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Abstract 

In this thesis, the geodetic boundary value problem (GBVP) for a completely hypo- 
thetical earth is developed. As already shown in (Gerontopoulos, 1978)) the com- 
plete GBVP for a 2D earth can be set up. It can serve as an example for the real 
3D one, with the advantage of less complex mathematics and better performable 
numerical simulations. 

In chapter one, the points of departure of this thesis are discussed. It is under- 
lined that  we do not seek for a strict mathematical solution of the GBVP, as done by 
Gerontopoulos, but investigate aspects of the 2D GBVP that have correspondence 
with the 3D case. This introductory chapter is concluded by an overview of the 
history of the problem of the determination of the figure of the earth. 

Chapter two serves as preparation for the formulation and solution of the GBVP. 
Some points of the potential theory in the plane are treated and special attention is 
paid to  the series solution of the potential for a circular boundary, which is an ordi- 
nary Fourier series. Finally expressions are derived for the integral kernels appearing 
in the solution of the GBVP. 

In chapter three, the linear observation equations are derived for the classical 
observations potential, gravity and astronomical latitude, and for the components 
of the gravity gradient tensor. From several combinations of these observables, the 
potential, and the position are solved with the observation equations in circular, and 
constant radius approximation. For their solution, closed integral expressions are 
given. The systems of equations can be either uniquely determined or overdeter- 
mined. This yields solutions for the disturbing potential which are almost identical 
to  the 3D problem. It is also possible to  solve, in this approximation, the GBVP 
analytically from discrete measurements. The analytical expression derived for the 
inverse normal matrix can be used for error propagation. It is shown that  the in- 
tegral of astronomical leveling can be derived from the solution of the GBVP with 
observations of astronomical latitude. Furthermore, attention is paid to  the zeroth 
and first degree coefficients, and to  the application of the theory of reliability to  the 
GBVP. 

In chapter four, first the effect of the neglect of the topography and the ellip- 
ticity is analysed. It follows an iteration method can be applied in order to  obtain 
solutions of the GBVP without, or with only little, approximation. Then, five lev- 
els of approximation are defined: three linear approximations (with or without the 



topography and/or the ellipticity taken into account), a quadratic model and the 
exact, non-linear equations. In the iteration the analytical solutions of the GBVP'S 

in circular, constant radius approximation are used for the solution step. For the 
backward substitution the model is applied for which the solution is sought for. The 
problems are solved numerically by iteration in chapter five. The iterative solu- 
tion of the problem in circular approximation, occasionally referred to as the simple 
problem of Molodensky, is also given as a series of integrals. For the convergence of 
the iteration criteria are derived. 

In chapter five, the generation of a synthetical world is presented. The features 
of the real world, with respect to the topography and the gravity field, are used to 
determine its appearance. The observations are computed, from which the poten- 
tial and the position are solved by the iteration, for all five levels of approximation 
defined. The fixed, scalar and vectorial problem are considered. It turns out that, 
in case band limited observations without noise are used, the ellipticity of the earth, 
not taken into account in the solution step of the iteration, is the main obstacle for 
convergence. This can be overcome by the use of a potential series with elliptical 
coordinates, instead of the polar coordinates usually applied. The theoretical con- 
dition for convergence of the iteration is tested, and for several circumstances the 
accuracy of the solution of the potential and position unknowns is computed. We 
mention: uniquely determined and overdetermined problems, band limited obser- 
vations, block averages and point values, number of points etc. Finally, the error 
spectra of the solved coefficients are compared to the error estimates obtained by 
error propagation with the analytical expression for the inverse normal matrix of the 
GBVP in circular, constant radius approximation, and a simple noise model for the 
observations. If the data noise is the dominant error source, this error estimation 
turns out to  work very well. 
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Introduction 

ALTHOUGH THE NAME currently used to  indicate the problem of the determi- 
nation of the figure of the earth and its gravity field, the geodetic boundary value 
problem, was introduced only in this century, the interest of mankind in the shape 
of the earth is already very old. A brief overview of its history, from antiquity up 
to  the recent developments, is given in the last section of this chapter. But first the 
motives and the points of departure of this thesis are discussed. 

About this thesis 
In (Rummel & Teunissen, 1982) a new approach t o  the geodetic boundary value 
problem (GBVP) was presented. This was elaborated in (Rummel & Teunissen, 1986) 
and (Rummel et  al., 1989). A solution is found of the free boundary value problem 
for the exterior domain, from data given on the earth's surface. Like with Molo- 
densky's approach, there is no need for reduction towards the geoid. The results 
were promising. The formulation can be applied to uniquely determined as well 
as overdetermined GBVP'S, 'horizontal' observations (which depend on a horizontal 
derivative of the potential in spherical approximation) can be included easily, er- 
ror propagation is straightforward and iteration seems feasible. But a number of 
aspects demand further consideration. We mention sampling (discrete observations 
vs. the requirement of continuous data) ,  noise modeling (how to  define a suitable 
noise model for discrete observations which can be used with the continuous formu- 
lation of the GBVP), the implementation of an i teration procedure and numerical 
verification of the theoretical results. 

It  seemed attractive to  try out the same concept on a two-dimensional earth. 
This 2 D  earth is not a planar approximation of the curved boundary of the real earth, 
but a complete 2 D  world with an one-dimensional boundary, as used in (Sansb, 1977) 
and (Gerontopoulos, 1978). This hypothetical earth can be imagined as an infinitely 
thin slice of the real earth through its center and poles (see figure 1.1). The 2 D  earth 
has a number of advantages over the 3 D  one. The reduction of the dimension by 
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Figure 1.1 T h e  preparation of a t w o  dimensional  earth.  

one releases us from awkward things such as meridian convergence, azimuths and 
Legendre functions. Strong mathematical tools are available: conformal mapping, 
used by Gerontopoulos for his solutions to the 2D GBVP, the theory of complex 
numbers and Fourier series. One can expect that the extensive literature on time 
series, with well-formulated theorems on sampling, discrete and continuous signals, 
averaging and noise modeling, can be applied to the GBVP. The formulae are simpler 
and more compact, because of the reduction of the number of parameters. This 
facilitates not only the interpretation of the formulae, but also the implementation 
of numerical tests. 

Unfortunately, the examination of the 2D earth does not only bring advantages. 
As long as the real world is still three-dimensional, we are ultimately interested in 
the properties of the 3D GBVP. This brings up the question to which extent the 
results obtained by considering the 2D problem, are valid for 3D. Although we are 
rather confident the results cannot be very different, some doubts about the validity 
of the conclusions drawn for 2D, when applied to 3D, remain. Another drawback is 
the need for derivation of all kinds of relations well-known for 3D, such as elliptical 
harmonics and their transformation to polar series and the exact formulation of the 
observation equations. 

The potential of a point mass in 2D is the l o g a r i t h m  of the inverse distance, in 
contrast with the function of the inverse distance for 3D. The logarithm becomes a 



separate term in the series expansion of the 2D potential; the zero degree component 
only represents the potential constant. Although this does not bring any theoretical 
problem, it yields some confusion when comparing the results for 2D with 3D. 

What can be expected in this thesis? Not all aspects mentioned in the introduc- 
tion could be included in full detail. Emphasis was put on iteration and convergence. 

First some general properties of the logarithmic potential, its series representa- 
tion, and auxiliary formulas are discussed. This is basically a condensed treatise of 
potential theory for our 2D earth. In the following chapter, the linear model for 
the 2D GBVP is presented. The solutions to various GBVP's are derived in circular, 
constant radius approximation. Next, in chapter 4, GBVP's in higher approxirna- 
tions are considered, and their possible solution by iteration. Finally, the iterative 
solutions are tested numerically for various GBVP's. 

The points of departure 
Some properties of the 2D earth, and the topics to be investigated, are already 
mentioned above. Here the principal choices made, and the points on which we 
focus our attention, are listed: 

- 2D earth, flattened at the poles, with a logarithmic potential. 

- No rotation. The reason for this is not only a simplification of the formulae 
but also the impossibility to define a meaningful rotation axis in combination 
with flattening. 

- The observations are located on the earth's surface. Solution of the potential 
for the exterior domain. 

- We try to be as close as possible to 3D; not only by considering a 2D earth with 
properties derived from the 3D earth, but also by refraining from techniques 
that do not have a 3D counterpart, such as conformal mapping. This in 
contrast with Gerontopoulos, who derived mathematically strict solutions to  
the 2D problem using specific 2D techniques. We do apply the techniques from 
time series analysis. Although not all properties can be directly translated from 
our 1D boundary to the sphere, the behavior of the functions on the sphere is 
expected to be, more or less, similar. 

- We do not aim for mathematical perfection, but consider the problems from a 
geodetic point of view. On the other hand, practical aspects, such as computer 
time, are not taken into account. 

- Local solutions and accuracies are not considered. We only focus to global 
solutions and properties of the GBVP. 

And now something completely different. 
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History of the problem 

As far as known, the Greek scientist Pythagoras was one of the first to propose a 
spherical shape for the earth in the sixth century BC. Aristoteles picked up this idea 
and gave it a better basis by noting the apparent movement of the stars, the circular 
shadow of the earth during a lunar eclipse and the depression of the horizon. Since 
Greek science was merely philosophically oriented, it took about three centuries 
before a serious attempt was made to  measure the radius of the earth. It was the 
director of the famous library of Alexandria, Eratosthenes, who estimated the earth's 
radius by observing the elevation of the sun on june 21th a t  noon in Alexandria. 
Since a t  that  time the sun was in zenith position in Aswan, and since he was aware 
of the relative position of the two cities (Aswan is situated one thousand kilometers 
south of Alexandria and approximately on the same meridian), Eratosthenos was 
able to calculate the radius of the earth. Remarkably, considering his poor measuring 
tools, his solution was only 16% too large. 

With the fall of the Greek empire and the introduction of Christianity in Eu- 
rope, scientific study declined. It was not before the end of the Middle Ages, that 
discoveries by da  Gama and Columbus revived the interest for the face of the earth. 
The idea of a flat earth was finally rejected and new attempts were made to mea- 
sure the earth's circumference. The Frenchman Fernel was in 1525 the first to give 
a new estimate. He observed the elevation of the sun in Paris and Amiens. By 
the use of astronomic tables and the distance between the two cities, measured by 
an odometer, he obtained a value for the earth's radius 1% wrong. The develop- 
ment of new instruments made other, and more accurate, techniques possible. The 
most important for geodesy was the invention of the theodolite. Willibrord Snel van 
Royen, a professor of mathem'atics in Leiden, used it in 1615 for the measurement 
of the distance between the Dutch cities Alkmaar and Bergen op Zoom by trian- 
gulation. The scale of the network was determined from a baseline, observed with 
a surveyor's chain. With astronomic latitude observations in the end points of the 
network, the earth's circumference was determined with an error of 3%. Although 
Snel's result was not very accurate, he introduced a technique of measuring distance 
still in practice. 

The discovery of his mechanical laws, led Newton to the conclusion that  gravity, 
as observed by a pendulum, must be of decreasing magnitude from the poles towards 
the equator, due to the centrifugal force. Furthermore, he, or Picard, hypothesized 
that  the earth is an oblate spheroid, instead of a perfect sphere; supposing the 
earth being an equilibrium figure. This undermined the major premise taken for the 
computation of the size of the earth. To test this hypothesis, the French Academy of 
Science asked Cassini, with his son, to make triangulations running from Dunkerque 
to the Pyrenees. The division of the trajectory in two would show whether the length 
of a degree was dependent on latitude, as is the case on a spheroid. Surprisingly, 
Cassini came to  a conclusion opposite to  Newton's: the earth would be a prolate 
spheroid, flattened a t  the equator. To dispel this contradiction, the French Academy 



sent out in 1736 two expeditions, one to  Lapland and the other to Peru, to  determine 
the length of a degree a t  two different latitudes. From these expeditions, and from 
many others that  followed, Newton's hypothesis of an oblate spheroidal earth, was 
confirmed. 

With the  Peru expedition also another geodetic discovery was made. Bouguer 
noticed variations in gravity that  could not be contributed to  elevation or latitude. 
This was the first time evidence was found for a non-uniform density distribution in 
the earth, causing regional variations in gravity. 

Clairaut published in 1738 the relation between the gravity flattening and the 
geometrical flattening of the ellipsoid. This connection between gravity and geome- 
try can be identified as the first step towards the solution to  the geodetic boundary 
value problem (GBVP): by observing the length of the gravity vector, the flattening 
of the earth can be determined. Clairaut adopted for his relation some hypothesis on 
the density distribution of the earth. Stokes derived a far more general expression in 
1849. He showed that  gravity, up t o  a constant, can be determined from the shape of 
the earth, and vice versa, if it is a surface of equilibrium, close t o  a sphere; without 
any assumptions on the density distribution. He also proved that  the determination 
of this surface is sufficient to  obtain a unique solution to  the gravity in the space 
external to the surface. 

Stokes' publication marked the start  of the third period in the history of the 
knowledge of the earth's shape. After the hypotheses of a spherical and ellipsoidal 
earth, the suggestion of Laplace, an earth which is only approzimately spheroidal, 
could be tested by gravity observations, reduced to  sea level, and Stokes' formula. 
In geodetic terminology introduced later, Stokes' integral connects, in a linear ap- 
proximation, gravity anomalies reduced to  sea level with geoid heights above the 
reference ellipsoid. The integrals of Vening Meinesz (1928)) relate the deflections of 
the vertical t o  the gravity anomalies. Together with Stokes' integral, they establish 
the relationship between gravity and the coordinates of the earth's surface. 

The major drawback of the integrals of Stokes' and Vening Meinesz is the as- 
sumption of a mass free space outside the geoid and the need for reduction of the 
gravity anomalies from the surface to  the geoid. To fulfil these requirements, and 
to  keep the errors small, usually a terrain correction is applied, which requires in- 
formation about the density structure above the geoid. In 1945, Molodensky et al. 
devised a method for the determination of the figure of the earth and its gravity 
field from the surface observations of the potential and the gravity vector, free of 
assumptions on the density. For the geodetic boundary value problem in spherical 
approximation, i.e. the ellipticity of the reference surface is neglected, a series solu- 
tion is given. A large number of papers were published on this so-called Molodensky 
problem. At risk of doing no justice to  other authors, we mention the contributions 
(Krarup, 1971)) (Krarup, 1981), (Moritz, 1968) and (Moritz, 1972). 

The next major step forward in the theory of the geodetic boundary value prob- 
lem, was taken by Horrnander in 1975. He investigated the existence and uniqueness 
of the solution of the linear and the non-linear boundary value problem. A solu- 
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tion of the non-linear problem was found by means of a modified Nash iteration 
combined with smoothing. His results were improved by Sansd in 1977. By the 
transformation of the problem to the gravity space, a fixed boundary value problem 
could be obtained at  the expense of a more complicated Laplace equation . The con- 
ditions on the shape of the boundary and the gravity field to guarantee uniqueness 
and existence of the solution, are less severe than required for Hormanders solution. 
Various aspects of the non-linear problem are also considered in (Moritz, 1969), 
(Grafarend & Niemeier, 1971), (Witsch, 1985), (Witsch, 1986) and (Heck, 1989a), 
among others. 

Although solutions are proposed for the linear and the non-linear problem, al- 
most always Stokes' solution is used in practice because of its computational sim- 
plicity. To overcome, partially, the approximations made with Stokes', several tech- 
niques can be applied. The most important is iteration, as used in (Hormander, 1976), 
(Molodensky et al., 1962) or (Rummel et al., 1989). Pursuing this to the end can 
lead to  the solution to the linear or non-linear problem. But usually one iteration is 
sufficient, regarding the data accuracy and density. To account for the ellipticity of 
the earth, often ellipsoidal corrections are applied, which are computed from Stokes' 
solution. See e.g. (Lelgemann, 1970), (Hotine, 1969) or (Cruz, 1986). This method 
can also be considered as an iteration. Another approach is the use of ellipsoidal 
harmonics for the disturbing potential. The ellipticity is already contained in the 
coordinate system. Afterwards, the ellipsoidal potential coefficients are transformed 
to coefficients with respect to the polar coordinates, we refer to (Gleason, 1988) and 
(Jekeli, 1988). 

The problems of Stokes and Molodensky require a continuous coverage of the 
entire boundary of the earth with observations. This is far from reality, not only 
will measurements always be discrete, but restrictions also exist concerning the type, 
e.g. leveling observations are not available in ocean areas. On the other hand, new 
types of observations became available, such as sea surface heights from satellite 
altimetry. The combination of gravity and potential observations on the conti- 
nents, and altimetry in ocean areas, results in the altimetry-gravimetry boundary 
value problem. A large variety of papers on this topic can be found. We mention 
(Sacerdote & Sansb, 1983), (Holota, 1982), (Svensson, 1983) and (Baarda, 1979). 
Baarda discusses the GBVP from the operational point of view and reaches the 
conclusion that a separate solution needs to be applied for sea and land areas. 

The introduction of new kinds of observables, in addition to the classical obser- 
vations leveling, gravimetry and astronomical observations, gave an impulse for the 
development of overdetermined boundary value problems. More observations than 
unknowns are available; the abundance of data is used to  improve the precision of 
the solution. See e.g. (Sacerdote & Sansb, 1985), (Grafarend & Schaffrin, 1986) and 
(Rummel et al., 1989). 

Nowadays precise satellite positioning, such as GPS, provides station coordi- 
nates without knowledge of the (local) gravity field. Then the so-called fized G B V P ,  

with a known earth's surface, is composed to determine the gravity field from e.g. 



gravirnetry, see (Backus, 1968), (Koch & Pope, 1972) or (Heck, 1989a). Since the 
astronomical observations of latitude and longitude are scarce and not very accu- 
rate, the horizontal position is usually provided by triangulation. The combination 
of leveling and gravimetry can supply the topographic heights and the gravity field. 
The latter is is the scalar GBVP. See (Sacerdote & Sanso, 1986) or (Heck, 1989b). 

Several mathematical techniques are applied for the formulation of the GBVP'S. 
The most common is the use of one or more boundary conditions containing deriva- 
tives of the disturbing potential. Close to potential theory is the use of integral 
equations, see (Molodensky et al., 1962) or (Lelgemann, 1970). Sacerdote and Sansb 
use functional analysis to treat the GBVP. An alternative formulation is given in 
(Rummel & Teunissen, 1982). There the GBVP is presented as a classical linear 
system, which can be solved by least squares. 

In the previous paragraphs a brief description of the development of the GBVP 

was given. It is far from complete, we only tried to provide the history that led to the 
invention of Stokes' solution and the further key steps of the development of physical 
geodesy. In the first half of the section, no references to literature were given. This 
is made up here. A general introduction into the history of surveying can be found 
in (Wilford, 1981). A discussion of the work of Snel van Royen (Snellius) is given in 
(Haasbroek, 1968). Details of ancient arc and gravity-survey expeditions were found 
in (Baeyer, 1861), (Mayer, 1876) and (Clark, 1880). For the proof of uniqueness by 
Stokes, Kellogg refers in his book of 1929 to (Stokes, 1854). 



Potential theory of a 
t WO- dim ensional mass 

distribution 

POTENTIAL THEORY , in particular the solution to Laplace's equation in the 
exterior of a distribution of solid matter, allows for the computation of the grav- 
itational potential and all its derivatives in the exterior space, given its boundary 
values. It can therefore considered to be the basis of physical geodesy. 

We start with some elementary twedimensional potential theory. The pur- 
pose here is to  derive some formulas that are useful for the subsequent sections 
and to  show how close the potential theory for the plane is to that for the three- 
dimensional space. We certainly do not aim for completeness. More can be found in 
(Mikhlin, 1970), (Rikitake et al., 1987) or (Kellogg, 1929). Often, for the potential 
a series expansion is used. In section 2.2 it is shown that the Fourier base functions 
satisfy the two-dimensional Laplace equation and can be used as a series expansion 
for the potential. Finally, some integral formulas are derived and their properties 
are discussed. 

2.1  The logarithmic potential 

The restriction to the two-dimensional plane violates reality since the world is three- 
dimensional. It can be argued, however, that certain features associated with the 
geodetic boundary value problem are common with the two- and three-dimensional 
cases. The Green's function of the Laplace equation in the twedimensional space 
contains the logarithm of the distance from the source point and the observation 
point. For a line mass of strength M per length we have, see (Kellogg, 1929), 

1 
V(P) = GM ln - + constant, 

I l l  
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where G is the gravitational constant and L the vectorial distance from the line mass 
to  the point of observation. This potential has two singularities: at the location of 
the mass ( l  = 0) and at  infinity ( l  + 00). The corresponding attraction is given by 
(ibid.) 

A superposition of line masses yields the potential for a general two-dimensional 
mass distribution: 

1 
doQ + constant 

with C the domain occupied by the mass, and p the linear mass density (see also 
figure 2.1). It satisfies Laplace equation outside the domain C. The corresponding 
attraction is given by 

and is related to  the potential with g = gradV. 

Figure 2.1 The attraction of a mass C i n  a point P. 

In the entire plane, V yields a solution to Poisson's equation (Kellogg, 1929): 

AV(P) = -2rGp. (204) 
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2.2 Series expansion of the potential 

When solving for the potential from the boundary values, usually a sequence of 
orthogonal functions is introduced and its coefficients are determined. Here a series 
expansion will be derived either by expanding In into a series or by solving the 
Laplace equation. Both methods yield the same result. 

2.2.1 Expansion of the inverse distance 

For the distance 

e = Ja + r i  - 2rprQ cos = TT rp - rQ ei+. rp - r~ e-id 

Expansion into a Taylor series (convergent for rp > rg,  hence P must be located 
outside the Brillouin sphere) yields 

Inserting (2.6) into (2.2) gives a series expression for the potential (the uniform 
convergence of the series (2.6) permits interchanging of summation and integration) 

1 O0 
.(P) = G L Ii (2) I n  Feindp. - lnrp p(Q)duQ + constant 

n=-m nl 
n#O l 

1 G  1 .  1 
= - - / p ( ~ ) e - i n b ~  r lnlduQ + p in - + constant 

2 Inl c Q 
n=-m '-P 
n#O 

with 

a0 arbitrary 

The constant is represented by n = 0 in (2.7). Since the constant is arbitrary, a0 is 
arbitrary. 
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2.2.2 Solution of t h e  Laplace equat ion 

Series (2.6) can also be derived from Laplace's equation. This partial differential 
equation can be solved by a separation of variables (see e.g. (Walter, 1971)). In- 
serting 

V(r,4) = Q(rIP(4) 

into the Laplace equation AV = 0 yields 

r 1 P" 
-(aff + -af) = -- = constant n2 (n E Z). 
Q r P 

(other choices of the constant lead to solutions P not periodic with 27r). The solutions 
for the two differential equations are 

for n # 0 and a ( r )  = lnr ,  P(4) = 1 for n = 1, with periodicity laid upon P. In 
the exterior space, V tends asymptotically to -p ln r as r -+ m .  Hence no positive 
powers of r are allowed: 

1 1 
V = pln  - + 0(-) as r --+ m ,  uniformly in 4. 

r r 

It can be shown that in an exterior domain V - p In f is uniquely determined by the 
Laplace equation, the boundary values and the prescribed behavior a t  infinity. 

Since Laplace equation is linear, the sum of all particular solutions is a solution 
too. Thus the general solution to Laplace in the outer area is 

We observe that (2.9) agrees with (2.6), derived along a different path, if a = p. 

2.2.3 Determina t ion  of t h e  coefficients 

The coefficients a, can be determined either from (2.7), if the density ,distribution 
of C is known, or from a function given on a known boundary enclosing all masses. 
This leads to  one of the three classical boundary value problems of potential the- 
ory. If the given function is the potential a t  that boundary it is Dirichlet's problem 
(the other two are Neumann's and Robin's problem). The determination from the 
boundary data is especially simple when this boundary is a circle. Then, the poten- 
tial coefficients can be determined as follows. 

Specializing (2.6) or (2.9) to  r = R and writing a = G M  = p, we have 



2. Potential theory of a two-dimensional mass distribution 

The given potential function on the boundary is expanded into a Fourier series as 

From a comparison of (2.10) and (2.11) the unknown coefficients a, are found to  be: 

From (2.12) it can be seen that the combination of the potential constant a 0  and the 
logarithmic term on the circle p ln  together constitute the zero order coefficient 
c0 of the series (2.11). For practical purposes we like to keep them separated and 
define c0 = a o .  Inserting in (2.9) gives, with a = p, the modified series for V 

The coefficients c, are computed with the inverse of (2.11) (Papoulis, 1962), with a 
modification for n = 0, 

Since we deal with GBVP'S, with the density p unknown, the above derivation is 
appropriate for our purposes. We used here the complex Fourier base functions eind 
because they lead to more compact formulas. Naturally, also the sin n+ and cos n+ 
functions are solutions to  (2.8). 

2.3 Kernel operators 

In physical geodesy integral kernel operators play an important role. They connect, 
in circular approximation, the various quantities of the gravitational field in the 
exterior domain. Also in the planar GBVP such operators apply. 

The relevant integral kernel operator can be written as 

where K and g are two square integrable functions. K is the kernel of the operator 
equation. The domain of integration D and the area element do€ depend on the space 
the operator is applied. The special position of operators of this type is brought by 
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their easy diagonalization. Before showing this, first the concept of diagonalization 
in linear algebra is considered. A matrix A, which is regular and Hermitian, can be 
written as: 

A = S A S ' .  

(the asterisk denotes transpose and complex conjugate). The columns of S contain 
the (orthogonal) eigenvectors of A, such that SS' = S'S = I; the diagonal matrix 
A its eigenvalues. Then for an arbitrary vector z we have 

e i = AS with S = S'z,  fj = S'y. 

By the transformation of the vectors z and y by means of their multiplication by S', 
the original operator attains a diagonal form. If the same reasoning is now applied to 
an infinite dimensional space with A a self-adjoint operator in a function space, and 
X and y as functions, the equation y = Az represents the integral kernel equation 
of above. The diagonalization procedure can also be applied to this operator. First 
a set of orthogonal base functions (bk, assumed to be complete in the domain D ,  is 
introduced through the property 

So the +k functions are the eigenfunctions of the operator, and X k  the eigenvalues. 
We define the inner product as 

Functions that are elements of D, are decomposed with respect to the base functions 

These equations are the analogous expansions to what was written in the finite case 
as z = Sit, it = S'z. S is the operator from the frequency to the original domain, 
S* its inverse, and 2 the spectrum of X. Substitution in the integral equation yields 

or 
f k  = Xkgk. 

Which corresponds to = A%. When the domain D is the (unit) sphere, the sys- 
tem of eigenfunctions +k are the surface spherical harmonics. On the circle, the 
eigenfunctions are the Fourier functions. 
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2.3.1 Fourier kernels 

From Fourier theory we know (Papoulis, 1962) that  functions on the circle can be 
expanded as 

When these expansions are inserted into the convolution integral 

the relation 
Yn = ~ n h n ,  

holds for their Fourier coefficients. In the GBVp application we will write (2.15) as 

with $pQ = +Q - +p. K($) is expanded as 

and, as in (2.16), i t  is 
f n  = gnXn 

( fn  and g, are the spectral components of f and g in (2.17)). 
Since the complex expansions do not permit an  easy interpretation we show how 

t o  write them as cosine or sine series. Kernels with an even and real-valued spectrum 
(X, E R, X, = X-,,Vn E Z) can be written as cosine series 

A kernel with an odd imaginary spectrum (iXn E R, X, = -X-,,Vn E Z) can be 
written as sine series 

= X. + C Xn(ein* - e-'"*) = X. + 2i C X, sin n$ (2.21) 
n= l n= l 

In both cases the function K($) is real. Complex kernels do not occur in our BVP'S. 
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2.3.2 Analyt ical  expressions for t h e  kernels 

In the previous section it was shown how the kernel operators are expressed in terms 
of the spectrum (2.18). Often this is the representation in which the kernels are used 
in the GBVP applications. In this section it is shown how an analytical, closed from, 
can be derived from the eigenvalues. Since only real-valued kernels are used, the 
derivation is decomposed into a part for cosine kernels and in a part for sine kernels. 
At the end, an example of the use of these formulas will be given. 

Later we will see that all the eigenvalues X, of the kernels appearing in GBVP 
can be written either as 

or as a linear combination of these. As the expansion (2.18) is linear, a linear 
combination of eigenvalues gives a linear combination of the corresponding kernels, 
and the evaluation of kernels with the eigenvalues (2.22) is sufficient. 

Cosine kernels 

In (Gradshteyn & Ryzhik, 1980) it is found that 

So the cosine kernel for An = l / n 2  is easily found. For the other eigenvalues we have 
some more work to do. We will follow a procedure analogous to  (Moritz, 1980, ch. 
23). 

First we start with two general functions which contain an additional factor a .  
After deriving the analytical expressions for these functions U is simply put to 1 to 
get the desired kernel functions. These general functions are defined as 

00 cos n+ 
(A 2 01, 

n= l  

0 cos n+ 
(A L 0). 

n=l-A 

Furthermore we define 

L =  d l + a 2  - 2ut, t =COS+. 

From (Gradshteyn & Ryzhik, 1980) we have 
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First the function FA for A > 0 is analyzed. We have with (2.24) and (2.25) 

00 cos n11, 
a A  FA ( a ,  t )  = C - 

n= l n + A  

a 00 2 
A-l a t  - a t - U  

j - ( a A  FA ( a ,  t ) )  = C an+ A-1 COS n$ = a = aA- 
L2 L2 . (2.26) aa n= l 

Integration of (2.26) results in 

t - a  
~ ~ ~ ~ ( a , t )  = 1 o A T d u  + C A .  

The integration constant C A  has to  be chosen such that  the condition FA(O,t) = 0 
is fulfilled, as can be seen from (2.24). We solve the integral (2.27) with (ibid.). 
Defining the auxiliary function 

we obtain 
O A  FA(., t )  = tGA(a ,  t )  - GA+I ( D ,  t )  + ' A .  

For G A  it is (ibid.) 

1 U - t  
G o  = - arctan - 

sin 11, sin 11, 

Inserting in (2.28) gives for A = l 

a - cos 11, 
a F 1  ( U ,  t )  = - COS 11, In L - U + sin 11, arctan + c l .  

sin 11, 

From the condition a F l  = 0 for a = 0 it follows from (2.29) for cl 

R 
cl = (- - $1 sin $. 

2 

Upon putting a = 1 to  get the expressions we are looking for, (2.29) gives 

Analogously we find for A = 2 from (2.28) 

F 2 ( l ,  t )  = - + - cos 11, - cos 2$1n(2 sin $12) + sin 2 $ ( ~  - $112. 
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For A < 0 we only compute FA for A = - 1. With (2.24) and (2.25) i t  is 

a 00 t - a  1 
- ( u - ~ F - ~ ( u ,  t ) )  = C an-2 cosn$ = a-'- - - COS $. aa n=2 

L2 U 

Integration yields 

t - a  
U-' F-~(U, t) = / a-l - 

L2 
du - lnocos$  + c-1. 

0 

The integral can be found in (Gradshteyn & Ryzhik, 1980). We get 

- a 1 a - cos $ 
a ' ~ - ~ ( a , t )  = t ln  - + ( t 2  - 1)-arctan 

L 
- lnucos$ + c-l.  

sin $ sin $ 

The condition U-'F-~ = 0 for a = 0 gives 

7r 
c-1 = ($ - -) sin $. 

2 

For a = 1 it is 

F- l ( l ,  t )  = - cos ln(2sin$/2) - sin $(X - $)/2. 

In (Gradshteyn & Ryzhik, 1980) we directly find 

00 cos n$ 1 
- In -. Fo(1,t) = C - - 

n= l 
n L 

The validity of the derived expressions for FA for a = 1 or $ = 0 or = ~r will be 

discussed below. 
Summarizing we have found the functions 

F. = - ln(2 sin $12) 

Fl = - cos $ ln(2 sin $12) - 1 + sin $(X - $)/2 

F2 = - - cos $ - COS 2$ ln(2 sin $12) + sin 2$(r - $) l2  

F-1 = - cos$ln(2sin $12) - sin $(X - $) l2  (2.30) 

The functions FA for other values of A can be derived analogously. 
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Sine kernels 

The expressions for the sine kernels are derived analogously to those for the cosine 
kernels. We start  with (Gradshteyn & Ryzhik, 1980) 

where the substitution U = sin 21, is used. The general functions we are looking for 
are 

CO sin n21, 
EA(U, U) = C on- (A > o) 

n=1 n + A  

CO sin n21, 
(A 5 0).  

n=l-A 

The functions EA are determined in the same way as the FA functions. We only 
give the results. 

E0 = ( K  - 4 1 2  
El = sin 21, ln(2 sin $12) + +(K - 21,) cos 21, 
E2 = sin 21, + sin 221, ln(2 sin $12) + + ( K  - 21,) cos 221, 

E3 = + sin 21, + sin 221, + ln(2 sin $12) sin 321, + + ( K  - 21,) cos 321, 

E-1 = - sin 21, ln(2 sin $12) + i(7r - 21,) cos 21,. (2.32) 

Validity for U = l or 21, = 0 

All the formulas for the cosine kernels are derived with (2.25). But (2.25) is not 
valid outside (0, K )  and for U = 1. We show that  the derived formulas, however, are 
correct for these situations, too. 

First the U = 1 problem. This is a problem of convergence. The series (2.25) 
do not converge for U = 1. That is not a problem in itself as we are not interested 
in this series. What we like to  know is whether the series FA, derived with (2.25), 
converge. 

We know that  the series FA are convergent, i.e. have a certain limit, from the 
fact that  (Gradshteyn & Ryzhik, 1980) 

l o o  cos n21, 
In - = C on- 

L n= l 
n 

is convergent for (0 5 U 5 1 , O  < 21, < 27r). This can be proven as follows. We define 

cos n21, cos n21, 
an = - and bn=-. 

n + A  n 
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The series C ,  b ,  (a  = 1 )  converges. With 

. an  n  lim - = - 1 an 3 = 1  3 n  such that  5 < - < 2bn V n  > N 
,-+m b ,  n +  A bn 

i b ,  < a, < g b ,  V n  > N (a ,  > 0 )  

i b ,  > a ,  > i b ,  V n  > N ( a ,  < 0 )  

Since C ,  i b ,  and C ,  i b ,  are convergent C ,  a ,  is convergent, too. 
Now we have to know whether the limit of the series (2 .24)  equals the value from 

the derived formulas (2 .30)  or not. We are sure that  they are correct for a < 1 .  Also 
i t  is known that  both the series and the analytical formulas are continuous functions 
of a up to a = 1 .  Hence the FA formulas as stated in (2 .30)  and ( 2 . 2 4 )  have to yield 
an identical value for U = 1 .  So FA is convergent for a 5 1 .  This proof also applies 
to the sine series. 

From ( 2 . 2 4 )  i t  is seen that  for a = 1 all series diverge for + = 0 .  This means 
that  all the functions F A ( l , t )  must be infinite for + = 0 .  It is easy to see that  this is 
the case in (2 .30) .  The sine series ( 2 . 3 2 )  are zero for + = 0 .  The logarithmic terms 
vanish: 

lim sin + ln(2 sin $12) 5 lim + l n ( 2 + / 2 )  = 0 ,  
$10 $10 

but the cosine functions do not. So the functions E A ( l ,  U) in (2 .32)  are only valid 
for 0  < 4 < n. 

Example 

Derive with the formulas of the last section the analytical function of the kernel 

where ( 2 . 2 0 )  was used and 

1  - - 1 1  1 1  -- 
( n -  l ) ( n + 2 )  3 n -  l 3 n + 2 '  

From ( 2 . 2 4 )  and (2 .33)  i t  is 

Inserting (2 .30)  yields 

K ( + )  = $ [(sin + sin 2 4 )  (4  - * ) / 2  + + 5 cos + + (cos 2+ - cos +) ln(2 sin + / 2 ) ]  . 



The  linear geodetic 
boundary value problem by 

least squares 

THE GEODETIC BOUNDARY VALUE PROBLEM describes the relation be- 
tween the unknown potential, in our case in the exterior domain, and the shape of 
the earth and the measurable quantities given on that surface. The exact relation 
between unknowns and the observations is non-linear, at least for all relevant quan- 
tities. The first step to a solution is usually a linearization. Then the linearized 
problem is solved, if necessary with some approximations. 

In this chapter we start with the general formulation of the linear GBVP. Then it 
is shown how the GBVP can be solved analytically, by the introduction of the circular 
constant radius approximation. This is the 2D counterpart of the spherical constant 
radius approximation of the 3D problem. It leads to Stokes' solution to the classical 
GBVP with potential and gravity being given. For different kinds of observations, 
and combinations of them, in determined and overdetermined problems, the solution 
will be given too. The approximations made here, and the formulation of models of 
higher order, will be described in chapter 4. 

For the derivation of the solution, the GBVP is formulated as a system of linear 
equations, and solved by least squares, as introduced in (Rummel & Teunissen, 1986) 
and (Rummel et al., 1989) for the 3D problem. This method is applied since it yields 
brief and clear formulas, it allows a simple error propagation and a direct way to 
attack overdetermined problems. Furthermore, the change from the discrete for- 
mulation, appropriate for a practical situation, to the formulation with continuous 
observations, which is required for the 3D problem in order to be able to derive 
analytical solutions, can be taken smoothly. At this point, we meet one of the ad- 
vantages of the 2 D  problem. As the discrete problem can also be solved analytically, 
the step discrete to continuous can be described well. 

After the treatment of the solutions to the different GBVP'S, attention is paid to 
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the role and the interpretation of the logarithmic, zero and first degree term in the 
series expansion of the potential. Finally, it is shown how the concept of astronomic 
leveling can be coupled to the GBVP, and how the Delft theory of reliability is 
implemented into the GBVP. 

3.1 The linear model 

We start with one of the theoretical cornerstones, the linear model. First it is 
presented in a general formulation. Then the model is worked out as a system of 
linear equations in each point, using local coordinates. In the subsequent sections 
the model is further specified with different degrees of approximation. 

As the observables the gravity vector, later decomposed in its length (the scalar 
gravity) and its orientation with respect to an equatorial frame, the potential, as- 
sociated with the attraction field and the second derivatives, or curvatures, of the 
potential are considered. The formulation of the GBVP for the plane is very close 
to the formulas for the 3D-earth. In (Gerontopoulos, 1978) we find for the classical 
problem, for the non-rotating earth: 

The principles of the notation used in this chapter are outlined in appendix A. As 
kernel letters we introduced in (3.1): 

W : Gravitational potential 
U : Normal potential 
T : Disturbing potential. 

Furthermore, we used X for the position vector of the observation, and X' for the ap- 
proximate position. For the coordinates we anticipated on the detailed formulation 
of (3.1) in local coordinates by using the index letters of a local frame. Essentially 
this choice is arbitrary, but we have to choose a frame anyway. The local frame is 
the most suitable one for our purposes as it reflects the situation that most of our 
measurements are directed along the local vertical or refer to it. With the potential- 
related quantities we have to be careful with the notation. The derivatives of the 
potential are obtained by means of covariant differentiation, resulting in covariant 
components, denoted with subscripts. Superscripts are used to denote contravariant 
components, for example, the familiar components of the displacement vector. As 
long as cartesian frames are applied, either can be used since they coincide. Here, 
the covariant components are used where possible. 

Since also the gravity gradients will be considered as the observables in the 
forthcoming sections, their linear observation equations will be treated together with 
those of Stokes' problem. By the same procedure as used for (3.1), by linearization 
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with respect to potential and position, we have 

In the equations (3.1) and (3.2) we indicate the use of local coordinates by writing 
W;,, etc. The prime is used to discriminate between the normal local frame e;,, 
with ep,, directed parallel to the vector of normal gravity 7 = e;l=,, and the 
actual normal frame e;, with e;=, directed parallel to the vector of actual gravity 
g = WiZ2 e;=,. The latter frame is convenient to use for the observations, since they 
are all derivatives of the potential along the axes of the actual local frame. The 
normal frame is used for the equations since the orientation of the actual frame is 
unknown. The use of the normal local frame in the models (3.1) and (3.2) makes it 
necessary to convert the components with respect to the actual frame to the ones of 
the normal local frame. 

We start with the conversion of the elements of g. For a tensor of rank one we 
have the transformation (A.3): 

The elements of this transformation can be found in (A.lO). For the first trans- 
formation, from the actual local frame to the equatorial frame, w = @ has to be 
substituted (@ is the astronomical latitude), for the second transformation, from 
the equatorial to  the normal local frame, w = 4 (geodetic latitude) has to be taken. 
Multiplication and linear approximation yields for (3.3) in matrix notation: 

with the deflection of the vertical e = @(z) - 4(x). The problem with this formula 
is that @ is observed in z and 4 can only be computed in z'. So we replace the 
disturbance by the anomaly A@ = @(z) - 4(z1) and get 

Now we can write, with (3.4) and 

the components of g as 
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Inserting in (3.1) gives, with 7 = - ~ ( z ' )  e ; ~ = ,  , 

where the anomaly Ag = g(z) - ~ ( z ' ) ,  is introduced. Rewriting gives finally (omit- 
ting the primes) 

For the tensor of the second derivatives of the potential W;j a similar proce- 
dure has to be followed to get an expression for the transformation of the actual 
components of W;j to the normal local frame. 

For a second order tensor the transformation to another coordinate frame is 
computed as (A.3): 

Here we have the same transformation elements as in (3.3). Writing (3.6) as a matrix 
equation, using the approximate rotation matrix from (3.4) and using the symmetry 
and tracelessness of Wij it is: 

Omitting the squares of A@, the transformation becomes 

The anomalies are defined as 

In contrast with (3.2), the derivatives taken here for the computation of the anoma- 
lies are not with respect to the same frame! With (3.7) and (3.8)) (3.2) is rewritten 
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We take the approximation W = U for the last term on the right hand side. This 
can be done safely since that vector is multiplied by a small anomaly. We insert the 
linear model for A@ from (3.5), and finally the model for the gradients is obtained: 

In some literature, the rotation over A 9  is omitted from the model for the second 
derivatives. It entered the equations by the use of two different coordinate frames 
in the definition of the anomaly. This choice was made to get the same kind of 
anomalies as for the potential and gravity vector. In case of satellite gradiometry, 
the orientation of the actual local frame, to which the measurements are related, 
will be known by star-tracking. Attitude control ensures the satellite is oriented e.g. 
radially. Hence, a rotation to compensate for the unknown direction of the frame of 
observation is not required and the second term of all elements of (3.9) is omitted 
for satellite gradiometry. 

3.2 Circular approximation 

In the last section the general linear model was derived using the local coordinates. 
For this formulation we have to know the coefficients, which are derivatives of the 
normal potential U. Also the direction of the normal local frame has to be defined 
(usually it is connected to the choice of the normal potential by taking ejj=, parallel 
to the normal gravity vector 7). One can take a very sophisticated normal potential 
for this purpose. However, if the approximate values for the observations are good, 
the position correction vector and the disturbing potential are small, consequently 
a simple choice of the function U for the coefficient matrix does only introduce 
a small error. In this section we will work out the GBVP by taking the simplest 
normal potential: the potential of a point mass. We call it the linear model in 
circular approzimation. A further simplification is obtained by computing all the 
coefficients a t  the same radius: constant radius approzimation. The solution in this 
approximation for the classical GBVP is Stokes' integral. It has to be underlined 
that only for the coefficients of the model a simple normal potential is used. For the 
approximate values of the observations, usually the elliptical potential or an earth 
model is used. In section 4.4 more attention is paid to this. 
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The potential of a point mass is, see (2.1)' 

The equipotential lines of the potential of a point mass are circles. This implies 
that  the normal gravity vector is pointing to  the origin of the equatorial coordinate 
frame and the e,-axis is directed radial. 

Because the potential is given as a function of r and the series expression we will 
substitute for T are written in polar coordinates too, the use of polar coordinates is 
convenient. So the derivatives with respect to  the local frame have to  be expressed 
as (covariant) derivatives with respect to  r and $. These relations can be found 
using (A.3) and (A.4): 

aw As explained in appendix A, denotes X ,  Wa,2 = % etc. The transforma- 
tions are computed via the equatorial frame ex. Using (A.9)-(A.lO) with W = $, the 
following partial derivatives are found in the origin of the local frame (the distinction 
between 4 and $ is omitted here since we work in circular approximation): 
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Now the elements of the coefficient matrix of (3 .5 )  can be computed by differentiating 
the normal potential (3 .10)  analogously with the differential operators of (3 .12 ) .  
They are 

Inserting these into the system of equations (3 .5 ) ,  and taking all r = R  + 7 = 
70 = p l / R ,  yields the linear model for vectorial Stokes in circular constant radius 
approximation: 

For the gradiometric GBVP in circular constant radius approximation we get: 

The systems of equations (3.14) and (3.15) are set up for each point of observation. 
Because a t  an individual point, T and its various derivatives have to be consid- 
ered independent unknowns, the equations cannot be solved point by point. The 
number of unknowns can be balanced with the number of observations by linking 
the unknown disturbing potential to its derivatives and solving the systems simul- 
taneously. This connection is established by Laplace's equation; T is written as a 
series of harmonic functions. The coefficients of the series replace the potential and 
its derivatives as unknowns. The number of coefficients that  can be used, depends 
on the number of observations: if the number of coefficients equals the number of 
points, the system is well-determined, provided that  the coefficient matrix has full 
rank. A series like (2 .13)  is used with dimensionless Fourier coefficients : 

where Ac = ( p  - p l ) / p :  the relative difference of the G M  values of the earth and 
the normal field. The other coefficients, Ac,, are the Fourier coefficients of the 
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potential of the earth minus the coefficients of the normal field, divided by p'. For 
the derivatives of T we obtain from (3.16) 

For notational simplicity the coefficient Ac is omitted in the remainder of this sec- 
tion. More attention to  this coefficient shall be given in section 3.8. Just as in 
(Rummel & Teunissen, 1986) dimensionless quantities are introduced to  get more 
compact formulas. We have 

AW T 
dW=-, dT=,,  d g = -  Ag ,  dO = A+, 

P' P To 

Inserting (3.17), with r = R, in (3.14) gives the model for potential and gravity in 
dimensionless quantities: 

and for the gradiometric observations 

3.3 Stokes' problem 

In this, and the following sections, the solution to Stokes' problem is considered, 
i.e., the computation of the disturbing potential from observations of the potential 
and the gravity vector, which are directly related to the combination of leveling, 
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gravimetry, and observation of astronomic latitude. First the matrices of (3.18) are 
rewritten and some general remarks are made about the solution. Then it is shown 
how the scalar Stokes problem (potential and gravity observations) can be solved by 
different approaches. As the solutions to  the other possible problems run completely 
analogously, their solution is only given for continuous observations. 

First, the observation equations (3.18) are written in one system for all measure- 
ment points. When all the unknowns, coordinate differences and potential coeffi- 
cients, are written in one vector we have the linear system 

where bij is the Kronecker delta. The index i is used to  indicate the points of 
observation, the square brackets indicate sub-matrices. Below the matrices their size 
is given. The number of points is called I, the number of potential coefficients N. If 
the limit I -+ oo is taken, y becomes a combination of three continuous functions, 
X a combination of two continuous functions and an infinite, countable sequence. 
Furthermore, a weight matrix for the observations is introduced. If no correlation 
is assumed between the measurements, and the weight of each measurement type 
is homogeneous, i.e. independent of the location of the point of observation, this 
matrix can be written as 

where pw,pg and p@ denote the weights for potential, gravity and astronomic latitude 
observations, respectively. 

For the solution to  (3.20)) the commonly applied method for a system of linear 
equations is used: least squares. Although also an ordinary inversion of the matrix 
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A can be used here, if A is assumed to be regular, least squares has two major 
advantages: in case of overdetermined systems, which can be obtained by e.g. adding 
another type of observations to  the system, the same method of solution can be 
applied. Secondly, the inverse normal matrix of a least squares problem is the 
a-posteriori error variance-covariance matrix of the unknowns, if the introduced 
weight matrix can be interpreted as the a-priori variance-covariance matrix of the 
observations. 

The system (3.20) can be solved by least squares for every combination of ob- 
servations and unknowns as long as A is regular. But our goal in this chapter is to  
show that  an analytical expression for the least squares solution can be found if the 
data and unknowns satisfy certain conditions. 

First we recall that  the least squares solution i is defined by the minimization 
problem 

min J Jy  - A&((; 

(the minimization of the residuals with respect to the norm induced by P ) ,  which 
leads to  the normal equations 

with the solution 
f = Q,A'P,y, 

with 
Q, = N - ~  = (A*P,A)-l, 

where A* means the Hermitian conjugate matrix of A. P can be seen as a reproduc- 
ing kernel of the Hilbert space U, spanned by the columns of A, and with an inner 
product given by 

(a, b) = a'Pb. 

The minimum principle leads to minimum variance of the estimated unknowns if 
P equals the inverse variance-covariance matrix of the observations y. In case of a 
finite system of equations, U is the h, the n-dimensional Euclidean space, (n is 
the dimension of y). In case y is a function, U will be a Hilbert space, e.g. of square 
integrable functions. 

Looking for explicit expressions for 2 ,  fulfilling the normal equations (3.21), 
implies that  the inverse of the normal matrix has to be computed analytically. The 
first 21 columns of A consist of zero's and one's; they do not give any difficulty in 
the inversion. The second part of the matrix consists of N vectors containing the 
base functions. If either the points of observation are distributed such that  they 
have constant separation (taken in c$), or the observations are given as continuous 
functions, orthogonality relations can be applied and an analytical expression for 
the inverse normal matrix can be given (see next sections). 

For the three dimensional GBVP the situation is less fortunate. Only for the 
continuous case straightforward orthogonality relations are available. So only for 
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(hypothetical) continuous observations an analytical solution can be given. In 
(Rummel e t  al., 1989) and earlier in (Rummel & Teunissen, 1986) the least squares 
formulas and the observation equations are given for a finite dimensional space. 
Later on, when the application of the orthogonality relations of spherical harmonics 
is required t o  obtain a solution, the limits I -+ oo and N -+ oo were taken. This 
approach let t o  some questions about the convergence of the solution in this limit 
case. But,  as shown above, the least squares approach could as well immediately 
be applied to  continuous functions, and lead t o  the solutions given in (ibid.). Then 
it should be feasible to  proof convergence for I -r W and N -r oo in case we can 
guarantee for instance the maximum distance between two adjacent points to  be 
less than every arbitrary value greater than zero. It seems to  be not too difficult 
to  give a full proof of this, but I did not try. But a convergence problem may exist 
when we do not apply spherical approximation but consider the observations t o  be 
located on the real boundary, which has a very nasty shape. See e.g. (Sansb, 1988). 

In the coming sections it is shown how the scalar Stokes problem can be solved. 
The same problem is treated four times: for discrete and continuous da ta  and in 
the space and the frequency domain. All these approaches finally lead to  Stokes' 
integral. By working in the frequency domain, i t  can be shown nicely how the 
formulation of the discrete problem converges to  the continuous problems when the 
number of points and potential coefficients tends to  infinity. For all the other BVP'S 
treated here, only the continuous solutions will be derived. 

3.3.1 Discrete scalar Stokes 

We assume here that  we have a determined system of equations. This implies I = N. 
We have from (3.20) 

(3.23) 
We directly observe that  the matrix A is singular. In the sequel, In( = 1 will be 
excluded from the system of equations, which removes the singularity. See also 
section 3.8. For the normal matrix we get 

Thereby use has been made of the orthogonality 
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We invert N by the well known relations 

For the sub-matrices of Q we obtain with (3.25) 

Furthermore we have 

By dgn we denote here the Fourier coefficients of dg 

With (3.22), (3.26) and (3.27) we find the solution 

Or, writing (3.29) in the space domain, 

with 



3. The linear geodetic boundary value problem by least squares 

Equation (3.31) is the discrete Stokes kernel for the plane. 
Next, we solve again Stokes' problem, but now we write the equations in the 

spectral domain. This is done to  show that the solution in the frequency domain 
is the same as in the space domain. It will lead to  a simple connection to the 
continuous boundary value problem. We obtain the spectral equations by taking 
linear combinations of the observation equations (3.23). The first was 

With (3.24) and (3.28) we find 

++ dWn = -dzn + Acn.  (3.33) 

The same procedure is applied to dgi. Now we have (3.23) in the spectral domain 

We define the weight matrix as 

Solving the system (3.34) by least squares we get 



3.3. Stokes' problem 

The same solution as obtained by the space domain approach ( 3 . 2 9 ) .  Naturally this 
is no surprise as the only change made here was t o  take a linear combination of the 
observation equations before solving for the unknowns. 

3.3.2 Continuous S tokes  in t h e  s p e c t r a l  domain 

So far we used the  quantities d W i ,  etc. as discrete functions. But the observation 
equations like ( 3 . 3 2 )  are also valid for a continuous function of observations. The 
continuous problem will be considered in this section. To express the fact that  dW 
is continuous we write ( 3 . 3 2 )  as 

Just  as we did in ( 3 . 3 3 )  we take linear combinations of the observations. Because of 
the continuity of the functions integrals instead of sums are used. We have 

The relation for the Fourier coefficients 

is applied and the orthogonality 

We see that  we have in (3 .35 )  the same spectral relation as in (3 .33 )  for the  discrete 
problem. So also the continuous problem leads t o  the solution ( 3 . 2 9 ) .  

When converting the continuous functions t o  the spectral domain the continuous 
system of equations is transformed to  a discrete system with an infinite number of 
equations. This transformation is allowed when the integrals in ( 3 . 3 5 )  are finite. 
From Fourier theory we know that  every function f  E [O, 2x1 can be represented 
by its (finite) Fourier coefficients fn,  such that  

lim 11 f ( 4  - 1 fnein411 = 0 
N+oo n=-N 

Hence, if all the boundary functions are element of L 2 [ 0 ,  2x1, the integrals are finite 
and the transformation is allowed. 
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3.3.3 Continuous Stokes in the space domain 

In the previous section the continuous Stokes problem was solved by transformation 
to the spectral domain. In this section it is shown how it can be formulated in the 
space domain, as was done in section 3.3.1 for the discrete problem. 

Since the weight matrix used for the solution to the G B V p  is a unit matrix, 
multiplied by a constant weight factor, the inner product applied here is the stan- 
dard inner product of linear algebra. In order to prepare the step from discrete to 
continuous, the inner product 

l 
(a, 6) = 1 -aibi 

. N  

is introduced. Then the reproducing kernel becomes the scaled unit matrix: N.I. 
Applying this to the observation equations (3.32) we get: 

Equation (3.38) can be read as the first equation of the matrix equation (3.18) with 
the standard inner product C; f i . g i  and the reproducing kernel bii In (3.39), the 
newly defined inner product and reproducing kernel were used. 

Now (3.23) is written as 

For the normal matrix we have 

Solving (3.40) leads to the solution (3.29). Although this formulation of the discrete 
problem is not the most natural one, it is correct. The charm of formulating the 
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problem in this way is that taking the limit N + W leads directly to the solution 
to the continuous problem. The inner product for the space domain becomes 

N-l  2 7T 2 7T 
N-l 

lim - C f(-  j).g(- j) = lim - C f ($j)-g($j) A$ = L /' f ($).g($) '4. 
N-W N N N N-W 27~ 27~ p' 

j = O  j = O  

(3.41) 
This yields for the orthogonality (3.24) the relation (3.37) 

N-l  
2r e'(n-m)Q$ = S,, e ( n - m ) F ~  = lim - 

N-Cm N j=o 

and for the equation for the coefficients (3.28) we get (3.36) 

See (Jenkins & Watts, 1968). 
This requires some explanation. With the discrete problem we had discrete func- 

tions given on the circle; i.e. periodic functions. Their spectra are therefore periodic 
and discrete too. By taking more and more points on the interval [ 0 , 2 ~ ] ,  the point 
density increases and the number of coefficients in the spectrum too. In the limit 
N + W the function becomes continuous, so summations over points become inte- 
grals, and the number of Fourier coefficients gets infinite but countable. Since the 
spectrum remains a discrete function in this limit, the functions are periodic, all 
the operations on the spectral variables do not change. Thus matrix multiplications 
involving summations over the spectral index n or m and also the identity oper- 
ation S,, do not change when taking the limit. As said before the space domain 
functions become continuous. Since we worked with equidistantly spaced functions 
in the discrete case, this transition runs smoothly. The integrals just replace the 
summations. The only functions we have to take a closer look at  are the identity 
functions (reproducing kernels). For the discrete problem the Kronecker delta Sij 
was used. Now we have to show what happens to the NS;j, as used in (3.39), when 
N + W. We compute this limit in the spectral domain. The spectrum of Sij is 
(Papoulis, 1962) 

This yields for the spectrum of limN-, NS;j 

This is the spectrum of the Dirac function 27rS($p - $Q) (Papoulis, 1962). So we 
have 

lim NS;, = 27rS($p - $Q). (3.42) 
N-W 
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Hence, 2x6 is the reproducing kernel for the continuous problem. This can also be 
shown by using the well known reproducing property of the Dirac function 

or, with the inner product (3.41)) 

Now we finally have (3.23) for the continuous situation 

[-2n6pq] [ei""] [dz(Oq)] 
(3.43) 

[-2n6pQ] [ ~ n l e ' " ~ ~ ]  [Ac,] 

In the sequel we will omit the argument 4 whenever convenient. The weight matrix 

We do not give a solution to this problem, it will again be Stokes' integral, but 
continue in the next section with the vectorial problem. 

Before proceeding with the other GBVP'S, one remark about convergence should 
be made. As shown in this section, the potential coefficients can be determined 
either from discrete observations or from continuous data. This brings us to the 
question how the potential coefficients, computed from these different kind of da ta  
sources, are related to  each other. The answer is found in signal theory. There 
we find the sampling theorem, which shows how the spectrum of a continuous func- 
tion and the spectrum derived from samples of that  function are related, see e.g. 
(Jenkins & Watts, 1968). Because the discrete boundary data  are obtained by sam- 
pling a continuous function on that boundary, this theorem can be applied to  the 
GBVP. It gives the opportunity to  relate the spectrum of the discrete observations 
to the spectrum of the continuous function. Since the potential coefficients are di- 
rectly related to the coefficients of the same degree of the boundary data,  the effects 
of sampling on the solved potential coefficients can be computed easily. To come 
back to the convergence, it is obvious from the theorems concerning sampling, that  
the error introduced by taking discrete data  instead of continuous, can be made 
arbitrary small by taking a large enough amount of samples. 

3.3.4 Vectorial Stokes 

Now we continue with the vectorial Stokes problem we started with, i.e. potential, 
gravity and astronomical latitude are assumed to be observed. In this case the 
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design matrix, with the definition of the inner product (3.41) for continuous data, 
becomes, 

For the normal matrix we get 

The sub-matrices of the inverse normal matrix are 

For A'Py we have 

[ ~ @ d @ l  

A*PY = I-pwdW - pgdg] 

[pw dWn + Inlpgdgn + inp@d@,] 

This finally yields the solution 

and 

00 in  
dzp = d@p + C - (dg, - dwn)ein4~ (In( # 0 , l )  (Vening Meinesz) , 

n=-00 In1 - l 

00 1 
d ~ ~ = - d W ~ +  C - (dgn - Mn)ein'p (In( # 0 , l )  (Stokes - Bruns) 

n=-oo Inl - l 



3. The linear geodetic boundary value problem by least squares 

As mentioned before, as in the 3D case, a singularity problem arises for In1 = 1. 
The unknown A c ~ ~ ~ = ~  can not be solved for. Its introduction as unknown, yields a 
singular system of equations. The reason for this, and how to handle this problem, 
is discussed in section 3.8. With (2.18) the corresponding integral formulas become 

In order to have a complete solution for the unknowns the logarithmic term is 
added to  the Stokes integral. For the Stokes kernel S t  the analytical expression can 
be derived from (2.30). It is 

St($) = sin $($ - K )  - 2 cos $ ln(2 sin $12) (0 5 $ 5 K ) ,  

which is in agreement with (Gerontopoulos, 1978). For the derivative (Vening 
Meinesz function) we have by differentiation 

= sin $ - cos $ cot $12 + 2 sin $ ln(2 sin $12) + cos $($ - K )  (0 < $ < K).  
a$ 

See figure 3.1 for a graph of the two functions. Apart from some constants and the 
logarithmic function, the Stokes integral found here is identical to  Stokes' integral of 
3D. For the Vening Meinesz integral one major difference occurs: the absence of the 
azimuth. This is not surprising since our boundary is not a surface but a line, such 
that the orientation of the line connecting the point of integration and the point of 
computation is fixed. 

3.4 The gradiometric problem 

The solution of the system of equations (3.19) for the gradiometric problem is 
straightforward: since the I',, component does not depend on the position cor- 
rections we directly find: 

The horizontal shift cannot be determined, obviously. 
The independence of I',, of the position, is introduced by the definition of the 

anomalies (see 3.1). Nevertheless, the combination with the other second derivative, 
I',, is sufficient to  replace e.g. the potential and gravity as observations: from both 
combinations potential and vertical position can be solved. 
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Figure 3.1 The Stokes and the Vening Meinesz  kernel. 
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3.5 Overdetermined vertical problem 

- / 

/ 

Up to now, uniquely determined systems of equations were considered. By adding 
more observations to these systems, they become overdetermined if no additional 
unknowns are introduced. First we take all observations from (3.18)-(3.19) which 
only depend on the vertical position and the disturbing potential. Also the obser- 
vation of vertical position dz, which can be observed by means of satellite altimetry 
(on sea) or GPS, is included. The disturbance dz is the projection of the distance 
between the approximate point on the telluroid and the point on the surface onto 
the local normal gravity vector. The dz can serve as observation for these kinds of 
measurements since the coordinates of the surface point are the observables. In this 
system there are four observables and only two unknowns for each point,.hence it is 
overdetermined. 

The system is, from (3.18) and (3.19), 
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Solving this system in the same way as was done for Stokes' problem we get 

where 

For the coefficients Ac, we find 

and for the vertical position 

dz;  = 
1 

Pw + P S + ~ P ~  + p z  
{ -PwdW; - pgdgi - 2 p r d r ;  + pzdz j+  

The integral form of (3.50) is written as a combination of six kernel integrals: 
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The kernels of this integral are defined as 

In contrast with the solutions to uniquely determined systems, such as Stokes' prob- 
lem, the kernels defining the solution of an overdetermined GBVP depend on the 
weights given t o  the observations. By giving a zero weight to an observable, it does 
not contribute to  the solution. This can be used to  obtain the solution for T from 
(3.52) for every combination of dW, dg, dr,, and dz. E.g. the solution to Stokes' 
problem comes from p ,  = p,  = 0. It can be seen from the expressions above, that  
a kernel function becomes zero if the combination of observations with which it is 
multiplied in the integral is not present. If the system of equations is overdeter- 
mined, the contribution of one combination of observations to  the solution for T, 
with respect to the uniquely determined situation, is reduced; the potential is built 
up from several kernels. Their relative importance is governed by the E, function. 

The six kernels are displayed in the figures 3.2-3.4. For every weight, two values 
were used: one and zero. This means that  every observable has a weight equal to  the 
other observables, or is not included in the system of equations. All other choices 
of weights are also allowed, but these were selected to give a general idea how the 
kernels look like for different situations. For every kernel of (3.52) this choice yields 
four functions. For e.g. the kernel K, the weights p, and pg are one. If one of them 
would be zero, the kernel would be zero too. The two choices for the two other 
weights yield four possible realizations of the K, kernel. If p,  and p, are zero, only 
potential and gravity are available as observations; the K,  kernel reduces to  Stokes' 
function. By adding the vertical gradient, p ,  = 1, kernel K, becomes almost zero. 
This implies that ,  if the potential, gravity and vertical gradient are available with 
identical relative accuracy, such that  the weights can be taken equal, the contribution 
of the combination (dg - dW) to  the solution t o  T is small. If the vertical position is 
added to  Stokes' problem, the kernel is also reduced in magnitude, but not as much 
as with the addition of the vertical gradient. Finally, the kernel is displayed with 
both observations added to Stokes' problem. 

For the other kernels it works the same way. One remark about the kernel K,. 
If pg = p,  = 0, this kernel becomes a Dirac function. The reason for this is simple: 
for this combination of weights, the system of equations (3.48) reduces t o  Bruns' 
equation, which gives the solution to  T from dW and dz point by point. 
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Figure 3.3 The kernels K ,  and Kd . 
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Figure 3.4 The kernels K ,  and K,  . 



3.6. Overdetermined horizontal problem 

3.6 Overdetermined horizontal problem 

Now the other three observables, not depending on the vertical displacement dz, are 
put into one system of equations. In the two dimensional case we only have two 
observables that depend, in linear circular approximation, on the horizontal shift 
dx: dx and d@. The gradient dr,, is added too. Using (3.18)-(3.19) we have 

Applying the least squares solution we find the inverse normal matrix for the po- 
tential coefficients 

with 

Fn = n2(pqipz + (In1 - q2(pZ +pqi)p,). 

For Ac, we derive 

From this equation the kernel representation for T can be derived. Because the 
horizontal derivatives are a constant (per degree) times the base functions ein4, in 
contrast to the 3D model where the horizontal derivatives have a more complicated 
relation with the base functions, as the azimuth enters in the integrals, the kernels 
take a straightforward form. For T we get from (3.55)) writing Kg and Kh for the 
kernels, 

The two kernels are defined as 

At first hand, we would expect a combination of three kernels for the three possible 
combinations of two observables. But because the gradient drZz does not depend on 
the position in circular approximation, the disturbing potential can be completely 
determined from this gradient; no elimination is required to solve for the potential. 
The two kernels are displayed in figure 3.5. As with the vertical problem, three 
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Figure 3.5 The kernels Kg and Kh . 



3.7. Some remarks on the altin~etry-gravimetry problem 

unique GBVP'S can be derived from this general solution, by taking three possible 
combinations of two observables. For p, = 0 we have Kh = 0 and 

and for p, = 0 V p@ = 0 we find K ,  = 0 and 

- t  = = ' l  
Kh = 7 n(ln1- 1) 

einJI = 2 C sin n$ 
n=2 

n(n - 1) 

= 2 sin $ - 2 sin2 $/2(n - $) - 2 sin $ ln(2 sin $12) 0 < $ < X. 

The kernel Kh does not change when taking dx instead of d@ since T is in both 
cases completely determined from dr,,, the position dx from the other observable 
and the solved T. The analytic expressions were computed with (2.32). 

3.7 Some remarks on the altimetry-gravimetry problem 

For the GBVP'S considered up to now, a global homogeneous coverage with the 
observations was assumed. In reality this condition cannot be met. One reason for 
this is the subdivision of the earth's surface into continents and oceans, for which 
different types of data are available. Let us consider the following situation. On land, 
we have leveling, gravimetry and horizontal position information. This combination 
supplies us with the potential (up to a constant), scalar gravity and the x-coordinate 
of the points of observation. At sea, the geometric heights of the sea surface above 
the reference ellipse are available from satellite altimetry. If it is assumed that, by 
means of corrections for sea surface topography and sea tides, the height of the geoid 
can be deduced from it, this gives for ocean areas the combination of height (dz) and 
potential (the geoid is a equipotential surface), and the horizontal position of the 
points of observation. The problem is to compute the disturbing potential from this 
combination of observations. In the literature this problem is known as the altirnetry- 
gravirnetry GBVP, but other combinations of data, such as gravity anomalies on the 
continents and gravity disturbances in ocean ares, share the same name. See e.g. 
(Holota, 1982), (Sacerdote & Sansb, 1983), (Svensson, 1983) or (Mainville, 1986). 

This GBVP is formulated and treated in the same way as the other problems. 
We assume that the horizontal position is known globally, such that dx = 0 for 
all points. Thus dx can be disregarded. The design matrix and the vectors with 
unknowns and observations become 
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The weight matrix is defined as 

The function I S e a ( 4 )  is the indicator function for the ocean areas: it equals unity for 
the oceans and zero for continental areas. For simplicity all weights are taken equal 
to unity in the sequel. 

The normal matrix becomes 

For the inverse of the sub-matrix Q 2 2  we find 

The elements of this matrix are linear combinations of the Fourier coefficients of the 
indicator function for ocean areas I,,, and for land areas 1 - I,,,. Omitting further 
intermediate results, we find for the potential coefficients 

1 
Acn = 5 C ~ 2 2 , n m  { ( l m l  - l ) ( d g m  - d W m )  

m 

- ~ r n l l  J r  (dg  - d ~ )  1 , , .e - '~dd4 + - 
2s -, 2s l 1, -, (dg + d z )  ~ , , , ~ - ' ~ ~ d ~ }  , 

where Q 2 2 , n m  denote the elements of the Q 2 2  matrix. For the disturbing potential 
we get in the space domain 

K j ( 4 ~ )  4 ~ ) ( d g  - d W ) ~ I . q e a ( Q )  + 
K k  ( 4 ~  , $ Q )  (dg  + d z ) ~  I3ea ( Q )  I (3.57) 

Although the functions K .  are now functions of two variables, as they depend ex- 
plicitly on the position of both points, the same notation is maintained as before. 
These functions are: 
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The elements Q22,nm multiplied by one of the factors of the right hand side, are the 
( 2 ~ )  Fourier coefficients of the functions K.. We did not determine so far a direct 
expression for the K. with respect to  the I,,, function. Equation (3.57) reduces to  
Stokes for I,,, 0. If I,,, = 1, the combination of integral kernels in (3.57) reduces 
to  the K, of section 3.5. 

The existence of a solution to  this problem depends on the function I,,,. A so- 
lution exists if the matrix Q22 can be computed. Hence, it is sufficient to  investigate 
this matrix, to see what condition I,,, should fulfil to accomplish invertibility of 
Q 2 2 .  This is considered to be beyond the scope of this work. 

3.8 Logarithmic, zero and first degree term 

Three coefficients of the series of the (disturbing) potential deserve special attention: 
the logarithmic, zero and first degree term. When solving the GBVP'S the logarithmic 
component of the potential was first omitted from the vector of unknowns and later 
added to  the solution, the potential constant was put to zero and for the first degree 
coefficients additional constraints were required. In this section a more detailed 
discussion about the meaning of these coefficients is given and how they should be 
treated. 

As stated before, the logarithmic function is the potential of a point mass. There- 
fore it has the same role as the zero degree function of the spherical harmonics of 
the 3D-potential: the most basic approximation of the earth's gravity field. Un- 
fortunately the zero degree term of the Fourier series used for the 2D problem is 
a constant in the entire plane: it represents the potential constant and has a com- 
pletely different meaning than the zero degree function for 3D. The zero degree 
function can be omitted in 2D without loss of generality: the potential constant of 
every potential function is arbitrary and can be put to zero (just as in 3D, where the 
constant is usually omitted from the solution to Laplace). The fact that  the poten- 
tial constant is arbitrary is directly related to the fact that  only potential differences 
are observable, by e.g. the combination of leveling and gravimetry, and not the po- 
tential itself. In (Rummel et al., 1989) the (unknown) potential of a benchmark is 
introduced, which is added to  the observed potential differences to obtain absolute 
potential values. In this chapter absolute potential values were created by setting 
the potential constant to zero. The former method is directly related to  practice, 
but for our theoretical considerations that  is not of importance. 

In the presented GBVP the A c  was not computed from the data, but simply 
added to  the computed solution. But it is possible, under certain conditions, to 
compute A c  from the boundary data. As an example this is shown for the vertical 
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GBVp (3.48). Including the logarithmic term the model yields 

Converting to the frequency domain, as was done for scalar Stokes in (3.34), the 
system becomes for degree zero (for completeness also the Aco is included), 

Because of the orthogonality of the base functions, the solution can be computed 
degree by degree: the equations are de-coupled by the transformation to the fre- 
quency domain. With the four vertical observations this system is overdetermined. 
In e.g. the case of scalar Stokes (dW and dg) the system is underdetermined and an 
additional constraint is required such as the potential of a datum point (determines 
Aco) or the mass of the earth (fixes Ac). 

In 3D the same situation is encountered. A system such as (3.58) can be formed 
with equations found in (Rummel et al., 1989). This will not be repeated here. In 
(Heiskanen & Moritz, 1967, ch. 2.19) the problem is treated for scalar Stokes. There 
the situation is discussed for (AW, Ag) referring to the geoid with potential WO. The 
reference ellipsoid differs in potential from the geoid by SW. The potential constant 
of the ellipsoid equals the constant of the real field. Taking the same situation for 
2D it is from (3.58) with dW = SW/pl, dzo = No/R and dg = Ag/ro, 

Elimination of Ac yields 

1 1 
SW - R In -Ago = ~ o ( l n  - - 1) No, 

R R 

the analogue of equation 2-187b of (ibid.). 
The first degree has a direct physical meaning. Just as for the 3D potential series 

it is related to the coordinates of the center of mass. From (2.7) it is given 
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If Acl of the disturbing potential is zero it means that the center of mass of the 
normal field (and usually the origin of the coordinate frame) coincides with the 
center of mass of the earth. 

As can be seen directly from (3.34), the first degree can cause singularities in 
the system of equations. For Stokes this is caused by the dependence of the columns 
of the matrix A: the column for Acl is a linear combination of the columns corre- 
sponding to dz. So it is impossible to solve for both dz and Acl from the observables 
dW and dg. By omitting the first degree term from the observation equations the 
matrix A becomes regular and the problem can be solved. When all the degrees are 
included, an additional constraint for the Acn=1 has to be given. This is simply a 
choice of the origin of the coordinate frame with respect to the center of mass of the 
earth. The question can arise whether the boundary data has to fulfil the condition 
(dg - dW)n,l = 0. As a solution is required in the parameter space this is not 
necessary. However, it is easy to show that such a constraint on the data can be 
easily satisfied. If we consider the normal potential function and the observed values 
of the potential and gravity as being given, then there is still one way to influence 
the function (dg - dW): by the choice of the telluroid. By moving the telluroid, it 
will be possible to make the first degree component of (dg - dW) zero, to match the 
constraint. But as the choice of the telluroid does not affect the final solution to the 
GBVP, if it is not too far from the real boundary, this translation of the telluroid is 
useless. The constraint can be matched by simply putting (dg - dW),=l = 0. 

For the impossibility of solving the first degree coefficients by Stokes also a less 
mathematical explanation can be given. When observing the gravity vector and 
the potential, several definitions have to be made before the measurements can be 
represented in numbers. For the potential and the length of the gravity vector a 
gravimetric and geometric scale factor have to be chosen. For the orientation of the 
gravity vector, the orientation of the axes of the reference frame have to be fixed. 
But no choice has to be made for the center of the reference frame. If this choice 
is not contained in the data we put into the system of equations, it is impossible to 
get it out. Since the first degree coefficients are just the coordinates of the center 
of mass, they give the position of the used reference frame with respect to the 
real, physical world, it is not surprising that the first degree coefficients can not 
be solved. When including observations which require the definition of the origin 
of the reference frame, such as with GPS, which can be represented introducing 
dx, dz as observations, the singularity vanishes, as can be seen in the kernel for the 
combination of observations {dz, dg). In (Heck, 1991), it is concluded that two of 
the three first degree harmonics are estimable in case a non-isotropic reference field 
is used, with the vectorial free GBVP. This is a peculiar statement in the light of 
the discussion above and the results of (Hormander, 1976). The latter showed that 
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for Molodensky's problem, in order to get an unique and existent solution, three 
suitable functions have to be added to the boundary data, and we have to look for 
a solution for the potential which is free from first degree terms. 

3.9 Astronomical leveling 

In section 3.6 it was shown that the disturbing potential can be solved from the 
combination of 'horizontal' measurements dz and d@. Taking into account that 
dx = d4, i.e. the difference in direction of the normal local frame between the 
approximate point P' and the surface point P, we have 

the deflection of the vertical. Inserting into (3.56) yields for the geoid height N = 
R.dT, omitting the logarithmic term, 

with the definition of Kg as in section 3.6. There is a second integral, which supplies 
a connection between the disturbing potential and the deflection of the vertical. This 
is the integral of astronomical leueling. The deflection of the vertical multiplied by 
the distance increment equals the change in geoid height: 

see (Heiskanen & Moritz, 1967). Integration yields 

So, when computing the geoid height in P, we have two possibilities: integration 
of deflections over the entire boundary (3.60) or taking the geoid height of another 
point and integrate the deflection over the connecting line, (3.61). We show that 
the two solutions are equivalent. 

First the analytic expression for Kg is extended to a larger domain (this is easily 
derived from its series expression): 
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We start with equation (3.60) and show, by splitting up the integral, that (3.61) can 
be derived from it. Inserting the expression for K, into (3.60) yields 

OP * N p  - NQ = - R L ~  ( ~ d q 5 ~ .  q.e.d. 

Hence, a consistent connection is established from the GBVP approach to astronom- 
ical leveling. In the 3D-GBVP this relation is not so easy to obtain. There the 
surface integral with and q over the sphere is to be converted to the line integral 
of astronomical leveling (see (Rummel k Teunissen, 1989b)): 

K denotes the integral kernel 

2 n + 1  d 
-Pn (cos $) . 

K(') = - C n n(n + 1) 
No answer exists so far, whether a similar connection can be found in this case. 

3.10 Reliability 

The overdetermined GBVP is not only attractive because of the accuracy improve- 
ment with respect to the uniquely determined GBVP, it also gives the opportunity 
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to test the input data. In case of a uniquely determined system of equations, the 
observations are exactly represented by insertion of the solved position shifts and 
potential coefficients back into the model. With an overdetermined system, this 
will generally not be the case because of the observation noise (and of the approx- 
imations introduced into the model, but this aspect is not considered here). If the 
distribution function of the noise is known, tests can be applied on the difference be- 
tween the observation and the value computed from solved unknowns by backward 
substitution, to see whether this difference is acceptable with respect to  the adopted 
stochastic model. As it is beyond the scope of this thesis, we refer to (Baarda, 1968) 
for the exact formulation. Here only a general outline and some illustrative formulas 
and figures are given. 

For the distribution function of the measurement noise of the discrete obser- 
vations, the Gaussian model will be appropriate. Since the Fourier coefficients of 
the observations are a linear combination of them, their noise also has a (multi- 
dimensional) normal distribution. The noise function of continuous observations is 
also a linear combination of its Fourier coefficients. If we assume for the coefficient 
noise a (infinite) multi-dimensional normal distribution, the noise in one point has 
also a normal distribution. 

Testing of the observations requires the specification of alternative hypotheses. 
The usual alternative hypotheses is the one which states that one observation has 
some bias. The magnitude of such a bias that can be detected by the test, is called 
the minimal detectable bias. Its value depends on the choice of the parameters 
of the test (the one-dimensional F-test), and of the linear model. The values of 
these detectable errors show how well the observation is controlled by the other 
observations. Propagation of the minimal detectable biases into the unknowns, gives 
an indication how large their maximal bias will be if testing of the data is performed 
(assuming that the estimation yields unbiased estimates in case the stochastic model 
of the observations is correct). 

The concept of reliability in the GBVP, is worked out for the overdetermined 
vertical problem (3.48). The formulas are given in the frequency domain, since this 
gives the most compact and clear formulas. Afterwards, the testing in the space 
domain is considered. 

The minimal detectable bias is defined as 

The value of X. is related to the parameters a 0  and PO of the F-test. With the 
conventional values 

a 0  = 0.001, PO = 0.8 

we have X. = 17.07. The vector ci indicates the observation. It contains only zero's 
except the n'th element that equals one. It defines the alternative hypothesis of one 
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observation having a certain bias. The scalar L is computed as 

The capital letters denote the same matrices as in section 3.5. The design matrix 
for the overdetermined vertical problem is, in the spectral domain, with (3.48), 

The matrix P now is the inverse variance-covariance matrix of the observations in 
the frequency domain. A diagonal matrix is taken, with variances only depending 
on the type of observation. The weights p,, etc., now indicate the weight (inverse 
variance) for each degree. 

After some manipulations we obtain for the L: 

L,, = 
P W P ~ P Z ( ~ ~ (  - + pUprpz((n( - l ) ( (n(  + 2)2 +pgprp,n2(lnl - 

En 

With (3.49) for E,. In figure 3.6 the minimal detectable biases are plotted. For the 
weights we took p, : p, : pg : p, = 100 : 100 : 1 : 0.01. 

The external reliability, the maximal bias in the solved unknowns, is computed 
by the propagation of the minimal detectable biases of the input data into the 
unknowns. When taking the alternative hypotheses in the frequency domain, the 
values for L as given in (3.62) are inserted into (3.50). The result is displayed in figure 
3.7. Since a potential coefficient is only computed from the data of the same degree, 
a bias in one degree of an observation only effects the potential coefficient of the same 
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Degree 

Figure 3.6 Marginally detectable errors for the frequencies of the boundary 
data of the overdetermined vertical problem . 

Degree 

Figure 3.7 The minimal detectable biases for the potential coeficients com- 
puted from the combination dW, dg, dI' and dz .  
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Degree 

Figure 3.8 The minimal detectable biases for the cosine potential coeficients 
computed from the combination dW, dg, dI' and dz. The two 
lines are related to two alternative hypotheses: a blunder in the 
observation dW or dg in the point 4 = 15". 

degree. The figure shows the effects of all possible biases in the data for all degrees 
together. The weights were again taken as p, : p, : pg : p, = 100 : 100 : 1 : 0.01. 

Also for the place domain alternative hypotheses can be derived. By writing the 
matrix A in the place domain, we find LW, = C ,  LW,, etc. Hence, the critical values 
required for the testing in the place domain are directly computed from (3.62). As 
could be expected, all points of observation have the same weight in the estimation, 
the critical values do not depend on the location of the points. 

If testing is performed in the place domain, the minimal detectable biases of the 
potential coefficients are like figure 3.7. There are two differences: a bias in one 
observation yields a bias in all potential coefficients, and the figure is multiplied by 
the base function ein+, with 4 the latitude of the point where a bias is present. For 
clarity, in figure 3.8 the critical values of the cosine potential coefficients are shown. 

A reasonable testing, and thereby a definition of reliability, is not as simple in 
reality as presented here. First the testing always takes place under the assumption 
that the model is perfect. But several approximations were introduced to derive 
it (linearization, circular approximation and constant radius). Hence, discrepancies 
between the model and the observations are also generated by these approximations 
and do not always indicate blunders in the data. Secondly, we always have to 
assume in our analytical least squares approach that the boundary data is given 
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either continuous, or in a regular grid. In the 3D-GBVP even the latter case is 
not possible. But continuous data is an assumption far from reality. It also gives 
problems with the definition of the alternative hypotheses. But since the GBVP can 
also be solved numerically, this is not a major point. When using discrete data, 
testing is possible, but not without complications. For instance, the selection of 
the potential coefficients to be solved, is a critical point. When taking the wrong 
selection, or if the boundary functions are undersampled, severe aliasing errors can 
occur in the solution to  the potential coefficients. These biases cannot be detected 
by the proposed tests, and may be much larger in magnitude than biases caused by 
a blunder in the observation in one single point. In that case the testing procedure 
on the data does not seem very useful. 



Higher order 
approximations o f  the  

linear problem 

THE LINEAR MODEL,  as formulated in section 2, was solved in the foregoing 
chapter by the introduction of the circular, constant radius approximation. In this 
chapter the explicit formulation of the linear model without approximation, as well 
as with only circular approximation is given. The errors introduced by the approx- 
imations in the linear GBVP are discussed. 

For the solution to  the GBVP'S in higher approximation an iteration procedure 
is suggested. First it is shown how such a procedure can be used for matrices. Then 
we show how it can be implemented in the GBVP. Several GBVP'S are presented, 
different in degree of approximation and in combination of observations. They will 
be solved numerically by iteration in chapter 5. In this chapter, different aspects of 
these models are discussed. 

Finally i t  is shown that  one iteration loop with the model in circular approxi- 
mation, leads to  the integrals of the problem of simple Molodensky known from the 
literature. 

First the elliptical normal potential and its derivatives are derived, necessary for 
the coefficients of the models without circular approximation, and for the computa- 
tion of the anomalies. 

4.1 The normal potential 

In section 3.1 i t  was discussed that  for the solution to the GBVP a linearization 
procedure is applied. This involves linearization with respect to  all the unknowns, 
position and gravity related quantities, and requires approximate values for this 
purpose. For the approximation of the potential, the normal potential, mainly three 
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models can be discriminated: 

1. point mass potential, 

2. elliptical potential, 

3. set of potential coefficients. 

The first model was already introduced in section 3.2. Model three can be any known 
set of potential coefficients. Here we will focus on the second model: a potential 
function with ellipses as equipotential lines. 

4.1.1 Series expansion of the normal potential 

By solving Laplace's equation in elliptical coordinates, and using the ellipse shape of 
the equipotential lines, the equation for the elliptical normal potential for the non- 
rotating earth can be derived. The derivation can be found in (Gerontopoulos, 1978): 

thereby U. denotes the potential constant of the normal field and CL' its G M  value. 
For the coordinates the system {U,@) is used (see appendix A). From (4.1) a series 
expression for the normal potential and analytical formulas for the normal values of 
the other observables, such as 7, are computed. 

To find an expansion, (4.1.) is modified as 

In (Gradshteyn & Ryzhik, 1980) the series 

M 

l n ( l +  m) = In2 - C(-I)~ (2k - l ) !  2k 

22k(k!)2 ( X 2  I 1) 
k= l 

is found. Applying it to (4.2), with X = E l u  (outside the ellipse we have U I 6 ;  this 
guarantees X I l), yields 

1 M 2 - l)!  E 2k 

= '0 + d ln - + P' C ( - ' )  22k(k!)2 (;) ' 

k = l  

This series is now compared with the usual expansion of the potential (2.13). Since 
these two series converge for every point in outer space for every potential, the 
comparison between the two series along one radial line is sufficient. As test line 
a vertical profile a t  the North pole is selected, since it is computationally most 
convenient. With qb = + ein+ = in (2.13) becomes 
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This series is now compared term by term with (4.3). First the power of the i has to  
be rewritten. Since the normal potential U is a real and even function the relation 
c, = c-, holds. This yields: 

The nominator of the fraction in the last series equals zero for n odd. This gives, 
with r = U (because of 4 = f ) ,  

Comparison with (4.3) yields for the coefficients of the normal potential 

c, = 0, for n odd. 

The coefficients rapidly decrease to  zero. Usually the first four non-zero terms of 
the series yield sufficient accuracy. 

4.1.2 Derivatives of the normal potential 

The first derivatives are computed by the transformation rules explained in ap- 
pendix A. First the derivatives with respect t o  the equatorial frame are computed 

This connects the covariant derivatives UA, taken with respect to the coordinates 
{u,p) ,  to those for the equatorial frame. The derivatives are computed by (A.2) 
and (A.13). We have 

and for the orientation p of the normal gravity vector 

with 
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In the second step the derivatives with respect to the local frame are computed by 

For the partial derivatives (A.lO) is used with w = p, since the normal local frame 
is directed with e, parallel to the normal gravity vector 7. Inserting the partial 
derivatives, working out the products and applying them on the ellipse potential 
one finds: 

The computation of the normal values of the second derivatives of the potential, 
U,, and U,,, is more laborious. They are related to the partial derivatives UAB by 

Omitting the intermediate results of this rather lengthy derivation, one finds the 
gradients 

~ ~ c o s p s i n ~  
uzz = P 

I uv 
L4 , Uzz=p- L4 ' (4.7) 

The third derivatives are computed as 

After some manipulations we find 

,6  E ~ U V  sin p cos 
UZ,, = -Uzzz = -Uzzz = -Uzzz = p L7 

4.2 Errors introduced by the approximations 

In the beginning of chapter 3 we started with the general linear GBVP. By means 
of the introduction of two approximations in this linear model, the use of a circular 
normal field for the coefficients of the model and the computation of all elements 
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of the design matrix with the same radius, an analytical solution for the model was 
found. In this section we will take a closer look a t  these approximations. 

First we repeat the three steps leading to the GBVP that  is solved by Stokes' 
integral. Then the errors are considered introduced by the approximations in the 
linear model. For that  purpose the linear models without constant radius approxi- 
mation or without circular approximation are given explicitly. By means of a Taylor 
series with respect to the elevation or with respect to the ellipticity parameter, the 
errors introduced by the two approximations are shown. 

4.2.1 The t h r e e  s t e p s  

The first step is the linearization of the GBVP. It requires the choice of approximate 
points (the telluroid) and of a reference (normal) gravity field. The approximate 
points are usually computed from the observations by a mapping; another method, 
such as taking approximate coordinates from a map, can also be appropriate. A 
common choice for the normal field is the elliptical normal potential with elliptical 
equipotential lines. The normal potential not only defines the functions from which 
the elements of the design matrix and the anomalies are computed, but also the 
direction of the normal local frame. 

When the circular approzimation is applied, the elliptical potential used for the 
computation of the elements of the design matrix is replaced by the point mass 
potential with circular equipotential lines. The anomalies are left unaffected. The e,, 
of the normal local frame used for the design matrix is then directed radially, instead 
of normal to  the ellipse. Geometrically this can be interpreted as a mapping of a 
point with coordinates {h, 4) to  a point with the polar coordinates { r  = R + h, 4 = 
4) (see (Moritz, 1980)). It is the level of approximation of the simple problem of 
Molodensky. 

The constant radius approzimation, is the neglect of the different heights of the 
approximate points in the design matrix. All coefficients are computed with the 
same geocentric radius r = R. 

4.2.2 C o n s t a n t  radius a p p r o x i m a t i o n  

We start  again with the linear model (3.5). The elements of the design matrix are 
computed with the circular reference field, but this time without r = R. This yields 
the system 

Now for each point of observation, the elements of the matrix depend on the elevation 
in that  point; r = R + h. Since the deviation h of r from R is small, (4.9) can be 
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written by a linearization with respect to r in r = R without much loss of accuracy 
as : 

(4.10) 
The design matrix A is now split into two: the matrix in constant radius approx- 
imation, as (3.18), and an additional matrix that takes into account the elevation 
of the surface points. This latter matrix makes the difference between the model in 
constant radius approximation and only circular approximation. The coefficients of 
the position unknowns are affected by a relative error of h/R(< 10 -~ ) .  The error 
made in the coefficients for the potential strongly depends on the degree. They 
are affected by a relative error of In(h/R or n 2 h / ~ .  Consequently the effect can 
be strong. E.g. for n = 360, with h/R = 1 0 - ~ ,  this yields an error of maximum 
36% (for dW) or 1296% (for dg and da) .  Thus high degree coefficients are severely 
affected by the constant radius approximation. But the situation is not as bad as it 
looks. As the potential coefficients represent the overall effect over all observations, 
a few points with a high elevation will not necessarily result in large errors of the 
potential coefficients. How large the error really is, is not easy to be concluded from 
(4.10). In chapter 5 numerical estimates will be made. 

4.2.3 Ci rcu la r  approximation 

Now we take a further step and investigate the effect of the circular approximation. 
Instead of computing the coefficients in the linear model (3.5) from the point mass 
potential, the elliptic potential (4.1) is used. For the coordinates the elliptical system 
{U, p )  is applied since it yields compact formulae with the elliptical normal field. 
Also the series of the disturbing potential is written with respect to these coordinates. 
Inserting the derivatives of the normal potential into (3.5), the series (B.4) for the 
potential and using (4.6) for the differentiation of T, the model becomes 

0 -E!  L 

-pf E 2 c o s p s i n P  L -p' 5 
p'% 

-.I E 2  C O ; ~  sin 
u+u 

Introducing the dimensionless quantities (the prime denotes that the values are taken 
on the reference ellipse) 
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gives 

0 b - - 
L 

- bL'EZ cosp sin p -- bL1uv 
L' L' 

buu - cos P sin P -in (&) l n l  ein/3 
L3 L3 u+v 

(4.11) 
The system (4.11) is the linear model in elliptical approximation without any further 
approximation. To investigate the influence of the circular approximation, (4.11) is 
linearized with respect to et2. This yields, with et2 = E2/b2, on the ellipse U = b ,  

The first matrix of this system is almost the design matrix of (3.18). This is not 
surprising since we took e' = 0 and U = b. The only difference is the argument of the 
base functions: p instead of 4. But both angles coincide since the ellipse degenerates 
to a circle for e' = 0. 

Like with constant radius approximation, the largest error is introduced into the 
potential coefficients; the coefficients for the position unknowns are less influenced 
by the circular approximation. The total error in T is about ;ef2 M 0.3%; see e.g. 
(Moritz, 1980). 

It should be emphasized that in this application the use of elliptical coordinates 
and potential series is a only matter of convenience. Although the potential coef- 
ficients of a series with respect to an elliptical coordinate frame are different from 
the circular coefficients, the conclusion of this paragraph, the accuracy of the matrix 
in circular approximation, will not be different for coefficients with respect to the 
circular coordinates as the general trend, loss of accuracy with increasing degree, is 
the same. 

From the systems (4.9) and (4.11) can be seen why a direct analytical solution 
to these higher order problems is not straightforward: the columns of the design 
matrix A are no longer orthogonal. This yields generally a full normal matrix which 
cannot be inverted analytically. 
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4.3 Iteration and matrices 

In this section an iteration procedure for the solution of the G B V P  is proposed. It 
is derived from a series expression for the computation of the inverse of a matrix. 
Since the G B V P  was written as y = Az, these series can be applied to the G B V P  

by using it for the computation of the inverse matrix A-' (for uniquely determined 
problems), or for the inversion of the normal matrix in case least squares are used 
to obtain the solution to the GBVP.  The iteration procedure is set up such that only 
the inversion of a simple operator is required, which can be done analytically. 

4.3.1 Series for a matrix inverse 
The inverse of a matrix, if it is sufficiently close to the unit matrix, can be computed 
by a kind of Taylor series. Writing this matrix as (I- M), where I is the unit matrix 
and M the matrix containing the small deviations, its inverse is 

Occasionally this series is referred to as a Neumann series. It can be found in 
many text books such as (Courant & Hilbert, 1957) or (Varga, 1962). It can also be 
applied for the inversion of every regular square matrix A  if an approximate inverse 
is available. The matrix A  is decomposed into 

A  = A. + AA, 

where AA is small. Taking M = - A ~ ' A A  yields 

by using (4.13). So an approximation of A  is required which is close to A  and 
preferably easily invertible. 

The series (4.13) converges if its spectral radius p(M), the maximum eigenvalue 
of M, is smaller than one (Varga, 1962). This condition is easy understandable if 
the diagonalization explained in section 2.3 is applied to M :  

This series converges if 

lim An = 0 
n - + m  

lim X? = 0 
n+oo 

(the matrix A is a diagonal matrix with the elements X,). For the full proof see 
(ibid.). The spectral norm of the matrix M is defined as 
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In (ibid.) it is found ((M(( > p(M). Such that 

guarantees convergence of the series (4.14). Or, with y = Az, 

This means that the maximum possible relative error of the first estimation of the 
solution, must be less than one. This is not the same as the relative error of the first 
estimate, with one specific z. Only if the condition above is satisfied for all possible 
z,  convergence is guaranteed (for instance in an application to the GBVP a relative 
error of 30% of the first estimate, already led to  divergence). 

4.3.2 Iteration for a uniquely determined system of equations 

As usual, the linear system is written as y = Az. In case of a determined problem, 
i.e., with a full rank square matrix A, the solution to  z can be determined by 
inverting the matrix A. Then series (4.14) can be applied. It is shown that this 
series leads to an easy iteration scheme. 

First the matrix A is approximated by a simpler version, which can be easily 
inverted. This approximate matrix is called Ao. The first estimate of the solution is 

Backward substitution of zo in the original model does not reproduce the original 
input data y exactly. The difference is used to improve the estimate for z: 

and so on. Generally it is 

Combination of the two equations yields 

with M = I - AolA. 
Now the equality 

proven by induction: 

, This definition is the same as used in (4.14). 
of (4.14) and (4.17), with a finite number of terms, shall be 
if a Neumann series up to degree n is used for the inversion of 

A, the solution becomes 
n 

Zn = C M'A;~ y. 
i = O  
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Suppose iteration (4.17) also yields this estimate for z,. Then for n + 1 one finds 
with (4.17) 

For n = 0, (4.18) yields zo = A i l y ,  which completes the proof. Hence, performing n 
iterations in the scheme above, yields exactly the same result as the approximation 
of A-' by the first n + 1 terms of the Neumann series. Consequently, the iteration 
will converge if the Neumann series converges. See e.g. (Strang, 1986, ch. 5.3) for a 
similar discussion about iterative solutions. 

4.3.3 Application to the determined problem 

The iteration procedure (4.16) is now applied to  the GBVP. In the foregoing section, 
the iteration was derived for a discrete system of observations. But since matrices 
can be seen as finite dimensional operators, as shown in section 2.3, no discrimination 
will be made between the discrete GBVP, and the GBVP with continuous data. 

For the uniquely determined problem, the least-squares operator as used in chap- 
ter 3, is equal to the inverse of A ( A-' = (A*A)-'A* ). Hence, the solution can be 
obtained by the inversion of A. This inverse is computed by the series (4.14). Since 
the approximate matrix A. has to  be inverted, the linear model in circular constant 
radius approximation is taken for Ao, to be able to  derive its inverse analytically. 

Let us now consider the meaning of the steps in (4.16) when applied to  the linear 
GBVP. The solution steps can be written as 

the residuals of the unknowns (z, - zn-') are computed from the residuals (y - yn- l )  

by Stokes' formula (in case y contains W and g). For n = 0 this is the ordinary 
Stokes solution to  the GBVP from chapter 3. Backward substitution yn = Az,, can 
be seen as the recomputation of the anomalies with the most recent position and 
disturbing potential contained in z,. In case of convergence, the new anomalies will 
be much smaller than the old ones and will give a small correction to  the unknowns 
in the next solution step. 

Up to  now, the disturbances and the anomalies were considered as unknowns 
and observations, respectively. The anomalies were computed before applying the 
iteration procedure. This is not strictly necessary. If the vector y is defined as 
the vector of the observations themselves, and z contains the coefficients of the 
total potential and the position, then the first step, zo = A i l y ,  can be seen as the 
computation of approximate values of potential and position. The step of backward 
substitution yields approximate values of the observations. Then the second solution 
is comparable to  the Stokes solution with anomalies. With this application, it will 
be very clear that the iteration boils down to taking new approximate values in each 
step. 
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The matrix A is not necessarily the linear model (3.5). The iteration can be 
applied for any A better than Ao, e.g. A in circular approximation. Then the solution 
obtained by iteration, equals the solution t o  the GBVP in circular approximation. 
On the other hand, also a non-linear model for A can be considered. In that  case 
the backward substitution is not anymore a linear matrix operation, but requires 
a non-linear operator applied t o  the vector of unknowns, or unknown functions, in 
case of the continuous problem. It leads to the solution of the non-linear GBVP. 

4.3.4 Application to the overdetermined problem 

For the overdetermined GBVP the least squares operator (3.22) was used. In this 
case the inverse of the normal matrix is required, for which the iteration method 
presented can be applied. 

Denoting the approximate normal matrix by No = AgAo, the series (4.14) for 
the inversion of the normal matrix yields: 

with M = I - Ni1N. This gives the solution 

The iteration 

gives the same solution. This is derived by taking the combination of the two 
equations: 

2, = N;'A*Y + MZ,-~, 

with the matrix M as defined above. Except for the matrix in front of y, this 
equation is identical to  (4.17), and gives the solution 

as obtained with the series for the matrix inversion. 
When all matrices A are approximated in the solution step of the iteration, as 

was done in chapter 3 to  derive the solution of the overdetermined problems, the 
scheme becomes 
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which gives the solution 
m 

with M' = I - No1A;A. With (4.13) this is 

We see that  this iteration will not converge to the right solution although the dif- 
ference is small. This can be seen from the solution after one iteration. Writing 
A = A. + AA, and omitting all terms quadratic in AA, the difference between the 
two methods becomes, after some manipulations, 

( I  - AoNO,lA;)y is the projection of y onto the column space of Ao. Generally, 
this will be a small vector (it is that  part of the observation vector that  cannot 
be represented by the model in circular constant radius approximation) and i t  is 
multiplied by the small matrix AA, so the deviation of the solution cannot be large. 
However, i t  has t o  be emphasized that  this iteration is not suited to reach an exact 
solution of an overdetermined problem. Instead, iteration (4.19) should be used. 

This second iteration method is somewhat easier to use, since the closed expres- 
sions of chapter 3 can be applied directly in the solution step of the iteration. With 
the first iteration, the computation of the right hand side of the normal equations 
is more complicated (A'y instead of A:y), but not insurmountable. 

The solution to  uniquely determined systems can not only be found by directly 
inverting the design matrix, but also by least squares. As the results of both methods 
coincide, the application of iteration (4.19) to the uniquely determined problem leads 
to  the same solution as (4.16). 

4.3.5 Some remarks on the iteration 

For the approximate operator Ao, always the linear model in circular constant radius 
approximation is taken (Stokes' solution for W , g ) .  That is required t o  be able to  
compute its inverse analytically. Since this matrix cannot be changed in the subse- 
quent steps, other iterative methods, which require an adaptation of the approximate 
matrix in each step, such as conjugate gradient or successive over-relaxation, cannot 
be applied. If numerical techniques are used t o  determine A;', they can be applied, 
obviously. 

Geometrically, the iteration can be interpreted as follows. The least squares 
operator, or the inverse of A in case of the uniquely determined problem, is the pro- 
jection of the observations onto the column space of A. By making an approximation 
in the estimator, the projection direction and the projection space are changed; i t  is 
now the orthogonal projection onto the column space of Ao. It gives an approximate 
representation of the observed y by a linear combination of the columns of Ao. In 
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Figure 4.1 One step of the iterative solution of Az = b b y  least squares. 

the step of backward substitution, the same linear combination is taken, but now 
with the columns of A. This yields a vector that  is subtracted from the original 
vector y, which is projected onto Ao, and so on. This is schematically depicted in 
figure 4.1. In this figure the initial solution and the solution after one iteration of 
the system Az  = b is depicted. The initial solution is obtained by the intersection 
of the space Aiy = Aib with the approximated model space Aoz. The insertion of 
the solved vector of unknowns z into the real model A, indicated by a dashed line 
in the figure, yields yo, which is subtracted from b. The projection of this vector of 
differences onto A. yields a correction to  the initial solution: z l  - zo. The difference 
between the two methods of iteration for the overdetermined problem, discussed in 
this chapter, appears as a parallel shift of the line of projection. 

The iteration procedure is comparable t o  the well-known Newton-Raphson iter- 
ation. There exist two differences: here the approximate A. is not necessarily the 
linearization of A, it is somewhat adapted (circular and constant radius approxima- 
tion). Secondly, in each step the same A. is used. With Newton-Raphson, for each 
step a new linearization is taken. In figure 4.2 the iteration proposed here, is shown 
for the one-dimensional non-linear equation Az  = b. As can be seen in the figure, 
the linear approximation A. is not a tangent of the function and is not changed 
during the  iteration. E.g. in (Strang, 1986, ch. 5) a comprehensive discussion about 
iteration techniques can be found. 
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Figure 4.2 One step of the Newton-Raphson iteration (solid line), and of 
the Hd'rmander iteration (dashed line). 

In case the iteration does not converge, the iteration as proposed by Hijrmander 
can be applied. Here a sketch will be given (see e.g. (Moritz, 1980) for a detailed 
description). The difference with a Newton-like method is in the solution step of 
the iteration. Before starting the iteration, the interval between the value computed 
with the first estimate of the unknowns, yo, and the target point y is subdivided 
into a number of intervals. For instance define 

( N  denotes the number of iterations). Then the solution step is changed as 

This adaptation provides smaller values on the right hand side than with the original 
procedure which may turn divergence into convergence. For an one-dimensional 
problem it  is shown in figure 4.2. It can be seen that  the intermediate results of the 
iteration are close to  the original function, such that  the linearization error is small. 

4.4 The problems to be solved by iteration 

The iteration procedure explained in the previous section is numerically tested for 
several GBVP'S. The results are given in chapter 5; here the chosen models are 
discussed. 

The GBVP'S considered are uniquely determined problems for the observables 
potential, gravity and astronomical latitude. Three types of models are taken, each 
in five degrees of approximation. These problems are solved by the procedure (4.16). 
The three types are: 
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Fixed:  The disturbing potential is solved from either potential, gravity or 
astronomical latitude observations. The position of the measurement points is 
known (fixed boundary). 

Scalar :  The disturbing potential and the vertical position (elevation) are 
computed from the combination of potential and gravity observations. The 
horizontal position (latitude) is known (geodetic version according to  Molo- 
densky). 

Vectorial :  Position and potential are unknown. All three observables are 
used in the solution. 

This classification is made to see how much the unknown position affects the deter- 
mination of the potential; it is well-known from the 3D GBVP that  especially the 
horizontal position determination with vectorial Stokes, is quite weak. It also resem- 
bles situations common in practice. The fixed GBVP is encountered if the position of 
the points can be determined without the requirement of knowing the potential, for 
instance by precise space positioning. If the horizontal position is known from land 
surveying, the scalar problem can be formulated to solve for the vertical position 
and the gravity field from e.g. potential (leveling) and gravity observations. The last 
one, the vectorial problem, is more theoretically of importance since the accuracy 
of the horizontal position determined by astronomical latitude is much worse than 
with other da ta  available nowadays. 

The three GBVP'S are solved in five degrees of approximation. For each of them 
a solution will be sought by means of iteration. In terms of the previous section, 
the choice of the unknowns and the approximations in the model, establish the 
A matrix. The matrix A. will always be the model in circular, constant radius 
approximation, whose inverse is Stokes' solution of the GBVP, in case W and g are 
given on the boundary. If the iteration converges, the solution obtained will be equal 
t o  the solution for the considered problems. How close this solution is to  the real 
one, the actual potential of the earth and its shape, is another issue. The five levels 
of approximation are: 

I. S i m p l e  Molodensky:  The anomalies, computed from the observations and 
the elliptical normal potential, are projected, with the use of some mapping, on 
a point above the reference circle, with an elevation equal to the elevation of the 
anomaly above the reference ellipse. It is the model in circular approximation 
(4.9). If we imagine that  the earth is built up of the reference ellipse with the 
gravity field and the topography and everything else firmly attached to  it ,  then 
this model can be seen as a deformation of this ellipse, with everything that  
goes on with i t ,  to a circle. The equipotential lines change from ellipse-like to  
circle-like lines, the isozenithals (lines of parallel gravity) become almost radial 
and the topography is an elevation h above the reference circle. The GBVP is 
then solved for the circular earth created in this way. The model of Simple 
Molodensky would be exact (except for the linearization), if this adopted earth 
was the real one. 
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Another possibility is to take a reference circle from the beginning, instead 
of the reference ellipse, with a circular (point mass) normal potential for the 
approximate values. Then no mapping is required to use the formulas of simple 
Molodensky. But since the earth's surface and the equipotential lines of the 
gravity field have an elliptical shape, the anomalies created this way would be 
very large, and the iteration is likely to diverge. 

11. Linear  on ellipse: In case of this model the reference ellipse is not changed. 
The anomalies are only projected onto the reference ellipse. The topography, 
the elevation of the points, is neglected. So in this model, the other approxi- 
mation in Stokes' solution has been dropped (with respect to simple Moloden- 
sky). With Stokes the flattening and the topography are neglected, with simple 
Molodensky only the flattening and with this model only the topography. 

111. Quadratic:  It is identical to  the former approximation but now also the 
quadratic terms of the Taylor series expansion of the observables with respect 
to the position are included (Heck, 1988). The anomalies are, as with the 
former model, projected onto the ellipse. 

IV. Moving linear: With this linear model, no other approximation is used than 
the linearization of the observation equations. Elevation and flattening are 
taken into account. We call this model moving since another feature is added 
to improve it. Initially, the linearization is taken in the approximate points 
(telluroid), obtained by a mapping (or from a map or just by guess). With 
the first solution by Stokes, better estimates of the position become available. 
By the backward substitution of Stokes'solution in the linear model, better 
approximate values are computed of the observations. With these two, a new 
linearization can be established: the approximate points z' in the equations 
(3.5) are replaced by the position computed by Stokes. This new equation is 
solved by Stokes, and so on. In the foregoing models, the backward substitution 
step of the iteration yields new approximate values of the observations, as 
discussed before. But that is only one part of the linear formula (although the 
most important one). The other elements of it are taken in the same point z' 
in each step of the iteration, which is not the case in our mobile model. The 
normal potential used in the linear term, is not changed during the iteration 
because it is multiplied by a small value, the position correction, which is 
approximately as large as the disturbance term. 

V. Non-linear: This sounds difficult, but since we only apply the non-linear 
model in the backward substitution of the iteration, it is not that complicated. 
Instead of linearized observation equations, the exact relations between the 
unknowns and the observables are used. To make the formulas straight, not the 
anomalies are used for the backward substitution, but the full solution. This 
means that the position shifts are converted into corrections for the coordinates 
we work with, e.g. { h ,  41, and the normal potential is added to the solved 
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disturbing potential. This gives new approximate values of the observations, 
which are used in turn to produce new anomalies. 

Before continuing the discussion about the models and their solution, one remark. 
For some people i t  may be obvious, but for others the following point may be con- 
fusing, I believe (at  least it was for me). For each model considered here, including 
Stokes, the anomalies are computed in exactly the same way: choice of an approxi- 
mate point, computation of the values of the observables from the elliptical normal 
potential and subtraction from the observations. Then, these anomalies are taken 
as observations, located on the telluroid (established by the approximate points). 
The approximations taken when solving the GBVP, are in the model, connecting the 
anomalies with the unknowns, without changing the anomalies themselves. So the 
introduction of e.g. circular approximation, does not yield larger anomalies, but only 
an inferior coefficient matrix. 

The presentation of the five models was given implicitly for the vectorial GB.VP. 
But also for the other two GBVP'S, the fized and the scalar problem, their character- 
istics still hold true. In case of the scalar problem, the linearization is only carried 
out with respect to z .  For establishing the telluroid, only an elevation for the ap- 
proximate points has to be taken. With the fized GBVP, no linearization takes place. 
The telluroid coincides with the earth's surface; all anomalies become disturbances 
and are situated on the real boundary of the earth. 

At  this point, we have defined the GBVP in six levels of approximation: the 
problem in circular, constant radius approximation and the five models presented 
above. In the sequel they are denoted by roman numbers: 

0 : Stokes 111 : quadratic on ellipse 
I : simple Molodensky IV : moving linear 
11 : linear on ellipse V : non-linear 

In order to  get an overview of the differences between the models, the observa- 
tion equations for potential and gravity are written for all models in one system of 
equations 

, - - - - - - . 
I non-linear , 

I 

l fized I 
L - - - - - - _ - - - -  J 

The boxes indicate the parts of the equation used for the linear models 0-11 and Iv, 
the quadratic model 111 and the non-linear model v. With the dashed box the com- 
ponents of the fized GBVP are indicated. As before, the components and coordinates 
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Table 4.1 The elements of the observation equation depending on the ap- 
prozimation. 

Model 1 U 

-1nr radial circle 

-1nr radial circle + topograply 

- In(u+ v )  -7, ellipse 

- In(u+ v )  -7,, ellipse 

- In(u + U)  -7 ellipse + topography 

- ln(u + v )  -7 ellipse + topography 

with respect to the normal local frame (the direction of its z-axis depended on the 
approximation of the model) are discriminated from those with respect to the actual 
local frame (direction of the z-axis defined by the direction of the gravity vector) by 
primes. In the vectorial problem the indices i', j' attain the values {1,2), denoting 
{X, z)  respectively. For the scalar problem we only have i' = j' = 2. The observation 
equation for the astronomical latitude is omitted. It is similar to the equation for 
gravity, only the non-linear part is more complicated. 

The choice of the normal potential for the coefficients of the model, the orienta- 
tion of the normal local frame and the location of the approximate points, depend 
on the model (table 4.1). For the normal potential function, from which the coeffi- 
cients of the models are computed, either the circular normal potential - In r or the 
elliptical potential - ln(u + v )  is taken . The orientation of the normal local frame 
{X', z') is derived from the applied normal potential function. With models 11 and 
111 the direction of the normal gravity on the ellipse is used (yo). In some models 
the topography is considered for the approximate points 2'. In case the topogra- 
phy is unknown (vectorial problem) or partially unknown (scalar problem), the best 
approximate value available (from the last iteration) is used. 

So far about the formulation of the models. It was not our intention to  give 
operational formulae at this point. They can be found in section 5.2. The only 
purpose was an elucidation of the presented models. Finally, we mention some 
aspects of the convergence of the models. For all approximations of the fized GBVP 

and with the models 11 and 111 for the other problems, the criterion (4.15) can directly 
be applied. But for the other models this is less straightforward. In the backward 
substitution with e.g. moving linear, the model is updated in each step. So the 
iteration procedure as discussed in section 4.3, is slightly modified: instead of the 
backward substitution with one fixed model, A is changed during the iteration. This 
brings up the question of to which solution the iteration converges. It is not easy to 
give a conclusive answer to this question. We will only give some tentative remarks, 
and see how the model performs with the numerical tests presented in chapter 5. 
The method of solution with moving linear can be interpreted as follows. After each 
solution step with Stokes,  a new linear model is set up. This is again solved by 
Stokes and so on. So it is a succession of linear models solved in circular constant 
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radius approximation. These solutions are of course not the exact solutions to the 
linear models, but if they head into the right direction, the row of solutions, which 
is the same as the row of approximate points established by this procedure, runs 
from the initial approximate point to  the real point on the earth's surface, in case of 
convergence. In that case the linearization error with respect to  the position is lifted 
by this model; the neglect of the difference aW/az - aW/az' is not compensated 
for. That is all we say about it here. One final remark. If the approximate point 
used for the linearization, is somewhere between telluroid and earth surface, then 
the model cannot become worse than the original model set up a t  the telluroid. If 
convergence of the latter can be proved by the criterion given in section 4.3, the 
moving model will converge to  a solution at  least as good as the one obtained by a 
fixed linear model. 

For the non-linear model we do not hazard a prophecy. The convergence condi- 
tion for the iteration with matrices can not be applied easily (since the M operator 
becomes quite complicated). The only thing we are confident about, is that the 
results should be at  least as good or better than the moving linear model. See e.g. 
(Hormander, 1976), (Moritz, 1980) or (Sansb, 1977) for some considerations about 
the convergence of the non-linear problem. 

4.5 Analytical solution of simple Molodensky 

For the iteration in the circular approximated model, simple Molodensky, a solution 
in the form of a series of integrals is available both for the 3D and for the 2D 
problem. It will be shown here that one step of iteration, as described in the last 
section, leads to  the same result as the first two integrals of the solution to simple 
Molodensky. For 3D this is equation (8-50) of (Heiskanen & Moritz, 1967); a sketch 
of this similarity was given in (Rummel, 1988) and (Rummel et al., 1989). In 2D 
also for the linear problem solutions are available, see (Gerontopoulos, 1978). But 
as the solution in that case is much more complicated, and derived by a complete 
different approach than used here, it does not allow an easy comparison with the 
iterative solution. 

First it is shown that one iteration step yields a solution in the form of an integral 
formula like (8-68) of (Heiskanen & Moritz, 1967). Then the 2D counterpart of 
this integral formula is derived from the solution to simple Molodensky given in 
(Gerontopoulos, 1978). The astronomical latitude is omitted from the problem. 
The logarithmic term is not included. 

As already shown in section 4.1.2, the model for simple Molodensky can be 
written as 

Thereby A denotes the model in circular approximation, (4.10), and A. the model 
in circular, constant radius approximation, (3.18). The solution with one iteration 



4. Higher order approximations of the linear problem 

is, with (4.20), 

Insertion of Stokes' solution (3.44) for the first iteration zo, yields for the new 
observations y - yo by backward substitution: 

'(-m + dT) + Cn ( f ) & (dgn - dWn)ein' 
y - yo m --- 

(F) l ( - m  + d ~ )  + C, (F) n+l &(dgn - mn)ein4  

This vector is now used as observation vector for the second solution step with Stokes 
integral. The solution of T becomes 

Taking the radial derivatives in this equation at  zero elevation r = R,  the solution 
reduces to  

This can also be written as 

The derivatives can safely be taken at  zero level, since they are multiplied by h. The 
error introduced is therefore of second order. 

Now the same equation is derived from the solution for the Molodensky problem 
given in (Gerontopoulos, 1978). The first two terms of his equation (1-74) on page 
36 are 

with T = To + Tl St(+) d4  

In To the ratio can be replaced by 1 in circular approximation. Tl is 
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with 
R - h p  R +  h p  

Ag d4 

For comparison with (4.22), (4.23) has to be rewritten. The same procedure is fol- 
lowed as in (Heiskanen & Moritz, 1967, chapter 8-8). First some auxiliary formulas 
are deduced. 

The integral of Poisson is (Rikitake et al., 1987) 

where t denotes the distance between the points {r, 4 )  and {R, 4'). With 

the radial derivative becomes 

With the auxiliary potential Vl one finds 

R av1 R " 
V l = - + V l ( R ) = l  and -=  

r d r  r2 2~ 

Multiplying with V and subtracting from (4.24) yields for r = R 

With (2.10) and (3.17) it is 

(4.25) 
After these derivations, the G1 function of (4.23) can be rewritten. First the 

substitution 

is used for the denominator of (4.23). This gives for G1: 
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Now the two parts are written as a series with the use of (4.25): 

The expression Ag, indicates the Fourier coefficients of Ag. The first function 
becomes 

(because of the circular approximation, h is taken parallel to r). And the second 
function is 

Inserting G1 = Gll + G12 into (4.23) yields 

Introducing dimensionless quantities, and using the definition of Stokes' kernel St  
as derived in chapter 3 (the difference in the definition is introduced by the use of 
complex series used here, and the use of sine/cosine series by Gerontopoulos; the 
factor 2 in (2.21) is not included in the latter definition), and h p  = 0, since (4.22) 
is computed on the circle r p  = R, this yields 

If, as for (4.22), the mapping A W  = 0 was used, the equations would be identical. 
Thus i t  is shown that one step iteration gives the same solution of T as one step 
of the Molodensky series, derived along a completely different line. Very likely the 
next iterations will supply the other terms of the Molodensky series. This is not 
investigated here. 



N u m  erica1 exp erim en ts  

AT LAST THE COMPUTATIONS can be commenced. We will find out how the 
iteration procedure proposed in chapter 4 works in 'practice'. 

First an earth, with topography and gravity field, is generated. The aim is to 
get a synthetical earth, with features close to the real one, as far as a 2 D  world can 
be compared to a 3 D  world at  all. Then observations are computed. 

The models of GBVP'S to be solved by iteration are now formulated explicitly. 
After the discussion of a few additional aspects of the iterative solution, the first 
results are presented. Since the number of parameters in the problem, such as 
measurement interval, types of observation, number of coefficients a.s.0.) is large, 
only a few situations are presented, which seem to be characteristic. For the selection 
we will emphasize on theoretical relevance. No attention will be paid to practical 
aspects, such as actual implementation or computation time. 

5.1 Generation of an imaginary world 

The numerical experiments described in this chapter, take place on a generated, 
imaginary earth. They are selected because of their relevance for the 3 D  case, but 
can be applied here under simpler conditions. For this purpose a 2 D  world has to be 
designed that resembles the features of our real world. For the constants appearing 
in the formulas, such as the size of the earth, the values of the geodetic reference 
system 1967 (GRS67) are applied. 

A world in the context of physical geodesy, has only two major elements: topog- 
raphy, which determines the boundary of the earth, and a gravity field. Both have to 
be generated for our experiments, bearing in mind their relation. For this relation 
the concept of isostatic compensated topography is used. Since for the 3 D  earth 
it turns out that the isostatic model yields potential coefficients, computed from 
the topography, that have a correlation of typically 60% with the real coefficients 
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(Rummel et al., 1988)) some approximations in this relation are allowed. A topog- 
raphy is generated with characteristic structures derived from the earth, from which 
potential coefficients are computed for the short wavelength part of the spectrum. 
These are combined with potential coefficients generated according to the power of 
a 3D earth model. This finally gives a set of 7200 potential coefficients, and topo- 
graphic heights of 7200 points, equidistant in geographic latitude. These two data 
sets are used for the computation of four types of observations (W, g ,  Q, W,,) in each 
grid point on the earth's surface. These three sets are the basis for the numerical 
experiments. 

5.1.1 Relation topography and potential 

To be able to generate a potential that is compatible with the topography, we start 
with the derivation of the coefficients of the potential generated by the topographic 
masses. As guideline (Rummel et al., 1988) is used. There a relation is worked out 
between potential coefficients and isostatically compensated topography according 
to the model of local compensation by Airy. 

In chapter 2, the relation between mass density and potential coefficients was 
already established, (2.7). What has to be added here, is the relation between the 
topography and the mass distribution according to Airy's model. 

For the potential series (2.13) is used. The coefficients are computed with (2.7) 
and (2.12) as 

The coefficients are divided by G M  to make them dimensionless. As before, the c0 

is put to zero. Since the logarithmic function of the series (2.13) only depends on 
the total mass of the earth, it does not play any role here, and is left out. 

The integration over the total mass C is split up into two: the contribution of 
the topography and of its compensation. The integral for the potential coefficients 
of the isostatic compensated topography becomes 

with the topographic contribution 

and the compensation 

with 
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D j j crust : : : 

Figure 5.1 The isostatic compensation according to Airy .  The ocean area 
on the right gives negative compensation depths. 

h : topographic height t : root thickness 
pc, : density of the crust pm : mantle density. 
D : depth of compensation AP = Pm - Pcr 

See also figure 5.1. For ocean areas, with negative elevation, the density pc, should 
be replaced by pc, - p, (p, is the density of ocean water). Since p, < p,,, ocean 
areas have a negative compensation depth. 

The contributions AT and A' are computed in circular approximation. Since 
an approximate relation between the topography and the potential is sufficient, as 
explained in the introduction, it is accurate enough for our purposes. We underline 
that the h, t and D are taken with respect to the ellipse. 

Assuming that pc, and Ap do not depend on the radial position, (5.3) and (5.4) 
are written as 

The root thickness t depends on the topographic height of the corresponding surface 
point. The relation between t and h is derived from the equilibrium of mass condition 
between the topographic and the compensating mass: 

r=R+h R-D 

pcrr drdtj = / Ap rdrdtj. 
r=R-D-t 

Or, with the integrations carried out, 

Pcr AP -[(R+ h)2 - R ~ ]  = -[(R - D ) ~  - ( R -  D - t)2], 
2 2 
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or 

P- (2h+?l )  R~ - - -- 2t t2  
Ap R R2 ( R - D ) 2  R - D  ( R -  D ) 2 '  

This equation is rewritten as 

As it is tedious to  solve this equation exactly, an approximate solution is taken. 
Neglecting the terms of order h / R  (< 1 0 - ~ ) ,  the solution is 

The computation of AT and A' directly by (5.5) is time consuming since the ratios 
with hQ and t g  have to be evaluated for every point and every degree. To reduce 
this computational effort, a binomial expansion is used up to the third order in h / R  
(an alternative method can be found in (Moritz, 1990)). This gives for (5.5): 

R - D InI+l [I--- I n / + l  t 

2 R - D  R - D  

Insertion in (5.2) yields after replacing t by (5.6), with p = M / ( X R ~ ) ,  the mean 
density of the earth, 

1 R - D Inl I - Per c,-:-- [ ( l  - (R) ) L /X  Le-'"4d4 
P l n l  27r -X R 

R - D  " (R) 
A p2 
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Now the computation of cf, is easy since the position dependent quantity h only 
appears in Fourier integrals, which can be computed by a Fast Fourier Transform 
(FFT). Multiplication by the preceding ratios gives the potential coefficients of 
the topographic mass. In (Rummel et al., 1988) it is shown that the approximate 
solution to cf, by the binomial series has an accuracy of better than 3% up to degree 
200. Since the topography is not very rough, see next section, it is assumed that 
(5.7) is accurate enough for all degrees. 

For ocean areas the heights in (5.7) have to be replaced by the equivalent rock 
topography 

Pcr - Pw h = 
Pcr 

d, 

where d is the (negative) ocean depth. This is required to compensate for the density 
difference between water and crust. 

For the Airy model it is used: 

5.1.2 Generation of topography 

For the construction of the earth, we start with the topography. The topography 
will be represented by elevations h above the reference ellipse for the 7200 points (5.5 
km interspace). For the relation between potential and topography it was assumed 
in (5.7) that the heights h are mean elevations of blocks. Since 7200 points are 
generated, there will be only one point per block. Although this gives not a very 
good representation, it is assumed that the representation error will be negligible 
since the blocks are small. 

Because it is desirable that there is some resemblance between the topography 
on the 3D earth and the generated topography that will be used for the simulations, 
a height data set of average elevations of one degree by one degree blocks, collected 
by the university of Graz, is used. Our aim is to compute a one dimensional power 
spectrum from this set, that is representative for the earth and which can be used 
as model for the topography generation. From the block averages the spherical 
harmonic coefficients are computed up to degree 180. From these coefficients vari- 
ous one-dimensional power spectra are computed: degree variances and the Fourier 
power spectra for three profiles along a parallel. One could start a theoretical dis- 
cussion whether degree variances or a Fourier power spectrum has to be used as 
model for the generation. But test computations showed that there is almost no 
difference between the two. Hence, we just take the Fourier spectrum of the height 
profile along the equator as model without further discussion (actually we should 
take a profile containing the poles, see chapter 1). The Fourier coefficients of the 2D 
topographic heights up to degree 180 are now generated such that their amplitude 
is in correspondence with the model but with an arbitrary phase derived from a 
computer random number generator. 
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@ 
Figure 5.2 The topography above the reference ellipse. 

For the degrees 181-3600 an analytical model has to be used. This model has to 
satisfy two demands: continuation of the trend in the power spectrum of the Graz 
set and a rapid decrease in power for the high degrees to limit the roughness of the 
topography. On the face of it,  the model 1.6 X 1013/n5 m2 was selected. The Fourier 
coefficients of the topography are computed as follows. As for the lower degrees, the 
phase is taken random. The amplitude of the coefficients equals the model value 
multiplied by 10' ( - i  < X < ;,X : random number, uniformly distributed) to get a 
variation of the power in a bandwidth as was found from the Graz set for the low 
degrees. After some runs, the final topography was selected. It contains four oceans 
and a mountain of approximately 5 kilometer altitude (see figure 5.2). The complete 
power spectrum of the generated heights is displayed in figure 5.3. 

5.1.3 Generation of the potential 

For the generation of the potential of the imaginary world, two sources are used: a 
set of spherical harmonic coefficients (OSU89A), see (Rapp & Pavlis, 1990), and the 
topography. The OSU model will be used for the low degrees of the potential, which 
are largely generated by the mass distributions of core and mantle. The high degree 
coefficients are mainly determined by the mass distribution of the topography. 

First a one dimensional power spectrum is computed from OSU89A, which can 
serve as power model for the coefficients to be generated. Since the normal potential 
for the 3D earth has values quite different from the normal potential applied here, 
not the full OSU model is used, but only its deviation from the normal field GRS67. 
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Degree 

Figure 5.3 The power spectrum of the 2D topography. 

As was done for the topography, the power spectrum of the potential along the 
equator is used as power model. Degree variances of profiles parallel to the equator 
are not very different from their Fourier power spectra, as can be seen from figure 5.4 
for the equator. With this power model a set of potential coefficients is generated 
with an arbitrary phase and an amplitude in accordance with the model. The 2D 
normal field coefficients are added. This gives a set up to  degree 360, the maximum 
degree of OSU89. Another set of potential coefficients is related to  the topography, 
computed with (5.7). This set we denote the EQRT (= equivalent rock topography) 
set. As final step these two sets are combined. 

The combination is made by giving a weight of 1 - n2/(400+n2) to the coefficient 
from the low degree set and n2/(400 + n2) to the coefficient of the EQRT set. It is 
difficult to  give a justification for such a choice, as our situation is hypothetical. The 
reason we took such weights is the large power in the low degree set with respect 
to the EQRT set in the low frequencies, and the fact that the EQRT coefficients are 
computed from the given topography and the other coefficients are generated. 

The geoid computed from the total potential is depicted in figure 5.5. It shows 
a geoid that is quite similar to geoid profiles of the 3D earth. The power spectrum 
of the total potential model is given figure 5.6. The power spectrum is computed by 
taking the square of the Fourier coefficients. 
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Degree 

Figure 5.4 Power of OSU89A. Thin line is the Fourier power spectrum for 
a potential profile along the equator. The thick line denotes the 
degree variances. 

5.1.4 Synthesis of the observations 

The synthesis of the observations can be divided into three steps: transformation 
of coordinates, computation of derivatives of the potential and the combination of 
them to  observations. These steps are described below. All quantities are taken 
dimensionless, as explained in chapter 3. 

1 .  Transformation of the coordinates: This is an easy task to start with. For 
the position location of the observations their elliptic coordinates {h, 4) are 
available: the 4 is taken at  regular intervals and h is the generated topography. 
The potential is given by coefficients with respect to a series expressed in the 
polar coordinates {r, 6). Therefore we start with the transformation from 
geographic to polar coordinates by (A.4) and (A.7). 

2. Computation of the derivatives of the potential: From the series of the 
potential W, the derivatives can be computed. As the series for W is identical 
to the expansion for T, formulas (3.17) can be applied for the derivatives of 
W with respect to {r, 4). 

3.  Combination to observations: All the observations can be expressed as a 
combination of W and its derivatives with respect to the polar coordinates. 
The series found in the previous step lead to the observation values. 
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Figure 5.5 The geoid computed from the total potential with respect to the 
reference ellipse. 

The gravity scalar g is defined as 

Writing (5.8) in index notation we find, using the coordinates {r, 41, 

For @, the direction of the gravity vector with respect to the er, , ,  we have 

with 

Inserting the partial derivatives found in appendix A, yields 

1 
W z  = W, sin g5 + - W4 cos 6. 

r 
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Degree 

Figure 5.6 The power of the total potential. 

With tan@ we have to be careful since it is periodic with X. It has always to be 
taken such that the vector g points inwards. For e.g. Wx < 0 and Wz < 0 we find 
0 < @ < X/2. 

The gradients are computed in the same way as the gradients of the normal 
potential, compare section 4.1. First the second derivatives with respect to the 
equatorial frame eI are computed from the polar coordinates as 

These gradients are rotated to  the actual local frame by 

For the partial derivatives, which represent a rotation, the angle w = @ is substituted 
into (A.lO). This finally gives after a few manipulations 

W,, = Wxz cos 2@ + WZz sin 2@ 

W,, = Wxz sin 2@ - Wzz cos 2@. (5.11) 

5.2 The five models for backward substitution 

The five approximations, in which the GBVP will be solved numerically, were dis- 
cussed in chapter 4. Here the explicit formulae are given for these models. Since 
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all are solved by iteration, they are only used for the backward substitution step. 
After the formulae are presented, we will discuss how the total procedure of solution 
works. 

5.2.1 Explicit formulation of the models 
The explicit formulas for the five models are given below for the vectorial Stokes 
problem. For the fixed and the scalar problem, the columns for dz and dz and for 
dz, respectively, are omitted. All linear models are derived from (3.5). Quantities 
are made dimensionless by the normal values on the circle (3.13). 

As usual, the polar coordinates {r, 6 )  are used in the series expression of the 
disturbing potential 

For later use, also the series with the elliptical coordinates {u,P) are applied: 

The use of a series requires the expression of derivatives of T with respect to the 
same coordinates. As much as possible the same coordinates are used for the other 
parts of the model to  avoid coordinate transformations. The notation T, is used for 
the dimensionless partial derivatives of T with respect to  a. Derivations are omitted. 

Simple Molodensky: The equations are (4.9): 

The r is computed by r = R + h and the latitude by 6 = 4. No expression 
with the elliptical potential series is given. 

Linear on ellipse: The derivatives of the normal potential, which are the coef- 
ficients for the position corrections, are given in section 4.1. For the derivatives 
of the disturbing potential the relation 

is applied for the formulation with polar coordinates. For the rotation from the 
equatorial frame to the local frame, (A.10) is used with W = 4; on the ellipse 
4 coincides with the direction p of the normal gravity vector. The relations 
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(4.5) can be used to  express the sines and cosines of P ,  which appear in the 
derivatives of U, in those of +. This gives the model 

0 R -- 
L' 

- R 2 E 2  cos 4 sin 4 
o b ~ ' 2  - ~ ' 4  ] ( + (5.13) 
Rob RE2  cos 4 sin 4 
F obL' 

-(cos j cos + + sin 6 sin +)TV - (cos j sin + - sin j cos +) ( f ) T4 

(sin + cos j - cos + sin 6) (g) T, - (sin + sin j + cos + cos j) ( $ ) T& 

L' can be written with (4.5) as 

because on the ellipse U = b, v = a and p = +. Solving L' from this equation 
yields 

I L = 
b 

J-' 
Hence, it is not required to know the coordinates {u,p) ;  {r, 6) and {h, +) are 
sufficient. 

If elliptical coordinates are used, the transformation 

can be applied for the local derivatives. For the rotation to  the local frame 
the angle W = p is used. This yields with (4.5) 

0 R -- 
L' (j[ - L" L'4 

R2E2 cos P sin P -- 

Rab RE2  c;;! sin@ 
F 

(5.14) 
All components of this equation are expressed with respect to {u,p). 

Quadratic: This model is an extension of the preceding one with the 
quadratic terms included. See page 76 for the general model. On the ellipse 
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it is: 

0 R -- 
L' 

- RZE2 cos 4 sin 4 
abLIa Lf4  

RE sin 4 cos 
abL 

+ I - (cos 6 cos 4 + sin c$ sin 4 ) ~ ~  - (cos 6 sin 4 - sin 6 cos 4 )  ( f ) T4 

(sin 4 COS 6 - cos 4 sin 6) ( f ) Tr - (sin 4 sin 6 + cos 4 cos 6) (41) T4 J + 
(F) Ti Tr 

(9) ~6 - (F) ~~6 - Trr 

(8 Trr (g) ((F) ~6 - (F) ~ ~ d )  (tz) + 

The dimensionless derivatives of U are computed from those given in sec- 
tion 4.1. They are 

R2 E2 cos I$ sin 4 R2ab 
u z z  = ' -Uzz= U,, = - abL12 ~ 1 4  ' 

6R3 E2 sin P cos P 
Uzzz = -Uzxx = -Uzzz = -Uzzz = 

LI5 > 

R3LI2(2 Lf2 - 3(a2 + b 2 ) )  + 6R3a2 b2 
UZZZ = UZXZ = UZZZ = -Uzzz = L" 

The model is not presented in elliptical coordinates. 

Moving linear. It is like linear on ellipse, naturally without the restriction 
to  the ellipse. For the model expressed in elliptical coordinates it does not 
make much difference since by (4.5) the orientation of the normal vector can 
be computed directly from the coordinate P for all values of U. For the model 
with the series in polar coordinates, a similar relation is not available. Thus a 
transformation has to  be performed to  find sin ,B and cos P .  
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For the model with the polar series it is 

0 R -- 
L 

- R2E2 cos p sin ,9 
L' L' 

F _E2 cos sin ,9 
uv L 

+ I (vsin/3cosJ - u c o s / 3 s i n ~ ) i T r  - (vsin@sind+ u c o s / 3 c o s ~ ) ~  (f) T4 

For the elliptical series it is 

0 R -- 
L 

- R2E2 cosp sin p -- 
L' L' 

p 
Non-linear. For the non-linear model, the same formulas are used as for 
the synthesis of the observations in section 5.1.4. Instead of using the solved 
disturbing potential and the coordinate corrections, the full potential and the 
actual position are used, since this yields briefer formulas. If this total potential 
is called W' the model for backward substitution becomes 

I -W;sinJ - fw,'cosd -wz = Q = arctan 7 (5.18) 
-Wx - ~ : c o s c $ + ~ ~ ; s i n $  ' 

And expressed in derivatives with respect to  the elliptical coordinates 

W = W' 

' -vW:sin/3-RtWicos/3 -wz  - Q = arctan - - 
W -uW:cos/3+RWisin/3' 

(5.19) 

The W' is computed by adding the normal potential U to the last solution for 
T .  For the computation of g and Q, it is impossible to apply these formulas 
to T and U separately and add the results as the relations are non-linear. In 
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that case we would compute the sum of the normal derivative of T and of 
the normal derivative of U, with the normal directions given by T and U, 
respectively. While the real value of g is the sum of the derivatives of T and 
U with respect to the normal of the total potential W.  

5.2.2 The implementation of the iteration procedure 
Now let us see how the solution is actually computed from the boundary data. Only 
the vectorial problem is discussed here. It should be obvious that for the scalar 
GBVP and for the fized problem some simplifications apply. Where necessary the 
differences with the vectorial problem are indicated. Although Stokes' integral gives 
only the solution of the disturbing potential from potential and gravity anomalies, 
the solution step will often be denoted by Stokes for simplicity. As the core of the 
solution is Stokes' formula, we start there. 

Because of computational simplicity, Stokes is applied in the frequency domain. 
The coefficients of the disturbing potential Ac, are computed from the spectral 
components of the anomaly difference dg - dW by a simple multiplication (3.44). To 
be able to compute these spectral components by Fast Fourier Transform (FFT), dg 
and dW would have to be given equidistantly on the reference circle. This demand 
of maximum data regularity, gives a simple, unambiguous one-to-one relation of the 
space domain functions and their Fourier coefficients. 

The anomalies are obtained by subtracting the normal values in the approximate 
points from the observations. Then they are projected onto the reference circle by 
{ r  = R,$ = $1. Hence, to accomplish data on the circle equidistantly spaced in 
4, the anomalies have to be located in the points of a regular &grid. For the ele- 
vations h no condition is required since r is kept fixed. They are computed by the 
condition of equal normal potential and observed potential value. These choices for 
the approximate coordinates define a mapping which is an adapted version of the 
Marussi-mapping. The difference is in the selection of the latitude of the approx- 
imate point. Instead of using the observed astronomical latitude, a grid is used. 
In case of regularly distributed observations, as is the case in our simulations, this 
difference is only small. If the data are given irregularly, an interpolation has to be 
applied to avoid too large anomalies. 

With Stokes' solution, coordinate shifts and disturbing potential coefficients are 
obtained. Before they are used for the backward substitution, the position of the 
observation points is computed in {h,$) to check the accuracy of the solution and 
also for the models which require updated positions for the backward substitution: 
the moving linear model and the non-linear model. The elliptical coordinates are 
computed by the linear relations 
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Where {ho, 40) denote the coordinates of the telluroid point. The partial derivatives 
are computed as 

aza - aza azr -- - azi azIazi2 
which are given in (A.9) and (A.lO). For the latter the angle W has to  be defined; it 
is the direction of the normal gravity vector. On the ellipse the partial derivatives 
are easily obtained since the direction of the normal gravity vector is equal to the 
latitude 0. As it changes only slightly with increasing elevation, the required relation 
is computed in linear approximation with respect t o  the ellipse. Without further 
derivation we give 

1 h  he2 sin 4 cos d d l +  e2 cos20 
O = O O + ( G - M 1 ) ~ z +  bM Az (5.20) 

Thereby 

the curvature of the ellipse. 
In (5.20), the coordinates are computed from the position shifts obtained from 

the iterations made so far. In chapter 4 it was shown that the iteration can be seen 
as taking new approximate values in each step, and solving with them a new problem 
by Stokes. With this perception it is natural to  compute the position incrementally, 
by applying (5.20) to  the (Az, Az) of the last iteration step, with {ho, 40) from the 
former solution, instead of using the total solution. Then the question arises, which 
of the methods, total or incremental computation of the position, is best. For the 
linear approximations of the GBVP, there is no difference. For the non-linear model, 
we can only work with the total potential and shifts, as explained in section 5.2.1. 
Only for the quadratic model, a difference may occur. It turns out to be very small. 
If a large number of iterations is required, the incremental method may be less 
accurate due to  computer rounding-off errors. 

The solved Ac,, dz and dz are now substituted in one of the models of (5.2.1). 
This yields new anomalies, which are subtracted from the original ones, taken from 
the observation data. These anomaly differences yield a small disturbing potential 
and position shifts in the next solution step. They are added to the solutions from 
the previous step, as described in section 4.3.2. 

One point in the total process requires more attention. It is the effect of the 
neglect of ellipticity in the solution step (Stokes) of the iteration. The step of 
backward substitution requires the computation of the disturbing potential, or its 
derivatives, in the approximate point. Usually, the solved disturbing potential is 
represented by coefficients and base functions. This representation makes it easy 
to compute the potential and its derivatives in every point required. But there is 
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a snake in the grass: the solved coefficients are not unambiguous. To see this, we 
consider the procedure again. 

After the subtraction of the normal values, the first step was the mapping onto 
the circle by 6 = 4. In this circular world, the exact relation between potential and 
observation is given. The computation step (Stokes) yields the disturbing poten- 
tial, usually expressed by Fourier coefficients, as the relation between potential and 
observations is straightforward in the spectrum. The obtained disturbing potential 
can now be interpreted in basically two ways: either as the solution of the disturbing 
potential function on the reference circle, or as the solution on another boundary. 
The first seems to  be the most logical interpretation, but we have to keep in mind 
that the input data was not originally situated on the circle. It was put there by a 
mapping. To annul, partly, the effect of this mapping, the inverse mapping can be 
applied to T such that the solved function is placed on the earth's surface. 

As the surface of the earth is irregular, the application of the exact inverse map- 
ping is not practical. Instead, the topography is omitted from the inverse mapping, 
such that the boundary turns into an ellipse. Let us assume that the solution of 
T is given by Fourier coefficients. For both cases, with and without the inverse 
mapping to the ellipse, the coefficients refer to a sine/cosine series with respect to 
a graduation along the boundary obtained by the inverse mapping. Hence, without 
the mapping, the Fourier coefficients found in the solution step, are the coefficients 
with respect to the series (2.13). In the other case, they are coefficients with respect 
to the geographic coordinates. As no series is available with respect to { h ,  41, series 
(B.4) have to  be used. Details of this aspect will be discussed in section 5.5.2. 

Summarizing we can say that the Fourier coefficients found in the solution step, 
can be interpreted both as solution of the potential coefficients with respect of the 
polar coordinates, and as solution of the coefficients with respect to the elliptical 
coordinates. Only the latter will be more accurate than the former. Hence, the 
iteration will work better if the elliptical series are applied. This will be discussed 
in section 5.4. 

Using the elliptical series means that the final result of the iteration is a set 
of elliptical coefficients. Since usually the coefficients with respect to  the polar 
coordinates are required, a transformation has to be applied. If the coefficients are 
interpreted as polar coefficients in each backward substitution step, the final result 
will be polar coefficients. Hence, no transformation is required, which can balance 
the slower convergence. 

With the model in circular approximation, the anomalies are mapped onto the 
circle only once. In the backward substitution step, only the topography is added. 
Although in the computation the solved Fourier coefficients are considered to be with 
respect to  the polar coordinates, an inverse mapping applied back to the boundary 
was never applied, where the anomalies were located originally. We saw before, 
that the solved potential is closer to the disturbing potential on the ellipse than 
the potential along the circle. Hence, after the iteration in the circular model, this 
inverse mapping is applied. For the coefficients this simply means that they are 
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interpreted as elliptical coefficients. The final step becomes the conversion of them 
to the polar coefficients. 

5.3 First results 

Now the total scheme is complete, first calculations can be made. To avoid the 
mixing of all kinds of effects, we take here a rather idealized situation with respect 
to the data. Later, other data conditions are considered. 

Two sets of observation points are taken, one at  72 locations, with a constant 
separation of five degrees in 4, and the other with 720 points. If the observations 
are taken as samples of the total potential or gravity function, as would be realistic, 
aliasing occurs since the potential function generated, has a maximum degree of 
3600. Instead, for the observation synthesis the potential coefficients are only used 
up to half the sample frequency, this means to a maximum degree of 36 and 360, 
respectively. This does not exclude all possible aliasing effects, as the points of 
observation are not situated on a circle, but on the earth's surface. But aliasing 
should remain small. 

As observations W, g or are used for the fized problem, the combination (W,g) 
for the scalar problem and (W,g,@) for the vectorial problem. The unknowns are 
the coordinates of the observation points and the first 36 or 360 Fourier coefficients, 
respectively, of the disturbing potential. 

The solution is judged by comparison with the real potential and position. To 
reduce the amount of numbers, the relative error 

is computed for each kind of unknown: dx, dz and for Acn. Thereby z denotes the 
real value of the unknown, and zn the estimate after n iterations. In the tables, the 
model used for the backward substitution is indicated by roman numbers: 

I : simple Molodensky IV : moving linear 
I1 : linear on ellipse V : non-linear 
111 : quadratic on ellipse 

Summarizing, the observations satisfy the following conditions: 

maximum frequency in the data is half the sampling rate 

regularly distributed 

no observation noise. 

In section 5.6 more realistic data will be used. 
We start with the fized GBVP with gravity observations in 72 points. The result 
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is given in table 
The columns are the 
ative errors of the 

5.1. 
Table 5.1 Relative errors of the potential for the fized 

rel- 
problem with 72 gravity observations. dis- 

ter zero (Stokes' solu- 0.003223 0.003213 0.003214 0.003214 0.003214 

tion) up to four itera- 0.006437 o.000798 0.000835 0.000834 0.000834 

tions. The rows con- a 0.006437 o.oo0170 o.oooo13 o.ooooo4 O.OOOCKJ~ 

tain the results for the 0.006437 0.000170 0.000012 o.ooooo1 O.OOOCKJO 

four employed models; 
the quadratic approxi- 
mation does not exist in the fixed GBVP since no linearization with respect to the 
coordinates occurs. For models 11, Iv and v, the first result is identical because all 
are computed by Stokes without iteration. Stokes' solution with model I is different 
since the transformation from elliptical potential series to polar series is applied, to 
compensate for the circular approximation, as discussed above. If this would be left 
out, the first result for I without iteration would be the same as for the other meth- 
ods; the transformation reduces the error approximately by a factor of two. The 
transformation is only applied for testing the results, it is not used in the iteration. 
We observe that iteration in the model in circular approximation, does not have 
much effect. With model 11, one iteration is useful. With linear model Iv, an almost 
exact solution is reached after 3 iterations. The non-linear model, finally, converges 
to the 'exact' solution. 

It can be concluded from this table, that for the given situation, the fixed problem 
with 72 gravity observations, the neglect of the ellipticity is more serious than a 
neglect of the topography (compare the results with models I, no ellipticity, and 11, 

without topography). 
The linear model Iv converges to almost the exact solution. The small remaining 

difference is caused by the neglect of the difference in direction between the normal 
induced by the total potential and that from the elliptical potential; see section 4.4. 

With the non-linear model, the convergence seems good. But as only a lim- 
ited number of figures is presented in the table, we take a closer look. With the 
FORTRAN REAL*8 data type, used in all computations, the mean error for the dis- 
turbing potential reduces to 10-l2 after 18 iterations. Increasing the word length by 
using REAL*16 data representation, the error decreases to 10-28 after 28 iterations. 
For both data types this means a loss of accuracy of about six figures in the total 

turbing potential, com- 

computation (including the observation synthesis), which seems acceptable. As the 

puted by (5.21), af- Model 

improved data representation fully contributes to the reduction of the error, we may 

Number of iterations 

0 1 2 3 4 

conclude that the iteration with the non-linear model really converges to the ezact 
solution of the GBVP. 
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In table 5.2 the results after seven iter- 
Table 5.2 Relative errors of the po- ations for all three observables of the fixed 

tential for the fized prob- problem with 72 points are given. Two 
lem with 72 observations points deserve attention. First we observe 

for the potential that model Iv gives the after 7 iterations. 

same accuracy as model v. This is caused 
by the linearity of the fixed GBVP in the Model 
potential. Secondly, the astronomical lati- I 
tude observations yield accuracies compa- 11 

rable with those of models I and 11. Mod- IV 

els Iv and v give hardly better results, in V 

Observation 

W B 0 
0.002575 0.003214 0.003959 

0.000579 0.000834 0.000641 

o.oooooo o.ooooo4 0.000428 

o.oooooo o.oooooo 0.000428 

contrast with the other observation types. 
We do, so far, not have a satisfactory explanation for this result. 

As was discussed in chapter 3, the first degree harmonics are not estimable from 
the vectorial problem. Hence, this harmonic has to be determined externally. As it 
was taken zero in the observation synthesis, the first degree coefficient is put to zero. 
To get comparable results for the various problems, it is taken zero for all considered 
problems. Also the logarithmic component is put to  zero, as it is not estimable 
from 'horizontal' observations, such as astronomical latitude and because of the 
uniqueness problem in case the potential constant is unknown. In the observation 
synthesis the mass of the earth was put equal to the mass of the ellipse. 

With the horizontal observations, the highest degree cannot be estimated either. 
If we denote the number of points Nobs, then the frequencies for the observation 
synthesis run from zero to NOb3/2, to achieve a one-to-one relation between coeffi- 
cients and observations. The zero and NOb8/2 degree only contribute to  the cosine 
part of the observation, the sine functions yield zero for these frequencies in all 
grid points. Differentiating the potential in the horizontal (4) direction, turns the 
sines into cosines and vice versa. When recovering the potential from astronomical 
latitude, these two frequencies are lost, and have to  be determined from external 
information. They are excluded in the computation of the error of the disturbing 
potential of table 5.2. 

We see that, except for the astronomical latitude observations, all outcomes are 
reasonable. But only for the non-linear model we are able to  judge the result pre- 
cisely, since that model should yield the exact solution. The other models all contain 
approximations with respect to the exact model. To see whether the deviations from 
the real solution are caused by these approximations or by the iteration procedure, 
the solutions of the models I ,  I1 and Iv with gravity observations were also com- 
puted by the inversion of the design matrix. It turned out that these solutions give 
exactly the same result as obtained by iteration. Hence, it can be concluded that 
the iteration procedure works correctly. 

Next, the scalar GBVP is considered. The points of departure are the same as 
with the fixed problem. As observations the combination of potential and gravity is 
used. The accuracy of the solution is again represented by the total relative error. 



5.3. First results 

Table 5.3 Relative errors of the potential and average errors in vertical po- 
sition for the scalar problem with 72 points. 

Number of iterations 

Unknown Model 1 0  1 2 3 4 

h I 
meter I1 

111 

IV 
v 

Since also the vertical position is determined, the relative total error of the elevation 
is given too. The results are presented in table 5.3. 

Generally speaking, the outcome is the same as with the fixed problem; only 
slightly worse. The model in quadratic approximation (111) performs poorly. The el- 
evation is only marginally improved and the disturbing potential even deteriorated. 
In (Heck, 1988) it was shown, that the quadratic terms can be of considerable mag- 
nitude in some areas of the world. But results presented here are global errors, such 
that regional effects do not show up. Secondly, the use of the quadratic model re- 
quires much more computations than the linear one, such that rounding-off errors 
play a larger role. 

The results of the vectorialGBVP, finally, are presented in table 5.4. The accuracy 
of the solved potential and elevation is almost unaffected by the introduction of the 
horizontal position as unknown. This can be attributed to  the good approximate 
values available for the latitude. We make use of the fact that the observations are 
located on a regular grid by using the same grid for the telluroid points. The error 
in horizontal position is represented by the solved latitude, multiplied by the mean 
radius of the earth to  get a quantity comparable to the vertical position. The reason 
for the slow convergence of the latitude is unclear so far. But we have to  keep in 
mind that the horizontal coordinate is completely differently incorporated into the 
problem than the vertical unknown. It is in first approximation not related to  the 
potential and we had to  force the approximate values for z to be located in a regular 
grid. 

For all GBVP'S with 72 observations, as presented above, the iteration works 
according to our expectation. Now three GBVP'S, fized with gravity observations, 
scalar and vectorial, are considered with 720 points of observation; the maximum 
frequency in the data is 360. The results are given in table 5.5. As the results with 
the quadratic model are not satisfactory, they are left out here. It is certain that 
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Table 5.4 Relative errors of the potential and average errors in  position for 
the vectorial problem with 72 points. 

Number of iterations 

Unknown Model 1 0  1 2 3 4 5 6 

meter I1 
111 
IV 
v 

Rd I 
meter I1 

111 
IV 
v 

the iteration does not work very well for this case. The better models yield about 
the same accuracy as the model in circular approximation (I) .  The iterations do not 
converge to  the solution. After a series of tests it became clear that the relatively 
disappointing performance is caused by the use of polar potential coefficients. This 
aspect will be clarified in the next section. 

5.4 Divergence and ellipticity 

In section 5.2.2 the difference in convergence between the polar and elliptical series 
was discussed. In the previous section we saw that the GBVP'S with 720 points 
(maximum degree 360) do not converge if the polar series for the potential are used. 
Here we will investigate under what circumstances this divergence can be expected. 

As example, a simple GBVP is taken: potential observations on a fixed boundary 
with the polar potential coefficients as unknowns. This problem is especially simple 
since it is linear. 

First some more results with this GBVp are presented in table 5.6. It shows that 
up to  about 600 points the non-linear model still converges, although the convergence 
slows down with an increasing number of points. With 720 points there is no real 
convergence or divergence. The results go up and down. With 900 points the system 
collapses. 



5.4. Divergence and ellipticity 

Table 5.5 The three types of problems with 720 points. For the jized prob- 
lem gravity data was used. 

Fixed 
Unknown Model 

Number of iterations 

0 1 2 3 4 5 6 

V 

Scalar 
0.008837 0.002208 0.001329 0.001091 0.001073 0.001137 0.001202 

h I 
meter I1 

IV 
V 

Vectorial 

R# 1.351246 1.195529 1.189309 1.188614 1.188521 1.188508 1.188505 

meter 1.351246 1.974044 1.780721 3.225725 5.749357 9.772169 13.328539 

0.103608 0.091271 0.093197 0.093314 0.093323 0.093323 0.093323 

0.103608 0.102539 0.102671 0.102666 0.102665 0.102665 0.102666 

0.103608 0.018444 0.008808 0.003850 0.002760 0.001547 0.001501 

0.103608 0.018443 0.008752 0.003810 0.002793 0.001512 0.001435 

h I 
meter I1 

IV 
V 

The model is written as the linear system 

0.103608 0.091271 0.093197 0.093314 0.093323 0.093323 0.093323 

0.103608 0.102466 0.102670 0.102665 0.102665 0.102665 0.102665 

0.103608 0.018425 0.008856 0.003957 0.002746 0.001705 0.001856 

0.103608 0.018424 0.008801 0.003914 0.002780 0.001665 0.001894 

Here N denotes the number of observations. The coordinates { r , $ )  are the real 
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Table 5.6 The relative errors of the disturbing potential for the fized prob- 
lem with potential observations solved by the non-linear model. 

Number 

of points 

72 

360 

480 

600 

720 

900 

Number of iterations 

0 1 2 3 4 5 6 

Table 5.7 The spectral radii of the M-matriz  of the fized problem with po- 
tential observations. 

polar coordinates of the points of observation. As usual, the number of coefficients 
is taken equal to the number of observation points. 

When solving this BVP by iteration, it means that the matrix A, so desired in 
an approximation, is inverted by the Neumann series. The approximate matrix A. 
is A in circular constant radius approximation: 

Number 

of points 

72 

360 

480 

600 

720 

900 

It was produced by the mapping {r = R, 4 = 4). The series for the inverse of A con- 
verges if the spectral radius of M = I -  A~'A is smaller than unity (see section 4.3). 
In table 5.7 these spectral radii are computed for several numbers of points, and for 
three possible choices of A: the exact matrix (model Iv and V), without topography 
(model 11) and in circular approximation (model I). The right hand column will be 
explained later. As expected, the spectral radii for the elliptical models are larger 
than unity for 720 points. Only the model in circular approximation converges. 

Circle + Ellipse Ellipse + Ellipse with 

topography topography optimal R 

0.02 0.08 0.08 0.06 

0.12 0.49 0.46 0.35 

0.16 0.71 0.66 0.49 

0.20 0.95 0.88 0.65 

0.24 1.28 1.14 0.83 

0.29 1.73 1.59 1.13 



5.4. Divergence and ellipticity 

From the table we conclude that the ellipticity of the earth gives more convergence 
problems than the topography (consider also that circular approximation without 
topography yields zero eigenvalues for all numbers of points). Strangely enough, the 
inclusion of the topography in the elliptical model decreases the spectral radius. 

The matrix M is closer examined. Its elements, denoted by M,,, are according 
t o ~ = ~ - ~ o l ~ :  

The fraction R/r  is linearized as 

The radius vector is 

Inserting these approximations, and /? a 4 a 6, e2 a E ~ / R ~ ,  into (5.22)) yields 

The summation is nothing but the Fourier expansion of the expression in braces. So 
we compute 

The term with h/R denotes the dimensionless Fourier coefficients of the topography. 
Some approximations were introduced to  arrive at  this formula, but the structure of 
this matrix will be clear: The ellipticity yields a diagonal and two off-diagonals. The 
topography fills the entire matrix, with increasing magnitude towards the diagonal 
(the power of the topography increases with decreasing degree). We refer to  a 
similar consideration in (Knickmeyer, 1984). From the eigenvalues of M in table 5.7 
we concluded that the ellipticity of the earth has a major influence compared to the 
topography. Since both effects fill the matrix in quite a different way, their relative 
effect on the largest eigenvalue cannot be easily determined. The most important 
property of the elements of the matrix is their proportionality with In[, causing an 
increase of the eigenvalues of M for increasing maximum degree. The maximum 
degree was in all cases related to the number of points. Therefore it was not yet 
clear which of the two caused the divergence. From the expression for M,,, we may 
conclude that the maximum degree is crucial. 
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If the topography does not contain a zero degree component, the diagonal ele- 
ments of M can be made zero by taking for the reference circle: 

With this 'optimized' R (it is not optimized in the sense of minimization of the 
largest eigenvalue, which would be more relevant), the spectral radius of M is slightly 
reduced (last column of table 5.7). To improve these results a little, the optimal R 
used in this table was not computed by this approximate formula, but estimated by 
running numerical test on the M matrix. However, the improvement was marginal. 

5.5 Use of the elliptical series 

As discussed, the use of potential series with respect to elliptical coordinates, instead 
of polar coordinates, could improve the convergence of the'iteration. In the first 
part of this section, tests are presented to show this. For these tests, conditions are 
selected that allow a fair comparison between both types of series. In the second 
part we will focus on the use of the elliptical series in other situations. 

5.5.1 The problem in elliptical coordinates 

For the solution of the GBVP with the use of the series in polar coordinates, the 
observations were synthesized from the generated potential, expressed in these se- 
ries, up to half the sampling frequency. This is done to avoid aliasing. As shown in 
appendix B, a signal bandlimited with respect to the polar series, is not bandlim- 
ited with respect to an elliptical series. Hence, the use of the polar series for the 
observation synthesis up to half the sampling degree, yields aliasing effects if the 
GBVP is solved using the elliptical series. To get a fair comparison with the series 
in polar coordinates, a potential with respect to elliptical coordinates is generated, 
from which the observations are synthesized. 

This generation is done in a straightforward manner. First the normal poten- 
tial is subtracted from the potential in polar coordinates. The coefficients of the 
disturbing potential with respect to the polar series are now used as coefficients for 
the disturbing potential with respect to the elliptical series. By addition of the nor- 
mal potential, which has only one non-zero component: the logarithm, the required 
expansion is obtained. Although these potential coefficients are not strictly related 
with the isostatically compensated topography, it will do for this test purpose. 

From the series, again two sets of observations are synthesized, one with 72 points 
and a second one with 720 points. As the Fourier series used now are with respect to 
the argument P, the observations are computed in a regular P-grid. The respective 
coordinates U are obtained by an interpolation and coordinate transformation of the 
original topography data set in { h ,  4). 



5.5. U s e  of the elliptical series 

The iteration works in the same way as with polar coordinates. The models with 
the {u,p)  coordinates are already provided. The part lacking is the computation of 
the new position in elliptical coordinates from the position corrections with respect 
to the local frame. Fortunately the relations are simple. We have 

Thereby {U, P) denote the coordinates of the approximate point. The partial deriva- 
tives are computed by 

azA - azA aZx 
a ~ '  a ~ '  a ~ '  , 

which are given in appendix A. This yields 

The iterative solutions are computed for the models 11, Iv and v. The Molo- 
densky problem is left out since it does not make sense to apply elliptical series in 
a model in circular approximation. Also the quadratic model is omitted because of 
its small difference with the linear model on the ellipse. 

The problems with 72 points all give about the same accuracy as with the polar 
series. The only difference is a small increase in convergence. The results are not 
presented here. We concentrate on the GBVP'S with 720 points, which did not work 
properly with the polar series. In table 5.8 the errors are given. The accuracies 
of the models are now comparable to the situation with 72 points and polar series. 
The aspect of most interest is the convergence. We observe that all models converge 
nicely, and reach an accuracy not worse than that obtained with 72 points. Hence, 
it can be concluded that the application of the elliptical series works very well and 
does overcome the convergence problem caused by ellipticity. 

5.5.2 Elliptical series and geographic coordinates 

In the last section we showed that the potential series with respect to the elliptical 
coordinates {u,P) performed well. But an idealized case was considered there: the 
observations were distributed equidistantly in P and the solved potential coefficients 
were compared with 'true' coefficients also given with respect to {u,P}. Here we 
return to the points of departure of section 5.3: the observation data are distributed 
equidistantly in geographic latitude (4) and potential coefficients with respect to 
the polar coordinates have to be solved, a situation closer to reality. 

The regular distribution of the anomalies with respect to P on the circle, required 
for the computation of the elliptic Fourier coefficients by FFT, is established by 
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Table 5.8 The relative total errors for the GBVP's with 720 points using 
the elliptical series for the potential. Gravity was used for the 
jized problem. 

Fixed 
Unknown Model 

Number of iterations 

0 1 2 3 4 5 6 

V 

Scalar 
0.001745 0.000061 0.000005 0.000001 0.000000 0.000000 0.000000 

h I1 

meter IV 

V 

Vectorial 

0.064130 0.060160 0.060179 0.060179 0.060179 0.060179 0.060179 

0.064130 0.001598 0.000168 0.000148 0.000148 0.000148 0.000148 

0.064130 0.001551 0.000051 0.000003 0.000001 0.000000 0.000000 

h I1 
meter IV 

V 

mapping the anomalies, which are equidistant in 4, to the circle by P = 4. For the 
vectorial problem we are free to choose an approximate latitude, in that case an 
equidistant P-grid is taken, which deviates only a little from a geographical &grid. 
So far not much difference with the polar series. 

A difference enters in the step of backward substitution. As explained before, the 
potential coefficients computed by Stokes (or one of the other appropriate formulas) 
are now used as coefficients for the series in elliptical coordinates. Hence, the models 
formulated with these coordinates are used. Since the original 'true' coefficients 
are given with respect to polar coordinates, the final solution for the coefficients is 
transformed to polar coordinates, see appendix B. The results for the models 11, 

Iv and v are presented in table 5.9. For the fixed problem gravity observations are 
used. 

Comparison with table 5.8 shows that the results are slightly worse. This is 
caused by aliasing. The signal in the data is bandlimited with respect to the polar 

0.064130 0.059878 0.059918 0.059918 0.059918 0.059918 0.059918 

0.064130 0.001284 0.000164 0.000149 0.000148 0.000148 0.000148 

0.064130 0.001232 0.000041 0.000004 0.000001 0.000000 0.000000 

RO I1 

meter IV 
V 

0.327938 0.309321 0.309336 0.309335 0.309335 0.309335 0.309335 

0.327938 0.017066 0.002263 0.000756 0.000677 0.000675 0.000675 

0.327938 0.017100 0.002180 0.000351 0.000064 0.000012 0.000003 



5.5. Use of  the elliptical series 

Table 5.9 The relative total errors for the problems with 720 points regularly 
distributed in geographic latitude, using the elliptical series for 
the potential. 

Fixed 
Unknown Model 

Number of iterations 
0 1 2 3 4 5 6 

V 

Scalar 

h I1 

meter IV 
v 

0.004153 0.000509 0.000128 0.000062 0.000048 0.000046 0.000046 

h I1 

meter IV 

V 

Vectorial 

R8 I1 

meter IV 
v 

0.103608 0.102634 0.102667 0.102665 0.102665 0.102665 0.102665 

0.103608 0.008162 0.000549 0.000412 0.000178 0.000140 0.000125 

0.103608 0.008181 0.000504 0.000369 0.000106 0.000039 0.000018 

series, which does not imply bandlimi tation with respect to the elliptical series, as 
was the case in table 5.8. But since the real potential has no real bandlimitation, this 
difference is not a point of importance. Only for the vectorial problem the results 
are noticeably worse, especially the horizontal position is determined quite bad, as 
with the non-linear model. A reasonable explanation is not found yet. But it can be 
concluded from these results that the application of elliptical series generally works 
very well with observations on a regular +grid. 

In figure 5.7 the error power spectra of the potential, computed from the scalar 
problem, for the three models are plotted. They are computed as the quadratic sum 
per degree of the difference 'solved' minus 'true' potential coefficient. The increasing 
error, due to aliasing, with increasing degree is clearly visible of the curve for the 
non-linear model (V). Also rounding-off errors play a role. The linear model Iv 
deviates from model v only for the low degrees. For the higher degrees the aliasing 
errors dominate the non-linear effects. The linear model on the ellipse (11) yields 
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Figure 5.7 The error power spectra of the solved potential coeficients from 
720 potential and gravity observations. Ellip tical potential series 
are applied. 

the largest errors in the lower degrees. This is caused by the high power in the low 
degree coefficients. 

In figure 5.8 we clearly see the gain in accuracy by the application of elliptical 
potential series. Form the data set of 720 potential and gravity measurements, 
the potential is recovered by the application of a series in polar coordinates and 
in elliptical coordinates (with conversion afterwards). The accuracy improvement 
reaches a few orders of magnitude, especially for the higher frequencies. It should 
be emphasized that we always have to keep in mind that a bandlimited potential is 
assumed and errorless observations are used. If taking these two error sources into 
account, the difference between the two series is smaller. 

5.6 Other data conditions 

On the data used for the tests so far, assumptions and restrictions have been imposed 
usually not fulfilled in practice. We mention the three most important ones: 

1. Band limitation in data. The full spectrum of the potential should be used for 
the observation synthesis. 
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Degree 

Figure 5.8 The error power spectra of the solved potential coeficients from 
720 potential and gravity observations with the linear model (IV) 
using polar or elliptical potential series. 

2. Regular data distribution. Very different data densities are still reality, espe- 
cially because of the division of the earth into continents and oceans. 

3. Data without noise. The observations always have a stochastic character. 

The first point is considered briefly in this section. The second will not be tested 
in this thesis. One reason for this is the definition of irregularity. It is suspected 
that the solution presented above will break down if the data points are not very 
regularly distributed. But since a set of points can be distributed in infinitely many 
ways, it is difficult to  judge the results from such tests. In the next section results 
are presented with noisy data, to satisfy point three. 

We chose to use observations from a bandlimited potential to avoid aliasing. 
Although this an artifice not possible in reality, it gives the opportunity to  separate 
aliasing errors from others, in order to be able to judge the results better. First it 
will be shown how the situation changes if no bandlimitation is taken. In table 5.10 
the results for the fixed, scalar and vectorial problem are presented for observations 
with and without bandlimitation for 72 and 720 points. Actually the 'unbandlimited' 
data also have a bandlimit (degree 3600)) but the power in these high frequencies is 
almost zero. 

From the table the drastic effect of the higher frequencies is clearly visible. As 
could be expected, the result with only 72 points of observation becomes really bad, 
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Figure 5.9 The error power spectra of the solved potential coeficients from 
720 potential and gravity observations with the linear model (IV).  

with 720 points the result is much better because of the higher sampling rate. The 
performance with the bandlimited data with 72 points with respect to 720 points is 
relatively poor. This is also caused by aliasing: the bandlimitation was taken with 
respect to the potential series in polar coordinates, whereas a series with elliptical 
coordinates was applied for the computation (see section 5.4). 

The error spectra for the scalar problem with model IV is shown in figure 5.9. We 
observe that the difference between the potential solved from the 'real' data (with 
the complete signal) is several orders of magnitude worse than with the bandlimited 
data. But we have to be careful not to jump to conclusions. For these computations 
a model for the potential was postulated. It can be wrong orders of magnitude, 

Table 5.10 The relative total errors of the potential computed with the linear 
model (IV) with elliptical potential series after 7 iterations (fized 
problem). The abbreviation 'b.1.' denotes bandlimited. 

no b.1. no b.1. 
Fixed 



5.7. Overdetermined vertical problem with noise 

especially for the higher frequencies, in comparison to the real 3D potential. 
The third line in the figure indicates the result in case block mean values are 

used. Each observation in one of the 720 points is computed as an average over 
eleven observations (two adjacent blocks have one observation in common in order 
to  simplify the formulas). The estimated potential coefficients are de-smoothed by 
the inverse moving average operator. Except for the high frequencies, the use of 
block mean values instead of point values yields an accuracy improvement of about 
two orders. 

5.7 Overdetermined vertical problem with noise 

As dessert we choose for the overdetermined scalar vertical problem with the obser- 
vations W,g, l?,, and z. We also will take a brief look onto data with noise and the 
use of an analytical model for error prediction. 

5.7.1 The gradiometric observable 

We start with the observation equation for the vertical gradient. The general linear 
observation equation is (3.9): 

2 2 
Arzz = (U,,, - -U;,) Az + T,, - -U,, T,. 

7 7 

In circular approximation this becomes with dimensionless quantities (3.15): 

For the two models in elliptical approximation (models I1 and Iv, the quadratic 
model is omitted here) equations (4.7-4.8) are used for the derivatives of the normal 
potential. For T, we refer to section 5.2. For the second vertical derivative we 
compute with 

azz az aza az, T. . = 
azi azj azz az Tap 

T,, = (sin 26 sin 24 + cos 26 cos 24)Trr+ 
1 1 

+(sin 2 6 ~ 0 s  24 - cos 26sin 24)(-T6 - Trd) - 
r r 

on the ellipse (model 11) and 

uv 2v2 
T,, = (- sin 26sin 2P + cos 26(1 - - sin2 P)Trr+ 

L2 L2 
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Table 5.11 The relative total errors for the potential with polar series for 
the case of 7 2  points and elliptical series for 720 points after 7 
iterations (fized 

generally (model IV). If the derivatives with respect to the elliptical coordinates are 
used it becomes: 

model 

I 

I1 

IV 
V 

For the non-linear models (5.11) is used. 
First we take the fixed problem with the gravity gradients and compare the ac- 

curacy with the result with gravity observations from tables 5.2 and 5.10. For model 
I with 72 points, where the polar potential series are used, the elliptic correction is 
applied, as explained in 5.3. 

In this table the results of two kinds of l?,, are listed. The first with e, in the 
direction opposite to  the gravity vector, as was supposed in the foregoing definition 
of the model, and the second, discriminated by an asterisk, opposite the normal 
gravity vector. For the observations with the latter definition of the z-axis the 
linear model becomes 

dl?;, = U,,, dz + T,, . 
The reason for the consideration of this additional observation type is twofold: with 
e.g. satellite gradiometry the attitude of the instrument is known, so there is no 
need to  use the (unknown) direction of the real gravity vector, secondly, the model 
for dl?:, is more accurate in circular approximation than the model for dl?,, because 
the additional terms required for the latter are zero in that case. 

From table 5.11 it can be seen that for all linear models the results with gra- 
diometry are worse than with gravity. This can be explained by the accuracy of the 
models. The relative error we commit by using circular approximation or neglecting 
the topography is larger in case of gradiometry than with gravimetry. This will be 
shown below. 

With model Iv the potential can be exactly reconstructed from the observations 
l?:, (except for the aliasing error with 720 points caused by the use of the elliptical 
series) because there is no non-linear term in the equation for these observations. 

72 points 

B rzz l- :X 

0.003214 0.006150 0.005729 

0.000834 0.003484 0.003692 

0.000004 0.000819 0.000000 

0.000000 0.000000 0.000000 

720 points 

g r z z  l- :X 

- - - 

0.002850 0.064270 0.068072 

0.000046 0.001150 0.000047 

0.000046 0.000047 0.000047 
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5.7.2 Accuracy of observation equations 

The observation equations for dg and dr:, are closer examined here. Since their 
main difference lies in the disturbing term of the equations, the fixed problem is 
taken. The observation equations can be written as 

where the derivatives of T are taken with some approximation and e denotes the 
error introduced by this approximation. The solution of the potential coefficients 
becomes (in circular, constant radius approximation) 

Ac, M I ( d g  - eg), 
lnl 

1 
Ac, M 

Inl(lnl+ 1) 
(drzz - &r)n. 

The notation (. . .), denotes the Fourier coefficient of degree n of the expression 
between parentheses. The error in the solved coefficients becomes 

when computed from dg and 

in case the vertical gravity gradient is used. The error propagation is derived with 
circular, constant radius approximation, where the exact model should be used. But 
for an estimation of the error it is sufficient. 

First the circular approximation is considered. The derivatives of T are linearized 
with respect to e2: 

v 1 
T - -Tu M T, + -e2 cos2 $T, 

Z - ~  2 
v2 E2 U E ~  

Tzz = Tuu + -cospsinpTa - -cos PTu  
L4 L4 

1 1 
M T,, + e2(cos2 $Trr + - cos 4 sin 4 T6 - - cos2 $ T,). 

R2 R 

Since circular approximation means that e = 0, the error estimates for the coeffi- 
cients become by insertion into (5.24-5.25): 
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and 
e2(cos2 $T,, + COS 4 sin $ T6 - k cos2 4 T,), 

a(Acn) = < e 2 ~ c n ;  
n2 

approximately two times as large as with gravity observations. This can also be 
concluded from table 5.11, model I, the model in circular approximation. The error 
bounds derived above are not very strict, they are only a rough estimate of the 
expected accuracy of the equations. 

Next we take a look at the neglect of the topography. Since the errors to be 
estimated are not very large, the model in circular approximation is used for the 
derivation. For Tz we have: 

and for the second vertical derivative 

Insertion into (5.24-5.25) yields for the error introduced by taking h = 0 (neglecting 
the sign): 

E (Acn) m 
(h-Trr)n 

In1 ' 
for gravimetry and for gradiometry 

We have to remember that the Fourier coefficients of the products of the topography 
function and the second, respectively third, derivative of T have to be computed for 
this error estimate, which implies a spectral convolution. Test computations show 
that above degree 50 the error for the potential coefficients is the same for both 
types of observations. Below degree 50 the gravity gradients give larger errors, up 
to about one order of magnitude. This yields considerable differences for the total 
accuracy of the solved potential, see table 5.11 with model 11, the model on the 
ellipse. 

5.7.3 The overdetermined problem 

Together with the observation of the vertical position, z or dz, we now have four 
observables related to potential and/or vertical position, see section 3.6. In case 
dz observations are available, it is natural to use them for the computation of the 
coordinates of the approximate point (together with the 4, which is considered to 
be given for all scalar problems). But in order to make the software not more 
complicated than it already is, we choose to obtain the vertical coordinate of the 
approximate point by the mapping we also used for the uniquely determined prob- 
lem. Test computations showed that the difference between the two procedures is 
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Table 5.12 The relative total errors for the potential with polar series and 
72 points after 7 iterations with the scalar problem. 

Unknown Model 

T I 
I1 
IV  
v 

meter I1 

IV  
v 

Combination of observations 

negligible. Subsequently the dz observations are computed from the coordinates of 
the real and of the approximate point. 

In table 5.12 the results are presented for several combinations of data. Again 
the two types of gradiometric observations are used (cf. section 5.7.1). We observe 
results that seem to be unreasonable a t  first sight: addition of the r observations to 
the potential and gravity data results in a less accurate estimate for the unknowns 
instead of more accurate, what we generally expect when observations are added. 
This is due to the inaccurate observation equation of the gravity gradient. Com- 
parison with table 5.11 shows that the models that give a poor performance with 
the fixed problem with r,,, yield here a worse result. Only in case the observation 
equation we add is of comparable or better accuracy than the existing, the estimate 
of the unknowns improves. 

We have to keep in mind that we are still using data without noise. This means 
that only model errors can prevent a perfect solution of the unknowns. However, 
for the overdetermined cases we have to remind that the iteration procedure applied 
does not converge exactly to the right solution (see section 4.3.4). Observing the 
results of this table, we can conclude that this deviation is very small. 

The unknown dz is formally solved by (3.51). But because the observation 
equation for the potential anomaly is superior to that of gravity and gravity gradient, 
the estimate 

d z =  -dW+T 

is better than the least squares solution. The solution for dz in table 5.12 are 
computed in this way. In case dz is available as observation, we could directly 
'estimate' dz without any error. To be able to compare the results for the different 
combinations of observations, the estimate using dW is applied for all situations. 
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5.7.4 Observations with noise 

In this last paragraph we present some results for more realistic circumstances. It is 
not intended to obtain accuracy estimates that can be transferred to the 3D world, 
or to show which kind of approximation is allowed in case of some data availability, 
but we want to get an impression of how the accuracy estimates change in case 
data noise is added, and secondly to see how a simple model for analytical error 
prediction performs. 

The noise on the data is obtained by a computer random number generator. 
It is uniformly distributed between on the interval [-a,a], where a denotes the 
used standard deviation. A normal distribution would have been better, it is more 
realistic, but that was not directly available. 

For the analytical error model white noise is assumed. In the spectral domain this 
means that the power (variance of the noise) is equally distributed over all degrees. 
The error is propagated to  the disturbing potential by (3.50), the relation between 
observations and potential in circular, constant radius approximation. 

All examples we show here are error power spectra for the potential solved from 
the scalar problem with observations in 720 points, using elliptical potential series 
and several iterations. We start with an uniquely determined problem. For obser- 
vations we chose potential and gravity, both with a relative accuracy of 10-~. They 
are point values computed from a bandlimited potential as shown in figure 5.10. We 
conclude from this figure that the analytical error model represents the trend in the 
power spectrum very well for the non-linear model (V). In case model 11 is used 
the analytical model gives a far too optimistic perspective. Because the analytical 
model only represents the non-systematic observation noise, the approximation in 
the observation equations with I1 is not represented. 

In the next plot (figure 5.11) we show four error spectra computed with an 
analytical model, each for a different combination of observations. The standard 
deviations where taken as: a, = a, = 1 0 - ~ ,  ag = 1 0 - ~  and ar = 1 0 - ~ .  We clearly 
see that the addition of z to {W,g) improves the lower frequencies and l?,, the higher 
frequencies. 

In figure 5.12 the real error spectra are computed (again with data from a ban- 
dlimited potential and the non-linear model) for the problem with {W,g), and for 
the problem with the observations (W,g , l?,,, z ) .  For both the analytic model yields 
realistic error spectra. 

In the last plot, figure 5.13, three error spectra are plotted, all for the scalar 
problem with potential and gravity observations in 720 points, using the elliptical 
potential series and the non-linear model solved by iteration. The potential is ob- 
served with a relative standard deviation of 1 0 - ~  and gravity with 1 O P 6  for all three 
cases. We see that with noisy data, the effect of taking block mean values from the 
full signal, instead of the unrealistic bandlimited point values, is less then without 
any noise, see figure 5.9. The observation noise is now the main error source. Hence, 
the analytical model yields also realistic results for the block mean data, only for 
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Figure 5.10 The error power spectra of the solved potential coefficients from 

730 potential and gravity observations. The dashed line indicates 
the analytical error model. 

the high frequencies aliasing introduces an noticeable additional error. 
Although we do not present this results in order to draw any conclusion but just 

as an example, it will be clear that simple analytical models, such as the error power 
spectrum model used here, can be tested by simulations. This can serve as example 
for analytical models for the estimation of e.g. aliasing errors and the effect of data 
inhomogeneity. 



5.  Numerical experimen ts 
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Figure 5.11 The analytical error power spectra of the solved potential coef i -  
cients from 7g0 points. 

Degree 

Figure 5.12 The error power spectra of the solved potential coef ic ients  from 
720 points. 
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Degree 

Figure 5.13 The error power spectra o f  the solved potential coe@cients from 
720 potential and gravity observations with the non-linear model.  
The solid line for block mean values, the dotted line for point 
values from a bandlimited potential and the dashed line from the 
analytical model.  
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A two dimensional world is an artifact without any physical connection to our real 
world. But the mathematical structure of its gravitational field, and the formulation 
of the equations of physical geodesy, show great resemblance with our real world. 
Therefore, it is not only out of curiosity that this investigation has been carried 
out, but it also serves to gain a better understanding of some aspects of (three 
dimensional) physical geodesy. 

After the derivation of the basic formulas of the potential theory, the linearized 
observation equations were derived in circular, constant radius approximation. Their 
structure and solution by symmetric kernel integrals are almost the same as for the 
three dimensional case, the main difference being the replacement of the spherical 
harmonics by Fourier series. The latter are not only easier to handle, but offer also 
the opportunity of solving the potential from discrete data. The analytical solution 
for the various GBVP'S in circular, constant radius approximation, gives a very easy 
opportunity for error prediction. From the noise model of the observations the 
accuracy of the solved potential and position unknowns can be directly computed. 
Also reliability analysis of an overdetermined GBVP can be performed analytically. 

It it shown that there exists a direct relationship between the integral of astro- 
nomical leveling and the solution of the GBVP from astronomic latitude, a relation 
that could not be established so far for the 3D GBVP. 

The solution of the GBVP by iteration is the key issue of this study. An itera- 
tion method is proposed for which criteria for convergence are given by means of 
eigenvalues of a matrix related to the design matrix of the system. For the solution 
step in the iteration, the (analytical) solution of the GBVP in circular, constant ra- 
dius approximation is used, in order to avoid matrix inversion. Because of the use 
of analytical solutions, more advanced numerical methods are not likely to pay off 
because of the increase in computation time per step. The level of approximation in 
the backward substitution step of the iteration determines the accuracy of the final 
solution, in case convergence is guaranteed and no other error sources are present. 

For the purpose of numerical tests, a synthetical earth is generated with a to- 
pography and a gravity field resembling the features of the real earth. By means of 
simulations it is shown that the iteration procedure works according to our expecta- 
tions. For some cases the solution determined by the iteration can be compared to 
the solution by means of a direct numerical matrix inverse. They turn out to be the 



Conclusions 

same. This implies the iteration works correctly, and the derived criteria for conver- 
gence suffice. The solution of the the classical GBVp in circular approximation, the 
simple problem of Molodensky, can also be derived analytically using the iteration 
method. This solution is the same as given by other authors. 

The iteration is applied to three uniquely determined GBVP7s: the $zed prob- 
lem (only potential is unknown), the scalar problem (only horizontal position is 
given) and the vectorial  problem. Furthermore, the overdetermined scalar problem 
is considered. They are solved in several approximations: the GBVP in circular ap- 
proximation (ellipticity neglected but with topography), the linear model on the 
ellipse (no topography but ellipticity taken into account), the linear model with- 
out further approximation, the GBVP in quadratic approximation and finally the 
original, non-linear model. As can be expected, the iteration is most beneficial if 
a problem without much approximation is used, and high quality data is available. 
In order to  be able to separate the different error sources, several idealized data 
conditions were created, such as band limitation and zero noise level. In the ideal 
case, without any error sources, an exact solution, up to  the level of the computer 
rounding-off errors, can be obtained of the non-linear problem. The accuracy of the 
solution of the unknowns mainly depends on the approximation level of the model, 
the accuracy of the observations, the number of observations and the gravity field. 

When determining the potential coefficients to a high degree, the speed of con- 
vergence of the iteration slows down and diverges in our case for a maximum degree 
of about 300. By analysis of the convergence criteria, it can be concluded that the 
ellipticity of the earth causes the problem. This can be overcome by the use of a 
potential series expressed in elliptical coordinates, instead of polar coordinates. 

The simulation can not only be used to show that an almost perfect solution 
from hypothetical data conditions is possible, but also to investigate the effects on 
the solution of e.g. aliasing, data distribution, noise and overdetermined problems. 
In this study only some of these aspects are considered. It is shown that aliasing 
can be a major error source. But one has to  be careful with drawing conclusions 
from the simulations since the magnitude of the aliasing error strongly depends on 
the power in the high degrees of the potential, which is virtually unknown in reality. 

The analytical error propagation mentioned before is tested by comparison with 
the errors obtained from the simulations. It is shown that this analytical error 
prediction works very well in case data noise is the major error source. 

Also for some other effects, such as listed above, simple analytical models can 
be obtained, e.g. the use of the moving average operator in order to represent the 
smoothing of potential coefficients in case block averages are used. By using the 
same kind of models for our 2D world, and comparing them to the outcomes of the 
more realistic simulations, conclusions can be drawn about their validity. 
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Coordinate frames and 
their transformations 

WHEN FORMULATING THE GBVP in explicit formulas, coordinate frames 
have to  be introduced. This also involves the need of the transformation equa- 
tions between the different coordinate frames. In this appendix all the coordinate 
frames which are used in the text, are treated. Also the scheme of computation of 
the transformations between the coordinate frames is shown. 

In the text tensor equations are used since they have the advantage of being the 
same in all possible coordinated frames. As notation the kernel-index notation is 
used as developed in (Schouten,l954). We choose this notation since it gives clear 
and compact formulas which can easily be transformed into a computer algorithm. 

In the first part of this appendix some general properties and formulas for tensors 
are repeated. They will be used in the derivation of the formulas we need. A 
comprehensive treatment of tensors, and their application in geodesy, can be found 
in (Hotine, 1969). 

A.1 Elementary formulas 

We define the following kernel letters 

z coordinate 
e base vector 
g metric tensor 
r Christoffel symbol 
S Kronecker delta 

The Christoffel symbols are computed as 

(A. l.) 



A.2. Coordinate frames 

If necessary for clarity, the index of the coordinates with respect to  which the par- 
tial derivative is taken is preceded by a comma. The Einstein convention is used 
(summation over equal upper and lower indices) in all equations. The covariant 
derivative of a tensor of rarik 0, 1 and 2 is: 

W;, = = W 
aza ,Q E W ,  

W,;, = W,,, - r&w, W,, (A.2) 

W,,;,= W , , ,  - r:,w,, - r,6,w,, W,,,. 

The semicolon is used to  indicate covariant differentiation. The tensors are trans- 
formed to  another coordinate frame as 

The relation between the contravariant and covariant components is 

A.2 Coordinate frames 

Several frames are used for the formulation of the GBVP. We start  with two cartesian 
frames 

the equatorial frame {z', I = 1 , 2 ) ~  {X, Z) 
the local frame {zi, i = 1,2) E {z,z) . 

As introduced here, and we will do the same for other frames, the coordinates 
z', zi, . . . are also denoted by their more frequently used names. The equatorial 
frame is a Cartesian frame with its origin in the center of mass of the earth, the 
Z-axis pointing towards the North pole and the X-axis coinciding with the Z-axis 
rotated 90" degrees clockwise. The local frame is a Cartesian frame, with its origin 
in some local (terrestrial) point, the z-axis pointing outwards and the z-axis north. 
The exact orientation depends on the application. Generally, i t  will be aligned with 
the gravity vector g or with the normal gravity vector 7. If necessary different local 
frames are discriminated by zi, zi', etc. The general parameter w is used to  define 
the orientation of zi w.r.t. z'. In the applications of zi the appropriate angle will 
be substituted. The two coordinate frames are shown in figure A.1. 
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Figure A.l The equatorial and the local frame. The local frame here has 
an arbitrary orientation W .  For simplicity the origin of the local 
frame coincides with the equatorial frame, which will usually not 
be the case. 

Because of the circular, or more accurately the elliptical, structure of the earth 
and its gravity field, the following curvilinear coordinates are often used 

polar {za, a = l, 2) = {r, 6 )  
elliptical {za, a = 1,2) E { h ,  4) 

{zA, A =  1,2)={u,P) 

The first two are directly connected with the approximation of the earth's po- 
tential: their first coordinates are directed along the lines of force of the circular 
respectively elliptical normal gravity field. The second elliptic coordinate system 
is primarily well suited for the normal potential and its derivatives. The particular 
convenience of the zA is due to the fact that zA=' = constant defines an ellipse which 
is an equipotential line of the elliptic normal potential. The graphical interpretation 
of the three systems is given in figure A.2. 

A.3 Transformation of the coordinates 

When working with different coordinate frames transformations between the coor- 
dinates are indispensable. These relations will also be used for the derivation of 
the transformations of the tensors of the gravity field. The easiest connection of 
the frames is the computation of z1 from the coordinates refering to the other four 
frames. The relations are (see (Heiskanen & Moritz, 1967) or (Bakker et al., 1989) 
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Figure A.2 The three curvilinear frames. 

and figures A.l and A.2) 

xx xa x0 X* 

- 
X =rcos+ = ( N  + h) cos 4= d m  COS p 

z = r s i n 6 = ( ~ ( 1 -  e2) + h)sin+= usinp. 

The local frame is connected to  zx by: 

X = -xsinw + zcosw 

Z =  xcosw+zsinw. 

In (A.4) the symbols N, E and e represent the corresponding quantities of the three 
dimensional coordinates: a 

Thereby a and b denote respectively the semi-major and semi-minor axis of the 
reference ellipse. The inverse relations of (A.4) are more complicated. For xa and 
X* we have 

Z 
r = d m ,  6 = arctan -, 

X 



appendix A. Coordinate frames and their transformations 

p = arctan 
z~~ 

u x  

The transformation xz -+ X' can not be computed directly. It is computed by the 
iteration procedure 

Z 4O = arctan -, 
X  
Z + E2asin 4, 

= arctan xd-' 
Z 

h = - -  
X 

N(1 -e2) or h =  - - N. 
sin 4 cos 4 

Two formulas for h are given in (A.7). The choice depends on 4. Since this proce- 
dure does not give sufficient accuracy in all quadrants, the transformation is always 
computed in the first quadrant, and then rotated. 

The backward transformation of the local coordinates is easy: the transformation 
matrix between these systems equals its own inverse. 

A.4 Partial derivatives, metric tensors and Christoffel symbols 

From the transformation equation (A.4) the partial derivatives of zz with respect to 
the other frames can be computed straightforward as 

azz ax ax cos 4 -(N + h ) s i n 4 +  N+cosd 

aza  sin 4 ( N ( l  - e2) + h) cos 4 + N+(1 - e2) sin 4 

We use the symbols 
a N  ~e~s inc$cosc$  N+=-= 
a4 l - e2 sin24 ' 
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These two by two matrices can be inverted easily. It is 

( N ( 1 - e 2 ) + h ) c o s + +  N4(1-e2)sin+ ( N + h ) s i n + -  N4cos+ 

- sin + cos + 

with 
L = J-. 

For the local frame we have from (A.5) 

a x  a x  axl az az 

cosw sinw 

From the partial derivatives the metric tensors can be computed. When we know 
the components of the metric tensor in one coordinate system, the components in 
the other systems can be computed using the transformation equation (A.3). Since 
XI and xi are Cartesian coordinates their metric tensors are 

. . 
gIJ = 61J, = b i j .  

Using gIJ and ~ I J  as starting-point we have 
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The next step is the computation of the Christoffel symbols. The only compo- 
nents different from zero are, according to (A.l), 

3(1-eZ) ain 4 eoa 4 e Z N  
G; = (I-$ a in24] (~ ( l - e2 )+h( l - e2  ain2d)) (A. 13) 

h; = -S, r$ = $ cos P sin P. 

As last step the covariant derivatives can be computed using (A.2). Since that gives 
rather lengthy expressions they are not written down here. 

At the beginning of this appendix it was already noted that the kernel-index no- 
tation used here is especially suitable for computer implementation. We did compute 
most of the expressions presented here with a program for algebraic manipulations 
called REDUCE. 

Before closing this appendix one remark about notation. As stated before the 
coordinates are now and then replaced by another single symbol. Also for the deriva- 
tives such a shorthand notation is used. For example we have for the components 
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of the gravity vector g with respect to the local frame 

g = e; = W' e; a 2' formal notation (with Einstein convention) 

= W; e; numerical value of W; equals W' 

- - E e, + e, = W ,  e, + W ,  e, replacement of index by coordinate symbol. 

We have to be careful with this simplification. Using the notation W ,  or W; for the 
contravariant components W;=' is not proper. But its use can be justified here by the 
fact that for Cartesian frames the contravariant and covariant components coincide. 
Whenever these components are identical we prefer to use the covariant (lower index) 
since its notation looks better (a kernel letter with only high indices looks like it 
can tumble down every moment). When working with curvilinear coordinates, the 
proper use of high and low indices is naturally maintained. 
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Elliptical harmonics 

AS WAS DONE IN POLAR COORDINATES in chapter 2, a series representation 
of the potential in elliptical coordinates can be obtained by solving Laplace's equa- 
tion. We would prefer to have this series with the coordinates {h, 4). Unfortunately 
this gives a Laplace equation which can not be solved by separation (i.e. a solution of 
the form V(h, 4) = f (h).g(4) ). This makes it unsuitable for the solution of Dirich- 
let's problem: the computation of the potential from the prescribed values on the 
elliptical boundary. The coordinates {U,/?)  are used instead. After the derivation of 
a series representation of the potential with the elliptical coordinates, a connection 
between the coefficients of these series and the series in polar coordinates is derived. 

In (Gerontopoulos, 1978) and (Morse & Feshbach, 1953) the equation of Laplace 
is given as: 

The solution is sought by the substitution 

This leads to 

This equation consists of two independent differential equations, each equal to the 
same constant. For this constant we took already a specific choice since other con- 
stants will lead to solutions for g(/?) not periodic with 27r. First the differential 
equation on the left hand side of (B.2) is solved. It is first transformed to other 
variables by 



The transformation reduces the differential equation to 

which is solved by 

The other differential equation of (B.2) has the solution 

(omitting solutions not periodic with 2n). Now for V the solutions of (B.2) are 

V. = a0 + aq. 
A linear combination of particular solutions is also a solution of Laplace's equation, 
following from its linearity and homogeneity. This gives for the exterior domain: 

with v = d m .  Only the negative powers of (U + v) are solutions for the 
exterior domain because we demand that the potential in the exterior domain tends 
asymptotically to the potential of a points mass for U -+ CO, see section 2.2.2. On 
the ellipse the variable U is equal to the length of the semi-minor axis of the ellipse; 
the series (B.3) become ordinary Fourier series, for which the coefficients can be 
computed easily. With dimensionless coefficients the series (B.3) are written as 

If the series (2.6) and (B.3) both converge to the same potential in the exterior 
domain, the coefficients of the series have to related. This relationship will be derived 
by expressing In $ in a series with polar coordinates and in a series with elliptical 
coordinates, as was shown in (Jekeli, 1988) for the three dimensional harmonics. 
The former series is derived in section 2.2.1, the latter below. 

The distance between two points P and Q is computed as 

Insertion of the elliptical coordinates from (A.4) yields 

upuq sin pp sin pq))  i . 
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After some manipulations, this can be rewritten as 

2 
- - 2  - c0s(pp + P g )  ( u p  + u p ) .  

1 + U P  + U .p + .P 
For the logarithm of the inverse distance it is 

The logarithmic functions are expanded into a Taylor series, as we did for the polar 
coordinates. Convergence is guaranteed if r p  > r g .  We obtain: 

U - U  - - E 
Or, with - - , 

E u + u  

Insertion of this expansion into (2 .2 )  yields 

1 
einBp - G /c p(Q)  dug  In U P  + up + constant 

( u p  + vp)lnl 2  



ad - - G"" p ( ~ )  {(W i VQ) I n  e - i n P ~  + ( E )In'einpQ}doQ, (B.6) 
2 1 n l  'Q + 

(n # 01, 
a:" arbitrary . 

The Fourier series (B.5) are the same as (B.3). They only differ by the constant 
p In 2. The coefficient p is equal to the p used for the expansion in terms of polar 
coordinates. 

To establish the relationship between the coefficients with respect to the series 
in polar coordinates, a t r ,  and those for the elliptical coordinates, a:', the functions 
appearing in the integrals (2.8) and (B.6) have to be related. This is done by 
deriving a series expression for the basefunctions in one system with respect to the 
other system. 

First two general series expressions are derived, which will be used to obtain 
the required relation. For two complex variables q and z the following relation is 
assumed: 

The inverse of this relation is 

z = qk 481-1, z-l = q=i= d . .  
From (B.7) and (B.8) a series is derived for qn and zn for n > 0 . From (B.7) we 
obtain, using a binomial expansion, 

only if n even 

with W = (n - 1)/2 (n odd) or W = (n - 2)/2 (n even). From (B.8) is obtained 
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with t = (n - 1)/2 (n odd) or t = n/2 (n even). 
The basefunctions in polar coordinates and those in elliptical coordinates are 

linked by 

When putting 

(B.7) is equivalent to (B. l l )  and the following relations hold: 

Thereby the overbar denotes the complex conjugate. With the definitions of q and z, 
and the relations stated above, the basefunctions in polar coordinates are expressed 
with (B.lO) as 



n even 

with the definition of W as before. Insertion of (B.12) into (2.8) yields 

n even J 

With (B.6), this finally gives for the relation between the coefficients 

\ V / 

n even 

Where W = (n - 1)/2 (n odd) or W = (n - 2)/2 (n even) for positive n and W = 
(n + 1)/2 (n odd) or W = (n+ 2)/2 (n even) for negative n. In that case, k runs from 
zero down to W .  For normalized and dimensionless coefficients the relation becomes 
with (2.15) and (B.4), 

v - 

n even 
(B.14) 

For the elliptical functions it is found by (B.lO) 

(B.15) 
Substitution of (B.15) into (B.6) yields 



appendix B. Elliptical h arrnonics 

With (2.7) we find 

With t = (n - 1)/2 (n odd) or t = n/2 (n even) for positive n and t = (n + 1)/2 (n 
odd) or t = n/2 (n even) for negative n. For Anl we have 

In the summation of (B.16) k assumes negative values for n negative. The relation 
for normalized and dimensionless coefficients becomes, with (2.15) and (B.4)) 

A potential which is bandlimited in the elliptical series, does not have this prop- 
erty in the circular series (and vice versa). It is easily seen from (B.14) that there is 
no upper limit for n such that c:' vanishes. Although this is somewhat inconvenient, 
it does not give serious problems in computation of the coefficients c$ . This can 
be seen be writing (B.14) as (for n > 0) 

n even 

This series converges fast for low degree c:' if there is not very much power in the 
high degree coefficients. For higher degree coefficients the convergence can be much 
slower. In figure B.l this is elucidated by plotting the magnitude of the first five 
terms of summation (B.12), where c:' = l / n  was assumed. As the real power in the 
coefficients is lower, this result is somewhat pessimistic. 



Figure B . l  The magnitude of the first five terms of the transformation from 
elliptical to circular potential coeficients. For the elliptical coef- 
ficients, c:' = l /n  was taken. 
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