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Abstract 

Title: T h e  role of orbit errors in processing of satellite altimeter da t a  

The problem of radial orbit errors in processing of satellite altimeter data is largely 
due to the inaccuracy of the gravity model which is required for the computation 
of the trajectory of the spacecraft. A commonly used technique for removing these 
errors consists of minimizing the crossover differences of profiles measured by the 
altimeter radar. 

Several versions of the technique of least squares crossover minimization have 
been investigated using either SEASAT observations or simulated data. In these 
adjustments coefficients of error functions are estimated which are either locally 
defined over short arc segments, globally over long arc segments, or continuously 
over an entire arc having a length of several days. The solution of the corresponding 
normal equations consists of a homogeneous and a particular part. 

For each crossover minimization problem (CMP) the homogeneous solution is 
always given as an analytical expression describing the invariances of the altimetric 
sea surface with respect to the crossover differences. These invariances are described 
by a surface deformation function which is characteristic for the problem in question. 
The number of coefficients in this function equals to the rank defect of the normal 
matrix in the CMP. 

For the particular solution of a local CMP (using "tilt and bias" functions) it 
was found that 2 non-intersecting and non-overlapping master arc segments have 
to be fixed. However for global chronological segmented CMP's (using 3 parameter 
sine-cosine functions) only 1 master arc segment needs to be fixed for a particular 
solution. For continuous CMP's a particular solution is found by including 9 con- 
straint equations in the form of pseudo observation equations. In this case the error 
function consists of a Fourier series truncated at a cutoff frequency of 2.3 cycles per 
revolution including a 2 parameter function modeling a long periodic effect in the 
orbit. 

The underlying problem of gravitational radial orbit errors is described by means 
of the linear perturbations theory, which is based on the Lagrange planetary equa- 
tions. Additionally the problem is formulated by means of the Hill equations de- 
scribing perturbed satellite motions in an idealized circular orbit. It is shown that 
the non-resonant particular radial solution of the Hill equations coincides with the 
first-order radial solution derived from the linear perturbations theory assuming a 
near circular orbit. 

The first-order radial solution has been compared with a simulated signal derived 
by numerical integration of the equations of motion. The simulated signal consists 
of the radial differences between two trajectories (resembling the SEASAT 3 day 
repeat configuration) integrated with different gravity models. It was found that 
the analytical orbit error model resembles closely the simulated signal after removal 
of a long periodic effect. 

The validity of the general solutions of two global CMP's has been investigated 
by means of a simulation experiment. In this experiment crossover differences are 
simulated by means of the radial orbit error signal described above. In a second step 



it is attempted to reconstruct this signal by minimizing the simulated differences. 
This experiment revealed that the general solution of the segmented CMP a p  

pears to be hampered by unrealistic velocity discontinuity effects of successive arc 
segment error functions. In addition, it fails to describe the Cll and Sll and higher 
degree and order components of a geographically correlated radial orbit error. This 
is not surprising since one can prove that the homogeneous solution of the segmented 
CMP (without velocity discontinuities) corresponds to  the Coo and Clo component 
of the geographically correlated radial orbit error. For this reason the global seg- 
mented CMP is reformulated in a continuous approach where it is shown that the 
homogeneous solution coincides with the geographically correlated radial orbit er- 
ror. Computations showed that the simulated signal deviates to  approximately 15 
cm r.m.s. with respect to the general solution of the continuous CMP. 

Employing the latter technique 5 independent particular solutions of a radial 
orbit error signal have been computed from SEASAT crossover data. These solutions 
appear to be highly correlated and suggest the presence of a disturbing effect likely to  
be caused by gravity modeling errors. Additionally it was found that the individual 
solutions resemble a concentration of signal near the once per revolution frequency in 
the radial orbit error spectrum. This solution could in principle be used to  improve 
a part of the gravity model that is used in the trajectory computation of the satellite. 

In the last part an integrated approach is described where the problem of mod- 
eling errors in the orbit, the geoid and the permanent part of the sea surface to- 
pography (PST) caused by ocean circulation are considered simultaneously. It is 
argued that an application of the integrated approach is justified if simultaneously 
gravity model improvement is performed employing tracking data of other satellites 
at different inclinations and eccentricities. Other aspects of the integrated approach 
concern the modeling problems of the PST field, an omission effect of the gravity 
field and the relation with the global continuous CMP. 

Key words: satellite altimetry, gravity models, gravitational orbit errors, crossover 
difference minimization, integrated altimetric approach. 
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Chapter 1 

Introduction 

Since the mission of Skylab in 1973 three satellites have been equipped with a radar 
altimeter. Two more missions are planned in the near future. The projects since 
the experimental mission of Skylab are those of GEOS-3 (operational from 1975 till 
1978)) SEASAT (in the summer of 1978) and GEOSAT (from 1985 up till now). For 
the next decade ERS-1 is expected to be launched in 1990 and TOPEX/POSEIDON 
will be realized in 1991. 

The principles of satellite altimetry shall be introduced in chapter 2. Observa- 
tions derived from the altimeter radar consist of distance measurements from the 
satellite to  the closest point a t  the sea surface in the nadir. The purpose of these 
measurements is to determine the permanent (or mean) shape of the sea surface and 
its variations in time. 

The uncorrected distance measurements of the altimeter radar are a result of 
a number of effects acting simultaneously. First of all there are several instrumen- 
tal effects which affect the magnitude of the distance observations. Secondly the 
radar signal is influenced by the ionosphere and troposphere of the Earth. Thirdly 
the shape of the sea surface itself is determined by a number of time variable and 
permanent phenomena. Moreover the height of the altimeter above this surface is 
subject to  the motions of the spacecraft orbiting around the Earth. 

In chapter 2 it is explained that a successful application of satellite altimetry is 
only possible after removing a number of the mentioned effects. Some of the phe- 
nomena which determine the distance measurements can be derived with sufficient 
accuracy from in situ observations performed by other instruments on board the 
spacecraft such as microwave radiometers for correcting the wet tropospheric delay 
of the travel time of the radar pulse. Other effects, such as those caused by the 
position determination of the spacecraft, require an independent treatment. Even- 
tually there remain a number of effects which are not corrected at  all since it is the 
intention to observe them with the altimeter. 

A fundamental problem of satellite altimetry is to  distinguish between the mix- 
ture of phenomena in the eventual sea surface profiles 'delivered' by the altimeter. 
(In the sequel these profiles are simply called 'altimeter profiles') Essentially this 
topic is the main motivation for the study presented here where the role of a radial 
position uncertainty in satellite altimetry is discussed. 

In chapter 2 it is shown that radial orbit errors and geoid undulation errors are 



dominating in altimetry. The main cause of a radial orbit error is still, even after 15 
years of altimeter data, the uncertainty in modeling the a-priori gravitational field 
which is required for the computation of the position of the spacecraft. Another 
result of inaccurate gravitational models is the a-priori error of the geoid. This 
equipotential surface determines to  great extent the geometrical shape of the sea 
surface. 

In first instance research is focussed on an empirical removal of a radial orbit 
error from altimetric data in a local region. A straightforward approach described 
in chapter 3 employs so-called crossover differences consisting of the sea surface 
height discrepancies a t  intersecting profiles measured by the altimeter radar. Ideally 
these discrepancies should be small since it is expected that sea surface heights 
change no more than some 20 cm due to turbulences induced by currents, eddies 
and other phenomena, compare (Wunsch and Gaposchkin,l980). Yet the actual 
crossover differences of e.g. SEASAT and GEOSAT have a standard deviation of 
some 1.5 to  2 m. This cannot be caused by the inaccuracy of the geoid since the 
geoid represents a stationary surface cancelling in the crossover height difference. 
Crossover differences are primarily caused by orbit errors of the spacecraft and 
secondarily by the height variations of the sea surface. 

Empirical modeling of radial errors is feasible due to the known long wavelength 
behavior of this effect. Accordingly the problem of local crossover minimization is to 
estimate linear functions which purpose it is to correct the sea surface heights along 
independent altimeter profiles, compare (Rummel & Rapp,1977). The properties 
of this estimation procedure formulated as a least squares minimization problem is 
described in chapter 3. 

In chapter 4 the nature of gravitational orbit perturbations is worked out in 
detail for typical altimetric orbits which are usually 3 or 6 days long, nearly circular 
(an instrumental requirement of the altimeter) and only perturbed by the Earth's 
gravitational field. The author's main motivation for studying radial orbit pertur- 
bations due t o  gravitational effects is to obtain a better insight in the nature of 
the problem. Accordingly the linear perturbation theory, originating from Kaula 
(1966), is evaluated for radial variations in near circular trajectories. Additionally, 
an alternative technique, based on the Hill equations described by Kaplan (1976) 
and Colombo (1984a), is investigated for the problem in question. Moreover, in 
order to  verify both analytical orbit error theories, a comparison is made with a 
so-called synthetical radial orbit error. This synthetical error is generated by means 
of the radial differences of two numerically integrated altimetric orbits each based 
on existing geopotential models. 

Chapter 5 discusses the effect one may expect of the gravitational radial orbit 
error on two observation types frequently employed in the processing of satellite 
altimeter data. The two observation types are the earlier mentioned crossover dif- 
ferences and repeating measurements along altimeter profiles (namely collinear - or 
repeat arc differences) which are used for studying the variations of the sea surface 
with respect to  time, compare (Cheney, Marsh and Beckly,1983). The analyses pur- 
sued in chapter 5 are based on the properties of the time tags which are characteristic 
for the observations in question. On basis of this information it is already possible 
to  conclude whether a particular observation type is sensitive to certain effects in 



the orbit. 
In chapter 6 the problem of recovering a radial orbit error from simulated cross- 

over - and collinear differences is investigated. For the latter observation type it is 
merely a verification that collinear differences behave invariant with respect to short 
periodic perturbations caused by the geopotential which are not modulated by the 
long periodic oscillations originating from the near secular motion of the argument 
of perigee. However the contrary is true for crossover differences which are partially 
sensitive for radial orbit errors. This problem is investigated in chapter 6 for sev- 
eral global crossover minimization schemes involving the least squares estimation of 
chronological segmented and continuous orbit error models. 

In chapter 7 the most promising crossover minimization scheme is employed for 
estimating a radial orbit error function from the actual SEASAT crossover differ- 
ences. An additional problem encountered in the processing of SEASAT altimeter 
data comes from the fact that orbit determination is performed in periods of 3 
or 6 days, as is described by (Lerch, Marsh, Klosko and Williamson,l982a). The 
consequences of segmented orbit determination on the estimated radial orbit error 
function(s) are discussed in chapter 7. 

In chapter 8 an integrated approach is sketched with the purpose to improve 
a geoid, an orbit and a PST field simultaneously from satellite altimeter data, cf. 
Wagner (1986,1988) and Engelis (1987). This approach does not necessarily require 
the application of crossover differences since stationary surface effects, consisting of 
the geoid and PST, are incorporated in the model. 

In chapter 9 conclusions are drawn and recommendations are given for future 
research on satellite altimetry. 



Chapter 2 

The principles of satellite alt imetry 

2.1 Introduction 

In this chapter we describe the principles of satellite altimetry. In their most basic 
form the observations consist of radar height measurements from the satellite to  
the sea surface. In addition to  these height observations it must be known 1) a t  
which location the satellite is 2) at what time the measurement is performed 3) 
whether the state of the satellite allows the altimeter to  operate and 4) how the 
medium behaves through which the radar signal travels. This simplified sketch shows 
directly the aspects playing a role in satellite altimetry. Therefore in this chapter 
the measurement principle, the technique for orbit determination, the instrumental 
aspects, the expected error budget and the altimeter dataset as it has been used 
from SEASAT are introduced. SEASAT was an altimeter satellite operating from 
July 6, 1978 till October 10, 1978. A detailed description of the SEASAT mission 
is given by Lame & Born (1982). 

2.2 The measurement principle 

2.2.1 Altimeter observations 

Taking the altimeter of SEASAT we demonstrate the instrumental characteristics. 
It is stated by Tapley, Born and Parke (1982a) that the altimeter possessed an 
instrumental accuracy of 10 cm. It consists of a short pulse (3 ns) nadir viewing 
microwave radar operating at  a frequency of 13.5 GHz. The instrument returns 
some average height of the satellite above the sea surface in the footprint area of 
the radar which is computed from the travel time of the radar pulse. The footprint 
of the altimeter can be regarded as the illuminated spot on the sea surface being 
2.4 to 12 km in diameter depending on the actual sea state, filtering the effect of 
windwaves on the sea surface. The roughness of the sea surface in the footprint area 
is extracted from the distribution in time of the received radar pulse, and is used 
to  define the significant wave height (SWH or H i ) .  Another quantity returned is 
the strength of the reflected radar pulse which is symbolized by the automatic gain 
control (AGC) . 

In addition, the altimeter included a tracker loop (an alpha-beta tracker) consist- 



ing of a low band pass filter. The purpose of this filter was to maintain the leading 
edge of the return pulse in the center of a set of time-equivalent waveform sample 
gates. The performance of this filter was nearly ideal over water where dynamic lag 
resulted in errors of less than 10 cm, as is stated in (Martin, Zwally, Brenner and 
Bindschadler ,1983). 

2.2.2 The altimetric configuration 

In addition to the height observations defined as p we consider the position of the 
satellite to be known in an Earth fixed coordinate system. The ephemerides of 
SEASAT were supplied in geographical coordinates based on the geodetic reference 
system 1980, compare (Lerch et a1.,1982a). From the ephemerides one can derive 
the height of the satellite above the reference ellipsoid, a quantity denoted h*. The 
height observation p represents the shortest distance between the altimeter and the 
instantaneous sea surface. Furthermore we define the height of the actual sea surface 
above a reference ellipsoid as h and find the basic relation: 

(A slope of the sea surface and its effect on the shortest distance measurement p 
is not considered in eq. (2.1). The perpendicular distance above a tilted surface is 
approximately a factor pa2 shorter (for small values of a) than a distance measure- 
ment along h*. Since p w 8 X lo5 m and a w 10-' radians (e.g. 10 m per 100 km), 
Ap w pa2 w 8 mm which is negligible with respect to other effects) 

In reality the altimetric configuration is somewhat more complicated than as- 
sumed in (2.1). The quantity h may be divided into N, the geoid height and H ,  the 
deviation of the sea surface with respect to the geoid. Hence we find 

Furthermore it is customary to split H in $P and $V respectively the permanent (or 
mean) sea surface topography and variable sea surface topography. Later on in this 
chapter the order of magnitude and accuracy of these quantities are described. The 
altimetric configuration is illustrated in figure 2.1. 

2.3 Orbital aspects 

Here the derivation of the quantity h* is described in more detail. It is obtained 
from the orbit determination of the altimeter satellite and involves application of 
other measurements; the so-called tracking observations. 

2.3.1 Choice of orbits 

Aspects playing an important role in the choice of the nominal orbits are firstly, 
that the altitude variation has to be minimized (an instrumental requirement of the 
altimeter) and secondly, that the ground track pattern of the altimeter covers the 
Earth's surface globally. 



Figure 2.1: The altimetric configuration. 

r - satellite trajectory 
A 1 

Additional requirements can be for instance a full sun orbit (e.g. as initially 
anticipated for SEASAT) or a sun synchronous trajectory (ERS-1). In the latter 
case, viewed from the satellite, the illumination of the Earth's surface is always 
from the same direction, facilitating the operation of remote sensing instruments on 
board the spacecraft. The concept of ERS-1 consists of an Earth Remote Sensing 
satellite on which the radar altimeter is placed as a 'second priority' instrument. 

For certain oceanographic applications a trajectory can be chosen in such a way 
that the ground track repeats itself after a certain period, known as the repeat pe- 
riod. A comparison of successive height measurements over a repeating ground track 
enables to observe variations of the sea surface heights in time, compare (Cheney et 
a1.,1983). 

The classes of orbits applied for altimeter satellites are all low eccentric at an 
altitude of approximately 800 to 1400 km with relatively high inclinations above 
60°, compare table 2.1. 

P 

name h (km) e I rev/day 
GEOS-3 
SEASAT 780 8 X I O - ~  108.0 14.33 
GEOSAT 780 8 X 10-~ 108.0 14.33 

h* 

Table 2.1: The approximate orbital elements of altimeter satellites. 

actual sea surface 

mean sea surface 

geoid 

reference ellipsoid 

As mentioned before, an important requirement of the altimeter itself is a limited 
altitude variation with respect to the sea surface in the nadir of the satellite. In orbits 



having a small eccentricity a limited altitude variation is acquired by eliminating the 
secular perigee drift. A straightforward approach, employing the properties of the 
effect of the flattening term J2 of the Earth's gravitational field on a satellite orbit, 
is applied in the mission of TOPEX/POSEIDON. In this mission it is planned to 
'freeze' the argument of perigee at W = 270" by adopting the critical inclination of 
63.4" and a special eccentricity. 

In a similar approach, applied in the last month of the SEASAT mission, the 
secular perigee drift is eliminated by fixing the argument at 90" while using a specific 
eccentricity. The relation between eccentricity and argument of perigee in this type 
of orbit is given by Cook (1966). A description of the relation between the argument 
of perigee and eccentricity due to the zonal effects of the gravitational field is given 
in appendix A. 

The 'Cook' orbit is unstable due to the various perturbing forces and requires 
periodical corrections (about once per month) by means of firing thrusters on-board 
the satellite. A discussion about the corrections required to maintain a 'Cook' orbit 
can be found in (Colombo,l984b). 

2.3.2 Orbit determination 

During its mission the spacecraft is followed by a network of tracking stations for 
the purpose of orbit determination. Typical tracking observations are laser range 
measurements, Doppler range-rates, radar (USB, unified S-band) range and range 
rates, altimeter height measurements, cf. chapter 8, or SST range rates as in the 
case of ATS-6 to GEOS-3. During orbit determination the tracking observations are 
coupled to a dynamical model which describes the relation of a satellite state vector 
and time. The state vector consists of 3 position and 3 velocity components which 
are defined in an inertial coordinate system. The dynamical model takes the form 
of a system of second-order differential equations which are called the equations of 
motion. The motion of a point mass moving in the gravitational field of a planet 
represented in an inertial coordinate frame is given by: 

where z' represents the acceleration vector of the satellite. The term V represents 
the gravitational potential of the Earth, fl + +L denote additional force models 
for atmospheric drag, radiation pressure effects, tidal effects, and others, compare 
Lerch et al. (1982a). 

The objective of orbit determination is to find an orbit that matches in the least 
squares sense the tracking observations. Adequate software is capable of handling 
a variety of observation types. The least squares adjustment model applied for the 
processing of these observations contains unknowns for: 

an initial state vector; the unknowns are the six state vector components at 
the epoch where integration of the equations of motion starts, 

parameters in the force models; typically the unknowns pertain to atmospheric 
drag, radiation pressure, gravity, or other models, 



tracking instrument parameters; such as clock offset and drift terms a t  a track- 
ing station and 

geographical coordinates of the tracking stations. 

The common method applied during orbit determination is to integrate (2.3) with 
respect to time numerically. High-order multistep integration methods, such as an 
Adams Moulton procedure described in (Martin, Oh, Eddy and Kogut, 1976), may 
be applied for these purposes. Integrated are the state vector itself and a transition 
matrix which relates the changes of the actual state vector with respect to the initial 
state vector. 

The numerical integration starts at  an a-priori state vector using an approximate 
force model. This results in an apparent trajectory which is used for linearization 
of the adjustment model. Eventually, the purpose is to update the approximate 
values of the parameters by a least squares adjustment. In general, this procedure 
is repeated a number of times till convergence occurs. Usually not all unknowns are 
treated in one step, instead the process of orbit determination is sub-divided into 
several phases (inner and outer iterations) in which separate groups of unknowns 
are treated individually. A detailed description of the so-called differential orbit 
correction technique as it is implemented in GEODYN is given by Martin et al. 
(1976). 

For the purpose of improved orbit computations of SEASAT tailored gravity 
models were developed by application of laser, USB tracking data including altime- 
ter observations of SEASAT and GEOS-3. They were combined with gravity field 
constraints from other satellites. The development of a tailored gravity model for 
SEASAT is given by Lerch et al. (1982a). 

2.3.3 Orbit accuracy 

As described in 52.3.2, h* is determined by orbit determination resulting in an 
apparent satellite trajectory. As a result there remains a radial orbit error with 
respect to the actual trajectory of the altimeter satellite. In (Tapley et a1.,1982a) 
it is mentioned that the most important sources of the orbit error may be divided 
into four categories which are: the gravitational field, atmospheric drag effects, solar 
radiation and station location effects. All these influences have a long wavelength 
behavior of which the dominant effect can be assigned to gravity field mismodeling. 
In the case of SEASAT it is known that its trajectory deviates radially about 1.5 to 
2 m from the actual trajectory, compare also (Tapley et al.,ibid). The radial orbit 
error as function of the time is denoted Ar(t). 

The value of 1.5 to 2 m dates from a situation of almost 10 years ago. NOW* 
days, using advanced trajectory computation techniques, the estimated orbit error 
of SEASAT is on the level of 50 cm, compare e.g. (Marsh et a1.,1986). However 
this is only the case for those orbits which have been included in the solution of 
e.g. GEM-T1, compare (Marsh et al.,ibid). In this context Wagner (1988), pg. 27, 
points out that the projected errors for orbits not included in this solution may 
become much higher (even up to a factor 5 to 10 with respect to the accurate or- 
bits). Apparently GEM-T1 is not as accurate in predicting new orbits as it is in 



describing existing orbits. In other words, the problem of gravitational orbit errors 
will probably remain in the future. 

2.4 Instrumental aspects 

In the following some details concerning the instrumental aspects of the SEASAT 
altimeter are described. In view of eq. (2.1) we discuss the quantity p, the shortest 
distance between the altimeter and the instantaneous sea surface. In principle the 
measurements p are derived from the turn around time of the radar pulse. However a 
number of corrections are involved for meaningful application of the measurements. 
They are characterized by: 

Instrumental effects. 

1. Center of mass correction of the altimeter. 

2. Instrument bias and drift. 

3. Time tag corrections. 

Geophysical effects. 

1. Instrument bias due to the SWH. 

2. Ionospheric effects. 

3. Tropospheric effects. 

2.4.1 Corrections for instrumental effects 

The altimeter on board the spacecraft is usually not located in the center of mass, a 
point which motion is computed by trajectory computation. For instance, the shape 
of SEASAT without appendages (synthetic aperture radar (SAR) antenna and solar 
panels) resembles an approximate cylinder of 10 m height and 2 m diameter where 
the altimeter radar is located at the end of the cylinder, compare also the GDR 
(geophysical data record) handbook (Lorell, Parke and Scott,1980). SEASAT is an 
example of a gravity gradient stabilized satellite: the cylinder is positioned along 
the local gravity vector, which is approximately along h*. The difference in location 
from the center of mass of the satellite to the phase center of the antenna of the 
altimeter is approximately 5 m. This requires a correction which is called the center 
of mass correction of the altimeter. 

Another effect is the instrument bias of the distance measurements. The bias 
is due to internal instrumental delay and needs to be calibrated before the launch 
of the spacecraft. In addition, a calibration of the altimeter is done during the 
actual mission. In the last month of SEASAT's mission the satellite passed several 
times (while in 3 day repeat mode) over a laser site at  the island of Bermuda. The 
overflight passes provided the primary information for the absolute bias calibration 
and stability analyses of the altimeter, compare (Kolenkiewicz & Martin,1982). 

A last effect is the time tag correction of the satellite clock. It means that 
the time assigned to the observables p differs from the time at which the (4, X,  h*) 



values are computed by orbit determination. Time tag differences do not affect the 
actual measurements p but have their influence through the term dh'ldt, the vertical 
velocity component of the spacecraft above the reference ellipsoid. The effect and 
the approach to correct for it is described in (Marsh and Williamson,l982a). 

2.4.2 Correct ions for geophysical effects 

A typical effect is the altimeter height bias due to wind waves on the sea surface. 
The bias tends to be a function of the significant wave height and is corrected 
by adding 0.07 X H! to the sea surface height, compare also (Born, Richards and 
Rosborough,l982). 

As the radar signal travels through a medium consisting of ionosphere and tropo- 
sphere, corrections are needed to remove refraction effects resulting in signal delay. 

The ionospheric refraction effect depends on the electron content along the signal 
path as well as on the frequency of the radar. A remedy for this effect is to measure 
at two or more frequencies, as is done in Doppler and GPS receivers. However 
SEASAT's altimeter operated at only one frequency requiring the application of 
external ionospheric models, compare (Lorell, Colquitt and Anderle,1982). 

The tropospheric 'dry' effect depends on the atmospheric pressure along the path 
of the radar signal through the troposphere. This correction requires the application 
of tropospheric models, compare (Lorell et a1.,1980). 

Another correction concerns the tropospheric 'wet' effect which depends on the 
water vapor pressure along the path of the radar signal. There are two possibil- 
ities for correcting this effect. Either radiometer data from the SMMR (scanning 
multichannel microwave radiometer) is used or the effect is compensated using an 
external model, (FNOC wet tropospheric correction), compare (Lorell et a1.,1980) 
and (Tapley, Lundberg and Born,1982b). In our computations the FNOC correction 
is applied. 

2.5 Geophysical effects and sea surface heights 

After orbit computation and after all required corrections to p the instantaneous 
sea surface h (still not corrected for radial orbit errors) is obtained from eq. (2.1). 
The instantaneous sea surface height is the height above the reference ellipsoid. It 
contains the variable (or dynamic) sea surface effect c", see figure 2.1. In order to 
eliminate c" as far as possible the following model corrections are applied: 

Earth and ocean tides affecting h, 

Inverse barometer behavior of the sea surface. 

The ocean tide effect is taken into account by means of a global model of Schwiderski 
(1978) involving the M2, S2, N2, K1, 01, and P1 components of the tide. Another 
tidal model available on the SEASAT GDR tapes is described in (Parke and Hen- 
dershott,l980) involving the M2, S2 and K1 components of the global ocean tide. 
Both models are valid in open oceans far from shallow waters close to the coast as 
is mentioned by Rowlands (1981). 



Earth tides result in a deformation of the solid Earth coming from the sun 
and the moon. They are corrected by means of an Earth tide model, compare 
(Melchior ,1978). 

Inverse barometer effects manifest as variations in the sea surface height due to 
meteorological effects. (1 mb corresponds to 1 cm height variation) This correction 
involves knowledge of the instantaneous atmospheric pressure, the average surface 
density and gravity, compare the GDR handbook (Lore11 et a1.,1980). 

2.5.1 GDR data structure and editing 

The GDR tapes contain: 

h*, 4, X derived from orbit determination, and t corrected for time tag bias. 

p including the corrections for instrumental effects (center of mass, calibra- 
tion, inverse barometer) and geophysical effects (ionosphere, 'wet' and 'dry' 
troposphere effects). 

AGC (automatic gain control of the altimeter) in decibel (dB) and SWH in 
meter. 

Ocean tide (Schwiderski or Parke Hendershott model) and Earth tide infor- 
mation, (Melchior,l978). 

Editing information, (edit byte). 

Auxiliary information. (e.g. a low degree and order geoid model, sea surface 
temperature) 

The next step is to apply editing on the data in its raw form, for the purpose of 
eliminating erroneous observations. The procedure is described in (Marsh and Mar- 
tin,1982b). We used a slightly modified version during the processing of altimeter 
data. Raw altimeter data appeared to  be hampered by a number of effects such as: 

Spikes in h, sudden unrealistic high values for h, likely to  be caused by inci- 
dental radar reflections e.g. coming from land or sea ice. 

Invalid tidal corrections in some notorious regions such as the Hudson Bay. 

Editing removes most of the effects mentioned. The procedure is to: 

check the TOIL (Time-tagged, Ocean, Ice, Land) and other editing information 
on tape. (eliminates: most land reflections, data hampered by excessive tilt of 
the satellite, blunders in other quantities), 

avoid those observations in which the corrected h deviates more than 10 m 
from an a-priori geoid model (only during an adjustment step), 

ignore those observations with AGC > 36 dB, 

skip observations with SWH=O at  4 5 -55' or 4 > 65", (ice reflections) 

avoid observations or to  apply other tidal models in those regions where this 
information is invalid. 



2.6 The error budget 

In table 2.2 an abbreviated version of the SEASAT altimeter error budget is pre- 
sented. It is important to note that the main error sources in altimetry, see figure 2.1, 
come from the orbit through the term h* and from the geoid through N. As already 
mentioned both effects are mostly due to gravitational model errors. It indicates a 
principal problem in satellite altimetry: 

A typical objective of physical geodesy and geophysics is to  recover a highly 
detailed geoid by means of satellite altimetry. The geoid is directly related 
(non-dynamically) to the gravity model. There is no relation by means of 
additional differential equations with variables dependent of time. 

Another geodetic objective might be to improve the orbit which is very at- 
tractive since an altimeter provides a good coverage of the trajectory. This 
information may be used to improve gravity models with benefits to satellite 
geodesy. If it is assumed that most of the orbit error is due to gravitational 
modeling then the problem is to recover a dynamical orbit error effect. It 
will be shown that there exists a relation of the orbit error with respect to 
the gravitational model by means of additional differential equations (the La- 
grange planetary equations and the Hill equations) with variables dependent 
of time. 

In the case of orbit error removal the problem may be formulated as a selective 
filter which is only sensitive to a radial orbit error and not for geoid model errors. 
This filter was introduced by Rummel et al. (1977) and takes the form of a least 
squares adjustment in which the discrepancies of h on ground track intersection 
points, known as crossovers, are minimized. Observations in the form of crossover 
differences are insensitive to N and (P whereas this is not the case for most parts of 
the radial orbit error signal. 

In chapter 3 an example of a local crossover adjustment is described for the 
purpose of introducing a selective filter for radial orbit errors. 

2.7 Conclusions 

In this chapter the principles of satellite altimetry were reviewed. Two important 
items are the orbit determination process and the altimeter instrumental aspects. 
Two dominant error sources are the radial position error of the spacecraft and the 
modeling error of the geoid which are respectively of the order of 1.4 m and 2 m (sit- 
uation: 1980), compare table 2.2. Both effects are far larger than the instrumental 
accuracy of the altimeter radar. 

Observations which are invariant to stationary surface effects are known as cross- 
over differences. It is likely that the height differences on crossovers are caused by a 
radial orbit error effect which in its turn originates dominantly from the uncertain- 
ties of the gravitational field used in the process of orbit determination. A sketch of 
a reduction of the orbit error by means of crossover difference minimization is given 
in chapter 3. 



Table 2.2: SEASAT altimeter error budget, cf. (Tapley et a1.,1982a). It shows the 
type and source of the error, amplitude in cm of the unmodeled effect, residual (10) 
in cm after modeling and the wavelength of the effect in km. 



Chapter 3 

Introduction to local adjustment of 
altimeter data 

3.1 Introduction 

The goal of this chapter is to introduce some theoretical and practical problems 
related to the adjustment of altimeter data. For this purpose we describe a lo- 
cal adjust men t of crossover differences in the North-east Atlantic. Similar studies 
of other geographical areas are described by e.g. (Rummel et a1.,1977), Vermeer 
(1983), (Marsh, Cheney, McCarthy and Martin,1984), (Knudsen,l987), (Zandber- 
gen, Wakker and Ambrosius,l988) and many others. The practical applications of 
local crossover minimization are numerous. Usually local crossover minimization is 
applied for local gravity field improvement and sea surface variability computations. 
In our study the adjustment is divided into two parts: 

Crossover differences, as they are derived from SEASAT altimeter data, are 
minimized. This results in a sea surface entirely determined by altimetry. 

Discrepancies between the altimetric sea surface solved in step 1 and an a-priori 
'reference' surface are minimized. 

Crossover minimization poses a singular problem. For instance a bias present in 
the radial orbit error does not reveal in the crossover differences. Later it will be 
shown that the 'bias' singularity belongs to a so-called null space of the normal 
equations formed by crossover minimization. It will also be shown that, depending 
on the choice of the adjustment model, other null space components show up. One 
might for instance obtain a tilt of the entire altimetric surface without affecting the 
crossover differences. In short: there exist transformations of the unknowns (which 
are the coefficients of so-called error functions over short arc segments solved by the 
adjustment of crossover differences) having the property not to affect the crossover 
differences. These transformations are called, in analogy to the adjustment of ter- 
restrial geodetic networks, singularity transformations, compare (Teunissen,l985). 

This leads to the second step which is the rninimization of the altimetric surface 
to  an a-priori reference surface. Here we carry out the transformation such that its 
degrees of freedom fall inside the null space of the crossover minimization problem. 



In reality the reference surface is formed by e.g. an a-priori geoid model or, as is 
suggested in (Sandwell, Milbert and Douglas,1986), a few bench marks in the form 
of radar transponders. 

As mentioned before, the two stage process of adjustment of altimeter data is 
demonstrated for a local region in the North-east Atlantic. Firstly it is described 
how we define the observations, the parameters (unknowns) to be estimated and 
their mutual relation: the observation model. The observation model consists of 
observation equations and an a-priori covariance matrix of the observations which 
are both used in a least squares adjustment (LSA). Due to the inherent singularity of 
the system of normal equations we split the solution in two groups: a homogeneous 
and a particular part. The general solution of the problem is found by combining 
both parts. As a conseqiience there is no unique solution of the problem. However 
it will be shown that there exists a set of possible solutions which all fulfil1 the 
minimization problem on which the LSA of crossover differences is based. 

Also the covariance matrix of the estimated unknowns has to  be considered 
when performing a LSA of crossover differences. This problem is far from a simple 
one since certain undesired effects are introduced by the homogeneous part of the 
'general' solution of the crossover minimization problem. In order t o  eliminate these 
effects we arrive at  the transformations of the covariance matrix of the unknowns 
which are known as the S-transformations; compare (Baarda,1973). The latter is 
essential when the quality of the estimated unknowns is considered. 

3.2 The observation model 

In this paragraph we introduce the observation model for adjusting altimeter data. 
Firstly some definitions are clarified. 

3.2.1 Definitions 

The nominal orbit 

For the nominal orbit we assume a near circular trajectory from which the altimeter 
measures in the nadir viewed from the position of the spacecraft. This nominal 
orbit is only used for describing an approximate ground track. We remark that the 
footprint of the altimeter varies in the order of 2.4 to 12 km diameter (according 
to  the SEASAT specifications) depending on the sea state. As a result the nominal 
orbit has to be accurate to  some 10 km in cross - and along track direction. (Cross 
- and along track refer respectively to in the direction perpendicular to  the orbital 
plane and perpendicular to  the radial direction.) 

The circular motion is described by a Kepler ellipse including the secular preces- 
sion of the elements 0, W and M. Without these precession terms the model would 
not suffice. Consider for instance the orbit of SEASAT where 0 drifts a t  a rate of 
B 2' per day, which is equivalent to a longitude shift of the equator transit point of 
approximately 200 km. 

A second assumption in the definition of the nominal orbit concerns the coor- 
dinate systems being used. Normally, the equations of motion are formulated in 



an inertial coordinate system. For ground track representation a transformation is 
performed into an Earth fixed coordinate system. For this purpose we assume the 
z-axes of the inertial and Earth fixed coordinate system to coincide. Furthermore 
we consider the Earth rotation rate (e) as constant for the definition of the nominal 
orbit. As a result we find a description of the nominal orbit, as given in figure 3.1, 
by the parameters W ,  = h2 - 0, W ,  = W + M, I and r .  (the subscript "o" refers to  
orbit, the subscript "e" refers to  Earth) 

Figure 3.1: The nominal orbit in an Earth fixed coordinate system 

Arc segments and crossovers 

It is easy to  verify that the satellite never exceeds the extreme latitudes compatible 
with the inclination of the orbital plane. In case of SEASAT the inclination equals 
to  108" which causes the ground track not to exceed above +72" or below -72" 
latitude. The path of the sub-satellite point over the Earth's surface from one 
extreme latitude to the other is defined as an arc segment. Each full revolution of 
the satellite contains two arc segments, an ascending one going from the southern 
hemisphere to the northern and a descending segment in which the satellite moves 
in the opposite direction. The situation is illustrated in figure 3.2. In the nominal 
orbit crossovers can only occur where an ascending arc segment intersects with a 
descending. This is an important property which is used in the analytical prediction 
of the crossover time tags and their geographical locations. This typical behavior 
indicates the topology of the crossover minimization problem. Later on, when certain 
parameters are estimated per individual arc segment, it will be shown that the 
crossover topology causes the normal matrix to be subdivided in two parts. In an 
ideal case (where all possible crossovers actually occur), one can show that this 
structure may be reduced to a circular Toeplitz form of the normal matrix, compare 
(Rumme1,1985). It is mentioned that this structure can be solved in a very efficient 
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Figure 3.2: Ground tracks and arc segments on the Earth's surface 

manner by application of fast Fourier transformations (FFT) which are described 
by Cooley & Tukey (1965) and Singleton (1969). 

In reality, where crossovers are missing because they are located on land, a 
Toeplitz structure is not found. For this reason the normal equations are solved in 
two parts, known as partitioning. This technique allows a considerable reduction of 
computing effort when solving the normal equations. However, it does not prevent 
that the resulting system to solve (e.g. by Choleski decomposition or any other 
method) is nearly full. 

Definition of local areas 

A straightforward method for defining a local region would be to adopt boundaries 
for the geographical latitude 4 and longitude X ,  as is illustrated in figure 3.2. Here 
such an area definition is inconvenient since the length of arc segments inside the 
region varies from short ones in the corners to approximately equal length in the 
center. Later on in this chapter it is demonstrated that this particular phenomenon 
may result in numerical problems in the LSA of crossover differences. Short arc 
segments are not compatible with long ones when the same amount and type of 
parameters is estimated. A remedy for this problem may be a down-weighting of 
observations belonging to  short arc segments. However here it was chosen to  apply 
segments of approximately the same length in time. For this reason we define for 
local adjustments a so-called diamond shaped area. Instead of bounding the 4 and 
X values we select a certain set of arc segments with equator transit longitudes 
located between two arbitrarily chosen values. This is done separately for as well 
the ascending as descending arc segments, compare figure 3.2. 



3.2.2 The crossover differences 

A practical problem was to  actually derive the crossover differences and positions 
from the GDR data. It is a procedure consisting of three steps: the first step is the 
creation of an arc segment catalog, the second step is the analytical prediction of 
crossover locations and timings and the third step is the numerical improvement of 
this data. 

The arc segment catalog 

Crossover computation requires an arc segment catalog which is derived from the 
GDR data. The catalog contains as many records as there are arc segments each 
describing the characteristic data belonging to  an individual entry. A catalog record 
describes a t  the beginning, the equator transit and at  the end of each segment the 
geographical location and GDR time respectively. The arc segment catalog itself 
is essential for the construction of crossover data since it defines the topology of 
arc segments and crossovers. Moreover it contains the valuable equator transit data 
which is required for the analytical prediction. 

Analytical prediction 

It is possible t o  predict the approximate crossover locations and timings by appli- 
cation of the properties of a nominal orbit. In the sequel this procedure is known 
as an analytical prediction of crossovers. The analytical prediction (described in 
chapter 5) turns out to  be accurate to  approximately 1.5 s which is rather large for 
interpolating the GDR data from tape. 

Numerical improvement 

In a second step the GDR altimeter data on tape is evaluated at  the analytically 
predicted times. This procedure enables an iterative improvement by using the 
improved crossovers as new predictions until some threshold is fulfilled. More details 
about the method of crossover computation are given in chapter 5. 

The resulting crossover dataset 

For the diamond shaped area in the North-east Atlantic we used the first 1350 
arc segments of SEASAT altimeter data. Eventually it results in 9098 applicable 
crossover differences formed out of 127 descending and 101 ascending arc segments. 

3.2.3 Relating observations to parameters 

In order to  minimize the crossover differences we attempt to  estimate the parameters 
of a radial error function defined along an arc segment. The radial error function is 
denoted Ar(t)  with t relative to an arbitrarily chosen reference time defined within 
an arc segment. A convenient choice could be the equator transit time of the arc 
segment, or the actual beginning at  a boundary of the diamond shaped area. 



The radial orbit error is often modelled by so-called tilt and bias functions taking 
the form of Ar(t) = a0 + bo(t - to) with respectively a0 the bias, bo the tilt and to 
the reference time of the error function. An error function of this type may be 
applied up to  a certain length in time. Above this maximum the deviations of Ar 
from the actual orbit error become too large introducing unrealistic high crossover 
differences after the LSA. The behavior of several error functions will be investigated 
in chapter 6. 

In addition to the truncation behavior of Ar, there exists a problem of over- 
parameterization of, usually short, arc segments. Too many parameters in Ar  allow 
the removal of virtually all the crossover difference signal even if it is caused by short 
periodic effects other than the long periodic radial orbit errors. 

Moreover, the superfluous parameters tend to be poorly estimable. This effect 
showed up in our first attempts where the technique had been applied for rectangular 
shaped areas. The mentioned problematic corner segments were solved for tilt and 
bias resulting in an artificial singularity, although the actual problem constrained 
with the minimal amount of master arc segments should behave regular. 

Later on it will be demonstrated that it is more realistic to solve for Fourier 
error functions for longer arc segments. This approach is followed in chapters 6 
and 7 where global altimetric surfaces are constructed by means of least squares 
crossover minimization. In this chapter we restrict ourselves to  the local approach 
with observation equations taking the form of: 

where Ahij represents the crossover difference of arc segments i and j related to  
the error functions Ar; and Ar,. The error functions are evaluated at  the times t;j 
and tj; both defined inside the arc segments. The notation is as follows: tij is the 
intersection time inside arc segment i with arc segment j. 

Along t r ack  influences a n d  t ime  tagging problems 

In the observation equation for crossover differences no correction is assumed for 
the differences between the internal satellite time and the ground based tracking 
network time. According to the GDR handbook (Lore11 et a1.,1980) two corrections 
are applied to the time tags of the altimeter observations. Due to  the instrumental 
delay and signal propagation effects a correction of -0.0794 s appeared necessary. 
Furthermore, there is a variable correction for the time difference between the signal 
reflection on the sea surface and the receipt of the signal on board the spacecraft. 

If there would be no vertical velocity component of the satellite above the sea 
surface then it would hardly matter whether the measured distances match with the 
computed positions of the satellite. However, for three reasons there exists a vertical 
velocity h* and acceleration j;* of the spacecraft above the footprint area. They are 
caused by a moderate eccentricity effect in the orbit, J2 periodic perturbations and 
flattening of the Earth's surface. 

As a result, the vertical velocity is in the order of 10 m/s as is stated in (Marsh et 
a1.,1982a). The -79.4 ms clock error results in a radial error effect of 10x 79.4 X 10-= 
m m 80 cm since the satellite position is computed at 'the wrong time'. The clock 



offset problem can be filtered out of the altimeter data by using the property that the 
ascending and descending dh'ldt differ considerably and behave in a well predictable 
way a t  a crossover location. (compare the lemniscate function shown in (Marsh et 
al. ,ibid)) . 

In the case of SEASAT a correction for the timing bias has been computed from 
the crossover differences, compare (Marsh et al.,ibid). After correction the estimated 
accuracy of the time tags is of the order of 3 ms r.m.s. as stated by Marsh et al. 
(ibid) . 

3.3 A solution for the problem 

In this paragraph we introduce the least squares minimization problem for crossover 
differences. Ideally a regular system of normal equations would have to  be solved. 
However, one can easily show that the system of normal equations is singular. This 
leads to  a separation of the solution of the minimization problem into particular and 
homogeneous part. 

3.3.1 Least squares minimization of crossover differences 

In order to  solve a system of observation equations as given by (3.1) we consider a 
Gauss-Markoff model in the form of y'= AZ+ <with y' representing the stochastic 
observables gathered in a vector of dimension n and Z a vector of parameters (or 
unknowns) of dimension m. The matrix A of m columns and n rows is known as 
the design matrix whereas <represents the vector of residuals of dimension n. 

Additionally we consider a symmetric positive definite matrix QVV containing on 
the main diagonal the a-priori variance of each observable and off the diagonal the 
covariance of one observation to another. As the problem is given here there are 
approximately m = crp unknowns to be estimated where cr equals to  the amount 
of parameters per arc segment and p the number of segments. Furthermore there 
are, as explained before, approximately observations in the form of crossover 
differences. Accordingly, the observation equations result in an over-determined 
system of linear equations for p > 2cr. 

According to  e.g. Lanczos (1964) and Teunissen (1985) one may consider the 
design matrix A as a linear operator from the parameter space M to the observation 
space U. In order to  find a unique solution for the inverse problem we pose a least 
squares minimum norm for the residual vector E', taking the form of ct~;y'7= min. 
It is easy to  show that the least squares minimum is obtained by: 

which are the normal equations. A more convenient notation is Ni = r'where N is 
called the normal matrix, 2 the vector of parameters estimated in the least squares 
sense, whereas r'forms the right hand side (RHS) of the system. 

Properties of the normal matrix 

Theorem 3.1 The normal matriz is symmetric and positive provided that QVV is 
symmetric and positive definite. 



Proof: The symmetric and positive definite covariance matrix Q,, may, according 
to  Lanczos (ibid), be decomposed in: 

where R represents an orthogonal matrix (inverse equals to  transposed form) and A 
a diagonal matrix containing the eigenvalues of QuY. An expansion of Q,, into N 
gives: 

N = ~ 9 ~ h - l ~ ~  A = B"-'B = cfc 
The eigenvalues in A are always real and greater than zero due to  the fact that Q,, 
is symmetric positive definite. Any element Nij of N is always formed by an inner 
product of the column vectors of C denoted respectively as Ci and C,. Due to the 
commutative property of the inner product we find Nij = (Ci, Cj) = (Cj, Ci) = Nji. 

One can also show that the normal matrix is positive. A positive matrix N 
dimensioned m X m fulfills the condition that z'' NZ 2 0 V z '  E Rm I z' # 6. Here 
N = CtC with C dimensioned n X m. Hence N is positive when z'fCtCz' 2 0 
V z '  E Rm 12' # 6. This is equivalent to  gt$ > 0 V$ E Rm. Note that b = 6 exists 
since it is allowed that Cz' = 6 l z' # 6. It is trivial that it$ = (b, b) 2 0 V b E Rm. 

Now it is shown that N is symmetric and positive we can follow Lanzcos' (ibid) 
approach where the properties of self-adjoint systems of equations are described. 

3.3.2 Singularity of the LSA 

For the problem at  hand one can show that there exists a linear dependency between 
the column vectors of the design matrix. The cause of this linear dependency shall 
be explained later on. Here we mention that there exists a rectangular matrix E of 
m rows and l linear independent columns such that AE = 0. The result is that a 
null space L of N is described. The basis of the null space is formed by the column 
vectors of the E matrix, the dimension of the null space is l. Apparently there exists 
a vector 3 E L such that 

where 3 = Es'. The vector s'is denoted as a shift vector, it forms the linear combi- 
nations of the columns of E describing the vectors 3 all lying in the null space L. 
The nature of the E matrix depends for crossover minimization problems on several 
assumptions related to  the observation equations (3.1). 

3.3.3 Treatment of the normal equations 

We conclude that: 

There exist normal equations in the form of N 2  = t'. The matrix N (dimension 
m X m) is a symmetric matrix with positive properties. This means that N 
possesses real eigenvalues all greater than or equal to zero. 



There exists a set of vectors I such that N I  = 6 .  Besides, it is known that I 
may be written in the form I = Es'where E is a matrix of m rows and 1 linear 
independent columns describing a so-called null space C of N .  The vector s'is 
called a shift vector having the dimension 1. 

Here we pose the question: does there exist a solution for the system of normal 
equations despite the fact it is singular? If this solution exists then we must also 
prove under which conditions it is unique. Hence we consider the eigenvalue problem 

where iii are the eigenvectors and X i  the eigenvalues of N .  This form is now rewritten 
in the matrix product: 

NU = UA (3.5) 

where the columns of U contain the eigenvectors whereas A takes the form of a 
diagonal matrix of eigenvalues. We substitute (3.5) in the normal equations N Z  = r' 
(for simplicity we use a vector notation for 2 )  and find: 

where z" = U'z' and r" = U'r'. We know there exist m - 1 non-zero eigenvalues and 
1 zero eigenvalues forming the system: 

A solution is feasible if: 

In case i E [l, m - l] a so-called particular solution is found. In the sequel we denote 
this solution as z'p. In the other case we must demand that r: equals to zero. The 
latter has the consequence that, according to (3.6): 

where U;, i E [m - 1 + l , m ]  represents a sub-matrix of U' with rows being the 
eigenvectors belonging to the zero eigenvalues of N  spanning the null-space. Eq. (3.9) 
forms the so-called compatibility conditions which, as a direct consequence of (3.8), 
must be fulfilled. A geometrical interpretation of (3.9) is that the RHS vector r'is 
orthogonal to each eigenvector Gi, i E [m - l + l, m] of the null-space of N .  Hence 
we consider: 

~ i i i = 6  V i € [ m - l + I , m ]  (3.10) 



which may be conveyed into 
NZ= 6 

where I is a linear combination of the eigenvectors G E L!, 

for arbitrarily chosen scalars a ; .  In the sequel Zfulfilling (3.11) is called a homoge- 
neous solution of the normal equations. A substitution of Z in (3 .9 )  shows directly 
that the homogeneous solution I must be orthogonal to  the RHS vector ?of the 
normal equations. Lanczos (ibid.) mentions that this is a necessary and sufficient 
condition for the solvability of a self-adjoint linear system with vanishing eigenvalues. 
We verify the latter for our case and find that: 

(note that AE = 0 ) .  As a consequence, for the problem at  hand, the compatibility 
conditions are always fulfilled. The general solution 6 of a compatible self-adjoint 
system is obtained by adding to  an arbitrary particular solution Zp an arbitrary 
solution of the homogeneou$ equation NZ = 6. The general solution G of the 
system takes the following form: 

3.3.4 Structure of the E-matrix 

The structure and dimension of the E matrix is directly related to  the observation 
equations used in the adjustment of the crossover differences. The E matrix is 
dimensioned as m rows by l columns and contains linear independent column vectors 
all lying in the null space of the normal matrix. The number of rows is identical to  
the number of unknowns of the problem. The number of columns is equivalent to  
the dimension of the null space of the problem. 

The structure of the observation equation given in (3 .1 )  indicates that a crossover 
difference Ahi j  is modeled by the difference of 2 error functions A r ; ( t i j )  and A r j ( t j i )  
which belong to  arc segments "in and "jn. It was mentioned that A r  is chosen as a 
linear function with respect to  time defined inside an arc segment, e.g. A r i ( t i j )  = 
a; + bit i j .  The terms ai and bi represent unknowns and are kept in the vector S, 
compare ( 3 . 2 ) .  The rows in the design matrix A formed by the observation equations 
contain in the columns belonging to ai a 1 and to bi the value of t i j .  

A problem in the derivation of the E matrix from the A matrix constructed by 
means of these observation equations is the distribution of the times t i j  and t j i  in 
the crossover file. Hence in order to derive a proper formulation of the E matrix 
more insight is required in the actual distribution of the crossover timings t i j  and 
t j i .  This problem is discussed in more detail in chapter 5. It will be shown for an 
idealized circular satellite motion that: 

The values of t i j  and t j ;  behave antisymmetric ( t i j  = - t j i )  when they are 
considered relative to  the equator transit time. 



m The value oft;, and the latitude 4 are uniquely determined by the longitude 
difference AA of the ascending and descending equator transit point. As a 
result the crossover configuration behaves invariant with respect to rotation 
about the z axis of the Earth fixed coordinate system. 

Crossover timings as they are on the true ground track intersections resemble closely 
this pattern, deviations are caused by various perturbations of the satellite motion. 
The range of the value of t;j is, in case of circular orbits a t  800 km height, in 
between approximately -1500 and +l500 sec. The deviations from the nominal 
crossover pattern are of the order of 0.1 to 0.2% with respect to the value of tij. 

A normal matrix N derived from the actual (unmodified) crossover times t;j 
possesses a peculiar eigenvalue spectrum. The spectrum resembles that of a poorly 
conditioned system of equations with corresponding eigenvalues ranging from 10-l5 
to 10+lO. As a result the condition number (Xmaz/Xmin), representing a measure for 
the numerical stability of the system, is of the order of 1 0 ~ ~ .  In an ideal situation 
the condition number should lie in the range from 1 to 103. According to Conte & 
de Boor (1986) one could pose that approximately log(XmaZ/Xm;,) digits are lost 
when computing unknowns from a system of equations having extreme eigenvalues 
of X,;, and X,,%. The floating point arithmetic of the computer employed (a VAX 
750 using FORTRAN double precision variables) is consistent to approximately 16 
significant digits (which refers to the mantissa). The exponential range of these 
floating point variables is limited from 10-38 to 1 0 + ~ ~ .  

The only cause of the poor condition number can be the observation equations 
themselves, the values of t;j and t,; are considerably larger than 1, i.e. the 'bias' 
coefficient in the design matrix. This effect is artificial and can easily be avoided 
by a re-parameterization of the observation equations. The observation equations 
become instead Ari(ti;.) = a; + bft:, with bf = ab ;  and ti;. = t;,/a. The factor a is 
referred to as a regularization factor. A suitable value might be the actual length of 
an arc segment. 

The normal matrix N ,  found after regularization of the observation equations, 
shows an eigenvalue spectrum having the following properties: 

m 1 eigenvalue is of the order of 10-l6 to 10-15, 

m 3 eigenvalues are of the order of 10 -~  to 1 0 - ~ ,  

m for other eigenvalues it is found that 1 < X _< 10' 

These values are approximations and depend e.g. on the amount of arc segments 
involved in a crossover adjustment. The 'singular' eigenvalue in the range of 10-l6 
to 10-l5 is a direct consequence of the bias singularity in the normal equations. 
It is allowed to add an arbitrary constant to all a; parameters in the observation 
equations without affecting the crossover residuals. 

The remaining subsystem without the bias singularity is still poorly conditioned 
and results in unstable estimates of the tilt and bias parameters. Cause of the poor 
conditioning are the three eigenvalues in the range of 1 0 - ~  to 10-~. In the sequel we 
pose the problem to arrive at  a self-adjoint compatible system of normal equations 
having an acceptable eigenvalue spectrum: 



A number of eigenvalues are allowed to be equal to zero, the eigenvectors 
belonging to  these eigenvalues should be known. 

The remaining subsystem, with eigenvalues X > 0, should have an acceptable 
condition number. 

In the situation considered here this is possible by a conversion of the actual crossover 
timings t i j  and t j i  into approximated model times. 

Conversion of crossover timings 

In the local diamond shaped region it was recognized that crossover timings coming 
from SEASAT behave nearly as linear congruent. The situation is illustrated in 
figure 3.3. The diamond shaped region is bounded by the ascending segments "1" 

Figure 3.3: Linear congruent behavior of crossover timings in a local area. 

and " 2" and the descending segments " 3" and " 4". It is assumed that all other 
segments intersect the boundary in the following way: 

Ascending arc segments form an intersection firstly with segment "3" in be- 
tween points A and B and secondly with "4" in between C and D. 

Descending arc segments form an intersection firstly with "1" in between B 
and D and secondly with "2" in between A and C. 

This is illustrated for segment "j" forming a crossover Q with segment "1" followed 
by P with " 2". The intersection time t l j  at  crossover Q is transformed to  a dimen- 
sionless quantity p l ,  by p l ,  = ( t l j  - t 13 ) / ( t14  - t13) .  Note that the values of t13 and 
t l r  at  the crossovers A B C and D are defined by the choice of the boundary. 



Analogously to plj  a dimensionless parameter p2j is defined where arc segment 
"2" intersects "j", accordingly p2j = (taj - t23)/(t24 - t23). Analysis of all arc 
segments involved in the regional crossover file reveals that the parameters plj  and 
pzj differ approximately 1 to 2%. In the sequel the average of plj  and p2j is assumed 
to represent a characteristic parameter pj  for arc segment j. 

More important is the reconstruction of the crossover times by means of the 
parameters pi and pi. This is illustrated in figure 3.3 with an ascending arc segment 
"in with its corresponding parameter p; intersecting "j" at  crossover X. The actual 
crossover timings t;j and tji at the crossover X turn out to be equal to: 

tji "pi(tj2 -t j l )  + t j l  and tij pj(ti4 +ti3 (3.15) 

The accuracy of this approximation is also of the order of 1 to 2% with respect 
to the length in time of an arc segment. Substitution of (3.15) in the observation 
equation belonging to the crossover difference X formed by the arc segment "j" and 
"in results in: 

Ahij = Ati(pj) - Atj(pi). (3.16) 

For linear functions At; and At, we find: 

in which a and b represent the model bias and tilt parameter respectively. Obser- 
vation equations of this type are convenient for investigating the structure of the 
E matrix. Consider for instance the structure of the design matrix of a crossover 
adjustment where 3 ascending and 3 descending arc segments are involved. This 
configuration is shown in figure 3.4. The observation vector <is  arranged as: 

Figure 3.4: An example of three ascending and three descending arc segments used 
to demonstrate the structure of the A and E matrices. 



The vector of unknowns z' equals to: 

The corresponding structure of the design matrix A becomes: 

It is easy to  recognize that the E matrix becomes: 

Accordingly the rank defect of the normal equations derived from observation equa- 
tions of the form of (3.17) equals to 4. This was verified by means of an eigenvalue 
analysis of the normal equations showing that 4 eigenvalues become close to  zero 
(10-l6 to  10-15) while the remaining eigenvalues are in the range of 1 to  103. 

3.3.5 Implementat ion 

In this section the implementation of the theory presented in the previous sub- 
sections will be discussed. Firstly a particular solution z', for the crossover mini- 
mization problem is derived. ~ d d i t i o n a l l ~  we relate this problem to the choice of 
master arc segments. Secondly the transformation from one particular solution to 
another by application of (3.14) is treated. It is customary to  denote this as a sin- 
gularity transformation. Thirdly it will be shown that there exists a unique solution 
which adapts the altimetric surface in an optimal sense to  a reference field. The 
latter is identical with finding a suitable shift vector g i n  (3.14) for a particular 
solution Zp such that a selected criterion is fulfilled for 2'8. 



Partitioning 

As mentioned earlier, the structure of the normal equations allows a partitioning of 
the normal equations in two groups: an ascending and a descending part. This is 
possible since crossover observations affect only those columns in the design matrix 
which belong to both partitions, compare (3.18). Inside each partition inner products 
between columns of A result in blocks of a times a on the diagonal of the normal 
matrix. Here a equals to the number of parameters to be solved per arc segment. 
The structure of these sub-matrices is called block-diagonal. In contrary the mixed 
matrix showing up between both partitions is mostly full since nearly every arc 
segment in one group is connected with every member of the other group. The non- 
zero structure of the normal matrix is represented in figure 3.5. The corresponding 

Figure 3.5: The non-zero structure of the normal matrix. The matrices Naa and 
Ndd are block diagonal whereas Nad is nearly full. 

normal equations take the form: 

where Naa and Ndd are block diagonal whereas Nad equals to an almost full matrix. 
Pre-multiplication of the first equation by NidN,-d. and subtraction of the second 
results in a solution for the descending unknowns: 

Pre-multiplication of the second equation by N a d N z l  and subtraction of the former 
results in a solution for the ascending unknowns: 

Both (3.21) and (3.22) are a solution of (3.20). The inverses of Naa and Ndd take 
no effort since they are block diagonal. Also the computation of the matrix on 



the LHS and the vector on the RHS of (3.21) and (3.22) are no more than matrix 
multiplications. Moreover only the smallest system of (3.21) and (3.22) needs to  be 
solved, the other one is found by a substitution in (3.20) followed by an inversion of 
a block diagonal matrix. Computations in the test area revealed that solving (3.20) 
by (3.21) and/or (3.22) saves approximately up to  a factor 8 in computing time 
when compared with an inversion of the full normal matrix in an unpartitioned way. 

For some purposes it may be desirable to  compute the inverse of the normal 
matrix which is called Q .  (The letter Q is chosen for Quality, inverses of the normal 
matrix are the a-posteriori covariance matrices of the estimated unknowns as will 
be shown later on in this chapter). The inverse of N is derived from the matrix 
product: ] = [ I 1 0 ] 

0 1 1  
(3.23) 

and takes the form 

Q.. = - [N.~N,- ,I  N;, - N..] -l  

d d  = - [N:dNi:Nad - ~ d d ] - '  

Qad = - ~ a o ~ a d ~ i l  
t N - 1  

Qt,d = - Q d d N a d  ',a 

A particular solution 

In order to  find a particular solution for the crossover minimization problem we solve 
the system of normal equations such that a number of so-called master arc segments 
remain fixed. It means that certain arc segments are not solved in the adjustment. 
However, the observations to  these segments are still used for the construction of 
the normal equations. In the algorithm it is accomplished by pivoting the unknowns 
belonging to the master arc segments to  the first rows and columns of the normal 
matrix. The decomposition or reduction algorithm is applied on the remaining sub- 
system. 

As a result one finds the estimated parameters on the basis of a set of master 
arc segments. In analogy to  terrestrial geodetic networks it is customary to  call the 
minimal number of master arc segments that are required to  regularize the normal 
equations a datum. 

A regular datum shift 

The particular solution found by this approach depends on the choice of the mas- 
ter arc segments. Such an approach is undesirable since it results in an arbitrary 
particular solution of the crossover minimization problem. A realistic solution of 
the altimetric surface is only found when it is assured that the error contribution 
of the master arc segment(s) is low or known in some way, compare Rapp (1983). 
The transformation of one particular solution into another would in principle re- 
quire that a new system of normal equations has to be solved. However this can 
be avoided since it is nothing more than adding a suitable homogeneous part t to  
?p such that z',(,,,) becomes the new solution fulfilling the alternative particular 



condition. Accordingly: 
I =  $ ( n e w )  - zp(p(old). (3.25) 

Usually it is easy to derive t' for an actual problem. It is convenient to use the 
property that z',(,,,) contains zeros at  the positions of the new estimates of the 
master arc segment parameters. Hence one finds a form which is essentially an 
evaluation of (3.25) for the unknowns belonging to the new master arc segments 
i ,  j. We demonstrate the singularity transform where observation equations in the 
form of (3.17) are applied. In case the solution is transformed to two ascending 
master arc segments then: 

In case the solution is transformed to two descending master arc segments then: 

From (3.26) and (3.27) one has to  solve the components of the shift vector sl s4. 

The analytical datum shift technique described above has been verified for the region 
in the North-east Atlantic. It was demonstrated that (3.26) & (3.27) are accurate to 
the rounding level (10-l5 relative) of the computer when compared with a numerical 
datum shift, i.e. adjustment with two other master arc segments. 

A singular datum shift 

There are two cases where a datum shift cannot be performed: 

1. If pi = p,, i.e. a transformation to overlapping master arc segments. This is 
easy to verify since eqns. (3.26) and (3.27) become respectively: 

where 
1 p i  0 0 -  

E'= [ 1 p j o o  
0 0 1 p i  
0 0 1 p j  

from which it follows that E' is singular if pi = p,. 



2. If arc segments "in and "j" are forming an intersecting ascendingldescending 
basis. In this case (ascending "i" and descending "j" ) 

T h e  n a t u r e  of t h e  homogeneous solution 

1 p ;  0 0 - [ : l = [ ! :  0 1  ; , ? ] [ ! ; l  O p j  * 

We assume that the observation equations are of the form of (3.17). They are 
used to define a system of normal equations as given in (3.2). Furthermore we as- 
sume that a particular solution Zp is known by choosing two non-intersecting and 
non-overlapping master arc segments and solving the normal equations. Accord- 
ing to  the properties of compatible self-adjoint systems one is always allowed to 
add an arbitrary homogeneous solution I = Ei' to  Zp forming a general solution 
Zg, compare (3.14). The minimization condition posed by the crossover problem 
does not change by this manipulation of the particular solution Zp. If this is true 
then it should also be possible to substitute the general solution in any arbitrary 
observation equation without affecting the observables. In the sequel we verify this 
transformation of the unknowns in the observation equations (3.17)) (ascending arc 
segments "i", descending arc segments "j", compare figure 3.3): 

~ h ; ~  = Ar;(pj) - Arj(pi) = (a; + b;l(i) - (a, + bipi). (3.31) 

1 p ;  0 0 
0 0  1 p ;  
1 0  p, 0 
0 1  o p j  

The general solution 2'9 = [a;, b;, a,, bjlt is formed by the sum of a particular solution 
Zp = [a; ) b; , a;, b;]' and the homogeneous solution Ei'. Considering the structure of 
the E matrix as given in (3.19) the general solution becomes: 

= 0. (3.30) 

Substitution of (3.32) in Ari(pj) results in: 

Substitution of (3.32) in Arj(pi) results in: 

In (3.33) and (3.34) the functions AT,?, depend on the particular solution Zp. In 
both equations the term D(pi, pj) takes the form of: 



This function depends on the components of the shift vector s' in the homogeneous 
solution Z = Es'. Note that the crossover observables Ah;, are not affected by the 
function D ( p ; ,  p,) since it cancels in the difference of Ar; (p , )  and Ar,(p;) .  

In the sequel we consider the function D ( p i , p j )  to represent a polynomial de- 
formation surface. This is possible since one may consider that p; and p, behave as 
ordinates for the location of the crossover Ah;, in the diamond shaped area, compare 
figure 3.3. The nature of the surface polynomial D ( p ; ,  p,) is entirely determined by 
the components of the shift vector s': The polynomial deformation surface com- 
prises: a bias term ( s l ) ,  an ascending tilt term (ss), a descending tilt term (sz) ,  and 
a torsion term ( Q ) .  Apparently one is allowed to add a surface function D ( p i ,  p,) to 
the sea surface formed by the particular solution Zg without affecting the crossover 
observables A h;, . 

The nature of the homogeneous solution in a general case 

The homogeneous solution of the local crossover minimization problem based on 
observation equations of the form of eq. (3.31) manifests as a polynomial deformation 
surface of the form of eq. (3.35). In a more general case the orbit error per arc 
segment is chosen as a polynomial of degree N. These polynomials take the form 
of: 

which are respectively the error functions belonging to an ascending and a descending 
arc segment. The purpose of the crossover adjustment is always to determine the 
coefficients p; and q; in eq. (3.36). Furthermore the argument a in eq. (3.36) serves 
as p; or p, in eq. (3.31). The general crossover difference observation equations take 
the following form: 

In the following we will demonstrate the invariance of (3.37) to error functions P(a)  
and Q ( P )  originating from the projection of the surface function: 

on the linear congruent crossover configuration as shown in figure 3.3. The expression 
of (3.38) along the variable a for constant P results in an error function: 

with 



Similarly the expression of (3.38) along P for constant a results in: 

with 
N 

qj = E dijai. 
i = O  

Substitution of (3.40) and (3.42) in (3.37) results in: 

This equation shows that (3.38) projected on the linear congruent crossover config- 
uration cannot be detected from Ah(a,  P) denoting the crossover differences. 

(Note: this reasoning might not appear 'waterproof' to the reader since it could 
be followed for any surface function that is projected similar to discussed above. 
The reader should remind that not all possible surface functions evaluated along the 
variables a and P result in polynomial expressions of the form of (3.39) and (3.41). 
For this reason (3.38) is chosen as a general polynomial deformation surface). 

Hence it has been shown that there exists a polynomial deformation surface D() 
containing ( N  + l)' degrees of freedom. The number of coefficients in D() equals to 
the rank defect of the normal equations. They are determined by a datum which is 
any set of arc segments that defines (3.38) in a unique way. We conclude that the 
rank defect of the normal equations equals to ( N  + 1)' provided that P ( )  and Q() 
are chosen as polynomial error functions of degree N. 

Connection to  a reference field 

In this approach we search for a unique solution Zg = Z,, + Z such that it fulfills 
certain properties. A possible choice is a minimal discrepancy between an arbitrary 
particular solution of the altimetric surface and a chosen reference geoid. Here 
we chose e.g. the geoid model of GEM-1OB (Lerch, Wagner and Klosko,l981), or 
GEM-T1 (Marsh et a1.,1986) or any other realistic field. 

We imagine a unique solution Zg evaluated along arc segments that is subtracted 
from the sea surface measured by the altimeter. This forms the RHS of the observa- 
tion equation, the LHS equals to the contribution of the reference field. As a result 
we find at  the crossover Ah;, for ascending arc segment "i" (Note that corrections 
found by LSA have to be subtracted from the observations) 



where Nayf equals to the contribution of the reference field a t  a crossover point 
between arc segment i and j located inside the diamond shaped region and hij the 
observed sea surface height at  that point. Substitution of (3.33) in (3.44) results in: 

A similar situation occurs at  crossover Ahij on the descending arc segment "j": 

in which we substitute (3.34) resulting in: 

Equations (3.45) and (3.46) form the observation equations for a so-called optimal 
adjustment to the reference field where the LHS symbolizes an observation and the 
RHS a linear relation to the unknowns: i.e. the components of the shift vector s'; 

The result is a unique solution Zg since s' forming the homogeneous part is estimated 
dependently of an arbitrary particular solution. It is trivial that the unique solution 
Z ~ = Z ~ + E ~ " = ~ ' : + E ~ ' ~ .  

It should be mentioned that the LHS of eqns. (3.45) and (3.46) are correlated 
since Ari+ and Arf are solved by the crossover adjustment. Propagation of the a- 
posteriori covariances of the coefficients of these functions is not considered in this 
approach of an optimal adjustment. 

3.3.6 Results of a test computation 

The area in the North-east Atlantic was formed by 127 descending and 101 ascending 
arc segments. Here we choose all ascending arc segments to  intersect the equator 
between -25" < X < +50° and the descending arc segments between -80" < X < 
-20". The boundaries of the area including shore lines are drawn in figure 3.7. 

In total 9098 applicable crossover points were formed of which we present the 
a-priorila-posteriori histogram in figure 3.6. Before LSA the mean value of the 
crossover differences is -0.284 m and the r.m.s. 1.08 m. The crossover differences 
after LSA, by fixing two arbitrarily chosen non-intersecting and non-overlapping 
master arc segments, equal to 11.7 cm r.m.s. 

It was a two step process to acquire these results. Firstly we adjusted with 9447 
crossovers of which 349 were eliminated since their discrepancy after the adjustment 
was larger than 30, with a = 19.9 cm. In a second pass arc segments are eliminated 
when the corresponding unknowns possess unrealistic high a-posteriori variances. 
Later on in this chapter the latter problem will be discussed in more detail. 

The value of 11.7 cm r.m.s. is independent of the choice of master arcs. Any 
arbitrary homogeneous solution may be added to the particular solution without 
altering the minimum norm found after LSA of crossovers. It means that the a- 
posteriori crossover r.m.s. is representing an internal accuracy of the estimated sea 
surface which is caused by variability, remaining orbit errors and other errors. It 
does not bear any information about the absolute position of the sea surface since 
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Figure 3.6: A-priori/A-posteriori histogram of crossover differences. 

a manifold of homogeneous solutions added to the particular solution preserve the 
internal accuracy of 11.7 cm r.m.s. 

All relations hold for the unknowns and observations as they are defined in the 
adopted model. This does not imply that the tilt and bias parameters evaluated 
by LSA for the arc segments at  the actual crossover times yield the same internal 
accuracy as the model does with conventional crossover times. Depending on the 
magnitude of the homogeneous correction a modest deterioration of the internal 
accuracy is found, compare table 3.1. The difference is caused by the crossover time 
tag corrections which are needed to acquire a suitable matrix E, compare (3.19). 

The next problem is to find a homogeneous part Z such that the general solution 
(and absolutely positioned altimeter surface) fits in optimal sense to a reference field. 
Here we choose GEM-lOB, GEM-T1,OSU-81 and OSU-86F: GEM-1OB had GEOS- 
3 altimeter data included; GEM-T1 was entirely based on non-altimetric data and 
OSU-81/OSU-86F were partially derived from SEASAT and GEOS-3 altimeter data 
combined with terrestrial gravity anomalies. Compare (Lerch et a1.,1981); (Marsh 
et a1.,1986); (Rapp,1983) and (Rapp and Cruz,1986a). The results are represented 
in table 3.1. 

3.4 Quality of the estimated parameters 

In this paragraph we describe the theory of quality control concerning the param- 
eters estimated by the LSA of crossover differences. It is desirable to develop an 
algorithm indicating whether the parameters computed by LSA behave realistically. 
For this purpose we describe the properties of the covariance matrix of the estimated 



Table 3.1: Comparison of the actual internal r.m.s. U I A  the model internal r.m.s. 
U I M  and the external r.m.s. U E  of the SEASAT altimeter solution with respect to 
the reference geoid. 

unknowns, in the sequel denoted as Q,,. It will be shown that Q,, equals to  the 
inverse of the normal matrix which is singular for the crossover minimization prob- 
lems considered here. Due to  singularity only the 'particular part' of the normal 
equations is inverted resulting in a master arc dependent result. 

A possible solution for this problem is to  convey the particular covariance ma- 
trix into a minimum trace form as suggested by Mittermayer (1971, 1972). This 
avoids the non-uniqueness problem but has the disadvantage that no direct physical 
interpretation may be given to the transformed Q,, matrix. An extension to  the 
precision theory described by Baarda (1973) will be considered as an alternative. 

3.4.1 The covariance matrix for a regular problem 

For the non-singular least squares parameter estimation problem 

; = A#y' (3.47) 

with 
A# = (A~Q~;A)-'A'Q;; (3.48) 

propagation of variances is applied 

9 2 2  = A#Q,,(A#)' 

where Q,, equals to  the covariance matrix of the estimated unknowns. The notation 
A# is used to  indicate a generalized inverse (g-inverse) of the A matrix as is described 
by Rao (1973) and Bjerhammar (1973). An evaluation of (3.49) results in: 

We conclude that the inverse of the normal matrix equals to the covariance matrix 
Q,, of the estimated unknowns. 

Typical for LSA is the independence of i and the linear dependence of Q,, of 
a scale factor X of Q,,. Consider the problem y' = A 2  + Z under the condition 
Zt (XQ,,)-'C= min. Accordingly: 



which shows that 2 is invariant VX E RIX # 0. However Q,, is not anymore invariant 
to X since 

Q,, = {A~X-~Q;, 'A)-~ = AN-'. 

This shows that XQVV results in XQ,,. 

3.4.2 The covariance matrix for a singular problem 

Due to the singular behavior of N one cannot apply eq. (3.50) to compute Q,,. For 
this reason the original problem y'= AZ+ 7with E'~Q;;~= min is reformulated into 
the problem: 

y '=AZ+Z (a) 
min Z"Q;;7 

c'= BZ (b) 

where eq. (3.51b) is chosen such that a minimum number of constraints are forced 
on the unknowns Z. It is known that the general solution 2'9 of eq. (3.51a) may be 
formulated as 

G = Z p + E s '  (3.52) 

which is substituted in eq. (3.5:Lb) resulting in 

From this equation s'is solved as: 

As a result one must demand that: 

1. There are exactly as many constraint equations as the rank defect of the normal 
matrix. 

2. The matrix product B E  is regular. 

One may substitute (3.54) in (3.52) if both conditions hold. It results in: 

At this point there are two possibilities for variance propagation of eq. (3.55). In 
the most general form Zp and ;possess stochastic properties which would be the 
case when constraint equations are minimized under the least squares norm simul- 
taneously with the observation equations. As a result: 

In case the constraint equations are not weighted (Qzpc = 0 and QC, = 0) we find 
the form: 

Qzgzg = plQzPzpp: (3.57) 

which are called the S-transformations, cf. (Baarda,1973), (Teunissen,l985) and 
(Strang van Hees,1982), of Q,,,,, a covariance matrix belonging to a particular 
solution Zp. 



Properties of S-transformations 

A first property of the matrix PI concerns its idempotent behavior: 

Secondly Pl is not unique. It depends on the matrix B which can be chosen freely 
provided that (BE)-I exists. In (Strang van Hees,1982) PI is written in the form 
of 

P, = (I - EE#) (3.59) 

where E# = (B E)-' B denotes the g-inverse, cf. (Rao,1973) and (Bjerhammar,l973), 
of E. It is easy to verify that EE# E = E which is a necessary and sufficient condi- 
tion for a g-inverse E# of E. However a manifold of S-transformations exist due to 
the non-uniqueness of E#. Further specification is possible by fulfilling at least one 
of the following conditions. 

@EE# = E# (a) 
(E#E) = ( E # E ) ~  (b) 
(EE#) = (EE#)~  (C) 

In the sequel (3.59) is substituted in (3.60) in order to verify (a) (b) and (c). 

Condition (3.60a) is always fulfilled: 

Condition (3.60b) is always fulfilled: 

Condition (3.60~) is only fulfilled when B = Et: 

If B' = E then ( E E # ) ~  = E(BE)-'B = EE# 

E# is unique and called a Penrose Moore inverse of E in case conditions (3.60a) (b) 
and (c) are fulfilled. It equals to: 



from which it  follows that 

Substitution of (3.61) in (3.57) results in the so-called free net transformation of 
Q,,,, . The consequence is that Q,,,, behaves as a minimum trace covariance matrix 
of all unknowns, as is stated by Mittermayer (1971,1972). A free net transformation 
is unique (due to  E#) but has the disadvantage that no direct physical interpretation 
can be assigned to  Q,,,, . 

Another type of S-transformation introduced by (Baarda,1973) is designed to 
convey an arbitrary particular form Q,,,, into any other. As Q, , is derived it 

P 
belongs to  a chosen datum in the arc segment configuration, a situation comparable 
to  that of a geodetic network. For this purpose B is defined such that a minimum 
trace covariance matrix is obtained for a subset of the unknowns. The B matrix 
takes the form of 

with El and E2 representing sub-matrices of E. Here El = 0 and Et # 0 such that 
the new unknowns to  transform to coincide with the range of E 2 .  It can be verified 
that E# fulfills the properties (3.60a) and (b) but not (c). 

3.4.3 Extension to a quality control criterion 

In order to  derive a criterion for quality control of the estimated parameters Baarda 
(ibid) suggests to  investigate the eigenvalues X of the general eigenvalue problem 
IG - XHI = 0 where G represents a Q,,,, matrix and H a model covariance matrix 
of the parameters. The eigenvalues are 'datum' independent since H is defined 
on the same 'datum' as G. However from practical point of view there are some 
obstacles: 

i t  is required to  define an a-priori model matrix H, 

it is necessary to  solve the general eigenvalue problem IG - XHI = 0. 

The first obstacle may be solved by studying the characteristic behavior of covari- 
ance matrices of arc segment configurations. The second obstacle can become, due 
to  the dimensions of the matrices involved, a dilemma for crossover adjustments. 
Compare (Stoer and Bulirsch,l983) where the technique of eigenvalue computation 
is discussed. 

In an actual implementation diagonal elements of as well Q,,,, (in a free net 
form) as Q,,,, have been investigated. In both forms peculiar arc segments were 
recognized by comparing the diagonal elements relative in magnitude. Relative 
comparison is necessary since it is known that a covariance matrix of the unknowns 
depends linearly on a scale factor X in Q,,. All comparisons revealed that variances 
of poorly connected arc segments were up to  10 times as large as the average value 
of well controlled segments. The crossovers along the arc segments with a poor data 
distribution in the test area are shown in figure 3.7. Typical is the behavior of those 
arc segments which possess a poor distribution of crossovers. They nearly all reside in 



Figure 3.7: The area in the North-east Atlantic including crossovers along arc seg- 
ments with unrealistic parameter variances. 



the Eastern part of the test area showing a 'weak' connection to other arc segments. 
Apparently their tilt and bias parameters are not well estimated. Surprising was 
the fact that the parameters and the minimum trace variances estimated for well 
controlled segments were not altered significantly after a second LSA without the 
arc segments having a poor data distribution. Apparently the configuration remains 
stable even though a number of poorly connected arc segments are included. 

3.5 Conclusions 

In this chapter we described the LSA of crossover differences of SEASAT altimeter 
data for a test area in the North-east Atlantic. The choice of the test area is 
arbitrary. Its purpose is to demonstrate the technique of LSA of crossover differences 
in a local region. Minimization is accomplished by solving tilt and bias parameters 
belonging to an error function per arc segment modeling the behavior of a radial 
orbit error along the segment. It is found that crossover minimization results in a 
compatible self-adjoint system of normal equations allowing a manifold of solutions 
for the minimization problem. The general solution of the minimization problem is a 
combination of a particular and a homogeneous solution of a compatible self-adjoint 
system of equations. 

Regularization of the crossover timings in a local diamond shaped area has been 
applied. The purpose of regularization to find 1) a convenient formulation for the 
homogeneous part of the system of normal equations and 2) a well conditioned 
numerical stable solution for the particular part of the system. One can show that 
a system of normal equations behaves as poorly conditioned if it is based on the 
original unmodified crossover timings. 

An arbitrary particular solution of the normal equations is found by fixing a 
minimum amount of so-called master arc segments which provide control to the 
configuration. However, an arbitrary homogeneous solution may always be added 
to the particular solution without altering the minimum norm found by the LSA 
of crossover differences. Homogeneous solutions belonging to  arbitrary particular 
solutions have been computed such that: 

datum shifts from one particular solution to any other were found, 

a second minimization criterion, a minimum discrepancy between a reference 
geoid and the altimetric surface, is fulfilled. 

Additionally criteria were defined to identify those arc segments which possess poorly 
estimated parameters. For this purpose the diagonal elements of a minimum trace 
transformed covariance matrix of the estimated unknowns are investigated. It was 
recognized that poorly connected arc segments possess inaccurately estimated pa- 
rameters. 

In chapter 6 we will extend the crossover minimization technique from a local 
approach into a global (chronological) LSA. In the global chronological approach 
error functions are solved which are valid over the entire range of an arc segment. 
The technique is called chronological since the error functions will be chained in a 



chronological order enabling to describe a radial orbit error. The purpose of the 
global chronological approach, e.g. as described by (Zandbergen et a1.,1988), is to: 

obtain a world-wide consistent sea surface model defined by altimeter data, 

extract in a non-dynamical way a radial error effect by means of minimizing 
the crossover discrepancies. 

Local approaches can hardly be used for reconstructing a complete radial orbit 
error since only a small part of the total error effect is modeled. Instead in the 
alternative global approach a full coverage is possible. In many publications, cf. 
(Colombo,l984b) and (Wakker, Ambrosius and Aardoom,l983), it is mentioned that 
a radial error resembles a close to once per revolution oscillation modulated by a 
number of periodic effects. In chapter 4 the phenomenon is described in more detail. 



Chapter 4 

The radial orbit error 

4.1 Introduction 

Rom all errors present in the altimeter data radial orbit errors are the dominating 
ones. Whereas the instrumental accuracy is on the level of 10 cm, the orbit is 
uncertain a t  an order of magnitude of 1.5 to 2 meters, mainly due to errors in 
the gravitational model. As a consequence elimination of a radial orbit error from 
altimeter data has been a topic of research since the very beginning of altimetry. 

In (Rummel et a1.,1977) a procedure is sketched in which geoid undulation and 
gravity anomaly estimation is performed using GEOS-3 altimeter data in the North 
Atlantic. In total 64 arc segments were used consisting of data taken between 
21 April 1975 and 20 May 1975. Crossover differences were minimized by solving 
empirical orbit error functions consisting of first degree Legendre polynomials per 
arc segment. Additionally the altimetric surface was minimized with respect to the 
GEM-7 geoid, a t  that time the most accurate of its type. 

A similar procedure has been followed in the processing of SEASAT altimeter 
data as is described by Rowlands (1981) and Rapp (1983). The altimetric solution 
combined with land and sea gravity data including other data have made it possible 
to  produce a global gravity model with a resolution of 1" X 1" or even 0.5" X 0.5". 
This is equivalent to a spherical harmonic expansion till degree and order 180 or 
360 respectively, a remarkable resolution which is hard to obtain without the aid of 
satellite altimetry. 

In the processing of both GEOS-3 and SEASAT data crossover differences were 
used as observations for estimating an empirical radial orbit error function from the 
satellite ephemerides. In case of SEASAT the crossover residuals decrease typically 
from 1.6-1.8 m before the adjustment to approximately 10-30 cm after it. On the 
first hand there appears no problem until the characteristics of crossover differences 
and the orbit error are compared. In (Goad, Douglas and Agreen,l980) it has been 
pointed out that crossovers possess peculiar time differences characteristics with 
respect to the orbit error. The minimum time difference of two crossover time tags 
is equal to at least 98% of a revolution of the satellite (here SEASAT). 

This justifies a more detailed study of the orbit error effect. In the past, orbit 
errors have been modeled by means of empirical functions such as 'tilt and bias' - or 
other elementary functions. The characteristics, based upon an interaction between 



the gravitational field and orbital perturbations, have not really been taken into 
account. 

This has been the motivation for several studies, compare (Colombo,l984b) and 
(Wagner,1985,1986,1988). In (Colombo,l984b) the orbital and tidal effects in satel- 
lite altimetry are investigated. Another approach is that of Wagner (1985) where 
the linear perturbations theory, as described by Kaula (1966), is employed for the 
description of the radial variations of a satellite in a near circular trajectory. The 
goal of both investigations is to find a linear relation between the radial perturba- 
tions and the main cause of the phenomenon: uncertainties in the gravitational field. 
Another sophistication is the simultaneous recovery of the geoid and the permanent 
sea surface topography as is described in (Wagner,1986,1988) and (Engelis,1987). 

Other publications of Sandwell et al. (1986), Tapley & Rosborough (1985) and 
Zandbergen, Wakker and Ambrosius (1988) note the existence of a geographically 
correlated orbit error. A part of the orbit error is not recoverable from crossover 
differences since its contribution is the same on both crossing arc segments. 

4.2 A description of the radial orbit error 

A numerical integration of the equations of motion followed by an improvement of 
the initial state vector and certain parameters of the force models is the modern 
method for precise orbit determination. Such methods are necessary for doing the 
production work, unfortunately they do not provide insight in the nature of a radial 
orbit error, cf. Taff (1985), pp. 392 ff. In order to obtain a better physical insight in 
the problem analytical orbit theories are introduced. Here we consider an analytical 
perturbations theory for orbits which are: 

near circular, a property required for the instrument, 

perturbed only by the gravitational field, 

not longer than about 10 days, i.e. the utmost period considered for orbit 
determination of altimeter satellites. 

These requirements can be satisfied by the linear perturbations theory (LPT) in- 
troduced by Kaula (1966) and the Hill equations (HE), compare Kaplan (1976) and 
Colombo (1984a). In the sequel it will be attempted to  describe both methods and 
their consequences for modeling a radial orbit error. It will be shown that, under 
certain realistic assumptions, both methods result in an identical formulation of the 
problem. 

4.2.1 Linear perturbations theory 

The conventional method for describing orbital perturbations is based on the La- 
grange planetary equations (LPE). They describe the behavior of the Keplerian 
elements caused by a conventional perturbing force function R which comprises (for 
our purposes) all the terms of the gravitational field, except the central force term. 
In general, for most formulations of R, it will be difficult to find an exact solution 
for the six (coupled) differential equations forming the LPE. 



In the LPT this problem is avoided by a linearization of the LPE in the neighbor- 
hood of a conveniently chosen reference orbit consisting of three constant and three 
precessing Keplerian elements. The precession effect is caused by the even zonal 
coefficients of the gravitational field of which the flattening term C20 dominates. 

Eventually the perturbation formulas are derived by an integration of the LPE 
'about' the nominal orbit. These perturbation formulas hold for the Keplerian ele- 
ments and require a transformation into an expression for the radial part. 

The Lagrange planetary equations 

A tedious derivation of the LPE is avoided here since it can be found in most 
textbooks concerning celestial mechanics, such as Taff (1985) pp. 300-316 or Kaula 
(1966). The LPE are derived by a conversion of the perturbed equations of motion 
expressed in an inertial coordinate system into a new set of elements, in this case 
the Keplerian elements. Conversions into other elements are also possible and were 
derived by a number of famous mathematicians such as Gauss and Delaunay. The 
original planetary equations are derived by Lagrange: 

da 2 a R  - - -- - 
dt n a a M  
de - 1 - e 2 a ~  d-a~ - 
dt na2e a M  na2e aw 
dw -- M 

cos I 
- 

a R  d-a~ -+ 
dt n a 2 d D ~ i n ~ a I  na2e a e  
d I  - cos I 

- 
a R  --  l a R  

dt n a 2 d D  sin I aw na2d- sin I X 
d n  - - 1 a R  
dt n a 2 J ~ s i n 1 ~  

d M  - - l - e 2 a R  2 a R  
with n 

dt na2e ae  na a a  ' 

In equation (4.1) a ,  e, I, n, W and M represent the Keplerian elements, semi-major 
axis, eccentricity, inclination, right ascension of the ascending node, argument of 
perigee and mean anomaly, respectively. The constant p represents the gravita- 
tional constant times the mass of the Earth. Characteristic of (4.1) is an apparent 
separation between the elements {a,e, I) and {n,w, M). There are for instance no 
elements other than {a, e, I) in the coefficients multiplied by the partial derivatives 
of R. 

The force function 

The gravitational potential V considered here fulfills the Laplace condition outside 
the attracting masses of the Earth: 



in which z,y and r are given in a geocentric Earth fixed coordinate system. A 
potential function V fulfilling (4.2) can be expressed as a sum of spherical harmonics: 

lmaz 1 1+1 
V(r, 4, X) = Ir C C (5) [clrn cos mX + S,, sin m ~ ]  Flm(sin4) (4.3) 

ae 1=0 m=o r 

in which r (radius), 4 (latitude) and X (longitude) - represent the geocentric spherical 
coordinates. Other parameters are a,, Cl, and 31, representing the mean equa- 
torial radius and the normalized potential coefficients respectively. The terms Flm 
denote associated normalized Legendre functions of degree l and order m, compare 
(Hobson,1965). 

For an evaluation of the LPE it is required to evaluate the derivatives of the 
force function R with respect to the Keplerian elements. Therefore an expression 
of (4.3) is required in {a,e, I, n,w, M). In Kaula (1966) the formulation of V in 
terms of Keplerian elements is given as: 

lmaz l 

V =  C 1 Vim, 

( C l m , ~ l m ) ,  l - m : even 
(AI,, Blm) = ( - l m , ~ l m ) ,  l - m :  odd 

where 9 represents the argument of longitude of the Earth. The terms Flmp(I) are 
known as normalized inclination functions and arise when transforming the poten- 
tial V, given in (4.3), to the inclined orbital plane. The functions Glpq(e) are the 
Hansen coefficients which are used to convert the potential from a circle to an ellipse, 
compare Kaula (1966). 

The purpose of (4.4) is to obtain a disturbing function R which may be differen- 
tiated with respect to the Keplerian elements. In the sequel the partial derivatives of 
R are substituted in (4.1), and the result is integrated with respect to time. Before 
this item is treated the inclination and eccentricity functions have to be discussed. 

Eccentricity functions 

The eccentricity functions describe the transformation of the mean anomaly (M) to 
the true anomaly (f). The transformation takes the form of: 

where l' = -1  - 1, m' = l - 2p and p' = l - 2p + q, compare Kaula (1966) pp. 35 
ff. The terms Xilml are the Hansen coefficients which are related to the eccentricity 
functions: 

-1-1,l-2p 
GlP,(e) = Xl-2p+g (4. (4.6) 



An approximation of (4.5) results in: 

(4.7) 
A symmetry property holds for the eccentricity functions: 

which can be applied to evaluate (4.7) when p' < m'. It can be shown by an 
evaluation of (4.7) that the first-order approximations for the eccentricity functions 
become, compare Wagner (1985) and Allan (1967) 

and for q E (-2, +2) we find the expression: 

1 1 
G1,p,q (c) = [(l' - m') (l' - m' + 1)/2 - - m' + 1) + (P')?] ie2 (4.10) 

where for 

1' = -1 - 1 1' = -1 - 1 
q = 2  { m1=1-2p  } and q = - 2  { ~ n ' = 2 ~ - 1  } 

p l = l - 2 p + 2  p 1 = 2 p - l + 2  

Due to  the damping term (e/2)q in (4.7) rapid convergence for the eccentricity func- 
tions is guaranteed for near circular orbits. In the case of most circular applications 
it is sufficient to restrict q E [-l, l] in the evaluations of the disturbing force func- 
tions. 

Normalized inclinat ion functions 

The computation of inclination functions is a problem in itself. The formulation in 
terms of binomial coefficients of Allan (1967) appears to  be unstable beyond degree 
55 as well as the recursive relation given by Gooding (1971) which tends to  be unsta- 
ble a t  high degrees as is stated in Wagner (1983). A comparison of several numerical 
and analytical methods can be found in (Kosteleckf, KlokoCnik and Kalina,1986). A 
recently developed algorithm for normalized inclination functions is given by Goad 
(1987). 

The method applied in the software used here is the algorithm described by 
Wagner (ibid) including precautions for 1) numerical underflow in the recurrence 
relations of Legendre functions and 2) singularities a t  inclinations of 90". 

It was proposed by Wagner (ibid) to  formulate the problem in terms of an unit 
potential function developed along a great circle with inclination I. The unit po- 
tential function Km is defined as: 



*c? 

Figure 4.1: The relation between the coordinates (#,X) and (U, I ) .  

where U is called the argument of latitude. In this context, compare figure 4.1, the 
relation between (4, X) and (U, I )  is 

x = c o s ~ c o s X  =cosu  
y=cos+sinX =s inucos I  
z = sin 4 = sin U sin I 

Substitution of (4.11) into (4.3) results in: 

Km = (cos mX + sin mX)pim(sin 4) 

Substitution of (4.11) into (4.4) results in: 

Equation (4.14) is equivalent to a Fourier expansion of Km along the great circle 
with inclination I. We transform it into a harmonic expansion in U: 

l 

Km = C; cos iu + S; sin iu  
i=O 

which is equivalent with (rearranging the summation indices of (4.14)): 

l Flmp(I) COS j u  + Flmp sin j u  I - m : even 
- Flmp(I) cos j u  + Flmp sin j u  l - m : odd 

(4.16) 
j=-l 



with 1 - 2p = j. In this summation the variable j is always of the same parity as 1, 
opposite parity is not defined. As a result we find the relation between inclination 
functions and Fourier coefficients: 

- 
Fl,m,1/2 = CO - 

for even l and even m 

- Fl,m,l/2 = -C0 
for even 1 and odd m 

Fl,m,(l+i)/2 = (C; - Si)/2 for 1, m same parity - 
F l , , l - i / 2  = (Ci + Si)/2 for 1, m same parity - 

- (-Ci - Si)/2 for 1, m opposite parity FI,m,(I+i)/2 - - 
Fl,,,(l-i)/2 = (-Ci + Si)/2 for l ,  m opposite parity 

where 1 and i have the same parity. The coefficients Ci and Si are derived by comput- 
ing the unit potential at discrete points along the great circle using (4.12) and (4.13) 
and secondly by performing a FFT  (fast Fourier transformation) of the discrete val- 
ues. The algorithm for the computation of normalized inclination functions may be 
summarized as follows: 

In (4.12) for a chosen inclination I and degree 1 the variable U is defined as 
U = iAu where i E [0, a- l ] .  Here Au = 2 ~ / a  where a 2 21 due to the number 
of Ci and Si coefficients in (4.15). Besides a is chosen such that a FFT  may 
be computed with the mixed radix algorithm described by Singleton (1969). 

The unit potential defined by (4.13) is evaluated at  the discrete points for 
U E [ 0 , 2 ~ ] .  Note that the order m may be chosen freely for m E [0,1] without 
altering the value of a whose value depends on 1. Hence recursions for Legendre 
functions are chosen such that for equal degree 1 all orders m are found. This 
is possible by application of special stabilized Legendre recursion formulas as 
is described in Schrama (1986b). 

In order to optimize the algorithm two symmetry properties of Legendre poly- 
nomials are applied. In fact the polynomials are developed only in the first 
quadrant of the argument of latitude where U E [0, ~ / 2 ] .  The second quadrant, 
where U E [7r/2, T], has the same latitudes 4 as the first. Accordingly the val- 
ues of Pl,(sin 4) are symmetric. Another property of Legendre polynomials 
used in the algorithm concerns the equatorial symmetry: 

- 
Pl,(sin 4) = PI,(- sin 4) l, m : same parity - - 
Pl,(sin 4) = P (- sin 4) l, m : opposite parity. 

allowing to compute quadrant 3 and 4 from 1 and 2. 

Once the unit potential function is evaluated, (4.17) is applied to derive the 
actual values of the inclination functions. A similar procedure is followed for 
the derivatives of inclination functions with respect to I ,  compare Schrama 
(198613). 

The nomina l  orbit 

A direct substitution in the LPE of the partial derivatives of the disturbing force 
function as given in equation (4.4) with respect to the Keplerian elements would in 



principle result in a set of six differential equations which have to be solved in order 
to find the perturbations in the Keplerian elements. However due to the complicated 
behavior of (4.1) it is very difficult to find an analytical solution. 

For this reason a linearization is carried out with respect to a reference orbit. 
The elements of the reference orbit are substituted on the right hand side of the LPE 
and result in the perturbations in the elements. In the sequel we will concentrate 
on the derivation of a suitable reference orbit. 

Firstly we note that the force function R may take two forms: it may be de- 
pendent or independent of the variable $. This depends on the indices {l, m,p, q) 
in (4.4). Independency of 4 occurs for the even zonal coefficients of the gravity field: 

with even l, m = 0, p = 112, q = 0. If we insert the derivatives of this function into 
the LPE we find: 

The largest even zonal coefficient Czo, which is about 1000 times greater than all 
other potential coefficients, is now used to define a reference orbit. A substitution 
of Vzo with p = 1, q = 0 in (4.1) results in: 

dw - -- 3 n ~ ~ ~ a Z  
[l - 5 cos2 I], 

dt  4(1- e2)2a2 

in which Czo is unnormalized (Czo = -0.00108263). From (4.20) follows the well 
known fact that the flattening term of the gravitational field results in a secular 
precession in the elements n, W and M. These drift rates are well observable in the 
orbit of e.g. SEASAT, where the orbital plane rotates about the z axis in inertial 
space with a period of 170 days. The effect W causes a rotation of W in a period of 
-207 days (W < 0) which is known as the apsidal period. These statistics are based 
on the first two months of SEASAT. In its last two months the perigee was frozen 
at 90". There exists a specific combination of eccentricity and argument of perigee 

(e 10 -~  and W = 90") causing b = 0 and W = 0, compare appendix A. 
Another noticeable effect in the SEASAT orbit is the quite large twice per rev@ 

lution oscillation in the semi-major axis. The amplitude of this phenomenon equals 
to approximately 5 to 10 km, caused by time dependent force functions coming from 
the Czo term. Later on it will be shown that the latter phenomenon does not appear 
to restrict severely the applicability of the linear perturbations theory. A treatment 
of the oscillating perturbations in the Keplerian elements caused by Czo effects is 
described by Kozai (1961), Engelis (1987) and many others. 



Perturbations in the elements 

The perturbation formulas are found by a substitution of the nominal elements 
in (4.1). An integration with respect to time of the LPE is avoided and replaced by 
an integration with respect to $ causing the term $ to appear in the denominator 
of all formulas. 

/ 1 
A E =  f ( t )d t  A E ~  -/ f($)d$ (4.21) 

11 
(where E symbolizes an arbitrary element) Under this assumption the perturbation 
formulas become, compare Kaula (1966): 

in which the perturbations of the elements are given for a particular {l, m, p, q) com- 
bination. Resonance shows up when $ approaches 0, a well observed phenomenon 
in most satellites orbits, compare Wagner (1975,1977,1981) and Schrama (1986a). 

Resonance 

Due to the choice of the reference orbit in the LPT the term $ in (4.4) is divided in 
a constant and a linear part, hence: 

$ = $O + $t with 

$0 = k(wo + MO) + m(no - do) - qwo and 

4 = k(W + M) + m ( h  - e) - qW with (4.23) 

k = (1 - 2p + q) 

(The subscript 0 is used to specify the elements at  the reference time) The term $ 
determines the frequency of the perturbations whereas go determines the phase. In 
this expression there appear three basic frequencies: 

An 'once per revolution' component (W + M )  = W, 



A 'daily' component (!?l - 8) = W, 

An 'apsidal' component W 

The influence of W can be regarded as a long periodic modulation, especially when 
the perturbations are considered in the relative short time interval of some 10 days. 

Another remarkable effect is the clustering of frequencies for the same order 
m and index k. Considering (4.23) there appear to be a multiple of {l,m,p,q) 
combinations which result in the same term $. Take for instance: l = 12, m = 
10, p = 6, q. = 0 and l = 14, m = 10, p = 7, q = 0 which both result in 
4 = 10(!?l - 8 ) .  The consequence is rather important: perturbations caused by 
potential coefficients of the same order m over all degrees l overlap on the same 
frequency. 

Radial perturbations 

The perturbations in the elements may be used for various purposes, as may be 
concluded from the many publications on this subject. One may derive e.g. the 
observation equations in a SST configuration, compare Wagner (1983), Kaula (1983) 
and Schrama (1986b). Here the radial perturbations are of importance. They are 
found by inearization of a Kepler ellipse for near circular orbits: 

r = a ( l - e c o s E )  * 
r ci a ( l  - ecos M )  (small e) 

Ar E Aa - (aAe + eAa) cos M + aeAM sin M (4.24) 

Accordingly we substitute (4.22) in (4.24) assuming first-order approximations of 
eccentricity functions as in (4.9). The components of (4.22) with a significant con- 
tribution become: 

The following step is to substitute (4.25) in (4.24). Wagner (1985) shows that this 
substitution results in: 

lma, k=lma= 

Ar(t) = 1 [Arm COS 4 t  + sin tit] 

lmaz - - - - 
c ~ m  s ~ m  - e l m  

(*km, ~ k m )  = 1 "imk [ -Slm elm ] : cos h + [ ] ' sin "1 
~ = m  c ~ m  o 



in which the summation over l is evaluated only for l and k having the same parity. 
Besides e and o symbolize l - m : even or l - m : odd. Eq. (4.26) provides the 
desired analytical relationship between radial orbit perturbations and coefficients of 
the gravitational field. 

4.2.2 An alternative approach: Hill equations 

An alternative to the LPT are the Hill equations (HE) which are, in contrast to the 
LPE, a direct approximation of the equations of motion. The HE presented here are 
closely related to Hill's original problem concerning the motions in the Earth-Moon- 
Sun system. The HE describe the actual satellite motion in an orthogonal radial, 
cross - and along track triad that is moving along a nominal satellite trajectory. 
The reference orbit is by definition circular along which the satellite is orbiting a t  a 
constant rotation rate. 

In this section we describe the derivation of the HE which take the form of three 
differential equations. The force free or homogeneous solution as well as the forced 
or particular solutions of the HE are considered. 

Hill equations 

In order to derive the HE the equations of motion are transformed into an uniformly 
rotating coordinate system. In this context we express the equations of motion as: 

a v i d x  
,=,v or, [ I ]  = [ a v l a y ] ,  (4.27) 

av/aa 
in which the X, y axes are inside the orbital plane while the a axis lies orthogonal 
to it in the direction of the angular momentum vector, compare figure 4.2. The 
relation between {X, y, a) and {a, P, 7) is described by a rotation about the a axis: 

cos0 - sin 0 0 
(4.28) 

where due to the uniform rotation of {a,P,  7): 

I = n = 6 = constant. (4.29) 

In the following (4.27) is worked out using (4.28) and (4.29). Differentiation of (4.28) 
twice with respect to the time results in: 



Figure 4.2: Definition of the Hill coordinates {U, v,  W ) ,  the { a ,  P ,  7 )  system, and the 
inertial frame { z ,  y,  z )  

The RHS of (4.27) in { a , p , 7 )  using (4.28) becomes: 

Substitution of (4.30) and (4.31) in (4.27) allows to eliminated the rotation matrix 
R(e ) :  

h - 2ng - n2a 

(4.32) 

Consider now a linearization a t  a = r ,  P = 0 and 7 = 0 ,  see figure 4.2. Accordingly 
on the LHS of eq. (4.32) a first order Taylor expansion of the spherical potential 
function p / r  is performed about the nominal orbital height r to the actual position 
of the spacecraft. Instead of writing Aa, AB and A y  the variables u , v  and W are 
chosen. 

where T denotes the disturbance potential (V = p / r  + T ) .  Note that T itself is not 
linearized. Linearized toward the actual satellite position is the spherical part of 
the potential. The truncation error in (4.33) consists of the higher order spherical 
terms and the linearization error of the disturbance potential. Eventually it results 



in the Hill equations: 

Note that the w-equation is uncoupled from the others, allowing a separate treat- 
ment. The HE, especially the w-equation, resemble a mass-spring system oscil- 
lating at  its natural frequency n. The homogeneous part resembles a force free 
(f, = f, = f, = 0) oscillation of the system whereas the particular part resembles 
a perturbed oscillation of a mass-spring system, compare (Colombo,1986). 

T h e  homogeneous solution 

The homogeneous part is obtained by (f,, f,, f,) = 6. The homogeneous solution 
describes the response of the system to an initial state vector effect. Kaplan (1976) 
and Colombo (1984a) have shown that the homogeneous solution can be expressed 
as: 

u(t) = a, cos nt + b, sin nt + c, 
v(t) = a, cos nt + b, sin nt + c, + d,t (4.35) 

w(t) = a, cos nt + b, sin nt 

where the coefficients a, through b, are determined by the initial conditions which 
are the initial state vector disturbances at  a reference time. It is common to consider 
the initial conditions at  t=O,  resulting in: 

2 uo 2 
u(t) = (- 3uo - -60) cos nt + - sin nt + (4uo + -60) 

n n n 
2u0 460 u0 

v(t) = - cos nt + ( 6 ~ 0  + -)sin nt + (-6nuo - 3vo)t + (v0 - 2-) (4.36) 
n n n 

WO w(t) = WO cos nt + - sin nt 
n 

An example of a satellite motion as a result of radial and along-track initial state 
vector disturbances is illustrated figure 4.3. A practical application of the homoge- 
neous solution of the HE is found in rendez-vous maneuvers of a target and a chase 
satellite as is described in Kaplan (ibid). 

An obstacle encountered was the actual derivation of the formulas shown in equa- 
tion (4.36). The ones presented above may be derived manually e.g. by substituting 
the results found by Kaplan (ibid) and Colombo (ibid) in the HE. However the risk 
of errors increases if the equations become more complicated as in the case of the 
particular solution of the Hill equations. For this purpose the formula manipulation 
program REDUCE, described by Hearn (1985), was used to derive and verify (4.36) 
including other solutions which will be discussed later on. 



Figure 4.3: The unperturbed motion of a satellite in radial ( U )  and along track (v) 
direction with respect to the reference orbit. 

The non-resonant particular solution 

Kaplan (ibid) states that the particular solution of the HE cannot be given for an 
arbitrary force function. For certain choices of force functions, e.g. the ones expressed 
in a Fourier series, an analytical solution exists, compare Colombo (1986). In this 
case the particular solution is found by solving the system: 

2 P,coswt + Q,sinwt = U - 2nv - 3n U 

P, cos wt + Q, sinwt = v + 2nu (4.37) 

P, cos wt + Q, sin wt = W + n2w 

where P, through Q, symbolize constants originating from the disturbing force 
function. The solution of this system becomes (REDUCE was used to obtain these 
expressions) : 

u(t) = -2nQw + ~ P u  cos wt + 2nPw + wQu sin wt 
w(n2 - w2) w(n2 - w2) 

(3n2 + w2)p, + 2nwQu (3n2 + w2)Q, - 2nwPu 
v(t) = cos wt + sin wt (4.38) 

wz(n2 - w2) wZ(n2 - w2) 

w(t) = p, cos wt + Qw sin wt 
(n2 - w2) (n2 - w2) 

The particular solution of the system represents the response to an oscillating per- 
turbing force a t  a frequency W, in this context not to be confused with the argument 
of perigee. Noteworthy is the amplification of the perturbations when W m 0 or 
when W m f n. This is the resonant case of the system where either a constant or an 
oscillating force at once per revolution acts on the satellite. Important is that each 
non-resonant periodic force function at a frequency of W results in a disturbance of 
U ,  v, W a t  a frequency W. 



A general solution of the HE is not given here since the homogeneous part may 
become rather complex. It can easily be shown that the general solution consists 
of the sum of all particular solutions and one homogeneous expression in which the 
constants a, through b, are determined by the initial conditions and the coefficients 
P, through Q, of each particular part, as will be shown for the solution of (4.39). 

Later on in this chapter a computer simulation is discussed in which radial 
perturbations of a numerically integrated satellite trajectory are compared with 
predicted analytical disturbances. In this comparison the homogeneous and exact 
resonant contribution of the HE are considered as undesired effects which are filtered 
out of the numerically predicted radial perturbation spectrum. 

The resonant solution 

As can be concluded from (4.38) the general particular response is no more valid 
when either w = 0 or w = f n. Such situations must be treated independently by 
solving the system: 

It can be shown, compare Colombo (1986), that a solution for the radial term exists 
in the form of: 

u(t) = (a: + a t t )  cos nt + (b: + btt) sin nt + (c: + ctt) (4.40) 

in which the coefficients are represented by (accomplished by means of REDUCE): 

1 2 
a: = -(-3n uo - 2nuo - 2Qv - R,) 

n2 
1 

a t  = -(-2Pu - Qu) 
2n 

1 
b t  = -(-2Qu 2n + P,) 

For the along-track term we find: 

v ( t )  = (at + at t )  cos nt + (b: + btt) sin nt + (c: + cit + c;t2) (4.41) 

in which the coefficients are represented by: 



1 
= -(-29, n + P,) 

0 - 1 
b, - -(6 

n2 n uo + 4nC0 + 59, + 2& - P,) 

and finally in cross-track direction: 

W (t) = ( a t  + aht) cos nt + ( b z  + bht) sin nt + c; 
in which the coefficients are represented by: 

Here the complete solution for the particular resonant effect is given including the 
initial conditions a t  t = 0. Characteristic are the time dependent Fourier coefficients 
like (at  + a t t )  in the perturbations of U, v and W. These terms may be considered 
as a long periodic modulation of the signal similar to the perigee drift, compare 
Colombo (1986). 

The non-resonant radial solution 

In the previous paragraphs all possible solutions of the HE are discussed. For a 
comparison with the radial perturbations resulting from the LPE the particular 
radial part for the non-resonant case of the HE is worked out. 

The problem is to evaluate the U-equation of (4.38) in which the terms P,, Q,, P, 
and Q,, the derivatives of the potential with respect to the 'Hill' coordinates, are 
substituted. Hence the first step is to develop the disturbing potential along a 
nominal satellite trajectory. Considering the same nominal orbit as in the LPT we 
find for the disturbance potential T in the circular case: 

l m a z  l m a z  



The summation is evaluated only when there exists an equal parity between l and 
k. The terms fu,  f, and f, in the HE can be found by differentiating (4.43) with 
respect to U, v and W. However the disturbing potential T in (4.43) is given in the 
coordinate system (W,, we, r) whereas the Hill elements are represented by (U, v, W). 
It can be shown that (assuming a constant inclination): 

Au = Ar, AV = r(Aw,cos I + Aw,), Aw = -rAw, cos w, sin I (4.44) 

and 
AV AwcosI  -Aw 

Ar  = Au, Aw, = - + , Awe = (4.45) 
r rcosw, sin I r COS W, sin I 

Accordingly the fu ,  f, and f, terms become: 

a T  1 a T  1 d T  a T  
f -- f ---, f w =  

U v -  (-COS I - -) (4.46) r awe r cos w, sin I dw, awe 

The terms fu  and f, which are required in (4.38) take the form: 

d~ lmaz lmaz 

fu = = C C [ A g  COS $'km + B;m sin $km], and 
m=O k=-lmaZ 

1 dT 'maz 'maz 

f, = -- = C C [A;, cos $km + B;, sin ?,hkm] where 
m=O k= -lmaz 

with (l - k)/2 = p and parity(k,l). The next step is to evaluate the U-equation 
in (4.38) whereby P, = A;,, P, = Aim, Qu = BkU, and Q, = B;,. It results in: 

lmaz lmaz 

u(t) = C C [C* COS $'km + S* sin Gkm] 

where C* equals to the 'cosine' term of the U-equation in (4.38): 



and S* to the 'sine' term of (4.38): 

l-m:even } [ " m ]  

l-m:odd 

Here = wln and W = $'km. In the next step the term $'km is separated in two 

parts ($'km = $'tm + dkmt) 
lmaz lmaz 

u(t) = C C [C* COS $kmt + S# sin dkmtl 
m=O k=-lmaz 

(c#,s#) = (C*,S*)COS$':~ + (S*, -C*) sin$':, = 
lmaz 

= Hlmk 
l=m 0 

where e and o denote l - m : even and l - m : odd. This expression is identical 
with (4.26), the form Wagner (ibid) derived for the radial orbit error by application 
of the LPT. 

However, there is a principal difference between both approaches. The LPE are 
exact differential equations and result in approximate perturbation equations after 
linearization with respect to a reference orbit. The HE are (1) implicitly linearized 
(2) represent a spherical approximation of the latter and (3) give exact solutions of 
the resulting differential equations. 

Apparently it doesn't matter whether a first order LPT or the HE are employed 
since the two formulations for the radial orbit error are equivalent. Yet the LPT is 
more versatile than the HE since it can be used to  e.g. derive elliptical solutions. 
In contrary to the LPE underlying the LPT are the HE which turn out to  be more 
suitable for 'educational purposes'. 

4.3 Comparison with numerically integrated orbits 

In this section the validity of the analytical radial perturbations theory as given 
by (4.26) or (4.49) is discussed. The purpose of the analytical model is only to  
describe the residual radial differences since the major parts of the low-degree gravity 
field are already relatively well known. 

The comparison of the analytical model with numerical integrated trajectories 
is confined to  short arcs, i.e. up to a duration of 10 days. This period resembles 
the nowadays commonly used maximum period in orbit determination of altimeter 
satellites. It is likely that there is no particular need to model long periodic effects, 
e.g. induced by the perigee drift rate. 

A second remark concerns the behavior of certain resonance phenomena which 
are caused by the term (@(l + 1)- 2k)/(P(P2 - l ) ) ,  P = $km/nO in (4.49). Considering 
the amplitudes of the perturbations we conclude that they become large when: 



dkm + 0, a situation which occurs due to resonance of potential coefficients of 
a particular order m, m # 0. Resonance may become extreme when the ratio 
of bo and be approaches an integer value. 

dkm + f no, showing up for odd zonal terms. This causes long periodic 
oscillations due to the secular motion of the argument of perigee. 

It is obvious that both situations require a special treatment for which a non-linear 
theory may be required. Taking into account the range of applications of the ana- 
lytical theory there is no need for a non-linear theory here. In the process of orbit 
determination long periodic effects are simply absorbed in the initial state vector 
adjustment and the estimation of drag and solar radiation parameters. 

In the experiment conducted we integrated numerically a 10 day orbit twice using 
different potential coefficient models. For the reference orbit we applied the gravi- 
tational model GEM- lOB, (Lerch et al. ,1981). No effects other than perturbations 
due to  the gravitational field were taken into account. The nominal elements were 
chosen in agreement with the three day repeat orbit of SEASAT: firstly the repeat 
ratio ( (h  + ~ ) / ( h  - e)) was chosen -4313, which implies that after 43 revolutions 
the ground track coincides with the initial one, secondly the eccentricity was kept 
small (e w 0.002) and thirdly the inclination of the orbital plane was chosen 108". 
The initial elements employed in this experiment are listed in table 4.1. 

GEM-1OB reference 
a = 7160472.5590 m Cl = 0" 
e = 0.001 w = 90" 
I = 108" M = 0" 

PGS-S4 adjusted to  GEM-1OB 
a = 7160471.0680 m Cl = 359.999978154" 
e = 0.000999962108 w = 89.948286077" 
I = 107.999983752" M = 0.051778873" 

Common data 
epoch 05/11/86 till 15/11/86 
a, = 6378137 m and p = 3.986005 X 1014 m3/s2 
llth order Cowell predictor-corrector 
75 s fixed step size 

Table 4.1: Initial elements and other data used in the numerical orbit generation 
and data reduction by GEODYN. 

It should be remarked that the amount of frequencies appearing in the pertur- 
bation spectrum of repeating orbits is less than those of non-repeating orbits. Take 
for example a perturbing frequency caused by the combination k = 1; m = 14 
which is identical in frequency, but shifted in phase by 180°, with the combination 
k = 2; m = 29: 

3 
$'km = kbo  +m&,, with h, = --bo =+ 

43 



For gravity field recovery it is preferable to consider orbits which do not repeat 
in a short period since their spectra contain less individual frequencies than non- 
repeating orbits. As a consequence different combinations of k and m, generating 
separate frequencies in the non-repeating case, result here in one overlapping fre- 
quency. 

The second orbit in the experiment was integrated numerically using the poten- 
tial coefficient model PGS-S4, a tailored gravity model for SEASAT developed by 
Lerch et al. (1982a). The choice of both gravity models is entirely arbitrary and not 
considered critical or relevant for the experiment. The objective is, as stated before, 
merely to verify the analytical perturbations theory. 

The initial state vector of the 'PGS-S4' orbit is adjusted in several iterations in 
order to  minimize the differences between both trajectories. The initial elements 
recovered by GEODYN for the PGS-S4 orbit are listed in table 4.1. The adjustment 
of the initial elements takes place in X, y,  z and X, y, i. For readability the initial 
elements are represented in the form of Keplerian elements. 

In both cases the program GEODYN (Martin et a1.,1976) was used. A more 
detailed treatment of the numerical orbit generation and initial state vector im- 
provement is given in $4.3.1. The outcome of the experiment, being the radial 
differences of two trajectories integrated with independent gravity models, is the 
basis for further investigations. 

4.3.1 Orbit generation and initial state vector improvement 

A numerical technique commonly employed for integrating satellite trajectories is 
known as the Cowell method. Thereby the equations of motion are integrated nu- 
merically using a high-order Runge-Kutta or multistep predictor-corrector method 
such as Adams-Moulton or Adams-Bashforth, compare Conte et al. (1986), or Taff 
(1985) pp. 392-393. 

Characteristic of Runge-Kutta integrators is that they evaluate the function to  
be integrated, being an 'expensive' summation in spherical harmonics, a number of 
times depending on the order of the method. In contrast multistep methods are 
more efficient since they re-use the previous state vectors and their derivatives with 
respect to the time in the prediction and correction of the new state vector. Each 
prediction and correction step takes one function evaluation independent of the order 
of the integrator. 

The high orders (e.g. above 8) of the integrators are required to  diminish the 
inherent truncation error of the integration method. Cowell's method is by nature 
sensible for truncation effects. Irrespective of the order of the integrator instability 
will occur after a certain time, compare Taff (1985). 



The system of differential equations to be integrated by Cowell's method is de- 
rived by a transformation of the equations of motion into 6  first order differential 
equations: 

where 3 = (X, y, z) represents the position part of the state vector in an inertial 
coordinate system. The function V represents the gravitational potential whereas - 
f i  represents disturbing forces other than the gravitational. 

For the experiment an initial state vector estimation was carried out for the 
purpose of minimizing the state vector differences between both trajectories. This 
resembles the real-world situation of orbit determination where discrepancies be- 
tween the 'model' satellite orbit (starting at an estimated initial state) and tracking 
measurements are minimized. Ideally one likes to improve: 

the initial state vector consisting of S(to)  and $(to), 

terms in fi, usually Cd (drag) and C, (radiation pressure) coefficients, 

terms in the gravitational model V, 

other parameters such as tracking station coordinates. 

It is convenient to merge the unknown parameters in a single vector p*: 
-* P = (X ,  Y , Z , ~ ~ Y , ~ .  clrnj31rn, Cd,Cr,...) (4.51.) --- 

v - 
state vector f i 

in which for our needs only the first six terms are used. The next step is to differ- 
entiate the right as well as the left hand side of (4.50) with respect to the first 6  
elements of p*, which for sake of brevity is denoted as p. This results in a system 
of 36 first order differential equations known as the variational equations: 

a2 si -- - a2v as, . . 
t , 3  = 1 s . - 3 ,  k = 1 . . . 6  

aPkat asiasj apk 

The purpose of the variational equations is to derive a transition matrix relating 
the variations in the state vector at a certain epoch to the initial state vector at  t = 
to. The terms asi/apk and aSi/apk form the elements of the transition matrix which 



is updated continuously at  each integration step. The transition matrix becomes: 

Note that @ = I a t  t = to. The actual computation of @ requires that 42 differential 
equations are integrated simultaneously. In order to reduce the amount of computing 
work in an orbit determination algorithm the second order derivatives in (4.52) are 
evaluated up to limited degree (e.g. 4) which is usually sufficient for convergence in 
the initial state vector estimation process. For our problem the transition matrix is 
used as a coefficient matrix in a least squares adjustment in which the initial state 
vector is estimated from the state vector differences between both trajectories. The 
observation equations become: 

Summarizing, the procedure of orbit generation and initial state vector improvement 
consists of the following steps: 

1. Integration of the equations of motion, as given in (4.50)) starting at  a well 
chosen initial state vector using the potential coefficient model GEM-1OB (the 
method of determining the first initial state vector is discussed in chapter 6)) 

2. the first initial state vector to start the integration of the PGS-S4 orbit is set 
to the initial state vector employed in step 1, 

3. integration of the equations of motions as given in (4.50) including the varia- 
tional equations as given in (4.52) while using the PGS-S4 model, 

4. computation of v using (4.54) in a least squares adjustment, 

5. updating of the initial state vector, i.e. the existing initial state vector is im- 
proved by v. 

6. repeat from 3 on until convergence, i.e. no more significant improvement of 
the state vector differences between both trajectories. 

Under normal circumstances only 3 to 4 iterations are required for convergence. The 
final result is a radial difference signal between both trajectories which is the basis 
for a comparison with the analytical model. 

4.3.2 Comparison with the analytical model 

A number of experiments have been carried out for the actual comparison. 

Firstly the radial differences between the reference (GEM-1OB) and the perturbed 
(PGS-S4) orbit have been transformed into the frequency domain using a mixed 
radix FFT  subroutine, compare Singleton (1969). The time signal and the power 



Time i n  days  

Figure 4.4: The radial orbit error in the simulation experiment caused by the full 
differences of the potential coefficient models GEM-1OB and PGS-S4. On the hori- 
zontal axis the time is represented in days, on the vertical axis the radial perturbation 
in meters. 
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Figure 4.5: The amplitude spectrum of the radial perturbations in the simulation 
experiment. On the horizontal axis the frequency is represented in cycles per revo- 
lution, on the vertical axis the power density is represented in units of m per 11129 
c.p.r. 



spectrum of residual radial differences are shown in figures 4.4 and 4.5. From these 
figures we can conclude that most of the radial difference signal is concentrated near 
the once per revolution frequency. Computations have shown that most of the signal 
is concentrated below three cycles per revolution, the remaining signal > 3 c.p.r. 
has a total power of 15 cm. Both effects agree with the analytical model: radial 
perturbations are amplified near once per revolution and decrease rapidly at  higher 
frequencies. The mechanism can be compared with that of a band-pass filter. 

In the time signal as given in figure 4.4 we note the 'butterfly' or bow tie (W) 

type of pattern. Typically the radial difference signal is large at  the edges and small 
in the center of the figure. This phenomenon can be explained by a long periodic 
modulation of the signal due to  constant and once per revolution perturbing forces. 
The phenomenon can be modeled by the special (resonant) particular solution of the 
HE. The c: and c: terms in (4.40) do not show up since these terms were already 
removed by the initial state vector adjustment. 

A similar analysis as presented in figures 4.4 and 4.5 has been performed by 
Wakker et al. (1983,1987). Their analysis of orbital errors simulated by differences 
of gravitational models is nearly identical to the results presented here. 

Secondly the analytical spectrum is derived by an evaluation of (4.49) using as 
potential coefficients the differences between the GEM-1OB and the PGS-S4 model. 
The analytical model requires knowledge of a number of variables which are derived 
from the numerical satellite trajectory. The combinations w(to) + M(to) and R(to) - 
O(to) determine the phase behavior of the perturbation spectrum and hold at the 
starting point of the trajectory. They have to  coincide with the orbital elements a t  
the offset time used in the computation of the numerical spectrum. The frequency 
behavior of the spectrum is determined by a combination of the terms & + M and 
h - 9. These terms are computed from the average revolution period of the satellite 
and the longitude displacement of the ascending equator transit points. Let the 
average revolution period be defined as T (w 6045.5 sec.) and the mean longitude 
displacement as AA (w -25.1°), the relation with LJ + M and h - e is: 

The resemblance between the numerical - and the analytical spectrum is poor a t  
frequencies very close to  once per revolution, compare also (Wagner,1985). This 
is not surprising since there are a number of overlapping effects close to  once per 
revolution. Wagner (ibid) mentions the effect due to the odd zonal coefficients of 
the gravitational field which are in deep resonance for k = f l and m = 0. However 
unsolved initial state vector effects are also contributing to  the once per revolution 
signal. For this reason no further attempts are made to describe this exact once per 
revolution effect. 

Instead the numerical spectrum is filtered by removing a function of the form 
of (4.40) from the raw signal. After this precaution the filtered numerical spectrum 
agrees well with the analytically generated spectrum. Most real and imaginary 
terms differ typically up to 1-5%. The frequencies of the perturbations match more 
accurately, usually in the order of 0.25% counted in cycles per revolution. Included 
is figure 4.6 containing the numerical filtered spectrum and figures 4.7 and 4.8, 



representing the differences between the numerical and the analytical power and 
phase spectra. 
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Figure 4.6: The radial perturbation amplitude spectrum filtered for resonant par- 
ticular Hill effects. On the horizontal axis the frequency is represented in cycles per 
revolution, on the vertical axis the power density is given in m per 1/129 c.p.r. 
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Figure 4.7: The residual radial perturbation amplitude spectrum. The residual 
consists of the difference between the filtered numerical radial orbit error and the 
analytical radial orbit error. On the horizontal axis the frequency is represented in 
cycles per revolution, on the vertical axis the power density is given in m per 1/43 
c.p.r. 

It can be concluded from this comparison that the analytical model differs mostly 
from the numerical results close to once per revolution. The phase differences are 
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Figure 4.8: The residual radial perturbation phase spectrum. The residual consists 
of the difference between the filtered numerical radial orbit error and the analytical 
radial orbit error. On the horizontal axis the frequency is represented in cycles per 
revolution, on the vertical axis the phase distortion is given in degrees per 1/43 c.p.r. 

in the order of 5' to  10' and show a number of outliers at  locations in the spectrum 
where hardly any signal is found. 

4.4 Conclusions 

In this chapter we discussed the characteristics of a radial orbit error Ar(t) for near 
circular satellite trajectories caused by uncertainties of potential coefficients. In first 
instance the linear perturbations theory, as introduced by Kaula (1966)) is applied 
t o  derive an expression for Ar(t). The LPT is based on the Lagrange planetary 
equations which are solved with the aid of a general perturbations technique. This 
results in six equations describing the perturbations of the Keplerian elements about 
a nominal orbit. The latter expressions are used to  derive radial perturbation equa- 
tions in which the deviations of the satellite are related to potential coefficients of 
the gravitational model. 

Two approximations have been used to come from the exact LPE to a conve- 
nient model describing radial perturbations. The first concerns the derivation of 
the perturbations in the elements from the LPE with respect to  a nominal orbit. 
The second concerns the transformation of these elements into a convenient radial 
expression. In the latter transformation long periodic oscillations induced by the 
argument of perigee are neglected. For our purposes it should be kept in mind that 
a perturbations theory is needed for (1) near circular orbits and for (2) periods up 
to  10 days. 

As an alternative, the Hill equations have been used to  verify the radial per- 
turbat ion~ as found by the conventional LPT. The HE consist of three differential 
equations describing radial ( U )  along track ( v )  and cross track ( W )  components of a 



satellite moving in an uniformly rotating coordinate system. Implicitly the HE de- 
scribe, in contrast to the LPE, an idealized circular situation. The three differential 
equations forming the HE can be solved undisturbed or disturbed resulting in the 
homogeneous and particular solutions respectively. 

The homogeneous case describes the behavior of the u,v and W terms in absence 
of any disturbing force function. The result is equivalent to perturbations caused by 
initial state vector disturbances. The nature of the homogeneous radial perturba- 
tions is an exact once per revolution oscillation and a radial bias. The magnitude9 
of the constants in is radial expression are determined by the initial conditions of 
the homogeneous system. 

The particular solutions describe the behavior of the U, v and W terms as a result 
of perturbing forces acting on the satellite. The perturbing forces were expressed 
in a Fourier series. Solutions are shown for two cases, a 'normal' and a 'special' or 
'resonant ' case. 

In the normal particular case oscillating disturbing forces are chosen at any 
frequency except for two singular frequencies. These singular frequencies are at  
zero and once per revolution. Characteristic is the linear response of the system in 
normal particular cases: a perturbing force at  the frequency W causes oscillations 
in the terms u,v and W at the same frequency W .  The normal particular case has 
been evaluated for gravitational disturbances. It could be shown that it results in 
an identical analytical formulation as coming from the LPT. 

In the special particular case the oscillating disturbing forces are chosen at the 
two singular frequencies. The solution of this problem can be regarded as a long 
periodic modulation of the U term resulting in a function resembling a 'butterfly' or 
'bow tie' pattern. 

The normal particular solution has been compared with the radial differences 
that occur between two 10 day numerically derived SEASAT trajectories. The dif- 
ferences between the trajectories are only caused by different gravitational models, 
here GEM-1OB and PGS-S4. It was demonstrated by means of this simulation that 
a good agreement can be achieved between the predicted analytical radial pertur- 
bations and the numerical results. This indicates that the analytical perturbations 
theory is valid to describe the altimetric situation, provided that arc length is less 
than 10 days. 

In the following chapters the analytical perturbations model is used as a tool to 
study the influence of radial orbit errors in satellite altimetry. 



Chapter 5 

Identification and spectral 
characteristics of crossover and repeat 
arc differences 

5.1 Crossover differences 

The main reason to  apply crossover observations instead of the direct distance mea- 
surement of the radar altimeter above the sea surface was already discussed in 
chapter 2. On intersections of the ground tracks the geoid error contribution is 
eliminated since it may be considered as a stationary surface. As a consequence 
crossover differences are mainly caused by the radial orbit error, and secondarily by 
unmodeled tidal effects and ocean variability. Eliminated by means of the crossover 
technique are all permanent structures which determine the shape of the sea sur- 
face such as the geoid and the permanent sea surface topography. Hence for the 
purpose of 'orbit error removal' it seems useful to  minimize the height differences at  
crossovers by means of a least squares adjustment of parameters of error functions 
defined along individual arc segments, compare chapter 3. 

In this section we first consider a more elementary problem: how does one ef- 
ficiently compute the actual crossover locations, timings (so-called time tags) and 
height differences from a given altimeter dataset such as described in chapter 2. 

Then some characteristics of crossovers are described such as their cluster form- 
ing at  equal differences of the crossover time tags. This property is used to  get a 
better insight in the spatial distribution of the crossovers. Furthermore cluster form- 
ing is also used to  analyze the spectral behavior of the crossover differences, compare 
(Goad et a1.,1980) and (Douglas, Agreen, Sandwe11,1984). Of special interest are the 
invariances of crossover differences to  certain parts of the orbit error. 

These invariances are closely related to  the fact that crossover differences behave 
invariant with respect to  geographically correlated radial orbit errors. These effects 
show an equal signal for the ascending and descending arc segment a t  a particular 
location. For this reason a part of the radial orbit error cancels after subtraction 
of the ascending and descending sea surface heights. This phenomenon has been 
mentioned by various authors, compare Anderle & Hoskins (1977), Tapley et al. 
(1985) and Sandwell et al. (1986). 



5.1.1 Computation of crossover data 

The actual computation of 1) crossover locations, 2) times at  which they occur and 
3) sea surface heights a t  these times are typical problems that have to  be solved 
during processing of radar altimeter data. Here the computation of crossover data 
is done in several steps. 

In the prediction step crossover time tags are estimated by assuming a circular 
motion of the satellite. The resulting crossovers possess some interesting properties 
which are considered later on in the derivation of the eigenvectors spanning up the 
null space of the normal matrices of global chronological crossover adjustments. 

In the refinement step the given altimeter data on the GDR dataset is inter- 
polated a t  the predicted crossover times. Additionally, it is possible t o  perform 
successive iterations of the interpolation procedure in order to  arrive a t  improved 
crossover positions and time tags. 

Prediction of crossovers 

In first instance we consider the modeling of the nominal ground track of the satellite. 
Taking into account the properties of altimeter orbits, ground tracks resemble sine 
waves functions mirror symmetric with respect to  the equator, compare figure 3.2. 

Essential quantities which determine the nature of the nominal ground track are 
the inclination of the orbital plane I, the variable W ,  representing (W + M) and W, 

which is equal to  ( S 1  - 8 ) .  The behavior of these quantities is conform the linear 
perturbations theory, cf. chapter 4. Hence W, and W, are linear functions of time 
whereas I behaves as a constant. As a result the nominal satellite motion in an 
Earth fixed coordinate system becomes: 

Here F, equals to  the position vector in an Earth fixed coordinate system, whereas 
RI and R3 denote Euler rotation matrices for rotations about the X and z axis, 
respectively. Here we assume the z axes of the inertial and Earth fixed coordinate 
system to  coincide. An evaluation of (5.1.) results in: 

COS W, COS W, - sin W, cos I sin W, 

( I ) = ~ (  
sin W, cos W, + cos W, cos I sin W, (5.2) 

sin I sin W, 

Simulations have demonstrated that (5.1) is accurate to  approximately f 10 km 
about the true orbit. Effects ignored in (5.1) are the eccentricity and other oscillating 
perturbations caused by the flattening parameter J2 of the Earth's gravitational 
field. 

It has been demonstrated by simulations that the largest radial perturbations 
with respect to  the nominal orbit could easily be modeled by an auxiliary function. 
This function resembles the special (resonant) solution of the HE including a twice 
per revolution term to model the J2 perturbations. After addition of the auxiliary 



function the remaining differences are usually less than f 100 m with respect to the 
true orbit. Compare also Rosborough (1986) where the radial perturbations of the 
TOPEX satellite are discussed. 

For the purpose of computing the predicted crossover positions and times at  
which they occur one should be aware of the facts that: 

The footprint diameter of a pulse limited radar is of the order of 2.4 to 12 
km, a value depending on the sea surface roughness in the footprint area. The 
height observations can be considered as some average value of the sea surface 
height over the footprint area. 

On the GDR's the sample interval of the altimeter data is approximately 1 
second which is equivalent to  some 7 km in along track direction. (This refers to  
the SEASAT GDR's, GEOSAT measurements are supplied at  10 observations 
per second) The consequence is that interpolation has to  be performed in order 
to determine the proper values at the intersection point. 

As a result it is probably sufficient to compute predictions of preliminary crossovers 
by (5.1) which is accurate to  M 10 km. Hence for the purpose of crossover prediction 
the following procedure is applied: 

Arc segments are defined: A segment starts a t  the lowest and ends at  the 
highest latitude (or visa versa). For each segment, which is either ascending 
or descending, the equator transit longitude and time is computed. 

From the equator transit data the terms W, and W, are determined, compare 
equation (4.55). 

Eventually, for each ascending arc segments against all descending ones, equa- 
tion (5.1) is solved for both arc segments resulting in a crossover position and 
two time tags, compare figure 5.1. The topology of the situation shows that 
Na X Nd crossovers will be generated out of Na ascending and Nd descending 
arc segments. 

Proper t ies  of predicted crossovers 

In the sequel we distinguish between absolute and relative time tags of crossovers. 
Absolute time tags are defined in the time system used during orbit determination, 
relative time tags are counted from the current equator transit time in the arc seg- 
ment forming the crossover. From the procedure described above we find predicted 
crossovers fulfilling three important properties. 

Antisyrnrnetry: The relative time tags of the ascending and the descending part 
of the predicted crossovers in equation (5.1) are of an opposite sign. In order to 
demonstrate this we consider a t  a crossover the condition: 



Figure 5.1: Analytically predicted crossovers in the nominal orbit. 

where denotes the transit longitude and At the relative time tag. The su- 
perscripts indicate whether'the quantities affect an ascending or a descending arc 
segment. The corrections +x and -x to respectively w,d and W: are required to  
convey the arc segment from ascending into descending. Substitution of (5.3) in the 
s-equation of (5.1) results in: 

which is a necessary condition at  a crossover point. In the sequel, crossovers fulfilling 
this property are referred to as antisymmetric. The relative time tag At = Ata = 
- ~ t ~  of antisymmetric crossovers fulfills the condition IAtl < 714 where 7 represents 
the satellite revolution period. 

Time t a g  versus  la t i tude:  The magnitude of the relative time tag At is only 
dependent of the latitude q5 provided that the inclination I and W, are constant. 
This follows directly from eq. (5.1): sin q5 = sin I sin(w,At). 

Longi tude separat ion dependency: The relative time tag At and the latitude 
q5 of an antisymmetric crossover are only determined by the quantity AA = A;=o - 

compare figure 5.1. In order to  demonstrate this property we substitute (5.3) 
in (5.1) and demand that za = zd and ya = yd, it follows that: 

[ ] = R(W:) ~ ( w f )  = [ ;: ] = R(W;) .(W:) where 

[ c o s c r - s i n c r ]  [ c o s "  
R(a)  = and G ( @ )  = 

sin cr cos cr cos I sin @ 

Since R(a l  + a 2 )  = R(al)  R(a2)  and R(-&) = R-l(a) and Ata = - ~ t ~  = At we 
find: 



This expression shows that At is determined by AA = A;=o - X$=,. Apparently the 
relative crossover time tags are invariant to rotation about the z axis of the Earth 
fixed coordinate system. 

An interesting consequence of eq. (5.5) is that there exists a functional relation 
between At, 4 and AA = A;=, - X:=, in the form of: 

It will be obvious that (5.4) and (5.5) become helpful when the predicted crossovers 
are computed. For computing efficiency, a function like (5.6) is computed only once 
and tabulated in a crossover prediction algorithm. 

A numerical approach is applied to  solve the prediction problem. From the 
various approaches tested it was found that the following results in accurate roots 
within usually less than 5 iterations. The procedure is as follows: 

1. Let denote the position vector a t  the ascending equator transit point and ij 
its descending counterpart. (the vectors and ij are derived from (5.1)). 

2. The orbital plane through p (spanned up by the in-plane vectors p and 6) and 
the orbital plane through ij are intersected to yield an approximate crossover 
position vector with the relative time tags Ata and ~ t ~ .  

3. The vectors p and ij are replaced by the new predicted ones which are computed 
by (5.1) using the relative time tags found in the previous step. 

4. If (p - ijl > E then repeat from 2 on. 

An example of (5.6) is evaluated and presented in figure 5.2 for the simulated orbit 
described in chapter 4. We conclude that predicted crossovers possess the following 
characteristics: 

A large number of crossovers reside a t  the high latitudes. Figure 5.2 shows 
that if 75" < IAAI < 180" then (41 > 60". We conclude that more than 50% is 
located above or below f 6 0 °  latitude. (we assume that ground track transit 
longitude9 are homogeneously distributed over the equator). The situation 
deteriorates for higher inclinations, e.g. a t  I = 90" there exist crossovers only a t  
141 # 90" if -12.5" < AA < 12.5". (approximately the longitude displacement 
in one revolution of the satellite.) As a result only &loo% M 7% of the 
crossovers is actually applicable. 

The geometry of the configuration shows that solutions of (5.6) are only of 
interest when [At1 5 714, with r representing the revolution period and IAA( < 
180". Due to (5.1) 14) 5 I is always fulfilled. 



Figure 5.2: The horizontal axis represents the longitude separation and the vertical 
axis the latitude of a predicted crossover. The relative time tags of the ascending 
ground track are represented by dots along the function at a 100 second interval 
starting at -1400. 



Improvement of predicted crossovers 

In reality, the true ground track tends to deviate from the nominal. Hence 'real 
world' crossovers differ slightly from antisymmetric crossovers. For this reason 
eq. (5.6) is applied for predicting the absolute crossover time tags in the given 
altimeter dataset. 

In a second iteration the improved crossovers are derived by computing at the 
predicted points the intersections of the tangents of the ground track as given on the 
altimeter tape, compare Rowlands (1981). The tangents of the local ground track 
are estimated from the supplied ground track position samples. Computations have 
shown that time tag corrections in the order of 1.5 s occur in the second iteration. 

The result is an improved crossover file which can serve again as a prediction 
for successive iterations. It was verified that the crossover time tag corrections in a 
third iteration step were in the order of 1 0 - ~  S. This indicates that one prediction 
and one improvement step is required for accurate crossover computation. 

Efficiency of the crossover algorithm 

The algorithm described above is rather efficient especially when a-priori tabulated F 
and G functions, as given in (5.6), are used in the prediction step. As an extra option 
one could avoid the prediction of crossovers on land or outside a local area, either 
rectangular or diamond shaped. This restricts the number of predicted crossovers 
to  be stored and increases the efficiency of the algorithm. 

Unfortunately the improvement steps are more 'expensive' since they consist of 
(1) sorting the predicted absolute time tags and (2) input output operations to large 
tape datasets. Especially this last step tends to be 'expensive' on most computer 
systems. Theoretically the resulting crossover file may become quite large growing 
quadratically in time. In the case of SEASAT this results in 106 crossovers formed 
by M 2000 arc segments. Whether it is required or not to compute all the crossovers 
is a topic that will be discussed later on. 

5.1.2 Spectral characteristics of crossover differences 

In this section we describe the spectral characteristics of crossover differences on 
basis of the separation of the absolute time tags, compare Goad et al. (1980) and 
Douglas et al. (1984). The first step is to  verify that the absolute time tag differences, 
represented by 6t, are clustered in groups inside an uninterrupted orbital period. 
Secondly it is possible to  model the height difference signal of the crossovers inside 
a cluster by means of one unique function. The characteristics of this function 
including the way it is sampled typifies the behavior of crossover differences. 

Clustering of absolute time tag differences 

The absolute time tag difference at a crossover is defined as 6t = ta - td where ta 
and td represent respectively the ascending and descending time tag. As mentioned 
before the relative time tags Ata and Atd are related to ta and td by: 



Figure 5.3: Cluster forming of crossovers on latitude bands. 

where t$,o and t$=o represent the equator transit times of respectively the ascending 
and descending ground track forming the crossover. For crossovers formed by the 
nominal orbit we concluded..that Ata and ~t~ possess the same magnitude but an 
opposite sign. Furthermore we concluded that their values were determined only 
by the longitude separation AA of the ascending and descending equator transit 
longitudes. 

It is easy to  verify that there are several crossovers having an equal longitude 
separation. This is illustrated in figure 5.3 where it is assumed that arc segments 
i  and j form a crossover P. Imagine that exactly one revolution period r is added 
to both absolute time tags forming the crossover. This results in an equivalent 
configuration of intersecting arc segments i+ l and j+ 1 having an identical longitude 
separation AA and crossing in Q. The consequence is that the crossovers P and Q 
possess the same antisymmetric relative time tags At and latitude 4. The absolute 
time tag difference 6t is also unchanged in this situation since t;=o and t f Z o  are both 
advanced by exactly one revolution period r .  The same manipulation of absolute 
crossover time tags may be rehearsed again on arc segments i  + l and j  + l. It 
is now easy to recognize that crossovers are clustered in bands of equal latitude 4. 
Crossovers forming a parallel all have an identical absolute time tag difference St. 

The longitude separation AA between arc segments i  and j ,  as given in figure 5.3, 
is also preserved in magnitude, but reversed in sign, when a half revolution period is 
added to  t$,o and t$=o. This causes the ascending segment j to become a descending 
and the descending segment i to become ascending. The consequence is that AA 
and accordingly At and 4 will change sign, compare (5.5). It is easy to verify that 
also the absolute time tag difference St changes sign. 

For a cluster of crossovers having an equal value of )Stl this results in two latitude 
bands symmetrical with respect to  the equator. 

Response of a crossover cluster t o  radial  o rb i t  e r rors  

In the previous section it was described how the time tag differences St show up on 
crossovers. The differences St are constant for a cluster of crossovers located on the 



same latitude. In addition to this clustering effect mirror symmetry with respect to 
the equator shows up for values of -St. 

For each value of 6t we consider the radial orbit error Ar(t) in the form of a 
Fourier series, compare chapter 4, equations (4.26) and (4.49): 

Ar(t)  = C A ~ ,  cos $kmt + B ~ ,  sin $kmt . (5-8) 
k,m 

In the following we derive the way crossover differences manifest by a transformation 
of (5.8) into: 

Ah(t + St,t) = Ar(t + St) - Ar(t). (5.9) 

The function Ah(t + St, t) represents the height differences for a cluster of crossovers 
and becomes: 

~ h ( t )  = C Aim cos &t + B;, sin qkmt . (5.10) 
k,m 

where the coefficients Aim and B;, are related to the original coefficients Akm and 
Bkm by: 

which is a linear transformation of the Fourier coefficients Akm and Bkm. However, 
the problem is to derive - given Ah - the coefficients Akm and Bkm from Aim and 
B;,, which requires the inverse relation of (5.11). This inverse relation of (5.11) 
does not exist when the determinant of the transformation matrix equals to zero: 

This can only be the case when = 2x1 where 1 represents an arbitrary integer. 
Another interpretation is that singularity occurs when: 

$km 2~ -- - l- + Pkm = /Pe (no: mean motion) 
no Stno 

where Pkm represents the perturbation frequency and Pc the singular cluster fre- 
quency both in units of cycles per revolution. 

For 1 = 0 a trivial solution is found, the zero frequency (bias) cannot be recovered 
from any crossover cluster. In order to demonstrate the effect of other values of Pkm 
we present in table 5.1 the sorted values in ascending order of Pc coming from the 
simulated orbit discussed in chapter 4. This table contains in ascending order the 
clusters of equal St in units of revolutions, their singular frequency Pc in cycles per 
revolution and the amount of crossovers in the cluster. 

Table 5.1 shows that the 'earliest crossovers' occur a t  98% of the revolution 
period. It may be concluded that all successive crossover clusters appear to have a 
value of St a t  close multiples of the crossover clusters with the earliest St. This is in 
agreement to what has been published by Goad et al. (1980), Douglas et al. (1984) 
and Colombo (1984b). 



nr I6tl Pc amount 
1 0.979 1.022 85 
2 1.955 0.511 83 
3 2.927 0.341 81 
4 3.891 0.257 7 9  
5 4.839 0.207 77 
6 5.754 0.174 7 5  
7 6.617 0.151 7 3  

nr 16tl Pc amount 
8 7.438 0.134 7 1  
9 8.282 0.121 69  

10 9.183 0.109 67 
11 10.123 0.099 65 
12 11.083 0.090 63  
13 12.053 0.083 61 
14 13.029 0.077 59 

Table 5.1: The first 14 clusters of absolute time tag differences on crossovers in the 
simulated orbit. 

For successive clusters of crossovers one can always find an integer l which causes 
a singularity close to once per revolution. However this is where most of the radial 
orbit error is concentrated. It is obvious that a more detailed analysis is required to 
judge upon observability of the Akm and Bkm coefficients from A;, and B;,. In 
reality, Akm and Bkm are estimated from all possible values of 6t .  Furthermore it 
is likely that A;, and B;, may not be estimated easily from a given crossover file. 
Firstly it may be due to  the sampling of (5 .10) ,  secondly not all crossovers inside a 
cluster may be available since some are e.g. located on land. 

As a preliminary conclusion one could pose that it is likely that crossover data 
alone is insuficient for an complete orbit error recovery. In other words crossover 
observations form a necessary but not a suficient condition for orbit error recovery. 

5.2 Repeat arc differences 

A completely different type of information from satellite altimetry can be extracted 
from the repeated measurement of the sea surface over the same ground track. In 
such a configuration the ground track of the satellite appears to 'bite in its own 
tail' after a certain time, known as the repeat period. The necessary and sufficient 
condition for obtaining a repeating ground track is that there exists an integer ratio 
between the quantities (G + M )  and (h  - e), compare Colombo (1984b):  

(h + M )  b a - - -  
B - - where a, P : integer. 

(h  - e we P 

The repeat period 6t is derived from (5.14): 

Its physical interpretation is that the ground track repeats itself after a revolutions 
of the satellite in the orbital plane and after P revolutions of the orbital plane itself 
about the z axis of the Earth fixed coordinate system. 

In reality nearly every circular trajectory resembles a repeating one for the simple 
reason that any real value of wo/we  may be approximated by a ratio of two integer 



numbers a and p. A practical problem might be that the integer values become 
quite large for an accurate approximation of the bo/be ratio. Therefore we employ 
a second condition: the repeat period should be less than a few months or so. 

Up to now two altimeter satellites have been arranged in repeat mode. SEASAT 
had in its last month a repeat orbit a t  h = 790 km, e = 0.001 and I = 108" 
with alp = -4313. Accordingly its repeat period was 43 X r which equals to 
3.01 days. The longitude spacing of the ground tracks on the equator equals to 
360'143 = 8.37". Currently GEOSAT is placed at  h = 785 km, e = 0.001 and 
I = 108" with alp = -244117 causing 6t to be 17.05 days. In this case the longitude 
separation is much denser: 360'1244 = 1.48". 

5.2.1 Spectral characteristics of repeat arc differences 

Let the 'repeat arc difference' be defined as: 

which is equivalent in its form to (5.9)  except that 6t is defined as a constant de- 
pending on the choice of the ground track configuration. It is now easy to investigate 
the impact on the radial perturbations caused by uncertainties of the potential co- 
efficients of the gravitational field. Equation (4.22) shows that the perturbations in 
an arbitrary element 'E' take the form of: 

with Hlmpq representing a function of the nominal elements and other time indepen- 
dent parameters whereas AI,, Blm depend directly on potential coefficients of the 
gravitational field. The time dependent term $lmpq equals to  ( l  - 2p)w + ( l  - 2p + 
q ) M  + m ( n  - 0 ) .  We substitute condition (5.15) into the term and find: 

The latter equation shows that all perturbations in the elements are exactly in 
phase over one repeat period. The only exception is formed by the term -qWSt, 
the precession of the argument of perigee. Hence repeat arc differences in the form 
of (5.16) behave as a natural filter eliminating all short periodic perturbations im- 
plied by gravitational errors, compare Colombo (1984b). In case of a frozen repeat 
orbit the situation is slightly different since W W 0 .  In this case we can expect an 
even lesser effect'of -qbSt on A h ( t ) .  

It is not surprising that repeat arc differences are not hampered by short periodic 
gravitational errors for the simple physical fact that evaluation of the force function 
in the integration of the equations of motion takes place at  the same location in the 
gravitational field. 



5.3 Conclusions 

In this chapter we described an efficient method for computing the crossover po- 
sitions and time tags. Furthermore we discussed three properties which crossovers 
fulfil1 whenever 1) a circular orbit is considered and 2) W ,  and W, are linear ex- 
pressions and I a constant. A consequence of the first property is that the relative 
ascending time tag a t  a crossover is opposite in sign with respect to the relative 
descending time tag. The times are considered with respect to the equator tran- 
sit times. The second property tells that the relative time tag and the latitude are 
uniquely connected, the third property results in latitude and time tags of crossovers 
that are only determined by the longitude separation of the equator transit points. 

Considering the spectral characteristics of crossover differences it may be con- 
cluded that it will not be feasible to recover a complete orbit error as far as crossover 
data alone is used. A simple example is a bias term which cannot be recovered from 
crossover data. More drastic are the recovery problems for frequencies near once 
per revolution. It has been verified for a 3-day SEASAT repeat orbit, that singular 
frequencies in the inverse transformation of crossovers to the orbit errors exist in the 
spectral band where most of the signal is concentrated. The spectral characteristics 
suggest that crossover differences alone are insufficient for a complete orbit error 
recovery. 

Another observation type described is the repeated measurement of the sea sur- 
face over the same ground track. It has been shown that 'repeat arc differences' 
behave as an almost perfect filter for all short periodic perturbations caused by the 
gravitational field. This implies that radial orbit errors - full or in part - cannot be 
recovered from repeat arc differences except for the long periodic modulation caused 
by the precession of the argument of perigee. 



Chapter 6 

Processing of simulated observables 

6.1 Introduction 

The previous chapters describe the behavior of the radial orbit error and the spectral 
characteristics of crossover and repeat arc differences. It has been found that the 
relation between the radial orbit error and uncertainties in the gravitational field 
can be modeled by means of numerical orbit integration and analytical perturba- 
tion theories. The numerical results, which are exact t o  the level of a negligible 
integration error resemble closely the non-resonant particular solution of the Hill 
equations. 

In a real world altimeter experiment one is faced with an adjustment problem; 
the recovery (or elimination) of the radial position inaccuracy of the satellite from 
observables derived from direct height measurements, crossover and repeat arc dif- 
ferences. In order to  gain more insight in the behavior of the adjustment problem a 
simulation is carried out. The purpose of the simulation is: 

t o  generate an artificial orbit including a radial orbit error, 

t o  compute crossover - and repeat arc differences from this data, 

to  investigate the recovery problem using simulated observables. 

As a source we apply the simulated three day repeat orbit having a total duration 
of 10 days as is described in chapter 4. In first instance we verify the spectral 
characteristics of the simulated repeat arc differences, from which it is expected 
that th.ey behave as a natural filter for all short periodic perturbations implied by 
the gravitational field. In the second and third part of this chapter we describe three 
versions of a global crossover adjustment based on simulated observables from which 
it is attempted to  reconstruct the original radial orbit error. 

6.2 Repeat arc differences 

6.2.1 Generation of the observables 

In general the conditions for the prototype orbit 'biting in its own tail' are: 



the trajectory has to  be nearly circular (instrumental requirement), 

the repeat ratio &,/W, equals to  a certain integer ratio, 

although this is not relevant in this context, one might demand for calibra- 
tion of the altimeter that the repeating ground track passes over a specific 
geographical location, compare Kolenkiewicz et al. (1982). 

In this context only the first two conditions are of interest where we choose the 
repeat ratio as -4313, a value compatible with that of the orbit of SEASAT in its 
last month. The following steps are carried out in order to  find a suitable initial 
state vector for this problem: 

Based upon the secular behavior of the Keplerian elements caused by the 
flattening term of the gravitational field ( J z )  the ratio of (M + &)/(h - e) is 
fixed on the desired integer ratio (a lp) .  The problem is to  determine the root 
of equation (5.14): 

(M+&) (Y 
- (-) = 0 with a, P : integers, 

( h  - e) P 

by variation of the semi major axis 'a' in (4.20) which is accomplished by a 
Newton-Raphson procedure. 

The first step results in an initial state vector used to start a numerical inte- 
gration with the full gravitational field GEM-1OB which is carried out over 10 
revolutions. The equator transit longitudes and timings are used to  improve 
the repeat ratio. For this purpose the semi-major axis is gradually changed 
until the repeat condition is met. (This is accomplished by a Newton-Raphson 
technique in which the derivative of the repeat ratio with respect to  the semi- 
major axis is derived by means of numerical differentiation.) 

Eventually the repeat ratio is accurate to M 10 -~  with a mean eccentricity of M 

2.4 X 10-~ which is slightly higher than the actual three-day repeat orbit of SEASAT. 
Hence the simulated orbit fulfills the repeat condition, but is not frozen repeat, 
compare appendix A. 

The trajectory found by numerical integration of the GEM-1OB gravitational 
model is re-integrated with the PGS-S4 model while solving for initial state vector 
effects. For more details see chapter 4. 

6.2.2 Numerical analysis 

The next step is to  evaluate the repeat arc differences defined by the relation 
Ah(t) = Ar(t + 6t) - Ar(t) where 6t represents the length of exactly one repeat 
period, Ar(t) the simulated orbit error formed by the radial differences of the GEM- 
10B and the PGS-S4 trajectories and Ah(t) the simulated repeat arc difference. For 
computing the spectrum of Ah(t) a mixed radix FFT  is applied, compare Singleton 
(1969). In total two full repeat periods of data (6 days) have been used to  compute 
the spectrum. The logarithmical power spectrum of the quantity Ah(t) is given 
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Figure 6.1: The logarithmical power density spectrum of a simulated repeat arc 
difference only caused by gravitational effects. The horizontal and vertical axes 
represent the frequency in cycles per revolution and the logarithmical power density 
in m per 1/43 c.p.r. respectively 

in figure 6.1 showing a concentration of signal dominantly a t  once and to a lesser 
extent a t  twice per revolution. Comparison of figure 4.5 with 6.1 shows that all the 
modulated signal of Ar (the spikes in the spectrum other than very close to once per 
revolution) has vanished. This phenomenon was predicted by (5.18): repeat arc dif- 
ferences are insensitive for short periodic perturbations caused by the gravitational 
field. If this is true then how can we explain the remaining signal in figure 6.1? The 
signal appears quite significant and requires more attention. 

Further analysis of the simulated repeat arc differences reveals that the signal 
may be described by an once per revolution oscillation and a long periodic bow tie 
effect, compare eq. (4.40). The remaining signal after modeling a bow tie function 
consists of noise with an total r.m.s. of approximately 2 cm. 

6.2.3 The nature of the bow tie effect in repeat arc differences 

In the sequel we attempt to analyze the nature of the bow tie effect which shows 
up as well in the radial orbit error as in the repeat arc differences derived from the 
simulation experiment. The bow tie effect in a radial orbit error is predicted by the 
resonant case of the HE, compare (4.39), of which it is known that constant or once 
per revolution perturbing forces give rise to a bow tie effect in the simulated Ar(). 
However (4.39) cannot explain a bow tie effect as found in the simulated repeat arc 
differences. (Terms like at, b t  and c: cancel in a function Ah(t) = u(t + 6t) - u ( t )  
if 6t = 2lrcr/w,, where U takes the form of eq. (4.40)) This is the main reason to 
analyze this particular effect in more detail. The bow tie effect is caused by a long 
periodic modulation implied by which is related to the uncertainties in the zonal 
coefficients of the gravitational field. 

The dominant precession of the argument of perigee comes from the combined 



effect of the even zonal coefficients, especially J2 as is described by (4.20). However 
the even zonals are quite well known and their uncertainty is too small to explain 
the bow tie effect in the simulated radial orbit error. The apsidal period of w 208 
days shows a difference of w 10-' days according to both gravity models used in the 
simulation. 

Besides the precession effect of w due to the even zonals there is also an odd 
zonal effect which causes the non-singular variables u = e cosw and v = e sin w to 
describe a circular motion with radius A centered around an imaginary point a t  
(O,C/w) in the U ,  v plane, compare appendix A equation (A.ll). 

In the simulation experiment it was recognized that the bow tie effect in the 
simulated orbit error and the related repeat arc differences can be explained by 
uncertainties in modeling the non-singular variables u and v .  A significant contri- 
bution is expected from the differences of C/w of the reference and the perturbed 
trajectory. The C/w value computed by equations (A.4) ff. equals 7.945 X 10-~  
and 8.024 X 10-~ for the GEM-1OB and the PGS-S4 trajectory respectively. In the 
computation we take the total effect of the odd zonal coefficients up to degree and 
order 36 with a = a, + 780 km and I = 108". 

Figure 6.2: The non-centric configuration of the simulated trajectories in the u,v 
plane. 

In figure 6.2 the circular motion of the non-singular variables u and v is presented 
as in the case of the simulation experiment. The motion is clockwise starting a t  
A and ending at B. Due to the initial state vector adjustment applied the circles 
coincide at  C located in the middle of A and B. The total precession of the argument 
of perigee from A to B equals to  17" which is related to the length of 10 days of the 



orbits relative to the apsidal period of 208 days. (17" M 101208 X 360"). 
The next step is to evaluate the effect of the non-centric situation in the simulated 

radial orbit error and the repeat arc differences derived from this data. In this 
context we consider for near circular orbits: 

where W, = W + M. An expression in the non-singular variables U and v becomes: 

r M a ( l  - U cos W, - v sin W,) (6.2) 

The value of 'a' shows (as a result of numerical analysis) no precession effects due 
to zonal coefficients; it is more likely that Ar  is caused by errors in the non-singular 
variables U and v: 

Ar  w a(-Au cosw, - Avsin W,). (603) 

This expression shows that Ar  resembles an once per revolution oscillation with a 
total amplitude of the order of ~ [ A u ~  + A V ~ ]  'l2. Of significant influence is the factor 
'a' with a magnitude of M 7 X 106 m. It explains that small deviations in Au and 
AV of the order of 10-~  to I O - ~  cause oscillations in Ar  of several meters to several 
tens of meters (7-70 m respectively). 

As a result of the non-centric situation Au and AV may be modeled by a Fourier 
series in the form of: 

Au(t) = a, cos wt + b, sin wt , 
Av(t) = a, cos wt + b, sin wt . 

For short periods of w 17" of the total precession of the apsidal period wt remains 
small. One may approximate (6.4) linearly resulting in: 

A substitution in (6.3) explains the bow tie effect found in the simulated radial orbit 
error. For repeat arc differences we find the form: 

which is equal to: 
Ah(t) = a[-Au* cosw, - AV* sin W,] @.7) 

with (assuming no influence of the w06t terms due to the repeat condition) 

Au*(t) = a: cos wt + b: sin wt , 
AV* (t) = a: cos wt + b: sin wt (6.8) 

and 



Expression (6.8) allows, similar as in (6.4)) a linear approximation explaining a bow 
tie type of function in the repeat arc differences. We conclude that a function of the 
form of: 

Ah(t) = (ao + bot) cos W ,  + (al + blt) sin W ,  (6.9) 

is capable of modeling the repeat arc differences. Further analysis confirmed that a 
filter of the form of (6.9) is sufficient to describe nearly all the repeat arc difference 
signal. The remaining effect in the repeat arc differences after estimating eq. (6.9) 
from the difference data resembles white noise with a r.m.s. of w 2 cm. 

As a result it is feasible to  reduce most of the long periodic error signal in the 
repeat arc differences (compared with the relatively short periodic effects of oceano- 
graphic phenomena) by a simple filter function of the form of (6.9) which spans the 
duration of an orbit determination period. A further conclusion is that analyzing 
the difference signal does not help to improve the gravitational field. The only phe- 
nomenon caused by gravitational effects that might eventually be recovered from 
the repeat arc difference signal is the long term motion of the argument of perigee 
which in its turn is related to the zonal terms of the gravity field. What remains 
in the repeat arc differences are short periodic variations caused by instrumental 
noise, model noise (e.g. tropospheric, ionospheric and tidal effects), and most of all, 
mesoscale variability phenomena, compare Cheney et al. (1983). 

6.3 Global chronological crossover adjustment 

6.3.1 Introduction 

In chapter 3 a local crossover adjustment experiment has been described. The pur- 
pose of this experiment was to get an insight into the properties of a regional adjust- 
ment. Emphasis is being placed on the adjustment theoretical aspects, especially 
the singularity problem. In this chapter a second orbit error recovery experiment is 
worked out. In this experiment 

crossover differences are generated from the simulated orbit error and, 

the simulated radial orbit error is reconstructed by means of crossover mini- 
mization. 

The computation of crossover differences, their geographical locations and times at 
which they occur was already introduced in chapter 3 and worked out in more detail 
in chapter 5. Hence the first problem - generation of crossover differences from the 
simulated orbit - is essentially a direct application of the technique described in 
chapter 5. For the simulated orbit 290 arc segments were found: 145 ascending and 
145 descending. 

For the recovery of the simulated radial orbit error only the first repeat period 
consisting of three days of data is used. It results in 2 X 43 = 86 arc segments 
forming 43 X 43 = 1849 crossover differences. (this value includes the so-called 'land' 
crossovers). It is justified to use this subset since the remaining repeat cycles of the 
radial orbit error may be connected to the first three day repeat era by minimization 



of repeat arc differences. (from which it is known that this particular minimization 
hardly helps to  improve the gravitational field.) 

The chronological LSA of crossover differences shows a considerable analogy with 
the local LSA of crossover differences discussed in chapter 3: 

Parameters of error functions are defined inside the (time) range of an arc 
segment and solved by means of LSA of crossover differences. 

Crossover time tag regularization is applied in order to  obtain a numerical 
stable particular solution of the normal equations. 

A datum problem showing up as a rank defect of the normal equations is 
recognized. It is found by analyzing the homogeneous part of a self-adjoint 
system of normal equations formed by the crossover minimization problem. 

Singularity transformations of the unknowns are derived from the structure of 
the homogeneous solution of the normal equations. 

In chapter 3 the information obtained by solving the unknowns of the observational 
model was only used to  derive an internal consistent surface. Here this information 
is applied, as well, for thi recovery of a simulated radial orbit error. For this purpose 
the adjusted error functions are arranged in a chronological order, i.e. the recovered 
Ar functions are set 'head to tail' forming a stepwise radial orbit error function. 

In this section two chronological models are considered. In the first model error 
functions are only solved by minimizing the crossover residuals, i.e. only the minimal 
number of constraints are forced on the system. The second model is similar to the 
first except that additional smoothness constraints are introduced at  the boundaries 
of successive arc segments. 

In both cases a comparison between the chronological stepwise recovered and the 
originally simulated radial orbit error is made. The solutions found by minimization 
of crossover differences represent the particular solution of the crossover problem 
showing a discrepancy with the simulated radial orbit error. For this purpose the 
homogeneous part is recovered such that the general solution coincides in an optimal 
way with the simulated radial orbit error. In a real world altimeter configuration it 
is impossible to carry out this step for the simple reason that the real orbit error 
is unknown. Here the comparison with the simulated radial orbit error is made in 
order to verify whether the homogeneous part of the crossover solution is capable 
of describing the discrepancies between the particular solution and the simulated 
radial orbit error. 

6.3.2 The choice of a stepwise error function 

An important choice to make in the segmented chronological adjustment of crossover 
differences is the type of error function to be solved for per arc segment. In chapter 3 
a well known choice was made: a 2 parameter 'tilt' and 'bias' error function for 
relatively short arc segments not longer than 1000 sec. Directly related to  the 
choice of any stepwise error function is the length in time over which it is defined. 
Computations have shown that linear error functions are adequate .over short time 



Table 6.1: Fitting accuracy of polynomial error functions with respect to the simu- 
lated radial orbit error. 

intervals of approximately 116 of a revolution. However linear functions show an 
increasing approximation error in the modeling of Ar over longer time intervals and 
are not anymore applicable over e.g. the full length of an arc segment. 

The validity of the polynomial error functions is investigated by analyzing their 
ability to follow the simulated radial orbit error. In this context a polynomial error 
function of degree i,,, is defined as: (t equals to the relative time within an arc 
segment, T equals to the absolute length in time of the segment) 

len 
250 
500 

1000 
2000 
3000 
4000 

In order to verify the approximation error of these polynomials the following proce- 
dure is applied: 

min 2 max 2 rms 2 
-0.01 0.01 0.002 
-0.04 0.04 0.01 
-0.15 0.18 0.04 
-0.78 0.92 0.17 
-2.27 2.11 0.44 

min 1 max 1 rms 1 
-0.06 0.06 0.02 
-0.26 0.23 0.06 
-0.90 0.80 0.22 
-3.65 2.72 0.82 

The simulated orbit error is subdivided in chronological parts of equal length 
in time. The first day of the simulated radial orbit error, consisting of 1440 
one minute samples, is used as a source of data. 

min 3 max 3 rms 3 
-0.003 0.004 0.001 
-0.02 0.03 0.004 
-0.09 0.10 0.02 
-0.27 0.24 0.06 
-0.59 0.63 0.15 
-1.11 1.74 0.31 

The coefficients Pi of a stepwise polynomial error function of a chosen degree 
i,,, are estimated in each interval consisting of the simulated radial orbit 
error samples. 

Computed are the r.m.s. and the extreme deviations of all stepwise functions 
with respect to the simulated orbit error. 

Results of polynomial fits up to degree 3 are given in table 6.1. In table 6.1 the 
dimensions are in seconds for the length (len) and meters for the extreme and r.m.s. 
values. The nine columns min 'i', max 'i' and rms 'i' for i=1..3 indicate respectively 
the minimum -, maximum extreme and the r.m.s. found for stepwise polynomials 
of degree 'i'. 

The results confirm that linear error functions are not able to describe accurately 
the simulated orbit error signal when they are solved over intervals longer than 
approximately 1000 seconds. (r.m.s. limit of 20 cm) Remarkable is the fact that 
quadratic polynomial error functions will not fit better than 44 cm r.m.s. with respect 
to the simulated radial orbit error when solved over a full arc segment of 3000 
sec. More suitable appear 3th degree (cubic) polynomial error functions requiring 



4 unknowns to be solved per arc segment. More accurate results were found for 
stepwise functions taking the form of: 

and 
t t t 

Ar(t) = (a0 + a1-) cos(nt) + (bo + h-) sin(nt) + (CO + cl;) (6.12) 
r r 

where n represents the mean motion and r the revolution period of the satellite. 
Function (6.11) is found by linearization of a Kepler ellipse as described by equa- 
tion (4.24). Its physical justification is discussed by Colombo (1984b), Rummel 
(1985), Wagner (1985) and Zandbergen et al. (1988). Function (6.12) is found by 
solving the special resonant case of the Hill equations, as is shown by equation (4.39). 
The results of fitting (6.11) and (6.12) up to intervals of 6000 seconds are given in 
table 6.2. This table is organized in the same way as 6.1: columns with i=l  repre- 
sent the results for (6.11) and i=2 for (6.12). Apparently (6.12) is capable of fitting 

Table 6.2: Fitting accuracy of alternative error functions with respect to the simu- 
lated radial orbit error. 

len 
1000 
2000 
3000 
4000 
5000 
6000 

accurately the simulated radial orbit error even up to one revolution. However in 
our situation, where an error function is defined per arc segment, the price to pay is 
a larger system of normal equations due to the fact that 6 unknowns are introduced 
for each arc segment. 

More economic is an error function of the form of (6.11) requiring only 3 pa- 
rameters per arc segment. From this function it should be possible to recover the 
simulated radial orbit error with a r.m.s. of approximately 17 cm which is considered 
acceptable for simulation purposes. As expected this function gives more accurate 
results than obtained by a linear or quadratic polynomial error functions. More- 
over (6.11) requires fewer parameters than cubic polynomial error functions and its 
fitting accuracy is 'on the same level' as the cubic polynomial error function. For 
these reasons (6.11) is chosen as a stepwise error function in the global chronological 
adjustment of the crossover differences. 

6.3.3 Adjustment 

min 1 max 1 rms 1 
-0.13 0.16 0.03 
-0.52 0.44 0.08 
-0.83 0.64 0.17 
-1.15 1.06 0.25 

We consider the crossover residuals Ahij , between an ascending arc segment 'i' and 
a descending arc segment 'j', to be modeled by observation equations in the form of: 

min 2 max 2 rms 2 
-0.04 0.04 0.008 
-0.10 0.10 0.03 
-0.17 0.22 0.05 
-0.30 0.32 0.08 
-0.37 0.36 0.10 
-0.47 0.50 0.12 



As mentioned in 86.3.2 the error functions At-;() and Ar,() are chosen according 
to  (6.11) which is defined inside the time range of an arc segment. As a result the 
observation equations become: 

Ahij = [a; cos(ntij) + bi sin(nt;,) + ci] - [a, cos(ntji) + b, sin(ntji) + (6.14) 

where t;j and tji represent the time tags a t  the crossover point. Observation equa- 
tions in the form of (6.14) are used to construct the design matrix A. The crossover 
differences are stored in the observation vector y' and the unknowns a; b; and c; for 
each arc segment i are contained in the vector of unknowns Z. Accordingly we find 
y' = AZ+ C' from which the unknowns are solved by minimization of ftQ;;< where 
Quu represents the covariance matrix of the observations taking the form of a unit 
matrix. Minimization results in the well known normal equations: 

The dimension of the matrix N is 258 X 258 (258 = 86 X 3), where 1849 crossover 
differences have been used to derive the normal equations. 

The LSA of Ahij is analogous to the local LSA described in chapter 3. However 
this is not anymore the case for the rank defect of the normal matrix. It is caused by 
a different structure of the observation equations. Eigenvalue analysis of the normal 
matrix as given in (6.15) in its unaltered form derived from the original crossover 
time tags using (6.14) have revealed that [a] one eigenvalue equals to -5.73 X 10-l5 
which may be considered as zero due to  the round-off level of the floating point 
arithmetic [b] two eigenvalues are equal to respectively 1.81 X 1 0 - ~  and 9.53 X 1 0 - ~  
and [c] other eigenvalues in the range of M 1om3 to M 10+~. Theoretically the 
rank defect equals to  1 which is, as will be clarified in the sequel, due to the bias 
singularity induced by the c; & c, terms in (6.14). 

The remaining subsystem, compare (3.7), with eigenvalues not equal to  zero is 
unfortunately poorly conditioned. The condition number of the subsystem equals 
to  approximately 102/1.81 X 1 0 - ~  M 1010 meaning that some 10 digits are lost in 
the computation of the vector of unknowns. 

It is found that regularization of the crossover time tags, a procedure where the 
original crossover time tags are replaced by approximated model timings, may be 
applied in order to  force the two small eigenvalues in category [b] to  zero. Application 
of the predicted crossover time tags, compare (5.4), in the observation equations 
results in a system of normal equations with a rank defect of 3. Regularization 
results in antisymmetric crossover time tags with respect to the equator transit 
times. Hence an extra condition, namely t;, = -tji, is built into the observation 
equations: 

Ahii = [a; - a,] cos(ntij) + [b; + b,] sin(ntij) + [c; - c,]. (6.16) 

Observation equations of the form of (6.16) are convenient for deriving the rank 
defect of the normal equations. In order to recover the defect we search for linear 



combinations of the columns of the A matrix (c := cos(nti,) & S := sin(ntij)): 

The matrix E fulfilling the condition that AE = 0 becomes: 

The rank defect of the normal equations derived from the design matrix as given 
in (6.17) equals to 3. A particular solution of the normal equations is found by fixing 
one master arc segment, compare also Rowlands (1981). Eigenvalue analysis reveals 
that the condition number of the subsystem of normal equations with X # 0 equals 
to approximately lo5. 

The adjustments showed that the crossover residuals decrease from 4.17 m r.m.s. 
before to 14.4 cm after the LSA. The a-posteriori r.m.s. of 14.4 cm is unaltered by 
adding an arbitrary homogeneous solution I = Es' to the particular solution Zp 
found by fixing one master arc. Computations have shown that it is possible to  
transform the unknowns of an arbitrary master arc solution into any other arbitrary 
master arc solution by adding a suitable homogeneous solution Z to Zp. The problem 
is identical to eqs. (3.26) and (3.27) except that the E matrix differs in structure. 
Moreover the datum of the altimeter solution is formed by fixing only 1 master arc 
segment. 

The homogeneous solution as a deformation surface 

In order to verify the nature of the homogeneous solution we substitute the general 
solution 2'9 into the observation equations (6.16), compare also (3.32) ff. The gen- 
eral solution of an arbitrary ascending segment 'i' and its corresponding descending 
segment 'j' equals to Zg = [ai, bi, ci, a,, b,, c,]'. The particular solution found by 
fixing one master arc segment equals to Zp = [af , bf, cf , a;, b j ,  c;It whereas the ho- 
mogeneous part equals to i= Es'. By using the structure of the E matrix in (6.18) 



we find: 

Substitution of the general solution into Ati($,) eq. (6.13) results in: 

Ari(tij) = (af + 81) cos(ntij) + (bf + s2) sin(ntii) + (c. + s3) 
= Art (tij) + D(t;,). (6.20) 

Substitution of the general solution into Ari(tij) eq. (6.13) results in: 

Arj(tj;) = (a2 + sl )  cos(ntji) + (b; - s2) sin(ntji) + (c; + s3) 

= Ar;(tj;) + D(tij). (6.21) 

The term D(tij) takes the form of: 

which depends on the components of the shift vector ifof the homogeneous solu- 
tion. The deformation function D(tij) is equal for the ascending and descending sea 
surface height and cancels in the difference when forming crossovers. In analogy to  
the deformation surface polynomial found in the local case, compare (3.35), one can 
give a similar interpretation here. For antisymmetric crossover time tags formed by 
the nominal orbit it is found that the value of tij is determined only by the lati- 
tude r$ of the crossover location, compare (5.6). The antisymmetric relative time 
tag tij(= -tji) is found to be invariant with respect to  rotation about the z-axis of 
the Earth fixed coordinate system. As a result D(tij) in (6.22) represents a strictly 
zonal deformation surface. 

Included is figure 6.3 indicating the nature of this zonal deformation surface as it 
shows up after a singularity transformation of an arbitrarily chosen master arc seg- 
ment with respect to  the simulated radial orbit error. The deformation surface itself 
is smooth, the dips a t  the north-south boundaries are an artifact of the interpolation 
method employed in the plotting software. 

The homogeneous solution as a t ime  series 

For a chronological chain of arc segments it is possible to  plot the time history of 
the function D() given in (6.22). The time history is presented in figure 6.4 for the 
three individual components of this function. We conclude from figure 6.4 that the 
's2' and the '83' component result in a continuous smooth function. Thereby it is 
assumed that the boundaries of the arc segments are located a t  t = f r/4 relative to  
the equator transit time. However 'Q', compare figure 6.4, causes a discontinuous 
time derivative of D() a t  the boundaries of successive arc segments. This effect 
is also observed in arbitrary particular solutions found by fixing one master arc 



Figure 6.3: A perspective view on a deformation surface as it shows up after a 
singularity transformation of a global segmented crossover solution to a simulated 
radial orbit error. 

Figure 6.4: The time history of the three individual components of the homogeneous 
solution belonging to the segmented global crossover model. 



segment. Naturally a radial orbit error does not show these discontinuities. For this 
reason the effect is considered artificial. 

An example is shown in figure 6.5 where the time series of the radial orbit error is 
plotted as a chronological chain of stepwise error functions. The solution is found by 
a chronological segmented LSA of simulated crossover differences. From this figure 
we can see a velocity discontinuity effect: the upper envelope of the recovered orbit 
error signal is folded which is due to the sl component in the homogeneous solution. 

Figure 6.5: The orbit error found after a chronological segmented LSA of simulated 
crossover differences. On the vertical axis the radial orbit error is shown in m as 
it is found by fixing 1 master arc segment (at t=0.71 days). The horizontal axis 
represents the time in days. 

In an attempt to  minimize the discontinuity effect so-called smoothness con- 
ditions are forced on the stepwise error functions. The smoothness conditions of 
successive arc segments 'i' and 'j' take the following form: 

Smoothness conditions in the form of (6.23) included as pseudo observation equations 
in the design matrix have shown to reduce the rank defect from 3 to  2. It is easy to  
verify that the first column vector of the E matrix as given in (6.18) is eliminated 
by including smoothness conditions of the form of (6.23). As a result one is not 
anymore free to fix a complete master arc segment for finding a particular solution. 
This would result in a so-called over-constrainted system. 

Actually the radial orbit error is now considered to  be one continuous function. 
In order to  find a particular solution so-called initial conditions are included. It is 
assumed that e.g. Ar;(t = 0) = 0 and ~ r ; ( t  = 0) = 0 for an arbitrary chosen i .  The 
effect of constraints on unknowns is described in chapter 3. 



Optimal adjustment to the simulated orbit error 

A particular solution Zp of the normal equations is found by [a] fixing one master 
arc segment or [b] by employing 2 initial conditions in case smoothness conditions 
are forced on the system. Any other general solution of the unknowns may be 
found by a suitable singularity transformation of the particular solution. An optimal 
adjustment is chosen such that the simulated orbit error is followed in the best 
possible way. The observation equations employed in the optimal adjustment take 
for an ascending segment 'i' the form of: 

~ r ( t $ = ~  + At) - Ari(At) = 81 cosnAt + s2 sin nAt + ss + Z (6.24) 

or when smoothness conditions are employed: 

~ r ( t & ~  + At) - Ari(At) = s2 sin nAt + ss + Z (6.25) 

Here the term ~ r ( t i = ~  + At) represents the simulated radial orbit error a t  the 
absolute time t & o + ~ t  where t$=O equals to the equator transit time for arc segment 
'i' and At the time relative to the equator transit of a simulated sample. The term 
Ari(At) is derived from a particular solution of the normal equations. In case of a 
descending arc segment 'j' the observation equations become: 

~ r ( t i = ~  + At) - Ar,(At) = s1 COS nAt - s2 sin nAt + ss + Z (6.26) 

or when smoothness conditions are employed: 

~ r ( t i = ~  + At) - Ar,(At) = -62 sin nAt + ss + Z 

The unknowns to  be solved for by means of the optimal adjustment are the compo- 
nents of the shift vector s'on the RHS of (6.24) to (6.27). 

Residual analysis 

For the 86 arc segments involved in the LSA of the simulated crossover differences i t  
was recognized that a systematic difference shows up between the simulated orbit er- 
ror and the optimally adjusted 'crossover' solution. The systematic differences were 
found for the unknowns solved by the segmented chronological models both with and 
without additional smoothness conditions. The power spectrum of the systematic 
difference signal between the chronological model not including smoothness condi- 
tions and the simulated radial orbit error is presented in figure 6.6. Remarkable 
is the concentration of the difference signal a t  the frequencies belonging to 2we, 
WO - We) W, + we and 20, - 2we which are the spikes in figure 6.6. Unfortunately 
the homogeneous solution cannot resolve this effect since the frequencies of the sys- 
tematic difference are far from the zero and once per revolution frequency. Also 
the k times per revolution effects (k = 2'3, ...), which appear when smoothness 
conditions are not included, cannot be described by the homogeneous solution of 
the system of normal equations. This analysis shows that the general solutions of 
the global segmented crossover minimization problems described earlier on in this 
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Figure 6.6: Power density spectrum of the systematic differences between a chrono- 
logical optimally adjusted crossover solution and the simulated orbit error. On the 
horizontal axis the frequency is given in c.p.r., the vertical axis shows the amplitude 
in m per 1/43 c.p.r. 

chapter are inadequate for describing a radial orbit error. The problem appears 
to be improperly posed. 

However it was found that the systematic effect can be modeled by mapping 
a surface function expressed in spherical harmonics along the nominal trajectory. 
This idea originates from Sandwell et al. (1986) where the geographically correlated 
part of the radial orbit error is modeled. A surface function D(4, X) developed in 
spherical harmonics takes the form of: 

lmaz 1 
~ ( 4 ,  X) = E C [Q, cos mX + Slrn sin mvfim(sin 4) (6.28) 

where 4,  and Sl,  represent the surface function coefficients. Mapping of this 
function along a nominal orbit with a constant inclination I ,  satellite rotation rate 
h. and the rotation rate h, of the orbital plane about the z axis of the Earth fixed 
coordinate system takes, in analogy to Sandwell et al. (1986), the form of: 

lmaz l 1 

D(4, X )  = C C C Flmp(I) [hm cos + &m sin hmp] (6.29) 
1=0 m=Op=O 

where 
l-m:even l-m:even 

= { } and Bim = { 2: } 
-'lrn l-m:odd l-m:odd 

and 

with 
- 0 
W ,  = hot + W: and we = het + w e .  



Figure 6.7: A perspective view on the surface function estimated from the system- 
atic difference signal between the solution of an optimally adjusted chronologically 
segmented crossover LSA and the simulated radial orbit error. 

Modeling of the systematic differences found between the optimally adjusted cross- 
over solution and the simulated orbit error has shown to be possible by solving in 
the least squares sense for the surface functions coefficients Cl, and Slm. Typically 
the peaks in the residual power spectrum presented in figure 6.6 disappear when 
the surface function is solved. In our case we solve for coefficients up to degree and 
order 2. The observation equations are given by (6.29); unknowns are the Cl, and 
Slm coefficients, observations are the systematic differences discussed before. 

Included is figure 6.7 showing a perspective view of the systematic difference 
spectrum as in figure 6.6. Also here one may observe some remaining "interpolation 
noisen which is due to the plotting software. 

We conclude that there exists a part in the radial orbit error signal that cannot 
be recovered by the general solution of the crossover minimization problem posed 
here. The analysis above has shown that this part of the radial orbit error behaves 
as geographically correlated. The nature of the geographical correlation in the radial 
orbit error appears to  be a surface function with coefficients Cl,, Slm up to degree 
and order 2. Mapping of surface function coefficients above this degree and order is 
not expected to  describe geographical correlation due to  the characteristic damping 
of the radial orbit error a t  higher frequencies. 

6.4 Global crossover adjustment without arc segments 

6.4.1 Introduction 

In 86.3 crossover minimization was performed by solving the unknowns of individual 
error functions defined inside the time range of an arc segment. In a second step a 



description of the radial orbit error is found by a chronological ordering of the s t e p  
wise error functions solved by LSA. Some problems encountered in the segmented 
chronological approach raise questions about the applicability of this method. 

Firstly it is shown that the choice of an error function plays a critical role. The 
fitting accuracy, i.e. the ability to  follow the simulated orbit error signal, depends 
directly on the length of an arc segment and the type of error function in effect. 
For the problem considered in $6.3 arc segments were chosen equally long in time. 
Land crossovers were included in the LSA of crossover differences. In a real world 
situation these observations do not exist; land crossovers are of an inferior quality 
due to instrumental reasons. Hence in reality a segmented global LSA of crossover 
differences as sketched in $6.3 would always be hampered by the fact that arc seg- 
ments are not equally long in time. Especially the variance behavior of the unknowns 
estimated by LSA of segments which are poorly connected by means of crossovers 
to  other segments remains problematical. 

Secondly, i t  was found that the form of the homogeneous solution of the seg- 
mented crossover problem depends on the choice of an error function and crossover 
time tag regularization. In a global segmented approach it is possible to  include 
e.g. smoothness constraints in order to minimize the velocity discontinuity effect of 
successive arc segments. These smoothness constraints have shown to reduce the 
rank defect of the normal equations from 3 to  2. 

Thirdly i t  was found that a general solution of the segmented crossover problem 
is still inadequate to follow the simulated radial orbit error. It was found for both 
crossover minimization problems sketched in $6.3 that the general solutions of both 
systems are not able to  follow the simulated radial orbit error. There remains 
a systematic difference signal which can be explained by fitting the Fourier series 
resulting from a surface function up to degree and order 2 mapped along the nominal 
orbit. 

The problems mentioned above lead to  the investigation of other minimization 
models enabling to  recover the radial orbit error from the crossover difference data. 
In this approach the unknowns of one continuous and differentiable function are 
solved for. It takes the form of a Fourier expansion up to 2.3 cycles per revolution 
(c.p.r.) in steps of 1/43 c.p.r. including a two parameter function modeling a long 
periodic modulation of the signal. 

It will be demonstrated that this approach possesses some attractive properties 
avoiding some of the problems encountered in segmented chronological models. A 
typical advantage of this approach is that the Fourier coefficients to  compute r e p  
resent physically meaningful quantities allowing a clear interpretation in terms of 
orbital mechanics. The Fourier coefficients could be used as observations in lumped 
coefficient equations for potential coefficients as is described in Schrama (1986a). 

6.4.2 The model 

In this context the continuous differentiable function to  be solved for takes the form: 

bot 
kmaz 

aot Ar(t) = - cos(nt) + - sin(nt) + C O +  [ak cos(kAwnt) + bk sin(kAwnt)] (6.30) 
KT KT 

k= l 



where Ar(t)  represents the estimated radial orbit error a t  time t, whereas a0 and bo 
symbolize two unknowns belonging to  the resonant solution of the Hill equations, 
compare also (4.39). The term c0 stands for the bias term and ak, bk represent 
the Fourier coefficients of the orbit error spectrum. The known constant T denotes 
the average revolution period of the spacecraft in seconds whereas n equals to  the 
mean motion. The constant K is chosen such that KT equals to  the full period over 
which (6.30) is defined. The purpose is to  obtain values around 1 in the design matrix 
which is favorable for the numerical proper-ties of the system of normal equations. 
The other constants Aw and kmaz are chosen such that: 

An optimal resolution is obtained in the orbit error spectrum. The orbit 
repeats itself after 43 revolutions which equals to  the largest period that can 
be recovered from any frequency analysis. For this reason the value of Aw is 
chosen as 1/43. 

The orbit error spectrum is followed with sufficient accuracy. Computations 
have shown that after 2.3 c.p.r. (=l00 X 1/43) a r.m.s. of w 15 cm is found for 
the remaining orbit error signal. This noise signal is not modeled. 

Crossover difference observation equations are written in the from of Ah;, = Ar(t;) - 
Ar(tj) where t; and t j  refer to  the absolute time tags of a crossover point. Unknowns 
are the coefficients ao, bo, c0 and ak, bk with k E [l, kmaz]. It results directly in the 
relation y'= Az'+ E'since (6.30) is a linear expression with respect to  the unknowns. 
The vector y' contains the crossover differences Ahij and z' the unknowns. 

In a first attempt the crossover difference observations are equally weighted, i.e. 
a unit matrix is assumed for QYV. The design matrix A is unfortunately not anymore 
sparse as in the segmented method(s) and cannot be partitioned in an ascending and 
a descending part. 

It should be noticed that a considerable amount of computing time is needed 
to  form the normal equations. In order to compute one element of the normal 
matrix N = A I Q ~ A ,  n floating point operations in the form of one multiplication 
and one addition are required. Here n equals to  the amount of crossover difference 
observations involved in the problem. In the simulated orbit 1849 crossover are 
found of which 711 are located on land and 1138 on sea. Due to  symmetry of N ,  
f m(m + 1) elements have to  be computed by an inner product of the columns of 
the design matrix, where m is the amount of unknowns involved in the problem, 
m = 2 X kmaz + 3 = 203. Accordingly i m ( m  + l ) n  (w 80 X 106) floating point 
operations are required to  compute the N matrix. The reduction and backward 
substitution of the normal equations is performed in less time, requiring of the order 
of !m3 (M 2.8 X 106) floating point operations, compare also (Conte et a1.,1986). 

6.4.3 Singularity of the normal equations 

It is not surprising that the normal equations derived from observation equations 
in the form of Ah;j = Ar(ti) - Ar(t,) where Ar() is given by (6.30) results in a 
singular system. This is confirmed by an eigenvalue analysis of the normal matrix. 
The results of this analysis are presented under "land+sea 1" in table 6.4. The 
computed eigenvalues of the normal matrix show 9 small eigenvalues indicating one 



true singularity (the first eigenvalue) and in addition a system which is poorly con- 
ditioned. The problem is 1) to explain how the normal equations have to be treated 
in order to find a numerical stable solution and 2) to demonstrate the characteristics 
of this solution. 

As discussed in chapter 3 singularity of the normal equations is caused by linear 
dependency of the column vectors in the design matrix A. In the sequel we search 
for a set of linear independent base vectors having the dimension of m which 
multiplied by A result in a zero vector of dimension n: 

o ' = ~ i & ,  i E  [l, ..., l ] .  (6.31) 

The base vectors i& span the null space of A which has the dimension l. It is 
customary to gather these base vectors in a matrix E of m rows and t columns such 
that A E  = 0. It will be shown for this problem that the elements of the E matrix 
consist of linear combinations of Flmp functions evaluated at the inclination of the 
nominal orbit, here 108". 

For this purpose we consider a spherical harmonic expansion of a surface function 
D(4, X), compare (6.28)) mapped along the nominal orbit, compare (6.29). From 
this expression one can derive the Fourier series of the signal mapped along the orbit 
belonging to an individual Cl, coefficient of the surface function: 

For an individual Slm coefficient it is found that: 

In (6.32) and (6.33) it is possible to replace the summation by an inner product of 
two vectors ti and G. Here the sequence of the elements in the vectors is chosen 
conform the ordering of the unknowns in the design matrix: 

where v'(t) represents a vector with time dependent components, compare (6.30): 

t t 
v'(t) = (- cos(nt), - sin(nt), l , .  . . , cos(kAwnt), sin(kAwnt), . . .). (6.36) 

KT KT 

Two remarks concerning v': 1) For each $lmp combination in (6.34) and (6.35) there 
exists a corresponding kAwnt term in (6.30); 2) The first two elements in v' are not 
contributing to the inner products in eqs. (6.34) and (6.35). The location of the 
elements in the tile,, iifm and v' vectors depends on the values of the indices l ,  m 
and p. In our case where the highest frequency to recover equals to 2.3 c.p.r. there 
exist 9 possible tif, vectors (lmax = 2 in (6.28)). The higher degree and order 
tifm and tif, vectors fall outside the frequency range of the model based on (6.30) 



and cannot be used to describe linear dependence between column vectors of the 
design matrix. For each surface coefficient Cl, or Sl, one base vector ClC, or Cfm 
is found. The corresponding expressions in the form of (6.34) & (6.35) (from which 
the structure of the ClC, and iif, vectors follows) become, compare (Sandwell et 
a1.,1986): 

0 6 0  = c o o  [Fooo] 

DC,o = C1o[(F1oo - F10l) sin wo] 

DPo = c 2 0  [F201 + (F200 + F202) cos 2 ~ 0 1  

Di1 = C11[Flll cos(wo - we) + F110 cos(w0 + we)] 

Dldl = S11 [-Fill sin(wo - we) + F110 sin(wo + we)] 

Di1 = C21 [F211 sin we - F212 sin(2w0 - we) + F210 sin(2wo + we)] 

D:1 = S21[- F2i1 COS we - F2i2 cos(2w0 - W,) - FZ10 cos(2w0 + W,)] 

DP2 = C22 [F221 COS 2we + F222 cos(2w0 - 2we) + F220 cos(2w0 + 2we)] 

D/2 = S 2 2  [+ F221  sin 2we - sin(2wo - 2we) + F220 sin(2wo + 2we)] 

From (6.37) it can be shown that the ClC, and C;, vectors are linear independent. 
Furthermore it is easy to  show that any Cfm or u'f, vector multiplied by the design 
matrix A results in a zero vector. In other words, they fulfil1 the properties of 
the base vectors iii in (6.31)! In order to demonstrate this property we consider 
an arbitrary row vector Zij of the design matrix containing the coefficients of the 
crossover difference observation equation Ahij = Ar(ti) - Ar(tj). This row vector 
equals to: 

= v'(ti) - v'(tj). (6.38) 

Multiplication of ClmCfm or Slmu'fm by the design matrix results in: 

Remember that Df, and Df, are the result of a mapping operation of a surface 
function D along a nominal orbit. The time tags ti and t j  hold along this nominal 
orbit and form a crossover point a t  the geographical location (+,X). It is obvious 
that D g  (t!) - Dfm(tj) = 0 and Di,(ti) - Dfm(tj) = 0 since the difference of a surface 
function with itself a t  the same geographical location equals to zero. In reality the 
crossover differences are not exactly equal to  zero when DIC, and Dfm are mapped 
along the actual simulated trajectory. Cause of the effect are the small deviations of 
the order of a few seconds with respect to  the nominal trajectory. This explains the 
existence of the 9 small - instead of zero - X's recovered by the eigenvalue analysis 
of the normal matrix. Later on in this chapter a more detailed analysis is made of 
the non-orthogonality of the iif, and u'ld, vectors with respect to  the vectors v'. 



6.4.4 Attempts to solve the problem 

In this section three numerical experiments are conducted for the purpose of solving 
the system of normal equations which are singular since it was shown in $6.4.3 that 
linear combinations of the columns of the design matrix exist. The experiments 
concern respectively a hybrid norm solution, the inclusion of a minimal number of 
secalled direct height measurements and an alternatively constrained solution of 
the normal equations. 

H y b r i d  n o r m  solution 

An easy to realize solution of the normal equations can be found by minimizing a 
hybrid norm. The hybrid norm minimization takes the form of: 

ZtQ;,'Z+ z't~z;12' = min 

with P,, the a-priori covariance matrix of the unknowns. The purpose of hybrid 
norm minimization is partly the same as that of least squares minimization, namely 
to minimize the norm of the vector Z In addition in (6.41) one attempts to find the 
'smoothest' solution for z' by "minimizing ZtP;-,'2'. It can be shown that a minimum 
is found by solving the system of equations: 

The numerical consequences of a hybrid norm minimization are obvious. The inverse 
of the regular P,, matrix is added to the singular normal matrix. This affects directly 
the eigenvalues of the matrix on the LHS of (6.42). A problem encountered while 
minimizing the hybrid norm given in (6.41) is the proper choice of the Qvv and P,, 
matrices. For Qvv a diagonal matrix is assumed to describe the variance/covariance 
behavior of the crossover differences. This assumes that all observations are equally 
weighted and uncorrelated. In the literature, cf. (Engelis,1987), some critical re- 
marks are made about this point. Crossover differences occur more frequently at  
higher latitudes and should therefore be down-weighted with respect to the ones on 
lower latitudes. Undoubtedly this is true, on the other hand satisfactory results are 
already obtained by assuming a unit diagonal matrix for Qvv, compare the results 
of the chronological crossover adjustment. 

For modeling the P,, matrix a-priori information concerning the orbit error 
spectrum is required. Here one could apply the property that most of the signal is 
concentrated near 1 c.p.r. and that a rapid decrease of Ar(t)  is expected at higher 
frequencies. A proper formulation of the P,, matrix may be derived from the radial 
solution of the HE, compare (4.49) in conjunction with an error degree variance 
model of potential coefficients of the gravitational field. 

Here we assume a modest approach which mildly affects the unknowns to be 
estimated by means of a hybrid norm minimization. The P,, matrix is chosen as a 
scaled unit matrix X I  where the scalar X  is taken as large as possible for regulariza- 
tion of the normal matrix. The effect of this particular hybrid norm minimization 
is that all eigenvalues of the normal matrix are increased by X - ' .  Computations 
have shown that X-' = 10-S is sufficient for regularizing the system of equations 
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Figure 6.8: A power spectrum of the difference signal between hybrid norm mini- 
mization and the simulated radial orbit error. On the horizontal axis the frequency is 
represented in cycles per revolution, on the vertical axis the amplitude is represented 
in m per 1/43 c.p.r. 

given in (6.42). It implies that a uniform a-priori variance of lo5 is assigned to the 
unknowns involved in the problem. 

The power spectrum of the differences between the hybrid norm solution with 
respect to the simulated radial orbit error is given in figure 6.8. In this figure the 
results are shown for X = lo5 where it is noted that similar results were found for 
other values of X. Remarkable is the fact that most frequencies of the recovered 
signal, even for different values of X, tend to follow accurately the simulated radial 
orbit error. (The apparent offset between the bottom line of figure 6.8 and the 
'non singular' frequencies is an artifact of the plotting program employed.) However 
there appear to exist a number of 'singular' frequencies a t  0 (which is not plotted in 
figure 6.8), we, 2we, w, 2wo, w, f we, 2wo f we and 2wo f 2we (which are the peaks in 
figure 6.8). This test confirms the expected singular behavior of the normal matrix 
as it would arise whenever a least squares minimum norm is defined, compare $6.4.3. 

Unfortunately it was not possible to reduce the differences between the hybrid 
norm solution and the simulated orbit error significantly. The remaining differences 
stay in the order of 40 m, whereas one would expect that the residual between 
the 'hybrid norm' solution and the simulated AT() could be described by a surface 
function mapping. 

The eigenvalues above 9 are hardly affected since X-' is a factor lo4 to log 
smaller, from which one may conclude that the regular part of the normal equations 
remains intact. This explains why the 'regular' frequencies - those not equal to the 
peaks shown in figure 6.8 - are followed with satisfactory accuracy (even up to a 
few cm difference signal). 

However the first 9 eigenvalues of the least squares normal matrix shown in 
table 6.4 (column "land+sea 1") are of the same magnitude or even much smaller 



than X-'. This explains the 11 singular frequencies shown in figure 6.8. 
The only conclusion drawn from the hybrid norm minimization in its current 

form is that the expected singular frequencies predicted in 56.4.3 show up in the 
difference signal. It is remarkable that a simple ad hoc solution as discussed in this 
section results in these singular frequencies. What is not understood is why the 
"hybrid norm" orbit error cannot be reduced significantly to the simulated error. 
More investigations are required to investigate this problem which is probably due 
to the unrealistic choice of the P,, matrix. 

Minimum constrained solutions 

In order to find a solution for the normal equations it is possible to include a number 
of constraints in the form of additional observation equations. The question is 1) 
what sort of constraints are allowed to be included and 2) how many constraints are 
required for regularizing the problem? This problem is described in eqs. (3.51) ff. 

In order to find a general solution, by forcing additional constraints on the un- 
knowns, one must demand that exactly as many constraints are included as the 
dimension of the null space of A. By definition under-constrained systems are sin- 
gular. Over-constrained solutions imply that the original minimization problem is 
altered, i.e. the solution will satisfy the observation equations including the con- 
straints. Whether the latter type of solution is desirable or not from physical point 
of view will not be discussed here. However solutions of this type do not fall in the 
category of general solutions of the original minimization problem. 

Direct height constraints 

A first suggestion for additional constraints has been put forward by Sandwell et 
al. (1986). The constraints are formed by direct height measurements from the 
altimeter to natural or artificial radar transponders in the form of 1) inland lakes 
2) salt planes 3) sea surfaces near tide gauges or 4) active radar transponders on 
land. For all configurations it is required to know the position of the transponder 
in a consistent geocentric coordinate system. The position(s) could by derived by 
modern geodetic techniques and should be known within sub-decimeter accuracy. 

Direct height measurements enable to form constraints having a physical rele- 
vance. The height h of the transponder above the reference ellipsoid can be derived 
from the geometrical coordinates which are known within a certain accuracy. The 
actual height h* of the satellite above a reference ellipsoid is contaminated by a 
radial orbit error A t .  The height above the transponder location p, is measured. 
An evaluation of eq. (2.3.) results in: 

Direct height measurements of the altimeter to the transponder enable to  derive, 
within a certain accuracy, an estimate for the actual A r  while the satellite passes over 
the transponder location. The technical details of transponder measurements, e.g. 
an identical coordinate system definition for trajectory computation and transponder 
coordinate determination, pose an additional problem but fall outside the scope of 
this work. 



In a simulation one may include observation equations in the form of (6.30) in 
order to  regularize the normal equations. Sandwell (ibid) mentions that 9 globally 
distributed transponders suffice for regularizing the problem. In fact 9 constraint 
equations in the form of c' = Bz' are included in the design matrix. One should 
verify whether the transponder constraints fulfil1 the condition that B E  equals to 
a square regular matrix, compare eq. (3.51) ff. A simple counter example is a set 
of transponders distributed along the equator. Such a configuration cannot be used 
to  determine the zonal terms of a geographically correlated orbit error function. 
Further investigations of this problem are required. 

Alternative constraints 

An alternative for finding a general solution of a self-adjoint system of normal equa- 
tions is to include constraints in the form of c'= Etz' with c'= and B = Et ,  compare 
eqs. (3.51). The numerical advantage is obvious, the matrix product EtE in (3.55) 
equals to  a square matrix with regular properties due to the linear independence of 
the column vectors of the E matrix. Unfortunately, in contrary to  the constraints 
obtained by direct height measurements to transponders, no physical meaning can 
be assigned to  these constraint equations. Their only purpose is to  help finding a 
general solution of the self-adjoint system of normal equations. In a secondary step 
this solution can be compared, by means of a singularity transformation, with the 
simulated trajectory. 

A first numerical test is to  check the orthogonality of the constraints with respect 
to  the observation equations. For this purpose each base vector iif, and iif,, 
compare (6.34) & (6.35), is multiplied by the design matrix A. In theory each 
product Aiif, or Aiif, should result in a zero observation vector. However, the 
crossover time tag distribution deviates slightly from the pattern expected from 
the nominal orbit. This causes the vectors iif, and iif, to be nearly orthogonal 
with respect to the observation equations. The results are presented in table 6.3 
where each possible vector iif,, iif, is multiplied by the A matrix. This table 

term mean [m] rms [m] 
coo +o.oo 0.00 
Cl0 +3.86 X 1 0 - ~  2.74 X 1 0 - ~  
c 2 0  -1.99 X 1 0 - ~  8.17 X 10-' 
Cl l  +1.83 X 1 0 - ~  3.80 X 1 0 - ~  
S11 +2.84 X 1 0 - ~  3.74 X 1 0 - ~  
C21 +1.45 X 1 0 - ~  9.26 X 1 0 - ~  
S21  -7.35 X I O - ~  9.10 X 1 0 - ~  
C22 -7.58 X 1 0 - ~  1.33 X 1 0 - ~  
S 2 2  +2.73 X 1 0 - ~  1.33 X 1 0 - ~  

Table 6.3: Orthogonality of the constraint equations with respect to the observation 
equations. 

shows the mean value and the standard deviation of the elements. in the vector 



y' where y' = Aiile, or y' = Aiifm. The values in this table may be interpreted 
as the discrepancies on the crossover points due to  the constraints forced on the 
unknowns involved in the problem. The effect appears insignificant and is ignored 
in the sequel. The statistics mentioned above are based on all 1849 crossovers of the 
simulated dataset. 

The following experiments concern the numerical treatment of the least squares 
normal equations which are augmented by constraints in the form of G = Etz'. Here 
we assumed that the constraints are assigned a same a-priori weight as the obser- 
vation equations. We distinguish two problems, the so-called "land+sean problem 
referring to  an LSA involving all crossover differences and the "sea" problem where 
only marine crossovers are employed. 

The improvement of the eigenvalue spectrum of the constrained normal equations 
is considerable. The 4 eigenvalue spectra of the "land+sean and "sea" problem 
are shown in table 6.4. The eigenvalue analysis shows that constraint equations 

nr "sea" l "sea" 2 "land+sea" l "land+sean 2 
1 0.00 3.79 X 1 0 - ~  0.00 0.11 
2 2.47 X 10-g 0.44 6.34 X 10-Q 0.44 
3 5.74 X 10-g 0.55 1.60 X 1 0 - ~  0.55 
4 1.60 X I O - ~  0.55 3.33 X 1 0 - ~  0.55 
5 3.89 X 1 0 - ~  0.90 1.09 X I O - ~  0.90 
6 5.71 X 1 0 - ~  1.06 1.22 X I O - ~  1.06 
7 1.50 X 1 0 - ~  1.07 3.54 X I O - ~  1.31 
8 2.35 X 1 0 - ~  1.31 4.63 X I O - ~  1.31 
9 3.44 X 1 0 - ~  1.31 9.75 X I O - ~  3.27 
10 3.79 X 1 0 - ~  3.62 0.11 3.62 
11 1.07 3.62 3.27 3.62 
. . . 
203 3554 3554 4121 4121 

Table 6.4: Eigenvalues of the normal matrices in case "sea 1": only sea crossovers 
are used, "sea 2": including constraints, "land+sea 1": all crossovers are used, 
" land+sea 2" : including constraints. 

drastically improve the condition number of the normal matrix. The Xm,,/Xmi, 
values become M 105 and M 106 respectively for the "land+sean and "sea" problem. 

The "land+sean 1 column in table 6.4 shows the eigenvalues as they were found 
for the least squares normal matrix where 1) all crossover differences are employed 
and where 2) no constraints are used. It shows that there are 9 small eigenvalues 
causing condition numbers for the remaining subsystem greater than 108. Note 
the difference with the "sea" 1 case which is the same as the "land+sean 1 case 
except that only the marine crossover differences are used. As a result the boundary 
between the "small" and the "large" eigenvalues is smeared out and it appears as if 
the rank defect becomes 8 instead of 9.  It is not unlikely that the land-sea problem 
in altimetry leaves an effect on the rank defect of the normal equations. 

In the following step the constrained solutions of the unknowns are compared 



with the simulated radial orbit error. This experiment could never be carried out 
in reality as is mentioned in the introduction of this chapter. However it gives an 
indication of the behavior of the constrained solution with respect to the simulated 
orbit error. The comparison is made at  433 samples regularly distributed at  every 10 
minutes along the simulated orbit (density of sampling equals to 10 per revolution 
over the first 3 day repeat period). The power spectrum of the residual for as well 
the "land+sean and "sea" problem is similar to the difference spectrum shown in 
figure 6.6. Discrepancies occur dominantly a t  0, we, 2w,, wo f we, W,, 2wo, 2w0f we and 
2w0 f 2we. Modeling of this signal is possible by solving surface function coefficients 
Cl,, Slm in (6.28). This is equivalent to performing a singularity transformation of 
the unknowns to the simulated Ar(). 

For the constrained "land+sean problem the a-priori / a-posteriori r.m.s. of the 
crossover residuals equals to respectively ail = 4.17 / ui2 = 0.13 m. Note that -10 
to + l 0  cm uniformly distributed random noise was added to the a-priori simulated 
crossover residuals. This solution shows a r.m.s. of uel = 0.98 m and a mean value 
of -3.84 X 1 0 - ~  with respect to the simulated radial orbit error. After solving the 
surface function coefficients Coo through SZ2 a r.m.s. of ue2 = 0.15 m and a mean 
value of 0.00 m is found. For the constrained "sean problem we found, under the 
same assumptions as in the former problem, ail = 4.17, ui2 = 0.10, uel = 0.99 and 
ue2 = 0.18. The corresponding surface function coefficients are shown in table 6.5. 

coefficient " land+sea" case " sean case 
coo +2.38 X I O - ~  -6.62 X I O - ~  
c10 +0.75 $0.74 
c1 1 +1.54 +1.57 
S1 1 -6.94 X 10-~  -0.15 
c 2 0  - 1.83 X 10-~ -1.78 X 10-~  
c 2  1 -2.84 X 10-~ -2.85 X 10-~  
S 2 1  +1.65 X 1 0 - ~  +2.02 X 1 0 - ~  
c 2 2  +O. 10 +9.90 X 1 0 - ~  
S 2 2  +5.80 X 1 0 - ~  +5.60 X 1 0 - ~  

Table 6.5: The surface function coefficients recovered by a singularity transformation 
of the constrained solutions to the simulated radial orbit error. Column 1 represents 
the coefficient, column 2 its value in the "land+sea" case and column 3 its value in 
the "sean case. 

A last test concerns the variance behavior of the unknowns in the "sean case. 
A-posteriori standard deviations of the unknowns are computed as the square roots 
of the diagonal elements of the inverse of the normal matrix. In this computation it 
is assumed that Qyy = I, Qcc = I and Qzpc = 0, compare (3.51) ff. In our case this 
implies a 1 m a-priori variance estimate for the crossover differences. The estimated 
standard deviations for the Ak unknowns in (6.30) are given in figure 6.9, the values 
for the Bk unknowns are given in 6.10. 

From this analysis we conclude that relatively high standard deviations occur 
a t  the predicted singular frequencies. The singularity of the unknowns at  these 
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Figure 6.9: A-posteriori standard deviations of the Ak unknowns. The estimated 
standard deviations in m per 1/43 c.p.r. are given as a function of the frequency in 
c.p.r. 
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Figure 6.10: A-posteriori standard deviations of the Bk unknowns. The estimated 
standard deviations in m per 1/43 c.p.r. are given as a function of the frequency in 
c.p.r. 



frequencies is only controlled by the constraints forced on the system. Furthermore 
we note that all the Bk terms in the band from W 0.75 to W 1.25 c.p.r. possess, 
compared with the corresponding Ak terms, relatively high standard deviations. 

6.5 Conclusions 

In this chapter observables derived from a dataset containing the simulated orbit 
superimposed with a synthetic radial orbit error were used to perform 1.) a so- 
called collinear adjustment of repeat arc differences and 2) two versions of a global 
adjustment of crossover residuals. The first method for adjusting the crossover 
residuals is based on the conventional arc segment model. In the second crossover 
minimization model parameters are solved of a continuous and differentiable function 
which is defined over a full period of 3 days. 

Repeat arc differences 

Repeat arc differences caused by gravitational effects have shown to be inadequate 
for recovering most of the short periodic components in the simulated radial orbit 
error. This phenomenon was predicted in chapter 5 on basis of the results of the 
linear perturbations theory and confirmed by a numerical analysis of the simulated 
repeat arc differences. It is shown that the observed error signal present in the sim- 
ulated repeat arc differences can be explained by a long periodic modulation caused 
by the precession of the argument of perigee. Especially the non-centricity in the 
u,u plane of the reference and the perturbed trajectory seems to explain most of 
the signal found in the simulated observables. As a result it is demonstrated that 
an adequate filter is capable of removing almost completely the simulated gravita- 
tional effect from the repeat arc differences. Repeat arc differences measured by 
a radar altimeter are particularly useful for studying S'' induced by oceanographic 
phenomena such as eddies, meanders or rings. 

Global chronological crossover adjustment 

Global chronological crossover adjustment based on solving the parameters of s t e p  
wise error functions per arc segment is described in section 6.3 of this chapter. The 
type of error function to be introduced per arc segment plays an important role in 
this method since it determines the accuracy of the crossover minimization model. 
A compromise between accuracy of the stepwise error function and efficiency con- 
cerning the amount of unknowns to be solved for results in a stepwise 3 parameter 
Fourier function. This model also allows a physical interpretation in terms of the 
expected behavior of a radial orbit error. A crossover minimization problem derived 
from these error functions results in a self-adjoint compatible system of normal equa- 
tions. Under assumption of anti-symmetry of crossover time tags it is shown that the 
rank defect of the normal equations equals to 3. This means that one so-called mas- 
ter arc segment can be used to fix the solution, i.e. to acquire a particular solution 
of the system of normal equations. 



A singularity transformation of the unknowns allows to transform from one ar- 
bitrary master arc segment solution to any other without re-adjustment of the con- 
figuration while preserving the internal consistency of the altimeter solution. A 
remarkable property of the homogeneous solution of the system of normal equations 
is the velocity discontinuity effect a t  junctures of successive arc segments. The effect 
is considered artificial since it is known that a radial orbit error behaves as a smooth 
continuous function. Hence in a second global chronological model additional min- 
imization conditions for velocity discontinuities are forced on the system of normal 
equations. Inclusion of additional smoothness conditions have shown to reduce the 
rank defect from 3 to  2. 

In a next step a comparison is made between the general solution of the chrono- 
logical crossover problem and the simulated radial orbit error. For this purpose a 
singularity transformation of the solution is carried out under the condition that 
the general solution coincides in an optimal way with the simulated radial orbit er- 
ror signal. Computations have shown that an optimally adjusted crossover solution 
based on a chronological approach fails to  describe some terms of the geographically 
correlated part of the radial orbit error. It is shown that additional surface function 
modeling is required to  explain the differences between both solutions. In an ideal 
case the homogeneous solution of a crossover minimization model coincides with the 
geographical correlated part of the radial orbit error. 

Global  crossover ad jus tment  wi thout  a r c  segments  

In an alternative version of a global crossover adjustment, stepwise error functions 
along arc segments are not anymore used. The problem is to solve the parame- 
ters of one continuous and differentiable function modeling the radial orbit error 
over a full 3 day period. This function resembles the general solution of the Hill 
equations (homogeneous, particular and resonant case) taking the form of a Fourier 
series truncated at  2.3 cycles per revolution, including a two parameter expression 
describing the long periodic modulation of the signal. 

This approach avoids in a convenient way a number of problems encountered with 
the segmented models. Shortly summarized, the problems inherent to arc segment 
models are: 1) discontinuity a t  the boundaries of arc segments 2) over-parameteri- 
zation of short arc segments 3) poorly or even isolated segments with respect to  the 
'main' configuration. For completeness it is reminded that some of these problems 
formed real obstacles in the development of adequate software handling a segmented 
crossover adjustment. 

Under suitable time tag regularization it is shown that the rank defect of the 
normal equations equals to 9. This presumes a cutoff frequency of 2.3 cycles per 
revolution in the Fourier series. Higher cutoff frequencies result in a larger rank 
defect! It is found that the base vectors of the E matrix used in the singularity 
transformation of the unknowns take the form of certain linear combinations of 
inclination functions. 

Furthermore a verification of the column vectors of the E matrix with respect 
to  the rows in the design matrix is performed. This reveals that the column vectors 
are almost orthogonal to  the observation equations. However the effect of non-or- 



thogonality is negligible with respect to  the real crossover differences. 
A first suggestion for additional constraints on the system of normal equations 

has been put forward by Sandwell et al. (1986). The constraints are formed by direct 
height measurements from the altimeter to  natural or artificial radar transponders. 
Sandwell (ibid) mentions that 9 globally distributed transponders suffice for regu- 
larizing the problem which is equivalent to including 9 constraint equations in the 
form of c'= B 3  in the problem. The criteria for a proper choice of the transponder 
locations require further investigation. 

The method for regularizing the normal equations employed here is to force 9 
additional constraint equations on the unknowns. These constraint equations are 
chosen such that a general solution of the normal equations is found. This general 
solution may be transformed by a singularity transformation into any other solution 
without affecting the crossover problem. After a suitable singularity transformation 
an accurate comparison can be made with the simulated radial orbit error. Promising 
results are shown for solutions derived in this way. 



Chapter 7 

Processing of SEASAT altimeter data 

7.1 Introduction 

In this chapter the technique is described that is applied for removing a radial orbit 
error present in SEASAT altimeter data. The method employed here is identical 
with the LSA of crossover differences described in 36.4. It is based on solving a con- 
tinuous and differentiable error function from crossover differences under assumption 
of several additional constraint equations. These constraint equations are necessary 
for regularizing the normal equations which are singular by definition. The motiva- 
tion for using this particular technique instead of the approach of Rowlands (1981) 
is given in 37.2.1. 

An inventory of the available altimeter data shows that there are five periods 
in the non-repeat era of the SEASAT mission which are suitable for processing 
with the technique considered here. The periods have been chosen such that they 
coincide with the orbital periods the GSFC (Goddard Space Flight Center) defined 
for computing the ephemerides of SEASAT. 

In each of these periods defined by the GSFC an independent LSA of crossover 
differences is carried out. Firstly it will be shown that it is possible to apply the 
same model as discussed in 36.4.2. For this purpose assumptions will be discussed 
concerning the frequency resolution and the maximum cutoff frequency in the radial 
orbit error model. 

The internal evaluation of crossover residuals is discussed in 37.3.1. The results 
show that the technique of global crossover minimization considered here can be per- 
formed effectively on SEASAT altimeter data. Furthermore some characteristics of 
the five computed orbit error functions are discussed. They concern the concentra- 
tion of signal near 1 c.p.r. and correlations of the individual solutions. As a result of 
the high correlations it will be shown that it is feasible to consider a combined orbit 
error model. The latter implies a continuous error function overlapping a multiple 
of orbital periods that is solved by minimizing crossover differences. 

The external evaluation describes the behavior of individual crossover solutions 
as a result of a singularity transformation. Here the singularity transformation is 
chosen such that an internal consistent crossover solution is minimized with respect 
to a reference geoid. Furthermore it will be shown that there exists a systematic 
effect in the shift vector of the singularity transformation. Whether .this part is 



actually representing an unmodeled (physical) phenomenon is discussed in 57.3.2. 

7.2 Description of the adjustment 

7.2.1 Motivation 

In this section a model is described that is applied in a global adjustment of SEASAT 
crossover differences. The method is analogous to  the LSA described in 56.4 where 
a continuous and differentiable error function is solved from simulated observables. 
The reasons for choosing this approach instead of the alternative segmented method 
is discussed in the sequel. 

A global segmented approach, where error functions are solved per individual arc 
segments, has been applied by Rowlands (1981). Rowlands solved for error functions 
in the form of tilt and bias expressions for segments longer than 212 seconds. Shorter 
segments were solved for bias only error functions. The purpose of Rowlands' work 
was to obtain a globally adjusted SEASAT altimeter dataset. There was no specific 
objective to  reconstruct a radial orbit error function from the unknowns solved, 
neither was there any objective for improving the gravitational field from the radial 
orbit error recovered. 

Similar versions of Rowlands' adjustment, using other error functions defined 
over arc segments as long as a half revolution of the satellite, are discussed in 56.3. 
There are a number of reasons to assume that Rowlands' results are 'contaminated' 
by effects similar to the shortcomings of the homogeneous solution of the segmented 
crossover minimization problem. Rowlands mentions that: "The primary arc which 
was fixed was a north-west heading arc starting south of Africa and finishing near 
Greenlandn. This means that Rowlands' solution is deformed by the full effect of a 
radial orbit error along this primary arc. 

The counter measures mentioned by Rowlands (ibid) for suppressing the effect 
are presumably not adequate. "The primary arc has been formed out of the average 
of 8 repeat arcs and shows a good precision." In chapters 5 and 6 it is shown 
that minimization of repeat arc differences is hardly effective for improving a radial 
orbit error caused by short periodic gravitational effects. Yet these averaged arc 
segments may be useful for suppressing variability and other short periodic effects. 
The only hope for a well positioned primary arc comes possibly from the second 
reason Rowlands mentions for choosing a specific arc: "Secondly, it was an arc that 
could have been tracked from several laser stations." 

Nevertheless, if Rowlands succeeded in finding a suitable primary arc, the results 
might still be contaminated with other geographically correlated radial orbit error 
components. Noteworthy is the mapping of surface harmonics up to  degree and 
order 2 since the corresponding mapping frequencies occur close to  the once per 
revolution region in the radial orbit error spectrum. Mapping of higher degree and 
order surface harmonic coefficients is not expected to  be so problematical due to  
the expected rapid extinction of the radial orbit error signal at higher frequencies. 
Moreover, as our simulation showed, this effect cannot be described by a singularity 
transformation of the segmented solution. 

In addition Rowlands' derivation of a singularity transformation (appendix F in 



Rowlands (1981)) indicates that one primary arc segment suffices for regularizing 
his global segmented crossover minimization problem. This implies 2 degrees of 
freedom in the network of arc segments which is not sufficient for modeling the 
(more complex) geographically correlated part of the radial orbit error. 

In an improved version of a global crossover adjustment the unknowns of a 
continuous and differentiable function taking the form of (6.30) are solved from the 
crossover differences. This method is invariant with respect to the geographically 
correlated part of the radial orbit error as shown in $6.4. By adding 9 constraint 
equations, which are derived from the base vectors spanning the null space of the 
normal equations, to  the observation equations it is possible to regularize the normal 
equations. From a practical point of view the 'continuous' method has shown to be 
considerable easier for computer implementation than any segmented method. 

The outline of this section is as follows. Firstly an inventory is discussed of the 
available SEASAT altimeter data. The inventory is necessary for selecting suitable 
orbital periods defined by the GSFC. In a second step the model itself is described. 

7.2.2 Inventory of available data 

Altimeter data in the form of GDR's is available over the entire period of 3 months 
of the SEASAT mission. In the GDR dataset used the earliest available data starts 
a t  7-jul-1978 4:21:44 GMT and ends at  10-oct-1978 1:36:56 GMT. In first instance a 
catalog of arc segments is made from this dataset. Here the purpose of a catalog is 
to organize the GDR data in arc segments which is particularly useful for crossover 
computation, compare chapter 5. The arc segment catalog contains in total 1965 
arc segments of which the first 1208 entries fall into the non-repeat and the last 757 
into the 3 day repeat era. 

The GDR structure itself keeps an revolution number which is increased by 1 
whenever the satellite passes through the equator in an ascending way. In the 95 
days of available data the GDR dataset indicates 1358 revolutions. Theoretically 
the amount of arc segments should be twice the amount of revolutions indicated 
by the GDR dataset. Unfortunately this is not the case due to the fact that it is 
'contaminated' by a number data interruptions, in the sequel referred to  as data 
gaps. The gaps in the altimeter data stream are caused by various effects. Short 
gaps in the data stream are mostly a result of the bad data removed during the 
editing procedure. Larger data gaps, lasting from several revolutions up to several 
days, are caused by the various interruptions in the operation of the altimeter. A 
number of times it occurred that the altimeter has been switched on and off or set in 
a standby mode as can be seen from the operations log listed in the GDR handbook, 
compare Lore11 et al. (1980). 

After launch, orbit insertion and engineering assessment in total 5 maneuvers 
were carried out during which the altimeter was switched off. Table 7.1 contains the 
6 maneuver free periods encountered in the GDR dataset. It contains respectively: 
the starting and ending epochs in seconds with respect to the GDR offset time 
(01/01/78 00:OO GMT), the estimated revolution period in seconds ( T ) ,  the standard 
deviation of this value (a,), the longitude displacement in degrees of an ascending 
equator transit longitude (AA), the standard deviation of this value (aaA) and the 



start end r o r  AA ~ A A  wo/we 
- 19554068 6037.7057 0.0577 -25.082693 0.0005401 -14.3525 

19554068 19813618 6036.2993 0.0548 -25.076746 0.0005538 -14.3559 
19813618 20251236 6034.3844 0.0558 -25.068686 0.0005185 -14.3605 
20251236 20510528 6035.7380 0.0572 -25.074408 0.0004831 -14.3573 
20510528 21777022 6045.1774 0.0572 -25.114129 0.0005127 -14.3346 
21777022 - 6045.6829 0.0656 -25.1 16424 0.0004279 -14.3333 

Table 7.1: The maneuver free periods in the SEASAT GDR structure. 

Table 7.2: Beginning and ending epochs of the GSFC orbits according to the GDR 
handbook of Lore11 et al. (1980) 

beginning epoch ending epoch 

corresponding ;,/we ratio. 
Another problem with the GDR altimeter dataset comes from the fact that the 

GSFC orbits are computed in periods of maximally 6 days, resulting, according to the 
GDR handbook, in 13 trajectories. The corresponding orbital periods are taken from 
the GDR handbook and are presented in table 7.2. This table contains respectively 
the orbit number (nmr), the maneuver free period number (per) referring to the 
corresponding row in table 7.1 and the beginning and the ending epochs. The 
epochs are given as date and time and the corresponding GDR seconds which are 
counted from the GDR offset time. In contrary to the NSWC orbits (which are 
available as a correction on the GDR tapes) no attempt was made to smooth the orbit 
altitude h* a t  the juncture times listed in table 7.2, compare (Colquitt, Malyevac 
and AnderleJ980). As a result discontinuities are found in the orbit altitude h* and 
the corresponding sea surface heights h. 

nmr per 
1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 2 

l 0  3 
11 4 
12 5 
13 6 

date time GDR sec. 
06/07/78 00:OO 16070400 
09/07/78 00:OO 16329600 
15/07/78 00:OO 16848000 
21/07/78 0O:OO 17366400 
27/07/78 00:OO 17884800 
02/08/78 00:OO 18403200 
08/08/78 0O:OO 18921600 
14/08/78 00:OO 19440000 
15/08/78 07:43 19554180 
18/08/78 08:49 19817340 
23/08/78 09:22 20251320 
26/08/78 09:28 20510880 
05/09/78 0O:OO 21340800 

date time GDR sec. 
09/07/78 0O:OO 16329600 
15/07/78 0O:OO 16848000 
21/07/78 0O:OO 17366400 
27/07/78 00:OO 17884800 
02/08/78 0O:OO 18403200 
08/08/78 0O:OO 18921600 
14/08/78 00:OO 19440000 
15/08/78 07:43 19554180 
18/08/78 07:48 19813680 
23/08/78 09:22 20251320 
26/08/78 09:27 20510820 
01/09/78 00:OO 20995200 
10/10/78 01:05 24368700 



7.2.3 Setup of the individual adjustments 

As mentioned in $7.1 a global crossover adjustment is performed within the periods 
the GSFC defined for computing the trajectories of SEASAT. This is a necessary 
restriction of the method employed here. A continuous and differentiable function 
modeling the radial orbit error signal may not be expected to follow the disconti- 
nuities a t  the orbit junctions. Implicitly this limits the dimensions of a crossover 
problem. Six days of altimeter data consist maximally of U 28 X 6 = 168 arc seg- 
ments resulting in U 7056 crossover differences. In reality, usually less than 50% of 
the crossovers remain due to data editing and land data. 

The method employed for minimizing the crossover differences is described in 
$6.4. Crossover differences are minimized by means of solving, in the least squares 
sense, unknowns of one continuous and differentiable function taking the form of, 
compare (6.30): 

bot 
kmaz 

Ar(t) = cos(nt) + - sin(nt) + c0 + [ak cos(kAwnt) + bk sin(kAwnt)] (7.1) 
K 7  K 7  k= l 

The characteristics of this function have been described in $6.4.2. Crossover obser- 
vation equations take the form of: 

where t; and t, represent absolute crossover time tags. From a LSA based on (7.1) 
substituted in (7.2) the unknowns ao, bo, c0 and ak,bk with k E [l ,kmaz] are 
solved. The constants n, K, and 7 in (7.1) are chosen conform the characteristics 
of the individual orbital periods which are listed in table (7.1). Furthermore t in 
equation (7.1) is defined with respect to  an arbitrary ascending equator transit time 
inside an orbital period. 

The constant Aw in equation (7.1) determines the frequency resolution of the 
radial orbit error spectrum. The value of Aw must be chosen such that the terms 
kAwnt in (7.1) coincide with the lumped coefficients $km = k W, + m W,. For a three 
day repeat orbit, as considered in the crossover adjustment based on simulated 
observables described in 56.4, an choice for Aw is easily made. Since the simulated 
orbit repeats itself after 43 revolutions Aw = 1/43. However the list of maneuver 
free periods, compare table 7.1, indicates that the values of w,/w, vary in the range 
from -14.3605 to  -14.3333. As a result the $km terms do not coincide exactly 
with multiples of 1/43 of a c.p.r. This was verified by computing for all maneuver 
free periods all possible = k + m(w,/w,) values assuming: 1) a maximal 
spherical harmonic expansion up to degree and order 36 and 2) a cutoff frequency 
of 3 cycles per revolution. The extreme deviations of with respect to  the 
nearest frequency being a multiple of 1/43 c.p.r. turned out to be less than 0.005 
c.p.r. This discrepancy is too small to be detected from a time series having a 
duration of 6 days (86 revolutions). As a result there is no need to  decrease the 
value of Aw from 1/43 to for example 1/86. 

The constant kmaz determines the upper limit of the series expansion in equa- 
tion (7.1). Care must be taken when choosing a value for kmaz since it determines 



case nmr start end a/d cnt M a 
1 2 917 00:OO 1517 0O:OO 84/83 1606 -0.74 1.71 

Table 7.3: The a-priori crossover statistics in 5 six day GSFC periods. 

directly: 1) the cutoff frequency of the radial orbit error spectrum; 2) the corre- 
sponding rank defect of the normal equations derived by crossover minimization; 
and 3) the speed of the algorithm for the computation of the normal equations. 
Here the value of kmax is chosen conform the LSA of the simulated crossover differ- 
ences described in $6.4, accordingly kmax = 100. This choice allows frequencies in 
the radial orbit error spectrum up to 2.3 c.p.r. The crossover r.m.s. after LSA could 
be used to verify (or justify) the value of kmax. 

As mentioned before observation equations in the form of (7.2) will be used in 
a LSA of crossover differences where the covariance matrix of the observations Qv, 
is chosen as a unit matrix. The rank defect of the normal equations derived by 
observation equations of the form of (7.2) has been discussed in $6.4.3. In order to 
find a general solution of the system of normal equations 9 additional constraints of 
the form of c'= BZ with B = E~ are included. 

7.3 Internal and external evaluation 

7.3.1 Internal evaluation 

Crossover data considered in the analysis has been chosen such that 1) it falls in 
the 6 day GSFC periods 2) it is located in the non-repeat period of the SEASAT 
mission and 3) a sufficient amount of data is found. This results in 5 periods suitable 
for processing with the technique considered here. The other GSFC periods where 
either three days long or frequently interrupted. The a-priori crossover statistics in 
each of the five orbital periods are shown in table 7.3. This table shows column-wise; 
nmr: the corresponding GSFC orbit number as given in table 7.2; s t a r t  & end: 
the beginning and ending date and time in 1978; a/d: the number of ascending and 
descending arc segments; cn t  : the amount of crossover observations in this period; 
M,  U : the mean crossover difference (always ascending minus descending) and r.m.s. 
respectively. 

For each period individually a crossover minimization iqcarried out as described 
in $7.2.3. This means that a function Ar() ,  in the form of (7.1), comprising 203 un- 
knowns, is solved from the crossover differences. Furthermore 9 additional constraint 
equations are included. The constraints are only used for regularizing the system 
of normal equations. The internal (crossover) accuracy in the form of crossover dif- 
ference statistics computed for each solution are shown in table 7.4. It indicates for 
each case respectively; nmrl: the amount of observations; rmsl : the internal r.m.s. 



case nmrl rmsl min/maxl nmr2 rms2 itr 
1 1606 0.26 -1.245/+2.238 1600 0.25 3 
2 1813 0.39 -2.802/+1.079 1779 0.36 3 
3 1892 0.28 -1.115/+1.161 1886 0.28 2 
4 1402 0.32 -1.085/+2.320 1392 0.30 3 
5 1256 0.41 -1.429/+1.228 1215 0.36 4 

Table 7.4: The a-posteriori crossover statistics in 5 six day GSFC periods. 

after the first adjustment and min/maxl : the corresponding extreme deviations. No 
crossover data is eliminated by means of editing. The columns labelled nmr2 and 
rms2 in table 7.4 show the results after editing the crossover observations. Editing 
refers here to  the rejection of crossover differences in case their discrepancy after 
LSA exceeds in magnitude a value of 30 (with U estimated as 30 cm). The proce- 
dure is applied in an iterative manner; the LSA is rehearsed with edited observations 
until rejections stop. Column 7 in table 7.4 shows the amount of iterations required 
to accomplish a solution. 

The results show that the.technique of global crossover minimization described 
in 57.2.3 can be performed effectively on SEASAT altimeter data. The internal 
accuracy found is comparable with Rowlands' results who found an a-priori r.m.s. 
of f 1.65 m that is reduced to  f 0.28 m after the adjustment. 

Variance behavior  of t h e  solutions 

A point of concern is the a-posteriori variance behavior of the unknowns in (7.1) 
found by a LSA of crossover differences described above. The a-posteriori variances 
are shown in figure 7.1 from which it can be seen that the solutions 1 to 3 result in 
promising a-posteriori variances of the unknowns. The results are similar to  what 
has been found in the crossover adjustment of simulated observables described in 
56.4.2 ff. However this is not anymore true for solutions 4 and 5. 

In figure 7.1 the a-posteriori standard deviations of the ak unknowns are shown as 
a function of the frequency in c.p.r. where it is assumed that the a-priori covariance 
matrix of the observations Qyy equals to  an unscaled unit matrix. The horizontal axis 
represents the frequency in c.p.r. with a resolution of 1/43 c.p.r. The vertical axis 
shows the a-posteriori standard deviations of the unknowns in meters per 1/43 c.p.r. 
Case 1 is displayed with a vertical offset of 0 m whereas each following case is shown 
relative t o  successive vertical increments of 1.5 m. Two remarks: 1) the striped 
vertical lines in figure 7.1 coincide with the singular frequencies in the crossover 
solution, 2) a-posteriori standard deviations of the ao, bo and c0 terms in eq. (7.1) 
are not included in this figure. 

It can be seen from figure 7.1 that some solutions, especially the fifth, are ham- 
pered by relatively high a-posteriori standard deviations of the unknowns concen- 
trated in the lower frequency range of the spectrum (from 0 to 1 c.p.r.). Furthermore 
it appears that the high standard deviations occur for the non-singular frequencies 
in the radial orbit error spectrum. 
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Figure 7.1: The a-posteriori standard deviations of the ak: unknowns in m per 1/43 
c.p.r. (relative to a certain offset) as a function of the frequency in c.p.r. The figures 
show the results for the five crossover solutions computed from SEASAT altimeter 
data. 



Table 7.5: The matrices of correlation coefficients as they are computed from 5 
independent orbit perturbation spectra. On the left side the results are shown for 
all frequencies, on the right side the singular frequencies are excluded. 

This phenomenon is most certainly caused by the poor data distribution in pe- 
riods 4 and 5. Compare also table 7.4 where it is shown that the latter two periods 
contain the fewest amount of crossover differences. In this context it should be re- 
marked that the mentioned a-posteriori standard deviations are found as the square 
roots of the diagonal elements of the inverse of the normal matrix (A~Q;A)-'. 
The magnitude of the crossover residuals plays no role in the computation of the 
a-posteriori standard deviations of the unknowns. It is the structure of the design 
matrix A and the a-priori covariance matrix Q,, that determine the a-posteriori 
variances. 

Concentration of signal around once per revolution 

All solutions found (the 'suspicious' variance solutions 4 and 5 inclusive) have shown 
to resemble the expected concentration of signal close to once per revolution. The 
five power spectra computed from the ak and bk unknowns are shown in figure 7.2. 
Figure 7.2 is arranged in the same way as figure 7.1. Here the vertical axis represents 

the amplitude in m per 1/43 c.p.r. defined as Jm. Again the ao, bo and c0 
terms in eq. (7.1) are not included in figure 7.2. 

Correlation of perturbation spectra 

Another important result are the high correlations found between the independently 
determined perturbation spectra. The method which is applied for computing the 
optimal correlations by means of FFT  techniques is discussed in appendix B. 

The five independent solutions in the form of (7.1) obtained by crossover mini- 
mization have been compared by means of a correlation analysis. On the left side 
of table 7.5 the correlation coefficients are shown as they are found by comparing 
all possible combinations of perturbation spectra computed by LSA. Correlation is 
computed for all ak and bk terms in (7.1) except for the ao, bo and c0 terms. The 
a0 and bo term are assumed to be characteristic for one orbital period since they 
originate from the particular resonant solution of the HE. The bias term CO, whose 
value is negligible due to the constraints forced on the unknowns, is also not used 
in the correlation analysis. 

The correlation coefficients as they are shown on the left side of table 7.5 are 
not "too convincing" (One should be aware of the fact that it might be difficult to 
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Figure 7.2: Five independently computed power spectra of the unknowns acquired 
by minimization of SEASAT crossover differences. The figure shows the amplitude 
in m per 1/43 c.p.r. (relative to a certain offset) as a function of the frequency in 
c.p.r. 



interpret the values of the correlation coefficients). Higher correlation coefficients can 
be obtained after an elimination of the singular frequencies from the perturbation 
spectra (at 0, W,, 2w,, W,, W, f W,, 2w0, 2w0 f W, and 2w0 f 2w,). The results where 
the singular frequencies are left out are shown on the right side of table 7.5. 

These results are "more convincingn than those found in the former correlation 
analysis. Remarkable are the high correlations, up to 0.94, of the first three pertur- 
bation spectra. Note also the weak correlation of solution 4 with 5 and solutions 4 & 
5 with the other solutions. This is not surprising due to  the problematic a-posteriori 
variances of the unknowns of solutions 4 and 5. 

Combined solutions 

It is an important consequence that individual solutions free of 1) singular frequen- 
cies and 2) resonant Hill effects are highly correlated. These high correlations suggest 
the presence of a continuous disturbing effect, like unmodeled gravitational pertur- 
bat ion~,  acting on the satellite. In this case potential coefficients of the gravitational 
field may be estimated from the Fourier coefficients of the continuous function. In 
this separate parameter estimation process eq. (4.26) may be used to derive the 
observation equations. The implementation of the latter step is however not in- 
vestigated in this work, instead it is recommended for further research on satellite 
altimetry. 

Due to high correlations it is reasonable to assume that one can solve for one 
disturbing function Aro(t) overlapping a number of orbital periods: 

kmaz 

Aro(t) = Ak cos(kAwnt) + Bk sin(kAwnt). (7e3) 
k= l 

(compare (7. l ) ,  here excluding an exact once per revolution frequency). Included 
are a number of additional subfunctions ~ r k ( t )  modeling specific perturbations for 
individual orbital periods: 

t - tb t - t b  
~ r : ( t )  = (at  + a;-) cos(ni(t - t t))  + (bi + 6; -) sin(ni(t - t t ) )  + C: . 

K' T' K'T' 

These subfunctions model the resonant Hill effect for each orbital period "in. The 
variables are chosen conform (7.1) with an additional superscript "in referring to the 
specific orbital period. If N multiple orbital periods are treated simultaneously in 
a crossover adjustment then Ar(t) = Aro(t) + ~ r j ( t )  + ... + ~ r r ( t ) .  Note that any 
crossover observation equation in the form of (7.2) refers to Ar. 

Constraint equations as applied in the crossover adjustment over one orbital pe- 
riod are necessary for regularizing the normal equations. Constraints affect the Aro 
function including the ao, bo and c0 term of an (arbitrarily chosen) Arp function. In 
figure 7.3 it is shown how one Ato and four Arp functions, including the constraints 
affecting 1 specific orbital period, might be arranged in a combined approach. 

In an attempt to compute a combined solution two successive orbital periods 
(case 2 k 3 in table 7.3) are processed simultaneously. In total there are 7385 
crossover differences of which 1813 reside in the 2nd and 1892 in the 3rd orbital 
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Figure 7.3: Arrangement of error functions in a combined approach. 

Table 7.6: Crossover statistics before and after a combined adjustment of orbital 
periods 2 and 3. 

a-priori a-posteriori 

period. Furthermore there are 3680 additional crossover differences in the overlap 
of period 2 and 3. These combination crossovers have their ascending time tags in 
one orbital period and their descending time tags in the other orbital period. 

The number of unknowns in this combined adjustment equals to 208; there are 
203 unknowns conform an individual adjustment in the 2nd orbital period and 5 
unknowns for the subfunction Atp() in the third orbital period. The results before 
and after the adjustment are shown in table 7.6. In table 7.6 column "cnt" refers to  
the amount of crossover differences, "M" refers to  the average and "an to the r.m.s. 
of the crossover differences. The results are separated row-wise for period 2 ,  3, the 
overlap of 2 and 3 and the sum of 2 and 3. 

The results in table 7.6 are typical for combined crossover solutions and show 
that the a-posteriori crossover r.m.s. tends to increase. However it was found that 
the a-posteriori standard deviations of the unknowns tend to decrease uniformly by 
a factor of 3 to 5 when compared with individual solutions. Most of the improvement 
in the variance spectra takes place in the lower frequency range. This is caused by 
the fact that about 4 times as much observations are used. 

The results show, as suggested by the correlation analysis, that it is possible to 
solve one continuous overlapping function Ar,(). This function models a continuous 
disturbing effect acting on the altimeter satellite which is unmodeled in the altimetric 
configuration. The fact that the crossover r.m.s. increases is probably due to  the 
inability of the model to  follow short periodic effects above 2.3 c.p.r. like remaining 
tropospheric or ionospheric effects acting on p. These effects are probably absorbed 
in individual adjustments where they result in a lower crossover r.m.s. 

case cnt 
period #2 1813 
period #3 1892 
overlap 3680 
total 7385 

M a 

-0.37 1.58 
-0.36 1.59 
-0.37 1.59 
-0.37 1.59 

M a 

0.00 0.57 
-0.01 0.48 
0.00 0.51 
0.00 0.52 



7.3.2 External evaluation 

In $6.4 the characteristics of singularity transformations of continuous crossover so- 
lutions are discussed. In that section a singularity transformation of the unknowns is 
used to  minimize the discrepancies between an internal consistent crossover solution 
and the simulated radial orbit error. For obvious reasons it is not possible to  apply 
this experiment to  actual altimeter data acquired from SEASAT. 

A possibility for escaping this vicious circle is to transform the internal consistent 
crossover solutions to  a known reference surface. In analogy with $3.3.5 it will be 
discussed how internal crossover solutions are minimized with respect to  a chosen 
reference geoid. How these transformed solutions have to  be interpreted is discussed 
later on in this section. 

Theoretical background 

Solved by means of a LSA of crossover differences are the unknowns ak, bk and a0 
bo and c0 in (7.1) under the condition of 9 additional constraint equations. In the 
sequel we consider these unknowns to  be collected in a vector which is subject 
to  a singularity transformation taking the form of G,, = Zold + Es'. The structure 
of the matrix E is discussed in $6.4 where it is shown that it consists of nine iilc, 
and Cld, vectors comprising linear combinations of inclination functions. These base 
vectors are found by mapping an artificial surface function along the nominal orbit. 
The shift vector s' in the singularity transformation contains the surface function 
coefficients. 

Minimization of the crossover solution L,, with respect to  a reference geoid is 
accomplished by solving (by means of LSA) the components of the shift vector s' 
in the singularity transformation. The observations employed in this LSA are the 
radial differences between the (crossover minimized) altimeter surface and a reference 
surface which is assumed to be a known geoid. Unknowns are the coefficients Cl,  
and Slm of a surface function, see (6.28)) which forms the observation equations. 

The radial difference observations Ah in this experiment are modeled by Ah(t) = 
h(t) - Ar(t) - N(t) where h(t) represents the sea surface height derived from raw 
altimeter measurements, Ar(t) the predicted correction in the form of (7.1) found 
by a LSA of crossover differences and N(t) the geoid height a t  the sample point. 
Note that Ar() represents a correction after LSA that needs to be subtracted from 
the observations. The influence of PST is ignored in this approach. 

In the computations it is assumed that the direct sea surface height samples h(t) 
are supplied at  regular spaced 180 S intervals along the altimeter ground track. A 
smoothing procedure is used for computing h(t) from the direct sea surface heights 
measured by the altimeter radar. The procedure consists of fitting a linear function 
of time through the measured sea surface height samples in a 180 S window. An 
evaluation of this linear function in the center of the window results in so-called 
3 minute smoothed height samples. Smoothed height samples have the advantage 
that highly detailed surface structures are eliminated during the computation of 
the surface function coefficients belonging to  a spherical harmonic expansion up to  
degree and order 2. 



Another computational problem concerns the evaluation of geoid heights a t  in- 
tervals of 180 s distributed along the altimeter ground track. Here geoid heights are 
found by an evaluation of the Bruns equation N = on a reference ellipsoid. This 
reference ellipsoid is defined by the geodetic reference system 1980, as is described 
by Moritz (1984), which is also used in the computation of the GDR dataset. 

Here T = W - U where W denotes the gravity potential whereas U refers to  
the so-called normal gravity potential. Due to  its rotational symmetry about the t 
axis and its symmetry with respect to  the equator, U may be written as a spherical 
harmonic expansion over the even zonal coefficients including a centrifugal term, 
compare Heiskanen & Moritz (1979). The centrifugal term cancels in T since it is 
identical in W and U 

Essentially the computation of T consists of a direct series expansion in spherical 
harmonics analogous to  (4.3). Instead of preforming the expensive series expansion 
at  each 180 S sample it is chosen to  follow a more economic approach in which the 
geoid heights are interpolated from a precomputed 1' X 1' (X,$) grid. The grid 
of geoid heights is generated by means of fast Fourier synthesis as is described by 
Colombo (1981). 

Interpolation in the (X,$) grid is accomplished by evaluating at  the desired 
point a bilinear function separately defined in each square of the grid. The bilinear 
function is in the form of a0 + a l z  + a z y  + a s z y  where the coefficients a0 through 
as have been chosen such that it fits exactly through the four corner values of each 
square. Computations based on geoids evaluated up to  degree and order 36 have 
shown that the worst case interpolation noise induced by this method is of the order 
of 4 cm standard deviation. 

Results 

In the computations it is assumed that crossover solutions are transformed to  a 
reference geoid derived from the GEM-T1 model described by Marsh et al. (1986). 
The improvements of the direct height differences Ah of the altimeter surface with 
respect t o  the GEM-T1 geoid are shown in table 7.7. The statistics are shown for 
all 5 cases described in 57.3.1. In table 7.7 "nrsamp" refers t o  the amount of 180 s 

Table 7.7: Statistics of direct height and crossover differences before and after a sin- 
gularity transformation of 5 SEASAT "crossover" solutions to a GEM-T1 reference 
geoid. 

smoothed height samples in each case. The columns labelled MAh and u ~ h , l  repre- 
sent respectively the mean of the height differences and the corresponding standard 



deviations before the singularity transformation. The column labelled u ~ h , 2  repre- 
sents the standard deviation of the height differences at  the 180 S smoothed samples 
after the singularity transformation. These statistics indicate an improvement in 
the relative positioning after a suitable singularity transformation of the altimeter 
crossover solution to  the reference geoid. 

One should keep in mind that the a ~ h  values are mainly caused by the differ- 
ences in N at frequencies where l > 36 which is the cutoff degree of GEM-T1. A 
transformation to higher degree and order reference geoids results in values for u ~ h  
comparable to what has been shown for the local adjustments, compare table 3.1. 

In theory the crossover residuals of each solution should not alter after a singu- 
larity transformation. However this transformation is derived from a nominal orbit 
instead of the actual altimeter trajectory causing small degradations in the inter- 
nal crossover standard deviations before and after the singularity transformation. 
These statistics are shown in the columns labelled u,,,~ and u,,,~ in table 7.7. They 
indicate respectively the crossover difference r.m.s. before and after the transfor- 
mation. It shows a negligible effect caused by the 'inaccuracy' of the singularity 
transformation. 

In table 7.8 the surface function coefficients, i.e. components of the shift vector G', 
are shown as they are solved for the five cases considered here. Note that all solutions 
are computed with respect to different reference times consisting of equator transit 
times. 

Table 7.8: The surface function coefficients solved by minimizing the five SEASAT 
crossover solutions to  the GEM-T1 geoid. 

Remarkably consistent and independent of the choice of a reference time appear 
to  be the values of the Coo and coefficients. Yet the author is of the opinion 
that it is difficult to  interpret these values. There are a number of reasons which 
might cause consistency in the recovered surface function coefficients: 

1. Geographic correlation of the radial orbit error itself which is in the order 
of several decimeters as found in the simulated adjustments. Compare also 
the results presented table 6.5. A significant influence is expected in the Clo, 
Cll and Sll terms since they produce effects close to the once per revolution 
frequency. 



2. The permanent sea surface topography effect, i.e. deviations of the sea surface 
with respect to  a geoid due to  permanent large scale currents in the oceans. 
Permanent sea surface topography has amplitudes up to  f l m in the region 
of the Antarctic circumpolar current, as is described by Levitus (1982). This 
phenomenon affects all the surface function coefficients in a singularity trans- 
formation. It is not unlikely that the consistent negative value of CZ0 is caused 
by this effect. 

3. Modeling errors in the reference geoid which are expected to  be small in the 
frequency band of 0 to 3 c.p.r. An interpretation of this effect will be given in 
chapter 8. 

4. Tracking station coordinate system errors which are presumably of the order 
of several centirneters up to decimeters. Presumably this results in a shift of 
the center of the geocentric coordinate system affecting directly the Clo, Cll 
and Sll terms in the singularity transformation. 

5. Unmodeled instrumental scaling effects which might explain the consistent 
negative value of Coo. 

6. Errors introduced by the crossover model itself, e.g. the fact that sea surface 
heights are measured only over the oceans. Compare also table 6.5 where 
surface coefficients of the "land+sean case and the "land" case are shown. 

We conclude that it is rather difficult to  judge upon the values of surface function 
coefficients found after a singularity transformation of an internal crossover solution 
to  a reference geoid since these coefficients absorb a combination of phenomena 
listed above. Eventually it means that the transformed crossover solution after a 
singularity transformation is tailored to  a specific reference geoid. 

7.4 Conclusions 

In this chapter the global crossover adjustment of SEASAT altimeter data is dis- 
cussed. The SEASAT altimeter dataset is subdivided in two sort of time windows. 
First of all there are 6 so-called maneuver free periods each in between two orbit 
corrections. Secondly inside each maneuver free period there are a t  least one and 
usually more so-called orbital periods, i.e. time windows in which the GSFC com- 
puted one independent 6 day orbit. By definition maneuver free periods and orbital 
periods do not overlap. In the case of GSFC orbits no precaution was taken to  
smooth the satellite altitude h* at  the juncture times. This is in contrast with the 
NSWC orbits which are overlapping and smoothed at the juncture times, compare 
Colquitt et al. (1980). 

The method of orbit error reduction employed in this chapter is nearly identi- 
cal with the method described in 56.4. In analogy an attempt is made to solve, 
by means of minimizing crossover differences, a continuous and differentiable error 
function modeling the radial orbit error. This function takes the form of a Fourier 
series including an additional sub-function modeling specific perturbations per or- 
bital period. A limiting factor in this approach is the inability of the model to  



follow orbit errors a t  the juncture times of two successive orbital periods. Accord- 
ingly the technique is applied on 5 six day GSFC periods in the non-repeat part of 
the SEASAT mission. 

In $7.3 five independent perturbation spectra are shown which are derived by 
minimizing SEASAT crossover differences. The internal evaluation has shown that 
perturbation spectra 1 to 3 behave as realistic solutions. This is in contrast with 
solutions 4 and 5 which are hampered by high a-posteriori variances of the unknowns 
concentrated in the lower frequency range. The cause of this effect is presumably 
the poor data distribution in periods 4 and 5. 

In all cases it was found that the crossover differences tend to decrease from 
f 1.65 m before the LSA of crossover differences to f 0.30 m after it. These statistics 
are comparable with the results Rowlands (1981) found in the global adjustment of 
SEASAT altimeter data. The internal solutions appear to show a concentration of 
signal in the neighborhood of 1 c.p.r. More important is the fact that individual 
crossover solutions tend to show a high correlation whereby it seems that singular 
frequencies are less correlated. High correlations might indicate a continuous un- 
modeled effect acting on the spacecraft mainly consisting of unmodeled gravitational 
perturbations. 

High correlations between individual solutions suggest to solve for one error 
model overlapping several orbital periods. This model takes the form of one con- 
tinuous function including additional sub-functions modeling specific perturbations 
inside each individual orbital period. This approach showed that the a-posteriori 
standard deviations of the crossover differences increased to approximately 50 cm. 
On the other hand the a-posteriori standard deviations of the unknowns of the con- 
tinuous error function decrease which is due to the fact that about four times as 
much observations have been used for estimating the unknowns. The method en- 
ables to process those orbital periods which individually result (due to poor data 
distribution) in high a-posteriori variances of the unknowns. 

The external evaluation discussed in $7.3.2 treats the adjustment of a crossover 
minimized surface to a chosen reference geoid derived from GEM-T1. Characteristic 
of this singularity transformation is the fact that the original crossover solution is not 
affected. However, it is necessary to assume a nominal orbit in the derivation of the 
singularity transformation causing a small (negligible) degradation of a theoretically 
consistent internal crossover r.m.s. 

A singularity transformation of the crossover solution to a reference geoid has 
been performed for all cases. The height differences of the particular crossover so- 
lution with respect to the GEM-T1 reference geoid are taken a t  so-called 180 s 
smoothed height samples distributed along the altimeter ground track. Character- 
istic of the transformed orbit error spectra appear to be the consistent values of 
the Coo and surface function coefficients which are the parameters of the singu- 
larity transformations. The nature of this effect is not well understood since there 
are a number of possible causes. The parameters of the singularity transformation 
tend to absorb a combination of these effects meaning that the eventual transformed 
crossover solution is tailored to a specific reference geoid. 



Chapter 8 

A sketch of an integrated approach 

8.1 Introduction 

In this chapter we compare a number of so-called integrated approaches for pro- 
cessing of satellite altimeter data. Firstly we concentrate on the objectives of an 
integrated approach, starting with a recently developed technique introduced by 
Wagner (1986,1988) and worked out in a slightly different version by Engelis (1987). 
In both cases the goal is to recover simultaneously the improvements of 1) the geoid 
2) the radial position of the spacecraft and 3) the permanent part of the sea sur- 
face topography (PST). Parts 1) and 2)' the geoid and the radial orbit error, are 
functions of corrections to the Earth's gravitational field. Items 3.) and 3) shall be 
denoted as the 'lower' part whereas 2) represents the 'upper' part of the problem. 

~ o t h  Wagner (ibid) and Engelis (ibid) develop for the upper gravitational part 
of the problem an analytical model for radial orbit errors Ar based on the Lagrange 
planetary equations. The lower gravitational part of the problem, consisting of a 
geoid N and its corresponding undulations corrections AN, is far easier to model 
than the upper part since no additional differential equations with variables depen- 
dent upon time are required as in the case of radial orbit errors. From the Bruns 
equations it follows directly that N = T / 7 .  An non-gravitational term in the lower 
part of the problem is the influence of PST, i.e. the term cP in eq. (2.2). This effect 
is modeled by mapping a surface function expressed in spherical harmonics along 
the altimeter ground track. 

In the second part of this chapter results obtained by global crossover analysis 
are compared with the Wagner/Engelis approach. A discussion focussed on the 
estimability of the radial orbit error by means of global crossover minimization is 
given in chapters 6 and 7 where it is pointed out that crossover solutions allow to 
model only a subset of the radial orbit error. This is caused by the fact that a 
portion of the radial orbit error behaves as geographically correlated. 

The results discussed in this work indicate that geographical correlation man- 
ifests as a low degree and order surface function. Geographical correlation of the 
radial orbit error has also been described by Rosborough (1986) whose results differ 
from the author's findings. This justifies a more detailed treatment of Rosborough's 
theory which is given in $8.3. As a key issue the question remains in what sense the 
geographically uncorrelated part of the radial orbit error can be used to improve a 



gravitational field. 
The frequencies recovered in the orbit error spectrum, acquired by means of 

crossover minimization, may be applied in constraint equations for lumped coeffi- 
cients of the gravitational field, as is described in Schrama (1986a). This indicates 
that also these results may contribute in an integrated approach. However on first 
sight a major difference between the method of global crossover minimization and 
the Wagner/Engelis approach appears to  be the perspective of the latter to recover 
any low degree and order surface effect which shows up either in the form of geoid 
undulations or PST. 

8.2 Remarks on simultaneous recovery experiments 

The integrated approach of Wagner (1986) envisages to solve for improvements in the 
orbit, the geoid and the PST simultaneously. The method is clarified by considering 
the fundamental altimetric equation with (P representing the permanent and c'' the 
variable part of the sea surface topography: 

(compare (2.1)) from which the boxed terms Ar, A N  and AcP are considered. These 
terms denote models for the improvements of potential coefficients and surface func- 
tion coefficients of the PST field, respectively. Uncertainties in the potential coef- 
ficients describe the radial perturbations of the satellite and the geoid errors. Im- 
provements in the surface function coefficients pertaining to the PST field describe 
AcP. The other terms in eq. (8.1) are assumed to be known (either from a-priori 
models or measurements performed by the altimeter radar) or are simply ignored 
(like c'', assuming that tides are modeled by means of an independent model). 

The motivation for a joint modeling of Ar and A N  becomes apparent when the 
error budget in altimetry, e.g. as shown in table 2.2, is taken into account. This 
table confirms that dominating effects are caused by gravitational modeling errors 
manifesting in geoid errors A N  and orbit errors Ar which are both far larger than 
the instrumental accuracy of the altimeter radar. In any crossover method the 
influence of A N  is eliminated by definition. Here this property is not necessarily 
applied. 

A completely different term in the altimetric equation, that is not coupled to 
gravitational influences, is ASP. It is curious that this term cannot be found in the 
altimetric error budget presented in table 2.2 originating from Tapley et al. (1982a): 
the influence of PST is of the order of 1 m as is shown in Levitus (1982). The 
following quotation comes from Wagner (1988,pp. 1-2) emphasizing the importance 
of PST: 

"Why is it important? Because this permanent water height above a level 
reference can only be maintained by permanent external forces acting on 
the ocean's surface layers, either prevailing wind stresses or dynamic 
forces associated with ocean currents such as the Coriolis forces which 
accompany the great ocean gyres that result from equator t o  pole heat 



transport in the open oceans. Knowing the constant part of this topog- 
raphy would essentially determine the circulation of the surface waters 
in the deep ocean with great benefits to marine science, navigation and 
climatology." 

8.2.1 Gravitational orbit errors 

The effect of gravitational radial orbit errors in satellite altimetry has been discussed 
in chapter 4 and needs no further derivation here. Instead a brief summary is 
discussed of the radial solutions of the Hill equations. 

The homogeneous solution of the HE shows radially an exact once per revolution 
term including a constant bias, compare eq. (4.36). Homogeneous effects are caused 
by unsolved initial state vector disturbances which are most certainly present in the 
altimeter orbit. The magnitude of this effect is unfortunately not known for e.g. 
SEASAT. 

From the non-resonant particular solutions, given in eq. (4.38), it is found that 
the radial perturbations are amplified close to the once per revolution frequency. 
This is indicated by the leading term of (4.38) taking the form of [w(n2 - w2)]-' 
where W represents the frequency of the perturbing force and n the mean motion 
of the spacecraft. An important property of the non-resonant particular solution of 
the Hill equations is the uniqueness in frequency response. It means that harmonic 
perturbing forces at  a frequency of W result in orbit errors at  exactly the same 
frequency W. 

A first application of eq. (4.38) is the substitution of the disturbing potential T. 
This results, as is shown in 54.2.2, in the same solution Wagner (1985), Rosborough 
(1986) and Engelis (1987) derived from the linear perturbations theory which is 
based on the conventional Lagrange planetary equations. 

The nature of the disturbing potential function, as given in eq. (4.43), suggests 
that certain clusters of potential coefficients contribute to the same frequency. These 
clusters form so-called lumped coefficients and occur for constant values of k and m 
in (4.43). Moreover only a limited number of (k, m) clusters are in effect as a re- 
sult of the rapid decline of perturbations at  higher frequencies. This problem is 
relevant for the estimability of potential coefficients from orbital perturbations, cf. 
(SchramaJ986a). Here, where one intends to improve potential coefficients from ra- 
dial orbit errors, the problem is not any different. Yet in order to discuss the problem 
of estimability of potential coefficients in the integrated approach it is required to 
consider as well the second gravitational part of the problem which is formed by 
geoid undulations. This part will be described later on in this chapter. 

Additionally the Hill equations allow a so-called resonant particular solution 
describing the radial orbit errors as a result of constant or exact once per revolution 
perturbing forces. This is a separate particular solution, taking the form of (4.39), 
since disturbing functions at  W = 0 or W = f n lead to singularities in the non- 
resonant particular solution of the Hill equations. The practical applications of the 
resonant solution combined with the homogeneous solution are important. These 
solutions tend to model a lot of the signal in the simulated radial orbit error, as 
is mentioned in chapter 4. An accurate comparison of the simulated radial orbit 



error with the particular solution appears only possible after removing the resonant 
particular & homogeneous effect. In a symbolical notation the complete form of the 
solution becomes: 

where Arh represents the homogeneous part, Arpr the resonant and Arpn the non- 
resonant part. The coefficients P,, Q,, R,,, P,, Q, and R,, may be related to the 
disturbing potential as is shown for equation (4.38). These terms are a function of the 
perturbing force and additional constants needed to  define the potential, compare 
also (4.43) and (4.46). The comparison with a numerically integrated radial orbit 
error indicates that eq. (8.2) is suitable for modeling the simulated perturbations. 
This agrees with Wagner's (1985,~. 3035) findings showing that there is hardly any 
need to  improve the gravitational radial orbit error model. He states that "second- 
order" linear effects (eoAM with q = 0 and q = f 2, Aa with q = f l and Ae with 
q = f 2 in (4.24)) can be ignored in the altimetric problem. 

Higher-order solutions 

Both the linear perturbations theory and the Hill equations are based on the con- 
cept of a nominal trajectory: an ellipse precessing as a result of secular J2 effects, 
compare also (4.20). In reality the nominal orbit is more complicated due to  the 3.) 
relatively large oscillations caused by the J2 term and 2) odd zonal perturbations 
as is described in appendix A. This implies that perturbations in the elements, as 
shown in (4.22), should be derived by integration along a more complicated trajec- 
tory. In (Kovalevsky,l988) these sort of solutions are referred to  as second-order 
solutions. 

There is a conflict in terminology between (Kovalevsky,l988) and (Wagner,1985). 
The latter "second-order effects" are described in the scope of the linear perturba- 
tions theory. A more appropriate description would probably be: truncation effects 
in linear perturbations theory due to  damping properties of eccentricity functions in 
near circular orbits. In order to  distinguish between the terminology of Kovalevsky 
and Wagner we shall use "second-order" between double quotes for the latter. 

Kovalevsky (1988) describes the derivation of second-order solutions from J2 
first-order solutions (i.e. the J2 secular including the J2 LPT solution). For this 
purpose the first-order solution is substituted in the LPE and integrated term by 
term resulting in expressions containing J:. Kozai (1962) gives the complete second- 
order expression for the radius of an orbit of any eccentricity for low-degree zonal 
coefficients only. 

There are two reasons why second and higher-order models have not been inves- 
tigated in this study. A first reason is that these theories are probably not resulting 
in a drastic refinement of the analytical orbit error model. In chapter 4 the first- 
order results have shown to be quite appropriate for describing the simulated radial 
orbit error. Secondly, all the second and higher-order solutions tend to become very 



complicated and almost impossible to verify. The following quotation from Taff 
(1985) on page 321 should be a warning against higher-order theories: 

'Beyond first order results I know of no useful result from perturbation 
theory in celestial mechanics because all of the higher-order results have 
no firm mathematical basis. Frequently the second order approximation 
produces non-sensical (non-sensible?) results (the critical inclination, 
small divisors e.t.c.). There in no good analytical long-term perturbation 
theory." 

8.2.2 Geoid undulations 

A characteristic part in the integrated approach is the modeling of geoid undulations 
in connection with gravitational orbit errors. In $7.3.2 it is mentioned that the geoid 
itself may be computed by means of the Bruns equation: N = T/7. The disturbing 
potential T is represented by T = W - U where W equals to the full gravity potential 
and U the normal gravity potential of the reference ellipsoid. Besides W = V + Z 
and U = V' + Z where V equals to the gravitational potential, V' the normal 
gravitational potential and Z the centrifugal potential which cancels in T.  The 
denominator 7 in the Bruns equation represents the normal gravity of the reference 
ellipsoid. Here as well T as 7 are evaluated at the sub-satellite point lying on the 
reference ellipsoid. 

By means of inclination functions T is projected on the nominal ground track of 
the altimeter satellite. The corresponding potential function takes the form: 

lmaz lmaz 

T(t) = C [Akm cos $'km + Bkm sin $'km] 

where 
lmaz l -t -* l-m:cucn 

Clm S l m  (Akm, Bkm) = F X (:) Tlm(1-k)/2(1) [ -* -* ] 
~ = m  -Slm Clm l-m: odd 

(8.4) 

and 

where C; and d c  represent the coefficients of the normal potential. Only the even 
zonal coefficients are taken into account since the normal potential originates from 
an ellipsoid which is symmetric with respect to the equator. The summation over l 
in (8.4) is carried out only for equal parity of the variables k and l. In a spherical 
approximation it is r = a, and 7 = p/az. This results in, compare also Engelis 
(1987): 

lmaz lmaz 

~ ( t )  = C C ~r~ COS $'km + B F ~  sin $'km 
k=-lmaz m=O 

(8.6) 

with 
lmaz 1 -* -* l-m:eucn 

Clm 
(arm,  BL) = a. (:) ~lm(l-k)/2 [ - ?P ] 

l=m -'lm Clm l-m: odd 
(8.7) 



This equation shows that geoid undulations in spherical approximation expressed 
along the ground track possess 1) the same lumping effect as orbit errors and 2) 
uniqueness in frequency response, i.e. parasitic frequencies are not introduced in the 
problem. 

Yet this is only true in spherical approximation, in ellipsoidal approximation the 
problem becomes more complicated since r (and 7)  become, as a result of flattening 
of the reference ellipsoid, a function of the latitude +, accordingly r = h,(+) (and 
7 =' h,(+)). The Arm and B ~ N ,  coefficients in (8.7) become instead: 

lmaz l -1: -1: l-m:euen 

( AFm, BkN,) = 
C l m  ( )  m -  [ * 5 ] 

hr (+)h,(+) l=m -S lm C l m  l-m: ,dd 

(8.8) 
compare also (Wagner,1988). In the latter publication the functions h, (4) and h,(+) 
are developed in terms of f ,  (flattening of the reference ellipsoid) whereas f 2  and 
higher-order terms are ignored. The ellipsoidal approximation of the geoid along 
the altimeter ground track results in a so-called frequency splitting effect. This 
is due to  the fact that h,(+) and h,(+) in (8.8) symbolize sine-cosine functions 
dependent of time which are multiplied by the cos $h and sin$km terms in (8.6). 
This multiplication causes a'frequency modulation introducing parasitic terms at  
$km f XI, in the problem, compare also Wagner (1988). 

Another possibility would be an ellipsoidal representation of T instead of the 
spherical representation discussed above. For this problem we refer to  (Moritz,l980) 
pp. 321-322 where T is developed in an ellipsoidal series expansion requiring Le- 
gendre functions of the second kind. 

The problems sketched above, an ellipsoidal approximation of N in (8.6) by 
application of (8.8), or the development of T in an ellipsoidal series expansion will 
not be treated here. They are just mentioned to  indicate the problems that might 
show up in a computation of N at  a sub-satellite point, especially where it comes to  
geoids accurate to the level of a few centimeters. 

Signal size, commission and omission errors 

In the previous section it is discussed in which way N is computed at  a sub-satellite 
point. The next problem concerns the behavior of this signal in the spectral domain. 
For the true geoid undulation N it is assumed that: 

N = N o + A N c +  ANo (8.9) 

where No represents the undulation as it is computed in a spherical harmonic ex- 
pansion up to  a certain degree and order lmax, compare e.g. (8.6). The quantities 
A N ,  and A N ,  represent respectively the commission and the omission error in the 
geoid signal. The term A N ,  represents the error signal that is included in the com- 
putation of No due to  uncertainties of the Elm and Slm coefficients. The term AN,, 
represents an error signal due to the fact that the spherical harmonic expansion is 
truncated a t  degree lmaz. 

The signal size, commission and omission errors in geoid heights and gravity 
anomalies can be investigated by an evaluation of high degree and order global 



geopotential solutions as is described in (Rapp,1986b). For the OSU-86F field, 
which is complete up to degree and order 360, undulations up to degree 36 have 
a r.m.s. magnitude of 30.43 m with an omission error of 1.58 m and a commission 
error of 79 cm. Undulations up to degree 180 in the OSU-86F field have a r.m.s. 
magnitude of 30.47 meter, an omission error of 23 cm and a commission error of 1 
meter. These results are taken from (Engelis,1987). 

This indicates that it is not allowed to simply truncate the spherical harmonic 
expansion at  a low degree and order for accurate geoid computations. On the other 
hand, mostly for practical reasons, it is not possible to include potential coefficients 
up to degree and order 360 in an integrated approach. This would result in a least 
squares or hybrid norm parameter estimation problem with some 360' = 129600 
unknowns as will be discussed later on in this chapter. It is not surprising that 
Engelis (1987) reports: 

"From the discussion made so far, it is obvious that the solution of the 
combined altimeter problem is computationally extremely intensive. The 
computer resources that are required both in terms of computing time 
and memory are typical of a supercomputer environment." 

This is one of the reasons to restrict the amount of unknowns, i.e. potential coeffi- 
cients, in the problem. Accordingly the variable lmaz  in the expansion of spherical 
harmonics is confined to an acceptable low value. Presumably for this reason Wag- 
ner (1986) employs in a simulation experiment a value of lmaz  = 6. Also Engelis 
(1987) used an lmaz  = 10. Yet limiting lmaz  to a value of 10 introduces large 
omission errors in the geoid computation. 

However this does not imply that the integrated approach cannot be used for 
geoid improvement and radial orbit error reduction. When we return to the funda- 
mental altimetric equation (8.1) we will notice that the observations employed in an 
integrated approach represent so-called direct sea surface heights measured by the 
altimeter radar minus an a-priori geoid model minus an a-priori PST model. The 
observation equations in the integrated approach take the form of: 

with on the LHS the measured (or modeled) quantities and on the RHS the un- 
knowns. If AN,  As  and, as will be shown later in this chapter, ASP, are truncated 
at  a low degree and order then it is also allowed to filter out the highly detailed 
surface structures on the LHS of (8.10). For this purpose a simple low pass filter as 
is described in $7.3.2 is sufficient. Compare also (Wagner,1988) who mentions that 
direct altimetric heights are smoothed over 550 seconds along the altimeter ground 
track. In (Tapley, Shum, Yuan, Ries and Schutz,1988) it is described how the in- 
tegrated altimetric approach is employed in the development of an improved model 
for the Earth's gravity field named TEG-1. Also here a series expansion of the PST 
is confined to degree and order 8 whereas the gravitational field itself is evaluated 
up to degree and order 50. Tapley et al. (ibid) mention that the sea surface heights 
measured by the altimeter radar are smoothed to represent a spectrum consistent 
up to  degree and order 50. 



Omission errors in the lower frequency band 

An important omission effect not considered by Wagner (ibid), Engelis (ibid) and 
Tapley et al. (ibid) is the contribution of the gravitational field above degree lmaz 
to the lower frequency band between e.g. 0 and 10 c.p.r. of Ar and AN. This signal 
is far more serious than any commission or omission error in the higher frequency 
range since it will persist even after a low-pass filter is applied on the residual sea 
surface heights. 

Computations employing inclination functions have shown that this signal may 
be significant. With the OSU-81 field, cf. (Rapp,1983), using I = 10SO, we/w, = 
-3143, a, = 6378137 m and r = a, + 800 km we found a total power (between 0 
and 10 c.p.r. summarizing between degrees 37 and 180) of 79 cm for A N  and 39 cm 
for A r  (excluding near resonant cases). For Ar  most of this signal appears to come 
from the field between degrees 37 and M 50. Similarly for AN,  most of the signal 
appears to come from degrees 37 till M 100. In a similar computation we computed 
the total power of A N  and Ar  between degrees 51 and 180 using the OSU-81 field 
in a frequency band between 0 and 10 c.p.r. It results in a total power of 55 cm for 
A N  and only 5 cm for Ar. 

Remind that the mentioned omission errors refer to the total power between 
0 and 10 c.p.r. Whether all of this signal (or only a part of it) is affecting the 
estimation of the PST coefficients should be investigated. 

Analogy with gravitational radial orbit errors 

In spherical approximation geoid undulations take the form of (8.6) with Arm and 
BFm coefficients as given in (8.7). The series expansion of N in (8.6) can be compared 
directly with the non-resonant particular solution of the Hill equations as given 
in (4.38). In the following we consider the radial orbit error Ar and the geoid error 
A N  to be caused solely by potential coefficient uncertainties AC~, and  AS^,. For 
the geoid error A N  it is found that: 

lmaz lmaz 

AN(t)  = C C A;: COS +km + B ~ Z  sin +km (8.11) 

with At: and B;Z in spherical harmonic approximation (r = a,, 7 = -p/a%): 

l-m: even 
l m a  [ A E , ~   AS^ ] 

(A;:, B;;) = Glmk (8.12) 
l=m - ~ s l m  AClm l-m: odd 

whereas the orbit error Ar  is given by (4.38): 

lmaz lmaz 

with 



where the summations over l in (8.12) and (8.14) are carried out only when there 
exists equal parity of k and l. The sensitivity coefficients Glmk and Hlmk become: 

and 

with, compare (4.38), r representing the mean height of the spacecraft, $km = 
k5 ,  + m=,, G, = W, + cjt and 5, = W, + bt ,  b,, = n = (p/r3)1/2, and /3 = Gkm/n. 
A comparison between (8.15) and (8.16) shows clearly: 

1. a damping factor r(a,/r)l (due to  the upward continuation of the disturbing 
potential causing the radial orbit errors) in contrast to  a factor a, in geoid 
errors, 

2. a resonance factor ( /3( t+ 1) - 2k)/(/3(P2 - 1)) unique for Ar. 

In order to  get a better insight in the relationship between Ar and A N  a simulation 
is carried out. In this experiment AC~, and  AS^, in (8.12) and (8.14) are simulated 
by the differences of the PGS-S4 and the GEM-1OB field. In figure 8.1 the amplitude 
ratio's of (A::, B::) versus (A::, B::) are shown. The amplitude ratio Ap is 

c 
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Figure 8.1: The amplitude ratio spectrum of the radial orbit error in relation to  the 
geoid error for a SEASAT type of orbit. The disturbing potential is simulated by 
the differences of the PGS-S4 minus the GEM-1OB field. The spectral resolution 
equals to  1/43 c.p.r. 

defined by: 
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Figure 8.2: The geoid error amplitude spectrum along an altimeter ground track in 
spherical approximation based on simulated potential coefficient differences. 

where coinciding Apm and BkO, ( 0  = Ar or AN)  terms at  each frequency are accu- 
mulated. The horizontal axis in figure 8.1 represents IPI, i.e. the absolute frequency 
in cycles per revolution, the vertical axis represents loglo(Ap). For simplicity exact 
resonance situations with p = 0 or /3 = f l are left out. Furthermore the constants 
p, a, and J2 are chosen conform the GRS-80. Orbital parameters are chosen conform 
the nominal. SEASAT trajectory: r = a, + 790 km, e = 0.001 and I = 108". 

In figure 8.2 the geoid error amplitude spectrum is shown. The vertical axis shows 
the denominator of equation (8.17) which is computed under the same conditions as 
the radial orbit error. As can be seen from figure 8.1, Ar is dominating A N  for 1/31 < 
2 c.p.r. The cause of this is the presence of a resonance factor in equation (8.16). 
In the range between 2 c.p.r. and 4 c.p.r. the geoid error is slightly higher than the 
orbit error. Above 4 c.p.r. the geoid error is more than a factor 10 greater than 
the orbit error. For example at Ipl W 15 c.p.r., which corresponds to  wavelengths of 
2500 km, there are geoid errors of 30 cm and radial orbit errors of only 3 mm. 

It is reasonable to  assume that a joint modeling of Ar and A N  is only successful 
whenever there exists a significant signal in both models. Under this assumption the 
range in the frequency spectrum is very limited for an integrated approach. Above 
a frequency of 4 to 6 c.p.r. one can simplify the joint recovery model and solve the 
unknowns for geoid errors only. 

However the opposite is also true, in the frequency band of 0 to  2 c.p.r. there 
is a lot of amplification in Ar compared to  that of AN. It can only mean that the 
geoid must be known rather accurate in this frequency range. If this were not the 
case then radial orbit errors should be far larger than the 1 to 2 meter level found 
for SEASAT. 



8.2.3 Permanent sea surface topography 

The model applied for PST in the integrated approach is almost identical to  the series 
expansion in spherical harmonics used for modeling the geoid errors in spherical 
approximation. Accordingly: 

lmaz 1 

<P(.\, 4)  = a. C C [ ~ l ~ , ~  cos m.\ + SlrnSf sin m ~ ]  Flm(sin 4) (8.18) 

where and Slm,( represent the PST coefficients of degree l and order m. Equa- 
tion (8.18) describes a surface function representing the permanent deviations of the 
actual sea surface with respect to  a geoid due to  the effect of PST. Levitus (1982) 
presented maps of the PST in his " Climatological Atlas of the World Oceans". The 
results published by Levitus are based upon hydrographic measurements collected 
over a time span of 70 years. From this data the coefficients Elm,( and Slm,( have 
been estimated by means of spherical harmonic analysis, cf. (Engelis,1983,1985). In 
the regions where PST is not available (land, polar regions) <P is assumed to  be 
equal to  zero. 

An important difference with the gravitational field are the ranges of the series 
expansion in (8.18) which start  a t  degree one. The terms Clo,  Ell and Sll do not 
exist in any potential coefficient model since this would imply that  the center of mass 
of the Earth is not located in the geocentric coordinate origin. These coefficients 
would indicate a shift over the z-axis and a shift in the X-y plane respectively. 
On the other hand for PST it is known that  Clots,  Ell,( and exist. Wagner 
(1988) mentions that  Clo,( is caused by the dominant circumpolar Antarctic current 
manifesting in the latitude band between 4 = -50" and 4 = -70". 

- There are ample oceanographic reasons to  assume that  the signal present in the 
Cl,,, and Slm,( coefficients differs with respect to  the signal in the Cl, and 31, 

coefficients. This follows from the degree variance functions, compare Heiskanen & 
Moritz (1979), both for gravitation and PST. These functions take the form of: 

The nature of the degree variance functions of the gravitational field is described in 
e.g. (Tscherning & Rapp,1974). For a description of the degree variance function of 
the PST field, that  is based on the Levitus model, compare (Engelis,1983,1985) and 
(Wagner,1986). However the main difference is that uncertainties in Elm and 31, 

affect as well the sea surface as the orbit, whereas uncertainties in Elm,( and Slm,( 
only influence the sea surface. 

8.2.4 Parameter estimation 

In $8.2.1 to  $8.2.3 three models are discussed that  may be used to  describe respec- 
tively Ar ,  A N  and ASP. In the sequel it is assumed that A r  is modeled by (8.2), 



A N  by (8.6) and (8.7) and ASP by (8.18). Under these assumptions the unknowns 
become: 

1. Improvements of the potential coefficients: AC~, and  AS^,. 

2. Improvements of the initial state vector: Auo, Auo, Avo and in Arh, 
compare equation (4.36). 

3. Improvements of the PST coefficients: A C ~ ~ , ~  and  AS^,,^, compare (8.18). 

In first instance observations are formed by so-called residual sea surface heights 
found on the LHS of (8.10). These residuals consist of the corrected sea surface 
heights measured by the altimeter radar minus an a-priori geoid model minus an a- 
priori PST model as is described in 88.2.2. The integrated approach is not restricted 
to  residual heights, it is also allowed to employ crossover differences as is described 
by Engelis (1987). 

The parameter estimation problem described by Engelis (ibid) consists of 984 
residual sea surface heights, 1178 crossover differences and some 200 unknowns. 
Engelis (ibid) considers as unknowns potential and PST coefficients up to degree 
and order 10 and observations derived from simulated SEASAT data lasting over 
a period of 3 days. Considering the amount of observations and unknowns in this 
experiment one can in principle follow a single step formulation of a least squares 
minimization. 

However a single step least squares formulation of the problem leads to a poorly 
conditioned or probably even a singular system of normal equations. The reason 
for this comes from the fact that columns of the design matrix A become linear or 
nearly linear dependent. 

Singularities of this sort do not exist in the parameter estimation problems de- 
scribed by Wagner (ibid) and Engelis (ibid), because an a-priori regular positive 
definite covariance matrix of the unknowns (P,,) is included in the problem. The 
corresponding hybrid norm minimization takes the form of: 

zt~,-,'C'+ z"~,-,'2' = min (8.19) 

where the a-priori covariance matrix P,, for the unknowns is assembled from covari- 
ance matrices for Cl, and ;Slm (e.g. the inverse of the normal matrix which was used 
to compute a certain potential coefficient model such as GEM-T1) and for Clm,( and - 
SlmIf. For more details compare (Engelisjbid) and (Wagner,1988). 

A single step formulation of the parameter estimation problem of the integrated 
approach gives hardly any insight in the nature of the problem. For this purpose 
the single step approach is reformulated to  a dual step approach. In a first step 
observations in the form of residual sea surface heights Ah are used to estimate 
the lumped coefficients A 2  and B;; including additional unknowns required for 
modeling Arh and Arpr of (8.2): 

lmoz lmoz 

~h = C C (AE cos +km + B;; sin $km] 

- [(ao + alt)  cos nt + (bo + blt) sin nt + (CO + clt)]. 



The summations in (8.20) over k and m are carried out such that $km = 0 and 
$km = f Go are avoided. Instead the coefficients ao, a l ,  bo, bl, c0 and cl are employed 
for modeling the combined effect of Ash and Arpr in (8.2). 

Essentially the unknowns A:; and Bf; in (8.20) are recovered by frequency 
analysis. Unfortunately fast Fourier techniques are not directly applicable to this 
problem because the Ah time series is interrupted by gaps where the altimeter 
passes over land. A remedy to this problem is to apply a straightforward least 
squares minimization in which (8.20) forms the basis of the observation equations. 
The number of unknowns in this first step is determined by 1) the type of low pass 
filtering that is applied to Ah, compare also 58.2.2, and 2) the length of the Ah data 
record. An observation set spanning a short duration causes resolution problems for 
adjacent AE and Bf; coefficients in the frequency spectrum. Other problems that 
might affect the quality of the estimates come from the fact that Ah is given only 
over sea, compare also the results published by Wagner (1986). 

In a second step the lumped coefficients A:; and B:; are linearly related to the 
original unknowns in the integrated approach: 

where the summation is carried out for equal parity of k and l only and where 

and 
2 

Hlmk = aeFlm(l-k)/~ 

which is found by an evaluation of A N  - Ar + ASP using eqns. (8.2)) (8.6)) (8.7) 
and (8.18). 

In the derivation of (8.21) it is assumed that the maximal degree and order lmax 
is equal for the PST and the potential coefficients. It shows that there are maximally 
4(lmax - m + 1) potential and PST coefficients connected in a linear combination 
(a cluster) to two lumped coefficients At; and B;;. Each (k, m) cluster maps on 
one unique frequency (k + m (w,/wo) in c.p.r.) in the spectrum of Ah. However 
for the orbit of e.g. SEASAT some (k, m) clusters show an overlap as is discussed 
in 54.3. It is obvious that this effect depends on the resolution obtained in the 
first step while estimating AE and Bf; from the residual sea surface heights. An 
important property of the second step is, that most of the (k,m) clusters can be 
treated individually since there are no linear combinations of potential - and PST 
coefficients of different orders m. An exception is formed for those cases where 
overlapping of AE and B;; coefficients occurs in the Ah frequency spectrum. 

This means that it is possible to form a block diagonal system of observation 
equations which can be treated block by block as is described in Schrama (1986b). 
With this in view Engelis' statement, which is quoted on page 136, is probably 
exaggerated. Most of the work in an integrated approach sketched here comes from 
the first step, namely the spectral analysis of Ah. 



Whether or not it is possible to solve the unknowns from the lumped coefficients 
A?; and B;; depends fully on: 1) the type of low pass filtering applied to Ah 
determining directly the amount of frequencies in the residual height spectrum and 2) 
the maximal degree and order lmax in equation (8.21). A trivial condition concerns 

Ah the amount of unknowns which should not exceed the number of A:: and Bkm 
coefficients for all possible values of k of the corresponding order m. It was mentioned 
before that the maximal number of unknowns equals to 4(lmax - m + 1) whereas 
the maximal number of observations equals t o  4 X lmax. 

Eventually there remain a number of peculiar (k, m) combinations for A?; and 
B;; in (8.21) which may require special attention, compare also Wagner (1988): 

The term AAh in (8.21) coincides with c0 in (8.20). This means that the 
even zonal coefficients of the PST field coincide with the initial state vector 
disturbances Auo and Avo in (4.36). 

The terms A?; and B;; in (8.21) for k = f l and m = 0 coincide with the 
terms a0 and bo in (8.20). In this case there are a number of effects that 
cannot be separated: 1) initial state vector disturbances Auo, Auo, Avo and 

in (4.36) 2) odd zonal coefficients of the gravitational field starting at  
1 = 3 and 3) odd zonal coefficients in the PST field starting at  l = 1. 

An alternative for a secondary step in the dual approach is to  combine constraint 
equations of lumped coefficients of other satellite tracking observations as is de- 
scribed by Tapley et al. (1988). Presumably this results in a more realistic im- 
provement of the gravitational field than just employing the constraints for lumped 
coefficients coming from the integrated altimetric approach. 

8.2.5 Some remarks on PST improvement 

Restrictions of the current approach 

Noteworthy are the problems that may arise when modeling PST in an integrated 
approach as is mentioned by Wagner (1988). An example is the modeling of the Clo,s 
term which is coinciding with a number of effects simultaneously. Presumably this 
results in a high correlation between Clo,{ and initial state vector effects including 
the odd zonal perturbations of the gravitational field. It is the author's opinion that 
some of these high correlations are due to the inadequate modeling of PST in its 
current form. 

It can, for instance, not be guaranteed that geostrophic currents (recovered by 
the integrated approach in question) do not show an unrealistic flow over the conti- 
nents. Even the best a-priori covariance matrix for ASP cannot prevent this peculiar 
behavior of the currents. The question arises whether or not it is possible to im- 
prove the modeling of ASP, e.g. by prohibiting geostrophic currents perpendicular 
to  a shoreline. 

Another important shortcoming of the current approach is that PST coefficients 
are limited to l < lmax m 10 implying that the short periodic western boundary 
currents cannot be modeled adequately. An obvious remedy for this effect is to  
extend the summation limit of the PST field. Presumably this will result in a 



problem of separating (P and N in the higher range of the frequency spectrum due 
to  the damping behavior of Ar. 

Instrumental limitations 

First of all the actual sea surface topography is more complex than just its permanent 
part. Wunsch et al. (1980) describe a number of oceanographic phenomena in the 
context of combining hydrography with marine geodesy and satellite altimetry. The 
objective is t o  determine the general circulation pattern of the oceans, defining the 
eddy field and improving the marine geoid. 

Some of the oceanographic effects known in physical oceanography are simply not 
relevant for an inclusion in an integrated approach due to  the limited accuracy of the 
altimeter measurements and the length in time of the existing altimeter database, 
compare also Wunsch et al. (1980). For instance annual effects in are hard to  
recover from a 3 month's period of SEASAT data. In this context GEOSAT altimeter 
data would be more suitable for studying long periodic variations in the sea surface. 

Another example of an effect that may not be recovered easily are the very 
longest internal waves (wavelengths of the order of 100 km) which generate surface 
elevations that may reach 1 or 2 cm. (cf. Wunsch et al. (1980) p. 258.) These effects 
are a factor 5 to  10 smaller than the noise level of the altimeter radars both of 
SEASAT and GEOSAT. 

The remaining terms in suitable for an inclusion in the integrated approach 
appear currently 1) permanent and long periodic effects and 2) large scale features in 
the oceans due to  circulation. Both are symbolized by the term (P in the fundamental 
altimetric equation. Oceanographic phenomena which are short periodic and acting 
on a small scale can be studied more effectively by monitoring the variations in the 
sea surface by either collinear - or crossover analysis. In this study these effects are 
gathered in the term c". 

Recommendations for an improved P ST estimation 

In order t o  model (P more accurately one could distinguish between two approaches, 
namely one in which an independent model for (P set up similar to  the way tidal 
influences are treated or a simultaneous approach where (P remains in an integrated 
scheme but in a form different from now. 

A typical independent approach might consist of a finite element or finite dif- 
ferences approach for modeling the oceanographic circulation. For a discussion of 
the underlying differential equations we refer to Wunsch et al. (1980) and Rummel 
(1985). Additionally this model should include suitable boundary conditions pre- 
venting unrealistic geostrophic currents. Possibly one might design a more realistic 
model by including other forcing terms such as the dominating effect of the wind 
field on (P. In this context it is worthwhile to  mention that wind speed and direction 
may be provided by the scatterometer (e.g. on board SEASAT and in the future on 
ERS- 1). 

A second possibility is to keep the model of (P in its current version. However, in 
order to  yield more realistic solutions, it is advisable to include additional constraints 
for the ~ l m , s  and glmBs coefficients in the integrated approach. (e.g. the earlier 



mentioned constraints prohibiting a geostrophic flow perpendicular to the shore) A 
disquieting effect will probably remain the omission effect of the gravity field which 
leaks in the and ~ l m , c  coefficients in the current integrated approach. 

In which way both models have to  be formulated and included in the processing 
of satellite altimeter data is a topic recommended for further research. 

8.3 Some remarks on global crossover analysis 

In this study several chapters describe aspects of crossover minimization in satel- 
lite altimetry. A description of the results obtained by global continuous crossover 
minimization is avoided here since it would be a repetition. Instead we conclude 
with a discussion of the possible dangers of over-constraining the crossover mini- 
mization schemes and secondly our comparison with Rosborough's (1986) definition 
of geographically correlated orbit errors. 

8.3.1 Alternative crossover minimization schemes 

Over-constrained crossover solutions 

An alternative, which is a direct extension of the least squares minimization schemes 
discussed in chapter 3 for the local case and chapters 6 and 7 for the global case, 
is to  include more constraints in the system of observation equations than strictly 
required for finding a particular solution. 

The principle danger with this approach is as follows: Whenever too few con- 
straints are introduced, the system of normal equations remains singular and cannot 
be solved. Hence for this case one has a clear indicator that "something is wrong". 
In the case of too many constraints (over-constraints) the solution may be deformed. 
However this undesirable deformation may be small so that it cannot easily be de- 
tected. 

The typical structure of the eigenvalue spectra of the normal matrices of crossover 
problems are, according to the author's opinion, the main reason for the fact that 
several researchers prefer to  include additional constraints, and possibly over-con- 
straints, in the crossover minimization problem. 

In fact the author himself is also to blame for this since, all crossover problems 
discussed in this work possess only one real singularity (namely the bias coefficient 
of the observation equations). Other small eigenvalues (the criteria are discussed 
in chapter 3 and 6) exist due to  the fact that crossover time tags deviate from the 
linear congruent behavior in the local case, antisymmetry in the segmented global 
cases, or the nominal orbit in the continuous crossover minimization. In all cases 
the real crossover problem, based on the actual time tags, is conveyed in a problem 
closely resembling it. The technique applied for this purpose is called: time tag 
regularization. 

The discussion so far indicates that there is no clear answer to the question: 
'what is the rank defect of your normal equations?". The problems discussed in 
this work are the ones encountered in literature. However it is very likely that 
there may exist other formulations of the crossover minimization problem which 



may result in other rank defects of the normal equations. It is the author's hope 
that this study may be a motivation for researchers to investigate these defects and 
their consequences on the results obtained by 'crossover altimetry'. 

Inclusion of alternative observation equations 

Technical developments in the near future can provide additional information which 
could allow an inclusion of other observation equations together with crossover dif- 
ferences. Implicitly this means that the crossover minimization problem is altered. 
Instead it should be called a crossover, "another observation type" minimization 
problem. In this work no attempt was made to  study these minimization problems, 
therefore the topic is recommended for further research in satellite altimetry. 

In the local adjustment one could imagine to  include more than 2 master arc 
segments which are supported by accurate tracking. Unfortunately, a t  the moment 
for GEOS-3, SEASAT and GEOSAT such information is not available. However 
the configuration of ERS-1 is planned with a PRARE system whereas TOPEX 
is expected to fly with DORIS and GPS. These (experimental) developments can 
provide an accurate real time position determination of the spacecraft. 

For local adjustments it means that one could derive, a t  least a number of, 
altimeter profiles which are known in some reference coordinate system. The advan- 
tage for 'crossover altimetry' is obvious: the eventual sea surface can be positioned 
absolutely in a known coordinate system. 

This information is highly valuable since it allows to  observe a number of ef- 
fects which are obscured by the homogeneous solutions of the systems of normal 
equations in the conventional crossover minimization schemes. An application with 
great benefits to  physical geodesy and - oceanography could be the monitoring of e.g. 
tides, currents and other phenomena which are currently so problematic to  model 
in shallow waters close to  the coast (e.g. the North sea and the Hudson bay). 

Also in global crossover minimization schemes additional information, in the 
form of absolutely positioned altimeter profiles, would be useful. An absolutely 
positioned altimeter surface will probably allow to determine orbital perturbations 
free of unrealistic homogeneous effects currently present in the conventional crossover 
minimization schemes with benefits to the improvement of the Earth's gravitational 
field, permanent (or semi-permanent) sea surface topography and tides. 

8.3.2 Some remarks on orbit errors and geographic correlation 

Rosborough (1986) describes satellite orbit perturbations due to  the geopotential. 
He follows, for the derivation of a first-order analytical perturbations theory, nearly 
the same approach as Wagner (1985,1987) and Engelis (1987). Rosborough's pri- 
mary goal is to  investigate the nature of the radial orbit errors for the TOPEX 
mission both temporally (i.e. in the form of perturbation spectra) but also spatially 
(i.e. in the form of a geographical presentation). Especially the latter approach is 
original. 

The spectral analysis pursued by Rosborough (ibid) is based on geopotential 
coefficients, differences of geopotential coefficients and a variance propagation of 
potential coefficients into radial orbit errors. The former two require an analysis by 



means of linear perturbations theory, the latter requires propagation of variances of 
potential coefficients into variances of the radial orbit error. Variance propagation 
can be performed easily since there exists a linear relation of Cl, and 31, with 
e.g. Akm and Bkm, the lumped coefficients in the spectrum of Ar. Consider for 
instance (4.26) where Akm and Bkm coefficients are gathered in a vector t', Hlmk 
sensitivity coefficients in a matrix H and Cl,, %lrn potential coefficients in a vector 

The covariance matrix Q,, of the Akm and Bkm coefficients may be formulated as: 

where Q,, is representing some a-priori covariance matrix of a geopotential model. 
Critical is the choice of a well calibrated QC, matrix in (8.25). For this purpose 
Rosborough (ibid) applies a GEM-L2 covariance matrix. (The GEM-L2 field is 
described by Lerch et al. (1982b)). For a discussion of the results we refer to Ros- 
borough (ibid) as well as Wagner (1985,1987) whom pursued a covariance analysis 
similar to described above. 

For spatial analysis the radial orbit error is transformed into an alternative r e p  
resentation. Rosborough (ibid) shows that the radial (including other) orbit errors 
per degree l and order m at a given location (4, X) on the sphere may be formulated 
as: 

Arlm(t) = x @ p k ( 4 )   HI,^ [ACI, COS mX + A Z I ~  sin m ~ ]  
k 

&@L(,) ~ 1 , k  [-A%, cos r n ~  + ACI, sin r n ~  I 
where @Ek and @Lk represent the so-called mean and variable component of Atlm. 
The choice of the sign in front of the term @Lk is determined by whether the satellite 
moves over an ascending or a descending arc segment. An important fact is that 
both terms are a function of the latitude 4. Rosborough (ibid) shows that Arlm is 
separated into a function A71, and Ay,: 

A71m(+, X) = @pk(+)Hlrnk [ ~ C l m  COS mX + ~ 3 1 ,  sin mX] 
k 

A vlm(4, X )  = f 1 @L (4) Hlmk [- ~ 3 1 ,  COS mX + ~ C l m  sin mX 
k 

l 
where A71, describes the so-called geographical mean and Ay, the - variable 
contribution to the radial orbit error. The reason for calling A71, a 'mean' radial 
orbit error is that it represents the result after averaging the individual contributions 
of Arlm on a crossover point at  the corresponding geographical location. In contrary 
Ay, is called a variable radial orbit error since it describes the deviations with 
respect to the 'mean' required for reconstructing Arlm. 



The next step is to  assume that A y l m  represents an 'unobservable' and Avlm an 
'observable' signal a t  the crossover point in question. It is the author's opinion that 
this intuitive step is not reflecting the real nature of unobservability in the process of 
minimizing crossover differences. Nowhere in this work it was found that an average 
value of a crossover difference shows up as the only possible homogeneous solution 
of the system of normal equations in a global continuous crossover minimization 
problem. 

The author has the following opinion concerning observability or not of A r  from 
crossover differences: Unobservable at crossover differences are, by definition as 
they are introduced in chapter 2, a manifold of stationary surface functions pro- 
jected along a satellite ground track. The consequences of this statement are very 
drastic because it would prohibit the recovery of any surface function from crossover 
altimetry. It would simply not be possible to recover any highly detailed geoid from 
crossover minimization. A simple counter example shows the physical limitation of 
this reasoning: of all possible surface functions only those remain which map on 
frequencies in the lower range of the radial orbit error spectrum where most of the 
signal is concentrated. 

A comparison of the a-priori mean and variable geographically correlated orbit 
errors of a SEASAT arc based on simulated potential coefficient differences using 
Rosborough's theory can be found in e.g. (Engelis,1987), figures 48 and 52. These 
figures reveal detailed surface structures which, projected along the SEASAT tra- 
jectory, most certainly result in quite some signal in the high frequency range of an 
orbit error spectrum. It is the author's opinion that the well known strong damping 
behavior of orbit errors is in direct contradiction with this hypothesis. However a 
separation in A y l m  and A y ,  is considered useful for explaining the consequences 
of 'straightforward' averaging methods, e.g. as described by Marsh et al. (1982b). 



Chapter 9 

Conclusions and recommendations 

The process of orbit determination is an important stage in the processing of satellite 
altimeter data. Uncertainties in the gravitational model, required for the computa- 
tion of altirnetric orbits, leave a considerable error signal in the radial position of the 
altimeter satellite. Other error effects in the altimetric configuration come from the 
a-priori geoid, Earth and ocean tides, atmospheric drag, radiation pressure, instru- 
mental effects and other phenomena which are described in chapter 2. In this study 
most attention is focussed on the influence of radial orbit errors due to gravitational 
modeling in satellite altimetry. 

In the past various researchers have developed selective filters for the purpose 
of removing radial orbit errors along short arc segments. These filters take the 
form of local crossover minimization schemes and were applied by e.g. Rummel 
et al. (1977)., Marsh et al. (1984) and Vermeer (1983). In general it is envisaged 
to  construct a mean sea surface model by removing empirical error functions over 
short arc segments. In this study the technique is applied on a test area in the 
North-east Atlantic for the purpose of demonstrating the method of local crossover 
minimization. 

For local crossover minimization problems it is shown that the normal equations 
may be formulated in the form of a compatible self adjoint system as is described 
by Lanczos (1964). Self adjoint systems may be separated in two parts consist- 
ing of a particular solution and a homogeneous solution. Particular solutions are 
found by fixing a minimum number of master arc segments. Homogeneous solutions 
allow to transform the crossover solution without changing the original crossover 
observations. 

In order to find a numerically stable particular solution it is necessary to regu- 
larize crossover time tags: a procedure where the actual time tags are replaced by 
model timings closely resembling the original pattern. For linear congruent crossover 
time tags it is shown that 2 non-intersecting, non-overlapping master arc segments 
are required for a numerically stable particular solution of the normal equations. It 
is found that the homogeneous solution corresponds with a polynomial deformation 
surface containing 4 degrees of freedom. 

Variance analyses of the parameters involved in the local crossover adjustment 
revealed that inaccurate error functions pertain to  short or poorly connected arc 
segments. The conclusion appears to be indifferent for either the inverse of the nor- 



mal matrix required for finding a particular solution or a minimum trace covariance 
matrix derived from this inverse. 

A topic recommended for further research is to combine several independent local 
solutions while solving optimally the shift vectors of the singularity transformation 
belonging to  each solution. This technique might prevent the burden of computing 
very large crossover adjustments as in the case of many years of altimeter data com- 
ing from several altimeter satellites. This might be useful for mesoscale variability 
computations with limited computer resources over a long period of altimeter data. 

In chapter 4 analytical perturbation theories are employed for describing radial 
orbit errors caused by the geopotential. These analytical theories are required for 
a better understanding of the interaction between the gravitational field and the 
radial orbit errors. In contrast to analytical theories are the numerical techniques 
of orbit determination. These techniques are considered to be more suitable for the 
production work in the processing of altimeter data. 

The analytical theories in question are based on either the Lagrange planetary 
equations or, as an alternative, the Hill equations. Here we constrain ourselves to  
radial perturbations in near circular orbits which are not longer than 10 days. Cur- 
rently this is approximately the longest period that is applied for orbit determination 
of altimetric satellites. 

In order to  convey the Lagrange planetary equations into a suitable description of 
the radial orbit error two approximations are made. The first assumption is the basis 
for the linear perturbations theory of Kaula (1966) where a nominal orbit is used 
to  derive disturbances in the Keplerian elements. The second assumption concerns 
the transformation of the perturbations in the elements into a radial expression such 
that 'second-order' eccentricity effects are ignored. 

An alternative for the Lagrange planetary equations consists of the Hill equa- 
tions, as described by Kaplan (1976) and Colombo (1984a), holding for an idealized 
circular orbit. In contrary to  the conventional Lagrange planetary equations there 
exists an exact general solution of the Hill equations consisting of a homogeneous 
and a particular case. A discussion of both solutions is given in $4.2.2 where it is 
shown that the non-resonant particular radial solution of the Hill equations coincides 
with the radial expression derived by Wagner (1985). 

A verification of both analytical theories is made with a synthetically generated 
numerical orbit error. The numerical error signal is derived by differencing two 
trajectories computed by means of numerical integration of the equations of mo- 
tions with the gravitational models GEM-1OB and PGS-S4. It results in a so-called 
simulation dataset which is used throughout this study. 

An impression of the limitations due to linearization inherent to both analytical 
theories is given in appendix A where long periodic effects in the eccentricity and 
the argument of perigee are described as a result of the odd zonal coefficients of the 
gravitational field. 

In chapter 5 spectral characteristics of crossover - and repeat arc differences are 
discussed. For crossover differences computed from the nominal orbit it is found that 
1) the relative time tags (the difference in time from the equator transit point to  the 
crossover location) of ascending and descending arc segments possess an opposite 
sign and 2) that the magnitude of the time tags is determined only by the longitude 



separation of the equator transit points of both arc segments. Both properties 
are convenient in the derivation of the rank defect of global segmented crossover 
minimization schemes as discussed in chapter 6. 

The spectral characteristics of crossover differences are investigated by examining 
the time tag pattern as it shows up in the simulation dataset. On basis of this 
information it is argued that it is not possible to recover completely a radial error 
effect from crossover differences. It has been verified that singular frequencies in the 
inverse transformation of crossovers to orbit errors exist in the spectral band where 
most of the signal is concentrated. 

Another observation type described and analyzed in chapter 5 is the repeated 
measurement of sea surface heights over the same ground track. It is shown that 
'collinear or repeat arc differences' behave as an almost perfect filter for all short pe- 
riodic perturbations caused by the gravitational field. This implies that gravitational 
radial orbit errors - full or impart - cannot be recovered from repeat arc differences 
except for the long periodic modulation caused by the precession of the argument of 
perigee. The latter effect is investigated in more detail in chapter 6 where it is shown 
that repeat arc differences may be modeled by a 'bow tie' function. The nature of 
repeat arc differences cannot be explained by the resonant particular solution of the 
Hill equations, it requires an alternative treatment by means of Cook's theory as is 
described in appendix A. 

In chapter 6 three global crossover minimization schemes have been worked out 
in detail for the purpose of reconstructing the simulated radial orbit error. The 
former two models are called chronologically segmented and are, mathematically 
seen, equivalent to local minimization schemes except that alternative error functions 
are defined per arc segment. Investigations concerning an optimal fitting accuracy 
and a minimal amount of parameters revealed that a 3 parameter Fourier function 
in the form of eq. (6.11) is eligible above others. 

The normal equations based on these error functions show a rank defect of 3 
provided that the crossover time tags are regularized in an antisymmetric way. The 
homogeneous solution of the problem is described in $6.3 and allows a strict zonal 
deformation of the altimetric surface. An artifact of the corresponding singular- 
ity transformation is the discontinuity effect of the radial velocity components of 
successive error functions which cannot be interpreted as a radial orbit error phe- 
nomenon. This was the motivation for the development of an alternative formulation 
of the minimization problem where additional smoothness conditions are employed 
to  suppress the discontinuity effect. 

Unfortunately it turns out that both segmented models are inadequate for re- 
covering the simulated error signal. The differences between the stepwise radial 
orbit error signal recovered by the global crossover adjustment and the originally 
simulated signal show a consistent radial power spectrum. It consists of a number 
of peaks which cannot be explained by a singularity transformation. Moreover it 
has been found that the persisting systematic differences could be interpreted as 
the projection of a surface function expressed in spherical harmonics on the nominal 
orbit. 

The problems encountered with the global segmented approaches lead to  the 
investigation of a continuous minimization model. This approach avoids in a con- 



venient way a number of problems inherent to segmented models. Shortly summa- 
rized, these problems are: 1) the mentioned velocity discontinuity effect; 2) over- 
parameterization of short arc segments; and 3) poorly or even isolated arc segments 
with respect to the 'main' configuration. 

Under suitable time tag regularization one can show that the rank defect of the 
normal equations of the continuous minimization model equals to  9. The homoge- 
neous solution of this problem allows to  deform the altimetric surface as a spherical 
harmonic expansion up to degree and order 2. This presumes a cutoff frequency of 
2.3 c.p.r. in the Fourier series employed in the observation equations of the continu- 
ous crossover minimization model. The implementation of this minimization scheme 
and the abilities of its general solution to  reconstruct the simulated radial orbit error 
signal are discussed in 56.4. 

In chapter 7 the continuous crossover minimization scheme is applied on the 
adjustment of SEASAT derived crossover differences. An additional complication 
encountered in its application is caused by the fact that SEASAT orbits are com- 
puted in time windows up to  6 days. The method itself is applied on crossover data 
in 5 orbital periods in the first 2 months of the SEASAT mission. In the 5 cases 
considered in this study it was found that the r.m.s. of the crossover differences 
tends to  decrease from f 1.65 m before to  M 30 cm after LSA. Additionally it was 
found that 1) the internal solutions appear to  show a concentration of signal around 
the expected 1 c.p.r. and that 2) high correlations occur for orbit error functions in- 
dividually solved in independent periods. As a result it is feasible to solve a number 
of adjacent orbital periods simultaneously by means of a combined approach. 

The external evaluation of the independent internal consistent crossover solu- 
tions is performed by means of an optimal adjustment to the GEM-T1 reference 
geoid. Characteristic appear to  be the consistent values of the Coo and surface 
function coefficients which are the parameters of the singularity transformations. 
The nature of this effect is not well understood since there are a number of effects 
acting simultaneously. The mentioned components tend to absorb a combination of 
these effects meaning that the eventual transformed crossover solution is tailored to 
a specific reference geoid. 

In chapter 8 a sketch of an integrated approach is discussed. For this purpose 
a recent technique introduced by Wagner (1985) is compared with the global cross- 
over minimization schemes. The first part of chapter 8 describes the derivation and 
limitations of observation equations which may be applied for improvement of 1) po- 
tential coefficients of the gravitational field and 2) surface coefficients of a permanent 
sea surface topography model. 

Observation equations derived from crossover minimization may be applied in the 
same context except that they do not contain geoid or PST information. Both classes 
of observation equations allow to estimate a certain linear combination of potential 
coefficients of the same order. However an independent treatment of observation 
equations of lumped coefficients derived by either 1) direct height measurements 
in the context of an integrated approach or 2) crossover difference observations is 
not pursued here. In chapter 8 it is argued that gravity model improvement should 
be performed by employing observation equations for potential coefficients derived . 
from the perturbations of satellites at different inclinations and eccentricities. 



There may be two more drawbacks in the current concept of an integrated ap- 
proach. The first concerns the modeling of PST since the current version allows to 
estimate unrealistic solutions which do not necessarily fulfil1 the equation of conti- 
nuity of currents. The second concerns an omission error of the gravitational field 
in the geoid and the orbit. Both topics are discussed in $8.2 and are recommended 
for further research on satellite altimetry. 

Another subject concerns the inclusion of other observation equations to cross- 
over differences in a combined minimization problem. Technical developments in 
the near future, such as PRARE on ERS-1 and DORIS and GPS on TOPEX, could 
provide the required information. These observations might be highly valuable since 
they enable to observe a number of effects - such as tides, currents and other oceano- 
graphic phenomena - which are obscured by the homogeneous solution of the system 
of normal equations in the conventional crossover minimization schemes. 

The last topic in chapter 8 concerns the interpretation of geographically corre- 
lated orbit errors according to the theory of Rosborough (1986). It is argued that 
a separation into a mean and a variable component of the radial orbit error cannot 
be translated in observability or unobservability of radial orbit errors from crossover 
differences. However Rosborough's theory is considered useful for explaining the 
consequences of 'straightforiiitnd' averaging methods which have been employed for 
the construction of mean sea surfaces by Marsh et al. (1982b). 



Appendix A 

Long periodic resonant effects in near 
circular trajectories 

Linear perturbation theory, as described in chapter 4, shows a good agreement with 
numerically integrated trajectories. It is mentioned that periodic resonant effects 
have to be removed from the numerical results before a comparison can be made. 
For this purpose special attention is given to the particular solution of the Hill 
equations, especially where a constant or once per revolution force determines the 
perturbations. In the zonal part of the gravitational field two sort of perturbations 
can give rise to long periodic resonant effects. 

Even zonal coefficients of the gravitational field are causing secular effects. 
This situation is described in chapter 4, equations (4.18) ff. The resulting 
orbit is frequently used throughout this work as a 'linearization' (or nominal) 
trajectory. 

Perturbations proportional to a complete revolution of the argument of perigee 
are caused by the odd zonal coefficients of the gravitational field. 

In the sequel the latter result is worked out in more detail similar to Cook (1966). 
A perturbations theory based on this special situation is useful for understanding 
the concept of so-called frozen orbits as applied in the missions of SEASAT and 
currently GEOSAT. Besides the theory is useful for explaining the 'butterfly' effect 
showing up in the simulated repeat arc differences. 

Odd zonal perturbations 

The disturbance potential of odd zonal coefficients of the gravitational field causing 
long periodic perturbations takes the form of (4.4) for odd l, m = 0 with p  = ( l +  1)/2 
and q  = +l or p =  (l - 1)/2 and q =  -1: 

In this expression the Flmp functions for p  = (l - 1)/2 and p  = (l + 3.)/2 are: 



A similar symmetry exists for the eccentricity functions for small e, compare (4.9): 

As a result (A.l) becomes: 

Vodd = Ifc'e sin W 
a 

This disturbing function can be used in the LPE, compare (4.1). Elements of partic- 
ular interest are the eccentricity and argument of perigee in near circular trajectories. 
The LPE for e and W become: 

These expressions are used to transform to the so-called non-singular variables U = 
e cos W and v = e sin W which are differentiated with respect to the time: 

U = icosw - ewsinw (A.6) 
v = tsinw + ewcosw (A.7) 

We note that 1) all expressions in the form of e2 and eClo are ignored due to  the 
near circular situation and 2) the disturbing potential Vodd is independent of the 
mean anomaly M. As a result it follows that (A.6) becomes: 

-1 P 1 P r  = -[-~'ecosw] cosw - -[-C sinwlsinw 
na2e a na2 a 

For (A.7) it is found that 

-1 P 1 P  6 = - [ - ~ ' e  cos W] sin W + e- [ -  C' sin W] cos W = 0 
na2e a na2e a (A.9) 

Expression (A.6) and (A.7) can be regarded as a system of differential equations 
describing a motion in the (U, v) plane caused by exact resonance of the even zonal 
coefficients. The even zonal coefficients explain that i = 0 and W = k where k is 
determined by a, e and I. Hence from (A.6) and (A.7) it follows that U = -kv and 
6 = +ku. Equations (A.8) and (A.9) represent the contribution of the odd zonal 
coefficients of the gravitational field to this motion. Hence from (A.8) and (A.9) it 
follows that U = C and v = 0. Therefore the combined differential equations take 
the form of: 

(A. 10) 



Figure A.l: Precession (right) and liberation (left) due to the zonal coefficients of 
the gravitational field. 

with k = W due to  the even zonal secular effect. This system of differential equations 
has the following solution, compare Cook (1966): 

where A and cx represent integration constants. The inverse relation to  eccentricity 
and argument of perigee is found by: 

e = dZi3,  
W = tan-' (v/u) 

(A. 12) 

The system of equations given in (A.ll)  represents a circular motion in the (u,v) 
plane about a center (0,Clk) shifted over the v axis. This situation is demonstrated 
in figure A.l for so-called precessing (A > Clk)  and liberating (A < Clk)  orbits 
where the argument of perigee is moving clockwise which suggests a negative value 
of k as in the simulated trajectory in chapter 4. In liberating orbits the argument 
of perigee stays in between the values of 90" - Aw and 90" + Aw. The value of 
Aw depends on the constants A and C l k  and attains a maximum when segment 
PR is perpendicular to  QR as is illustrated on the left figure of A.1. In this case 
Aw = t a n - ' ( ~ / . \ / ( ~ / k ) ~  - A2). The value of Aw is minimized when A = 0. In this 
case a so-called frozen orbit is obtained. In frozen orbits the argument of perigee is 
fixed to  90" whereas the eccentricity equals to  Clk .  

Precessing orbits occur when A > Clk ;  in this case the argument of perigee 
varies over the entire range of [0,360°] as can be concluded from the right figure 
of A.1. For these orbits the eccentricity varies in between A - C l k  and A + Clk .  



Figure A.2: Behavior of the long term non-singular variables U and v in a near 
circular numerically integrated trajectory. Only zonal coefficients have been used in 
the integration of the equations of motion. 

The LPT of Kaula (1966) cannot explain this effect since it always results in 
oscillating solutions for the Keplerian elements, compare eqns. (4.22). Here we 
conclude that there exist other solutions than the oscillating ones. The motions of 
e and W are not anymore harmonic oscillations. 

In order to verify the theory discussed above a numerical experiment was con- 
ducted. In this experiment a trajectory is integrated numerically using the first 9 
zonal coefficients of the GEM-T1 field, described by Marsh et al. (1986). For this 
purpose a 1 2 ' ~  order Adams/Moulton Adams/Bashforth multistep integrator was 
applied with a stepsize of 60 sec. It was used to integrate the equations of motion 180 
days in advance. No perturbations other than the zonal gravitational effects were 
used to  integrate the equations of motion. Other problem dependent constants were 
chosen according to  GRS-80. The initial elements of the trajectory are a = 7158 
km, e = 0.75 X 10-~,  I = 108", R = 0°, W = 90" and f = 60". 

In figure A.2 the results of this experiment are shown in the (u,v) plane. Each 
sample in this figure is derived by averaging the computed (u,v) values over 1 day 



of data. Averaging is required to  filter out short periodic oscillations due t o  the 
dominant Czo effect. The results reveal the circular motion in the (U, v )  plane 
centered around the (0,Clk) point. The value of W according to  (4.19) equals 
to -207 days (minus sign implies a clockwise motion). The theoretical value of 
C l k  computed by (A.8) equals to  7.9 X I O - ~  whereas the value of A equals to 
approximately 3.1 X 10-~. 



Appendix B 

Optimal correlation of spectra 

In this appendix it is briefly explained how optimal correlation is computed between 
two, so-called sequences { g )  and { h ) .  Here the { g )  and ( h )  sequences denote a 
series of real numbers hk and gk with k E [0, N  - l]. Each sequence is considered 
to  represent regular spaced samples of the radial orbit error function found by min- 
imizing crossover differences. Both { g )  and { h )  are formed by an evaluation of 
equation (7.1) a t  regularly chosen epochs. In the computations it is assumed that 
the orbit error function is evaluated at  4096 samples regularly distributed over 43 
revolutions. The reference time of each sequence coincides with the offset time used 
in the orbital period in which equation (7.1) is defined. 

In Bracewell (1986) it is explained that the product-momentum correlation co- 
efficient 7 of the sequences { g )  and { h )  is defined as: 

where Mg and Mh symbolize averages of the { g )  and { h )  sequences: 

l 
M - X g k  and Mh = - X hk 

g - ~  k=O N k= 0 

A direct evaluation of (B.l) results in a correlation coefficient 7 whose value varies 
from -1 to +l. If there is full correlation between the sequences then 7 = 1, 
whenever there is no correlation 7 = 0,  if the sequences are anti-correlated then 
7 = -1. 

In our case, where both sequences are defined with respect to independently 
chosen reference times, a direct evaluation of (B.1) is not possible since one may 
assume that there exists a phase shift between the sequences. As a result the problem 
is to  find a specific phase shift resulting in an optimal correlation, defined as yopt, 
of the { g )  and { h )  sequence: 

In this equation it is assumed that { g )  and { h )  behave as so-called cyclic sequences, 
i.e. hN+k = hk. A straightforward (expensive) algorithm for locating rapt in (B.2) is 



to compute all possible correlation coefficients for all l E [0, N - :L]. This algorithm 
takes at least N~ floating point operations which is quite inefficient for large N. 
In an actual computation of the optimal correlation coefficient N would be 4096 
resulting in 16 X 106 floating point operations. 

Fortunately there is a less expensive alternative for computing the entire cor- 
relation function by means of fast Fourier techniques. The denominator of (B.2) 
is rapidly found according to Parceval's theorem, compare Bracewell (ibid). This 
theorem states that the sum of squares in the time domain equals to the sum of 
squares in the frequency domain: 

Here G k  represents a complex number whereas G;  equals to its corresponding com- 
plex conjugate. The sequence { G )  represents the Fourier transform of the sequence 
{g )  (i.e. G  = 3(g)). In the computation of rapt in (B.2) the averages Mg and Mh 
are easily eliminated by assuming the bias coefficient in the perturbation spectrum 
to be equal to zero. In fact this is already the case since the constraint equations in 
the LSA of crossover differences force this particular parameter to be equal to zero. 

The numerator of (B.2) can be found by an evaluation of the correlation of the 
{ g )  and the { h )  sequences. According to Bracewell (ibid) the correlation function 
f (z) = g * h  is defined as: 

which is identical with a convolution (indicated by *) of a reversed { g )  sequence 
{g,)  and the { h )  sequence: 

f = g * h = g , * h  (B.5) 

Convolution of g, * h  in time domain corresponds to a multiplication of the {G , )  
(= {G*) )  and { H )  sequences in frequency domain, compare (Bracewell,ibid). Sum- 
marizing: an inexpensive algorithm for finding an optimal correlation coefficient rapt 

of the { g )  and { h )  sequences is as follows: 

given as input data are the spectra G  and H  

Parceval's theorem allows to evaluate the denominator of (B.2) by C k G k G ;  
and C k  Hk Hi 

the Fourier transform of the correlation function F = G* H  = G ,  * H  = G* * H ,  

the optimal correlation coefficient rapt is found as: 

G * H  
rapt = max Y-'(A) where A = H  H * ]  112 ' [CkGkG;Ck k , 

Most of the computing time is caused by the FFT algorithm which takes, see 
(Bracewelljbid), of the order of 2N log2 N floating point operations. This is a con- 
siderable improvement compared to the N' floating point operations required for a 
direct evaluation of equation (B.2). 
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Errata 

1. p.20 53.3.1 paragraph 2, last line: "p > 2an should be 
"p > 4an 

2. p.59 last two lines of eq.(4.47), p.59 last formula, p.60 
second formula, eq.(4.49) last line: include FImp(l)  as 
a multiplying factor 

d 7  . 
3. p.63 eq.(4.50) line 2: replace -;i: by 

4. p.69 line 9, word 5: replace " isn by " thisn 

5. p.103 line 3: read as "... the column vectors of the 
design matrix are linear dependent. The experiments 

n . . . 
6. p.128 item 6, last line: replace 'the "landn case' by 

'the "sean case' 

7. p.144 section "Recommendations ...", line 2: insert 
"is" after $P 




