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1 AN OUTLINE OF THE IDEAS AND THEIR ORIGIN

An answer to problematical points stated earlier

In the publication “A Testing Procedure for Use in Geodetic Networks” [9], a sketch
was given for a possible programme of subjects to be studied in Special Study Group No.
1.14*) of the International Geodetic Association. This was an extension of first ideas
expressed in 1962 [4a], with a supplement in [4]. Three main problems were formulated:

(1.1) the construction of an artifical covariance matrix, to serve as a mathematical
translation of the lower limit of precision required by the purposes of geodetic
networks

(1.2) the use of statistical tests in connection with the adjustment of networks in order
to assure the reliability of geodetic networks in relation to their purpose in society

(1.3) the consequences for geodetic networks of a relativation of the concepts north
and time.

[n [9] {see also [10] for basic theory}, a first solution for (1.2) was given, which since then
has been applied to the computation of many densification networks in The Netherlands.
The results were very satisfactory, but the method has so far not led to reactions from the
members of S.5.G. No. 1.14, and has received little attention from geodesists outside
The Netherlands.

The present paper presents a solution for (1.1), a consistent theory which replaces the
first draft discussed in November 1964 at Stockholm with the then President of S.S.G.
No. 1.14, Professor L. ASPLUND. The theory has been developed since 1962 by the author
and J. E. ALBERDA, along seemingly very different lines. Many discussions have first led to
an improvement of individual ideas, and then, when in 1969 the present paper was drafted,
to the insight that the two theories must be identical in essence. A separate publication by
ALBERDA is to be expected ; perhaps the differences in argumentation will lead to a clarifica-
tion of the rather difficult line of thought.

In both investigations, use is made of the theory of the so-called S-transformations,
{Dutch: Schrankingstransformaties; English: transformations related to Similarity trans-
formations}, formulated by BAARDA around 1944, and applied in the HTW-1956!, pub-
lished in [7], [3] and [5] in the form of “Similarity covariance transformations’. The present
theory was, however, only made possible by a more consistent approach of the S-transforma-
tions based on the theory of difference equations for the linearization of functional relation-
ships in adjustment theory. This theory was developed in [1]; a first treatment can be found
in [4] section 3.4.

Both researchers also used the criteria for the form and the size of standard ellipses of

*) S.S.G. No. 1.14: Specifications for Fundamental Networks in Geometric Geodesy.
1 See the notes at the end of this section.
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coordinates of points in a network, which were more or less sketchily formulated by
BAARDA in the HTW-1956. ALBERDA chose the way of a further consistent elaboration of
this formulation, whereas BAARDA in the first instance rejected the approach of the HTW-
1956, because it was in conflict with studies on model theory, such as given in [4], section 4,
and in the “Polygon Theory in the Complex Plane’ [2].

On the origin of the theory of criterion matrices

It will be clear that the roots of this development lie in the past; in particular it is connected
to the work of J. M. TiensTRA. This concerns not only his calculus of observations,* from
which eventually [1] was developed ; more relevant is his introduction of complex numbers 3
in plane surveying, including already the introduction of distance ratios, along with angles,
as computational quantities. He also gave a first formulation of the maximum admissible
size of standard ellipses of coordinates in the HTW-1938.* A standard ellipse was required
to lie within a circle of radius d cm, d being chosen from three possible values according
to the economic value of parcels of land. In the norm of circular standard ellipses, one
recognizes ideas from the surveying literature published in the German language during
the Thirties, and no doubt TiENSTRA was influenced by these papers.

The formulae for the reconnaissance of a geodetic network, as given in the HTW-1938,
were tested by BaArDA for practical usefulness around 1940; a certain degree of inconsis-
tency was then apparent.

Around 1944, this led to an analysis of the basic line of thought, and to the idea from
which eventually the model theory in section 4 of [4] was developed. The starting point
was the introduction of distance ratios and angles as fundamental quantities, whereas
scale and orientation were considered as artificial and non-essential elements of the theory.
This implied that coordinates, too, had to be considered as artificial and non-essential
elements. Consequently the concept of coordinate had to receive its proper place: coordinates
were only to be defined in an operational sense, as functions of distance ratios and angles.
Thus, in 1944, a first intuitive version of the theory of S-transformations was established,
which in a later algebraic formulation made possible the definition of coordinates in a
sharply indicated system. It could hardly be realized at the time that only after twenty-five
years a first well-rounded version of the theory could be established!

Around 1950, TIENSTRA was requested to take part in a revision of the HTW-1938. His
all too early death in 1951 implied that this task had to be taken over by BAARDA, and in a
premature stage of the theory, a formulation had to be given which would meet the require-
ments of surveying practice. Once more, many ideas could be adopted from publications
in the German language, of which only the greatly appreciated work of Dr. E. PINKWART
is mentioned here. Hence, the HTW-1956 was a mixture of Tienstra’s ideas with the theory
of S-transformations. The construction of criterion circles — limiting the size of standard
ellipses — was now based on a much more complicated theory, and their radius d was made
dependent on the mutual distance of points. Although TIENSTRA was partially followed in
the introduction of different functions for the determination of d in areas of different land
value, the further adaption of precision criteria was to be found in the introduction of
standard deviations Ad, characterizing the process of the description of a terrain “point”
by a mathematical point.
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Although this offered satisfactory possibilities for the analysis of many surveying prob-
lems, the system of reconnaissance formulae for networks in the HTW-1956 proved not
to be entirely consistent.

Around 1958, the questions not answered by the designed theory, led to an entirely
modified geometrical theory based on complex numbers, and aimed, among other things,
at the explanation of a number of differences between the computing models of classical
triangulation networks and the trilateration networks which were more and more applied
after 1945. This theory had its roots in the ideas developed in 1944, and within some years
it grew into the “Polygon Theory in the Complex Plane”, see [7], [21, [4].

Looking back over the twenty-five years needed to establish the theory, one is surprised
at the long and winding path that had to be followed before an essentially very simple line of
thought could be formulated, that forms a suitable start for the solution of virtually all
plane surveying problems. It is even more surprising that on the basis of these views a
much better insight into the essence of distance- and direction measurement is obtained,
even so much better that better directives for the measuring process could be given. As had
been expected, a much better model was obtained for the foundation of computer pro-
grammes, although as a consequence the adjustment theory had to be built up in a more
consistent way. Curiously, this also opened the possibility to give the theory of S-trans-
formations its present form, with as a forerunner one of the examples treated in section
17 of [11].

In the present paper, a new form of the precision criteria for geodetic networks is develop-
ed from the theory of S-transformations. This replaces the criteria chosen in the HTW-1956,
like they in their turn replaced the criteria of the HTW-1938. Now, however, the criteria
are not formulated for a single standard ellipse, but for the total covariance matrix pertaining
to the coordinate variates of the points of the network. Therefore a criterion matrix is
introduced, enabling the formulation of a criterion for the whole consistent with criteria
for partial problems. It is curious that the construction of the criterion matrix in many
respects bears resemblance to the construction of an artificial positive definite matrix in the
studies in potential theory by KRARUP;® both matrices must obey the fundamental proper-
ties of the model theory to which they belong.

In this paper, the construction of a criterion matrix for two-dimensional coordinate
variates in the plane is preceded by the construction of a criterion matrix for one-dimensional
coordinate variates. As an example of the latter, height variates from levelling have been
chosen, presupposing that a transformation has been executed so that a strictly additive
computing model is valid for “height differences” made dimensionless. One can then also
develop S-transformations, an idea stemming from 1959.

Now one may wonder what is the essence of the one- and two-dimensional theories
considered. In the former, the essential variates are differences, and they are therefore
invariant with respect to a translation. In the latter, the essential variates are IT-variates or
functions of II-variates, and therefore they are invariant with respect to a similarity trans-
formation. This formulation is based on Klein’s® statement that a geometrical model
theory can be characterized by its invariance with respect to certain transformations. It is
true that this view originally led to the generalization of the two-dimensional theory
{complex numbers} ta the three-dimensional theory using quaternions, but on closer



8 PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 5, NO. 1

investigation, this characterization of a model theory does not give sufficient insight into
the essence of such a theory.

Therefore it will be tried to give a more satisfactory characterization of the whole of the
geodetic theories designed; some unpublished parts will be taken into consideration as
well. Clemency is asked for the primitive formulation by a geodesist who is not a
mathematician.

Some algebraic considerations’

The above mentioned dimensionless additive ‘“‘height differences’” actually offer a less
attractive starting point as an example of one-dimensional quantities. Firstly, because the
definiticn of such a quantity follows from a more comprehensive theory {the rewriting of
Green’s theorems of potential theory, leading to a transformed presentation of Molodenski’s
integral equations} and, secondly, because the additive computing model makes only
limited use of the properties of the system of real numbers, to be denoted by R.

The algebraic structure of R is indicated as a field, a field has very strong algebraic
properties such as the distributive property and the commutative and associative properties
of addition and multiplication. For further considerations, it is particularly important that
R with every element a contains an element ¢! for which a '-a =1; because of this, R
is a commutative division algebra. This implies that ab=10 only if a=0, or =0, or
a=>b=0; hence R does not contain divisors of zero. Finally, it is remarked that R is an
ordered field.

The field R of real numbers is often chosen as the field over which an »-dimensional
vector space with »n basis elements or -vectors is constructed.

If also multiplication of the elements of the vector space is defined such that the distri-
butive and associative properties hold, one obtains associative linear algebras over R,
also called systems of hypercomplex numbers. The algebras may be division algebras, but
often this will not be the case.

Now two-dimensional quantities are considered, in which real coordinate quantities x
and y are compounded into the complex coordinate quantity z. If now one wishes to explore
the essential properties of the functional computing model to be used, the measuring process
must be the starting point, because the model of functional relationship is linked to this
process. This implies that the model theory of section 4 in [4] points the way here.

The essential quantity in the linking-up procedure is then the [I-quantity defined as a
function of coordinate quantities:

Y ¢ 071

i

In the further elaboration of the theory as ‘““Polygon theory in the complex plane”, and in
the theory of S-transformations, all properties of the system of complex numbers {to be
denoted by C} turn out to be.necessary, except the commutativity of multiplication. For in
C, there is no difference between post- and premultiplication; e.g. the right hand member
of (1.4) may be written as:
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zi,‘-zif:z,-;l'zi,‘........................ (1.5
The commutativity of multiplication simplifies the study of the complex number theory as
it is now, but it must be noted that the construction of the theory was actually made more
difficult by it. It was the development of the quaternion-theory, for which (1.5) is not valid,
that pointed the way out of the tangle of formula-combinations in the complex number
theory.

The algebraic structure of C is again a field, but not an ordered field. A field is a division
algebra, which in view of (1.4) is a necessary condition. Hence, C has no divisors of zero,
this also proves to be a necessary condition for the development of the theory. Finally, C
can also be considered as a two-dimensional vector space over R, with basis elements 1, i.

It is an interesting question how the designed ““polygon theory” must be generalized to
obtain a “spatial polygon theory” in three dimensions. In considering this question it must
be noted that the measuring process in three dimensions, although it is more complete,
does not in essence differ from the two-dimensional case. The model theory to be linked
to the situation will therefore not be different in essence from the two-dimensional theory,
although it will be more extensive. There are now three real coordinate quantities x, y and
z, which can be compounded into the vector ¢q. But what next?®

Already WEIERSTRASS around 1860, and later HILBERT, showed that an extension of C
is not possible without giving up one of the properties. From what has been remarked with
respect to (1.5) it seems most plausible to give up the commutativity of multiplication. The
algebraic structure of such a system of numbers is a skew field; the numbers are Hamilton’s
quaternions and we shall denote the system by H. H can be constructed as a two-dimensional
{complex} vector space over C with basis elements 1, j and thence as a four-dimensional
vector space over R with basis elements 1, i, j, k {the basis element i in H should not be
confused with the basis element i in C}.

H is an example of an associative linear algebra over R, but according to FROBENIUS
{1878} it is also the most general associative linear algebra over R without divisors of zero,
hence H is the only non-commutative division algebra over R. Further, H can be inter-
preted as a system of hypercomplex numbers.

The vector g is written:

g=x-i+yj+z:k . . . . . .. ... ... .. ... ... (Lo

and instead of (1.4), one of the following quaternions is formed:

Q=i dij + + o e (L)

OF =qi Q- - - T

The non-commutativity of multiplication consequently implies the possibility of choice
between left- and right-division {VAN DER WAERDEN "}. The connection with the geodetic
measuring process led to the choice of the left-division (1.7’) in the ““Spatial polygon theory™.

The place of @ in the three-dimensional theory is somewhat less central than the place
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of IT;; in the two-dimensional theory, for Q; is not completely invariant with respect to
a similarity transformation. But it is important that, also in the quaternion theory, S-trans-
formations can be developed as a generalization of the S-transformations in the complex
number theory, so that application of criterion matrices in the three-dimensional theory is
possible.

It is important to note that R is embedded in C and C is embedded in H, so that H
comprises both R and C. If now (1.6) is written as:

q=0'14+xi+yj+z:k . . .. . ... ..., (L

then H comprises also the vectors (0, x, y, z) in three-dimensional space. But (1.7) shows
that in general the product or quotient of two vectors is not a vector, but a quaternion.
Vector multiplication thus shows that vector algebra with all properties of H is therefore
not possible, and, in particular, the division of vectors is not uniquely defined.

A still further possibility of extension is considered. The algebra of Cayley numbers, or
algebra of octonions, can be constructed as a two-dimensional vector space over H, and,
consequently as an eight-dimensional vector space over R. But then both the commutative
and the associative property of multiplication are lost. It seems that only recently J. F.
ADAMs ® has conclusively proved that the absence of divisors of zero is limited to vector
spaces of the dimensions 1, 2, 4, 8 over R, so that an extension further than octonions is
certainly impossible. But to work without the associativity of multiplication seems impossible
in the constructed ““polygon theory”, because combinations of successive factors in chains
of multiplication can usually be interpreted as recognizable quantities in this theory.
Therefore the octonions will not be usable for a geodetic model theory, and the quaternions
will be the most general number system for geodetic purposes.

Everyone is familiar with the calculus based on the real numbers R; the extension of R
to C led to the comprehensive theory of functions of complex variables. The extension of
C to H, or, more generally, to Grassmann’s hypercomplex numbers, has not led to
analogous function theories. As a non-mathematician one is then groping in the dark.
Prof. H. MorITz traced an American publication ® in which an algebra is developed that is
commutative and non-associative {with respect to multiplication}; it is constructed as a
three-dimensional vector space over R, with a complicated multiplication table for the
three basis elements. An interesting generalized function theory can thus be built up, but
this algebra comprises divisors of zero, and is therefore not usable for our purposes.

In the spring of 1970, Dr. G. KIRSCHMER drew attention to an interesting publication by
W. EIcHHORN,!® which answered the question if generalization of the theory of functions
of a complex variable is at all possible for the number systems or algebras considered here.
EICHHORN comes to the conclusion that in general there will be a difference between the
possibilities of differentiability and integrability of functions on these number systems,
except for the system of complex numbers.

For the time being, there seems therefore to be no hope that the “Spatial polygon
theory” ~ which is already in an advanced stage of development, and which is capable of
describing and logically connecting all geometric methods in geodesy — can in an equally
logic manner be connected with potential-theoretic methods in geodesy.
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Curiously, vector algebra, with its weak algebraic properties, has grown into a vector
analysis, so that GiBBs seems to have won completely over HAMILTON in this respect.'!
This is still stronger emphasized by the enormous flight taken by tensor analysis. But it
must be realized that every algebra in n-dimensional spaces has weaker properties as n > 2
increases,® so that this development certainly implies losses. One of them is the loss of the
possibility of division, which is admitted neither for vectors nor for tensors. The introduc-
tion of dimensionless functions of quantities, which proves to be essential in the process
of linking measurement to computation, can then only be artificially done later on, by a
transformation of relationships obtained by means of an available mathematical theory.
It then turns out to be very difficult to see through the essential questions of the model
theory, as the example of the problems of potential theory in geodesy has taught us.

Further speculative considerations

The approach to geodesy from an algebraic point of view finds its origin in an evening’s
discussion between HOTINE and the author in a Munich Bierkeller, during an I.A.G.
Symposium in 1956, when HOTINE presented his first study of the computation of spatial
networks.!? Hotine’s problem was the development of a reliable and systematic method
for finding and establishing the most desirable form {from the numerical point of view}
of condition equations in spatial networks, and the statistical implications of this problem.
The answer to his question could not then be given, and HOTINE has {seemingly} bypassed
this problem when in a next stage of his theory, following the advice of American geodesists,
he treated the adjustment problem in the form of observation equations {parametric condi-
tion equations} instead of in the form of condition equations. Indeed, Hotine’s choice of
a tensor-analytic form of model relations leads almost automatically to the solution by
observation equations, although this form has in general the disadvantage that essential
model-theoretical questions are masked.

Ever since the discussion mentioned above, the author has given his attention to these
problems. The question arose whether the introduction of curvilinear spatial coordinates
was essential for the solution. It became clear that the vector methods in {linear} Euclidean
space which have been and are being developed by geodesists, do not make a very satis-
factory impression; they often bear an artificial character and are not very transparent.
After what has been said in connection with (1.8) this is explicable. Who came nearest to
a more algebraic form of solution was perhaps FRIEDRICH, in a very interesting little book '3
on vector calculus, in which he actually replaced two-dimensional vectors by complex
numbers but did not draw the full consequence of the algebra of C. His solution for three-
dimensional vectors has much in common with certain aspects of the quaternion theory,
but he certainly has not drawn the consequence of the algebra of H.

The first more or less intuitive, and later systematic, application of the linear algebra of
complex numbers for geodetic problems in the plane, led via KLEIN, ® around 1962 to the
linear algebra of quaternions as an aid to the solution of the problems of three-dimensional
geometric geodesy. Gradually, it became clear that the answer to the problem of 1956 could
be.given by this approach to spatial problems. Curiously, the next stimulus to the develop-
ment of a quaternion theory was given by Bjerhammar’s study in potential theory,'* pres-
ented to the second symposium on “Tridimensional Geodesy” in Cortina d’Ampezzo, 1962.
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BJERHAMMAR proved in principle that via a transformation of Green’s theorems a connec-
tion could be made between geometric and gravimetric problems in geodesy. This led the
author to a further exploration in this direction, and to an extension of the transformatior
of Green’s theorems to a point where quantities from the quaternion theory were recognized
in the formulas. Although not all theoretical difficulties have been solved, it is virtually
certain that the integral equations thus obtained determine distance ratios between terres-
trial points. This means that the gravimetric model theory can contribute geometric ele-
ments to the quaternion theory, which according to (1.7) pertains essentially to geometric
geodesy.

With this result, the dilemma raised by Eichhorn’s work'® can also be solved; i.e. it is
not necessary to search for a function theory based on the algebra H; it is sufficient to
transform the formulation of the potential-theoretical problems in geodesy according to
an available mathematical theory. Of course, this is an emergency solution, but there is
only a slight hope that it will be a temporary one.

This logical discord between geometric and gravimetric problems in geodesy has for
years been a clearly recognized fact, and the question arises if it is not noticable in Hotine’s
work as well. Only a few years ago, HOTINE told the author that he doubted whether he
would ever be able to design a single elegant connecting theory for the whole of geodesy.
And even now, the study of his masterwork'® on mathematical geodesy leaves open
questions in this respect.

Whereas the quaternion theory gives a reasonably good answer to the problem posed in
1956, its connection with the problems of gravimetric geodesy and with the possibility of
the three-dimensional generalization of the theory of S-transformations seems capable of
giving a solution of the problem (1.3). This would result in a complete parallelism between
geodesy in two-dimensional Euclidean space and geodesy in three-dimensional Euclidean
space, with parallel relationships also for one-dimensional problems, as far as these can be
considered as realistic. The interrelated algebraic properties of R, C and H are an aid in
understanding the corresponding geodetic model theories in their progressive degree of
generalization and complexity.

These properties also help in the search for the essential concepts and relationships in
geodetic model theories. This increases in importance when the theory of stationary random
processes in {gravimetric} geodesy is applied as a least-squares estimation. This necessitates
the establishment of covariance functions, partly based on functional relationships between
geodetic quantities. Least-squares computations always give a result if the covariance
matrices have relatively simple matrix properties. If, however, the functional relationships
have not been derived from a correctly established geodetic model theory, then a fictitious
result is obtained, and the very object® for which the apparatus of stationary random
processes is introduced, is not attained.

The search for a system of interconnected criteria for reliability and precision

In [9], a general method for testing model hypotheses was developed, the “B-method” of
testing, whose application to geodetic networks led to the introduction of the concepts
“internal reliability’” and ‘“‘external reliability” of a network. Both concepts pertain to a
measure for the control of mistakes or gross errors in the measurement or in the computing
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model by redundant observations; the effectiveness of the checks depends heavily on the
configuration of the net.

It has long been known that the configuration of a net is also in a high degree decisive
for the precision of the coordinate variates of its points. A measure for the ““precision” of
networks is, in this connection, the covariance matrix of these variates in a suitable S-system.

From the mathematical formulation of these measures, a certain connection between
them is apparent, and this connection will have to find expression in the criteria to be
formulated, if the system of criteria is to be consistent.

The present paper offers the possibility to formulate “precision’ criteria for networks by
choosing values for the parameters (15.2.26) of the criterion matrix. This also implies the
exertion of an influence on the form of the “‘confidence regions™ [8] for coordinates of
points of the network. In {9], section 10, the size of these regions had already been made
dependent on the parameters o, and f, which determine the B-method of testing; the
proper place and the significance of these “confidence regions” in the argumentation of [9]
were, however, not quite clear yet. The theory of “confidence regions” seems therefore to
be the point where criteria for “‘reliability’’ and for ““precision” of networks come together,
and can be adapted to each other. But the connecting theory is still in a tentative stage.

Finally, the main problem remains: the choice of the values of criterion parameters so
that they are in agreement with the social purpose of geodetic networks,'® as was already
indicated in the problem points (1.1) and (1.2). Among other things, this will necessitate an
adaption to values of parameters from the descriptive model of the objects measured —
such as (15.a.27). And, of course, only an economically justified compromise*® will actually
make measurement and computation possible. The total connecting theory may then lead
to the establishment of a consistent system of rules for the reconnaissance of networks.

Naturally, this connecting theory will have to be supplemented with contributions based
on other points of view, before we can speak of a genuine decision theory. Prof. H. WoLF
has often pointed out the desirability of a many-sided approach, lastly in a beautiful
survey of ideas for possible criteria in A.V.N. 1970,'7 in which, however, the aspect of
error checks in networks was left out of consideration. This survey shows how far geodetic
practice still has to go before a consistent system of criteria can be established. Perhaps this
image can be simplified by finding the target functions {“Zielfunktionen”}*” that are in-
variant with respect to an S-transformation. A provisional analysis suggests that a re-
formulation is desirable.

Introduction to the next sections

a. Difference equations. Elimination of parameters

In the next section of this paper, only relationships between mean values of variates are
considered. The advantage is that no difference in treatment is necessary between derived
variates {being functions of observed variates} and the functions of observed variates which,
if put equal to zero, express “laws of nature” or “‘condition model” in an adjustment
problem. This will first be elucidated, in connection with the line of thought of [4],
especially section 3.4. The fundamental idea is that to a measuring process is linked a



14 PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 5, No. 1

computing model, whose functional relationships hold for the mean values of variates.
Let there be given the vector of observed variates (x°), and the vector (x") of either observed
or derived variates. From the computing model, algebraically independent relationships
can be established; let (7*) be a vector of mean values of non-measured variates which
figure as parameters in the relationships:

G =X{.. % L5
{range r} > {range o}

It

Il

R

I

——

—~_~
—
O
N’

It is also essential that approximate values (X5), (X5) and (Y2) respectively, satisfy (1.9):
XD =X Xt Y&, o) o o o o e e (1.10)

With (1.10), (1.9) can be expanded in Taylor’s series:

F=X)=UDE-X)+UDG =YD+ oee o o oo (1.11%)
Let:

X—Xo=d4x"

X =A% L (1.11")

F-Ys = Ay

Then, omitting terms of higher order {provided this is admissible}, from (1.11) follow the
difference equations:

UX) = (A)AXD+UADAY) . . o o (1.12)

Using relationships of the computing model, the vector (%) can often be eliminated from
(1.9). If the computational solution can be restricted to the use of difference equations
— i.e. neglecting higher-order terms in the series expansions ~ then the following relation-
ships X" as transformations of (1.9) need not be known:

() =(X{.,%,.0
(XD = (X X D e e (1.13)

~

4x" =% -Xj
Expansion of (1.13) into series gives the difference equations:
@A) =(UDAX) . . o e (1.14)

(1.12) substituted into (1.14) gives:

Ux) = (AU A +UDNUDUEY . o o (1.15)
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The homogeneous linear equations, with unknowns A,:

(A (4,) = (0)

give the solution:

number of linearly independent vectors (4,)" = ¢+ . . . . . . . ... (1.16)
= {range r} — {range o} = {range v}
denote
by

together forming the matrix (A°)".

According to (1.16), a matrix (A;) can therefore always be found, which eliminates (AA)’J"‘)
in (1.15). Then (1.15):

(A (A5 = (0) - (AD)
(A (AD) = (4) e e e e e e e (1.17)
(4x") = (A)(4X)

In the case of S-transformations one finds:

(A7) =(9)), (6ptheunit matrix . . . . . . . . . . . ... ... (1.18)
Hence: (1.17):

(4x7) = (4D [(5) (4]
or with (1.14):

ADUXY = (A [EHAXD] . o o o (1.19)

(1.12) and (1.14)—(1.19) indicate the line of thought followed in (2.1)~(2.7); in connection
with (1.13) reference can be made to the intuitive interpretation of S-transformations in
the note of section 4. Finally, (1.19) may serve as a condition model, like in (5.3), provided
reduction to zero is made.

IT IS REPEATED ONCE MORE, THAT THIS METHOD IS ONLY APPLICABLE
WITHIN THE REGION OF VALIDITY OF THE DIFFERENCE EQUATIONS.

b. x, y-coordinate systems used

The x,y-system used in The Netherlands differs from the one adopted in most other coun-
tries. The latter system is used in [4], [5] and [9], but the Dutch systems was used in the
development of a complex of interconnected theories. In order to avoid manuscript errors,
the Dutch system is therefore used in this paper; a change from one system to the other
means only changing x and y in the formulas. Furthermore, the notation for polar co-
ordinates follows Dutch practice. The following table gives the connections for an arbitrary
(@)-system:
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this paper (41, (51, 9]
{Dutch} {international}
coordinate 1y('3) )
system Sl St
(1.20)

z (a) (a)
bearing @
distance @
direction P =% =AY
{P ;=P o) _ .
distance-measure sp =1 dy =54

c. Outline of the next sections

The paper consists of four parts. The first part {sections 2-10} treats aspects of the con-
struction, and application of S-transformations on coordinate variates from geodetic net-
works in the plane. The second part {sections 11-13} gives the parallelism with networks of
one-dimensional coordinate variates, having in mind levelling networks, and continues by
treating the construction of a criterion matrix. The third part {sections 14-17} treats the
construction of a criterion matrix for two-dimensional coordinate variates in the plane,
with a further elaboration of S-transformations. Finally, the fourth part contains some
examples.

The first part is devoted to a very extensive treatment of a subject matter that is very
simple in essence. Test computations, based on a number of memorandums [6], indicated
in the spring of 1969 the necessity of a sharper definition of S-transformations, in order to
establish unambiguously the rank of the transformation matrix. Among other things, this
is a requirement for the application of the law of propagation of variances, because many
covariance matrices are numerically near-singular. The elaboration of this is found in
sections 2 and 3. In section 4, a connection with earlier studies is made, and the place of
the similarity transformation in the theory is considered. In a note, a possible intuitive
approach to S-transformations is pointed out; this approach may be clarifying when
applying the theory. The sections 5-7 contain studies on the interaction between S-trans-
formations and the adjustment procedure for densification networks; here one meets the
complication that there are points in the network whose coordinates have been fixed in a
previous stage, and are now introduced as “‘given” quantities. The sections 8-10 treat the
main problem of this paper, viz. the testing of the computed covariance matrix of coordinates
with respect to a pre-established criterion matrix, or alternatively, the description {in the sense
of replacement} of the computed covariance matrix by a criterion matrix that resembles it as
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well as possible {in the latter case it will usually be termed ‘“‘substitute matrix”}. Testing
or description turns out to be possible only within one S-system; this implies that the
theory of S-transformations is indispensable. In section 17 it is demonstrated, by means
of a practical method of network computation, why these transformations could escape
notice, with the consequences for the interpretation of the results obtained.

Having in mind the example of levelling networks in section 11, it is tried in the second
part to explain the assumption, in section 12, of the optional function d,-zj. In the construc-
tion of the criterion matrix, it is introduced as a positive “‘polynomial” {better: posynomial}
of the distance /;; between the points P; and P; of the network. It is sufficient to compute
I;; from approximate coordinates in a limited number of significant digits. In section 13,
the variance Ad? is introduced, describing the uncertainty of definition of a terrain point
P; as a mathematical point. In the note to section 13, the requirements to be fulfilled by
the optional function d,-i. are investigated.

The third part presents the generalization to two-dimensional coordinate variates; like
in the second part, the construction of criterion matrices is grafted upon S-transformations.
Because one is dealing with a genuine complex number theory, some small parts of the
calculus of observations had to be treated by complex numbers in section 14. Among
them are treated the consequences of the requirement of circular point- and relative stan-
dard ellipses in the construction of the criterion matrix. The construction itself is developed
in section 15, supplemented by a different approach to S-transformations in section 16,
and a later development in section 15a. After ample consideration, both courses of develop-
ment have been maintained and presented together, in order to show the reader different
aspects of the theory. The course followed in section 15 dates from 1962-1963; eventually
it led via the G-functions to an optional function dé of the same type as the one mentioned
above. Formulas for the computation of the criterion matrix proved, however, to be
subject to some inconvenient restrictions. In the summer of 1970, the theory of section 15.a
was therefore developed, which was more directly aimed at the computations, and included
the above mentioned variances Ad?. Here, the significance of the parameters of the criterion
matrix is indicated, and a way is sketched towards the determination of numerical values
to be assigned to these parameters. Therefore, section 15.a can be considered as the nucleus
of this paper as far as the construction of the criterion matrix is concerned, the more so
because this section — contrary to sections 15 and 16 — is practically unconnected to the
only partially published *“Polygon theory in the complex plane” [2]. Finally, in section 17
an adjustment model is developed, as an application of S-transformations to the connection
of several coordinate systems belonging to {stochastically} independent groups of coordinate
variates in different networks. Another aspect of section 17 was already mentioned in the
summary of the first part of this paper.

A generalization of the theory to networks of three-dimensional coordinate variates
proves to be possible, but it has not yet been elaborated sufficiently.

The question remains if the choice of the optional function dizj has been made sufficiently
general, although it is very satisfactory that for one-, two- and three-dimensional situations
the same optional function can be used. This question is open to further research.
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Finally, it should be noted that the text of this paper was written between the summer of
1969 and the spring of 1971, because of which small differences in terminology were almost
unavoidable. But an effort has been made to elucidate as clearly as possible the many
aspects of the theory designed.

An alternative summary of the theory with some additions was given in [11] and [12].
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2 THE MODEL OF THE SIMILARITY TRANSFORMATION

The transition from a z-system to a z‘®

-system is effected according to [4] appendix, p. 63:
FD =@z 5@, = . Q.1

Difference equations are deduced by introducing approximate values fulfilling the same
relations (2.1) see [4] section 3.4:

2 =@ 0 8@ (2.2)
Ignoring terms of higher order, one obtains from (2.1) and (2.2):
(-2 =y E—2)+ 20 Py )+ FO =5 . ... (2.3
or:
A2® =y @ fo 422 AL ASD | (2.3")
Now add two “‘base points” P,, P, to the points P;. From (2.3) follows then:
f ~ 0 . . 4 ~ \
4z Y8 0 0z & || 4z
Az@ =] 0 Y 0 22 1 || 4z,
Az® 0 0 3@ 221 )4z | ... (2.4
A’T);(a)
15(a)
A4

in which () is a unit matrix, and
(6%) a column vector all of whose elements are 1.

From the model relations (2.4), 47® and 46 can be eliminated by a so-called S-trans-
formation, introducing quantities in the S-system:

r,s

N OO 0 o N7
~ (a)rs) : Zgi Z,; ~(
Azia 6; - ’_0 - _ré Azia)
er zrs
0 0
(@) (rs) — Zgr _ Zyr — ~(a)
AZ,. =10 1 .z—d =0 - ;) =0 [ AZ,- ........ (25')
sr rs
0 0
~ rs z z ~
207 10 =% =0 1-"7=0]| 4z?
\ J \ Zar s JC

and analogous quantities without the index (@) . . . . . . . . . . . (2.5")
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The application of (2.5) to (2.4), and use of relations like:

0 0
T By foreachi ... u . (26)

z z

sr rs

results in:

AZ® = 9@ f2D; =

@ _ &~
4z 79 =
4

Z
rs) ~
Zga)( = Az rs)

=0 27
=0

Now (2.5), and hence (2.7), is established in accordance with the approach to S-transforma-
tions given earlier in {3], leading to a singular transformation matrix. Therefore a better
approach is found if one works with a non-singular transformation matrix, in a way that
does not cause the loss of information. In fact, 492 and 46'® are then considered as

“implicitly given derived variates”, see section 17 of [1]. One obtains:

7@ | 8 —j—z _/j_r{;i 4z

4z? |=fo 1t o |4z ... ... ..., @28

4@ 0 0 1 A4z@

and analogous quantities without the index{(@) . . . . . . . . . . . (2.8")
Applying (2.8) to (2.4) results in:

A?g“)(") = y‘“”-[&ﬁ’”; iL,j=..

Az@ =@ f 422 AP+ A5D L. (29)

479 =9 fz 420 Y@ + 16@

The case: 7@ —1~8@ 0

This case, most frequently met in practice, implies for (2.2):

y(a)° =1 5@° =0

2° = 20 e (2.10)

(a)° 0

(a) z! = ZS

Z,
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From (2.7) and (2.9) follows, with (2.10):

AZP = A2 = | (2.119)
A~§rs) — ~§sr)
i e .11
AZ79 =429 =0
1, @  _ 5 0. 45@ L 45@
4z Azptz dyTHAST Q.11
Az = Az+ 22 Ay O+ 46
Meaning of Az("
From (2.5) or (2.8) follows, with (2.6) ,see also [4] section 4.2 and appendix:
[4] [4] 0 [4]
N(rs)—N—@N_Z_HN__zsiN _@N_
4z = Az, 542 oAz = ?Azi, oAz =
—_ Zri zls("_}i_s . AZ"’ _
Zoe \zin  zg
0,0
S (2.12)
z

Fig. 2-1

(2.12) is very important for a good understanding of the following sections; also very
helpful for a better understanding of (2.11).

Just as important is (2.12) for the interpretation of standard ellipses, as an example of
which [5] may serve, in particular the additional figures la—4a, see note at the end of
section 2. The interesting thing is that the dashed circular standard ellipses do not depend
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on the shape of the net: they follow from the choice of the criterion matrix. The standard
ellipses drawn in full lines are dependent on the shape of the net; they are found by applying
the law of propagation of variances to the functions expressing the coordinates in terms of
measured quantities.

Figure la: In the choice of the S -system, the net to the left of 11-13 appears to be
1,3

relatively good, to the right of 11-13 it is relatively bad as far as precision is concerned.

Figure 2a: The same applies in the choice of the S -system.
11,13

Figure 3a: If the S -system is chosen, the full-drawn standard ellipses on the left
17,21

become large too, because the IT-quantities concerned are now also functions of the poor
part of the net on the right. But the partial net 17-19-21 now appears to be relatively
good too.

Figure 4a: In the choice of the S -system, almost all IT-quantities are affected by the
3,21

poor part of the net. These standard ellipses therefore give the least reliable impression
of the qualities of different parts of the net.

Remark

A more direct way to II-quantities is the following, see figure 2-1 and [4] section 4.2 and
appendix:
Consider the difference quantities:

25?) = 55?)‘611"' ‘ ~(ﬂ) — Z(a)e Hosr

with transformation of system:

~(h) 5(h) . z(a)

_)}a l'l

@->0 | (@)
23! ) ))(:) ~(:“)
Or, With lnz,-j = AU:

AP =R AP+ 1L, | AL =189+ A1,

hence:
T — T — ~
AAD = AnyB+ AAL + A1, | AAL) = Any®) + 44D — AT,
with y8° =1 | with y8)° =1
Now put:

T ——/ ~ T —./ ~
Alny® = 449 | Alnyl) = —44P

But 44 = 4A@

sr >

hence (h)-system = (h’)-system, call this the (rs)-system. Then:
AAS = A1, | A4S = - 410,
Azl(';S) = Z,O,-'AHS"- AAZI.EIS) = _Z.?i'AT-]isr
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But in a mathematically consistent triangle we have:

A ——O—ZO'AH +ZO'AH
’I(i),s,r si isr ri sri
Oor:

A (rS) AZ('S) = Az (rS)

St denote
by

In such a triangle we also have:

A'I(s)n—o—" er AHsn+Z AHrlS

hence:
A (rs) _ 0 A~ 0, 17 Z?i. is. (¥
2y T = 2y Hsri = Zsi'A rsi ™ — P 'AHns
er
Consequently:
AAD = A+ AT1,,,, with 28 AT, = 42,
hence:
Az{P = 479~ 25 449 =
ri rs
~ ~ ZO. ~ ~
= Azf“)—Azf“) — —’O'(Azg“)—Az,(“)) =
er
0 0 0
~ zZ+zZ, ~ VA
= Az — "B A7 — T4
ZrS er
or:

0 0
sy g Zsi, Sy Zri, o)
Az{" = Az — "% 470 — 2478

ZS" er

Note to section 2. Remarks to figures in [5]

The previously mentioned figures la—4a of [5] are included here.

. cf. 2.12)

. of. (2.8)

The full-drawn ellipses

follow from the adjustment of the network under the assumption of a standard deviation

for the uncorrelated direction variates r:

g, = constant = 7 dmgr (centesimal seconds)

The criterion of precision is established in relation with the criterion for rural areas {ateas
type 2} used in the HTW-1956. This implies the construction of an artificial covariance
matrix, the criterion matrix, with only one parameter, ¢, {see (15.2.26)}. The corresponding
circular standard ellipses are drawn in dashed lines, in such a way that in the S -system

the radius of the circle in P, is chosen according to:

Yd /2= \/? {4 km +0.005} ~ 8.5 cm

3,21
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implying an assumed ““distance of densification” {HTW-1956}:

A=4{;,, ~8km} =4km
This results in the parameter value:

¢; =17 cm?/km
From the four figures it is evident that the degree in which the dashed standard ellipses
enclose or intersect the full-drawn ones, is not invariant with respect to an S-transformation.
This is explained by applying the general eigenvalue problem of section 8, or with (8.21):

Apax ® 36 > {c, & 17}
Nevertheless the influence of the poorly conditioned part of the net between the pairs of

points P,, P;3 and P4, Py, is evident. The question whether the correct parameter for
the criterion matrix has been chosen will not be discussed here.
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3 A NON-SINGULAR S-TRANSFORMATION

The transformation (2.5) is singular; (2.8) is non-singular. Which of the two should be con-
sidered as more directive?

It should be borne in mind that in a network coordinates can only be computed starting
from a computational base. The criterion matrix according to [6] is also constructed with
respect to a computational base. This means that (2.5) is more directive than (2.8).

For a further study alternative base points P,, P,, are added to the points P;, P, and P,.
Then we have, assuming (2.10):

0 0
~ ~ Z5 o~ L~ ~
(rs) _ si ri
AZ,» —A i_; Zr—Z—OA 5 HAHris
sr rs
I A Y P 3.1
Z, —Zv_‘o' rT o s| rvs""""""(')
Zsr Zys
(1] (1]
~ ~ z ~ z ~ ~
(rs) _ sw rw
AZW = ZW—ZT Zr—Zo Zg HAH)‘WS
sr rs

~ (a)(rs) ~
Az = Az
A7 = f79)
v v
4Z97 = 424 N ¢ )
4z = Az, 4z Ay + 45

B0 = Ba 20 By + 55

Now (2.5) and (2.8) can also be applied using P,, P,, as base points. This gives:

0 0
N(UW) _ ~ Z.o,: ™~ Z,.. ~ ~
A4z; =Az; — Az, — -4z, |« A1l
Zwy Zow
~ ~ ZO ~ Zo ~ ~
Az'(.UW) =Ar———:5Av——%i z, oA, (. . . . . ... ... (33
Zwy Zyw
0 0
~(vw) _ ~ z ~ V4 o~ "
AZS =4 s_'% zu_—l(;iA w HAHvsw
Zwy Zyw
e 2
AZia — ZEUW)
Az'(.a)(uw)=Az'(-uw)
F@w - Fpom R < 1)
429 = Az, + 2% Ay + 45@
429 = Az, +2%- Ay 4+ 46@
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The most conspicuous feature of the formulas (3.3) and (3.4) is that r and s have changed
places with y and w.

This change of places is illustrated in figure 3-1. The determinant quantities are:

in the S-system: A7I,,~8, AT s> AT s
r,s

in the S-system: A7Iuiw, AAIJT,,,W, AAIJT,,SW
v,W
According to the introduction of this section, (3.1) and (3.3) are essential. Therefore, there
must be a transformation from one to the other, which is in fact a transformation of
IT-quantities.

Now one can arrive at the formulas (3.3) by applying this S-transformation to the
quantities in the S-system. By substitution of (3.1) one finds:

r,s

~ (vw) ~ Z0 ~ Z0 ~ ~
(rs)(v) __ (rs) i (rs) i (rs) _ (vw)
A4z Az ——‘;' Az, ——;’ Az = Az

ZWU ZUW
~ ( ) ~ ZO ~ Zo ~ ~
AZE0 = Az — = Az — —o- 4289 = Az
Zyw Zyw B < ) |

! 0 0
e (rs) _ Zws fu(rs) _ Zus S(rs) _ TU(uw)
Az =d4zY — =2 4z, — 2> Az.Y = Az

z z

wv vw

in which: 4z = A4z =0

r
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The transformation (3.5) of S- to S -system can therefore be written as:

r,s v,w
~oo Y o Z°. 22N~
Az % ~—— — Az
ZWU zUW
0 0
~ zZ z ~
Az =0 =2 _Ze L gZE L (3.6)
ZO ZO
wv vw
0 0
~ z V4 ~
A4z¢ 0 —=2= = 1 Az8Y
R P L G
denote by: (S{y)

In analogy, the transformation of S -system to S-system can be written:

v,w r.s
e N [ 0 0N )
T2rs) i Zsi Zri 5 (ow)
Az 0 — =% — % 4z
er er
0 0
~ z z ~
4z09) =] 0 —% - | P2k B I < )
zS" zrs
0 0
Az | o =Zm I || fzem
w 0 0 s
. J X\ Zsr Zrs 1\ J
denote by: (Sg,s”),))

Substitution of (3.7) in (3.6) with an application of relations between coefficients like (2.6)

then gives:
% 00
SENSE)={0 1 0] .. ... .. .... ... ...... (38
0 0 1

(3.8) shows that the S-transformations of the type (3.6) and hence (3.7) are non-singular,
in addition the inverse of the transformation matrix has also been found. In this form of
the transformation, the change of places between r, s and v, w is particularly clear.

This type of S-transformation is exceptionally important, because the covariance matrix
of the coordinates in a newly measured network as well as the criterion matrix are construct-
ed in an S-system, whereas a given z®-system can always be reduced to an S-system by
means of S-transformations as indicated in section 2.

Within a group of S-transformations the choice of the computational base is unimportant
in that a change of the computational base results in a non-singular transformation, so that
no information is lost. In particular, the comparison between two covariance matrices of
coordinates of the same group of points in the same S-system {e.g. one obtained by apply-
ing the law of propagation of variances to measured quantities, the other a criterion
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matrix} must therefore lead to conclusions that are independent of the choice of the
S-system.

Note to section 3. An alternative form of the non-singular S-transformation treated

Take from (3.6) the non-singular transformation:

oo [ N )
Az d; 0 0 Az
4] 0
~ z z ~
Az (=0 =2 2 A Lo oo (BY9)
0] o]
ZWD va
] 0
Azl Jo =Ze _Zs || fze9
s 0 0 w
. J \ Zwo Zow J 0 /

and substitute this into the right-hand member of (3.7):

15 (rs) 15 (vw)
Azirs Aziuw
AZE [=(SE) [ Az& . .o oo (310)
A~Z(rs) A"z’(uw)
w 5

Executing the matrix multiplication concerned then results in:

0 0
A | e w5 S || 4

ZWV ZUW
Az =0 1 o {4z ||............@1
A4z¢° 0 0 1 Az89

The inversion of (3.11) is then:

~ . 0. 0. \ ~
aem | | e = B A

zwv ZUW
Az |=lo0 1 I G DR X )|
A28 0 0 1 4z

which formula is the equivalent of (2.8), only with the restriction that the transformation
(3.12) gives the transition of quantities in the S-system to quantities in the S -system,
thereby including: s o

4z and  428Y as “free” variates¥). . . . . . . . .. . (313)

*) “Free” observation variates do not occur in condition equations of an adjustment problem, but they
are correlated with {“tied”} variates occurring in these equations; see [1], section 12.
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If the transformation (3.9) is made to follow (3.12), then (3.6) is obtained once more:

Az e

i t
Az | =(SEY | 4280 . ... . (314
Angw) AZ&;S)J

In this way a completely closed system of transformation formulas is obtained, always
making possible the return from the S -system to the S-system:

v,W r,s

a. either by using (3.11) if the computation of (3.13) is followed (.15)
{compare (8.2) in [3]} )

b. or by using (3.10), and hence (3.7), if the base points P, and P, are} (3.16)
included in the S -system {compare (8.3) in [3]} )

v,w

Densification networks can often be computed in one or more local S -systems. The sub-

v,W
sequent cemputation of the covariance matrix of coordinates in the original S-system
was studied in {3]. s

In this situation, there is a practical difference between the two methods of computation
(3.15) and (3.16). If the computation is done according to (3.15), the position of the base
points P, and P, need not be known, whereas it must be known if the computation is done
according to (3.16). This is of special importance if the original system has the charac-
teristics of an (a)-system, as in (2.8’), rather than an S-system. This situation is sometimes

r,s

found in national networks, where the coordinates of the “datum point” as well as the
length and the azimuth of an initial side are given a probability distribution. Such an (a)-
system might be considered as an S-system in which the base points P, and P, are not

r,s

specified. The computation according to (3.15) in such a case prevents loss of information
when an S-transformation is executed.

The computation of densification measurements in a local S-system has a curious

v,W
consequence for the computation of corrections to coordinates resulting from the adjust-
ment procedure.

In the S-system we have, according to (2.7):

v,w

(vw) _ (vw) _
4z = 42 =0
hence for correction variates &:

& =g =0

_zng) zg:w)

£ #0, ¢ #0

_zf‘vw) -zng)
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In the S-system we have:
S
Az = 4289 =0
r s
hence:
£ =g =0

zf.rs) ZSH)

£ #0, ¢ #0

zf)rs) zgs)

C .. (318)

This apparent contradiction is caused by the fact that in S-transformations the correction-
variates of coordinates are transformed in the same way as the corresponding coordinate-
variates. For example, from (3.10) follows:

e (e N

zgrs) zng)

g = (S| & Y < X 1))
zf)rs) zva)

g g

zE‘r;s) zng)

In practical cases of densification measurements the effect (3.19) can be eliminated by assign-
ing a pseudo covariance matrix to the given coordinates of higher order, such that the
corrections to these given coordinates become zero. One of the possible methods has been
elaborated in section 7.

If P,, P, P, and P, are points of the higher-order network and P; {i=...} are new
points in the densification network then follows in this case for the computed set of pseudo
least squares corrections e, see (3.19):

e =e =e =e =0
ZSUW) zng) zgrs) ZSS) (3 20)
e =e e e e e e e e e e e e e e e e e .
zgrs) zng)

It is not strictly necessary to act according to (3.20). On the one hand, this follows from the
interpretation of Az"®-variates as All-variates in (2.12), so that the interpretation of
“coordinates’’ should be used with care, and on the other hand this follows from the con-
siderations in section 5, where, however, the assignment of corrections to given coordinates
is clearly coupled to an (a)-system.
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4 THE CONNECTION WITH EARLIER IDEAS

The broadening of the line of thought is best shown by referring to earlier publications,
such as [3] and [5], in particular [5], because of the deceptively short and simple picture it
presents.

Lagrange’s interpolation formula

The execution of a similarity transformation in the form of the “connection to the points
P,, P, by a similarity transformation” will be elaborated first.
In the case (2.10), it follows from (2.11) that:

AZO A2 =0 . 4.1)

or, worked out with (2.5) or (2.8):

) )
(42" —Az;) — Zioi 4z —A4z,) — ZLoi 4z —A4z)=0

sr rs

or, again with (2.10):

0 0
~(@) =~ Zgi a o Zy rna) =~
(E9-z) = —OL(zf")—z,) + —()—(zﬁ L T “4.2)

sr rs

i.e. Lagrange’s interpolation formula.

If so desired, one can also determine Ay® and 46 from (2.11). Again assuming (2.10),
one obtains:

D5 =20 Ay D+ 40

L S “4.3)
5@ _5 = 70 YD+ 45
From (4.3) follows:
~(a) ~
() _ Zps' —Zys
)
................ 4.4

22(25‘1) — 2r) - Z?(iga) - 25)
0
rs

45 =

z
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Transition of S-system to (a)-system

r,s

From (4.1) follows:

~ ZO- ~ ZO. ~ ~
o = e I e i 2
er zrs
or:
~ ~ ZO. ~ ZO. ~
Az = Az + Az + 224z | (49)
ZSI' zrs

(4.5) can be used, among other things, to return from an S-system to a system of given
coordinates.

The connection with earlier definitions of S-transformations

The difference between the present development and the approach given in [3] or [5]
concerns the assumption of approximate values.
Consider, in case (2.10), with (4.1):

Az = Az
0 0
~ ~ Zeo: ~ Z.: ~
4z = Az; — -4z, — - Az,
zsr zrs
~ O (- X
Az; =%—z) (4.6)
~
A4z, =% ~2°
~
Az, =z —2z°

In the present theory, z}, z°, z° can be chosen rather arbitrarily.
In [5], and other publications, one chooses the set of observed values as approximate
values, hence:

Z, = Z,-
0=z, 4.7
0=z,
From (4.6) and (4.7) one then obtains for the set of derived values:
A2 = Az =0
} (4.8)
Az; = Az, = Az, =0

so that a particular case is found, in which only the covariance matrix is transformed when
an S-transformation is executed.
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Because usually

z,-#zﬁ“)
27 S € X))
zs¢z§")

the formulas relating to the actual similarity transformation, such as (4.2)-(4.5) will in
general result in outcomes for the observed values @ifferent from zero.

The position of the similarity transformation

The difficulty indicated in the previous paragraph can be avoided by applying a similarity
transformation (4.2) to the set of observed values, before working with relations in the
S-system.

r,s

Instead of (4.7) one chooses then:

z;, =2z
2=zP% L (310
zf—zﬁ")

With (4.10) we have for the derived observations:

Az = Az{" = Az{" =0
} R

(a)trs) _ (rs) _
Az = 4209 =0

In this case, (4.5) implies only a transformation of the covariance matrix.

This explains why the connection of the observed values by a similarity transformation
to coordinates z{* and z{* almost always precedes the considerations about variances in
an S-system. But if more than two points P,, P, are given in the (g)-system, one must be

more careful in treating this problem of adjustment.

Note to section 4. An intuitive interpretation of S-transformations

A more intuitive line of thought, connected to the original ideas of about 1944, can serve
as an aid to see through the preceding formulas describing aspects of S-transformations.
We start with:

7" z}

variates | z” | and approximate values {z° | ;i=... . . . . . . . . (412)
(a) o
Zs Zs

Execute the S-transformation to the S-system according to (2.5) or (2.8), again written in
mean values: ns
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0 0
~ ~ A AT
Az§'5)=AzE“)—%Azﬁ“)———g—Azg“) I - R )
z

sr rs

o]
Zg s ~
(~(rs) 0) _ (~(a) ZO) _ :)l (Zsa) 0) n ( (a) Z?)

sr rs

ZO- ZO~
EP-EN == -5+ (-2 (41

sr er
But according to (2.7) we have:

420 =50—z0 =0 - 7= 201

’ ’ . (4.15)
Az =722 =0 ~ =20 ]
Then (4.14) with (4.15) results in:
20 20
(~<"> M) =L@ + L@ | L. L (416)

sr Z"S

If (4.16) is compared to (4.2), it is clear that Lagrange’s interpolation formula has been
found, so that the S-transformation (4.13) can be interpreted as the connection of z®-
quantities from (4.12) to the approximate values z°, z° of the coordinates P,, P, of the
S-system by a similarity transformation.

r,s

In analogy with (2.1) we would consequently have:

e A e (B '

and in analogy with (4.4), in view of (4.15) and (2.10):

5(a) 1-(a)
_1+~(rs) —Zr: _ AZ,;
(a) = ) - )
ZI‘S ZI‘S
0,0 _~(ay_ 00,0  =(a)
sy = B =2 )oz,(zs 230 N S O 1 )
ZI‘S
0
_Zs (a) (a)
=—4z + -4z
ZSI' ZI'S

For all derivations in this note it is essential that (2.10) holds: z{®-values must only be
slightly different from z?-values. Therefore the interpretation of an S-transformation as a
similarity transformation must be used judiciously, because this interpretation is only
valid within the range of validity of the difference equations used.
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5 ADJUSTMENT TO GIVEN COORDINATES

Suppose that from the measurement of a new network coordinates z have been obtained,
whereas for a number of points one also has given coordinates z'‘®, In view of the theory
of section 3, these outcomes are arranged as follows:

measured given range
(as step I of the of indices

adjustment)
zZ; — Lj=...
;; Zl"(a) k,,]l= Coe e e e e e e e e (51)
Z, A
z., 29
z, 2
z, FA

The choice of approximate values z? etc. is left open. For the situation is, that the choice
7 =z, (4.7) is always possible, but the choice z = z{* (4.10) is not, because a preceding
transformation connecting the network to the points P,, P, gives for the other given points,
e.g.:

(5.2)

in which: z, = 29 = 2@, 7z =z = ;/@

z, -2, z® #2,@ }
To begin with, we shall therefore leave the similarity transformation, e.g. in the form (4.5),
out of consideration. Because the elimination of this part of the total problem resulted in
(2.11") as the base for the adjustment model, as far as (2.10) could be applied.
Changing to the S-system, and omitting the index (a) one obtains:

r,s

Adjustment model in step 11

“free” variates A4z R

(r,s)-condition model | Az — A7 =0; k,i= ... 5.3)

AZS,’S)—AZ;(“) - 0

AzZ{0 - 479 =0

“free’” variates Y PASIY AL
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The covariance matrix of observation variates, computed for Az’-variates with (2.8")

becomes:
AP AZ 420 Az | Az Az Az | Az Az
Az | 4 B 0 0
Az
4z B C 0 0
_v
A4z
— (5.4)
Az,
Az, 0 0 D E
AZ/(rs)
w
Az'@®
r
A7 ® 0 0 E F
s
Because in almost all cases there will be no correlation between z- and z’®-variates, (5.4)

seems to be sufficiently general.*) The matrices D, £ and F will usually be derived from the
theory of criterion matrices.
Then the results of step II will be in the most general case:

(Az{7

(rs)
Az
(rs)
A_Zv.ll
(rs)
Az

A_Z l(c,.-isl)

(rs)
A_Z_vl.’igl

(rs)
Az.05

(a)
4z,

A4z,

s JI
. J
vector 1

4200
A zi’s)
7
Az¢9
Az}
AZ;(rs)
4z

42,

" — B

+D

+E

A Z'(ﬂ)
.~ J
vector 2

N1 AZ’(‘rs)_AZ;(rs)
C+D | | 4z20=Az™ | . . ... (55)
Azy?— Az,

vector 3

*) If certain measurements of directions and distances from the network which generated the ‘“‘given”
coordinates z'(® are used again as oberservations in the network which generates the coordinates z,
then correlation will occur. Therefore it is recommended to avoid this situation.
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(5.5) is extremely useful for theoretical studies. But for the practical execution of an adjust-

ment, the vector 3 will usually be written in a different form, for which (5.2) is followed
because otherwise z* and z!* cannot be defined.

(4.5) applied to vector 3 in (5.5) gives then:

0 0
z z
Az,(,'s)—Az,’,(") = {Azfc") — —f)k Az)@ — —:)k Az;(“)} +
Ze Zf Ze L0 ==

sr rs

Zo Zo
450~ 2 4510~ 5 40) -

— Zy T z

——

rs

D

2P Az,® =

|

=zP—z@ .. .. (56

(5.6) means a transformation to connect the z-system in the points P, and P, i.e. for the
set of coordinates, because the stochastic addition of the effect of connection of Az,
and Az, vanishes in the difference. o
This is now the line of thought of (4.10), i.e. the z-system is computed {defined} after
connecting to z/” and z/® omitting the stochastic effect of this. Approximate values are

to be chosen as in (5.2):

BT P
zp > 2™ | z) =z® # z;@

z, 5z | 20 =22 | %@ .7)
Zw N sta) 23 = ZE:,‘) # Z:‘f‘l) . . . . . . . . . . . . . . . . .
z, - Z;(n) z? = z;(")

z, > Z;(a) Zf = z;(“)

With (5.7) we have for the derived observations:

4" =0 Az = 4z

420 =0 | 4z} = {0 -2z || 42" = 42" A2 = Az,

4z =0 | 42/® =2/ Dz || 42977 = 429 Az = g7/

Az =0 | 4Z° =20 -2 || 420 = 429 Az = 42/ (58

49 =0 | 42® =0
r r
479 =0 | 42 =0

Seen in this light, (5.8) has the same effect as (5.6) for the observation set.

This means that for the numerical computation — the stochastic situation remains the
same as in (5.5) - one can introduce in (5.5) {approximate values in vector 1 are of course
the same as in vector 2}:
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Observation set in (5.5)
vector 1 vector 2 vector 3
{see also (5.11)}
@ z{?
s
o z,” A (5.9)
Zen” 7 R A
| e
2@ 2@ For the notation z{3"" instead
@ @) of z9), see the text after (5.10).
Zst Zs

The transformation of S-system to (a)-system can be executed afterwards analogously

r,s

to (4.5), hence as a continuation of (5.5):

( N O L@ @Y N
Az & 0 0 0 = || Az
2z S@ 22

sr rs

‘ z(z) Z(z)

Az 0 & 0 0 = ZollAzy
27 Z@ 22

sr rs

(a) (a)

z z
Az, 0 0 & 0 == Az
2z Z@ 22

= S £ B B (V)

Z@ (@)
A4z, 0 0 0 & =% "l Azgy
22 S@ 2z

sr rs
4z 00 0 0 4 0 4z
4z 00 0 0 0 & []|4z%
. J \ J\ J

(5.10) gives, apart from a stochastic transformation, also in general a transformation of
the observation set. This is the reason for the notation with vector 1 in (5.9).

In most cases in practice, given coordinates in densification networks will not be given
corrections, see section 7. In this case (5.10) means only a stochastic transformation, and
the observation set will not be altered. Then the notation of vector 1 in (5.9) can be
simplified:

Given coordinates not corrected, see section 7

oL (51
(5.9) | 2@ > 2@




6 THE APPLICATION OF NON-SINGULAR S-TRANSFORMATIONS
TO THE ADJUSTMENT MODEL

Although it is not essential for the following discussion, one can always add to the *“free”
variates in the last row of (5.3) the variates:

Az)® i ok l=...

451, 4z

Next, a non-singular S-transformation of the type (3.6) is applied, if necessary extended by
a unit matrix on account of the “free” variates of the type (6.1):

(Azf"w)\ f A rAzf’s)\
Az A7
e | | S| o 0 2200
A_zg"‘”’ A_zg"
A_z,"("“’) 4z (9
4z (=] 0 | SCY 0 {VEAS I (6.2)
Az, 42/
Az, 80 000 Az
4z, 0 600 0 Az
4z, 0 0 |00 &00 4z,
4z 00 060 4z
Az,’,(”)J 00 0068 ||az®@
. \ N

Then, (5.3) is transformed into:
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Adjustment model in step 11

“free” variates A4z D=

(v, w)-condition model Af\z'fc”w)—Af\z";f”w) =0; kl=..
So(ow) ST r(ow) _
47" = 42,77 =0 L (63)

Az — A2/ =0

“free”” variates AZ,@, Az
and, if desired:

4z, 470, 47

It is not necessary to write out the results of the transformation (6.2) applied to (5.4) and
(5.5). For the results of an adjustment are invariant with respect to a non-singular trans-
formation like (6.2). Of course the superscripts (rs) and (vw) are essential because they
indicate different variates. Only affer the transformation (5.10) and the analogous one
with (6.3), these differences vanish, because then only superscript (a) occurs.

Presumably, the part of the adjustment problem above the bold line in (5.3) and (6.3)
respectively, is the most essential, because one works here entirely in and S-, respectively

r,s
an S -system; one system can be derived from the other by an ng;;) and an S((;fz)-transforma-

VW

tion respectively, Here, the remarks given after (3.8) are also valid.
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7 THE ADJUSTMENT TO GIVEN COORDINATES
WITHOUT CORRECTING THEM

There is a great practical advantage in keeping the coordinates of “given’ points fixed,
i.e. in not giving them corrections. This has also the more or less theoretical advantage that
the matrices (D), (E) and (F) in (5.4) remain unaltered. The latter advantage is decisive if
these matrices are derived from the criterium matrix chosen!

The effect of not correcting the given coordinates should be evenly distributed over the
net. Therefore, preference is given to the pseudo covariance matrix according to method II
in (5.101) of [1].

This implies for (5.4) the “rule of thumb” (5.103) of [1]:

(D)= (0); (E)=(©0); (F)=>(0) . « v v v v v e it i (7.1)

The matrices (4), (B) and (C) can, if so desired, be replaced by pseudo variance matrices,
provided that essential properties are maintained. For example, one may use a criterion
matrix in the S-system.

With (7.1), (5.5) becomes:

fAzl(f'Isl) N (AZE”) N f_B\
A—ZL(rs) ;—z;‘rs) T
A_z'/)(rs) ;—z'()rs) _c
A_z;(rs) ;_zgs) U CAZ09— Az
A_z,’f”) = Zz,’f") + Hcl - ;1_z,<,'s>—A_z;<"> ....... (7.2)
Zz;(rs) Zz;(rs) 0 ;_;gs) _ Zz 14rs)
4z," 4z, vector 3
Az;(“) Az;(") o
A_z;(") A—z;(a) 0

. 7 \ A
vector 1 vector 2

If now the line of thought (5.6)-(5.9) is applied, the following is valid for the observation set:

4z8 = Az)@ = 0}

429 = 42/ =0

so that the application of (5.10) then only means a transformation of the covariance matrix;
compare (5.11).
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(7.2) gives pseudo least-squares estimators. In order to obtain their covariance matrix,
the law of propagation of variances must be applied, making use of the complete matrix
(5.4), established in accordance with the most reliable information.
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8 THE COMPARISON OF A COVARIANCE MATRIX
{OF COORDINATES} WITH A CRITERION MATRIX

Compare two stochastic vectors (z) and (z') with identical sample values but different
covariance matrices G and AH. The difference in model parameters {now only a stochastic

difference for the corresponding variates} A~y and 43 is eliminated by transformation to a
S-system {see section 2}.

r,s

Using a symbolic z-notation for coordinates, one obtains:
Az, (425N =G . .. 8.1)
Az, (AZ’N' = AH" . . (8.2)

In (8.2), a {positive} scale factor A has been introduced, because on the one hand the theory
to be developed can serve to scale the matrix H with respect to G, and on the other hand
the matrix G can be tested with respect to the matrix H when putting 4 =1,

Consider now an arbitrary linear function:
AF = A-(42") . . . . e 8.3

hence also:

AF' = A-(A_z"’”) ........................ 8.9

and require for any such linear function:

AF AF S AF',AF © o 0 0 0 0 0 0 e v e e e s e e e e e e (8.5
(8.1)(8.5) then gives:

A@G—AH™) A0 . v (8.6")
(8.6") means that the matrix:

(G(rs)_A.H(”)) b e 4 e e e b e s e e e e e e e e e e e e e e e (8-6”)

must be negative semi-definite
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For simplicity, we deviate slightly from the notation in section 13 of [1], and write for
the Choleskey decomposition of H":

H" ==ttt . 8.7
Standardization of the 4z'*®-sample space is obtained by the transformations:

(42") =I(42")

(AE,(,.S)) — F'(A_Z,(rs)) ...................... (8.8)
(8.6) then becomes, with the unit matrix I:
AT (-G —4-D:r1A"<0 . . .. ... (8.9)

Now apply an orthogonal transformation, such that the matrix (I'-G"®-I”) is reduced to
the diagonal matrix:

dgld . ndd] « o 0 o o (8.10)
hence by the orthogonal transformations:

C-(4z")
C-(4z'"y’ with C™'=C ... ... ... ..., (8.11)
Then (8.9) becomes:
A-r-tee-r-¢"®-r--c’—1-n-ctrtA"<o
or, with (8.10)

(AT C™Ydg[A =4 ooy A= A]-(AT™HCTY <O . . L. (8.12)
or:

dg[A, =4, ..., 4,—4] negative semi-definite . . . . . . . . . . . . (8.12")

(8.12) is fulfilled by:*)

’ A2 dma | - (8.13)

Aty evey Aiy o..y A, can be computed directly as the eigenvalues of the matrix (8.6").

*) See, e.g., L. MIrRsKY — An Introduction to Linear Algebra — Oxford, 1955, {in particular chapter 13}.
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Before continuing, it should be remarked that (8.12) and therefore also (8.13) are in-
variant with respect to a non-singular transformation, apart from a possible change in the
ordening of the eigenvalues 4, ..., 4,, see e.g. the book by MIirsKy, pages 119 and 199.
Now let us consider:
4z = S-(4z"9)

— (QEw)
(4 = 54z’ S=@Esenyb (8.14)

Then (8.6) becomes:

A-S71(S-GY5"—4-S-H-8)-§ A" =

=(A-S™H(GC™—A-H")-(A-S™H'<0 . . .. ... ... ... (8.15)
Let:
HO =~ e (8.16)

then the result of the standardization of the Az'™)-sample space and the subsequent
orthogonal transformation can be written as:

C-T-(4z")  resp. C-[-(4z) ... ....... ... . (8.17)
such, that for (8.15) we have:
(A-S™H- I~ C™Y-dg[Ay =4 .. Ap—=A} (487" C™H"<0 . . . (8.18)

Up to, at most, an orthogonal transformation, the standardizations in (8.8) and (8.17)
give identical results, so that:

(A 2(UW)) =C- (4?-(”))

or:
C-F'S'(A_z(’s)) = C-é-F'(A_z(’s))

or with (8.11):
=C- T4z ... (8.19)

From (8.19) it follows indeed, with (8.12) and (8.18), that:

dg[A = A, .oy A=A = dg[A1 =2, ..., An—A]

up to the ordering of the diagonal terms

(8.13) can now be used for two purposes:
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I: Given G, H"®. Sought A
Compute maximum eigenvalue from (8.6)and |. . . . . . (8.21)
choose A from A 2 {4}

This is the ““scaling” of the criterion matrix.

II: Given G {from reconnaissance of the network}
and H"9, already “scaled”, so that A =1,
Problem: does G fulfill (8.6)?

Compute maximum eigenvalue from (8.6)and . . . . . . (8.22)
check if {A;} max < 1
This is a test on the required precision of the net-
work investigated.

In both cases one obtains the situation of Fig. 8-1.

Azi(rs) , Az;(rs)

“..~standard hyperellipsoid -=—» A

-standard hyperellipsoid «— G(PS)

Az,(:rS) , Az;,(rS)

standardized sample space Az’(rS)

Fig. 8-1

Note to section 8. Change of the form of H"

In section 15 ff. it will be shown that the criterion matrix H® is constructed out of formules
containing several parameters. A change of the parameter values results in a change of the
form of the standard hyperellipsoid belonging to the matrix H"®, or, briefly, changes the
form of H",

This is now applied to the situation in Fig. 8-1, illustrating the course of things in (8.8)-
(8.13). The inner standard hyperellipsoid in Fig. 8-1 refers to the covariance matrix:

(C TG -I"CYy=dg[Ar, .0 An)
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so that the eigenvalues 4., ..., 4, represent the squares of the semi-axes. The outer standard
hyperellipsoid {here a hypersphere} in Fig. 8-1 refers to the covariance matrix:

A(C-T-H"-"-C = A(])

so that 4 represents the square of the hypersphere radius.

The forms of the two hyperellipsoids will agree better with each other as the ratios of
the eigenvalues 4y, ..., 4, approach 1. The same applies to the two standard hyperellipsoids
belonging to H* and G“9, or shorter, the form of H"* then corresponds closer to G**.
A possible criterion of “fit’’ can be:

Form of H"® agrees better with form of G

as: 1A} — smaller —» 1
{ii}m'm




53

9 THE COMPARISON OF A COVARIANCE MATRIX WITH A
CRITERION MATRIX IN AN ADJUSTMENT TO GIVEN
COORDINATES

As in section 8, primes will be used for z-variates to which the criterion matrix has been
assigned to serve as their covariance matrix; this is, provisionally, contrary to the prime-
notation in sections 5-7. Furthermore, the splitting up of the indices k, v, w can be abandon-
ed, so that, with the addition of other given points P, P,, P,,, (5.1) becomes:

measured given | refers to range of
(as step I of criterion indices
the adjustment matrix
problem
zi AZ;(’.S) i,j = ...
(a) 1(rs)
Zk Zi 4z, k,l= ..
- e e e e 9.1)
z, 2@
z 29
z@ Az mn=...
Z.(;a) A z;('s)
2| Az

In Fig. 9-1 the situation envisaged in (9.1) is illustrated. A new network {of arbitrary
shape} contains new points P; and given points P, and P,, P,. Apart from these given points
there are many more given points, the nearest of which, P,, have been indicated, as well
as the base points P,, P,, used previously.

Now assume that the coordinates z® in the second column in the S -system fulfill
(8.22), or symbolically: o

(4207 AzON (47N CAzOTY
Az 4z Az Az
Azga)(VW) 3 AZ-(‘a)(vw) < AZ;(UW) ] Az;(vw) (9.2)
(a)(vw) (a)(vw) ( )
Az2 \4zx P, Az/™ Az,

then, according to section 8, we have in the S-system:

rs
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AZE‘“)(") A Z;“)‘”) A Z;‘('S)\ A z;("s)\‘
Y (rs) (a)(rs) (rs) 1(rs)
o T L Y Az, L 93
Az * | 4z Az L Az
Az(a)(") Az(a)(”) Azl(rs) Azl(rs)
|\ w J w w [\ w

so that from the point of view of precision no corrections need be applied to the given
coordinates in the new adjustment problem which serves the determination of the points
P,. Hence the method of section 7 can be applied, in which for the simplification of the
computation no pseudo covariances in the matrices 4, B and C in (5.4) and hence (7.2)

are used.
e A T
R A T
/’, \\\
// \\\
// \\
. N
// \\
// \\\

III A \\
/’A
I
i
1
1]
]
I
I
]
i
]
|
1
ma

v w

A A

If now the base points P,, P, are left out of consideration, the result (7.2) can be written

in the form:

4z & ~Ap +4p 07)( 4z
4z =10 0 & o |4z ... 0 099

Az@C 0 0 0o & A7 @D
m m k

\ A (a)(rs)
Zm

Usually one will not have the matrix D {or E or F} in (5.4) at his disposal. Instead of the
left-hand member of (9.3) one takes as safe estimate the right-hand member of (9.3). In

this case, (5.4), as far as it refers to (9.4) can be written in symbolic form:

-~ =

>
]
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4?5'") f1—z§rs) A—?ga)("’) A—Zf'a)(")
A zl(rs) gij gil 0 0
A_Z;(¢"> g g 0 0 S )]
A_Zia)(”) 0 0 hkl hkn
Az@ 0 0 h™ h™"
(4D = (6" @Gw, Gw =" } ©.6)
(7" = (6")—(g") @1 (8"
(9.5) and (9.6) then give with (9.4) the covariance matrix:
R 47 40
2L O e B s I T o
420 [h4{] [K“]  [H“]
4z O I o B
according to (8.22) to be compared with the criterion matrix *)
Az}(") Az, Az:,(")
1(rs) ij il in
4z | [W] [H [h] ©8)

ARV IV N

Az | W] [h™] [h™]

From (9.7) compared with (9.8) appears the significance of including the given pointsP,,
when considering the reconnaissance. The newly determined points P; are not only con-
sidered in their relative positions with respect to the given points P, with P,, P,, but also
with respect to the given points P,,, which do not directly appear in the adjustment problem.

*) In the computation of eigenvalues from (8.6”") it can theoretically be proved that the value of {4;}max
increases with the order of the matrices G("® and H(™) as has also been shown numerically.
In densification networks there is a large difference between the number of “given points” and the total
number of points so that, on account of the foregoing, often in (9.8) elements % of a “larger” criterium
matrix H(™® will have to be used instead of the elements # of the matrix H(™) in (9.5) and (9.7). In
this case however the matrix (H (™) — H("$)) must be negative semi-definite, as already indicated in [11].
The line of thought expressed in section 10 is not affected by this.



56 PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 5, NO. 1

The correlation of Az{"3 with Az®"” is thus caused by introducing 4z into the

adjustment. The reconnaissance, by comparing (9.7) with (9.8), will have to show to what
extent the new network should be surrounded by a ring of given points P, with P,, P,.
It is always possible, according to (3.15) or (3.16), to go back to the S -system, from

which we started in (9.2), and whose criteria are then fulfilled by the extended network.
In this way one obtains a consistent system of criteria, independent of the stage of the
densification one is working in.

Finally, it will have to be decided how many points P,, have to be introduced in (9.7)
and which points are to be chosen.

The method proposed in this section implies that new densification networks need not
have an unlimited size. A minimum size, such as for closed-traverse networks will be aimed
at, but this aim is more concerned with reliability {error checks} than with precision. This
problem area can only be investigated by the analysis of practical examples.
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10 THE NECESSITY OF S-SYSTEMS FOR TESTING
ON PRECISION

In sections 8 and 9, the comparison of covariance matrices has always been executed in
S-systems. In section 9, the data contain the indication of an (g)-system, but this needed
no further attention, because there a transformation to an S-system was made. Therefore
it now appears to be important to investigate whether the line of thought developed in
section 8 is also possible if the (a)-system mentioned in the data of section 9 is further
used. In this investigation, the application of (4.5) can give the connection. For simplicity,
the number of points with given coordinates will be restricted to two, so that the network
considered need not be adjusted to given coordinates.
The equivalent of (9.1) then becomes:

! . )

| measured | given | refers to range of

f criterion indices

\ matrix
z Az Bj=.. B ¢ LA )]
z, z” 4z,
z, z” Az,

Column 3 of (10.1) differs from the corresponding column of (9.1), because it is possible
to establish a kind of *“‘absolute” criterion matrix, from which by an S-transformation
according to (2.5) the criterion matrix for the S-system can be derived.

r,s
Consequently we have in fact three different systems. Similarity transformation to the
(a)-system gives (4.5):

0] 0]
Az = Az 4 Bigz@ L g0 L (10)
— _ Zsr_ er_

ZO ZO~
Azf = Az[O4 A + A0 L (103)
_ — zsr_ rs_

The application of the non-singular transformation (2.8) then gives the covariance matrix,
in a somewhat more careful notation than (9.5):
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4249 | Az | Az, 42/ | 429, Az)@
—J — o T H4s 35 4s
A—zgrs) (gij)(rs) 0 0 0
Az 0 (i) 0 0 |..... (10.4)
A Zfa), AZ"_(") 0 0 (grr)(a) (grS)(a)
429,421 | 0 0 @ | @
Or, if:
AIIGHD=BH™N(A) <O o v e (10.5)
then also:
(gij)(rs) 0 0 (hij)(rs) 0 0
(A 4,4 ][0 (grr)(a) (grS)(a) ~lo (grr)(a) (grs)(a) . (AjArAs)‘ <0 (10.6)
0 (gsr)(a) (gSS)(H) 0 (gsr)(a) (gSS)(a)
Hence also the vector: (4z{"")
Az
Az
- J
satisfies the precision requirements. (10.7)

In (9.5), a pseudo covariance matrix for 422" was actually introduced. And in accor-

dance with this, one might be tempted to do the same with (10.1). But in that case one
obtains instead of (10.4):

A_zﬂ-") A_z}(”) Az] Az,

A_Zgrs) (gij)(rs) 0 O 0
Azg(”) 0 (hij)(rs) # 0 # 0 |- e e e e (108)

’ rr rs T
4z, 0 #0 h h | N.B.:

i no S-system as in (9.5).

Az, |0 £0 | B b
— v

Now (10.5) may be fulfilled, but the matrix established on the analogy of (10.6):
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(gii)(PS) 0 0 (hi.i)(PS) #0 # 0
0 A I A" A" T ¢ (VX))
O hS’ hSS ¢O hsr hSS

is indefinite;

The conclusion analogous to (10.6) is therefore not valid here because of the non-zero
covariances in the extended criterion matrix.

The situation of (10.9), starting from (10.5) in the limiting case when the equality sign
is valid, can be shown most clearly in a two-dimensional picture of standard ellipses. See
Fig. 10-1.

42/ (and 423)

" second matrix in (10.9)

4 zi(l‘s)

4z; {rs)

47 first matrix in (10.9)

Fig. 10-1

Consequently one has to conclude that the introduction of pseudo variances outside an
S-system impairs the consistency of a system of test conclusions and therefore should be
forbidden.

This applies also to the contents of section 9, where the analogous extension also gives
rise to difficulties.

Indeed, it must be asked if it is at all possible to find an (@)-system that is not an S-system.
For the existing network must necessarily have two base points, although one can of course
always more or less artificially, assign a probability distribution to the coordinates of these
two base points. The question then is, what is the meaning of this probability distribution!

In any case the testing on precision by means of criterion matrices will have to be restricted
to S-systems. For one is concerned here with criteria of form and not with criteria of
location and orientation!

Reference is made to an alternative line of thought given in [11], which leads to the
same conclusion.
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11 THE PROBLEM OF LEVELLING NETWORKS TREATED
AS AN INTRODUCTION TO THE CONSTRUCTION OF
CRITERION MATRICES

A good insight may be obtained by studying the heights x; of points P; in levelling networks.
In order to facilitate the comparison with the previously treated theory, the numbers of

equivalent earlier formulae are shown to the left of the formulae, wherever this is possible.

This also shortens the explanation.

Transformation from an x-system to an x“-system:

Q.1 FO=%489 = . . (11.1)

(2.2) X =xP 489 (11.2)

Difference equations:

23) E-x) = (%=x])+ -5

Ax® = Ax; + Aﬁﬂ ...................... (11.3)

Now add a “base point™ P,:

Elimination of the model parameter A5@ can be done by introducing difference quantities

in the relative S-system:
r

A7 = AX® — 4% | AxD7 =0
R T P B R (11.5)
AN = Ax, —4x, ‘ A =0

Or, introducing a unit matrix (6%) and a column vector (8,) with elements 1:

2.8) A0\ (8 =55\ (4 116)
Ax@ 0 1/ \d4x@

and, similarly,

quantities without theindex (@) . . . . . . . . . . . . . . . .. (11.6'")
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With (11.3) and (11.4) one obtains:

(2.11) APV = AXO , (11.7)
A0 =0 |, (11.77)
AX® = Ax, A4S | (11.7"")

In practice one will usually put:

(2.10)
(11.8)
Now add an alternative base point P,:
(3.1) A" = Ax, — Ax, (11.9)
B @ | .
Using (11.9) one obtains:
(3.3),  AxP = Ax,—Ax, = AxP - Ax = Ax(D (1110)
(3.5) o o o .
Ax? = Ax,—Ax, =0 —Ax" = AxXP

The transformation from the S-system to the S-system can therefore be written in the form:
r v

3. ~ . y ~
(36 Ax® _ |6 =90}, Ax{"
Ax® 0 —1 A - e (11.11)
r v

denote by: (S?,’)))

with further considerations analogous to section 3.

From (11.7) it follows that:

@.1) j‘)’clga)“)_A")’cl{r) T (11.12)
From (11.12) with (11.5) follows:

~

(Ax? — Ax) —(AxD - Ax,) = 0



62 PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 5, NoO. 1

or, for each i:

(4.2) FEO=2)=FP=%) | .« o o (11.13)

Similarly one obtains from (11.12):

Ax®D —Ax@ - Ax" =0

(4.5) l O =IO+ AxD | Lo (11.14)

Remark

For height {or potential} variates it is not possible to introduce a scale parameter 7@ in
(11.1). Because then we need a pair of “base points” P, and P, instead of only one base

point P,, with in many cases x° = 0. According to (4.4), replacing z by x, 47® and A5
will then be indefinite.

Nevertheless in the domain of potential variates there are certain model parameters one
should like to eliminate, more than one acting as scale parameter with the danger of con-
flicting scaling problems. Other ways must then be found to suppress these undesired
parameters. An indication of this has already been given on page 7, lines 10 and 11 from
bottom.



63
12 CRITERION MATRICES FOR LEVELLING NETWORKS

Consider an arbitrary x-system and make the transformation to an S-system, applying the
law of propagation of variances:

Ax" = Ax; — Ax,

....................... 12.1
AxY = Ax;— Ax, (12.1)
Hence:
(") (r) _ _ _ _
Xi X = Xy X=Xy X =Xy X Xy X, =
= _(xr’ Xr— X5 xj)+(xr’xr_xi7 xr)+(xr5 xr—xj’xr) (122)

Now 4x{” is a difference variate, whose variance is positive and the analysis of levelling
networks shows that this variance mainly depends on the distance /;,. If an artificial variance
matrix is to be constructed, it will be a reasonable point of departure to describe the variance
of Ax{" as a positive function of /.

This gives a connection to the ideas of BAARDA in the HTW-1956, whose consequences
were further studied by J. E. ALBERDA in 1963.

© Fig. 12-1

In a further generalization we introduce here a polynomial in the distance /, in which
indices and exponents p can be rational numbers.

Gin X=X x) =YL’ o o o (12.3)
(12.2) with (12.3): ’
X0 =Y e (U + )P+ (1)) =

=co+ Y e =U)"+LP+U)7) . o o (12.4)

p#0
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Now one must have:

—— [ —

x" xM =0, hence: 1 =0 1% . . . ... (12.5)
and also: i #r:

X7 x"=2Y ¢, (1,)’ >0
p¥O

Therefore for safety, choose: | ¢, > OJ ................... (12.6)

Consequently the following notation is chosen:

[ —_—
(xr’ Xp— Xis xj) = dlzj

;20 | di=Y (0P| . . .. (12.7)

p*O0

di=0 | dp =3 c(l,)’

p*0

In view of section 10 we compute:

X7, x; = X X=X, X5 = — (X X, = X5, X )+ (X X, — X5, X%,) .. L L (12.8)

(12.2) and (12.8) give with (12.7), and, for the sake of completeness:

the criterion matrix with bordering {for elements x, see (12.12)}:

( =i Axp? Ax; 4% 4x,
Ax{" | 2d}, (—d}+di+di) | di (—d}+d3) | —di
(12.10)
ﬁci d? (- di?i +d?) X X X
4Ax; | (=dj+d}) di X X x
Ax, —d2 —d3, X X d?

*) We shall revert to this in (13.11).
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(12.7) gives a “family” of criterion matrices, every member of this family is characterized
by the choice of the coefficients c,. Not every member is acceptable, a necessary condition is:

(Ax{),(4x7)" positive definite | . . .. ... oL L (12.11)

This question is further investigated in the note to section 13.

On examining (12.2) and (12.8) it appears to be possible to construct a kind of “absolute”
criterion matrix, whose significance is, however, only abstract-theoretical, as shown in
section 10. From (12.7) and (12.8) one obtains:

x,-,xj = x,.,x,—d,-zj = dz—dlzj
and hence:
2 2_ 4% 2_42
Qi d @-dp @-=d) | (12.12)
ax; | (@—d3) & @ -ds,
ax, | (@P-d) @-d}) &

Application of (12.1) to (12.12) produces again (12.10). {See also (13.22)-(13.25)}.

(12.12) is the type of criterion matrix — with only ¢, # 0 — as was used by BAARDA for
each of the coordinates x and y separately in the treatment of traverse networks and area
calculations in the HTW-1956, and also by ALBERDA in his investigation in 1963. The
interpretation of d* in the HTW-1956 was not very satisfactory, and the author considers
its introduction in the present theory as an eliminable “‘nuisance parameter’ as an elegant
solution for the difficulties encountered.

Since (12.12) only has a theoretical significance and may only be used to derive (12.10),
and only the positive definiteness (12.11) has a practical significance; the discussion about
giving numerical values to d? is irrelevant for problems of practice.
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13 INTRODUCING OF 4d*>TERMS IN CRITERION MATRICES

FOR LEVELLING NETWORKS

One of the most interesting aspects of the HTW-1956 was the introduction of the circular
point error ellipse with radius Ad, which essentially served to translate the uncertainty in
the definition of a terrain point into operational stochastic concepts.

Mathematically, this can be interpreted as follows:
Consider points P; as in sections 11 and 12, and add points P$ characterizing the un-
certainty mentioned; in the present case it is the uncertainty in its height.

height variates

P; X;
P? !: = xi+Axf
AxE =0
covariances | Ax{,Ax{ = Ad} = {Ad;}?

Ax{,Ax5=0, i#j
Ax{,4x; =0

Fig. 13-1

...........
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In order to develop the formulae as carefully as possible, 4d? is assumed to have a different
value for each point P;. In practice one will take an average value for groups of points.
Well-marked points of high order will have a small or negligible value for Ad?, this is im-
portant for the choice of the base point P, or for the choice of the given points to which
the network is connected in a second step. Therefore the value of Ad? will be small as
compared with a value of 4d? when P, is an arbitrary non-marked or poorly marked terrain

point.

The assumption of (13.1) is such, that all relations of section 11 are also valid for the

y-variates.
(12.1) becomes:

A y(r)
A y(r)
A y(r)

Or, with (13.1):

Ax +Ax
Ax +Ax
Ax, +4x;—Ax,— 4x; =0

—Ax

Ax, = Ax7 = Ax+ 4x -

—Ax,— Ax? = Ax" + Axt— AxE

YO, Y0 = x0, %"+ 4d} + Ad}
2
YO =X X +4d;
¥,y =0
2
ysr)’ yi = ngr)’ Xi +Adt
yfr)’ y] = xgr), xj
2
yfr)’ Ve = xgr)’ Xy - Adr
2
Vi Vi =X ,%; +4d;
Yi »Y; Xi ,Xj
Vi o Ve =X X,

Next, consider the situation in (12.7), for which we obtain, with (13.1) and (13.3):

e
Axy

yr’yr

Yoo Vi = X X, +Ad

Ves Ve —

Vs Vo™

YiuVi = x,,x,+Ad, =X
— [43=0]— (Ad? — 4d*) = ~(4d?
—(4d?—A4d?) = 0; check

Yes Yr =

x = dZ+Ad2
x,—Adf:

isj

—A4d?)

................

.......

With (13.3) the most important part of (12.10) is then replaced by:
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4y 4y 4y,
(r) 2 2 2 2 2 2 2 2
4y [2(dZ +Ad?) +(Ad} — 4a})] [=(d3+4d2) +(dL+ Ad)) +(d3+ 4d})] —(di+4d})
A_yj.” [—(d},+A4d)+(d2+ Ad2)+(d5+ Ad})] [2(d5+ Ad2)+(Ad} —Ad})] —(d3,+ 4d})
4y, —(dp+4d}) —(d%+ Ad?) d?
(13.5")

in which we have introduced the notation:
Ay,, Ay, = d'*, with in view of (13.16),*) to be safe:

d2>d*+Ad? . . . e (13.5")

On the analogy of (12.12) one can again construct with (13.4) a theoretical — in the sense
of: non-realistic — solution:

4y, 4y; 4y,
Ay, | dP+(4di-4d}) dP—(d5+4d]) AP —(di+4Ad)) (13.6)
Ay, | d?—(d%+4d]))  d?+(4d]—Ad]) d'*—(d],+4d})
Ay, | d?—(di+4d}) dP—(d;+Ad]) 47

As a check one can derive (13.5) from (13.6):

YO, YD = Yo yi= 2" Yir Yt Voo e = 2d2+ Ad2) +(4d? — Ad?)

YOV =90 Y= Y V=Y Vet Yoo Vo = —(d5+ Ad})+(di+ Ad}) + (d],+ 4d%)

In (13.6) d’? and Ad? can be taken together; one obtains:

4y 4y, 4y,

é;yi d”2+Adi2 d!/Z_diZj d//Z_din
d'*~d} d'+4d} d7-dl | ... (13.7)
Ay,. d/IZ_eri d”z'—d,.zj d”2+Ad,,2

A" =d?*—Ad?* > d*; see (13.5")

*) (13.16) to be used for the case Ad2=A4d,2 i=...
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The form (13.6) is connected to the notation in (13.4) and (13.5); 44? is introduced as a
kind of ¢,-term (cf. section 12), but there is also an addition to the terms of the main
diagonal if 4d? # Ad? fori= ...

The comparison of (13.7) with (12.12) illustrates the peculiarity of these matrices. The
rather complicated addition of Ad*-effects in (13.3) means — apart from a possible difference
between d”'% and d” — the addition of a Ad*-term only to the elements of the main diagonal
of (12.12).

It is interesting to note that the addition of Ad%-terms does not impair the positive
definiteness of the matrices constructed. This is easily seen from (13.5") and (13.7). Use is
made of the theorem *):

1+a; a; a,
a; l+a; a, =1+4a;+a;+a,
a; a; 1+a,

For the d*-addition in (13.5") one obtains:

Ad*+Ad?  Ad? —Ad?
Ad} Ad}+4d;  —Ad} =
— Ad? — Ad? Ad? +(d"*—d?)

n 2 n 2

U ar—a? T S ad?d

= ﬁAd2 1+'§d”2—d2- ij=1 13.8'
- i ) J=1L..,n (38)
i=1 i

i=1 Adlz

and for the Ad*-addition in (13.7) similarly:

(d”2—'d2)+Adi2 (dll2_d2) (du2_d2)
(du2_d2) (d”2—'d2)+Ad3 (dr/2_d2) —
(dr/2_d2) (d//2_d2) (d”2—d2)+Adr2
n,r nr d”2—d2}
= Adi 1+ Y —— 4 13.8”
i B4 @8

Hence certainly:

’ Ad, #0 | determinant >0 for d"2>d2 d'2>d*+4d? |. . . . . (13.8""")

If one assumes the positive definiteness of the criterion matrices without 4d? terms, the

*) L. Mirsky — An Introduction to Linear Algebra — Oxford University Press, reprint 1961, page 35.
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positive definiteness of the combination follows from the theorem *):

If 4 and B are positive definite hermitean matrices {8 may be positive semi-
definite} whose order is greater than 1, then:
|A+ B|>|A4|+|B|

If the matrix (12.10) is examined with respect to positive definiteness for each term in (12.7)
separately — as will be executed in (13.12)-(13.21) — (13.9) can again be used for the proof
of positive definiteness of the combination.

In this case one must introduce via (12.7), compare (12.12):

Z(xi’ xj)p = Z(xr’ xr)p - Zcp'(lij)p p ?é O

i4 i4 i4
(x,, x),=d* =Y (d*) p#0

g g ; N A (13.10)
(i, x3), = (dz)p—cp'(lij)p p#0
(xi’ xi)p = (X,, xr)p = (dz)p p # 0

If one is careful, the restriction p # 0 can be removed. From (13.3)-(13.8) follows:

Z(yi» yj)p = Z(yr’ yr)p - Zcp'(lij)p i #j

i4 4 i4

YO y)p=d? =3,

i4 i4
e ¥ = (@)=, (1Y o (13.11)
(yi, yi)p=(yr) yr)p=(d2)p p ?é()
i ¥y = (%), +(4d} — 4d}) p=0

co=A4d? | d'* = d*+ Ad?

As a rule one will omit the prime in d’2.
From these last considerations it is again evident, like from the end of section 12, what a
curious quantity d2 from (12.9) or (13.5") is!

Note to section 13. The positive definiteness of the criterion matrix of the type considered

Take from (12.10) — possibly with the extension according to (13.11) Ad? = Ad? - the
criterion matrix for the points P;, P;, P, with bordering for P,, and consider the determinant
D (with minor D):

*) Cf. MIrsKY, page 420.
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242 (@24 dimdl) (2+di—dl) | —d2
(d5, +d;—d) 2d;, (df,+di—dj)  —dj,

Pl @ri-a) @rdi-a) 2 D g B
—dj, —dj —diy &

Add the first three columns to the fourth and then the first three rows to the fourth:

(i +di 4 di) +3d; —(df+ di + dy)

b (i M- d+di+d))
D= ( ld )+3dk2r_(dkzl+dlfj+dlfr) ..... (13.13)
transpose | ;2 2312 +d%—d2)+
of right o
upper part —2di;+dj+dy

Divide Ist column and row by d;, /2
2nd column and row by d, /2

3rd column and row by d,, \/2

2, 12 42
4th column and row by 3,/2 \/ ﬂL‘gfi@
Then put:

di+d*—d2
irtjr

Wd2+di+d2)+dE—Y(d2+dE+dd)
2d,, N (2 +d%+d2)

=coslpy . . . . . R (KR )

Then (13.13) becomes:

1 cosly; cosTy, |cosly;
, cosl';,; 1 cosl';, | cos Ty ’
D=c¢ o (13.15")
cosTy,; cosly,; 1 i cosTy,s
coslyy cosly coslyy; i d

*) Here it appears that the further development can also be applied if d;;® is constant, e.g. =A4d,2, as
investigated in (13.8). For in that case we would have: cos I';,; = 4. For the contrast between the corres-

ponding applications to (13.16) and (13.8), see (13.21) and the accompanying text.
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1 d? _+3—1_%d?j+d,?,¢+d,f,.
2-3di+d,+d; 3 dy+d; +d;,

> 1 hence for:

3 3

d
d_2>2{df,+d§,+d,f,+d§j+d§k+d,§} Cee
3

or, with /, j=1, ..., n, a sufficient condition is:

.......... (13.15")

.......... (13.16")

.......... (13.16")

(13.14) is only possible if the triangle inequality is valid, with non-coincident “triangle

sides’’, with

dir= + \/2,2_,., d}r= + \/d_fr and dU= +\/dA—_,2‘,:

(13.17"") becomes:

{520, (22 L (el
r ir n n n ‘

27+
> {df,+2di,% + E—d—f'} -
n n

dy+dyy—d;; > 0 ]; j=1,.m A .

.......... (13.17)

.......... (13.17")

et -{ 5 af]-

according to (13.17) and: d,,+d;,, —d,, > 0
Or:
(13.17"") 15 fulfilled if (13.17") is valid.

*) D. S. MitriNovI¢ — Elementary Inequalities — Noordhoff, Groningen, 1964 ; page 13.
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With d =1 and (13.17), (13.15) can always be interpreted as the metric of an oblique
cartesian coordinate system, for there are exactly sufficient elements d,,, d;; for its deter-
mination.

(13.12) is the determinant of a covariance matrix, therefore the angles I' can be inter-
preted as the angles between the planes formed by the coordinate axes corresponding to
the observed quantities in the standardized sample space.*)

(13.17') implies that it must be possible to construct new triangles P,, P;, P; from the
elements determining the triangles P,, P;, P;, the “sides” d,,, d;, and d;; satisfying (13.17"),
and not coinciding. For the proof, we follow again MITRINOVIC.**)

From triangle P,, P;, P, it follows that:

Li<ly+1,, 02 -1

Assume:
>R 0<p<2

Raising to the power 2/p gives:

lij?lir+ljr+cz’ or Wlth li,.?éO?éljr:

Lii> 1,41, contradicting the existence of triangle P,, P;, P;
Hence the other possibility is valid:

PR <4022 0K p<2. . . oo i i i .. (13.18)
Similarly it is proved that:

LA L] 0<p<2 . . . . o L0 (13.18")
Or, triangle P,, P;, P, is always constructable with P,, P;, P; non-collinear.
From (13.18) follows, in particular:

PRy 1P2>0, 0<p<2

and hence, with (12.7) and in view of (13.11):

+1p/2 +1p/2 +yp/2 4
cplir +cplj,, _cplij > 0 Cp > 0

............ (13.19)
(dir)p+(djr)p_(dij)p >0 0 < p< 2

*) See: J. M. TiENSTRA — Theory of the adjustment of normally distributed observations — Argus, Amster-
dam, 1956 {chapter 4}.
**) loc. cit. page 119.
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giving the conditions for the validity of (13.17"), for each non-zero p-term one wishes to
introduce in (13.11).

Conclusion: With (13.19) the determinant D is positive,
hence: (4x{"), (4x{’)" positive definite.

Considering also (13.16), the determinant D is positive,
hence: the matrix (13.12) is positive definite. (13.20)

This is valid for each separate p-term in (13.11), hence with (13.9) this is
certainly valid for the combination of p-terms in (13.11); for the addition of
Ad?-terms reference is made to (13.8).

(13.19) leaves enough possibilities for the measurement of levelling networks. For in these
networks the variance of measured height differences proves to be practically proportional
to the lengths of the sections, whereas in the criterion matrix according to (12.4) the
variance of a height difference in view of (13.19) can increase to almost direct propor-
tionality with the square of the distance between the benchmarks.

If in (13.16) a constant value is introduced for dizj, e.g. A4d?, then a much higher value
for the corresponding increment of d? is found than the value following from (13.8). This
shows clearly that (13.16) is only a sufficient condition.

Starting from (13.12) in abbreviated notation, orthogonalization gives:

Dy (—d;
(—drzj) d* |

D) 0 |
0 d—(=dHD)\(~d}

Hence a necessary and sufficient condition for d? is:

If D > 0, then D > 0 if:

P (i (B) Nty | (13.21)

According to (13.20) — also in view of the alternative possibility to calculate d* according
to (13.21) — the matrix (13.12) can always be made positive definite.
According to (11.6), (12.1) can always be extended to a non-singular transformation:
(Ax() 100 —10(4x;
AxY 010 —1]]4x

40 001 —t|lax |- (13.22)

Ax, 000 1f]d4x
\— 4 -
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and the inverse transformation becomes:

Ax; 100 1) (4x™M
Ax; 010 1[]4xP
A%, =lo o1 1l QY) ................. (13.23)
Ax, 0001 Ax,
= =
The matrix (12.12), written as:
Ax, | d? (d*—d}) (@*—~dy) (d’—dp)
ﬂ‘j (dz—df'i) d? (dz—dfk) (dz—dfr) ....... (13.24)
Ax, | (d*=di) (d*—dpp) d° (d*—dg,)
Ax, | (d*-d}) (d*-dY) (d*~di) &

can be considered as the result of applying the law of propagation of variances to (13.23)
using the covariance matrix (13.12).

Conclusion:
if the matrix (13.12) is positive definite then the matrix (13.25)
(13.24) is also positive definite.
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14 THE LAW OF PROPAGATION OF VARIANCES FOR
COMPLEX COORDINATE VARIATES.
CIRCULAR STANDARD ELLIPSES

A complex coordinate variate and its conjugate variate:

Apply the law of propagation of variances to (14.2) in the form of symbolic multiplication
according to J. M. TIENSTRA, cf. [1], [4], [8]:

y\ (VN _f v Wfz\(zuY (1 1y ,
E-C AT

or, worked out:

(.Vian Yiaxj)
xi,yj xi,xl'

T T, T 19 T T, T T
( [Ziazj+ziaZj+ZiaZj+Zi,Zj] 1[_Ziazj'—ziyzj+zsz+Ziszj)

(14.3")

. T T, T .T T T T .7
i[—z,z;4+2,2;—2,z;+z;,2;] [—znz;+42;,2;+2,2; —2; , Z;

From (14.3") one can solve z;, z;, ..., z7, zf, and express them in y;, y;, ..., X; X;; this in
fact defines covariances of complex coordinate variates.

The same result, however, is obtained by applying the symbolic multiplication to (14.1):

zi\ (z; N _ (1 41\ (¥ (¥;\ (1 +i) ,
AE-CBOe o
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Or, worked out:

(14.47)

([Yb Vi=Xp X+ iy x;+x, 3] [yoyi+x,x—i{y, x;—x;, Yj}]>
(i yj+xmx;+i{y, x;—x;, yi3l Do yi—xux;—i{yn x;+x; yit]

(14.4) presents the law of propagation of variances for complex coordinate variates, ex-
pressed in the various real components.
From (14.4) one obtains:

2], 2] =(z;,2;)" l

[i and j also interchangeable] . . . . . . ... (14.5)

-ZTT

T —
Z;,Z; =(z;, f

Zp,Zy S YpYi—XpX 20 yx; .. L oL L. .. ... .. (146

Remark

Of course, adjustment problems in the plane can be further treated by complex numbers.
For the present publication the above results are sufficient.

Circular standard ellipses

In geodetic literature around 1930, emphasis was given to the requirement that point
standard ellipses of coordinated points should be circles as near as possible. J. M. TIENSTRA
made many studies — unfortunately most unpublished — on this problem area, and in this
connection he designed his ““cotangent method” for the assignment of weights to measured
angles.*)

He based his investigations on complex numbers in order to get a better insight into the
problems of plane surveying; this approach was also the starting point for the later publica-
tions by BAARDA. The following study on circularity of standard ellipses also goes back to
TIENSTRA.

From the theory treated in section 2 it follows that point standard ellipses alone do not
provide an absolute criterion, because they can only be defined in an S-system. Therefore
the requirement of circularity must be formulated such that it is invariant with respect to
an S-transformation. Froin formulae like (2.12) it appears that, apart from point standard
ellipses, also relative standard ellipses must be considered. It will be shown that this is
sufficient.

*) J. M. TiensTtRA — Nets of Triangles consisting of Points with Circular Error-Curves — Kon. Akad. van
Wetenschappen, Proceedings Vol. XXXVI, No. 6, Amsterdam, 1933.
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We start from an arbitrary z-system.
For circular point standard ellipses we have:

yi’ yi = xi, xi N yi’ xi = 0 ....... L T T (14.7,)

Hence from: (14.6):

Zi, Zi = 0 N I= i o e e e e e e e e e e e e e e e (14.7”)

For circular relative standard ellipses we have:

yij’ yij = xij, xij 5 yi_i’ x,-j =0 C e e e e e e e e e e e e e (148,)

Hence, again with (14.6) and in the analogy of (14.7"'):

ZpZg =0 (1487

or written out:

(zj_zi), (Zj_zi) =2Zz;,z;+2Z, z,-—22j, z;=0

or, with (14.7):

Zi=0 0 Gj= e C . (1490

or, in view of (14.4""):

yi’yj = xi,xj, yi,xj = - x,-,yj ................. (14.9”)

Application of the law of propagation of variances to any linear function of variates z;
results always in circular standard ellipses. So we have for quantities A4z, Az{"™,
Al = AA —AA,;, {cf. section 2 and [2], [4]}:

If: Zy 24 = Zip Zij =0; ij,k=...
Then: z{"™,z{"™ =:z{{",z{’ =0
2 = 2 =0

........ (14.10)

Hjik’Hjik = Hjilv Hj’i’k’ =0

Ay, Ay = Aij’ Aij =0

etc.
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From (14.10) follows, in view of (14.4)—(14.9):

In the case of circular point and relative standard ellipses

then: only z;,z} to be considered

(14.11)

T _ .
25,25 = 20x;, X; i %, ;)

=2(yp yj—i*yp X))

(14.11) is the base on which in the following sections is built on for the construction of an
artificial covariance matrix, the criterion matrix for problems in the plane. This matrix is
constructed under the strict requirement that point- and relative standard ellipses are
circles.

Note to section 14. Conformal mapping

It is interesting to compare the similarity transformation with the general conformal map-
ping of isometric coordinate systems by an analytic function:

We=w(Z). « - v e e e e e e e e e e e e e e e e e s (14a2)

or, assuming that linearization is admissible*):

dw ’
A_i=<FZ—>i-_L_1_Zi F (14.12 )

in which the value (dw/dz); now may be different from point to point.
Then we have, in correspondence with (14.10):

If: z;

0
N ¢ N )
Then: w;, w; =0

From (14.12"") follows a characteristic difference with the similarity transformation when
difference-variates are considered.
Assuming:

dw dw ,
{average value of<Fz«>i}=<Ez—>o e (B T

we have:

*) Seee.g.: C. H. van Os - Inleiding tot de functietheorie {Introduction to the theory of functions} - Noord-
hoff, Groningen, 1935; page 84, 95, 100.
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(@) (@) ()
y <i‘:> ‘Az, + {(i‘:) <((11:>0} T (14.14")

@) ()

The point standard ellipses are thus submitted to an expansion and a rotation both changing
per point. For relative standard ellipses this is still more complicated.

This matter may be important when the results of coordinate computations on the geo-
reference-ellipsoid have to be compared with those of coordinate computations in the
plane with the intervention of a map projection.

|k
z
Il

|I;
z
Il




15 CRITERION MATRICES IN NETWORKS FOR
HORIZONTAL CONTROL

Consider the points P; and P; with reference to the base points P,, Py:

0 0

(rs) _ Zsi Zri
4z = Az, — —- 4z, — -4z,
ZSI' rs
o o [
A z.
45 = 4z, - a2, - e,
le’ rs
or with (2.12):
0,0
AR
(rs) __ ri<is
A_Zi =~ _OAHris
zl’S
00 [ e
(rs) _ Z,jZjs
Az = — ZHE AL
ZI'S

In order to simplify the notation,

the superscript 0 will be omitted.

Fig. 15-1

If we introduce the notation:

Re{a-b} =4(@b+a™b") . . . . . e

It can be derived from (15.1) that*):

*) Cf. note to section 15.
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Li;
I

rs

iayey, (rs) (rs)T _ ‘ritjs ‘rjtis
Re{e'™-z{™, 2"} = G, + ris— bhjGurj+

T T
_ lrilrj Re {Zn Zy —Zs Zs }
Ls L

Li;

i rs) _(rs)T
Re{exaisj.zgrs)’ Zﬁrs) } — ri JSG:ls

rs

T __ T
_l_si_ls_jRe{Evzs erzr}
L L

(15.5)

(15.5")

in which G and G’ are symmetric functions of a triangle {the order of the indices of G is

irrelevant} e.g.:

T
. z ZzZ. —
Gl = Re ela(.rr 5 s T T 1a,,..
ris l"‘

(15.6)

(15.6")

For the construction of criterion matrices, these formulae can be considerably simplified

by introducing *):

T T ’
Zn z H Zs - Grls - Gns

For circular standard ellipses in any system we have, according to (14.11):

23,25 = 2x;, X;+i°x;,p))
z, 28 =2%;,%,> 0
Hence, with: e'® = ¢®' =1, from (15.5)*)

Zgrs), Ers)T 2 l}ilis
rs

Hence: G,;>0

Gris >0

*) But see the text accompanying (15.21).

15.7)

(15.8)
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Now for the net conditions*) N,y  and N,

zir'_A_Izris—*-zsr.ﬂisr: 0
zsi'AHisr+Zri’AHsri =0

or:

et e ¢ SR )|

and hence the general validity of the theorem J. M. TIENSTRA derived for angles in his
cotangent method for the adjustment of triangulation networks **):

In triangle 7, i,s is:

Hris’ng:s_HisraHiT_;,- Hsri’ng.i e e e e e e e e e e e e e e e (1511)
B R
With (15.2) follows from (15.9):
242
2,z = lnlis [T gl
or:
o IIE
17,.;,2 o 121 (15.12)

indeed a symmetric function of the triangle r, /, s, in agreement with (15.11).

(15.11) indicates a dependence of the variances of IT-variates on the lengths in corres-
ponding triangles; from (15.12) it should then follow that G, is a function of lengths in
triangle r, i, 5, and according to (15.9) it should be a positive function.

Put therefore, analogous to (12.7), and with (15.7):

Z ZT'—zr’Z;r:z ZT_—Zr’Z;r=2(d3i_iari)

rer 5 <s

... (1513)

2,20 —z,, zJT =z,,2] -z, zJT = 2(di2j —id;;)
*) In section 2.2 of [4] was discussed the linking of observational results to a mathematical model which
consists of a probability distribution of corresponding variates, between whose means a number of
functional relationships {*‘laws of nature’} are assumed to exist. The relationships are derived from a
consistent mathematical model. In section 2 of [9] the set of “laws of nature” has been indicated as
“condition model”. Using this model in an adjustment problem the means of variates in the “laws of
nature” are replaced by estimators {of the means}. After this replacement the “laws of nature™ are
labelled as “condition equations”. In section 15, 15.a and 16 a consistent network in building up artifi-
cial matrices is always used. That means that in these networks the variates introduced correspond to
estimators in condition equations. Therefore we shall indicate functional relationships between these
variates as “conditions”.
**) J. M. TEnsTRA — Nets of Triangles Consisting of Points with Circular Error-Curves — Kon. Akad. van
Wetenschappen, Proceedings Vol. XXXVI, No. 6, Amsterdam, 1933.
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d;; can be a positive or negative function of /;;, with:

dy=—a, . ... e, (15.13")

Ji LX)

because according to (15.13"):

nr= z(di2’+iaij)

2,2 —z,,z] =2(dh—i-d;) = (z,, 2] — 2,2

rs“r r“r is<j i
If:
cosy = (e +e7 )
, R S (15.14)
siny = —3i(e""—e™")
Then it follows from (15.6) with (15.13):
2 2 2
G, =2 {(cos ais,-%’— + ccs a:s,f%i + cos a,is-%”—) +
+ <sin ais,-%'— + sin as,i'%i— + sin a,,y%)} .......... (15.15)

Consider now, e.g., the situation in Fig. 15-2.

Fig. 15.2

A safe requirement for G,;; > 0 would be:
sin ais,% >0
But a requirement for G,; > 0 would be:

. d, . i
sing, ;;—— = — sina,;—— >0

but: sina;, >0 and sina,; >0, so the requirements for G,;, and G, are contradictory.



S-TRANSFORMATIONS AND CRITERION MATRICES 85
Therefore, for safety, one must put:
d;=d,;=..=0 ... ... ... ... ... . . .. ..., (1516

(15.13)-(15.16) then lead to the assumption, analogous to (12.7):

z,, 28 =z, 27 =2d* ¢, =0
Zps ZrT — Zy, ZiT = 2dr21 = drzt = Zcp'(lri)p
14
=z,2] =z, 2, =2d;, (15.17)
z,,zf —z,, ZJT = 2d,~2j = dizj =Y ¢, (I;)f
p
=z,z — zj,z,-T = 2d12~i
2 2 2
G, = 2<coso¢,.s,-:7—"— + cosozs,i-%i— + coS 0" ‘715> I ( £ 1))
But (15.16) means, according to (15.8):
{ dij=0 > | x,y;=0=—ppx; . .. (1519
so that (15.17) can be written:
YosVr = XX = V5o Vs = Xy Xy = d?
Yo Vr = Ve Vi = XpXp — Xp X = drzl (1520)

2
Ve Ve — yi’yj = Xpy Xy — xi’xj = dij

(15.20) means that for y-coordinates as well as for x-coordinates the system (12.7) with
(12.9) is assumed. In addition, according to (15.19), the correlation between y- and x-
coordinates is assumed to be zero.

Now the transition from (15.5) to (15.9) must be investigated somewhat closer. It is
easily shown that: for j—i, G,;;— G,;, but:

*) The interpretation of (15.19) is difficult. It could be stated that the constructed criterion matrix refers
to an infinite network. Then (15.19) agrees with a theorem of J. M. TIENSTRA dating from about 1936
and stating that in an infinite triangulation network x-coordinates are not correlated with y-coordinates.
This study is connected with the cited paper of 1933 by TIENSTRA, but neither his manuscript nor personal
notes made during a lecture enable a reconstruction of the proof. The difficulty of this interpretation lies
in the fact that after an S-transformation (15.1) there does exist correlation between x,{" and y;{™®
(i#)), see (15.38). And the question arises: how can an infinite network be computed in coordinates
without assuming a computational base i.e. without working in an S-system?
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T T T T
1,;*Gy=1;;"Re {ei“'ﬁ -(Z_LZ' TinZi ) + ei“i"r.<z"_’ Zr TZplr Z’> +
lri ljr

o T_ T
L;

with j—i: a,; =0, a,; and «;;, undefined, although always mod {€'*} = 1. Hence:

iir

liml;* G;,; = Re{z,,z] —z,,z] } = 0, provided, like in (12.7):
joi
=0 . (15.21)

by which (15.7) follows from (15.21).
Buth then (15.17) has to be complemented with:

T R (15.21"")

O<p<2 . . . . . e e e (15.22)

Now the introduction of Ad?-terms from section 13 can be applied, with, among other
things, the introduction, in spite of (15.21"), of ¢, in the form of ¢, = Ad? = Ad?. But see
for this also section 15.a, in which an entirely alternative approach to the present theory
has been elaborated.

In an early stage of the theory, (15.22) was checked by H. C. vAN DER HOEK, who showed
numerically:

G, >0 for 0<p<2
In addition he proved that this is valid for the determinant of the whole criterium matrix.

For the further construction of this criterion matrix we must, however, go further than
(15.9).

Fig. 15-3
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According to (15.9)-(15.12) this approach is consistent for one triangle at a time, but

is it consistent for more than three points simultaneously?

Consider now, besides the previously introduced net conditions per triangle one of the net

conditions in the quadrangle of Fig. 15-3:

Niysrjs Zsim Al +2, AHS,}+z Al ;=0

lSr

i
h N(i),s,r L Zg AHtsr+z AH =0
s r
i

iﬁ Neyr,j 2 Al 4z AIL ;= 0
r

From (15.23) follows a type of central condition:

i J
\/ |anm AHW+AHS,,—0] .......

or with
J
i Zj
N(i),r,j AH"‘J = - AHU;
Zy T
r
j z
d N(s),r,J AHer = - z_s ﬂr}s
s i rs
i Zis
h N(s),rl AHS"I = - AHﬂs
Zps T
S r

gives (15.24):

iZ; Z,; Z:Z;
r_, Jl AH”' + rJ JS'AH”-S Lrj “ricis, AH
Zr Zys Z Zps

ri

or with (2.12):

, z .
42D — 4209 4 Az = 0
- - Zy -

or, written with Az(") 0:

=0

(15.23)

(15.24)
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: Z:: Z .
Azf0 = A0 — M Az T A (15.25)
Zir Zpi

For ’ghe line of thought to be followed, the development of (15.25) from N, ; in (15.23)
is of importance.

Further, (15.25) gives the well-known expression of 4z; in the S-system as derived from
the S-system, see Fig. 15-3. o ri

r,s

Fig. 15-4

S r

Now consider the situation shown in Fig. 15-4. We examine a second net condition in
the quadrangle, and also a different combination of net conditions in a triangle. Inter-
changing j and i and also r and s gives:

Nijyrsi With N and Ngyei o v v v v v e e e (15.26)

J)r,s

from (15.24):

AHjsi_AHrsi-l_AHrsj =0

or:

'I i Al ~ Al + Al = 0 ) .................. (15.27)

s r

or with:
Nisi en Ngysioen Nyt

: j
I]; j ih .d
s S ’: S r

analogous to (15.25), with 4287 = 0:
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Az = Az = ZBAZD _FE g0 L (15.28)

st_ Zsj

the well-known expression for 4z; in the S-system, starting from the S-system which is

¥} s,r

identical to the S-system, see Fig. 15-4.

r,s

Conclusion: Because N, ; and N . are independent conditions, the
equations (15.25) and (15.28) are independent in the case of consistent

{closed} triangles.

From (15.25) follows with, see (14. 5) z;, zl = (z,, z; )

D) _(r)T rs) _ Zri ( Tz, T

ri) ri)T __ rs) __ 4rj _(rs) (r)T __ 4rj (rs) —

29,250 =| 2§ zi™ )| 2} oz )—
2y Zri

- T T

) 9T Zrj “(rs) (T | Zrj _(rs) ()T ZrjZej (rsy (rs)T __

=Zzj %] —<—zi T LT R S
Zy; 22y

ri

"l

- - 2
— Zfirs) (rs)T 2Re{ Ers)’ Z_(i")T} + lr_] Z(rs) Zlgrs)T
Zpi

- 2
iagey, (rs) (rs)TY __ ll' (rs) _(rs)T l (’) (r)T _ (") (")T
Re{e" - z{™, 2 }—%’—<zj ,zi 2 zi"™, z; )2}
rj ln

or with (15.9):

Re{eiairjzlgrs), ZS-")T} — l"lJSG”s + lrJllSGm l Gu_,
Les brs .. (1530)
= 47
denote by

Because (15.30) is symmetric in 7 and J, (15.30) can also be derived from Az‘”) instead of
4z{V in (15.25).

Similarly follows from (15.28):

Re{ei‘”” W} = l”ljs Gns + l'ljluG ll Gisj
L rs R € B 31§
= 4
denote by

This relation can also be derived via 4z§".
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But (15.30) and (15.31) are identical to the equations (15.5") and (15.5") respectively —
also in view of (15.7) — so that by (15.29) we have:

Conclusion: The equations
(15.5" or (15.30)
and (15.15") or (15.31)
are independent

................ (15.32)

Hence these equations can be solved for z{"®, z{®":
To do this, introduce:

oy = B0+ 0s) + 3o — o) = ?E}” + 5%;5) (15.33)
isj = $ot, 5+ 0 ) — Bog — o) = ??}” - 5555)

Introduce temporarily the simpler notation:

2,259 =

Ogpj = Oy Oggy =0 £ o v e e e e e e e e (15.34)

"=y, &P =0

r isj

From (15.30)-(15.34) with (15.14) follows then:

e wt+e -0’ =2q,

.............. (15.35)

—ias,

oz,=y+5}

e ot+e 0T =2q, | a,=7-0

sum:
(Dely(elé+e—16)+wTe—1y(e|6+e—u§) — 2(qr+qs)

difference:
(Deiy(eié_e—ié)_wTe—iy(eié_e—ié) = 2(qr_qs)

{we' +(we') }cosd = g+,
............... (15.36)

{we” —(we™)"}sin 6 = —i(g,—q,)
or, see also (15.46):

cosd #0, sind #0

w=%e"7<q'+qs _iq,—qs) ................. (15.37)

Ccos o sin
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or, with (15.30)~(15.34) and (15.8):

’YE;S) %(alrj-i_a;s_[) 6(") = Z(alr_[ tsj)

,S rs, l"ll s+l" llS
Qir )+q551) %(Gus-}Gns) Il](Glr]+GlS])

rs

rs rs lril 's_lr'lis
qfrj) ql(S_I) e (Grjs - Gris) - lij(Girj - Gisj)

Ls
R ( ( (
(rs) (rs)T _ 1 ,—iytr®) qi:;)+qisr;) q;:j) qfsrj)
2,200 =} el el I (15.38)
€08 d;; sin d;}

Z(rs) (rs)T — 2(x(rs), x(rs)_'_1 x(rs), y(rs))

_ 2(y(rs)’ yf’rs) l yfrs) x‘(irs))
cos 3¢ # 0 sind® £0 | ..., .. (15.39)

It appears that the restriction (15.39) has only practical but no theoretical significance.
Some limiting cases are therefore investigated.

Quadrilateral inscribable in a circle

It is mainly due to J. E. ALBERDA that this situation has been intensively studied. One of
the results was that the incomplete and therefore incorrect approach of 1963 by BAARDA
could be changed to the present one.

It proves to be sufficient to consider two cases:

Case A, see Fig. 15-5

Fig. 15-5

o, =0, =7; 60=0; sind =0
Lilig—1lis =1Ll hence: . . . . ... ..., (15.40)

ritjs rjtis

9Q—49:s= Grjs_ Grls Gll’j + Gls_] 0
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Case B, see Fig. 15-6

T
o =g+ 'Y=a,.+§; o=
l’iljs+ lrjlis = lijlrs9 hence:

4:+45=G,;s+G,;;— G, ;—Gi;; =0

Fig. 15-6

(15.41)

In both cases the equations (15.35) are dependent, and one of the equations (15.36) is
lost. The question is if for these cases the solution for w can be considered as a limit of

(15.38).

Case A: This case of a quadrilateral inscribed in a circle is completely determined by
60, hence sin 6 -0, so that {g,—g,} will approach zero, dependent on sin 4.

Put therefore, with f, a real function:
9—qs=f4'sind

Then from (15.37):

. X
lim w=4e {12 —j-
sind—0 2 {COS& fA}

cosd=1

qr=4s

(15.42)

S has been left unspecified, but can be written out via formulae as indicated in the note to

this section.

Case B: Here, the situation is entirely determined by cos -0, so that (g,+¢,) will

approach zero dependent on cos 9.
Put therefore:

4, +4s =fp-cosd

Then from (15.37):
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lim o= 5e‘“{f5—iﬁ}

cos §—0 sind Jo\ (1543)
q4,= —q, sind = 1
fg is unspecified, but can be written out.
Situation j— i
Jj—igives:
a,=a,=0, y=0,
6 =0, cosé=1, sinéd=0,
o =2x{", x is real, 0 = o
Then from the second equation of (15.36):
a)'eiy—a)T°ei’T = —i q.—4;s
sin §
orj—i gives:
B - 4r—4s
0=1 e B 15.44
,,l_r.r(l,{ " sino } ( )

Then we have solution (15.42) with f, =0: @ = ¢,, or with (15.30):

Z{rs)T — 2 lrilis G

(rs)
Zi 52 l ris»
rs

or (15.9).

Conclusion: (15.38) is generally valid, provided
the appropriate limiting cases are included.
This means that the approach followed pro-

. . T R (15.45)
duces a complete criterion matrix, be it that
for numerical computations (15.38) will have
to be replaced by a more suitable formula.

For this, reference is made to section 15.a.

Relation with the matrix of the HTW-1956

The d?-matrix for given coordinates in the HTW-1956 can be interpreted as an incomplete
criterion matrix. In the manual, the consequences of the approach chosen were more or
less incidentically drawn in some cases where non-zero covariances were introduced.

It was J. E. ALBERDA*) who further developed the consequences of the HTW-1956

*) J. E. ALBERDA — Een vervangingsmatrix — Manuscript, autumn 1963.
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system, alongside the approach by BAARDA which eventually led to the considerations in
this section. Transcribed into the notation of (15.20) with (15.17), the base from which
he started was:

T (15.46)
or:

Vo JVr = XpsXp = V5o Vs = X Xs =

= EI =Xp Xy = d’
................ (15.47)

i 2
Yiyi=Xxpx;=d —cyl;

VisXj = XpY; = 0

ALBERDA applied an S-transformation to the matrix (15.47) and so arrived at formulae
in which the G-functions (15.18) could be recognized. But the meaning of the assumption
(15.47) was not clear and could not be completely motivated. The same was indeed the case
with the matrix used in the HTW-1956 from which the proportionality with /;; was adopted;
this proportionality is a consequence of the assumption, made in the HTW-1956, that d*
is predominantly proportional to a mean value of distances between points considered.

The present study is based on an approach following the line of thought in the opposite
direction. (15.5) results from the application of the law of propagation of variances to
(15.1), and therefore actually to IT-variates.

The formulae (15.5) with (15.6) are now further given an artificial content via the clear
line of thought through (15.17)-(15.22).

The parallelism with (12.7) means also that the d*-matrix (12.12) is twice assumed, now

with the inclusion of (13.7): once for (»,), (¥;)" and once for (x;), (x,)", other correlation
being zero. The construction via (15.5) guarantees that the application of (15.1) as an S-
transformation gives a correct covariance matrix for-S-variates.

The parallel with (12.12) consequently gives for coordinates y and x:

iyi ivj Ayr A__Ys é‘i é‘f é_"_cr Axs
| & @—d2) (d®—d?) (&—di
dy; | @-dp) & (@~dj) (d*~dj,
4y, | (@-d}) (@*-d}) & (@ -d2 0
4y, | @-d) @-d) @-d}) & (15.48)
Ax;
4x; 0 same submatrix
Ax as left upper part
Ax,
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One notes the similarity between (15.48) and (15.47) but with (15.17) also the greater
generality of (15.48). To this, the considerations around (13.11) then apply.

Although in this context the problem might have been considered as solved after (15.22),
the theory further following from (15.5) has been pursued. This culminates in (15.38),
taking account of the theory up to (15.45).

For according to the final conclusion of section 10 a criterion matrix can only refer to
S-variates, and just this is true for (15.38). Besides, one is rid of the necessity to assume a
value for d? in (15.48), a problem whose difficulty is evident from section 13, especially in
view of the occurrence of P beside P,.

In general we will therefore abstain from bordering the matrix from (15.38) with elements
such as was done in (12.10) for the problem studied there.

For the sake of completeness however, (15.5) is complemented. One obtains:

I

re

Re{eiaw Zlgrs)’ Z_T} = RC{

rs

Zritjs

[eia,-,j <Zr’

T __ T T T
Z, — 2, Zj) + eia,,-_,<zr’ zZ, _Zs’zj):| +
lrj lsj
T T T T
—l'-l:eiair"'(Z" Zp —Zy Zj> + eia,.u<zr’ Zy —Zy Zj >:|}
ij
ll'j l’.J

(15.49)
e T e o) (=T
i »4j
lrs lrj lsj
—1.. [eim” <ZS, z:_ Zj Z_T) + ei“SU <zs’ Z:—ZS, Zf):'}
ij
L l;
Because I1,,, or Il are undefined, one has to calculate separately from (15.1):
zgrs) ZT _ {_(Zr’ Zf_zi’ Z?) + eia,,—; (Zr’ ZrT—Zs, Z:)}
13 ’ r - i" T -
lir lsr
..... (15.50)
Zgrs), Z,T — lis{ _(@ Z:—Zi, z:) + eia,-,; (ZS, Z:—Z,., Z:)}
lis lrs
The latter formulae worked out with (15.17) give:
ST d: d? . .
2 2T =21, { — ¥ 4 " (cosa,,+isinay,)
lir lsr
» | (15.51)
(rs) T __ dis dsr [
2 zg =21,< — ] + —l—(cosoc,s,-+1s1noc,si)
is rs
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Reference to section 16

The criterion matrix was constructed successively each time for a quadrangle r, s, ¢, j, as
in Fig. 15-1.

A question frequently raised in discussing this theory is: is the matrix constructed also
valid for more than four points 7, s, 7, j, k.. .?

This question will be treated seperately in section 16, because this gives a better insight
into the system of S-transformations.

Remark

When discussing the connection with the theory on which the HTW-1956 was based, no
reference has been made to another essential part of this theory, viz. the introduction of
Ad?-terms; this was only mentioned with (15.22). In the second part of section 15.a after
(15.a.21) this matter will be extensively treated.

Note to section 15. Derivation of formulae (15.5)

Start from (15.1), referring to Fig. 15-1.
Write (15.1) in the form:

Az{"™ = Az, —e"* Az, — " 4z,

15.52
42§ = Azj—e™ 4z,— " 4z, (15.52)
Application of the law of propagation of variances gives, with section 14:
29, 200 = 7, 2T —e mz,,z —e sr.vz 2l —ellrstz | z;—eMriz, zT +
el H"-U z,,2, +e""“+"w Zp Zg Ty
+e"”'+"ruzs,z +e "‘“’wzs, Zg S ¢ K X))
. . T
with, in general, see (14.5): z,,z} = z],z, = (z;,z])
Now, using [2]:
elairj
T uz; J
ZiZj U=l
! ij
e " Mirjgrsi — e_nlrj(l _ensrj) =e Mirs_ofsrt
=1—eMi_ye Mor = e Mury e M hence:
e‘iairjcﬂuj — virje_nlrj+nrsj =
_ialjr e_ialsr

= _virjvrjilir 1 + virjvrsilir or:

’
ir lir
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ia; ia
N T e ijr l l e isr
T fagej 7 is® jr
il R R T L
ir lrs ir
. T o l. _.
e'tirlellar) = p,, ! %) = Jte~immt hence:
lrs
. T 1.1, eltirs
T alxirg JJI_ o tistjr
2y 2 e e e = I 1
rs is
e"u-jenrsi — eHw(l _ensri) — e"irj__ensrj =
=1—e M qe M= —eMiipelss  hence:
eia(rjen;[;.j =0, = enirj+nrsi —
i
fariy eiarsj
= _vjrivrijlrj'—l_' + vjrivrsjlrj—l—_—’ or:
rj rj
, ey 11 el
T _eltirjallrsi _ .. __ arljs
il e =
rj rs rj
elairje"sri — Usrie‘(alrj+asrl) = lelasrj’ hence:
Ls
: 1.1, el®r
T el Ty tirtjs
Zg, Zj € € = l l
rs sj

lisljs
lrslrs

eiairjeﬂrsi'i'nz;j =yp v _e@ritarsizars)

ei(airj—aisj)
rsiVrs j ’

but this result is not suitable for inclusion with the other eight results. A different way goes
via the relations between coefficients in (15.52):

1_enrsi_e"sri =0
s Osry __
1—e"r/—e"m =0,

hence:

T T
(1=t — Moty (1 —eMres—eMari) = 0

or, the sum of the nine coefficients in (15.53) is zero. Or:

. T
zT e'“rigllrst* 1.y — 0 —(the other eight results)

Z,,

gitiriglrsit H:;j v el@ritarsi=asy)

rsiVsrj

— vrsivsrje i(aisr+asri) = — lts Jrem,.,,’ hence:

rs lrs
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; enT 1,1, e
z, 2 glursglrsit iy, — ‘l‘ Jr l
rs rs
. T .
elau‘.lensri"'nrsj — vsrivrsjel(airj+asri Apsj) —
i(asejt+aysr) lirljs LN
= Vgl = -2l , hence:
lrslrs
. T 1.1. ei%sr
Zs, Z? emi”ensr‘-‘-n"’! = — 'lr I3 l
—_— rs sr
LT Y o ity + asri—asrs) _ birkjr 1.0
e Mg T Rary = v v, @I T BT A0 = e hence:
lI‘Sl"S
z ZT eia(,-jeﬂs,-i+H:_J = lirljr l_
$*“Ss
lrs lrs

From these nine results, it follows with (15.53) after some re-arrangement:

i T
em;,-;. zgrs)’ Zg.rs) —

T T T __ T T __ T
_ lirljs [(Zn 2, —2, Zj )eia,.,j + (Zn 2y — 2 Zj)eia,,-, + <Zr’ 2, —Zy2, )eia,j,-] +
lrs lrj le ls'
- .T _— T T __ T T __ T
is® jr [(Zr’ Z,—2Zy 2, >eia(,,. + <Zr’ Z, —2; 2 >eiai,.s + (er 2, =2, 2Zg > eiari,:l +
lrs lir lis lrs
T T T T T T
_ li .[(Zn Z, — 2y zj>eiag,-; + (Zr’ 2, =252, >eiau,. + <Zr’ Zy —Zyp Zj>eia,.u:| +
J
lij lir lrj

T T
. lirljs<zr’ Zy —25 25 )
ll‘S ll‘S

or, with (15.4), Re{a-b} = 4(a-b+a"-b") = Re{a”-b"}, it follows:

Re{eiat,.j.zgrs), Zgrs)T} -

T T T T T T
riljs,I{e {(Zr’ 2, — Zj’ zZ, )eia_,,,. + <Zr’ 2y —Zg zj)eia.,.j + (Zr’ 2y =2y 2g )eia,.“} +
lrs ljr lsj lrs
T T T T T T
+ lrjlis, Re {<Zr’ 2, —2Zp 2, )eiau,- + <Zr’ 2, —2g 2; >eia,,.; + (Zr’ 2y —Zpy Zg >eia,.1,} +
lrs lir si lrs

T T T T T T
22, —2Z;,2; i Z2,,2, —2,,2; i Z,2,—2Zj,2 i
_ lij Re {( r “p i _]>em(,.j + ( rs ér e )elarj¢ + ( rér 2 “r )elaﬂr} +
lij lri lf'

S TI__ T
_ lrilrj.Re {Zr’ Zy — 2, Zs}

Ls

l

—~—

rs

At 9
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or, (15.5") with (15.6").
In an analogous way one can derive:
RC {eia;s_,_zgrs), ZYS)T}

or, (15.5'") with (15.6"").

These formulae degenerate into identities when the variances of z,, z, are assumed to
vanish, as should follow from (15.1). This is a {weak} check.
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152 CRITERION MATRICES IN SYSTEMS FOR HORIZONTAL

Start from (15.1) in the form (15.52):

Az") = Az, —et- Az, —e"r- Az,

T nT T
AzY9" = Az] — e Azf —eMors- AZT

and write this in two alternative forms, with:

as:

and:

1 _e"rs( _ensri =0
. e A T
1—eMrsy—eMers =0
(rs) __ Mgy,
45 = dzy—e"- 4z,

rs

T T
Azfi's) = Az,T_,-—e"er-AzT

Az = szt

)T __ T ot 4T
4zj7 = dzg—etr Az,

From (15.a.3).

and with, for example:

becomes:

T T nT T Msri T Mo +1T
Z?S), ZS.'S) = Zppy Zpj— € i 2y Zys— € T Z sy Zrj +e ot ey Zyss Zz.;
T T T T T
ZyyZp) = 2325~ Zpy 2 2 2, +z,z, =

= —(Zr’ Z,T—Zi, Zf)+(Z,., Z,T""Z,., Z§)+(zr’ Z,T—Zi, Z,T)

Zlgrs), Z}rs)T —

[_(Zn Z:_Zi, Z?)-l—(Z,, Zr—zr9 Zf)“'(zn,er—Zi, Zf)] +

T
_el'l,r.i [_(Zn er_ Zis ZsT)+(zr’ ZrT_'zr’ Z?)-I—(Z,, er_zia Z:)] +

—eri[—(z,, 27—z, zJT) +(z,, 27 —z,, zJT) +(zp2F =z zD) ]+

T
+e""‘+ner[—(Zr, Z,T—-Zs, ZsT)+(zr7 Z,T—Z,., Z§)+(zr’ ZrT—Zs, Z:)]

CONTROL. 44*>TERMS. AN ALTERNATIVE DERIVATION
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and, with (15.a.2):

Zgrs)’ Z‘(irs)T =

- r o— — r o—
—(Zn ZpT_Zb Z}‘)+en’s"’ (Zn ZrT—Zi’ ZrT)+en"j (Z,., Z,T—Zi, ZsT)+

+eli(z,, 27—z, 2D+ (z,, 2 — 2, 2]) +

e""'+"w(4 2T T) e""'+"rs1(z 2l —z, 2N+

eI'Isn+17

sri(z,, z7 zs, z )

Analogous, from (15.a.4):

Z(rs)’ Z(rs)T —

J

T T —— —
_(Zs’ ZsT—Zi’ Zf)+en"j (Zs’ st_Zh Z?)+ens’j(zs, st_zb st)+

+enrs( (Zs’ ZST— z,, zf)-{-e"»; (Zs, ZST—ZS, Zf)'i‘

enr"+n"" (Zs’ Z T) ensn+" si (Z —2Z ZrT) +

e"rsl+"

rsd (ZS’ Z Zr’ ZFT‘)

101

(15.a.5)

(15.2.6)

Remarkable are the equal coefficients in both equations except for the last term. The

difference of these last terms is:

Mo +07

4
|

e (2, 2N — 25,20 ) — st (2,27 —z,,z0) =

e+ 07T

srit-€ rs‘+""’j)(znz —Zg st) =
i

Il o\ — —
la - Tsitsj Lia T TN _
ot 12 — el (Zr, Zp —Zss Zs) =

L.,
1 -1 —F —
lrtlrj< ) e"jri + ls'_l-‘l <li> e"-""} (Z,, Z,T— Zg, ZsT) =
lrzs ls.i
2 J
(oo

in general #0, if (z,zl—z,2zI)#0

With j =i, and:

(15.a.7)
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rsi T
{e "'( —Zp2, )}T—e (z ,,Z,T—Z,,Zi)
_.e"""+":;-i — _ Irilis ei(—disr—dsri) 1 1 ldrls
2 I2
e e e e . (15.8) -
d+n”, _ (b g
[+ sri == _—
L
etc.
follows from (15.a.5):
ZgrS)’ Zl(")-r = _(Zn ZrT— Zis 21T)+ 2Re {e""i(zr’ er_ Zyps ZtT)] +
+2Re{e""(z,, 2 — 2, 2])} +
—2Re {e ""+"sn(zr, z, ,Z )} e"”"+nsr¢ (Zr, r —Zgs Z;I'

or with:
(e (z,, 2] = 2,, z2)}T = €™ (z,, 2] — 2, 2}):

(rs) (rs)T l l lri 2
s Z§ = —(Z,., Zp =242 )+2 1 Gris - T (Zra )
rs s,
o T__ T T T
Gris = Re {eia,,,- <Zr, Z, l_ Zis Z,.) + eidsrl.<zr’ z, I_Zs, Z; >+ (153.9)

ir si

T __ T
i zZ,zZ,—2Z,,2

+ela,-is. r“r r s

Analogous, from (15.a.6):

o l l , l ) 2
ZE'S) (")T - —(Zs’ s 22 T)+2 1 Gris - <7s}_> (Z“’ ;r it ZT)
rs SF
e T T
G:'ls = Re {eia‘".<zs’ Zs l-—————Zi’ Zr > + ei¢,,,_<_zs’__zs I_ZS’ Zi > + (15.3..10)
ir si

T __ T
+ eia,-;, . 25y Zs —Zpy Zg
Ls

The following relation is generally valid in triangle r, i, s, see (15.10) and (15.11):

AHH'J AHisr AH.rri
S — (15.a.11")

Zps Zir Zsi



S-TRANSFORMATIONS AND CRITERION MATRICES 103

hence, also, in general:

Hris’ Hz;s stra H;T;r Hsri’ HsT;-L "
2 = 7 = B (15.a.11")
Now with (2.12) we have:

Az ;’ Zis, Ay oo (15.2.12")

hence the general validity of:
(rs) (rs)T lrlll.s 7 AT 1
sz =\ S P (S . (15.a.127)
From (15.a.11") and (15.2.12"") one can draw the conclusion that z{"™, z{"™” is a function

of the side lengths in triangle r, i, s, in particular a positive real function under the require-
ment of circular standard ellipses, see section 14.

If one wishes, moreover, to eliminate the difference (z,, z,
zero, then one can introduce, on the analogy of (12.7):

z,, zI') by putting it equal to

Z,2) —zy2] =228 — 2,2 = {220 —z;, 21 }T
= 2%, %, —20x;,X; 1%, y;) = 2 X, %, — 200, x;+1X;,y;) =
= 2d}—id;j) = 20d}—id)" (15.2.13)
di=di=7Y c, ()", ¢,>0
p#0
d;j= —dj;, not further specified
With (15.a.13), formulae (15.a.9) and (15.a.10) become:
(rs) (rs)T lrilis .
, 2 =21—G,,-s>0, i#r,s
GHS - Gl"Sl -
42 2 AR (15.a.14)
= 2{<cosais,-7"_ +cosag,; l L 4 COS 0" L . > +
d;, . d, s
+ [ sin o, * 7 + sinag,; l L+ sina,; T

Now it is necessary that: z{"™, z{"¥" > 0 for i #7, s.
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Consider:

? d2~ 2
l" + cos zxs,i-l—“— + cos “m'% ........... (15.a.15")

ir si

A = cos oy,

in which at most one term can be negative, e.g. the term with cosa,;,. Then assume:

T T

0< oy tog, < 3 3 <au <7, hence I,>1,,1;
Then:
dlzl' dszl drzs dtzr .2 Uy dszl .2 Olgy
A_{l—;r+ lsi_Trs-— +2 _lir - 2 —lsi s 2 +

drzs <2 aisr+asri
‘s ————, =
T, T2

dlzr + dszt dfs + 2 dzs _ dlzl' .2 Yysr +
lir lsi lrs lrs T Sin T

dfs dszt .2 Ogpy dfs 1.2 aisr+asri . 2 Xigr . 2 g
+<lrs—lﬁ>sm > +l—rs— sin ——E————sm T—sm 5 =
— dtzr + dszt _ drzs + 2 drzs _ dlzl' .2 Xjgr +
IR P L) 2

dfs dz 2 asrl dfs . iy Olsri aisr+asri
+<lrs 1, sin - + i 2sin 3 -sin —— 5 Cos—o——

Now choose one term from d in (15.a.13), then:

2

+ (15— 15 Yy sin? 3" lfs_1-2sin%-sin agi-cos*—a‘”;a"‘}]

Ap=Cp|:{lg.—1+l:’i_1_l:zs—1}+2{(lfs—l_lg- 1)811’12 1sr+

Under the assumptions made, all trigonometric coefficients are > 0. Apply (13.19):

{5 =121 > 05 c,>0, 0<p<2
or:

A,>0 | c,>0 |0<p<2 ‘

S e R (15.2.15")
A>0 c, =0 notallcp=0<
Next consider:
B =sina, ?"’ + sinag, ? + sina,;, ?" ........... (15.a.16")

si
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I Fig. 15.a.1

Consider also the situation symmetric with respect to P, P,:

. d; . d; . d
B =sina;, L + sina, ;- — + sinq, ;—

jr si rs

A safe requirement is: B> 0, B’ > 0. But if the trigonometric coefficients in B> 0, then
those in B’ are < 0, since all trigonometric coefficients in the same equation have the same
sign.

Assume: d;; = function {/;;}

Then, in particular:

from B >0:4d,,20

from B'>0:4d,,<0

This is only possible if function {/;} =0. Hence:

B=0 | d;j=0 |x,y;,=0=—y,x; I ¢ - [0

From (15.a.13)—(15.a.16) follows the construction of the criterion matrix from the elements:

T T T T T T
Z,2, _Zi’zj =ZS5ZS_Zi5Zj =2Z,,2, —Zj,Zi =

= 2(xr5xr_xisxj) = 2(xs9xs_xiaxj) =

15.a.17

di=Yc )’ |c, 20 |0<p<2

From (15.a.5) or (15.a.6) follows then*):

*) Different ways of elaborating the formulae are possible; this one was chosen by J. C. P. b KRUIF as a
base for computer programming.
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%_Zgrs)’ Z-(irs)T — xl(rs), x-(irs)_*_i_xgrs)’ y-(irs) =
= W0, 50 =iy, = 8)
....... (15.a.1
rs)  _(rs)T 2 1 T 2 T 2
‘%"Z;(“)a Z_(er) = —dij - _2 [erzsj'dri+zsrzrj'dsi+
L
T 2 2
+ ZpsZsi” drj+ ZopZyi® dsj +
T T 2
L +(Zrizjs+ erzis)drs]
and from this or from (15.a.14):
%_Zgrs), Zgrs)T — xgrs)’ xgrs) — ygrs), yl(rs) —
= l'ilisG- >0, i#r,s
I, T A (15.2.19)

2

lir

2

d d% d?
G, = Z{COS Ky + COS 0y = + COS Uy ——

I

si

Ly

The parallelism of (15.a.17) with (12.7) also means a double use of the matrix (12.12),

once for (y,), (¥;)" and once for (x;), (x,)", with (x), (¥;)" = (0).
This explains why the requirements for positive definiteness also agree. One obiains, with:

Vi Ve = Vo Vs =XpXp = XgXe=d° . . . .o (15.a.20")
Ay 4y, 4y, 4y; Ax; Ax; Ax, Ax
4y, d? (d*—di) (d*—d}) (d*—d;
Ay, (d*-dy) 4 (d*-dz) (d*-d;, 0
by, | (@-d&) @-d>) & @ -d2
4y, |@~dp) (@°—di) @-d) & (15.2.20")
Ax;
4%, same submatrix
Ax, 0 as left upper part
4x,

Since the requirements under which (13.24) is positive definite are, according to (15.a.17),
the same as for (15.a.20"") because it is possible to extend the matrix (15.a.18) with (15.a.19),
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by bordering it with terms z{™, zT, z{, 2T, z, zI and z,, z¥ and z,, zT to obtain a matrix

analogous to (13.12),
and since, because of the way of constructing, it is always possible to consider
this extended matrix as having been established by applying the law of propagation of
variances to the non-singular transformation (2.8) using the variance matrix (15.2.20"),
the conclusion (13.25) can be applied in the reverse way:

Conclusion: If the matrix (15.a.20") is positive definite
then: the extended matrix (15.a.18), (15.a.19) is positive definite

Introduction of Ad?-terms

Introduce ,,centering variates’” like in (13.1):

Instead of y; | y;+4y; T
o Zi+AZf
Instead of x; | x;+4x] o
means A~yf =Ax{=0
AVE Ay = A At = Ad> (15.a.21)
covariances Avi 4y; = Ayi, 4x; = Axi, x; = 0
Ay, Ays= Ay, Ax; =0
Ax;, AyS = Ax;, Ax5=0
Then follows from (15.a.17), compare (13.4):
If: 4d} = Ad} = 4d}, (15.2.22")
del:z;ne
(2,4 42), (z,+ 42)) — (2,4 425), (z;+ 429) = Adi+ 4d7); i # )
(2,4 42), (z,+ 42]) = (2, + 429), (z,+ 42]) = —2Ad] - 4d}.) (15.a.22")
(z,+42}),(z,+ 4z7) —(2,+ 425), (z,+ 42) = 0

(15.a.22") is a restriction introduced to keep the elaboration of (15.a.5) or (15.a.6) manage-
able in practice, see the last relation in (15.a.22'’). This restriction will be hardly noticeable
in practice, because usually one will take as base points P,, P, well-marked points {e.g. in
the form of ,,given points™}, in view of the connection of a network to points with known
{,.given”’} coordinates.
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Since the choice of numerical values for Ad? is usually guess-work {e.g. agreed to in the
»compromise” between client and executing geodesist} one will take together as many
points as possible with roughly equal A4d? to form one area with 4d? = Ad’2, another with
Ad"'?, etc.

For unmarked terrain points one then arrives at a division of the area to be surveyed
into Ad-areas, as advised already in the HTW-1956. The new theory has the attractive
feature that a difference can be maintained between marked and unmarked points*).

With (15.a.22), the formulae (15.a.18), and (15.a.19), must then be replaced by:

3 (zi+ 425", (z;+ 425" =

1
= _(dlz_[ + Adf,s) - l_2 [erZsTj(dfi + Adf,s) + Zsrzz_‘i(dszi +Ad3,s) +

rs (15323)
L + 2R+ 442 )+ 2R (4 4d2 )+
i #] 1 +(zzjs+ 2752 (drs+ 4d7)]
12‘ ‘ (Zi + AZ?)(“), (Zi +4 Z;,)(rs)T = IL{IP_ (Gris +4 Gris) + (A dlz -4 df,s)
(15.a.24)
? 2 2. A 2 2 2
(Gris +4 Gris) =2 {COS i dlr -;- 4 dr,s + cos Lgri” ds‘ -il- dr,s +cos Apis” drs -;- 4 dr,s }

With a view to the application of computers, the following ,,rule of thumb” can be given.
Replace (15.2.17) by:

T T 2 2
1(z,z, —z,, Z,T) = ¥(z,, ZrT_ Zj 2 )= dij = dji

dizi=ch'(lij)p ¢, 20 |0<p<2
P

also: i,j—>r,s | co=A4d’,=limd}

j=i

Always apply (15.a.18), with the following

increment to the elements of the main diagonal: |- = = - * - (15.2.25)

—(d%—limd}) = Ad} | , with the result:

=i

—(d;— l.imdrzj) = Ad? = Ad} =,
J—Qr
—~(d2— limd2) = Ad? = Ad?, = ¢,

J-s

*) But sometimes one has to take into account larger values of Ad,,z,s. This may occur when given coordi-
nates have been determined by photogrammetry. See also the last part of the section.
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A check from (15.2.18) with (15.a.25):

32, 2{0" = (4d] —co) +

’ =

1
e (2,25 (—Ad? +co)+ 2,2 d2+

rs
+ 252, (— Ad7 + co) + 25,2, dgy +

+ (a2t znz,)d5] =0

s

o T 1
T 2 T 2 T 2
% ) z:(-rS)a Z(rS) = - drs 12 [erzss( - Adr + CO) + Zsrlrs” dsr +
rs
T 2 T 2
+Z,52g° drs + Zsrzrr( - Ads + CO) +

+(Znzn+ znz,)dh] =
—d - 11—2(— 2_P12)d2 =0

rs

Parameters of the criterion matrix

In [5] the relation between the executing geodesist and his client was described as a producer-
consumer relation, such as occurring in many statistical studies. A balance must be found
between the technical and economical possibilities of the producer and the requirements
and economical limitations of the consumer. This balance will probably always be a
compromise, where agreements are made on, firstly, internal and external reliability of net-
works as defined in [9], and, secondly, the precision of networks as indicated in (8.22) and
section 9. The latter concerns an agreement on the values to be chosen for the parameters
of the criterion matrix:

Ad?, i=..
4dl = c, O - W/ )
Cps O<p<?2

The Ad?-parameter values must be clearly distinguished from:
{4d}};, I= .. . . . e s e s (527

which as the variance in an arbitrary direction describes the process of the definition of
terrain spots as ,,points”, and is independent of a geodetic network but can be estimated
by experimental measurements. Since the refinement of every measuring process depends
on the objective it has to serve, the definition of ,,terrain points’ always depends on this
objective and therefore it is part of the producer-consumer compromise.

A network provides coordinates whose precision must meet the requirements of the
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criterion matrix. But according to section 10 this can only be formulated in one of the
possible S-systems.

This underlines the fact that coordinates can never be an objective in themselves; in an
intermediate stage they serve as a description of a set of terrain points for the preparation
of technical projects, afterwards they serve again as a means to realize these projects by
setting out terrain points.

The concept ,,terrain point” is mentioned twice, hence one is twice confronted with
{d?}r. As in the HTW-1956, it must be possible in the producer-consumer compromise to
connect the parameter values of the criterion matrix with the values for {4d}};. A start
for such a theory of ,,reconnaissance” has already been made; the elaboration, however,
will take a considerable time.

In a way, the criterion matrix can be considered as the description of the precision of the
network established as a result of the producer-consumer compromise. As such, the
criterion matrix {possibly with different parameter values which are experimentally deter-
mined} can be used as a substitute matrix for the {unknown or unavailable} covariance
matrix of the coordinates of ,,given points” in densification networks, as studied in
sections 5, 7 and 9. This must of course also be considered in the producer-consumer
compromise.
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16 AXIOMATIC APPROACH TO THE MODEL OF S-SYSTEMS

In connection with the question raised in the reference at the end of section 15, one may
ask how an S-transformation like (15.1) is connected with the relation between S-variate
and IT-variate in (15.2), with the conditions*) in a triangle like (15.10) to which (15.9) is
connected, and with the conditions in a quadrangle such as (15.24)+(15.25) and (15.27)+
(15.28) to which (15.38) is connected.

It will be tried to answer this question by sketching an axiomatic approach within a
linearized model.

Definition 4z{", see (12.2) or (15.2):

Az = “EEs A L (16.1)

- def Zys

Consequences:

ZZ;
Azl(sr) — _ Isifir AHsir —
—_— - ——

_ ZyiZis

Mu=A4z . . .. ... ... .. (16.2)

er

erzrs

A_ZSrS) = - AHrrs

rs

I1,,, has not been defined in [2], but z,, = 0, hence, cf (2.7) and (2.11):
Az =Az00=0 . . ..o (16.3)

Az = A2 - Az = AP = - AP (16.4)

A-conditions for consistent triangle

Fig. 16-1

*) Concerning the concept condition, see note on page 83.
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To direct thoughts, think of the following special case of a general S-transformation,

worked out with (16.1)-(16.4):

" . z. . Z. .
Az = 42{0 = 4z — 2 4210
Zji Zij
— Zik 4,00
J

Require, for each consistent triangle jik, that two of the following three conditions are

fulfilled :
4;
iy z;
J
Zki
Jj| 2%
ij

From (16.5) and (16.6):

" Z. . Ze Zy s .
A0 = — 2 g = P Bl g0
Zij Zij Zki
- .
= — 2k gz kD - (16.7) .
7. —

Ji

Hence: (4;)dependenton(4)and(4y) . . . . . . . . .. . ... ...

(16.5) with (16.1):

_ ijzkiAiji 1 ﬂ<_ fizﬂAHm> =0
Zp Zij Zy T

Zy Al 425 Al = 0 = N jk
Hence:

(4;) with (16.1) gives net condition N, ;«

(4,) with (16.1) gives net condition N, ; ;

(A4;) with (16.1) gives net condition N;,;

.s Zi (ik)

Az = = ZFAZO | o
. Zy: .

Ap| 420 = —ZHA D

*i _ Z e Ui
A Az = = ZEaZ00 |

(16.9) according to [2] explains the dependence (16.8), hence the requirement according to
(16.5)(16.7) is also necessary and sufficient for a consistent triangle.
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B-conditions for consistent quadrangle

s Fig. 162
r

Reguire, apart from two A-conditions for each triangle, per quadrangle ijrs at most two
B-conditions, usually related to the choice of the computational base rs:

B | Az = Az - Zigz L L (16.10)

ri

s sr Zsi sr
B | Azf0 = 420 =040 | L (161D

—_— s

(16.10) gives a relation between the triangle jri, jrs and irs, not triangle isj;
(16.11) gives a relation between the triangles isj, isr and jsr, not triangle jri;
or (B,) and (B,) cannot be derived from each other by means of A-conditions.

But B-conditions can be transformed by means of 4-conditions, for example, with:

rj Zyi ri
A_Zf D — Z_”A_Zg )
Az60 = - Zsi g0
—’ Zsi——_l
we obtain:
(16.10): g@=g@‘?gﬁ...”....H....H...ama
rj
si sr Zsj r
(16.11): gﬁ=gﬁ-j§w...u....”....H...umn

si

But a further transformation is also possible, for example, with:

Azﬁ'n’) - _ EiAzfij)
=L P
Azﬁ-’” = — i‘iAz,(fj)
ke z, —
Az = — Z 4560

ZSF
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we obtain:

. Z:: ‘e Zo; ; Z.: Za .
(1610) _ L A_Zil_,) + sJ A?f‘s]) __ frj “si A_Z,("“) =0
Ziy Zgr Zp Zg

or with (16.1):

er(A_IZirj—A_IZsrj'i_A_Ij_sri):O - VVr*)

Hence:
(B,) with A-conditions and (16.1) gives central condition W,]

.. (16.14)
(B,) with A-conditions and (16.1) gives central condition WSJ
Now, with the A-conditions:
Az — __z_iLAz‘”')
_" Zir —_—
Az = _ Fit 4,60
_l st _S
(16.10): Az = — Zir g9 4 Zir g9
ke z; — z; —
(16.11): Az = — Zis 4509 4 Zis 4509
a2 z; — Z; —
The two equations give as their difference:
By [4200= _Zegz0 | ... (1615
e G

(B,,) can replace either (B,) or (B,). This type of B-conditions can be very useful in deriva-
tions; it can also be considered as an extension of the type of the 4-conditions, in the case
of the opposite sides of a quadrangle. To see this, one can e.g. write (16.5) with (16.3)
in the form:

(165): 4z’ = —ZE 4z
4z =

From (16.10), several B-conditions can be derived by cyclic permutation of indices, see
Fig. 16-2:

*) W, indicates a central condition, see [13], chapter 3. W is the first letter of the Dutch word “waaier”,
meaning “fan” in English.
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. zZ .
Br Azﬁ.n) — Azg'rs) _ L Azgrs) —>VV,
- T Zri -
! i—>j,jor,ros,s—igives:
Bs AZ(SJ) AZ(sn) Zsr AZ§-Si) —>VVS
Zgj —
jorros,s—ii—j gives:
. .. Z. . e
Bi Azglr) — Azgu) _ “is AZ'(‘U) —>VV,
- - ir =
ros,s—i,i—>j,j—r,gives:
B;| 4z = Az" — it p7m —W;
Zjs T
s—i,i—j,j—>r,r—s,gives: (B

With A-conditions follows from (16.16b), as a check:

z z z Zg: ;
sr (sr) sr (sr) sr “sj (sj)
_Azj __———_Azi +__Azi
zsj Zg Zsj Zy;
or.

AZ(SJ) AZ(SP) z-‘i A_z-(’."), or (16.11)

sj

115

. (16.16a)

. (16.16b)

. (16.16¢)

. (16.16d)

Now eliminate z_ifﬂ-”) from (B,) and (B,), for which it is easiest to take the forms (16.10)

and (16.11):

(16.10):  4z{) + =L 2 Az{" = 42§
Z

ri

(16.11): 2L AZED = 2oL o760 = — 4709

Zsi Zei

Addition gives, with:

Zrj _ Zsi _ZnitZiy  ZatZy _  ZsiTZh _

rj

ijzsr

=z
ri si Zpi Zsi ZpiZsi

A (ﬂ)+ SJ Az (SJ)+ ij srA (rs) -0

ZSl z ri ZSI

or, with 4-conditions:

si
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Zijzsr Zyi Az(ir) =0
— s | =

st - ZpiZsi Zps T

— Fid g0 _ Esi Zji g0 _
r s

Zir Zsi rs

or:

A28 = 4280 — %5 4200, hence  (16.160)

ir

In a similar way, (16.16d) can be derived, or:

In a quadrangle, besides two A-conditions per triangle, } (16.17)

only two B-conditions are independent

As a check, a comparison with the theory of section 8.6 in [2], although a closer investiga-
tion will be given later, cf. the note to section 16.

Every vertex of a quadrangle is the centre of three rays {“radiate variates” in [11]},
determined by two II-variates, out of the three possible combinations of two radiate
variates into IT-variates. Consistency requires one W-condition per vertex {think of station
adjustment}.

According to (8.64) in [2]: 3 x2= 6 N-conditions
In four vertices: 4 x 1= 4 W-conditions

Total =10 conditions

Now there are four triangles in a quadrangle, and hence 4 x2 =8 N-conditions can be
established.

The difference, 8 - 6 = 2 N-conditions can be used to replace two of the four W-conditions.
Then one obtains:

Per triangle 2 N- (or A-) conditions > 4 x2= 8§
Per quadrangle 2 W- (or B-) conditions — =2y (16.18)

Total =10

From quadrangle to pentagon

The computation of variances according to (15.38) means that all possible quadrangles
{and hence, for i and j coinciding, all triangles} on a computational base rs are considered.
We shall follow the same line here; Fig. 16.2 is extended with the point k.

J

Fig. 16-3
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Now consider the B,- and B,-conditions in each of the four quadrangles on the base sr:

Quadrangle | Independent B-relations
Popi i) _ 4. Zrj 4.4
isrj Br _4_Zj”) — ‘4—ers) _ —J—_A—_Zirs)
Zy
. Zos
{see (16.13)} | B, A_zﬁ-s') = A_zg-") — 28 Az
Zsi
isrk B, | Az = Az{r) — Zrk pptr
r 1
fnly £ =
; z
Bs A_Zl(‘sx) — —A—Zﬁsr) _ “sk AZES')
si T
; ( ( k (
jsrk B, | Az{7 = Az — ’._A__zj")
rj
( ( k (
Bs AZ sj) A sr) Zs Azjsr)
Zsj —

Substitution of Az(") from (16.20) and of A_zﬁ.f’) from (16.19) into (16.21) gives:

AZ(U) AZ(")

; 4
Zrk AZ_(I-")"r _ “rk +
Z,; T Z,;

rj

=0

Zrkzrj

erZ

Similarly (16.21") with (16.20’) and (16.19’). Hence:

(rs)
>Azirs
ri

Quadrangle | Dependent B-relations
jirk B, Az(”) AZ(") Zrk Azﬁ-’i)
er —
jisk By | Az = Az - s’f 4249
sJ

(16.19)

(16.19)

(16.20)

(16.20")

(16.21)

(16.21')

(16.22)

(16.23)

This is immediately clear, because the 4 rays in r and s make possible 6 combinations of 2
{i.e. a II-variate}, whereas only 3 are needed.

From (16.19) and (16.20), respectively (16.19") and (16.20’) follows by subtraction:

(16.20) —(16.19): 4z =

(16.20)—(16.19): Az§) =

A (rs) jk Azgrs)
Zyi
Z.

Azﬁs) — K A

Zsi

(16.24)

(16.25)
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Elimination of 4z{" gives after some rearrangement:
Inggld Bt gt B qpe0 . (16.26)
Zj —7 Zp —’ Zpe—’
But in quadrangle jsrk, already completely covered by (16.21) and (16.21") we have then a
dependent Bj.-condition, compare (16.15):

4 .
rs Azgp’—(s) — _ AZf.ik)
ij — —

= —dAzP+4z§0 . (16.27)

(16.26) with (16.27) gives:

(A P Azj.'k“) _ (Azg,i“ + Zai Az(jf)) =0 . (16.28)
o Zp— i 2y —
In (16.28) one recognizes the B-condition in quadrangle jirk and the Bg-condition in
quadrangle jisk, exactly the complement to (16.22) respectively (16.23) which is necessary
to guarantee the consistency of both quadrangles. But from (16.28) follows that only one
of the two conditions is dependent. Hence, for example;

Quadrangle | Independent B-condition

jirk B, | 4249 = —iff_A_zg.;i> ........... (16.29)

J— z;k

Quadrangle | Dependent B-condition

jisk B A_zi{“:-ilzﬁ“ ......... .. (16.30)

si
Zj

Starting from the three quadrangles in (16.19) to (16.21’), used for the computation of
variances in (15.38), (16.22) with (16.29) and (16.23) with (16.30) give the necessary comple-
ment to five possible quadrangles {not considering the order of the vertices}. The pentagon
is therefore consistent, and the computation of variances can be executed with respect to
one of the sides as a computational base.

As a check again a comparison with the theory of section 8.6 in [2]. Every vertex of the
pentagon is the centre of four rays, determined by three II-variates, out of the possible
six IT-variates. Hence, consistency requires three W-conditions per vertex.

According to (8.6.4) in [2]: 4 x3 = 12 N-conditions
In five vertices: 5x3 =15 W-conditions

Total =27  conditions
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Now in a pentagon there are ten triangles, and therefore 10 x2 = 20 N-conditions can be
established. The difference 20—12 =8 N-conditions can be used to replace eight of the
fifteen W-conditions.

Thus we obtain:

Per triangle 2 N- (or A-) conditions 10 x2=20
Per pentagon 7 W- {(or B-) conditions 7 (16.31)

Total =27

This investigation explains the requirement that in a consistent pentagon ‘‘at most two”
B-conditions can be used {see above (16.10)}, in a pentagon with five quadrangles only 7
out of the 5 x2 =10 B-conditions are independent. In the present investigation the three
dependent B-conditions are (16.22), (16.23) and (16.30).

The general S-transformation

After (16.28)-(16.30) one can continue with one of the two relations (16.24), (16.25).
Choose, ¢.g., (16.24), and apply (16.29):

z; ; Z;
— 2k gz = AZ}ZS) — kg9
Zri - Zy
. Z.:
Az{P = Az — 2L A2
JE— — Z . JE—
Jk

Az90 = Az — %Azg;ﬂmzif") ............. (16.32)
4z 4z =2

With A4-condition in triangle krj:

4799 = — Zjr

Az

2k

Or, with B,-condition (16.21):

; z; z
Az = — DAL ¢ AL (16.33)
ot Zp— Zp—

(16.33) into (16.32) gives:

" Zy Z ..
AzP9 = Az — ZE A0 — SR A L (16.34)
Z: e Z — Zy —

In (16.34) the general S-transformation (3.5) is recognized, because with:
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j—=v, k—w, we obtain:

Z.; Zyi
Az = Az{™ — D AZ{D — DAY L. (16.35)

ZWU er

From the derivation of (16.32) the necessity of applying (16.29) is evident. This is under-
standable, because if one wishes to apply (15.38) directly for the computation of variances
with respect to the computational base jk, one has to deal with the quadrangles:

rkjs, rkji, skji
or, differently arranged, with reference to formulae:
Jsrk {(16.21), (16.21")}, jirk {(16.22), (16.29)}, jisk {(16.23), (16.30)}

Extension to n-gon

To complete the proof that two A-conditions ‘per triangle and at most two B-conditions
per quadrangle suffice ~ so that the variance computation according to (15.38) is unique -
the count according to (16.18) for the quadrangle and according to (16.31) for the pentagon
should be continued for the n-gon with n > 5. This, however, is left to the diligent reader.

Note to section 16. Conditions in quadrangle and pentagon according to [2]

4

Fig. 16-4

Consider quadrangle 1,2,3,4 and refer to section 10.2 in [2]¥).
The conditions in the four triangles and the four central conditions are, in a consis}ent

quadrangle:

*) For a summary in English of the Polygon Theory in the Complex Plane, see [13], chapter 3. Reference
is also made to [4], section 4.
W indica‘es a central condition, see note p. 114.
V indicates a polygon condition. V is the first letter of the Dutch word “‘veelhoek”, meaning polygon
in English,
N,, is derived from net- and polygon conditions, using an arbitrary auxiliary point.
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Al + A5, + Al =0
All 3+ A5, + 4115, =0
Ally3,+ Al 545+ 411,55 =0
All34y+ A 413+ 41,5, =0

N(h),1,2,4
Nw,2,3.1
N(h),3,4,2

N(h).4,1,3

Zy Al gy + 25y Al 54 + 24y Al = 0
Zow A 33+ 23, Al 33y + 24, 41151, =0
Zap A 534+ 24 All345 4 25, A1 53, =0

Z4h'£341+Z1A'A_H413+23A'A_11134 =0

Ally 3+ A5, — A1, =0
All 4+ Al 43— A1l ,3, =0
A3+ 4 34— A1l 53, =0

All34,+ A5, —All,, =0

121

(16.362)
(16.36b)
(16.36¢)
(16.36d)

(16.36€)
(16.36f)
(16.36g)
(16.36h)

(16.36i )
(16.36) )
(16.36k)
(16.361)

Only 10 out of the 12 conditions (16.36) are independent, for, simplifying the numbering
of the formulae, it is easily verified that:

{@-bB)+©@-D}+{D-O+® -1} =0

{(e)—-(f)+(g)—(h)} + {Zlh'(i)“"zu'(j)+z3h‘(k)“z4h'(l)} =0

In agreement with the approach followed in this section, the
polygon- and net-conditions for each triangle are maintained.
According to (16.37), two central conditions are then dependent.

4

Fig. 16-5

(16.37a)
(16.37b)

(16.38)
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Examine now pentagon 1,2,3,4,5 and apply (16.38) for the 5 quadrangles in this fi
each quadrangle the following central conditions have been chosen as independe
the addition of some dependent central conditions:

Quadrangle| Independent central conditions

5, 1,2,3 Wl égSl:!_*-A__H:!lZ_A_HSlZ:O ........
Wo | All 55+ Al 553 A1l153=0 | . . . . . . ..

5, 1,2,4 Wl A—H514+£412—£512=0 ........
W2 A_q125+A_H524_£124=0 ........

| 4, 1,2,3 Wl 4_11413'*’[1_17312—@412:0 ........
W2 -42124+A—H423—£123=0 ........

5, 1,3,4 Wl A_11514+A—H413_A—H513=0 ........
W3 A_Hl35+A—HS34—A_Hl34=O ........

5,2,3,4 W2 A—17524+.A—17'423—A_1z523:0 ........
W3 411235+£534—A_1Z234=0 ........

Quadrangle| Dependent central conditions

5, 1,2,3 W3 A_17-231+A—Hl35—A_Hz35=0 ........

4, 1,2,3 W3 A_Hz31+A_Hl34—A—Hz34=O ........

But a calculation shows that the conditions (16.39) are related by:

Conditions | Relations between conditions

W,'s @)—-@C)—E)+®=0 | . ...
W,’s o) —@d-@+@=0 | ...
W;'s h-G)-k+d)=0 | ...

gure. In
nt, with

(16.39a)
(16.39b)

(16.39¢)
(16.39d)

(16.39)
(16.39f)

(16.39g)
(16.39h)

(16.39i)
(16.39§)

(16.39k)

(16.391)

(16.40a)
(16.40b).
(16.40c)

Hence the conclusion is: out of the 10 independent central conditions in (16.39), the com-

bination of the 5 quadrangles in a pentagon results in only 7 independent ones *).

*) This result was first proved by J. vaAN MIERLO in a different way.
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In connection with (16.19)—(16.21") and (16.29) one can choose, for example:

In pentagon | Quadrangle | Independent central conditions
(16.39a) 5,1,2,3 W,
(16.390b) W,
(16.39c¢) 5,1,2,4 Wi
(16.394) W,
(16.3%¢) 4.1,2,3 Wy
(16.39f) W,
(16.39h) 51,34 W,

This provides a second sufficient proof of the contents of this section.

123

(16.41)
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17 CONNECTION OF SEVERAL STOCHASTICALLY
INDEPENDENT COORDINATE SYSTEMS BY MEANS OF
S-TRANSFORMATIONS

1 o’ ro 2
k ' ]
A //91 P 2
el ‘o
//’// //’//// {
107 2y A
oR oV
t
© @S S © V@
o! ©° 5 Vo
ol oW
! '
N o3
////,;/ o/ /@ ////,/4”
4 O"//// 30',”//
A
n Am
w
© Yo
4 3 .
Fig. 17-1

Four networks have been measured and adjusted, hence there are four coordinate systems
(1), (2), (3), (4), and it is assumed that the coordinate variates from different networks are
stochastically independent. Some points belong to a fifth network of higher order, measured
in an earlier period. The latter points have ‘“given” coordinate variates in an (a)-system,
stochastically independent of the coordinate variates mentioned before.

From Fig. 17-1 is evident:

base points of systems (1) —(4) P,P,;P,,P,;P,P;; P, P,
common points idem P,P,P,P,P,P,P;

“given points” also in (a)-system P,P,P,P,

remaining points of systems (1)—(4) | Pg, Py, Py, Py
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Since S-transformations have the character of difference equations, the five coordinate
systems must be roughly coincident, which is achieved by some form of preliminary simil-
arity transformation. This makes it possible to choose for every point, once and for all,
an approximate coordinate value z° After this choice it becomes possible to consider the

(1) system as an S -system {or to transform it into this}; similarly, the systems (2)—(4)
1,1’
are specified. Thus one obtains the following survey of data:

Given Working hypothesis: no correlation between systems

(a)-system | 4z(”, 42(", 429, 420

(1)-System A_Zil,l'),é_zgl,l’)’égfl,l’),éfgl,l’),4_%;‘1,1’),A_Z%l,l’) 171
(2)-system | 4232, 423, 42320, 472D, A7), A7) b
(3)-system _A_Zi?’y),A_Z§3'3’),.A_?£3’3,),_A_Z_(i3’3’), A_zf,?‘y),A_Z(;'y)

(@psystem | 289, 400, 47590, 421, 421090, 444

In (17.1) the variates whose value is zero according to (2.7) have been omitted, such as:

Az = 42301 = 423 = . =0

Computation of corrections to “free” *) variates

Under the working hypothesis mentioned in (17.1), viz. that coordinate variates from dif-
ferent systems are uncorrelated, the computations of corrections to “free” variates {(3.13)
ff., (5.3), (6.1)} can be separated in a simple way from the actual adjustment problem, in
which “tied” variates occur in the condition equations. For this, one needs the covariance
matrix of the tied variates and the covariances between “free’” and “tied” variates, both for
each separate system. There will usually be large numbers of “free” variates; in (17.1) they
are denoted by:

Az, 42320, 42030, 4284 0 000 oo (17.2)

As an example, the computation of the correction to the first variate in (17.2') is given ir
schematic form, combining x, y coordinates into z-coordinates**):

@) = G (Y Y (Y (0
Zgl,l') Zgl,l’) Zgl,l’) -1 §§1,1’)
200 LI g || g [ f g | a7
Zgl,l') Zgl,l’) Zgl,l’) §€1,1’)

i i
Zﬁl,l') Z;(l,l’) Zﬁl,l’) §;‘1,1’)

*) See note on page 33.
**) The combination as given here is actually inadmissible and is only used as a convenient symbolism.
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The last vector in (17.2") pertains to the corrections for “tied”” variates; in an S-transforma-
tion all vectors and covariance matrices are transformed. For the computation of (17.2"')

the S -system has been maintained; the choice of the system is determined by practical
1,1’
considerations with respect to the total computing system.

Connection of systems (1) and (2)

Choose temporary the S-system:

r,s

Az = 470 — 0 and schematically:
1,1)(m>8) 1,1’

fA_z,( YN fA_zf DY

Az =(SE | Az oo (1))
il 1,1’

4z 4200

The g-variates of the Az-variates always transform according to the same formulae, this is
here left out of consideration, as being a matter of the total computing system.

Azgz,z')“-’) = Azgz,z')("” =0

(Azi(2,2’)(’v’)\ (Azlgz,z’)\

A_Zl()2,2')(’:=) ;—21()2,2’)

AZP0 N = (SGES) | AP (179
Az A4z32)

429 e

(N J " J

Contribution to the condition model, in S :

r,s

Az B0 = 200 ... (115)

Of course one can make a combination of the left-hand vectors in (17.3) and (17.4), and

returnto S :
11
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rAZ'gz,z')u.mw (Azlgz,r)(ns)\\
AZ(Z,Z')(‘J’) AZ(Z,Z')(r,s)
v v
Az Az
1,1 1,1y, »S5)
4z5"") =(SGn )| 428
(1,17 (r,s)
4z 4z
Az(l,l') AZ(;’S)
r
Az Az
. J L J

Then the contribution to the condition model, in S is:
1,1

~ , ~ NTRG)
Azi(l.l ) — Azi(Z,Z )

127

(17.6)

(17.5')

N.B. With a view to the computation of covariances, transformations like (17.3), (17.4),
(17.6) will perhaps have to be established in a more complete form. This also is a matter of

the total computing system.

Connection of systems (2) and (3)

Choose temporary the S-system:

s5,U

S

(s, v) N(sv) .. .
4z = Az(22*” =0, and for indication:

= S (dzpe)

~—

: 7)(s5v)
e

7)(s,v) 7)(s>v)
Az = 47330 = ¢

(AZ‘(i3,3’)(S.v)\ (Az‘(i:;’y)\
" (s,w) .
42339 4z8

3,3 (s,v) 5,V) . 3,3
é_zfn ) =(553,3')) A_an )

(s,v) (3,3)
2z a2,

A4z5” 473
T J \ /

Contribution to the condition model, in S:| none | . . .

50

Combination of (17.7) and (17.8) back to S=S:

S5r rs

(17.7)

(17.8)

(17.9)
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(Azﬁ.a’y)(s.r)\ (AZ§3'3')(s,u)\
423 4232

3,370 (s, 3,3')(0)
42307 | = (SEy | 420

A_Z(;’r) A—ng,v)

4z 4z
2,27)(sr) 2,27)(sv)

Az Az

\ J \ J

(17.10)

A combination of (17.10) with (17.3) gives the possibility of a return to S -analogous to

(17.6):

(Azj."""")“’l')\ rdzg_a,a')(rm\
Az v | 425
- = (Sgr,,s) ))' -
471 475
4201 425

(. J (. J

1,17

(17.11)

In the left-hand vector of (17.11) the indication of the S-transformations made is so far
restricted that the original observation variates are still recognizable. This will be con-
tinued, although sometimes this simplification of notation may lead to misunderstandings.

Compare (17.23) and (17.26) and see the accompanying remark.

Connection of systems (3) and (4)

Choose temporary the S -system:

v,w

Az33 = 473 = o

AZ§_3,3')(5,W)\ rAZ§3’3r)(,,v)\
- — (S{swh T
AZ(3,3,)(s.w) 1= (S(:,:,)) AZ(3’31)(,_V)

v w

"
Az = A =

r A_Z§_4,4'><s-w>\ r 4?54,4')\
AZ§4,4')<S»W) Azt(4,4')
ZZ£4,4')(s,w) - (Sﬁfi,'?')) . 12;4,4')
4 .

g (4,4")
4z 424
\ J \ J

(17.12)

(17.13)
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Contribution to the condition model, in S :

s,w

A~z§3’3')(S'W) = A"é;4,4')<s.w> (17.14))
Combination of (17.12) and (17.13) back to S:
s,v
£ f 7 (4N £ 4 7 (H4EN
utad 4z
AZ’(4,4')<S,V> AZ$4,4')<S»W)
: =SE | (17.15)
4z 425
4330 A3
w v
N J \— J

Combination of (17.15) with (17.7) back to S:

s,r

(A (4:4) N £ 4, (4,4)EN
4 2z
Az Az
: =(SEN| - C e .. (17.16)
az” "
AZ‘(}Z,Z')(S#) AZ,(.Z’ZI)(S,U)
L J (N J

Combination of (17.16) with (17.3) back to S :

1,1
£ 744 £ 474N
-7 )
P 4z
é_zf,’” =(S§,1’;§'))- é_zf{,’s) N (YA Y)
420 4209
A4z A4z
T S (N J

Then contribution to the condition model, in S :

~ ~
(3,310 _ 2 (4,47)(1:4)
A4z; = Az

1,1’

N ( YR T
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and also contribution to the condition model, in S :
1,1’

b e R ¢ VA L))

Connection of systems (1)—4)

It is now possible to connect systems (1) and (4) in a first step. The condition model is
formed by (17.5), (17.9), (17.14), (17.18). The adjustment can, for example, be executed

entirely in the S -system. The condition model is restricted and simple of construction.
1,1’

All variates 4z*"'"” that do not occur in the condition equations are again “free” variates,
the computation of corrections may be rather laborious because of correlation; considera-
tion should therefore be given to executing the computation of corrections in different
S-systems. This is again a matter which depends on the total computing system.

In a second step, the connection of systems (1) —(4) with the system (a) can be executed.
Of course it is not necessary to execute the computations in different steps.

Connection of systems (1)-(4) with system (a)
Choose, e.g., the temporary S -system. Then, with (2.8), compare also (3.12):

k.m

Az = Az9 =0

(4] 4] s

( Az}“’""'"’\ rl 0 —Zm _ %) Azf“)\

p— 4] 4] —

Z mk Zym
0 4]
ym z Zi
Az 0 1 —Zmm D | 4@
— 4] —n

= = 2 20 (17.19)

4z 00 1 0 Az®

Az9 00 0 1 Az
" J \ J N J

type of matrix, *5e'® : (S{s™)
Az = 4733 = 0
m

fAZ§2,2’)“"’")\ FAZI(Z-Z’)“'W\

AZ'('4’4,)(k,M) Az'('4,4')(1,1r)

k,

: = (S{&my-| (17.20)

Az Az

Az¢™ A3

. / . J
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Contribution to the condition model, in S :

k,m
j‘zga)ﬂnm Az(z 27)Uem
(ZZ(“)"""">:<Az‘4'4')(k"")> T YA )
Of course (17.21) can be established in S , but from a computationa1 point of view this will

1,1
be less advisable. If one does not wish to execute the computation in steps, all variates

transformed to S can be transformed to S, as already suggested in (17.20). This applies
1,1’ k,m

also to (17.5), (17.14) and (17.18), forming together with (17.21) the condition model.

From the S -system, (17.20) can be transformed to the (a)-system, by means of the inverse
k,m

transformation of (17.19), provided it is analogously extended. The formation of the
inverse transformation matrix only entails changing the sign of the non-diagonal elements;
as a notation can be introduced:

S@PD=@E™™" . (1122)
" Az{22 N (Az{#2%™

Az HA)@ A&t

n n

Az@ _ Azm

—! = S| = (17.22")
429 Az(lk,'"')

Az = 4@ A4z

A_ans,s')“’ = ﬁ‘_zf.'.') A_zf,‘,')

. J \. /

The total condition model then becomes, see (17.5), (17.14), (17.18), (17.21):

~ ~
(1,17 __ (2,2)®
a4 Zi =A Z;

Foft0® 2 Jo )@ | Jaare _ f7a.30
(17.23)

A (a) _ AZ(Z ,27)(@)

A (0) AZ(4 ,47)(@)

The notation used is not entirely unambiguous; actually, all S-transformations applied
should have been indicated in the superscripts {in view of the computation of covariansces
and numerical values 4z or, more general: in view of the definition of the variates 4z}.
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The notation then becomes very cumbersome. For example, from (17.13), (17.15)-(17.17),
(17.20) and (17.22) follows that we should write:

(k,m)(@)
(4,4')@ 4 4')(s,w)(s,v)("’)(1’1 )
Az, - A4z,

Two or more “given points” in the systems (1)—(4)

Extend (17.1) with:

(a)-system | 4z;” Az Az | Az
(1)-system A_z,(‘,‘""
(2)-system A_zf,“') e e e e s (1129
(3)-system Az(>?)

(4)-system Az{H*)

then the procedure becomes much simpler by transforming each of the systems (1) —(4)
directly to the (a) system by means of S, etc. For example:

k&’
(1,17) 0.k (@) (1,17) Gk
rA_Z, A (A_Z, YUk
AR ~ Az KK
— (T@ N, 1
— =S| — (17.25)
Az Az®
Az Az
| J N S
Then the condition model can be established as follows:
Az = f7220@ | f7 (22N o 17330
A1 = J7 320
Azgl’”(a) = Az>¥ Aziz’zl)m = Azgs's')m
(17.26)
Az£4,4')(ﬂ) — Azis,s')(“’
Azﬁ“""""’: 253'3"(“)
Jo10@ . Jriaan® | 2 @a0@ _

As for the notation, the remark made after (17.23) also applies here.
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Of course the condition model (17.26) can also be replaced by extending (17.23), but the
computation then follows a chain of S-transformations different from the one suggested
in (17.25).

Given coordinates must not be corrected

This situation from practice is treated according to section 7. This means that given co-
ordinates in the (a)-system are introduced as non-stochastic constants in the adjustment
procedure. In the condition model (17.23) this means that the tilde-sign is omitted in &,‘“”,
Az, A7 and Az(®. The adjustment procedure then furnishes again pseudo least-squares
estimators, To the functions of observation variates thus obtained, the law of propagation
of variances must be applied, using the complete covariance matrix {including the ‘“given”
coordinate variates}. If this is not done, then the pseudo least-squares method only fur-
nishes pseudo covariances. In particular, the pseudo covariances of the given coordinate
variates are zero!

Adjustment of photogrammetric networks by connecting “independent models”

The method for the connection of {stochastically} independent networks, outlined in the
preceding part of this section, makes it possible to execute this adjustment problem entirely
by the method of standard problem I {condition equations} because the unknown param-
eters of the different similarity transformations are eliminated by a consistent application
of S-transformations.

It is possible to construct the covariance matrices for coordinate variates in each of these
systems, because each time an S-system can be defined. As long as no pseudo least-squares
adjustment is executed, the precision computation and testing is always possible, and the
theory of the criterion matrix and of “reliability’’ can always be applied. This means that
predefined specifications regarding precision and error control of networks can be complied
with by planning. This is almost always possible for a pseudo least-squares adjustment as
well, but this necessitates additional and more complicated computations.

Therefore the method sketched can be used to investigate closer the computing system
of the so-called “aerotriangulation with independent models™. It should be noted here that,
as remarked in section 1, the two-dimensional treatment in this publication can in principle
be generalized to the spatial three-dimensional case. The systems (1)—(4) in (17.1) then
refer to the “independent models”, the (a) system to the given coordinates of pass points.

It is interesting to compare the method with a very successful practical photogrammetric
method, the Anblock-method, whose construction for the two-dimensional and for the
three-dimensional situation is entirely identical, and in which the unknown parameters of the
different similarity transformations are not eliminated in the {parametric} condition model.
The Anblock-method is essentially based on the idea of C. M. A. VAN DEN Hout! that
this parametric condition model simply would be linear in the variates it contains. This
misunderstanding led to a stochastic model of variances that was so drastically simplified
that the necessity of sharply defining coordinate systems, also from the stochastic point of

1 See notes at the end of this section.
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view, was overlooked. Starting from this, in fact too strongly simplified, computing model,
which makes it very difficult to interpret the results of the adjustment, a computationally
very elegant computer programme was developed by VAN DEN HoOUT, in collaboration with
the staff of the International Institute for Aerial Survey and Earth Sciences (I.T.C.) at
Delft.""? Prof. ACKERMANN and his staff in Stuttgart® then further developed and analysed
the programme.

Although the Anblock-method resulted in a considerable improvement of the practical
procedure for the adjustment of photogrammetric networks, it raises many theoretical
questions. A clear definition of coordinate systems is sacrificed to the efficiency of com-
puting technique, by which seemingly S-systems as a base for variance matrices are passed
unnoticed. Perhaps this explains the absence of testing procedures. Given coordinates of
pass points are introduced without variances, but the adjustment leaves “residuals™ in
these coordinates, and likewise in the coordinates of points connecting models. It is clear
that a pseudo least-squares method of adjustment is applied, so that also the variances of
coordinates computed after the adjustment have the character of pseudo variances, because
the given coordinate variates still seem to have variance zero. This, also, makes the definition
of S-systems seemingly superfluous. This procedure is, indeed, also in terrestrial networks
more the rule than the exception.®

The unpleasant result of such a computing technique - simple to execute but hard to
interpret — is that neither criteria for “precision’ nor criteria for “reliability” of networks,
as indicated in this publication and in [9], can be applied.

Sometimes an artificial covariance matrix* is used for interpolation, but without an S-
system the interpretation is hardly possible.

The computation of many terrestrial networks at Delft has shown that checking by test
methods is indispensable; in almost every network a number of gross errors was found.

Bearing in mind that the coordinates per photogrammetric model as initial data are only
weakly checked, whereas the Anblock-method also provides relatively poor checking
possibilities,? the question raised by Prof. HALLERT on the “reliability”” of photogram-
metric methods® gets an urgent significance. Of course one may wonder if HALLERT was
right in restricting his statements to photogrammetry!

Notes to section 17

1 C. M. A. vaN DEN Hour - Een exacte procedure voor een numerische vereffening van een planimetrisch
sektie-blok {An exact procedure for the numerical adjustment of a planimetric section-block} — 1.T.C.,
Delft, 16 november 1962.

C. M. A. vaN DEN Hout - Analytical Radial Triangulation and “Anblock™ — Photogrammetria 19/1962—
1964, pp. 445-447.

D. EckHARDT —~ The I.T.C.-Catalogue of Block Adjustment — Photogrammetria 19/1962-1964, pp. 472-
478.

F. ACKERMANN - Some Results of an Investigation into the Theoretical Precision of Planimetric Block-
Adjustment — Photogrammetria 19/1962-1964, pp. 505-509.

C. M. A. vaN DEN Hour — The Anblock Method of Planimetric Block Adjustment: Mathematical Founda-
tion and Organization of its Practical Application — Photogrammetria 21/1966, pp. 171-178.

Further papers have not been mentioned, because the ideas developed are sufficiently clear from these
five publications. If the condition model is differently arranged, but the strongly simplified stochastic
model maintained, many variants of “Anblock™ are possible. An elegant example is:

R. RoeLoFs — Une méthode de compensation planiméitrique de blocs par des équations de condition —
Bulletin trimestriel de la Société belge de Photogrammétrie, no. 82, dec. 1965.
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F. ACKERMANN ~ On the Thecretical Accuracy of Planimetric Block Triangulation — Photogrammetria
21/1966, pp. 145-170.

F. ACKERMANN, R. BETTIN, H. EBNER, H. KLEIN, K. KrRAUS, W. WAGNER — Aerotriangulation mit unab-
héngigen Modellen. Beitrige aus dem Institut fiir Photogrammetrie der Universitit Stuttgart — Bild-
messung und Luftbildwesen 38/1970, Heft 4, pp. 197-257. See also a paper by E. STark in Allgemeine
Vermessungsnachrichten 1970, pp. 318-328.

F. AcxerMAaNN, H. EBNER, K. HEiLAND, H. KLEIN, K. KrRAUS — Numerische Photogrammetrie. Erfah-
rungen mit neuen Rechenprogrammen - Nachrichten aus dem Karten- und Vermessungswesen. Reihe 1.
Heft Nr. 53. Frankfurt a/M., 1971.

K. Kraus - Interpolation nach kleinsten Quadraten in der Photogrammetrie — Zeitschrift fiir Vermessungs-
wesen 95/1970, pp. 387-390.

E. GoTTHARDT ~ Genauigkeitsuntersuchungen an schematischen trigonometrischen Netzen — Festschrift
zum 70. Geburtstag von Prof. WALTER GrossMAaNN — Konrad Wittwer, Stuttgart, 1967, pp. 123-131.
B. HALLERT - Is photogrammetry a giant on feet of clay? — Photogrammetria 25/1969-1970, pp. 147-148.
Discussion: A. J. VAN DER WEELE, B, HALLERT, in: Photogrammetria 25/1969-1970, pp. 149-150; E. H.
THoMPSON, in: Photogrammetria 26/1970, p. 163.
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18 APPLICATION OF THE THEORY?®*)

The evolution of ideas

Since 1968, when the present theory began to take definite shape, numerous examples have
been computed. These examples included networks obtained in practice as well as artificial
networks of abstract regular shape.

In the beginning only point- and relative standard ellipses of coordinates of network
points resulting from the adjustment of observations, with and without fictitious observa-
tions, were compared with the circular standard ellipses computed from a criterium matrix
with assumed parameter values (15.2.26). The figures on pages 25-28 are examples of this
type of computations. Whether or not the first mentioned standard ellips enclosed the
latter one appeared to be dependent however on the S-system chosen. Furthermore it
showed that a comparison of the standard ellipses not always gave a clear indication of
local differences in quality in a network.

About 1970, it appeared that both drawbacks could be eliminated after J. C. P. e KRuUIF
succeeded in developing efficient computer programmes for the computation of eigenvalues
according to section 8. The eigenvectors computed at the same time, in addition to the
above mentioned comparison of the standard ellipses in pairs, assisted in indicating weaker
parts of the network. As the technique applied has not been rounded-off in a satisfactory
way yet, a further elaboration will not be given in this section. Of great importance for the
simplication of computational problems is the fact that a detailed study by W. BEEKMAN
and J. C. P. pe KRruIF of all possible shapes and types of geodetic {two-dimensional} net-
works have shown that the parameter ¢, from (15.a.26) can be restricted to ¢,. In these
investigations is, among other things, (8.23) applied as a criterium. For networks of lower
or the lowest order in plane surveying it appears from investigations by J. vAN MIERLO
that the introduction of the parameters 4d? {hence also ¢y} from (15.a2.26), in addition
to ¢,, is indeed essential. This means that the criterium matrix now applied by the Computing
Centre of the Delft Geodetic Institute to many Dutch networks from practice resembles in
broad lines the theory on which the HTW-1956 was based {cf. pp. 5~7, 24-29, 65, 93-94,
107-110}.

As with all new theories, all possible applications of such a theory are immediately tried
out. Very often the results of the trials show such a confusing multitude of variations that
the initial optimism about finding a logical principle to order these results, turns into
pessimism. This was also the case with this theory. First it was attempted to describe
variance matrices of coordinate variates of network points by a H“*)-matrix in accordance
with (8.21). At the same time such a H)-matrix was introduced as a substitute for usually
not known or poorly known covariance matrices for “given” coordinate variates, hence as
a substitute {or computational, or pseudo} covariance matrix in the adjustment procedure
according to section 7. And finally came the confrontation with the problem of adjusting

*) Written just before finalizing the present publication.
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to one another the values of the parameters ¢, and 4d? {hence also ¢o} by considering
networks from the highest to the lowest order.

First it became clear that for networks of higher order the influence of the parameter ¢,
is domineering. Only for networks of the lowest order {smallest average distance between
network points} the influence of the parameters 4d? becomes of paramount importance.
That implied that first the factors that could possibly explain the variations in computed
¢,-values should be traced and, if possible, give a description of these factors.

Like in the speculations on “reliability of networks” in [9], it appeared that considering
only independent or “free’” networks could supply vital information. Hence this implied
for the present that in a first analysis situations as described in sections 5 and 7 were
ruled out.

Some striking results of test computations induced the author to ask J. C. P. bE KRUIF
to have computed a number of schematized network forms. Computations and working
up of the results were carried out in the years 1970-1972. At the same time networks from
practice were ccmputed in a more directional form. Of paramount importance was finally
an analysing ccmputation of the primary network of The Netherlands by DE KRUIF.

The results of the latter computations confirmed the supposition of the author that
computing eigenvalues of submatrices from coordinate covariance matrices might give a
considerable contribution to the solution of the ¢,-problem. This supposition was inferred
from ideas of the HTW-1956 and from the theory developed in [9].

The problem of eigenvalue computations is after all a difficult to describe increase of ¢,
when the shape of the network under consideration deviates more and more from all-
sided symmetry. In this procedure a value for ¢, equal to A, from (8.21) was computed,
with a start value of ¢; =1 cm?/km in H*®. A good explanation can be given for this
behaviour of ¢, because the criterion matrix can be considered as being linked to a network
of unlimited size, with “measuring” of the natural logarithm of the distance ratios and of
the angles, combined in the complex variate IT = In v +ia.

Taking now submatrices — referring to coordinates of a subset of the set of all network
points — from the total coordinate covariance matrix of the network under consideration,
then the sketched application of (8.21) suddenly gives a picture of A,,, that is much less
dependent on the shape of the group of points. Arranging the A_,, of submatrices in order
of increasing values of the number of corresponding points, then in general an increase in
accordance with the theoretical considerations is observed {see note on page 55}. Of course
from the theory follows that arranging should be done in order of the rank of the subsets,
hence in considerations on precision in a S-system arrangement should be carried out
according to (n—2) if n is the number of points corresponding to the submatrix.

i Considering submatrices means considering local precision, and that is starting-point
for connecting networks of lower order. This is a sound and practical principle. The same
principle was also the basis for the HTW-1956.

However a more difficult problem is to establish a criterium for this 4__,. To this end it
should be verified first if some functional relationship can be formed. In doing so attention
should be paid to the possibility of attuning the reconnaissance of a network to such a
criterium. This implies following the reconnaissance as a growing process of the network.
Consequently it follows that one is dealing with a consecutive series of independent net-
works increasing in size, whereby earlier independent networks from this sequence as sub-
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sets of points may give rise to submatrices of covariances. Therefore it should be tried to
express in one 4, {or ¢, }-picture independent networks as well as partial networks in the
sense of subsets of points. This appears to be fairly possible if one restricts oneself to
independent networks about round or square in shape, or to subsets of points from not
too oblong independent networks. Other types of networks need some further analysis.
In this connection two effects are very important. Firstly, per independent network
{inclusive of possible partial networks} should be introduced one and the same factor
(m—>b)/m {m=number of observations, b = number of condition equations, referring to
the independent network}. This factor is well-known from studies on the so-called “Strength
of Figure”. Secondly the relation to be given apparently refers to 4,,, from submatrices
for points forming a partial network at the border of the independent network. The more
the partial network is situated nearer the centre of the independent network, the more the
Amax Of the corresponding submatrix decreases in value {an analogous situation presents
itself in the measures of internal reliability of a network in [9]}.
On theoretical grounds a third effect is to be expected, viz. the appearance of the factor:
Io?
with:

= average side length of the network {/in km, if ¢, is expressed in cm?/km},

o2 is a function of o7 = variance of direction variates r and/or of of,, = variance of the

natural logarithm of distance-measure variates In s {see note 1 added to this section}.

This factor can be looked upon as being the main cause for the relative small range of

c¢;-values for different types of networks {see also note 1 at the end of this section}.
In fact one opts in this case for networks of about equal side lengths. Test computations
have already shown that deviations from this situation give a large and unpredictable
increase of the 4,,,-value, hence also in this case a description is very difficult, if possible
at all. Therefore it seems that both the choice of the form and the build-up of the network
has to follow classical rules. This procedure fits in very well with the classical pattern of the
build-up of a network from large to small whereby every time a network of higher order
gives a regular pattern of “loops” of small subsets of points of the network, inside which
a lower order network gives the next step of densification with again “loops” inside which
further densification takes place. In this procedure every time the method of section 7 is
applied *) whereby of great practical importance is the small range of possible ¢,-values.

A speculative line of thought, based on this concept but not verified yet, may provide at
the same time the link to the present development of ever continuing linking-up or fitting-in
of higher order networks. Consider to this end a network of higher order and suppose the
coordinate covariance matrix of points of this network is acceptable in respect of a criterion
matrix according to (8.22). Subsequently consider a subset of points in this higher order

*) However, the application of the computation method according to section 7 adds an extra difficulty.
As the adjustment is being done with a pseudo covariance matrix, pseudo least squares estimators are
obtained in which the variances of coordinates are in general {somewhat} larger than those resulting
from a real least square adjustment. An increase in value of Apmgx is then quite possible, as numerical
computations have shown. How these increase of Amgx fits in with the earlier mentioned functional
description of Amax, is not quite clear yet. More examples must be computed before it can be decided
which situations should be considered as normal and which ones as abnormal.
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network - forming a “loop” in between which a densification network of lower order is
fitted in — as given points in accordance with section 7 for this densification network.
Ascribe as coordinate covariance matrix to these given points the corresponding submatrix
from the just mentioned criterium matrix. Then there might be a real chance that the in this
way imposed influence of a criterium matrix cancels for the greater part the disturbing
influence of a possible unsymmetrical shape of the densification network on the computa-
tion of 4, according to (8.21) {whereby of course the position of the given points in the
densification network might be of significance}. Then per country only the national net-
work of the highest order should satisfy the requirements regarding symmetry in shape.
Often these requirements can not be met; an example of this case is e.g. the national net-
work of The Netherlands. To cancel the shape-effect it can be tried to link-up national
networks to greater entities, as e.g. the West-European network. If the requirements
regarding shape are then still not fulfilled, consideration might finally be given to a world-
wide network of points fixed by satellite measurements. In the latter case, however, at a
certain stage the computations with complex numbers should be replaced by spatial com-
putations with quaternions {for which is referred to the remarks in section 1}.

In this respect it should be borne in mind that the use of a criterium matrix as a compilation
of criteria for precision is mainly suited for an overall objective of a network, whereby it
is not possible to formulate a limited number of sharply defined requirements for e.g.
technical constructions. In the latter case the precision of the network itself plays a small
role compared to the requirements for precision in pegging out axes for tunnel building or
pillar building for bridges. In such cases there is no objection if the network used is oblong
in shape because the network in question will seldom be considered as a densification
network.

Examples

In the following examples is 4., the largest eigenvalue computed from {see section 8}:
IG(")—A'H(”)l =0

and H") computed with the initial parameter value ¢, = 1 cm?/km.

The measured elements are in the figures for the sake of brevity indicated by “direction”
or “distance”. The meaning in all cases is {see note 1 to section 18}:

direction: measurement of directions with local orientation;

distance: measurement of distance-measures with regional scale factor {quasi-
distances}.

Points shown by A in the figures are ‘““given” points or controll points, the coordinates of
which are determined in a network of higher order. The adjustment of the network on these
“given’’ coordinates is in these examples not taken into consideration.

It is recommended to compare the examples given in this section with the examples and
conclusions published in [12].
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2125

TRIANGULATION

Observation variates: directions r (no correlation)
Standard deviation: ¢, =1 dmgr =0.16.10-% rad.
Side length: /=25 km

Number of observations: m

Number of condition equations =4

Number of networkpoints =n

X X0

Amax Amax
(subset of points) (all points of network)
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Fig. 18-1a
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TRIANGULATION

Observation variates: directions r (no correlation)
Standard deviation: ¢, =1 dmgr =0.16.10-% rad.
Side length: /=25 km

Number of observations: m

Number of condition equations =5

Number of networkpoints =n

X0 &L

Amax - Amax
(subset of points) (all'points of network)

(22)

INININANIN
ININININTNTN
N NNNNY

\VAVAVAVAVAV/
\VAVAVAVAV,
1.374
JAVAVAVAVAVAVAN
7
1.251
24 29 37 44 61

Fig. 18-1b
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" 0. 16 287 0272 028 016/\

/\ogm 0272 0254 0254 0272 016/\
0. 70/\0287 254/\0249 0.254 0287 070/\

(Vi \l \I .

TRIANGULATION \/\o 516 0272 o 254 0254 0. 0. 16/\/
EFFECT OF /\

POSITION OF 0516 287 o 272 o 28 0516

SUBSET WITHIN X

NETWORK \/\ /\/
Same data as in

fig. 18-1a, 1b 0570 0516 O.§16 0.570

\VAVAVAVAVA

>

>

kn

(

>s

(one chosen type of subset of points) /\O 573/\0 521/\0 573/\

Fig. 18-2
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NETHERLANDS TRIANGULATION NETWORK

Observation variates:
directions r (no correlation)
Standard deviation: ¢, = 1.1 dmgr
Average side length: /~ 25 km
Number of observations: m= 449
Number of condition equations:
b=191
Number of network points: n =285

STANDARD ELLIPSE FROM ADJUSTMENT
OF NETWORK, IN S-SYSTEM

.87
STANDARD ELLIPSE = CIRCLE FROM CRITERIUM
MATRIX WITH C,- 04 CM/kM

— T — S—
s || SCALE NETWORK

—— T —
= . SCALE STANDARD ELLIPSES

Fig. 183
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NETHERLANDS TRIANGULATION NETWORK

centre

border

{sub-}set of

{sub-}set of

network network
points n Amax points n Amax
all points 85 7.40%) all points 85 7.401Y)
subset 1 12 0.64 subset 7 11 1.16
2 13 0.70 8 13 2.082)
3 13 0.58 9 13 1.47
4 12 0.74 10 11 1.17
5 12 0.76 11 12 2.219)
6 13 0.67 12 12 1.943%)

1) Non-symmetric shape of network
?) Loose border triangle

3) Loose triangle with one extra direction

183

149

Fig. 18-4a
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SUBSETS OF NETWORK POINTS

125

169

167

centre border
147
{sub-}set of {sub-}set of
network network
points n Amax points n Amax
all points 85 7.401Y) all points 85 7.401Y) 153
subset 13 5 0.58 subset 20 4 0.49 .
14 5 039 21 5 065 e
15 5 0.59 22 5 0.63
16 5 0.49 23 5 0.61
17 5 0.45 24 5 0.74
18 5 0.43 25 4 0.76%)
19 4 0.33 26 5 0.46
27 4 0.78
28 5 0.802)
29 4 1.362)
30 6 1.70%)

1) Non-symmetric shape of network
2) Loose border triangle
#) Loose triangle with one extra direction Fig. 18-4b
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32 []
1.146
63 [:I:]
6 1.947
90
9 3.011
"2 O (117 [II1.
1.076 1.941 3.005
(11T 1]
0.928 1.936
108
12
1.034 1.417 1.478
153
18
198
24
1.032 1.005 1.543 1.456
0.867 1.310 1.418
1.165
216
27
1.030 1.286 1.548 1.442
0.871 0.992 1.042
0.786
m
b 12 20 28 33
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POLYGONS (Units of 3 x 3 sides)

Observation variates: directions r .
distances s } (no correlation)

Standard deviations: ¢, =6.37 dmgr =1.10-% rad.
Oln ;= 1.107® rad.

Side length: /=1 km

Number of observations: m

Number of condition equations: b

Number of network points: »n

3 ka
4.289 | km
lmax lmax
(subset of points) (all points of network)
1.852
2.316
1.594 1.620
36 46 59 64 ,
Fig. 18-§
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POLYGONS (units of 1 x1 sides)

EFFECT OF (m—b)/m

Same data as in Fig. 18-5, no subsets of network points considered

PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 5, NO. 1

0634 1.168 1.875 2.741
A
|
4 km

0.788 1.048 1.380
*
i
|
kai
|

0.951 0.952
2kmi

0.383 0.651 1.024 1.486

36] 66 96 726

Ig 15 21 27 le 24 36 48

ol w | s B |

252 330

@ 49 63 108 144

60[11a | 168 222

lgl 15 21 27 36| 72 | 108 144

Fig. 18-6
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TEST NET MEER EN BEEK

POLYGONS
Observation variates: directions r\|
distances s [
Standard deviations: o,=7 dmgr
g, =1.5cm
Average side length: /~ 1 km
Number of observations: m
Number of condition equations: b
Number of network points: n

(no correlation)

first version fourth version
{sub-}set of
network combination m m
points of subsets b n Amax b n Amax
all points  2,4,6,7, 8, 128 40 2498 146 43 4.24
9,10 15 24
subset 1 2,4 36 4.64 38 3.88
2 2 26 4,62 26  3.33
3 2,8,9 28 4.77 28  3.80
4 4 18 2.61 20 2.69
S 4,6,7 20 23.84 22 275
6 6 6 16.45 6 203
7 7 S 2.27 5 230
8 8 4 2.60 4 173
subset 9 point 61
10 point 81

151

Fig. 18-7
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A. Schematic triangulation networks

Side length /= 25 km, o, =1 dmgr.

Test computation set up for tracing relations from 4,,, in national triangulation net-
works.?

Figs. 18-1a, 18-1b: 4,,, corresponding to sets or subsets of network points; effects of
shape, size and position {border or central position within the network of subsets of
points}.

Fig. 18-2: Effect of position for one type of subset of points.

B. Netherlands triangulation network

Average side length / =25 km, o, =1.1 dmgr.

Computation and analysis by J. C. P. bE KRUIF.

Fig. 18-3: point- and relative standard ellipses following from adjustment of network
on Hayford ellipsoid,” standard circles from criterion matrix with parameter value

¢, = 0.4 cm?/km, both in S-system.
33,57

Figs. 18-4: A_,, corresponding to set or subsets of network points.*

C. Schematic polygon networks

Side length /=1 km, o, = 6.4 dmgr, ;=1 cm.

Test computation set up for tracing relations for 4,,, in densification networks, like
those being applied in The Netherlands for the determination of pass points in photo-
grammetry.

Fig. 18-5: A, corresponding to sets or subsets of network points; effect of shape, size
and position. Networks built up from units of 3 x 3 sides.?

Fig. 18-6: A, corresponding to sets of network points; effects of shape and size,
effects of increasing the number of condition equations. Networks built up from units
of 1 x1 sides.®

D. Polygon network

Average side length / ~ | km, 0, =7 dmgr, o,=1.5 cm.

In 1970 E. F. MEerDINK and W. BEEKMAN devised for studying reliability and preci-
sion a test net that contained various situations from practice for network build-up.
BEEKMAN contrived several versions of network build-up with the object of improving
both reliability and precision and maintaining at the same time the practical and
economical feasibility. In 1972 and 1973 this analysis was complemented by J. E. J.
VAN ANGELEN, H. pE Heus, J. C. P. pE KRuIF and J. VAN MIErLO.” In this example
some data, borrowed from the first and the fourth versions of the test net, serve a
further analysis within the framework of the present publication.

Fig. 18-7: 4,,.x corresponding to set or subsets of network points.

Fig. 18-8a: point- and relative standard ellipses following from adjustment of network,
standard circles from criterium matrix with parameter value ¢; =2 cm?/km, both in

S-system. First version of hetwork.
5,7

2 See notes 2-8 at the end of this section.
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Fig. 18-8b: same as Fig. 18-8a. Fourth version of network.

Fig. 18-9a: in view of a certain interconnection of reliability and precision of networks
{see pp. 12, 13} a summary is given of bounds concerning observation variates under
conventional alternative hypotheses as measures for internal reliability of the network.
First version of network.

Fig. 18-9b: same as Fig. 18-9a. Fourth version of network.

First conclusion: The fourth version of the network is considerably better in respzct of
precision as well as reliability.

Analysis of 4., in free and border partial networks

Fig. 18-10 shows, for border networks, points on logarithmic coordinate paper corre-
sponding to the value-pairs:

m o
(m—__l; Amax > n— 2>

Data from Fig. 18-1 are worked up into subfig. 1, in which 4 scales for

m

m—b.l

max

are indicated corresponding to lo?{6* = o7}.

Data from Fig. 18-4 are worked up into subfig. 4; in this and other subfigures are for
comparison included data from other subfigures, indicated by a dashed line. Partial
networks are shown as ‘““dubious”, in accordance with notes 2 and 3, Fig. 18-4.

Data from Fig. 18-5 are worked up into subfig. 5.

Data from Fig. 18-6 are worked up into subfig. 6.

If 62 and o2 do not change proportional, it is not possible to show directly the effect of
the change of /o2, The computation of 4, for the three “round” free networks of Fig.
18-5 is therefore once more executed for other values of o, and o,. The result is shown in
subfig. Sa.

Data from Fig. 18-7 are worked up into subfig. 7a {version 1} and subfig. 7b {version
4}. Partial networks are shown as “dubious”, in accordance with the comparison of
standard ellipses {adjustment of network} and standard circles {criterium matrix with
¢, =2 cm?/km}, Fig. 18-8a.

For schematic networks {Fig. 18-10, sugfigures 1, 5, 6, 5a} it appears to be a tree-like
structure in which the “trunk™ connects points corresponding to “round” free networks
and a ““branch’ connects points of oblong free networks of the same width; the juncture of
branch and trunk is a “node”. Points corresponding to not too oblong border partial net-
works fluctuate around the trunk; the deviations give an impression of the approximation
of the description of the data resulting from the functional relationship suggested. These
deviations give at the same time an indication whether the fluctuations of networks from
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practice can possibly be accepted {see subfigures 4, 7a and 7b} apart from the fact that it
can clearly be demonstrated that the trunk line moves slightly parallel in the direction of
increasing 4_,, on account of the always somewhat irregular shape of networks from
practice. In subfigures 4, 7a and 7b a clear indication of dubious border partial networks
is evident; this opens up the possibility to apply the way of depiction {mapping} shown in
Fig. 18-10 to the reconnaissance of networks.

With a view to the reconnaissance of networks the functional relationship of 4,,,, for not
too oblong partial networks is of much importance; the trunk line therefore is the most
important part of the functional relationship. With regard to the above mentioned fluctua-
tions the trunk line {pertaining to a certain type of network} can be considered as a straight
line; applying somewhat stronger approximation this is possibly also true for branch lines.
However, this assumption means that the lines must be given a certain thickness, so one
works in fact with “bands”.

In this way one arrives at the following functional relationships in which for oblong
networks the node fills a part corresponding to the width of the networks:

+
¢
'
'
3

2
~

n-2 n-2

Fig. 18-11a Fig. 18-11b

“Round” free networks and not too oblong border partial networks

m—b
m

Amax & C. (n—2)" C~ ¢* | Fig. 18-11a (18.1)

Oblong free {and from them oblong border partial} networks

m—b

Amax = C- (n'=2)*(n—n"¥ C~ ¢* | Fig. 18-11b (18.2)

C and q depend on type of network.
q' depends on type and width of network?
Lines —» bands means 4,,, — interval for 4,,,.

Cnetwork from practice > Cschematized network Flg 18'10

As stated before, formula (18.1) is of paramount importance for the reconnaissance of
networks. At the same time this formula makes possible the formulation of criteria for
precision of networks.
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The meaning of formula (18.2) is still doubtful. Firstly, the computed examples give no
clear indication about the behaviour of branch lines {see the course of ¢’ in Fig. 18-10}
and secondly, a reasonably unique determination of #’ in networks from practice {whose
build-up is always somewhat irregular} encounters difficulties.

To both formulae applies that more test computations are needed to make the picture
of Fig. 18-10 more complete.

Formulae (18.1) and (18.2), combined with the method of depiction shown in Fig. 18-10,
make possible an analysis of the precision of networks.

In this field of the analysis of precision of networks much literature has been published,
some of which are mentioned in [12]. In particular mention should be made of the work of
P. MeissL,® which is based on ideas related to the theory of S-transformations.

Note 1 to section 18. The factor /o2

Fig. 18-12 shows the application of the law of propagation of variances on the coordinates
of points of a network prior to adjustment, computed in a S-system.

s

Fig. 18-12

From (2.12) follows, again omitting the superscript 0 indicating approximate values:

Z,:Z.
fgm) — 'S'AH"-s

er

We have then, according to section 14:

- 1.l 2
Zgrs)’ ZgrS)T = <Lu L5, HrisT

rs

R A7) = 101 7+ 57 )
lrilis 2 a g T
=1 T 'Re{Hn's’Hris }

rs

The latter result can be compared with the comparable value obtained from a criterium
matrix with only the parameter ¢; # 0. From (15.a.19) with (15.a.17) it follows then:
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3 Re{z{™, 2™} = l’l'l" [cosa] {C denotes criterion matrix}
rs

with:

[cosa] = cos o, + cos o, +COS A,
1< [cosa] £1.5

161

From this an estimate for ¢, can be obtained, which is, however, now dependent on the

base r, s:

L1 i,
¢~ 4——[cosq] "Re{ll;, 11,7}

Supposing now that the sides of the network are about equal in length, whereas

rl is %{(ln-i'lts) n ts) } -

(it s Y 1— =l
B 2 lri+lis

then for ¢, can be written:

lri+lis 2 ln l 2 1 l’s
oo () o (e ) oo Spemetita

with: I = average side length in network

First the computation of I1,;, in this network is carried out. In this computation every time

the shortest trajectories between points are chosen, so that in Fig. 18-12 the trajectories 7,
1,2,3,4,iand i, 5, 6, s are about straight line traverses.
Then it follows from net- and central conditions*):

Neyias2,1t Zie Al + 240 Allig3+ 25, Ally35 + 25, + Al 35, + 2y, 41T, = 0

Ne,is6  * Zis dllgs+zs All 56+ 265 Al 56, = 0

VVi : A_IZris=A_17_ri4+£4i5_AH

sis

The above mentioned choice of trajectories gives:

y4
A x4 ete
Ziy

In addition, we have:

*) See note on page 120.
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AHi43 = _AH34i s etc.

Substitution in W gives then:

Al ~ 4 ALl + 3 Al 55+ 3 A1l 0+ 4 AL+ Al g5+ % ATl s+ 4 AT 5,

In a network various types of measurement are possible, i.e.:

a. Measurement of distance-measures and directions with local {per point} scale factor and
orientation, see [2] and [4]:

IT;3 =Invy53+ig55
Inv,3 =Ins,3—Ins,  , s #si
%23 =T33~ s Tk FEIptw
Supposing non-correlated observations, with:
2 2

2 2, —
alnSJk = Olns s aer =0,

then we have:

T 2 2
I35, 153" = 2A0ias+0,), etc.

or, in more general form:

57, 3-n
- 2 — 1y2 2 = 132
m.m,T~ {1_'*'__+2(u +1+ l_t;j'z(Ll_)_}.z(alZns_,_arz)
n n
or, with:

PP+ +(-1)?=37A~DAQ2A-1) = n’ <«}ﬁ—5 + 61—ﬁ>

Hris,nrisT ~ (ﬁ+ﬁ)<§ + é%)z(alzns_i-arz)

b. Measurement of quasi-distances and -bearings, or distance-measures and directions with
regional {per network} scale factor and orientation:
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1_7123 = /_123—/_121
/_123=1n_s23+i[23, Ski = Sk e =rp+n
@23 = 443, etc.
Al = — 444+ A4+ 4453+ AA3,+ A4,) — 5445+ 4456+ 4 4543)
Supposing again non-correlated observations, with:

2 2 . .
alns_,k - alns ’ g, =a,

The we have, again with:

5, 3on
— n n
T 2 2
1L I, =| = +___—2> (Gins+07)
n* n

or:

- o 1
Hris’HrisT =~ (n+n)'__ﬁ(0'12n s+ar2)
n

A customary mixture of cases a and b {“polygons”}: Re{ll} according to b, Im{IT}
according to a

Then again we have:

e — _ 1
HrisaHriST = (ﬁ+ﬁ) {_.'_ 'al2ns+ (% + —1:>263}
nn 2nn

. Measurement only of directions with local orientation {“‘triangulation”}, with lnv com-
puted applying the law of sines in a triangle:

42123 =A41nv,,3+i da,,;

Alnv,3=4Inv,,,+41nv5,5+4 In vg,,

Hence applying the law of sines, see Fig. 18-13:

AInv 3 = (—cotays 4,y +CO0tagy, doyy,)+
+ (—cotaygy " A%yg7+cOtags,* dagsy) +

+ (—cotayyg- 4%y 35+ Cotozg, - dazg,)
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Fig. 18-13

Aoy y3 = Ary3—Ar,,, etc.

Suppose now:

1
cota ~ —
3

then we have:
1
All 55 z%(ﬂlz—ﬂn—ﬂn+2'ﬂ72‘_ﬂ78—é_’87+

+2:Arg; —Argy—Arsg+Ary,) +i(—Ary +4ry;,)
Supposing again non-correlated observations, with:

o,

Fc = O.I'

then we have:

S 12
I35, Iyp5" z<? + 2) o} = 60}

Ignoring {unjustly} the correlation between I1,;,, 53, ..., IIs¢, then analogous to
case a, we have:

1
ristrisT R (ﬁ + rl) (%‘ + _:> : 60'3
2nn

e. Measurement only of quasi-distances, hence of distance-measures with regional scale
factor {“trilateration”}, with « computed applying the cosine law in a triangle:

Al 3 =AIn i3 +iday,,

Aotyy5 = Aoty 57+ Aotqy5+ Aotg;s
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Hence via the law of cosines, see Fig. 18-13:

Aoy,3 =(cotay; A Inv,; —cote, ,-AInv,,)+
+ (cotoy g7 4 Invyg,—cCotags, Alnvgs,)+

+ (cotayzg-A1lnv,35—cotazg, A1nvag,)

Alnv,3=4Ins,;—41n s,,, etc.; Skj = Sk

Supposing again:
1

coto ~ —

3

then we have:

A,y = (— 410 s, +41n sy + ﬁ(—A Ins,+2-Alns;;=2-41ns5,+

+2:41lns;5—2-41In s5,+2-41n sg;—4 In s5,3)

Supposing again non-correlated observations, with:

then we have:

H123’ HIZST = (2'%+5'%).012ns = 6allzns

1,,,10,," ~ (i +7)- (factor) - 662

_ 1
-

; L
l

00
~

1

S

165

In trilateration the derivation of IT,;,IT,;;” is much more difficult because in this case
correlation can certainly not be ignored, as in case 4 has been done. Moreover the networks
in question are, compared with triangulation networks, built up according to a different
pattern with the object of obtaining a reasonable number of condition equations. This
makes the supposed order of magnitude of cot « also less real. Therefore a further elabora-
tion of formulae will not be given for the present, although in analogy with the other cases
we will continue, as reasonable suggestion, with:

In accordance with the supposition made in estimating the value of ¢, as described above,
the following substitution can be carried through:
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With this, the estimates of ¢, can be summarized as follows:

Lit+ 1\ Li— i\ 1 LY 2
¢y ~%(——m—) {1 —(m) } [COSCZ] —l— l-o

2
case a 02z<%+%ll.T)'2(012m+0r2)

rivis

2

2

case b o (6% +3?)

I T (18.3)

2

l 2
casec | o°x——0b +|3+3 -207
* lrilis

2
cased |o’w <%+% Tl—l—>-6a,2

case e o? ~ (factor)- 607, ,

In these formulae it appears that the term:

12
ST

ritis

is relatively small or negligible, while from the substitution {+ constant side length}:

o, ? o? < o >2
T O R = —
lrilis lrilis 12 \/lrilis

it appears that for bigger networks the influence of o2, becomes less.

From the here developed estimate for ¢, {hence in this form dependent on the S-system
chosen, as opposed to the estimate via the eigenvalue problem}, it might be possible to
trace some effects that show up when estimating via the eigenvalue problem.

Choosing base points r, s situated relatively far apart the dimensionless factors:

lri+ lis } -1 lrs 2
<—7-IT> [cosa]™",  resp. (T)

might indicate the influence of the shape, resp. the number of points, of the network.
The influence of an adjustment does not show up and is moreover difficult to give. But
this influence is described adequately by the factor (m—b)/m in the estimate from the eigen-
value problem.

Of importance is the factor:

Io?
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This factor suggests that, per case a—e, when scaling up or scaling down networks and main-
taining the ratio of, ,:02, the value of ¢, varies proportional to lo?. This has indeed been
confirmed numerically in estimating the value of ¢, from the eigenvalue problem. Relations
of ¢y-estimates in between the cases a—e cannot be shown in this simple way because for
this purpose the formulae developed are too coarse.

However these formulae do indicate that the estimates of ¢, via 4,, from the eigenvalue
problem will not vary very much as has been shown by numerical computations. This is
closely bound up with the course of the order of magnitude of standard deviations of observa-
tion variates in networks of different order. As an illustration may serve the following table
of standard deviations:

lrot , =lo62=1

Olas -
I[km] a' [107%rad] | o, [107%gr] | o,[cm]

r

C L (18.4)
0.1 |32 20 0.32
1 |10 6.4 1.0
40 016 1.0 6.4

1000 | 0.032 0.2 32

The o, for /~0.1 km does not correspond with the precision-specifications of the instru-
ments used in this case. That this is in practice not experienced as annoying might be due
to the in case ¢ mentioned decrease of the influence of of ; by the factor /%/l,,. Computa-
tions in test nets have confirmed this conclusion but naturally the theory behind it will be
more complicated.

Notes 2-8 to section 18

2. J. E.J. vaN ANGELEN — Onderzoek precisie van ideale driehoeksnetten — Manuscript. Computing Centre
of the Delft Geodetic Institute, Delft, Autumn 1972,

3. J. C. P. pE KruIF —~ The Adjustment of the Primary Triangulation of The Netherlands — Commission
Permanente Internationale des Triangulation Européennes, Publ. No. 7, Symposium Paris, 24-26
février 1969.

4. J. C. P, pE Krurr - Berekening van de eigenwaarden van het Nederlands driehoeksnet — Stencilled
report. Computing Centre of the Delft Geodetic Institute, Delft, September 1972.

5. J. C. P. pE Krurr - Internal report. Computing Centre of the Delft Geodetic Institute, Delft, Spring 1972.

6. J. C. P. pE Kruw — Onderzoek naar de invloed van de parameters van de criteriummatrix — Stencilled
Report R81. Computing Centre of the Delft Geodetic Institute, Delft, April 1971.

7. 'W. BEEKMAN — Het proefnet Meer en Beek - 3rd ed. revised by J. E. J. vAN ANGELEN, J. C. P. bE KRUIF
and J. vAN MIerLO. Stencilled Report R76D. Computing Centre of the Delft Geodetic Institute, Delft,
January 1973.

8. P. MEissL ~ A theoretical random-error propagation model for weakly constrained angular networks —
Bulletin géodésique, No. 106, déc. 1972, pp. 431452 and references mentioned.
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