation
of I lane or 2 lanes. Also the angle between both parts, which can be used to discriminate y-
junctions and fly-overs, can more easily be measured. Besides, this part of a link road can be
utilized to the further track the link road during contextual reasoning (see section 5.6.2).
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The other specialization of junctions which are discriminated are fly-overs. Also fly-overs are
seen as build from two parts.

Summarizing, the specialized road network model consists of the next seven objects:
- main carriageway with 2, 3 or 4 lanes
- link road with I or 2 lanes
- Y-junction
- fly-over

5.4 DEFINED CONDITIONS FOR RECOGNITION OF OBJECTS

In the knowledge base road features are defined as conditions for the recognition of segmented
objects. Geometric, radiometric and spatial conditions used for recognition of the objects in
section 5.3 are discriminated. These conditions are subsequently described in this section and for
each condition it is indicated for the recognition of which object of the generalized andlor
specialized model it is used. For each condition a range of allowed values, attached to it, is
determined. The images in the learning set are used to derive experimentally suitable values. For
objects from the specialized road network model also the standards for road construction

[Rijkswaterstaat, 1975) are used for this purpose.

5.4.1 Gnounrntc coNDITIoNS

Two geometric conditions are used in the knowledge base: average width and the [./W-ratio.

Average width

In the specialized road model the average width is added as geometric property to discriminate
the various specialized types. The values are derived from the widths of traffic areas on the
carriageway as defined in the standards for road construction [Rijkswaterstaat, 1975]:

traffic lane: 3.5 m.
hard shoulder: 3.0 m.
correction strip: l.l m. (main carriageway)

0.6 m. (link road)
line mark: 0.15 m.

They are compared with the values for the average width measured in the images of the learning
set in table 5.1. The width is measured at many positions along every road. The number of
measurements for calculation of the average width and the number of main carriageways present
in the learning set are indicated as well in table 5.1.
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rll #ut.., irhUmbsr ol;i
fi;l5ult'.,.,,,.
mun* ''iiiiiii:,:

2-lane main
carriageway

1 1 . 5 5  m . ' l '1 .95 m.
(11 .50  m. )

1 .33  m.
(1.36 m.)

b

(4)
222
(138)

3-lane main
carriageway

15.20 m. 15.43 m. 0.47 m. 2 128

4-lane main
carriageway

20.75 m. 19.75 m. 0.45 m. 2
-7Q

1-lane link road 7.40 m. 7.43 m. 1.46 m. 220

2-lane link road 1 1.05 m. 1 1 . 0 1  m . 1 .27  m. 5 298

Tabte 5.1 Measured average width and width from standards for road construction [Riikswater-
staat, 19751. The values in brackets are obtained when a 2-lane carriageway which becomes a

4-lane carriageway is ignored in the calculations.

There is only one photograph which contains 3- and 4-lane main carriageways. As a result the

calculation of this average width deviates considerably from the standard width. The standard
deviation is very small and has a magnitude of about one pixel (0.40 m.). This is obviously the
measuring accuracy, but does not say anything about the deviation of the width of caniageways
in relation to the standard. The standard deviation of the measured average width based on more
carriageways is larger: between 1.25 and 1.50 m. But, for the link roads the measured average
width only slightly differs from the standard width. A remark is that the link roads in one
photograph were not included in the calculation of the average width, because they started as 1-
lane link roads and ended as 2-lane link roads. Maybe a separate class should be defined for this
type of link roads. The average width of the 2-lane main carriageway differs more from the
standard than for link roads, but it turns out that in one of the photographs the 2-lane carriage-
way partly has two hard shoulders, because a bit further, outside the range of the photographs, it
becomes a 4-lane caniageway. If this 2-lane motorway is ignored during calculation of the
average, the average measured width becomes 11.50 m., which is very close to the standard
width.

In conclusion, the width according to the standards for road construction is suitable to define the
interval (table 5.2) within which the average width of a segmented object should lie to be a
certain specialized type of road element. Assuming a normal distribution a definition of a 95Vo
confidence interval yields an interval of about 2.5 - 3.0 m. at both sides of the standard width,
according to the measured standard deviation. However, in order to prevent ambiguity in
interpretation, the intervals are not allowed to overlap. Consequently, we are forced to use the
largest possible interval with the boundary in the middle between the standard widths (W,,0) of
2- and 3-lane main carriageways and l- and 2-lane link roads, yielding an interval [W.td-1.825
m., W,,o+1.825 m.l The same interval was used for 4-lane main carriageways for reasons of
consistency, resulting in a small gap between the intervals for 3- and 4-lane roads. For the
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minimum width of a l-lane link road and the maximum width of a 2-lane link road it was
decided not to hold on to a symmetrical interval, because there are several link roads with
different features within one class. For example: some link roads do not have a hard shoulder at
one side, as also reported in the standards for road construction [Rijkswaterstaat, 1975], but
have a correction strip at both sides. Also according to the standards the width of link roads is
enlarged to maximal 4.5 m. in curves with a radius smaller than 300 m. These two cases are
used for determination of upper and lower limit of the interval of the link roads.

IJW-ratio

The LAM-ratio is defined as the average length of the segmented object divided by its average
width. It is utilized to select only those parts of road elements from the database which possibly
changed into a junction and to reject those which are detected due to e.g noise. In the general-
ized road network model a condition for the length of these parts, measured along the road, is
that it should be larger than the width of the road, because it corresponds at least to the width of
the crossing road, in case of a perpendicular crossing. Thus the [,/W-ratio is larger than l. The
width of the crossing road is assumed to be at least as wide as one carriageway of the main
road. In the specialized model the minimum length of changed parts is equal to the width of a
crossing l-lane link road, yielding L/W-ratios of 0.64, 0.49 and 0.36 for 2-, 3-, and 4-lane
carriageways respectively, using the standard widths of table 5.1.

In the specialized road network model an additional task of the [-/W-ratio is to discriminate fly-
overs from Y-junctions. Table 5.3 shows the L/TV-ratios for detected parts of road elements at
the location of a fly-over or Y-junction in the learning set at a resolution of 1.60 and 0.40 m.
LAV-ratios of the same junction at different resolutions are given on one line. As can be seen
LAV ratios at high resolution are in general larger. Consequently at each resolution a different
threshold for the LAV ration was chosen to discriminate fly-overs and Y-junctions. At neither
resolution it is possible to choose such a value for the threshold between both classes that
always a correct classification is obtained. For this reason an additional spatial condition is
defined in section 5.4.3. A value of 6.30 was chosen at a resolution of 1.60 m., because it yields
only one misclassified Y-junction. It belongs to a location of a Y-junction at which two small

itym,o=fl,tobd,.olsmCntiiiiii:iil: maximum'.width,

2-lane main carriageway 9.7 m. 13.7 m.

3-lane main carriageway 13.7 m. 17.0 m.

4-lane main cariageway 18.9 m. 22.6 m,

1-lane link road 4.7 m. 8.4 m.

2-lane link road 8.4 m. 14 .5  m .

Table 5.2 Range of width for recognition of specialized types of road elements
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changed parts were detected instead of one. One of them is included in table 5.3 and is marked
with an asterisk. A value of 7.00 is chosen at a resolution of 0.40 m., in which case the two
marked fly-overs of the learning set get an incorrect classification.

Table 5.3 l-/W-ratio for fly-overs and Y-junctions at a resolution of 1.60 and 0.40 m. Values
marked with an asterisk will be classified incorrectly with the chosen threshold for the L/W
ratio of 6.30 and 7.00 respectively.

5.4.2 RluoMETRrc coNDITIoNS

A property of road elements is their characteristic profile of grey values perpendicular to the
road. An example of a set of profiles is given in fig. 5.12. An extracted profile contains road
pixels and some background pixels. Usually road pixels in intensity images have a higher grey
value than background pixels. By comparing an extracted grey value profile with a pre-defined
profile model, road elements can be recognized. A profile model, which includes grey values
from the aerial image, is used for searching road elements. An artificial profile model is used to
obtain the grey-value based profile model.

In the artificial profile model it is assumed that the grey value of the road is higher than its
surrounding. A raster image of the road element and its near road elements present in the data-
base is drawn with value 255 for the road and 0 for the background. This raster image and the
aerial image are both resampled perpendicular to the axis of the considered road element. Each
artificial profile is matched with the corresponding grey level profile.
The grey-value based profile model is generated by calculating the mean grey-level profile using

ll,Yju#rioni

...i.eO"ml.,,..tii.i......,,,'11..........,.iio.10iffi;'i'r".r.'r'' :...r.iiiiiiiiiiiiiiiiiiiiiiiii1,,60 m.'  i i , i , , , , , , , , , , , , , i i o.40 lll;

3.78 8.02 * 50.32 52.52

2.35 2.96 22.38 21.31

6.09 8.42 ' , 11.26 12.61

6 . 1 3 6.55 8.45 9.06

5.53 6.26 6.49 8.22

' t 9 .15 20.25

3 . 5 8 ' 9 . 1 8

9.44 7.64

1 1.69 1 1 . 6 8

29.50 28.37
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only those profiles which match best
with the artificial profile model. The
percentage of best matches which is
used to calculate the average is a para-
meter of the image processing technique
for change detection. An advantage of
this model is that real grey values are
included and consequently variations
due to differences in exposure of the
photographs and overall features, like
linear road markings, are included in the
model. However, the local presence of
other road elements is averaged. So
other road elements, like a parallel car-
riageway, are only included if they are
constantly present along the complete
length of the road element.

Fig. 5.12 Example of a set of profiles extacted from
an aerial image

The cross-correlation is used as criterium to judge the correspondence between an extracted grey
value profile and the profile model. This criterium is passed as a parameter attached in the
knowledge base to the image processing technique for changed detection. The value used as
threshold for the cross-correlation will be derived in section 5.7.

5.4.3 SpnrrAL coNDrrroNs

One of the spatial conditions which are used in the knowledge base to distinguish Y-junctions
from fly-overs is the angle between the two parts of a junction. A Y-junction usually indicates a
sharp angle, while at a fly-over roads can even cross perpendicular. According to the standards
for road construction [Rijkswaterstaat, 1975], the angle in a Y-junction is between 0.6 and 5.1
degrees, preferable 1.7 degrees. However, the angles between the detected parts of the Y-
junctions measured in the learning images are larger. The reason is that often not the first part
of the link road is found, but a part further from the branchpoint, where the link road already
bends off more. Therefore, the measured values (table 5.4) were used to determine the condition
for the angle of both junctions instead of the values from the standards for road construction.
Another remarkable fact is that the angles of fly-overs in table 5.4 are rather small. Perpendicu-
lar crossing are expected at a fly-over. However, these are not found because in all cases they
end into a crossing very close to the main carriageway. If the link road is not found, the angle
cannot be measured.
Again it is not possible to determine an unambiguous value for the threshold between both
classes. But overlapping intervals can be defined, because this is the second condition for
discrimination between fly-overs and Y-junctions. For Y-junctions an interval between 0 and 2l
degrees is defined. All angle between link roads and road elements detected in the learning set
will be accepted. For fly-overs a range between 18 and 90 degrees is defined. One angle is

I

o

88



CONTENTS OF KNOWLEDGE-BASE AND INTERPRETATION STRATEGY

rejected, but it corresponds to the angle between a link road and a part of a road element, which

was already misclassified, because of its LAM-ratio. The 'same intervals are used for both

resolutions.

Table 5.4 Angles in degrees between main carriageway and link road for fly-overs and Y-
junctions

5.5 INTERPRETATIONSTRATEGY

Updating the situation in this case study requires change detection as well as contextual
reasoning. The interpretation strategy is established by the defined temporal and spatial
relationships between the objects. The object relationships for objects of the generalized and
specialized road network model respectively are listed in the next sections.

5.5.1 Rnr,LrroNs BETwEEN GENERALIZED oBJEcrs

Representation of the developed interpretation strategy as a semantic network results for the
objects of the generalized road network model in fig. 5.13. Hypotheses'generated for the
interpretation strategy correspond to object relations in the semantic network. The frames
corresponding to these three relationships are represented in fig.5.14 - 5.16.

:r.t[u]*:.ti.i.t,.l:..:iiiii :.iiiiiii:.r "i i , i,bo,,*: ll'l.......i :ib.+O1fnl. .,,,..:, ' :1:::

29.78 32.97 3.28

't9.21 20.00 10.27 9.93

28.94 17.89 - 10.59 10.49

9.40

10.03

18 .81 1 6 . 1 8

17.25 15.78

20.01 14.45

6.48 6.72
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DEFINE RELATION
type: changed into
from: road element
into: Dafi of junction

ll parl tor hypothesis genefation
prioiity: 1

l  , o $ i i o n a l : : v H S , , , ,  ' '  i i  r :  t ,  , , , , , ,

I:part, idr goatdirCcteu,,seCmentaiion;,,,

,ime e..pioo6$Sin$,1ssh;1du6;. : . :.

, rr-,:PnoiilE::metChing :., , :: ::: : :: '

parameters:
l?"ioi'ioi"r option
- threshold for cross-correlation
- factoi for width search area
search area: centred around the road
element

ENDDEF

Fig. 5.14 Definition temporal relationship

DEFINE RELATION
type: sOlialty relgted to
from: part of junCtion
to: junction

ll parl.lo,r hypothesis generation
priority: 2
essential: YES

// parl torgoal-directed segmenlation:
image. processing techniques:
- rotating profile analyser
parameters:
- positioh on axis
- 

Jange of distance to search area
- length of search area
- width of search area
- range of width slip ioad
- range of rotation
- angle difference
- threshold for cross-correlation
search area: at the other side of the
junction than the parallel carriageway
runs

Er.rooir

Fig. 5.15 Definition of spatial relationship

DEFINE RELATION
typer spatially related to
lrom: junction
to; new road element

ll pan tor hypothesis generaiion
priority; 3
optional: YES

ll part tor goaFdirected segmentation:
image processing techniques:
- extrapolating profile ahalyser
paramelers:
- step size
- width profile model
- deviation from predicted position
- threshold for cross-correlation
search area: on top of junction

ENDDEF

Fig. 5.16 Definition of spatial relationship
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Fig. 5.13 Semantic network underlying the frames for extraction of new slip roads on a

motorway using objects of the generalized road network model

Fig. 5.17 Semantic netvvork underlying the frames for extraction of new slip roads on a
motorway using the objects of the specialized road network model
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The increasing priority of the relationships between road elements from the database, junctions

and new road element means that hypotheses for detection are successively generated. This
results in a rather straightforward process of change detection followed by contextual reasoning.
The first object relationship (fig.5.14) generates hypotheses for change detection: road elements
from the database are searched that possibly changed into a junction. The other two frames
define spatial relationships for contextual reasoning. The first (fig. 5.15) aims to detect the first
part of a new road element, which forms together with the changed part a new junction. This is
an essential relationships, which means that if it is not found, the changed part is rejected as
part of a junction. The next relationship (fig. 5.16) activates the image processing technique to
track the new road element till it ends, usually at the image border. The image processing tech-
niques activated by these relations and their parameters and search area will be discussed in
detail in section 5.6 and 5.7.

5.5.2 RrurroNs BETwEEN SpEcIALIZED oBJEcrs

The semantic network underlying the relations between objects of the specialized road network
model (fig.5.17) is more extensive and more complex. Actually there are even more objects and
relationships present in the knowledge base, because discrimination is made between main
carriageways with 2, 3 and 4 lanes. For each class a semantic network similar to the one
presented in fig. 5.17 is defined. The frames corresponding to the object relationships in the
semantic network for main carriageways in general are represented in fig. 5.18 - 5.27.

DEFINE RELATION
type: changed into
from: main carriageway
into; part of Y-junction

ll parllor goal generation
priority: I
optional: YES

ll paft tor goaldirected segmentation:
image processing technique:
- profile matching

ENDDEF

Fig. 5,18 Deftnition temporal relationship

DEFINE RELATION
type: changed into
from: main carriageway
into: part ot fly-over

il patllgr goal generation
priority: 2
optional: YES

ll part ior goaLdirected segmentation:
image processing technique:
- profile matching

ENDDEF

Fig. 5.19 Definition temporal relationship

In the interpretation strategy generated by these object relationships first, parts of the carriage-
way are searched which changed into a Y-junction (fig. 5.18) and next, those which changed
into a fly-over (fig. 5.19). After change detection in each of these hypothesized parts of a
junction first, the beginning of a 2-lane link road is searched (fig. 5.20 and 5.21) and next, of a
l-lane link road (fig. 5.22 and 5.23) in order to form a complete Y-junction or fly-over. Because
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these relationships are essential, the changed parts are rejected if the first part of a link road

cannot be found. Finally, the complete link roads are searched by tracking starting at the Y-
junction or fly-over (fig. 5.24-5.27). The parameters and search area of the image processing

techniques are the same as in fig. 5.14-5.16, but are omitted for convenience of arrangement.
Compare fig. 5.18 - 5.19 with fig. 5.14, frg.5.20-5.23 with 5.15 and fi9. 5.24 - 5.27 with 5.16.

DEFINE RELATION
type: spatially related to
from: part'of Y-junction
to! Y-junction with part of 2-lane

link road

t / parl tor hypotheses generation

:l3:l'*i,?.
l l parl torgoaldirected segmentationi

image processing techniques:
- rotating profile analyser

ENDDEF

Fig. 5.20 Definition of spatial relationship

DEFINE RELATION
type; spatially related to
tiom: part of 

-Y-lunction

toi Y-junction with part of 1-lane
link road

ll paft tor hypotheses generation
priority: 4
essential: YES

ll paft lorgoaFdirected segmentation:
image processing techniques:
- rotating prolile analyser

ENDDEF

Fig. 5.22 Definition of spatial relationship

DEFINE RELATION" -G;''!i"o"i'v'*rated 
to

from: part of fly-over
to 

l.l;:"", 
with part of 2-lane link

| | parl torhypotheses generation' 
priority:- ' 3
essentiall YES

ll parl tor goal-directed segmentation:
image processing techniques:
- rotating prolile analyser

ENDDEF

Fig. 5.21 Definition of spatial relationship

DEFINE RELATION-- 
il;;' 

' 
,p"ti"ly'r"r"t"o to

from: part of fly-over
to, fly-over with part of 1-lane link

road

ll paftlo,'r hypotheses generation
priority: 4
essential: YES

// part tor goal-directed segmentation:
image processing techniques:
- rotating profile analyser

ENbDEF :  , , , , , ' ,  , , ,

Fig. 5.23 Definition of spatial relationship
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DEFINE REr.ATtoN
:,,ttpei spatialfy relaled 10 ',, ,
from: Y-junction
'{o: :: 1,lane,t!nk bad ,,:,::

// part for hypotheses generation
priority: 5
optional: YES

/ / pi,rt tor goat-dir;ieO segmentation:
,:irnage p!'qce$sing,,teihnfques;

, 
I ; extrapolafng:::profile..enelyser;

ENDDEF

Fig. 5.24 Definition of spatial relationship

DEFINE RELATION
type: spatially related to
from: Y-junction
toi z{ane fink roao... 

, 
,

ll pari tor, hypothesea gbn€iation
priority: 5
optional: YES

// part,for goal:dir,ec,,t,segmentation:
:, image procesiihg,ledhhiques:

- eltrapolating profile analysei
ENDDEF

Fig. 5.25 Definition of spatial relationship

DEFINE RELATION
,:  t l rpel . .  sOai ib l ty , , , , re lated, to, : : : ,

from: fly-6ver

,,,,, ,t6t "' ". 
.'-tnnn,,,|'no *no 

,.,,,,, ,,, ,
//,,part for, hypdlheses geneiatioh

priority: 5
optionai 

"ra, ,, 
,i 1, 

.i,...
ll pai tor goal-directed segmentation:

:,,,, ima$e,,p e$sing:iechniqu€$:,,,,,,
,,,:. "."Ot $ttn ing :profite,analyser

ENDDEF

Fig. 5.26 Definition of spatial relationship

DEFINE RELATION
rype: r,:::spetially iclated to
from: fly-over

,,,,,,tot" " 

z'fane ltnk road

ll parllor hypotheses generation
priority: 5
optional: YES

il part br goal-directed segmentation:
;,,irnage, prdcessing fechalques!

,,,,::,,,,- extie$6latln$::$blile ahelys€r
ENDDEF

Fig. 5.27 Definition of spatial relationship

5.6 IMAGE PROCESSING TECHNIQUES AND THEIR PARAMETERS

Attached to each object relation are image processing techniques which will be activated to
segment the searched object type. In this section the image processing techniques for change
detection and contextual reasoning together with their parameters will be described in detail.
Setting these parameters is the subject of section 5.7.

5.6.1 CrnNcn DETEcrroN

The image processing technique described in this section aims at detecting whether there are
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parts of the medium scale road element from the map which changed into a part of a junction. It
applies so-called signal or area-based matching [Lemmens, 1988] of a profile model and one-
dimensional grey-level profiles extracted from the aerial photograph at the position of the road.
element in the map. In order to obtain grey-level profiles, the aerial image is resampled
perpendicular to the local direction of the axis of the road element in the map. Every extracted
grey-level profile is matched with the grey-level based profile model, described in section 5.4.2.
The percentage of best matches (B7o) used for the calculation of the average grey-level profile
is a parameter. Cross-correlation is used as criterium for matching and its threshold (&) is
passed as parameter as well. Parts of road elements which correspond with groups of profiles
with low values for the cross-correlation are returned to be evaluated as road elements which
changed into a junctions.

The search area is defined centred around the road element from the database with a width
related to the mean width of the road element (W*). This width also determines the width of the
profile model flMr). The factor that establishes this relation is passed over as one of the
parameters of the image processing routine.

This image processing technique is attached to the relation in fig.5.14 between generalized
objects and the relations in fig.5.l8 and 5.19 between specialized objects.

5.6.2 CoNrExruAL REASoNTNG

Contextual reasoning is used for two purposes:
- detection of the part branching off a changed part of a road element to form ajunction;
- tracking of link roads starting at a detected new junction.

Detection of junctions

The image processing routine for the
detection of junctions is based on
modelling the junction as a straight line
starting from the axis of the main car-
riageway at the position of a changed
road element. At the top of this line a
rectangular search area is defined in
which a series of characteristic profiles
needs to be found in order to recognize
the line as part of a junction (fig. 5.28).
As should be noted the real shape of the
junction is not detected.

Fig. 5.28 Model for Y-junction
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Within the search area the aerial image is resampled perpendicular to the predicted line. The
resampled image can be seen as a series of one-dimensional grey-value profiles. Next, area-
based matching of this resampled image with a series of artificial profiles is performed. The
criterion for a good match is again defined by the cross-correlation. Since the width of the link
road is not exactly known, several values for the width of the road in the artificial road model
are tested. Also the direction of the line is not exactly known and therefore gradually adapted to
search the Y-junction. The optimal value for the distance to the search area varies for different
types of intersections like semi-cloverleafs and Haarlemmerrneer solutions. All distances within
a predefined range are tested. Standards for road construction are used to restrict the range of
values for width, distance and direction which are tested. Since only one new road element is
assumed to start at each changed road element, the best match from all varied directions,
distances and widths is returned to be evaluated as Y-junction.

The image processing procedure for detection of junctions has many parameters of which some
are related to each other. Figure 5.29 visualizes the unknown variables of the algorithm. Two
groups can be distinguished:
1) the geometric variables deter-

mine at which positions the
beginning of a link road is
searched:
a) position on the main road

(x,v)
b) distance to the search area

Di
c) angle with the main road

Q r
2) the variables which determine

the size of search area and
model for local evaluation of
the presence of a junction by
radiometry:
a) length of the search area

L, (in direction of line)
b) width of the search area W. (perpendicular to line)
c) width of the road in the model M,

Both groups have influence on the value of the criterion for the presence of a link road, the
cross-correlation n , which is also a parameter.

The variables lb, lc and 2c are varied, resulting in the next parameters:

[Dnin, D^^] range within which the distance from the starting point on the axis to the road
element to the beginning of the search area is varied

[9r,,9.*J range within which the direction is rotated

A<p angle difference between successive directions which are tested

Fig. 5.29 Parameters of technique for detection of Y-junc'

tions
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Fig, 5.30 Geometric parqmeters of procedure for detection of Y-
junction, which vary within a range

CONTENTS OF KNOWLEDGE.BASE AND INTERPRETATION STRATEGY

[Mo,in, M.*] range within which the width of the road in the model is varied

Fig. 5.30 and 5.31 visualize the variation of these parameters. Settings will be discussed in more

detail in section 5.7.

Ws of Mmrn

Fig. 5.31 Varying para-
meter for width road in
model

Road tracking

The procedure for road tracking is based on profile analysis like in [Groch, 1982] and

[McKeown/Denlinger, 1988]. The basic idea is evaluation of the one-dimensional grey level pro-

file perpendicular to the road at a road point predicted by extrapolation of previously detected

road points. In contrast to the procedure developed in [Gunst, 1991] every profile between the
previously detected and predicted road point is evaluated instead of only one profile. In this way

the algorithm is less sensitive for the presence of small disturbances on the road surface, e.g.

due to cars, at the cost of more computation time.

Road tracking (fig. 5.32) starts with predicting a road point and resampling perpendicular to the
predicted direction of the road. The similarity of an extracted profile (C) with a profile model
(A-B) is a measure for the significance of the predicted point. An iterative convolution
procedure searches the most significant point close to the predicted point. It calculates the root
mean square difference between the model and the extracted profile. Therefore, the grey-level
profile extracted from the aerial image is wider than the profile model such that the profile

model can shift over the extracted profile in order to detect a deviation between the predicted

and real position. The maximum deviation (Ap) is one of the parameters of the algorithm. By

cross-correlation the similarity of profile (D) and the profile model is quantified. In fig. 5'32
intermediate extracted profiles are omitted for the purpose of giving a clearer illustration of the
process, but the previous procedure is performed for every extracted profile.
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Fig. 5.32 Road tracking by profile analysis

The first part of the link road, detected as part of the junction, is used to obtain the initial
profile model. An artificial profile model is used to detect local deviations in the positions of
the straight road element used for detection of the junction. This is necessary because there is
often a curve in the first part of a link road. By averaging all grey level profiles (A-B) on the
road element, the initial profile model is obtained. The next road point is predicted by linear
extrapolation from the last road point of the road element using the final calculated perpendicu-
lar direction after correction of this point. The distance to the predicted point is called the step
size (s) and is related to the width of the road element detected in the junction. The idea is that
n€urow roads have a higher curvature, so the step size should be smaller. The step size is
reduced till the last accepted profile if the farthest profiles show insufficient correspondence
with the model. Intermediate rejected profiles can be evaluated as junction in a recursive
process. If no profile within the search area is accepted, the step size is first doubled, assuming
a large junction and if this still does not yield a road segment, tracking stops.
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5.7 PARAMETER SETTINGS

In this section the used settings for the parameters of the image processing techniques described
in section 5.6 will be given. Finding an optimal of all these parameters is very difficult, because
most of them depend on each other. In appendix C.2 it is investigated how sensitive the
parameter setting of the image processing procedure for detection of junctions is for variations
in the result of the procedure for detection of changes.

5.7.I SnlTnqcs oF ALL PARAMETERS USED IN THE CASE STUDY

Four approaches, sometimes combined, are used to determine the optimal settings:

1) mathematical or geometrical relations
2) experiments on artificial images
3) experiments on aerial images
4) measurements in database
Examples of how these methods are used for determination of values of parameters are given in
section 5.7.2. Table 5.5 - 5.7 show the setting of all parameters and which of these methods is
used to determine their values. Notations are listed in appendix D.

Some parameter settings differ for the generalized and specialized road network model. In the
specialized model it is possible to use the same image processing technique with slightly
different parameters for each object. A different criterium for the cross-correlation can for
example be used for 2-,3- and 4-lane motorways, because it depends on the width of the road.
Standards for road construction [Rijkswaterstaat, 1975] are if possible included to determine
parameter settings for the specialized case.

the knowledge from the standard[ for road construction included in the specialized road
network model

,:,P,4ffi+ririr,r,r
mCtetr1iii

iiiiiiiiiiiiiiiiiiiiiiiii::i:i

iiGEHEHAtEeO',notu1f .#;..
WOnrc,,UODE[ "i'i 11,11,111,111,1.,,1,1,,,;.;;,;;.;;i.i.siptciAu# Dii.RdfiH1ilEffibnt'Uuutr

::VatUe .,,.,.:i,;;:;;.::j:j:;::.l+:jji
.... , lllll:ll:lll+:::::::::++:::::::i ii#ai*e 

.:i:ii

B% 3 1Oa/a .t 10%

ws 1 2.0xW, 1 lane width 2.OxW,

Rc 3 o.70 ' l+3 width 2-, 3- and 4-
lane motorways

0.70 (2 lanes)
0.75 (3 lanes)
0.79 (4 lanes)

parameters.Ior c to
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Hlflrf;tiiiill
me,l#isi

GENERALIZED ROAD NETJ
Wonx:iUooel

specreli2Eo RoAD r.rrrwonx MoDE=L

*fiil*t'*ValUe Meihoc lx I r.ist,ir"*
,,,.CtandCid$;,:,:,:,,::,,',,, i

#ilue

(x,v) 1 (|t,,iws (+LR,+wR)

9min
1 W^

arctan( 
, j)

W.
arctan( - j)

9.., 1 180"-9.,n 1 angle in a Y-junc-
tion

Y-junction:
lQo + gr,,n at both

sides (see fig. 5.33)
fly-over: 180"-9.,n
(see fig. 5.30)

A9 2 ' t .0 2 Y-junction: 0.5
fly-over: 'l .0

D.,n W" * M.,"cos(g)
---Zs-ilnT,q)- 

.

1 width 1- and 2-
lane link road

W"+M.,"cos(g)
---Zsin-(eJ-

Dt.* 3 1 .OxL , 3 1 .0x L"

L . J 3.Oxw, 1 maximum curva-
ture link road (R,,n
= 35 m.) and width
1-12- lane link road

4M,R^,n-3Mi (see

ws 1 2.OxW, 1 width lane 2.OxM,

M^in 3 w , - 1 6 m . 4 width 1- and 2-
lane link road

4.725 (1 lane)
8.375 (2 lanes)
(see table 5.2)

M^^, 3 w , + 1 6 m . 4 width ' l -  and 2-
lane l ink road

8.375 (1 lane)
14.50 (2 lanes)
(see table 5.2)

RC 3 o.75 J 0.75

Table 5.6 Values of all parameters for detection of junctions, the method used to determine
them and the knowledge from the standards for road construction included in the specialized
road network model
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UettAt.'neiue' ValuE

s 3 3.OxM* maximum curvature
link road (R,,") F,q'.W

(see fig. 5.34)

ws 1 2.OxM*
'l width lane 2.OxM*

Lp 3 1 0  m . 1 maximum curvature
link road (R.,") F,,"-lffiF ("""

fig. s.3a)

Rc .t 0.70 3 0.70

Table 5.7 Values of all parameters for road tracking, the method used to determine them and

the knowledge from the standards for road construction included in the specialized road

netvvork model

Fig. 5.33 Search area for detection of the first part of a link road in a
Y-junction

1 0 1
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Fig. 5.31 Definition of length L, of search area for circular slip
road with radius R-,n

5.7.2 EXAMPLES oF DETERMINATIoN oF PARAMETER SETTINGS

As an example of how the parameter settings in table 5.5 - 5.7 are determined, this is shown for
two cases:

l) The width of the search area(W) and the threshold for the cross-correlation (R6) of change
detection, determined by a combination of theoretical derivations and experiments on aerial
images

2) The angle difference (Aq) between successive directions, determined by experiments on
artificial images.

Example l: combination of theoretical derivation and experiments on aerial images

There is a mathematical relation between two parameters of the image processing technique for
change detection: the cross-correlation and the width of the search area. Their relation is derived
in appendix C.l for an ideal case. The threshold for the cross-correlation is derived from
choosing the width of another road in the profile, which is considered significant for indicating
a junction. The presence of a road that is more than one lane wider is chosen as threshold.
Substitution of the standard width of a lane, Lw:3.5 m, and the width of 2-, 3- and 4-lane
motorways respectively in formula c.5 yields the thresholds for the cross-correlation represented
in the second column of table 5.8. These are maximum values, because due to noise in the real
case, the optimal threshold should be lower. The factor which relates the width of the search
ilea to the width of the road is setto 2 (see appendix C.l for details).
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For small sample sizes the cross-conelation coefficient R. should exceed a minimum to obtain

certainty that there exists similarity between the profile and the model. This means that the null

hypothesis that there is no correlation, thus Ho: R.=0, should be tested against the alternative

hypothesis that Rc>0. A one-tailed student's t-test with N-2 degrees of freedom and a signifi-

cance level cr can be used to define the criterium for rejection of Ho, resulting in formula 5.1

[Hays, 1988].

lR.l  2 ro.r_, (s.1)

The number of pixels N in the profile corresponding to the minimum width of 2-,3- and 4-lane
motorways (table 5.2) at a resolution of 1.60 m and the t-test value for a 99Vo confidence
interval yields the minimum values for the cross-correlation in table 5.8.

By experiments on the learning set of the aerial images the optimal threshold between the
minimum and maximum is established. The threshold is increased from the minimum to the
maximum with differences of 0.01. The detected changed parts of the motorways are drawn next
to each other. The optimal threshold is determined visually for the images in the learning set
considering the number of detected changed parts at positions where no junction is present and
the number of changed parts belonging to more than one junction, which both should be
minimal.

Example 2: experiments on artiftcial images

The angle difference between successive directions is defined as the distance between the end
points of two successive lines from the starting point. The main reason is that if the angle
difference is defined in degrees, especially for large maximum distances to the search area, the
distance between successive search area can be large, while for short maximum distances there
is much overlap. The distance between successive search areas should be very small, because it
should be prevented that none of the directions of the search area tested during rotation

N - 2
-
|  -R ;

iii ii#i #l't.'i"l.l',:::.: ii:iiiiiiiiiiiiiiiiiiii: :i: : ,Him,i,ffiiiiiiiiiiiiilllir,.,,.,i:.,i,:ir:,uffir.n;',. .....*i
2-lane 0.73 (w=11.55 m.) 0.65 (N=12) 0.70

3-lane 0.79 (w='15.20 m.) 0.55 (N=17) 0.75

4-lane 0.84 (w=20.75 m.) 0.47 (N=24) 0.79

Table 5,8 Threshold R" for cross-correlation
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corresponds such to the direction of the link road that the value of the cross-correlation is larger
than its threshold. If the angle difference is too large, the chance that these directions badly
coincides is bigger, because there is an integer number of steps between the begin direction and
the direction of the link road. This may result in accidental omission or detection. The influence
on the cross-correlation is demonstrated in appendix C.2 in fig. C.9 and C.l0 for an angle
difference of 1.0 and 0.5 pixels respectively using an artificial image of a Y-junction (fig. C.7).
It is shown that with an angle difference of 0.5 pixels the influence of this parameter on
detection of Y-junctions reduces insignificantly.

5.8 DISCUSSION

One of the basics of knowledge-based interpretation is the separation of domain-dependent and
object-specific knowledge from problem-solving computation [Hanson/Riseman, 1978], in order
to make more clear which object properties are involved. These properties are compared with
the properties of the segmented object during object recognition.
However, in this case study a part of the criteria for evaluation of segmented objects is defined
within the image processing procedure. For example, only the first part of the link road with the
best match with the artificial road model is returned based on evaluation of radiometric
conditions. The reason is that our object definition only allows absolute evaluation of properties
and not a relative evaluation which is needed to find the best match. But comparison of matches
with all the variations in search direction, distance and model width can be done more
efficiently within the image processing procedure than within the interpretation strategy.
Because each image processing technique is used to search one specific object type, it is
possible to see which properties are used to recognize each object type as parameters attached to
the image processing techniques in the object relations.

The presented interpretation strategy and contents of the knowledge base are tested in the next
chapter on the images of the learning and test set.
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