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PREI'ACE

The present publication was originally intended to be a contribution to a special publication
dedicated to professor ANTONIO MARUSSI on the occasion of his 70th birthday. Owing to
personal circumstances, the deadline to submit a contribution could not be met, moreover it
appeared that some missing links still required further investigation.

Nevertheless this publication — in spite of possible weak parts or errors — should be seen as a
homage to professor MAR USSI, a scientist who by his own work, and by organizing the sympo-
sia on mathematical geodesy, has given a strong stimulus to geodetic research.

The idea of the theory presented here goes back to these symposia, and mainly to the presenta-
tion and discussion of A. BIERHAMMAR’s paper “A General World Geodetic System” at the
Second Symposium on Tridimensional Geodesy in Cortina d’Ampezzo, 1962.

It took more than a decade and a half to give shape to the idea. In the years 1964 to 1971 1 had
the indispensable assistance of my co-worker J. vAN MIERLO. His contribution to the mathe-
matical formulation and to the discussion of results is gratefully acknowledged. I am also great-
ly indebted to J. E. ALBERDA for elaborating the English version of the manuscript.

The manuscript was finalized in the period July 1977 — July 1978. When preparing it for the
press section 1.8 and some notes were added.

December, 1979 W.BAARDA
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1. INTRODUCTORY REMARKS

1.1 Introduction

The sketch given here evolved as a spare time activity from the presentation and discussion of

the paper [BIERHAMMER, 1962]. The struggle with the subject concerned the main lines: not

all mathematical details have been satisfactorily solved and the theory is not complete, hence

the sketchy character of the treatment. The incentive to this investigation came from two sides:

a. In setting up a spatial theory of geometric geodesy the need was felt for a connection with
gravimetric {or physical} geodesy that was independent of the classical ellipsoidal approach.

b. Since the lectures by F. A.VENING MEINESZ in 1938 and 1939, the field of physical geodesy
has always fascinated me and held my interest. However, as the number of publications on
this field grew, the theoretical structure became less and less clear to me. Spherical and non-
spherical approximations followed each other in arbitrary order, just as the use of Poisson-
and Green integrals. The use of approximate values was somewhat curious, leading, on the
one hand, to a kind of physical interpretation such as the “telluroid”, and on the other hand
to a “fundamental equation of geodesy” which sometimes was a hindrance. Further, the
whole theory seems to be due to an “ill-posed problem”, although the application of the col-
location technique removes this difficulty or leaves it aside. And, finally, why is the purpose
of geodesy the determination of a vague concept like the “geoid”, and not the determination
of the topographical land and sea surface of the earth?

In the course of years I have in developing the present approach become more and more con-
vinced that its main lines have a real significance. Many classical results can be recognized in
the new theory; its basic thought is connected with the model theory on which I based the
adjustment theory of geometric geodesy. Yet many questions and problems are left open:
newly developed measuring processes have not found their place yet, methods of dynamical
satellite geodesy have not been sufficiently analysed, the elaboration and interpretation of
the relationships found are still somewhat problematic. It is hoped that criticism will provide
a check on the results obtained.

Let the following summary precede the theory:

The core of the theory is the connection of

e results of geometric networks

e spirit levelling

e gravity {and vertical gravity gradient} observations

to the third integral identity of Green. The way in which this connection is established is deter-
mined by the analysis of measuring processes, leading to a connection via dimensionless com-
pound difference quantities. Linearization of the integral equations necessitates a closer study
of Poisson’s integral; it appears that effects of Gauss’s integral and Poisson’s integral cancel each
other in the linearized equations. The closed model of approximate values turns out to be of
dominating importance; spherical approximation {Poisson’s integral} requires an order of mag-
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nitude of difference-quantities that is smaller than is now in use for anomalies. This leads to a
stronger interaction with geophysical model hypotheses.

The solution of the linearized integral equations leads to Stokes-like integral formulae, the so-
called Green integrals, with possibilities for regional application on land and at sea, including
some aspects of satellite geodesy.

A guess is made with respect to the background of the inverses of these Stokes-like integral
formulae, deduced by MOLODENSKII.

Concepts like the “fundamental equation of physical geodesy”, “free air reduction”, “geoid”
and “height” are critically examined. The sketch concludes with some remarks on collocation
theory, leading to a consideration of the choice between the use of collocation or of integral
formulae in the present theory.

1.2 Approximate values and geophysics

The choice of good approximate values, forming a closed system, is essential for the theory.
The geocentric cartesian coordinate system, usual in geodesy, is adhered to, but its origin Py is
chosen close to the, initially unknown, centre of mass P of the earth. This origin Py, will fur-
ther be denoted as the geocentre, and will also be taken as the centre of a reference ellipsoid as
currently used in geodesy.
For points P; on or above the surface of the earth one then has to assume values for the three
coordinates and for the gravity potential, respectively the gravitational potential:

X,.appr, Y?ppr, Z,.appr, Wl.appr respectively V?ppr B € R ) L)
The angular velocity of the earth’s rotation is assumed to be known.
All other quantities occurring in the theory are given approximate values deduced from (1.2.1).
Examples are: the length of rays r; from the geocentre to point P;, the gravity g; in point P; {the
magnitude of the gravity vector, the direction of this vector belonging to the domain of geomet-
ric geodesy}, etc.

Essential items are:

1. Approximate values are indispensable for the theory, in order to be able to linearize integral
equations in such a way that terms which are difficult to compute vanish {compare the in-
troduction of the anomalous potential T in the existing theory [HM, (2—137)]*#*)}

2. It follows that the theory is concerned with linearized integral equations, or difference equa-
tions. These serve as the functional model for the application of adjustment processes. Con-
sequently, the difference equations will have to be applicable both as relations between cor-
rection quantities and as relations between difference quantities:

*) The notation “appr” will be omitted in coefficients of difference cquations if there is no danger of confu-
sion.

**)HM is the abbreviation which will be used for the excellent book [HEISKANEN and MORITZ, 19671, to
which the treatment will be connected as much as possible.



A CONNECTION BETWEEN GEOMETRIC AND GRAVIMETRIC GEODESY 9

Ax=x —xPC ... s 12Y

This is in contrast with geometric geodesy, where the misclosures of condition equations are
computed from the non-inearized relations from the functional model. The quantities x fre-
quently are quotient-quantities such as r;/r; and g;/gj in pairs of points #;, P; on the surface
of the earth, with standard deviations:

Ox ~ 107 - 107°
In this case we have for the correction-quantities:
€x ~107° —107°
Hence for the difference-quantities:
Ax2>107¢—107% . . . . . . oL oL 0 o000 (123)

This requires a very close approximation of x *P* to x. Then it is not sufficient any more to
choose for W?PP' the potential of the normal gravity field, but one will have to take into ac-
count the influence or the mass distribution in the earth, locally and regionally. This goes
further than the computation of isostatic and other corrections in current use.

. The requirement mentioned in item 2 is even more stringent if in the coefficients of differ-
ence equations the earth is assumed to be a homogeneous sphere. This makes it possible to
apply Poisson integrals in interaction with difference-expansions in spherical harmonics up
to the surface of the earth. In this situation the earth can indeed be considered as a sphere,
which follows from the fact that for pairs of points ;, P; on the surface the following ap-
pears to hold:

&
&

WI‘:2

:—;»—1‘<0.01 e e s (28
so that the number of significant digits of Ax-quantities, computed from difference relations
in the present theory, can be put at 2 or 3, in agreement with (1.2.3).

. Consequently, in geodesy one is in two ways faced with geophysical problems. In the first
place the determination or the checking of crustal movements, as following from the theory
of plate tectonics. This theory makes it possible to formulate alternative hypotheses with
respect to the adjustment model of two or more geodetic measurements executed at differ-
ent times [BAARDA, 1975]. Testing of these alternative hypotheses with respect to the ad-
justment model as null hypothesis is done by methods of mathematical statistics. In the
second place, one is now confronted with a second type of alternative hypotheses, namely
hypotheses describing the influence of local, regional and global mass distribution on W*"*".
Whereas the first type of alternative hypotheses relates to the measured quantities them-
selves, the second type relates to the approximate values of measured quantities. In section
7.2, a possibility for testing this second type of hypotheses will be reverted to.
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1.3 The computing model to be used in geometric geodesy.

Geometric networks are built up from measurements of directions, distance-measures*), pseudo-
azimuths*) and pseudo-distances*) {also from geometric satellite techniques}, astronomical
orientation measurements of latitude, longitude and azimuth, etc.

The elimination of local or regional length-scale factors and orientations is obtained by con-
structing the computing model from relations between differences of directions and/or pseudo-
azimuths and between ratios of distance-measures and/or pseudo-distances. Consistent use of
this type of length ratios means that the computing model must be based on a division algebra
without zero divisors. For the spatial three dimensional situation the only available algebra is
then quaternion algebra [BAARDA 1973, 1975].

We cannot here go into the adjustment and the computation of coordinates in the projected
geodetic quaternion theory. But the coordinate definition will be discussed: Choose approxi-
mate coordinate values for all network points in the usual cartesian X,Y,Z-system of geodesy.
The direction of the Z-axis is as near as possible parallel to “the” axis of rotation of the earth {a
deviation has only a second-order effect on the following theory}. The origin {geocentre} is the
fictitious point Py;, at most some tens of metres from the still unknown centre of mass of the
earth Po {a first-order effect in the following theory}. Choose two base points Py, P, of “the
first type” and one base point P,, of “the second type” [BAARD A, 1975]. Now apply a similar-
ity transformation to the computed set of coordinates of network points, in such a way that:

appr appr
Xy X X X,

a T aj r
Y, |= Ykpp A v, )= Ympp ],

appr - appr
Zy Z, Zm zP

appr appr appr
X, o, Y, Zg

’

. a T a r a r

{Xn, Yn, Z,} in reference plane through mep s Ympp , Zmpp ,
appr appr appr

X, Y, 2,

The transformed coordinates obtained are then defined in an Sy ,,,, system, with rank deficien-
cy 7 for their covariance matrix**), See figure 1.3-1. The coordinate system thus defined is evi-
dently fixed by the points Py, P,,, P,; length-scale factor, orientation and the coordinates of
the origin of the coordinate system are non-stochastic. It is therefore very simple to derive the
stochastic properties of the rays r; and the ratios r;/r;. Length ratios are indeed invariant with
respect to a similarity transformation and therefore independent of the coordinate definition
chosen.

*) For these quantities, see [BAARDA 1973, 19771

**)Since the completion of the manuscript the meaning of such a coordinate system, which is based on spatial
S-transformations, has become clearer, also what the new spatial geodetic techniques concerns. In addi-
tion J. VAN MIERLO succeeded in cstablishing a link with ideas of A. BIERHAMMAR, G. BLAHA, . W.
GRAFAREND, P. MEISSL, H. PELZER and A. J. POPE. Reference may be made to author’s paper:
“Mathematical geodesy in relation to the Netherlands Geodctic Commission™ included in the memorial
volume issued on the occasion of the 100th anniversary of this Commission, entitled “The Centenary of
the Netherlands Geodetic Commission”, Delft, 1979,
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geocentre

Fig. 1.3-1

The choice of the coordinate system takes account of the significance of the centre of mass and
the rotation axis of the earth, both in classical theory and in the theory presented here. This is
mainly connected with the centrifugal potential and the expansion in spherical harmonics of
the gravitational potential of the earth, and quantities derived therefrom.

In quaternion theory all line elenﬁlis) are directed. For example, 7; is in fact the abbreviation of
rai, the magnitude of the vector PyrP;. The significance of the introduction of r; is that position
fixing on the earth by the methods of geometric geodesy is weaker {has a lower precision} in
the direction normal to the surface of the earth than in a direction along this surface. In this
way, gravimetric geodesy, by correcting the values r;, can contribute to a better homogeneity in
position fixing.

1.4 Notations

X, Y. Z; cartesian coordinates of point P; in a geocentric coordinate system, with
origin {geocentre} Py; near the centre of mass of the earth Pc:

appr ,appr ., appr .
X; yPer 2w approximate values of X;,Y;,Z;

A Ly

Xij Xi—Xi s Xkvr = Xpo1—Xu
AX;, etc XX ete.
S S-system with base points of the first type P, , P,, and base point of the
ki second type P, ; definition of coordinates X, Y,Z
¥ magnitude oflm {see Figure 1.7-1}
¥y magnitude of EF;

S surface of the earth
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geosurface {see section 1.7}

spherical approximation of §*, with radius R and gravity G

mass of the earth including the gravitational constant k ; M = kM,
M mass of the earth as used in textbooks

gravity potential in P;
gravitational potential in 7
cenmfugal potenual in P, ;
W=V +30° (X2 +Y))

62 62 aZ
+ 2
6X2 aY2 972
solid angle; dS2; = sin 6; do; d)\,-
outer normal to surface S in P;
height difference along plumb line between F; and P;

oW,
- a—h, , magnitude of gravity vector in P;
* W, 0g;
on? ok
2 N 2
s (= 6,,) P01ssonskernel [KrRarUP, 1969, p. 43]
r,~,~

Stokes’-type function or kernel, sum of spherical harmonics:

Poisson’s-type function or kernel

Abbreviated notation of series of spherical harmonics:

According to [HM, (1-83")] we have for r; >r;:

T
ri .

M3

l

Enm (‘91‘,)\1')

n+1
5L Rt
om=0 r; 2n+1

nm (0/’)\)
V2n+1

§nm(ei,)\i) . §nm(‘f?/‘a)\/') } (141)
Van+1 Va2n+1
with [HM, (1—74)] only the following relations # 0:
_ 2
L ff an(ei,}\/‘) f nm(ala)\) a5y = 1 (1 4 2)
a9 2+ 1 4 Q; Norre e 7T 2n+ 1 o
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Then it proves to be possible to use the following abbreviated notation:

o =2 (5T k) i)
- = E T Yi Y/ ,r,->r,- e e e e e e e e e e (1.43)
r,~,~ n=0 !
= 1 n=n
1 , " T+l T
el LRI AR (49
=0 ,nFn

If so desired, one can check all derivations executed with (1.4.3) and (1.4.4) by using (1.4.1)
and (1.4.2). Of course, formulae like (1.4.3) have to be translated back to (1.4.1).

For derived notations Yi(n) and AY,.("), see section 3.1.

1.5 The function 1
Fi

2 2 2
rg =rr — 2rir/ cos (ri,r]-)

2 1) _o L 1ty
ory \ryl — mry 2

2oy
o \rj! iy

2 ri\2 1-8;\°

d (L) . [_ —’) +3 ( ”)] L s
ori® \ry 1 ij 2

Compare [MoLoDENSKI! et al, 1962, p. 47] and [Pick et al, 1973, p. 456]. In addition, from
(1.5.1) follows:

C(p L, ) (1) .1
“or; T on ril org

Ca L, ) (1)
for, ) oy ril

~
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1.6 Poisson’s kernel and related functions

d r,- 1 .
From (1.5.1): —; e (~—) == 7
i if

r

P oo ¥
From (1.4.3): —r; 3. (J) =% (n+1) (_’) Yir(n) Y;(")
i =0

r,-,

Using these relations one can derive:

r,->r1~ r,~<r1-
P r n+1 ’
J - J 1(n) g, 1(n) b i i(n) ()
7 z (“_) LN Z (_ Y,y
i n=0 1 n=0 ¥
1+68; r; o roy " o P
~—2L lzalL) yye NGRS b R A
2 n=o \F ! ! n=0 ¥ ! /
1-6; 1; = iy W) o i(n) = ) o)
—_— = Z m+){— Y Y, -2 n Y Y
2wy n=0 ¥i ! / n=0 \ 7% ! /
r - . n+l - ’ (n)
55— | T (2n+1) (—i) vy S Qns 1) (—’) y; Oy 0
Fij n=0 ri ! / n=0 ¥ /

(1.6.1)

The series can be used in the coefficients of difference-integral equations; in doing so, one may

put r; ~ R {see section 3.1}.

¥
The series for —’ do not converge any more if 7; = ;; in applying (1.6.1) this limiting case must

ri
therefore be treated with caution,

1.7 Surface integrals and surfaces S and S*

With the approximation 2 a_ar cos (n,r) {see section 1.8} Gauss® integral becomes:

on

p=-
S an, r,~,- r,-i

2 (—l)dS,=~ !fa—i (l) cos (r;,n;) dS;
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N

\

centre of mass
{Xc ‘Yc’zc

~

geocentre A2

/
/

e
—————————l O~
o)

Fig. 1.7-1
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With (1.5.1), see figure 1.7-1, the solid angle being d$;:

1+8; r; cos(r,n) f 1+8; 7
p= {f“z——’ P —r/z—dsl-— nf 5 P dQ.l-

With [HM, p. 12] or [P1cK et al, 1973, p. 460]:

=0, P; outside S
1+68; o
p=— {fé% (ri) ds; = yT” —r{fdsz, =2m,P;on$ 17.1)
o Y = 4n, P; inside S

In Gauss’ integral (1.7.1) and other integrals the problem arises how S, being the surface of the
earth and hence the boundary, must be defined.

In this connection, we first consider Green’s {third} integral formula [HM, (1-29)] for a con-
tinuous and finite function V in the spatial region v, inside and on the surface S {p from (1.7.1)}:

av;

—
L . 2 (1) 1 Wil oo

fff o (=V2Vi)dvg — pV; = ffLV, a, (r”) i an,] as; . . .. (172)

earth S

If the gravitational potential is ¥, then with V? V # O for Py inside and on S:

v,

09 1 1 "
(@4r —p)V; = {f‘:lfla—’; (r—z/) 7;1'/_' -an—j]dsl-. N (Y

A comparison of (1.7.2) with [HM, (1—29")] shows that (1.7.2) {with (1.7.1)} can also be inter-
preted as the {third} Green’s integral formula for the harmonic function V{2V, = 0} in the
spatial regiori v', outside and on S {P; outside or on S}. ‘
Both interpretations of (1.7.2) are only realistic if S in the first interpretation is considered as
a part of the earth {a material boundary}, and in the second interpretation as the boundary be-
tween the atmosphere and the earth, hence as a part of the atmosphere {an immaterial bound-
ary}. For the further derivations from (1.7.2) for the observational area outside and on the
earth, the gravitational potential V' can therefore be considered as a harmonic function
F*V=0). . . . . . . . (133

In (1.7.2), p can be eliminated by means of (1.7.1), so that with V;; = V; — V;:

1 9 (1 1 9V
e e () - 7 5 |
S i\ j i

P; outside, on or inside S; P;on S

. (1.74)
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This notation is introduced on the analogy of a derivation by M. S. MoLODENSKII {{MoLoO-
DENSKI, 1958], [MoLoDENSKII et al, 1962], [Pick et al, 1973, pp. 467, 468]}.

(1.7.4) can be reduced in an analogous way as (1.7.1):

. L 2o (L n g L st
Vi- 4 ffl:_Vl] {“rj ar/ (r,']')} * r,-j {_r] ar/' ri2 dS’

or, with (1.5.1), €2 the surface of a sphere of unit radius:

1 1+6ij aV] r]'
Vi= 42 éf[‘V"f_z—”f (“a;) 7y 4

i .. (15)

P; outside, on or inside S;Pion S

In this notation, the surface over which one has to integrate appears to cause no difficulties.

2

But several difficulties remain: IZ/is undefined on the boundary between the earth and the

on
atmosphere, and so it is also undefined on S, although one wishes to measure the second de-
rivates of V. It is still more essential that in practice measurements are never executed on S it-
self, but at some distance outside S. Here, a comparison can be made with the spatial geometric
networks, by which one determines coordinates of points usually situated at some distance
from the earth, on towers, pillars, etc.*). For cartographic purposes these points are projected
on a reference ellipsoid or on a plane, but this is not essential for spatial geometric geodesy.
Similarly, the “reduction” of observations in gravimetric geodesy does not belong to the es-
sence of the theory, so that in principle all reductions should be excluded.
The exclusion of reductions is attained by replacing the surface S by the geosurface $*, con-
taining the observation points on, or near and connected with, the earth’s surface. S* may
locally coincide with S but it may also deviate from S. S* has to fulfil the same requirements as
S; the surface may contain a finite number of singular points and a finite number of edges, which
divide the surface into a finite number of pieces with continuously changing normal direction
[STERNBERG and SMITH, 1952, chapter 3].

The equations (1.7.4) and (1.7.5), as well as (1.7.1) remain
validif Sis replaced by the geosurface S*. Points P;, connected
with the earth are therefore always situated on S*, “P; inside
S** now assumes a more realistic meaning.

. (1.7.6)

*) This means that man-made structures are not considered as belonging to S. Probably this is something sim-
ilar to the influence of the mass of the atmosphere.
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Of course the introduction of S* does not solve all difficulties; the geosurface always remains
a somewhat vague concept because observations will always be made at discrete points. In fact
we are here faced with the problem of discrete observations in physical geodesy, first formu-
lated by A. BIERHAMMAR [BIERHAMMAR 1963, 1964]. For solutions suggested by himself
and other authors, see the survey paper [BIERHAMMAR, 1975].

Finally, a remark on the gravity potential W in points connected with the earth:
The centrifugal potential is [HM, (2—3)]:

=3t (X + Y]
VzC,- = 2&)2

Replacing ¥ by W in (1.7.2") gives:

1 W ,

(—V*Wy) dvy — pW; = —— — |ds;, (1.7.7

ﬂrf Ti k) =k ff /an/ r,/ ry  on; 2 )
With: W, = V; + ¢, , VW, =V*V; +V(

one obtains:

fffi (7?2 Wk)dvk_fff—l (72V,) dv, — 2007 fff— dv =
=477V,-—2w2fffl—dvk=
ik
=41rW,-—41rQ2)—2 {X,?+Y,?+% fffri dvk}

And hence, on the analogy of (1.7.2"), compare [HM, (8—16)]:

(4‘n~p)W,-——4‘n'QzL2 {X +Y; +—fff— dvk}:

carth
-
b} | oW; ”
[ w 5> (_)*_1_, d, . ... aaTh
e n/- r,-/- r,-/ 6n/

For points P; outside S and not connected with the earth {i.e. points outside S*}, (1.7.7) has no
meaning because the influence of the centrifugal potential is zero. For this situation one has to
revert to (1.7.2) in the form {with p = 0}:

3 (1 1 9w -G
S

Fij i j
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For a more automatic form of derivation it is better to contract (1.7.7) and (1.7.8). To do this,
consider temporarily P; as being always connected with the earth, then (1.7.7) is always valid.
Substract from (1.7.7) Green’s {third} integral formula for the centrifugal potential C:

aC;
o oo ({3, () - 5 |

or:

(47 — p) C; — 4n {c,.+ 2:1’: fffi dvk} -

earth
3 (1 1 9G
= {f[cj an, (r,-j) - rij an,] de

This substraction gives:

o{W;, - C;} |
(47 — p) {W; — Ci} = fwa,_C,-}% (1) L2 e a9
s ]

r,~,~

or (1.7.2"), with for p = 0 (1.7.8).

(1.7.9) therefore includes (1.7.7) and (1.7.8). Consequently it suffices to use the formulae
(1.7.2) — (1.7.6) of the gravitational potential, provided one fills in V¥ = W — C when W has
been observed.

The essence of this line of thought is that (1.7.9) and therefore (1.7.2) — (1.7.6) is a relation in
non-linearized form between measurable quantities, which can in principle be verified by an ex-
periment. In practice, one is compelled to use a linearized form; in chapter 4 this will be further
discussed.

In the present sketch of the theory we will not go into possible refinements. Reference can be
made to [MoRr1TZ, 1974] for such considerations.

1.8 Appendix. Effects of approximations in partial derivatives

When this publication was being made ready for the press, the author’s co-worker, the mathe-
matician D.T. vAN DAALEN found an error in the oldest part of the theory, which had been
considered as the part that had been most carefully checked. The finding of this error provides
the answer to the question as to what degree of approximation is involved in the present
theory. This question had been raised long ago but so far could not be answered.

It appears that the theory developed cannot be corrected in a simple straightforward way, so
that the only ways to take account of the error are to make an appraisal of its effect, or to
execute additional computations. The main lines of the theory appear to be unaffected, although
its spherical approximation character is more pronounced. Because of this, and also in view of
some interesting conclusions, the author has deemed it right to add, in a separate section, his
provisional considerations on the degree of approximation of the theory.
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In the following parts of this section, we will therefore consider some effects of the approxima-
tion formula used: ain = % cos (u, {), mainly relating to the chapters 3 and 4. Apart from
adding this section 1.8, only section 7.4 had to be re-written, all other sections have been left
unchanged.

I. With a h-direction corresponding to the gravitational potential {and therefore differing
slightly from the A-direction used in (3.4.2) which corresponds to the gravity potential} the
following holds [MAGN1ZKI et al, 1964, p. 23]:

av; av; \
a;,——mcos(n,,,)(l8l)
av; aV)2 vy aV)2 L
o, = (ﬁ +(a—Y) +(57

Then one obtains, with (r;, h;) << %:
av; av; \ N
a—rT = % cos (1, h;) , hence:

oV, _ 0¥, cos ()
on;  dr; cos(r;, hy)

Consider the points of intersection of the vectors r_z:-, 71; and ?; with the unit sphere around P;,
and denote the angle between the planes through ?;-, 713 and ;;, ﬁ; by (n;,r;, h;). Then the rule of
cosines gives:

cos (n;, h;) = cos (r;, ny) cos (r;, ) + sin (r;, ny) sin (1, hy) cos (n;, 7;, hy)

By this we have:

v, v,
'aTi- = W CcOSs (r,', n,) {1 + tg (r,,n,) tg (rl’hl) cOs (nl.’ rj' hl)}
av;
L/ | ,
o SO IEB) . (182)

Using N for North component and E for East component one obtains:

B, = tg(r,, ”j)N tg(r,», hl)N + tg(r,, nl')]‘: tg(r,-, hl)[‘ e e e e e e (I .8.2”)

i.e. a correction term comparable to [HM, (8—21)].
According to (4.6.3) we have: tg(r;, h;) < 3.107%, hence:

B,S 3.3'10_3 * tg(r,,n,)
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If one wishes to neglect B; when establishing the difference equations, then one must have,
according to (1.2.4):

B;< 001

or:

tg(rj,nj)< 3 , (rj,nj)< 710 L. . . e s e e (18.3)

Therefore, the surface to be determined should not have any slopes greater than around 70°.
This implies that the introduction of the geosurface S* in (1.7.6) is necessary for the formula
system developed in this publication. In view of the choice of stations in practice, the restric-
tion imposed on S* by (1.8.3) does not seem to cause difficulties.

II. In analogy with (1.8.1) one obtains:

an/-_ = ry cos (nj, rij)
> ... (189
__(’W. = arij COS (rj, r,-j-) J

If, for brevity, we leave the limiting situation (r;, 7;;) = ) out of consideration {this situation

turns out to be harmless when the formula system is written out}, then the equations (1.8.4)

result in:
r,-/- _ r,-j- cos (nj,r,-j)

on; or; cos (r}, 7i;)

In analogy with (1.8.2) one obtains:

() ()
O\ r,-/- _ r,~j
anj - arj

a(l)
r,~j ;
say  Or cos(rpn)(L+Adg) - . . . ... L (185)

cos (rj, nj) {1 + tg (rj, n)) tg (rj, ryy) cos (n;, rj, ryj)

From (1.8.5") it follows that A4 can always be neglected if (r;, n;) ~ 0, i.e. in the spherical ap-
proximation for S. This is important for the derivation of the Poisson integrals in section 3.2,
for this derivation is completely founded on the use of difference equations for which the
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spherical approximation of S is considered to be sufficient. Therefore:
In Poisson integrals 3.2.5): 4;=0. . . . . . . . . . . . . .(18.6)

For Green integrals this is not immediately valid, because these are obtained by the linearization
of an integral equation in which (1.8.5") is completely valid. Therefore it has to be investigated
for which situations one may neglect 4;; all the same. With this in mind, write (1.8.5") in the
form:

1 1
’ o, a(’t_/) UAY : cos (rj, 1))
e =7 e — () e e sin (g cos () p—
7 J if n
a(ri) cos (r;, n;)
— 2_1_ .. jr ' "
sy | 7 Tor +Cj T (1.85")

i

The application of (1.8.2) — (1.8.5) to (1.7.4) gives:

1
Vi= o ff[ 14 a(,_/) v L ,Il/,’)}dﬂ, [ vy cyan

i (18.7)

in which the first term in the right hand member corresponds to (1.7.5). The second term then
represents the correction term to be investigated. It is conjectured that, given certain situations
of P;, always two points P;, P;» can be found whose combined contribution to the correction
term in (1.8.7) is approximately zero.

In order to elucidate this, consider points P; and P;- situated at about the same ‘“‘height” on
opposite sides of a symmetric mountain ridge, so that one may put:

V,'/‘ ™~ V,‘/' 5 F; ~r/-' )
(18.8)

- 5> > -
(rjyn) = (ry,np) 5 nj, £y, np, rp coplanar

For the purpose of making an appraisal for points P; situated on S* beyond the direct neigh-
bourhood of the mountain ridge, S* is approximated by a sphere with centre P, and radius R
{radial distances from Py, are r; ~r; ~ rjr ~ R and ry;}. The section of this sphere with the
plane through P;, P;, P;' is a circle with centre Pjy; and radius R {radial distances from Pj; are
[T i ~ R}. Finally, apply a plane through Prr, Pug, Pj and a plane through Py, Py, Pj';
the angle between these planes is:

_ _,_R
v=_(r;, 1) ZE (rj ri*)

Further:
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r,~j r~~ 47
Cpe )~ —— . t ~
€os (r]7rl])— 2R b4 cos (r]’ l])* ZE ’ g(r ) E
(r]’rl]) ( rlj) %
Hence we obtain in (1.8.7), with (1.8.8):
ro\2
Cij+ Gy ~ (7]—) [—sin( ,rig) sin (g, 7y, 7)) — %v)+
ij

i\ . T
+ ? sm(rj',rij') sm((nj',r]-',r,-j' +§—5V)+
]

m
+ vtg (rj, ryj) cos ((nj, 7y, rij) — 5+ %v) cos (7, 1) } tg (r;, ny)

in which between the square brackets the difference between the first and second term is ne-
glected in the third term.

The use of right-angled spherical triangles on a unit sphere with spherical representation of all

directions {on the analogy of item I} then leads to a reduction to the plane through P;, P}, P;::

2 _
Cii +C i sin (rj, r;;) + os” (7. 7y) sin (7; )+
s .ot : — — —_ . . ——_—— st r..l

ij ij rij oy cos2(r]-',r,-]-') 7y

+vetg (r;, 1) cos (v, riy) } tg (r;, n))

:—(’4)2 | s+ Do Gr s

Tij cos® (¥, rj)

+tg (1}, 17) cos (rj, 1) } vetg (r;, ;)

2

(e e [ 0

} (75, i) tg (rj, 1))

+

= |

™
R

Cy+Cy ﬁ [—4(5)2+(1+ﬂ) (5)2} (i) 18 (o
g = i :t 7 j> 1) tg (ry, nj)

0<ry;<2R 0<ry <R O0<R<R e e e e e s (189)
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The most critical value is obtained when P; lies on the great circle through P; and P+, withrg; = 0
and R = R one then obtains:

1
a( ) :
rij R "
Ci/+C,-,~'| < |r.2 7 [—4(—) +%:| (r/,r/')tg(r/,n/), (1.8.97)

I ar, ri,-

In order to find a criterion, the combined correction term for the points P; and P is joined to
the main term for P; in (1.8.7). This gives:

2

() R\ (1, 1) (R

ij M

0 B[] B Yo
*(3)

= 'Vi,r? —“_—ll‘" { 1 +Ai,l',l" } ce e e e e e e e e e (1810)

on the analogy of (1.8.5").

Like in item I, 4;;; may now be neglected when establishing difference equations if {the
appraisal concerns two points, P; and P;}:

4,75 | < 0.02

Hence, with the maximum value from (1.8.9"):

[4(£)2«%:|(r,-,ri')tg(r,-,n,-')< 002 . . . . . . . . .. (1811

r,-j

Now consider the following reasonably realistic mountain cross section:

(rji»ri)tg (rj,np)~2.10"
Slope (rj, n;) tg (rj, n}) (rj> ) PP
70° 3 07-107 0.4 km
45° 1 2 .10 13 km ... L (18.12)
27° 05 4 -10°* 2.6 km
11° 02 10 -107° 6.4 km
6° 0.1 20 <107 | 130km

Then one obtains from (1.8.11) and (1.8.12"):
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2
4(%) <100 ry>1300km| . . . . . . . .. . . (18127

ij

This means that points P; must be more than a thousand kilometres away from a mountain
mass if the quantities 4;; or C;; from (1.8.5) can be neglected. This is a heavy requirement for
Green integrals.

In chapter 4 the emphasis is on regional application, with the datum point P, within the region
considered. Roughly speaking, one is then dealing with the difference of the equations (1.8.9)
for P; and Py if Vy; ~ V. A coarse spherical appraisal indicates that the requirement (1.8.12)
is valid for the datum point Py if {rg;}max < 3 ro;. This provides some more room for the
application of the formulae in chapter 4.

1
3

III.  Of course, the assumptions (1.8.12) can be considered as too unrestrictive. But in that case
the limitations to the application of Green integrals are so strict that correction should be
considered. (1.7.5) then should be replaced by (1.8.7).

In view of (1.8.6), the application of the train of thought of section 4.1 then gives, instead of
(4.1.8):

1 . 1 VO] o (‘b] ro) } ("I ro rj )
= — —Al— — — = — — — — — — 1dQ; +C-te
47T Jf[ 2A(‘b0 "I' )+A (1)0 ri r,~j ’_'i roj 1 m

(1.8.13)
C-term =
1 Voi o Voj 1o ) Yo (VOj ro ) :l
= —([] - 2 oaAl— - — Ci—— AL - — ) Co | d;
47Tff[ {A((bo r; ) A((I-)O rj " r; ‘1)0 rj 0j !
(1.8.13”)

The solution of (1.8.13) might be found by means of an iteration process proposed by MoLo-
DENSKII, as described e.g. in [HM, (8—45) — (8—49)]. To achieve this, rewrite (1.8.13) in a
form analogous to (6.3.2) and solve these equations without C-term. Substitute the solution
found into the C-term and use this term with its proper sign to replace the term AX ; in (6.3.2).
Then this process is repeated once or more times.

The convergence of this procedure has not been investigated; the same applies to the establish-
ment of practical computing rules making Molodenskii’s method so attractive.

So far, it is unknown how important the influence of the C-term is. In section 6.1, the formulae
without C-term have been compared with formulae in [HM, section 8—8], in which an interpre-



26 PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 6, No. 4

tation is given to the first order correction term of Stokes’ formula. A clear correspondence is
found, in particular with the formulae [HM, (8—68)] and hence with [HM, (8-52)], in which
this correction term is clearly recognized. Perhaps this indicates that the C-term only exerts an
influence of the second order.

The greatest influence of the C-term is to be expected for points 7; situated in a mountain area.
But closer investigation of this problem leads to a surprising conclusion. To see this, consider
the solution of (1.8.13) without C-term in section 4.2, which led to two types of integral
formulae, (4.2.9) and (4.2.10). In section 4.3, the possible applications are said to be regions at
sea and regions on land respectively.

For the ‘““land”-solution one needs a sufficiently dense network of points where gravimeter
and levelling observations have been made. But in very rough mountain areas this is not possible
because levelling is only feasible along a limited number of valley lines. Gravimeter observations
too will be less dense than in plane areas.

In fact, the mountain situation is therefore comparable to the sea situation, be it understood
that in the mountain situation data on the vertical dimension have to be derived from geometric
data {trigonometric levelling, satellite measurements}. In addition, there is a lower precision of
measurements in comparison with spirit levelling; the same may apply to gravity observations in
very rough terrain. In this respect, too, the mountain situation is comparable to the sea situa-
tion. This implies that a small ill-effect of the C-term in the mountain situation can be accepted
more readily.

The conclusion is therefore that in very rough mountain areas one should apply (4.2.9) instead
of (4.2.10). The sparse levelling data can then be used for an adjustment procedure, as indicated
with (4.3.3). After this, potential differences are computed by (4.3.4). The applicability of
(4.2.10) {and, consequently, the classical Stokes formula} is therefore even considerably more
restricted than was assumed in section 4.3.

IV. On reviewing the different conclusions in the preceding items, it seems possible that the
formula system of this publication has a greater significance for practice than was thought
immediately after the discovery of the shortcoming mentioned at the beginning of this section.
This is one of the reasons why a further study of possible effects on the matter treated in chap-
ter 5, was relegated to the future.

Doubt generates doubt. So it seems that the uniqueness of the linearization procedure by (4.1.6)
in chapter 4 needs reconsideration. And other questions will have to be reconsidered as well.
Time will tell!
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2. ESTIMABLE QUANTITIES AND S-TRANSFORMATIONS
IN PHYSICAL GEODESY

2.1 Dimensionless quantities

By studying some examiplesit is tried in this chapter to find out which quantities are “estimable”

and to what extent they are so. This is done by investigating the connection between observa-

tions and theory.

As an introduction we assume in this section that the following are measurable quantities in a

“universal” system (&) not to be further specified: rays r {section 1.2}, gravity potential W,
2

gravity g = — g—;v and gravity gradient g = thzv .

On the analogy of (3.1.1), the dimensions of length, mass and time are eliminated by forming

the quantities {P; P; denote points}:

2 3
riwi ¥ i ri q;

2 2 2 . (2.1.1)
'8k Tk8k k8

Now the difference quantities of (2.1.1) are relevant, and under the assumptions of section 1.2
we have according to chapter 3:

appr appr
W, pp v, pp :
2 =~ ~
r®
r.8, kPk
2 appr appr
A8 QR K 1 (21.2)
2 — — . . . . . . . . . A
" & e Pr >
3 appr appr
1 q; ri\Ill 2
) ~ ~
rpd
ri & kPk

From (2.1.1) follows then, for example:

appr
() - T G T () -
748k ry Fr&k Fk8k Tk

appr appr
r; W; r r;
rg rk8k ri Tk

If in the coefficients of difference quantities we further omit the suffix “appr” we have conse-

quently:



28 PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 6, No. 4

Tk (’iWi ) ( W; ) Tk ( i )
o 2 = —A |In—
Fi T 8k Tk8k ti Tk
and hence, with
Wk‘l': Wi — Wk:
r riW; W Wi ry—ri 4% r i
= (’2'———")= ( "’)—" ' ( ") +—"A(1n—’) (2.1.3)
Ti re8&x  Tk8k T8k ti T8k ti Tk
In analogy
e rig rigi r i
2o () o (2) 5o (o)
T T8k Tk8k T Tk
" : 7 . (2.1.4)
2 da () vaa ()
i 44 Tx
r r3 a: r:2a: 7 .
T (lzqt) =A(141) 2_kA(ln_t)
Ti Tk 8k Tk&k Ti Tk
ry | redq; r
=2k { A (1nLq’) +3A (m—’)}
7 8k T
and therefore also, with
3 2
T dy T dg _ Tedk )
r;;lgk T8k 8k
3 2
r r’q. r rtq; T Ty —ri r r ;
_l_cA(,ZQ,_ka) =A(;Qz_k4k)_k zA(ka) +2_kA(ln__1)
ti T & 8k Tk8k 8k i 8k ti T
r ; r ri
=2 £ A(lnﬂ) +6 2 A (m—’)
7 dx i Tk
(2.1.5)

If P; denotes a set of points, and Py one point, then it is evident from (2.1.3) — (2.1.5) that P,

has the function of “datum point”.
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In these formulae we have:

154
A (—") £0 , see(44.6)or(44.7)
T8k
Trdqk
A #0 , see(54.4)
gk

The introduction of quantities (W; — Wy) and (rfq,- - r,? q,) is determined by the analysis of
the measuring procedure in sections 2.6 and 2.7.

2.2 S-transformations

For the (a)-system mentioned in section 2.1 we have:

A ( wki) Awki(a) Wi

@)
- A(lnr
Tk8k T8k Tk8k kei)

@
o A(rig; rig;
A (:;i,k) i8i) B i8i A (In rkgk)(a)

r(2.2.1
Y8k Tk&k ( )

2 2 2 2 @) 2 2
A (’i qi—’qu) _ AUy 4 — 1 dx) Ti di — Mk

@)
— A(nr
T8k T8k T 8k (In rigi)

If P, is a station of measurement which acts as datum point, then define the following quanti-
ties in the S-system {compare the definition of Azi("s) in the S-system in [BAARDA, 1973]}:
k rs

W,
(k) ki
AW dot KBk A (rkgk )

(k) rigi
A(rg)) L A (_"l )

A s
Felk > ( )
rlq; —req
(k) P4 T T
A(rlg, = A (——-——)
(r;qy) L P J
and hence:
\
) rig;
A(ln r;g; =A{|ln —
(Inr;g;) ( rkgk)
r. [/
Aln ) = A (mr—’) > . (222"
k

g.
Aling)™® = A (ln Ll )
8k
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Now assume that the quantities (2.2.2) have already been computed in an S-system, with P; as
datum point, hence: !

W,
AWI.(I) =ng A (rlgl; ) , etc.

If now one wishes to transform the computed results, obtained in the S-system, to the S-system,
then (2.2.1) can be applied, (2) being replaced by / and taking account of the definitions (2.2.2).
This transformation is indicated as S-transformation:

Aw® = aw® — aw® — w, ,a00 rig)”

K ! I
A(rigi)( )= A(rigi)( ) rigiA(In rkgk)( )

k 1 1 )

arfa)® = 80a)” - a0ia)” - g, - ria) A (n i)

S-transformation {approximate values unchanged} (2.2.3)
(k

1 1
Alnrig)™ = aln rig)” - A(n rg)®
an )™ = atn ) = agn r)®

k 1 1
A(lngi)( ) - A(ln gi)( - A(ln gk)( )

This S-transformation makes it possible to connect regional S-systems to form one global S-sys-
tem. Such regional systems arise from the possibilities, offered by the following chapters, to
restrict computations with Poisson- and Green integrals to regional areas.

However, the elegant system shown by the first three equations of (2.2.3) is only appearance,
as will be demonstrated in the next sections. The cause of this is the relative smallness of Wy;
and, among other things, the relatively low precision of g as compared with r; and gy . This im-
plies that in practice the terms with A (In rkgk)(l) in the first and third equation of (2.2.3) may
be neglected. Indeed an analysis of (2.1.5) shows that the third equation in (2.2.2") and in
(2.2.3) can be replaced by the more manageable equation:

(k) 4i '
A (In g; =Aflln—) . . . . . .. ... 0. (224
(na)® -8 () (224)
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1 1 "
Ang)® =ang)® ~Atng)®| - - . . . . . ... (24"

Conversely, one can find again the dimensionless quantities from the results of S-transformations:

(wk,.) aw® ]
T8k T gk

(k)

Fig: A(rig;
( v ) _ At = Ang)® +anm)®  (2:25)

T8k T 8k i

P ~=rK
2 2 2 (k)

rig. _— A(r/q;

( i ql rk qk) — ( L] ql) = 2 A (lﬂ q,)(k) + 4 A (ln ri)(k)
1473473 1474’3 ~

2.3 Transition from gravity potential to gravitational potential

This transition makes only sense for points P;, Py, P, connected with the earth.
For such points one can, in the first place, extend the invariant quantities in (2.2.1) with w?-
terms from (3.4.7"):

Wi ) wRY —(1y =)
A (— +——— (Y'Y
Tk&k Tk 8k ; k)

rig; WIR? -y wq
- = (Y;'-Y . (231
(rkgk) Tk8k ! k)) ‘ ( )
2 2
(’iQi*’ka) +0
Tk8k

to which the definitions of (2.2.2") apply, with analogous extension. If necessary, the quantities
g and ¢ in all formulae of this chapter up to (2.3.1) can be replaced by the quantities ¢’ and ¢’
from (3.4.2). See the text referring to (3.4.7").

In the second place, (2.3.1) can be extended with a multiple of the term, see (2.1.2):

rigi v rigi WPy
'—’A(ln—’) , {—‘—} ~X 023
4743 Ty T8k r;

to which the definitions of (2.2.2") apply, with analogous extension.
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But in the situation of this section, (3.1.9) and (3.1.10) are valid, so that (2.3.1) with (2.3.2)

generate the quantities in (3.4.7):

Wi r;
A (—h—) +A(1n—'
Tk 8k Tk

>

4747

4343

2 2
rq, —r ¥
A (———‘ % qu) +2A (1n—‘)

rigi T W'R Z() ) ¢
(——) +A(ln ) -G ¥, -y, H=A > 7

Ty

()
T8k

A(lnﬁ) + A(ln
gk

2 2
rqi—r i ¥
(——’ i "q") =2A (ln —q’) +4A (m —')
474 qx r

K

(2.3.3)

or, expressed in quantities in the E-system {see (2.2.5)}, with:

(7o) Loy
(Y ) -7V -7

i and:
( Wk,) 147474 A W,-(k) A Wi(k) 1 26
Py =G "eEn RG {see also (2.6.7)}
(k)
AW *) @R P ( Vii rk)
RG + A(lnr,-) + T(Yi ) =A -‘47—7
(k) ok wR o R (ﬁ Tk
A(ng) "+2A(nr) " — e ;) =aA T,
v, r
2410 g)™ +6 4 @nr)™® =A (—’3 —2 —")
Py ri

(2.3.3")
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Wy

G car be considered as a kind of “dynamic height”. Then, with (1.2.3) we have for points on

S*:

Wi
RG

Wii
RG

<1073, hence: A(In rkgk)(l) <10°°

aw® aw,® N |
RG and RG . Then in (2.2.3) one can put:

and consequently small with respect to

W d(nrg)"~0 . . . . . 348

With this result it follows from (2.2.3) and (2.2 4) in connection with (2.3.3) that:

S-transformation Fi~rg ~r~R

aw®  caw® —aw?
k) o) I3}
Alng)™ =a(ng)” —A(n g

Ang)™® =a@ng)® = adng)?” 39

(k)

Adn )P =adn )@ —adn r)?

(k) ()

=(1)
AR

"
=1 =)
=A@y oA

This means that one obtains the simplest type of S-transformations, as studied in [BAARDA,
1973, section 11].

Then it also follows from (2.3.3) and (2.3.5) that:

r,:rkzr,:R

|14 r Vy ¥ V, r
) (e ) ()

(bk ¥ q)] ¥ q)l Ty

P; Fr b; rl) (‘bk ”1)

- _ X = < _ L _ _— — .. (23,
A (‘bk Vi) A (‘1’1 Fi A b, Tk (2.3.6)

I r M ¥ ¥ r
() ()

Oy ¥; @, 7i @, Tk

in accordance with the expansions (3.1.7).
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2.4 Absolute gravity measurement on $*

Results of measurements with some instruments are expressed in the instrumental unit belong-
ing to this instrument. [ am firmly convinced that this unit varies from instrument to instru-
ment, and for each instrument from period to period. “Instrument” is here to be taken in the
sense of “hardware” plus circumstances of measurement {including the observer and the climat-
ic conditions} and “reductions” and “corrections” to be applied. If the measurements are to be
expressed in the unit of a “universal” (a)-system in order to combine the results of different in-
struments and different periods, then the results of the measurements per instrument and per
period will have to be multiplied by a scale factor )\(a), and in general these scale factors can
rarely be determined by calibration with a sufficient precision and reliability . One of the reasons
for this is that the “universal” (a)-system itself cannot be defined with sufficient exactness. In
other words: the definition of such a universal system is not operational, i.e. the system cannot
be constructed from measurable quantities which {with respect to the precision and reliability
of measurements} are sufficiently free from uncertainties of scale, orientation, etc. Possibly, an
interpretation of this can be that a universal system is not constructed from estimable quanti-
ties and therefore is not estimable itself, be it that the concept “estimable” is then disconnected
from the further numerical computing process.

Now consider absolute gravity measurements with one instrument, over a period in which the
instrumental unit can be deemed constant.

Expressing the measurements g; {in points P;} in the (a)-system with the {unknown} g-scale fac-
tor )\;a) then results in:

=20 LA

Elimination of )\;a) can be effected by measurement with the same instrument and in the same
period in a “datum point™ Py :

(@) )
g =2\ g
gi(a) &i
or: - @ = g_k
8k

are estimable quantities in the sense indicated above. Not only the dimension, but also the
instrumental unit is eliminated {provided it is constant!}.

More important for this theory are difference quantities:
A(n g®) = AIn A ) + Aln g))
@)y _ (a)
A(ln g, ") = A(n A7) + A(ln gi)
g \@

, &y &y k)
Consequently: Afln =A |In =A(ng) . . . . . . . . .42
8k 8k

are estimable quantities.
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Rays r are derived from one geometric geodetic system, therefore we have, with the {also un-
known} r-scale factor )\,(a):

r,-(a)z)\,(a)r,......................(2.4.3)

On the analogy of (2.4.2) we then have:

r; \@) r;
A(ln—’) =A(1n—’) —amn)® L4
Tk Tk

are estimable quantities. But this was already one of the assumptions on which the geometric
quaternion theory was built.

Because approximate values can be chosen in an operational way, they are “estimable”. The

P, r
combination with (2.4.2) and (2.4 .4) then shows that quantities A (—l— - —k) in (2.3.3) can

. . P
be estimable quantities.

2.5 Relative gravity measurement on S¥

Assume a trajectory between the points P, and P; to be divided into partial trajectories with a
small g-difference between their terminals.
Then we have, with g; ;.1 =gj,1 — & for trajectory points

P, Py 4=k, ..., ik

&i & 473 &i & 8 j
of k+1 . +2 [ -1 j+1 =TI (1+L+1)
8k 8k 8k+1 8i-1 j & J &
. . gj/'+1 . . .
Relative gravity measurement of --;—— requires the introduction of a dg-scale factor Ay, per
J .

.o . . . & .
instrument and period in order to make possible a comparison with =L from absolute gravity
measurement. 8k
Assume that the instrument is so well calibrated that:

Db =1 L 251D
Then:
& & 8
In= =ZIn (1 + Nag —’ﬂ) = hgg T 2
8k & J &j
8 g1 " 8
A{n=) = 1n—’} A(lnhg)+Z A (L"‘ 50y
( gk) { 43 ( dg) i &f ( )

According to [TORGE, 1975, pp. 109, 244] the uncertainty in the scale determination after
calibration is:
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Anhg)~107%4a107° . . . . . . . . . . . . . . ...@52
4

The influence of this on (2.5.1) amounts to:

g appr
‘ {m—’} A (In Agg)
8k

In view of the value 1078 mentioned in (1.2.3), (2.5.3) can be neglected if:

& (| gii | mgal) 10710 (2.5.3)

Ski
~ ’—g; A (ln >\dg)

(Igxil mgal) 107° < 107, or | gl < 10 mgal

which seems an unrealistic requirement.
If, more realistically, on puts:

(lel mgal) 1079 <1078 or lgg; | < 100mgal . . . . . . . . . . (254

then one is obliged to apply the law of propagation of variances to (2.5.1""), by which the differ-

g.
ences A (ln = )become correlated variates.
\ 8k

g.
Whichever the case may be, the conclusion seems right that A (ln —[—) from relative gravity
measurements is only estimable to a limited extent. 8k

2.6 Spirit levelling on S$*

Assume that spirit levelling has been executed on the trajectory from P, to £;. Partial trajecto-
ries are formed by the individual instrument set-ups with backsight and foresight; the terminals
P; and P, of these partial trajectories are the successive staff positions, with height differences

hj"'_'_l:hj_'_lfhj 5 /=k,...,i

For each partial trajectory a gravity measurement is available, e.g. the average value of gravity
measurements in the terminals P; and Py 4

1
&jv1 = 2(8 +&+1)

With the g-scale and h-scale factors )\;a) and Af,a) the potential difference between the terminals
of the trajectory in the (2)-system can be computed from: ’

)
w,ﬁ?’=_jzx;“’g,_,+lx,§“ Rijer -~ « -« o e (260)

hjjs1 is there a metric quantity, which can be compared with the rays r previously mentioned,

L . . h
although it will never be possible to measure a ratio 7 .One can at most establish a connection

between /-quantities and distance-quantities of geometric networks by calibration via a stan-
dard metre.
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For the g;’s this is in principle feasible via the measuring procedure of section 2.4.
In this way one can try to eliminate )\8(,“) and )\,(Ia) entire or partially via the data in a datum

point P, :
@ @_\@ @
ka 8 =Ny >\ga 8k
@
Or: _Wk’_ _ )\’(1") ) &jj+1 hf.f+1
. r(a)g(a) T )\(a) ) Tk 8k
k k r
1\ @
are estimable quantities if % may be put equal to 1.
a
>\r
)\(a) appr
Assume: h =1 . . .. 2e2)
@
>\r

then difference quantities are:

@ @
W, . W,; A & jr1 By
( k,) _ M (ln B ) YA (M) S (627
Fi8k Fr&€k )\(a) J Fi&k

¥

According to [TorRGE, 1975, p. 133] the uncertainty in the scale determination of levelling
staves after calibration is:

FA(nN) [~1075 . . . . . . . . ... (63)

Because | A (In A,) | with respect to this calibration system will certainly not be greater, it seems
perfectly reasonable to assume:

‘A(lni—)!:IO‘s. (63
)\(a)
»
Now put:
Wi Wea o Hy
— =My Y (o -4
8k ki rgx R ( )

with, like in (2.3 .4), Hy; a dynamic height.
If, like in section 2.5, the limit for the order of magnitude of neglected terms is put at 10™°, we
have, with (2.6.3):

@
W; A | Hii |
—ﬁA(m L ) |~ =L 1075 <107 . . . .. . ... (264
4 \@ R

Y

Or: Hy;| <640 metres . . . . . . . . . ... ... (2647
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From (2.6.2) and (2.6.4) it follows that the following are almost always estimable quantities:

@
(wki)a N (ka) _sa (M) (269
/

"k8k

Because approximate values are always determined from previous measurements, one will in
view of the requirement (1.2.3) have, beside (2.6.3):

|a (1 M | ~107 (2.6.6)
n )\{r}appr ~ C e e e e e e e e e e e e e e 0.

Then one may write:

(/-/“ /'/“) = ZHEL Chir ] {A(ln——’;“) —A(lnrk)}+
k

rk8k rk8k

, Biirt Ahjja
8k 47

The first term in the right hand member will be much smaller than the order of magnitude 107°,
so that it can be safely neglected. Then from (2.6.5) follows:

W, ? gij+1 AMjjy
( ) = .(26.7)
Te8k Fr&k
Therefore, with (2.2.2), the following is almost always an estimable quantity too:
W,
(k) ki ,
AWi =rkgkA (rk_g;) =—/z g//+l Ah/',]'_'_l. e e e e (268)

This explains the first equation in (2.3.5).

In (2.6.7") one may without hesitation replace ryg, in the right hand member by RG. Intro-
ducing for brevity:

A Wki = — E g//+1 A h[,[+l Ce e e e e e e e e e e e e (267”)
def i
then:
W ?3 gijr1 Ahjjr A Wy .
(rkgk) = le = % (267"

) Whi "
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From (2.6.7) it consequently follows that for the computation of a potential difference from
spirit levelling a {good } approximate value for &j4+1 is sufficient, or:

appr
wki djf — ‘ {gj'./+1 } hf,j+l Ce e e e e e e e e e e e (269)

In view of the high demands on approximate values in the present theory, it seems safer for
practical applications to derive g, 4 from measured values.

2.7 Gravity gradient measurement on S*
We only consider the measurement of the vertical gradient:

:W
oh?

q:

For a summary of existing theories, see [GROTEN, 1975] and [HEIN, 1977].

As an introduction, we assume g; to be computed from absolute gravity measurements in two
points P; and P;, close to each other, situated on the same vertical, and from measurement of
the distance between these points. In the (2)-system we then have:

@
2D g
,.("’=——“’(a)—” . e
Ay By
Fig 2.7-1
)\(a)
It is again tried to eliminate —3('—) via data in a datum point P :
a
A
@) (@)
& A\ &
0,
Or:
(@)
(’kq,')(a) N neaw
8k

)\'(la) 8 Ny
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Assume:

@) | appr
)\r

-
A9

then difference quantities are:

)
(’k Cli)(a) _Mkdi (ln A ) A (rk gii')
8k 8k 2\ @ &k Mii’
h

(2.7.2")

(272"

But evidently this does not produce estimable quantities because according to (2.1.2), and as-

suming (2.6.3) to be valid here, we have:

@
Ty q; A
\—"ﬂA(ln . )| ~2-107° >107°
8k 2@
h

Elimination of this term may be attempted now by working with differences of quantities having

the same order of magnitude, like in section 2.6:

A (r_f ,rk_q_f)(a) A (’ka)
r,f 8y 8k

@

Tk 8kk'

2 2 (@) 2 2 (@) 2
(’i Qi—’qu> _hidi — Fede A (ln A, ) _A ( re 8ii'
T8k ri8k ’ )\(a)
h

However, it is difficult to appraise the order of magnitude of:

2 2
Fi 4 — Iy dy
14943

Fic8k Ry’

8k hik'

(2.7.3)

so it does not seem possible to get certainty in this way {which also applies to the term

A(In rg )P in (2.2 3)}

However, from (2.1.5) it appears that for points on S* we have, with sufficient approximation:

7

2 2 (a) 2 @
roqp —-r r’q,
A (————’ @ "q") =2A(1n‘——'zq')
74 Tr Qg

(2.7.4)

A tentative approach might be to introduce, for one arbitrary measuring process for ¢, a ¢-scale

)
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factorkéa):

d@ =2\ . 1)
and consequently also:

W30

so that one obtains as estimable quantities:

@

@ _ 4
)

g

Or, in difference quantities as estimable quantities:

(@

A(ln ﬂ) =A(lnii) =atng)® . .. .. ... Q716
dx Ak

¥
If these are coupled with the estimable quantities from (2.4.4) A (ln —ri) this results with
(2.7.4) in the estimable quantities: k

2 q; @) r.zq.‘rzq (@ 4 ’
24 (I L= =A (#—’i—ﬁ) =24 {ln—) +4a (m—’ (2.7.7)
re q P8k dx Tk
k Ak
to be used in (2.3.3).
According to [GROTEN, 1975] a standard deviation Omg 2 1073, or:
0,3 2107 . L L L (28)
ak

¥; .
This is at least a thousand times greater than assumed for In r_’ and In & in (1.2.3), so that
o i P , k 8k
the combination of In q—l and In 7’ in (2.7.7) and consequently in (2.3.3) and chapter 5, has
K Kk

little practical significance for the time being.

2.8 Some remarks

In sections 2.4—2.7 it has been tried to demonstrate that measuring procedures are possible
which lead to estimable quantities (2.3.3):

(o) a(mom) s (on
by t ’ b ’ b

The concept “estimable” has here been coupled with the elimination of uncertainties in scale
factors remaining after calibration, and therefore it is limited to the measuring processes. But
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in the opinion of the present author this is sufficient; the computing process linked to the mea-
surements does not permit any extension.

For, a computing model contains only mathematical quantities, to which operational names
can only be given affer establishing the link with measuring processes. In the first instance, the
linking of measuring- and computing process should therefore be done by means of nameless
{dimensionless} quantities, as introduced in section 2.1. The choice of a computing model can
in principle only be made by the execution of an experiment, hence with “repetition” of mea-
surements. Relationships between means in this repeated process then should agree {within a
previously agreed margin} with relationships between quantities in the mathematical computing
model to be chosen {or between means of stochastic variables in this model}. But “repetition”
implies constancy of the measuring instrument {in the extended sense, as described in section
2.4}. Any instrumental unit that is possibly variable will therefore have to be eliminated. It fol-
lows that the concept “estimable” can only refer to the sufficient elimination of dimensions
and instrumental units.

This line of thought was published earlier in [BAARD A, 1967, chapter 4] A further elaboration
was given in [BAARDA, 1973]. The present theory should also be seen as a further elaboration
and application. It should be noted that the contents of this chapter only give a first explora-
tion of the possibilities. It has been tried to explain how the author arrived at the formation of
estimable quantities.

It is evident that the line of thought developed in this chapter has been influenced by elements
of the theory of the following chapters that where found at an early stage. It may be remarked
that the whole theory originates from an intuitive belief in dimensionless and unitless quantities.
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3. SERIES OF SPHERICAL HARMONICS. POISSON INTEGRALS

3.1 Harmonic functions ¥, &, ¥

Henceforth, the datum point will be denoted by P,
Spirit levelling can only produce differences in gravity potential: W,;. Within the computing
model we may, however, split up this difference:

Woi = Wi — Wy

Since we consider points P; situated outside or on the surface S of the earth, the formulae are
developed for the gravitational potential ¥, in accordance with chapter 1.7. If necessary, ¥ will
later be replaced by the difference of the gravity potential and the centrifugal potential.

Now, in connection with chapter 2, consider the following quantities, the integration being over
the mass distribution of the earth, and under the condition: V? ¥, = 0 outside and on S {in the
sense of: down to S; see the contents of (1.7.3) — (1.7.6)}:

According to Newton’s model theory: | Eliminating the units of length and mass:

b 1 w Vi r; 3 K d(Mk )

,—fffzz k &:;T{fffﬁ Poro
_ —aé_)rK,l =fffé cos (r, ry) dM, %: r—;) fff (7?,()2 cos (ry) d ( ‘::I;o)

L, I () s (3E)

o

ani ‘I’i r; ¥ 3 Mk
= —_— = —_— 2 L. —

ariZ ([)0 ro fff (rik) {3 cos (rlvrlk) l}d (‘boro)
- (rL 2
= 7 {3 cos? (rpry) — 1} dM,

Tik

, %V, .
r; o =V¥; {P; outside S}

1

(3.1.1)
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In analogy {HOPFNER, 1933, p. 389] we have if V2V = 0:

ViV=0
PO U S VO 3
T or ’ ar ~ or ar?
—V2<I>=2-V2V+X-V2%+Y~V22—V+Z-V2%=
=9 .2 o2 Vo .9 o2
=2V V+X,)Z/)’ZX Vi =2V V+X’§,ZX 5x V=0
2
\If=r2%TlV : from%? : ;\I/=r%i:—d> ;. Poutside S

d
V=220 4+ T X+ — (VD) - V2D =
=2V +X,Y,ZX aX(V ) -V
0
Vbt T Xe = (V20)=0
+X,Y,ZX oX )

Hence: V, &, ¥ {¥ outside S} are harmonic functions . . . . . . . . . . . (3.1.2)

With rq, 7; > r, we have according to (1.4.3):
¥ kg Ty " n
__ _k Y-'(n) Yr( ) Y,(O)= 1
tx n=0 \r ! k ’

Hence with (3.1.1):

Vi ni = 1\ ) n i) My
— ==X - ! Y! =
by 1o 0 (r,-) Y; fff(rk) e d (‘boro)

n=

With the introduction of M {mass of the earth, see section 1.4}, R {radius of a sphere with
centre Py, the geocentre} and the spherical harmonics y®™ this can be written as:

Yion _ Mg ﬂnY’(")fff(ﬁn i o (M
(bo ri ! R k M

ro ®org n=o

o n
M z(—@) y® . (3.13)

<I>0r0 n=0 r,'
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B M r oo n
i _ Lo > (5) v | SR>t

() _ () () ) LA My (0) _ 1(0) _
y" =c® y; c =fff(§) v d (7) y@ -y @

(3.1.4)

For considerations concerning the convergence of these and following series, see [HOPFNER,
1933, chapter 10] and {HM, p. 60]*). Differentiation with respect to; gives the following series:

o, r o0 n \
oM Z(n+1) (5) Y
b, bory ri n=0 ri !
Do M 2 R\n _m M
— =1=— X (n+1) |— Y, , hence: ~1 > (3.1.5)
b, Dyro n=0 o Poro
N4 r o
3’ = <1>M — T m+2)(n+1) (-rg) Y,-(n) ., P;outside S
0 ofo ri n=0 i

Linearization using approximate values {the suffix “appr” will further be omitted in the coeffi-
cients of A-quantities} gives:

[»S
—
&=
1
~‘=l‘=
(=
S ——
|
=S
I—A—-
[»S
—_—
el
% S

+ 5 (n+1) (B)n -AY(E")
n=1 To

>
—
e
(=]
~—
n

M = RAn @)
2A (%ro) +Z (12 @+ 1) ("0) AY!

*) But see: Arnold, K. Beweis der gleichmissigen Konvergenz der Kugelfunctionsentwicklung der Erde im
Aussenraum. - Vermessungstechnik 1978, Heft 7.

r (3.1.6)
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ro)
r;

LIk YN (ﬁ) _o § { (5)" Ay® (5)" AY(")}
i (bo i n=1 r; i ro o

/
=% g (n+1) { (rB)n Ayi(")* (rﬁ)" AY(E")}

0

_,_2_) ) 'Ofr"A (_‘Iﬁg) =52’§1 (n+2)(n+1) {(rg)” Ay - (rﬁ)" AYén)}

¢0 i 0

A Yi(n) =C(n) . Y’(n) (

H

If now the approximate values are chosen in accordance with section 1.2, then the A-quantities
in (3.1.6) are small. A comparison of (3.1.6) with [HM, p. 34] then shows the possibility to in-
terpret the left hand members as harmonic functions on and outside a sphere S with radius R,
in such a way that for points outside S the series expansions coincide with the linearized series
(3.1.4) and (3.1.5). Then, contrary to (3.1.4) and taking account of (1.7.6) we have:

Points P; on $*: {rj}in <R <{rj}ax
.(3.1.8)%)
Rin (3.1.6) and (3.1.7)

The spherical surface S should be seen only as an interpretative mathematical approximation of
the geo-surface S*. S can never lead a life of its own, in particular one can never speak of a mass
transfer from S to S. We have, e.g. for points P; and P,:

If: {ri}min § TuTo § {ri}max
.(3.1.9)

thenin (3.1.6) and (3.1.7): r; ~rq ~r; ~R

(3.1.9) is important for the datum point Py, because for practical reasons this will always be
chosen on S*,

In situations analogous to the ones for which (3.1.9) is applicable it can be useful to use an aver-
age value forg:

If: {gi}min §gi’g0 § {gi}max

(3.1.10)
then in such situations g; ~ g, ~gi~G

*) For R one may e.g. choose the equatorial radius of the reference ellipsoid, as is done in satellite dynamics
[HM, p. 591

(3.1.7)

(3.1.7")

(3.1.7")
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3.2 Poisson integrals

Combine the series (3.1.7) into:

ro = R\" o) RY ) @) ) )
AXgi=7 Z_} Ay, — AY; - - AY, JAY = Y,

Ti n=1 r; 0

) ro ro ro ri—r;
and with Pt L

r,- r;

r oo R n n
~AXo+AXo=- > T4, {(—) Ay - (rﬁ) c(")Yi'(")} .

7
ro ri—r = R\" ) vim) R\" )
fo K y'®_ (K

L Ea (5] - (7))

r; = n+1 o) o)
From (1.6.1): (ﬁa,-j)r—; E Qi+ 1) (—1) Y,.’"‘)‘Y,f(") . K>

Choose P; on S*, then with (3.1.8), see (1.4.4), we have:

R n+1
PRES! _ = (_) ,A=n
) Y;"’) ae ri

TG e

The influence of the replacement of 7; by R is small according to (3.2.2), therefore we have with

a very good approximation:

1 i
1= o [ A%+ 8X) (-55) - dg =

Fo ri- R e n "
o ns @) e (5 ae)
r; r; n=1 r; ro

i

or, with (3.2.1):

ri—R
[l - lr. AXO[ . r,->{rl-}max
1

The indetermination of the radius R of the surface S, which is expressed by (3.1.8), together

with the remarks with (1.7.6), makes it desirable to substitute (— 6,,) ; forr; <rjinI,. In this
i

(3.2.1)

(3.2.2)
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situation we always have r; ~ 7, 0 that:
I ~0 , r,S{tmn

The following integral is formed with {see (1.6.1)}:

r. . r.\n+1
L.3 (—’) v Wyr® >
=0 i ]

r,-j n r
s (nY 1) (o)
=2 (——) YUY 1<t
n=0 r]

With, probably, a similar degree of approximation we then have:

_ 1 Ty R
12=AX0,--Effr~qu,-=r—l_ Moy , 1>

=1.AX0i ,. r,-<rl~

The way of derivation makes it permissible to pass to the limit r; ~ r;, so that for the whole
region where 7; is greater than a value somewhat smaller than {r;} . :

I+, = AXy; - . . . . . L L . L oL .(323)
in which the uncertainty in the choice of R is highly reduced.

Now write Iy + I, in the following form:

Y.

1 1 1+6; 1 1 85 1
5([1+[2)=AXOi.Z; ff’T“Tq in+Z;ffAXoi'T Tdﬂi

With (1.7.1) and (3.2.3) this gives:
1 ’ = AX,; , P;outside S*
" [ axe; - (-8 Ldg; § =0%)  Pions* (3.2.4)
i

=_AX0i , Pi inside S* {risr'}

(3.2.4) with (3.2.1) and (3.1.7) then result in the Poisson integrals, with datumpoint P, on S*,
ro — rl-

hence ~ 0:

*) In accordance with [PICK et al, 1973, p. 485].
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P;on S* P; inside S*
P, Pjon S* P; outside S* and P; > Py | 4ri <ri}
e )z b (22 A )] 0 ()
= Jfa 5 - ) L dg= |a (= - 2) -2~ (2 0 N
4 ff d>0 i ( I/) rif 7 (DO r; r; (I)o d)o ¥i
1 i ’0) Ui ~ (d)i ’o) (‘I’z ’o)
= Jfa (‘1’0 -~} Conhag=a (G5 0 S Pt
1 Wo; ro) ki (\IIO, ro ) Fo — ¥ ( ¥, (\I/o, To )
Loffa (¥ 222) (s LagHa (2 -2-2) - -0 N e
4n ff (CI)O ¥y =59 i / b, ¥ ¥ D, 0 b, I

These Poisson integrals follow directly from the series expansion for difference quantities (3.1.7),
which in tumn follow from (3.1.1), i.e. Newton’s gravitation theory.
The approximation of $* by the spherical surface S, with the indetermination of the radius R
formulated by (3.1.8), is not directly expressed in (3.2.5). This makes it difficult to understand
fully the significance of the Bjerhammar sphere, the more so because numerical computations
seem to suggest an optimal value for the radius. See [KRARUP, 1969] and subsequent con-
nected publications by several authors.
The question arises what is the essential significance of (3.2.5). The Poisson integrals will be
used in section 4 for the derivation of Green integrals, consequently the degree of approximation
is the same. It follows that the relations (3.2.5) may be introduced as difference equationsin the
computational model of adjustment theory; their possible dependence on difference equations
obtained from the Green integrals will have to be investigated. A handicap is the occurrence of

difference quentities A (

Vo

[

v
) and A (?0) ; therefore it is to be expected that the second

0

relation in (3.2.5) will be the most useful one.

As far as 1 can see, it follows from the derivation that:

(3.2.5) is dependent on (3.1.7)

3.3 First degree terms

. (3.2.6)

By means of geometric techniques the direction of the Z-axis can be chosen so as to be parallel
to the axis of rotation of the earth to a sufficient degree. We have, however, no similar means to
let the position of the geocentre coincide with the gravity centre of the earth. Here one must
expect a deviation, see figure 3.3-1, with an order of magnitude:

e -5
R <107 .

. (3.3.1)

(3.2.5"

(3.2.5"

(3.2.5"
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Fig 3.3-1

Use the shortened notation:
XiXk + YiYk +Z[Zk = EX,‘X/(

then the following is valid [HorNER 1933, p. 296]:

1 1 1
— ==+ — ZX; X+ ...
P Fior} K
1
V,=ff[;"_ Ed.Mk
y ik
carth

Xx=Xc+ Xy - Xo) ,fff (Xy — Xeo)dM;, =0

X; X
or: V,—=A7/I {1+E—'——C+...}
: :

i i

and in accordance with (3.1.4):

V; M r R Xi X¢
— = — ql+—= Z — =+ ...
b, Porg r; i ri R
X; Xe X Xe Yy Yo Z; Z¢ 1)

. -~ =l = — = = — =Y. co. . . . . . .(332
or: z 7" R "7 R tTR Y " R ; (3.3.2)
With (3.3.1) we have, see figure 3.3-1:

1Tt
To L:)_ﬁ) - ro ro {rlrl' Fo = T
oooF K rir} o P

2rfri— 1) =t P =X} - Z(X,- X) =2 {EX,.XC -1 zxg}
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Hence with (3.3.2):

2

R

[t {6 -G b ()]

in which, in view of (3.3.1), the second term in the right hand member can be neglected when
establishing the difference equation.

In accordance with the consideratio&)in the final part of section 1.3, it is assumed that by geo-
metric methods the direction of Py P; is determined with a higher precision than the modulus
r;. Then, with (X¢, Y, Z) unknown to start with, it follows from (3.3.2) that:

R
o Yél)
To

To r
r;

To

~ . —

2

!
_0

1
r r;

AYi(l) _ Yi(l)

so that we have, from (3.3.3):

R

To

R

i

(3.3.4)

M O
Ay - = Ay, }

AYi(l) YD

!

from (3.3.2)

From (3.3.4) it follows that the first-degree terms in (3.1.7) are exclusively due to the excentric
position of Py, with respect to Pc. Its influence on further terms in (3.1.4), together with the
influence of a small remaining influence in the orientation of the X,Y,Z-system, has been inves-
tigated in [AARDOOM, 1969]. With (3.3.1) this influence turned out to be of the order 107% or
smaller.

This implies that the influence of (X¢, Y, Z¢) on (3.1.6) and (3.1.7) is practically confined to
the first-degree terms. Thus it follows for (3.1.7) with respect to P that:

(3.3.3)

! 7. Vv r o n [i]
B IE”_) _foono (_TO) A { (_13) AYI.(n)— (5_) AY(EH)}
r; I b, Ii n=2 I o
r' r o0 n R n
- —‘,’) =2 T (n+1) {(5) IN - (—) AY((,")}
r; ri n=2 r; ro
! ! n n
r r r 'Y ro oo R
~ —?) A (—0) =2 T +(m+1) { (5) NS (—) AYf)”)}
r; I D, ri n=2 ri To

(3.3.5)

This matter is relevant for formulae like (4.2.9) and (4.2.10).
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3.4 Transition from gravitational to gravity potential

From section 1.7 it follows that for points connected with the earth we shall have to consider

the transition from V to W.

Since the Z-axis and the axis of rotation of the earth are (to a sufficient degree) parallel but do

not coincide one has to write:
Vi=W;=Ci . GCi=3 0 {(Xi~ X +(Y; = Y)') .

hence:

Vi=W; - m2{§(xf + VD) - (KXo + YY) +5(XC + Yg)}

ov; oW; 5 ) )
q)i—fria—ri‘zfria—r’.+&) (Xi+Yi)N(XiXC+YiYC)
tv; * W,
2 i 2 i 2 2 2
W =7; o =r or —w (X[ +Y])

and with {compare (3.3.2)}:

aW; aw; '

— or, ~ — Ef: cos (h;,r;) = g; cos (hyr;) - g
a*w, otw, , ,
o = on cos® (hy,r;) = q; cos® (h,r;) o 4

5 Xe Y Ye _yw

r R ri R !

2 2 2
Vi=W, — W*R? LXI +Y MR (VA Xc+7Y¢
R2 R ! R2
X2 4+ v? v
- ! 2 i i { )
P =rg; + W R? FE Rl
B!~ 1 1 WIR? {on + Y02 o _;(1)}
o regg rog0 R? R
’ X2 + Y2
Vi =rlq; — W*R? [RZ J

With a slight simplification in coefficients of w?, such as:

. (3.4.1)

(3.4.2)
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—_— A~ —— A~

one obtains:

appr appr
VOi {rovri} VO Wo,‘ {ro »-r,-} WO
— ) = 7 - ’ +
@, Ti Do o8 i o8

~ ‘*JZRZ{L (X,'2+Yi2 o X§+Y§) B (i?(l)ir_Oi—?(l))
o€ L7 R R R, R
(3.4.3)
O rnig
P, rog(')

1 2 2, y2
 W'R? {(Xi +7Y; 7QX0+Y0) B (ﬁ_f(l)ﬁﬁy(l))}

7o&e R? ri R? R ! rp RO
(3.4.3"
E"_i { ’O*’i} PP g, _ {(’i)z ’ofli’ B roq(,) } 3 { Fo — ’i} e rodo
@, i D, 7o g £ ri £o
WERY [ XP YD e X4V
_ 25 L =0 2% (3.4.3™
7ol R n R

The angle (A,r) is the small angle & from section 4.6:

§ ~3102sin2¢ , ygeographic latitude
8~ 10 sin2y¢ , hence:
1>cos(hbr)>1—-10"%sin2¢ . . . . . . . . . . ... .(44)

Using this, one obtains { compare the quantity m in [HM, (2—100)]}:

2R2
— ~3-107% . . . . . . ... (344N
To8o
wiR?
so that, in view of (1.2.3), the use of approximate values in the coefficients of — is justi-
fied. To8o

With:
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and similar slight simplifications as used with (3.4.3) one obtains:

1
g_f)
£o

2 ’
riorod;
N
o &o

~

1}

)

=2 —

i

i
A (ln —)
ro

1

{A(ln%) +A(ln§i)} > (3.4.5)
{ZA (ln%) +A(ln r;z;)}

(Xc, Yo, Zc) remains unknown for the time being, with an order of magnitude (3.3.1). In view
of (3.4.4), the terms with Y@ in (3.4.3) can therefore reach the same order of magnitude as
(1.2.3), so that these terms have to be included in the difference equations. Then from (3.4.3)
and 3.4.5) {omitting the suffix “appr”

in the coefficients of difference quantities} one obtains:

A(ﬁ— 2)—————%7” (ﬁ =A(w0';) *r0~riA(WO,) +Q (lnﬁ) +
(1)0 ri ri (1)0 rogo ri rogo ri rO
w?R? {i g T (1+ Yo "ri) 7(1)}
rOg(,) R 4 R r[' 0
) 4 , r;
A(_t_ _0) =—O{A(lng—',) +2A(ln—')} +
&, ti ri 8o o
w?R? i yi o 1+ ro — i )7(1)}
rg’ R ! R r; 0
020
Wy r ro—r v, Fod.
A(O’_z—‘l)-" ’A(—3 =2—0A(l o 1 °‘,’°)+
b, ri ri b, i go &o
ro — 1; r;
B ’A(l °‘f°) 6—°A(1n—’)
Fi 8o i To
and in view of (4.4.6) and (5.4.4):
V W 2R r
A(—9) = A ( 0,) p R, T g
P, ro8o rofo
A r ! 2p2 Yo _
A (—0) =24 (ln °f’°) w R ey
b, £ rogo R

(3.4.6)
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The replacement of V by W, and hence (3.4.6), is only relevant for points connected with the
earth. In this case, (3.1.9) is valid for the coefficients of difference quantities. Therefore in
(3.4.6) one may put:

Fo — F; Yo r; ro "
TR0 L TR el G4

!

Further we have from (3.4.2) and (3.4.4"), with:

cosa d (cos™ a)=—d (In cos @) = tg o da = o d(a)

Wy ; W, : W,
( O,I) =sec (ho,ro) A ( Ol) +—0:(h0,r0)A(ho,ro)

p
ro8o 080 7080

A (ln &, ) =A (ln i_l) — {(hr) A (hyry) — (ho,ro) A (ho.Fo)}

8o
r , r !

A(ln—oifln °‘f°) - L . (346™
8o 8o

=A (ln q—’,) =A (ln iZl_) -2 {(hl',ri) A (lli,rl‘) — (ho,ro) A (l’lo,ro)}
q, do

W!R? W'R?

- sec (hg,70)
Fo&o Fo&o J

The angle (h,r) is small, and its effect on the above equations too, but it cannot be simply ne-
glected. Its computation belongs to geometric geodesy, as sketched in section 1.3, but the com-
putation of the approximate value belongs partly to gravimetric theory, depending on the po-
tential model chosen. The angle (h,7) replaces the “deflection of the vertical”, a concept which
according to section 5.2 has no place in the theory developed here. To determine (/,7), one has
to revert to astronomical measurements of latitude and longitude. For, the determination of
the /i-direction with respect to the geometric network by vertical angle measurement gives a
Ohry = 1" = 5+107° rad. {assuming a standard deviation of estimable coordinate functions of
< 107°}; the influence on (3.4.6™), being | (h,r) Onry | <1.5-107%, cannot be neglected. Ac-
cording to [HusT1, 1978] astronomical measurements can attain g, ,, ~0'".2=107° rad*) so
that | (lz'r)o(h‘r) [ <3 107%, and in view of (1.2.3) this can be neglected.

This does not mean that | (4,r) A (/,r) | can be neglected. For the A-direction is strongly influ-
enced by irregularities in the mass distribution in the earth’s crust around the station. The com-
putation of the model of approximated values will have to be of such quality that

*} In a discussion with Prof. W. TORGE and Prof. G. SEEBER in October 1978 in Hanover they pointed out
that this cstimate was too optimistic.
The author is in particular Prof. TORGE very thankful for his comments on the theory developed but for
the time being it is preferred to make no changes in the manuscript.
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AAHSI0®rd . . . L L L L (34T)

to assure that the neglect of | (h,¥) A (hr) | is permissible. Here, too, it is evident, that the
greatest difficulties for the application of this theory are presented by the computation of ap-

Woi w?R?
proximate values. In any case, the influence of (hy,7¢) on A(——,) and on — can be
neglected. To&o To8o
Then one obtains from (3.4.6):

ri~ro~R
Voi ¥ Woi r; 2R? — =
A (-ﬂf —0-) = A ( 0') + A(ln—’) LR (ygmyg))
b, Fi To8o To ro8o
&, ¥ g; v 2p2 . o ,
A (—i ) I (1n—’) +24 (m—’) _ ek (Y,(”_Yg”) (3.4.7")
b, i/ 8o Fo Fo&o
W, 7 ¥
A ( 2 ﬁz—") =2A(1nﬂ) +6A (m —')
by 7 do ¥o
with G from (3.1.10) one can write without any practical objection:
2p2 2
WIRT _WR 34T
rogo G .
Because Vj; is small compared to @, the following derivation can be useful:
V; AV; V; AV, 1o
A(—L)z—'_—’A(lncb ~—L 2 Alln®
b, P, d, ) Py r (In o)
r 14 ro AV r
2 A (-—0) == ¢ 2 A(ln &y) , hence:
T b, i By Fi
Voi ro — ¥ V AVy; 1o -1 AV
A (—') AN (—3) S L e . (3.4.8)
b, Fi b, D, ti Po

Woi
For an analogous derivation pertaining to A(r—l) , reference is made to (2.6.7).
080
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4. GREEN INTEGRALS

4.1 Linearization

We start from the application of Green’s third integral formula for the gravitational potential V,
as elaborated in section 1.7. Points F; are part of the geosurface S*, P, is the datum point, like
in chapter 3, and is also part of S*.

Like in section 1.3, one has to take account of the fact that measurements can only provide dif-
ferences of V. Provisionally, however, we shall operate with V itself within the model.

(1.7.5) with (1.7.6) gives:

Vi= 4 ff[‘fo—z—”f (’W) 7, 48U

or, with the introduction of the quantity ® and elimination of the units of length and mass ac-
cording to (3.1.1), see also (3.1.4) and (3.1.5):

<I)0_47Tff[\@—(); ) +(}TO rde N R N D)

y

With (1.7.1) and Vy; = Vi5; — Vy, this results in:

i
= — +=L | L ag;
b, dr @, 4n /

Vi p Yo lffiﬁ”&fi & |
b, 2 b, Fi

After the introduction of a consistent model of approximate values according to section 1.2,
this equation can be linearized. Here it can be noted that (1.7.1) is also valid for the model of
approximate values, hence:

Ap=0 . . . . . . (41D

Again omitting the suffix “appr” for functions of approximate values in the coefficients of
A-quantities, one obtains:

V; P Voi 1 1+68; Vi & r:
AfL) —=-A (—) - — f——"A(—O—’) A(—’ —Ldq;
(%) 4 d, 4n ff 2 o) " P, ri it

0
a1 Yoj (1_1351 Q) kvl i)
o {f [ ol G ERS-o S ol I LU (4.1.3)

Voi b,
1f the approximate values are close, the coefficients ;—’ and <I>_’ can be computed from the
{ 0 (s
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zero-order terms of (3.1.4) and (3.1.5). This means that the special harmonic function [HM, p.
37]is used for the approximation of these coefficients:

Voi ro o To— T Voj 0
dy, i Tro  hi T,
. (4.1.5)
(I)l' o q)’ 1
®dy i e,
Now in the second integral in the right hand member of (4.1.3) one has only to calculate the in-
r;
fluence of A(L) But a more convenient device is to apply (4.1.3) to (4.1.4). One then ob-
Tij

tains an identity because only rays 7 occur:
o D o 1 1+38; ( o ) ( o ) ¥
—)] - — - — — =— — — - A{— — d; +
= (ri) 4m A (r,- 1) 4m ff[ 2 A 7 1) + rj rg )
L r Fo — r,- 1+ 5,, r_/) Q (i)
* 47 Jf [ r,- A ( 2 r,-,- * r; A T dﬂl

(4.1.6)

Subtracting (4.1.6) from (4.1.3) results then with (4.1.5) in the elimination of the second in-

tegral in the right hand member of (4.1.3) { A (r_ - 1) =A (—r—) |5

i i

A (ﬁ,ﬁ) P, (Vogr_o) Ly RN (V_ ,2)
®, ¥ 4n &, r; 4n 2 o, ri

The application of the Poisson integral (3.2.5") makes it possible to eliminate p, in view of
(1.7.1) and (3.1.9):
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and with/ - 0:
A(ﬁ)__l_ff_iA(Lof 19) A(‘I’/ o I aq
b, 47 2 ®, 1 * b, 7 roj 7 (4.1.7)
Subtraction results in:
%{A (VOf \E) RIS N (ﬁ)}=
b, T d,
Voi r o, r r; r;
=Lff _%A(_OL__O) +A (_/ _‘1) (_/4_/) de
4r b, r o r; i roj

ro—r; Vo .
Subtracting p A | —) ,one obtains with (4.1.7):
i 0

P; outside, on or inside S*; Py, P,- on S*

(4.1.8)
The integral equation (4.1.8) is the result of many years of trying; frankly, the author is not
quite sure that the derivation is correct for the cases that P; is on or inside S*. The further elab-

oration will therefore only apply to the case that P; is outside S*, and the other cases will here
for brevity be considered as a limiting situation.

Nevertheless the linearization executed in this manner is more complete than the linearization
of Molodenskii’s problem [HM, section 8-5], although there the derivations are mathematically

more reliable. The most remarkable thing is that (4.1.8) does not give any indication of an “ill-
posed problem”.

With the aid of (1.4.3), the kernel of (4.1.8) can be expanded in the following series { y' @< 1 } :

n n
ry Yo ¥ U 7 () 7y 1) 1),
(G arm) = A A e () nopne
i i 0j i n=1 7 To

r>rpo, e > ()

(4.1.9)

This kernel has a great practical significance. For, if Py is chosen in a regional area of points P;
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on S* {the above-mentioned limiting situation}, then the influence of points P; situated further
from Py almost vanishes {“the influence of distant zones”, [HM, section 7-4]}.

(4.1.8) is a basic relation, which can be used as difference equation in the adjustment- or com-
puting model. This relation may therefore be rearranged or transformed.

oV;
For brevity, introduce: — 5. =i
¥
Then:
s (g s (o) =ne () o5e (5)
b, fo 7o o Yo Yo o
and with:
2
r r ¥ r r r
s (7)) ra(md) R alnd) - (5) 2 (3)
Ty Ty 0 To r Yo ¥
: ro ®; ro\?
and, in view of (3.1.5): Y =— L 5 (—O)
Yo N @, 4
D; 7 r; v; r
A (—’~—°) =-’A(—’) _2A (—°) L (@1.10)
Dy, T o Yo 4]

If, consequently, (4.1.8) is written in the form:

o (7)) e (B
Dy 7 T P,
3 . ( Voj ro) 1{ (Voi ro)
=— sA{— - — +-s—2A \— ——
4 ffl:z (I)O r,- 3 q)o ri

P; outside, on or inside S*; Py, P; on S*

(4.1.11)
7
then one obtains with (4.1.10) that A(TO—) is eliminated in {for the series see (3.1.7)}:

]

Voi Y o r
_2A (ﬂ_o) + A (__/7_0_)
P ti ®, Y

i (n1){(r£;)"”i(n) - (5)" Ayé")} L (4112
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It must be emphasized that (4.1.8) and (4.1.11) are two ways of expressing the same difference
equation. The so-called “solutions” of these integral equations can therefore only result in de-
pendent solutions.

Furthermore, (4.1.8) emerged from (4.1.3) and (3.2.5") and only one relation (4.1.8) is to be
used further.

Therefore:
(4.1.8) independent of (3.2.5") 4.1.13)
(4.1.11) dependent on (4.1.8) - (1
4.2 Solution of integral equations
The approach used with (3.1.8) is again applied:
o £ A § |
In order to avoid difficulties with divergent series we provisionally assume:
tisro > Ardo . (4.2.2)
VO/ o .
However, in that case A (I)— - ¢ in (4.1.8) must be supplemented with:
0 i
Fo = vV ro — R vV
e G e (5
ti P, R @,
but this constant may always be added because there is no zero-degree term in (4.1.9).
Put:
Voi 1 ro —r; V
A (—0‘7—") - ’A(—°) = AXo;
by i Fi O
S S ) |
b, r —
AL -2 = AXy;
Do T !
Then (4.1.8) becomes with (4.1.9), on account of (4.2.1):
R 2 R\" ., RY .
% A XOi :ZIf r— z { (—) Yi(n) - (—_) YO(n) } (Kn +1n) - (424)
i n=1 i o

Ko= [/ laxgpaey 1= [[v" Ak, a0,
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Substitution of (4.2.4) in the equation for K, gives:

f f {"”’ (%) ‘”’}(K— +I7) YO dg

1
Kn—_‘ I+ 1 (Kn +1n)

1 2n + 1
R A T R

Substitution of K, + 1, and of [, in (4.2.4) gives:

LR g 2l [(R) e (RY e v/" AXy d (425
- Erff?,,z;’l n+1 ¥ i o 0 oj (4.2.5)

i

With:
— QMK+ ARy =AXgi . . . e oo (426)

one can similarly write for (4.1.11):

Lay 3R $ J(RY yo (RY Ll g 17
ZAXOI'_ 4r ri nz=:1 {(ri) Yi - Yo Yo (Kn+3 n)

1 2 ' B
Ko= [[Y]" 6 axopasy | L= [[Y/" Ko d2 . n>0
[ A, K, +i =2+l ¢ >1
I shTempnin o "

K, proves to be indeterminate, which according to (4.1.12) corresponds with 7, = 0. The solu-
tion is therefore determinate up to a Y term:

y® g el J(RV o (RY) o v, aXy 4@ (4.2.7)
AXy; = Y term 4ffr,n2n_1 o) T ) Yo o 2.

(4.2.5) and (4.2.7) can be checked by substitution of the series for AA_’Oj and AAz’Oj from (3.1.7)
and (4.1.12). Then it appears from a comparison with the series for AX,; from (3.1.7) that:

r
Y(l)-termin(4.2.7)=r—0{rBAYI.(l)EAY(()I)} N C W X))
i i

o
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The series in (4.2.5) and (4.2.7) present no difficulties in the limiting situation: r;,7, ~ R.

Now we replace the AX-notation by (4.2.3) and (4.2.6). We also use the first difference equa-
tion in (3.1.7), by which according to (3.2.6) the Poisson integral (3.2.5") ceases to be an inde-
pendent difference equation {compare (4.1.13)}. From (4.2.5) and (4.2.7) with (4.2.8) then
follows:

(n+1) =i 19
47rf oij A ( /r-) asy

P 7777777 ] 429
n+) R 2 m+1 R\" . LA )
n+ n \n n
Soi;j = ’El Fa— {(7—;) Y, - (’o) Y, }Y,

P; outside, on or inside S*; Py, Pj on 8%, rg,r; ~ R

Voi 7 Fo — 7 V ¥
A (ﬁ,_‘)) Il N (_0) /—O{BAYI.(I)_?AY(”

b, i Fi L0 i i o

Fo = n
or: — 3 { (5) AY(n) (5) AYé”) }
Fi n=2 Ti Fo

(=]
——
I

(4.2.10)

n-1) R =2 2n+l R " +n) R " (1) (1)
A -0 Y [EAS IS 40 G .
SO';I ri n=2 11— 1 { ( ri ) ! Fo YO Yl

Compare [HoTINT, 1969, (29.17) and (29.14) respectively].

In the right hand member of (4.2.10) one recognizes {apart from a small correctloni the differ-
ence of two Stokes’ integrals [HM, sections 2-16, 17]. There is no doubt about y© and Y.
terms [HM, sections 2-18, 19]; the connection of the situation P; outside §* with points Py and
P; on S* does not present any difficulty [HM, section 2-20].
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4.3 Interpretation, at sea and on land

To avoid interruption of the argumentation, some complementary derivations have been deferred
to section 4.4. Now we shall first give an interpretation of the difference equations (4.2.9) and
(4.2.10). Two main situations are to be distinguished: first, measurements above and on the sur-
face of the sea, and second, measurements above and on the continents.

I. Inrecent yearsit has become clear that the surface of the sea does not coincide with an equi-
potential surface, the differences may be several metres. This means that potential differences
between points on the surface of the sea, far removed from the land, cannot be measured.
Therefore (4.2.10) cannot be applied, so that (4.2.9) has to be further considered. Both equa-
tions are transformations of the same basic equation (4.1.8), and because of the form of the
kernel they have possibilities for regional application, see (4.1.9). The two equations have in
common that use can be made of AY(”) from satellite dynamics [HM, section 2—20].

“At” sea level, gravity can be measured, whereas the rays to these points can be derived from
satellite altimetry. From the right hand member of (4.2.9) and from (3.4.6) it follows that stan-
dard deviations of Aln g and Aln r should have the same order of magnitude. At present this
seems to be realized on the level of 107 {from o, ~ 1 mgal, o, ~ 1R10% ~3 m}, although
for practical application one will need 10~ {or possibly 1078 }.

A remark on satellite altimetry:

From the orbit data of the satellite, values 7; are computed, see figure 4.3-1. Assuming good
calibration with respect to orbit data, the satellite altimeter produces values 4; with an instru-
mental length scale factor (1 + AN,).

Then, if AN, is small*):

appr
Inr=1In {7,-— ( +A>\,,)h,-} =In(7- ) - (r—l’) AN,

9
\ V) / ioz o+ Mo
\\ ‘ /// Fp=ryehy
Fr= Py hk
Fu
Fig. 4.3-1

*) For the definition of “‘corrected” heights 4, see section 4.6
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If now P, is chosen on or near the coast of the continent {and in any case connectible by spirit
levelling}, then:

r 7k hy he appr ,
ln——-ln———f - - — ANy . o o 0L L 0L L (431)

7o fo — Mg ¥i ro

If /1 does not vary much, the second term in the right hand member of (4.3.1) can perhaps be
considered as non-stochastic, or it can be neglected, so that:

NI n 43.1"
(HTO_(nrho)...............(,3,1)

Similar to Py, one can choose one or more points P, on or near continental parts or islands, so
that seas or oceans are bridged:

147 7]( i hk hk ho)appr ,
In —’; =In Fo — 110 - (r_k - 7o A)\h L (4.3 2 )
147 Fk — hk
A (ln —) =A |In = e C 5 Al
}’0 r0 - ho

r
Now — can also be determined {directly or indirectly} by e.g. geometric satellite methods, so
To
that (4.3.2") could also be used, if necessary, for the determination of a remaining small value
ANy,
. r
If now we start from observations of AY,.("){,AY(()")}, g_/ , rl— , and eliminate the IN a2
0 0
term via (4.4.12"), then (4.2.9) gives the contribution to the condition model of an adjustment

procedure:

Fo oo n n ’
=23 {(%) NP (r%) AYf,")}~ 1 ffs(f'ff”A( —r,)dQ 0

Vi n=2

1 +1) _ R & 2n+l R " r(n)_(B_ " () ()
Soisj T n22 Tl {( Y; 7o Y, Y,' (4.3.3)
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Because of the elimination of the AY("). and Y'(l)-terms,PM could be replaced by P in figure
4.3-1, which might simplify the application of (4.3.1) and (4.3.2) {orbit computations are
made with respect to Pc}.

By choosing P; as a point of the satellite orbit {e.g. over the middle of the regional area con-
sidered} one meets the difficulty that dynamical satellite methods can only determine a limited
number of NG -terms. But this interpretation of (4.3.3) is only given with reserve; a deeper
analysis of methods and results of satellite techniques still has to be made.

If an adjustment has been made, one can afterwards again follow the course to compute via
(4.2.9) the potential differences between points on the surface of the sea, by which one now

also obtains r—l from satellite altimetry {compare [MoRITZ, 1974, (5-13)]}:
0

—————————————————————————————————————————————— oo L(a34)

R = " " :
Sf)ni;-;l)z_ E: 2n+1 {(5) Y,-(n)" (5) Yo(n)}yj(n)

Yo

one can also proceed like in (4.3.3) by taking the Y'Y term outside the integral sign via (4.4.12").
One obtains:

Voi r r
A (ﬁ__(’) "_O{EAY[(I)BAY(()I)}=

b, Ti Fi T o

1( 1) b, ro "
ffso,"f A (—’ '7,—) dQ; ... . (434"
0 1

P, Py, Pjon S*,r;~rj~ry ~ R

Then (3.3.5) is applied, so that one actually computes:

Voi 7o .
A ?b'— - with respect to Pc.

0 ki
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A situation similar to the one in (4.3.6) is then obtained. How this should be elaborated for
practical application is a matter for further research — but the same applies to many other as-
pects of the present theory.

It seems to be that the connection with satellite altimetry, as sketched, has several points of
contact with the interesting studies by R. S. MATHER, although at first sight these contacts are
not clearly seen. See e.g. [IMATHER, 1978] and the references there given.

An interesting situation is when for P; the special points P, are chosen, e.g. in (4.3.2). This
means the transfer of potential from continent to continent {or island}, i.e. the now still missing
possibility to connect continental systems of spirit levelling. But perhaps the controversy be-
tween geodetic and oceanic levelling [FIscHER, 1975] might be clarified too. See also [BREN-
NECKE and GROTEN, 1977, p. 50].

II. For points on land one has already the disposal of results from spirit levelling and gravity
¥

measurement guaranteeing standard deviations of 1078. This certainly does not apply to -,
Yo

so that it is important to determine A
To
where A ( —
i
On the analogy of (4.3.3) one obtains for the contribution to the condition model:

ro
( ) This means that (4.2.10) has to be applied,
i

) has been eliminated from the right hand member.

r o n n
T EAG) e (7)) e
Fi n=2 4] ro
1 (—1) (Voj ’0) ( i ro)}
- = So;i 28 \— ——}+A {\— - — dQ; = 43.5
4 ff o8l { o 7 o 7 j=0) (439
P; in satellite orbit; Py, P on S ~ri~R
. VOi .. . « Lo
Then, with CD_ from spirit levelling, {“STOKES}:
0
A E_L"—) SR AyO R Ay,
P, i A oo °
— Vo i r d; r
/. sf)",,”{ (ﬂ - —"—) (—’ —°)} do; | (4.3.6)
¢, Ti ?, Ti

()

Vo
P,
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Practical application of (4.3.6) is only possible when (X, Y,Z ) are known or have been com-
puted, e.g. via (4.4.10) or (4.4.11).
Of course, one has to substitute the formulae (3.4.6) or (3.4.7) into (4.3.3.) — (4.3.6).

III. A problem is the sequence of application of (4.3.4) and (4.3.6), because the index j runs
over the whole surface of the earth. Perhaps the solution of this problem follows from the fol-
lowing rough estimates of standard deviations*):

standard deviation
Formula variate
at sea | onland
; ) -6 -8
(4.3.4) if A (In — 10 10
8o
r‘
A (ln —]) 10-7 10-6
ro
(> r
then | A (—’ -—°) 10 | 1076
b, i
V r
A (& _ _0) 1076
b, ¥
Vs
()
D,
w .
(4.3.6) |if (ﬁ) 1078
8olo
A (ln & ) 1078
8o
Vi r (> r
then | —2A ( o °) +A (—’ =2 10 | 10°®
b, 7 by T
Ve r
A (ﬁ _ _0) S 10-8
b, r
r
g
r;

*) One or two decimal places may be lost by deriving block means taking means over sub-domains, some
decimal places may be gained by the smoothing properties of the integral formulae IMEISSL, 19711.
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This indicates that first (4.3.4) should be {regionally} applied to a sea area with an adjacent
strip of land, and afterwards (4.3.6) should be {regionally} applied to a land area with an adja-
cent strip of sea.

4.4 Constants

I. Start from Green’s second integral formula [MA G N1z K1 et al, 1964, p. 52]:

[ffwsy, - VkVZUk)de-ff(, 3 Vi gu) ds; . . . (44)

earth

Choose: U= 1, V = gravitational potential,

hence: V?*U=0,V?V=—4n %A;/[

Then, from (4.4.1) {compare the derivation of (1.7.1)}:
_ 1 Lo (LYY
_4 ff ( 8)1/) dS/_47rffr/ (_? dgy; =
1

<I>oro ffro—’-odsz...............(4.4.2)

For linearization, apply the same device asin (4.1.3) — (4.1.8) {Po, P; on S or $*}:

J

A (%ro) w7 ( ?) a | . (443)

which agrees with the series in (3.1.6) and (3.1.7). For the computation the formula concerned
still has to be substituted into (3.4.6) or (3.4.7). One needs gravity- and length ratios, and
(X¢, Y ). A practical inconvenience is that integration extends over the whole earth.

But (4.4.3) can also be written in the following form:

s () g ()
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and (4.2.10) can be substituted into this. This gives {compare [HM, (2-188)]}:

(4.4.4)

One now needs levelling- and gravity measurements and also (X¢, Y, 7).

With

~ 1 one obtains:
Dyrg

A ( M ) =A(ln —M—) = A(In M¥) — Adln &2
boro Poro

in which the x-sign serves as a reminder that these quantities have to be defined in some system
{choice of man-made units}.
The application of section 3.4 gives {compare [HM, p. 107]}:

A(ln M¥) = A ((I)M ) + A(In g cos {ho,ro}) +2A (Inrg) +

olo
@R g (4.45")
8o cos {hg.ro}
If so desired, one can write M as kM, k being the gravitational constant:
A(ln M*)=A(InM* — A(lnk*. . . . . . . . . . . . . . (445"

I1. Start from (4.1.7):
V V r d; r
A ( 0) =10 ( °’~—9) A (—’ v-ﬁ) 4
®, Tj by Toj

and substitute (4.2.9) and (1.4.3) into this. This gives a formula of the same type as (4.4.3):

Vo R (n+1) } @; 7o
(15:,) " ff{ . (%r,-) Y
_____________________________________________ (4.4.6)

n
n+1)  Q 2n+ 1 E ORI .
Soij _,El mtl (ro Yoy > To=r =R
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Write (4.1.7) as:

s () a2 3)
R R R IR

and substitute (4.2.10) and (1.4.3) into this. This gives a formula of the same type as (4.4.4)
{compare [HM, (2, 189)]}:

>

V. _ Voi r o ; r
w8 fored e s () e (7))
&, o 4 ; ®, ri &, ri

With =2 ~ 1 one obtains:
D,

0

A Vo Vo * *
o Alln go =A(ln V) — A(ln 9F)
Application of section 3.4 gives {compare [HM, p. 107]}:

A(ln V) = Y * * w’R (1)
(InV3H=A +A(In g cos 4hy,70}) + A(ln rg) - ————— Y,
Po go €os {ho, 7o }

HNI.  Start again from (4.4.1), but now choose for U successive point coordinates X,Y,Z:

X,
I ( ) 95— [, < arre

earth

X, .
X;
or, with — ar~ = —-/ and for V= 1: ff dS 0, one obtains:

MXc= o ff [V0,+<I>Jd£2

M i XYy Y
— .= = — a; . . . . . . . (449
dory R 47Tff I [qpo ‘bo ( )

~ 1, and X unknown, hence Xgppr =0and AX¢ = X,

Now
oo

(4.4.8)

(4.4.7)
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Yo Ze
Then it follows from (4.4.9) {analogous for = and z ¥

I

X, ot X Voj o
_Cszi_/__/ A(ﬂ,_.o_) + A (__/_ ,4_0) g
R 4m ro R 1 P, ¥ b, T

(4.4.10)

According to (3.4.6), no terms with w?* occur in (4.4.10).

X
Now substitute (4.2.9) in (4.4.10). It should be noted that r—/ is one of the first degree terms.

i
Hence, in our notation, we have for n = 1:

1 gﬁ (1) (1) 1 X
4nff2 v ViV dey =5 k

x

and a formula of the same type as (4.4.3) and (4.4.6) results:

Xe R 1 3 X TR
i 4nf ETA(;OTI_) le} (4.4.11)
. . . (1) . . o, 7o .
It is remarkable in this formula that the Y '-term is used in A D ) whereas in cur-
0 i

rent theory it is, in contrast, tried to suppress this term.

Substitution of (4.2.10) into (4.4.10) does not make sense because in doing so one introduces

a Y(l)-term, which has to be determined via (X, Y, Z¢).

With (3.3.2) and (3.3.4) one obtains from (4.4.11), with

Xi X +ﬁﬁ+ﬁ Z =y y/f(l)
r; r/» ¥ r/ ¥ r/-

(1) _ 1) _ 5 L g (1) (1) (ﬂ B 2) ) ;
N ffz vy a P dgy, (44.12)
and hence:
ro R @M R (1)} 1 R 3 { R a1 R ,(1)} ( ro)
Do) R Ay _ R L [[R3IR p Ry A (2L 20) 4q
7 { r; AY; To aY, 47rf rp 2l 0t rg ° rj /
, an important formula, in view of (4.2.9). (4.4.12")
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It remains an open question, to what extent the formulae derived in this section have practical

significance.

From the previous sections it is evident that M {or M} and V, are derived quantities which do
not have to occur in the adjustment model. The same does not apply to (X¢, Y, Z): they will

have to be computed in some way.

4.5 Combination of Poisson- and Green integrals

I. Write (3.2.5) as:

1 v .
AMXgi= 4_7TffAX0/ (_8ii)r—:/ d; , P;outside S* .

1 ri
; —— A—&n /
For i - 0: 47TffAX0,( B0j) 7L 48 =0

. (4.5.1)

Therefore, on the analogy of the kernel (4.1.9), (4.5.1) can also be written as {series from

(1.6.1)}

n
_hog i o (7 1)
= 'El (2n+1) { ("i Y; ro Y,

(4.5.2)

q)i ro
A _— _)AXOI

b, ri
A (%, ’_o) oo (1)

(I)O ri rl (b()

1
AXo; 47f [ AXo; Poy; A9y
0 r;
Poij = (=89) 7 = 7= (Boj) 7=
[/ 1]

1 (1)
Yf

P; outside S*;r; ~ R
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II. Substitute the difference equation (4.2.10) into the first relation of (4.5.2). This gives:

Yoo _ro\ _ro=ri (Vo) _ro ﬁAy(l)_ﬁAy(l)}+

1 i
1 Vok "o Dy ) } (—1) _
+Eff|:{fm(% “rk) +A (%_rk 4nf O Py dey | dey =
ro | R a (1)} 1 (n—l){ (Vok ro) (d)k ro) }
SRR Ay _R Ay s ok = _ 2L 40
{ o ° ff 0k @, ®, Tk ,

ri r Tk

or again (4.2.10). This does not offer any new point of view.

III. Now substitute (4.2.10) into the second relation of (4.5.2). This gives, in view of the pre-

ceding:
®; Voj To
A (5; - r,) f 2A (——7) Py, AL +
1 Voiji 7o ®;  ro
o ff{—2A (% - rf) A (% _T) Bys,; 4 =
r
=22 { Ray®_R AYél)}+
r; r; To
i n-1) VO]' ro q)/ ro
Y an ff{ *Sois °”}{—2A (?0—7 (cpo _7,-—) Y
or:

d; r r
A (—’ ——°) -2—°{5 ay® R AYé”}:
i i o

L L (B ) (2 m)) g,
o D 7 D 7 !

7
e (4.5.3)

‘n+1 R & (+D@n+1) {(5)" y® (ﬁ)" Y:(n)}y.,(n)

Sosj T onma n—1 r; i To 0 /

(4.5.3) is only meaningful for P; outside S*, because only in that case (4.5.2) is valid.

The Poisson integral we started from is used in the form (3.2.5") for “the downward continua-
tion of gravity anomalies” [HM, section 8-10], among other things for the reduction of gravity
measured on board an aircraft. After this, Stokes’ integral is applied.
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Perhaps (4.5.3) can be applied to this situation, according to (3.4.6) one has to substitute into

(4.5.3):
P, r r ; r;
A (_:7_0) :—O{A(lnﬂ) +2A(1n—’)} b (459
b, T ri 8o To

Similar to what was done with (4.3.1), we substitute in (4.5.4), with 1; <7, *)

_ — appr
r I r,-+(1+A)\h)h,- “In ry h,’ (h,) A)\h

In— =In — = = (455"
ro ro ) r; ri
The last term is small and can again be taken to be non-stochastic {or zero}. Then:
QP’ (in aircraft)
hy
Afl i A (l 7’ ) . Ahi 5 5/1
(nr—o)— nro +(7i)app,. T (R

If in the aircraft /; is measured as well as g; then it follows from (4.5.4) and (4.5.5) that with
respect to the precision one must have:

If: o (1nﬁ) = 1077, then: 6, ~3R1077 ~3:10°" m
8o

At present one only attains p = 5 or 6, too low a precision, so that these considerations have a

theoretical character for the time being.

If one now assumes a limited number of levelling- and gravity measurements on S* in and around

the area considered, togetlier with a great number of measurements of g; and h; on board of the

aircraft, then (4.5.3), with substitution of (4.5.4) and (4.5.5), makes it possible to determine

7 -
Aln (r—l ) for points P; on $*.
0

Because (3.2.5") is linearly independent of (3.2.5), (4.5.3) is linearly independent of (4.2.10).
Also here, the form of the kernel makes regional application possible.

*) The relatively small values for /7 imply that the corrections of section 4.6 can be neglected.
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4.6 Appendix. Corrections in satellite altimetry

The content of the text written in relation with (4.3.1) and (4.3.2) has to be formulated a bit
sharper. See [GoraLAPILLAIL, 1974] and [BLaHA, 1977]. The reason is that in figure 4.3-1
hj LS, so that A; is not exactly in line with 7;.

Fig. 4.6-1

I. Consider the situation in figure 4.6.-1. The angles § are small, hence

5, sin b, h h
5, “sns, Tl
8=81+82:«(l+—hr—) 5,
r h
512’-—_{:715 522m5 R XN )

7=hcosb, +rcosd,

:r+h~%(h{51}2 +r{8,}*)

r

2
r+h 8

~r+h—%h

or:

r

r:r_—h(l—% Py

) | . .46
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According to the above-mentioned publications, the difference between geographic and geo-
centric latitudes gives a sufficient estimate for §. Or {with ¢ one of these types of latitude}:

S~zetsin2p . . . . . . . . . . . . . . . .. .. .463)

=

or for the Geodetic Reference System 1967:

§~000335sin20512° - . . . . L L oL L. L L. (463"
or withr ~6.410° mand 2 ~ 10° m [BLaHA, 1977]:

r— (F-hy~h} r—:—h 82 ~(48sin 20)m . . . . . . . . . .(464)
The influence of deviations of the vertical up to 1’ is consequently at most (%2)2 of this value,
and therefore negligible with respect to the accuracy of measurement {> 0.1 m}.
The correction (4.6.4) can therefore be computed completely from approximate values, so that
from (4.6.2) follows:

Ar=AFr —Ah. . . . . . . . . L. ... L4065

to be used in (4.3.1") or (4.3.2").

The situation in figure 4.6-1 is met at points on or near offshore constructions, whose coor-
dinates have been determined and which are connected to the shore by levelling, (4.3.2).

-
I1. A possibly different situation is met at points P; in the open sea, where the direction of r is
not clearly fixed. Here, one can perhaps define P; better as the intercept of S with the straight
line Pys-satellite.




78 PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 6, NO. 4

Consider S locally as a sphere with radius r, see figure 4.6-2. Then we have, with (4.6.1):

sin§ _ r+h
sin§,

R

5
51

~

r
. (4.6.6)
32=§—61:’62
h2=r* +(r+h)> — 2r (r+h) cos$,
h? — h? h h
~ 22(1 7) -2(1+7) (1—5{52}2)
7 2
En b (108) () s
r r r r+h
h—h_h2r+h6..................(4.6.7)
which is a correction term similar to (4.6.4).
Or with, see figure 4.6-2:
r=r-h
we have:
raF-n (141 L 52 (4.6.8)
~ 2 T4
again with:
Ar' = AF— Ak

to be used in (4.3.1"); the prime in ¥ may be omitted.
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5. TENTATIVE CONSIDERATIONS CONCERNING GREEN INTEGRALS

5.1 Elimination of discontinuities

When differentiating (1.7.4) with respect to r;, one is confronted with the differentiation of the
potentials of a double layer and a single layer. K. R. KocH has studied this problem thoroughly
[KocH, 19672, 1967°]; his results can be used for a test.

The question then arises whether the derivations of the difference equations in chapter 4 are
sufficiently rigorous, because in fact there one is faced with the same problem.

The elegant way in which M. S. MoLODENSKII has approached this problem for a spherical
body IMoLODENSKI, 1958, p. 18], IMOLODENSKIIL et al, 1962, pp. 45-48] raises the ques-
tion whether this line of thought cannot be generalized for the earth as a non-spherical body*).
For this, the form of the kernel (4.1.9) may indicate the direction to be taken, but in the first
instance one has to abstain from expansions with spherical harmonics if the formulae are to
remain valid outside and on S {or S*}.

Starting from (1.7.5) with (1.7.6), one obtains:

1 1+5ij ri r,-
Vs 4 ff[Vv‘ oyt |

1+6; 7 , 0 1 ov; cos (r;,1;)
~-3—— ::ri a— (—) (bi:_riF dQ,:—T——dS,-
ij 7j i j ri

(5.1.1)

In (5.1.1.), the discontinuity of the double layer for P; from “outside S” to “on S’ has already
been eliminated by the coefficient Vj;. It will now be tried to eliminate in an analogous way the
discontinuity of the derivative of the smgle layer with respect to r; for the same situation.

N : : . . .. cos(r.n)
For this purpose, consider the potential of the single layer with density ———— for P; out-
side oron S: /

A= —ff ff 1 cos(r,,n,) (5.12

i r,, P e e e e .. 2 (512
Then the following is valid:
i _
A - Ao A, 4ﬂ ff(/ T rOI)dQ,—O. (513

*) But sece section 1.8
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For a spherical surface with radius R we have according to (1.6.1):

R A4 o
»
T AO T

> (5.1.4)

+ ﬁ{(i—%ﬁ%)d@=o

r s
sphere v !

which demonstrates the meaning of the kernel (4.1.9).

Taking account of (5.1.3), which permits the replacement of ®; by ®; as a coefficient, it follows
from (5.1.1) for P; outside or on S that:

Ai 1 1 +8i]' r]- Ai 1 +50]' r]-
e I

(5.1.5)

by which the objective has been reached.
It is interesting to note the connection with section 4.1. With V;; = Vy; — Vo, (5.1.5) becomes,
compare (4.1.8):

1 1 oA T ) X
— iy | (LS8 L) de . L s
* 4n ff[ 2V0] +¢]:| ( r,-,- Ao r0,~ 1 (5 1 6)

In the second term of the first integral one recognizes, for the situation (5.1.4), the kernel Fy;;;
from (4.5.2). Strictly speaking the device from (4.1.4) — (4.1.6) will have to be applied to
(5.1.5), with a derivation like the one for (5.1.6). The result is then again (4.1.8).

5.2 “Inverse” Green integrals

Differentiate (5.1.5) with respect to r; for P; outside S* and put:

av; 0A; A; B; fo

—F; ? 0, — W =B, , with — ~— =~ 5.2.1)
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This gives, with (1.5.1):

B; 1 1+6; r \: 1+6; 1-38;) r;
b, - — = — . v 1y, A i A B WY
YA, Vo 4n ffl:q)’ 2 Yy {(r,-j) M) 2 } ri *
LB, Ledy i+r,.———’(—’_—’ _1) N
A, Y2 Yoj orp \ry Ao roj
1—511 ri Bi r]'
+ Oy (—2—7,;*:47; ;0—1) a; . . (522)

ad;
The term with —5;1 vanishes, in view of (5.1.3). Consequently, there are no difficulties when P;
i

passes on to S*,

Now substract one half times (5.1.5) from (5.2.2):

oty P Ay
i 271 ZA() 0
1 1+8; 7 B\ 3 i
- 4 ff l:q)l 2 ri]- N Vl] r,-,- B Z 81](1 +6l]) r_l/ +
ZBi_Ai 1+80]' rj { 1 rl- ZBI-*A,' r]-
+ 24, Voj ) r— +q>ij 5(—6,-]-) 7'_,] - _ﬁo_ 7’_0/_ de
(5.2.3)

The discontinuities in the situation i < j vanish because of the coefficients V; and ;. If this is
also assumed for B;, ®; can be replaced by ®;. With V, from (4.1.1) we then obtain for (5.2.3):

®; —

(8] Ll

rij

v (2) 22 2 |ag, | 29
j i 7 % iy, j L

For points P; and P; on a spherical surface with centre Py; and radius R {r; = r; = R; §; = O},

and with (1.7.1), one obtains the relation of MOLODENSK1I {see also [HM, (1-97)]and [KocH,
1967°, p. 19]}:

1 1+8; 1 i
vi= o [ [‘I”'—z_ #30 (8)L +

v, Vi

1 Vi
5 TR Con ff —13 R? d€; | P; on sphere Y E )
! sphere ' ¥
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Now apply to (5.2.4) the device from (4.1.4) — (4.1.6):
SN
o, ri ®, i
1 1+8; ( d; ro) . ( b, ro) 7
= —£ 22} ylspa (2L -2 M TN
4n ffl: 2 4 P, ry +2(5) by Fi i "
1 Voi  To Voj ro) { ( v )2 3 7
= o) a2 L) 25,148, > L do;
Ly Jf[A (‘Do . ) A (‘Do r, P 2 85 (1+8;) P
The first integral in the right hand member becomes, with (1.7.1) and (3.2.5"):
1A (& - Q)
- P, i

r
Now subtract (— —0) times the equation applied to i — 0. Then one obtains for P; and P,

r;

outside or on S*:
A (ﬂ_ﬁ) _Ja (E_g) Cre-n (5)} _
b, r; b, r; 7 ®,
e (8) s (2 () - du)
4 AN\—-7) -A N\ Ly 25,1488 L+
4n ff |:{ ((I)O v (I)O r/. ri/ 4 if ( [/) ri/

VO/ o { r/' 2 3 } o r/'
A (2o (L) S 26, (1+80)p = L |de
' (‘bo ’/) (’o/) e L Al

9=

(5.2.6)

From the form of the left hand member it follows that (5.2.6) can neither be considered as the
inverse relation of (4.1.8), nor as the inverse relation of (4.2.9) or (4.2.10).

. r r
In left- and right hand member there occur the difference quantities A(—O) and A(—O)
Voi Voi i Fi
respectively, and A (cp—l) and A((bol ) respectively, so that the application gives no ad-
0 0
vantage, neither on land nor at sea {compare section 4.3}. Also in view of the coefficients the
application of (5.2.6) is not attractive.

From the derivation of (5.2.6) follows:

_) 3 /K] (L)
{( P 4 85 (1 +5y) P =1 ar, \1; +57
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Because (5.2.6) is valid for P; outside S*, the series (1.6.1) may be used for this situation:

{(r%)z - % 85 (1 +8i)} r’_/

i

_) 35 }_ (_ 3 }
{(r,,- 2 85 (1+8y) yt o — 7 80i (1+80)) T

n n
oo Y;: r;
T @n+1)g {(—r’) Yo (—’) Y(’)(")}Yj’(") (5.2.7"
= i

ro

n+1
ke n iy 1) (1) '
=-X (n+1)3 (r—i) vy, (5.2.7"

(5.2.7) into (5.2.6) gives {P; outside S*; r; ~ R}:
S8 g (n) = ()
(I)O r; CI)O r; Y CI)O
VO] ro
ff QOt,/ A (—0 - r—) de

F (5.2.8)
In which it is possible to replace:

Voi r Voi r Yo — 1 V
A(_OL_L) by:A(_w__O)_o /A(_O)
by I d Fj 4] b,

0

Write (4.2.9) as:
Voi r o —F; V
A (—ﬂ——i)— LA (—9) = AXy;
(bO ri ri q)()

1 (n+1)
AXoi= 5 f] sei” AXopdgy +

(n+1) Q1o
and substitute (5.2.8). The result is:

AXoi = an ff oi;j AXoj €Y

or the first Poisson integral in (4.5.2).
Although this derivation is only valid for P; outside S*, the conclusion seems acceptable that
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(5.2.6) is linearly dependent on (4.2.9) {and hence on (4.2.10)} so that also for this reason one
can renounce the use of (5.2.6).

In geodetic literature {e.g. [KocH, 1967°]} the problem treated here is coupled with the deri-
vation of formulae for the deflection of the vertical, the small angle between the direction of
the vertical {plumb line} and the ellipsoidal normal of a reference ellipsoid. In the first approxi-
mation one obtains Vening Meinesz’s formulae, e g. by differentiating Stokes’ formula [HM, sec-
tion 2-22]. Because of the form of the left hand member of our corresponding formula (4.2.10),
this differentiation does not make sense in our case.

Besides, we have started from a model of approximate values in which a reference ellipsoid is
not essential any more. Because of this, the significance of the concept “deflection of the verti-
cal” vanishes. In spatial geometric quaternion theory this concept does not occur either; astro-
nomical observations are included in this theory and have the task to strengthen the relative
orientations of local coordinate systems.

5.3 First and second derivatives of the gravitational potential

av;

Apply (1.74) — (1.7.6) to the harmonic function ®; = r,-(— Tl) . Now it is important to
o; Ti

note what was said in section 1.7 on observations of —~ on S* and not on {but near} S. Simi-

ar;
j
lar problems as in section 5.1 are met, so that in choosing the kernel one has to take account of
this. The result is {see section 3.1}:

_ L i) 1A% | e
%= [f [,, o (r,-/ w863
1+8 atb! r/
q)——ﬂ [ +r/(—W)};/de
( aq>,) d 3V, v, , 3V,
r,- 46—0 = I‘/'*a-r/ (r/ ar/) / a r —ar/? =~(I)/-+‘I’/'

1+8 3+8i/ r/'
rp-—jf[ Ly +\1/,]7d§2,

Application of the device (4.1.4) — (4.1.6) gives:
®; [1+8; o 1 o 2
A (_' ) — ¥ A (_’ _ _) Lo s )A (_/ _9) el .
(I)o rl /] 2 (DO ri + 2( l/) (I) r/ Vi dQ/ +
1 B 3 (I)/ ro) ( ‘I’! ro) r/
— - = — - — — -2 — dQ;
T ff 2 A ( b, rp +4 b, r; r f
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or, with (1.7.1) and (3.2.5):

b, r d; r W T ri
A (—’ 4—") - L If _3a (—’ ,j) +A (——’ ,2_0) Lag, (532
Po i an 2 D Fi D, Fi y
r
A better kernel is obtained by subtracting —r—o times (5.3.2) with i > 0 {see (4.1.9)}:
i
d; r 1 3 (<I>- ro
1 i 0 ]
2 - = - _ = 4 _ - +
28 (q;o r,-) 47rﬂ. [ 2A d, r,-)
LA (E 5 E) (ﬁ T 1) aQ, (533
@, Ui o T Ty
The last equations in (3.1.7) and (3.4.7) indicate a possible improvement by replacing ¥; by
Wo;, which is possible because of the kernel (4.1.9) in (5.3.3). For brevity we shall omit the
Fo — 1 ( \I/O)
term A | —
ki o
Then from (5.3.3) the following integral equation is obtained:
4

P

d; ¥ b; r Poi r 1 ¥
A(_'__O)=L EA(_/__O) +A (4‘_/*2_") (_/__0
&, r 47 2 &, g ®, ¥ Fi i

P; outside or on S*; Py, P,- onS8* ro ~r,~R

|-

(5.3.4)

Like in section (4.1), one can arrive at different solutions. For example, one can eliminate Y.

r
terms under the integral sign {and, curiously, one then also eliminates A(—O) }, or with a view

¥,
j
to (5.4.3) one can choose another possibility. The following derivation serves the purpose:

3, (ﬂ __’2)
2 Py 4
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With the series expansion (3.1.7") one then obtains the solutions {compare (4.2.9) and (4.2.10)}:

d; r r
A (—’ —°) —2-> {5 ay® - R Ayg”} =

ri o

d, - r; i
ro = R " ) (R)" (n)}
0 LS ™ _ (2} Ay -
or: P nZ=I2 (n+1) (’i) AY; Py AY,
—iffs‘"“) ~3A ?L—ﬁ) +A (fo—’—zﬁ)} e (5.3.5)
= . 067 (I>0 rj (I)O rj 'y .

n
-1y R 2 2n+l 5)" ) (5) ,(n>}y,(n>
Sosj = r; ,,zz:g n—1 { (r,- f 1o Yo i

P; outside, on {or inside?} $*; Py, P; on S*;ry, r; ~R

A (ﬁ -2) _
b, i

n
ro  JR o R <1>} noog (5)" AY® (5) Ay(")} 2| osse
or: 2 {’i AY; - Py AY, P+ - n§2 (n+1) Py =\ N (5.3.6)
L L oy )
=4ﬂffsm},{ 2A(O-rl) (0 27)p a9y

n
@ R = 2n+1 RY" . R O
som =— 2 {(—- Y; ") - |— Y, Yj

These are only examples of possible solutions, therefore we shall not discuss further interpreta-
tion and application {compare section 4.3}.

(4.1.8) and (5.3.4) must be considered as being linearly independent, also because different
quantities occur. Therefore one may form combinations of these integral equations, e.g. to elim-
inate A ( (—D'— - 2) .
Py Ui
Like in section 4.5, it is also possible to form combinations of (5.3.5) or (5.3.6) with the third
Poisson integral in (4.5.2). Thus a number of possibilities is created in practice.
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¥
5.4 The “inverse” Green integral. The constant A ( ?0)
(V]

The gist of the considerations in sections 5.1 and 5.2 is that (5.3.1) can be differentiated with
respect to r; without further preface. On the analogy of (5.2.4), one obtains:

8<I>,-) 1 ) ( a<I>,~) 1+8; 1 1( aq’/) ( )’f
(o) s | () S5 E et (o g) (o) s

i\ o3 7
_(Dii {(ri]') _-4—55(1'}'51']')} r—l/]dﬂl

Or again with:

1 - L L4+8; 17 4 M
(—®; +¥,) — 3P = ﬂ‘ [(‘(I’i +¥,) 2 7 +3 (P + W) (=5y) i +

4
3 r; (5.4.1)
g i
For points #; and #; on a spherical surface with centre Py; and radius R{r; =r; = R; §; = 0}, one
obtains with (17.1) the second relation of MoLoDENSKI1 {IMoLODENSKI, 1958, (1.6)],
[MoLopEeNskil etal, 1962, (111.1.10)], [HM, (2-217)1}:
1 R)?
20+, = E;r'ff (—®;) (7:;) de;
av; v - R? 3*V; . o <R (aV,- aV,-)
R e = A C
2 aV, 32 Vi 1 1 aVI aV, ) 2
2 = — - = - — | P 4.
R or, + ar,? o ff 3 ( a7, o, R* dQ; | P; on sphere (5.4.2)
sphere U

The application of the device (4.1.4) — (4.1.6) to (5.4.1), with a further elaboration as for
(5.2.6) then gives, for P; outside or on S*:
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(ST

Wy, 7 ro —- ¥ R4 D, r
() s () w (22}
P, r Fi ®, D, r
1 b, 7o b, ro) {(r,-)2 3 v
== NN ALY YN B Al Sy 25,4800 Lo+
47 ff l:{ ((I)O r’.) ((DO ¥ vy 4 q( +6y) vy
®  r rn\* 3 ro fj
+A (—’——){(-’—) -—5-1+5}——— sy,
by, ¥ roj 4 0i ( o/) rp roj /

t -

One might consider (5.4.3) as the inverse of (5.3.6).

(5.4.3)

(5.4.3) substituted into (5.3.6) gives with (5.2.7) for P; outside S*:

®; Yo 1 ) 1 b, 1o

(o - %) =3l st | & Moo (?{0 “5r) o e
1 Py 1o

ol v (G- 32) oo

or the second Poisson integral in (4.5.2). This indicates a linear dependence between (5.4.3) and
(5.3.6), so that the use of (5.4.3) can be renounced*) {compare what was said to (5.2.6)}.

L)
The constant A TI)_

0

d r
Supplementary to section 4.4, it follows from (5.4.1) for i » O with A (—0) =A (—0) =0
and 64; ~ 0 when the region around #; is horizontal and plane:

PoonS* ; ri=rg=R | bpi=-t—— | §p;=0?

¥, 1. (fb ro) (r- )2 3 r.
1 ) - = . 4 2 1 _ 2 . ) i
ZA ( q)o) Py ff { A (I)O ri rOi 4 50/ (1 + 50/) "0/‘ dQ/

o : 1 &7
Also in this integral the singular case of — for j - 0 vanishes because A (—/ - —0) vanishes

. . . ¥o; C r;:
for this situation. 0/ 0 j

*) Unless perhaps for gradiometer measurements from spacecraft.

(5.4.4)
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Remark

An attempt to establish a connection between the formulae in this section and e.g. formula
(1046) in [Pick et al, 1973] has remained unsuccessful.

5.5 Concluding remarks on Poisson- and Green integrals

In chapters 3-5 it has been tried to illuminate the background and the origin of Poisson- and
Green integrals which form the core of gravimetric geodesy. The approach followed should be
improved mathematically, and it will also be necessary to make extensions with a view to new
instrumentation. In the computing model, refinements are possible [Mor1TZ, 1974].

But is has been shown that systems of difference equations are obtained that can be trans-
formed according to the requirements following from the measurements available, and treated
in the same way as difference equations pertaining to terrestrial or spatial networks.

An important aspect is also the establishment of a kernel that permits regional application of
Poisson- and Green integrals. The Stokes-function S((;’,-;_]- 1) is given a more modest task restricted
to land areas. The corresponding task for sea areas is taken over by the sum-function S((;I:jl). But
whereas the computation of the mass of the earth is to be considered as no more than an appen-
dix to the adjustment computations, the coordinates (X, Y, Z) of the centre of mass of the
earth will as a rule be an essential part of the computing problem. Although the indicated cou-
pling of satellite and terrestrial data is interesting, it must once more be pointed out that a fur-
ther analysis of dynamic satellite methods is necessary.

The considerations in chapter 5 are more dubious. It has been tried to find a connected general-

ization of the two so-called inverse relations of Molodenskii. The preference for other relations
ty

has been argued. Nevertheless, the formulae with %—2— should be considered as the result of
r

“toying” with the theory. But it is essential that Vening Meinesz’s formulae do not find a place

in the theory designed.
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6. ADDITIONAL CONSIDERATIONS

6.1 Free air reduction and geoid

From spirit levelling follows:

Woi 1 'E:l
ro8o T o080 j=0 81 yjs1

Wo; and ;. are small in comparison with 7 and g, hence {sce (2.6.7)}:

AWy, [

roZo = — P ]§0 g]]+1 Ah]',]'+1 e e e e e e e e e e (6.11)

Choose the fictitious auxiliary point Py, on the plumb line of P; and in the equipotential sur-
face through P, ; see figure 6.1-1. Then we have:

i-1
EO Gijr1 Mjar =8 . & <& <&
i—1 _ ’
and: j?o ij+1 Ah,-,/+1=g,~Ah,~',- e e e e e e e e e e e (612)
with reasonable approximation: & ~gig - . . . . . . . . . . . . . .(6.1.2"9
rg; P; r g ro\ ?
Further: L A4 , hence: — =~ (—0) Ce e (612
ro&o D, ri 8o r

(6.1.1) with (6.1.2) gives:
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—AWOi ~— u —Ahi’i :-fg Aln (1 — h)
ro8o o r ry

hy i ,
ri>ry +hi'i=ri' l+—— » hence:

ry
hy i
ry >~ F; 1 '—"‘r—
X

With (6.1.3) and (6.1.4) one obtains:
AWy 1 ¥ I r hy

L i A (m—') ~ 2 A{ln—'— (1—#)}
7080 r; ro ri ro ry

AWy; 7 r; r ry
or: o +—3A (ln—') :;2 A(ln—')
. ’

With the well-known approximation formula [HM, (2-150)]:

2hy i
& ~& \1— —— » or

ry

AWy 7 g r ;
or: -2 °’+—f’A(ln—') :7"A(1n§)
i
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. (6.1.3)

(6.1.4)

. (6.1.5)

. (6.1.6)

. (6.1.7)

The formulae (6.1.5) and (6.1.7) might be interpreted as a “free air reduction” of #; and g; to ry

and gy .

If the difference between Py, and P {?(1)-terms} is neglected, then from (3.4.6) — (3.4.8),
together with (6.1.5) and (6.1.7) follows {see also the remarkable resemblance with the geo-

metrical interpretation of Molodenskii’s approximate solution in [HM, section 8-8]}:
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P,PoonS* ; ri~rp~R
V ¥ AW, r r i
A (ﬁ~—0)~ A= (m—’):—"(Am—’)
b, F; oo 7 Ty Fi Fo
. (6.1.8)
oA (Ko_i_’_O) (& _ﬁ) _
b, Fi ° T
AW, ¥ : 4 .
SO Retid LA (1n§) ~2° (Alng_’)
Fofo Fi &o i &o

In (6.1.8), one recognizes the difference quantities occurring in (4.2.10). The influence of AW,;
may therefore be interpreted as a “free air reduction”, but this is only an interpretation by
which the formulae can be compared with the conventional theory. In reality one does not re-
duce; AW,; is, as a stochastic observational quantity, part of the computing process. In this way
the place and the meaning of levelling, gravity measurement and geometric elements in the
theory are clear and operational.

In the interpretation mentioned, it is remarkable that the “free air reduction” is done with re-
spect to an equipotential surface through the datum point P, {see figure 6.1-1}. This equipo-
tential surface thus assumes the task of the “geoid” in conventional theory. But if a transition
to another datum point is made, then the “free air reduction” is automatically done with re-
spect to the equipotential surface through the new datum point. The “geoid” therefore moves
along with the datum point'

The concept of “geoid” is therefore confusing, and since it can be avoided it is better to elimi-
nate it from the theory. In applications at sea {see (4.2.9)}, the above-mentioned interpretation
is not possible anyway, and one would need far-fetched arguments to give the “geoid” a place
in the theory.

6.2 The fundamental equation of physical geodesy

We follow the treatment given in [HM, section 2-13]. But with a slight difference, in order to be
able to leave remaining influences of the centrifugal potential on (W; — Wiappr) out of considera-

tion {sections 1.7 and 3.4}. Instead, we start from:

ov;

_y _ pwer . 9F
AVi=Vi=V, ’ or; say

In the coordinate system of section 1.3, the point Piappr can be represented by (Xiappr, Y,.appr,
z,

13
The following quantities pertain to this point:

appr appr appr appr appr appr
r; .V Y GIPPTIPPT_ QPP L (6.2.2)
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According to chapter 4 one obtains by measurements and computations:

r=rwAr, V=V AV, L =y Ay . L (6.23)

i i 1 il

which may be assigned to a point P;, obtained by moving Pf PPT over a distance Ar; along the
line Py PiPP". See figure 6.2-1.

appr appr appr appr
REEer [ oo, v, soor, g 3vor)

Fig. 6.2-1

But within the model of approximate values, one can also from (6.2.2) by Taylor’s series, com-
pute for P;:

appr
Pt VP4 (%) Ar; = VIPPT IR A

i ar, i i
app > (6.2.4)
' 3. r ., appr
’Yidppr + (a—?) Ar; =~ 7iappr -2 (%) Ar;
1 1
L
With (6.2.3) and (6.2.4) one thereby obtains in P; the difference quantities:
appr appr _ appr
Ti=(SI§=Vi—{VI. - Ari}—AVi+’yi Ar;
(6.2.5")
i appr v: appr
5y, =7, - {7;“"”;2 (7’) Ari}=A7i+2 (r—’) Ar,
{ H
From (6.2.5") with (6.2.4):
aT; Vi AN 3\ 5 5"
671.—=——‘a—r;‘+('a—ri) (ari) Arp=8v; . . . . . .(6.2.57)

Further omitting the suffix “appr’” in the coefficients of difference quantities, it follows from
(6.2.5) with ®; = y;r;:
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T; AV,
— =— +A(nr)
d; P
oT, U (6.2.6)
(5
— = A(lnv;) + 2A(In ;) = A(In ®;) + A(In 7;)
i J
Hence also:

T,
&, c1>0 @ b B, b

) ( aTO)
Ti or d \To% @, .
: d —°—A(1n—‘) +A(1ni)

D, Yo
Multiplication by — =~ — gives, with (3.4.8):
b, T

Tu_nnlo y(fu_m) roon, (bo)
b, 7 b, ®, 7 b,

) ) L
L or "o 37 ro—r "o 1 A (& 2) (6.2.7)
r; ®, ®, Ti

Do

L

The introduction of quantities like in (6.2.5) is unusual in geodetic adjustment problems, and it
is not necessary either, in view of (6.2.7), where the more usual difference quantities from

chapter 3 and 4 occur.
For a further comparison with existing literature, Ar; from the second equation of (6.2.6) can

be eliminated by means of the first equation. After some derivations one obtains

T, - AV,
A= A0 (6.2.8)
Yi
7i= ari ri ’ -
T
=5 [HM,

In spherical approximation, (6.2.8) can be compared with “Bruns’s formula
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o 2.
r

(2-144)}, and (6.2.9) with the “fundamental equation of physical geodesy” Ag = — S

[HM, (2-154)].
The difference in the formulae is due to the quantity AV;. In the literature the following reason-

i ppr

. . . . - a
ing is made: Starting from observations or estimates r;, T}, 55 0 Y V; one choosesr;  and
i

hence P?ppr in such a way that prpr = V. Then the estimate AV, = 0. Essentially, this is a very
difficult problem of computing technique, and it does not fit well in our line of thought.

The set of points P{*P" thus found is called “telluroid”. But the estimates V; and hence the
points Piapw and the telluroid belong to one sample. If this were done for all possible samples,
the approximate values and also the telluroid would become stochastic, which is impractical
and therefore should be rejected.

If one sticks to the procedure described, i.e. to one sample, then for any other sample AV; # 0,
hence for variates AV; # 0 and for mean values £ {AV;} # 0. This means that neither “Bruns’s
formula” nor the “fundamental equation of physical geodesy” may be considered as model
laws. One should replace them by e.g. (6.2.8) and (6.2.9), but these equations, according to
(6.2.7), only mean a translation of quantities T into quantities } and r, as indicated in (6.2.7)*).
In the previous chapters it has been shown that the equations concerned are not necessary either.
When they are eliminated from the theory this implies also the elimination of “the determina-
tion of T as a third boundary-value problem of potential theory” [HM, p. 86].

6.3 Green integrals and surface layer

Now that in section 6.2 the “fundamental equation of physical geodesy’ has been eliminated
from the theory, and is no more acceptable as a boundary condition, the question arises whether
the so-called anomalous potential 7 may be expressed as the potential of a surface layer or coat-
ing on the earth’s surface [HM, sections 6-5, 8-6]. In section 6.2 it has been shown that T and

aoT
> are functions of Ar, AV and Ad. It is therefore logical to investigate whether the difference
r

equations found in chapter 4 can be seen as an equivalent of the above-mentioned problem.

For this investigation, write the integral equation (4.1.11) in the following form:

v, I 14 ]
A(_o_r__O)_° 'A(—O) = AXo,
®, i ri Do/
‘I)i ro -
- 20Xy + A (— -—) o AXy (631
(bo ¥ say g
— (54X,; + AXy)) + an ff(2AX0/ +AX0[) (’i/‘ B ri roj ) dQl ¥

+AX0i=0

*) I think that in principle this also applies to the sharpened approach in [IMORITZ, 1977, section 21, which
only came to my notice after this section had been written.
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or in a notation analogous to [HM, (8-32), (8-35)]:

v To ¥ =
=—27r¢0,~+%ff¢o/ (—17—0 —1) dQ; + AXy;

j Ti Toj
. (6.3.2)

1 —
doi = > (GAXo; + AXo:)

so that the equivalent presentation mentioned is indeed possible.
The solution of this integral is completely parallel to the solution of (4.1.11). One finds:

(3 AXo; + AXy;) = AXy; +

h { R n R (1) 1 n-1) , =
[r—{ AY! } - [ s AXOde,:, . (633)

+

W

1

in analogy with [HM, (8-37)]. But (6.3.3) is in fact the same result as (4.2.10), so that the use
of the surface layer method does not offer any advantage. In this respect the paper [KocH,
PorE, 1972] is curious, or would the course of thought of the authors support the theory devel-
oped here?

6.4 Height and height variation

In conventional geodesy, many concepts of height are in use. An excellent survey is found in
[HM, chapter 4]. In the author’s approach “the concept” triangulated {or trigonometric} height”
has been incorporated in the spatial geometric quaternion theory, and the question arises whether
a special concept of “height” may be introduced beside the concepts introduced earlier.
Consider, as an example, a situation on land, with points P;, P, and P; on S*, so that:

ri~ro~r~R~06410"m . . . . . . . . . . . . .. .(641)

Then from (4.2.10) or (4.3.6) with (3.4.7) and (2.6.7) foilows:

AW, 2 _ _ r:
{ o, ek (Y.(l) - Yf,')) } + {A (1n—’ ~{ar®- AY(I))} =
Rgo 8o ! Fo ! 0

AW, ; 2
(n-1) Sl 8j W R () @O
ffsm’ { Rgo +A(lng) -3 &o (Yf —To )} 4y

(6.4.2)

In order to emphasize spirit levelling we introduce as an abbreviated notation a kind of “dy-
namic height” {compare (2.6.4)}:
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AWy;
&o

k=0

’E:l k. k+1
8o

Ahy g1 = —AHy;

say
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. (6.4.3)

Now assume additionally that in the situation (6.4.1) the following holds for use in the coeffi-
cients of difference quantities:

8i~80 ~8~G~98 ms~?

R (6.4.4)

. EANNY 106 2
hence: G ~0.65-10° s

then (6.4.2) with (6.4.3) and (6.4.4) becomes:

{_

AHy;
R

w*R
G

(71‘(1) 75”)} + { Ay —Ary

AHy;  Ogj— Ago
R "7 G

- L [fsei]+

Ar;— g
- (AYI.U) - AY(()”) =

Arl, - Arol

R {with respect to Po}

(3.3.4), (3.4.5): ——'-E—

P, datum point means: Ar, and Ag, are taken to be zero.

(6.4.5) means in principle, that from levelling and gravity measurements the metric height for P;
follows as the distance rl.' to the centre of mass of the earth {P}, provided that the small w?-
terms can be computed or neglected. With P, as datum point, this concept of height becomes in
fact ri/rg, in other words this height concept is nothing but a radial component of the X, Y, Z-
system in a spatial S-system. In this view, the introduction of some extra concept of “height”
is not necessary.

Some examples for illustration:

I. In section 4.3 under item I, mention was made of inexplicable differences between geodetic
and oceanic levelling. In order to find out whether there are sources of systematic errors in geo-
detic levelling, it is investigated in the U.S.A. to what extent V.L.B.L or other very precise geo-
metric network elements may be helpful. (6.4.5) shows that this concerns data for Ar;, which
in combination with AH,; and Ag; provide condition equations giving the possibility to test for
an alternative hypothesis {connected with the suspected source of error}.

In this case one must have data on the relative position of Py; and P, because the distances be-
tween points P; are of the order of 1000 km or more. Theoretically, the problem can be clearly
analyzed, but the practical solution will be difficult.

(6.4.5)
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II. In a spatial photogrammetric network, computed by a bundle method from photographs
with 60% forward and lateral overlap, one meets a curious {theoretical} difficulty. From the
ellipsoidal data for “‘given points™, cartesian spatial coordinates are computed, the “height” in
the above-mentioned sense usually being rather dubious [HM, (5-5)]. The area of the network is
now rather small, with a diameter of e.g. 100 km. In (6.4.5) the «w”-terms can then be neglected
if Py is chosen in or near the network. If there are enough levelling and gravity measurements,
(6.4.5) provides the possibility to compute corrections of “heights” Ar; for the “given points”.

III. Consider the problem of a regional subsidence. Choose S, {and hence S}'} as a part of S in
such a way that outside S, there is no change of H, r or g, and assume that the centre of gravity
of the earth remains unchanged. Choose P, outside, but close to S, ; see figure 6.4-1.

ob

Fig. 6.4-1

If the same approximate values are used for measurement in the first period ¢, and in a later
period ty;, (6.4.5) gives {in the system with P, as datum point}:

© ©) ) ()
N Hy — Hy i — %
R R -
(0) ©) (0) (0)
(1) H; - H, gz,n 81
f f Soi; 4 +2 —LA = ay | ... (646
From (6.4.6), metric height differences rif?l) - rlf?) can be computed. If water levels are to

be compared, Hl.'?l — Hif(l)) is more useful {levelling only}.
Now suppose that mass is removed from, or added to the subsoil {extractlon of oil, flooding
of old mines}, and ass(l(l)me th(at the structure of the soit i 1s such that r, " 1 =0. Then (6.4.6)
indicates that from g; ) g;y # 0 follows: H H,l # 0. This means that one should be
cautious in inferring sub51dence or uplift from levellmg results only.

*) In [STRANG VAN HEES, 1977], an interesting check on (6.4.6) is described. Starting from corrections
for free air reduction, these are subsequently interpreted as observation variates, i.e. the approach of sec-
tion 6.1 in the opposite way. An objection to this method of derivation is that the variates are not defined
with sufficient exactness.



99
7. REMARKS ON COLLOCATION

7.1 Isotropic covariance functions

Many interesting studies have been published on the theoretical complex in which isotropic
covariance functions find a place, the theory of stationary stochastic processes {{HM, chapter
7], [KRARUP, 1969], [MEIssL, 1971], [MoriTZ, 1973], the studies by MoRITZ published
in the series of the Department of Geodetic Science of Ohio State University, etc.}. We shall
not here go into these problems; it is only mentioned that the following covariance function
belongs to an isotropic stochastic process on the unit sphere {{MEIssL, 1971], [GRAFAREND,
1976]}:

(= =]

C Pyl = EOE(”)P(") (cos Vi) , >0 (1.1.1)
n

or with [HM, (1-82")] in the notation (1.4.3), compare [KRARUP, 1969, p. 23]:

Clygr=32 c®y,®y,® | W59 (7.1.1")
n=0

@™ can be interpreted as ‘degree variances™ on the analogy of [HM, p. 259].

The coefficients ¢
Assume now the three types of difference quantities in the left hand members of (3.1.6) to be
as many stochastic processes outside the sphere S with centre Py, and radius R, e.g. with an
interpretation as in [KRARUP, 1969, p. 21 ff]. Then the covariance function (7.1.1) {with a
further specified completion of the coefficients} is valid for the situation: rq ~r; ~ry ~R

It is essential to couple this assumption with the difference quantities, because for these quan-
tities the surface S or S* may be replaced by the sphere S. This gives the possibility to define
a stochastic process ‘invariant with respect to rotations around the centre Pps”’.

From (7.1.1) then follows for the difference quantities in (3.1.6), compare [KRARUP, 1969,
p. 23]

ro.Tin Tk & R C Wit

A E_E) LIS (5) (5) pr0) 1@
o T rp fx n=o0 r ry ! k

A g _ _r_o) To 7o DEQ (n+1) E(n) (5)” (5 " Y-I(n) y @ (7.1.2)
b, ti fi Tk n=0 r; e ! k

A (&—23) 0 S 2 (e 1) e (ﬁ)n (5)" ORI
by ti fi rg o n=o0 r; i / k
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But likewise one can compute the covariance between other types of difference quantities, the
computing formalism being the same as in the law of propagation of covariances in adjustment
theory. For example:

Vi r ¢ v
Covariance { A (—' 7—9) A (_" - J’_)} _
b, i b, Fi

_for = s (RY' (RN o0 o)
= D, mthe (;) (Z) YUY (7.1.3)

The quantities mentioned in (7.1.2) can only be seen as abstractions; they are not estimable in
the sense of chapter 2. This means that the quantities from (3.1.7) must take the place of
(3.1.6). For a number of examples this has been elaborated in (7.1.4) {sce next page}.

The partial covariance matrices of every type of quantity AXg; in (7.1.4) have no rank defi-
ciency because of the introduction of the datum point Py {the case i = 0 is excluded}; the
positive definiteness can be proved as in [KRarUP, 1969, p. 23]. Between the different types
of quantities AXy; there are, however, functional relationships {Poisson- and Green integrals
such as (4.5.2), (4.2.9), (4.2.10), (4.5.3), (5.3.5)} which can serve to investigate questions of
rank deficiency. One can, consequently, compute covariances by (3.1.7), but also by these
functional relationships [MoRr1TZ, 1973]. This has importance for section 7.4.

Remark 1

Perhaps it is advisable in (7.1.4) always to join the first degree terms with AXy,. Thereby one
obtains e.g., see (4.2.10):

Vo ¥ Yo —F; v, ¥ R R
Covariance {A (ﬂ 7—0) SO (—0) - = (_AY[(]) - AYo(l))} ’
b, Fi ¥ b, ti T To
V r ro —r V. b
{_2 (A ( ok _1) e, (_0))+A (_k *Q)H 3
b, 3 Tk b, b, Tk
fo ro = _) (R)" ' (1) (R "o { R\" RY" o0
=22y o R) yro0_ (R ' RY vy (R '
Vi Yk n=2 (n-1De { ¥ f Fo Yo rg Yi ro Yo

All summations in (7.1.4) then run from n = 2.

Remark 2

The considerations in this section only give an indication of theoretical possibilities. For meth-
ods aimed at applications see e.g. [MORITZ, 1976, 1977], [TscHERNING, 1978].
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7.2 Isotropy and criterion covariance functions

Is it possible to describe the global, regional or local behaviour of functions AX,; from (7.1.4)
by means of isotropic stochastic processes? Sampling speaks against this, see e.g. the analysis of
data of ocean and continental gravity in [GAPoscHKIN, 1973] and [WiLL1AMSON and
GAPOSCHKIN, 1975] and other analyses mentioned in [KEARSLEY, 1977].
By authors like KRARUP and MoRrITZ it is repeatedley stated that in least-squares collocation
the use of homogeneous and isotropic covariance functions {but now interpreted as a kernel
function in Hilbert space} is not objectionable; see also [SANsO, 1978], [MoriTZ, 1978].
Perhaps, an argument for this is also that the kernel functions in our Poisson- and Green integrals
have this same character, and that these integral formulae can be considered as limiting cases of
collocation [MorITZ, 1975].
In order to get a better agreement between sampling and isotropic covariance functions, several
authors advocate the separation of a deterministic “trend” in the data in such a way that the
experimental covariance functions thus derived also have a sufficiently isotropic character; see
e.g. [DREWES, 1976]. This separation of the trend is, however, applied in a rather opportunistic
way and does not really seem to fit well into the total theoretic approach. In our present
approach, however, this “separation of the trend” can get a clear place and purpose.
First let us remark that gravity potential, gravity, etc. only occur in one realization on earth.
Observations therefore cannot be changed, contrary to geometric networks where by the choice
of network points one can pursue isotropy in the covariance matrix of coordinates [BAARD A,
1977].
But our theory of gravimetric geodesy is constructed from difference quantities, and conse-
quently observations relate to difference variates. This means that the possibility to give correc-
tions to these difference variates {and hence the application of a “‘trend separation”} must be
found in the model of approximate values. The word model must be emphasized here: simple
corrections for topography and isotasy are not sufficient, it will be necessary to include geo-
physical hypotheses in the approximate potential model in an attempt to describe irregulari-
ties in the mass distribution of the earth, as stated in section 1.2. The concept of “‘separation
of trend” is thus replaced by model building, by way of the introduction of geophysical hypo-
theses as alternative hypotheses. This means the possibility of choice between different geo-
physical conjectures, founded in part on non-geodetic observations. Now this choice can be
partly determined by the requirement that experimental covariance functions {or -matrices} of
the observed variates AXy; from (7.1.4) are sufficiently in agreement with criterion covariance
functions {or -matrices}, constructed on the basis of homogeneity and isotropy: also the order
of magnitude for AXy;, required in section 1.2, can then be taken care of stochastically. In
fact this means that the model of approximate values is equally well adapted to the observa-
tional data in all directions over the earth.
It is a matter for further theoretical research to work this out for practical application. Several
of the publications referred to already give an initiation to this research. In essence, the testing
of experimental covariance functions or -matrices with respect to criterion covariance functions
or -matrices can be done along the lines already worked out for geometric networks.
In following this approach one could kill three birds with one stone:

1. the requirements of section 1.2 can be met;

2. asound base for cooperation with geophysicists is found;
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3. in least-squares collocation, many theoretical and practical difficulties are avoided by
the use of the {theoretical} criterion covariance functions or -matrices.
It will now be interesting to make a comparison with the approach in the publications
[MoRriTZ, 1976, 1977], [TsScHERNING and FORSBERG, 1978].

Now that a good base has been found for the establishment and the use of covariance functions
of the deterministic part of variates AX¢y;, it has become possible, on the one hand, to apply
test methods {including the noise part of AXy;} also in gravimetric geodesy for the indication
and detection of measurement blunders or model deformations, and, on the other hand, to
make a comparison between geometric {or more generally: network-} geodesy and gravimetric

geodesy:

geometric {or net-
work} geodesy

gravimetric geodesy

choice of approximate
values

experimental covariance
functions or -matrices

homogeneity and isotropy

increase of coefficients in
variance formulae {e.g.
degree variances}

not essential {in adjust-
ment by condition
equations}

dependent on choice of
network points

network precision
equivalent in all directions;
test by criterion covariance
matrices

for network coordinates:
from higher order to
lower order

essential; dependent on alter-
native hypotheses on mass
distribution in the earth

dependent on choice of model
of approximate values

approximate values in all
directions equally well adapted;
test by criterion covariance
functions or -matrices

for AX;: from global to local
fitting (?)

7.3 Averages of difference quantities over S*

A possible objection to the approach of section 7.2 is that the averages of difference quantities
AX,; over S* {and therefore in our approximation: over S} are not zero. See e.g. [KocH,
1977]. According to [HM, (7-1)] we have with (3.1.7) and (3.1.6):

= Voi 7o 1 & ) o)
o (5 2) b - LATE o s

0

il V
=% ar®?=a (L) N (—°)
n=1 Doro Dy

.(7.3.1")
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Thus one obtains:

Po, P;on S* E{AXo;}
SNCE S ()
®, Fj byry by
o (3 -2 s o)
Dq 4 \Dyrg
Voi o
Pl (-p2)ea (220 2 ) 2 (3
b, T by Ty Dorg Po
i v,
e (122} ) s ()
by Fj Dory Dq
_ b, r Yy r M v
E{;3A (—’— 4—") +A (—"i—z—")} A ( ) ~ A (—")
dy ri Dy Fj Porg by
Compute constants from
A ( M) (4.4.3), (4.4.4)
Dyrg
V.
(—°) (4.4.6), (4.4.7)
P,
A (‘Iﬁ) (5.4.4)
Dy

From the line of thought of chapter 2 it is understandable that £ {AXO,-}is dependent on the
data of the datum point P,,.

According to (7.3.1) the three ‘“‘constants” needed can be computed, via integral formulae,
from observations. These observations are heterogeneous in accuracy {precision and relia-
bility } and with respect to their position on earth. It is just this heterogeneity that was to be
avoided or made less harmful by applying the collocation method.

It is not quite clear to what extent the testing of alternative geophysical hypotheses according
to section 7.2 is hampered by this. Perhaps it is sufficient to increase criterion covariance
matrices by a constant amount for each type AX,;, and to join together the deterministic or
signal part and the noise part.

(7.3.17)
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7.4 Collocation or integral formulae*)

Least-squares collocation computes the signal value of AX,,;, making use of a smoothing pro-
cess by means of signal + noise of same or other types AX,,.

Consider now, as an example, the situations in (4.3.4) and (4.3.6). In the first place one
computes for both situations:

Vo; 7
A(ﬁ_—") R o 2%
D, i

but after this the function value of (7.4.1) has to be split up:

Vo Vy;
(4.3.4): A ( 0’) =A ( o Ai"—) a (22 . (142)
q70 q)o rl' rf

r Voi r Voi
(4.3.6): A (—° =;A( ¥ 2) 4a (i) N (25
i i D,

(7.4.2) can only be computed by a least-squares method, making use of the noise-properties
{probability distributions} of the variates in the right hand members. Therefore it is important
to develop a procedure which is well-connected with the least-squares method of adjustment.
The present author has always wondered why, during the last decade, the computation by
collocation methods is preferred to the computation by integral equations. Some remarks may
serve to illustrate his reluctance to accept this.

Consider again, as an example, the integral equations (4.3.4) or (4.3.6), and write them in the
form:

AXgi=LiAXgj -+ « « v v v e e e e e . (143)

On account of these functional relationships the relation between the signal-covariances of sec-
tion 7.1 can be written symbolically as:

Gi =Ly Gy Lyy
. (1.4.4)
Gj = Ly; Gy

For practical computations the integration in (7.4.3) is replaced by summation. If vectors or
matrices are denoted by (. . .), and L;; are taken to be coefficients instead of operators, (7.4.3)
can be written as:

(AXo)=(Ly) (DXo) - - . . . . . . (145

For a similar conversion of (7.4.4) it has to be presumed that a sufficiently dense and regular
field of stations over the earth is available; only in that case the following is valid with a suffi-
cient approximation:

*} Scction 7.4 has been re-written after the insertion of section 1.8.
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(Ci) = i) () Lj»)

. (7.4.6)
(Ci) = (L) (Cy)
If the AXy; in (7.4.5) are algebraically independent, it is always possible to write:
(Lip) = (Hy) Hp)™ , with
. (714.7)
(H;;) an arbitrary positive definite matrix
From (7.4.7) follows for (7.4.6) and (7.4.5):
Li)=@CHECH™ . . . ... .(148)
AXo)=(CEC)™" (AXg). - - -« . . . . ... (148

Hence (7.4.8") and (7.4.8") are collocation formulae like the ones treated in [MoriTZ, 1975,
section 3], with the purpose to consider integral formulae as limiting cases of collocation.

In the train of thought of the present publication it is, moreover, possible that observations for
(AXo;) and (AX ;) are available, i.e. observations of the {noise-} variates (AX,;) and (AXo,).
In that case the functional relationships (7.4.3) or (7.4.5) are only valid for the expectations
(E{AX;}) and (E{AXo;}):

(E{AXo) — (L) B{LOXoD=©0). . . . . . . . . . . . . .(@49)

On account of the mixed composition of the variates AXy; and AX,;, the noise covariance
matrix:

Du Di]'
(7.4.10)
Dj; Dy
is, in general, a regular, non-diagonal matrix. In contrast, the signal covariance matrix:
Cu Ci]'
(74.11)
Gi G

is singular under the assumptions made with (7.4.8).

Now the least-squares adjustment based on the condition model (7.4.9) can be executed with
(7.4.10) or with (7.4.10) plus (7.4.11). In both cases the same solution is obtained, because the
influence of (7.4.11) is cancelled by the functional relationship (7.4.5). In this way one there-
fore obtains a consistent system, without contradiction between collocation- and adjustment
methods and without hindrance from the problems treated in section 7.3. But it should be
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noted that (7.4.8") will only be a coarse approximation for a field of points that has a low
density and is irregularly distributed over the earth, if the elements of (7.4.11) are computed by
(7.4.4). In such a case the choice of method seems to be a matter of taste. The results are not
likely to be very reliable.

The approach just sketched has a second advantage. From section 1.8 it is evident that, among
others, the integral equations (4.3.4) or (4.3.6) are approximations, acceptable in some cases,
inacceptable in others. But it follows that the same applies to (7.4.5) as well as to (7.4.8). In
other words, also in this respect there is no difference between solutions based on the integral
formulae mentioned and solutions based on collocation. Under the assumptions made, they are
equally good or equally bad. However, the possibility remains to correct the integral equations
and, consequently, their solutions.

In the collocation methods now in use, in (7.4.8) (Cj;) is replaced by (Cj; + Dj;). This is founded
on the assumption that:

E{dXoj} =0, E{MXoj}=0
E{AXOI'} = 0

But according to section 7.3 these assumptions are not valid as far as they pertain to the averages
E. In other words, the following is not necessarily valid:

This could be one of the reasons to question the deduction in [MoriTZ, 1975, section 4] to
the effect that coefficients in Green integrals can be dependant on noise, although the deduc-
tion as such is logical. A possible contradiction with the present author’s theory of linking-up
mathematical models is then avoided; this theory states that functional relationships must
always pertain to expected values of the noise-variates. See [BAARD A, 1967, chapter 4].

One could possibly correct (7.4.12) for the £-values, but then one meets the difficulties men-
tioned in section 7.3. Besides, these £-values are functions of observations, so that the compu-
tation of the noise-covariance matrix (7.4.10) will be very complicated. Equally complicated
problems are then met in connection with a condition model like (7.4.9). A conjecture might
even be that a smoothing process is already brought about by an adjustment procedure, as was
stated in connection with (7.4.9) {see also section 4.3}. If so, collocation methods with signal
+ noise would be superfluous in this respect. It is a hesitating conjecture, which also touches
upon the fascinating theory of Integrated Geodesy by T. KRARUP.

Finally we return once more to the situation where areas with a high point density alternate
with areas where density is low and distribution of points is irregular. In [MoRr1TZ, 1975, sec-
tion 6] it is proposed to apply integral formulae and collocation alternately.

In the existing theory the application of integral formulae is always concerned with local
irregularities in position and density of stations over the whole earth. In our theory, however,
it is possible to apply integral formulae {the Green integrals} to regional areas, by means of the
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good choice of a datum point. These regions can be chosen in accordance with the regularity
and density of stations. Of course, the difficulty remains that regions of this type alternate with
regions without many stations, so that the connection of local or regional systems to form a
global system cannot be done without loss of overall precision and reliability. But thisinevitable
objection is valid both for integral formulae and for collocation.

Thus we reach the conclusion that the theory of difference quantities developed in the present
publication makes it possible to use the computation by integral formulae in many more
situations than the existing theory admits.
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