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PREFACE

Accurate gravity information at sea can serve many important
purposes in geodesy, solid earth physics and oceanography. But
only since the early twenties of this century, through the
pioneering work of Vening Meinesz (1929) or (1948) gravity
measurements at sea became pocsible. The inherent complication,
whenever measuring while moving, is the separation of the
disturbing effects of the motion from the vertical acceleration
due to gravity. Meanwhile sophisticated modern gravity meters
exist, see e.g. (Bell and Watts, 1986) that largely eliminate
these disturbances. However there remains an effect that cannot be
eliminated instrumentally, the EStvds correction. It can only be
determined accurately if very precise navigation is available.
With the exception of a few areas, where accurate radiopositioning
is available, this causes a problem. With the establishment of the
Global Positioning System (GPS) precise navigation anywhere at any
time became feasible. Hence around 1984 the idea was born to
investigate the potential of GPS for this purpose in the North
Sea, where several precise radiopositioning systems are available
for comparison. Since such an experiment required GPS as well as
sea gravimetry, it was only logical to broaden the scope of the
experiment by addressing at the same time other interesting items
in the fields of navigation and sea gravimetry. The experiment was
named NAVGRAV.

On one hand the test offered the opportunity to take a closer
look at the precision, repeatability and resolution of sea
gravimetry and its trade-off with satellite altimetry derived
gravity. For these purposes two modern sea gravimeters were
measuring simultaneously. Several ship tracks of an earlier
experiment in 1979 (Strang van Hees, 1983) were repeated, and
SEASAT altimetry data were analysed. On the other hand very little
experience was present in the area of GPS in the Netherlands
around 1984. Thus, the experiment gave opportunity to involve as
many future potential users from private companies, government
agencies and universities, to gain experience on the capabilities
of GPS at sea and to compare it with the established radio

positioning systems in a variety of experiments. A preparatory GPS



experiment was carried out on board of Hr.Ms. Tydeman in December
1985 with the support of the Hydrographic Service.

The NAVGRAV experiment has been organized by the Faculty of
Geodesy of the Delft University of Technology (DUT). However the
experiment would not have been possible without the support of a
large number of organizations and individuals. The main support
came from the Netherlands Council for Oceanic Research (NRZ). This
organization provided cruise time on board of Hr.Ms. Tydeman of
the Hydrographic Service of the Royal Netherlands Navy as well as
financial support. Additional support came from the Universities
of Hamburg (U.H.) and Hannover (U.Han.) and the Technical
University -Munich (TUM), from the University of Utrecht (U.U.),
from the Survey Department of Rijkswaterstaat, Ministry of
Transport and Public Works, from the co-operative effort of
several private companies (Intersite Surveys, NESA, Osiris Seaway,
Netherlands Hydrographic Services, Oretech, Nortech Surveys and
Radio Holland) and from Shell Internationale Petroleum
Maatschappi j. Sincere thanks for their support go to Prof. Dr. R.
Sigl (TUM), Prof. Dr. K. Deichl (TUM), Prof. Dr. G. Seeber
(U.Han.), Prof. Dr. J. Makris (U.H.) and Ir. J.G. Riemersma
(Shell).

The actual experiments have been carried out under
supervision of Ir. G.J. Husti, Ir. G.L. Strang van Hees and P.G.
Sluiter. About thirty scientists and students have participated:
P. van Es (student), P.J. van Ess (student), Ir. G.J. Husti, C.D.
de Jong (student), G.M. Lammerts van Bueren (student), Ing. P.
Plugers, Ir. M.A. Salzmann, J.H.M. Smit (student), Ir. G.L. Strang
van Hees and J.L.M. Visser (student), all participants from the
Delft University of Technology (DUT), Ir. L.M. Murre
(Ri jkswaterstaat), P.W. Hardie (Nortech Surveys), Ir. J. Larthe de
Langladure and P.G. Sluiter (both from Shell), Ing. A.M. Jongsma
and Drs. A. Lubbes (Intersite Surveys), M.M. Mehta (N.H.S.), Ir.
N.J. Belgraver (Radio Holland), Ing. H. v.d. Meer (U.U.), Dipl.
ing. F. Heimberg (U.Han.), Dipl. ing. E. Kistler (TUM), T. Liebe
(U.H.). Due to their enthusiastic participation the experiment
became a success. Many thanks for all their effort. Last but not

least we gratefully acknowledge the active support of the Royal
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Netherlands Navy, the commander of Hr.Ms. Tydeman Kltz. G.R. van
Hengel and his officers and crew.

The experiments yielded an enormous amount of navigation and
gravity information and a lot of experience. This report gives the
results of the NAVGRAV project as they are obtained until now. It
is our impression that the available data could still be used for
future investigations and for student projects. The data and the
required documentation can be made available to any interested

group.

Delft, December 1988

Reiner Rummel
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SUMMARY

In April 1986 extented test measurements were executed with
GPS instruments on board of the Dulch Navy vessel Hr.Ms. Tydeman.
The GPS positions were compared with the best available
terrestrial radio navigation systems, under variable conditions.
The precision of GPS turned out to be 10 to 15 m in absolute
position, and better than 3 m in differential mode.

Gravity measurements were carried out with two sea
gravimeters. The differences belween the instrumenls were less
than 1 mgal for random errors. However systematic errors occured
on some lines up to a few mgal, probably due to errors in the
cross-coupling corrections, Also a comparison was made witlh
results of a similar project in 1979. Only minor differences are
present. Remarkable is the rather irregular shape of the gravity
field, although the sea bottom is very flat. A significant gravity
anomaly appears at latitude 55013’, longitude 5°38" . This anomaly
is caused by a mass disturbance due to mantle material intruded
into the crust.

In sea gravimetry the realizable accuracy is limited by
Eotvos correction errors. To determine Eotvos corrections better
than 0.5 mgal, ship velocity estimation with an accuracy of 5 cm/s
or 0.1 knot is necessary. The possibilities of obtaining ship
velocity estimates with high accuracy by using GPS pseudorange
code measurements and carrier phase measurements are investigated.
The comparison of Eotvos corrections computed with ship velocity
estimates from GPS pseudoranges, Doppler smoothed pseudoranges,
carrier phase measurements and Syledis and Hyperfix positions
shows no discrepancies. Best results are obtained from the GPS
Doppler smoothed pseudorange method. This justifies the conclusion
that the effect of Eotvos correction errors in sea gravimetry can
be reduced significantly.

Gravity anomalies as derived from ship measurements were
compared with gravity anomalies computed from SEASAT altimetry.
Altimetry provides, after correction for various disturbances,
accurate sea surface heights. With good approximation one can

identify the latter with geoid heights (neglecting those parts of



the sea surface topography for which no models are available). Two
alternative methods were applied for the estimation of point
gravity anomalies from the altimeter derived geoid heights. One
method was least squares collocation, the other a very fast
but theoretically 1less sound technique based on Fourier
transformation. In both cases the long wavelength part was dealt
with using the GEMIOB set of potential coefficients. Collocation
yielded better results. The agreement with shipborne point gravity
anomalies is on the 7 mgal level with no significant bias. This
proves that altimeter derived gravity is well suited for a
preliminary inspection of the gravity field structure of an area

of interest.
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NAVGRAV

NAVIGATION AND GRAVIMETRIC EXPERIMENT
AT THE NORTH SEA

G.L. Strang van Hees
Delft University of Technology
Faculty of Geodesy

1. Introduction

The NAVGRAV project was a combined NAVigation and GRAVimetric
experiment at the North Sea. For this project the oceanographic
vessel H.M. Tydeman of the Royal Dutch Navy was made available. The
expedition took place from April 23 to May 13, 1986. The experiment
was divided into two parts. The first week from April 23 to 30 was
devoted to a test of the perspectives of modern navigation systems.
During the second period from April 30 to May 13 the primary goal

was the evaluation of the perspectives of modern sea gravimetry.

2. Navigation

The following terrestrial radio positioning systems were
available: Syledis, Hifix and Hyperfix. On the other hand six GPS
receivers were on our disposal: three Texas Instruments, two Sercel
and one Trimble. Four instruments were placed on board and two on
land as reference stations. To compare the precision of the GPS with
the terrestrial systems a scheme of lines were steamed, mainly in
the area covered by Syledis (see figure 1). Syledis was assumed to
be the most accurate terrestrial system. In the same area Hifix was
available too, which gave a good insight into the reliability of the
terrestrial systems. The third system, Hyperfix, was used as
reference system in the northern part of the measuring area (figure
1). However the latter system was only recently installed and still
in a testing phase. This caused sometimes lane slips, and a complete
one day gap when the system was out of order.

Some special tests were carried out in order to test the

reliability of the systems under special conditions.
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- steaming around oil platforms in circles with radii of 100m, 500m
and 1500m, to check the influence of reflections;

- suddenly increasing and decreasing of the ships velocity, and
sudden changes of the ships direction;

- precision of the radio systems in case of a long landpath of the

radio waves.

However all these experiments caused no measurable deviations.

G.P.S. survey NAVGRAV Gravity survey NAVGRAV
23 - 29 April 1986 23 April - 13 May 1986
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Navigation experiment NAVGRAV Gravity survey NAVGRAV

The GPS tests were aimed at:

- absolute precision compared with terrestrial systems;

- relative precision between ship and land receivers;

- relative precision between different receivers on board;
- relative precision between ship and launch, and

- velocity determination with GPS.

All data were registrated at 3 seconds intervals.
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3. Gravity

During the second period a rectangular pattern of lines was
steamed (see figure 2). As the available navigation systems were out
of range in the northern North Sea, another radio positioning system
was chosen, Pulse 8. The precision of this system was 20 m, which is
sufficient for gravity survey needs.

The purpose of the sea gravity measurements was to determine
the precision of modern sea gravimeters. Two gravimeter systems were
installed next to each other, the sea gravimeters Bodensee Kss 5 of
the Delft University of Technology and the Bodensee Kss 30 of the
University of Hamburg. The difference between the measured gravity
of both instruments gives an insight into the internal precision and
bias of the gravimeters. External errors like navigation errors and
the E6tvds correction were eliminated.

Part of the region has already been surveyed in 1979 (Strang
van Hees, 1983). Some of these lines were remeasured in order to
determine the external precision of gravity measurements. Additional
lines were put in between the previous measured lines. This gives
the possiblity to investigate the precision of the interpolation of
gravity anomalies in cross line direction. The lines are about 25
km apart, which is chosen in correspondence with the estimated
roughness of the gravity field.

Nearly all measurements were carried out under excellent
weather conditions. Therefore the quality of the measurements is
very good.

The good cooperation on board between the scientists and the
Royal Netherlands Navy is very much appreciated. Commander Kltz.
G.R. van Hengel of the H.M. Tydeman and his officers and crew gave

all support to make this expedition succesful.

4. List of participating institutes and firms

Delft University of Technology, Faculty of Geodesy

- University of Hannover, Institute of Geodesy

- Technical University Munich, Institute of Astronomical and
Physical Geodesy

- University of Hamburg, Institute of Geophysics
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- University of Utrecht, Faculty of Geophysics

~ Hydrographic Service of the Royal Netherlands Navy
- Survey Department of Ri jkswaterstaat

- Shell Internationale Pretroleum Maatschappij

- Osiris Seaway

- Intersite Surveys

- Radio Holland

- NESA

- Netherlands Hydrographic Services

- Oretech

- Nortech Surveys

5. References

Rummel, R., G.L. Strang van Hees and H. Versluijs (1983): Gravity
Field Investigation in the North Sea. In: Satellite Microwave
Sensing (ed. T.D. Allen}, John Wiley & Sons, New York.

Salzmann, M.A., G.J. Husti, G.L. Strang van Hees, P.J.G. Teunissen
(1987): NAVGRAV, a comprehensive combined navigation and
gravimetry experiment on the North Sea; objectives and first
experiences. Proceedings International Symposium on Marine
Positioning, Reston, October 14-17, 1986.
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GPS AND TERRESTRIAL RADIOPOSITIONING SYSTEMS

G.J. Husti
P. Plugers
Delft University of Technology
Faculty of Geodesy

1. Introduction

One of the objectives of the NAVGRAV project was to
investigate the suitability of the Global Positioning System for
position and velocity determination at sea. GPS will obviously
play an important role in gravimetric surveying in the near
future, where the desired accuracy is about 20 meter in position
and 5 cm/sec in velocity. Such an accuracy is now quite possible
with GPS, but could not be achieved during the 24 hour non-stop
gravimetric survey, because of the limited number of satellites
available in 1986. Each day two observation windows were available

(figure 1):

Date . 24 fpr 1986 Station : North Jea
Latitude : 54°00°00" Longitude:  4°00°00" |Height : SO M

12,
i1
10
9

Number of
Satellites

— G2 B U1 O D00

-
0 2 4 B 8 f0 12 14 168 18 20 2 A
Time of day

Figure 1. GPS windows in April 24, 1986 ( ¢ = 54°, A = 4°)
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first period 2:00 - 8:00 hours
second period 13:00 - 18:00 hours

For this reason GPS was used during the NAVGRAV project only
for various experimental purposes. For the gravimetric survey

traditional radio positioning systems were deployed.

2. Equipment

Several positioning systems were on board during both periods

of surveying, as shown below:

1st period: April 23 - 29 2nd period: April 30 - May 13
GPS receivers GPS receivers
Trimble 4000A (Radio Holland) Trimble 4000A (Radio Holland)

Sercel TRSS (Rijkswaterstaat*) Rubidium clock (T.U. Munich)
TI-4100 (University of Hannover)

TI-4100 (Technical University Munich)

Cesium clock (Nortech Surveys)

Rubidium clock (Technical University Munich)

Radio positioning systems Radio positioning systems
Syledis (Osiris Seaway) Pulse 8

Hifix (Hr.Ms. Tydeman) Hyperfix (Hr.Ms. Tydeman)
Hyperfix (Hr.Ms. Tydeman) Oceanlog (Hr.Ms. Tydeman)

»*
Loran C (Rijkswaterstaat )

Oceanlog (Hr.Ms. Tydeman)

* Survey Department of the Ministry of Transport and Public Works

During the first period an additional TI-4100 receiver
(Nortech Surveys) was set up at an on-shore station. First at
Haarlem (April 21 - 25), and after that at Delft (April 25 - 28),
in order to be able to post-process the data in translocation,
i.e. differential, mode. For this reason, all GPS receivers were
scheduled to operate in the same mode (P or S code) and to track
the same satellites.

In addition, GPS measurements carried out at a second

16



on-shore station (Stavanger, Norway) were kindly provided by the
Norwegian Hydrographic Service, for translocation purposes over a
greater distance. Unfortunately, these data could not be used,
because of a different satellite observation scheme at Stavanger.

A complete overview of the equipment is shown in appendices 1
and 2. The instruments were set up on board at two locations: in
the chartroom and in lab-1, where the observers kept contact by
telephone. In the chartroom the INTERPLOT-200 software of
Intersite Surveys was running on a HP93920 computer for real-time
navigation. A very important subject was the time synchronisation
of all the positioning systems. This problem was solved by
synchronizing the clock of the Hewlett Packard computer with GPS
time using the one pulse per second output from the TI-4100
receivers.

During the second period of the project from April 30 to May
13 only one Trimble GPS receiver remained on board and the Pulse 8
positioning system was used as primary positioning system for the
gravimetric survey. Both positioning systems yielded satisfactory

results during the entire period.

3. Antenna offset

The intersection point of the main mast and the horizontal
beam was adopted as the reference point for all positioning
systems. The antenna offsets, as determined in a three dimensional

coordinate system, are given in table 1.

GPS receiver X{m) Y(m) AH{m) remark
TI-4100 (Munich) -0.25 +38.8 -5.0 until Apr.27, 15h
TI-4100 (Hannover) -3.0 + 0.1 +0.5 until Apr.27, 15h
TI-4100 (Hannover) -0.25 +38.8 -5.0 from Apr.27, 15h
Trimble 4000A +2.6 + 0.1 +0.8 until Apr.27, 12h
Trimble 4000A +0.4 - 2.3 +3.8 from Apr.27, 12h
Sercel +0.25 +38.8 -5.0

Y heading direction

X
AH

starboard direction
vertical height difference (up = positive)

Table 1. Antenna offsets
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The antenna offset to the reference point was computed as follows:

0 p
Ap = ( Xsina-Ycos a) -
R
0 p
AN = - ( Xcosa+ Ysina) —— (1 a,b,c)
R cos ¢
H =H-AH
[
where:
p = 180°%/n

R = 6378388 metre

a = ship course

4. Real-time navigation

The real-time navigation data was handled by the HP9920
computer using the INTERPLOT-200 software, by which the Syledis,
Hifix and Hyperfix positions were recorded. The raw data and the
computed positions were simultaneously stored on 3.5" diskettes.
The currently most reliable terrestrial radio position was
selected as primary position and used for the gravimetric survey.
This primary position was also monitored on the bridge for
controlling the desired sailing route for the gravimetric survey.

Moreover, the following GPS positions were computed in
real-time and recorded on 3.5" diskettes or 4 track tape:

1. TI-4100 (Munich), after April 27 the TI-4100 (Hannover)
using the Nortech real-time navigation software
Trimble, using the receiver software

Sercel, using the receiver software (not involved here).

5. GPSFIX program

In order to post-process the TI-4100 raw data new software
was developed at the Faculty of Geodesy on the VAX 750 computer.
Various subroutines, which had been developed before (cf. de Jong,
1985 and Visser, 1988) were utilized here. However, these
subroutines had to be converted from HP Basic 3.0 to Fortran 77.

This conversion was necessary, because the HP computer could not

18



handle such

time.

large amounts of data within a reasonable period of

Since the structure of such a navigation program is generally

known,

program

only some main features are presented here.

GPSFIX has the following steps:

1. read TI-4100 raw data (8 bit numbers) in “Hannover"

"Shell" format

decode the datablocks ("ephemeris" or "measurements")

compute satellite coordinates from Broadcast Ephemeris

compute pseudoranges or Doppler aided pseudoranges,

either P or S code and apply ionospheric

tropospheric correction for a standard atmosphere

correction

The navigation

or

using

6. compute position and velocity (either from 4 satellites

from 3 satellites with fixed height or

from two

with fixed height and fixed clock offset)

The menu options of the GPSFIX program are
table 2.

$RUN GPSFIX

enter
shell
enter
enter

receiver type (ti or trimble)
or hannover data (1 or 2)
input dataset name

output dataset name

unformatted output (y or n)

store
enter
enter
enter
enter
enter
enter
enter
enter
enter
enter
enter
enter
enter

doppleraid or normal

usersolution (y or n)
itest (notest=0, 1level=1,2,3,4)
latitude ( dd, mm, ss)
longitude (ddd,mm,ss)

height (m)

a priori s.d. of latitude (m)

a priori s.d. of longitude (m)

a priori s.d. of height (m)

a priori s.d. of bias (m)

a priori s.d. of pseudoranges (m)

minimum elevation (degr)
dry temperature (c)

wet temperature (c)
pressure (mbar)

s.d. of phase measurements (cycles)

(doppler or normal)

1000.
1000.

5

4

15.
.00]

12

1012.

and

or

satellites

til
2]

n]
nj
0]

00]
00]

.00]
100000000.

00]

.00]

00]
001

00]

doppler]

0.

Table 2. Menu of the GPSFIX program
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The unknowns are estimated from the following equation:
dx = (P, +ATP A)TATP d (2)
X L L

where:
dX = vector of corrections ( Ap AA Ah AT )T
dL = vector of observed minus computed pseudoranges
= design matrix
= weight matrix of the observations
= weight matrix of the unknowns (for fixing the height

or fixing the height and the clock offset)

The clock drift AT can be determined from the previous clock
offsets AT by means of a regression line. This clock drift is used
for the prediction of the "fixed" clock offset, when only two
satellites are available for positioning.

The velocity can be estimated in a similar way using the same
design matrix (cf. Smit, this issue).

An example of the output data is shown in appendix 3. Each

record of position fix contains the following data:

-date [yymmdd] and time [s]

-latitude [degl, longitude [deg], height [m],clock offset [m]
-clock drift with its standard deviation [m/s]

~speed [m/s] and heading [deg]

-number of satellites used for the position fix

-estimated standard deviations of the unknowns [m]

-tracked satellites (satellite PRN numbers) and GDOP

6. Transformation between WGS72 and EDS0

Transformation between WGS72 and ED50 was carried out in a

local system using seven transformation parameters according to:

=X +SRI(X
T

XEDS0 - Xo ) + Xo (3)

WGS72

20



where:

X = vector
WGS72
X = vector
EDSO0
X = centre
o
X = vector
T
S = gcale
R = differ
1
R = €
z
-€
y

The following values ob

are used for the transf

8
11
11

1}

o o o0 0 N < X
1}

The centre of the local
Doppler coordinates of

Herikerberg, Tongeren,

of GPS coordinates in WGS72 (X Y 2)T

of terrestrial EDS0 coordinates (X° Y' 2’)
of the shifted local system

of translation parameters (XT YT ZT)T
factor

ential rotation matrix as follows:

1 - (4)

tained from the NEDOC-project (Husti, 1983)

ormation parameters:

2.28 m
1.86 m
4.23 m
0.9999989034
0.500"
0.492"
1.443"

system is given by the mean values of the
the NEDOC stations (Leeuwarden, Kootwi jk,

Delft, Axel, Herstmonceau and Kessingland),

which were used for the determination of the above transformation

parameters:

N < X
i 1] 1§

3933097.25 m
290642.89 m
4993265.56 m

The inverse transformation can be derived from equation (3) and

is given by:

X =

T
RO (X - X" XT) + X (5)

1
WGs72 S EDS0
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The precision of this transformation is estimated to be better
than 1 metre. The small differences between Transit WGS72 and GPS
WGS72 are neglected.

7. Post-processing

The post-processing was carried out on the VAX 750 at the
Faculty of Geodesy. The following preparations had to be done
first:

a. the 3.5" diskettes containing real-time positions and raw
data were transferred from HP217 to VAX using a HP conversion
program

b. the GPS raw data (data blocks with 8 bit numbers) were copied
to 9 track tape by Shell and the Hannover University

c. development of various software, in order to carry out
transformations, file selection, translocation and comparison

of different types of positioning systems.

The following software was developed in Fortran 77:

GPSFIX : GPS navigation program

TRANS :  transformation between WGS72 and ED50 in three steps
1. ¢,A,h (WGS72) -> X,Y,Z (WGS72)

2. X,Y,2 (WGs72) -> X,Y,2 (ED50)
3. X,Y,2 (EDS0) -> ¢,A,(h) (ED50)

SELECT : reads various position files, checks, selects and
writes to a binary position file [(BPF), which can
be read by all the following programs

READBF : reads the binary position files (BPF) and converts
them to ASCII files

TRANSLOC: prepares differential GPS computation:

1. reads two simultaneous binary position files for
the reference and the moving station

2. finds the corresponding records and checks whether
for instance the observed satellites and the used
ephemeris data are identical

3. computes a position correction per fix at the
reference station and applies this correction to

the moving station

22



4. output: corrected binary position file of the

moving station
COMPARE : 1. reads two binary position files (BPF) which are to

be compared, and finds the corresponding positions
(if necessary by interpolation)

2. corrects the GPS position for antenna offset and
transforms from WGS72 to EDS0

3. computes the position differences and standard
deviations

4. output: a. precision/accuracy analysis

b. plotfile

A flow chart of the post-processing is presented in appendix
4. The left hand side shows the processing of the real-time GPS
positions and the various radio positioning systems, such as
Syledis, Hifix and Hyperfix. The right hand side shows the
post-processing using the program GPSFIX.

The position files obtained for the various systems can be
compared and analysed by the program COMPARE. The subjects below
will be treated in the sequel:

- zero base line test in Haarlem

- reference stations Haarlem/Delft

- comparison of positions from Hifix and Syledis

- comparison of real-time positions from Trimble and Syledis

- comparison of positions from TI-4100 to Syledis (including
translocation)

- translocation between two GPS receivers on board of Hr.Ms.
Tydeman.

- launch experiment (including translocation)
Some parts of the navigation data have already been investigated

(cf. Smit, 1988 or Visser, 1988).

8. Zero base line test in Haarlem

On April 21 two TI-4100 receivers of the Munich University of

Technology and Nortech Surveys were set up at Haarlem and
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connected to the same antenna using a beam splitter. The
observations were recorded from 14:00 to 18:15 UTC.

The position differences between two receivers, obtained from
separate computations using the program GPSFIX with P code non
smoothed pseudoranges are presented in appendix 5. During the
first hour, where exactly the same satellites and ephemeris were
used for both computations, there is good agreement: the noise
level is approximately 1.2 meter. In the next part, when only two
satellites were available and no atomic clock was used, there is a
remarkable clock drift effect. Since each receiver uses its own

internal quartz clock, such a clock drift can be expected.

9. Reference stations Haarlem and Delft

During the first week of the NAVGRAV project one on-shore
TI-4100 receiver (Nortech Surveys) was observing simultaneously
with the GPS receivers on board of the Hr.Ms. Tydeman, first at
Haarlem (April 21-25) and then at Delft (April 25-28), in order to
be able to process in translocation mode. The single point results
are discussed here separately, while the translocation results
using these reference positions will be discussed in section 12.

The known terrestrial coordinates and the computed mean value
of the GPS positions are shown in table 3. The transformed WGS72

coordinates are obtained from ED50 coordinates (cf. equation (3)).

station: Haarlem Delft
0 » " O * L1}
EDS0 ® 52 23 13.226 51769 12.848
(terrestrial) A 4 37 05.666 4 23 19.847
h 17.00 m 27.17 m
0 ’ " 0 » "
@ 5223 10.44 51759 10.00
WGS72 A 4 37 00.13 4 23 14.33
{transformed) h 66.59 m 77.75 m
0 » " 0 ? "
(7 5223 10.36 51 69°09.67
WGS72 A 4 37 00.61 4 23 14.16
(by GPS) h 66.78 m 67.45 m

Table 3. Coordinates of the reference stations
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Differences between stationairy 3-D positions and their mean

values are plotted for the stations Haarlem and Delft:

Appendix 6: Station Haarlem:
Appendix 7: Station Delft
Appendix 8: Station Delft
Appendix 9: Station Delft

code / non-smoothed pseudorange
code / non-smoothed pseudorange

code / Doppler-aided pseudorange

v TV TV T

code / non-smoothed pseudorange

The single point positioning with P code yields generally
excellent results. The obtained differences with the known values
are within 10 m (appendices 6 and 7). Computation with Doppler
aided pseudorange gives a lower noise level, but no improvement in
accuracy (appendix 8). The positioning using S code gives a much
higher noise level and in this case small systematic errors

(appendix 9).

10. Comparison of positions from Hifix and Syledis

The precision of Hifix and Syledis distance or distance
difference measurements is estimated to be 1 - 2 metres. However;
both systems may have much larger systematic position errors due
different reference systems, to calibration errors and to the
influence of the geometric intersection. Therefore it is common
practice to carry out a local "re-calibration" by applying local
corrections, in order to remove the systematic errors and to
improve the external accuracy.

A comparison between the two systems, without any
"re-calibration”, measured in an area of good coverage, is shown
in appendix 10. Obviously there always exists a certain systematic
error between the two positioning systems, in this special case an
average of 6.6 m in latitude and 3.8 m in longitude. The error
distribution in figure 2 shows the same systematic errors. The
standard deviations of the differences after elimination of these

systematic errors are:

o =3.3m
"2
oi =3.1m
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In these standard deviations the influence of both Syledis and
Hifix position errors are involved. Thus the precision of each

system may be about 2 metre (in position), which seems reasonable.

number of observations number of observations

200

200

Figure 2. Latitude and longitude differences. Hifix - Syledis (m)

However, the systematic position errors, which are expected to be
at a 3-5 metres level are difficult to determine. It should be
pointed out that this position accuracy does not allow to evaluate

GPS positions better than this level.

11. Comparison of positions from Trimble and Syledis

The Trimble 4000A receiver yielded very satisfactory results
throughout the whole period and provided reliable positions at 15
seconds intervals. An example of these real-time positions
compared to Syledis is shown in appendix 11. From the differences
(including systematic errors) the following standard deviations

are obtained:

6.9 m
13.4 m

[+
®
Y

This result, obtained from 911 position fixes at intervals of 15
seconds, is quite good for a single frequency receiver. The error

distributions of these differences are shown in figure 3.
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Figure 3. Latitude and longitude differences. Trimble-Syledis (ﬁ)

12. Comparison of positions from two TI-4100 receivers and Syledis

A number of TI-4100 positions obtained on board of the Hr.Ms.
Tydeman were post-processed with the GPSFIX program. The single
positions obtained by the Munich and Hannover receivers on April
25, in the same observation period (using P code) are compared to
Syledis, after reduction of both GPS antenna positions to the same
reference point. The differences are plotted in appendices 12 and
13 respectively, showing a precision of about 10 metres.

If we compare the position differences of the two GPS
receivers on board (cf. appendix 14) we may conclude that there is
no significant discrepancy.

In addition, the observations collected by the Hannover
receiver on April 25 are also processed as Doppler aided
pseudoranges, compared with Syledis and plotted in appendix 15.
This gives some improvement in precision and accuracy. Compared
with the stationary measurement shown in appendix 8, it has a
higher noise level possibly caused by Syledis.

The Hannover receiver observations of April 25 were also
processed in translocation mode relative to the station Delft. The
differences with the Syledis positions are plotted in appendix 16.
If these results are compared with those of appendix 13, it

appears that some improvement of the accuracy is obtained in
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translocation mode since the slopes are removed. The noise level
(including Syledis) is now below 3 m. The gaps in the plot in
appendix 16 are caused by the fact that not always the same
satellite configuration was observed by both receivers. In case of
different satellite configurations or ephemeris of different ages,

the position fixes are ignored by program TRANSLOC.

13. Launch experiment

On April 24 a launch experiment was carried out. A TI-4100
receiver and a Hifix receiver were installed in the launch, which
was sailing near the Hr.Ms. Tydeman at distances of up to 4 km. It
was intended to investigate the accuracy of differential GPS
between two moving vessels at short distance. Thus, we have a GPS
position difference and a corresponding Hifix position difference
between the Hr.Ms. Tydeman and the launch, which can be compared.
This experiment was, however, not successful, because the TI-4100
receiver on board of the Hr.Ms. Tydeman was set to S code
(operator mistake), while the TI-4100 receiver on the launch set
to P code. The results of the computations were very poor.

The 1launch positions obtained from the TI-4100 data were
compared in the following way:

a. The single GPS positions are compared to the Hifix
positions, both measured on board of the launch. The
results shown in appendix 17 are very satisfactory since
a precision in latitude and longitude of about 2 metre and
systematic errors of 4.1 m and 13.6 m respectively are
achieved. These systematic errors are of course caused by
both Hifix and GPS.

b. Next the GPS positions are improved by translocation
relative to the station Haarlem and compared to Hifix
positions. The results presented in appendix 18 show no

significant improvement.

14. Conclusions

The Syledis and Hifix positioning systems, used as a
reference during the project, yield a precision of about 2 m in

latitude and longitude. However, the systematic error may be 3 - 5
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metres. Thus the GPS positions can only be evaluated with the same
accuracy level.

The Trimble 4000A internal software provided real-time
reliable positions with a standard deviation of 10 - 20 m by S
code (contribution of Hyfix/Syledis is included).

The TI-4100 receijvers provided good results after
post-processing. The standard deviation for a position without
translocation is estimated to 10 m using P code, and 10 - 20 m
using S code (contribution of Hyfix/Syledis is included). The
translocation mode yields a standard deviation of about 3 m

including Syledis noise.
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APPENDIX

Equipment in the period April 23-29

Equipment in the period May 1-13
Output data of the GPSFIX program

Flow diagram of the post-processing

Zero baseline test in Haarlem (April 21)

Reference
Reference
Reference

Reference

sation Haarlem (April 24)

station Delft (April 25)

station Delft ["Doppler aided"] (April 25)
station Delft ["S code”"] (April 26)

Comparison Hifix to Syledis (April 24)

Comparison Trimble to Syledis (April 24)

Tydeman:
Tydeman:
Tydeman:
Tydeman:
Tydeman:

GPS
GPS
GPS
GPS
GPS

(TI/M) - Syledis (April 25)

(TI/H) - Syledis (April 25)

(TI/M) - GPS(TI/H) (April 25)
(TI/H/Doppler aided) - Syledis (April 25)
(TI/H/transloc) - Syledis (April 25)

Launch: GPS (TI/H) - Hifix
Launch: GPS (TI/H/transloc) - Hifix
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Real time positions

Postprocessing (GPS)

NOR/TRI SERCEL | | SYL/HFX/HYP HAARLEM NORTEC
DELFT HANNOVER
CONVERSION GPSFIX
HP->VAX
Y
SELECT SELECT
Binary filg «— READBF <~—» [Binary fil
: print
¥ v
COMPARE
antenna offset
transformation
ANALYSE
Appendix 4

Flow diagram of the postprocessing
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Reference station Haarlem (April 24)
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Reference station Delft (April 25)
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Reference station Delft [’S-code’] (April 26)
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Appendix 10
Comparison Hifix to Syledis (April 24)
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Comparison Trimble to Syledis (April 24)
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Appendix 12
Tydeman: GPS (TI/ M) - Syledis (April 25)

[m]

vl gy

lat diff.

Ll ran

1 L 1 1 L L 1 R 1 L PR |
51000 54000 57000 60000

20

=" MWWMWWM Pl %
hal M, R | | 4
s [
c L
S -1o0F
-20 ”A t 1 I 1 L 1 | L i i L__1 L L L i | ' 1 L
51000 54000 57000 60000

UTC time [sec]

Appendix 13
Tydeman: GPS (TI/ H) - Syledis (April 25)
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Appendix 15
Tydeman: GPS (TI]/ H/ Doppler aided) - Syledis (April 25)
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Appendix 16
Tydeman: GPS (TI/ H/transloc) - Syledis (April 25)
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Launch: GPS (TI/ H) - Hifix
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GRAVITY MEASUREMENTS AT THE NORTH SEA

G.L. Strang van Hees
P. Plugers
Delft University of Technology
Faculty of Geodesy
T. Liebe
University Hamburg

1. Introduction

The gravimeter which was used. during the survey is the
Askania-Bodensee gravimeter Kss-5, owned by the Delft University
of Technology, The Netherlands. This instrument was renewed and
improved in the Bodenseewerke in Germany in 1978 and 1984. Its
sensor has a horizontal beam which means that it is affected by
the cross-coupling effect. This effect is dependent on the weather
conditions. Most of the time the weather was excellent during the
cruise, so this effect was negligible.

The instrument is equipped with a cross-coupling computer
which computes the cross-coupling effect on hand of the measured
horizontal accelerations and the motion of the beam. This tool
reduces the errors due to the cross-coupling effect. However
inspection of the cross-over residuals showed a systematic error
of a few milligal in bad weather conditions.

During the second period from March 30 to April 13, 1986 a
second gravimeter Kss-30 from the Geophysical Institute of the
University of Hamburg in Germany was installed on board. This
gravimeter is based on a vertical moving mass and is not sensitive
to the cross-coupling effect.

One of the main objectives of the gravity survey was to
investigate the difference between the two gravimeters under
different weather conditions. This way the precision of both

instruments can be determined.

2. Navigation

The precision of gravity measurements at sea is mainly
depending on the precision of the ship speed and course estimates.
The east-west ship velocity component causes a vertical component

of the Coriolis acceleration, which can be taken into account by
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applying the so-called EGtvds correction. Usually this correction
is the limiting factor of the precision of gravity measurements at
sea. To obtain a 1 mgal precision in gravity the speed of the ship
should be determined with a precision of 0.2 knots = 0.1 m/s. This
can only be obtained by very good navigation systems 1ike Syledis,
Hifix, Hyperfix, Pulse 8 or by satellite systems 1like GPS.

As the GPS system was only available during a few hours a
day, we navigated most of the timé on terrestrial systems. The
systems Syledis and Hifix are only reliable within a range of
about 100 km from the coast. Hyperfix being just installed turned
out to be unreliable and was even out of order during several
days. For this reason the decision was made to rent a Pulse 8
receiver during the second period. The Pulse 8 system was used as
primary navigation system which led to satisfactory results most
of the time.

During the first period we navigated on Syledis and Hifix.
Problems arose because of many lane slips and sometimes bad
reception of the signal. The position was recorded every 3 seconds
resulting in several thousand recordings which had to be inspected
afterwards. Very carefully checking and filtering of the data made
it possible to create a dataset with the best possible positions
during the whole period.

The filtering of the data was executed in the following
steps. First, all data were inspected to find the most reliable
positioning system for each time. Secondly, this dataset was
filtered and tested with a Kalman filter. The Kalman filter has
the advantage that every successive observation is tested
immediately. A jump due to a lane slip is rejected and will
therefore not disturb the following positions. This way the
blunders are removed. Thirdly, it was necessary to filter the
dataset again to smooth the positions. Noise should be filtered
out because it has a strong influence on the computed speed. Small
errors in position cause large errors in speed.

The smoothing of the positions is performed with a smoothing
spline program. The degree of smoothing can be regulated by a
special parameter. After several trials an optimal smoothing
parameter is adapted to filter out the irregular changes in

position, meanwhile maintaining the regular and probably realistic
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changes of speed and course of the ship. The smoothing spline
program has the advantage that it computes automatically the
derivative of a function which is in this case the required speed
of the ship in north and east direction.

The gravimeter has a strong magnetic and electronical damping
in order to reduce the influence of the vertical accelerations of
the ship. However, this damping causes a slow reaction on course
and speed changes. After a change it takes about 15 minutes before
the gravimeter is stabilized again. The course and speed changes
are obtained from the smoothed position dataset. All periods with
changes are removed from the dataset, resulting in a clean dataset
with only straight line tracks.

It should be emphasized that filtering and c¢leaning the
position dataset was a time consuming and precise job. All
irregularities were inspected and analyzed individually. It was
the most important part of the whole computation, because
undetected irregular movements of the ship result in large errors
in the gravity anomalies, which can possibly lead to false

geophysical interpretations.

3. Gravimeter registration

The gravimeter output of the Kss-5 gravimeter (Delft) was
recorded on a HP9845 computer, together with the positions and
time. Every 10 seconds the gravimeter observation was read by the
computer and the mean value over one minute (6 readings) was
recorded on magnetic tape. This gave the possibility to
immediately detect and eliminate gross errors in the readings,
since the 6 readings should be close together. The same technique
was used for the positions and time. The time as received from the
main clock on board was compared with the internal computer clock.
If the difference was too big the error was usually caused by the
data transmission and could be corrected for.

The gravity readings were also slightly smoothed by the
smoothing spline program. The program is used mainly to test on
errors in the gravity registration. This way errors could be
corrected for.

The Hamburg gravimeter Kss-30 data was processed
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independently. The output was recorded on magnetic tape, together
with the ship’s gyro and log. The preliminary gravity anomalies

were computed at once.

4. Computation of the gravity anomalies

The gravity values (in mgal) are computed with the following

formula:
g=S'(R+ﬁ'T)+Ag + Dt +C+H (1)
ot E
where:
g = gravity
= calibration constant of the gravimeter = 1.060
= reading of the gravimeter
gg = change of reading per time unit, computed from the
spline program
T = time-constant of the gravimeter, 200 seconds
AgE = E6tv8s correction
D = drift of the gravimeter , computed from a harbour
connection before and after the measurements
= time since beginning of the cruise
= cross-coupling correction computed from measured
horizontal accelerations and beam motion
H = harbour connection.

H is computed from the gravity value in the harbour, the
gravimeter reading in the harbour and the height difference
between the harbour gravity station and the water level. This
correction reduces the computed gravity values to the height of
the water level.

Strictly speaking the gravity values should also be reduced
for tides, however this correction is usually smaller than 1 mgal
and is neglected.

The harbour connection in Den Helder can be computed with equation

(2) using the g, and R0 values as presented in table 1.
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Date and time : 23 April 1986, 11.00 h.
Gravity value on the jetty: 981323.93 mgal

Corrections to waterlevel : 0.86 mgal

Gravity on waterlevel : 981324.79 mgal = 9,

Gravimeter reading : 4328.5 = R0
Table 1.

H = g9, - S-R0 = 981324.79 - 1.060 - 4328.5 = 976736.58 mgal (2)
On return after the first period on 29 April 1986, 12.00 h. the
gravimeter reading was 4329.0.

The drift is 4329.0 - 4328.5 = 0.5 mgal in 6 days. Before start of
the second period, 30 April, 17.00 h., the reading was 4329.0 and
after return on 13 May, 11.00 h.: 4328.8, thus a drift of 0.2 mgal
in 14 days. For both periods the drift may be neglected, so D was
set to zero during the whole period.

The E&tvds correction is computed by:

2 2
: vo_ v
AgE =2 w vV sina cosp + R = 2 w V.oast cosg + R (3)
e e
where:

AgE = EStvds correction

w = earth’s angular velocity

% = ship velocity

a = ship course

") = latitude

R = earth radius

The velocity Vst is obtained directly from the spline program.

The free-air anomalies AgFA were computed by subtracting the
normal gravity from the computed gravity. The Geodetic Reference
System 1967 is used for the reduction, in which the normal gravity
¥ is defined as:

y = 978 031.85 + 5185.88 sin® ¢ - 5.74 sin® 2¢ mgal (4)
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and a free air gravity anomaly as:

AgFA =g-7 (5)

The Bouguer anomalies are computed by the simple Bouguer plate
reduction. The Bouguer plate is an infinite flat plate with a
thickness of the local depth and a density equal to the difference
in density between the crust (2670 kg/ms) and the seawater
(1030 kg/ma), so p = 1640 kg/ma. The Bouguer anomalies are:

Ag = AgFA + 2nGpd = AgFA + 0.0687-d mgal (6)

Bou

where d is the depth in meters.
As the bottom of the North Sea is very smooth and the depth
varies between about 30 m and 60 m, it is not necessary to compute

topographic corrections.

5. Computation of the cross-over points

An independent check on the precision of the measurements is
obtained at the cross-over points and on some repeated lines. The
NAVGRAV project contained 350 cross-over points. A problem was to
develop an efficient method to find the cross-over points. This is
solved as follows.

The whole area was devided into 1 x 1 km> blocks and each
block was uniquely numbered. First, the whole area is divided into
9 blocks, numbered 1 to 9 (see figure 1). Each block is subdivided
again into 9 blocks and so on. The smallest block is 1 x 1 Kkme.
The advantage of this method is that the same numbering can be
used to compute mean block anomalies for blocks with different
side lengths, increasing with a factor 3 each time, so 1 km, 3 km,
9 km, 27 km, 81 km and 243 km.

The block numbers consist of six digits, e.g. 254268 is a block
of 1 x 1 km. The first 5 digits: 25426 is the 3 x 3 km block and
2542 is the 9 x 9 km block in which the point is situated.

Every gravity observation 1is Jlabelled with a specific block

number.
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Figure 1. Block numbering

With a very fast sorting routine all measurements (together with
their 1ine numbers) are sorted in sequence of the blocknumber. The
blocks containing measurements from different 1lines were
considered as cross-over points. The observation interval along a
line is about 300 m, so usually 3 points of a line are situated
inside one block of 1 x 1 km’

The mean value of these three points was compared with the
mean value of the three points of the other line. The difference
is the cross-over point difference and gives an impression of the
precision of the measurements.

The NAVGRAV project contained 350 cross-over points. The root
mean square of the differences was 1.08 mgal which is very
satisfying. A histogram of these differences is given in figure 2.

539% of the observed differences is less than 1 milligal which
is better than expected on beforehand. As the standard deviation
of a difference is V2 times the standard deviation of the gravity
measurements the standard deviation of a single gravity cross-over
point is 1.08/v2 = 0.76 mgal.

As these cross-over point differences are caused by random noise
it is not necessary to correct the gravity values between the

cross-over points. The same method is used to compute the

53



cross-over points for the measurements from a similar project in
1878. The cross-over differences of 1979 are presented in the
histogram of figure 3. It contains 188 cross-over points with a
standard deviation of 1.57 mgal.

Next the NAVGRAV measurements are compared with the gravity
measurements observed in 1979 in the same area. One objective of
the whole project was to study the repeatability and the external
accuracy of the gravity measurements. Therefore some 1ines, which
were measured in 1879, have been repeated in 1986 resulting in
1453 check points both along track and cross-over points.

Figure 4 shows the histogram of all cross-over points of 1979
and 1986. 54% of the measurements show differences of less than 1
mgal and the standard deviation is 1.47 mgal. This value can still
be reduced if systematic errors in some lines are removed. The
remaining standard deviation becomes 1.20 mgal. As this value is
the result of the difference in two observations, each observation

has a r.m.s. of . 1.20 = 0.85 mgal.
V2

6. Comparison of the two gravimeters Kss-5 and Kss-30

In order to check the precision of the gravimeters, apart
from external influences as errors in the position, speed and
course of the ship, both gravimeters were set up next to each
other. One Bodensee Kss-5 gravimeter, belonging to the Delft
University of Technology and one Bodensee Kss-30 of the University
of Hamburg. The comparison is made on 8908 measured gravity
points. Figure 5 shows a histogram of the differences.

Curiously there is a systematic difference of 1 mgal between
both instruments, probably caused by a difference in the
connection to the harbour point. The standard deviation of all
differences is 1.12 mgal.

Apart from this some lines show a systematic difference, caused by
inaccuracy of the cross-coupling effect as a result of bad weather
conditions. If these systematic errors are corrected for, the
remaining standard deviation of the differences is only 0.61 mgal.
This means that both gravimeters correspond incredibly well.
Figure 6 shows the differences after correcting for systematic

errors.
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7. The gravity anomalies

The free air gravity anomalies are computed with the
international gravity formula 1967. Iso-anomaly maps have been
drawn of the 1979 measurements (figure 7) and the 1986
measurements (figure 8). As these maps are based on completely
independent data they give a good impression of the reliability of
the results.

Comparison of the two maps shows that all main features of
the gravity field are the same in both maps. Only minor
differences are present. Remarkable is the rather irregular shape
of the gravity field, although the bottom of the North Sea is very
flat. The irregularities are caused by structures inside the earth
crust beneath the sediment layer. The North Sea Graben running
from North-West to South-East can clearly be identified.

The gravity map of the North Sea shows a very detailed
picture. It provides valuable information for geophysical
interpretation, for o0il and gas exploration and for scientific
research.

The most remarkable gravity anomaly is situated at latitude
55013’, longitude s%sg’ (figure 9). This anomaly is very sharp.
Gravity changes 50 milligal within 20 km distance. The total mass
disturbance corresponding to this anomaly is equivalent with a
cube with side length of 10 km and an anomalous density of 500
kg/ma. On geological maps a mass intrusion is indicated on this
place. Mantle material has ascended into the crust up to a depth
of 10 to 15 km. However the size of the intrusion is, according to
the measurements, probably bigger than indicated in the map.

Besides the contour representation gravity profiles have been
plotted showing the free air and Bouguer anomalies. The profiles
reflect the detailed structure of the gravity field and are suited

for small scale studies (cf. appendix A).

7.1. Mean block anomalies

In the dataset all point anomalies are stored together with
the coordinates and block numbers, which are described in section
5. If the dataset is sorted , for instance on the first of 4

digits of the blocknumbers, we get all the measurements inside
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each 8 x 9 km® block. The mean value of the measurement inside
each block is the mean block anomaly. In the same way it is easy
to obtain mean block anomalies of block sizes, which are a
multiple of 3 times the unit blocksize. For other blocksizes the
block numbers should be recomputed which is an easy job with the

existing computer programs.

navgrav 1986
gravity differences on cross points

number of points

200

100(

milligal

zz 350 points
1.08 st.dev

Figure 2
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gravity 1979
gravity differences on cross points

milligal

Zzzzz 188 points

1.57 st.dev

navgrav 1986 + 1979
gravity differences on cross points

of po

00 number

milligal

1453 points

1.47 st.dev
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gravity differences

NAVGRAYV: Delft - Hamburg

onumber of points

milligal

8908 points

1.12 st.dev

Hamburg

smoothed gravity differences

NAVGRAYV: Delft -

onumber of points

Figure

milligal

vz 8930 points

0.61 st.dev

58



Figure 7. Free air gravity anomalies in mgal, measured in 1979
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USING GPS SHIP VELOCITY ESTIMATES
FOR EOTVOS CORRECTION

J.H.M. Smit
Delft University of Technology
Faculty of Geodesy

1. Introduction

In sea gravimetry the nowadays realizable accuracy is limited
by Eotvos correction errors. The Eotvos effect is caused by the
motion of the ship relative to the rotating earth. This motion
results in a coriolis acceleration which must be corrected for. To
determine the Eotvos correction to better than 0.5 mgal ship
velocity estimation with an accuracy of 0.1 knot (approximately 5
cm/s) is necessary. High precision HF or MF terrestrial navigation
systems offer such accuracy, but only near shore. For ocean
gravity surveys the Global Positioning System is almost the only
possibility to obtain high precision ship velocity estimates.

The NAVGRAV navigation data was used to compare Eotvos
corrections computed from Syledis and Hyperfix velocity estimates

with those from GPS velocity estimates (Smit, 1988).

2. Eotvos correction

The Eotvos correction can be written:

2
= v
Ag. = 2wv cosy + - (1)

in which w is the earth’s rotation angular velocity, Ve the ship
velocity east component, ¢ the latitude, v the ship velocity and r
the earth radius. When the ship velocity is given in knots, the

Eotvos correction in mgal is:
Ag_ = 7.503:v_cosp + 0.00415-v? (2)

Formula (2) gives the correction to be added to the gravity
measurements. For the ship heading east the gravity reading
becomes too small and the Eotvos correction is positive. When the
east velocity component is exactly zero, i.e. when the ship is

heading north or south, the Eotvos correction is practically zero.
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The Eotvos correction standard deviation is, when neglecting

the second term on the right hand side of formula (2):

o = 7.503-cosgo-0'VE (3)

in which o, is the standard deviation of the ship east velocity.
E
Taking ¢ = 52° and the required Eotvos correction standard

deviation oé = 0.5 mgal ylields for the required east velocity

standard deviation:

1

o, = 0.1 knot = 0.05 ms~ (3)

E
Because of the velocity accuracy required the Eotvos correction is
a restrictive factor in sea gravimetry.

The Global Positioning System, when fully deployed, will
offer high velocity accuracy worldwide, 24 hours per day.

Therefore, GPS is a promising development for sea gravimetry.

3. Ship velocity estimation with GPS

Ship velocity can be estimated with the Global Positioning
System using pseudorange code measurements, carrier phase
measurements or a combination of these measurement types. The
pseudorange method and the combination method yield ship positions
at every (receiver dependent) epoch. The positions can be
converted to ship velocities by numerical differentiation. The

carrier phase method yields ship velocities at every epoch.

3.1. GPS pseudoranging

Pseudorange positioning is realized by the measurement of
four pseudoranges between the receiver and four satellites. These
ranges are determined by cross-correlating the coded signal,
transmitted by (and unique for) each satellite, with an identical
signal generated in the receiver. The four unknowns are the
receiver coordinates x, y, z (or ¢, A, h) and the time bias
between the receiver clock and the GPS time frame. '

The linearized model for pseudorange single point positioning

can be written:

dr = ATdx (5)
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where dr is the vector of observed minus computed pseudoranges, A
the design matrix containing the partial derivatives of the
pseudoranges with respect to receiver cartesian coordinates and
clock bias, T the transformation matrix from geographical to
cartesian coordinates, and dx the vector of corrections to the
geographical coordinates and clock bias.

Solution of equation (5) by a collocation model is:

dx = (P_+ TTATPrAT)"TTATP dr (6)
r

which allows one or more unknowns to be held fixed by giving it a
large weight factor in the a priori weight matrix of unknowns Px .
This way any number of unknowns can be computed less than or equal
to the number of satellites available.

The satellite cartesian coordinates are computed from a set
of orbit parameters, an extension of the six Keplerian orbit
parameters. They are found in the second and third subframe of the
satellite navigation message (Van Dierendonck et al, 1978).

The algorithm described above yields position estimates ¢, A,
h in a certain reference system at every (receiver dependent)
epoch. The two systems used for GPS are the World Geodetic System
1972 and 1984. The positions, in WGS72 or WGS84, given e.g. every
3 seconds for a TI-4100 receiver, must now be converted to
velocities, e.g. every 60 seconds, which is the observation period
of the gravity meter. This can be done e.g. with a least squares
second order polynomial fit of the latitude and 1longitude
estimates. The second term of the polynomial represents the north

velocity and the east velocity according to:

— _ ‘dq)

VN =r —d—t- (7)
- _ — dr

Vp = recoser o (8)

The mean Eotvos correction over 60 seconds is computed from:

Ag = v s+ X
Ag_ = 7.503-v cosp + - (9)
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3.2. GPS Doppler smoothed pseudoranging

A combination of pseudorange code measurements and carrier
phase measurements is used in the case of Doppler smoothed
pseudoranging, as described by (Hatch, 1982), (Hatch, 1986), and
(Lachapelle et al, 1987). Suppose that pseudorange measurements
are available on both GPS carrier waves L1 and L2. The L1 carrier
with a frequency of 1575.42 MHz is modulated with the C/A code,
the P code and the satellite navigation message. The L2 carrier
with a frequency of 1227.60 MHz is modulated with the P code and
the satellite navigation message. The P code pseudorange
measurements PL1 and PL2 on the L1 and L2 carriers, respectively,

are combined into a frequency weighted average measurement:
P = (fl-PL1 + fz-PLz)/(f1 + f2) (10)

With a TI-4100 receiver one finds the pseudorange code measurement
centered in the interval of carrier phase measurement. The carrier
start phase measurement preceeds the code measurement which itself
is followed by the carrier end phase measurement. The interval of
carrier phases is a constant 160 milliseconds. Averaging of
carrier start phase and carrier end phase yields the carrier
phases CL1 and CL2 on the L1 and L2 carrier respectively, which
are combined by differencing:

C = CL1 - CL2 (11)

The differencing results in a longer wavelength whose initial
ambiguity is easier to resolve.

A smoothed pseudorange P can be formed by averaging the
measured pseudorange P with its predicted value ; in a recursive
filter:

- ) .
P =P  +(C -C )em (12)
1 2

2 2

O'A‘O'
ot =L F (13)
- 2 2
P O'A“'O'

P P
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(14)

The second term on the right hand side of formula (12) is the
integrated Doppler count over the time interval between epoch n-1
and n, converted to meters by multiplying with the velocity of
light ¢ divided by the difference of the two carrier frequencies
f1 and f2 . The variance of the predicted pseudorange is given by:
- (15)
E— 15
(f,~f)°
in which Gs is the variance of the differenced carrier phase
measurement C.

If a cycle slip is detected by evaluating the absolute value
of the difference between the measured pseudorange P and its

prediction P, the filter is reset by taking GE = ¢2
P P
The smoothed pseudoranges are used in the linearized model of

formula (5) in the same way as described in chapter 3.1. , again
yielding position estimates ¢, A, h in WGS72 or WGS84 at every
(receiver dependent) epoch. The positions are converted to
velocities every 60 seconds by a least squares second order
polynomial fit of Jlatitude and 1longitude estimates, compare
formulae (7) and (8). The mean Eotvos corrections per 60 seconds

can be computed with (9).

3.3. GPS carrier velocities

The linear model for carrier frequency velocity estimation

can be written, see (Kleusberg et al, 1985):
-A Af + a_ = ATx (16)
c 0

in which Ac is the carrier wavelength, Af is the vector of
observed carrier frequency shifts, a0 a function of satellite
cartesian coordinates, satellite velocity and clock drift, A the
design matrix containing the partial derivatives of the
pseudoranges with respect to receiver cartesian coordinates and

clock bias, T the transformation matrix from geographical to
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cartesian coordinates and x the vector of unknown time derivatives
of geographical coordinates and unknown receiver clock drift or

frequency offset:

@(M+h) vy
x = | (A+w)(N+h)cosp | = v, + (N+h)ucose (17)
h v
H
cof L céf
Here vN ) vE , vH are the velocity components in north, east and

upward direction respectively. The east velocity component vE must
be corrected for the earth rotation effect (N+h)wcosg .

Solution of equation (16) by a collocation model is:

< T,T -1_T,T _
X = (Pk + TA PA AfAT) TA PA Af(a0 AcAf) (18)

[+ [+

which allows one or more unknowns to be held fixed by giving it a
large weight factor in the a priori weight matrix of unknowns Pk .
This way any number of unknowns can be computed less than or equal
to the number of satellites available. When estimating ship
velocities one can usually constrain the height component to zero
by selecting a proper weight.

With a TI-4100 receiver one finds a carrier velocity
measurement centered in the interval of carrier phase
measurements. The carrier start phase measurement preceeds the
carrier velocity measurement (or carrier phase time derivative)
which itself is followed by the carrier end phase measurement. The
interval of carrier phases is a constant 160 milliseconds (compare
chapter 3.2.). Differencing of carrier start phase and carrier end
phase and dividing by the time interval of 160 milliseconds yields -
carrier velocities on L1 and L2 which are both equal to the direct

carrier velocity readout:

. [¢end - ¢s tart] L1 [¢end b ¢s tart] L2
¢ = = (19)
0. 160 0.160

As the noise level is much higher in the direct carrier velocity

readout (Wells et al, 1985), the L1 carrier start phase and end
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phase measurements are used to compute the carrier frequency

shift:

[¢end - ¢start]L1 c

A A = (20)
c

0. 160 f

The satellite velocity vector can be found by time
differentiation of the formulae for computing the satellite
cartesian coordinates.

The algorithm described above yields velocity estimates v
and Ve in WGS72 or WGS84 at every (receiver dependent) epoch. The
mean values of . and Ve over 60 seconds are computed and from

them the mean Eotvos corrections with formula (9).

4. Comparison of Eotvos corrections

By comparing the available terrestrial and GPS navigation
data for the available gravity lines of the NAVGRAV project the
following 1lines could be selected to analyse the Eotvos

corrections:

line start end date radio GPS ship
id time time 1986 navigation| receiver |course

L5430a 2:05 4:33 | April 24 | Hyperfix TI-4100 270°
LO330a 4:39 6:12 April 24 | Syledis TI-4100 180°

L0O430d 16:63 18:39 April 25 | Syledis TI-4100 0°
L5415a 2:24 5:12 | April 26 | Hyperfix TI-4100 g0°
LO600a 16:36 17:18 | April 26 | Syledis TI-4100 0°

Table 1. Gravity lines selected for analysis

The main selection criterion was the required GPS satellite
coverage of at least two satellites, which was the case during two
periods per day, the first being from 1:35 h to 8:50 h, the second
from 13:45 h to 20:25 h (periods are given for April 24 in GMT,
the pattern shifts approximately 4 minutes per day). The selected
lines can be found in figure 1 and are all from the first

(navigation) part of the NAVGRAV project, because the Syledis and

69



G.P.S. survey NAVGRAV
23 - 29 April 1986

20 30 40 50 60 70 80

57 + + + + + +
v.
o <
56 + “+ + o 4+ + +
R
4\
*
o ]
N
55° + + + i +
A
L0600a
L5430s - G
Y
L0O330s 154158
54° + + - + +

L0430d

53° + +

52° + +

100 km
Delft University of Technology Department of Geodesy

Figure 1. The first period of NAVGRAV with five gravity lines

selected for analysis
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Hyperfix navigation systems, used as a reference, were part of the
navigation experiment only.

The available velocity estimates are:

- numerical differentiation of Syledis position

- numerical differentiation of Hyperfix position

- numerical differentiation of GPS pseudoranging position
(chapter 3.1.)

- numerical differentiation of GPS Doppler smoothed pseudo-
ranging position (chapter 3.2.)

- averaging of GPS carrier frequency velocity (chapter 3.3.)

The numerical differentiation of Syledis and Hyperfix position is
analogous to the numerical differentiation of GPS position and
will therefore not be dealt with here. The Syledis and Hyperfix
velocity estimates, used as reference, are given every 60 seconds
and are corrected for outliers and filtered. The GPS velocity
estimates were computed every B0 seconds as described in chapter
3. Outlier detection of GPS pseudoranging and Doppler smoothed
pseudoranging velocity estimates was done by means of the
estimated standard deviation of the E&tvés correction, which
should be less than 1 mgal. The outlier detection of GPS carrier
frequency velocity estimates is achieved by means of the absolute
value of the difference of each velocity estimate per 3 seconds
with the averaged velocity per 60 seconds. The difference should
be within a 99.9 percent confidence region of 3.29 times the
standard deviation of the single velocity estimate. All1 GPS
derived velocity estimates were 1left unfiltered in order to
establish the achievable resolution and accuracy.

Figures 2, 3, 4, 5 and 6 show Edtvds corrections for gravity
lines L5430a, LO0330a, 10430d, L5415a and LO60Oa, respectively,
computed from GPS and Syledis or Hyperfix navigation data. All
ES6tves corrections are given in mgal.

The comparison of the three GPS derived E&tvds corrections
with the Syledis or Hyperfix derived EGtvds corrections shows
somet imes poor performance of GPS. The intervals meant here are of
line L5430a, figure 2 between 12000 and 14000, line L0430d, figure
4 between 64000 and 67000, and line L5415a, figure 5 between 12000

and 14000. The reason can be found in the satellite configuration.
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6. Eotvos corrections

and Syledis

Doppler smoothed pseudoranging,

for line L0600a

)
60E00

|
61200

L |
61800

from GPS

carrier velocity,

line |radio nav|GPS pseudorange |GPS Doppler psr GPS carrier vel
L5430a| Hyperfix| n= 54 n= 70 n= 58
m= 0.130 mgal m=-0.002 mgal m=-0.057 mgal
o= 0.737 mgal o= 0.712 mgal o= 0.543 mgal
LO330a| Syledis n= 66 n= 57 n= 59
m=-0.531 mgal m= 0.159 mgal m= 0.322 mgal
o= 2.267 mgal o= 0.292 mgal o= 0.439 mgal
L0430d| Syledis | n= 92 n= 90 n= 84
m=-0.320 mgal m= 0.120 mgal m= 0.181 mgal
o= 1.086 mgal o= 0.807 mgal o= 0.681 mgal
L5415a| Hyperfix| n= 92 n= 91 n= 93
m=-0.244 mgal m=-0.239 mgal m= 0.026 mgal
o= 0.891 mgal o= 0.827 mgal o= 0.873 mgal
LO600a| Syledis n= 26 n= 30 n= 47
m= 0.142 mgal m= 0.033 mgal m= 0.198 mgal
o= 1.515 mgal o= 0.621 mgal o= 0.556 mgal

Table 2. Comparison of GPS derived Eotvos corrections
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During these intervals the dilution of precision appears to be
considerably worse than 10 and therefore not representative. In
the future, when more satellites are available, the choice of
another set of satellites with a better dilution of precision will
avoid the problem encountered here.

Comparison of the three GPS derived Eotvos corrections in
figures 2 to B yields the impression that the Doppler smoothed
pseudoranging velocity estimates are best. In order to further
compare the three GPS derived Eotvos corrections to the Syledis or
Hyperfix derived Eotvés corrections the mean differences and the
standard deviations of the differences are computed for each
gravity line. All data was used unless marked as outlier. The
results can be found in table 2. In the table are given the number
of Eotvos differences, n, the mean E&6tvés difference m in mgal,
and the standard deviation of the differences, o, in mgal.

The mean differences are smallest for EStvds corrections as
derived from Doppler smoothed pseudoranging, a little larger for
those based on carrier velocity and largest for those from
pseudoranging, but all mean differences are small enough to
Jjustify the conclusion that no systematic effects are present. The
standard deviations are best when wusing Doppler smoothed
pseudoranging and carrier velocity as compared to pseudoranging.

Figures 7, 8 and 9 show distributions of absolute values of
differences between Eotvos corrections as derived from Hyperfix
and GPS pseudoranging, those from GPS Doppler smoothed
pseudoranging and those from GPS carrier velocity for gravity line
L5430a. Figures 10, 11 and 12 show distributions of absolute
differences between Syledis and GPS derived Eotvos corrections for
1ine LO330a. The histograms justify a conclusion of the maximum

values of the Eotvos correction differences as given in table 3.

GPS Doppler smoothed pseudoranging 1.0 mgal
GPS carrier velocity 1.5 mgal
GPS pseudoranging 2.0 mgal

Table 3. Maximum differences of GPS and Syledis/Hyperfix

derived Eotvos corrections
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5. Conclusions

The analysis of the E&tvdés corrections for the five gravity
lines shows that the Global Positioning System yields excellent
velocity estimates. It shall be clear that no perfect reference
exists and that the comparison of E&tvés corrections derived from
GPS and radio navigation velocities is affected by the
imperfection of both systems. Comparison which velocity estimation
method actually yields best results can be done by correcting the
gravity measurements for the E&tvés effect and analysing the
cross-over differences. However, since the five gravity lines
available for this analysis do not intersect a cross-over analysis
was not possible.

Although the analysis was carried out with measurements under
ideal and controlled circumstances (no heavy wind and excellent
radio positioning), the conclusions about the possibilities of the
Global Positioning System remain valid for less favourable
conditions. In near future, when more satellites will be
available, GPS will provide high accuracy ship velocity estimates
worldwide, also in open oceans where terrestrial navigation
systems are not available. Hence we expect that the effect of
EStvés correction errors in sea gravimetry can be reduced

significantly.
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ALTIMETRY DERIVED GRAVITY COMPARED
WITH NAVGRAYV OBSERVED GRAVITY

R.H.N. Haagmans
Delft University of Technology
Faculty of Geodesy

1. Introduction

The only way to obtain information at sea before the
satellite era was to collect shipborne measurements during
expensive and time consuming expeditions. Think of Vening Meinesz’
pioneering work, (1941) or (1948). As a result only relatively
small areas could be covered, with different accuracies, while
large parts of the oceans remained unexplored.

Nowadays the characteristics of the "wet part" of our globe
are better known due to the launch of various earth observing
satellites. One of the earth observing techniques is satellite
altimetry which provides us with sea surface heights of uniform
quality covering large ocean areas on a global scale. The analysis
of altimeter data yields worldwide oceanographic and geophysical
information, such as currents, eddies, sea surface variabilities,
geoid heights and gravity anomalies.

In this study gravity anomalies are computed from the
observed sea surface heights. At first sight the idea 1looks
paradoxical because one of the main objectives of physical
geodesy is just the opposite, the determination of geoid heights
from gravity anomalies. In this respect one would rather prefer to
think of an altimetric-gravimetric boundary value problem
combining gravity on land with altimetry in ocean areas (cf.
Sacerdote and Sansd, 1983 or Sansd and Stock, 1985). However for
many purposes one still wants to derive gravity from altimetry,
either for geophysical purposes or for merging it with land
gravity to one global data set. In our case the purpose is to
compare altimetry derived with measured gravity.

For the computation of gravity anomalies two different methods are

considered here, collocation known from geodetic practice (cf.
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Tscherning, 1974 or Moritz, 1980) and a method using the relations
between the Fourier spectra of the geoid heights and the gravity
anomalies developed by geophysicists (cf. Roest, 1987).

The results can be compared with very accurate shipborne free
air gravity anomalies in the North Sea which are computed from
ship gravimetry during the NAVGRAV experiment (cf. Strang van
Hees, this issue). This accurate reference data set allows a
Jjudgement on the accuracy of the altimetry derived gravity
anomalies as obtained from both approximation methods (cf.

Haagmans, 1988).

2. The SEASAT altimeter

The altimeter on board of the SEASAT satellite observed
ranges to the sea surface during its three months operational time
in 1978. These raw observations need to be corrected for
disturbing effects caused by the ionosphere, the troposphere and
the instrument. Combining the corrected ranges with information
about the satellite position results in sea surface heights above
a chosen reference ellipsoid (for example the GRS80).

The instantaneous sea state is influenced by various time
variable effects. For several of these, such as ocean and earth
tides, surface pressure and significant wave heights model
corrections are provided to the user on the Geophysical Data
Records (Lorell et al, 1980) and can be applied to the raw sea
surface height. The principle of satellite altimetry is shown in
figure 1.

Two other effects remain and need to be eliminated in order
to achieve meaningful geoid heights. The first is the residual sea
surface topography which, again, can be divided into a stationary
and a time variable part. For the stationary part estimates up to
degree and order 20 of a spherical harmonic expansion resu]i in
gravity anomaly corrections smaller than 0.5 mgal for the North
Sea region (cf. Rapp, 1985). The time variable part is even
smaller but more difficult to model. Both effects are neglected in
our computations which implies that they constitute an error
source in the final gravity anomaly solution.

Secondly the radial orbit error needs to be eliminated from
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Figure 1. The Principle of an altimeter measurement.

the satellite positions. Although the sea surface heights are
rather well determined relative to the satellite position (to
better than 10 cm) an uncertainty in the absolute position of the
satellite remains as large as * 1.5 m r.m.s.. This rather large
radial orbit error is a result of uncertainties in the initial
conditions of the satellite orbit and, predominately, in the
uncertainties of the gravity field parameters (cf. Colombo, 1984
or Rummel, 1986).

The problem of the orbit errors is treated in different ways
for the two gravity field approximation methods considered here.
For the case of the geophysical method it is more of a trend
removal than an orbit error removal. For each individual arc
segment a linear trend is removed which models the difference
between the arc and a reference geoid based upon the GEM10B set
of potential coefficients (cf. Roest, 1987 or Haagmans, 1988). The
result is a rather arbitrary fit of each arc to the GEM10B
reference independent from other arcs within a larger
configuration.

For the case of the collocation method the orbit errors are
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treated in a more sophisticated way. Using cross-over conditions
the errors are minimized in an adjustment in two steps.
The first step consists of a cross~over minimization of the orbit
error fitting to each ascending and descending arc a linear
function in a large diamond shaped area in the Northern Atlantic.
The result is a relative solution (Haagmans, 1988). In a second
step an optimal fit connects the relative solution to a GEM10B
reference geoid (Schrama, 1988).

Both approaches are considered to result in geoid heights,

which can be expressed as:

N(P) = r,-r te P - H (1)

cor

where N(P) is the geoid height at point P, r is the satellite
position, Fe is the position of the projection of P (cf. figure 1)
onto the reference ellipsoid, € is a linear trend or orbit error
correction, pcor is the corrected range (i.e. corrected for
jonosphere, troposphere, the instrumental effect, ocean and solid
earth tides, barotropic effects and significant waveheight
effects) and H is the modelled sea surface topography.

Once these geoid heights are determined the gravity anomalies can

be computed.

3. Gravity anomalies

The geoid height of the earth’s gravity field at a point P
can be linked to the gravity anomaly at the same point by the
fundamental equation of geodesy combined with Bruns’' formula (cf.

Heiskanen and Moritz, 1967) yielding in spherical approximation:
_ a 2

where Ag is the gravity anomaly, R is the mean earth’s radius and
7 is the mean gravity over the earth.
Two discrete approximation methods will be used in the sequel in

order to compute the local gravity anomaly field. A problem may
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arise {if observed geoid heights are used as input, since the
transform from geoid heights to gravity anomalies is a
differentiating operation or a kind of high-pass filter. Or if
there is noise in the observations it will be amplified together
with the higher frequency content of the geoid height signal which
may result in unstable or even meaningless gravity anomaly
estimates.

This problem is handled in both methods by carefully selecting the
sample point distribution and by noise modelling and filtering

(cf. Haagmans, 1988).

3.1 Least squares collocation

The first method is least squares collocation which is a space
domain technique where (signal) covariance functions play a very
important role in field representation and filter design. It is a
sophisticated and rather complex approach which derives from the
measurements any desired 1linear functional of the earth’'s
disturbing potential in the least squares, minimum norm sense.
Under the assumption that the data can be considered
homogeneous (independent of the position) and isotropic
{independent of the azimuth) a model is introduced treating
gravity field quantities as stochastic signals. The estimated

gravity anomaly is computed from (cf. Rapp, 1977):

~ -1
Ag(P) = C_ [cm +D ] [N - Nref] + Ag___ (3)

A

where Ag refers to the chosen ellipsoidal normal field, N is a
column vector of altimeter implied geoid heights, Nref is a column
vector of approximate geoid heights and Agrer a point gravity
anomaly both implied by a GEM10OB reference field up to degree and
order 36 of a spherical harmonic expansion (refering to the same
ellipsoidal field), D is a diagonal a priori noise variance-cova-
riance matrix whose elements correspond to the square of the
standard deviation (+ 7.5 - 10 cm) of the altimeter geoid heights,
CNN is a square symmetric matrix containing the (signat)
covariances between the given geoid heights and CgN is a row

vector containing the (signal) covariance between the gravity
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anomaly being predicted at point P and the given geoid heights.

In equation (3) the solution of the problem is split into a
trend contribution implied by the GEM10B reference field and a
collocation solution coming from the remaining signal and assumed
to have zero expectation.

For the collocation solution (signal) covariance functions
are used for the definition of the approximation function space.
A local autocovariance function for gravity anomalies is derived
for the North Sea area from a global Tscherning/Rapp model (cf.
Tscherning and Rapp, 1974). Error degree variances for the GEM10B
coefficient set were not at our disposal, so the first 36 terms of
the local function are set to zero. Hence the local covariance

function for gravity anomalies can be expressed as:
n+2
c = E: s P ( cos ¢ ) (4)
n n

where Pn( cos Y ) are the Legendre polynomials, and S is the ratio

between a Bjerhammar radius and the earth radius, where S is:

R2

s = |—°| = 0.999617 (5)
R2

and where one of the empirical degree variance models is used (cf.

Tscherning and Rapp, 1974):

A (n-1)
¢z —m for n =z 37 (B6)
" (n-2) (n+24)

with A = 161.3 mga]2 corresponding to a signal variance of 420
mgal2 (cf. Haagmans, 1988).

Once this covariance function is chosen the autocovariance
functions of other gravity field quantities or their
cross-covariance functions can easily be derived by covariance
propagation using the functional relations (cf. Moritz, 1980).

The actual collocation computations are performed with the
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GEOCOL program which was originally developed by C.C. Tscherning
at the Department of Geodetic Science and Surveying of the Ohio
State University. Meanwhile the original program has been modified
and extended with new options at the Danish Geodetic Institute and
the latest update has been provided to us (cf. Tscherning, 1974
and Tscherning and Knudsen, 1986).

3.2 The geophysical approach

This second method of discrete gravity field approximation
describes and relates the frequencies which are present in the
geoid height and gravity anomaly signal. The space domain
filtering as we know it from collocation is replaced by frequency
domain filtering. The relation between the amplitude spectra of
geoid height and gravity anomaly is derived following the
procedure described in (Chapman, 1979) and (Roest, 1987).

In case of satellite altimetry geoid heights are provided at
regular intervals along observed profiles. Assuming a two
dimensional world for each profile, the gravity field depends only
on the along track x-coordinate and the height z and Laplace’
equation becomes:

8°T  8%T
— + — =0 (7

axZ  az?

where T represents the disturbing potential which 1is harmonic
outside the geoid.

If our main subject of interest is the high frequency part of
the gravity anomaly signal, a planar approximation of the gravity
field can be applied subtracting first the GEM1OB reference field
up to degree and order 36 in terms of a spherical bharmonic
expansion. The remaining gravity anomaly signal in (2) may be
approximated by the gravity disturbance and reflects the mentioned

high frequencies. Hence:

Ag ~ 8g = - — (8)
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Using Bruns’ equation and inserting (8) into (7) results in:

a°N  aAg

y — - —

ax® 8z

=0 (9)

The quantities N and Ag in (8) can be expressed by a Fourier
series in a planar approximation (Haagmans, 1988). Combining both
series with equation (3) yields identical phase spectra for geoid
height and gravity anomaly but different amplitude (or Fourier)

spectra. It is:

K-1

Flagl = 7kw0 FIN] with k = 1,2,3,...,—5— (10)

where F[ ] denotes the Fourier transform, y the mean earth’s
gravity, wo the fundamental frequency of the profile and K the
number of discrete observations in a profile.

A Butterworth filter is implemented in the transform in order
to control the effect of possible instabilities caused by noise.
It is a low-pass filter which approximates very well the ideal
(magnitude) filter characteristics (Lynn, 1973) and can be

expressed as:

_]2b (11)

where B(w) represents the magnitude of the filter, b the order of
the filter and wy the band frequency (0.25 cps cf. Roest, 1887).

The Butterworth filter applied to the transform of eq. (10)
gives:

FlAgl = |B(w)| wkw FIN] (12)

In (12) |B(w)| is the amplitude filter (not the power spectrum
version of (11) ).

The transforms of eq. (10) and (11) are illustrated in figure 2.
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Figure 2. Geoid spectrum - Gravity spectrum relation and the

effect of amplitude filtering. wNy is the Nyquist frequency (here
0.5 cps ). Nk and g, are the geoid resp. gravity amplitudes per

degree k.

By taking the inverse Fourier transform one can subsequently
obtain the desired gravity anomaly signal along an altimeter

profile.

4. Altimetry derived results compared with NAVGRAV gravity

anomalies

The results from altimetry computed with the methods from
chapters 3.1 and 3.2 can be compared with the 1986 NAVGRAV results
(cf. Strang van Hees, this issue). For this purpose all three sets
of gravity anomalies are finally computed in identical grid
points. Each set results in a ¢,A-grid (0.125%0.25°) with gravity
anomalies within the following bounds:
54° = ¢ = 56° and 2.125° = A = 7.125°.

The 357 gridded NAVGRAV anomalies are computed from the free
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air anomalies along the profiles of figure 2 in (NAVGRAV
(introduction), this issue). An interpolation program for
irregularly spaced data using difference equations for minimum
curvature (Swain, 1976) produces the gridded values with an

estimated accuracy of better than 1.75 mgal (cf. Haagmans, 1988).

4.1 The collocation results

As input for the collocation a quite regular pattern with
altimeter geoid heights was selected as represented in figure 3.
Two other attemps with different patterns were less satisfactory,
one due to two almost coinciding altimeter tracks which disturbe
the numerical stability of the solution of the normal equations
(cf. Tscherning, 1985) yielding a poorly determined gridded
solution. The second gave problems due to a large cross-over
discrepancy (* 25 cm) which caused a kind of clover leaf pattern
with useless gravity anomaly values. It is a very tricky solution
which may lead to misinterpretations of the altimeter results!
After comparison of contour maps of this latter altimetric
solution and the NAVGRAV results the at first sight promising
statistics appeared to be useless. The descending track on which
the cross-over was situated was replaced by another descending arc

which was better connected to the configuration of figure 3. The

57~

[
a
1

latitude in deg
[1.}
n
T

S4r-

- e L RN IO L 1 \
: b 4 5 3 7 4

longitude in deg

Figure 3. Selected geoid heights from altimetry which serve as

input for collocation.
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gridded results are tested against the NAVGRAV solution in chapter
4.3.

The advantage of the collocation prediction is that a result
can be provided at any desired point. Using this property gravity
anomalies are predicted along some sailed NAVGRAV profiles. The
" results are presented in figure 4 where NAVGRAV and altimeter
anomalies show good resemblance except for the highest

frequencies.

4.2 The results of the geophysical method

Different from the collocation procedure where the
transformation into gravity anomalies and the gridding is done at
once, the geophysical method requires two steps.

During the first step the transformation of, eq. (12), is applied
to the geoid heighté?%long 16 selected SEASAT profiles, each * 630
km long (cf. figure 5). A descending arc, for example the second

arc counted from fhe East side, is transformed into a gravity
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Figure 5. SEASAT tracks in the North Sea selected for- the
geophyslical method.
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profile using a tenth order Butterworth filter (equation (11)).
The geoid height and the gravity anomaly signal are shown in
figure 6. The gravity signal is reflecting the amplified high
frequencies from the geoid height signal as a result of the

differentiating operation.
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Figure 6. Along track geoid height-gravity anomaly relation using
the spectral operator of equation (12) with a tenth order
Butterworth filter.

Once all individual arcs are transformed into gravity profiles a
serious disadvantage of the method, as applied by Roest (1987),
becomes clear. Every cross over point (cf. 83 cross overs in
figure 5) should have identical gravity anomaly values for the
descending as well as the ascending arc. However the mean

cross-over difference between ascending and descending values is
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2.43 mgal with a standard deviation of 8.28 mgal. This is
obviously a result of the arbitrariness in the trend removal as
discussed in chapter 2.

A gridded solution is computed in a second step using the same

method as applied for the NAVGRAV gridding.

4.3 Statistics, comparison and conclusion

Some statistics are obtained from both altimetric and the
NAVGRAV gridded solutions. The similarity between both altimetric
results in GRS80 and the NAVGRAV grid in GRS67 is examined by
comparing contour plots obtained with GSPP (Stnkel, 1980) and by
computing the correlation coefficient between the grids (Haagmans,
1988). Furthermore each set of gridded values is statistically
represented by a mean and a r.m.s. value together with its
gravity anomaly distribution. The latter are shown as histograms
in figure 7. Also the differences between the solutions
areanalysed in the same way. A histogram of the differences
between the best solution (collocation) and the NAVGRAV gridded
anomalies is shown in figure 8.

In fact the results of NAVGRAV should be converted to GRS80 by
applying (13) (cf. Moritz, 1980b):

. 2 . 4
Ag1967 = Ag1geo + 0.8316 + 0.0782 sin“gp - 0.0007 sin ¢ [mgall (13)
yielding within the North Sea area:

e = 51 -> Ag1967 = Ag1980 + 0.8785 [mgal]

¢ = 58 -> Ag1967 =Ag .0t 0.8874 [mgall

The effect within the relative small area can be regarded as a
bias in the mean of the anomaly differences of about 0.88 mgal,
while the standard deviation remains the same.
All statistical results are presented in table 1. The contribution
of the GEM10B reference field is left out of consideration in
the statistics because its contribution is equal to all three
grids.

From the results of table 1 as well as from the distributions
of figure 7 it appears that the collocation and the NAVGRAV

solution show most resemblance. Not only the statistics but also
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the contour plots of both solutions (cf. figure 9 and 10) justify
the conclusion that the collocation solution can be denoted as
acceptable.

The FFT solution contains a clear systematic difference and a
rather small signal variance compared to both other solutions. The
smaller variance may partly result from smoothing effects from the
Butterworth filter and of the interpolation and partly of the
signal information loss during the trend removal where probably
some physically correct signal is eliminated. For the case of the
technique presented in (Roest, 1987) which led to more
disappointing results some minor modifications may lead to better

ones. The differences with the NAVGRAV results which are an

mean r.m.s.

gridded solutions without GEM10B contribution
(mgal) | (mgal)

357 FFT gravity anomalies (10%® order filter)|-0.28 | 7.32

357 collocation gravity anoma]ies' -6.67 13.15
357 NAVGRAV gravity anomalies’ -5.76 11.88
mean o

differences between SEASAT and NAVGRAV
(mgal) | (mgal)

357 FFT' minus NAVGRAV® anomalies 5.48 | 8.11
357 co]]ocation‘ minus NAVGRAV+ anomalies -0.91 7.10
357 collocation minus NAVGRAV anomalies -0.03 | 7.10

similarity between both SEASAT and the NAVGRAV solution

correlation coefficient (FFT‘ and NAVGRAV® ) 0.74

correlation coefficient (co]]ocation‘ and NAVGRAV' ) 0.83

* Computed in GRS80
+ Computed 1n GRS67

Table 1. Statistics of three gridded gravity anomaly solutions.
The solution of the geophysical method is denoted as FFT, i.e.

Fast Fourier Technique.
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accumulated effect of the cross-over differences and of the
trend removal can be reduced by using the same orbit error removal
process as wused for collocation. Furthermore an adequate
description of noise and signal in higher frequency ranges
could result in an optimal filter and thus a less smooth and
more realistic gravity anomaly signal. If these drawbacks are
eliminated the advantages of the geophysical method could be fully
exploited. The method is easy to handle and extremely fast.
Considering the collocation results (with a precision of
better than 7.4 mgal for gridded anomalies) it seems to be very
well feasible that gravity anomalies obtained from SEASAT
altimeter data are employed for large scale exploration surveys
e.g. for o0il compagnies in order to detect areas of interest.
These areas can subsequently be examined with dedicated ship
expeditions in order to obtain additional geophysical information
within the area e.g. by seismic surveys and/or detailed high
precision gravity surveys. However one has to be careful when
applying the collocation and the geophysica] method in areas where
the gravity field is highly anisotropic because both methods imply
a rather isotropic gravity field. Also the collocation results
can be improved by using a more complete data selection of SEASAT
data within an area, by applying a better local covariance
function and by carefully modelling the sea surface topography so

that even better results may be expected in the near future.
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APPENDIX A

Gravity profiles

The following gravity profiles show detailed gravity field
variations along the sailed NAVGRAV tracks of figure 2 (NAVGRAV
(introduction), this issue). Bouguer and free air gravity
anomalies have been computed and are represented in the upper part
of the graphs. Underneath, the corresponding depth profiles are
shown.

The 1ine numbers are expressed in degrees and seconds e.g.
L5513 means an East-West line along the parallel 5513’ or L0630
means a North-South line along the meridian 6030’.

The software for testing, filtering and plotting the data is
written by R.P.E. van Rossem (student of the Faculty of Geodesy).
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