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Abstract. 

Vertical datum connection is investigated from the view point of quality, 

i. e. accuracy, reliability and detectability, based on the method originally 

proposed by Rummel and Teunissen (1988). Three simulations are carried out. 

The levelling accuracy is assumed to be 1 mm/km and the position accuracy of 

space stations 5 cm. The three error models of the geoid used are the Rapp-81 

model, a tailored gravitational field and the GEM-T1-related variance- 

covariance matrix. The results show that the quality of the vertical datum 

connection depends on the relative accuracy of levelling and space stations, 

but in particular on that of the geoid. It is also related to the number of 

space stations inside each datum zone and their geographical distribution. 

Only when the absolute determination of vertical datum is required, the 

absolute accuracy of the space stations plays an important role. 

Finally, we discuss an alternative datum connection model using 

terrestrial gravity anomalies and satellite derived geopotential coefficients. 
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Introduction. 

The sea surface is continuously changing. Main factors, causing these 

variations are climate changes and tectonic processes. Current sea level rise 

and major tectonic readjustments are still a consequence of the last 

de-glaciation, but awareness is growing that man-made climate changes might 

lead to a significant change of the rate of present day sea level rise, with 

far reaching consequences for all low land countries (Wind, 1987). Accurate 

monitoring of relative sea level changes can be done with tide gauges. However 

as these changes are not uniform it is highly desirable, in order to attain a 

better understanding of the involved processes, to be able to compare sea 

level changes in different parts of the world or inside larger geographical 

regions. This requires connection of tide gauges into one uniform vertical 

datum. The datum connection can be achieved, in principle, by means of space 

positioning in combination with levelling and precise geoid computation. 

By datum we mean a computational basis in geodesy. The vertical datum is 

needed to compute "absolute" heights in level ling networks, because only 

height increments are measurable. It is good tradition to use some average 

value of the observed sea level changes at a tide gauge as height reference or 

datum for a certain geographical area. Tide gauges are set up along coastal 

lines (or large rivers). They provide, after'some computational procedure is 

applied, mean sea level valuks averaged over certain time spans (month, year). 

Because of the sea surface topography, i.e. the deviation of the actual ocean 

surface from an equipotential surface, and its variation in space, different 

gauges, even located along the same coast line, result in different height 

datum values, as can be seen from the height differences between tide gauges 

being not equal to zero. Different vertical datums refer to different equi- 

potential surfaces. As a result, constant off-sets exist among the different 

height zones. As a secondary consequence also constant off-sets result between 

gravity anomaly data of different datum zones. 

Several methods have been developed over the years for the determination 

of these off-sets between the datum zones. Heck and Rummel (1990) recently 

gave a review on strategies for solving the vertical datum problem using 

terrestrial and satellite geodetic data. For example, Mather (1976) proposed 

the use of an oceanographic approach and combination with satellite altimetry 



and dynamic levelling. The starting point of the oceanographic method is 

Newton's second theorem. With some approximations and the assumption that the 

reference level is an isobaric surface, the potential difference betyeen the 

ocean surface and a reference level can be computed by using pressure, tempe- 

rature and salinity profiles. Another assumption for doing such a computation 

is that the sea surface is also isobaric. On the other hand, the important 

modelling of frictional forces will affect the precision of extrapolated sea 

surface topography. There also exist difficulties in the combination of 

satellite altimetry and dynamic levelling. Therefore, at present time, the 

method cannot be used to establish vertical datum connections between 

continents with sufficient precision. 

The purpose of the method proposed by Colombo (1980) is to determine a set 

of potential differences among benchmarks located in various continents. For 

simplicity, in the case of two benchmarks A and B, the quantity of interest is 

the potential difference AW(A,B). If we have a set of potential differences 

between the benchmark and some point in the vertical datum zone of each 

continent, respectively, it is easy to form the observational equations 

(Colombo, 1980; Hajela, 1983). A set of precise space stations will play an 

important role in the computation of the normal gravitational potential V' and 

the centrifugal potential a. The potential differences are obtained from 

levelling and gravity data. To obtain precisely the value of the normal 

gravitational potential, it is suggested to use a spherical harmonic expansion 

series up to a high degree. Because the disturbing potential is involved in 

the observational equations, gravity anomalies in a cap with an optimum 

density and accuracy around every station are needed. One can make a datum 

connection and calculate an accuracy estimation by using the least squares 

adjustment method. 

Rummel and Teunissen (1988) recently proposed a new approach to the verti- 

cal datum connection by the geodetic boundary value problem. It can be viewed 

as a modification of Colombo's method. The method consists of three main 

steps. The first one is to linearize potential numbers and scalar gravity with 

respect to some fixed normal potential and approximate boundary surface, and 

derive the fundamental equations of physical geodesy. Secondly, one will solve 

the geodetic boundary value problem and determine geoid height N or disturbing 



potential T. Disturbing potential or geoid height results from the well known 

Stokes' formula. AWo could also be derived, in principle, by using an 

additional precise distance and a precise value of GM. Neglect of AWo and the 

datum off-sets C cause biases in T and N. One can e.g. assume that there 
Qi,O 

are ( I  + 1) vertical datums over the world. Then we can easily formulate the 

datum connection problem as an ordinary least squares adjustment problem. The 

estimated parameters are the potential differences C between benchmarks Qi 
QiO 

and 0, and AW from the reference normal gravitational potential. For more 
0 

details of the method, see chapter 2 or (Rummel and Teunissen, 1988; Heck and 

Rummel, 1990). The basic requirements of the method are threefold: (1) In each 

of the (I+1) vertical datum zones, precise geocentric coordinates of at least 

one station are available, derived by space methods such as VLBI or SLR. It is 

easy to compute the geometric height h above the adopted global reference 

system and the geodetic coordinates. (2) Precise orthometric (or normal) 

heights or potential differences are available for all stations. They can be 

obtained by levelling. (3) Gravity anomalies referring to the (I+1) datum 

zones are known globally. 

Hajela (1983) looked into the accuracy of Colombo's method. The purpose of 

this report is to investigate the accuracy, reliability and detectability of 

the method by Rummel and Teunissen (1988). This includes the computation of 

the effects of errors of the geometric heights h above a chosen reference 

surface, orthometric heights H and geoid heights N on the estimated 

parameters. In chapter 2, we will briefly discuss the mathematical model for 

the datum connection with some formulae of the accuracy, reliability and 

detectability of the method. Chapters 3 and 4 will focus on the a priori 

precision matrices of geometric (ellipsoidal) heights h, orthometric heights 
i and the term S(Ag 1. The precision of h depends on the characteristics of the 

space techniques. The connection of space stations to tide gauges can be 

carried out by either levelling operations or GPS. Finally, we will carry out 

an error analysis for a number of examples. Related problems will also be 

investigated. The question is whether a global height datum correction with 

sufficient accuracy can be achieved at present time and what the expected 

trend is for the future. Despite the global character of the problem special 

attention shall be given to the height datum problem around the North Sea. 



Mathematical model for the vertical datum connection. 

We will briefly summarize the method of the vertical datum connection, 

proposed by Rummel and Teunissen (1988). The vertical datum connection problem 

is a least squares adjustment by geodetic boundary value techniques, if 

precise geocentric coordinates (or only vertical components) of space 

stations, orthometric heights and gravity anomalies referring to their own 

vertical datum zones are available in each of worldwide (I+l) datum zones. The 

parameters to be estimated are the potential differences C and AWo. In this 
Q10 

chapter, we discuss the observational equations of the vertical datum connec- 

tion, including the computation of the coefficients of the observational 

equations. The theoretical aspects on accuracy, reliability and detectability 
i of the method, and on the effects of errors of h, H and S(Ag 1 on the 

estimated parameters will also be investigated here. The introduction of prior 

precision matrices of h, H and S(Ag) is left to the next chapter. 

1. The observation equations. 

Suppose that there are (I+1) vertical datums in the world. The potential 

differences between the fundamental benchmark 0 and the benchmark Qi of all 

other datums are denoted below. 

Linearizing the potential number with respect to the normal potential U 

and the approximate point, we obtain 

where the height anomaly N is the vertical distance from the adopted reference 

surface to the equipotential surface through datum point Q AWo and C are i' QiO 

explained in Figure 1. 

Bruns' equation is then from (2) 



Similarly, linearization of scalar gravity in combination with (2) gives the 

fundamental equation of physical geodesy 

ar with approximations, - = - - 2r where the upperindex (i) of Ag indicates that 
an I- 

the observed gravity is reduced to the level surface passing through Q i' 

Figure 1: Geometrical representation of related quantities. 

By defining C = 0 when Qi = 0, we obtain the relationship between Ag and Q, 0 



Therefore, the general solution of the geodetic boundary value problem is 

Inserting ( 6 )  into (31, we have 

L 

,(i) 6(GM) Q .o 
J (P) = + -  R 

R7 
+ -  

7 7 4x7 J p Q ~  + R c Q ~ O  j (7) 

where 6(GM) = GM - GM', G is the gravitational constant, M' is the approximate 

mass of the earth and M its actual mass. The assumption of 6(GM) being equal 

to zero is acceptable, because the value of GM' can accurately be determined 

(see e.g. Rummel and Teunissen 1988). Otherwise, it would not be possible to 

separate between - and -. Equation (7) then becomes 
R7 7 

The geoidal height N(I) can also be obtained by the combination of the 

geocentric coordinates and the orthometric height of a space station 

where the upperindex indicates again that N and H belong to datum zone i. 

Inserting (9) in (8), we get 

Rearranging (10) leads to (Rummel and Teunissen, 1988): 



where 

where o is the j-th datum zone. Denoting 
j 

the observational equation of station Pk in zone i becomes 

where e is the error of observation y in the geocentric coordinate system. 
Pk Pk 

It is clear from equation (15) that the parameters AW C can be uni- 
0' Q,O 

quely determined by a least squares adjustment, if there is at least one 

station in each datum zone and orthometric heights and gravity anomalies are 

available. The vertical datum connection becomes simply a least squares 

adjustment problem. 

In an ideal case, if there would be no sea surface topography, all C 

would be equal to zero, and (15) would become 
Q JO 

which means that we could accurately determine AWo by space techniques, 

levelling operations and suitable gravity anomalies. 

If only a vertical datum connection between two zones is of interest, 

equation (15) becomes 

C 

= - P  AwO + 21, 
Ypk 

; for the stations in datum 0 (17) a PkQl 
C 

AWo = - P  Q1° 
Ypk 

+(1+2IS 1 -  ; for the stations in datum Q (18) a PkQl a 



The general structure of the coefficient matrix for the vertical datum connec- 

tion is shown in Figure 2. 

Figure 2: Structure of the coefficients matrix for an example with 11 stations 

and 9 vertical datums. The types of elements appearing in the coefficient 

matrix are (compare eq. (15)) a = -1, bki = (1 + 21s 1 and 
PkQ, 

C = 21s , adopted from Rummel and Teunissen (1988). 
k j PkQ J 



2. Coefficient computations of the observation equations. 

The integral element ds in equation (13) can be rewritten as 
j 

ds = sin I) dI) da 
j 

where a is an azimuth angle of Q relative to P. Then equation (13) becomes 
j 

The function St(I))sin I) may be denoted F(@). Its integral over a given cap 

with spherical radius I), denoted (Lambert and Darling, 1936) 

1 7 2 
= - {l + 4 sin - cos I) - 6sin3 9 - - sin I) - 2 2 4 

I) - 3 sin2 I) log (sin - + sin2 9)) 
2 e 2 2 

has been tabulated in (Lambert and Darling, 1936). These tables can be used 

approximately for the computations of the right hand side of equation (20). A 

computation program would be more simple and convenient because the integral 

of F(@) is an analytical expression, as long as the boundary lines of the 

considered vertical datum zone are a set of great circles. But the situation 

in general is more complicated for the boundary line of cr is usually 
j 

irregular. 

With the station P located in the datum zone Q (Fig. 31, furtheron with P 
j 

supposed to be roughly in the center and the boundary line roughly a circle, 

equation (20) can be approximately rewritten as 

2a 
IS ,.d - 

IY j 
S da St($)sin I) d ~ )  

PPj 4n o 
0 



Figure 3: The positions of the stations P and Pk and datum zone Q 
j' 

On the other hand, with the station P not inside the datum zone Q (Fig. 41, 
j 

and with the actual boundary line of the datum zone approximated by an area 

indicated by the dashed lines, the value of IS becomes PQ , 

- 1 J,2 
- - 
4a (a2 - a1 1 S F(J,)dJ, 

J,. 



Figure 4: The position of station P and the datum zone c 
j' 

It is clear that for an accurate value of IS , the combination of (22) 
PQ 

and (23) is very useful, only if the cr is divided into a large number of 
j 

small regular integral zones. In principle, other numerical integral 

techniques serve the purpose too. Because the boundary lines of the datum 

zones for an arbitrary space station generally are not great circles, one 

would have to make a lot of coordinate transformations and solve for 1,9 or Aa 

by iteration if using equation (21) to compute a coefficient 
ISPkQ 

Therefore, we determine the values of IS by a numerical integral method, 
'kQ j 

gridding the datum zone into 30' * 30' small elements. 

3. Accuracy of the method. 

The matrix form of the observation equations (15) is 

where Y is the observation vector with elements (14) 

A is the design matrix whose elements are either -1, (1 + 21s 1, or 
PkQi 

21sp Q S 

k j  C 

X is the parameter vector with elements -, A"o - Qio, i = 1,2 , . . . ,  I, 
7 7 

E is the error vector of Y. 



Assume that the expectation of & is equal to zero. The linear Gauss-Markov 

model is then 

where C is the variance-covariance matrix of Y, which can be computed by 
Y 

if the observations h, H and N related to S(Ag (''1 are assumed to be uncor- 

related among each other. More details on Ch, C and C are left for chapters H N 
3 and 4. 

By using a least squares adjustment, we have the parameter estimate 

and the variance-covariance matrix 

in which doo is the precision of AWo/r, d are the covariance values between 
0 j 

AW /r and C /r, and d are the precisions of C 
0 Q -0 j j Q .o/'. 

3 3 



4. Effects of errors of h. H and N on the estimated parameters. 

The effects of errors of h, H and N on the estimated parameters can be 

investigated based on either the true errors of the observations or their 

variance-covariance matrix. Suppose that the observations h, H and N have the 

errors E E and E respectively, then their total effect formula is, from h' H N 
equation (27) 

from which we can write the effect expressions of h, H and N on X, 

respectively: 

In general cases, we do not know the size of the errors E E and cN. h' H 
 heref fore, only in a simulation it is possible to use (30)-(32). The results 
will vary from one simulation to another. In other words, equations (30)-(32) 

are not computable in actual cases. Instead, we will discuss this problem 

based on their variance-covariance matrix. Application of the variance- 

covariance propagation law to equations (30)-(32) gives respectively 

where 



The summation of the right hand sides of (33)-(35) yields 

We therefore can compute the percentages of the effects of h, H and N on 

and the percentage of their effects on C /r, respectively, 
Q3° 

dXN 
j3 - pXN(cj0) = - -  d l - p  (C. - p m  jO 

Xh JO 
(C 1 

j j 

where dXh dm are the diagonal elements of matrix E 
00' jj 

dm the diagonal 
~ h '  doe' jj 

elements of matrix Em, d: and dXN the diagonal elements of matrix E 
3 3 XN ' 



5 .  Reliability of the method. 

The concept of reliability in geodesy was first presented by Baarda 

(1968). The reliability measures of geodetic networks consist of the internal 

reliability and external reliability. The internal reliability expresses the 

robustness of geodetic networks against gross errors, and the external 

reliability the distortion degree of the geodetic coordinates due to 

undetected gross errors. In the case of the vertical datum connection, we are 

interested in the robustness of the method against gross errors in the 

observations h, H and N, and the distortion of the potential differences. 

The test statistic is, based on the data snooping theory, 

where v is the correction of observation Y and q the i-th main diagonal 
i i i 

element of Qv. 

Since 

where AY denotes an outlier vector and 

Then 

Thus the bound value of undetected gross error is 



if the matrix P is diagonal, where the parameter K is selected with the 
0 

significant level a and power 6 and 

if the matrix P is nondiagonal. 

There exist several other test statistics for the purpose of gross error 

detection, which will lead to slightly different bounds of detectable gross 

errors. 

One of the measures of internal reliability is the so-called redundant 

quantity, that is 

and the effect of undetected gross errors on X (external reliability measure) 

is 

where 

6. Detectability of the method. 

As indicated in the previous sections, the potential differences AWo and 

CQaO can be computed by a least squares adjustment for the purpose of the 
J 

vertical datum connection. Theoretically speaking, it is not a problem, if the 



basic requirements are satisfied. Problems here are whether or not the 

potential differences are significantly different from zero, how we pick up 

the signals from the measurements. This shall be investigated through 

hypothesis testings in the following. 

The null hypothesis first of all is 

2 then the derived multidimensional X test statistic is after the null 

hypothesis, 

When a significant level a is given, we can test the null hypothesis using 

(56). If the null hypothesis is accepted with the confidence level (l-a), it 

will mean that the potential differences are globally undetected. Some aspects 

of the method (e. g. the requirements of the method) should be improved. On the 

other hand, if the null hypothesis is rejected, the parameters can be globally 

detectable. Further tests are needed. The corresponding null hypothesis is 

then, 

the statistic is 

Thus the measure of detectability of this method is as follows 

where k is a constant based on the significant level a, di i is the i-th main 1 

diagonal element of the matrix Ex. 



Prior precision matrices of geometrical and normal heights. 

1. Determination of neometric heinhts and their accuracy. 

A set of precise station coordinates is absolutely necessary for the 

vertical datum connection. It is obtained by combination of very long base- 

line interferometry (VLBI), satellite laser ranging (SLR) and the use of the 

global positioning system (GPS). The VLBI technique began in Radio Astronomy 

in the late 1960's. The observations are time delay and time delay rate from 

radio sources in deep space, from which baselines and orientations between 

receiver stations can be derived. The VLBI coordinate system is therefore an 

inertial (quasi) celestial reference frame (Brouwer, 1985; Mueller, 1989). In 

principle, the VLBI technique is relative. At present time, there are more 

than 22 VLBI stations around the world for geodetic purposes (Clark et al., 

p. 151, 1989): 

Westford, MA; 

Richmond, FL; 

Medicina, Italy; 

Madrid, Spain; 

Ft. Davis, TX; 

Shanghai, China; 

Hat Creek, CA; 

Pie Town, NW. 

Fairbanks, AK; Mojave, CA; 

Wettzell, FRG; Haystack, MA; 

Owens Valley, CA; Hartebeesthoeck, S. Afr. ; 

Kashima, Japan; Tidbinbilla, Australia; 

Vandenberg AFB, CA; Maryland Point, MD; 

Goldstone, CA; Onsala, Sweden; 

Kauai, Hawaii; Roi Namor, Kwa jalein; 

There are some other VLBI stations to be put into use or under development in 

many countries. The quality of VLBI measurements can be assessed from the 

repeatability in baseline lengths. The present repeatability level is 1-2 cm 

within a distance of 4000 km (Fig. 5). The accuracy of VLBI networks can 

therefore be expected to reach easily a few centimeters or better. 

Satellite laser ranging uses short pulse lasers to make range measurements 

between ground stations and retro-reflectors on artificial satellites. The 

observable is the travel time of the laser pulses. Because SLR measurements 

involve orbit dynamics, it is possible to determine absolute positions of SLR 

stations with respect to the earth's center of mass. Most of the measurements 



now available are from the laser geodynamics satellite (Lageos). There are 

approximately 30 fixed SLR stations worldwide. Additionally, there are some 

mobile SLB sites. Though not all of them provide data each year, they could be 

very useful in research of vertical datum connection. The density of SLB 

coverage is different from place to place. Most of them being located in 

Europe and the USA. Japan, China and USSR, etc. are developing their own SLB 

systems. Figure 6 gives fixed and mobile SLR stations in Europe and in the 

Mediterranean. For the Topex/Poseidon mission, starting in 1992 an almost 

global coverage by SLR is envisaged. Worldwide SLR networks form a control 

coordinate frame. 

LINE = 5.3 mm + (2.4 X I O ' ~ ) L  

147 VLBl BASELINES 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 l1000 

BASELINE LENGTH (km) 

Figure 5:VLBI Baseline length repeatability (taken from Melbourne and 

Reigber, 1989). 



Figure 6: Fixed and mobile SLR stations in Europe and in the Mediterranean 

(from Wilson 1989). 

SLR is a kind of technique which can provide us with precise geocentric 

positions of stations. The accuracy of station positions has reached 2 cm with 

the newer ranging systems, and 3-6 cm with older systems (Melbourne and 

Reigber, 1989, p. 136). Significant progress in SLR can be expected from the 

Lageos I1 program, established by the. National Aeronautics and Space Admini- 

stration (NASA) and the space agency of Italy (ASI). It may be expected that 

the accuracy of SLR networks will be greatly improved, when the Lageos I1 

program and/or other new satellites and stations are put into effect. For more 

details on the recent progress on SLR, see (Melbourne and Reigber, 1989; 

Zerbini, 1989). 

In addition, there are some worldwide GPS tracking networks. CIGNET 

tracking sites and DMA monitor tracking sites are plotted in Figure 7. CIGNET 

stands for the cooperative international GPS network, and DMA for the U.S. 

defense mapping agency. The former is designed for civilian use and the latter 

for or mainly for military use. A few centimeters of accuracy can be expected 

for these networks when combined with VLBI. Other networks include the French 



DORIS tracking network whose about fifty points will be distributed around the 

world. 

TSUKUBA-KASHIMA 

Figure 7: The CIGNET and DMA tracking sites from (Mader et al., 1989). 

The combination of SLR, VLBI and GPS tracking networks should improve the 

distribution of space stations on the one hand, and the accuracy on the other 

hand. It is reported that more emphasis will be placed on the development of 

1 mm system accuracy for SLR and VLBI systems, even at the expense of 

increased costs. This information is very welcome and should be valuable for 

the purpose of vertical datum connection. 

2. Determination of orthometric heights and their accuracy. 

The vertical datum connection proposed by Rummel and Teunissen (1988) 

needs orthometric heights at each station. Orthometric heights are heights 

between a space station and a fundamental benchmark, both of which located in 

the same datum zone, obtained by level ling operations and gravity. Level ling 

measurements are very precise but not reliable. Levelling is time consuming 



and work intensive. Weather factors and conditions of levelling lines will 

affect the speed of measurements and their accuracy. An accuracy formula can 

be generally written as 4, where L is the distance of a levelling line, a. is 
a scale factor, depending on the used instruments, measurement conditions and 

skills of operators. In other words, accuracy of levelling is proportional to 

the square root of the distance L. The scale a. is reported in precise 

levelling differently from person to person. An acceptable value to be used in 

this simulation is 1 mm/km (Remmer, 1989; personal communication). As we know, 

levelling measurements are affected not only by random errors but some 

systematic errors too. The accuracy measure here does not take the systematic 

errors into consideration. 

The geoid heights and their accuracy. 

There are two typical ways to compute the geoid heights and their 

accuracy: the integral method and spherical harmonic expansion. The Stokes' 

formula for computation of geoid heights reads: 

R N = -  S St(@)Ag da. 
4n;r a. 

where @ is the spherical distance between the computed point and integration 

point, Ag is gravity anomaly, which belongs to a certain datum zone. 

Suppose that Ag contains errors such as gravity reduction error and 

gravity measurement error, denoted by E the error of N is then: 
Ag' 

E = -  R S St(@)cAg da. 
N 4n;r a. 

from which we can obtain the variance formula of N (Heiskanen and Moritz, 

1967; Strang van Hees, 1986): 

R 2 xN = (-1 S S St(@pi)St(@ )Z da.. do- 
4n;r a. a. 

Pk AgiAgk 1 k 
i k  

where ZN is the variance of the geoid in station P, Z the variance- 
AgiAgk 

covariance of gravity anomalies. 



Following Strang van Hees (19861, expression (62) can be transformed into 

If Fpi, being a small quantity, is neglected we have 

If the integration point i is close to the station P, the integral will become 

infinite. We therefore divide (66) into two parts 

The influence of the immediate surrounding 6 can approximately be expressed as 

(Strang van Hees, 1986) 

where 6 is a small circle zone with radius r centered at station P. 
0 

The first term on the right hand side of equation (67) can be computed by 

either direct numerical integration or frequency domain methods. For more 

details, readers are referred to (ibid). 

The covariance function of geoid heights between stations P and Q is 

written from (61) 



- -- R2 S S St(#pi)St(# )X dcr. dcr 
2 

(4ry) cr. crk 
Qk 1 k 

1 

The difference of geoid heights is 

therefore 

Thus, we have 

The terms of XN and XN are computed according to (67). XN is obtained in 
P Q PQ 

the following manner 

1 2  F = - R S [St(#pi) - St.(@Qi) - ~ t ( # ~ ~ )  + St(#Qk dCT 
PQi 2 cr k (74 1 

If F ~ ~ i  is small, (73) will become (Strang van Hees, 1986) 



Using equations (67) and (751, we can compute the variance-covariance function 

of geoid heights by numerical integration techniques. 

The alternative method to compute the geoid is to use a spherical harmonic 

expansion of the gravitational potential: 

GM W(r,O,A) = - T (Cem COS mA + Sem sin mA)Pem(cos 8) + 
r l 

2 
+ 1 u2r2 cos 8 2 

(76) 

where r,8,A are the polar coordinates of a point at which W is to be 

determined. 

a is the earth's semi-major axis associated with the potential 

coefficients, 

are fully normalized potential coefficients, 

are fully normalized Legendre functions. 

Assume that as a reference potential a rotating, level ellipsoid is chosen 

with the same GM and centrifugal potential as the actual earth (Rapp and Cruz, 

1986). We define 

for l? = 2,4,6, and 8 and m = 0 
ref 

ACem = Ch - Cem = Ch + 
lam- I' 
I o otherwise 

and 

ASem = Sh 

Then the disturbing potential is 

T (Ace.. COS mA + ASem sin mXPem(cos 8) . (78) r 



There are several global geopotential models available. The maximum degree 

ranges from 20 to 360 depending on whether they are solely based on the 

analysis of satellite orbits, or combinations with satellite altimetry data 

and/or terrestrial mean gravity anomalies. Rapp (1981) developed a 180 degree 
0 gravitational field by combining SEASAT altimeter data, terrestrial 1 X l 0 

gravity anomalies and some prior potential coefficients. He estimated not only 

the values of the potential coefficients but also their accuracy. The errors 

of the coefficients reach 100% above degree 120. Rapp and Cruz (1986a,b) 

computed spherical harmonic expansions even up to degree and order 250 and 

360. The accuracy results seem to be not significantly different from the 

former one, and only the accuracy of solution OSU 86D is computed. A recent 

earth gravitational model, based on only satellite orbit analysis, is GEM-T1 

with its variance-covariance matrix of the estimated coefficients given too 

(Marsh et al., 1988; Lerch et al., 1988). Because we have a finite number 

of ACem and film values (78) should be rewritten as 

No e e 
T = -  GM L [:] L (AC~. COS r n ~  + AS sin ~ A I P  (cos B) r 

e=2 m= o em m 

CO e e 
+ - GM L [ L (Ch COS mh + S sin mh)P*,(cos B). (79) r l=No+l m=o h 

When using a finite degree and order gravitational potential model to compute 

T, we find for the error 

No e e 
c = L [ L (c cos mh + c sin mh)Ph(cos B) 
T r e= 2 m=o S&i, 

Suppose that T' is the disturbing potential at point Q. Then the covariance of 

T and T' is for uncorrelated errors in the potential coefficients 



(81 1 

where 

2 2 Thereby crC and cr are the estimated error variances of the potential 
em 'em 

coefficients and cr is the expected root mean square variation of the e 
potential coefficient per degree 

Equation (82) is used to compute the accuracy of the estimated potential 

T. But it is not possible to obtain infinite numbers of values of cr 
2 

2 2 
e- 

Generally, model values of cr are used. The cr are related to anomaly degree e e 
variance c model values by: e 

Tscherning and Rapp (1974) discussed a number of anomaly degree variance 

models. Moritz suggested a two component global model: 

for which the parameters were estimated by Rapp (1979). 

Using equation (811, we can obtain the error covariance function of 

geoid heights 



- - 
77' rr9 rr' 

L=2 

The variance value of the geoid is therefore 

It should be noted here again that the formulae derived above do not take into 

consideration the correlation information between the geopotential 

coefficients. The general computation formula therefore should be 

where F and F is the coefficient vector that relates the C and Sh to the P Q em 
geoid heights at points P and Q, respectively. ZCS is the variance-covariance 

matrix of C and Sh. Lm 

Simulation results. 

In this simulation, the world is divided into seven datum zones. In prin- 

ciple, each continent forms its own vertical datum zone. There are two datum 

zones for the European and Asian continent. Since the North Sea is of special 

interest, England is thought of as a separate datum zone. There are 63 space 

stations introduced around the world for the purpose of datum connection. The 

division of the datum zones and the distribution of the space stations are 

shown in Figure 8. The number of space stations is different from one datum 

zone to another. Table 1 lists the distribution of the space stations. It can 

be seen from Table 1 that the space stations are mainly distributed over North 

31 



America and Europe, which amounts to nearly two third of the total stations. 

The accuracy of space stations is assumed to be 5 cm. Accuracy of orthometric 

heights is derived from levelling operations. Its standard deviation of unit 

weight is taken to be 1 &km (Remmer, 1989). The benchmarks are also shown in 

Figure '8. 

Table 1: Distribution of Space Stations. 

There are error covariance sets of three gravitational fields used in the 

test computations. The first one is that of Rapp-81 coefficient set. The 

second is based on the publication (Torge et al., 1989). The last one is that 

of the GEM-T1 field. 

Zone 

Name 

Stations 

-150 - 100 -50 0 50 100 150 

Longitude in deg 

4 

Australia 

2 

Figure 8: Space stations and datum zones with fundamental benchmarks. 
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1. Preliminarv results using Rapp-81 model. 

The accuracy of geoid heights N is computed using equations (84) and (86). 

neglecting the correlation terms of geopotential coefficients, where a = 
l 

3.405 mga12, a = 140.03 mga12. A = 1. B = 2 and No = 180. The standard 
2 

deviation of the geoid is about 1.4 meter. Table 2 gives the accuracy 

estimation of parameters AWo and C 
910' 

Note that the parameters in fact should 

be AWo/r and C /r. But for the conciseness of the tables, we still use in 
910 

the following the notations of AWo and C 
910' 

This should not be confusing. It 

can be seen from the table that the accuracy is generally far from being 

satisfactory. This is due to the poor accuracy of the geoid, because the 

estimated parameters strongly depend on the geoid in this case (Table 3). On 

the other hand, because the vertical datum connection should be a problem of 

determination of relative quantities such as C 
910' 

the weak correlation of the 

geoid in this case may be responsible for the results (omitting the 

correlations of the geopotential coefficients when computing the 

variance-covariance matrix of the geoid). It also can be seen from Table 2 

that the accuracy estimation is related to some extent to the number of space 

stations in a datum zone. If the number of space stations increases, the datum 

connection to datum zone 0 is of better accuracy. For instance, the accuracy 

of the connection of the North American datum zone to the European one is 

better than others. Comparing the accuracy of England with that of Australia, 

the accuracy may also have some relation to the distribution of space stations 

within one vertical datum zone. We conclude that the accuracy estimation of 

vertical datum connection will depend on the actual accuracy of the geoid, the 

correlation length, the number of space stations and their accuracy and 

distribution, and finally on the distance of datum points from space stations. 

Table 2: Accuracy estimation of the parameters (cm). 

Zone 

Par am. 

Accuracy 

33 

0 

AWo 

32.02 

1 

Cl 0 

74.93 

2 

C20 

46.46 

3 

'30 

45.61 

4 

'40 

65.03 

5 

'50 

34.87 

6 

'60 

54.77 



Table 3: Effects of errors on the estimated parameters ( % l .  

Table 4 lists the undetected gross error bounds of the observations for 

a = 0.05, #? = 0.80. It is obvious that the method in this case has weak 

reliability. The reason may again be directly related to the weak correlation 

of the geoid. With the improvement of gravitational fields and inclusion of 

the correlation among the coefficients, the situation may improve. Further 

investigations are needed. 

When using the Rapp-81 gravitational model, with no correlation 

information, the detectability of the method is not good (Table 5). Again, the 

result shows some relation to the number of space stations and their 

distribution. 

Now we will take a look at the external reliability of the method. Table 6 

gives the external reliability values. Comparing columns 4 and 7 with others, 

it can be seen that the smaller the number of space stations in a datum zone, 

the worse the reliability is. Additional space stations should be helpful in 

improving the external reliability. An outlier, e.g. caused by a wrong 

connection, would have the most serious effect on the parameters of its own 

datum zone. It seems from column 3 of Table 6 that outliers in the 

observations will have a cumulative effect on the parameter AWo. This is due 

to the positive undetected gross error bounds. They are equivalent to a 

systematic bias in the observations. On the other hand, the coefficients of 

parameter AWo in all observation equations are -1, which means that this 

systematic bias will be absorbed in AWo. 

Param. 

H 

h 

N 

AWo 

0.08 

0.10 

99.82 

Cl 0 

0.05 

0.10 

99.85 

C20 

0.12 

0.11 

99.77 

C4 0 

0.11 

0.11 

99.78 

'30 

0.10 

0.11 

99.79 

'50 

0.10 

0.10 

99.80 

'60 

0.14 

0.11 

99.75 



Table 4: Undetected Gross Error, Bounds (cm) 

Table 5: Detectability of the method (cm). 

2. Simulation of a tailored gravitational model. 

Based on (Torge et al., 19891, we make the following assumptions on the 

relative accuracy of the geoid: 

Parameters 

Detectability 

AWo 

62.75 

C3 o 

89.39 

Cl o 

146.86 

C4 o 

127.46 

C2 o 

91.07 

C5 o 

68.34 

C60 

107.34 



It should be pointed out that the assumptions may not apply to all parts 

of the world. But at least they should hold true in Europe, because error 

sources of GPS and levelling seem not to exist here, if we consider the 

comparison results given in (Torge et al., 1989). 

Table 6: External reliability values of the method. 

OBS. ZONE AWo Cl o C2 o C3 o C4 o C50 C6 o 

1 5 -5.14 -3.04 -2.69 -2.88 -5.60 11.12 -1.94 

17 0 -18.24 -36.41 -20.39 -17.32 -15.30 -19.07 -21.32 

18 0 -22.67 -21.75 -26.69 -19.32 -24.29 -20.79 -23.91 

19 2 -5.17 8.44 35.49 -1.78 19.76 -6.32 9.40 

21 3 -20.28 2.65 -7.02 52.20 -2.27 -6.32 -27.37 

22 0 -13.87 -15.69 -15.24 -13.21 -13.29 -13.49 -14.83 

23 4 8.50 -16.99 18.45 33.59 129.66 -1.67 17.70 

25 5 -7.26 -4.71 -2.66 -1.87 -9.48 11.12 -2.77 

26 0 -19.28 -24.62 -19.06 -18.71 -21.27 -17.73 -17.75 

33 0 -13.98 -19.28 -14.49 -13.25 -11.74 -14.28 -15.58 

34 3 -20.18 2.36 -2.58 49.84 -2.11 -9.21 -32.26 

36 1 5.93 107.47 9.54 9.26 1.85 11.67 9.89 

37 1 6.98 128.25 8.82 10.27 -0.75 14.31 11.75 

38 1 10.04 106.20 14.98 12.36 4.54 15.40 15.53 

39 4 5.42 -15.60 25.97 43.08 139.30 -9.09 4.46 

40 6 4.80 0.15 5.10 4.78 23.91 16.14 52.44 

47 6 6.02 17.29 13.97 -17.09 -11.09 20.13 57.82 

50 2 -7.56 8.28 43.74 0.80 -11.65 0.13 -0.47 

52 3 -20.80 1.58 -0.69 51.20 -0.98 -10.63 -34.76 

54 3 -21.27 0.87 -6.06 54.27 -1.18 -8.03 -29.30 

57 6 2.01 4.51 0.60 2.62 6.66 16.29 48.31 

61 2 -4.99 3.07 50.10 3.80 26.60 -6.56 8.89 

SUM -418.98 42.99 32.03 44.44 66.68 5.65 20.10 



Table 7 gives the accuracy values of the parameters. Compared with Table 

2, it is clear that the accuracy of the shift parameter AWo becomes relatively 

seen poorer, because the strongly correlated geoid error decreases the 

importance of the number of space stations. The strong correlation will imply 

some linear relation among the observations. Therefore, a new observation can 

be well derived from old ones. In other words, the new observation contributes 

less information to the parameters.0n the other hand, the parameters of 

vertical datum connection are of good accuracy. This is due to the good 

relative accuracy of the geoid, though the absolute accuracy of the geoid 

remains the same. The following is the theoretical explanation of the problem. 

Table 7: Accuracy estimation of the parameters [cm). 

Table 8: Effects of errors on the estimated parameters ( % l .  

Zone 

Param. 

Accuracy 

0 

AWo 

144.53 

Param. 

H 

h 

N 

1 

Clo 

3.22 

AWo 

0.005 

0.003 

99.992 

2 

C20 

2.34 

C20 

30.64 

46.24 

23.12 

Clo 

18.03 

54.65 

27.32 

3 

C30 

2.25 

C30 

31.94 

45.37 

22.69 

4 

C4 0 

3.31 

'40 

32.63 

44.91 

22.46 

5 

CSO 

1.58 

C50 

27.43 

48.38 

24.19 

6 

'60 

2.89 

'6 0 

34.80 

43.46 

21.74 



We take again the previous example with 11 stations and 9 vertical datums. 

The observation equations have been shown in Figure 2. Rearranging the 

observation equations by subtracting Y from Yi (i + l), we have the new 
1  

observation equations shown in Figure 9. The matrix form is as follow 

- 
Y 1 ~  - A C + c 2  

where 

and the matrix A  is determined by b and c 
k j I j' 

Obviously, the shift parameter AW has disappeared in equation (89). This 
0 

indicates that the vertical datum connection is a relative problem. We can 

solve the datum connection by applying a least squares adjustment to equation 

(89). The result will depend on the relative accuracy of the geoid, and that 

of geometric heights. Therefore, the result can be expected to improve if the 

correlations between space stations are taken into account. Inserting the 

estimates of vertical datum connection into (881, we have 

AWo/y = -Y1 + AIC 

where 



From equations (90) and (941, one observes that the accuracy of the parameter 

AWo will depend mainly on the absolute accuracy of the geoid (see also column 

2 of Table 8). To improve 'the vertical datum connection further, one should 

pay attention to the accuracy of space stations and levelling measurements and 

take correlation information into consideration (see table 8). 

It is also seen from Table 7 that it is possible to realize 5 cm accuracy 

of datum connection, though there may be some difficulty in some parts of the 

world, due to deviations from the assumptions we have made. But at least, 

concerning the dense gravity distribution in Europe and North America, and our 

assumptions based on the comparison among GPS, levelling and gravity data over 

a long distance, it should be no problem to reach the accuracy of less than 5 

cm for vertical datum connection between England and the European mainland, 

and between Europe and North America. 

Good relative accuracy of the geoid improves greatly the internal 

reliability (see Table 9). This can be explained from equations (45) and (49). 

With the increase of the accuracy of datum connection, the detectability of 

the method is improving, which can be seen from Table 10. Table 11 gives the 

values of external reliability. An outlier has again the most serious effect 

on the parameters of its own datum zone. Therefore, there must be at least two 

space stations to avoid the worst situation. A n  outlier in the reference datum 

zone affects all parameters, as can be seen from Table 11. 



Figure 9: Structure of the coefficient matrix for the new observational 

equations after the rearrangement, where a = -1, CLj= Ckj - Clj, 
- b;ci - bki- C ii' 



Table 9: Undetected Gross Error Bounds(cm). 

Table 10: Detectability of the method (cm). 

Parameters 

Detectability 

AWo 

83.28 

C 40 

6.48 

C l o  

6.30 

C 50 

3.10 

C 60 

5.66 

C 20 

4.60 

C 30 

4.41 



Table 11: External reliability values of the method. 

OBS. ZONE AWo C, o c, o o o o o 

2 5 -0.18 -0.07 -0.08 -0.12 -0.19 0.43 -0.04 

6 ' 5  -0.24 -0.03 0.02 -0.22 -0.51 0.45 -0.05 

8 5 -0.22 -0.13 -0.17 0.06 -0.04 0.39 -0.14 

15 0 -0.88 -1.04 -1.01 -0.84 -0.86 -0.86 -0.97 

20 2 -0.16 0.08 1.51 -0.19 0.36 -0.05 0.81 

2 1 3 -1.22 0.07 -0.51 2.99 -0.22 -0.41 -1.78 

23 4 0.39 -0.64 0.86 1.62 6.13 0.15 0.93 

33 0 -0.84 -0.87 -0.87 -0.76 -0.67 -0.85 -0.98 

34 3 -1.14 0.07 -0.18 2.72 -0.16 -0.54 -1.91 

36 1 0.44 6.12 0.71 0.64 0.25 0.82 0.74 

37 1 0.38 5.28 0.52 0.50 0.08 0.75 0.68 

38 1 0.30 5.33 0.59 0.45 0.09 0.64 0.61 

39 4 0.28 -0.85 1.62 2.74 8.69 -0.31 0.26 

40 6 0.24 0. 14 0.39 0.19 1.30 0.98 3.02 

46 6 0.09 0.30 0.18 0.17 0.46 0.97 2.78 

50 2 -0.35 0.40 2.10 -0.02 -0.45 -0.17 0.07 

52 3 -1.09 0.04 -0.08 2.57 -0.12 -0.55 -1.87 

54 3 -1.08 0.01 -0.37 2.64 -0.11 -0.41 -1.58 

55 0 -0.84 -1.07 -1.12 -0.71 -0.98 -0.76 -0.90 

56 5 -0.07 0.08 -0.04 -0.23 -0.17 0.44 0.28 

57 6 0.15 0.38 0.22 0.08 0.51 1.18 3.43 

61 2 -0.13 0.36 2.65 0.22 1.34 -0.20 0.72 

63 2 -0.09 0.29 1.83 -0.32 0.00 0.14 1.13 

SUM -20.97 2.00 3.51 3.42 6.13 0.99 3.29 



3. The simulation results based on the GEM-T1 variance-covariance matrix. 

GEM-T1 is a satellite derived earth model, developed by a group of 

American scientists around Goddard Space Flight Center, NASA. The results are 

a set of geopotential coefficients up to degree and order 36 with the full 

error variance-covariance matrix. It is presently thought of as the best 

satellite derived earth model. The variance-covariance matrix is used to 

analyze the error estimation of the vertical datum connection. It is indicated 

in the previous chapters that it is terrestrial gravity anomalies that 

contribute most to the datum connection problem but not satellite-based earth 

models. Therefore, this variance-covariance matrix is preferred to be thought 

of to be an assumed error model as obtained from terrestrial gravity, although 

it is related to the reality. 

For the purpose of comparison, we estimate the accuracy of the vertical 

datum connection by using three error models. The first is the GEM-T1 

variance-covariance model only, which is represented in Figure 10. The second 

degree n 

Figure 10: log degree rms signal and error of GEMT1. 



error model is that of GEM-T1 plus the omission error computed from Moritz- 

Jekeli model starting from degree 37. The last one is obtained with GEM-T1, 

Rapp's coefficient errors from 37 to 180 without consideration of correlation, 

and Moritz-Jekeli model from degree 181 again for the omission errors. 

Generally speaking, the correlation of each error model is relatively weak. 

Table 12 lists some basic error parameters of these three models for 63 space 

stations. 

Table 12: Error parameters of the three error models for 63 stations (m). 

The accuracy values computed by using these three error models are given 

in Table 13. It can be seen that the parameters of the datum connection are 

not satisfactory. 

accuracy 

minimum 

mean 

maximum 

Table 13: Accuracy estimation of datum parameters (cm). 

GEM-T1 

1.15 

1.43 

1.87 

zone 

parameter 

GEM-T1 

GEM+MJ 

GEM+RP+MJ 

GEM+MJ 

1.98 

2. 15 

2.47 

GEM+RP+MJ 

1.64 

1.84 

2.21 

AWo 

21.32 

41.34 

33.42 

1 

'1 0 

58.84 

111.26 

88.55 

2 

'20 

45.38 

71.67 

59.48 

3 

'30 

38.97 

70.40 

55.48 

4 

'40 

54.89 

93.61 

77.15 

5 

'50 

26.46 

52.20 

40.23 

6 

'60 
- 

55.50 

82.22 

70.96 



Among them the results with GEM-T1 error model are the best and those of 

GEM+MJ error model are the worst. All are largely influenced by the absolute 

accuracy of the geoidal heights. The comparison of the results of these three 

error models makes us conclude, that the improvement of global geopotential 

models will increase the accuracy of the datum connection, because in this 

case the omission error will be largely decreased, which is confirmed by Table 

12. The results are strongly related to the number of stations and factors 

mentioned before, similar to example 1. 

A last word should be added. The results of this example do not 

necessarily represent the attainable accuracy of datum connection, because the 

applied error models have to be interpreted as assumed error models of height 

anomalies purely from terrestrial gravity anomalies. This is an important 

deviation from reality. 

An alternative datum connection model using terrestrial gravity anomalies and 

satellite geopotential coefficients. 

The method presented by Rummel and Teunissen (1988) should be perfect, if 

only the parameters of vertical datum connection are of interest. But it seems 

difficult to implement the satellite derived geopotential coefficients into 

the model, which would be very useful to accurately determine the parameter 

AWo for realization of an absolute vertical datum definition. The main idea of 

the method is to solve for the vertical datum connection using space station 

coordinates, orthometric heights and suitable terrestrial gravity anomalies. 

Because the number of the parameters for vertical datum connection is not 

large in general, a large number of space stations including their densif i- 

cation networks over the world should improve not only the vertical datum 

connection, but also the gravity field itself. On the other hand, nearly all 

gravity field models using terrestrial gravity anomalies are affected by datum 

problems. Therefore, we shall recommend an alternative datum connection model 

as follows. 

The disturbing potential again can be written as (Rapp and Cruz, 1986): 



where r, #, h are geocentric coordinates 

Therefore we can easily write the model for simultaneous determination of 

the vertical datum connection, the parameter AW of absolute datum definition 
0 

and the potential coefficients using terrestrial gravity anomalies and satel- 

lite derived geopotential coefficients 

Ag(i) - z - - 2 2 a - F AWo CQeo - (F + , for datum zone i (99a 1 
1 

where A ~ ( ~ )  is the corrected gravity anomaly in datum none i. The observation 

stations give 

(i) - AWo 'Q.0 1 
h - H  - - + -  l + - T , for datum zone i . r r r (99b 1 

And the observation equations of satellite derived potential coefficients 

simply are 

It can be seen from (99) that the increase of the quality of satellite 

derived potential models will decrease the effect of datum problem on gravity 

potential, which further implicitly means the accurate determination of datum 

parameters. They are related to the weight ratio between geopotential coeffi- 

cients obtained from terrestrial gravity anomalies and satellite observations, 

respectively. 



Conclusions. 

Vertical datum connection is to determine some relative parameters C It io' 
requires orthometric heights obtained by levelling, a set of relative 

geocentric coordinates, and suitable gravity anomalies. The accuracy of the 

vertical datum connection is mainly' related to the relative accuracy of 

geometric heights and of the geoid. The higher the relative accuracy of 

geometric heights and of the geoid, the higher the accuracy of datum 

connection. In other words, the absolute accuracy of geometric or geoid 

heights does not affect the parameters C Only when the shift parameter AWo io' 
is of interest, both absolute geometric and geoid heights at one station are 

necessary. The accuracy of AWo is certainly determined by the absolute 

accuracy of h and N. The accuracy of the datum connection also depends on the 

number of stations and their distribution. The simulation shows that the 

accuracy of vertical datum connection can be expected to reach 5 cm or even 

better between England and Europe, and between Europe and North America, 

considering the dense gravity data and good relative accuracy of the geoid 

which have been proved by some tests using GPS, levelling and gravity data. 

The reliability measures are also related to the relative accuracy of the 

geoid, and some of the other factors mentioned above. The larger the number of 

space stations, the better is the reliability. The simulation indicates that 

an outlier, e.g. a wrong station connection, will have the most serious effect 

on the parameters in its own datum zone. Therefore, there should be at least 

two space stations, suitably distributed in each datum zone to avoid the worst 

situation, that an outlier is directly transferred to the estimated parameter. 

The simulation also indicates that the outliers in the observations would have 

an accumulative effect on the parameter AWo. This can be explained by positive 

undetected gross errors, because they are thought of as a systematic bias in 

the observations and the coefficients of parameter AWo in all observation 

equations are -1. 

The detectability depends on the accuracy of the method. Therefore it will 

possess the same properties as the accuracy. 

An alternative datum connection model is the simultaneous determination of 

the vertical datum connection. the parameter AW of absolute datum definition 
0 



and the potential coefficients using terrestrial gravity anomalies and 

satellite derived potential coefficients. 

The purpose of this work was to evaluate a technique, the method of 

vertical datum connection proposed in (Rummel & Teunissen, 19881, before the 

background of the currently available observational data. One limiting factor 

is the sparseness of precise satellite tracking or VLBI stations. It can be 

expected that this deficiency will disappear in the near future. More severe 

is the still insufficient quality of and global coverage with gravity. A 

gradiometric space mission, space-borne GPS, or the high-precision, almost 

continuous radio tracking of low flying space crafts by DORIS or PRARE shall 

very likely improve the situation profoundly before the end of this century. 

In addition, satellite derived gravity models are uniform, not affected by 

off-sets between various vertical datums. 

The technique of datum connection should be related to identifiable, 

physical terrain points. As the technique is essentially one of relative 

connection, it is probably preferable to avoid the term absolute geoid compu- 

tation in connection with the determination of AW,. This becomes clear if one 

realizes that the determination of AW, requires the measurement of at least 

one precise distance between two points. Even if one believes in absolute 

distances one has to realize that the scale of this distance determines that 

of the geoid. In addition, as the earth is pulsating distances between points 

become functions of time and consequently the "absolute" geoid too. Already 

Bruns (1878) pointed out the vagueness of the geoid concept with a number of 

still valid arguments. Baarda (1979) formulated his theory in such a way these 

complications are avoided by definition. 

Finally, one should realize that a uniform worldwide vertical datum at a 

level of better than, say 5 cm, is not only a matter of data coverage and 

precision, but one of a suitable computation model. At this level all dynamic 

phenomena affecting the solid earth enter. This makes datum determination a 

continuous process - a worldwide vertical datum monitoring. The effect of the 
pulsating earth should less be seen as an additional inconvenience or 

complication, but more as an additional challenge. It could place geodesy 

right into the center of the study of the earth as a system with solid earth, 

hydrosphere, cryosphere and atmosphere as components. The establishment and 



maintenance of a precise global datum, spanning all continents and islands, 

and connecting geometric and gravimetric methods would on the one hand provide 

a "static" framework for monitoring dynamic processes, in particular global 

ocean circulation, on the other hand it would be the key for a proper 

understanding of sea level rise, its causes and its relation to vertical 

crustal motion on a global scale. 
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