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Preface 

This publication is an account of the author's Ph.D. work at the Faculty 
of Geodesy of the Delft University of Technology. His work has been supported 
from September 1983 until July 1987 by a research fellowship pf the 
Netherlands Organization for the Advancement of Pure Research . During this 
period he worked at the Faculty of Geodesy on the development of methods for 
the scientific data reduction of the astrometric satellite Hipparcos, which 
is also the subject of this thesis. The work is done in close cooperation 
with other research groups in France (CERGA Grasse, CNES Toulouse), Italy 
(Centro di Studi sui Sistemi Torino, Pol itecnico Mi lano, Mathematical 
Institute of the University of Bologna), West Germany (ARI Heidelberg) and 
the Netherlands (Space Research Laboratory Utrecht 1, in the framework of the 
scientific data reduction consortium FAST. The author is a member of the FAST 
software advisory group, and he is (since 19871 task leader for the great 
circle reduction in FAST and a member of ESA's Hipparcos Science Team. 

I The name has now been changed into Netherlands Organization for Scientific 
Reseach ( NW0 l .  
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Abstract 

In this thesis several aspects of the scientific data reduction for the 
astronomical satellite Hipparcos are discussed. The Faculty of Geodesy of the 
Delft University of Technology participates in the data reduction in the 
framework of the international FAST consortium. Hipparcos (an acronym for 
HIgh Precision PARallax Collecting Satellite) is scheduled for launch in the 
spring of 1989 under supervision of the European Space Agency (ESA). During 
its operational life time of 2.5 years the satellite will scan the celestial 
sky in a slowly precessing motion and measure the angles between stars which 

0 are 60 apart. The observations will be done in the visible part of the 
electromagnetic spectrum. The Hipparcos data reduction aims at the 
construction of a precise star catalogue: The catalogue will contain the 
position, annual proper motion and annual parallax of about 110,000 stars, up 
to visual magnitude 12-13. The accuracy will be a few milliarcseconds and a 
few milliarcseconds per year respectively. 

Besides a short introduction of the Hipparcos mission, the scientific 
objectives and the measurement principle, and a brief analysis of the data 
reduction as a whole, three topics are discussed in this thesis: 
- model assumptions, estimability and accuracy of the great circle reduction, 
- attitude smoothing, which improves the results of the great circle 
reduc t ion, 

- the numerical methods for the great circle reduction. 
These subjects all concern one phase of the data reduction: the so-called 
great circle reduction. The great circle reduction comprises a half-daily 
least squares solution of some 80,000 observations with 2,000 unknown star 
abscissae and some 50 instrumental parameters. Depending on the solution 
method chosen, also some 18,000, or in case of attitude smoothing 600, 
attitude parameters have to be solved. The great circle reduction is a 
relatively modest adjustment problem in the complete data reduction, but one 
which must be solved several times per day over a period of several years. 

The first four chapters are of an introductory nature. In chapter 2, 
which is more or less self contained, the scientific objectives and possible 
-geodetic- applications of the Hipparcos catalogue are sketched. In chapter 3 
the Hipparcos measurement principle and raw data treatment are described and 
in chapter 4 a start is made with the description of the data reduction. It 
is in this chapter that the great circle reduction, the main subject of this 
thesis, is introduced and placed within the total data reduction. 

The model assumptions, estimability and accuracy of the great circle 
reduction results are investigated in chapter 5. The great gircle reduction 
processes only observations of stars within a small band (2 1 on the 
celestial sphere. Therefore, only one coordinate can be improved, viz. the 
abscissa on a reference great circle chosen somewhere in the middle of the 
band. The ordinates are not improved, i.e. they are fixed on their 
approximate values, which results in errors in the estimated star abscissae. 
By iterating the complete data reduction several times, in order to obtain 
better approximate values for the ordinates, the modelling error finally 
becomes very small and can be neglected. In chapter 5 analytical formulae for 
the magnitude of this error are derived. Further we investigate, one by one, 
the estimability of the instrumental parameters. They appear generally to be 
estimable. At the end of this chapter the covariance function of the star 
abscissae is computed for a regular star network using Fourier analysis. 
Throughout this chapter analytical results are compared with test 
computations on simulated data. 



Chapter 6 is devoted to attitude smoothing. Smoothing of the attitude 
improves not only the quality of the attitude parameters, but also the 
quality of the star abscissae. We will consider in particular numerical 
smoothing with B-splines; the attitude is modelled by a series expansion 
using the above mentioned B-splines as base functions. The number of attitude 
parameters is reduced considerably; instead of the 18,000 geometric attitude 
parameters now only 600 are needed. But if the degree of smoothing is too 
high, systematic errors are introduced. The number of parameters have been 
chosen in such a way that the extra error introduced by smoothing is 
negligible. 

Chapters 7 and 8 deal with the numerical methods for solving the sparse 
systems of equations which arise during the great circle reduction. Choleski 
factorization of the normal equations has been chosen as solution method. 
Optimization of the calculations is worthwhile, since such a system has to be 
solved several times per day. Computing time and memory requirements depend 
on the order in which the unknowns are eliminated. The best order appears to 
be: first the attitude unknowns, then the star unknowns and finally the 
instrumental unknowns. However, in the case of attitude smoothing it is 
better to eliminate the star unknowns first, and then the attitude and 
instrumental unknowns. Also the order in which the star parameters are 
eliminated, or in the case of attitude smoothing the attitude parameters, is 
important. Therefore, in chapter 8 several reordering procedures are 
evaluated. It turns out that the so-called banker's algorithm, which 
operates on the graph of the system, gives the best results in both cases. 

0 But also a synthetic ordering, which orders the star abscis ae modulo 60 , 8 gives good results. The same algorithm, but then modulo 360 , can be applied 
to the attitude unknowns for smoothing. 

Finally, in chapter 9, methods are given for handling certain 
ambiguities in the data. Although the Hipparcos instrument is able to measure 
phases very accurately, the integer number of periods must follow from 
approximate data. This results in a large number of so-called grid step 
errors of about 1" (100 times the precision of measurement). These errors 
must be detected and corrected during the great circle reduction. Some 
strategies are discussed in chapter 9. The most successful strategy is based 
on an approximate sequential adjustment, which can be applied before and 
after the least squares adjustment . 

In the appendices descriptions are given of the FAST great circle 
reduction software (appendix A) and of the simulated data used in simulation 
experiments with the great circle reduction software (appendix B). The 
results of these simulation experiments are used throughout this thesis for 
i l lustrat ion. Final l y, appendix C contains some background material on the 
numerical methods for solving large sparse systems of linear equations having 
a positive definite matrix. 
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INTRODUCTION 

In this chapter the Hipparcos astrometry satellite mission is 
introduced. The goals and the scientific, especially the geodetic, 
involvement are sketched. 

1.1 The Hipparcos Mission 

Hipparcos is the name of an astronomical satellite observing at visual 
wavelengths and being built by the European Space Agency [ESA). It is the 
first satellite devoted entirely to astrometry. The launch is scheduled for 
the spring of 1989 by the European Ariane 4 launcher from Kourou in French 
Guyana. The satellite will be stationed, during its operational lifetime of 
2.5 years, in a geostationary orbit (36,000 km altitude). The Hipparcos 
mission aims at constructing two large and very precise stellar catalogues, 
the so-called Hipparcos and.Tycho catalogue. The Tycho and Hipparcos 

L catalogue form a drastic improvement of existing catalogues, both with 
respect to positional accuracy and with respect to the size of the catalogue. 

TELESCOPE BAFFLES ,p\ 

PAYLOAD l 

SOLAR PANEL 

9 'v- ....., : 
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Figure 1 .1  - The Hipparcos satellite 

The primary aim of the Hipparcos mission is the construction of the 
Hipparcos catalogue, a precise star catalogue, containing the 5 astrometric 
parameters (position, proper motion and annual parallax) of some 110,000 
stars up to visual magnitude 12-13. The accuracy of about 60,000-80,000 
relatively bright stars, the so-called "survey", will be 1-2 mas (milliarc- 
seconds). The survey stars are evenly distributed over the celestial sphere, 
i. e. there are 1.5 a 2 stars per square degree. The accuracy of the, generally 



fainter, 30,000-50,000 non-survey stars, chosen because of their individual 
interest within specific astronomical research proposals, is somewhat less 
than that of the survey, about 3-4 mas, depending on their magnitude. Due to 
the relative short duration of the mission, the precision of the proper 
motions and parallaxes will be of the same order of magnitude as those for 
the star positions, viz. 1-2 madyear for each component of proper motion of 
survey stars and 1-2 mas for the parallax of survey stars. In order to obtain 
this precision 2.5 years of data is needed. When less than one year of data 
were available, the proper motions and parallaxes cannot be determined at 
all, but half a year of data is sufficient to compute the positions only. 

The secondary aim of the mission is the construction of the Tycho 
catalogue, containing the positions, magnitudes and colours of some 400,000 
to 1,000,000 stars. This catalogue is computed from the star mapper data. The 
star mapper is primarily used for the attitude reconstruction of the 
satellite, but reprocessing of its data with the attitude obtained from the 
main reduction will give positions with a typical accuracy of 30 mas. 

Hipparcos is an acronym for HIgh Precision PARallax Collecting 
Satellite, but its name has also been chosen as a tribute to the ancient 
Greek astronomer Hipparchus (190-120 BC), who constructed one of the first 
known stellar catalogues and discovered astronomical precession by comparing 
his results with those of his predecessors. Hipparchus also determined the 
Moon's parallax, and thus its distance from Earth, something the Hipparcos 
satellite will do for the stars by measuring their annual parallaxes. The 
annual parallax of a star is the apparent angular displacement of its 
position as the Earth moves in its orbit around the Sun. It is a very small 
effect ( < 1" ) which was discovered, long after it was predicted, by Thomas 
Henderson in 1832-33. Before that, in 1718, Edmund Halley discovered that 
some stars have proper motions by comparing his own measurements with those 
of Hipparchus. 

For astronomers the parallaxes, together with proper motions, magnitudes 
and colours, form the main goal of the Hipparcos mission. These data are the 
raw material from which stellar luminosities, distances, masses, etc. are 
computed. At present, only a few thousand parallaxes, of nearby stars, are 
known. The results of the Hipparcos mission, compared to existing data, are 
impressive: 125 times more significant parallaxes at the O"002 level, more 
precise and more consistent proper motions and the extension of the 4,000 FK5 
stars into a consistent celestial reference frame consisting of more than 
100,000 stars. A similar achievement from the ground is simply impossible, 
because it would not only require a breakthrough in instrumentation, notably 
for systematic errors (e.g. due to tube flexure and local refraction), but 
would also require a very extensive program of ground based observations, 
involving many observatories during several decades. With Hipparcos a global 
coverage of the sky will be obtained using a single instrument, which is 
impossible from the ground. 

To geodesy and geodynamics the positions, together with proper motions, 
are of more interest. They form a formidable extraterrestrial reference 
system: precise, well materialized and free of systematic influences. 
However, the Hipparcos reference system cannot be accessed with the same 
precision by optical instruments from Earth. Therefore, for scientific 
applications (Earth rotat ion, polar motion, global deformat ions), optical 
astrometry cannot compete fully with "new" geodetic techniques like satellite 
laser ranging (SLR) and very long base-line interferometry (VLBI). Other 
geodetic techniques, like "Doppler" satellite positioning and the global 
positioning system (GPS), which have precisions comparable to good 
astrometric observations, are considered more practical and have replaced 



astrometry already. Despite this, there may be two or three possible 
applications of the Hipparcos catalogue in geodesy and geodynamics, which 
will be discussed in chapter 2. 

1.2 Scientific Involvement 

ESA heavily relies on the scientific community in order to process the 
satellite data. Two scientific data reduction consortia, called NDAC and 
FAST, are both going to process the data from the main instrument in order to 
compute the Hipparcos catalogue. The two data analysis consortia are each 
going to produce a stellar catalogue, following slightly different 
procedures. Two parallel data reduction chains will increase the confidence 
in the final results. At the end of the mission, when it has been verified 
that the results agree sufficiently, the two catalogues will be merged, but 
already during the data analysis regular comparisons will be made. 

The Hipparcos data reduction is an adjustment process, raising many 
interesting geometric and computational questions, fitting well in current 
geodetic research. Therefore geodesists from Copenhagen, Milano and Delft are 
participating in the data reduction consortia. The geodesists from Copenhagen 
participate in the Northern Data Analysis Consortium (NDAC), which includes 
scientific groups from Denmark, Sweden and the United Kingdom. The chief 
responsibility of the Copenhagen geodesists is the so-called great circle 
reduction, which comprises a half-daily solution of some 70,000 equations 
with 2,000 unknown abscissae on a chosen Reference Great Circle. The actual 
computat ions will be chrried out in several places: at the Royal Greenwhich 
Observatory (raw data treatment ) , Copenhagen University Observatory (great 
circle reduction) and Lund Observatory, Sweden (final catalogue). 

Geodesists from Delft and Milano participate in the FAST (Fundamental 
Astronomy by Space Techniques) consortium. FAST consists of research groups 
from France, Italy, Germany, the Netherlands and the United States. The 
faculty of Geodesy from the Delft University is responsible for the FAST 
great circle reduction, and has developed a large software package for this 
task. The Milano geodesists are more concerned with the next step of the data 
reduction, namely the construction of the final catalogue. The main body of 
computations for FAST will be done at CNES (Centre National d'Etudes 
Spat iales) in Toulouse, France, and at the Astronomisches Rechen Inst i tut 
(ARI 1, Heidelberg, Germany. The Space Research Laboratory in Utrecht wi l l, 
once a week, carry out a first check of the data. 

The Hipparcos reference frame, by itself, has no reference to inertial 
space. The data reduction consortia, however, intend to establish a link 
between the Hipparcos catalogue and the VLBI and FK5 quasi-inertial reference 
frames. Therefore, the Hipparcos catalogue becomes a very dense and precise 
realization of the VLBI and FK5 quasi-inertial reference systems. Almost all 
FK5 stars are observed by Hipparcos, so few problems in linking the two 
systems are expected. The link to the extra galactic VLBI reference frame is 
realized through additional observations. The Jet Propulsion Laboratory (JPL, 
United States) has scheduled a number of VLBI observations to point-like 
radio stars, of which the optical component (hopefully coincident with the 
radio component) will be observed by Hipparcos. Other links to the 
extragalactic reference frame can be obtained through observations with the 
Hubble Space Telescope. 

There are two other scientific consortia involved in the Hipparcos 
mission: the Tycho data reduction consortium (TDAC) and the input catalogue 
consortium (INCA). The input catalogue consortium is responsible for creating 



a stellar catalogue which on its own is already of great value. The INCA 
catalogue contains the positions, proper motions, parallaxes (if known), 
magnitudes, colours (if known) and some other indices of the so-called 
program stars, the stars which are going to be observed during the Hipparcos 
mission. The program stars have been selected on the basis of proposals by 
the astronomical community. In order to get all the necessary data a large 
number of additional astrometric and photometric measurements (from Earth) 
have been carried out. 

The Tycho data analysis consortium (TDAC) is going to reprocess the star 
mapper data, which is primarily used for the attitude determination of the 
satellite, to produce the Tycho catalogue with 400,000 - 1,000,000 stars, up 
to visual magnitude 10. The positional accuracy of this catalogue is expected 
to be of the order of 30 mas, but also very valuable photometric information 
(magnitude and colour) will be collected. There is no preplanned observing 
program for the Tycho experiment, but the data analysis task is greatly 
helped when there are reasonable a-priori positions. For this purpose the 
Strassbourg Stellar Data Base (CDS) and the Space Telescope Guidance Star 
Catalogue, a very dense catalogue constructed for the guiding system of the 
Hubble Space Telescope, will be used. 

1.3 Guide to the Reader 

The author's main research contribution to the Hipparcos data reduction 
concerns the great circle reduction and, more particularly, 
- model assumptions and accuracy of the great circle reduction, 
- attitude smoothing, 
- numerical methods for the great circle reduction. 
The great circle reduction comprises a half-daily solution of some 70,000 
equations with 2,000 unknown star abscissae on a chosen Reference Great 
Circle. Attitude smoothing improves the results of the great circle 
reduction. These topics form the main body of this thesis, contained in 
chapters 5-9. 

Chapters 2, 3 and 4 are of an introductory nature. In chapter 2, which 
is more or less self contained, the scientific objectives and possible 
-geodetic- applications of the Hipparcos catalogue are sketched. In chapter 3 
the Hipparcos measurement principle and raw data treatment are described and 
in chapter 4 a start is made with the description of the data reduction. It 
is in this chapter that the great circle reduction, the main subject of this 
thesis, is introduced and placed within the context of the total data 
reduct ion. 

The model assumptions and the accuracy of the great circle reduction are 
discussed in chapter 5. Chapter 6 is devoted to the attitude smoothing. 
Chapters 7 and 8 deal with the numerical methods used for the large scale 
least squares adjustment carried out during the great circle reduction. The 
ordering of the unknowns, which has a large influence on the efficiency of 
the great circle reduction, is treated in chapter 8. Finally, in chapter 9, 
methods are given for recovering from certain ambiguities in the data, the 
so-called grid step ambiguities. 

In the appendices descriptions are given of the FAST great circle 
reduction software (appendix A) and of the simulated data used in simulation 
experiments with the great circle reduction software (appendix B). The 
results of these simulation experiments are used throughout this thesis to 
illustrate matters. Finally, appendix C contains some background material on 
the numerical methods for solving large sparse systems of positive definite 
equat ions. 



SCIENTIFIC OBJECTIVES OF THE HIPPARCOS CATALOGUE 

In this chapter the scientific objectives of the Hipparcos mission are 
discussed. Some historical background is presented as an introduction. 
Special attention is given to the Hipparcos reference system, and its role in 
the unification and "inertialisation" of two existing celestial reference 
frames. In particular the proposed connection of the Hipparcos reference 
frame with the extra-galactic VLBI reference system is of interest. Finally a 
few possible geodynamical and geodetic applications are given. 

2.1 Historical Background of Hipparcos 

Astrometry, or positional astronomy, is the oldest branch of astronomy. 
Until the invention of the optical telescope, by 1609, all observations were 
done with the naked eye. Therefore, the upper bound for the positional 
accuracy used to be set by the resolution power of the naked eye, which is 
about one minute of arc. Two famous astronomers of this pre-telescopic era, 
Hipparcos and Tycho Brahe, need mentioning, since their names have been given 
to the two star catalogues which will be produced by the Hipparcos mission. 
The Greek astronomer Hipparchus (190-120 BC) already calculated the distance 
of the Moon from Earth by measuring the Moon's parallax. Hipparchus also made 
a star map, which led, when it was compared with the work of his 
predecessors, to the discovery of the precession of equinoxes. Seventeen 
centuries later, after Copernicus had introduced the heliocentric concept, 
Tycho Brahe, with the help of his brass azimuth quadrant, carried out a long 
series of observations during the second half of the sixteenth century. His 
observations, which had an accuracy better than l', provided the basis for 
Keppler's laws of planetary motion. 

After the invention of the optical telescope the angular error fell to 
several seconds of arc at the first half of the eighteenth century, and to 
better than one second of arc in the middle of the nineteenth century (figure 
2.11. Some of the landmarks in astrometry, in chronological order, are the 
discovery of stellar aberration and nutation around 1700, of stellar proper 
motion by Halley in 1718, of the constant parallax of stars due to the motion 
of the Sun by Herschel in 1783 and finally the long expected discovery of the 
annual parallax by Henderson in 1831-1832 and Bessel in 1837-1838. 

Another major step forward was the invention of the photographic camera 
at the end of the nineteenth century. The technique is to measure the 
position of the selected stars relative to a few reference stars surrounding 
it. This invention greatly economized the determination of proper motions and 
parallaxes, which are determined by measuring the shift in the star position 
from a large number of plates taken over a number of years. Several thousands 
of parallaxes have now been measured, although not always with a satisfactory 
accuracy. In this line of work some stars have to be used as a reference, and 
the positions, proper motion and parallax of these reference stars have to be 
known precisely. In this century several catalogues of reference stars have 
been compiled from meridian circle and astrolabe observations. 



Figure 2.1 - The evolution of the error in astrometric measurements 
(courtesy of D. Hughes [Perryman, 19851) 
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Ground based measurements must be made through the atmosphere, so they 
are affected by atmospheric turbulence and refraction. Local atmospheric 
circumstances, mechanical deformations of the telescope under gravity and 
thermal effects, and seasonal variations give systematic errors in 
individual instruments. These systematic errors make it very difficult to 
establish a satisfactorily accurate reference catalogue covering the whole 
sky, with homogeneous errors in the astrometric parameters. Therefore, in 
1966 a proposal for a space astrometry mission was submitted by prof. P. 
LacroQte. Two major advantages of a space mission can be indicated: 1 )  the 
disturbing influence of the atmosphere is eliminated, 2 )  one s i n g l e  
instrument will be able to cover the whole sky. 
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This preliminary proposal was soon followed by a series of more 
elaborate and ambitious proposals. Finally, a feasibility study by the 
European Space Agency (ESA) was initiated in 1977, the so-called phase A 
study [ESA, 19791. This led to the adoption of the project by ESA in March 
1980. The detailed design study (phase B) was completed in December 1983, 
after which the hardware phase began (phase C). The launch is scheduled for 
April 1989. In the meantime several scientific data analysis consortia have 
been set up. In 1981 the Fundamental Astronomy by Space Techniques (FAST) 
consortium was founded [FAST, 19811, of which the faculty of Geodesy of the 
Delft University of Technology became a member. It is one of the three 
scientific data reduction consortia which are going to process the Hipparcos 
data. The other consortia are the Northern Data Analysis Consortium (NDAC) , 
and the Tycho Data Analysis Consortium (TDAC), responsible for the Tycho 
catalogue. A fourth consortium, the Input Catalogue Consortium (INCA), has 
just finished the task of compiling an input catalogue for Hipparcos, which 
contains a-priori data about the selected program stars. 

HIPPARCOS 

2.2 Astrometry from Earth 

2.2.1 Astrometric Techniques 

Astrometry is concerned with the position, distance, motion, dimension 
and geometry of celestial bodies. The instantaneous location of a star in 
three dimensional space can be given in spherical coordinates, e .  g .  the 



distance to the barycentre of our solar system and two angles, which give the 
position on a two dimensional manifold, a sphere of unit radius around the 
barycentre called the celestial sphere. The distance of nearby stars is 
computed from the -observed- parallax of stars. The parallax is the apparent 
displacement in position of celestial objects due to a change in the position 
of the observer. The parallactic displacement caused by the annual motion of 
the Earth around the Sun is called the annual or trigonometric parallax. The 
motion of celestial objects are also given in a radial component, the 
so-called radial velocity, and a component projected on the celestial sphere, 
the proper motion. The radial velocity is determined by measuring the Doppler 
shift of the stellar light. The proper motion is determined from two or more 
posit ion measurements at different epochs (figure 2.2). 

year 

Figure 2.2 - The effect of parallax and proper motion on the observed 
star position (Courtesy of New Scientist [Perryman, 19851) 

Astrometric techniques are classified according to the size of the field 
of view, 4, which is needed to obtain the desired result. Kovalevsky 
distinguishes 5 classes [Koval vsky, 19841: very narrow field (4510"), narrow 5 field (4r0:5), wide field (455 1, semi global (a part of a hemisphere) and 
global astrometry. 

Very narrow field astrometry (4510") is devoted to the study of multiple 
stars without reference to nearby stellar surroundings. The main instrumental 
tools are long focus telescopes. In combination with a technique known as 
speckle interferometry, which eliminates the effect of atmospheric turbulence 
(seeing), the resolving power is reduced to the theoretical diffraction limit 
of the telescope. The errors are now in the order of O"005 and O"002. Narrow 
field astrometry (450'5) is used when it is necessary to link the position of 
a star to neighbouring ones. This is the case for parallax and proper motion 
determination relative to a set of reference stars with known parallaxes and 
or proper motions. The derived parallaxes and proper motions are obviously 
very sensitive to systematic errors. The best results with this method are of 
the order of O"004 for parallaxes (using many photographic plates over a 
period of several years), but currently less than thousand parallaxes are 
known with this precision and this number increases by not more than 
fifty per year. 

Wide field astrometry (455') is essentially relative astrometry using 
photographic plates taken by astrographs and Schmidt telescopes. This 
technique aims at determining star positions with respect to some reference 



stars whose celestial coordinates are known. The actual measurement error is 
of the order of 0"l for most modern equipment, but the computed positions are 
seriously affected by uncertainties in the global positions of the reference 
stars, which may range between O"4 and 1" (see table 2.1). 

Semi global and global astrometry are concerned with the determination 
of positions of stars far apart from each other. The best available 
instruments are -automatic- meridian circles and astrolabes, which have a 
typical precision of O"2 in a single observation of stars brighter than 
magnitude 11. With the present automatic instruments stellar coordinates to 
better than 0"l are produced operationally, and with a production rate 
significantly better (up to 20,000 observations per year) than the classical 
visual instruments. However, connections can only be established within a 
certain portion of the sky, and, therefore, catalogues obtained by a single 
instrument cover only part of the sky. The major problem is formed by 
systematic errors, caused by the telescope (tube flexure), site (local 
refraction) and by the change of seasons, because some stars are only 
observable in winter, some in summer. Therefore it is not easy to combine the 
individual catalogues, which is the aim, and method, of global astrometry. 
Hipparcos is a global astrometry mission, but the quality of its results is 
comparable to those of (very) narrow field astrometry from ground based 
observat ions. 

2.2.2 G l o b a l  A s t r o m e t r y  

The objective of global astrometry is to establish a single consistent 
reference frame, possibly non-rotating (inertial), materialized in many star 
positions and proper motions, and with regional errors reduced to a minimum. 
An inertial frame can essentially only be constructed from the analysis of 
the motion of celestial bodies (Moon and planets), under the assumption of a 
dynamical model of their motion in inertial space (i.e. not containing any 
inertial rotational term). The choice for a specific dynamic model defines 
the reference system. Another possibility to define a non-rotational 
reference system is to assume that some distant objects (galaxies, quasars) 
have no detectable apparent motion. Once a reference system is defined, it 
must be materialized, i.e. coordinates, and possibly motions, must be 
assigned to a sufficiently dense network of celestial bodies. Such a 
materialization is called a reference frame or Fundamental Catalogue: the set 
of coordinates associated with a reference system. 

Presently a new fundamental catalogue is coming into use, the FK5. The 
FK5 contains as many as 4500 stars (magnitude V 9) with random errors of 
the order of O"03 in position and O"002 per year in proper motion [Fricke, 
19801. This is a considerable improvement compared to the FK4, which had at 
epoch 1980 random errors of -0"12 and regional errors of up to O"2 especially 
in the Southern hemisphere. The FK5 is constructed from the old FK4 data and 
150 new catalogues, each based on observations by one single instrument. In 
the FK5 also a new dynamic model was used, based on new data and revised 
astronomical constants. 

The FK4 and FK5 do not have sufficient stars to be used as reference for 
wide field photographic astrometry. For the reduction of a plate of 2 X 2 
degrees about 15 reference stars are needed, i.e. 4 stars per square degree, 
whereas the FK4 or FK5 contains only one star per 9 square degrees. Therefore 
the FK4 has been extended by, mainly, meridian observations, leading to a 
system of International Reference Stars (IRS). The IRS stars are given in the 
AGK3R and SRS catalogues (respectively in the Northern hemisphere, observed 
around 1959, and Southern hemisphere, observed around 1968) which contain 
together 38,000 stars. Other, but less homogeneous, catalogues are the 



photographic AGK3 catalogue (Northern hemisphere, observed between 1930 and 
1960) with 180,000 stars and the SA0 catalogue with 500,000 stars. After 
applying systematic corrections FK5 - FK4 the 1% stars have positions known 
to about O"3 at the present epoch. The AGK3 stars have mean errors of the 
order of O"4 for bright stars, and above O"5 for the faint stars, while the 
positions of stars in the SA0 catalogue have often errors of more than 1". 

Table 2.1 - Typical accuracy of existing vs. Hipparcos catalogues. 
(fundamental : FK4, FK5; reference: AGK3R. SE; photographic: AGK3) 

typical no. rms position rms proper 
catalogue of stars error (1990) motion error 

fundamental 5,000 30 mas 2 mas/year 

reference 38,000 300 mas 4 mas/year 

photographic 180,000 >500 mas 10 mas/year 

Hi pparcos 110,000 2 mas 2 mas/year 

Tycho 1,000,000 30 mas - - 

The Jet Propulsion Laboratory VLBI (Very Long Base-line Interferometry) 
reference frame is the best available quasi-inertial frame at the moment. It 
is composed of more than 100 sources, quasars, with mean errors of O"005 in 
their positions. However, the extension of this system ,to stellar positions 
is quite difficult. Generally the optical counter parts of the quasars are 
very faint, and are not directly accessible to semi global astrometry, but a 
link can be established through large field photographic plates. The errors 
in these links are of the order of 0"l. The precision of the links could be 
increased by narrow field astrometry, but then the problem is to find a 
bright enough star (preferably FK5) close by. So, presently, it does not seem 
that this link is very significant. More important is the link of the VLBI 
reference system with the future Hipparcos catalogue, which will also contain 
the FK5 stars. 

2.2.3 Limitations of Earth based Observations 

The accuracy of astrometric observations from the surface of the Earth 
is degraded by atmospheric, gravitational and geodynamical effects. These 
effects are absent in measurements from space. The atmospheric influences are 
the most fundamental. Firstly, seeing (turbulence) and refraction cause 
random errors in the observations. Secondly, refraction, due to site and 
seasonal variations, gives a significant systematic error which is difficult 
to detect and which averages out only very slowly with more measurements. 

The atmospheric refraction is caused by the spherical atmospheric 
layers. It is a large effect which increases with the zenith distance. The 
normal part can be modelled as a function of the zenith distance and a few 
other parameters [Tengstrom and Teleki, 19781. The auxiliary parameters are 
either measured locally, e.g. temperature, air pressure and humidity, follow 
from the regional weather situation or are determined from the measurements 
itself. The refraction depends also on the star colour. This, in principle, 
could be used to eliminate the parallax by measuring in two different 



colours, but the effect is quite small, and therefore it is difficult to 
get usable results. 

The anomalous refraction error is still largely systematic, and can 
reach hundreds of mas, although correction to 10-20 mas may be possible 
[Sugawa and N a i t o ,  19821. The systematic part of the anomalous refraction 
error depends on the site, time and season of observation. Therefore, it 
averages out only slowly. Hag I w a l e v s k y ,  19841 found from empirical data 
that the error decreases as T , with averaging over increasing 
observation time T .  But, in particular, stars which can be observed only 
during a certain part of the night or in one of the seasons, can have large 
systematic errors in their positions which average out even slower. 

Seeing is caused by turbulence in the atmosphere. It results in 
intensity variations (scintillation) and in short periodic ray bending, both 
spatially and temporally [ T e n g s t r o m  B T e l e k i ,  19781. The turbulent cells are 
typically 10-30 cm in size. The so-called atmospheric coherence time, the 
period during which a certain optical situation remains stable, is not long 
(typically 0.01-0.5 S. 1, since the turbulent cells move with the winds 
through the light path. In telescopes with an aperture smaller than the width 
of the cells the turbulence results in image motion. In telescopes with a 
larger aperture the various atmospheric cells through which the light passes, 
give different images: the speckles. These speckles are randomly moving in 
the field. For observing times larger than the atmospheric coherence time 
this results in blurred images. The size of this effect can be large, several 
seconds of arc, and down to slightly less than one second of arc in good 
nights. The photocentre cannot be determined to better than 5%-10% of the 
blurred image, resulting in an error of a few hundred mas, maybe 50 mas at 
the best. Fortunately this error averages out faster than the refraction 
error. Theoretical work by Lindegren [ K o v a l e v s k y ,  19841 showed that the error 
i a easured angle 8 between two stars near the zenith decreases as 
8P/4T-PI'2, with averaging over increasing observation time T .  

The pull of the Earth's gravity affects the stability of the instrument 
( e . g .  tube flexure) and this gives small systematic errors. Also geodynamical 
effects, by which we mean the anomalous part of Earth rotation, polar motion, 
tides and Earth crust deformations, introduce errors. So far, we assumed that 
diffraction, photon noise and detector noise are not significant. This holds 
only for good instruments, v i z .  the diffraction limited image varies from 20 
mas for large telescopes and large zenith tubes to 2" for ordinary geodetic 
instrumentation. 

These limitations work in two directions. Firstly, the site and seasonal 
effects on the refraction are the limiting factor in global astrometry from 
Earth. These effects make it almost impossible to establish a satisfactory 
reference frame, with homogeneous errors in position and proper motions. 
Therefore, the only certain way to get away from these limitations is to go 
into space. Secondly, for geodynamical applications ( e . g .  Earth rotation 
parameters) any homogeneous reference system, such as the Hipparcos one, has 
to be accessed from Earth by astrometrical observations. Again, the 
atmosphere is, and stays, the limiting factor. 

2.3 The Scientific Objectives of the Mission 

Hipparcos is essentially a global astrometry mission, but with an 
accuracy comparable to (very) narrow field astrometry. It is the first 
satellite mainly devoted to global optical astronomy in the visual 
wavelengths. Two precise stellar catalogues, containing the positions, proper 



motions, parallaxes, magnitudes and colours of stars, will be constructed: 
the so-called Hipparcos and Tycho catalogues. The applications of the 
Hipparcos and Tycho catalogues in astronomy will discussed briefly. More 
applications are discussed in the proceedings of several colloquiums on the 
scientific aspects of the Hipparcos astrometry mission [Barbiery and 
Bernacca, 1979, Perryman and Guyenne, 1982, Guyenne and Hunt, 19851 

2.3.1 The Hipparcos and Tycho Catalogues 

The Hipparcos catalogue is the primary aim of the mission. It will be 
computed from the main grid data and it will contain the positions, proper 
motions, parallaxes and magnitudes of some 110,000 stars up to magnitude 
12- 13. The accuracy of about 60,000-80,000 relatively bright stars, the 
so-called survey, will be 1.5 to 2 mas for each component of the position, as 
well as for the yearly proper motions and parallax. Their systematic 
-regional- errors will be not more than a fraction of a mas. The survey stars 
are evenly distributed over the celestial sphere, i.e. 1.5 a 2 per square 
degree. A large fraction of the magnitude nine stars, and almost all stars 
brighter than magnitude eight, will be survey stars. The accuracy of the 
generally fainter non-survey stars is about 3 to 4 mas (depending on their 
magnitude) for positions, yearly proper motion and parallax. These fainter 
stars are chosen because of their astronomical or astrophysical interest. 
More than 200 research projects have been submitted to ESA, requesting the 
observation of much more stars than can be observed by Hipparcos. 

A secondary aim of the mission is the Tycho catalogue. The Tycho 
catalogue will contain the positions, magnitudes and colours of some 400,000 
to 1,000,000 stars. This catalogue is computed from the star mapper data. The 
star mapper is primarily used for the attitude reconstruction of the 
satellite, but reprocessing of this data with the attitude obtained from the 
main reduction will give positions with a typical accuracy of 30 mas. 

Furthermore, a substantial fraction of the program stars are double or 
even multiple. It is possible to compute some of the orbital parameters and 
magnitudes of double star components from the Hipparcos data, which is 
another aim of the mission. Also a number of minor planets (asteroids) is 
included in the observing program for solar system reference frame purposes. 

2.3.2 Global Astrometry with Hipparcos 

The Hipparcos mission offers great advantages over classical global 
astrometry; the major advantage is that a single instrument, outside the 
disturbing influence of the atmosphere and able to observe large angles 
(-60'1, is used for the complete sky. Therefore, regional errors in the final 
catalogues are believed to be absent, which is of great benefit to 
statistical kinematic studies of our galaxy. In addition, the Hipparcos and 
Tycho catalogues are dense enough to be used directly in wide field 
photometric astrometry. The Tycho catalogue, which wi l l contain 10-20 stars 
per square degree, could even be used in narrow field astrometry. 

The Tycho and Hipparcos catalogues drastically improve the positional 
accuracy of existing catalogues. But in order to preserve the catalogue 
precision throughout time precise proper motions are needed. The rms error in 
the position at an epoch different from the central epoch is (law of error 
propagat ion) 

/ 



with c 
~ ( t )  

the rms error at an epoch t, c the rms error in the proper motion 
P 

and t 'the central epoch of the observations to a certain star (at the 

central epoch of observation the star position is not correlated with the 
proper motion). The rms error as a function of the epoch is given in figure 
2.3 
for different catalogues. The Hipparcos data alone does not bring a similar 
improvement to the rms error of the proper motions as it does to the 
positions, although a combination of the Hipparcos data with existing data, 
or better, with a second Hipparcos in ten years time, will give an additional 
improvement to the proper motions and hence, to the future quality of the 
catalogue (Figure 2.3). However, the systematic error (not given in figure 
2.3) in the Hipparcos proper motions will be much smaller than in existing 
catalogues, and this is just what makes the Hipparcos catalogue so 
worthwhile. Also the Tycho proper motions can be improved, even down to the 
Hipparcos accuracy, by combining the Tycho catalogue with existing 
catalogues. 
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Figure 2.3 - The accuracy evolution (rms) of various catalogues: 
a) IRS (38,000 stars), b) Hipparcos (110,000 stars), c) IRS + 
Hipparcos and d) Hipparcos plus a second Hipparcos in ten years. 

An important application of the precise Hipparcos star positions, at 
other epochs than the central epoch, is a new reduction of existing 
photographic plates, which exist from the beginning of this century. A new 
reduction of this old material may be useful for the determination of proper 
motions of fainter stars (down to magnitude 13-14) for the purpose of studies 
on galactic kinematics [De Vegt, 19821. Similarly, a new reduction of the old 
latitude determinations could give an important improvement in the Earth 
rotation parameters from 1900 onward. For most applications it is necessary 
that the proper motions are given in an inertial frame. Therefore, a link 
between the Hipparcos system and the FK5 and VLBI reference systems is 
foreseen. 

2.3.3 Astrophysical Applications 

The catalogue will not only be used as a reference for other astrometric 
work, but the proper motion and parallax of the 110,000 Hipparcos stars will 
also be used directly for astrophysical work. For astronomy the parallaxes 
and the proper motions of stars, together with their magnitudes and colours, 
form the main content of the mission. The accuracy of Hipparcos' proper 
motions and parallaxes is comparable to the internal accuracy of (very) 
narrow field astrometry. The expected rms errors for the approximately 80,000 



stars brighter than magnitude 9.5 are: 
- 1.5 to 2 madyear for each component of the proper motion, 
- 1.5 to 2 mas for the parallax. 
The systematic errors are expected to be a fraction of a mas. For magnitude 
12 stars the r.m.s. error is of the order of 4 madyear for the proper motion 
and 4 mas for the parallax. 

The annual parallaxes are the basis of all distance measurements in the 
universe. Actually, the distance of only a small fraction of the stars (0.1% 
of our galaxy) can be determined from the parallax directly, but all other 
methods are, in one or more steps, calibrated on the basis of these 
parallaxes. Thus, any improvement in the parallax situation leads to better 
distances and an improved accuracy of the cosmic distance scale. From the 
distance, and the magnitude, which is also determined by the Hipparcos 
mission, the actual luminosity of stars can be computed. This will lead to an 
improved calibration of the Hertzsprung-Russell dia ram, which gives the 
relation between the luminosity and colour of stars . Distances are also 
needed to compute the masses of the components of a double star from the 
orbital parameters. At present, only 500 stars have parallaxes measured with 
a precision better than 2 mas, but, according to Hanson [Kovalevsky, 19861, 
some may also have systematic errors of a few mas. In the Hipparcos catalogue 
one hundred times more parallaxes, with a precision to better than 2 mas and 
without significant systematic errors, will be given. 

In numbers, the situation with proper motions is better than for 
parallaxes. Many stars have proper motions known with an internal precision 
[i.e. relative to their neighbours) of the order of several madyear, 
determined from observations over more than 50 years. The systematic 
-regional- errors, however, are in the order of 5 to 15 mas/year, except for 
the 5000 FK4 and FK5 stars, which have errors of a few mas/year. The proper 
motions play an important role in kinematic studies of our galaxy. 

2 .4  Link t o  the  FK5 and VLBI Iner t ia l  Reference Systems 

The celestial reference system defined by the Hipparcos and Tycho 
catalogues is precise, reasonably stable (which depends on the quality of the 
proper motions), well materialized and conceptually simple. Unfortunately, 
this reference system2 has no direct reference to inertial space, not by 
theory and not by direct observation. Eventually a link between the Hipparcos 
system and the two presently available inertial systems, based on solar 
system dynamics and on the positions of extragalactic objects respectively, 
will be made. So for the first time the two principally different inertial 
systems now avai lable wi l l be compared. 

The Hipparcos and Tycho catalogues are computed from angular 
measurements. This causes an indeterminacy of the system: the angles are 
invariant under a rotation of the coordinates for positions and proper 
motions, which results in a rank defect of 6 during the data reduction. The 
rank defect is solved by imposing some additional constraints. There is a 
certain arbitrariness in the choice of these constraints, and consequently in 
1 
It turns out that there is a strict relation between the star type, i.e. 
the stage of its evolution, and its position in the Hertzsprung-Russell 
diagram. 
Since the computation of the Tycho catalogue is based on the attitude data 
computed in the Hipparcos system it is safe to assume that both catalogues 
refer to the same reference system, the so-called Hipparcos reference 
system. 



the definition of the reference system, as is often stressed by Baarda 
[Baarda, 19731. In the data reduction the rank defect is solved by fixing the 
position and proper motion of one and a half star to zero, although the rank 
defect disappears during the data reduction because some additional 
information is supplied through the approximate values for the star positions 
(see chapter 4). For practical reasons (e.g. for studies of galactic 
kinematics) the Hipparcos reference system should be close to an inertial 
reference system. Therefore, the coordinates of proper motion should be 
rotated, to form a quasi-inertial system (for the instantaneous positions it 
is often just desirable that the zero parallel of latitude is close to the 
ecliptic or equator). The operators that transform different coordinate 
representations of the same, generally geometric, quantities into each other 
are known in geodesy as S-transformations (see appendix C). 

The link to solar system dynamics is made indirectly, through the 
existing FK5 star catalogue, and directly by Hipparcos observations of some 
asteroids. About 20-30 asteroids of magnitudes 8 to 12 will be observed by 
Hipparcos. These observations will give some, but no decisive, information on 
the orientation of the Hipparcos reference frame. More is expected of the 
link to the FK5 system [~oser, 19831, while the comparison of the FK5 with 
Hipparcos will show the regional errors of the FK5. The FK5 is currently the 
best approximation of a truly inertial, dynamically defined system, based on 
many observations of solar system objects (see section 2.2.2). The 
orientation of the FK5 system is accurate to some 1.5 mas/year [Kovalevsky, 
19841, the same as for Hipparcos. 

The link with the VLBI reference system is made indirectly, because the 
optical counterparts, except one, of the distant radio sources are too faint 
to be observed by Hipparcos directly. Instead, two types of indirect 
connections are foreseen: a space and a ground tie. The first scheme uses 
optical ties by NASWESA's Hubble Space Telescope between quasars and their 
close optical neighbours seen by Hipparcos [ ~roeschlh G Kovalevsky, 19821. In 
the second, and most promising, scheme the ties will be made by VLBI 
observations between quasars and point-like radio-optical stars within the 
Hipparcos program [Preston et al., 1983, Lestrade et al., 19851. It is 
expected that about 20-30 of these point-like radio-optical stars will be in 
the measurement program. In both schemes the links are expected to give the 
rotation to better than 1 madyear. 

Finally, all the presented methods combined are believed to give a 
quasi-inertial system down to a level below 0.5 mas/year. So, for the first 
time, the two existing quasi-inertial systems, based on solar system dynamics 
and extra galactic VLBI sources respectively, are to be compared. Thus, the 
Hipparcos system plays an important role in the unification of the celestial 
reference systems. 

2.5 Geodynamical Applications of the Hipparcos Reference Frame 

The connect ion between the Hipparcos reference system and the 
terrestrial reference system cannot be established dir ctly by Hipparcos, but S should be established by optical astrometry from Earth. The accuracy of 
optical astrometric measurements from the Earth is dominated by catalogue and 
observational errors. The catalogue error will decrease to a few mas once the 
Hipparcos catalogue becomes available. This is we1 l below the present 
observational errors, due to atmospheric seeing, atmospheric refraction and 

Although an interesting proposal for observing laser beacons on Earth by 
Hipparcos was done in [Bertott i et al., 19831. 



instrumental imperfections. For geodetic observations, using portable 
equipment like zenith cameras and theodolites, the observational error is in 
the order of 300-700 mas. For fundamental observations, using for instance 
meridian circles, zenith tubes and astrolabes, an observational error of 
70-100 mas is attainable at present, and in future an error of 10-20 mas may 
even be reached. A survey of possible geodetic and geodynamical applications 
is given in [Groten, 19821, [Van Daalen, 1985b1 and [Van Daalen G Van der 
Mare l ,  1986a l . 

Typical geodetic applications, like local or regional geoid 
determination, orientation of 2-D networks and vertical directions in 3-D 
networks, require for their astronomical measurements a relative precision of 
10-~ (700 mas), which is of the same order of magnitude as the,present 
catalogue errors (see table 2.1 and figure 2.3). Therefore geodetic 
observations may profit somewhat from the Hipparcos catalogue, especially 
because of the absence of systematic errors. But the current decrease in the 
use of optical methods in geodesy cannot be stopped, other methods are more 
practical. I. e. sate1 l i te Doppler measurements and the global positioning 
system are more practical for positioning, and gravimetric measurements are 
more practical for geoid determination. However, astronomical geodesy might 
remain attractive for the determination of vertical directions in 3-D 
networks, especially in mountainous areas, using transportable zenith cameras 
[ ~ u r k i  et al., 19831. 

The obvious disadvantages of optical astrometry are its dependence on a 
clear sky and nighttime, the time consuming observations, requiring 
experienced observers (somewhat less for zenith cameras), and the vulnerable 
and expensive instruments. But there are advantages as well: optical 
astronomy requires not a high organization level and no satellite orbits and 
the model is, except for the atmosphere, well established and simple. 
Sometimes it is advocated that astronomical geodesy might remain attractive 
for developing countries [Birardi, 19821. 
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Figure 2.4 - Relative weights of the different observing techniques 
for the 5 day BIH values of polar motion(1eft) and Universal Time 
(right). VLBI: Very Long Baseline Interferometry, CERI: Connected 
Element Radio Interferometry, SLR: Satellite Laser Ranging, LLR: Lunar 
Laser Ranging, ASTR: Astrometry, DOPP: Doppler Satellite Solution. 

For scientific applications, like the determination of Earth rotation 
and polar motion, tectonic motions and satellite orbits, the best possible 
accuracy is desired. At present astronomical geodesy is being replaced by 



other techniques because these are more accurate. This tendency is clearly 
illustrated by the relative weights of the different observing techniques for 
the 5 day values of polar motion and Universal Time in figure 2.4 [BIH, 
1981 -19861. With laser ranging and VLBI an accuracy of a few centimeters 
(3 cm - 1 mas) can be achieved. This is well below even our optimistic 
estimate for the optical error in astrometry. Therefore, this type of 
applications will probably hardly profit from the Hipparcos reference system. 

Unlike the new techniques, astrometry has a long record of good 
observations, even back to 1900. Laser and VLBI only started to give useful 
results 10 years ago. Since the Hipparcos mission will improve stellar 
catalogues for several decades backwards, recomputation of historical 
astronomical data may give valuable results on Earth rotation theory and 
tectonic motions. Satellite orbit determination by direction measurements to 
satellites, for the purpose of gravity field studies, might profit somewhat 
from Hipparcos, although even our optimistic estimate of the optical error 
corresponds to -1 m at Lageos height. However, according to Smith and Marsh 
[Smith and Marsh, 19861 old camera data still provide valuable information on 
the zonal coefficients in the spherical harmonics development of the gravity 
field. Recomputation of this old data may give small improvements, but a more 
up to date and accurate direction measurement system would be more 
interesting. Finally, the Hipparcos catalogue, which is practically 
errorless, will allow studies of the other error sources such as refraction. 

The conclusion is that, although the Hipparcos catalogue can give some 
improvement in geodetic and geodynamical applications, the accuracy of 
astronomical measurements is not sufficient, not now or in the near future, 
to be able to have a large impact in geodesy and geodynamics. 



HIPPARCOS MEASUREMENT PRINCIPLE 

In this chapter the optical configuration of the satellite, the scanning 
motion during its 2.5 years of mission, the measurements and their 
preprocessing are described. 

3.1 A primer on Hipparcos 

In order to reach the goal of the Hipparcos mission, i.e. the 
determination of the astrometric parameters of stars on the entire sky with 
uniform precision (global astrometry), the basic measurement must allow to 
determine large angles with a very high precision. Therefore, the Hipparcos 
telescope simultaneously observes, by means of a special - beam combining - 
mirror, two small patches of the celestial sphere, thus reducing large angles 
between stars in different fields of view to small angles between their 
images in the focal glane. The fields of view (FOV), which are 54'x 54' 
each, are located 58, the so-called basic angle, apart (figure 3.1). 
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Figure 3.1 - Hipparcos measurement principle 
(courtesy ESA) 

The satellite is rotating slowly (11.25 rev/day) around an axis 
perpendicular to the two viewing directions. Thus the star images move first 
slowly through the first, so-called "preceding", field of view, in about 18 
seconds, and reappear 20 minutes later in the "following" field of view. A 
grid of transparent and opaque bands, mounted in the focal plane with its 
bands perpendicular to the scanning direction, modulates the light of the 
(moving) star images (figure 3.2). The modulated light is sampled by a 



detector known as an image dissector tube (IDT) at a frequency of 1200 Hz. 
The detector has a small sensitive area (38"), the so-called instantaneous 
field of view (IFOV), that can be directed through the field of view in order 
to select a star to be observed. 

On the average four or five program stars are simultaneously present in 
the two fields of view. The detector is able to track - under computer 
control - the program stars one at a time during their passage across the 
field. By observing the program stars many times in turn, over short 
intervals of time, quasi-simultaneous observations are obtained (figure 3.5). 
The amount of observing time to be spent on a star, and the way in which time 
slices are allocated to stars, are controlled by a star observing strategy 
implemented in an on-board computer program. 

FOCAL PLANE 

g r i d  

Figure 3.2- Schematic view of the telescope, with beam combiner 
and modulating grid. 

The satellite axis of rotation is slowly precessing, with about 11.5 
arcminute per hour, such that in the next revolution a new - partly 
overlapping - strip on the celestial sphere is scanned. To be more precise, 
the spin axis will be kept at a constant inclination of approximately 43' to 
the direction of the Sun, and will revolve around the sun in about 57 days. 
In this way the complete celestial sphere will be scanned several times 
during the mission, and a dense net of -one dimensional- measurements (about 
eighty per star) on well inclined great circles is obtained (Figure 3.3). 

The image dissector tube (IDT) data are transmitted to the ESOC 
(European Space Operations Centre) ground station in Odenwald (West Germany), 
and will be given by ESOC to the two data reduction consortia for further 
processing. The data reduction consortia are going to calculate from the IDT 
data, per observation frame of 2.13 seconds, the amplitude and phase - at 
mid-frame time - of each of the modulated star signals. The phase of the 
modulated star signal at mid-frame time depends on the position of the star 
image on the grid. Consider the projection of a perfect grid on the celestial 
sphere, with slits at regular distances S, then the angular distance between 
a chosen reference slit and the image of a star i is 

with p the grid phase computed for the k'th frame, n the integer slit number 
and S the nominal separation of the slits (l"208). The integer slit number is 
not observed, but has to be computed somehow from the a-priori star position 
on the grid. 



Figure 3.3 - The yearly path of the spin axis (left) and the path 
of the field of view for a two months period (right). The celestial 
sphere is projected on the (Acos9,9) plane, with (A,&) ecliptic 
coordinates, such that the Sun moves along the horizontal line. In 
the right figure only 1 out of 5 scans is drawn. 

The angular distance x is defined along an - unknown - great circle, the 
scan circle. The scan circle has orthogonal intersections with the slits. The 
pole and origin (the location of the central slit) of the scan circle, which 
are directly related to the attitude of the satellite, are not known very 
accurately. In order to compute the two-dimensional position of a star in a 
celestial reference frame, observations from different scan circles have to 
be combined. However, since the poles and origins are undefined, such a 
computation is not very straightforward. The indeterminacy in the origins 
(along scan attitude) can be avoided simply by considering angles between 
simultaneously observed stars in an observation frame, and then solving 
positions relative to the other stars, or, the origin of the scan circles can 
be solved for each observation frame as an additional unknown. The scan 
circle poles, i.e. the location of the scan circles (transversal attitude), 
cannot be resolved from the same data, so here additional measurements are 
needed. These measurements can be provided by the so-called star mapper. The 
star mapper data has not to be very precise, because the angles along a scan 
circle, determined by the main instrument, are rather insensitive to small 
variations in the scan circle poles. 

The star mapper grids (one for redundancy) ,are located on both sides of 
the modulating grid (figures 3.2 and 3.4). Each star mapper consists of 4 
slits inclined and 4 slits perpendicular to the scanning direction, and a 
pair of photomultipliers associated with a dichroic filter providing 
photometric information on the star in red and blue bands. The combination of 
vertical and inclined slits allows for two dimensional measurements of the 
star position, from which the attitude (especially scanning circle poles) can 
be resolved, though with a restricted accuracy. Numerical filters are used to 
detect the transit time of a star through each slit system, the time lag 
between a crossing through the vertical and the inclined slit system is a 
measure for the vertical position of the star on the modulating grid (i.e. 
along the bands). Each set of slits is arranged a-periodically to optimize 
the analysis of the detector signal. 

The star mapper signal is first analyzed on-board the spacecraft for the 
purpose of attitude determination. A rather precise attitude (l") is needed 
by the on-board software for the piloting of the image dissector tube and for 
maintaining the prescribed scanning motion. The three-axis attitude of the 



spacecraft is computed by combining the transit times associated with the 
passages of stars across both slit systems, in the two fields of view, with 
their (approximate) catalogue positions. The same kind of analysis is 
repeated on-ground by both data reduction consortia, but using more precise 
computations, more stars and better catalogue positions, in order to compute 
an even more precise attitude (0"l). This precision is sufficient for the 
approximate values in the linearized measurement equations. This computation 
scheme is essentially followed by both consortia. However, it may be 
conceptually better to consider the star mapper transit times as a second 
group of - two-dimensional - measurements (see chapter 4). 

In order to linearize the equations and to compute the integer slit 
numbers, approximate values for the attitude and positions are needed. The 
desired 0"l accuracy is not achieved in one step, but by an iteration 
process. Approximate star parameters are at first provided from the INCA 
catalogue. Later on during the reduction the intermediate Hipparcos 
catalogues are used. The attitude data is computed from the star mapper 
measurements, using the approximate star parameters as a starting point. 

The star mapper data is also used by the complementary Tycho mission. 
The Tycho and Hipparcos missions cannot be flown independently. Tycho makes 
full use of the Hipparcos results to compute from the star mapper data star 
positions and photometric parameters of some 400,000 - 1,000,000 stars. On 
the other hand Hipparcos possibly may profit from the photometric data 
provided by Tycho, to correct for colour dependent errors. 

3.2 Hipparcos Scanning Motion 

The Hipparcos satellite will be controlled to scan a predefined path on 
the celestial sphere. The scanning law is based on the following rules: 
- the satellite revolves 11.25 times per day around its spin axis, 
- the spin axis will be kept at a constant inclination of 43' to the direction 
of the Sun, and will revolve around the Sun in 57 days (6.4 rev/year). 

Therefore the nominal scanning motion has principal components of 11.25 
rev/day, 6.4 rev/year and, due to the yearly motion of the Sun along the 
ecliptic, 1 rev/year. 

The scanning law results in many intersecting scan circles, with 1) 
sufficient variation in azimuth in order to be able to get to know both 
coordinates and 2) sufficiently spread over the year and mission in order to 
get the parallaxes and proper motions. The maximum angles at which the 
scanning circles intersect is somewhere between 47' and go0, depending on the 
position on the celestial sphere. After half a year the celestial sphere is 
completely scanned, and star positions can be computed. The parallaxes and 
proper motions' of stars can only be computed after one year ( i . e .  two full 
scans) of data. The scanning law does not take into account the positions of 
the Earth and Moon. Whenever one of the fields of view comes in the 
neighbourhood of the Earth's or Moon's disk the detectors must be switched 
off. This results in some loss of observing time (6%). 

The attitude will be controlled by means of simultaneous cold gas jet 
firings on all three axes at irregular intervals, namely as far apart as 
possible, to get the smoothest attitude possible. A smooth attitude motion is 
necessary for attitude smoothing. Therefore, intermittent attitude control by 
cold gas jet firings, instead of the more usual - continuous - reaction wheel 

Although proper motions alone can be computed from less than one year of 
data. 



control, is used, because it gives much less attitude jitter. Deviations from 
the nominal position of up to 10 arcmin are permitted. When one of the 
attitude axes becomes out of bounds cold gas jets are fired on all three 
axes; the duration of firing ( 50 - 500 ms) is computed for each axis 
separately. The strategy is optimized for obtaining long intervals without 
any firings; the computations use a model for the perturbing torques, so that 
actually the natural torques will help to follow the scanning law. Various 
computer simulations have shown that the nominal interval between two 
successive firings is of the order of 600 seconds, and at worst 100 seconds. 

3.3 The Optical Configuration 

The telescope is of a fully reflective Schmidt corrected design, with a 
focal length of 1400 mm. Besides a 290 mm spherical primary mirror and a flat 
folding mirror (needed to keep the telescope compact), it contains a mirror 
which combines the two fields of view into one image. The angular distance 
between the two fields of view is 58'. The Schmidt correction for spherical 
aberration has been applied in the beam combiner. The focal plane of the 
telescope is curved; this implies that the grid must also be written on a 
curved substrate. 

One would expect the Hipparcos telescope, being all reflective, to be 
free of chromatic effects. This is not the case, because the diffraction 
pattern of the star image depends on the star colour. The position of the 
centre of gravity of the image is, therefore, also colour dependent. This 
effect can be as large as 5 mas and should be calibrated very carefully, or, 
solved during the data reduction. The colours of many stars are not known 
a-priori with sufficient precision, so in many cases the correction cannot be 
calculated even if the effect is well calibrated. The star colours can be 
determined by the Tycho experiment, which uses the star mapper, but it is not 
yet clear if these are available in time to be of any use to the Hipparcos 
data reduct ion. 
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Figure 3.4 - The focal plane with the main and star mapper grids. 

The modulating grid consists of 2688 pairs of transparent and opaque 
bands with a period corresponding to l"208 on the celestial sphere. The grid, 
with dimensions of 22 mm X 22 mm, covers an area of 0.9' X 0.9' on the sky. 



The ratio of the widths of the opaque and transparent bands has been 
optimized in order to obtain the largest possible modulation depth and 
efficiency. The error in the phase determination caused by statistical photon 
noise is inversely proportional to the modulation depth and the number of 
photons that are received by the detector. The grid is written on a curved 
substratum in 7800 identical patches, which are aligned as good as possible. 
Alignment errors, the so-called medium scale distortion of the grid, must be 
determined and corrected during the data reduction. 

It is not sufficient to sample the modulated signal with a simple 
photomultiplier, which is sensitive for photons coming from all over the 
field of view. Instead a more advanced detector, a so-called image dissector 
tube (IDT), is used. An image dissector tube is only sensitive for photow 
coming from a small - steerable - region on the sky, the so-called 
instantaneous field of view (IFOV), which is about 35" in diameter. Therefore 
individual star images will generally not be mixed, although the modulated 
signal of some stars will be perturbed by the light of other, usually bright, 
stars in their neighbourhood. This effect, called veiling glare, can be 
corrected during the data reduction once the magnitude and position (on the 
grid) of perturbing stars are known. The perturbing star may be observed 
in the other field of view, so the stars are not necessarily neighbours on 
the celestial sphere. Double stars with large separations will be treated in 
the same way as veiling glare stars, i.e. the position of the individual 
components will be estimated separately. However, double stars with small 
separations (<30") will be treated as one, using special algorithms, because 
these small separations produce different modulation patterns. 

The star mapper grids, consisting of 4 inclined and 4 vertical slits 
each, are located on both sides of the modulating grid. Only one of the star 
mapper grids is used at a time, the other is provided for redundancy. Two 
photomultipliers, each associated to a different colour band, are used as 
detectors. The photomultipliers are, in contrast to the image dissector tube, 
sensitive for photons from all over the star mapper grid. 

3.4 The Star Observing Strategy 

Quasi-simultaneous observations between stars present in the same 
observation frame are obtained by frequently switching the sensitive area of 
the image dissector tube between stars. In this way the attitude jitter along 
the scanning direction is partly filtered out. The way in which the stars are 
followed, and the time which is available to each star, is directed by the 
Star Observing Strategy. 

Hipparcos observes only selected stars, and obviously the star observing 
strategy must be told which stars to observe and how to find them on the 
grid. The Input Catalogue Consortium, which selected the 110,000 program 
stars from among a total of about 200,000 proposed by the astronomical 
community, has compi led a star catalogue with the posit ion, apparent 
magnitude and other information of these stars. The European Space Operations 
Centre (ESOC) at Darmstadt, Germany, is going to uplink every five minutes a 
subset of this information, pertaining to the stars which are expected to be 
visible in the next five minutes. The uplinked positions are used for two 
purposes : 
- computation of the star mapper attitude, using the positions of bright 
stars visible in the star mapper field of view, and 

- to compute, from the star mapper attitude and uplinked catalogue positions, 
the location of the star images on the grid. 

The star locations are used to pilot the sensitive area of the detector 



[figure 3.51. The target observing time, and some other indices, are used to 
determine how much time should be allocated to each visible star. 
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Figure 3.5 - The motions of the sensitive area of the image 
dissector tube [IFOV] over the field [left] and the resulting, 
observed, signals (right). (Courtesy ESA) 

The observing time is distributed in multiples of an elementary 
interval, duration T2, a so-called slot. Each slot consists of 8 sampling 
periods. The sampling period, T I ,  is 1/1200 S. Stars are always observed for 
an integer number of slots. Groups of up to 10 stars are observed during a 
period T3 = 200T2. In one observation frame, duration T4, the same group of 
stars are observed 16 times in the same order, so the frame period T4 = 16*T3 
= 320*T2 - 2.13 S. (table 3 . 1 ) .  The star observing strategy decides how many 
of the 20 available slots should be allocated to each star. The decision is 
based on the following data: 
- a selection index, which gives the priority with respect to other program 
stars. 

- the minimum observing time in number of slots ( T 2 ) .  This is a simple 
function of the magnitude of the star. 

- the target observing time, which depends on the desired observing time, the 
expected number of scans over the whole mission and the observing time 
already spend on the star. 

These parameters may vary during the mission. 

Table 3.1 - Periods in the observing strategy 

name duration 

T I  sampling period 1/1200 S. 

T2 observation slot 1/150 S. ( 8 T I  1 

T3 interlacing period 2/15 S. ( 20 T2 ) 

T4 observation frame 32/15 S. ( 16 T3 ) 



3.5 Phase Estimation from IDT Data 

The modulated star signal can be written as the convolution of the 
telescope two-dimensional diffraction pattern, the star image and the 
transmission function of the grid. The geometry of the telescope is such that 
for most stars only the first two harmonics will be present in the modulated 
signal. Then the modulated intensity I ( t )  of the star can be written as 

where B is the observed intensity due to the sky background, straylight and 

IDT dark count, I the mean observed star intensity, depending on its 
0 

apparent magnitude and the Hipparcos telescope character ist ics: M and M are 
I 2 

the modulation coefficients, the amplitude of the first and second harmonic, 

9 and 9 are the phase shift of the first and second harmonic at mid-frame 
1 2 
time t=O, and g the incremental displacement on the grid as a function of 

t 
time t [Canuto e t  a l . ,  1983b. Kovalevsky e t  a l . ,  198Sbl. The incremental 

displacement, assuming a uniform scanning speed o and a regular grid, is 

simply o t .  

The incremental displacement g of a star on the grid is actually t 

gt = g ( t , p )  + jitter + grid irregularities ( 3 . 3 )  

where g ( t , p )  is a simple parametric model, with parameters p ,  which are 
either known from the attitude reconstruction or have to be estimated. Jitter 
is defined as the attitude deviations from the parametric model, that act as 
additional noise. The grid irregularities are assumed to be calibrated before 
launch, during the in orbit commissioning phase and as well during the data 
reduction itself. For short intervals of time ( e . g .  the frame period T4) the 
parametric model can be very simple, g = o - t ,  where o is the scanning speed t 
which is assumed to be known from the attitude reconstitution or can be 
estimated from the IDT data. 

In one observation frame of 2.13 S. each star will be observed 16 
times during a number of consecutive slots T2. The expected value of the 
photon count of the k'th sample is given by 

The actual counts are Poisson distributed. The basic modulation frequency, 
given by the scanning speed and grid period, is approximately 140 Hz, 
corresponding to a period of a little more than one slot T2. 

The modulating coefficients M and M depend on the diffraction pattern 
1 2 

of the star image. For single stars M and M differ, due to the star colour 
1 2 

0 0 influence, by not more than 7% from some nominal values M and M . However, 
1 2 

for double stars M and M can take any value between zero and the single 
1 2 

star value [Kovalevsky e t  a l . ,  198Sbl. In addition, the images corresponding 

to both harmonics do not coincide, i . e .  vlf2v2. SO, essentially five 



parameters have to be estimated from the modulated signal, e.g. Io+B, IOM1, 

IOM2, p1 and p2, the so-called five parameter model. For single stars, in 

view of the small deviation of M1 and M2 from their nominal values and the 

small phase difference 2p -p a single weighted phase may be estimated. Now 
2 1' 

only 3 parameters, e.g. B, I and the weighted phase p have to be estimated, 0 
the so-called three parameter model. The weighted phase p can be computed as 

where the weighting factors c and c (cl-0. 56 and c -0.44) depend on the 
1 2 2 

estimated modulation coefficients, and thus on the star colour [Koualevsky, 
19841. 

In the case of double, or multiple, stars both the five and three 
parameter solutions are computed. The five parameter solution is used in the 
further analysis of double star systems. The three parameter solution, with a 
single weighted phase, is processed by the standard data analysis chain 
starting with the great circle reduction. The weighted phase refers to some 
"mean" position on the grid, and does not correspond to a physical point in 
the multiple star system. In addition the modulation coefficients and the 
observed phase difference change with the angle from which the multiple 
system is scanned. 

Uncertainties in the computed modulation coefficients, which affect the 
weighting factors, make the definition of the weighted phase in case of 
double stars even more disputable. Therefore, at least within FAST, the 
weighting factors will be fixed throughout the mission on a value close to 
the single star case. Double stars must be flagged at this stage, so that 
they will get the proper treatment with extra parameters in subsequent stages 
of the reduction. The weighting factors will also be fixed for the single 
star case, partly because it is the simplest solution, but also in order to 
have a consistent definition of the weighted phase over a reference great 
circle. It has been shown that the degradation due to the choice of fixed 
coefficients is at most 2% for single stars [Koualevsky et al., 1985bl. 
However, since the modulation coefficients and phase difference are slightly 
colour dependent, the weighted phase depends on the star colour index too. 
This chromatic effect must be calibrated during the further data analysis. 

The three and five parameter solutions can be computed by a maximum 
likelihood estimation, although this is not a very efficient approach with 
respect to computing time. Therefore both consortia compute an approximate 
maximum likelihood solution. The five parameter solution is computed by the 
following procedure: 
- "binning" of the photon counts (i.e. partitioning into classes), 
- Fourier analysis of the binned counts, which gives approximate values for 
the 5 parameters, 

- Gauss-Markov estimation of the 5 parameters, where the normal matrix is 
computed from the binned counts and the weights are taken from the Fourier 
analysis. 

This procedure is not directly used on equation 3.2, but on a slightly 
modified equation (see e.g. [Fassino, 19861). The covariance matrix of the 
computed parameters is an important byproduct of the Gauss-Markov estimation. 



An approximate maximum likelihood solution for the three parameter 
solution can be obtained by the following procedure: 
- least squares estimation of B ,  I and from the five parameter solution, 
- Gauss-Markov estimation of the three parameter solution from the photon 
counts, using the provisional least squares solution in order to determine 
the weights and using the binned data to compute the normal matrix. 

Statistical tests are used to test for model deviations from the five and 
three parameter solution (is the signal according to the model), and for 
significance (is it modulation or noise) [Fassino, 19861. During the phase 
estimation the alignment errors of the grid patches will be corrected. These 
medium scale grid distortions will be calibrated on the ground and during the 
in-orbit commissioning phase of the satellite. 

The main source of errors in the estimated phase is the, Poisson 
distributed, photon noise. Other errors, notably due to attitude jitter, not 
calibrated small and medium scale distortions of the grid and variability in 
the scan speed, stay below 1 mas. So the error in the phase estimate is 
dominated by photon noise, and can be described very well by the variances 
computed during the approximate maximum likelihood estimation. Moreover, the 
correlation between the phase estimates for different stars is negligible. 



GEOMETRIC ASPECTS OF THE HIPPARCOS DATA REDUCTION 

The astrometric parameters of the program stars are computed by an 
iterative adjustment in steps from the "observed" main grid (IDT) phases and 
the star mapper transit times. In particular the so-called three step 
procedure, the base-l ine for both consortia, is discussed. 

4.1 Introduction 

The Hipparcos data reduction consists of two stages. In the first stage 
the relative position of the star images on the grid at a given instant of 
time are computed from the image dissector tube (IDT) and the star mapper 
(SM) photon counts. More specific, the IDT phases of the program stars 
visible in the field of view are given at regular intervals of -2.13 S. On 
the other hand, the transit times of bright program stars through the 
inclined and vertical reference slits, are computed from the SM data. The 
second stage consists mainly of a large scale adjustment, during which the 
five astrometric parameters of all program stars are computed, starting from 
the IDT phases and SM transit times. 

Both NDAC and FAST, the scientific consortia in charge of the Hipparcos 
data reduction, have organized the second stage as an iterative adjustment in 
steps, following roughly the three step procedure proposed by Lindegren 
[ Lindegren, 19791. The three steps are: 

(1) attitude reconstitution (AR) and great circle reduction (GCR), 
(2) sphere reconstitution (SRI, 
(3) astrometric parameter extraction (APE) 

In the first step -10 hours of measurements, covering about five successive 
scan circles, are collected and processed together. The star mapper transit 
times and main grid phases are treated separately. During the attitude 
reconstitution the three-axis attitude of the satellite is computed from the 
SM transit times, using a given star catalogue. During the great circle 
reduction the star abscissae on a reference great circle (RGC), chosen 
somewhere in the middle of the scanning circles, are computed from the main 
grid phases by a weighted least squares adjustment. At the same time an 
improved along scan attitude and some.instrumenta1 parameters are computed. 
The star ordinates are not solved, and also the abscissae are determined with 
an arbitrary zero point. The unknown zero points are solved in the second 
step, using only the abscissae of primary stars collected over many well 
inclined RGC's. The astrometric parameters of the primary stars are 
determined at the same time. Finally, in the third step, the astrometric 
parameters of the remaining, secondary, stars are computed. At this point it 
should be mentioned that we implicitly deal with the FAST approach. The NDAC 
approach is more or less similar, and only major deviations will be 
ment i oned. 

The adjustment in steps is iterated to overcome the approximate 
character of the solution. The iterations are needed mainly because in 
several stages of the reduction only part of the unknowns is actually solved, 
the rest is kept fixed. A process of this type can be formulated in terms of 



a block Gauss-Seidel solution of a positive definite system. In our case, the 
three step procedure, the convergence of this process is very good: just 2 or 
3 iterations will do. The three step procedure is very practical because it 
follows closely the data acquisition process. The first step, consisting of 
the attitude reconstitution and great circle reduction, can be done 
immediately after the data has been collected. The sphere reconstitution and 
astrometric parameter extraction will be done after each half a year of data 
have been processed by the great circle reduction, resulting in a series of 
provisional star catalogues. Each time a new catalogue has been computed part 
of the RGC sets are re-computed, using the new catalogue. Nevertheless, 
within FAST several alternative schemes have been proposed [Betti et al., 
1983a, 1985b, 1986b. Galligani, 19861. A final iteration with one of these 
methods is foreseen as an independent check and in order to avoid certain 
systematic effects. 

The Hipparcos data reduction poses some interesting estimability 
questions. It is generally accepted that a free network of angular 
measurements, between uniformly moving stars on the celestial sphere, has a 
rank defect of six. Six constraints are needed to get a solution: e.g. the 
position and proper motion of one point, and the azimuth and its proper 
motion component to an other point, can be fixed. This also holds for the 
Hipparcos network, although upon closer investigation it turns out that this 
is not immediate. During the three step procedure the RGC poles are fixed, 
which amounts to a weak over-constraining of the solution which, however, can 
be neglected after the final iteration. Theoretically, due to the parallax 
and annual proper motion of stars, the rank defect should disappear at all. 
However, the rank defect remains 6, because parallaxes and proper motions are 
not large enough to give a significant contribution to the unknown 
orientation of the reference frame [Bett i and Sanso, 1983b, Donat i ,  1986b, 
Van Daalen et al., 1986~1. 

4.2 The Geometric Relations 

Preprocessing of the IDT and star mapper photon counts results in two 
types of observables: 
- The IDT phases, or along scan grid coordinates, computed every 2.13 seconds 
from the modulated light signals of, on the average, 4-5 quasi 
simultaneously visible program stars. 

- Star Mapper transit times, the epoch at which a relatively bright program 
star crosses one of the slit systems. 

These observations can be expressed, using non-linear equations, in terms of 
the astrometric parameters, which are the main objective of the mission, and 
some auxiliary parameters. In this section we will derive these equations, 
viz. our mathematical model, beginning with the astrometric parameters, and 
finishing with the above mentioned observations. 

4.2.1 Catalogue Positions 

The primary aim of the Hipparcos satellite is to compute a star 
catalogue of some 112,000 stars. The positions of these celestial objects are 
specified by a set of coordinates in a specific celestial reference system. 
The celestial reference system is defined by its origin and the direction of 
its axis. The origin of the celestial reference frame is chosen at the 
barycentre of our Solar system. The first axis is chosen in the direction to 
the vernal equinox, that is where the path of a fictious mean Sun intersects 
the equator. The third axis is chosen orthogonal to either the mean ecliptic 
or the mean equatorial plane, resulting respectively in an ecliptic or 
equatorial reference system. The second axis completes the system. The 



ecliptic and equator are not fixed in inertial space, therefore such a 
definition is only valid at a certain epoch. currently J2000.0. 

The positions of celestial objects are given by the distance R from the 
origin of the system and two spherical angles l and b, called longitude and 
latitude. The longitude and latitude define a unit vector r, 

cos l cos b 

r = [ sins:;: b ] (4.l.a) 

which gives the fictitious position on a two-dimensional manifold, called 
celestial sphere. The position vector of the celestial objects is then 

The distance R is usually given in Astronomical Units (AU), the "average" 
distance of the Earth from the Sun [ Z A U ,  19771. Then 

with o the annual parallax. The annual parallax is the maximum -apparent- 
angular displacement of the position of the star due to the eccentricity of 
the measurement platform, usually Earth, with respect to the barycentre of 
our solar system. The parallax is an observable during the Hipparcos mission. 

Most celestial objects are moving in time with respect to each other. 
Therefore catalogue positions also refer to a common epoch. For Hipparcos an 
epoch will be chosen close to the mean time of observation (e.g. J1990.0). 
Stars, or multiple star systems, have no detectable deviations from a 
rectilinear motion during the lifetime of Hipparcos, and therefore positions 
at other epochs are given by 

Let us decompose ; into components along and at right angles to the direct ion 
vector r at the common epoch t then 

0'  

X = R u r  + R p  c o s b e  + 
L L R Irb eb 

with Rev the radial velocity and p the two components of proper motion of a 
star in radians. r, e and e are unit vectors which form a orthonormal 

L b 
system, with 

- sin l - cos l sin b 
e L = [ c;s l ]  and e b = [ - sin I sin b 

cos b 1 
Due to the radial velocity component the stars do not move with an uniform 
velocity over a great circle on the celestial sphere, i.e. despite the 
rectilinear motion of stars the proper motion may be different at other 
epochs (This effect is, of course, caused by the different distance to stars 
at other epochs). The distance R at epoch t is t 

Ilx II = R t J 1 + 2u(t-t o + (p2+u2)(t-t o 

with p2= r2cos% + p:. When we neglect second order effects, caused by the 
L 

change in distance due to the non negligible radial velocity, the direction 



vector r at time t becomes 

The radial velocity component is, however, very small compared to the 
distance itself, and therefore it will not change the observed parallaxes and 
proper motions of stars significantly during the Hipparcos mission. This also 
implies that the radial velocities are not estimable from the Hipparcos data. 
The second order effects, due to the radial velocity, on the proper motions 
and parallaxes will be applied as corrections to the observations. 

4.2.2 Star Positions as seen by Hipparcos 

In an instrumental reference frame the stars are seen at positions 
different from those of the barycentre of the solar system. Three effects 
play an role. Firstly, the instrumental reference frame has not the same 
orientation as the adopted celestial reference frame. Secondly, the Hipparcos 
measurement platform is not at the barycentre of the solar system, which 
results in the parallactic displacement of objects, of which the annual 
parallax is a part. Thirdly, the platform is moving with respect to the 
barycentre and the actual space-time metric is curved, resulting, 
respectively, in stellar aberration and relativistic light deflection. 
Obviously the first effect, the orientation of the instrumental frame, is the 
largest of the three. In fact, either the complete three-axis attitude of the 
satellite must be solved, giving rise to many auxiliary unknowns in the 
mission, or we must switch from directions to angles as observations, which, 
in fact, comes down to the same thing. The effects mentioned under the second 
and third point are much smaller. They can be associated with small 
displacements of the barycentric star position, resulting in respectively the 
geometric and apparent position of stars. 

The geometric position of a star (at time t) refers to the centre of the 
Earth. It follows from the barycentric position when displacements caused by 
proper motion and annual parallax are taken into account, i.e. it follows 
directly from the five unknown astrometric parameters. The apparent position 
at time t is defined as the point on the celestial sphere where the object is 
seen from the centre of the Hipparcos instrument. It follows from the 
geometric position when displacements due to stellar aberration, relativistic 
light deflection, daily parallax and second order effects due to a non-zero 
radial velocity are taken into account. In fact, the Hipparcos measurements 
have to be corrected for the difference between apparent and geometric 
positions. But the apparent position cannot be computed from Hipparcos data 
alone: the radial velocity and orbital parameters of the spacecraft are 
needed in order to compute differential (daily) parallax, the ephemerides of 
the Sun, Earth, Moon and the large planets are needed in order to compute 
relativistic light deflection, and the spacecraft's velocity vector is needed 
in order to compute stellar aberration [Walter et al., 19861. The orbital 
parameters of the spacecraft are not very critical, but an error in the 
spacecraft's velocity of 1 m/s already gives an aberration error in the star 
positions of 1 mas. It is expected that the velocity is determined to better 
than 30 cm/s, so the error remains acceptable. 

The three-axis attitude of the satellite is introduced as an auxiliary 
unknown in the mission. The situation differs from observations done from the 
Earth, for which the orientation in space is fairly well known, e.g. from 
universal time and precession, nutation and polar motion series. Let p be the 
unit direction vector of star i in the instrument frame and r the unit 
direction vector referring to the geometric position in the celestial 



reference frame at the time of observation, then 

where A is the so-called attitude matrix, an orthogonal rotation matrix which 
gives the orientation of the instrument frame in the celestial reference 
frame, and Ar the correction for apparent places. The index k refers to the 
observation frame. The attitude matrix A is defined by three rotations, e.g. 
two rotations which define the position of the scanning circle pole (the 
Z-axis of the instrument frame) and a rotation around the Z-axis which 
defines the position -along scan- of the X-axis. The geometric position can 
be expressed in the 5 unknown astrometric parameters. For an ecliptic 
reference system, using equation (4.71, but neglecting the radial velocity 
and changes in the vector norm, and introducing the effect of annual 
parallax, we get: 

r  = r  + (p cos b (t-t ) + o cos itt) e + p (t-to) e k i L o L b b 
(4.9) 

with it the angle between the star and the Sun as seen from the instrument. 

Figure 4.1 - geometry of the Hipparcos telescope 

Let us define an -instrumental- reference frame, where the X-axis is 
defined as the bisector of the optical axes for the viewing directions of the 
telescope and where the Z-axis is perpendicular to the optical axis and has 
its positive direction corresponding to the rotation vector of the satellite. 
The Y-axis completes the triad. Now let us assume a perfect telescope and 
beam combining mirror, then the Cartesian coordinate vector of the star image 
on the -curved- focal plane is 

cosC/2 fisinC/2 0 

qki = -f ' -fi sin C/2 cos C/2 0 l Pki (4.10) 

0 0 1 

with f the focal length of the telescope (-1400 mm), C/2 half the basic angle 

(-29') and fi the field of view index, f .=+l for the preceding field of view 
L 



and f.=-l for the following field of view. The index i refers to the star and 
L 

the index k refers to the observation frame. Let (xki+ fi*C/2) and yki be the 

spherical angles of a star on the celestial sphere in the above mentioned 

instrumental reference system, and let p' be the corresponding Cartesian 
coordinate vector 

- 1 sin xki cos y pii - k i 

sin y k i 

then equation (4.10) becomes simply q=-f p'. The spherical angles X and y are 
the so-called field coordinates (see figure 4.1). 

Despite the fact that the actual grid, which is located in the -curved- 
focal plane, is written on a curved substrate, the computations are carried 
out on a flat surface [Kovalevsky et al., 1986~1. Parallel projection of the 
grid on a flat surface leaves the second and third component of the image 
coordinate vector q unchanged, while the first component becomes -f. The 
second and third components of q, after division by the focal length f, 
are the so-called grid coordinates g and h: 

gk i = - s i n x  cosy k i k i 

hki = - sin y k i 

The grid coordinates, which are actually direction cosines, are dimensionless 
quantities. The positive axis of g is in the direction of the moving star 
images . 

4.2.3 Observations on the Main Grid 

Let us assume a grid, which after projection on a flat surface, gives 
perfectly parallel slits at regular intervals S' (8.2 pm). Assume as well 
that the grid is perfectly aligned with the telescope, i.e. the projection of 
the slits on the flat surface are all parallel to the Z-axis and there is a 
-reference- slit with g=O at the centre of the slit. Then the along scan grid 
coordinate of star i ,  observed in the k'th frame, is 

with (P the observed IDT phase, n the integer slit number and S the grid 
period. The grid period S is, like the grid coordinates g and h, divided by 
the focal length f, with 

S = S'/f " 8.2 pm 
( 1.208 arcsec 

1400 mm 

So, S, g and h are dimensionless quantities. The integer slit number is 
computed from approximate values for the star position and satellite 
attitude. Approximate star parameters are at first provided by the INCA 
catalogue. Later on during the reduction intermediate Hipparcos catalogues 
are used. The attitude is initially provided from the star mapper 
measurements, but the along scan attitude will be improved later on. 

The actual instrument and grid are, of course, not perfect. Firstly, the 
width and separation of the individual slits may be slightly different, and 
there may be blemishes on the grid. This is the small scale distortion of the 



grid. Secondly, the grid is not written in one go, but by repeating 
individual patches. These patches may have small alignment errors, causing 
medium scale distortions of the grid. Finally, the substrate on which the 
grid is written and the two mirrors, the beam combining and primary mirror, 
are not perfectly aligned with the adopted instrument system and they may 
deform due to temperature variations and ageing. But also chromaticity 
effects in the optics give small displacements of the star image in the focal 
plane, which depend on the star colour and position in the field of view. 
These effects are comprised in the large scale distortion of the grid. 

The observed grid phase will be corrected for the small and medium scale 
distortion of the grid on basis of calibration measurements, obtained on 
ground and during the in-orbit commissioning of the satellite. By convention, 
the grid coordinate g will be computed from formula (4.13). using the grid 
phase after the described correction. On the other hand, the field 
coordinates are associated with the apparent position of the observed star. 
Therefore, the nominal transform of grid to field coordinates, given in 
equation (4.121, does not hold in general due to the large scale distortion 
of the instrument. Instead we have 

which is the so-called field to grid transform, or vice-versa, grid to field 
transform. Equation (4.15) can also be written as (4.12) plus the large scale 
distortion. It turns out that both the field to grid transform and the large 
scale distortion, can be described with sufficient precision as a polynomial 
function of time, star colour and place on the grid for each field of view 
separately. The coefficients of this polynomial will be estimated in the data 
reduction, mainly during the great circle reduction. It has been shown that a 
third order polynomial in the grid or field coordinates is sufficient 
[Bertani et al., 1986, Badiali et al, 19861. The precise form of the 
polynomial is discussed in chapter 5. 

4.2 .4  Star Mapper Observations 

The star mapper transit times form a second group of observables. 
Although they are less precise than the observations from the main grid, they 
are indispensable. The star mapper observations are in fact complementary to 
the main grid observations since they provide information on both g and h, 
whereas the main grid observations give only information on the along scan 
component g. 

Let us assume a perfect star mapper grid. After project ion on a flat 
surface the reference lines of the vertical and inclined slits systems 
respectively have the coordinates representation (g ,z) and (g.fz,z), with z 

a free variable and with 1~1540' (figure 4.2). Assume that the star images 

are moving with uniform velocity o over the grid. Let t be the time the star 

crosses the vertical slit and t. the time the star crosses the inclined slit. 

then at t the position of the star image on the grid is 

The star mapper grid coordinates can be related to the field coordinates by 



the same kind of transformation as used for the main grid, except that in 
case of the star mapper the medium scale distortion is absent. The large 
scale distortion is in principle the same as for the main grid, and it is 
currently investigated if the large scale distortion estimated from the main 
grid data can also be applied to the star mapper data. 
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Figure 4.2 - Star Mapper measurements 

4 .3  The three step procedure 

4.3.1 The Principles 

In principle the five astrometric parameters - the barycentric position, 
proper motion and parallax of stars - can be computed by a single weighted 
least squares adjustment from the main grid phases a d star mapper transit 6 times. Ovet the 2.5 years of the mission some 150x10 main grid phases, and 
some 14x10 star mapper transit times, are collected, and some 600,000 

6 astrometric parameterf, a large number of auxiliary attitude (1x10 in 
smoothing mode, 90x10 in geometric mode) and instrumental parameters 
(100,000) have to be computed. Undoubtedly, it is impossible with present day 
techniques to solve such a system in a single step. 

Therefore, both data reduction consortia have organized the geometric 
part of their reduction process in the form of an iterative adjustment in 
steps, following roughly the three step procedure of [Lindegren, 19791. The 
steps are: 1) attitude reconstitution and great circle reduction, 2) sphere 
reconstitution and 3) astrometric parameter extraction. "Iterative adjustment 
in steps" is not a pleonasm: the problem is set up as an approximate 
adjustment in steps which is to be iterated several times to overcome the 
approximate character of the solution (figure 4.3). Essential in the three 
step procedure is that: 
a. the processing, in the first step, does not wait till both coordinates of 

a star can be estimated, 
b. the star mapper data and IDT are treated separately by respectively the 

attitude reconstitution and great circle reduction, 
c. two groups of stars (primary and secondary) are distinguished, which get a 

different treatment in the sphere reconstitution and astrometric parameter 
extract ion. 

Actually, the problem is split in a large number of smaller adjustments, 
especially in the first step. 
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Figure 4.3 - The three step procedure (IC = INCA input 
0 catalogue, IC = intermediate Hipparcos catalogues) 

In the first step of the three step procedure the processing is carried 
out within so-called RGC-sets, contiguous batches of data collected during 
about 5 revolutions of the satellite (10.7 hours of data). Thus, there will 
be approximately 1800 different RGC-sets over the mission (2.5 year). A 
reference great circle (RGCI is chosen in the middle of the scanning circles 
which form the RGC-set. The precession of the scanning circles is 
-0?4/revolution, hence the maximum inclination of the scanning circles with 
respect to the RGC is -l0. As a result, in each RGC-set only a small band on 
the celestial sphere is scanned. The average width of this band is 2O, with a 
minimum of -l0 near the nodes of the scanning circles with the RGC and a 
maximum of -3' at a distance of 90' from the nodes. Some of the properties of 
a typical RGC-set are summarized in table 4.1. 

The star positions and satellite attitude are solved from the data 
collected during an RGC set in an intermediate reference frame, defined by 
the chosen reference great circle (RGCI. The relative motions of the stars 
due to proper motion and annual parallax within an RGC set are very small. 
Therefore, the proper motion and annual parallax are not solved in the first 
step, but are kept fixed. The star mapper and main grid data are processed 
separately in a weighted least squares sense by respectively the attitude 
reconstitution and great circle reduction. It is, however, characteristic for 
Hipparcos that its main grid provides along scan information only. Therefore, 



and because of the small inclination of the scanning circles with respect to 
the RGC, the great circle reduction can only determine the along scan 
attitude component and star abscissae in the RGC reference frame. 
Furthermore, it is typical for the attitude reconstitution that, except for 
the first treatment of the data, the star positions and along scan attitude 
are kept fixed and only the two transversal attitude components are 
estimated. 

Table 4.1 - Properties of a typical RGC (assuming an input 
catalogue of 112,000 stars and an even distribution of the 
stars over the celestial sphere). 

duration: 10.7 hours 
number of revolutions: 5 
average scan speed: 168.75 arcsec/s 

0 precession of the scanning circles: 0.4 /revolution 
overlap between two consecutive frames: 89 % 

0 width of the band with observed stars: -2' (min. 1 , max. 3') 

average number of: 

stars (-1.8% of the program stars): 2000 
passages of a star through both fields of view: 

main grid: 2.2 
star mapper slit system: 1.7 

program stars simultaneously visible on the grid: 4.5 
observation f rames: 18,000 
grid coordinates: 80,000 

The results of several great circle reductions, corresponding to at 
least half a year of data, are further processed in the sphere reconstitution 
and astrometric parameter extraction. Two types of stars are distinguished: 
in general bright, unproblematic, stars are called primary stars and faint, 
doubtful stars are called secondary stars. During the sphere reconstitution 
the unknown zero points of the RGC's and the astrometric parameters of 
primary stars are solved using only the observations to primary stars. 
Finally in the astrometric parameter extraction the astrometric parameters of 
the secondary stars are solved. It is assumed that at least 40% of the stars 
will survive the reduction process as primary stars. 

The data reduction, in particular the great circle reduction and 
attitude reconstitution, should be iterated several times mainly because in 
several stages of the reduction only part of the unknowns are actually 
solved, the rest is kept fixed. This iteration process is very effective: 
2-3 iterations are sufficient. In table 4.2 a conservative estimate of the 
expected accuracy after the last iteration, for each processing step is 
given. 

A number of data reduction tasks, in addition to the ones mentioned 
before, are dedicated to photometry (magnitude determination), calibration, 
double stars and minor planets. The magnitude of the program stars is 
determined in two steps. In the first step, which coincides with the first 
step of the three step procedure, the star magnitudes are computed from the 



IDT data collected over the RGC-set. In the second step the individual 
magnitude estimates obtained for one star are combined. This is done 
independently from the three step procedure, and is a so-called off-line 
task. The calibration, minor planets and double star tasks are also off-line 
data reduction tasks. Other tasks, closely related to the FAST data reduction 
procedure are the so-called preparation 8 reception of data and preparation 
of iteration tasks. 

Table 4.2 - Expected accuracy (conservative) for different phases 
of the data reduction [Perryman, 19851 

Task Parameter Expected Accuracy 

raw data treatment star mapper transit 100 mas (B=9) 

IDT grid phase 15 mas for 1 sec obser- 
tion (B=9) 

attitude reconstitution three-axis attitude 100 mas on all three axis 

great circle reduction star abscissa along 6 mas (B=9, geometric) 
a fixed reference 
great circle 

sphere reconstitution positions, parallax 2mas (B=s) 
proper motion 2 madyear (B=9) 

4.3.2 Attitude Reconstitution 

During the attitude reconstitution the three-axis attitude of the 
satellite is computed from the star mapper transit times. In FAST each of the 
attitude components is represented as a trigonometric series up to the 15th 
order for each revolution, plus some functions which model the effects of gas 
jet actuations. The unknown coefficients of these functions, in total about 
200 for each angle, are estimated in weighted least squares sense from the 
star mapper transit times of some 1000 bright stars. Each passage of a star 
through the star mapper field of view results in two star mapper 
observations, one for the vertical and one for the inclined slit system. 
There are -7 star mapper observations per star, because a star is observed on 
the average in 1.7 scans (see table 4.1) and in both fields of view. 
Therefore, the total number of star mapper transit times is about 7000. 

The star positions could be determined at the same time, but of course, 
this is only useful if the star positions can really profit from this 
determination. This is in general not the case, except when the data is 
treated for the first time with the original INCA input catalog (the first 
year of data). These improved star positions simplify the slit number 
determination during the great circle reduction (see sec. 4.3.3). In all 
other cases the star positions are fixed. More precisely, after one iteration 
of the data reduction process an improved star catalogue, with errors of 10 
mas or better, and a better along scan attitude, computed during the great 
circle reduction with an accuracy of the order of 2-15 mas, are available. 
These cannot be improved any further by the attitude reconstitution, and are 
therefore not adjusted. The expected accuracy of the attitude reconstitution 
is given in table 4.3. In cases where the catalogue errors are large (first 
treatment) a 10th order instead of a 15th order trigonometric series is used. 



Table 4.3 - Expected accuracy of the attitude reconstitution 
from [Donati et al., 1986~. Belforte, 1986bl 

Parameter Expected Accuracy 

Star mapper transit ( input 100 mas (B=9) 

Accuracy with negligible catalogue errors: 

Along scan attitude component 29 mas rms 

Transversal attitude components 37 and 63 mas rms 

Accuracy with catalogue errors of 1": 

Along scan attitude component 100 mas rms 

Transversal attitude components 400 and 600 mas rms 

Star positions (if improved) 140 mas rms (abscissae) 
420 rnas rms (ordinates) 

In NDAC a slightly different procedure is adopted. First, NDAC uses also 
the gyroscope readings, and secondly in NDAC the attitude is modelled by a 
B-spline series. It can be shown that the gyroscope readings do not improve 
the accuracy of the attitude, and therefore they are not used within FAST 
[Donati et al., 1986al. The modelling of the attitude by B-splines is 
somewhat similar to the approach used for the attitude smoothing during the 
great circle reduction. The two attitude models which are used within FAST 
(one based on trigonometric functions and the other on B-splines) are 
discussed in detail in chapter 6. 

4.3.3 Great Circle Reduction 

The great circle reduction forms a geometric adjustment problem on the 
sphere, with grid coordinates as observations and with three types of 
unknowns: attitude and star abscissae along the RGC, and some instrumental 
coefficients. In fact two types of attitude are produced. At first a 
geometric attitude is estimated, consisting of attitude abscissae at mid 
frame times (one per 2 seconds). Later these abscissae are smoothed to form a 
continuous representation using B-splines (one per 2 minutes). Smoothing of 
the attitude improves also the quality of the star abscissae, but if the 
degree of smoothing is too high systematic errors are introduced. The 
adjustment problem is solved in a weighted least squares sense. The unknowns 
consist of -2000 star abscissae, -18000 (geometric) respectively -600 
(smoothed) attitude parameters per RGC, and -50 instrumental parameters. On 
the average 4.5 stars are simultaneously visible in the field of view, so 
there are about 80,000 grid coordinates (observations). The error in the grid 
coordinates is dominated by the photon noise on the phase estimates, so the 
observations are assumed to be uncorrelated. The expected accuracy of the 
unknowns is given in table 4.4. 



Table 4.4 - Expected accuracy of the parameters computed 
during the great circle reduction 

Parameter Expected Accuracy 

IDT grid phase (input): 10 mas for 1 S observation (B=9) 

Star abscissa along a fixed 4 mas in geometric mode (B=91 
reference great circle: 3 mas in smoothing mode (B=91 

Along scan attitude: 

Large scale instrumental 
distort ion: 

7 mas in geometric mode 
3 mas in smoothing mode 

0.5 mas (corner of the field of view) 

The great circle reduction results suffer from two types of 
indeterminacies: 
- the star ordinates and transversal attitude components cannot be improved 
from the one-dimensional main grid data because of the small inclination of 
the scanning circles with respect to the RGC, 

- the abscissae are determined up to an arbitrary zero-point only, i.e. the 
system to be solved has a rank deficiency of one. 

These indeterminacies are overcome in the next stages of the data reduction, 
when the one-dimensional information collected on many RGC's is combined and 
processed together. During the great circle reduction the rank deficiency is 
solved provisionally by forcing the abscissa correction of one star, the 
so-called base-star, to zero. Afterwards the solution is transformed into the 
minimum norm, i.e. minimum variance or, barycentric solution, by shifting the 
solution such that the sum of the corrections to the star abscissae becomes 
zero. 

Apart from the two indeterminacies discussed earlier there is yet 
another one: the main instrument is only able to observe phases and cannot 
determine the integer slit numbers. The integer slit numbers are computed 
from the approximate values for the star positions and the star mapper 
attitude, which are essentially based on the same positions. Given a slit 
period of l"2 and uncertainties in the approximate values of O"4 - 1"O at the 
start of the reduction, there will be many errors in the computed slit 
numbers, resulting in inconsistencies throughout the reduction. Special 
algorithms, both during the great circle reduction and astrometric parameter 
extraction, are designed in order to correct these grid step inconsistencies 
(see chapter 91. 

4.3.4Sphere Reconstitution 

In the sphere reconstitution, the second step of the three step 
procedure, the unknown zero-points on the RGC's and the astrometric 
parameters of some 40,000 primary stars are computed by a weighted least 
squares adjustment. More specific, from the first year of data a static 
solution is computed, with positions only. Later follow dynamic, complete 
solutions with proper motions and parallaxes as well. In general bright, 
unproblematic, stars are primary and faint, doubtful, stars are secondary 



The abscissae of primary stars, computed during several great circle 
reductions on well inclined RGS's, are the main input. Over the whole mission 
(2.5 years) there are about 10 primary star abscissae, and at least 200,000 
star unknowns (for each primary star 5) and -1800 unknown RGC zero-points. At 
the same time approximately 10-20 global parameters are solved. The global 
parameters model certain instrumental effects, like periodic basic angle 
variations and constant chromaticity, which cannot be estimated during the 
great circle reduction (see chapter 5). The accuracy of the estimated 
astrometric parameters and zero-points are given in table 4.5. 

Table 4.5 - Expected accuracy of the parameters computed during 
the sphere reconstitution: 40,000 stars, 5 rnas rms on the 

abscissae (input) [Bucciarelli et al., 19861 

Parameter Expected Accuracy 

posit ion: B 1.5 mas 

A COSB 2.2 mas 

proper motion: 1.9 madyear 

P~COS@ 2.7 mas/year 

parallax: 2.1 mas 

zero point: 1.2 mas 

The RGC-poles are not solved, but kept fixed. This certainly introduces 
a bias in the first catalogues, but this bias will disappear after a few 
iterations. Actually, the RGC-poles cannot be estimated with a better 
accuracy from the RGC-abscissae than their approximate values "determined" 
during the attitude reconstitution. In fact, the values of the poles are 
fixed from the very start, but the actual poles shift slightly over the 
celestial sphere with new iterations as better star positions become 
available for the attitude reconstitution. So, in this sense the position of 
the RGC poles are determined mainly by the attitude reconstruction. A rough 
guess is that the error in the final RGC-poles is of the order of a few mas, 
on the other hand, if they are estimated during the sphere reconstitution the 
error is -15 rnas [Van Daalen et al., 1986c, Donati, 1986bl. 

The sphere reconstitution problem is solved in weighted least squares 
sense using the LSQR iterative solution method [Tommasini et al., 1983, 
1985al. The observation weights are determined from the variances of the star 
abscissae computed during the great circle reduction. The correlation between 
the abscissae is neglected, i.e. the weight matrix is diagonal. This is maybe 
the worst approximation of all in the three step procedure, because this 
cannot be recovered by iterating. Fortunately, it does not introduce a bias 
or systematic error. It makes a difference wether the abscissae variances are 
computed from the minimum norm solution or the one base star solution. We 
believe that the minimum norm variances should be used, because there the 
correlations are the weakest. Ordinarily, if the inverse of the CO-variance 
matrix is used as the weight matrix, there is no difference. 



The rank defect in the sphere reconstitution is an interesting problem. 
Arcwise measurement on the sphere is invariant under rotations. Therefore, 
one would suspect that the rank defect of the static solution is 3 and that 
the dynamic solution has a rank defect of 6. This rank defect can be overcome 
by imposing additional constraints, just sufficient to provide the missing 
information. A possible choice of constraints is to fix the position and 
proper motion of "one and a half" stars at zero: i.e. one star is constrained 
in both directions, the other in just one, but one must be somewhat careful 
here. Other choices of constraints are also possible, e.g. 6 zero-points, 3 
at the beginning and 3 at the end of the mission, can be fixed. However, 
simulation experiments show that the sphere reconstitution is non-singular 
and can be solved well without imposing extra constraints [Lindegren et al., 
1985c, Bucciarelli et al., 19861. Theoretically, in the case of 
non-infinitesimal proper motions and parallaxes the whole rank deficiency 
disappears, but the proper motions and parallaxes are so small that they 
introduce the orientat ion quite weakly [Van Daalen et al. , 1986c l. 
Apparently, this effect is not responsible for the non-singular simulation 
experiments. In the sphere reconstitution the RGC-poles were fixed, and it 
turns out that they determine the reference system and are responsible for 
the non-singularity. The cumulated orientation information from 1800 RGC's, 
although the orientation information contained in a single RGC pole is not 
very accurate (-15 mas), gives an overall determination of the orientation of 
the order of 0.3 mas. There is a serious danger of over-constraining which 
may lead to distortions, especially if additionally "one and a half" stars 
are fixed. 

4.3.5 Astrometric Parameter Extraction 

The secondary stars are treated after the sphere reconstitution by the 
astrometric parameter extraction. Star by star the, on the average -70, star 
abscissae are collected and the 5 astrometric parameters are solved. The main 
input are the abscissae of secondary stars computed during the great circle 
reduction and RGC zero-points computed during the sphere reconstitution. The 
secondary stars do not influence each other and they do not affect the 
primary stars and the zero-points. The accuracy of the estimated astrometric 
parameters are given in table 4.5. 

Special attention is given to the problem of grid step ambiguities, 
which already occurred during the great circle reduction. In the great circle 
reduction the data belonging to one RGC-set is made -internally- consistent, 
but the abscissae may still have an error of one or more slit periods. These 
remaining errors have to be removed during the astrometric parameter 
extraction. During the sphere reconstitution, in principle, nothing has to be 
done to the grid step ambiguities, because 1) the abscissae of primary stars 
will have fewer grid step ambiguities, and 2) these ambiguities will 
disappear when the data reduction is iterated. The number of grid step 
ambiguities in the primary stars is smaller because these stars have better 
initial (INCA) catalogue positions, and because most of them were already 
used, and possibly improved, in the attitude reconstitution. Of course, the 
sphere reconstitution converges only in the presence of a few remaining grid 
step ambiguities. 



4.4 Discussion of the Three Step Procedure 

4.4.1 Introduction 

The complexity of the three step procedure may seem puzzling at first. 
In fact, the three step procedure hinges on two different principles: 

(1 approximate adjustment in steps, 
(2) block (Gauss-Seidel) iterative solution method. 

In the Hipparcos data reduction the observations are partitioned into RCC 
sets, which are processed separately in a local -intermediate- reference 
frame, resulting in many parallel adjustment steps. Each RGC set is processed 
in two steps, viz. the attitude reconstitution and great circle reduction. 
The outcomes of the parallel RGC adjustments are combined in the sphere' 
reconstitution and astrometric parameter extraction. This procedure is an 
adjustment in steps, but it is not done in an rigorous manner: 
1) the non-significant observation material in a step is neglected. 
2) not all the unknown parameters in a step are actually solved, but some are 

fixed on their approximate values, 
3 )  the outcomes of a preceding step are treated as uncorrelated quantities by 

the next steps, i.e. the correlation introduced by each step is neglected. 
In each step some of the unknowns are fixed on their approximate values. 
Therefore, it is necessary to iterate the adjustment, so that the different 
groups of unknowns are solved alternately. In fact, this corresponds to a 
block (Gauss-Seidel) iterative solution method, the second principle on which 
the reduction hinges. In our case the block Gauss-Seidel solution converges 
fast, just two or three iterations are sufficient. 

In an adjustment in steps the outcomes of each step are treated as 
observations in the next step. In the approximate adjustment in steps the 
correlation of the outcomes, which is usually introduced by a preceding step, 
is not taken into account. This results in some loss of information, which 
cannot be recovered by an iteration process. Fortunately, due to the 
Gauss-Seidel iteration process, most of the outcomes enter the next steps as 
approximate values and not as observations, hence, the correlations play no 
role. The abscissae computed by the great circle reduction are an exception; 
they are used in the sphere reconstitution and astrometric parameter 
extraction as observations. Therefore, by not taking into account the 
correlation of the abscissae, some loss of information occurs. 

In each of the steps the non-significant observation material is 
neglected. This is done very carefully, so that no noticeable loss in 
accuracy for the astrometric parameters occurs. Actually, the complete 
treatment of the IDT and star mapper data can be separated: The main 
instrument gives only information about the coordinates in the along scan 
direction, and not in the other direction: Hence, the transversal attitude 
components and the star ordinates in the intermediate RGC reference frame 
have to be determined from the star mapper measurements. On the other hand, 
the accuracy of the star mapper is not sufficient to contribute significantly 
in the determination of the along scan coordinates. During the attitude 
reconstitution and great circle reduction it is, because of the short time 
span (10 hours), not necessary or possible to solve the proper motions or 
parallaxes. 

In the sphere reconstitution and astrometric parameter extraction also 
some data is neglected: The abscissae of secondary stars do not participate 
in the determination of the unknown zero points on the RGC and the 
astrometric parameters of the primary stars, and the RGC poles are not 
solved. Certainly some loss of information occurs. It is expected that about 



40% of the stars survive the reduction as primary stars. Primary stars are 
generally bright and unproblematic stars, while, on the other hand, secondary 
stars are usually faint, doubtful, stars, e. g. double stars. Therefore, about 
80% - 90% of the observation weight will be contained in the primary star 
abscissae, and so the loss of information remains acceptable. On the other 
hand, secondary stars are sometimes very doubtful objects, and therefore it 
is fortunate that they do not influence each other and they do not influence 
the primary stars. 

Below we will take a look at the complete system. First we consider an 
approximate system of equations, from which we can separate the treatment of 
IDT and star mapper data. Then we will have an look at the block Gauss-Seidel 
solution of this system. Finally, an intermediate reference frame is 
introduced, and, when combined with the block Gauss-Seidel solution method, 
the three step procedure emerges. The discussion in this section does not 
concentrate on how it is done, but more on how it could be done, in such an 
way as to clarify certain aspects of the three step procedure. 

4 . 4 . 2  Separation of IDT and Star Mapper data 

The linear observation, or correction, equations are computed in the 
usual way from the truncated Taylor expansion of the non-linear equations 
(4.81, (4.91, (4.10) and (4.151, around some approximate values for the 
unknowns. The l inear ized observat ion equations, in mat ri X notat ion, for the 
complete reduction are 

where AY' and are two vectors with the observed value of the grid 
coordinate (IDT phases) and star mapper transit time respectively, minus a 
value computed from approximate values for the unknowns. Ax and Ax contain 

b 
the unknown corrections to the along scan attitude parameters and the two 
attitude components which give the scan circle pole. Ax is the vector with 

corrections to the longitude, latitude, proper motion and parallax of the 
stars. The design matrix, A, contains the partial derivatives a y / a x  as usual. 
The design matrix blocks A ,  A and A have respectively 1, 2 and 5 (2 if 

a b S 

proper motions and parallaxes are not considered) non-zero elements per row. 
The instrumental unknowns have been omitted in these equations, since they 
are not very relevant for the discussion of the three step procedure. 

The attitude is represented by numerical functions, so that the star 
mapper and IDT measurements, which refer to different times, can be linked. 
The most simple representation of the attitude parameters is a first order 
B-spline centered at the mid-frame times, which is equivalent to the 
geometric at t i tude representat ion. More advanced att i tude representat ions are 
introduced for the purpose of attitude "smoothing". The attitude of the 
satellite, i.e. the orientation of the instrumental frame, is defined by 
three rotations. The two transversal components define the position of the 
scanning plane pole, the Z-axis of the instrument frame. The third rotation 
is around the Z-axis, and it defines the position of the X-axis along the 
scanning circle. Actually, this is just one possible choice of attitude 
angles. But what is important, is that with this choice the the coefficients 

I in A are close to zero (Later, after we have introduced an intermediate 
b 



reference frame, we shall see that the choice of transversal attitude 
parameters is not very critical 1. 

There are two types of star mapper transit times, namely for the 
S vertical and inclined slit system. Therefore y can be partitioned in a part 

S; with observations from the. vertical slit, y , and, a part with observations 
from the inclined slit, yS', and the design matrices can be partitioned 
correspondingly. The magnitude of the non-zero coefficient in the design 
matrix blocks are given in table 4.6. 

Table 4.6 - Design matrix coefficients 

The normal equations, when partitioned correspondingly to the linearized 
observation equations (4.171, can be written in matrix notation as 

T T 
where N =A W A  and b =A W y  for p, F a ,  b. S , and W the weight matrix of 

W P q  P P 
either the grid coordinates or star mapper transit times. The weights of the 
observations are inversely proportional to the variances of the observations. 
The variances of the star mapper transit times are roughly a factor 100 
larger than the variances of the grid coordinates. So, 

for IDT and star mapper observations of the same star. The normal equations 
(4.18) may be approximated by 

It seems plausible, taking into account the results of equation (4.19) and of 
table 4.6, that the loss of information in the approximate normal equations 
system is negligible. 



The treatment of IDT and star mapper data can be separated. The 
approximate system can be solved with the block Gauss-Seidel method; the 
iteration formulae, for m=0,1,2,. .. , are 

s t e p  l: solve X (m') in least squares sense from 
b 

AsAx(ml), S yS(x(m), x(m) x(m)) 
b b  Y -  b a ' s  

s t e p  2: solve X (m') (m') in least squares sense from and xs 

with y(.) the non-linear relations and x(O),x(O) and X('' approximate values 
a b  

for the unknowns. In terms of the normal matrices the iteration formulae are 

s t e p  l: solve AX 'm') from 
b 

(m') and Ax s t e p  2: solve Axa 
S 

with AX(O)=O and AX(~)=O. 
S 

A block Gauss-Seidel process converges for every positive definite 
matrix [ Varga, 1962, p. 77-78]. Fast convergence, however, requires that, 
during each step, the errors in the uncorrected part only have minor 
influence on the outcomes. This is the case (i) when the errors are anyhow 
small with respect to the observation precision, but also (ii) when they have 
just a small effect on the observations (small coefficient in the observation 
equations), or (iii) when they average out during the adjustment (small 
coefficients in the normal equations). In particular during later stages of 
the reduction the errors in the uncorrected part are small with respect to 
the observation precision: In the first step the errors in X and X are very 

S 

small, -7 mas and -2 mas respectively, compared to the standard deviation of 
S the observations y , typically 100 mas. In the second step the errors are 

larger than the observation precision, i.e. the error in X is typically 
b 

50-100 mas, compared to the observation precision of 10 mas. Fortunately the 
error in xL has only a small influence on the observations because of the 

U 
S S small coefficients in N and Nsb. This effect is investigated in chapter 5. 
ab 

So in both cases the contribution of the second part of the right hand sides, 
which depends on the normal matrix blocks pertaining to the star mapper data, 
is small. Therefore, the above 'mentioned iterat ion process for Hipparcos 
converges very good. Just 2 or 3 iterations are sufficient. 



The second iteration equation (4.21. b), which is also a two by two block 
partitioned system, can be solved similarly by a block Gauss-Seidel approach. 
This is actually identical to the approach proposed by Sansb [Betti et al, 
1986bl. A final iterat ion with this method is foreseen as an independent check 
of the three step procedure. In this approach certain approximations and 
systematic effects are avoided which remain in the three step procedure. 
Especially the problem with the correlation between the RGC abscissae, which 
is neglected in the three step procedure, is avoided. 

In the three step procedure the above mentioned block Gauss-Seidel 
process is not carried out integrally. Both the first, 4.21.a. and second, 
4.21. b. iteration equation are solved in steps. 

4.4.3 Effect of an Intermediate Reference Frame 

During the three step procedure the observation vector y is partitioned 
in RCC sets, and the attitude and star unknowns are solved in an intermediate 
reference frame, defined by the chosen reference great circle (RCC) and an 
arbitrary origin on the RGC. Let us introduce an intermediate reference frame 
for an RCC set labelled j, then the linearized relations between the vector 
of corrections to the attitude and star parameters in the intermediate 
reference frame and Hipparcos reference frame are 

with 

Ac vector of corrections to the three parameters describing the 
j 

orientation of the jth RCC reference frame, 

A X * ~ ~  vector of corrections to the unknown parameters in the reference 

frame belonging to the jth RCC, 

and with A* and C* the corresponding matrices with partial derivatives . j ,j 
for *=a,b,s. Let 

Ayj 
the vector of the observed value minus computed value for the jth 

RGC , 

Ax vector of corrections to the astrometric parameters in the 

Hipparcos reference frame. 

Then we may rewrite the iteration equations (4.21.a) and (4.21.b) as: 

step l: solve X ( m * 1 )  for each RCC in least squares sense from 
b l j 

step 2: solve X (m* l) and (m*1) for each RCC in least squares sense from 
alj lj 

step 3: solve X (m*1 ) and in least squares sense from a1 l equations 



for m=0,1,2,. . . Here, A* A =(A*) is a small part of the design matrices 
I3 *,3 3 

of equation (4.211, corresponding to the jth RGC set. In the first two steps 
a relatively small system of equations has to be solved several times. The 
third step has to be solved only once per iteration. Contrary to eq. 4.21, we 
use in each iteration the same approximate values; therefore it is necessary 
to correct the linearized observations (in the right hand sides of the 
equations) for the improvements brought about by previous iterations. Now let 
us partitionx as 

sl3 

where X' consists of the RGC abscissae and X" of the RGC ordinates, 
S l3 S lj 

proper motions and parallax. Let the design matrix A be partitioned 
S l j  

correspondingly. Because of the limited duration of the RGC and the small 
inclination of the scanning circles with respect to the RGC the non-zero 
elements in A" will be very small compared to the non-zeroes in A' which 

S lj S lj' 
are close to one (see chapter 5). Therefore we can rewrite (4.23) as 

A' .Ax (m+ 1) + c'. AC(m*l) - - Ax, (m*l) 
S,J S J j lj 

where we have omitted the equations Ax" = A" Ax + C"Ac Similarly, let 
sl3 s.3 S 3 j' 

us partition c as 
3 

with c- the correction to the assumed origin of the jth RGC and c' the 
3 3 

corrections to the assumed positions of the jth RGC pole. Let the design 

matrix C' be partitioned correspondingly as 

The coefficients of the design matrix C' are much smaller than those of C'. 

It can be shown that cl. cannot be estimated with sufficient precision [Van 
J 

Daalen, 1986~1. Therefore, corrections to the pole are fixed to zero. 

Therefore the third equation in (4.24) becomes 

l l The parameters Ac are not estimated in the adjustment. The value of Ac is 
j j 

forced to zero by the iteration process, i. e. any physical change in the RGC 
poles is absorbed in the next iteration by a systematic rotation of the 
at t i tude parameters. 



In the three step procedure the observations equations are linearized in 
each iteration, using the results of a previous iteration as approximate 
data. Then, the iterat ion equations are for rn=0,1,2, . . . 

AR: solve X (m+ l ) for each RGC in least squares sense from 
b lJ 

CCR: solve X ( m +  l ) and x C m + '  ) for each RGC in least squares sense from 
alJ S lJ 

SR: solve X (m* l ) and l ) in least squares sense from a1 l equations 

We are now left with a step wise adjustment embedded in an iterative 
solution scheme. In the step wise adjustment the correlations created in one 
step should be taken into account in the other step. I.e. in the three step 
procedure the correlation of Ax' introduced by the great circle reduction. 

S l j '  
should be taken into account in the sphere reconstitution. This is, however, 
not done in the three step procedure. 



CHAPTER 5 

GREAT CIRCLE REDUCTION 

During the great circle reduction star abscissae are computed, by a 
single least squares adjustment, in an intermediate reference frame from 
contiguous batches of data of about 10 hours duration. Three types of 
unknowns are solved: star abscissae, along-scan attitude parameters and 
instrumental parameters. In this chapter the estimability, precision and 
systematic errors of the unknowns are discussed. 

5.1 Introduction 

In the great circle reduct ion contiguous batches of data, gathered 
during about 5 revolutions (10 hours), are processed together. The star 
abscissae and the attitude component along a reference great circle (RGC), 
chosen "somewhere in the middle" of the five scanning circles, are computed 
by a weighted least squares adjustment. No effort is made to estimate the 
star ordinates and the other two attitude components. They are badly 
estimable due to the small inclination of the scanning circles w.r.t. the 
RGC. Not estimable at all is the zero point of the abscissae. Both 
indeterminacies are overcoms in the next steps of the data reduction, when 
the abscissae on many intersecting RGC's are combined and processed together. 

Three types of unknowns have to be solved in a weighted least squares 
sense from the -70.000 grid coordinates observed per RGC: the -1800 star 
abscissae, forming our prime objective, the along scan attitude and some 
instrumental parameters. Two types of attitude unknowns are computed: First 
-18,000 geometric attitude parameters, one parameter per observation frame of 
2.13 S. Later this geometric attitude is smoothed to form a continuous 
representation of the attitude using only -600 parameters. Smoothing of the 
attitude also improves the quality of the star abscissae, although excessive 
smoothing may introduce systematic errors (see chapter 6). Statistical tests 
will validate the degree of smoothing. Some 50 instrumental coefficients are 
included in the adjustment. Although this is only a relatively small number, 
their estimation is time consuming since they enter into each observation 
equat ion. 

The main inputs into the great circle reduction task come from the phase 
extraction and attitude reconstruction tasks, and from an (external) star 
catalogue. The attitude and star catalogue data, which are used in the 
linearization of the great circle reduction equations and to replace 
non-estimable star and attitude components, are treated as approximate values 
in the adjustment. The grid coordinates, which are computed by the phase 
extraction task (see chapter 3) and which are referring to the mean instant 
of the frame, are treated as observations in the least squares adjustment. 
The error in the grid coordinates is dominated by photon noise. Hence the 
errors depend strongly on the magnitude of the star and may be assumed to be 
uncorrelated. Therefore, in the least squares adjustment a diagonal weight 
matrix may be used. 



The star abscissae are the main outcome of the great circle reduction, 
they are further processed in subsequent stages (sphere reconstruction and 
astrometric parameter extraction) of the data reduction. Since one RGC refers 
to data of at most half a day, only instantaneous posit ions, for a reference 
epoch somewhere in the middle of the RGC, are solved and no proper motions or 
parallaxes. Although for most stars the geometric positions, i.e. their 
position, proper motion and parallax, are constant during a RGC period, this 
is not true for the apparent, or observed, posit ions. Aberration and 
relativistic effects, which depend on the velocity and position of the 
satellite and on the observed star direction, cannot be ignored. They can, 
however, be computed with sufficient accuracy from a-priori data and 
corrections can be applied. For some very near and fast stars the geometric 
positions do vary during one RGC. The necessary corrections again can be 
calculated from a-priori data. Some minor planets are on the observing list; 
their geometric positions are certainly not constant during one RGC and they 
will be solved with independent positions, every time they appear in a frame. 

During the great circle reduction we do not distinguish between primary 
and secondary stars, as explained in chapter 4, but rather between active and 
passive stars. The abscissae of primary stars form the basis for the sphere 
reconstruction: the abscissae of secondary stars are only treated by the 
astrometric parameter extraction. The distinction between active and passive 
stars is internal to the great circle reduction (NDAC does not distinguish 
between active and passive stars, instead they do an iterative reweighting of 
observations). Grid coordinates of active stars participate in the rigorous 
least squares adjustment which computes the abscissae of active stars, 
along-scan attitude and instrumental parameters. The passive stars are added 
in later, using the previously computed active star abscissae, attitude and 
instrumental parameters, without modifying them. In general, passive stars 
are "problem" stars, viz. stars with a high probability of erroneous 
measurements, or very faint stars, which anyhow do not contribute very much 
to the attitude and instrumental solution. Passive stars, in combination with 
internal and external iterations, play an important role in the testing and 
validation of our observations. 

Two types of iterations are needed: external iterations of the complete 
great circle reduction with an improved attitude description and star 
catalogue after a preliminary sphere reconstruction and astrometric parameter 
extraction, and internal iterations within the great circle reduction itself. 
Internal iterations are needed for the testing and validation of our 
observations; skipping doubtful observations, correction of slit number 
errors, generating diagnostics, etc.. Depending on the outcome of statistical 
tests data is validated, i.e. accepted as sufficiently conforming to the 
model, or rejected. In the latter case not only proper diagnostics must be 
generated, but also a new solution without the rejected, and possibly 
erroneous, observations has to be computed. Like in any weighted least 
squares adjustment with a substantial fraction of erroneous measurements this 
procedure has to be iterated several times, each time involving a new least 
squares adjustment. This is, of course, not a very attractive prospect for a 
large adjustment problem such as the great circle reduction. However, the 
burden is lightened considerably by a-priori selection of suspected problem 
stars (our passive stars), combining internal iterations with necessary (for 
other reasons) external iterations, and special procedures for correcting 
slit number errors (grid step inconsistency testing). 

Grid step ambiguities and inconsistencies are a consequence of the fact 
that the main instrument is only able to observe phases, i.e. grid 
coordinates modulo the slit period. The integer slit numbers are computed 
from the a-priori values of the star catalogue positions and the star mapper 



attitude, which in itself is based on the same catalogue data. Given a slit 
period of 1.2" and uncertainties in the a-priori values of 0.4"-1.0" in the 
initial star catalogue, there will be a substantial number of grid step 
errors, i.e. errors in the computed slit numbers, resulting in ambiguities 
and inconsistencies throughout the reduction. The great circle reduction 
notices a grid step error only if some of the grid coordinates in the RGC set 
have a grid step error different from those for other grid coordinates 
pertaining to the same star. If all observations of a star in the RGC set 
have the same grid step error this will not be noticed during the great 
circle reduction. The known magnitude of the grid step errors and the large 
number of grid step inconsistencies expected during the first treatment of 
the data (in the external iteration process) justify special algorithms. An 
advantage is that the magnitude of the errors is known, therefore we may 
correct our observations rather than reject them, which is not only more 
efficient, but gives savings in computing time as well. 
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Figure 5. 1 - Structure of the FAST great circle reduction 

In figure 5.1 the global structure of the FAST great circle reduction 
software is given. The boxes denote the main tasks to be performed, while the 
lines indicate the data-streams. Three parts can be clearly distinguished: 
preprocessing, least squares adjustment and postprocessing. During the 
preprocessing the active and passive stars are selected, the observation 
equations are computed and a first grid step inconsistency correction takes 
place. The abscissae and variances of the active stars are computed during 
the least squares adjustment, based on the geometric or the smoothed 
attitude, which is computed simultaneously with the star and instrument 
solution. During postprocessing the abscissae of the passive stars are 
computed, final testing takes place and a report is made. Grid step 
inconsistency correction and testing are not limited to a single process: 
throughout the great circle reduction inconsistencies will be detected and 
corrected, and observations will be tested. 



This chapter deals with the geometric equations for the great circle 
reduction, the large scale instrumental parameters and the expected accuracy 
of the results. In chapter 6 the methods for attitude smoothing, and the 
resulting improvement in accuracy, are discussed in detail, while the actual 
solution methods are treated in chapters 7 and 8. Finally chapter 9 deals 
with the grid step inconsistency problem. In this chapter, and the remaining 
chapters, we will refer to results obtained by the FAST great circle 
reduction software on simulated data. In particular results will be given for 
two datasets: one simulated by the group of prof. Kovalevsky at CERGA, Grasse 
[Falin et  al., 1986a, 1986b1, and the other one simulated by L. Lindegren of 
Lund observatory [Lindegren, 19861 for the NDAC consortium. Details about the 
software and the simulations can be found in appendix A and B respectively. 
For more details about the results of the great circle reduction software on 
these datasets we refer to [van der Marel et  al., 1986c, 1986d, van der 
Marel, 1987al. 

5.2 Observation Equations for the Great Circle Reduction 

5 .2 .1  Non-linear Equations 

The observation equations for the great circle reduction can be derived 
from a simple coordinate transformation, at mid-frame time, between the 
instantaneous measurement frame and the RGC reference frame. Let u(a,@) and 
v(a,P) be two unit vectors which give the apparent direction to a star in the 
measurement and RGC reference frame respectively, with 

cos a cos f3 cos a cos P 
u(a, p1 = [ sin a cos B ] 

sin p 
i n s t r  R GC 

Let A be the rotation matrix defined by a 3-2-1 sequence of Euler rotations: 

Here, R.(a) is an elementary Euler rotation over a around the i'th axis. The 
l. 

non-linear equations for star i observed in frame k are then 

with and < f  the abscissa and ordinate of the geometric star position in 
the RGC frame at the reference epoch, C the basic angle and x and y are 

k i k i 
the field coordinates in the measurement frame. The subscript i always refers 

to a star, and the subscript k refers to a measurement frame (at mid-frame 

time). The angles b$Li and are small corrections to the geometric 

positions, for apparent places (aberration and relativistic effects), for 

residual proper motion and for parallax. The two attitude angles $k and < 
k 

can be viewed as the abscissa and ordinate of the telescope x-axis. Note 

that the sign of qk is reversed in order to have a consequent definition of 

Ci and < See figure 5.2. 
k' 



Figure 5.2 - Geometry of the great circle reduction 

Only the field coordinate xki is related to measurements by the main 

instrument (see section 4.2.31, i.e. 

X = -gki + dk k i 

with g the grid coordinate, which is counted in the direction opposite to k i 
x and dki the -unknown- large scale instrumental distortion which is 
ki' 
defined in section 5.4. The grid coordinate is computed from the observed 

phase pki ( Ospki<l 1 by equation 4.13: 

with n the integer slit number and S the nominal slit period. It is assumed 
k i 

that the observed phase is already corrected for small and medium scale grid 

distort ions. 

5.2.2 Linearizat ion 

The linearized observation equation is obtained by taking the truncated 
Taylor expansion of equation 5.1 around approximate values for the unknowns. 
The linearized equation is 

+ c T ~ d  - + o(c21 

with Azki=ski-xLi the observed value of the along scan field coordinate, x 
-ki' 

minus the value, x0 computed from approximate values for the unknowns, 
ki' 

using the non-linear model. The A-quantities on the right hand side are the 

unknown corrections to the approximate values for the unknowns: viz. A$i and 

AS. are the unknown correction to the approximate values for the geometric L 

position, AI)~,A<~ and ASk are the unknown correction to the approximate 

values for the attitude, and Ad - is the vector with the unknown correction to 



the approximate values for the instrumental parameters. c is the vector with 
partial derivatives ax/a* for the instrumental parameters. The underscores in 
equation 5 . 2  denote stochastic variables. 

The partial derivatives for the attitude and star part are computed 
directly from the formulae u=Av rather than by explicit goniometric formulae. 
The partial derivatives of u  are computed from 

The partial derivatives of the spherical angles a  and 6 are computed in turn 
T 

from the cartesian vector u(a ,p )=(u  ,U U ) by 
1 2 '  3 

In case of a 3-2-1 sequence of Euler rotations the computations can be 

simplified if A and v are redefined as R ( < ) R  ( -C)  and v(*.-# < ) .  Computer 
1 2 L k' i 

evaluation of the above formulae turns out to be much faster than the 

corresponding evaluation of goniometric formulae or quaternion relations 

[ Amoureus , 1 984 l . 

In our analysis of the estimability and modelling error we will however 
frequently need explicit formulae. In table 5 . 1  the partial derivatives and 
the approximations up to the second order quantities are given. The angle ;r 
is the inclination of the scanning circle with respect to the RGC (see figure 
5 . 2 ) .  Also new abscissae have been introduced to simplify the formulae, v i z .  

with # the abscissa of the ascending node of the scanning circle. Some n 
useful relations are 

with approximations up to the second order of the small quantities 

These relations, and the partial derivatives given in table 5 . 1 ,  will be used 
frequently in this chapter. 



Table 5.1 - Goniometric formulae for the partial derivatives 

ax - 1 2 
2 % - cos y 

{ cos Tk COS l i  + sin a'k sin < i COS l i  sin $ni ) 

k i 

1 
2 

{ sin T~ COS $ni ) = T~ COS $ni 

k i 

1 { sin7 cos $nk -COS < sin yki  ) 
2 k i cos y 

k i 

= T~ COS $nk - yk sin $ k i 

ax 1 - cos(x .+-C) tan yki  q -  k~ 2 
= yki  COS * 

k i 

5.2.3 Partial Observation Equations 

Since the measurements only refer to the along scan component, 
information on the star ordinate and the transversal attitude components is 
only available through the inclination 7 of the scan circles with respect to 
the RGC. Because of the small incl inat ion ( 17 l 5l0) the transversal components 
C i ,  C k  and 5 are only weakly estimable, and, as we will show in section 5.3, k 
should not be estimated during the great circle reduction. 

So, finally, the correction equation (5.2) for Axki ,  the "observed minus 

computed" value of the grid coordinate of star i in frame k ,  after 

linearization around approximate values for the attitude and star abscissae, 
0 $: and (U' and a -nominal- instrument d , becomes 

i '  
T 

Axki = ak A$k + b k i  A$i + ck i0Ad (5.6) 

ax a X with a = - = -1, b = - =  
i k  a*i 1 and ( ( c k i I m (  t 1. 

k a*k 

a X In our software a k ,  i . e .  the partial derivative will be computed 

in a way different from that indicated in table 5.1. Namely, we prefer to fix 



the scanning circle pole, i.e. 3% /a$k=O and a* /a$ -0 instead of aqk/at,bk=O k n k- 
and aEk/a@k=O, which leaves a rotation of the scan circle pole around the RGC 

pole free. Rewriting 

ax 
where 4 is measured along the scanning circle, so - = -1. The second 

nk a'nk 

partial derivative can be computed from the relation 

cos(~,)tan($ nk )=tan(*nk) 

Differentiation to *nk, assuming 
aTk - 0 and - = 0, gives, after some T-  a*k 

rewriting, 

a'nk 
cos k = - P  

a*k cos E k 
which is also the coefficient ak. With this definition the coefficient ak is 

the same for every observation in a frame. 

5.3 Estimability of the Star and Attitude Ordinates 

A-priori there seem to be two possible approaches for the star ordinate 

Ci and the transversal attitude components Ck and k: 
1) solve for {+i,$ ) and {<.,C simultaneously, k k' k 
2) solve for {I) I)~) only, and substitute for {Ci,Ck,Ek) approximate 

i' 
values. 

The approach which gives the highest precision for the transversal components 

{ci, ck, Ek), especially for should be preferred. I.e. the first approach 
i' 

should be chosen if the transversal components can be estimated with a better 
precision than that of the approximate values, otherwise the second approach 
should be chosen. But also numerical arguments influence the choice: The 
design matrix in the first approach may be ill-conditioned, and therefore 
numerical condition problems can be expected during the solution. The 
numerical condition of the second alternative is always better, which might 
be a reason to prefer this approach. 

In the second approach the solution should be iterated after the sphere 

reconstitution step when better values for (5.1 become available, starting 
L 

with a renewed attitude reconstruction in order to improve on {C 1.  After 
k' k 

at most two iterations the error in < is -2 mas and may be neglected, but 
i 

the error in {C remains of the order of 100 mas, due to star mapper k' k 
photon noise, and cannot be improved further. The error in the approximate 

values gives rise to a so-called modelling error in the computed star 

abscissae. 



Below we show first that the modelling error in the second approach, 
although large during the first iteration, is negligible in the final 
iteration. Afterwards we consider the first approach, for which no iterations 
are necessary. It is shown that the transversal components cannot be 
estimated with a precision better than that for the approximate values used 
in the second approach, and that the numerical condition of the design matrix 
in the first approach is not very good. Therefore the star abscissae 
resulting from the first approach are not as good as those from the second 
approach. 

5.3.1 The Modelling Error in the Great Circle Reduction 

5.3.1.1 The Formulae 

The modelling error e in the field coordinates x can be computed from 
X k i 

the linearized observation equation 5 .2 .  Let e and e be the errors in the r: S 
transversal components, then 

with the partial derivatives defined in table 5 .1 .  Assume that the errors in 

the approximate values are normal variates, with the following (CO-Ivariances 

(r2 for i=j 
t i p < .  = 

J 0 fori*j 

2 
LT for It,hk-t,hLI 5 2 f  (i.e. thesamepassage) 

- I a  0 
< #  for It,hk-t,hLI Z 3 O  

1 undefined elsewhere 

These assumptions are not very realistic, although they are reasonable for 
the use we have in mind, i. e. taking averages of large samples of data. Of 
course, the errors in the approximate star data are not uncorrelated, e. g. in 
the INCA catalogue there are large regional errors. However, for the final 
Hipparcos catalogue this is a reasonable assumption, unless the stars are 
very close by. The attitude is computed from the star mapper data and the 
approximate star data, and therefore the actual attitude data is correlated 
with the star data. Also the assumption that the two transversal attitude 
angles are uncorrelated is not very realistic. The assumption, that the 
attitude is fully correlated during one passage of a star through the field 
of view, is, however, a reasonable assumption, because of the large smoothing 
interval used in the attitude reconstruction. Despite the fact that these 
assumptions are not very realistic, they seem reasonable for our estimates of 
the average modelling error. 

Let LT be the standard deviation of the two transversal attitude angles, 
2 as above (so the variance of the inclination is ~ L T  1, and let LT be the 

standard deviation of the star ordinates. Then the covariance of the 



modelling error in the field coordinates is given by 

with C and C functions of star and attitude coordinates, computed by the 
S a 

law of propagation of variances on equation 5.8, using the approximate 

formulae of table 5.1 for the partial derivatives, i.e. 

2 
ak;rlcos for i=j 

C(i-j) = 
for i*j 

2 2 2 
(5.9. b) 

I akcos (#nk) + ykiyk COS ( ~ l ~ - #  .) + 
J 

;rkco~(#nk)(yki~in(#ki)+~kjsin(#kj)) ) f~rI#~-lY~ 15 2f 
C(k-l) = 

0 
0 forl#-# Ir30 k 1 -  

1 unspecified elsewhere 

with ~in(#~-#~)=+0.5 (depending on the field of view) and f half the size of 

the field of view, i.e. f=. 45 deg. 

The rms and maximum modelling error in the field coordinates, along-scan 
attitude and star abscissae over an RGC set, as functions of the number of 
scan circles in the RGC set, are computed below. Thereby the modelling errors 
are expressed in the form 

rms = f J a o 2 + a o  ' 2 
me a a S S 

2 
max = 3f J b o  + b o  

2 
me a a S S 

with a and b the error factors. The maximum modelling error is defined as 
follows: first take the maximum variance, then the square root and finally 
multiply by three. The error factors a and b for the rms and maximum error, 
which will be computed in the next paragraphs, are given in table 5.4 as 
functions of the number of scan circles 2m+l. In our formulae we assume that 
the RGC consists of 2m+l scans and that the scanning circle precesses by 
about f per scan, so that the inclination of the scan circles a = (j+s)f, 
with j = -m,... ,+m and 16(<f/2. 

5.3.1.2 The Modelling Error in the Field Coordinates 

In order to get the rms error in the field coordinates we take the 
square root of the average variance of the field coordinates. What we call 
the maximum modelling error is defined as follows: we first take the maximum 
variance of the field coordinates, then the square root and finally multiply 
by three. The variance of the field coordinates (from eq. 5.9) is 

2 2 2 2 2 2 a cos + {a cos (#nk) f ;rk~kicos(#nk) + yki k k 

Assuming a star in the preceding field of view, the maximum of table 5.4 is 

clearly realized for y =f/2 and # --15' (so #ni=150). The rms error is k i nk- 



obtained by averaging over the RCC, i.e. over k and i. Let C. .>  denote 

averages, then from 

2 2 1 <cos #> = - < r > = - m f  
k 3 2 

<Yki> = 0 

2 (2m+l) 
2 

2 2 
<y cos#>=O <r cos #> = f - 

(5.11) 
ki k k 2 4 

follow the formulae of table 5.4. 

5.3.1.3 The Modelling Error in the Along Scan Attitude 

An impression of the rms modelling error in the a-posteriori attitude, 

#k, is 
obtained by evaluating the variance of the mean observation in the 

frame. Let n be the average number of stars in a frame, and assume that the 
same number of stars is observed in the preceding and following field of 
view. Assuming furthermore that the averages <y > over the preceding and k i 
following field of view are zero, then the variance of the mean observation 
in frame k becomes 

A more elaborate expression for the variance of the mean observation, e.g. 
for different number of stars observed in the preceding and following field, 
can be found in [van DaaLen, van der MareL, 19871. Averaging over # and r 
gives the formulae from table 5.4. When there is only one observation the 
error of the mean observation reduces to the error in the field coordinates 
itself, in which case the maximum error is realized. 

5 .3 .1 .4  The Modelling Error in the Star Abscissae 

The modelling error in the star abscissae, is computed in a way similar 
to that for the attitude: first we evaluate the variance of the mean 
observation to a star, then we average over the scans. The covariance of two 
field coordinates in frame k and L (from eq. 5.9) is 

2 2 2 0- 2 2 2 r r cos CS + akL {rkcos (#nk) ' rkykicos('nk) + 'ki 
e k L 

with akL=l if # -# s2f, else 0. Here we suppose that the attitude error k L 
during one passage of a star is fully correlated, i.e. akL=l if the two field 

coordinates are observed during the same passage. So k and L refer here to 

passages rather than frames. 

Let {r)i be the average inclination on which star i is observed, then 

the contribution of the error in the star part, i.e. the influence of 

s , to the variance of the mean observation becomes 
i 

The value of {r) depends on #ni and < E. g. at the node {r) i=O, because 
i' 



star i is generally observed in all scans. But away from the node {T). can be 
L 

as large as the maximum inclination mf, when star i is at the edge of the RGC 

and observed in only one passage. So the maximum of this part is simply 
2 2 2  m f Q*, for a star i close to, but not at the node and only observed on a few 

(one) scan circles. 

Now consider the contribution of the error in the attitude part to the 
variance of the mean observation. Assume that the inclination 7 and field 
coordinate y remain constant during two consecutive passages of the field of 
view. Then, using @ 

0 nk=@ni+30 , the variance of the mean of two consecutive 

passages is 

Averaging over the different scans gives for the contribution of the attitude 
to the variance of the mean observation 

with n the number of scans on which star i is observed (here { )  denotes 
i 

averaging over the scans). The maximum (see table 5.4) is reached for a star 

observed on only one scan circle, with r=mf, y=f and sin(@)=l/2m (-15' for 

m=2, i . e. 5 scans per RGC 

Figure 5.3 - The sectors of the RGC with different "scan patterns" 

The rms modelling error in the star abscissae is computed by averaging 
the contribution of the star and attitude part over the RGC. In order to 
calculate n and functions of {yIi, which depend on @ and < we partition 

i n i i' 
the RGC in "sectors" for which the stars have the same "scan pattern", i.e. 
the same number of scans n and the same average scan number {j). In figure 
5.3 the sectors (only the first quadrant is considered) for an RGC consisting 
of 5 scan circles (m=2) are given. The values of n and functions of {T) are 
given in table 5.2, 11 gives the area of each sector. 



Table 5.2 - The observation characteristics of the sectors 
(j = r/f) 

Sect or 

Careful, sectorwise summat ion, assuming <{X) i{ y) isin($ni )>=O and 
2 

<{  y2) i>=. 33f , finally yields the desired -averaged- coefficients for m=2, 

given in table 5.3. The coefficients for m=l and m=3 in table 5.4 have been 

obtained by a similar approach. The formula in table 5.4 is obtained by 

fitting a polynomial to the results of table 5.3. In figure 5.4 the error 

factors a and a , computed from eq. 5.12 and 5.13, are given over the first 
S 

quadrant of the RGC for m=2. 

error- 
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2 f  3 
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Figure 5.4 - The error factors over the first quadrant 
of the RGC (m=2) 



Table 5.3 - Error factor star abscissae for m=1,2,3 

5.3.1.5 Conclusions 

The error factors a and b for the rms and maximum error computed in the 
preceding paragraphs are given in table 5.4 as functions of the number of 
scan circles 2m+l. The rms and maximum modelling errors follow from equation 
(5.10): 

rms = f J a o 2 + a o  
2 

me a a S S 

2 max = 3f J b  02 + bsos ' 
me a a 

If o and o are expressed in tenths of an arc second (0"l) and if the 
a b 

model ling error is expressed in mas; then we may take for f - .8 mas/OW l 
Table 5.4 - Maximum and rms modelling error factors 

Typical values of o are 0.2" to 0.4" for the first treatment and 0.1" 

field coord. 

attitude 

star 

after iterations; cr is typically in the range 0.2" to 0.8" for the first 
b 

treatment and practically zero for the final iteration. So the rms modelling 
error in the star abscissae will be of the order of 0.6 mas in the final 
iteration, while it can be as large as 10 mas during the first treatment. 
These, and similar analytic formulae for the maximum and the rms modelling 
error in the angle between two stars in a frame, have also been derived in 
[ van Daa l en G van der Mare l ,  19871 . 

rms error factor max error factor 

attitude 
a 

a 

attitude 
b 

star 
a 
S 

star 
b 

(2m+112 1 (2m+l) 
2 

- + -  - 
24 3 24 

(2m+1 (2m+1 
24 24 n 

2 
(m+l. 1 )  + l  1 m 2  

12 6 
l 

m +m+1 m 2 2 

2 
m +m+l m 

2 

9 3 2  - + - m  m 2 
8 4 

I 



5.3.2 Experimental Results on the Modelling Error 

The formulae of table 5.4 have been independently verified by an 
Monte-Carlo simulation and by testruns with the great circle reduction 
software on three externally simulated datasets [van der Marel et al., 1986c, 
van der Marel G van Daalen, 1986d, van der Marel 1987al. In table 5.5 the 
theoretical modelling errors applicable to the Lund data (see section 5.1 and 
appendix B) are given, with in brackets the experimentally obtained errors. 
For CERGA dataset I1 similar results are obtained: for the final iteration we 
found for the modelling error in the star abscissae 0.77 mas rms and a 
maximum of 5 mas. In figure 5.5 a scatter diagram of the modelling error in 
the star abscissae is given for the same data (first treatment). Clearly 
visible are the predicted maxima near the nodes (situated at -80' and -260'1, 
but on the nodes the errors are small. 

Table 5.5 - Predicted and experimental (in brackets) modelling 
errors for the Lund dataset (in mas) 

iteration first treatment 
(c =O"l,c =0) 

b (c =OU1,c b =1"5) 

rms max rms max 

field coordinate 0.9 6.3 12.0 (11.61 72.3 (73.11 
attitude 0.8 6.3 6.0 72.3 
star 0.6 (.51) 3.3 10. l (10.7) 72.3 (60.1) 

The rms modelling error in the least squares residuals is smaller than 
the modelling error in the field coordinates: for the Lund data we found 0.36 
and 7.8 mas for respectively iteration and first treatment, and for CERGA 
dataset I1 0.54 mas in iteration mode. This error is, as expected, roughly a 
factor ~M/N, with M the number of observations and N the number of unknowns, 
smaller than the modelling error in the field coordinates. The factor is for 
both datasets -2. The modelling error in the least squares residuals is large 
enough to be identified in statistical tests. 

l I 1 1  1 1  1 
1 11 1 1 1  l l l 1  

30; 1 1  2 1 2 2  2 2 1 1 1  1 1  l 1 1 1 l I1 
, 3 12211 1 1 I 1 2  l l l 1  22 111 11 1 1 1 1 1  1 1 1 
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Figure 5.5 - Scatter plot of the modelling error (y-axis) in the 
star abscissae (x-axis) for the Lund data (first treatment), 
the numbers give an indication of the number of data points 

which fall in a character pixel. 



5.3.3 Estimability of the Transversal Components 

Consider the normal matrix resulting from the approach where both 
{#i,#k) and {<  < ,E ) are estimated. Let the normal matrix be block i' k k 
partitioned corresponding to the different types of unknowns. The average 
diagonal element is, we assume, equal to the average of the squared partial 
derivatives, multiplied by the number of observations per star or frame. 
Assume, as before, that the RGC consist of 2m+l 8cans and that the scanning 
circle precesses by about f per scan, with f-.45 (half the size of the field 
of view). Integration over the RGC gives for the averages <> of the partial 
derivatives 

and 
2 

0 Putting m=2 (i.e. 5 scanning circles) and f=.45', we get I<I=1 , lel=1° and 
0 1<-e150.5 . So, the squared partial derivatives are approximately 

2 4 The averages belonging to < i' ck and ek are roughly a factor A =2 10 smaller 

than the averages belonging to t,hi and t,hk. Therefore, on the average, the 

(diagonal) elements in the corresponding normal matrix blocks are smaller by 

the same factor. 

If we assume that the variances are roughly inversely proportional to 
the diagonal of the normal matrix, it ftllows immediately that the variances 
of the transversal components are -2 10 times larger than the variances of 
the abscissae. I.e. the standard deviations of the transversal components 
will be of the order of several hundreds of mas. Considering that the 
transversal components are known a-priori (in the final iteration) with an 
accuracy better than 100 mas, we can conclude that the transversal components 
should not be estimated during the great circle reduction. In addition, the 
condition n mber of the system of equations becomes very large (roughly a Y factor 2 10 is involved), which is another reason not to pursue this 
approach. 

From equation 5.14 follows, along the same lines as above, that the 
standard deviation of the transversal components is roughly 

with cr the standard deviation of the along scan components. The turn over 
L 

point, for a possible use of this approach, is the number of scan circles 
(2m+l) for which the standard deviation in the transversal components becomes 
smaller than the rms error in the approximate data for the transversal 
components. Let us assume that the rms error in the approximate data is 100 



mas, and that the standard deviation of the along scan components is 4 mas, 
then, a very rough estimate for the turn over point, is 25 scan circles per 
RGC . 

5.4 Large Scale Calibration during the Great Circle Reduction 

5.4.1 Mathematical Model for the Large Scale Distortion 

In the great circle reduction software the large scale field to grid 
transform, 

equation (4.15) of section 4.2.3, is modelled as a distortion of the grid 
coordinate, i. e. 

It is assumed that the grid coordinates g, which are computed from the 
observed IDT (main grid) phase, are already corrected for small and medium 
scale distortions. The medium scale distortion gives the relative distortion 
of grid patches, which were written at one go of the grid manufacturing 
process. During an observation frame, the period over which photon counts are 
collected for a single phase estimate, the star image has passed several grid 
patches, each with his own alignment errors. Therefore, it is better that the 
medium scale corrections are applied before the phase estimate is computed. 
The same holds, of course, for the small scale distortion of the grid. 

The large scale instrumental distortion d must take care of the large 
scale distortion of the grid, basic angle variations, chromaticity effects 
and deformation of the optics. Some of these effects are variable over the 
mission, and/or depend on star colour and temperature gradients of parts of 
the spacecraft. Fortunately, over one RGC set, these effects can be described 
by a few (~50) parameters [Kovalevsky et al., 1986~1, which can be determined 
during each great circle reduction. The large scale distortion d is computed 
from the -general- polynomial model 

n n 
- i-j d = f[ (B-V -0.5)~- l f akij(flx y ] + 

k=O i+j=l 
n b n l 

+ f l [ (B-V -0.511* l blmzm] 

l=O m=o 

with f the field index (f=+l for the preceding field, f=-l for the following 
field), B-V the star colour index, = x/f and y = y/f the normalized field 
coordinates, where f is half the size of the field of view, and 5 = (t-T)/T 
the normalized RGC time, where T is half the nominal length of the RGC set 
(e. g. 18,000 frames). The normalized coordinates are dimensionless quantities 
in the interval [-1,+1]. The first part of the distortion polynomial 
describes deformations over the field of view as function of the star colour. 
This distortion does not change significantly during one RGC, but it may be 
different for the two fields of view. The second part, which describes the 
basic angle deformation, depends on star colour and time of observation. 
Contrary to the field of view deformation, the basic angle deformation may 
vary significantly during one RGC (e.g. due to thermal effects). Actually, 
the basic angle deformation cannot be described completely by a polynomial; 
there are also some sinussoldal terms, which will be estimated during the 
sphere reconstitution. 



The parameters a and b l m  in the large scale distortion polynomial are 
kij 

estimated each great circle reduction, and for the preceding and following 

field of view different sets of coefficients akij are used. Some of the 

coefficients have a clear physical interpretation: aOij gives the distortion 
i j in the upper right corner of the field pertaining to the power x y , a 

lij 
gives the additional distortion for a star with colour index B-P1.5, and the 
coefficients b give the basic angle distortion at the end of the RGC set. In 
printed form the coefficients are usually expressed in mas. 

The choice for a power series is a little arbitrary. Other type of , 
functions are -technical l y- possible. However, there were no numerical or 
functional reasons for choosing different types of functions, while power 
series have some computational advantages. A disadvantage of power series is, 
however, the possible numerical instability. An indication for the 
instability of the power series are the large correlations between the 
estimated coefficients (table 5.6). The stability of orthogonal (Legrende) 
polynomials is better, but, here, they are not necessary because of the low 
degrees involved. The degree of the polynomial is dictated by the 
instrumental specifications and actual behaviour, and can in the software 
easily be changed by setting some parameters. The present choices for the 
polynomial degrees are: n =nb=l, nk=0=3, nk-l=l, n1,0=2 and n =O 

a - 1=1 
[Kovalevsky et al., 1986~1. 

In the present definition the large scale distortion contains the 
nominal field to grid transform, which was defined in equation 4.12 as 

g = - sin x cos y 

This results in some large instrumental parameters, but the nominal field to 
grid transform can be modelled with sufficient accuracy by a third order 
polynomial. In our least squares adjustment we will first correct the 
observed grid coordinates by an approximate instrumental distortion, which 
also includes the nominal field to grid transform. Therefore, the 
instrumental unknowns are actually corrections to approximate values for the 
instrumental parameters. 

5.4.2 Vector Notation and Alternative Representations 

The large scale distortion d can be written more compactly in vector 
notation. Define a vector p, with elements 

k -i-j 
Pkij :=  (B-V -0.5) x y 

for k=O. . . . , na , i=O, . . . , nk , j=O, . . . ' nk - i  and i+j+O, and let a be the vector 
with the unknown parameters a corresponding to the powers in p. Define in 

kij 
a similar way the vector t, with elements 

1 -m t l m  :=  (B-V -0.5) t 

for L=0, . . .  ,nb and m=O, . . . ,  nl and let b be the vector with the corresponding 
parameters b Then the large scale distortion d is 

lm' 



with one set of coefficients a for the preceding field and one for the 
following field, depending on the field index f .  The number of parameters 

Ipn n 
I for the field of view distortion is computed from 

0 1 

T 
The large scale distortion of the fieldTof view, a p, can be developed 

into a part common to both fields of view, g p, v d  a part containing half 
the difference between the two fields of view, h p. The distortion is then 

This is the so-called G/H representation, the first representation is called 
the P/F representation. The parameters gkij and hkij from g and h can be 

computed from 

( aEij + aLij I 
- - 

P -af 1 
- ( %ij kij 

gkij 2 hkij - 2 

where the upper indices p and f denote the coefficients for the preceding and 
following field of view respectively. The coefficients a can be computed 

kij 
from gkij and hkij by 

a P - a f =  kij - gkij + hkij kij gkij - hkij (5.18. b) 

Due to the physics of the distortion the degree of the hTp polynomial may be 
less than the degree of the g p polynomial. Therefore, the total amount of 
parameters needed for the G/H representation may be les than for the P/F 
representat ion, i. e. for some coefficients we have ap=a'. 

5.4.3 Estimability of the Instrumental Parameters 

In this section the estimability of four groups of instrumental 
parameters is discussed: 

1) the constant terms: gOOO and g 
100' 

2) the only-y-terms: gOoi, glOi, hOOi and h 1Oi' with izl. 

3) the scale factors: gOl0, g1 10, hOIO and hllO, 

4) the basic angle terms: boo (hoo0), bO1,. . , b10 (hlo0), . . , etc. 
It turns out that the first group of parameters is not estimable, therefore 
the constant terms are not included in the instrumental deformation 
polynomial g. On the other hand hOOO and hlO0, which are very well estimable, 

are not included in h, because they appear already in the basic angle 
deformation polynomial. The other groups are generally estimable, except in 
some specific situations, viz. when the variation in the inclination of the 



scan circles is not sufficient or when only a partial scan is observed. In 
other cases they are generally even estimable on a local scale, provided 
there are sufficient observations. 

Let A ,  A  and A. be the design matrix blocks belonging to respectively 
a S 1 

the attitude, star and instrument part, and let a. be some column of the 
1 

design matrix block A. belonging to the instrumental unknown X of which we 
1 i 

want to verify the estimability. Furthermore, assume that the columns in the 
design matrix block ( A  , A  ) are linearly independent, which implies that we 

a S 

have already removed some column in order to cope with the rank deficiency in 
the problem. We will now investigate the estimability of the instrumental 
parameters one by one, neglecting the other instrumental parameters at the 
same time. In the definition of the instrumental parameters, in the preceding 
section, we have already prevented dependencies among the instrumental 
parameters themselves. The instrumental parameter X .  is not estimable if the 

columns of in the design matrix ( A  , A  , a . )  are -nearly- linearly dependent. 
a s 1  

Geometrically this means that a is -almost- in the subspace, R ( A ) ,  spanned 
i 

by the columns of A=(A , A  1. Let 6 be the angle between a. and R ( A ) .  Then we 
a S  

have near dependency if 6 is small, i. e. the length of the residual 

vector of a. after orthogonal projection on R ( A ) ,  

is small. Teunissen gives 

-T- T 2 
a a = a.a- sin 6 

i i 1 1  

[Teunissen, 1985, pp. 44-45]. The variance crL of X ,  is given by 
Xi 

whereby we simply assumed that the observations y have a covariance matrix 
2 

cr I .  So, when a. is short, cr2 becomes large. But, when a. is short, also one 
x 

i 
of the eigenvalues of the design matrix becomes small, and therefore the 

numerical condition of the system deteriorates. For very short a. the design 
matrix will be ill-conditioned, resulting in numerical instability during 
the inversion. 

Assume there exists an n xl column vector f and an n xl column vector f 

such that 
- 
a' = a  - A f  - A f  
i i a a  S S 

(5.19) 

is small. Then a lower bound for the variance cr2 of X. becomes 
X: 

. . 

[Teunissen, 19851. The orthogonal projector a. follows from minimizing 



min II a - A f  - A f  ll = min II Er11 
i a a S S 

fa*fs a p f  s 

Below we-will not always evaluate this minimum. We will be already satisfied 
with an a' close to the minimum, which gives a sufficiently sharp lower bound 

i 
for the standard deviation of the instrumental parameters. This standard 
deviation will be used as a criterion for the estimability of the 
instrumental parameters. An instrumental parameter is not estimable: (i) if 
the precision by which it can be estimated is worse than our a-priori 
knowledge of this parameter, or (ii) if the effect of this parameter on the 
observations is larger than a fraction of a mas. The influence of the error 
in the instrumental parameter on the observations is simply 

-a c 
i X. T 

T 2 a.a. 
1 1  

Therefore, the second criterium becomes (a.a.02 ) << is or, - 
-T- << 1 

1 1 X.  Y '  
1 aiai - . . 

Usually we only prove that the above does not hold, using a' instead of a . .  
i 

The instrumental parameter g 
000' 

which represents a constant term common 

to all measurements, is clearly not estimable. Let a. be the column vector 
1 

with coefficients belonging to g (all one's), then 
000 

a. - A fa = 0 , (f ) =l/a 
a k  k 

with a the coefficient for the attitude from A .  So the column vector a is k a i 

a linear combination of a part of the columns of A, and evidently g is not 
000 

estimable. The instrumental parameter g rather defines the internal frame 
000 

in which the grid coordinates are measured, which by itself is not 

observable. 

The parameter g 
100' 

the so-called constant chromaticity (a kind of 

colour dependent offset), is estimable in theory through the variation in 

incl inat ion of the scan circles. However, considering the small variation in 

inclination for a regular RGC, it turns out that this term is only badly 

estimable. This can be shown as follows: Let a. be a column vector with the 
1 

coefficients from the linearized observation equations corresponding to g 
100' 

consisting of the colour indices B-V, then a -near- minimum for equation 5.19 

is obtained for f =O and (f .=(B-V) with (B-V) . the colour index of star 
S J 3 ' J- 

j. For astar j observed in frame k the value of (a') is 
1 kj 

Integration over the RGC gives 

where 2m+l is the number of scan circles, f half the size of the field of 



2 0 view, M the number of observations and <(B-V) >-l. For m=2 and f=. 45 , we 
- T- 5 have a'. a'. - .7 ~ O - ~ M .  Assuming 10 observations with typical standard 

1 1  

deviation of 10 mas, then a lower bound for the standard deviation of glO0, 

neglecting correlations, is -0.4". The influence on the observations is of 

the same order of magnitude, this means that estimation of glO0 in the normal 

scanning mode is out of the question. The constant chromaticity is, however, 
estimable during the sphere reconstruction, but also a special calibration 
device is installed on-board the spacecraft. 

The only-y-terms g 
OO*' 

as well, become estimable through the variation 

in inclination among the scanning circles in the RGC. Let a. be the column of 

the design matrix corresponding to the only-y-term g 001 ' If we take for 

(f,)k=<k/ak and (f 1 .=< a -near- minimum for equation 5.19 is obtained, with 
S J  j 

- 2 (allkj = ykj - Ck - b .C. - rk(sin (lnk- sin (l 1 + 0(r2 < 1 + O(rk Sj) 
k~ J n j k j 

Since (lkj-230' the minimum becomes roughly 7 ( .  13 sin* + 5 cos(lnk). k nk- ' 
Integration over the RGC gives 

5 -T- Typically for m=2, f=. 45' and M=10 a.a. becomes -2. Then, assuming a 
1 1  

standard deviation of 10 mas for the observations, the lower bound for the 
standard deviation of the unnormalised coefficient g becomes -7 mas. 00 1 
Normalization gives a lower bound for the standard deviation of -.06 mas (the 
standard deviation in the upper right hand corner of the field of view). 
which is at the same time, except for a factor l/d2, the influence on the 
observations. This value corresponds reasonably well to the actually computed 
value of 0.17 mas for CERGA dataset I1 (table 5.7). The same type of 
reasoning applies to the other only-y-terms. So the only-y-terms appear to be 
reasonably estimable on a normal RGC. However, if the variation in 
inclination becomes too small, e.g. when only one scan is treated, it is 
better not to estimate the only-y-terms, but to use, or interpolate, the 
values of previous1 y computed RGC' S. 

The scale factors g 010 and gl10 become generally estimable when a basic 

angle has been spanned. Then two stars, approximately one basic angle apart, 
are connected both by direct observation and a chain of small angles between 
stars in the same field of view. The differential scale factors h 

010 and hllo 
become estimable after the same stretch is crossed by both the preceding and 
following field of view. Similarly the constant part of the basic angle 
becomes estimable when a chain of (large) angles has been closed around the 
circle. If the RGC consists of more than one scan the basic angle can be 
estimated as a slowly varying function of time. Since each star observed in 
different scans contributes to these closure conditions, the basic angle 
deformation is in general very well estimable. 

2 2  2 3 A1 l the other parameters, corresponding to powers of xy, X , X y, xy , X . 
etc., are already estimable on a local scale, i.e. from observation within 
the same frame. The chromaticity terms become only estimable if there is 
sufficient variation in the star colour indices. Since each star, not 



observed in the center of the field, contributes, these parameters will 
generally be well estimable. The only possible problem that still could 
occur, because we have, above, considered the terms one by one, is the large 
correlation between the individual parameters. However, as will be shown by 
simulation experiments, correlations will be in general smaller than 0.1, 
except for a few terms given in table 5.6. The influence of the fact that the 
instrumental parameters have to be estimated on the standard deviations of 
the star abscissae is almost negligible (0.27 rnas for CERGA dataset 11; see 
the next sect ion). 

Table 5.6 - Correlations ( >  0.1) between the instrumental 
parameters for CERGA dataset I1 

Table 5.7 - Normal ized instrumental parameters, standard deviation (c) 
and true errors ( c )  in mas for CERGA dataset 11. Errors exceeding 
the 2c bound are marked by an (For I and PO see text). 

expected standard 
& value dev. (c) I & PO 

units 

g00 l 0.56 0.17 -1.12 -0.72 mas 
g002 -47.24 0.12 0.03 0.03 
g003 -0.91 0.22 0.05 0.07 
g010 4.55 0.13 -0.28 -0.02 
g01 l 81.06 0.09 0.09 0. 
g012 3.12 0.17 0. 0.01 
g020 47.53 0.09 -0.01 -0.01 
g021 -1.38 0. 17 -0.11 0. 
g030 1.60 0.17 0.30 0.01 
g1 01 0.94 0.14 0.11 0.05 
g1 l0 0. 0.10 0.06 -0. 
bOO 35.17 0.04 0. -0. mas 
b0 1 -0.02 0.06 0. 0.01 mas/ (6 hours 
b1O -0.07 0.06 0. -0. mas/mag 



The powers in X, y and B-V must be computed from a-priori data. This 
data may not always be very good, especially during first treatment. This 
results in errors in the estimated parameters. After some iterations of the 
complete data reduction chain the errors in x and y, which are computed from 
the star catalogue and star mapper attitude, will be negligible. However the 
error in the star colour indices, which are not determined by the Hipparcos 
data analysis consortia, will not be improved. It is hoped that improved 
colour indices, computed by the Tycho data analysis consortium using the star 
mapper data, become available before the final iteration of the Hipparcos 
data reduction. 

The standard deviations and true errors computed from CERGA dataset I1 
are given in table 5.7.  The true errors are computed for two cases of 
iteration data, once with noisy observations (I) and once with perfect 
observations (PO). The true errors in the run with perfect observations 
represent the influence of the errors in the approximate data on the 
instrumental coefficients. In table 5.8 the modelling errors in the 
only-y-terms for CERGA and Lund data, for the first treatment (F) and for the 
final iteration (I), are summarized. 

Table 5 .8  - Modelling errors (in mas) for the only-y-terms 
(for I and F see text) 

CERGA I1 (I) Lund (I 1 Lund (F) 

The modelling error in the g001 term estimated from CERGA dataset I1 is 
much larger than the standard deviation and also much larger than the 
modelling error for the corresponding term of the Lund data. Statistical 
tests on the least squares residuals indicate that the observations do 
conform to the model. Therefore, the reported modelling error in g001, is 
almost certainly not harmful. There are two possible explanations: There has 
been an error in the conversion of the simulated data from tape to disk, 
which resulted in a constant bias of -100 mas on the attitude parameters for 
CERGA dataset I1 (this error was only made in the iteration dataset I). 
Another possibility is that an error has been made in the computation of the 
true (expected) value, which involves several instrumental transformations, 
or that a (typing) error has been made in one of the reported true (expected) 
values. We think that the first explanation is the most likely, but this has 
not yet been verified by test runs. 



5.5 Analysis of the Variances 

5.5.1 Results from Simulation Experiments 

In our simulation experiments several measures for the accuracy of the 
star, attitude and instrumental parameters are used, namely the formal 
variance, true error and modelling error. The true and modelling errors give 
the difference between the adjusted values and the simulated true values 
( mathemat ical expectat ion). The model l ing error, which is a special case of 
the true error, does not contain the effect of noisy measurements. In 
particular, it gives the contribution of the error in the approximate values 
to the error in the final outcomes. The modelling error is computed from 
simulation experiments with perfect, noiseless, observations. The variances, 
and more generally the complete covariance matrix, follow from the inverse of 
the normal matrix. These, formal, variances do not account for model 
deviations. The variance is one of the characteristic parameters which 
specify the expected (normal) distribution of errors. The true error, minus 
the modelling error, should be unbiased and fit this distribution (see 
appendix B). 

Table 5.9 - Square root of the mean variances in mas, per 
magnitude class, for CERGA dataset I1 

Q. 
o b s  

Q. 
i n s  

--geometric-- 
Q. Q. 

a t t  s t a r  

--smoothing-- 
Q. Q. 

a t t  s t a r  

The formal star variances can be separated into three components; 1. the 

variance c2 when only photon noise, attitude jitter, etc. is taken into 
obs 

account, assuming a perfect attitude and instrument, 2. the influence of the 

a l o n g s ~ a n a t t i t u d e d e t e r m i n a t i o n ~ ~  and3. the influenceof the 
a t t '  - 

determination of the instrumental parameters Q.' . The variance of the stars 
ins 

after adjustment is 

Q. 
2 = c2 + Q .  + Q .  

2 
s t a r  obs a t t  i n s  

The cr2 of a star is 
o  bs 

weights to this star 

variances with and wj 

computed from the cumulated a priori observation 

and Q.* is the difference of the computed star 
i ns 

.thout solving for instrumental parameters. Finally Q. 
2 
a t t  

is a derived quantity, computed from the above mentioned variances. In table 
5.9 and figure 5.6 the square root of the mean variance, per magni t ude 
class, computed from CERGA dataset I1 is given. 
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Figure 5.6 - Standard deviation for CERGA dataset 11. 
left: geometric solution, right: smoothed solution 
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Figure 5.7 - Standard deviations (IT) and true error ( c )  for 
the Lund data (geometric solution) 

Observe that the influence of the attitude, 3.2 mas for the geometric 
solution and 2.0 mas in the smoothed solution, is the same for each magnitude 
class. The influence of the instrumental parameters, 0.27 mas, which is very 
small compared to the influence of the aititude, is also the same for each 
magnitude class. On the other hand the cobs varies between 0.1 mas for very 

bright stars and 3.2 mas for magnitude 10 stars, and even larger for 
magnitude 12-13 stars, as can be observed from figure 5.7, where the 
variances for the Lund dataset are given. In figure 5.7 also the rms of the 
true error per magnitude class is given. 



5 .5 .2  The Inverse and the Eigenvalues of a Cyclic Synnnetric Matrix 

For regular star fields an analytic expression for the variances and 
covariances can be computed. In case of a regular network of stars the normal 
matrix, after elimination of the attitude parameters, becomes circularly 
symmetric and may be inverted by Fourier methods. 

A cyclic matrix is a square matrix whose rows are, except for a cyclic 
permutation, identical. Let A be a N by N cyclic matrix, then A can be 
written as 

with a(k) the real sequence of data a(O),..,a(N-l). The difference (i-j) must 
be taken modulo N. Now the system of equations 

can be rewritten as a convolution 

with x(j)=(x) and y(i)=(yIi. According to the convolution theorem the 
j 

discrete Fourier transform of a convolution is the product of the two 
discrete Fourier transforms, i.e. 

A(j)*X(j) = Y(j) (5.21. c) 

with A(j), X(j) and Y(j) the coefficients of the discrete Fourier transform. 
Hence the solution x(i) of the normal equations can be computed from X(j) by 
the inverse transform, where X( j)=Y( j)/A( j) . 

The inverse A-' of a cyclic matrix A is also cyclic. Let 

, then it follows immediately that the coefficients of the discrete Fourier 
transform of c(.) are equal to l/A(j). Furthermore it is easy to show that 
the coefficients A(j) of the discrete Fourier transform of a(i) are equal to 
the eigenvalues h of A. 

j 

The discrete Fourier transform pair for a real sequence of data 
x(O), . . . ,  x(N-I) is defined as 

with o.=2nj/N. Although x(k) is real, X(j) are generally complex numbers, 
J 

however X(j) is identical to the complex conjugate x*(N-j), so only N/2 
complex numbers are unique. For cyclic symmetric matrices A an even sequence 
a(k) is obtained, i.e. a(k)=a(N-k). Then the so-called cosine transform 



may be used instead of the exponential series and the numbers X(j) are real. 

5.5.3 Covariance Function for a Regular Star Network of Uniform Magnitude 

A theoretical estimate for the variance of the star abscissae has been 
derived in [ H ~ y e r  et al., 19811 and [Burrows, 19821 for a regular network of 
stars of the same magnitude. In both approaches the attitude unknowns are 
eliminated, which results in a relatively small system of normal equations. 
Because of the regularity of the star network and the uniform star magnitude 
the normal matrix is circularly symmetric. The normal equations can be 
written now as a convolution and may be inverted analytically by Fourier 
met hods. 

Considering that the coefficients ak--l and bki-+l, the observation 

equations can be simplified to 

Axki = A$i - A$k 
where the instrumental parameters have been neglected, which anyhow have a 
very small influence on the standard deviations. Let us assume that the 
observation errors are dominated by photon noise, so they are uncorrelated 
and the observations weights, W are inversely proportional to the variance ki' 
of the observations. The normal equations are then 

with ( x ~ ) ~ = A $ ~ ,  (X ).=A$i, b = - C  wkiAxki, b =  C W Ax 
S L 

a ~ E P  k kepi ki ki' (~aa)kk=~:~~ki'~k' k 

(Nss)ii= wki;wi, ( N  .= -wki iff ( k ,  i) E P or else zero. The set P is 
kEP 

as k~ 

defined by 

P = { ( k , i )  I star i observed in frame k ) (5.25. a) 

and the sets P and P are defined by k i' 
P, = {  {i} I ( k , i )  E P )  

P i  = { {k} I ( k , i )  E P )  

give respectively the stars observed in frame k and the frames in which star 

i is observed. Furthermore, let m = [ P  1 be the number of stars observed in 
k k  

frame k ,  n = IP. l be the number of observations to star i and i L 

M = C mk = C n i  the total number of observations and N the number of stars. 
k i 



Elimination of the attitude gives the reduced normal equations 

with 
W k i W k j  

k € P  p p  
j 

L - 
where 6 .=l iff i = j ,  else 6 .=O and Axki  = Axki -  Axk ,  with 

i J i  J 

the average observation in a frame. 

The reduced normal matrix for the star part is negative for every 
element except the diagonal. Let us define a diagonal ma rix D, with - f ( D )  i i = w i ,  then Nss can be decomposed as D-AD, with A=I-D N.  Obviously 

( A I i . i z O  and so the spectral radius of A  is bounded by one [ B u r r o w s ,  19821. 
- 

Then the star solution may be computed from the following -Jacobi- iteration 
formula 

= D-lb + A X ( i - l )  
S S S 

with 
1 

W 

( A I i j  = - 
k i W k j  

W 
i ~ E P  C ?  k  

j 
Written out in full 

N 
- W 

1 1 
A*i = C w k i A x k i  + - C  k i W k j  

W C , -  A* i  k e p i  i  
j=l k c P . n P .  k  

.I 
Equation 5.28 is equivalent to Burrows' iterat ion formula [ B u r r o w s ,  1982, eq. 
2.1.11, p. 51. 

Now assume a regular star network, with 2m stars observed per frame, of 
which m stars fall in the preceding field of view and m In the following 
field of view and assume equal observation weights W = W .  So W =2mw and 

- k  i  k  
w . = n w ,  with n  the number of observations per star. Assume further that the 

L 

basic angle C corresponds to an integer g, with C = 2nN/g. In this particular 
case the normal matrix N and iteration matrix A  are cyclic symmetric, with 

SS 

for ( A )  . = a ( i - j )  
i 3 

I O  else 

The Fourier coefficients A ( j )  of the sequence a ( i )  may be computed in the 

following way: let F ( j )  be the Fourier coefficients of an elementary "hat" 
1 



function fl(i), with f (0)=1 and f (i)=O for l il>m. Obviously a(i) consists 
1 1 

of three scaled, shifted, hats. So, using the property that the Fourier 
-it o transform of a shifted function f' (t)=f(t-t ) is equal to F' (o)=e o F(o), 

0 
the transform of a( i) becomes, after some rewriting, 

The hat function may be computed as the convolution of two sampled periodic 
block functions. The discrete Fourier transform of the sampled block 
function, defined by 

1 for J i  mod(N) 1 5 m/2 

fo(i) = 
0 else 

i S 
sin(njm/N) 

F~(J) = sin(nj/N) 

Then, according to the convolution theorem, the discrete Fourier transform of 
f,(i), when properly scaled, is 

Combining the results of eq. 5.30 and 5.31 gives for the eigenvalues 
A(j)=A(j) of A 

2 2 sin (njm/N) cos (njg/N) 
A(j) = 

m2 sin2(nj/~) 

which is, except for different definitions of m, identical to the result 
obtained in [Burrows, 1982, Hrayer et al., 1981 1. The eigenvalues A( j), 
j=1,. . ,N/2, of A are plotted in figure 5.8. 

Figure 5.8 - Eigenvalues of the iteration matrix A, for 
N=720, m=2 and ~=58'. 



Actually, we are not interested in the eigenvalues of A themselves, but 

they are only a instrument in the process of calculating the covariances of 
2 the star parameters. Let C= cr N-' be the covariance matrix of the star 
0 ss 

parameters, with cr the standard deviation of unit weight. C is also cyclic 
0 

symmetric, so C = c(i-j), with c(i-j) the so-called covariance function. 
i j 

The covariance function c(k) is computed from the inverse transform of the 

eigenvalues l/h of N-l, with A the eigenvalues of N and h equal to 
SS 

ni( 1-h ) where h are the eigenvalues of A. Then 

-2 2 
NI2 

c(k) = r 1 2n jk 
(l-h( j )  1 cos ( - 

N 1 
j =  1 

is the covariance function of the star parameters, with h(j)=A(j) the j'th 
-2 2 - eigenvalue of the iteration matrix A and cr =is /nw. The summation starts at 1, 

because h(0)=1 corresponds to the rank defect in A (viz. the corresponding 

eigenvalue in the normal matrix is zero). Omitting h(0) from the inverse 

transform gives the same results as if we would have computed the minimum 

norm solution. The covariance function is plotted in figure 5.9 for ~ ~ = 1 .  

Figure 5.9 - Covariance function of the star parameters, 
for N=720, m=2 and ~=58'. 



The variance of the abscissae, crC is givenby c(O), 
star '  

-2  2  - where N is the number of stars and c=cr /nw, the hypothetical variance of a 
0 

2  star, assuming a perfect attitude knowledge (cr 1. The second part of the 
obs 

expression is the so-called rigidity factor R, which is defined as 

0- 
2 variance after adjustment 
s t a r  - R=-- 

0- 
2 variance assuming a perfect attitude and instrunient 
o b S 

The rigidity factor can be considered as a measure for the geometric strength 
of the network of measurements. The rigidity factor as a function of N is 
plotted in figure 5.10, for different values of the basic angle C and size of 
the field of view f. 

Figure 5.10 - Rigidity (R) versus number of stars (NI for 
different values of C and f 



The values for m are computed as follows, 

which accounts for the jumps in the rigidity in figure 5.10 (e.g. around 
N;1000, 1400 and 1800 for f=. 9'). Figure 5.10, as a measure for ~(01, i e. 
c can be misleading, because the rigidity should be multiplied by 02. 

s t a r '  
which is increasing with N: 

with <c2 > the mean variance of the field coordinate for one second 
t=l 

observing time and T4 the frame period (-2.13 S. ).  The results in figure 5.10 
0 for f=1.8 and f=4.5' are more or less representative for th_e improvement in 

the star abscissae due to attitude smoothing (the value of c should be 
computed with f=O.gO, since the actual field is not changed). Further, it 
will be clear from figure 5.10 that ~=58' is a better choice for the basic 
angle than c=60°. 

Table 5.10 - The, mean observed and theoretical (regular), variance 
and rigidity for the CERGA and Lund data. 

c (mas) 
s t a r  

1 observed regular l observed regular l 
CERGA dataset I1 

We should be very careful in comparing these theoretical results with 
the results obtained from simulation experiments. Two, not very realistic, 
assumptions have been made in the derivation of these theoretical results: 
a. a regular scan pattern, i.e. each star must be observed the same number of 

times n, 
b. equal observation weights, i.e. the magnitude of stars must be the same 

and stars must be distributed regularly over the RGC band. 
In the typical scan pattern of the RGC-set the stars near the scan nodes are 
observed more frequently (n-90) than the stars at 90' from the nodes (n-18). 
Actually, the first assumption holds only in case of a RGC set consisting of 
one scan circle. Therefore, in interpreting the theoretical results we must 
do as if the RGC consists of one scan circle. I.e. instead of N, the number 
of stars in the RGC set, and n, the average number of times a star is 
observed, we will use 

Lund dataset 



The value of m, the average number of stars visible in one of the fields of 
view, is not changed. In table 5.10 the theoretical and observed values, for 
the rigidity and variance are given for the CERGA and Lund data. 

The regular rigidity does not fit the experimental data very well. For 
CERGA dataset I I, which contains in this case stars brighter than magnitude 
10 only, the theoretical values for the rigidity and star variance are too 
low. For the Lund data, which contains stars up to magnitude 13, the 
theoretical values are too high. The rigidity depends very much on the star 
magnitude: viz. in case of the ~und data the rigidity varies from 15 for 
stars brighter than magnitude 6, to almost 1 for magnitude 13 stars. 
Evidently, the regular rigidity is not a good measure for the strength for a 
network of stars with different magnitude. 

5.5.4 Variance for a Regular Star Network of Different Magnitudes 

In the preceding section we assumed that all observation have equal 
weights, and therefore both the normal matrix and iteration matrix A were 
circularly symmetric. In this section we will derive an analytical expression 
for the case where the observation weights are not equal. However, we still 
assume that stars are observed the same number of times, i . e. the scan 
pattern must be regular. 

Again let D be the diagonal matrix with (Dlii=wi. Then N can be 

decomposed into 

N = D - DAD (5.37) 

with A = D-l-D"N D-' Let A' be the iteration matrix from the preceding 
-'l section, then A=A'D . Obviously (A), ,rO, with 

Now assume W = w,/n and n, the number of observations per star, is the same 
ki 1. 

for each star. So 

Further assume that the basic angle corresponds to an integer number of stars 
g and that W = W is the same for each frame. Then 

k a 

with <W.> the mean weight per star. In this particular case A is circularly 
1. 

symmetric, with (A) .=a(i-j) identical to equation (5.29) except for a 
i J 

constant factor <W;>. Thus the eigenvalues h(j)=A(j) of A are precisely a 
2m factor - = - smaller than the eigenvalues of eq. (5.32) for Burrow's 
nw <W.> 

a I. 

iteration matrix, which was used in the preceding section. 



The inverse of the normal matrix N is equal to 

Now, let us consider the second part of this equation. Generally, the product 
of two cyclic symmetric matrices, which results again in a cyclic symmetric 
matrix, can be written in terms of a convolution, and the same can be done 
for the powers of the cyclic symmetric matrix. But, unfortunately, the matrix 
product DA, or more specific. D, is generally not cyclic symmetric. D is only 
cyclic symmetric when its diagonal elements are equal. Now, we will use in 
the second part of the equation D' instead of D, with (D'Iii=<wi> Vi, where 

<W.> is the average weight per star, and we will use only in the first part 
L 

of the equation the original weights. Then, the discrete Fourier coefficients 
A.(j) for row i of the second part of equation (5.39) are 

L 

with A (j) the eigenvalues of the cyclic symmetric iteration matrix A and 

assuming 1 <w .>A (j) l < 1 for the second part of the expression. Since 
L a 

2m - 1 A (j) < - -- our assumption I<w.>A (j)(< 1 is always fulfilled. 
a nw <W.>' L a 

L 

0 Figure 5.11 - Influence of the attitude for C=58 and f=O.gO. 

For the i' th row of the covariance matrix of the star part we may write 
c. (i-j)=C with c the covariance function for the i'th unknown. Then c 
L i j' i i 

follows from the inverse Fourier transform of the eigenvalues Ai(j), with 

2 andc.(O) =c2 + (r2 with(r2 =(r/w the variance assuming perfect 
L obs att' obs o i 



attitude knowledge and cr2 the so-called influence of the attitude, given by 
att 

2 2 2 P ha( j) - 2 
C = C = C  R 
att 

O j=l - W  (j)) 
att 

L a .. 
The weights W only plays aminor role inc' therefore the influence of 

i 
2 

att' 
the attitude C,,, is almost independent from the star under consideration. 
This effect is also observed in simulation experiments. The influence of the 

attitude is given in figure 5.11 as function of N, for f=O.sO, ~=58O and 
-2  2 
C =C /tw.>=l, so that actually the rigidity factor Ratt=02 /i2 is plotted. 

0 L att 
These theoretical results still do not agree very well with our experimental 

results: R -2.9 for CERGA dataset I I and Ratt- .74 for the Lund data. 
att 

Similar results are obtained if the star parameters are eliminated 
first. - Elimina ion of the star parameters gives a new normal matrix -ti N = N - N N N for the attitude part. Then, after inversion of N 
aa aa as ss sa aa' 
which, under certain assumptions, may be done analytically, the covariance 
matrix of the star part can be computed from (see appendix C) 

where Sij=1 iff i=j, else 6 .=0. Assume as before that every star is observed 
i J - - l  in n frames and wki=wi/n, then with ci( l-j)=(Nss) ij, 

which is more or less the same result as before, i.e. the part with the 
double summation gives the influence of the attitude on the star covariances. 
Clearly, this is an average over a large number of frames, and it is, 
therefore, less sensitive for fluctuations in the star magnitude. This holds 
especially in case of attitude smoothing. So, we believe that C is a 

att 

better measure for the strength of the network than the rigidity. Equation 
5.44 can be inverted analytically under certain assumptions; i.e. each star 
must be observed on the same number of scans and the sum of the observation 
weights over an observation frame must be the same for all frames. This 
approach is less restrictive on the scan pattern than before, but the scan 
pattern must still be regular. Therefore, we will not pursue this approach 
any further. 

Our conclusion is that, although analytical formulae give some insight 
in the covariance structure, they can not yet be used to compute the 
variances and covariances analytically with sufficient precision to be of any 
use in the data reduction. Therefore, the (colvariance must still be computed 
by (partial) inversion of the normal matrix (see chapter 71, or other types 
of quality indicators, generally functions of the least square residuals, 
have to be used. Further, we believe that the influence of the attitude is a 
better measure for the strength of the network than the rigidity. 



CHAPTER 6 

ATTITUDE SMOOTHING 

Smoothing of the along scan attitude during the great circle reduction 
improves the precision of both the along scan attitude parameters and the 
star abscissae. In this chapter a number of models for the Hipparcos attitude 
are evaluated, with emphasis on numerical smoothing with B-splines, and the 
corresponding improvement of the star abscissae is discussed. 

6.1 Introduction 

The attitude of the Hipparcos spacecraft is, except for small vibrations 
(jitter) a smooth function of time. Thus the along scan attitude, which is 
initially computed per observing frame of 2.13 S., can be further improved 
by introducing relations between the attitude values of neighbouring frames. 
In fact an additional adjustment of the along scan attitude, the so-called 
smoothing step, is carried out using a model for the attitude which requires 
relatively few parameters. The improvement of the attitude leads also to 
improved star abscissae and instrumental parameters, and hence to an improved 
final star catalogue. 

Two ways of smoothing are distinguished, dynamical and numerical 
smoothing. In case of dynamical smoothing we think of an actual dynamical 
model of the spacecraft, with as unknowns just the initial conditions and 
some physical parameters describing the torques. In case of numerical 
smoothing the attitude will be developed in the form of some time series, 
with as unknowns the coefficients of the series. Smoothing reduces the number 
of attitude unknowns; hence, it effectively amounts to enlarging the field of 
view. Within FAST two different approaches for numerical smoothing exist. For 
the three-axis attitude reconstruction from Star M pper transit times [Donati B 
et al, 1986al the so-called "semi-dynamical model" , developed by Centro di 
Studi sui Sistemi (CSS) in Torino, is used. In the great circle reduction 
numerical smoothing of the along scan attitude with B-splines has been chosen 
[van Daalen G van der Marel, 1986al. 

The B-spline model aims at reconstituting the along scan attitude angle 
for a complete reference great circle with an accuracy of 2-3 mas, which is a 
considerable improvement over the so-called "geometric" attitude with one 
parameter per frame. The B-spline model consists of a finite series of 
shifted B(ase1-splines of fixed degree. The shape of each B-spline depends on 
the location of the so-called knots. Multiple, overlapping, knots have to be 
inserted to account for attitude rate jumps due to control pulses (gas jet 
actuations), and single knots have to be inserted to account for attitude 
perturbations between the gas jet actuations. 

The semi-dynamical model, aims at reconstituting the attitude (over one 
revolution) from star mapper data with a typical accuracy of 100 mas. It 
consists of a finite series of base functions which gives the - theoretical - 
response of a rigid body to two types of torques: namely the response to the 

Actually CSS calls it "dynamical model". We prefer to call it "semi- 
dynamical" in order to prevent confusion with true dynamical smoothing. 



external and internal disturbing torques (disturbance torque response) and 
the response to a train of impulses due to the control torques (gas jet 
response). The measurements from the star mapper (SM), which are used by the 
attitude reconstruction, are fewer and less precise than the measurements 
from the image dissector tube (IDT), which form the basis of the along scan 
attitude computed during the great circle reduction. This accounts for the 
different results of the attitude models used in the attitude reconstitution 
and great circle reduction, but it does not tell us anything about the 
precision of the two models themselves. Also star mapper measurements are 
only available at irregular times, whereas the IDT measurements are available 
at regularly spaced times. 

In this chapter both the B-spline and semi-dynamical model are evaluated 
in the context of the great circle reduction. True dynamical smoothing is 
only briefly touched upon. 

6.2 The Hipparcos attitude 

6.2.1 The Hipparcos Attitude Motion 

The Hipparcos satellite is a three-axes controlled body which follows a 
nominal scanning law composed of three motions (figure 6.1): 

1. spin motion around the body z-axis, perpendicular to the two viewing 
directions, at a rate w =168.56 arcsec/s (11.25 rev/day), 

d 
2. precessing motion of the body z-axis around the satellite-Sun line at a 

rate of w =0.263 arcsec/s (6.4 rev/year) and with a constant inclination 

of ~ 4 3  0 P 

3. yearly motion of the Sun, i.e. the satellite-Sun line moves in the 
ecliptic plane at an average rate w =0.041 arcsec/s (1 rev/year). 

The spin and precession rates are actually slightly modulated to maintain a 
constant scan rate of w=168.75 arcsec/s along the so-called scanning circle, 

0 
the intersection of the viewing plane with the celestial sphere. 

Figure 6.1 - Attitude rates of the nominal Hipparcos scanning law 



The maximum permissible deviation of the three satellite axes from the 
scanning law is 10 arcmin. When one of the axis deviates by more than 10 
arcmin., or when the scan rate deviates by more than 2%, gas jets will be 
fired which will generate control torques on all three axes. The duration of 
each firing (50-500 ms) is computed for each axis separately, using a control 
strategy which takes the expected disturbance torques into account and is 
designed to maximize the time interval between gas jet firings. On the 
average gas jets will be fired once per 600 S, but at least 400 S apart 
[British Aerospace, 19831. The effect of such a control strategy is a non 
uniform sequence of variable length control pulses on all three axes, with a 
value of 0.02 Nm. 

Internal and external disturbance torques perturb the nominal attitude 
motion. The most severe disturbances are internal torques due to the rate 
gyro's and mass unbalance (non-diagonal tensor of inertia), and external 
torques due.to the solar radiation pressure, gravity gradient torque and the 
spacecraft electric dipole in the Earth's magnetic field. Less severe 
disturbances are torques due to the Earth's albedo, Earth's infrared emission 
and solar wind. An estimate of the peak values is given in table 6.1. 

Table 6.1 - Expected peak values of the disturbance torques [pNm] 
from [Belforte et al., 1986al 

Solar radiation 11. 
Gyro moments 10.6 
Gravity gradient 1.5 
Unbalanced masses 1.2 
Earth magnetic field .65 
Earth infrared emission .06 
Earth albedo .03 
Solar wind .O1 

The internal torques are expected to be constant during a spin period, 
and are mainly perpendicular to the spin axis. The solar radiation and solar 
wind torques are expected to be periodic with the spin motion (due to the 
spin motion and quasi-constant Sun aspect angle). The other torques are 
periodic over 12 or 24 hours due to the geostationary orbit and are modulated 
by the spin motion. 

A detailed knowledge of the properties of the Hipparcos attitude prior 
to the mission is essential for both numerical and dynamical smoothing. For 
numerical smoothing in the attitude reconstitution and great circle reduction 
phase semi-analytical representations of the attitude parameters in time will 
be used. The choice of a representation, but also the number of parameters, 
are affected by the properties of the Hipparcos attitude. For the dynamical 
smoothing a model based on the spacecraft's equations of motion will be used. 

The most straightforward way to study the behaviour of the Hipparcos 
attitude is to carry out a number of numerical integrations of a system that 
represents as well as possible the dynamical properties of the satellite. The 
simulated attitude produced can be analyzed or used directly in tests of the 
smoothing procedures. However, in order to prevent optimistic conclusions, 
the assumptions underlying the simulation process should be completely 
independent from the smoothing procedures. 



The rotation of a rigid body is given by the kinematic- and dynamic 
equations of motion in the body frame 

with: 

A the orthogonal attitude matrix, which gives the orientation of the 
body frame with respect to an inertial system, 

0 W -W 

Q = [ -  - ;: ] . where W , W and W are the three components of the 
1 2  3 

angular velocity vector, 

I the 3x3 symmetric moment of inertia tensor, and, 

a(A) the torque on the spacecraft, given in the body frame. 

Numerical integration with the appropriate values for I and $(A) gives the 
attitude and angular velocity vector of the spacecraft. The actual satellite, 
due to the rate gyros and the somewhat flexible solar arrays, is not really a 
rigid body, but these effects will be neglected. Table 6.2 gives an overview 
of the attitude simulators, used in the various simulation experiments which 
are discussed in this chapter. 

Table 6.2: Overview of the attitude simulators and simulated 
control- and disturbance torques. 

Inertial System 

Attitude Rep. 
Representation 

Scanning law 

Num. Integration 

Tensor of Inertia 

Torques : 
Solar Radia- 

tion 

Gyro induced 

Gravity grad. 

Control strat. 

CERGA 

Ecliptic 

3-1-3 Euler angles, 
transformation to 
3-2-1 angles wt. 
the RGC system 

real istic 

Bul irsch-Stoer 

diagonal 

1. 1st 6 harmonics 
2. Computation 

(see section 
6.2.3): 

a. tabulated 
b. computed 

yes 

yes 

1)British Aerospac. 
2)Pinard et al. 

Great Circle Red. 

RGC 

3-2-1 Euler angles 

simplified 

Runge-Kutta 

diagonal 

1st 6 harmonics 

Yes 

no 

ad hoc 

CSS 

RGC 

3-2-1 Euler angles 

real ist ic 

? 

full 

variable number of 
harmonics, compu- 
ted from CERGA 
solar radiation 
torque (2a) (max. ~ 
100 1 

Yes 

Yes 

British Aerospace 



The most important torques are undoubtedly the control, solar radiation 
and gyro induced torques. The control and solar radiation torque, which have 
a large influence on the attitude modelling, are discussed below. The gyro 
induced torque is expected to be constant over the mission (except when the 
configuration of the rate-gyros is changed) and therefore hardly influences 
the attitude modelling. The gravity gradient torque is small because of the 
high orbit of the spacecraft and its symmetric and compact construction. 

6.2.2 Control Torques 

An intermittent attitude control by gas jet firings, which minimizes 
jitter and is optimized for smoothing, is adopted for Hipparcos. The thrust 
of the gas jets are fixed (0.02 N), but the duration can be varied between 50 
and 500 ms, in steps of . 13 ms. Assume for the mo ent that the tensor of 1 inertia is diagonal, with 111=1 and I - 350 [Nms I ,  then the effect of a 

22 33 
gas jet firing of t seconds on the along scan attitude is given by 

on 

with N = 0.02*ton*1 [Nml and 1-1 [m]. So a maximum firing of 500 ms gives a 
3 

scan rate change of 6 arcsec/s (-4% of the scan rate). 

Between gas jet firings the attitude is driven by the smaller 
disturbance torques, which result in a smooth attitude motion. However a 
considerable amount of high frequency attitude jitter is generated by the gas 
jet actuations due to structural resonances, especially influencing the 
observations in the first few frames after the actuation. On the whole the 
attitude jitter is approximately five times as low as in a satellite driven 
by reaction wheels [Kovalevsky, 19841. 

6.2.3 Solar Radiation Torque 

The torque induced by the solar radiation is computed by modelling the 
satellite surface using 16 simple geometric elements: 3 rectangular solar 
arrays, 6 rectangular walls including 6 rectangular radiators and an 
hexagonal bottom. The shadows cast by the solar arrays on the walls are taken 
into account: the illuminated part of each wall is divided into rectangles 
and triangles with uniform surface structures [van der Marel, 1983a, Pinard 
et al. , 1983, Brit ish Aerospace, 19831. For each surface the specular and 
diffuse reflection, as well as the absorption are taken into account. Only 
radiation pressure by the Sun is considered, the contribution by the Earth's 
albedo can be neglected (see table 6.1). 

For each elementary surface the position r.(t) of the center of pressure 
L 

and the illuminated area A.(t) of the surface are computed. Let S be the unit 
L 

body vector in the direction of the Sun, n the outer normal vector of each 
i 

surface element and C C the coefficients of absorption, specular and 
a'Cs' d 

diffuse reflectivity of each elementary surface, with for an opaque surface 

C +C +Cd=l. Then the torque is given by a S 

where p is the mean flux (radiation per unit area) divided by the speed of 



light, p depends on the di tance of the Earth to the Sun. According to 
IWertz. 19181 p=1358 Js-'m-' at 1 A". 

Let the unit body vector S in the direction of the Sun be given by 
T 

S = ( cos a cos g , sin a cos c , sin c 1, with c the almost constant Sun 
aspect angle (43 +10') and a the Sun aspect azimuth. The amplitude and time 
derivatives of the solar pressure torque, assuming a point like Sun, have 
been plotted in figure 6.2 as function of the Sun aspect azimuth. 

Discontinuities in the first derivative of the torque occur when a side 
panel enters and pother leaves the illuminated side of the spacecraft, which 
happens at a = 30 + i x 60' (i=O,. . ,5). The corresponding torque goes 
through zero, but the center of pressure has a discontinuity in its position; 
it jumps from one face to another. This discontinuity influences the third 
derivative of the attitude. There are also discontinuities in the secon'd 
derivative of the torque when the shadow of the solar arrays enters or leaves 
one of the surface elements: the center of pressure then changes suddenly its 
path without a discontinuity in position. 

The solar radiation torque is periodic with the spin frequency (Sun 
aspect azimuth). Therefore its components along the body axes can be 
developed into a Fourier series with fundamental frequency f=2n/o with 

0 0' 
f =1/7680 Hz for the nominal scan rate (o -168.75 arcsec/s). In figure 6.2 

0 0 
the amplitude spectrum of the computed solar radiation torque is given. The 
amplitude decreases exponentially with the frequency, by about an exponent of 
t WO (40 dB Nddecade ) . 

In reality the solar radiation pressure torque will be smoother. The 
Sun, which so far was modelled as a point source, has an apparent diameter D 
of approximate1 y 0?53, and therefore the previous1 y computed discont inuit ies 
are in reality smoothed over 11.3 S (.53/f 1 in time. In addition the 

0 
geometric figure of the spacecraft is more complex: the basic shapes are 
present, but telescope baffles, apogee booster, gas-jet trusters, antenna's 
and surface irregularities have not been modelled. On the one hand these 
irregularities will smooth the existing discontinuities, but on the other 
hand they will make the torque more random. Other deviations in the computed 
torque may be caused by variations in the solar flux, mismodelling and aging 
of the coefficients of absorption and reflection. 

Let nl(a,c) be any component of the previously computed solar pressure 

torque, then a more realistic torque n (a,c) follows from the convolution 

with h(6,c) the radiation profile of the Sun. The surface brightness of the 
Sun is ne rly uniform over the surface of the disk, so h(6,c) = 4/n~' for 

2 2  a2 4(6 +c )sD and 0 elsewhere. The major variations occur in the Sun azimuth 

Figure 6.2 (on the right) - Solar radiation pressure torque 
(a), first time derivative (b) and second time derivative (c) 
over one rotation of the satellite, and the amplitude spectrum 
of the solar radiation pressure torque (d), computed from a 
mode l of the sate l l it e . Legenda: ---------.-- n - . . - . . - n n 

X ' Y '  Z 



1st d e r i v  iNm/deg * le -61  t o r q u e  ! i r m  x l e - 6 1  

a m p l i t u d e  [Nm] 



angle a=ot , whereas the Sun aspect angle remains more or less constant 
0 

(+l0 arcmin). Therefore the 2-D convolution may be replaced by 

' I  . The Fourier transform of h(r), with h(r) = h(6,s)ds = - nT 
0 

with o=2nf, is 

where J (o) is the Bessel function of the first kind of order 1 [Gradstheyn, 
1 

1980, p. 4191. H(o1 is real since h(r1 is an even function. According to the 
convolution theorem convolution in the time domain is equivalent to 
multiplication in the frequency domain, i.e. the spectrum N(o) of the more 
realistic torque n(t) is 

N(o) = N' (o) H(o1. (6.61 

with N'(o) the Fourier transform of n'(t). The transfer function H(o) can be 
represented by 

which is somewhat similar to the Bessel function Jo(oT). In other words this 
n 2 transfer function acts like a low-pass filter, with H(o) - 1 - . 

The solar radiation torque is not present when the satellite moves 
through the Earth's shadow cone, the so-called solar eclipse. Solar eclipses 
happen during 40 days around the spring and autumn equinoxes and last less 
than 75 minutes. During solar eclipse the solar radiation torque first 
decreases while the satellite moves through the penumbra (half-shadow) until 
it vanishes when the satellite enters the umbra (shadow). During the passage 
through the penumbra, which takes about 2.5 minutes, the solar radiation 
torque is modulated by the change in solar radiation. Since the surface 
brightness of the Sun is nearly uniform, the flux is directly proportional to 
the area of the solar disk which can be seen from the spacecraft. The Earth's 
atmosphere will absorb and scatter some light, and hence a slight increase in 
the size of the shadow and a general lightning of the entire umbra due to 
scattering will occur. 

The effects of an eclipse on the attitude are twofold. First the 
attitude will be more smooth in the umbra because of the absence of the solar 
radiation torque. Secondly, at the start and end of the passage through the 
penumbra there will be a discontinuity in the third derivative of the 
attitude similar to the discontinuities caused by the panels, except that 
this discontinuity will be somewhat smoother due to some scattering effects 
of the earth atmosphere. 

6.2.4 Attitude Jitter 

By attitude jitter we designate all short periodic motions of the 
viewing direction which cannot be reconstituted a-posteriori by the data 
reduction. Structural vibrations are the primary source of attitude jitter. 



They are mainly due to elasticity of the solar panels, which are excited by 
gas jet actuat ions. Other sources of attitude jitter are the high frequency 
components of the disturbing and control torques which are not modelled in 
the reduction, rate gyro noise and ABM particles shocks, caused by small 
particles inside the apogee booster motor,(ABM) which hit at random times one 
of the walls of the booster. In [Froeschle et al., 19831 three types of 
attitude jitter are distinguished: a) high frequency (>20 Hz) white noise, b) 
medium frequency (between 0.5 and 20 Hz) with some peaks around 3 Hz 
corresponding to proper frequencies of the satellite with a very low damping 
[Kovalevsky, 19841 and c) a low frequency contribution that blends into the 
deterministic attitude variations. 

The effects of attitude jitter on the grid coordinates will be partly 
eliminated by the observing strategy. During each elementary observing period 
T3 (see section 3.4, p. 23) stars are observed quasi simultaneously, but 
between successive periods a smooth attitude motion is assumed. Let P(f) be 
the power spectral density of the attitude jitter, then the jitter induced 
error on the computed angles is 

where W(f) is the spectral window corresponding to the observation strategy 
and attitude modelling, i.e. for the geometric attitude model [Matra, 19841 

Computations have shown that o is of the order of 2 mas [Kovalevsky, 19841 " 
and, due to medium frequencies with a low damping, o is practically constant 

B 
over the mission except for the first few frames after a gas jet actuation. 

In case of smoothing the term "sinc(nfT4)" in the window function should be 

replaced by the corresponding sampling function, i.e. for smoothing with 

B-splines "sinc(nfT5)k'1, where T is the interval of the B-spline series and 
5 

k the order of the splines (see section 6.5). In general this results in a 

slight increase of c mainly due to the low frequency jitter. v' 

6.3 Hipparcos Attitude Modelling 

In this section the different methods and models for attitude smoothing 
are described. We distinguish: 
1. Numerical smoothing with: 

a) the semi-dynamical model, 
b) the B-spline model, 

2. Dynamical smoothing. 
In case of numerical smoothing the attitude of the telescope is represented 
by a finite series of base functions for each of the three attitude angles. 
In the semi-dynamical model the base functions are chosen in such a way that 
the series is actually the solution of the dynamic and kinematic state 
equations of a rigid body driven by two types of torques: a Fourier series 
which models the disturbance torques and an impulse train which models the 
control torques [Donati et al, 1986a, Donati, 1983bl. The B-spline model on 
the other hand uses analytical functions, namely B-splines, which are not 



directly related to the physics of the spacecraft [Van der Marel, 1983~. 
1985al. Other analytical functions have been considered in [Van der Marel, 
1983~1, but B-splines gave the best performance in relation to the cpu time 
needed for the calculation. Also B-splines proved to be the most flexible 
and, with a suitable selection of multiple knots, they allow to extend the 
analytical representat ion over the gas jet actuat ions. 

In case of dynamical smoothing a dynamical model for the spacecraft is 
used, with as unknowns the initial state plus some physical constants. This 
model is much more complicated than the models considered so far, and the 
computations are heavy. However, from a conceptual point of view dynamical 
smoothing is superior, provided that we have a very accurate dynamical model 
of the spacecraft. 

6.3.1 Definition of the Attitude Angles 

The Hipparcos attitude at time t in a reference great circle (RGC) set 
is defined by an ordered sequence of Euler rotations which align the 
spacecraft's body axes (instrumental frame) with the reference great circle 
frame. The body axes [x,y,zl are related to the two central viewing 
directions; the vectors from the focal point of the telescope in the 
direction of the projection of the zero-point of the grid, through the 
preceding and following field of view, on the celestial sphere. The origin of 
the body frame is chosen as the center of mass of the spacecraft. The z-axis 
is orthogonal to the two central viewing directions, and the x-axis is 
parallel to the bisector of the two viewing directions. The y-axis completes 
the triad. The external reference frame is defined by three axes [u,v,w]. The 
W-axis is defined by the pole of the chosen reference great circle, the 
U-axis defines the origin on the reference great circle and the v-axis 
completes the triad. 

Figure 6.3 - The attitude angles 

Two different sequences of attitude angles are considered. The 3-2-1 
sequence of Euler rotations aligns the body axes [X, y,zl with [u,v, wl by 
first a rotation -4 around X which brings the y-axis in the RGC plane, 
followed by a rotation -8 around the new y-axis which brings the x-axis in 
the RGC plane finally followed by a rotation -$ around the W-axis which 

aligns the X and y with U and v. In the semi-dynamical model used by the 



attitude reconstruction, the Euler angle JI is substituted, for modelling 
e 

reasons, by the so-called astronomical angle J I .  JIa is the sum of the first 

and last angle from the 3-1-3 sequence of Euler rotations, i.e. the sum of 
the rotations around the z and W-axis, which aligns the x-axis first with RGC 
node and then with the U-axis (figure 6.3). 

The main advantage of JIover JI is that this angle is free from second 

order effects due @ and 4, and thus depends only on the spin motion and its 

perturbations. Let JI = JI + A#, with AJI 
e a 

- sin @ sin 4 
sin AJI = 

1 + cos @ cos 4 

1 1 3 1  3 then Jle = Jla + ?a@ -z4 @+26V@ . 

6.3.2 B-spline Model 

A cubic spline consists of a number of cubic polynomial segments joined 
end to end with continuity up to the second derivative at the joints. The 
cubic spline going through the joints has among all Interpolating functions 
the property of least curvature. More precisely, the integral of the second 
derivative is minimal. In general splines consist of polynomial segments, of 
fixed degree, joined end to end with continuity in a limited number of 
derivatives at the joints, the so-called knots. One way to represent them 
is by a linear combination of shifted base functions [De Boor, 19781 

with k the order of the B-spline, i.e. the maximum degree of the polynomial 

segments plus one, C i ,  i=l,. . . , N+k, the abscissae of the knots and A i' 
i=1, . . . ,  N the coefficients of the series. Each base function Bi(t), the 

so-called B-spline of order k, is completely defined by the abscissae, 

C i * .  - p < i + k ~  of k+l knots. Outside the interval [<.,<i+kl L the B-spline is 

zero. In a B-spline series of order k two consecutive B-splines always have k 
knots in common. In figure 6.4 the B-spline functions of order 1, 2 and 4 are 
given. An example of a B-splines series is given in figure 6.5. 

AI- 
Figure 6.4 - B-splines of order 1, 2 and 4. 



Figure 6.5 - Example of a B-spline series consisting of 8 cubic 
(k=4) B-splines with coefficients h =.5, h =l, h =.5, h =-.5, 

1 2 3 4 
h =-l, h =-.25, h =land h =.5, and knots < =< =< =< =0, < =l, 

5 6  7  8  1 2 3 4  5 < =< =< =2 
6 7 8  

and <,=<, ,=< =< =3 . 
1 1  12 

B-splines can be computed recursively from B-splines of lower order, 
starting from the B-spline of order 1, the unit step function: 

[ Bi(t;ci, l) = 1 for <i.t<<i+l and Bi(t;Ci, l)=O otherwise 

The (k-1)'th derivative of a B-spline series of order k is "piecewise" 
constant; there may be jumps at the knots, but between two consecutive knots 
the derivative is constant. Multiple knots, or coinciding knots, give 
discontinuities in the lower derivatives. E.g. L coinciding knots result in 
discontinuities in the (k-Ll'th and higher derivatives of the series. 

An alternative representation for a spline is the so-called piecewise 
polynomial representation [De Boor, 19781: 

where <1,<2,..,<L+1, with <i+l><i, are the so-called breakpoints, 1.N the 

number of polynomial pieces and c the j'th derivative at breakpoint < 
i j i' 

Multiple knots in the B-spline series are counted as a single breakpoint in 
the piecewise polynomial representation. If the piecewise polynomial 
representation is derived from the B-spline representation the coefficients 
c are not independent, viz. there are k times L coefficients c necessary i j  i j  



and only L plus k B-splines (in case of only single knots, more are needed in 
case of multiple knots). For continuity up to the m'th derivative at the i'th 
breakpoint (O<m<k-l), which consists of k-m-l coinciding knots, the right and 
left derivatives at Ci must be equal, i.e. 

c = lim ~(~)(t;<.k.N) for j=O,. .. ,m 
ij 

(6.14) 
t+ Ci 

The derivatives of the spline can be computed in a very simple way from the 
piecewise polynomial representation, t .  e. 

The function values, and/or derivatives, of a spline can be computed more 
efficiently from the piecewise polynomial representat ion (e. g. by Horner's 
rule) than from the B-spline representation. On the other hand the B-spline 
representation is preferred when a spline has to be fitted to some 
experimental data, because with B-splines no additional conditions between 
the coefficients have to be added and the degree of continuity at the 
breakpoints can be regulated very easily. 

The Hipparcos attitude is not continuous in all its derivatives and it 
goes without saying that the B-spline series must have the same 
discontinuities. Assuming that a gas-jet actuation can be modelled as an 
instantaneous impulse, which seems justified in view of the relative short 
duration of the pulse, it will produce a discontinuity in the first 
derivative of the attitude. Solar eclipses, and shadows cast by the solar 
panels on the sides of the spacecraft, give at some instants rapid changes in 
the third derivative of the attitude. These changes can be modelled as 
discontinuities in the third derivative; By placing the right number of 
coinciding knots at the discontinuities the B-spline series will have the 
same discontinuities. The start and end of the series, which can be 
considered as discontinuities in the function itself, are dealt with in the 
same way. 

The number of knots needed to deal with discontinuities, due to the 
start and end of the data, gas jet actuations and eclipses, are usually not 
sufficient to obtain the desired precision. Other knots are needed in order 
to model the continuous, but unknown, Hipparcos attitude between 
discontinuities with sufficient precision. These knots can be regularly 
distributed over the intervals between two discontinuities, as close as 
possible to a nominal density (1/T 1. But other strategies can be considered 

au 
too (see section 6.6). Two different values for the nominal density are 
foreseen, one for the nominal, sunlit, case and another one in case of a 
solar eclipse. A-priori values for the nominal density can be obtained by 
experiments on simulated data, but they should in any case be verified during 
the mission. 

The number of B-splines in the series is computed as follows: 

N = Nint + L (N +l) + 1 + Nsolar, l = k-2 (6.161 
gas 

with N the number of gas-jets within the attitudesequence under 
gas 

consideration, k the order of the B-spline and N the number of 
solar 

additional knots needed to model discontinuities other than gas jet 



actuations or the start and end of the data. N which can be compared with 
i n t '  

the role of the number of harmonics in the following section, is 

N 
i n t  

where t are the times of a gas-jet actuation and T the reciprocal of the 
j av 

nominal knot density. Unless there is a relatively large gap in the attitude 
data ( e . g .  during an Earth or Moon occultation), a single B-spline series can 
be used over 5 or 6 scanning circles (one Reference Great Circle). 

6.3.3 Semi-dynamical Model 

The sum of the disturbing torques is an unknown, deterministic, 
quasi-periodic and band limited signal. Such a torque can be approximated by 
a truncated Fourier series with fundamental frequency w =2nf By integrating 

0 0' 

the state equations twice it follows that the contribution of the disturbance 
torques to the attitude can also be modelled by a Fourier series plus a few 
extra, basically parabolic, functions, which - at least for the transversal 
angles 4 and I$ - are modulated by the spin motion. The disturbance torque 
response for JI , with (unknown) parameters p, S and c, is modelled by 

N *; p, + p (t-t ) + P,(t-to)2+ 1 (S .sin(nw t) + c.cos(nwot) ) 
1 0 L 0 L n= l 

(6. 18. a) 
The disturbance torque response for 4 and #J is modelled by 

4 = pO + p,(t-t ) + p t sin(o (t-t ) l  + p t cos(o (t-to)) + 
0 S 0 0 C 0 

and similarly for I$, with, of course, different parameters p, S and c for 
each angle. 

The gas jet actuations are modelled as ideal impulses of unknown 
intensity centered on the known actuation times. This results in a rate 
change in the attitude, which is modulated, as regards the transversal angles 
4 and #I, by the spin motion. The corresponding base functions are for @ 

(t-tl) , t r t  1 
(6.19. a) 

and for 4 and #J 

sin w (t-tl l-cos o (t-tl t zt 
0 0 1 (6.19. b) 

where t = l N  are the times of the gas jet actuations. 1' gas' 

The total number of base functions N (the dimension of the vector of 
to t  

unknowns) depends on the number of harmonics and number of internal gas jets 

= Nharrn to t  
+ 1 (N +l) + 2 

gas 

with 1=1 for the spin angle * and 1=2 for the transversal angles 4 and I$. 

The unknown coefficients of the series are computed by a least squares 
adjustment on batches of data corresponding to one revolution. The number of 



gas jet actuations is fixed by the adopted control strategy, so only the 
number of harmonics can be varied freely in order to obtain the desired 
accuracy. 

6.3.4 Dynamical Smoothing 

In case of dynamical smoothing an actual dynamical model of the 
satellite is used, with as unknowns some parameters for the initial 
conditions, rate changes due to gas jets, and physical constants. In fact 
dynamical smoothing can be separated in two separate problems: 1) attitude 
computation and parameter estimation for the hypothetical case of a perfect 
dynamical model, and 2) updating and improving the dynamical model. 

Any dynamical model is completely defined by the dynamical equations, 
the moment of inertia tensor, the torques and some initial conditions. The 
equations, moment of inertia tensor and some of the torques remain reasonably 
constant, or can easily be computed, over the mission without having to 
estimate them for every great circle. The initial conditions, control torques 
and some other physical parameters, like the instantaneous solar flux, are 
not known a-priori with sufficient precision and have to be estimated more 
frequently because they vary. A provisional method for dynamical smoothing, 
based on the above observations, is presented below. 

Differencing of the geometric attitude computed during reduction on 
circles, taking proper care of the gas jet actuation, reveals the underlying 
torques quite well. Assuming that the gyro induced and gravity gradient 
torques can be modelled with sufficient accuracy from a-priori data, which 
seems reasonable, we can separate the solar radiation pressure torque. This 
estimate of the solar radiation torque can be used to update the solar 
radiation torque model computed from previous great circles, while estimating 
the current solar flux and, possibly, some other parameters. Integration of 
the state equations with unknown initial conditions and unknown rate changes 
at the gas jet actuations returns a more accurate attitude which can be used 
to improve the star abscissae. 

The solar radiation torque model gives the torque as function of the Sun 
aspect angle and azimuth. It also accounts for the influence of ageing on the 
absorption and reflection coefficients. The model will probably be based on 
the (elementary) geometry of the satellite, plus some correction terms which 
are computed over several RGC periods from the numerical differentiation. It 
is well known that numerical differentiation increases noise considerably. 
Therefore a preliminary smoothing with B-splines, followed by a double 
differentiation of the B-spline series, might be useful. This preliminary 
smoothing may be of a very high accuracy, involving much more parameters than 
used in numerical smoothing, because the results are only used to update the 
torque from previous RGC's, so that actually the torque is computed from data 
over several RGC periods. 

The accuracy of the model, between gas jet actuat ions, has not yet been 
verified. Maybe some additional parameters are needed. We thi k th t the - P  -3 total model is quite accurate for the medium frequencies (10 ..l0 Hz), 
whereas the lower frequencies could be modelled by just a few B-spl ines. 
Another problem might be thatthe three attitude components are coupled, 
while we only have accurate information on one component. Up till now we have 
only experimented with numerical smoothing and we have no definite 
conclusions about the feasibility, accuracy and economy of dynamical 
smoothing. No definite plans exist for incorporating dynamical smoothing 
during any stage of the data reduct ion. 



6.4 Modelling Error 

6.4.1 Preliminaries and Notation 

Let the function x(t) be a realization of one of the attitude angles @, 
8 or @ during some interval T and let x(t) E e(T), the linear function space 
of a1 l functions continuous on T. Let us adopt the L norm as norm for 2 
e(T), defined over the interval T=[a,bl, by 

llcl12 = l b-a fc(t12dt 

and let <c,d> be the inproduct of two functions c and d. defined over the 
interval T, by 

<c,d> = - c(t)*d(t) dt 
b-a f 
t=a 

Now, let $'(T) be a l inear N-dimensional subspace of e(T), spanned by the 

chosen base functions bi(t), i=l, . . . ,  N, for our attitude model, e.g. $'(T) is 

the l inear subspace of B-spl ines of order k and knot sequence t i=1, . . , N+k. 
Any function s(t1 E $'(T) can be written as 

i=l 

Define a orthogonal projector P 
9.8 

which projects functions c on $' along s$, 
the orthogonal complement of $' in C, with e = *s$. Here, and in the next 

sections, we write for brevity $' and e instead of f(T) and e(T). Now, let 

= Pf,s$(x) be the orthogonal projection of X on 9, then = s(t;h,N) can 

be described by a few parameters h. The model error GJ. is defined by the 
orthogonal complement of G 

" J. 
X = Ps$,$'(x) = (I-P 

such that X = + G'. Then is the best approximation to X in L sense, i. e. 
2 

for all S E $' : 11~-x11~11s-x11. The modelling error llG1ll is IIPs$,y(x))ll. 

T 
Let y = (yl, y2, . . , y ) be some measurements, with respect to X( t ) , at 

M 
discrete times t ,t 2,. . , tM , with E{yi}=H(x. t and let ;(t)=s(t;h, N) be 

1 
the weighted least squares estimate of x(t) given the measurements y and i 
weights W Evidently, ;E 9, ;E $'and ;-G E 9. Hence we canwrite for the 

i' 
estimation error 

with 11 G-xll the previously introduced model ling error and 11;-G11 the so-called 
measurement induced error which gives the effect of measurement noise on our 
estimate. None of the above mentioned error norms is available in practice; 



only the discrete Least squares error 
M 

II~-H(~III = w~(~~-H(;, t ) 2 (6.25) 

i=l 
which is minimized by the least squares adjustment, can actually be computed. 

The estimation, modelling and measurement induced error, which are in a 
sense more meaningful than the above mentioned discrete least squares error, 
can only be computed in simulation experiments, where we have simulated a 
"true" attitude. On the other hand, for the measurement induced error and 
modelling error some simple theoretical bounds can be given. But then, using 
the important equation 6.24, also a theoretical bound for the estimation 
error can be given. 

The .measurement induced error 11;-;l1 depends mainly on the measurement 
noise and degrees of freedom (number of observations minus number of 
unknowns) in the least squares estimation. Assume y-E{ y) is a stationary 

2 
discrete white noise with Gaussian statistics N(O,cm) and assume for 

simplicity E{yi)=x(ti). then 

with M the number of observations, N the number of parameters and c the 
m 

standard deviation of the uncorrelated Gaussian noise. On theoretical grounds 

one may assume, as will be shown in the next sections, that the modelling 

error l1 ;-xi1 decreases exponential l y with 

where r is the so-called modelling error exponent, (N-NO) the number of 

parameters which can be varied freely and c a constant which must follow from 

experiments. 

A theoretical bound for the estimation error (6.24) follows directly 
from (6.26) and (6.27). In figure 6.6 the logarithm of the theoretical bound 
for the estimation, modelling and measurement induced error are plotted as 
function of the logarithm of the number of parameters N. with modelling error 
exponent r=4, N =25 and with the model ling error 11;-xll = 1 mas for N=100 as 

0 
follows from simulation experiments. The measurement induced error can also 
be given in the form of (6.271, from (6.261 follows that the measurement 
induced error exponent is precisely'-0.5. An important conclusion, which is 
clearly visible from the figure, is: 

there exists an optimal choice for the number of parameters N 
which minimizes the estimation error 11;-xll , given the at t itude 
model X and characteristics of the measurement noise 

The optimum is only accessible in simulation experiments, but the 
corresponding number of harmonics and nominal knot density can be used as 
starting point in case of real data. These starting values should be 
validated, when the sate1 l ite is operational, by statistical tests on the 
least squares residuals of the actual data. 



6.4.2 Model1 ing error for B-spl ines 

According to [De Boor, 19781 a theoretical upper bound for the maximum 
modellingerror 11;-xll in the i'th interval, forsplines is 

03' 

with IIxII, indicating the maximum norm over the interval [a,bl, and with 
[a, bl 

interval and mesh size Ii: = [ti+2-k, t i+k-l 1 and lIil := ti+k-l- ti+2-k . ck a 
constant and k the order of the B-spl ine. The function X must have a 
continuous k'th derivative. If the k'th derivative is not contiauous in a 
discrete number of points the upper bound remains valid if the points with a 
discontinuity are left out of the interval and the B-spline series has the 
same type of discontinuity, which can be brought about by inserting the 
appropriate number of knots at the discontinuities. 

The modelling error can be influenced in a number of ways. The interval 
I can be decreased uniformly, or the interval I can be decreased in those 
areas where the norm of the k'th derivative of f is large, which requires 
some a-priori knowledge about the norm of the k' th derivative. But also the 
order k of the splines influences the modelling error. 

Assume that the knots, except those for the gas jets, are distributed 
more or less uniformly. Then the interval I is inversely proportional to the 
number of these knots. So for the maximum error, but also the L error, 

2 
ll;-xIl assuming that the coefficients c and the k'th derivative are 

2' k 
limited, we can write 

-k 
11;-XII C ( N-NO) 

2 
with c a constant, (N-No) the number of - unknown - parameters of the 
B-spline model which can be varied freely (the reciprocal of I), k the order 
of the B-spline and N given by 

0 

So, the modelling error exponent is equal to the order of the B-splines 

6.4.3 Model ling Error for the Semi-dynamical Model 

The modelling error for the semi-dynamical model mainly depends on the 
high frequencies in the attitude spectrum, which are not modelled by the 
truncated Fourier series. We assume that this is the only source of errors, 
and the contribution of the mismodelling of gas jet response functions is 
neglected. 

The attitude spectrum depends mainly on the spectrum of the solar 
radiation torque. As we have seen in section 6.2 the exponential decay of the 
solar torque spectrum, r defined by 

-r t ' 

a = c n t 
n (6.31) 

is approximately 2 (40 dB Wdecade), where n is the degree of the harmonic 
component, a the coefficient and c a constant. The corresponding exponential 
decay of the attitude spectrum is r +2 = 4 (80 dB arcseddecade) because t 
the torque is integrated twice. 



The spectrum of the L model ling error 11;-xll has an error exponent 
2 

which is smaller, by 0.5, than the decay of the attitude spectrum, which 
follows from integrating the attitude spectrum over the harmonics which are 
not contained in the model. Therefore the model1 ing error for the 
semi-dynamical model can be written in the exponential form of (6.27). The 
model ling error exponent, r, is -3.5. and the number of parameters, No, which 

cannot be varied freely, is from (6.20) 

where 1=1 for J, and 1=2 for 8 and 4. 

6.4.4 Results from Simulation Experiments 

The theoretical error bounds have been verified by a number of 
experiments on simulated attitude angles, in collaboration with Centro di 
Studi sui Sistemi (CSS), Torino [Belforte et al., 1986al. Attitude angles 
have been simulated with and without additional random noise of 10 mas, using 
the simulation software available at CSS (see table 6.2 and intermezzo I). 

intermezzo I 

The attitude has been simulated by Centro di Studi sui Sistemi 
(Torino) by numerical integration of the dynamic Euler equations 
and kinematic equations of the satellite attitude. Simulated angles 
were computed with respect to the nominal motion of the satellite. 
The simulated attitude is based on the following assumptions: 
- the satellite is a rigid body, 
- the symmetric tensor of inertia is: 

- simulated disturbance torques are: solar radiation torques, gyro 
moment torques and gravity gradient torques, 

- the solar radiation torque is periodic and given as a Fourier 
series with harmonics up to degree 100. This Fourier series was 
derived from simulated data by CERGA [Pinard et al., 19831. 

Torques which are very small and/or have spectra similar to either 
the solar radiation or to the gravity gradient torques may be 
neglected. We believe that the simulated attitude contains all the 
features of the real attitude, although the actual realization can 
be different. In other words the amplitude spectrum of the 
simulated attitude is fairly realistic. 

The attitude data, without additional noise, have been used 
to study the modelling errors as function of the number of 
unknowns. The same data, but now perturbed by a discrete white 
noise with standard deviations of 100 or 10 mas, was used to study 
the estimation errors. The standard deviations are representative 
for the uncertainties in the star mapper and IDT data respectively. 
The experimental results have been obtained for several datasets. 
The majority of the simulated datasets contained one revolution of 
data, with a simulated attitude every 2 seconds of time. 





In figure 6.6 the computed modelling and estimation errors are plotted 
and compared with the theoretical results of sec. 6.4.1 - 6.4.3. Figure 6.6 
(b) also gives the least squares error, which goes asymptotically to 10 mas, 
the noise level of the data. The asymptotic behaviour of the experimental 
errors agrees quite well with the predicted errors. For a small number of 
parameters ( (80 ) the modelling error is dominant, but for a larger number 
of parameters ( > 150 the measurement induced error becomes dominant 
instead. In between there is a transition zone where the estimation error 
reaches a minimum. Near this minimum the function is quite flat, so the 
choice of the number of parameters for which the minimum will be obtained is 
not very critical. The optimal number of parameters and corresponding 
estimation error in the simulated case are tabulated in table 6.3. 

Table .6.3: Best experimentally obtained estimation errors in mas 

Approximately 140 attitude parameters per circle are needed for the 
B-spline model and 125 for the semi-dynamical model. The estimation error is 
in both cases -2 mas. When additional knots (12) are inserted in the B-spline 
series to model the discontinuities in the solar radiation torque, the 
optimum is shifted to 110 B-splines and the error is reduced to 1.97 mas. The 
4 angle is modelled by both approaches better than the other transversal 
angle @ or the along scan angle *. Somewhat disappointing is the estimation 
error of the Eulerian * angle for the semi-dynamical model. The astronomical 
angle is modelled by the semi-dynamical model significantly better than the 

Eulerian $ angle (see figure 6.6). Better results for the Euler angle - which 
is slightly modulated by the spin motion - are obtained when the gas-jet 
response functions of (6.19.b) are used instead of (6.19.a). The astronomical 
angle is not modulated by the spin motion, so here the gas-jet response 
function of (6.19.a), which has only one degree of freedom, is good enough. 

Figure 6.6 (on the left) - Expected and experimentally obtained 
modelling and estimation errors versus the number of attitude 
parameters. (a) expected rms errors, (b) estimation and least 
squares errors for the B-spline model (strategy 1, order k=4), 
(C) modelling error in * for the B-spline model (different strategies) and 
semi-dynamical model (Euler and astronomical angle), and (d) estimation 
error in * for the B-spline model (different strategies and * angle) and 
semi-dynamical model. The theoretical error bounds for the modelling and 
measurement induced error are plotted as dotted curves. 



The experimentally obtained modelling error exponent for the B-spline 
model is slightly better than was predicted in section 6.4.2: The modelling 
error exponent is close to 4, as was predicted, for small number of 
parameters. But for more parameters the exponent increases to 5, which is 
partly caused by the truncation of the Fourier series in the simulation. The 
experimentally obtained modelling error exponent for the semi-dynamical model 
appears to be 3.5, as was predicted, with about 70 parameters. But again for 
more harmonics the model ling error exponent goes up to more than 4, also 
because of the fact that the Fourier series of the solar pressure torque is 
truncated after 100 harmonics. 

6.4.5 Conclusions 

Although the two approaches for modelling the Hipparcos attitude are 
quite different, the results in terms of modelling accuracy and optimal 
number of parameters are quite similar. In combination with statistical 
tests, which will lead to rejections in case the modelling errors are still 
significant (because too few parameters were used), both methods are quite 
robust. The semi-dynamical model gives a slightly better modelling accuracy, 
especially for a small number of parameters and in particular when compared 
to the B-spline model with a very simple knot-placement strategy. However for 
the semi-dynamical model the choice of the along scan angle representation is 
important: the astronomical angle gives a better performance than the Euler 
angle. The B-spline model is quite insensitive to the choice of the along 
scan angle. 

With respect to the computing times B-splines are superior. The normal 
matrix in the great circle reduction will have a limited, but variable, 
bandwidth. Compared to the semi-dynamical model, which gives a full normal 
matrix, computing times are obviously superior. This supremacy is however of 
little effect for the attitude reconstruction when the semi-dynamical model 
is used with only a few parameters. So the semi-dynamical model seems to be a 
good choice for the attitude reconstruction. But for the great circle 
reduction, which involves many more unknown parameters, the B-spline approach 
is preferred for its superior computing time. Although, during the great 
circle reduction, Fast Fourier Transform (FFT) methods could be used to 
improve the performance of the semi-dynamical method (during the great circle 
reduction the attitude data is available at regular intervals). 

6.5 Harmonic Analysis of Cardinal B-splines 

The spectrum of a cardinal B-spline series, i.e. polynomial splines 
defined over a regular infinite sequence of equally spaced knots, is 
investigated in [~unkel, 1981 l. The spectrum of the l'st order cardinal 
B-spline, the unit step function, is the so-called "sinc" function. Cardinal 
B-splines of higher order (k) can be constructed as k'th order convolutions 
of the unit step function. According to the convolution theorem the 
corresponding Fourier transform is the k-fold product of the sinc function: 

k sin nfz 
Qk(f) = Q, (f) = l k  
The cardinal B-spline series can actually be written as a convolution, 

therefore, according to the convolution theorem, the spectrum of the smoothed 
function is 



where DFT(h) is the discrete Fourier transform of the coefficients of the 
cardinal B-spline series. The coefficients h may be solved analytically. This 
allows us to write the series as a linear combination of shifted sampling 
functions, with the function values at the knots as coefficients. Therefore 
the Fourier transform of the B-spline series can be obtained by multiplying 
the discrete Fourier transform of the given data by the Fourier transform of 
the sampling function, which acts as a transfer function, i . e .  

The Fourier transform of the sampling function for cubic B-splines, i . e .  
k=4, is: 

3 
F4 ( f )  = 2 + cos 2nf U4(f 1 (6.35) 

which is the transfer function in the frequency domain for the discrete 
Fourier transform of the data. In figure 6.7 a number of Fourier transforms 
of sampling functions, including the one for the semi-dynamical model, is 
given. If the B-spline order goes to infinity then the Fourier transform of 
the sampling function matches the Fourier transform of a trigonometric series 
(semi-dynamical model). But for cubic splines the transforms are already 
quite similar. 

Figure 6.7 - Fourier transforms of the sampling functions 
(from [ ~ k k e l ,  19811). 

From the above, and from our experimental results in the preceding 
section, follows that a B-spline series forms a good and efficient 
approximation of a Fourier series. 

6.6 Effects of B-spline Order and Knot Placement 

The shape of the B-splines, and hence the function space f on which the 
attitude function is projected, depends on the chosen order of the spline and 
the location of the knots. Therefore, by means of the B-spline order and 
location of the knots, as well as the number of B-splines, the modelling 

-1 error X can be influenced. In the previous sections we considered the effect 
of the number of B-splines on the modelling, and estimation, error. In this 
section the effects of B-spline order and location of the knots is 
investigated. Consider the theoretical upper bound (6.28) for the maximum 



error 11;-xll for splines of section 6.4: 
m 

So, more precisely, the modelling error of the B-spline approximation depends 
on a) the order k of the splines, b) the choice of the intervals I ,  c) the 
norm of the k'th derivative of X (without discontinuities), and d) the type 
of discontinuities in the derivatives of the data. 

6.6.1 Order of the B-splines 

The effect of the B-spline order on the modelling error is 
captured by equation (6.29 1 : 

(k) where c is proportional to c Ilx l l m  and No=(k-2)*(N +1)+1. When the order k gas 

of the B-splines is increased the exponent goes down, but also N the number 0' 
of B-splines which are needed to model the discontinuities in the data, 

increases and c 11~'~) 11. changes. Evidently the optimal order of the B-splines k 
depends on the data and the required accuracy. 

This effect of the order of the B-splines on the modelling error has 
been verified by simulation experiments. In figure 6.8 the modelling error 
is plotted for B-splines of order k=6. The exponential decrease reaches the 
order of the B-spline only for very small modelling errors. In the regions 
which are of practical interest the performance - expressed in number of 
parameters and estimation error - is even a little worse than that for cubic 
(k=4) splines, since for higher order B-splines relatively more parameters N 

0 
are needed to cope with gas-jets and other discontinuities. From these 
experiments the use of cubic B-splines seem to be justified. 

Figure 6.8 - Effect of higher order (k=6) B-splines on the 
rms modelling error 
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6.6.2 Knot Placement Strategies 

Major discontinuities in the derivatives of the Hipparcos attitude occur 
at gas jet actuat ions and, of course, the B-spline series must have the same 
discontinuities. The torque generated by each gas jet firing can be modelled 
as a constant pulse of variable duration (between 50 and 500 ms). The gas-jet 
actuations produce two discontinuities in the second derivative of the 
attitude at the flanks of the pulse. However, in view of the relative short 
duration of the pulse compared to the frame period (2.13 S.) gas jet 
actuations can be modelled as an instantaneous impulse, which produces a 
single discontinuity in the first derivative of the attitude at the mid-time 
of the pulse. 

This model is rather sensitive to errors in the specified mid-frames 
times: an error of 10 ms will give an error of 60 mas on the attitude for a 
gas jet actuation of 500 ms. Therefore, depending on the accuracy of the 
specified mid-times and the duration of the pulse, it might be better to 
model the gas-jet by either two discontinuities in the second derivative of 
the attitude at the flanks of the pulse, or a single discontinuity in the 
attitude itself close to the time of a gas jet firing. We prefer the last 
opt ion in view of the short duration of the pulse and because it requires 
fewer knots for B-splines of order k>4. 

Certain phenomena in the solar radiation torque, like solar eclipses, 
the hexagonal structure of the spacecraft and shadowing by the solar panels, 
give some rapid, but continuous, changes in the third derivative of the 
attitude. In other words, the fourth derivative of the attitude is 
significantly larger over the 5 or 6 frame periods during which these effects 
occur. Compared to the frame period it is hard to speak of discontinuities, 
on the other hand, compared to the relatively long smoothing intervals, they 
act like discontinuities and it certainly makes sense to insert at these 
places more knots in order to reduce the modelling error in the B-spline 
series. 

This strategy is not limited to effects of solar radiation. general, {E) more knots are needed when the k'th derivative of the attitude llx (t)/lm is 

larger. This may for instance also happen right after gas jet actuations 
which excite some jitter and increase the probability of ABM particle shocks 
(section 6.2.5). On the other hand, during solar eclipse (except for the 
passages through the penumbra) the nominal knot density will be lower than 
foreseen for the Sunlit case. A-priori values for the nominal densities can 
be obtained by experiments on simulated data. 

This strategy has been tested on simulated data (intermezzo I), which 
resulted in a small improvement in the modelling error over the 
quasi-cardinal strategy. The effect on the estimation error is illustrated in 
figure 6.6 (d), where the various estimation errors for I/J are plotted. 
Strategy 1 is a quasi-cardinal strategy, which takes only gas jet actuations 
into account and with regularly spaced knots in the intervals between two gas 
jet actuations. Strategy 2, which has been optimized for the data at hand, 
models also the discontinuities in the solar radiation torque. The 
corresponding modelling errors have already been plotted in figure 6.6 (c) 
and 6.8. The second strategy appears also to be quite insensitive for wrongly 
placed knots, i.e. knots which are not positioned exactly on the expected 
discontinuity, with the exception of knots due to the gas jet impulses. 



6.7 Star Abscissae Improvement by Attitude Smoothing 

Smoothing'of the attitude effectively increases the longitudinal field 
of view, since more stars are connected directly. Especially more bright 
stars are now linked directly to each other, and not only by chains of 
measurements between fainter stars [Lacroute, 19831. Smoothing will, 
therefore, have two favourable effects: 1) it leads to an overall increase in 
precision for the astrometric parameters and 2) it permits a more liberal 
observing strategy. 

The last point, the more liberal observing strategy, can be used in two 
ways. One could argue that it is not necessary anymore to spend too much 
observing time on faint stars to get a good final accuracy, and spend this 
time on bright stars. On the other hand, one could argue that the bright 
stars wi l1 be improved anyhow, and that one should spend more time on, and 
improve the accuracy of, faint stars, which are often astronomically more 
interesting. Both arguments are val id, each with its own supporters. Another 
aspect of the observing strategy is that more stars may be put on the 
observation list. But first, let us consider what can be gained by smoothing 
exact l y. 

The precision of the star abscissae IJ depends on the precision of the 
i 

grid coordinates and the precision by which the attitude parameters $ are 
k 

reconstituted (see also section 5.5). i.e. 

where we have neglected the influence of the instrument, with c the 
X 
ik 

average precision of the grid coordinates, approximated by 

(B is the star colour index) and c the precision of the reconstituted 
*k 

attitude parameters. In short we may write 

where ;'(B) may be computed from (6.37) by inserting the total observing 
X 9 

L 

time, and G2 denotes the influence of the attitude, which is reduced 
*k 

considerably by smoothing. An analytical expression for the attitude 
influence, and some examples with an enlarged field of view, were already 
given in sect ion 5.5. 

The improvement due to smoothing has been calculated by simulation 
experiments with the great circle reduction software. Grid coordinates for a 
reference great circle, consisting of only 1 scanning circle, with an almost 
regular starfield of 800 stars, were simulated using the nominal observing 
strategy in [Kovalevsky G Dumoulin, 19831. The simulated attitude of the 
spacecraft is given in figure 6.9. The maximum deviation from the scanning 
law is 10'. 11 gas jet actuations have been simulated. A more detailed 
description of these experiments and the results for other observing 
strategies are given in [Van der Marel, 1985al. 



FRAME NUMBER 

Figure 6.9 - Deviation of the simulated attitude from the 
scanning law 

On the basis of these simulated data several GCR solutions have been 
computed, in the geometric mode with 3400 attitude parameters and in the 
smoothing mode with 138, 119, 109, 99, 89, 78, 69, 59 49, 40 and 37 
B-splines. 37 B-splines is the minimum number necessary: 33 are needed for 
dealing with the gas jet actuations and another 4 are needed for the start 
and end of the data. 

Figure 6.10 - Mean standard deviation and rms of the a-posteriori 
noise of the attitude and star parameters, the estimated variance 
factor and the modelling error of the attitude parameters versus the 
number of parameters in the attitude model. 

In figure 6.10 the mean standard deviation and the rms value of the 
a-posteriori noise (estimated minus true simulated values) for the attitude 
and star parameters, the estimated variance factor and the modelling error in 
the attitude are plotted versus the number of attitude parameters used in 
each run. The a-posteriori noise reaches a minimum near 99 B-splines per 



circle. With a smaller number of B-splines the modelling error becomes 
significant, for a larger number the inherent smoothness is not sufficiently 
exploited. 

In figure 6.11 the mean standard deviation of the star abscissae is 
plotted versus the star magnitude for 4 different attitude models: the 
geometric attitude model (a), the B-spline model with 99 parameters (b), the 
hypothetical case of a perfect dynamical model, for which only initial 
conditions have to be estimated using 37 B-splines (c) and the unrealistic, 
but informative case of a perfectly known along-scan attitude (d). Stars 
brighter than magnitude 7 are improved by an factor 1.45 (with respect to the 
geometric attitude model) in case of smoothing with 99 B-splines. For the 
hypothetical case of a perfect dynamical model, simulated by the B-spline 
model with 37 parameters, the improvement goes up to a factor 2 for stars 
brighter than magnitude 7. As expected the improvement is very small for 

faint stars, since for faint stars G2(B) > G2 , we have from (6.38) that 
X i  *L .v 

s2(B) B which is, therefore, almost not affected by an improvement in * i i 
-2 - c due to smoothing. 
*k 

magnitude magnitude 

Figure 6.11 - Mean standard deviation of the star abscissae per 
magnitude class. The cases a, b, c and d are described in the text 
I =c /c I c c and I =c /c l a b ' 2 a c  3 a d '  

Similar experiments have been carried out with CERGA dataset 11. The 
modelling error in table 6.4 and figure 6.12 is computed by a great circle 
reduction with errorless approximate data and grid coordinates (except for a 
truncation error of 0.02 mas). In figure 6.12 the modelling error is given 
for the first 6000 attitude frames for the run with 700 B-spline parameters. 
The corresponding estimation errors are given in table 6.5 for two iteration 
runs with smoothing (good a-priori data), using 600 and 704 B-spline 
parameters respectively. These runs should be compared with the runs with 597 
and 703 B-splines in table 6.4. Due to a tape error 40 frames (149 grid 
coordinates) of data were lost in iteration mode. This resulted in 2 attitude 
sequences instead of one, with as a consequence a number of extra B-spline 
parameters. 



In figure 6.13 the estimation errors in the geometric and smoothed 
attitude are plotted for the first 6000 frames for the iteration run with 703 
B-spline parameters. The corresponding modelling error has been plotted in 
figure 6.12. 

Table 6.4: Modelling error (smoothing) for CERGA dataset I 1  
in mas. The dataset consisted of 17432 frames with 75223 grid- 
coordinates for 1843 active stars (out of 2411). In addition 
instrumental parameters were solved. 62 gas jet firings occured. 
Notes: 1 )  geometric solution, 2) additional splines for eclipses, 
3 )  expected number of sign changes (smooth data) in brackets. 

Table 6.5 - Estimation errors of CERGA dataset I1 in mas, with no 
special modelling for eclipses. In brackets the improvement wt. 

the geometric solution. 
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Figure 6.12 - Modelling error (smoothing) for CERGA dataset I1 
with 703 B-splines. 
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Figure 6.13 - True error in the frame by frame attitude for 
CERGA dataset 11: geometric attititude (dots) and smoothed 

attitude (curve) using 704 B-spline parameters 

Several more simulation experiments have been carried out for study 
purposes. In particular we have experimented with different observing 
strategies, magnitude distributions and star density variations over the RGC 
[Van der Marel, 1985a, Verwaal, 1986, Van der Mwel C van Daalen, 1986dl. 



NUMERICAL TECHNIQUES FOR THE GREAT CIRCLE REDUCTION 

In this chapter the numerical methods actually used in FAST for solving 
the great circle reduction equations are considered. In the first part of 
this chapter the solution with one attitude parameter per frame is discussed 
and in the second part the smoothed solution is treated. 

7.1 Introduction 

The Great Circle Reduction forms a geometric adjustment problem on the 
celestial sphere with three types of unknowns: attitude and star abscissae 
along a chosen Reference Great Circle (RGC) and some instrumental parameters. 
The Great Circle Reduction handles about 10 hours of observations (grid 
phases), which cover a strip on the celestial sky of 2' wide. The reference 
great circle (RE) is chosen somewhere in the middle of this strip. The 
adjustment problem is solved in a weighted least squares sense. Two types of 
attitudes can be produced, viz. a geometric and a smoothed attitude. The star 
ordinates and transversal attitude parameters are not solved; instead the 
great circle reduction is iterated several times with improved a-priori 
values obtained through sequences of preliminary versions of the Hipparcos 
catalogue (i.e. the three step procedure, see chapter 4 and section 5.3). 

The linearized observation equations - in matrix notat ion - for the 
geometric solution read: 

with A x  the vector of the small -unknown- corrections to the approximate 
values, A y  the vector with linearized observations, i.e. the observed value 
of y minus a value computed from approximate data on the unknown parameters, 
and design matrix A  with partial derivatives ay/ax. The unknowns X and design 
matrix A  are partitioned into an attitude, a star and an instrument part, 
respectively denoted by indices a, s  and i. The geometric attitude is 
represented by one parameter per observation frame of 2.13 S. For a typical 
RE-set of 5 revolutions there are about 70,000 equations (or observations) 
with about 17,000 geometric attitude unknowns, 2,000 star unknowns and some 
50 instrumental unknowns. The submatrices A  and A  are very sparse, each of 

them contains only one non-zero element per row. A .  on the other hand is 
1 

almost completely filled. 

For attitude smoothing an additional equation A x  = B A x  has to be 
b  

added. The observation equations are then 

A y  = A  B Axb + AsAx + A.Ax  
S I i (7.2) 

The matrix elements (B) = a B ( t k ) / a ( x  ) and unknowns ( A x  ) follow from our 
k l b  l b l 

model for the attitude ( X  ) =B(t). In smoothing mode -600 attitude parameters 
a t  

per RGC are needed, which is a considerable reduction compared to the 17,000 



-geometric- attitude parameters. But the matrix AaB, which has smaller column 

dimension than Aa, is not as sparse as Aa. The number of non-zero elements in 

A B  depends on the method of smoothing. If B-splines of order k are used the 
a 
matrices B and A B  have k non-zero elements per row. The precise form of the 

a 
equations are discussed in section 7.4. 

Figure 7.1: Non-zero structure of the design matrices with the 
unknowns in ascending order (left: geometric, right:smoothing) 

The over-determined system of zquations Ay=A*Ax is solved in a weighted 
least squares sense. The solution A x  is computed from the least squares 
criterion 

with W = C-', the inverse of the covariance matrix of the observations y. The 
W 

error in the phase estimates, the observations y, is dominated by photon 
noise, and therefore the observations are assumed to be uncorrelated. So a 
simple diagonal weight matrix W can be used. 

The solution A; of the least squares problem can be computed from the 
so-called normal equations 

A ~ W A  A; = A ~ W  AY (7.4) 
T 

with (semi-) positive definite normal matrix A WA and right hand sides 
T A W A y .  The normal equations for the great circle reduction are: 

- regular, except for a rank defect of -usually- 1, 
- well conditioned, 
- very sparse (except for the instrument part). 
The rank defect may be overcome through additional constraints. Two possible 
constraint equations are considered: 1) the correction to the so-called base 
star abscissae is zero, or 2) the sum of the corrections is zero (minimum 
norm solution). Under such constraint the normal matrix is regular and can be 
inverted. 



Optimization of the computations is worthwhile, because there are 
approximately 1800 RGC sets during the mission, each of which has to be 
solved two or three times. The performance of the numerical techniques, in 
this chapter, will be evaluated in terms of operation counts. One operation 
is defined here as an multiplication, plus an addition, plus the necessary 
array accesses. In case the operands are floating point numbers the counts 
will be expressed i~ flops (floating point operations), or in more practical 

6 
units as Kflops (10 flops) and Mflops (10 flops). 

7.2 Choice of a Solution Method 

7.2.1 Iterative versus Direct Methods 

Numerical methods for the solution of linear systems of equations fall 
into two classes: 
- iterative methods 
- direct methods 
The choice of an iterative method or direct method depends strongly on the 
problem at hand. In any case the solution method should, for reasons of 
computing efficiency, utilize the sparsity in the system of equations. The 
problem with direct methods is that they create fill-in, additional 
non-zeroes, in the matrix. But otherwise direct methods reach the exact 
solution (apart from round off errors) in a fixed number of arithmetic steps. 
Iterative methods, on the other hand, fully exploit the sparsity in the 
system of equations. Therefore, iterative methods require less storage and 
can use simpler data structures than direct methods. 

The solution computed by an iterative method converges in principle to 
the exact solution, but it would require an infinite number iterations to 
attain this solution. However, by truncating the iterations, after some kind 
of stopping criterion has been fulfilled, a solution of the same accuracy as 
that of the direct solution can be computed. But also, if the desired 
accuracy is less than that of the direct solution method, the iteration 
process can be stopped earlier. In many problems the iterative solution can 
be computed faster than the direct solution, but there are also exceptions. 
On the other hand, some disadvantages of iterative methods are: 
- generally the number of arithmetic operations cannot be predicted, 
- every new right hand side of the equations, e.g. after an update for 
measurement errors, requires a completely new solution (although fewer 
iterations are required, because in most situations better start values are 
avai lable) , 

- computation of variances is cumbersome and/or not very precise. 
Direct methods can solve new right-hand sides without starting all over 
again. After the initial factorization, which is most of the work, new 
solutions are computed simply by forward and backward substitution with the 
different right-hand sides. Once the equations are factorized, covariance 
information can be obtained much faster, viz. in twice the time of the 
factorization itself [see section 7.3.51, than with iterative methods. 

Both iterative and direct methods have been considered for the great 
circle reduction. A direct method, Choleski factorization, has been chosen 
because there were no decisive reasons to choose an iterative method. 
Choleski factorization is not a real bottleneck in the computations, though 
it requires quite a lot of computing time. Besides, iterative methods were 
not much faster. But a more important reason to use a direct method is that 
several solutions have to be computed. For instance, for the grid-step 
inconsistency correction several internal iterations are necessary. 



7.2.2 Iterative Methods 

Several iterative methods have been considered for solving the great 
circle reduction equations: 
- conjugate gradient method [Tommasini, 1983, Tommasini et al., 1985~1 and 

incomplete Choleski conjugate gradient method [Benciolini et al., 1981~1, 
- Burrows' iterative method [Burrows, 19821, 
- Gauss-Seidel and successive overrelaxation (SOR) [Joosten, 19861. 
The conjugate gradient method, which will be used in the sphere 
reconstitution, using the LSQR algorithm proposed by Paige and Saunders, has 
also been applied to the great circle reduction problem. The LSQR algorithm 
works directly on the design matrix, using column scaling as a 
preconditioning method. From simulation experiments it was found that, 
without instrumental parameters, several hundreds of iterations are 
necessary, but this number goes up rapidly with the number of instrumental 
parameters [Tommasini et al., 1985~1. The LSQR algorithm is used in 
combination with variance estimation: the quality of the estimated variances 
is good, although they are systematically underestimated by 10-20 % of the 
variances computed by inversion of the normal matrix. The LSQR algorithm was 
not significantly faster than Choleski factorization, especially with a 
realistic number of instrumental parameters. 

A special iterative method is proposed by Burrows [Burrows, 19821. His 
iteration formula also followed from our analytical treatment of the 
variances in section 5.5. This is typically a Jacobi or Gauss-Seidel kind of 
iterat ion process. Joosten showed, on a small regular example with 100 stars, 
that the results of the Burrows method correspond to SOR with a relaxation 
factor between the 1.8 and 1.9, resulting in already 80 iterat ions [ Joosten, 
19861. Joosten also showed that, for his small example, the best results are 
obtained with a relaxation factor of 1.5, which resulted in 23 iterations. In 
general, for larger sizes of the network, the number of iterations goes up. 
It is expected that several hundreds of iterations are needed. Especially the 
results of the Burrows method, on the small example, are disappointing. Still 
Burrows stated that the iterative process may be stopped earlier, because the 
rigidity factor (see section 5.5) soon reaches its optimum value. However, as 
was explained by Van Daalen [Van Daalen, 19831, the rigidity factor is not 
necessarily the right function for controlling an iteration process. 

A different kind of iterative procedure was briefly investigated by the 
author: namely, a block successive overrelaxation method on the two by two 
block partitioned normal matrix of equation (7.8 ) ,  after elimination of the 
attitude parameters. This iteration process also converged rather slowly, so 
the experiments were stopped in an early stage. So, none of the above 
mentioned experiments pointed decisively in the direction of an iterative 
method. 

7.2.3 Choice of a Direct Method 

Here we consider two classes of direct methods for solving linear 
systems of equations as arise in least squares problems: 
- factorization of the normal equations, 
- ort hogonal isat ion of the observation equations. 
Both methods have in common that a triangular factor is formed. Orthogonali- 
sat ion methods, e. g. Givens rotat ions and Householder transformat ions, work 
directly on the observation equations Ax=y.  The factorization methods like 

T t the Choleski and Gauss method, operate on the normal equations A Ax=A y. 
Orthogonal isat ion methods are preferred for numerical stability: if 
programmed correctly they take advantage of the fact that the condition 

T number of A is the square root of the condition number of A A. The 



orthogonal isat ion methods may also work on the normal equations, but then 
they loose their advantages over the factorization methods. 

The equations during the great circle reduction are well conditioned. 
Therefore we prefer the above ment ioned fact orizat ion met hods over the 
orthogonalisation methods, which are more work to compute. An estimate for 
the condition number (see appendix C1 of the normal equations is 

assuming that N is diagonal, then 11 N Ila= 10'. the accumulated observation 
3 weight of a very bright star, and 11 N"II; 10 , the variance of a very faint 

star. A different, but more common, estimate of the condition number may be 

obtained from the eigenvalues computed from the Fourier analysis in chapter 5 

(figure 5.51: 

A 
max K~ = = 1.5 103 
mi n 

This estimate is smaller than the estimate of (7.5. a), because in the Fourier 
analysis of chapter 5 the star magnitudes are assumed. to be the same for each 
star. Therefore, in the estimate of (7.5.b). only the rigidity (strength) of 
the network is taken into account. The first estimate for the condition 
number is confirmed by the error matrix E computed after the Choleski 
factorization of N. Let 

E = N - LLT (7.6) 

then, for CERGA dataset 11, IIEII;IO-~ and I I E ~ ~ ~ = ~ O - ' ~  on a VAX 750 with a 

round off error of 0( 10-l~). So, no specific numerical condition problems are 
expected, hence Choleski factorization of the normal equations is chosen as 
solution method. 

7.3 Geometric Solution 

7.3.1 Introduction 

The system of normal equations - partitioned in an attitude, star and 
instrument part - is written in matrix notation as: 

N N N  

(7.7) 

T with N = A ~ W  A and b = A W Ay for p,q = a,s, i , and with weight matrix 
p w 2 q - 1  P P W  2 

W where cr*W = C  =E{ (y-~{~))~*(y-E{~))) andcr thevarianceof 
W' O W  W T 0 
unit weight. N and Nss are diagonal, N =N is sparse and the blocks aa a s  s a  
pertaining to the instrument are full or almost full. 



Figure 7.2: Non-zero structure of the normal matrix, 
with the unknowns in ascending order 

Noting that the coefficients in A for the geometric solution are +l or 

-1, with deviations less than l%, or zero, and assuming uncorrelated 

observations, then the elements ( N a a  I k k  and (Nss) are the accumulated 

observation weight spent in an observation frame k and on a star i 

respectively. An element (-Nsa) ik is the observation weight spent on star i 

in observation frame k .  The number of non-zeroes in a column ( N  ) is equal sa fk  
to the number of observations in a frame k ,  v i z .  on the average 4 and 

maximal1 y 10, the number of non-zeroes in a row ( N  is the number of sa if 
frames in which a star is observed. 

The full system of normal equations is never computed. Instead a reduced 

system, from which the attitude parameters are eliminated, is computed 

withi = N  - N  N - ' N  a n d b =  b - N  N - ' b  f o r p , q c s , i  . N is 
P 4  P 4  P a a a a q  P -Q Pa a a  a aa 

diagonal, so the inverse matrix N can be computed on a frame by frame basis 
aa 

while updating the reduced normal equations. N-'b is a provisional solution 
aa a 

for the attitude parameters X .  i is not diagonal anymore, but still 
a SS 

sparse: (i .+O if star i and j have been simultaneously present in at 
ss i.1 

least one frame. The instrumental blocks N.. and N. are almost completely 
1 1  1 S 

full. The non-zero structure of the reduced normal equations is given in 

figure 7.3. 



Figure 7.3: Non-zero structure of the reduced normal equations 
with the unknowns in ascending order 

The block-partitioning sketched above not only enhances our insight in 
the non-zero structure of the problem, but it also offers some advantages 
during the computations, 
1) an appropriate data structure can be used for each block, 
2) at most one block at a time has to be stored fu l l y  in fast access computer 

memory. 
The normal matrix blocks pertaining to the instrument are stored as full 
matrices, for the other blocks only the non-zeroes are stored, using the 
sifted format data structure [NZ) of appendix C. 

The computation of the geometric solution is organized in the following 
steps: 
1) computation of the reduced normal equations, 
2) Choleski factorization of the block partitioned normal equations, solution 

of the equations and computation of the variances, 
3) solution of the attitude parameters, computation of the residuals to the 

observations and testing of the solution. 
The fill-in during Choleski factorization of the star part is reduced by 
changing the order of the star parameters before the factorization. 

The order of the unknowns influences the amount of fill-in during 
factorization. This might also affect our block partitioning of the normal 
equations. In chapter 8 we prove that 1) the current order among the 
attitude, star and instrument blocks is.optima1, and 2) each block of 
unknowns can be left intact. With a full normal matrix block for the 
instrument part and the current block partitioning the (internal) order of 
the attitude and instrument unknowns is irrelevant. Only reordering of the 
star unknowns reduces the fill-in during Choleski factorization. This is done 
by special ad-hoc ordering procedures, tailored to the structure of the 
problem at hand. The ordering procedures are discussed in chapter 8. 

7.3.2 Computation of the Reduced Normal Equations 

After linearization around approximate values for the attitude and star 
0 0 abscissae, (I: and (Ii, and for a -nominal- instrument d , the correct ion 

equation for x the observed field coordinate (computed from the phase ki' 



estimate) minus the value computed from approximate data on the unknowns, of 
star i in frame k, becomes 

with coefficients ak=-l, bki=l and I (ckiIml S - 1. The actual coefficients 
follow from table 5.1 and equation (5.7.b). It is typical for our approach 
that we compute the coefficients of the design matrix in a rigorous manner, 
instead of using some simple approximation (it is not much better, but it is 
also not much more work to compute). Let wki be the observation weight of 

Ax The contributions of the observations in frame k to the block ki' 
partitioned normal equations are given in table 7.1, with 

the total weight and mean instrumental coefficient in frame k, and 

the mean observation in frame k. 

The blocks pertaining to the attitude parameters, N N andNai, are 
aa' as 

very large. Fortunately they have not to be computed explicitly since the 
attitude parameters can be eliminated directly from the normal equations, 
giving the reduced normal equations (7.8). The attitude unknowns are 
eliminated frame by frame, directly from the observation equations, by 
subtracting the mean observation Ax from each of the observations. The 

k 
updating formulae for the normal equations are given in table 7.2. Note that 
a disappears from the equations. k 

Table 7.1: Normal matrix computation without attitude 
elimination (see also the text) 

attitude part 
- 2 - 

(Nae)kk - Wk ak (Nas)ki - W ki a b  k ki V i 

updates star part 

updates instrument part 

k-l 
+ X( wk ick ick 

i 
1 k k-l 

b. = b i + X(wkiAxkicki) 
i 



Updating of the normal matrix parts isi and iii, which are almost 
completely full, and right hand sides G and is relatively simple because - 
these components are not stored in a compressed form. N is a sparse matrix 

SS 

and only the non-zero elements will be stored, using the sifted format data 

structure of appendix C. 

In the great circle reduction software two different storage structures 
for sparse matrices are used: namely the sifted format for general sparse 
matrices and envelope format for sparse symmetric matrices, defined in 
appendix C. In the sifted format only the non-zero elements Nz(A) are stored, 
where Nz(A) is our notation for the set of non-zero elements of a sparse 
matrix A. In the envelope format also some zeroes, which fall within the 
envelope Env(A), are stored. The envelope Env(A1 of a sparse symmetric matrix 
A is the set of elements (zeroes and non-zeroes) in the lower triangle of the 
matrix, except the leading zeroes. I.e. Env(A) is the set of matrix elements 
(i, j) E Env(A) W 3 k5j (aik+O). 

Table 7.2: Normal matrix computation with attitude 
elimination (see also the text') 

updates star part 

i S s  = i SS ii + w (1-w /w )b2 
ki ki k ki V i 

(i lk = (i lk-l - b b /W 
kiwki ki ki k Vi,, Vj+i 

ss i j  ss i j  

(L )k = (G )k-l 
S i + wkibkt(Axki- Axk) S i 

V i 

k 
N S i  = i S i 1  + w b (cT 

T 
ki ki ki- Ck) Vi 

updates instrument part 

- k - - k-l T - %CkCk Nii - Ni + X(wktckicki 
i 

k k- l 
bi = bi + X(w .c A . - wk ck Ax 

i kr kt kr k 

Before we can start with the normal equation computat ion the precise 
non-zero structure Nz(N 1 must be computed first. This is carried out in a 

ss 
first pass through the observations, the coefficients of the normal equations 
are computed in a second pass. An element (N ) . of the normal matrix block 

ss r.i' - 
for the star part, is a non-zero only when the stars, i and j, are observed 
in the same observation frame. Therefore, during the first pass all 
combinations of stars 1 and j which are seen simultaneously in one frame are 



stored in a circular list. At the same time the observation equations are 
linearized and written to a file on a frame by frame basis, and the 
observations are checked for grid step inconsistencies. At the end of the 
first pass active and passive stars are distinguished and the circular list 
is processed: Firstly it is checked that all active stars are connected to at 
least one other active star (not connected stars become passive), and a base 
star is assigned to each group of cognected stars. Secondly the stars are 
reordered for a small profile (IEnv(N I ) ,  and thirdly the normal matrix 

ss 
administration of the -reordered- active stars (NZ(~ l ) ,  is computed from 

SS 

the circular list. In the second pass the observation equations are read, and 
the reduced normal equations are computed on a frame by frame basis, 
according to the formulae in table 7.2. 

The computation of the normal matrix parts P and Pii, and the 
si 

elimination of the star parameters - as we will see later -, is a heavy 
computational burden (Table 7.3). This is a bit paradoxical, because only a 
relatively small number of instrumental parameters is involved. However A 

i ' 
N . and N.. are practically full. In the example of table 7.3 approximately 

S 1 1 1  

44 Mf'lops are needed in the computation of Nil and bi (of which 10 Mflop si' 
for the attitude elimination) using the straightforward computation method, 

whereas for N.. and b. only 0.5 Mf'lops are needed. In the example of table 
1 l 

7.3 the number of instrumental parameters was quite moderate. For an increase 
in the number of instrumental parameters cpu times will increase 
quadrat ical l y. 

7.3.3 Optimization of the Normal Matrix Computation 

The operation counts in table 7.3 (first column of the example) are 

based upon straightforward computation of N and Nii, involving all possible 
S i 

products, including zero and duplicate products. More specific: 
T - c and cc contain zeroes ( in case the P/F representat ion of sect ion 5.4.2 

is used), 
T - cc contains many duplicate products. 

If the first property is used in the computations a speed-up by at most a 

factor of 2 in the computation of b. and N and by a factor of 4 for N. 
is' i i' 

is possible. The second property is only of some use in the computation of 

Nii, it gives an additional speed-up depending on the degree and form of the 

instrumental def ormat ion p01 ynomials. 

The instrumental unknowns solved during the great circle reduction aim 
at describing the large scale distortion of the instrument (see section 5.4). 
The large scale distortion consists basically of three parts: 1) the 
distortion in the preceding field of view, 2) the distortion in the following 
field of view and 3) the basic angle deformation. The distortion d, using the 
P/F representat ion of section 5.4 (equation 5.15. b) , is computed from 

T d = c d  (7.12) 

T T T T T T T T T 
withd= ( a ,  a bT), and withc= ( p ,  0, t 1 o r c =  (0, p ,  -t 1 for the 

P f '  



preceding and following field of view respectively. The vector p contains the 
k -i-j 

powers (B-V -0.5) x y , i=O, . . . ,nk , j=0,. . . ,nk-i, i+j*O and k=O, . . . ,nu and 
the vector t contains the powers (B-V -0.5) L Tm, m=O, . . . , n L and L =0, . . . , nb, 
where and are the normalized field coordinates, B-V the star colour index 

and T the normalized RCC time. a and b are vectors with the unknown 

parameters a 
kid 

and bLm corresponding to the powers in p and t .  

Table 7 3: Operation-counts (per frame) normal matrix computation, 2 where n /2:=n(n+1)/2 and n .=lNz(cll. The Mflops are for an 
i '  example with 18,000 frames, m=5 observations per frame and-n =25 

i instrumental parameters: (1) straightforward method, i. e .  n .=n.=25, 
(2) method of eq ation (7.13). i . e .  n =l4 and (31 final algdrithm, Y i . e .  ;.=l4 and n. follows from table 7.'4. The in the 2nd and 3rd 
columnlindicate that the results are identical to the 1st column. 

Updating for the j'th observation, in the preceding field of view, gives 
for the normal matrices N.. and N .  

1 1  S1 

W k 

4k 
C k 

b 
S 

i 
N 
S S 

N 
i S 

N 
i i 

Total 

where W is the observation weight, bki is the coefficient of the star i  and 
k i  

f the field index (f=+l for the preceding field of view, f=-l for the 

without att. elimin. 

OC 

extra att. elimin. 

Mflops exampl. 

(1) (2) (31 
OC 

m+ l 

m+ l 
- 
mn.+n 

1 i 

1 

n 
i 

m2/2 

n 
i 

n2/2 

Mflops exampl. 

(1) (21 

.l 

. 1 .- 
2.6 1.6 

.02 .. 

.5 

.3 

.5 

5.9 

10.0 9.0 

m 
- 
mn 

i 

m 
- 
mn 

i 
~ f / 2  

. 1 .. 
2.3 1.3 .. 
.I 

2.3 1.3 .. 
29.3 9.5 7.1 

34.1 12.3 9.9 



following field of view). In order to obtain the updating formulae for the 
following field of view the first and second row and column have to be 
interchanged. If the zero multiplications are avoided considerable savings 
are obtained (second method of the example in table 7.3, with n.=11+3=14 

instead of n.=25). 

T 
pp also contains duplicate powers. Assuming p to be linear in the terms 

B-V, we now introduce the notation p where n is the maximum degree of 
n ,n ' 
0 1 

0 

the xy terms without colour terms B-V, and n is the maximum degree of the xy 
1 

terms with colour terms B-V (general l y n >n 1. Then p2no, 2nl 
0 1 

contains all the 
- - 
T 

terms from 'no, nlpno. nl* g' ~ 0 . 3 ~ b .  3 is 

2 2 2 2 the powers xy , x y  and x y  are redundant. The reductions for other degrees 
are summarized in table 7.4. 

Table 7.4 - Reduction in the size of the polynomials 

n 
0 

n I Ipno, n1 I IpnO. nlpno. n1 I Ip2n0,2n1 I perc. 



T 
The dimensions of pn , pn pn and P2n02nl are computed by the 

01 01 01 
following formulae 

T 
Similar optimizations for tt , which is almost always very small, as for 

T 
pp are not worthwhile. Similar optimizations for the contribution of the 

eliminated attitude are not possible. Firstly, ck=Xw .c is generally 
T 

kr ki 
completely full, and secondly ckck does not contain duplicate products. 

The algorithm for computing N.. is given below. Two special 
1 1  

vector/matrix operations are used: Vec(M) maps a matrix into a one 

dimensional array, Mat (V) undoes the operation. 

algorithm normal matrix computation instrument-instrument part 

1) initialize N i i t  0 ,  C t O  and C f t O  
P 

2) for frame k=1,2,. . . ,n compute 
a 

2.11 Ck t 0 , Wk t o  
2.2) for every observation i=1,2, . . . ,  m in this frame 

W t W + W  
k k ki 
if f =l (preceding field of view) do 

C t C + w k i  ( P2n02n1 p vec(pn tT), vec(ttT) 1 
P P 
T T T 

0 1 
c c c + Wki (p . 0. tT 1 
k k 

if f =-l (following field of view) do 

The savings are considerable: for instance in the example of table 7.3 
not 34 Mflops but only 10 Mflops are needed for the normal matrix computation 
without attitude elimination, while the gain in the attitude elimination is 
only 1 Mflop (from 10 to 9 Mflops). 



T 
The large scale distortion of the fieldTof view, a p, can be developed 

into a part common to both fields of view, g p, and a part containing half 
the difference between the two fields of view, hTp. The distortion is then 

This is the so-called G/H representation of chapter 5 (equation 5.17).The 
parameters g and hkij from g and h can be computed from (5.18.a). kij 

If the distortion is modelled in terms of g and h the updates to 

the normal matrices N . .  and N  for the j'th observation become 
1 1  si 

It will be clear that straightforward computation with this definition of c 

leads to enormous duplication of work; of the 6 blocks in N i i  only 3 blocks - 
T T 

pp , pt and ttT - are unique, and also N  contains duplicate blocks, 
si 

although the block pertaining to h may have a smaller degree. However, these 
normal matrices can also be computed indirectly from the normal matrices 
(7.13) for the P/F representation, even after the attitude is eliminated. 
Thereby all the computational advantages of the P/F representation can be 
used. 

T Due to the physics of the distortions the maximum degree of the h p 
T polynomial may be less than the maximum degree of the g p polynomial. 

Therefore, the total amount of parameters needed for the G/H representation 
can be less than for the P/F representation. In this case the G/H 
representation should be used in the least squares estimation, i.e. during 
Choleski factorization and the forward and backward substitutions. However, 
the P/F representation is preferred during the normal equation computation 
and polynomial evaluations. Therefore, if desired, the normal matrices and 
right hand side pertaining to the P/F representation can be transformed to 
the G/H representation before the factorization of the instrument part. The 
solution, pertaining to the G/H representation, is transformed afterwards to 
the P/F representat ion. 

7.3.4 Solving the Block Partitioned System 

The normal equations which remain after attitude elimination are solved 
in block partitioned form. Let the Choleski factor L be partitioned in a star 
and an instrument part 

similarly to the reduced normal equations (7.8). The instrumental blocks are 



stored as full matrices. The star part Lss of the Choleski factor is sparse, 

but not as sparse as N in the reduced normal equations (7.8) for which only 
ss 

the non-zero elements NZ(N ) have to be stored. Depending on the ordering of 
ss 

the star parameters only the non-zero elements Nz(L ) are stored 
ss 

( INz(Lss) I=~NZ({~) I ) or the envelope Env(Lss). 

The Choleski factor can be computed with the symmetric block 
factorizat ion algorithm of appendix C: 

Algorithm Symmetric block factor lzat ion (reduced normal matr i.x) 

1) factor R into L 
ss ss ss - - 

2) solve Lsi from the triangular systems L L' =RT 
ss is is 

T 
3) modify Rii into Nii=Rii-LisLis 

T 
4) factor A into LiiLii 

1 1  

Let n and n. be the dimensions of the star and instrument part 
S 

respectively. Assume that before the factorization the star unknowns are 
0 reordered, e .g .  by the modulo 60 ordering (see chapter 81, to reduce the 

bandwidth or profile of the Choleski factor. Then the operation counts for 
the different steps, with n -1800 and n.-25, are of the order 

S 

l) 0(3bs) = 27 Mflop 

2) O(onins) - 7.8 Mflop 

3) 0($:nS) = 0.6 Mflop (7.18) 

1 3  
4) O(pi) - 2.6 Kflop 

with o the average frontwidth, the number of active rows during factorization 
(appendix C). In this example we assumed o=2pC, where pc= 90 is the cyclic 

0 bandwidth after the modulo 60 ordering (chapter 8). 

The Choleski factorization of the star part is computationally 
intensive. Somewhat surprisingly the operation count for the second step, the 
elimination of star parameters from the instrument part, is of the same order 
of magnitude. So, taking into account also the efforts for the instrumental 
normal matrix computation, the computation of even a modest number of 
instrumental parameters involves already quite a heavy computation: e . g .  
another 27 Mflops just to compute 25 instrumental parameters (10 Mflops are 
needed for the normal matrix of the instrument part, 9 Mflops for the 
elimination of attitude parameters (see table 7.3) and another 7.8 Mflops for 
the elimination of star parameters (7.18)). 

The storage requirements for the symmetric block factorization are at 

most on +n words (-325 Kwords) which are needed to store L completely and 
S S ss 

one vector of n long which is used to store columns of L Before the third 
is' 

step L may be partly overwritten by L. which is needed completely in 
ss l S' 

memory (n n = 50-100 Kwords). A different algorithm for the block 
S i 

factorization, also suggested in appendix C, is the so-called a-symmetric 



block factorization, which does not need L explicitly. A-symmetric block 
is 

factorization is superior if I N Z ( ~ ~ ~ )  I S I N Z ( L ~ ~ )  I .  However, since this is not 

the case, and because Lis is needed explicitly later on for the covariance 

computation, the symmetric block factorization method has been chosen. 

The solution of a two by two block partitioned system can be computed 

also with and without Lis. The standard solution scheme uses L the 
i S' 

implicit solution scheme, which is implemented in our software, uses M . 
is 

Algorithm Implicit solution scheme 
T 

1) solve Ax' L t =E and L Ax'=t 
S ss S S ss S S 

2) compute g.=bi-k Ax' 
1s S 

T 3) solve Ax- Liiti=bi and L. .x.=t 
1 1  1 i 

41 compute E =E -R: AX 
S S is i 

5)solveAx L t = E  and L ~ A X : ~  
ss S S S S 

The star solution is computed twice, viz. with and without taking the 

instrument into account. The fourth and fifth step may be written also as 

an updating of the first solution, i.e. 

4 )  solve A(Axs) and L:)(AX~)=~~ 

5) update Ax Ax = Ax' + A(Ax 1 
S 

The operation counts for the star solution are of the order O(20n ) = 0.6 
S 

Mflop (step 1 and 51, for the reduced right hand sides O(nins) = 0.04 Mflop 

(step 2 and 4) and for the instrument solution 0(n2) - .6 Kflop. In the 
standard solution scheme the star solution is computed only once. 

Algorithm Standard solution scheme 

1) solve ts L t = E  
ss S S 

2) compute %.=E.-L. t 
1 1  I S S  

T 3) solve~x ~ ~ ~ t ~ = b ~ a n d  L..Ax.=~ 
i 1 1  1 i 

- - T 
4 )  update ts ts=ts-LisAxi 

5) solve Ax 
S 

In the standard solutionscheme L L. andL.. are needed. In the implicit 
ss' 1s 1 1  

solution scheme N is used instead of Lis. The implicit solution scheme is 
is 

faster than the standard solution scheme if INz(NiS) I + I N ~ ( L ~ ~ )  IsINz(Lis) I. 

This is not the case for the great circle reduction; the standard solution 
scheme is a factor 2 faster. In the actual software still the implicit 
solution scheme is used, mainly for historical reasons, but also because the 



implicit solution scheme gives some additional control over the adjustment 
and because it may be, if updating is used, numerically better. 

An alternative method for the solution of a two by two block partitioned 
system is given in [Van Daalen, 19831. This method is more or less similar to 
the implicit solution method, except that in step 2 and 4 the design matrix A 
and least squares residuals are used, and that the star parameters are 
eliminated from the design matrix first, before forming the instrumental 
normal equations and factorization of the instrument part. 

7.3 .5  Variance Computation 

The covariance matrices of the instrument and star part are respectively 
- 

c'Ns~;: and W-'. Rii is the normal matrix of the instrument part after 
SS 

elimination of the attitude and star part, which is computed as in the 
- 

preceding section. A is the normal matrix of the star part, after 
SS 

elimination of the attitude and instrument part, i.e. 
- - R = - N ~ - 1 i  

s s  s s  s i i i i s  

Nii, and R are normal matrices after elimination of only the attitude 
l S SS 

part. RI:, which is very small, can be computed straightforwardly by solving 
T =-l 

the system of equations L..(L. .N..)=I. On the other hand straightforward 
11 1 1  11 

computation of a'' which is completely full, is out of proportion: about 
s s '   on:) = 500 Mflops are needed. Fortunately only a few terms of K-' are 

SS 

interesting or will be used in subsequent stages of the reduction. In the 
sphere reconstitution and astrometric parameter extraction only the diagonal 
of the covariance matrix, which gives the variances of the star abscissae,is 
used. This may be done only if off-diagonal elements are not too large, which 
is not the case: from chapter 5 we know that "close by" stars, e. g. observed 
in the same frame, can have large covariances. However, these covariances, 
and some more, will be computed (as a byproduct) when the sparse inverse 
technique, described below, is used. 

Partial inverses of the star part can be computed more efficiently 
SS --l --l- =-l- 

using the block inversion algorithm, organized along A-'= N +N N .N..N. N-l 
SS SS S S S 1  11 I S S S  

and the sparse inverse algorithm, which computes only those elements from the 

inverse B-' corresponding to Nz(L 1.  The symmetric block inversion algorithm 
SS SS 

(appendix C) is 

algorithm symmetric block inversion 
T 

1) solve Gis from L G .  = L and solve Fsi from L F = 
1 1  i s  i s  s s s i  i s  

2) compute R-' from L 
SS SS 

3) compute E-'= N-l+ F 
s s  s s  s i  s i  

In step 2 the partial inverse is computed by the so-called sparse 
inverse technique. Typical for the sparse inverse is that only those elements 
in the inverse are computed which are non-zeroes in the Choleski factor. The 



sparse inverse is computed column by column in a recursive manner, with 
formulae very much identical to the ones mentioned above (appendix C). In 
step 3 the contribution of the instrumental parameters to the covariances of 
the star part are added. The operations counts for each of the steps are 

1 2  1) O(-n (ni+oni) 1 4.5 Mflop 
2 S 

2) 0(o2ns) - 54 Mflop (sparse inverse) (7.19) 

3) O(qni) = 0.045 Mflop (only the diagonal, i.e. q=ns) 

with o the average frontwidth (the number of active rows during Choleski 
factorization) of the normal matrix block for the star part. The operation 
count for the third step depends strongly on the number of elements of the 
inverse which have to be computed. If only the diagonal is computed q=n , but 

'S 

if the elements corresponding to NZ(R ) are computed q-on and then the 
SS S 

1 2  operation count is 7.8 Mflop. If the full inverse is computed q=-n and the 
2 S 

operation count is 41 Mflop. 

The inverse of the instrument part R:! can be computed in a 
1 1  

straightforward way, viz. by solving the systems Lii(~:i(~il))=~. The 

rectangular matrix with the covariances of the instrument/star part, c%-' 
i S' 

T 
can be computed by solving the triangular system L N-'- 

i i  is-Fis' 

7.3.6 Computation of the Attitude and L.S. Residuals 

The geometric attitude can be computed directly from the block 
partitioned normal equations: first new right hand sides 

are formed, then Ax = ~ - l b  is solved. Since N is diagonal, and because N 
a aa a aa aa' 

N and N . are were not computed explicitly, the geometric attitude is 
as a i 
computed frame by frame from the observation equations, which are stored on 

disk. The correction to the geometric attitude estimate (2 in the k'th 
a k  

frame is computed from 

where W =Xw and Adki the correction to the instrumental distortion. If k ki 
a =-l then the attitude estimate is equal to the weighted mean of the least 
k 
squares residuals after back substitution of the star and instrument 

T parameters. The distortion may be computed from c Ad. However, since the 
coefficients c of the linearized equations are not stored, the instrumental 
deformation is computed directly by Horner's rule. 

The residuals to the observations are computed at the same time as the 
attitude parameters, from 

The residuals are mainly used for testing purposes, notably the grid-step 
inconsistency correction. 



The variances of the attitude parameters are computed in a similar way 
as the variances of the star part, only the computations are a bit more 
complicated: 

Simulation experiments indicate that the influence of the instrument on the 
variances of the attitude can be neglected and so the variances of the 
attitude are computed from 

E-l= N- l + N - l N  ~ - 1 ~  N - l  
aa aa aa as ss sa aa 

(7.23) 

on a frame by frame basis. Only those elements of R;: which are non-zero in 

the normal matrix, NZ({~), are needed. I.e. 

7.4 Smoothed Solution 

The smoothed solution is computed in a more or less similar way as the 
geometric solution. The equations are again partitioned in an attitude, star 
and instrument part, but now the star and attitude unknowns change roles: the 
stars are eliminated first, and the attitude unknowns - now much fewer than 
in the geometric mode - are reordered. Optionally the smoothed solution is 
computed as an update to the geometric solution. 

7.4.1 Observation- and Normal Equations 

Two different types of along scan attitude parameters are computed 

during the Great Circle Reduct ion: a geometric attitude X , represented by 
one parameter per observation frame of 2.13 sec, and a smoothed attitude X 

b 
which follows from the non-linear attitude model ( X  ) =B(t X 1. After 

a k  k ' b  
l inearizat ion around approximate values B( t X'), assuming time t 

k' b k 
non-stochastic, the linear relations 

are obtained, with (B)kl= aB(t X X 1 and (xaIk-B(tk.x:). Thus k b  b l 
the along scan attitude, computed during the geometric reduction step, can be 
further improved. In fact an additional adjustment of the geometric attitude 
is carried out. The improvement of the attitude entails also corrections to 
the star abscissae and instrumental parameters. 



In matrix notation the complete linearized observation equations, with a 
geometric and smoothing reduction step, read 

Ay = A A; + AAx + A.Ax 
a a S S 1 i (7.26) 

A; = B Axb 

with Ax the vector of the small -unknown- corrections to approximate values 
for the unknowns, Ay the vector with linearized observations, i . e .  the 
observed grid coordinate minus a value computed from approximate data, and 
design matrices A and B with partial derivatives as usual. The first part of 
the equations, which are partitioned into an attitude, star and instrument 
part, are identical to the observation equations for the geometric solution, 
except that different approximate values are now used for the attitude. The 
relation between the corrections to the attitude parameters in equation 
(7.26) and (7 .1)  is 

The second part of the equations, the smoothing step, follows from the 
attitude model (7.25).  

The observations equations (7.26) are to be solved in least squares 
sense. Two approaches are open: 1 l compute the least squares solution of the 
combined equations 

with A=A B, or 2)  solve (7.26) in steps. It appears that the first approach 
b a 

will take less computing time, but in this way some control over the 
adjustment is lost. In the second approach the smoothed solution can be 
compared to the geometric solution, which is produced as an intermediate 
result containing fewer model assumptions than the smoothed solution, and 
thus the acceptability of the smoothed solution can be verified. Therefore 
the first approach is only used when the degree of smoothing has been well 
establ ished and when there is already substantial experience with smoothing. 

Let us assume that the-geometric reduction step has been completed. Then 
the least squares solution X is computed from the normal equations 

b 

where the observations A X ~  and weight matrix C-' follow from the geometric 
-a aa 

solution. Upper indices g for the geometric solution and upper indices S for 
the smoothed solution have been introduced. Underscores for stochastic 
variables, and a " - "  for the least squares estimate, are used as usual. The 
" observat ions" 

are identical to the attitude estimate computed during the geometric 
0 0 reduction step, except for a small non-stochastic term B( t  , X  ) - (X  ) which 

k b  a k '  
is necessary because different approximate values for the attitude have been 

used in the smoothing and geometric reduction steps. The corrections to the 

geometric at t it ude, A( AxS) =AxS-Axg, are equal to 
-a -a -a 



The star abscissae and instrumental parameters are correlated with the 
geometric attitude, and therefore the improvement of the geometric attitude 
entails also corrections to the star- and instrumental parameters. The 
correct ions to the star abscissae and instrumental parameters, A ( A I C ~ ) = A X ~ - A X ~  

'S 'S 

and A(hr:)=Ar:-Ar:, can be computed from the well known formulae 

where C C and C . follow from the block partitioned inverse of the 
aa' a s  a1 

normal matrix in the geometric solution. But these formulae are not very 

efficient for sparse systems of equations. 

A more efficient method is obtained if the observation equations 
for the smoothing step are written as 

O B O  

where A ( A x S )  = A X ~ - A & ~ ,  A ( ArS) =Ar>A;' A ; ~ = A ~ : - A & ~ = ~  and A~~=A&!-A&!=o are 
-S -S S 1 1 i '  1 - 1  1 -  

corrections to the geometric solution. The order of the blocks is different 
than in the geometric solution mode. It turns out that it is more efficient 
to solve first the star parameters and then the attitude parameters (see 
chapter 8). The "observations" for the star and instrument part are zero, 
which simplifies the equations somewhat, except when propagating variances. 
The normal equations, using as weight matrix the normal matrix from the 
geometric solution, are 

with N  = A '  W A  for p,q=s ,b , i ,  where A  =A B ,  N  =BIN B  and N  =N B  for 
W P W q  b_ a bb aa *b *a 

* = a , s , i  and right hand sides by= N , ~ A ~ > N * ~ A ~ ~ N * ~ A ~ ~  which can be 

simplified to by= N  A;' = A:W A;' for * = a , s , i ,  and with 0 2 * w - '  = C = 
- *a -a W -a O W  W 

E{ ( Ay-E{Ay)  ) ' (Ay-E{  A y )  1). Note that the right hand sides bU and -bu are 

different from the right hand sides in the geometric reduction step. 

The system of normal equations - partitioned in a star, attitude and 
instrument part - computed from the combined observation equations are 

T  with N  = A ~ W  A  and bS= A  W A y  for p,q=s ,b , i .  The normal matrices in 
W P W q  P  P W  

( 7 . 3 3 )  and ( 7 . 3 4 ) .  neglecting second order differences due to different 

approximate values for the attitude, are similar. However the right hand 

sides in ( 7 . 3 3 ) .  ( 7 . 3 4 )  and in the geometric reduction step are different. In 



the geometric reduct ion step approximate values x 0  for the attitude are used, 

in (7.34) approximate values x 0  with x O * ~ x O  are :sed. while in (7.33) both 
b' a b' 

of them are used. In (7.33) the smoothed solution is computed as an update to 
the geometric solution are computed. 

So far no assumptions about the attitude model were made, except that it 
must be linearizable and able to represent the attitude at milliarcsecond 
level. In chapter 6 two different ways of smoothing are distinguished: 
dynamical and numerical smoothing. In this chapter especially numerical 
smoothing with B-splines is considered. We prefer spline functions since each 
spline is non-zero over a small domain and with spline functions it is 
possible to extend the analytical representation over the gas-jets [Van der 
Marel, 1983c, 1985~1. 

Let us call the domain over which a B-spline is non-zero a superframe. 
Like ordinary observation frames superframes overlap, the number of 
superframes which overlap is equal to the order k of the spline. Superframes 
are longer than ordinary frames and have a variable length. Contrary to 
ordinary frames superframes cannot be described by single attitude parameter, 
but k parameters are sufficient, and two consecutive superframes have usually 
k-l parameters in common. Therefore the total amount of attitude parameters 
does not exceed the number of B-splines. Simulation experiments indicate that 
about 600 parameters X are needed to model the attitude with sufficient 

b 
precision. This is a considerable reduction compared to the 17,000 geometric 
attitude parameters X . 

Figure 7.4: Non-zero structure of the normal 
matrix for smoothing. 

In figure 7.4 the non-zero structure of the normal equations (7.33) is 

given. The non-zero structure of the star and instrument part are identical 

to the geometric solution; A  and N contain only one non-zero element per 
S SS 

row, Ais Xi, His, but also N are almost completely full. Each spline is 
bi ' 

non-zero over a small domain, and therefore the matrix B  has only few 

non-zero elements. Let k be the order of the B-splines, then B  and AaB 



contain precisely k non-zeroes per row. N = B ~ N  B is banded, with bandwidth 
bb aa - 

k ( i. e. 2k+l non-zeroes per row). The non-zero structure of N =NT are 
bs s b  

identical to NaS, except for the compressed row dimension and thicker bands. 

The normal matrix blocks pertaining to the smoothed attitude parameters 

are smaller but relatively denser than for the geometric parameters. 

(N 1 .+O if and only if star i is observed in the l'th superframe. Per scan bs L L  
a star is observed once in the preceding and once in the following field, 

during each passage it is seen on not more than 2k superframes. So there are 

approximately 2kc non-zeroes in each column of N with c the average number 
bs ' 

of scan cLrcles a star is observed on. Let n n n and n be respectively 
a' b' S i 

the number of geometric attitude, spline, star and instrument parameters, and 

c the number of scan circles for this RGC. Then the average number of 

non-zeroes in a row of N is approximately 2kc(n /n 1. 
bs s b  

7.4.2 Solving the Block Partitioned System 

The block partitioned normal equations (7.33) and (7.34) of the 
smoothing (updating) and combined reduction step can be solved in similar 
ways, using the symmetric block factorization algorithm and standard solution 
scheme of appendix C. 

Algorithm Smoothed solution scheme 

1) Eliminate stars 
- 1 / 2  1. 1 compute L ; : = N ~ ~  ( N  and Lss are diagonal) 

SS 

1.2 1 compute 
S S SS 

1.31 compute ( 1 

2) Factor and solve attitude/instrwnent part 

LT 2.2) Solve 



3) Update star part 
T 

3.1) compute t" = t' - ( Lbs ) 

3.2) solve (compute) A(Afis) = L-lt" 
SS S 

Symmetric block factorization is chosen because Nz(N )=Nz(L 1, and 
bs bs 

therefore a-symmetric block factorization is not more efficient. Symmetric 

block factorization may be applied also in the second step, but this step can 

also be solved integrally. N and L are stored in the envelope data 
bb' bb bb 

structure, and the instrument part, which is full, can be appended to these 

matrices without loss of efficiency. N and Lbs are stored in sifted format, 
bs 

and Lbs may overwrite N 
bs ' 

The instrumental parameters are already very well determined in the 
geometric reduction step. Therefore if the updated solution is computed the 
updating of the instrumental parameters may be omitted. However if the 
smoothed solution is computed directly, without computing the geometric 
solution first, the instrumental parameters must certainly be solved, unless 
they are already correct. 

7.4.3 Covariance Computation 

The variances of the star parameters can be computed from the the 
following formula, which follows from symmetric block inversion algorithm of 
appendi X C, 

or, written out in full, 

The partial inverse of the attitude/instrument part may be obtained by the 

sparse inverse technique (appendix C), which gives only the elements in 

Nz(N ),Nz(N 1 and Nz(N..). But if we only have to compute the diagonal of 
bb b i 1 1  

C this is sufficient. Simulation experiments indicate that the influence of 
SS 

the instrument on the variances of the stars and attitude can be neglected - 

if the instrumental parameters are computed at all -, so the variances of the 

stars may be computed from 

C = N-l+N-lN G - ~ ~  ~ - 1  
ss ss ss sb bb bs ss' 



A different approach for computing the variances of the stars can be 
derived from the updating formula in the smoothed solution scheme 

wit h N s a ~ ~ ~ N s S ~ ~ ~ N s i ~ ~ ~ ,  subst i tut ion gives 

So the corresponding improvement in variances, neglecting the instrumental 
parameters, read 

7.5 The Rank Defect during the Great Circle Reduction 

7.5.1 Base Star Solution 

The design and normal matrices in the great circle reduction do not have 
full rank, i.e. their columns are linearly dependent. In case all active 
stars are connected, directly or indirectly, to each other, the rank defect 
is one. This corresponds to a unknown zero point for the abscissae. Hence, 
the observations are invariant under an arbitrary shift of both the star and 
attitude abscissae. In the exceptional case that there are several groups of 
active stars, which are all connected within the group, but which do not have 
connections between stars belonging to different groups (in graph theory: 
there is more than one connected component), the rank defect is equal to the 
number of groups. In this case the adjustment can be carried out for each 
group separately, with for each group a rank defect of one. Therefore, we 
will only consider the case for which the rank defect is one. The 
generalization to a multiple rank defect is straightforward. 

During the great circle reduction the rank defect is overcome in a 
simple way: some unknown does not get a correction and is fixed on its 
approximate value. Generally, the abscissa of some bright star, close to one 
of the scan circle nodes, is fixed: this is the so-called base star. This 
corresponds to skipping the corresponding column in A (and the corresponding 
row and column in N). This remedy for the rank defect is very attractive for 
its simplicity: it results in a smaller system and less fill-in during 
Choleski factorization. 

The above mentioned remedy for the rank defect has the same effect as 
the following constraint: 

with c=O, C =O and B a lxn matrix with all zeroes, except for the element 
CC 

corresponding to the base star (appendix C). The solution and the covariance 
matrix of the unknowns, for a different choice of constraints (i.e. a 
different base star), can be computed from the so-called S-transform of 
appendix C [Baarda, 19731. For instance, if S is the label of the new base 



star, and the old base star is labelled r ,  then 

The complete solution is shifted over a value equal to minus the correction 
to star S before the S-transform, so that the correction to star S, the new 
base star, becomes zero after the S-transform. 

7.5.2 Minimum Norm Solution 

In case of the minimum norm solution a different choice of constraints 
for equation (7.39) has been used. Namely, c=O, as before, but B  is chosen is 
such a way that 

A B ~ = O  (7.41) 

i.e. is a basis for the null space of A  (rank 1). A possible choice for B  
is a vector consisting of all ones for the attitude and star part, and zeroes 
for the instrument part. Actually, we will only consider here the system 
after elimination of the attitude parameters: a possible choice for B  is then 
a vector with all ones for the star part and zeroes for the instrument part. 
The minimum norm solution has some nice properties: 

- the solution Ax has minimum norm, 
- the covariance matrix C has minimum trace. 

XX 

In the case of the great circle reduction also the sum of the elements in Ax, 
the correction to the approximate values, is zero. 

The minimum norm solution can be computed from the base star solution by 
the following S-transform (here we consider only the star part, after 
elimination of the attitude part): 

Again, the abscissae are only shifted, but from the original covariances the 
column and row average must be subtracted, and the overall average must be 
added. From eq. 7.42 it seems as of the complete covariance matrix is needed 
for the computation of the transformed covariance matrix. 

The minimum norm solution can be computed more efficiently from the 
normal matrix system of equation (C.10) in appendix C 

with m a Lagrange multiplier. This linear system is symmetric and regular, 
but not positive definite. Therefore this system cannot be solved with 

T  Choleski factorization. However, any N-l dimensional submatrix of A WA is 
positive definite, and can be factored by the Choleski method. The remaining 
2-dimensional part, after reduction by the Choleski factor, can be inverted 
by Gauss' method. 



Let the normal matrix be partitioned in an N-d dimensional block and two 
d dimensional blocks, then N-d steps of Choleski factorization, with 
reduction of the remaining part, give 

N-d steps 
0 0 

Choleski -D 

- 
with Bl= B~L;~; B2- B N"N - B -E LT D = B N-'B' = and 

1 1 1  12- 2 1 21' 1 1 1  1 
G = N - N N N = 0 because of the rank defect. The inverse of the 
22 22 21 11 12 
remaining four d-dimensional blocks can be computed by Gauss' method with 
pivoting, i.e. 

The remainder of the inverse follows by recursive partitioning using the 
sparse inverse technique. 

In the operational software the solution will be computed with the base 
star approach. This solution can be transformed to the minimum norm solution 
by equation (7.421, but this is not really necessary, since in the next step 
of the reduction (sphere reconstitution) the zero point will be solved 
anyhow. It also does not matter which covariance matrix is used. However, in 
practice the full covariance matrix is not used, but only the diagonal. So, 
since the off-diagonal elements in the minimum norm covariance matrix are 
smaller, we believe that it is better to use the minimum norm variances than 
the base star variance in the next data reduction step. But also for analysis 
purposes the minimum norm variances are better. These are the reasons why, 
after the base star solution is computed, the sparse inverse for the minimum 
norm solution is computed from equation (7.44). with the 2-dimensional Gauss' 
inverse of equation (7.45) as starting point. 





ORDERING OF THE UNKNOWNS DURING THE GREAT CIRCLE REDUCTION 

During the great circle reduction two large sparse systems of equations 
have to be solved. The order, in which the attitude, star and instrumental 
unknowns are computed, influences the efficiency of the adjustment process. 
In this chapter several possible, near optimal, orderings of the unknowns are 
discussed. 

8.1 Introduction 

The number of non-zeroes in the Choleski factor, and therefore storage 
requirements and computing resources, depend on the ordering (numbering) of 
the unknowns. The ordering does not influence the numerical stability of 
Choleski factorization as much as it does with Gaussian elimination. 
Therefore, 1) we may order without regard for numerical stability, and 2) we 
can order before the actual factorization takes place. Our objective is to 
find an ordering which minimizes computing resources, especially execution 
time, but also storage requirements. 

During the Choleski factorization process "new" non-zero elements will 
be created in places where there was a zero in the normal matrix. The ideal 
ordering would be the one which minimizes the number of newly created 
non-zero elements in the Choleski factor, the so-called fill-in, but 
generally there is no algorithm which computes such an ordering in an 
tractable way. Therefore, an acceptable ordering is: 1) one which gives 
small, but not necessarily the minimum, fill-in, and 2) one which is produced 
by an efficient ordering algorithm. Two different types of ordering schemes 
are distinguished [George 8 Liu, 1981, Duff, 19811: 
1. schemes which cluster the non-zeroes around the diagonal, and so try to 

reduce the envelope of the non-zero elements in the normal matrix, 
2. schemes which reduce the fill-in of the Choleski factor. 
The choice for one of these schemes actually involves a choice of a data 
structure for the Choleski factor, viz. the profile or variable band format 
for 1) or the more general sifted format for 2). 

Representatives of the ordering schemes that cluster the non-zeroes 
around the diagonal are the so-called Reverse Cuthill-McKee algorithm 
[Cuthill-McKee, 1969, Gibbs et al, 1976, George G Liu, 19811 and the 
"banker's" algorithm [King, 1970, Snay, 19761. An example of an ordering 
scheme which aims at reducing the fill-in is the well known minimum degree 
algorithm [George 8 Liu, 19811. The performance (in terms of fill-in) of the 
minimum degree algorithm is generally better than that of the schemes which 
just cluster the non-zeroes around the diagonal. However, with the minimum 
degree algorithm the non-zeroes will be scattered over the whole matrix and 
therefore a more complex data structure, viz. sifted format, has to be used 
to profit from this low number of non-zeroes, with more overhead in storage 
and access times. The envelope orderings use the simpler variable band or 
profile data structure with almost no overhead. Therefore the overall 
performance of the envelope orderings schemes could be better than the 
minimum degree algorithm, the more so since the minimum degree ordering is 
also more expensive to compute. 



Most of the above mentioned schemes can be formulated most clearly in 
terms of the graph of the matrix, representing the connection structure of 
the unknowns (see the next section and appendix C). In the case of Hipparcos, 
the major characteristics of the graph, can be well captured by an 
approximate graph, derived solely from geometry: Two stars can only be 
connected if their abscissae differ by not more than the size of the field of 
view, possibly plus or minus the basic angle. The actual connection structure 
depends not only the difference of the star abscissae. Therefore, the 
approximate graph represents a more densely tied star network. A specific 
class of ordering schemes, the so-called synthetic orderings, are based on 
the approximate graph. The synthetic orderings are computed directly from the 
list of star abscissae and the reordering takes place before the actual 
normal matrix computation. An example of a synthetic ordering scheme is the 
modulo ordering (sec. 8.4.2). but also synthetic versions of the earlier 
mentioned graph oriented ordering schemes can be given. 

In the next section first some terminology is introduced which will be 
used later on. Then a very special synthetic ordering is discussed, viz. the 
optimal order of the attitude, star and instrument blocks is established and 
proof is given that the blocks can be kept intact under the optimal overall 
ordering. It appears that only the star parameters in the geometric solution 
mode, and attitude parameters in the smoothing mode, have to be ordered 
further. Most of the principles of Choleski factorization, and the occurrence 
of fill-in are described in appendix C. Readers which are not familiar with 
sparse systems of equations might prefer to read this appendix first. 

8.2 Terminology 

Sparse matrices contain only -relatively- few non-zeroes. The zero 
elements have not to be stored and multiplication by a zero results again in 
a zero. The set of non-zero elements in a matrix A will be denoted by Nz(A), 
i.e. 

Nz(A1 = { (i,j) I aij*O , i=j ) 

For symmetric matrices we prefer a slightly different definition: we will 
also require that isj, i.e. Nz(A) contains only the non-zero elements ( i ,  j) 
from the lower triangle of the matrix. The fill of a sparse matrix is equal 
to lNz(A)I, the number of non-zero elements in the matrix. The bandwidth 
p.(A) in the i'th row of a N X N sparse symmetric matrix A is 

L 

The envelope Env(A) of this matrix is defined by 

Env(A) = { (i, j) I i-pi(A1 5 j 5 i ) 

i.e. the envelope of the matrix consists of all elements up to the diagonal, 
zeroes and non-zeroes, except the leading zeroes in a row. The prof i Le 
(Env(A1 I of a matrix is equal to 

N 
IEnv(~1 I = Z Bi(A) 

i = i  
the number of elements within the envelope. Obviously for any symmetric 
matrix A Nz(A) G Env(A) and (NZ(A) I 5 I ~ n v ( ~ 1  I .  



T 
Let L be the Choleski factor from the factorization A=LL . Then we know 

from lemma (C. 10) of appendix C that Env(L)=Env(A). Now, let us define the 
frontwidth o(A) of a symmetric N by N matrix A as 

oi(A) = I { k 1 (k, i) E Env(A) for k > i ) I 
the number of rows of the envelope of A which "intersect" column i. But, then 
o.(L)=o.(A) is the number of active rows at the i'th step in the Choleski 

L L 

factorization. Hence the operation count for computing the Choleski factor is 

and the operation count for solving the system of equations: 

The envelope Env(A) and profile I E ~ ~ ( A )  I can also be computed from the 
frontwidth o, using identical definitions as for the bandwidth. 

The non-zero structure of a sparse symmetric matrix A can be associated 
with a graph G. A graph G=(X,E) consists of a finite set X of nodes 
X together with a set E of unordered pairs of nodes {X X .), called edges. 

i i' J 
Nodes are associated with unknowns and edges with a pair of unknowns 
connected through observations. A graph is ordered if the nodes are numbered. 
An ordered graph can be related to a symmetric matrix A: the nodes can be 
associated with the diagonal entries in A, edges can be associated with the 
off-diagonal non-zero elements in A. 

Two nodes X and y are adjacent if the pair {x,y) is an element of E, the 
set of edges. Let Y be a subset of nodes (simple case: Y is a node), then the 
adjacent set of Y ,  denoted by Adj(Y), is the set of nodes which are not in Y 
but are adjacent to at least one node in Y ,  and the degree Deg(Y) of Y is 
simply the number of edges with nodes outside Y ,  i.e. D ~ ~ ( Y ) = I A ~ ~ ( Y )  1 .  A 
section graph consists of a subset of the nodes plus all edges between them, 
i.e. the section graph G(Y) is the subgraph G(Y, E(Y)) of G(X, E), with Y C X 
and E(Y) = { { x , y )  E E I X E  Y ,  y E Y ) .  

The complete process of Choleski factorization (using the outer product 
formulation of appendix C) can be interpreted as a sequence of graph 
transformations 

with G the original graph G of the normal matrix N, G. the graph of the 
0 L 

reduced normal matrix after i steps of Choleski factorization process and G 
n 

the empty graph. The so-called elimination graphs G are computed 
i 

recursive l y: 
G i + l  

is computed from G i  by the following recipe: 

1) delete the node x i  and all its incident edges, 

2) add edges so that all nodes in Adj(xi) are pairwise adjacent 

in the new graph. 

The fill-in of the Choleski factor L corresponds to the set of new edges 
added during the elimination process. 



The order in which the nodes are eliminated influences the fill-in. The 
minimum degree reordering algorithm specifies that the node to be eliminated 
next in an elimination graph G i  must be of minimum degree in G It will be i' 
intuitively clear that the number of edges to be added to Gi+, is then small. 

A more elaborate criterion than the minimum degree criterion is obtained if 
the edges which are already present in the elimination graph are not taken 
into account. Both methods aim at local minimization of the fill-in. In this 
sense minimum degree is a heuristic algorithm; it is not guaranteed to give 
minimum fill-in globally, although there is sufficient empirical evidence 
that it produces an ordering which gives a low fill-in. On the other hand 
global minimization of the fill-in is an NP-complete problem, and therefore 
generally out of the question. 

8.3 Optimum Block Ordering in the Geometric Mode 

Previously we have put intuitively the -geometric- attitude unknowns 
first, followed by the stars and finally the instrumental parameters. The 
questions, which are considered in this section, are 1) is this the optimal 
sequence, and 2) can the groups be left intact? Observe for the graph 
associated with the normal matrix of the great circle reduction (figure 7.21, 
that general l y 

Deg(x ) < Deg(xs) << Deg(xi) , where Deg(x ) - 4 (max. 101, and 
a 

Deg(x 1-40, not counting the instrumental parameters, and Deg(xi)-20,000 

the edge set of the section graphs G(x ) and G(x are empty, i.e. 
a S 

E(x ) = 0 and E(x ) = 0. 

This can be observed directly from the normal matrix for the geometric 
solution of figure 7.2: 1) the degree is equal to the number of non-zeroes in 
the corresponding row or column, and 2) the empty edge sets of the two 
sections graphs correspond with the diagonal normal matrix blocks for the 
attitude and star part. From the second observation follows that successive 
elimination of nodes of one of the section graphs first does not influence 
the degree (in the total graph) of the remaining nodes in the section graph. 

These two observations suggest that, using the minimum degree criterion, 
in order to obtain minimum fill-in 1) attitude parameters must be eliminated 
from the graph first, because they have the lowest degree, and 2) they may be 
eliminated in any order, without consequences for the fill-in, because the 
edge set of the section graph for the attitude parameters is empty. There 
will be fill-in the section graph of the star parameters, but there is no 
fill-in in the section graph of the attitude parameters themselves. The 
elimination process is so simple that it is done during the normal matrix 
computation (sec. 7.3.2). 

The elimination graph G'=(X',E') after elimination of the attitude 
parameters, which can be associated with the normal matrix of figure 7.3, has 
the following properties: 

the edge set of the section graph of the star parameters is not empty 
anymore 

Deg((xs)f) 2 max( Deg((xaIk) I {(xSIi, (xaIk) E E ) because all stars 
k 

observed simultaneously in an observation frame become connected. 

Deg((x )'.) is usually smaller than Deg((x 1 . )  (e.g. Deg((xs);) - 24 ) 
S l. S L 



The degree of the star parameters, after elimination of the attitude 
parameters, is equal to the number of other stars to which they are 
connected. This is usually smaller than the degree in the original graph, 
i.e. the number of frames in which the star observed. The degree of the star 
parameters is on the average Deg(x') - 24. 

S 

If we would have eliminated the star parameters instead of the attitude 
parameters then we would have: 

because all attitude parameters for the observation frames in which the same 
star is observed become connected. The degree of the attitude parameters 
-after elimination of the stars- is therefore almost certainly larger than 
that of the star parameters would we have eliminated the attitude first. Also 
considering that the system of attitude parameters is much larger, 17,000 
compared to 2,000, then it will be clear that the attitude parameters must be 
placed first. In case of attitude smoothing the degree of the attitude 
parameters before elimination will be already larger than the degree of the 
star parameters. Then, the above reasoning does not hold. 

So far we did not discuss the instrumental parameters. It will be 
sufficiently clear from their high degree, almost the highest attainable 
degree, that they must be put last. Furthermore, for the same reason, it 
makes no sense to order the instrumental parameters. Since the attitude 
unknowns may be eliminated in any order, only the star unknowns have to be 
ordered further. The appropriate ordering is now: 

1. attitude unknowns in arbitrary order, 
2. star unknowns, have to be ordered further, 
3. instrumental unknowns in arbitrary order. 

The ordering of the star parameters is discussed in the next section(s). 

8.4 Ordering of the Star Unknowns 

8.4.1 Introduction 

Consider the graph G'=(X',EO) after elimination of the attitude 
parameters; two stars i and j are connected if and only if {i, j) E E'. 
Because of the design of the Hipparcos instrument stars can only be connected 
to their direct neighbours and to stars at a basic angle distance. More 
precisely: two stars can be connected only if the difference of their (scan 
circle) abscissae, modulo 360°, is in the range 

with C the basic angle and f the size of the field of view, although f is 
slightly increased in order to account for the projection on the RGC. The 
reverse is not true, but the robability is high that two stars are connected B if the difference, modulo 360 , of their abscissae is in one of the above 
mentioned ranges. The actual connections between stars depend also on their 
ordinates and the scan pattern on the RGC. For example, pairs of stars for 
which the difference in abscissae is in the range [-f,+fl, will only be 
connected if the difference of the ordinates is in the same range. In general 
pairs of stars near the node of the scan circles on the RGC are always 
connected, but 90' away from the nodes those pairs wi l l only be connected in 
about 50% of the cases (assuming 5 scan circles). 



The normal matrix of the stars after elimination of the attitude 
parameters corresponds to the graph G'. When the stars are numbered in order 
of ascending abscissae (the natural ordering) the non-zeroes of the normal 
matrix are located in three small circular bands at "basic angle distance" 
(figure 7.3). The small bands at the upper right and lower left corner are 
due to the cyclic nature of our problem; i.e. the abscissae are modulo 360' 
and star indices are modulo N. The normal matrix of the star part is very 
sparse: the rate of fill is not more than 1.5%. Since the normal matrix has 
almost the monotone profile property (see appendix Cl, the spaces between the 
small bands are almost completely filled in the Choleski factor (figure 8.41, 
which gives the upper triangular factor the appearance of a roof with a 
chimney. Therefore, whenever such a structure occurs, we call it a chimney 
matrix, even when we work with the lower triangle. The rate of fill of the 
Choleski factor is approximately 50%. 

Obviously the natural ordering of the stars by ascending abscissae is 
not a very good ordering. Therefore, in the next sections, three other types 
are considered: 
- the so-called modulo ordering, which leaves the cyclic nature of the normal 
matrix and chimney structure of the factor intact, 

- the envelope orderings, like the ones produced by the reverse Cuthill-McKee 
(RCM) algorithm and the "banker's" algorithm, which cluster the non-zeroes 
around the diagonal, 

- the orderings produced by the minimum degree (MD) and nested dissection 
(NDI algorithms. 

The modulo ordering is a synthetic ordering, which can be computed from the 
list of abscissae without computing the graph first. The other two groups 
operate on the graph, although synthetic versions are possible too. In 
particular, a synthetic version of the minimum degree algorithm (SBMD), which 
is somewhat similar to nested dissection, is considered. In table 8.1 the 
various ordering procedures which we considered are summarized. In addition 
to the nature of the routines (graph based or synthetic) also the -1ocal- 
fill reducing criterion is listed: m. f. stands for minimum fill, m. b. for 
minimum bandwidth and m.p. for minimum profile. In the fourth and fifth 
column some of the properties of the Choleski factor are given: respectively 
the data structure to be used (envelope Env(L1 or sifted format Nz(L1 1 and 
whether the factor has the cyclic matrix property (defined later). 

Table 8.1: Ordering procedures for the star unknowns 



The efficiency of the ordering procedures depends on three factors: 1) 
the amount of fill-in, 2) the data structure for the factor, and 3) the fact 
that synthetic orderings usually can be computed faster than graph based 
orderings. Computer storage comprises both storage for the element values and 
overhead for information about the row and column indices of the elements. 
The overhead is negligible when the factor is stored in envelope form, but 
when it is stored in the sifted format there will be a considerable overhead 
in both computation time and storage. The sifted format gives especially a 
non-negligible amount of overhead in the execution times due to 1 )  storage 
allocation for L (symbolic factorization) and 2) overheads in access times. 

The "ban er's" algorithm gave the best overall result in cpu-time, with 8 the modulo 60 ordering and reverse Cuthill-McKee ex aequo on a good second 
place. The fill of the Choleski factors produced by the synthetic block 
minimum degree algorithm is already larger than the profile of the Choleski 
factor with the banker's ordering. The overall result of the synthetic block 
minimum degree and nested dissection, measured in cpu time, was not very 
good, also because the synthetic block minimum degree and nested dissection 
scatter the non-zeroes over the matrix, which results in a more complicated 
data structure and more overhead during the factorization. 

8.4.2  Modulo ordering 

The base-line of our a-priori ordering is that stars which are connected 
will get nearby indices. So this ordering belongs to the class of band 
(profile) minimizing algorithms, and has also the advantage that the 
overhead, during Choleski factorization is kept to a minimum. Our procedure 
works in two steps: First stars are ordered according to their abscissae 
modulo an angle Cm close to the basic angle, which reduces the overall 

bandwidth. Secondly the bandwidth of the chimney is further reduced by 
selecting a suitable starting point for the ordering. 

8.4.2.1 Terminology 

The normal matrix N of the star part -under the natural ordering by 
SS 

ascending star abscissae- is a cyclic variable band matrix. Let A be such a 
symmetric N by N cyclic variable band matrix, see figure 8.1. The non-zero 
structure of cyclic variable band matrices can be conceived as periodic in 
both the row and column directions, with period N. Therefore, some parts of 
the band are repeated in the upper right and lower left corner of the matrix. 
The cyclic bandwidth p? in row i (or similar in column i) does not take these 

L 

repetitions into account. It is defined as 

The cyclic frontwidth v.(A) in column j (or similar in row j) is defined by 
J 

vC.(A) = max{ i I a L 0, k = i mod(N), j i i i j+N/z 1 - j 
J k j 

In these cyclic matrices the row and column indices i , j  may be elements from 
Z, the natural numbers, with li-jl=N/2. The row and column indices in A, 
a a r e k =  i mod(N) and 1 =jmod(N). kl' 



The following identities hold for the non-cyclic bandwidth and 
frontwidth of a cyclic matrix A, assuming the band is completely full, 

m - l  A for l S i N - A  (I & 11) 
pi(A) = { i-1 for N-~:(A) 5 L 5 N 

(111) 

For a not completely full band the previous formulae give an upper bound for 
pi(A) and oi(A). Assuming two bands with the bandwidth of the diagonal band b 

and the width of the off-diagonal bands 2b+l, then the bandwidth and 
frontwidth of A are 

r min{i-l, b) for 1 5 L s v:(A) ( I  

B~(A) = { for v:(A)< L<N-~:(A) (11) 

1 ~-v;(~)+(2b+l) for N-~;(A) s L S N (111) 

Assuming b=mean(@.(A)), the mean width of the diagonal band, and 
L 

c = { max{pi(A)-i+l) I i=l, v (A) ), the width of the "chimney", then the 
N 

percentage of fill in the Choleski factor is: 

2(b+c)N - (b+cI2 
100% 

NZ 
2 The operation count for the factorization is of the order O((b+c) NI. 

Figure 8.1: I1 lustrat ion of the cyclic bandwidth 



8.4.2.2 Continuous Star Graph 

Consider the continuous Graph G=(#,E) of the abscissae # [0,2n), with 
edges 

The operator Mrnd is defined as (a)Mrnd(b)=a-b*Rnd(a/b) with range [b/2,b/2) 
and is very similar to the Mod operator (a)Mod(b)=a-b*Int(a/b), with range 
[O,b). The discrete version of the continuous graph, for the sequence of star 
abscissae # i=1,. . N, has more edges than the actual graph, which 

i' 
corresponds to the normal matrix. Especially for stars not at one of the scan 
circle nodes the continuous graph may give too many edges. But at least all 
edges present the actual graph are also present in the continuous graph. 
Assign a continuous numbering Nun(#) to the abscissae, Nun(#) is in the range 
[0,1). The cyclic bandwidth and frontwidth are 

with Adj(#i)={ # .  I E E(#) 1. The ordinary bandwidth is defined by 
J 

the same formulae but without the Mrnd operator. 

Now consider the class of orderings Num(#)=(# Mod C )/C i.e. the m m' 
abscissae are ordered modulo an angle C The circular bandwidths for these m' 
orderings are: 

and the same equation for v;(G). 

proof: The formula for the cyclic bandwidth 

B;(G) =W{ (N~m(#~)-Num(# .))Mrnd(l) I # .  E Adj(#i) 1 
J J 

can be rewritten as 

The inequality CC-f (#.-#i)Mrnd(2n) 5 cC+f, with c=-1,0,+1, is written as 
J 

cc-f+2n*Rnd( ( #  .-#i )/2n) 5 # .-#i 5 cC+f+2n0Rnd( ( #  .-!bi)/2n). The difference 
J J J 

#j-#i can take the values cC+6f+q2n, c, v=-l, 0, +l and -1Ss+1. Then the 

bandwidth pC=Max{ (cC+q2n+Gf Mrnd(Cm)/Cm I - l + l  c. Q=-1. 0. +l 1 D 

8.4.2.3 The Optimal Angle for the Modulus 

The natural ordering by ascending star abscissae is defined by 
Num(#)=#/2n, i.e. C =2n. The circular bandwidth for the natural ordering is 

m 
then 

pC(Gn) = (C+f)/2n = .l8 

with ~=58' and f=. 9'. Of course C =2n is not a very good choice. The value 
m 



for C should be chosen in such a way that the bandwidth pc is minimized. m 
The formula for the bandwidth suggests that: 

- C should be as large as possible, because C is the denominator in the m m 
formula for the bandwidth, 

- C should be close to a divisor of 2n, 2n-C and 2n+C since f<<C, i . e .  m Cm 
should be a divisor of 2n and C. 

From these considerat ions it follows that C =60° is a good choice, the 
m 

bandwidth is then 

i . e .  a reducti n b almost a factor of 4 compared to the natural ordering. 8 Y  For e . g .  Cm=58 the maximum cyclic bandwidth 

is even larger than in case of the natural ordering. 

The ordering is illustrated by a small example with 360 stars, regularly 
distributed over the RGC, numbered in ascending order from 1 to 360. The 
width of the field is in this example 1'. The modulo 60' ordering for the 
example is 

Star i  is connected to star i - l  and i + l ,  observed in the same field of view, 
to star i+57,  i+58,  i+59, observed in the following field of view, and to 
star i -57,  i-58,  i-59,  observed in the preceding field of view. It is easy to 
see - by counting - that star i  is connected to stars not further than 17 
positions, or unknowns, away. The bandwidth as computed by the earlier 
derived formula is 18. This ordering is illustrated in figure 8 . 2 .  

3 0 1  3 0 2  3 0 3  3 0 4  3 0 5  3 0 8  3 0 9  ..... 3 5 7  3 5 8  3 5 9  3 6 0  L rnodu lo  6 0  

natural o r d e r i n g  - 

0  Figure 8 . 2 :  Illustration of the modulo 60 ordering; stars 
connected to star 65 are iv bold, stars within the band are 
outlined for the modulo 60 and the natural ordering. 

1 2 3 4 5 6 7  9  .... . 5 7  5 8  5 9  6 0  

6 1  6 2  6 3  64 65 66 6 7  6 8  6 9  ..... 1 1 7  1 1 8  1 1 9  1 2 0  

1 2 8  1 2 9  ..... 1 7 7  1 7 8  1 7 9  1 8 0  

2 4 0  

l 2 1  

1 8 1  

122 123 124 1 2 5  1 2 6  1 2 7  



In figure 8.3 the effect of the ordering is shown for an angle crn=58', 

which is not a divisor of 360'. Now the term ICm-Cl is zero, and for most 

unknowns the bandwidth is only N*f/Crn = 0.017-N = 6. In the figure this is 

demonstrated for star 65, for which the bandwidth is 7. However, at least one 
third of the unknowns has a larger bandwidth. This is demonstrated for star 3 
which has a ban width of 66. Here part of the connected unknowns have $ abscissae > 360 or < o', and so we have to take in the formula for the 
bandwidth the modulus. The bandwidth is then N. (f+2n)mod(Crn)/Crn=. 22.N - 80. 

0 Therefore the overall profile of the modulo 58 ordering is larger than the 
b modulo 60 ordering. Another problem is of course the small group of unknowns 

left: they should be placed somewhere, and will increase the bandwidth 
further. 

0 Figure 8.3: Illustration of the modulo 58 ordering; stars connected 
to star 65 and 3 are in bold, stars within the band for 

for star 65 and 3 are outlined. 

s t a r  3 

The ordering of the star unknowns according to their abscissae modulo 
0 

60 leads to a reduction of the bandwidth of the normal matrix from roughly 
(the equivalent of N(C+f )/360 to N(2+f)/60 ,where C is the basic angle, f 
the along-scan width of the field of view, and N the number of stars on the 
RGC. With this ordering the Cholesky factor preserves its characteristic 
"roof with chimney" form, but a 70 % reduct ion in memory (assuming f-0. 9'and 
C-58') and a 90 % reduct ion in computing time - for the sparse inverse as 
we1 l - is attained when compared with the natural ordering of the stars on 
the circle. 

s t a r  6 5  

q 

8.4.2.4 Bandwidth Optimization of the Chimney 

..... 

A considerable amount of fill-in is still created in the chimney of the 
matrix. First note that the density of stars on an RGC is not constant, but 
varies from approximately 0.5 to 1.5 times the average densi y. After ii "collapsing" of the circle, i.e. superposing the separate 60 sectors, the 
density variations become smaller but remain present. By choosing a suitable 
starting point of the ordering (see figure 8.41, the width of the chimney can 
further be reduced. Since in realistic cases the density variations are 
larger than nominal, this small refinement can lead to an additional 
improvement in computing requirements from a few percent up to some 30 %, for 
a smal l additional reordering expense. 



The bandwidth of the normal matrix - when the stars are ordered modulo 
0 60 - is a function of the cumulated star density on the RGC, i . e .  the 

bandwidth ~ F ( A )  is proportional to the sum of the densities at $ i + ( k - l ) * 6 ~ 0 .  
L 

k = 1 , .  . , 6 ,  where $i is the abscissae of the i'th unknown. The density on the 

RGC depends on several factors: first of all n e y  the node of the scanning 
circles the density is a factor 3 lower than 90 further along the circle, 
but also occultations and the variable star density of the star field itself 
are important factors. Due to these three factors and the ordering procedure 
itself it is difficult to choose the most favourable first unknown from the 
density function only. Therefore in the ordering routine the bandwidth itself 
is estimated. 

Figure 8.4: Non-zero elements of the Choleski factor of the star 
part after reordering (CERGA dataset 11). The expected fill-in 
is given for two different starting points of the ordering. 

The profile IEnv(L1 I of the Choleski factor with node p  as starting 
P  

node is 

p+N-X ( A )  
P  P+N 

I E ~ u ( L )  I = @ ; ( A )  + ( i - p )  = 
P  

i =p i=p+N-X ( A )  + l  
P  

N 
= P ~ ( A )  + l ( i - p  C ( ~ )  p+ i  

i = l  i=N-X (A)+1 
P  

where X ( A )  is defined as 
P  

x ( A )  = max{ pc ( A I - j  for j = O , . . , v  ( A )  
P p + j  P 

The objective of the bandwidth optimization of the chimney is to find a 
starting node p  such that the second part of the formula is minimized, i . e .  



The bandwidth @;(A) is computed from the ''continuous" synthetic graph and not 

from the actual graph. 

8.4.3 Reverse Cuthill-McKee algorithm 

The rooted level structure rooted at x is the partitioning 

~ ( x )  = { ~ ~ ( x ) ,  ~ ~ ( x ) ,  . . . . , L , ( ~ )  (X)) where L (x)={x) and Li(x), i=!., . . , l(x) 0 

consists of the nodes adjacent to Li-l(x) and not already present in one of 

the previous partitions, i.e. L (x)={x), Ll(x)=Adj(x) and 
0 

Li(x)=Adj(Li-l(x))-Li-2(x) , i=2,3,. . . , 1 (X). 

The Cuthill-McKee ordering is based on this partitioning of the rooted 
level structure of the graph of the normal matrix. The nodes are numbered 
level by level. In each level internally the nodes adjacent to the lowest 
numbered node of the preceding level are numbered first in order of 
increasing degree and so on until the highest numbered node in the preceding 
level. The Reverse Cuthill-McKee ordering (RCM), the ordering obtained by 
reversing the Cuthill-McKee ordering, often turns out to be superior. It has 
been proved by Liu that the reverse ordering is never inferior [George 8 Liu, 
19871. This recipe has been implemented in the following algorithm: 

Algorithm (Reverse Cuthill-McKee) 

1. Determine a starting node (e.g. a pseudo peripheral node), and 

number it x 
1' 

2. For i=1, . . . . ,  N find all unnumbered nodes in Adj(xi) and number 
them in increasing order of degree. 

3. Reverse the ordering 

The general idea behind the Cuthill-McKee ordering is to reduce the bandwidth 
by local minimization of the /3.(A)'s, the bandwidth. One point deserves 

L 

further attention, viz. which node to select as a starting node. 

Let us define a path from a node x to a node y of length 121 as an 

ordered set of distinct nodes (v v 2.. . .  .VL+l 1 such that vi+l E Adj(vi), 

i=1,2,..,1 with v =X and v =y. In other words y is reachable from x through 
1 1+1 

the set of nodes {v 2 , . . . , ~ 1 ) .  The reach of a node y through S is defined by 

Reach(y,S) = { x Q S I x is reachable from y through S 
The distance d(x,y) between two nodes x and y in the connected graph is 
simply the shortest path joining the two nodes. The eccentricity l(x1 of a 
node x and the diameter 6(G) of the graph G are defined as 

l(x) = mad d(x,y) 1 y E X 

6(G) = max{ l(x) I x E X ) 

and x is called a peripheral node if 1(x)=6(G). 



In the literature [George B Ltu, 19811 it is suggested to choose a near 
peripheral node as starting node. The peripheral nodes themselves are too 
expensive to compute, therefore it is suggested to use an approximate 
peripheral node. However, for the great circle reduction problem there is no 
clear peripheral node. It turns out that, due to the specific structure of 
the measuring device, the eccentricity of the nodes is between 14 and 16, and 
the optimal starting node does not necessarily have the highest eccentricity. 
Experiments showed that in the case of Hipparcos the influence of the 
starting nodes on the fill-in is small; the difference in fill-in between the 
worst and best starting nodes is not more than 10%. 

The Reverse Cut hi l l -McKee ordering is i l lust rated in figure 8.5, where 
we have plotted the rooted level structure for CERGA dataset 11. The dots in 
figure 8.5 indicate stars, which are plotted on imaginary concentric circles 
which represent the level the star is in. Level 0, the starting node, is the 
dot in the middle. The results of the ordering on CERGA dataset I1 are given 
in figure 8.6 and table 8.2. The perfor ance of the Reverse Cuthil l-McKee t ordering is comparable to the modulo 60 ordering. Also the time needed to 
compute the ordering is of the same order of magnitude. 

' / . * 
. . 

0 .  

\ ' . 
i . .  - - .\: 

Figure 8.5: The rooted level structure: the imaginary concentric 
circles depict the level, the dots indicate stars; plotted as 

function of the level (radius) and abscissa (argument). 
(from [ De Jonge, l9871 1 

8.4.4  Banker's algorithm 

The Cuthill-McKee ordering is based on local minimization of the 
bandwidth. The banker's algorithm, suggested by [King, 1971 l and [Snay, 
19761, is based on local minimization of the profile or frontwidth. 

The name for the banker's algorithm comes from the following analogy 
[Snay, 19761. A banker is asked to divide the estate of a rich landlord among 
his tenants, but before any tenant can get a piece of land he must first 



settle his affairs with other tenants. From the first time a tenant has to 
settle one of his affairs until he gets a plot of land he must stay in the 
village hotel, during this time the tenant is hopeful. The banker aims, in 
order to save the good name of his bank and in order to save hotel costs, at 
minimizing the total waiting time of all the tenants. The tenants can be 
associated with nodes, the total waiting time of the tenants corresponds with 
the profile of the matrix and giving a tenant a plot of land corresponds to 
numbering a node. The analogy goes a little further: if the banker would have 
preferred to minimize the maximum waiting time of the tenants, which 
corresponds to the bandwidth in the matrix, he could have used the 
Cuthi l l-McKee algorithm. 

algorithm (banleer's) 

1. Pick a starting node and number it X,. 

2. For i=1,. . . , N-l first determine the set of hopeful nodes H and 
candidates C 

H = Adj({xl, . . . ,xi) 
C = H U { c E Adj(H) I c 4 {x1,. . . ,xi) } 

if C=O (and H=0) then stop; all the nodes in this connected component 
are numbered. 

Otherwise find a node y E C with minimum 

m 
i+l - n 

i+l 

where mi+l= lMi+l 1 ,  Mi+l={ m E Adj( y) I m 4 {xl, .  . ,xi}, m 4 H } 

and n.=l if y E H, else n =0, and number y as X 
L i i + l V  

1'1 +mi+l-ni+l represents the change in profile: the number of off-diagonal 
elements (the number of active rows) in the (i+l)'th column of the lower 
triangular factor. Note that, for efficiency reasons, not every unnumbered 
node is a candidate. The set of hopeful and candidate nodes are in practice 
computed from the following updating formulae 

H t H U { y E Adj(xi) I Y 4 {X,, . . . ,xi} } \ {xi} 
C t C U { y E {Adj(xi),Adj{Adj(xi)}) l y 4 {xl,..,xi} } \ {xi} 

where H and C are initialized by H=0 and C=0. 

A starting node for the banker's algorithm can be computed in the same 
way as for the Cuthill-McKee ordering. However, in the algorithm proposed by 
Snay an ordering is computed for ten different pseudo peripheral nodes, and 
then the pseudo peripheral node which gives the lowest profile is selected as 
starting node. This approach is not followed for Hipparcos, because almost 
all nodes are near peripheral and because we believe that it is not necessary 
to compute ten different orderings. A starting nodes is good when it gives in 
the first steps of the banker's algorithm only a few hopeful stars, i.e. the 
degree I Adj(xo) l of the starting node xo, and the degree of the hopeful nodes 
in the first step of banker's IAdj(xi)\Adj(xo) l ,  with xieAdj(x 1 hopeful 

O 0 nodes, must be small. These nodes can be found 1) for stars at 90 distance 
from the intersections of the scanning circles with the RGC, and 2) for stars 
which are observed only on the outermost scanning circle [De Jonge, 19871. 



Results of the banker's algorithm on CERGA dataset I1 are given in table 
8.2 and figure 8.6. The ordering produced by the banker's algorithm gives very 
good results, but it is rather expensive to compute. Still, the cpu times in 
table 8.2 for the banker's ordering are a little too pessimistic because ten 
orderings with different starting nodes were actually tried, as suggested by 
Snay. However, the best results were obtained with a starting node which was 
not selected by the algorithm. Once we have a good starting node the banker's 
ordering is not very difficult or expensive to compute. In [ D e  Jonge, 19871 
also an iterative scheme for improving the banker's ordering is suggested. At 
the cost of a few extra seconds ordering time 20-30 seconds of factorization 
time can be saved on CERGA dataset 11. 

The banker's algorithm and the ordering schemes suggested by King [K ing ,  
19701 and Levy [ L e v y ,  19711 are very much alike. Actually, King proposed two 
ordering schemes: In his first scheme only the hopeful nodes are considered 
as candidates. His second scheme is identical to the banker's ordering. In 
the Levy ordering all unplaced nodes are candidates. Experiments with King's 
first scheme on CERGA dataset I1 were not very successful. But, to our 
surprise, the Levy ordering, which considers all nodes as candidates, did not 
give better results than the banker's algorithm. 

8.4.5 Minimum Degree, Nested Dissection and Synthetic Block Minimum Degree 

So far we discussed only ordering schemes which aim at reducing the 
bandwidth or profile of a matrix. We will now briefly discuss three different 
schemes which directly aim at (local) minimization of the fill-in, these are: 
the minimum degree algorithm, nested dissection and synthetic block minimum 
degree. 

In sect ion 8.2 we have shown that the factorization process can be 
modelled by a series of elimination graphs. The minimum degree reordering 
algorithm specifies that the pivot to be eliminated next in an elimination 
graph G .  must be of minimum degree in G It will be intuitively clear that 

L i '  
the number of edges to be added to G then generally tends to be small. In i+ i  
this sense minimum degree is a heuristic algorithm; in general it does not 
result in minimum fill-in globally, although there is sufficient empirical 
evidence that it produces an ordering which gives a low fill-in. Despite its 
simplicity an efficient implementation for the minimum degree algorithm turns 
out to be not straightforward. An efficient implementation based on so-called 
quotient graphs is given in [George G Liu, 19811. This method has been tried 
on small simulations only; results for a more realistic great circle are not 
yet available. A synthetic version of the minimum degree algorithm, and 
nested dissection, have been tried instead. 

In dissection schemes the graph is subdivided into smaller graphs. The 
idea behind one-way dissection is to find n small sets of separators S 

i '  
which divide the original graph into n+l unconnected components G If the 

j' 
unconnected components are numbered first and the separator sets last, 
fill-in will only occur i n  G and S i ,  and between the separator sets S and 

j i 

' i + l  . The idea behind nested-dissection is to partition the graph into two 
subgraphs, using a single separator ( n = l ) ,  which is then repeated for each of 
the subgraphs until no more separators can be found. Each time a separator is 
found their nodes are numbered as the last in the subgraph. The nested 
dissection ordering for the great circle reduction has been investigated in 
[ D e  Jonge, 19871. 



A similar idea underlies the synthetic block minimum degree reordering. 
This ordering scheme is based on the approximate star graph which we already 
used for the modulo ordering. The idea behind this ordering is simple: First 
partition the star nod S in 7 sectors. The first 6 sectors are, in terms of 8 the star abs issae, 58 long, the seventh sector contains stars from the g remaining 12. Each of the sectors is divided in small segments, which 
consist of a long and short part. The short parts of the segments, and 3 of 
the sectors, act as separators. The large parts of the segments are numbered 
first, starting with sector 2 and followed by sector 4, 6, 1, 3, 5 and 7. 
Then the small parts are numbered, in the same order of sectors. The order of 
the sectors, and the sizes of the large and small part8 have been optimized. 
The small parts, which act as separator, are usually 1 long, a little more 
than the length of ihe field of view. The optimum length for the large parts 
turns out to be 4.8 ; so there go 10 segments in a sector of 58' long. 

8.4.6 Results for CERCA dataset I1 

In figure 8.6 and table 8.2 the results of various orderings f8r CERGA 
dataset I1 have been summarized. Results for the natural, modulo 60 , reverse 
Cuthill-McKee, banker's and Synthetic Block Minimum Degree ordering are given. 
Figure 8.6 contains the lower triangle of Nz(N ) and in the upper triangle 

ss 
Env(P ) is given. In table 8.2 the fill IN~(L )/ and profile IEnv(PSs)I of 

SS SS 

the Choleski factor, plus some computing times for a VAX 750, are given. In 
table 8.2 also the number of page faults is given. The VAX 750 is a virtual 
memory machine: Only a small part of the data can be stored in the fast 
internal computer memory. The remainder of the data is stored on disk. When 
the required data is not found in the fast memory one "page" of data (512 Kb) 
has to be swapped between disk and internal memory. This is a so-called page 
fault. Page faults cost cpu-time, therefore they are also given in the table. 

The bank r's ordering gave the best overall results in cpu-time, with % the modulo 60 and reverse Cuthill-McKee ordering ex aequo on a good second 
place. The fill-in produced by the synthetic block minimum degree ordering is 
already larger than the profile from the banker's ordering. The fill-in 
produced by the nested dissection algorithm is smaller, but the overall 
results of nested dissection (and synthetic block minimum degree) are not 
very good because the non-zeroes will be scattered over the matrix, which 
results in a more complicated data structure during the factorization. 
Surprisingly the sifted format factorization of the normal matrix after 
reordering with the banker's algorithm is faster than that of the normal 
matrix after nested dissection, although there will be less fill-in with 
nested dissection. This effect is due to the sub-optimal Choleski 
factorization algorithm (the so-called bordering algorithm of ap endix C) fl which was used. Another surprise is that, although the modulo 60 and RCM 
ordering produce more or less the same envelope, the results measured in 
factorization time are better for the RCM ordering. This effect is caused by 
the small number of page faults for the RCM factorization. Here it is an 
advantage that the RCM ordering does not generate an chimney matrix, as the 

0 modulo 60 ordering does. However, a different implementation of the C oleski 9 factorization could reduce the number of page faults for the modulo 60 
ordering (see appendix C). 



Table 8.2: Results of ordering strategies for the star part. 

Data: CERGA dataset I I. n;1843. I NZ(*) /=17949. NAT=natural 
0 ordering, MGO=Modulo 60, RCM=Reversed Cuthi l l-Mckee, BN=bankers, 

ND=nested dissection and SBMD=synthetic block minimum degree. 

Notes: 

IEnv(L1 I # 

% 

INZ(L) I # 

% 

cpu ordering 

Envelope fact. 

CPU (S. 1 
3 10 page faults 

Sifted fm. fact. 

cpu - symbolkc 
) - actual 

3 10 page faults 

1 )  the reordering started with the natural ordering 
2 )  the reordering started with the modulo 60 ordering 
3) data not available 
4) computing time for 10 orderings (with a special starting node for the 

GCR the ordering time becomes 13 S. 1 
5 )  the factorization routine for sifted format matrices can still be 

improved 

Figure 8.6 (on the next three pages) - The non-zero structure (in the lower 
triangle) and envelope (in the upper triangle) of the normal matrix for the 
star part of CERGA dataset 1 1 ,  as results from six different ordering 
schemes (the envelope is not given in figure 8.6.e and 8.6. f). 
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Figure 8.6. b 

Modulo 60' 



Figure  8 . 6 . c  
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Figure  8 .6 .  d 
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8.5 Optimum Block Ordering in Smoothing Mode 

The optimal ordering of the unknowns in the geometric solution mode was: 
attitude, stars, instrument. In the smoothed solution mode the optimal 
ordering is: stars, attitude (B-splines), instrument. 

I I l l l I I I 

C i ci+~Si+2 <i+3 <i+5 <i+7 - - time 

Figure 8.7 - Support of the B-spl ines (superframes) 

In this chapter only the B-spline model is considered. Let us define the 
domain over which a B-spline is non-zero a superframe. Superframes overlap 
like ordinary observation frames. Generally, a superframe overlaps with the 
next k consecutive superframes, where k is the order of the spline (figure 
8.7). Superframes are longer than ordinary frames and have a variable length. 
Contrary to ordinary frames the attitude within a superframe cannot be 
described by a single attitude parameter, but 2k parameters are needed. Two 
consecutive superframes have 2k-1 parameters in common. Therefore the total 
amount of attitude parameters does not exceed the number of B-splines. 
Simulation experiments indicate that about 600 B-spline parameters are needed 
to model the attitude with sufficient precision. This forms a considerable 
reduction compared to the 17,000 geometric attitude parameters. 

The non-zero structure of the normal matrix for smoothing (eq. 7.33) has 
already been given in figure 7.4. The non-zero structure of the star and 
instrument part is identical to the non-zero structure for the geometric 
solution; A and N contain only one non-zero element per row, Ai, Nii, 

ss Nis 
and N are almost completely full. Each spline is non-zero over a small 

bi ' 
domain, and therefore the matrix B has only a few non-zero elements per row. 
Let k be the order of the B-splines, then B and A B  contain precisely k .. 
non-zeroes per row. N =BIN B is banded, with bandwidth k ( i.e. 2k+l 

bb aa - 
non-zeroes per row). The non-zero structure of N = N ~  is identical to that 

bs sb 
of NaS, except for the compressed row dimension and thicker bands. 

The normal matrix blocks pertaining to the smoothed attitude parameters 
are smaller, but denser, than those for the geometric parameters. (N ) #O 

bs li 
if and only if star i is observed in the l'th superframe. Per scan a star is 
observed once in the preceding and once in the following field; during each 
passage it is seen in at most k superframes. Now let c be the number of scan 
circles for this RCC, and let c be the average-number of scan circles a star 
is observed on. So, there are approximately 2kc non-zeroes in each column of 
Nbs. Further, let nu, n n and n be respectively the number of geometric 

b' S i 



attitude, spline, star and instrument paramete-rs. Then the average numbe_r of 
non-zeroes in a row of N is approximately 2kc(n /n 1. Hence, Deg(x 1-2kc 

bs s b  S 

and Deg( X )=2k+2kc(ns/nb), not counting the instrumental parameters. So, for 
b 

smoothing with cubic B-spl ines (order k=4), -2000 stars, with each star 
observed on _the average on 3 scan circl~s (c-31, and 600 B-spl ines, we have 
Deg(xs) - 2kc - 25 and Deg(xb) = 2k + 2kcns/nb = 90 , not counting the 

instrumental parameters, and Deg(x. ) = n +n +n -1 = 2600. Hence, 
1 s b i  

Deg(x ) C Deg(x 1 <C Deg(xi). 
S b 

According to the minimum degree criterion the unknowns with a small 
degree must be eliminated first in order to obtain a small fill-in in the 
Choleski factor. Hence, it follows that the star parameters must be 
eliminated first. Also observe that the edge set of the section graph G(x ) 

S 

is empty, viz. N is diagonal, so successive elimination of star parameters 
SS 

does not influence the degree (in the total graph) of the remaining nodes in 
the section graph. From these two observations we may conclude that to obtain 
a small fill-in 1) star parameters must be eliminated from the graph first, 
and 2) they may be eliminated in any order, without consequences for the 
fill-in. There will be fill in the section graph of the attitude (spline) 
parameters, but there is no fill in the section graph of the star parameters 
themselves. 

The graph G'=(X0,E') has, after elimination of the star parameters, the 
following properties: 

Deg( (xb)i) = Deg((xbIk) 
Deg( (xb)i) = max( Deg( (xsIi) I {(x~)~, (xbIk) E E 1 

i 
The degree of the attitude parameters is greater than that in the original 
graph and larger than the degree of the stars to which the attitude parameter 
in questi.on is connected. The non-zero structure of the reduced normal matrix 
N after elimination of the star parameters is given in figure 8.8. a. 

bb 
(N ) *O if there exists a star i observed in the l'th and k'th superframe, 

bb kl 
which typically occurs for superframes separated in time by the equivalent of 
one basic angle and one or more revolutions of the spacecraft. This gives the 
off-diagonal bands in figure 8.8.a Let c be the number of scan circles and k 
the order of the spline, then there will be not more than 3(2c-1) bands. Each 
band will be at least 2k thick, except the diagonal which is slightly 
thicker, 2k+l, but the width can be larger because of irregularities in the 
spacing of the B-splines, especially near gas jets. Therefore the degree of 
the attitude parameters - after elimination of the stars - is Deg(x') * 

b- 
3(2k) (2;-1) - 145 (the number of B-splines is typically 6001, where c is the 
average number of scan circles a star is observed on. 

Elimination of the attitude parameters first gives a larger system with 
only three bands. Each of these bands is 2ckn /n thick, so Deg( (X ) '. ) - 

s b  S L 
6ckn /n - 250. The degree of the star parameters - after el iminat ion of the 

s b  
attitude - is almost certainly larger than for the attitude parameters, would 
we have eliminated the stars. Also considering that the system of star 
parameters is larger, 2,000 compared to 600, then it will be clear that the 
star parameters should be placed in front. 



The instrumental parameters are of course placed last and it makes no 
sense to order them. Since the star unknowns may be eliminated in any order, 
only the attitude unknowns have to be ordered further. The ordering of the 
attitude parameters is discussed in the next section. 

8.6 Ordering of the Attitude Unknowns during Smoothing 

The ordering procedures which we have been using to order the star 
parameters in the geometric reduction step can also be applied to the 
attitude parameters in the smoothing step. Even the modulo ordering with 
bandwidth optimization can be used, except for a -possibly- different 
modulus. 

Consider the B-splines series of order k with knots at t  1=1,2,. , n +k. 1' b 
The domain (superframe) of the l'th B-spline is the interval [ t  t  1. Two 1' l+k 
B-splines p and q can be "connected", i.e. {(X~)~.(X E E'. if 

b 4 

with T the revolving period, T ~ = C T ~ / ~ ~ O ~ ,  the period corresponding to one 
1 

basic angle, E=-1,0,+1 and v=-c,. . ,0,. .c with c the number of scan circles. 
This is a necessary, but not a sufficient, condition. Define # =t *360°/T1 

P P 
and f =# p p+k-'p' 

i. e. the length of the pth superframe, then two B-spl ines 

can be connected only if 
0 

-fq 5 # -# + v*360 + crC 5 f 
4 P P 

Of course the analogy with the continuous graph of the star parameters in the 
geometric reduction step is clear. A difference is however that the modulo 

0 operator is missing, whereas a new term v360 is introduced. Another 
difference is that the dimensions of the field pertaining to a superframe are 
variable. 

Assign a continuous "numbering" Num(#) to the attitude parameters, 
with Nun(#) in the range [0,1). The circular bandwidth is defined as 

R;(G)=Max( (N~m(#~)-Num(#.))Mrnd(l) I # .  E Adj(#i) } 
J J 

with Adj(#i)=( # .  I {#j,#i} E } Now consider the class of orderings 
J 

Nun(#)=(# Mod Cm)/Cm, i.e. the attitude parameters are ordered modulo an 

angle Cm. The circular bandwidth is then 

The value for Cm should be chosen in such a way that the bandwidth pc is 
minimized. From the formula for the bandwidth follows that: 

- C should be as large as possible, because C is the denominator in the 
m m 
formula for the bandwidth, 

- C should be an approximate divisor of v2n+eC since f<C, i.e. Cm should be m 
a divisor of 2n and C. 



Obviously cm=600 or cm=3600 are good choices. depending on which condi t ion is 

the more important. If C =60° is chosen the circular bandwidth is m 
f3'(G60) = ( Ic-C~I+~)/C~ 

On the other hand if C =360° is chosen the circular bandwidth becomes 
m 

0 The turn-over point occurs for f=9.6, the equivalent of 150 B-splines per 
circle. The circular bandwidth is then 20%. If more than 150 B-splines per 
circle are used the modulo 60 ordering is better, otherwise the modulo 360' 
ordering. These bounds give only a rough idea because fluctuations in f and 
gas-jet actuat ions were not taken into account. 

In figure 8.8 and table 8.3 the results of various orderings for CERGA 
dataset I1 have been summarized. Figure 8.8 gives in the lower triangle Nz(N) 
and in the upper triangle Env(N) for the normal matrix of the B-spline part. 
In table 8.3 (Nz(N) 1 ,  I Nz(L) I and (E~v(N) 1 ,  plus some computing times, are 
given. The banker's ordering give8 again the best overall result in profile 
and cpu t'me, with the modulo 360 ordering on a good second place. The 4 modulo 60 and the reverse Cuthill-McKee ordering were not much worse. The 
normal matrix as ordered by the banker's algorithm can be factored three 
times faster than the original matrix, and the same holds for the computation 
of the sparse inverse. The overall gain in cpu time is considerable. The 
nested dissection ordering resulted in a fill-in (Nz(L)=151408) already 
larger than the profile of the Choleski factor for banker's. Therefore the 
cpu time for the factorization is certainly larger than any of the other 
methods, except maybe for the natural ordering. 

Table 8.4: Results of reordering strategies of the B-spline 
parameters for CERGA dataset 11. n=719, INz(A) I = 38850b 
RCM=Reversed Cut hi l l -Mckee, BN=bankerB S, M6O=Modulo 60 , 

0 
M360=Modul o 360 and NAT=nat ural ordering 

factorization 

Figure 8.8 (on the next three pages) - The non-zero structure (in the lower 
triangle) and envelope (in the upper triangle) of the normal matrix for the 
B-spline part of CERGA dataset 11, as results from six different ordering 
schemes (the envelope is not given in figure 8.8.f). 
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GRID STEP AMBIGUITY HANDLING 

The grid step errors, resulting from a wrongly computed integer slit 
number, form a special problem in the Hipparcos data reduct ion. The great 
circle reduction is not able to find, from all possible combinations of 
consistent slit numbers, the combination without grid step errors. Therefore, 
the RGC abscissae may be wrong by one or more grid steps. One of the 
objectives of the great circle reduction is to make the slit number 
information within a RGC-set consistent. It is left to the sphere 
reconstitution and astrometric parameter extraction to repair the grid 
step errors in the RGC abscissae. 

9.1 Introduction 

The Hipparcos main instrument cannot measure the along scan grid 
coordinate, which is needed by the geometric adjustment, directly. The prime 
observables are the modulation phases of stars visible in the field of view. 
The along scan grid coordinate of star i, observed in a frame label led k, can 
be computed from 

with 9 the observed main grid phase ( 05 p (1 1, n the integer slit number 
and S the grid period (equation 4.13). The slit number is not observed by the 
main instrument; it will be computed from approximate data. An error in one 
of the computed slit numbers results in a large error (-l"208) in the grid 
coordinate. The error in the grid coordinate due to a wrongly computed 
slit number is called a grid step error. 

The observed grid phase is already corrected for the small and medium 
scale distortions of the grid. Therefore, we can consider the grid coordinate 
system defined by equation (9.1) as being attached to a perfectly regular 
grid in a flat plane, with a constant grid period S. The G-axis is 
perpendicular to the slits, the origin g=O is chosen on a reference slit - 
which is also the second axis - and g is increasing in the direction of the 
moving star images. The second axis (H-axis) is not relevant and is not 
further used. The grid coordinate system is obtained through a mapping of the 
celestial sphere, through the Hipparcos optical system, into a perfectly 
regular grid in a flat plane. The mapping consists actually of two parts. In 
the first part the field coordinates x and y are computed from the apparent 
star positions and the attitude of the satellite (see chapter 4). This 
mapping is written symbolically as 

whith h and /3 the two coordinates which give the apparent star position in a 
celestial reference frame and a(t) a vector with the three attitude 
parameters of the satellite. In the second part the grid coordinate g is 
computed from the field coordinates x and y (spherical angles on the 
celestial sphere), this is the soLcalled field to grid transform of chapter 
4. This mapping is basically a projection of the sphere onto a flat plane, 



but it also takes the large scale instrumental distortion of the instrument 
into account : 

I;: lR2+ R' g = G ( x ,  y;B-V, t ,  f) (9.3) 

where f is the field of view index, B-V the star colour index, t the time. 
Most of the parameters in these mappings are not known a-priori with 
sufficient precision and must be determined during the reduction, viz. the 
attitude and instrumental parameters. 

The fractional and integral part of g/s are respectively equal to the 
modulation phase and integer slit number, thus, 

Ent ier (gk i/s ) 

n = Ent ier(gki/s) 
k i 

which is the inverse of equation (9.1). Therefore, a very straightforward way 
for computing slit numbers is to use equation l9.4) with approximate values g 0 

for the grid coordinate, which can be computed from the mappings 4 and I;, 
with approximate values for the star position, the attitude and the 
instrumental deformation. This gives the following estimate for n: 

A first observation on the formula for no is that it does not have the same 
behaviour for every value of g: viz. for g close to a multiple of S even a 
small error in can result in a error in the slit number. A better formula 
i S 

1 
no = Round( gO/s - cp 1, Round(x1 = Ent ier( X+-) 

2 (9.6) 

which gives correct results if the error in IgO/s-(PI 0.5 . The method of 
equation (9.6) is referred to as the straightforward slit number computation. 

In the next sections we will investigate the percentage of grid step 
errors, resulting from the straightforward slit number computation, which can 
be expected during the great circle reduction [Van den Heuvel G Van Daalen, 
19851. Here we make some simple statistical assumptions about the error in 
the approximate attitude and star parameters. In the later sections we will 
discuss better methods for computing the slit number, and we will discuss 
ways for the detection and the correction of grid step errors. The great 
circle reduction aims at only making the slit number information consistent. 
It does not matter during the great circle reduction if all the grid 
coordinates of a star have the same grid step error, since this cannot be 
detected. Therefore, the computed star abscissae can still be wrong by one or 
more grid steps. These grid step errors in the abscissae must be corrected 
during the sphere reconstitution and astrometric parameter extraction 
[Walter, 1983a, Bastian, 19851. 

9.2 Probability of Grid Step Errors 

The occurrence of an error in the slit number, computed by the 
straightforward slit number computation method, depends strongly on the error 
in the approximate values of the grid coordinate g, which are computed from 
approximate values for the star, attitude and instrumental parameters. In 
this section a stochastic approach is chosen to compute the percentage of 
grid step errors among the observations of a relatively large sample of stars. 
Therefore, the error in the a-priori data can be treated as a stochastic 
quantity, which we assume to have a normal distribution. 



The number of grid step errors in no depends on the distribution of 

gO/s-cp. Let us call this intermediate quantity v', i . e  v': = gO/s-cp, then the 
0 0 computed slit number is simply n =Round(v ) . The error in v0 is defined as 

0 
E = V'-E(~ ) ,  with the mathematical expectation ~ ( v O ) = n  E Z equal to the 
v 
expected slit number n. Hence, we have for E v 

with c the error in the approximate grid coordinate and and c the error 
g cp 

in the observed grid phase. The error in the slit number, i . e .  the grid step 

error, is therefore 

cn= Round(& 1 E Z v 

The probability of a grid step error is 

P (9.9) 
gridstep-error 

The probability of one, two and three grid step errors is plotted in figure 
9.1 against the standard deviation of E assuming that c is normally v' v 
distributed. 

Figure 9.1: The probability of a grid step error 
(from [Van den Heuvel, 19861) 

Consider the observation equations linearized in the errors E,  then 

Now putting a =l and a =-l, which is perfectly safe, and writing for Xa .c a S i j  i j  



simply E we get 
i' 

The standard deviation of (p (and E is typically 0.01, very small compared 
(P 

to the grid step errors and the standard deviations which can be expected for 

(and E 1. Therefore, the contribution of (p in equation (9.7) shall be 
g 

neglected, i. e. 

The standard deviation of E neglecting the correlations of the instrumental 
v' 

parameters with the star and attitude parameters, is 

2 The correlation between the attitude and stars is defined as p :=  C /(C C 1. sa S a 
Then C is v 

We will now make some simple assumption about the correlation between the 
star parameters and the star mapper attitude. Two cases can be distinguished: 
1) the star in question has been used by the attitude reconstruction, and 2) 
the star has not been used. In the second case the correlation is zero (p=O). 
In the first case the star and the attitude will be correlated. Here it 
matters if the star gets a correction during the attitude reconstruction; 
then it is reasonable to assume that the star and attitude parameters are 
fully correlated, i.e. p=l. If, on the other hand, the star is not corrected, 
the correlation will be much smaller, because of the large smoothing interval 
used during the attitude reconstruction. Hence we shall assume in this case 
that p=O (but it is almost certainly larger than this). 

9.3 Grid Step Inconsistencies 

Closely related to grid step errors are the so-called grid step 
inconsistencies. The slit numbers for a specific star are consistent when the 
observations contain no grid step errors at all or all have the same grid 
step error. The last situation, viz. consistent grid step errors, will not be 
noticed during the great circle reduction, but is also not harmful. Only the 
abscissa of the star in question will be shifted over one slit period. So 
data can be consistent, but still having grid step errors. On the other hand, 
the slit number data of one star is inconsistent if there are two or more 
smaller -but consistent- groups of slit numbers. Slit numbers which do not 
belong to the largest group are said to have a grid step inconsistency. The 
grid step inconsistencies result in contradictions between the observations 
of one star during the great circle reduction. Inconsistencies are harmful, 
but fortunately they can be noticed during the great circle reduction, and 
therefore corrective actions can be taken. 

Now consider the probability of grid step inconsistencies among the 
observations of a star with an error E in its approximate abscissa. The 

S 

conditional probability , given E of an error of k grid steps in one 
S' 

observat ion is 



where f is the conditional probability density function of E given c 
& ' E  v S '  
v' S 

with expectation and variance 

Now the conditional probability that all l observations (on one RGC) to a star 
are consistent is 

k=+m k+. 5 

where f is the multivariate probability density function of c given c 
. , a  v' S' 

over the frames l . . . . L  . If the error in the attitude and instrument are not 
correlated in subsequent frames, then 

For practical computations only values of k around zero have to be taken into 
account. Figure 9.2 shows Pconsistency; for some cases. 

S 

Figure 9.2: Conditional probability of consistency for a star 
given the error c in the star position 

S 
(from [Van den Heuvel, 19861 

The probability of consistency is at a minimum when E{& - c  ) is a 
v' S 

multiple of 0.5. In this situation, neglecting the correlation between the 
stars and attitude, and between the attitudes mutually, and neglecting the 
influence of the instrumental parameters, c is a multiple of s/2. Rounding 

S 

up or down is then equally probable and the probability of consistency is 



L then 0.5 . The correlation among successive attitude parameters during the 
passage of a star through the field of view is actually close to 1, so in the 
formulae the number of frames 1 should be replaced by the number of passages 
through the field of view. 

The correlation between stars and attitude can be taken into account by 
lowering the standard deviation of the attitude. Especially.stars which get 
corrections in the attitude reconstruction are correlated strongly with the 
attitude and have variances close to the internal accuracy of the star 
mapper. So, for these stars inconsistencies will be improbable. 

The overall probability of the consistency of stars is 
%=+a 

P consistency = ] fcs(x) Pconsistary;c dx %=-m S 

with fc the probability density function of cS. In figure 9.3 the 
S 

probability of consistency is plotted for several values of IT and L,  the 
a' S 

number of passages of a star through the field of view, assuming no 
correlation between the stars and attitude, and among the attitudes 
themselves. The number of passages of a star through the field of view, 
assuming 5 scan circles per RGC, is typically 10 near the nodes of the 
scanning circles with the RGC, and L=2 for stars at the border of the RGC 

0 band 90 away from the scan circle nodes. The average number of passages of 
a star is -5. 

Figure 9.3: The probability of consistency 
(from [ Van den Heuue L ,  19861 1 

9.4 Grid Step Inconsistency Handling 

One of the objectives of the great circle reduction is to make the 
slit number information consistent. The abscissae should of course be computed 
from consistent, but not necessarily correct, sl it number data. Three stages 
can be distinguished for detection and correction of grid step 
inconsistencies: pre-adjustment, post-adjustment and passive stars handling. 



9.4.1 Pre-Adjustment Slit Number Handling 

The pre-adjustment stage is slit number estimation rather than 
correction, because at this stage the grid coordinates are actually computed 
for the first time during the great circle reduction. We will discuss three 
sl it number computat ion methods: 
- straightforward method, 
- refined method, 
- approximate sequential adjustment method. 
All these methods use the a-priori given approximate data on a frame by frame 
basis. The straightforward slit number computation method has been introduced 
already in equation (9.5). Essential is that the straightforward method does 
not try to improve the approximate data. The two other methods use basically 
the same kind of data as the first one, but are different insofar they 
estimate, and use, the error in the along scan attitude and/or the error in 
the star abscissae. 

In the refined slit number computation method the error in the star 
abscissae is estimated from the first observation to each star. In the 
approximate sequential adjustment the error in the star abscissae and along 
scan attitude are estimated from all available data. Actually, the refined 
slit number computation is a special case of the sequential adjustment; only 
the error in the approximate star abscissa is estimated from one observation. 
The sequential adjustment turns out to be very efficient. This method will 
be discussed in section 9.5. 

9.4.2 Post-Ad justment S1 it Number Correct ion 

The post-adjustment slit number correction is based upon the analysis of 
the least squares residuals of the observations after the adjustment. Typical 
for these residuals is that they are correlated, which results in a certain 
blurring of the errors. Therefore, the post-adjustment grid step correction 
procedures must work in an iterative fashion. I.e. the most evident cases are 
first tackled, then a new solution is computed and the residuals are 
inspected again. The process converges if in subsequent iterations more and 
more subtle cases are recognized as grid step inconsistencies. Two procedures, 
frame by frame analysis and sequential analysis, have been verified 
experimentally. A third procedure, star by star analysis is only used as an 
evaluation tool. These procedures are discussed in sect ion 9.6. 

9.4.3 Passive Stars Grid Step Inconsistency Handling 

The along scan attitude and instrumental parameters are computed from 
the active stars only. The passive stars are computed afterwards, using the 
instrumental deformation and attitude, already computed. The slit number 
estimation for observations to passive stars, once a satisfactory solution 
for the active stars has been obtained, is generally not difficult any more. 

The active stars are selected - by the software - by static criteria, 
e.g. the quality of the approximate star positions, double star 
characteristics, etc., as well as dynamically from the results of the 
a priori approximate sequential adjustment. The first objective of the active 
star selection is to have as few as possible grid step inconsistencies in the 
active stars during the first treatments, in order to keep the number of 
iterations in the post-adjustment grid step correction low. In particular all 
the problem stars should become passive. In this way, during internal 
iterations, re-weighting or rejection of observations, with the associated 
re-computation of the Choleski factor is not necessary. Only the right hand 
sides of the normal equations need updating after the grid step inconsistency 



correction. On the other hand, we aim at having as few as possible passive 
stars during the last iteration, in order to get the best possible precision 
for the active star abscissae and attitude parameters. Generally, the 
precision of the active star abscissae and attitude parameters decreases 
slightly by not considering the passive star observations in the active star 
solution. 

9.5 Approximate Sequential Adjustment 

In a sequential adjustment only small batches of data are adjusted at a 
time. In the present case the grid coordinates are adjusted frame by 
frame, i.e. the star positions and satellite attitude are updated using the 
observations of one frame at a time. The updating 
formulae for k=1,2 , . . . . ,  n are 

with X the vector with corrections to the approximate values of the st 73- and attitude parameters and P the weight matrix of the unknowns X, where X( '4 
and P(') the weight matrix of the approximate values, and with y the vector 

k 
with the observed minus computed value of the observations in the k' th 
observation frame, W the diagonal weight matrix of these observations and A 

k k 
the design matrix. Ak, W and y are small parts, corresponding to one 

k k 
observation frame, of the design matrix A wei ht matrix W and vector of 
observations y which arose in chapter 7. P tk)-P'p) is equal to the normal 
matrix update after k frames. Therefore, except for the small addition P('), 
the normal equations, and hence the solution, at the end of the sequential 
adjustment are practically the same as the least quares solution computed in (6 chapter 7 (in fact by adding the small weights P the normal equations are 
regularized, i. e. the rank defect disappears). 

At each step of the sequential adjustment, just before the updating of 
the corrections to the star and attitude parameters, the observations are 
checked, and corrected, for grid step inconsistencies. If the observed value 
of the grid coordinate minus the value computed from the updates is larger 
than half a grid step the observed value must be corrected by one or more 
grid periods. The condition is 

In order to evaluate this condition it is necessary to compute for each frame 
the up-to-date attitude and star parameters. Let us introduce the vector p, 
then the update formulae are 

p(k) = p(k-l) + 

Al~kAk 
(9.19. a) 

P (k) = p + ~ : w ~ ~ ~  

and X is computed by solving 

p(k) x(k) (k) 
= P 

It is too much work to solve equation (9.19. b) in a rigorous manner for 
every observation frame. Therefore, an approximate sequential adjustment has 
been developed. 



The approximate sequential adjustment is based on a recursive algorithm. 
There are three computation steps, which have to be carried out for each 
observat ions frame: 
1. compute a prediction of the along scan attitude, 
2. check the slit numbers, 
3. update the attitude and star abscissae from the main grid data. 
Here we consider the linearized observation equations for the set of stars Pk 

observed in the kth frame 

let W be the observation weight and let us define 
k i 

1=1 
the su of all observation weights for star i over the preceding frames, '6 with wi the weight of the approximate star abscissa. 

In the first step a prediction for the along scan attitude is computed 
-as a weighted mean- from the following information: 

0 1) the star mapper attitude At,bk(=O) with weight wk, 

2) a prediction based on the attitude of the preceding frame 

with o the average scanning velocity, including the effect of possible gas 

jet actuations, over the interval At (a multiple of the frame period T4) 
-(k-l) determined from the star mapper data. The weight wk (k-l) is 

of A*k 

W 
(k-l) 

W k -  k-l o 
computed by propagat ion of the var iances, t . e. W - - k 

W (k-l)+W * 
k-l o 

The attitude estimate A+k (k-l) is not changed by the correction to the star 

mapper attitude, because the star mapper attitude has been used for the 
l inearizat ion of the equations. However, the weight must be increased 
accordingly, i. e. 

In the second step the observed grid coordinate is checked against a 
grid coordinate calculated from the attitude computed by the first step and 
the most up-to-date star abscissae, i.e. 

and if )AI > s/2 then the observed grid coordinate is corrected by a number 

of slit periods. 

In the third step the current attitude and star abscissae are improved 
using the main grid observations. The attitude is computed as a weighted mean 



from the attitude estimate computed in the first step and the attitude 
estimate computed from the observed grid coordinates and corrections to the 
star abscissae, i.e. 

the same ones as used by the second step. This is done to eliminate certain 
systematic errors. We will come back to this later. At the end of the third 
step the star parameters are updated, using the observed grid coordinates and 
the attitude computed earlier in this step, i.e. 

w(k). - (k)- (k-l)+ & and = with w i  - W 
i k i 

ki . In the third step of the 
ki w(k)+w 

k ki 

approximate sequential adjustment also the sum of the residuals (updates) 
squared for the star parameters is updated. Therefore, at the end of the 
sequential adjustment, the performance can be evaluated for each stars. This 
can be used to select active and passive stars. 

The sequential adjustment was first very sensitive to errors in the 
approximate instrumental parameters, notably for the X-term. One would think 
that the instrumental errors average out after a while. However, this is not 
the case for the uneven powers of X, unless some precautions are taken. This 
can be seen as follows; during a star passage through the field of view the 
weight on the position and attitude updates increases. So the attitude 
updates computed from observations in one half of the field get 
systematically more weight; thus, in this way errors in the instrumental 
parameters with uneven X-terms are accumulated in the attitude and star 
parameters at the end of the third step. In the next frame, again, the star 
positions are first used to compute the attitude, and finally they are 
updated. In this way the error is accumulated rapidly, and even small errors 
(20 mas at the border of the field) result after one basic angle in large 
discrepancies, resulting in systematically correcting all the observations by 
the same number of grid steps. The remedy is very simple: update the attitude 
in the third step by using old star positions, i.e. star positions computed 
during the previous passage of the star through the field of view. 

9.6 Post-Adjustment Grid Step Inconsistency Correction 

9.6.1 Introduction 

The post-adjustment slit number correction is based upon the analysis of 
the least squares residuals of the observations after the adjustment. It is 
typical for these residuals, and functions thereof, that they are 
correlated. Therefore, an error in one of the observations results not only 



in large residuals for the erroneous observation, but also gives large 
residuals for some errorless observations. This effect is called smearing. 
Smearing may also result in masking; an erroneous observation may have a 
small residual due to the smearing effect of other errors. These two effects 
result in a certain blurring of the errors. Another effect is the 
inseparability: two or more errors cannot be separated. This occurs in 
particular for grid step inconsistency correction since there are many 
solutions possible for one and the same star (which differ by a grid step). 
Also it is not always clear in an observation frame (especially in the 
geometric mode) which of the observations is wrong, possibly resulting in a 
shift of the attitude by a grid period. 

A-posteriori analysis of the least squares residuals - in the form of 
hypothesis testing - is a common technique in geodesy, see for instance 
[ Baarda, 1973, Kok, 19851. The observations are generally inspected one by 
one, using the so-called conventional alternative hypothesis; t.e that there 
is an error in one of the observations. This procedure is known as data 
snooping. The major problem with these techniques is a lack of robustness, 
caused by smearing and masking effects, which makes that - whatever the 
procedure for detection and correction is - it should be iterated. I . e .  the 
most evident cases have to be tackled first, then a new solution is computed 
and the residuals, or testing variates, are inspected again. The process 
converges if in subsequent iterations more and more subtle cases are 
recognized as errors. This procedure can be automatized. This is for instance 
done by Kok in his iterated data snooping procedure [Kok, 19851, or by Poder 
[Eeg, 19861 in his iteratively re-weighted least squares. More robust 

alternatives for weighted least squares are un-weighted least squares, least 
squares with the weights of the a-priori values or L-l (least absolute 
values) adjustment. 

Our procedure for repairing grid step inconsistencies shows little 
resemblance with the well known data-snooping in other geodetic software. The 
rigorous one by one analysis of the observations by conventional alternative 
hypotheses (i.e assuming an error in one of the observations) is not feasible 
because of the large amount of observations, and the high percentage of 
errors among them. For the same reason it is not possible to correct 
observations one by one, as is done in geodetic networks which have only few 
errors, and which is also done in automatic procedures such as iterated data 
snooping [Kok, 19851. Another difference is that unlike in most geodetic 
problems the magnitude of the error is known; and it is this fact which has 
led to some very successful procedures: 
- sequential analysis, 
- frame by frame analysis, 
- star by star analysis. 
These post-adjustment grid step correction procedures also work in an 
iterative fashion. Re-computation of the Choleski factor during these 
iterations is not necessary. Only the right hand sides of the normal 
equations need updating after the grid step inconsistency correction. 

9 .6 .2  Star by Star Analysis 

In the star by star analysis first all residuals per star are collected 
into a condensed histogram per star (figure 9.4). The histogram data is 
tested for normal distribution, using four central moments, minimum, maximum 
and the 25%, 50% and 75% quantiles as statistics. Two tests are needed, for 
skewness and for bi-modality. The major problem is to separate between stars 
which have really inconsistent grid coordinates and stars whose distribution 
is not normal because of smearing effects. Therefore, the most evident cases 
should be tackled first and then the procedure should be iterated. For each 



iteration two passes through the observation equations are needed: a 
detection and a correction pass. In the software this technique is not used 
for the automatic correction of grid step inconsistencies, but it can be used 
for the off-line inspection. The statistics are used to select only the most 
interesting cases, and not all of the 2000 histograms. 

S t a r  7 1 4 :  

3 g d c o o r d i n a t e s  

S t a r  1399: 

65 g r i  d c o o r d i n a t e s  
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Figure 9.4 - Skew and bi-modal residual histograms of stars with 
inconsistent grid step numbers 

9.6.3 A n a l y s i s  p e r  Frame 

In the analysis per frame the, on the average 4 B 5 residuals per frame 
are inspected. Correction of suspected observations takes place when the 
residuals are larger than a certain criterion. In order to avoid e.g. cycling 
of the correction process during iteration, several restrictions have been 
imposed such as: 
- only one grid coordinate per frame is corrected, 
- all corrections to observations of one star should have the same sign. 
The value of the criterion depends on the global statistical test, which is 
computed before each iteration, and the iteration number. The performance of 
this method turns out to be very sensitive for the value of the criterion. A 
rule for calculating this value from the global statistical test and 
iteration number is therefore not easy to give. Per iteration only one pass 
through the observation equation file is sufficient; the detection and 
correction (i.e. computation of new right hand sides of the normal equations) 
can be done on a frame by frame basis at the same time. So this method is 
approximately half as expensive (in computing time) as the star by star 
analysis method. 

A slightly different procedure has been proposed and tested by [Van den 
Heuuel, 19861. In his procedure correction of suspected observations takes 
place on the basis of the size and the pattern of the residuals. This 
procedure has not been implemented in the final software, because the 
generalization of his procedure resulted in the so-called a-posteriori 
sequential adjustment [Van der Marel, 19871. 



9.6.4 A-posteriori Sequential Analysis 

This is basically the same process as in the pre-adjustment stage, but 
now on the basis of the estimated abscissae and instrumental parameters. The 
attitude prediction (first step) is now computed differently. Namely, as the 
attitude prediction the median of the residuals themselves is used (instead 
of the weighted mean, which is the least squares estimator). 

The sequential analysis and adjustment give the best performance. 
Several simulation experiments showed that the majority, say 95%, of the 
inconsistencies are corrected in the first iteration. The few remaining 
inconsistencies were, in our experiments, always solved in the second 
iteration, when we have again improved our star abscissae and instrumental 
parameters. For the residual analysis per frame in general much more 
iterations are needed, i.e. typically 5-10 iterations. Furthermore, the 
performance is sensitive for the value of the criterion and a general rule 
for computing this value has not yet been established. For these reasons the 
sequential adjustment will be the base line in the operational software. 

9.7 Results 

The straightforward grid step computation algorithm gives, in case of 
the Lund dataset, 4731 slit number errors, which resulted in 523 inconsistent 
stars (27%). This is not a very large percentage, since the attitude was 
already quite good (0.1"). The error in the star positions was about 1.5", 
but this is not very relevant for grid step inconsistencies. 

Both the refined slit number estimation method and the approximate 
sequential analysis succeeded in repairing these inconsistencies. The rms 
error in the approximate instrumental parameters was 20 mas. After the 
adjustment, abscissae of 1400 stars (70%) were wrong by one or more grid 
steps. This large percentage is certainly caused by the large uncertainty in 
the a-priori positions. 

The a-posteriori sequential adjustment and the analysis by frame method 
have been tested on the Lund dataset. The slit numbers were computed by the 
straightforward method. Two iterations with the a-posteriori sequential 
adjustment were needed to correct the inconsistencies: in the first iteration 
4984 slit numbers were corrected (only 4728 were effective because at the 
same time 50 stars were shifted over one grid step). After the first 
iteration only 7 stars with 10 inconsistent slit numbers remained, which were 
all corrected in the second iteration. The sample standard deviation was 
reduced from 258 mas, before correction, to 21.7 mas and finally 14.27 mas 
after the last iteration (if modelling errors are absent the expected sample 
standard deviation is 10 mas). At the end of the great circle reduction 1360 
stars were wrong by one or more grid steps. 





FAST GREAT CIRCLE REDUCTION SOFTWARE 

In this appendix a short description of the structure of the FAST great 
circle reduction software is given. 

A . 1  Software set-up 

The FAST great circle reduction software has been developed at the 
faculty of Geodesy of the Technical University of Delft. The software will be 
installed at Centre National d'Etudes Spatiales (CNES) in Toulouse 
and at the Space Research Laboratory in Utrecht. The software consists 
essentially of two parts [Van der Marel, 19861: 
1) The kernel software, which performs the actual least squares adjustment, 
2) The monitoring software, which consists of several interactive programs 

for inspection, analysis and control purposes. 
The actual great circle reduction is performed by the kernel software, which 
consists of 7 Fortran 77 programs. The monitoring software is used to update 
the parameter files needed by the kernel software, to inspect files and to 
analyze the results. The monitor software is used in an interactive fashion, 
whereas the kernel software is almost completely automatic. 

The kernel and monitoring software are supported by an extensive 
software library with file handling and error handling subprograms dedicated 
to the great circle reduction software, plus general purpose mathematical and 
statistical subprograms, as well as several utilities (printer plots, 
histograms, etc.). All the software is written in a portable subset of 
Fortran 77 [FAST, 1986bl. 

The input files for the great circle reduction are generally created by 
other tasks in the FAST data reduction, viz. the grid coordinate and attitude 
reconstitution task, and by the so-called reception and preparation task. 
The reception and preparation task converts the ESOC files into the FAST 
interface files [FAST, 1986a1, but also the corrections for apparent 
places are computed here. The output files are either used directly by other 
tasks, or are processed by the data management and control system (DMCS) . The 
data management control system (DMCS) is also responsible for the automatic 
running of the data reduct ion tasks [Hue, 1985, Pieplu, 19861. 

A. 2 Kernel software 

The output of the kernel software consists of star abscissae on a 
reference great circle (RGC),  a one-axis attitude and a set of coefficients 
describing the large scale disturbance of the instrument. These quantities 
are estimated by a large scale least-squares adJustment from the grid 
coordinates, which are the main input to the kernel software. The corrections 
for apparent places, needed to arrive at star abscissae corresponding with 
mean geometric positions are computed beforehand and form an additional input 
to the great circle reduction. Another input consists of approximate values 
for the geometric star positions and for the three-axis attitude used in the 
l i near i zat ion of the equat ions . 
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The software is able to work in three different modes: geometric, 
smoothing and a combined mode. The operation modes are different with respect 
to the solution of the one-axis attitude. In geometric mode the attitude is 
solved in the form of one abscissa per frame: the geometric attitude. In the 
smoothing and combined mode the geometric attitude is smoothed and 
represented by a much smaller number of coefficients in a B-spline 
representation. The smoothing and combined modes differ insofar that the 
combined mode operates in two steps: first the geometric solution is formed 
explicitly, then it is smoothed. Whereas in the smoothing mode, the equations 
are solved in a single step without forming the geometric solution first. 

In figure A.l the configuration of the kernel programs and files in the 
combined operation mode are given. Programs are represented by boxes, files 
as "barrels" and the arrows indicate which file is read by which program [Van 
der Marel, 1986~1. 

A. 2.1 Kernel Software Modules 

RGCMDS: Mode Select ion. In this program the operation modes and control 
parameters for the great circle reduction software are selected from a 
pre-defined table. The table, which is stored in the file TMDS, gives the 
values of the control parameters and operation modes as a function of the 
RGC-epoch (in 6 months intervals) and the iteration number. The selected 
parameters are written to the file MODE, which is read and updated by each of 
the other kernel programs. 

RGCEQ: Observation Equations. The linearized observation equations 
(chapter 5) and integer slit numbers (coupled with a first grid step 
inconsistency correction, see chapter 9) are computed, and active stars are 
selected. The active stars are selected on a-priori information contained in 
the input files and results of the grid step inconsistency correction. 

RGCGMI, RGCGM2 and RGCGM3: Geometric solution. The least squares 
solution with a frame-by-frame attitude is computed. Firstly, in RGCGM1, the 
normal equations of the active-star and instrument part, after elimination 
(solution) of the frame-by-frame attitude parameters, areoformed (chapter 7). 
The star unknowns are labelled according to the modulo 60 or banker's 
ordering in order to optimize the factorization time (chapter 8). In RGCGM2 
the Choleski factor and the sparse inverse of the block partitioned normal 
matrix are computed. The instrument part and the diagonal of the star part, 
respectively corresponding to the covariance matrix of the instrumental 
parameters and the variances of the active stars, are written on the file 
COVG. Finally, in RGCGM3 the solution is computed, tested, and whenever 
necessary, grid step inconsistencies are corrected. This chain of programs is 
only run in the geometric and combined solution modes, but not in the 
smoothing mode. 

RGCSM: Smoothed Solution. The frame-by-frame along scan attitude is 
smoothed in a combined adjustment with the active stars (chapter 7). The 
smoothed attitude is represented as a B-spline series (chapter 6). First the 
B-spline knots are selected using a-priori information about the gas jet 
actuation times and other events. Then the normal equations are formed, star 
parameters are eliminated, and the reduced system is solved using Choleski 
factorization. The order of the B-spline parameters in the reduced normal 
equations corresponds to the modulo 360' ordering (chapter 8). This program 
is run in the smoothing and combined solution modes. In the combined solution 
mode it is not necessary to re-compute the instrumental parameters. They are 
already very well determined in the geometric solution. 



RGCPAS, Passive stars. The stars not marked as active stars in RGCEQ are 
treated in this module. Passive stars do not participate in the least squares 
solution computed in RGCGM and RGCSM. The abscissae of the passive stars are 
computed by this program, using the attitude, instrument and active star 
parameters computed in RGCGM or RGCSM. The abscissae of the active and 
passive stars are tested statistically and the results are written on the 
file COA. 

The division of the great circle reduction into several programs is 
somewhat arbitrary. The present choice of processors aims at minimizing the 
use of (virtual) memory. Of course, small programs use little memory space 
themselves, but more important are the savings in storage locations for data. 
Each program keeps only in-core those data which is really needed, which is 
different from program to program. This cannot be brought about in a single 
program with the same clarity. This plays in particular a role in the 
geometric solution process, which is split into three programs. 

A.2.2 Files 

Three types of files can be distinguished: input, output and 
intermediate files. The input files are created by other tasks in the FAST 
data reduction, e .g .  the "reception and preparation", the grid coordinates 
and attitude reconstitution tasks. The output files are either used directly 
by other tasks, or are processed by the data management and control system 
(DMCS) to form even larger files needed for the sphere reconstitution and 
astrometric parameter extraction. Intermediate files are used to exchange 
data between individual programs of the great circle reduction task. 

Input files: 

management data: 
INPC: interface with the Data Management and Control System (DMCS). 
TMDS: file which contains the tables with mode selection and control 

parameters for the great circle reduction. 
MCL: file with mission control data, e .g .  times of gas jet actuation, 

RGC definition. 

approximate values: 
FIS: approximate values for the geometric star position in the RGC 

reference frame, star magnitude and colour index, several quality 
indicators plus various flags. 

CALGR: calibration data and approximate values for the large scale 
instrumental distortion. 

ACFRA: approximate values for the three-axis attitude. The transversal 
attitude components are determined by the attitude reconstruction task. The 
along scan component comes from a previous iteration, except during first 
treatment of an RGC when the along scan component is also determined by the 
attitude reconstruction. 

observations: 
GRC: file with the grid coordinates (modulation phase), which are the 

main input for the great circle reduction, the standard deviation of the grid 
coordinates and the results of statistical tests on the modulation. 

APSGR: file with the corrections for apparent places at the time of 
observation. 



Output files: 

adjusted values: 
COA: file with the adjusted abscissae, their standard deviations and 

a status indicator, which gives the results of statistical tests, grid step 
inconsistency correction and contains several flags. This file is further 
processed by the data management and control system to form a single 
file which contains also the abscissae of other RGC's. The new file will be 
input to the sphere reconstruction and astrometric parameter extraction. 

ISI: file with the adjusted large scale instrumental distortion and 
its covariance matrix. This file is read by the calibration software and is 
eventually used to compute improved versions of the calibration file CALGR. 

ACFRC: contains the frame-by-frame three axis attitude, of which the 
along scan component is computed by the great circle reduction software. The 
other two components are copied from the ACFRA file. The along scan attitude 
on this file is used in the next iteration by the attitude reconstitution 
software. This file will be forwarded to the Tycho data reduction consortium 
after the final iteration of the Hipparcos data reduction. 

MPAL: gives the abscissae of minor planets for each frame in which they 
are observed. This file is processed by an off-line task, which is going to 
compute the ephemeridis of minor planets. 

reports: 
CR: circle report file. This file contains a summary of the great circle 

reduction results, complementary to the other output files. This file can be 
processed by one of the monitor programs in order to produce an astrometric 
report of the great circle reduction. 

OUT: operation report which contains simple messages indicating success 
or otherwise abnormalities, and optionally debugging results. 

STOPFIL: interface with the DMCS. 

Intermediate files 

MODE: the "brain" of the great circle reduction software. This file 
contains the value of all mode selection and control parameters, plus other 
results collected during execution. 

COS: contains condensed informat ion from F I S ,  wether a star is an active 
star and the connection structure. The connection structure indicates which 
stars belong to the same connected component, and which star is selected as a 
base-star. 

OEQ: the "vein" of the great circle reduction software. This large file 
contains the linearized observation equations, i.e. the observed grid 
coordinate minus the computed value from approximate data, the partial 
derivatives for the attitude and star part and the field coordinates. The 
coefficients of the instrumental parameters in the linearized equations are 
not stored since they can be re-computed cheaply when needed. Besides, the 
coefficients are not needed very often, because the instrumental dislocation 
can be computed as efficiently from the other estimated parameters and field 
coordinates . 

CSE: results of the grid step inconsistency correction. This file is 
complementary to the observation equations file OEQ. 

SOLC, SOLS: files which contain the least squares solution of the active 
stars (geometric and smoothed solution respectively). 

COVC, COVS: files with the computed covariance information (geometric 
and smoothed solution respectively). 



Other intermediate files, of minor importance, are: GEAG and GEAS which 
contain the computed frame-by-frame attitude and least squares residuals, and 
NORI, NOR2 and FAC which contain respectively the normal matrices and 
Choleski factor for the geometric solution. 

A.2.3 Error Handling 

The error handling software is responsible for the (error) messages and 
debugging results on the file OUT. There are three levels of (error) 
messages, which results in different actions: 
- Fatal Error; execution is terminated immediately, 
- Warning; execution is terminated only after the number of warnings exceeds 
a certain bound, 

- Message; only a message is written in the OUT file. 
In case of an fatal error or warning a message and a trace-back of calling 
routines is written on the OUT file. 

With the error handling software also debugging results can be obtained. 
The amount of debugging can be selected by two types of parameters: 
- the debugging level; if the debugging level is zero no intermediate output, 
except (error) messages, is produced on the OUT file. For levels larger 
than zero the amount of output grows rapidly. 

- subroutine names with alternative levels; useful when only for a small part 
of the software debugging output is needed. 

The debugging output itself should be distinguished from the output produced 
by the off-line monitoring software. Firstly, the debugging output is not 
always interesting for astrometric purposes, and secondly if more debugging 
output is desired the software should be run another time. With the 
monitoring software a variable degree of output can be obtained without 
re-doing the great circle reduction. 

A.3 Monitoring Software 

The monitoring software is in a sense complementary to the kernel 
software. The kernel software, which is almost completely automatic, produces 
only little information in readable form. The only formatted file, which can 
be printed, produced by the kernel software is the -normally short- OUT file. 
This file is only intended for the operator, and it only gives the most 
important test results. Of course, more output on the OUT file can be 
obtained with higher debugging levels, but this must be specified before 
start of the reduction. Another way to obtain more output is through the 
monitoring software. The following programs are available for these purposes 
at the moment: 

CMSCRS: circle report stars. Evaluates and analyses the star abscissae 
and instrumental parameters computed during the great circle reduction. If it 
concerns simulated data a comparison with the true errorless simulated data 
is made. 

CMSFIL: file monitor. Most of the input, output and intermediate files 
are not ASCII files, therefore, they cannot be inspected directly from the 
terminal. The file monitor is a program which can open each of these files, 
and show, or print, the complete file or just some data concerning a specific 
star or stars, and/or frame times. The last option is very useful to inspect 
large files such as APSGR, GRC and OEQ. 

CMSAl'T: eval uat ion of the (smoothed ) at t it ude . 
CMSGSE: interactive inspection of L.S. residuals for grid step 

inconsistency correct ion purposes. 



Besides these off-line inspection programs a few other programs are 
needed concerning the selection of operation modes. These programs are: 

CMSTAB: interactive program for updating of the mode selection table 
file TMDS. 

CMSMDS: interactive version of the mode selection program. It allows for 
basic selections from the TMDS file and modifications thereof. 

Finally, for testing purposes a simulation program is available, and two 
programs which set-up input files from externally simulated data: 

RGCSIM: Delf t GCR simulation program. 
CONCD2: conversion of formatted CERGA datasets into binary input files. 
CONLOS: conversion of formatted Lund datasets into binary input files. 

A . 4  C p u  times 

The CPU times for the so-called CERGA dataset 11, on the VAX 750 of the 
faculty of geodesy of the Technical University of Delft, are given in table 
A. 1. The CDC computer, on which the software will be run in Toulouse, is 
approximately a factor 20 faster. 

Table A.l - CPU times for the great circle reduction for CERGA dataset I 1  
on a VAX 750 (in S. 1 

RGCEQ observation equations 
RGCGMl synthetic ordering of star unknowns 

normal equat ions format ion 
RGCGM2 Choleski factorization star part 

Choleski factorization instrument part 
(including elimination star part) 

sparse covariance matrix star part 
covariance matrix instrument part and 

influence on the star variances 
RGCGM3 solution star and instrument part 

attitude, residuals and testing 
RGCSM knot selection 

normal equations B-spline part 
elimination of stars from B-spline part 
reordering of the B-spline parameters (modulo 
Choleski factorization & solution B-splines 
updating of the star abscissae 
sparse covariance matrix B-spline part 
variances star part 





APPENDIX B 

SIMULATED DATA FOR THE GREAT CIRCLE REDUCTION 

The Great Circle Reduction software has been tested extensively on 
simulated data. Moreover, runs with simulated data often prove to be a 
valuable analysis tool. This thesis is in that matter no exception. 
Therefore, in this appendix the characteristics of the simulated data, used 
throughout this thesis, are discussed. 

B . 1  Simulation Possibilities 

There are two approaches to simulate input data for the great circle 
reduct ion: 
1) simulate data especially for the great circle reduction, 
2) simulate raw measurements and process this data first by the phase 

extraction, star mapper and attitude reconstitution software, before 
treating it by the great circle reduction software. 

Actually, in the second approach the complete chain of software up to the 
great circle reduction (GCR software) is tested, rather than the GCR software 
alone. At present several datasets have been simulated following the first 
approach, but no datasets have yet been simulated according to the second 
approach. In the near future a comparison of the GCR results with the other 
consortium is foreseen, both on simulated and real data [Van der Marel, 19871. 

There are at least three programs which can simulate data especially for 
the Great Circle Reduction, called, according to their origin: Lund, CERGA 
and Delft GCR simulation software. The programs are similar in the sense that 
they produce grid coordinates directly from: 
- a simulated star catalogue, 
- a simulated attitude, 
- a simulated instrumental perturbat ion. 
The grid coordinates are computed from the theoretical values, viz. the 
expected or "true" values, and then perturbed with noise representing photon 
noise plus the statistics of the grid coordinate estimation procedure. 
Afterward the simulated "true" star catalogue, attitude and instrument are 
perturbed with noise representing in an ad hoc way the a priori knowledge of 
the various quantities respectively the statistical properties of the 
estimation processes involved. In particular, no photon counts need to be 
simulated and no grid coordinates are estimated, so the computation costs of 
the simulation remain within reasonable limits. 

At present three large scale data sets (each covering one RGC) have 
already been produced by CERGA [Falin et al., 1985, 1986, Van der Marel et 
al., 1986dl and one by Lund observatory [Lindegren, 1986, Van der Marel, 
19871. Furthermore, several datasets have been simulated by the Delft 
software. Each of the datasets simulated by CERGA is based on three different 
input catalogues (see sec. B. 4): one of the first treatment type, one typical 
for the final iteration and one without errors. In addition errorless grid 
coordinates have been simulated. The Lund dataset which was send to Delft is 
typical for first treatment, but also errorless data has been given. Results 
obtained from the second CERGA dataset (CD111 and Lund dataset (Lund) will be 



frequently used in this thesis. Therefore we will outline some of their 
characteristics below. 

B. 2 Lund data 

The input data has been simulated by L. Lindegren of the Lund 
observatory. Below we summarize some of the major characteristics, more 
details are given in [Lindegren, 19861. The simulation covered five 
revolutions of the satellite, forming an RGC set of about average size. The 
dimensions are summarized in table B.1. The data contained several major 
gaps: 1504 frames are occulted by the Earth and an additional 105 are just 
empty. There are no eclipses. 59 jet firings occur during this RGC, the 
minimum and maximum jet interval are 410 s and 1406 S. Double stars or minor 
planets are not observed, so every observation to each star is well defined 
and there are no a-priori reasons to make stars passive. However, in some of 
the runs only bright stars ( magnitude < 10) were used. 

Table B. 1 - Size of the CERGA and Lund datasets 

total number of stars 
. . .  brighter than magnitude 10 
. . .  fainter than magnitude 10 
number of revolutions 
number of frames (with observations) 
. . .  with bright stars 
. . . with only faint stars 
number of grid coordinates 
. . . to bright stars 
. . . to faint stars 

Lund CERGA I1 

The "true" attitude is obtained by integrating the equations of motion, 
using a diagonal tensor of inertia, and including a gyro induced torque and a 
-simple- model of the solar radiation torques (presumably 6 harmonics). To 
the torques a random perturbation is added in the orm of a first order -6 Markov process, with a standard deviation of 2 10 Nm on each axis and a 
time constant of 100 S. However, during the great circle reduction it was 
found out that these random perturbations are not realistic for attitude 
smoothing. The gas jets are actuated when the simulated attitude exceeds 
preset limits on the nominal motion. The on ground attitude reconstruction 
(AR) estimate, which is needed by the great circle reduction, is computed 
from the true attitude by first adding a first-order Markov process to each 
angle independently (this simulates star mapper estimation errors) and then 
smoothing the results by fitting a cubic spline to each angle. The Markov 
process was characterized by a standard deviation of 0.1 arcsec on each angle 
and a correlation time of 200 S. The maximum cubic spline interval was 
approximately 40 S, the cubic spline fit was interrupted at each gas jet 
actuation. 

The input catalogue -containing the a priori , approximate, star 
positions- is created by perturbing true positions with uncorrelated 
Gaussian noise with a standard deviation of l"5. True grid coordinates were 
computed from the true attitude and star positions, accounting for 
corrections due to aberration, etc. at the time of observation and -true- 
perturbations of the instrument (which may depend on the star colour). 



Observational errors are simulated by adding Gausian errors with a variance 
depending on the mean intensity of the star, the observing time and some 
constants [Lin&gren, 19861. This variance must account for photon noise, 
imperfect knowledge of the medium scale instrumental effects and attitude 
jitter. The simulation (of the true observations) includes various 
instrumental effects, among which chromaticity and basic angle variations. 
The present data set did not include chromaticity effects, though the Lund 
program has the ability to do this as well. 

B.3 CERGA dataset I1 

CERGA dataset I1 has been simulated by M. Froeschlk, J.L. Falin and F. 
Mignard of CERGA. The simulation covers about 10.7 hours of data (five 
revolutions of the satellite). The dimensions of the RGC-set are given in 
table B. 1. The data contained no major gaps due to occultat ions (except an 
involuntary gap in the data for one of the tests because of a damaged data 
block on magnetic tape). There is one solar eclipse, which lasted about 135 
frames for each of the two passage through the penumbra and 1576 frames for 
the passage through the Earth shadow. During the RGC-set 62 gas jet firings 
occurred. Some double stars and three minor planets were simulated, but those 
were marked as passive stars and are not used in the least squares solution. 

The true attitude is obtained by integrating the equations of motion, 
using a diagonal tensor of inertia, and including a gyro induced, solar 
radiation and gravity gradient torque [Pinard et al., 19831, plus some 
intermittent torques due to particle shocks in the apogee boost motor. The 
attitude reconstitution (AR) estimate is computed by adding a uncorrelated 
Gaussian noise to the true attitude at mid frame time, with a standard 
deviation of O"1 for iterations and O"3 for first treatments. 

The input catalogue in the RGC system is created by perturbing the true 
positions with uncorrelated Gaussian noise with a standard deviation of O"1 
for iterations, and O"2 (mag. 5 8) and O"8 (mag. > 8) for first treatments. 
True grid coordinates are computed from the true attitude and true star 
positions, taking into account the correction for apparent places,large scale 
instrumental distortion, periodic basic angle variations, attitude jitter and 
chromaticity effects [Falin et al., 19861. Observation errors are simulated 
by adding Gaussian errors with a variance depending on the mean intensity of 
the star and observing time. 

B.4 Description of the testruns 

Six different tests, following the terminology introduced in the FAST 
software test plan for the great circle reduction [Van Daalen G Van &r 
Marel, 1986b], can be distinguished: Perfect Geometric (PG), Perfect A-priori 
values (PA) , Perfect Observations (PO), Iterat ion ( I), First treatment (F) 
and Perfect Smoothing (PS). The characteristics of these tests are summarized 
in table B.2. 

Perfect Geometric (PG) refers to a test which uses errorless data. This 
test is first used to check the mutual consistency of the formulae in the 
reduction software and simulation software, and to see if conversions of the 
simulated data are done properly. But eventually this test can be used to 
check the ultimate (pure) linearization effects and rounding errors. Perfect 
Smoothing (PS) uses the same input data as PG, but PS aims at computing the 
additional modelling error due to smoothing, i.e. shortcomings in our model 
for the along scan attitude. 



Perfect A-priori (PA), Iteration (I) and First Treatment (F) are tests 
which use noisy observations. The results of the first treatment test F are 
seriously affected by modelling errors, caused by the bad approximate values 
for the star ordinates and transverse attitude components, which are not 
estimated in the reduction. This modelling error is still present in the 
iteration runs, but can be neglected there, which should be confirmed by the 
test with perfect a-priori data (PA). The results of the test with perfect 
a-priori data should not be affected by these modelling errors and indeed 
show only the effect of noisy measurements. The modelling error can be 
assessed separately in a test using errorless (perfect) observations, but 
perturbed a-priori values (PO). The first treatment (F) is not only affected 
by modelling errors, which are typically in the order of mas, but also by 
grid step inconsistencies. Grid step inconsistencies give even larger errors, 
and they must be corrected in all cases. 

Table B.2 - Description of the -ideal- testruns 

a-priori a-priori 
ID attitude star pos. observations grid-steps smoothing 

PG perfect perfect perfect none no 
PS perfect perfect perfect none Yes 
PA perfect perfect realistic none no/yes 
PO -0" 1 -0"Ol perfect none no 
I -0" 1 -0"Ol realistic few Yes 
F -0"3 >0"8 realistic many no 

Usually the tests are done with all stars active. However in some cases 
the faint stars ( mag. > 10 ) are made passive. The rank deficiency of the 
problem is, usually, solved by fixing one star, the base star, to its 
approximate value . 

B.5 Analysis of the results 

All simulations are similar in the sense that they compute grid 
coordinates from simulated "true" star, attitude and instrumental parameters. 
The observational errors, and errors in the approximate values, are added 
later. The adjusted star abscissae, along scan attitude and large scale 
instrumental deformation parameters, computed during the great circle 
reduction, can be compared with the simulated true -unperturbed- parameters. 
More specific, the true error, the difference between the adjusted and true 
value, should be compared with the formal (CO-Ivariances computed during the 
great circle reduction. Two hypotheses should be checked: 
a) the mathematical expectation of the true error is zero, i.e. there are no 

systematic errors, 
b) the spread in the true error conforms with the variances. 
In some cases, especially in first treatments, the first hypothesis is wrong. 
One important source of systematic errors are those caused by bad a-priori 
values for the star ordinates and transverse attitude components, which are 
not estimated. Fortunately, the effect of this error can be calculated by a 
few formulae (see chapter 5) or it can be assessed by special test-runs, so 
that its influence on our first hypothesis can be eliminated. The true errors 



can of course not be computed from the real data. In this case only the least 
squares residuals of the grid coordinates can be analyzed, just in order to 
monitor the estimation process. 

Let G denote the vector with adjusted values computed during the great 
circle reduction and let Q be its covariance matrix. Then, Ax=x-E{x) is the 
true error, which can be computed from the true simulated values Eix). The 
trye error Ax should be unbiassed, i.e. there are no systematic errors, so 
E{x)=E{x), and the "spread" of the true error should fit the formal 
covariance matrix Q. This hypothesis can be tested by the well known 
Chi-square test 

H,: 'I-a; n-d 

with X the critical value, l-a the level of significance of the test, n-d the 
number of condition equations (degrees of freedom), n is the number of stars 
and d is the rank deficiency (d=l). 

The covariance matrix Q is only computed fully for the instrumental 
parameters. For the abscissae only a small part of the covariance matrix, 
including the diagonal with variances, is computed. Therefore, the usual 
Chi-square test, which needs Q-', cannot be computed. However, when the 
influence of the instrument on the abscissae is negle~ted, which is very 
small anyhow, the inverse of the covariance matrix Q- is simply the reduced 
normal matrix of the star-part after elimination of the attitude. Although 
this matrix is very sparse it is not (yet) used at the comparison stage. At 
the comparison stage just the diagonal elements are considered, this gives an 
approximate testing variate for the Chi-square test 

for which only the variances are needed. The power of the test is reduced 
considerably, and it makes no sense to hold on to the critical value X of the 
original test. Therefore, instead of the above mentioned test more 
meaningful quantities are computed: 

-I-/ := /= and v : = / A  E (QAA):: 
It is sufficient to compare -I-/ with v, which is usually done separately for 
each magnitude class. I . e .  the mean true error per magnitude (colour) class 
is compared with the square root of the mean variance per magnitude (colour) 
class. An other useful tool are plots of the true error and square root of 
the variance as function of the abscissae. 

The quantities Ax are computed in the minimum norm sense, I. e. the sum 
of the Ax. is zero and the norm is minimal. Therefore the variances should be 

L 

computed in the same way; i.e. the sum of the (minimum norm) variances is 
minimal. Usually variances pertaining to the base-star solution are computed, 
which are systematically larger than the minimum norm variances. But also the 
covariances, which are neglected in the test, are much larger than in the 
minimum norm solution (see chapter 7). 

There are two other ambiguities in the abscissae, which should be solved 
before the comparison with true values: the abscissae are only defined modulo 
2n and modulo the slit width. 





COMPUTER SOLU'TION OF LEAST SQUARES PROBLEMS 

In this appendix the computer solution of large, sparse, symmetric, 
positive definite systems of equations, as arising in least squares problems, 
is discussed. First Choleski factorization, the only method which is 
considered here, is derived as a generalization from the solution of a 2 by 2 
block partitioned system of equations. Secondly Choleski factorization of 
sparse systems of equations, and the occurrence of fill-in, are treated, and 
finally an efficient method for computing a partial inverse of a sparse 
matrix is presented. 

C. l Least Squares Estimation 

Many estimation problems involve the estimation of unknown parameters X 

which bear a linear(ized1 relationship to measurement data y 

y n A * x  m > n  
mxl mxn nxl 

(C. 1) 

The data y, obtained from a measurement process, is not perfect: it may 
contain random errors (ycE{y)), systematic errors (E{y)+Ax) and even large 
blunders. In general, for m>n, a solution to equation (C. 1) does not exist at 
all. The space spanned by the columns of A, the range R(A), is a subspace of 
tRm, and it would be a mere coincidence if the observation vector y E tRm lies 
in R(A) c tRm. The dimension of R(A) is n-d. the rank of A, with n the column 
dimension of A ( n<m and d the so-called rank deficiency, the dimension of 
the nu1 l space of A. 

Although a solution X to (C.1) may not exist at all it makes sense to 
choose an estimate 2 for X for which & is as close as possible to the 
measurement data y, i.e. 

(C. 2) 

with 11 1 any sensible norm. The underscores in the formula are used to 
emphasize the stochastic nature of the variables f and y. Let 

T C =E{ ( y-E{ y) ) (y-E{ y) ) ) be the covariance matrix of the observations y .  Then 
W 

the we1 l known weighted least squares solution is calculated from 

(C. 3) 

T - 1  i.e. from minimizing the residual sum of squares E = C v in the metric 
YY- 

induced by the observations, with y the least squares residuals = y - 4. 
The least squares solution 5 has the following -nice- properties: 
- the least squares solution is unbiased when the model is unbiassed, i.e. 

E{ =E{ , 



- the least squares solution has minimum variance among all linear unbiased 
estimators, 

- the least squares residuals v = y - & are orthogonal to i, so COV(~,&)=O. 
- the least squares solution is the maximum likelihood solution in case the 
measurements y have a multi-normal distribution with covariance matrix C 

W' 
Clearly, if there are no systematic errors, i.e. E{y)=Ax, then E{y)=O. 

Differentiating E with respect to 2  and putting a ~ / a &  = 0, gives the 
so-called normal equations 

(C. 4 )  

nxn nxi nxl 
T T 

with normal matrix N=A WA and right hand sides b=A Wy. N is a (semi) positive 

definite nxn matrix, with Rank(N)= Rank(A) = n-d (if W is of full rank). If 
Rank(N)<n, i.e. N has a rank deficiency d>O so N is singular, there is no 
unique solution of the least squares problem. In other words the columns of 
A are dependent, i.e. for N(A), the null space of A , we have N(A)+{O). Let G  
be a basis for the null space N(A), with Dim(N(A))=d, AGO and so NGO, then 
every vector 

A - I 
X - 5 + G e m  
nxl nxi nxd dxi 

(C. 5) 

is a solution of (C. 4). where G* is a particular solution and m  a dxl vector 
of -arbitrary- parameters. 

Apparently more parameters than can be estimated from the observations 
have been introduced in the model. One remedy, therefore, is very simple: 
skip as many unknowns of X and columns of A as necessary (d). These unknowns 
do not get a correction, i.e. they are fixed on their a-priori values. This 
remedy is very simple and also numerically attractive, because the dimension 
of the normal equation system is reduced to n-d (columns and rows 
corresponding to columns of A are skipped) and possible zeroes in the normal 
matrix are preserved. The reduced normal matrix is positive definite and can 
be factorized by Choleski's method and inverted. Let us assume that the 

weight matrix W=C" is calculated from the covariance matrix C of the 
W W 

observations, then the covariance matrix C of the least squares solution is 
XX 

equal to the inverse N-I of the normal matrix. 

Instead of skipping columns of A, the linear(ized1 system of equations 
Ax=y can be extended by constraints 

A - B*!! - E 9 C = E{ (E-E{~) (E-E{E) lT) 
C C 

cxn nxi cxi cxc 

(C. 6 )  

The resulting system [ : ] X = [r] is regular if and only if the cxd matrix 
BG has Rank(BG)=d. In case of the minimum number of constrains c=d and 
Rank(BG)=d the unique solution to the parameter vector m  in (C.5) is 
m=(BG)- (c-&'), showing that the solution is uniquely characterized by B 
and c. Substitute the solution for m  in (C.51, then the specific solution 



G is obtained from any solution by the so-called S-transform [Baarda, 
B. c 

with the so-called S-matrix 

S I - G(BG)-'B 
B 

(C. 7) 

(C. 8) 

where the "S" stands for similarity or, more general, singularity [Teunissen, 
29851. The solution is uniquely determined by B and c, it does not 

B ,c 
depend on the prior solution or on the covariance matrix C of c. 

CC 

Two cases are of particular interest: 1) c=O and B = (0,I.O) with 
I the dxd identity matrix, which gives exactly the same solution as 
obtained by skipping the columns of A corresponding to I, and 2) c=O and 

T B=G , the so-called minimum norm solution. Both cases are examples of hard 
constraints, i.e. with Ccc=O. The second case, which gives the minimum norm 

solution, has also some nice properties: 
- X has minimum norm, 
- C has minimum trace. 

X X  

However, since G is in general full, also S will be almost full. The minimum 
B 

norm solution and its covariance matrix can be computed from the first 
solution by the S-transform (C.71, although for large and sparse systems of 
equations it is not advisable to do so for the covariance information. 

Instead of computing the constrained solution by an S-transform also a 
more direct approach - which preserves the sparsity - can be used. The 
constrained least squares problem is formulated as 

(C. 9) 

These equations are solved by the method of Lagrange multipliers. The 
Lagrange function - 
has a minimum if ah/a(xIi= 0 and ah/a(m) .= 0 for all possible i and j. 

J 
Differentiation of the Lagrange function and putting the partial derivatives 
to zero, gives the linear system 

(C. 10) 

The linear system (C.10) is symmetric and regular, assuming as before BC 
regular, but the system (C.10) is not positive definite. Therefore this 
system cannot be solved completely with Choleski factorization. However any 

T n-d dimensional submatrix of A HA is positive definite and can be factored by 
the Choleski method, the remaining d+d dimensional part can be inverted by 
Gauss ' met hod. 



C. 2 Matrix Decompositions 

C.2.1 LU Decomposition (Gauss) 

Matrix decompositions are the basis of an effective class of solvers of 
linear systems of equations. The following theorem is fundamental 

Theorem (C. 1) 
If A is an m X n matrix, with non-singular leading k X k submatrices for 

k = l,. . , min(m-l, n), then there exist a unit lower triangular m X m matrix L 
(the diagonal consists of ones) and upper triangular m X n matrix U such that 
A = LU. 

proof see e.g. [Golub G Van Loan, 19831, page 56. 

According to this theorem a linear system of equations Ax=y can be 
decomposed into the Lower and upper triangular systems 

(C. 11) 

which can be solved by simple forward and back substitution. The upper 
triangular matrix U is computed by successive Gauss transformations, the 
multipliers are stored in L. Multiple right hand sides may be solved by 
repeated forward and back substitution, without repeating the matrix 
decompos i t ion. 

The LU decomposition may not always exist or may be very unstable. More 
specific, (1) if a leading k X k sub-matrix of A is singular the LU 
decomposition fails, and (2) the Gaussian elimination can be unstable because 
of the possibility of arbitrary small pivots. Interchanging the rows and 
columns during elimination, such that as the next pivot the matrix element 
with the largest absolute value is chosen, will alleviate this problem. This 
is called pivoting for stability. In fact the LU decomposition of the 
permuted system PAQ is computed, where P and Q denote the row and column 
permutat ions . 

C.2.2 LLT Decomposition (Choleski) 

In le st squares problems linear system of equations of the type 
(A~UA)X=(A M)y havt to be solved, the so-called gormal equations Nx=b witP 
normal matrix N (A MA) and right hand sides b (A My). The normal matrix A MA 
is (1) square, (2) symmetric and (3) semi positive definite. For these 
matrices a special variant of the LU decomposition is considered. 

If A is square and symmetric a symmetric decomposition A = LDLT, with D 

diag(dl,. . ,d ) ,  is possible. If A is also positive definite all elements d. 
n 

are positive, which follows directly from the definition of positive 
T definiteness. Let A be positive definite, i.e. X Ax > 0 for all non-zero 

vectors X; let ei be the i'th unit vector and let x=L"e Then, xTAx=di > 0. i' 
Now let L'=LD1/' and u'=D-'/'U, then A = L'LvT. This important result is 
formalized in the following theorem. 

Theorem (C. 2 
If A is an n X n symmetric positive definite matrix, it has a unique 

T triangular factorization LL , where L is a lower triangular matrix with 
positive diagonal entries. 



proof: Any textbook, e.g. [George 8 Liu, 1981, p. 151 

The triangular factor can be computed by Choleski factorization. 

The linear system of equations e 7 b  can be decomposed into the lower and 
upper triangular systems L g = b and L X = g, which are solved by simple . 
forward and back substitution. Multiple right hand sides are solved by 
repeated forward and back substitution, the factorization has to be computed 
on1 y once. 

The importance of Choleski factorization for our purposes lies in the 
fact that pivoting for stability is not needed. 

C. 2.3 Stability Considerations 

A system of equations is ill-conditioned if one of its equations is 
"almost" linearly dependent on the others. In this case small changes in the 
data can give large variations in the solution. A measure for the condition 
is the so-called condit ion number K, defined by 

(C. 1 2 )  

where 11 11 is any matrix norm. Let us define the relative errors 

where the vector and matrix norms are compatible. Then the relative error in 
the solution of the system Ax=b is 

(C. 1 3 )  

This bound is the best possible , i.e. no algorithm can do better [Golub 8 
Van Loan, 19831. For instance, in case of ill-conditioned problems, 
truncation errors during the factorization can also result in large 
variations in the solution, or can even make the equations singular. 

The stability of a method or an algorithm says something about its 
sensitivity for truncation errors. Consider the round off errors during 
Gaussian elimination, then the computed triangular factors L and U satisfy 

L U = A + E  (C. 1 4 )  

and IEl  is of the order ( d i m ( A 1  ( I A I + I L I - I U I )  E ) ,  where IEI stands for the 
matrix with absolute values le  I and E denotes the truncation error of the 

i j 
number representat ion in the computer. With Gaussian el iminat ion there is the 
possibility that the term with ! L (  IUI becomes large, because there is nothing 
to prevent small pivots and small pivots give large elements in L and U. 
Obviously the stability can be improved by selecting in each step of the 
Gaussian elimination as pivot the element with largest absolute value. This 
amounts to solving the permuted system PAQ z = P b  with solution x=Qz. The 
decomposition is now PAQ=LU. 

Fortunately it can been shown that it is safe not to pivot symmetric 
positive definite systems. The lower triangular factor L of the Choleski 

T factorization A=L L is given by L ~ L D " ~ ,  where U = D L ~  with D a diagonal 
C C G G G 

matrix with positive entries. The equality I / L ~ I I : = ~ ~ A ~ ~ ~  shows that the Choleski 



T  
factor must be nicely bounded, therefore the terms I L  I I L  I and I E l  are also 

C C 

nicely bounded. It will now be evident that 1) pivoting for stability is not 
necessary and 2) the stability depends mainly on the condition number K. If 
the condition number K - 10" and rounding errors c - 1 0 - ~  then the relative 
error in the solution x is of the order 

C. 3 C h o l e s k i  Factorization 

We take the following theorem - concerning a two by two partitioned 
system - as the basis for Choleski factorization. Algorithms for computing 
the factorization follow from recursive application of this theorem. 

T h e o r e m  (C. 3 ) 
If A  is an n X n symmetric positive definite matrix, with 

L  
, and if L  = [:l L ] is the lower triangular matrix 

21 22 
-1 T  - from the factorization A = L L ~ ,  then = L - ' A ~  and L  - A  - A  A  A  - - 21 11 21  22 22- 22 21 11 21  

T  
proof Straightforward multiplication L L  gives All=  L l l ~ : l .  A:~= Ll l~ : l  

- - - 
and A  = L  L '  + L  L '  Solving L '  by simple forward substitution from 

T  22 T 2 2  2 2  21T21' 2  1  
A  = L  L  gives L  

21  11 21  
Ll lA2, .  Rewriting A  = L  + L  and p 2 2 2 2  +l 21  -1 -T T  substituting the result for L  gives L  L  - AZ2- L  L  = AZ2- A  L  L  A  = 

21 22 22- 21 21 21 11 1 1  21  

C o r o l l a r y  (C. 4) 
L  can be computed from A  by forward substitution with L  

21 21 11' 

C o r o l l a r y  (C. 5) 
The Choleski sub-factor L  of the factor L  is equal to the Choleski 

2  2  1  T  factor of the reduced matrix = A  - A  A- A  
22 22 21 11 21' 

The last corollary shows that any theorem, lemma, corollary or algorithm 

applicable to A  is also applicable to A = A  - A  A - ' A ~  This opens the way 
22 22 2 1 1 1 2 1 '  

for recursive application of theorem (C.3). First consider a special case of 
theorem (C. 3). 

Le- (C.6) 
If A  is an n X n symmetric positive definite matrix, with 

T  a a 

A =  [ a  andif L =  is the lower triangular matrix from the 

T 1  aa' 
L 

- A -  llT = X .  factorization A=LL , then L = da, 1 = - a and L  = A  - - - 
S S S a S 

proof T  2  Straightforward multiplication L L  gives a = l , a = l 1 and 
T  T  1  T  aa - A  = L L + 1 1 .  S o l = d a ,  l = - a a n d L ~ ~ = A - l l ~ = A - - = A  

S S l S S S a 



Recursive application of the previous lemma on the submatrices A, for 
s = l , .  .n,  with =A, suggests an algorithm for Choleski factorization. This 

1 
T 

algorithm is called the o u t e r  p r o d u c t  method after the outer products 11 . 
The algorithm is given in diagram C. 1. 

The outer product method can be written as a sequence of transformations 
T .  Lyt A be an n X n symmetric positive definite matrix with factorization 
A=LL . Define the block partitioned n X n matrices 

- 1  -T T - where the dimension of the first block is i x i ,  and = A - A L L A - 
22 22 2 1 1 1 1 1  21 

A22- L 2 1 ~ : l ,  so A =A, A =I. L =I and L =L. Then o n o n 

(11 A = L ~ A ~ L ~  , i = O , .  . , n  

Furthermore let T = Li+l- Li + I ,  then t+l  

(21 Li+l = LiTi+l = Li  + Ti+l  - I 

( 3 )  Ai = T i + l A i + l ~ ; + l  

n n 
So the Choleski factor L = T i  or L = C T i  - ( n - l )  I .  

i=l i=1 

(C. 1 5 )  

A different algorithm for Choleski factorization is suggested by the 
following lemma: 

Lemma (C.7) 
If A is an n X n symmetric positive definite matrix, with 

T 
A a i  . .  L 0 . .  

A = [ a : '  a i i  . . ] , and if L = [ ! : l  ; i i . .  ] is the lower triangular 
. . .  . . . . 

T T - 1  T matrix from the factorization A=LL , then the row 1. of L is l . = L  a and the 
1  1  11 i 

diagonal element L. 1 1  .=- 1 1  . 

proof The lemma follows from theorem ( C . 3 )  by considering ( 1 )  that the 
-m- 

solution L to the triangular system L L' = A can be computed row by row 
21 21 1 1  21 

and (21 that L ..= 1 / q ,  where a.. is the first entry in - 
1 1  1 1  

T 22 - A22- ~ 2 1 ~ : l  and a.. = a . .  - i i i i .  
1 1  1 1  

The algorithm suggested by the previous lemma is called the b o r d e r i n g  
m e t h o d ,  because the provisional factor is successively bordered with a row of 
A, from which the corresponding row of L is computed by forward substitution. 
The Choleski factor is computed row by row. By changing the order of the 
computations, so that the elements of the Choleski factor are computed column 
by column, a third algorithm is derived, the so-called inner p r o d u c t  me thod .  



In diagram C.l all three possible algorithms for Choleski factorization 
are given. Note that the indices in the algorithms presented in diagram C.l 
run faster the higher they are in the alphabet. With the outer product method 
the Choleski factor is computed column by column, but now using outer 
products rather than inner products and during the computation the other 
elements are modified. The access to the matrix elements during factorization 
is shown in diagram C.2 for full matrices and diagram C.3 for envelope 
matrices. 

With the bordering and inner product method the elements of the Choleski 
factor are computed directly from inner products. The precision of the 
computations can be increased simply by increasing the precision of the 
inproduct computations without using extra storage. In case of the outer 
product method the Choleski factor elements are not computed directly: after 
a new column has been computed the outer product of this column with itself 
is added to the remaining elements. Therefore if the stability has to be 
increased not only the precision of the outer product computation must be 
improved, but also the wordsize of the modified part must be increased. 

The cost of the factorization, back and forward substitution are 
evaluated in terms of operation counts or flops when floating point 
operations are considered. An operation is defined here as an addition, plus 
a multiplication, plus the necessary array accesses. The operati count for 
the Choleski factorization of a full n X n matrix is actually -' and the 

6 
1 2  operation count for back and forward substitution is -4. Therefore multiple 

2 right hand sides can be solved easily and cheaply, O(n ) ,  by repeated forward 
and back substitution once the initial factorization has been obtained. The 
operation counts decrease dramatically if the matrices are sparse, i.e. if 
the matrices only contain relatively few non-zeroes. 

C.4 Sparsity Considerations 

C. 4.1 Introduction 

In most practical applications the matrix to be factored is sparse. 
Sparse matrices only contain few non-zeroes; the zero elements 1) have not to 
be stored and 2) multiplication by a zero results again in a zero. If the 

T sparse symmetric positive definite matrix A has a Choleski factorization LL , 
T then the matrix L is usually sparse too. L+L contains at least the same 

non-zero elements as A, but also newly created non-zeroes, called fill-in. 

If A is an n X n sparse symmetric positive definite matrix and L the 
T 

lower triangular matrix from the factorization A=LL , then it will be clear 
from the previous lemma's that the element l of L, irj, is non-zero if and i j  
only if 

(1) aij is a non-zero, or 
T (2) the inproduct lj(j-l)*li(j-l) is non-zero 

with 1 T 
j (  i) 

the sparse vector (l l . . . Let Nz(A) be the set of non-zero 
jl'"" J L  

elements of a matrix A 

Nz(A) = { (i,j) I aij + 0 , i+j ) 

and definy Nz(L) similarly. Evidently NZ(*) c NZ(L+L~), i.e. the fill-in 
is Nz(L+L 1-Nz(A). Now, using the previously established conditions, Nz(L) is 
defined by the following lemma. The proof is trivial and will be omitted. 



Lemma (C.8) 
If A is an n X n sparse symmetric positive definite matrix and L the 

lower triangular matrix from the factorization A=LL , then an element 
(i, j) E Nz(L) if and only if, for jci, 

(1) (i, j) E Nz(A1 , or 

(2) lik E Nz(L) A l E Nz(L) for some k c j 
jk 

The second condition in the previous lemma, which determines the 
fill-in, is not very practical, but it shows that the order of elimination is 
important. Consider the fill-in in the following two example matrices, which 
are identical except for a row and column permutation 

***** 

A 1 = [ Fnn ] + L,= [ ] and A; [ ***" ] + L*= [ **** ] 
***** ***** ***** 

The non-zero elements are denoted by an *. The fill-in is respectively 6 
and 0. 

Corollary (C. 9) 
In the example we see clearly that ~NZ(L)( depends on the order in which 

the unknowns are numbered. 

The order in which the unknowns are numbered does not affect the numeri a1 ? stability as much a? by Gaussian elimination. Therefore instead of A=LL we T may compute PAP =LL , where the permutation matrix P is chosen in such a way 
that the fill-in during factorization is small. 

The envelope Env(A) of a symmetric matrix 

A is formed by the matrix elements a jsi, ij' 
where (i, j) E Env(A1 if and only if 3 k s j 

for which a. *O. I.e. if (i, k) E Nz(A1 for 
L k 

ksjsi + (i, j) E Env(A1. 

R:. 

Lemma (C. 10) 
If A is an n X n sparse symmetric positive definite matrix and L the 

T lower triangular matrix from the factorization A=LL , then, neglecting 
numerical cancellations, Env(L) = Env(A1. 

proof Suppose (i, L) Nz(L) for l=l, . . , k-l , then according to lemma 
(C.8) (i,k) E Nz(L1 if and only if (i,k) E Nz(A1. Induction on k, k=l,. . . j , 
completes the proof 

Corollary (C. 11) 
If the non-zero elements of a sparse symmetric positive definite matrix 

A, with the Choleski factorization A=LL~, tend to cluster around the 
diagonal, this property will be maintained in the factor L. 

Corollary (C. 12) 
If Nz(L) is the set of non-zeroes of the lower triangular matrix L, then 

Nz(L) G Env(L1 and INz(L) I 5 l~nv(L) ( . 



I NZ(L) I and 1 Env(L) 1 ,  and therefore storage requirements and computing 
resources, depend on the numbering of the unknowns. The ordering does not 
influence the numerical stability of the process as much as it does with the 
Gaussian elimination. Therefore we may order without regarding numerical 
stability, and we can order before the actual factorization takes place. The 
ordering procedures either 
- reduce the fill INz(L) 1 ,  or. 
- reduce the profile IEnv(L) I. 
The ordering procedures which aim at reducing INz(L) I give usually less 
fill-in, but are also more complex than those which aim at reducinglEnv(~) l. 
Besides, the advantage of a smaller INZ(L)~ may be outweighted by the 
additional overhead associated to the more complex data structure for Nz(L) 
than Env(L). 

Computer storage comprises both primary storage, for the element values, 
and overhead, needed to store some information about the row and column 
indices of the elements in the primary storage. Similar considerations hold 
for the execution time requirements; the overhead is formed by 1) the 
execution time needed to find an ordering, 2) storage allocation for L 
(symbolic factorization) and 3) overhead in access times. The amount of 
overhead depends on the storage structure chosen, and also on the number of 
elements to be stored. 

C. 4.2 Envelope Methods 

Matrices for which the non-zero elements tend to cluster around the 
diagonal are called envelope, profile or variable band matrices. The fill-in 
during Choleski factorization is limited to non-zeroes within the envelope of 
the matrix, so it makes sense only to store the elements within the envelope 
of the matrix, without considering the non-zero structure within the 
envelope. 

* non-zero 

1 envelope 

The bandwidth Pi(A) in the i'th row of a symmetric matrix A is 

defined by 

Then the envelope Env(A) of a matrix A is the set of elements 

Env(Al = { ( i, jl I 0 < i-j S Pi(AI ) 

and the profile l~nv(A) I ,  the number of elements in E~v(A), is 
n 

lEnv(~) l = P Pi(A) 
i = i  

i.e. all the zeroes in the envelope are included. 



The frontwidth1 o(A) of a matrix A is defined as 

oi(A) = I { k I k > i and akl + 0 for some l 5 i ) 1 

the number of rows of the envelope of A which intersect column i. But, then 

From lemma C.10 we know that the envelope of the normal matrix and Choleski 
factor, neglecting cancellations, are the same, but then also the frontwidth 
must be the same, i.e Env(A)=Env(L) and oi(A)=oi(L). Hence, oi(A) is the 

number of active rows at the i'th step in the factorization. Therefore the 
operation count for computing the factorization, which follows from the outer 
product formulation, is 

(C. 16) 

If A has the monotone profile property (see below) the operation count is 
equal to the upper bound computed from the bandwidth B. The operation count 
for solving the system of equations is 

(C. 17) 

Let b be the mean wi th of the band, then the operation count for the 9 factorization is O(b n) and the operation count for solving is O(bn). 

Let f.(A) be i-B.(A), the column index of the first non-zero in the i'th 
L L 

row, then the monotone profile property is defined by f.(A)sf.(A) for i 5 j. 
L J 

Lemma (C. 13) 
Let A be a symmetric positive definite matrix with the monotone profile 

property fi(A)5f .(A) for iaj. and factorization A=LL'. Then L has a full 
l' 

envelope Env(L+L 1, i.e. E~v(L+L~)=N~(L+L~). 

proof Assume this assertion is true for the rows 1.. . I-1. From lemma 
(C.8) follows that l tO if and only if aij*O or likfO A l tO for some 

j jk 
k=fi(A) , . . ,  j-l. Suppose for j>fi(A) a =O and l. *O for k=fi(A) , . . ,  j-l, then ij L k 
L .  .*O if and only if l *0, so from the previous assumption follows krf .(A) 
LJ jk J 

and therefore f .(A)af.(A) (the monotone profile property). For j=fi(A) a .fO 
J L i J 

and so l 9 0, then induction on j=f.[A)+l,. . , i-l and i=l,. . , n  completes the 
i J L 

proof. 

The frontwidth of a matrix must not be confused with the forward 
bandwidth v. (A) of a matrix, which is defined as 

L 

v.(A) = max{ i ( a t 0, j 5 i 5 N )  - i 
L ij * 

The forward envelope EnvlA) and profile (Env(~)*( are defined 
* 

similarly 9s for the bandwidth PIA), but in gereral Env(~) *Env(~) 
and Env(A) *Env(L). 



A data structure for the envelope Env(A) is given in figure C. 1. Because 
Env(A)=Env(L) Choleski factorization can be implemented inplace, i.e. L may 
overwrite A. 

"".m EEEIX:::::: ..... P cl ............. ~m pointers 

L L L .......- J ....................... J .  J . , . , . . I row i I row n i I data . . ....................... I i 

Figure C.l - Variable band (profile) data structure for Env(A) 

Note that for symmetric matrices the profile storage structure in figure 
C.l applies both to the "row" envelope of the lower triangle and "column" 
envelope of the upper triangle. However, the row and column envelope of the 
lower triangle are in general not the same. 

The data structure from figure C.l is well suited for the implementation 
of the bordering method, which computes the Choleski factor row by row (see 
diagram C.l). However other methods can be implemented equally well. The 
choice for a specific method therefore depends on the preferred order of 
computations and some machine considerations. In some applications the 
reduced sub-matrix A is needed, which is produced directly by the outer 

22 
product method. For very large systems of equations the complete factor 
cannot always be kept in-core for most paging machines, and depending on the 
shape of the envelope one method may be preferred to others. For instance the 
factor in diagram C.3, which arises in many problems, can b st be handled by 9 2 the outer product method: throughout the computations only -b storage 

2 
locations are sufficient and all elements have to be read once from disc. On 
the other hand for vector machines with a large memory, the bordering or 
innerproduct method may be preferred. 

C. 4.3 Sifted Format Methods 

A sparse symmetric matrix can be associated with a graph. A graph 
G=(X,E) consists of a finite set X 'of nodes x together with a set E of 

i 
unordered pairs of nodes { X  X .) , cal led edges. Nodes are associated with 

i' . I  - 
unknowns and edges with a pair of unknowns connected through observations. A 
graph is ordered if the nodes are numbered. An ordered graph can be related 
to the normal matrix N: the nodes can be associated with the diagonal entries 
in N, edges can be associated with the off-diagonal non-zero elements in N. 

Two nodes X and y are adjacent if the pair {X ,  y) is an element of E, the 
set of edges. The adjacent set of y, denoted by Adj(y1, is the set of nodes 
adjacent to y, i.e. 

Let Y be a subset of nodes, then the adjacent set of Y is the set of nodes 
which are not in Y but are adjacent to at least one node in Y, i.e. 

Adj(Y) = U AdJ(y) / Y 
YEY 

We define the degree Deg(Y) of Y as the number of edges with nodes outside Y, 
i.e. ~ e g ( ~ ) = l ~ d j ( ~ )  I. 



A section graph contains a subset of the nodes plus all edges which are 
pairs from the subset of nodes, i.e. the section graph G(Y) is the subgraph 
G(Y,E(Y)) of G(X,E), with YcX and E(Y)cE, E(Y)={ {X, y) E E I X E Y, y E Y ). 

The following lemma is identical to our lemma (C.8). but now formulated 
in graph theory: 

The unordered pair { X  x .) E 
' 

if and only if {xi,x .) E l? or 
T i' J J 

{x1.xk) E and {X . X )  E for some k < m i n ( i , j ) .  
k j 

The complete process of Choleski factorization can be interpreted as a 
sequence of graph transformations, which is very helpful when considering the 
occurrence of fill-in. The sequence of graph transformations is depicted by 

A with GO=G(X,E ) and G the empty graph. The so-called elimination graph 
n 

G.=(X1,Ei) is the graph of the reduced matrix after i elimination step in 
L 22 

the outer product formulation of the Choleski factorization. Elimination of a 
node x involves 
- deleting the node x and all its incident edges, and 
- adding edges so that nodes in Adj(x) are pairwise adjacent in the new 
graph. 

Fill-in occurs if new edges have to be added to the new graph. Choleski 
factorization can now be interpreted as a sequence of such elimination steps, 
and the fill-in L corresponds to the set of new edges added during the 
elimination process. 

The previous lemma (C. 8' 1 is not very satisfactory because it gives the 
fill-in in terms of the matrix L and not the original matrix A. A different 
approach is provided by the concept of reachable sets [George G Liu, 19811. 
A path from a node x to a node y of length 121 is an ordered set of distinct 
nodes (v ,v 2 , .  . . , v ~ + ~ )  such that v E Adj(vi), i=1,2,. . , 1 with v =X and 

i+i 1 

v =y. In other words y is reachable from X through the set of nodes 
1+1 

{v2,...,vl). The reach of a node y through S is defined by 

Reach(y,S) = { x S I x is reachable from y through S ) 

A graph G=(V,E) is connected if every pair of distinct nodes is joined by at 
least one path, i.e. if 

Reach(y,V) = V for Vy E V 

Otherwise G consists of one or more connected components. 

The next two theorems give the fill-in of the Choleski factor L in terms 
of the original matrix A, using reachable sets. For the proof we refer to 
[George G Liu, 19811. 

Theorem CC. 141 

E ~ + ~  = { {xi," .l I X .  E Reach(xi,{xl,. . . . , X  ) 1 ) J J i-1 



Theorem (C. 15) 
Let y E Gi=(Xi,Ei), with G. the i'th elimination graph, then 

L 

Adj(y)=Reach(y, {X,, . . . .  x } 1. i-i 

Let p. (L) be the number of non-zeroes in the i'th column of L, 
L 

and si(L) the number of non-zeroes in the i'th row of L. Then the 

operation count for the factorization is 

(C. 18) 

In terms of the original graph p.(L) = IReach(xi,{x l,...,x } l  1. 
L i-i 

A data structure for Nz(A) is given in figure C.2 [Kok, 19841. The 
column indices for each row are usually given in increasing order. In order 
to access an arbitrary element, or columns, some testing is necessary.When a 
complete row has to be accessed testing is not needed which is good for the 
performance of any algorithm. This makes that the choice for a rowwise or 
columnwise (the transpose) storage structure is important for the performance 
of e. g. Choleski factorization. 

1 2 3 4 5  i+4 n+ 4 .............. L T::::::::T PO L , p q .............. 

....................... ........... 
row 1 row i row n ....................... column # ........... 

o+ 1 P+l 4 k L 

Figure C.2 - Sifted format data structure for Nz(A) 

.L .L 

It is useful to distinguish the symbolic factorization, during which the 
non-zero structure Nz(L) is computed, and the actual factorization. First 
consider the actual factorization; at first sight neither the rowwise or the 
col umnwise storage structure seems to have profound advantages and some 
testing cannot be prevented. However with a simple trick testing may be 
prevented for the inner product method if the columnwise administration is 
used [George C Liu, 19811. The trick is to compute the inner products as 
outer products, and to add these to the current column i. Only columns which 
have a non-zero in row i, which may follow from a temporary list, play a 
role. Symbolic factorization can be done with the same principles: the 
non-zeroes in column i are found by merging the non-zeroes in the columns 
which have a non-zero in row i. A different implementation of the symbolic 
factorization algorithm, implemented in Delft, uses the rowwise storage 
structure. 

....................... 
row n ....................... 

It is good to introduce now a clear concept of the transpose of a 
matrix: we must distinguish between the mathematical interpretat ion and the 
consequences for the data storage. I. e. elements of the transpose matrix are 
stored in the same storage locations as the original if the storage structure 
is transposed too. Only storage structure transposal, or only mathematical 
transposal have a profound influence on the way the elements are stored, and 
may even necessitate a different storage structure, e.g. I E ~ ~ ( A ~ I  I*IEnv(A)l. 

data 
1 m=l-0 



C. 4.4 Partitioned Systens 

Theorem ( C . 3 )  of section C.3 formed the basis for Choleski 
factorization. However, it may be worthwhile -especially for sparse matrices- 
to consider partitioned systems on their own. Corollary (C. 4 )  and (C. 5) 
suggest an algorithm for the b l o c k  f a c t o r i z a t i o n  of the partitioned matrix 

A = [::: 2: ] into the factor L = [ ::: 
A l g o r i t h m  S y m m e t r i c  b l o c k  f a c t o r i z a t i o n  

1 )  factor Al l  into L ~ ~ L : ~  
T T 

2 )  solve L21 from the triangular systems LllL21=A21 
T 

3 )  modify Alp into i2i~22-~21~21 - 
4 )  factor A22 into LZ2LZ2 

The third step may turn out to be a nuisance, especially if L,, is full. 
G n 

- 1  T 
Expanding the product L ~ ~ L : ~  gives ( A  ( L  A , which may be computed 21 41 1 1  21 

- 1  T -T T 
also as A ( L - ~ ( L  A ) ) = A  ( L  L  )=A L  . This product can be evaluated 

21 1 1  1 1 2 1  21 1 1  21 21 21 

column by column, which gives the following algorithm. 

A l g o r i t h m  A- symmet r i c  b l o c k  f a c t o r i z a t i o n  

1 )  factor All  into L ~ ~ L : ~  

2 )  for each column ai  of A : ~  

2 . 1 )  solve the lower triangular system L 1 =ai +' -i 
2 .2 )  solve the upper triangular system L l l l i = l  - i 
2 .3 )  modify the i'th column of AZ2: ( A z z )  .= (A  ) -A i 

* L  2 2 * i  21 i 
3 )  factor iZ2 into L2&i2 

The a-symmetric block factorization evidently does not need L21 

explicitly, instead A is used. Since I N z ( A Z 1 )  I =  I N z ( L Z 1 )  1 the second 
21 

algorithm is more efficient, only when A is full the performance is the 
2 1 

same. 

The s o l u t i o n  of a two by two block partitioned system can be computed 

also with and without L21. The so-called s t a n d a r d  s o l u t i o n  s c h e m e  uses L21,  

the imp1 icit  s o l u t i o n  s c h e m e  uses A 
21' 



Algorithm Standard solutton scheme 

1) Forward so lve 

1.1) solve L y=b 
11  1 1 

1.2) compute i;=b-L y 
2 2-21 1 

1.3) solve L y=b 
22 2 2 

2) Backward so lve 
T 

2.1) solve L x=y - 22 2 + 
2.2) compute y1=y1-L21~2 - 
2.3) solve L x=y 

11 1 1 

In the standard solution scheme L L and L are needed. In the implicit 
11' 21 22 

solution scheme Azl is used instead of L21. 

Algorithm Implicit solution scheme 

1 ) Forward so lve 
T 

1.1) solve L y =b and L x'=y (x;=temporary solution) 
1 1  1 1 1  1 1 

l. 2) compute 62=b2-!21x; 
1.3) solve L 22 y=b 2 2 

2) Backward solve 
T 

2.1) solve L x=y 
22 2 + 

2.2) compute i; =b -A X 
1 1 2 1 2  

2.3) solve L y =il and L X =yl 
11 1 1 1  1 

Alternative formulations for step 2.2) and 2.3) of the implicit solution 
scheme are: - T 

2.2) compute y =yl-tl, with tl from A t =A X 

t - 1 1  1 21 2 
2.3) solve L X =yl 

1 1  1 

The cost of the implicit solution scheme is no greater than the cost of the 
standard solution scheme if INz(A~~) I + INz(Ll1) I d INZ(L~~) I. 

C.5 Computing the -Partial- Inverse 

An example of a system with multiple right hand sides is NC=I, where 

c=N-' is to be computed by repeated forward and back substitution with 

columns e of I. This is a very straightforward way of computing the inverse i 
of a matrix. The operation count for the inversion of a full matrix, not 

1 3  counting the initial factorization, is - 4 . This is twice as much as for 
3 

the factorization itself. 

For sparse matrices repeated forward and back substitution is not a very 
elegant way for computing the inverse of a matrix: Take for instance an 
envelope matrix, and let b be the mean width of the bapd. Then the operation 
count for the Choleski factorization is of the order b n, and the operation 



count for one solution of the order bn. For the inversion n systems pave 
to be solved, therefore, the operat ion count for the inverse is O( bn 1.  It 
would be ideal if the operation count for the inversion is of the same order 
as the operation count for the factorization. With the present method this is 
only the case if only a f e w  elements of the inverse have to be computed. 
However, as we will show below, it is possible with a different technique to 
compute a large number of elements of t h ~  inverse, corresponding to the 
non-zeroes in the Choleski factor, in - -b n time. The inverse which is 

3 
computed by this technique is called the s p a r s e  inverse. For most 
applications the sparse inverse is sufficient, and other elements are not 
needed. This technique, the so-cal led recursive p a r t  l t i o n i n g  or s p a r s e  
inversion, can be based on the following lemma. 

Lemma (C. 1 6 )  
Let A be an n X n symmetric positive definite matrix, with inverse 

A- '=  B = [ :: BZ2 andletl- [ :: Lz2 ] bethelower 
' B32 B33 L32 L33 

T 
triangular matrix from the factorization A=LL , then B = -B L L-' and 32 33 32 22 
Bz2= L - ~ ( I  + LT B L ) L - l -  L - ~ L - ~ -  L - ~ L ~  B 

22 22 32 33 32 22- 22 22 22 32 32' 

proof If B=A-', then AB=I. Let A=LLT, multiply AB=I left with L-' and 
T right with L ,  gives L BL=I. Straightforward multiplication LTBL gives 

T T T 

L: 2'22'22. L: ZB3ZL22+ L 2 3 zL32+ L: 2'33'32 = I 22 ( 1 1, L : ~ B ~ ~ L ~ ~ + L ~ ~ B ~ ~ L ~ ~  ' 0 
( 2 )  and L : ~ B ~ ~ L ~ ~  = I (3). Rewriting ( 2 )  gives B L = -B L , using 

?3 
32 22 . 33 3j2 

this in (1) gives L B L - IZ2+ LT B L or LT B L = I - L32B32L22. 
22  22 22- 32 33 32 22 22 22 22 

Solving for B and B completes the proof. 
32 22 

Recursive application of this lemma on partial columns of the inverse 
gives an operational scheme for computing the inverse of a matrix. The 
algorithm is presented in the form of a lemma. 

Lemma (C. 1 7 )  
Let A be an n X n symmetric positive definite matrix. with inverse 

triangular matrix from the factorization A=LL',  then the inverse matrix - 
T 

B=B 1 , with li = [ : ; L  bi ] , i = n - .  , l and ln= l/Lm, where 

- Bi+l T 
bi= - B i + l l i / L i i  and bii' ( l / L i i  - l ib i ) /L i i  . 

proof This lemma follows directly from recursive application of the 
previous lemma for partial columns of B. 



Let us consider  t h e  computation of a s i n g l e  element ( b i I j  i n  t h e  i ' t h  
T 

column of t h e  inverse ,  i.e. (bi I j=  b .1  / l i i  : Assume t h a t  1 is a sparse  
J i i 

vector ,  then only those  elements of b ( t h e  j ' t h  column of t h e  inverse )  a r e  
j 

needed which correspond t o  a non-zero i n  1 I t  t u r n s  out t h a t ,  when ( l i I j  
i ' 

i t s e l f  is a non-zero, t h e  required elements i n  b correspond a l s o  t o  
j 

non-zeroes i n  t h e  Choleski f a c t o r .  This becomes p laus ib le  when we consider  

t h a t  t h e  f i l l - i n ,  c rea ted  i n  t h e  i ' t h  elemination s t e p  of Choleski 
T 

f a c t o r i z a t i o n ,  is given by Nz(1 . l  , l .  Hence, i t  is poss ib le  t o  compute only  
L L 

t h e  elements ( b  1 of t h e  inverse  which correspond t o  non-zeroes i n  the  
i j 

Choleski f a c t o r ,  i .e.  ( i ,  j l ~ N z ( L 1 .  The r e s u l t i n g  - p a r t i a l -  inverse  is c a l l e d  

t h e  s p a r s e  inverse.  



DIAGRAM C.l 

ALGORITHMS FOR CHOLESKI FACTORIZATION 

Bordering method: 

for i=1,2,. . .  .N 
for j=1,2,. . . . . , i-1 

Outer product method: 

M t A  

for i=1,2, . . . .  N 

for j=i+l, i+2,. . . . , N  

for k=i+l, i+2,. . . . , j 

Inner product method: 

for i=1,2, . . . .  N 

k=l 
for j=i+l, i+2,. . . . , N  

i-l 
= [ a j i  - 1 l j k O l i k  l / l i i  j lji 



DIAGRAM C.2 

ACCESS TO MATRIX ELEMENTS DURING CHOLESKI FACTORIZATION 

FOR A FULL MATRIX 

Outer product method: 

Inner product method: 

Bordering method: 

Legenda: 

, . . . . . . , 
i . i . not yet accessed ...... 

modified, current  l y accessed 
\\ 

completed, current  l y accessed 

completed, not current  l y accessed 

completed, no longer accessed 



DIAGRAM C.3 

ACCESS TO MATRIX ELEMENTS DURING CHOLESKI FACTORIZATION 

FOR A PROFILE MATRIX (CHIMNEY SHAPED) 

Outer product met hod: 

Bordering method: 



DIAGRAM C.3 - CONTINUED 

Inner product met hod: 

Legenda: 

. . . . . . . 
i j not yet accessed 
* ...... 

modified, current l y accessed 

completed, current l y accessed 

completed, not current l y accessed 

completed, no longer accessed 
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