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I N T R O D U C T I O N  A N D  S U M M A R Y  

The methods for testing circles applied up to now can be arranged in two groups. The first 
group consists of the methods which have the object to determine the deviations in a 
limited number of specified graduation lines, evenly spaced on the circle. Originally these 
methods were applied to circles before they were mounted, but recently modifications of 
the observational programmes have also been used to test circles already built-in [2], [3], [4]. 
In the programme developed by BRUNS [l,  p. 2211 a specified number of standard angles is 
measured. The magnitude of these angles is taken equal to a multiple of the interval be- 
tween the graduation lines to be investigated. The design of the programme is such, that 
equal precision is obtained in the deviations of all these graduation lines. The above testing 
methods are possibly useful when the theodolite is used for technical projects where often 
angles of a specified magnitude must be set out. They loose, however, much of their effi- 
ciency if the quality of the graduation as a whole must be reviewed. The methods developed 
for that purpose, and to which the name of HEUVELINK is closely connected, are classed 
under the second group. The methods of this second group are based on the assumption 
that the actual deviation in the graduation lines can be considered as a combination of a 
regular periodic- and a random component. 

The determination of this regular part by means of a Fourier series is an essential part of 
them. The original observational programme after HEUVELINK [5] is more than once supple- 
mented or completely replaced by other programmes and the statistical interpretation of the 
results has also changed in the course of years. 

HEUVELINK restricted himself to the determination of the first three periods by using one 
standard angle. In [6] WERMANN demonstrated that more standard angles should be ob- 
served when the investigation is aimed at the determination of more periods. 

WIERSMA [7] suggested the use of two standard angles and advised to  realize these two 
angles by three collimators and to combine the observations of the three directions into 
one set instead of observing independently the three possible angles. WIERSMA, like most 
authors on this subject, applied the Fourier series in its asymmetrical form, i.e. with phase 
angles. The introduction of these phase angles leads however to non-linear model relations. 

The mathematical and statistical elaboration then looses its elegance and becomes quite 
complex. That was the main reason that little attention was paid to  WIERSMA'S suggestions 
until ROELOFS published his "bundle of rays" method [g]. This method, where four direc- 
tions are combined into one set, has successfully been applied. According to HUSTI [9] the 
results are very promising. 

After this fundamental new approach by ROELOFS, it seemed attractive to extend the 
number of four standard directions to an arbitrary number of m standard directions and to 
compare the Schreiber and Bessel method of direction measurement. In the Schreiber 
method all possible combinations of two directions, which cannot be supplemented to a full 
round, are observed independently whereas in the Bessel method all directions ale observed 
in one set. By posing the problein of circle testing in this way it can easily be seen that in 
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fact there are no essential differences between the design and the elaboration of a testing 
programme and a normal field programme. The difference only appears in the objective of 
these programmes. In the former case one is interested in the parameters which describe the 
deviations in the circle graduation whereas the mean directions are of no importance, in the 
latter case it is just the other way round as least square estimations of the directions are the 
only thing wanted. 

The computational elaboration in a model that includes the parameters representing the 
regular deviation in the circle graduation, is rather unwieldy and can hardly be executed on 
a desk calculating-machine. That is the main reason why up to now the field measurements 
have always been adjusted on a simplified model that does not take into account the regular 
deviation of the graduation. Another reason is that least square estimates of the directions 
are the same for both models so there is no need to bother about the determination of the 
parameters representing this regular deviation. A less favourable implication, however, of 
the use of such a simplified model is that the estimate of the variance factor, being the 
variance of the observational variate with unit weight, looses its value as a measure of 
precision. In the case large values for the variance factor are found, the observer might be 
tempted to pass an unfavourable judgement on the theodolite, whereas it is possible that 
such large values are caused by the occurrence of a large regular deviation of the graduated 
circle that had been left out of consideration. This implication and the analogy between 
normal field programmes and special circle testing programmes have led to the development 
of ALGOL programmes for the Bessel and Schreiber method in such a way that these pro- 
grammes can be used for both purposes. 

The use of a general procedure developed at the Computing Centre of the Geodetic 
Institute of the Delft University of Technology for the elaboration of the 2nd standard 
problem of the adjustment theory (the method of observation equations), was considered 
first. On closer examination, however, it appeared that the non-diagonal elements of the 
inverse matrix of coefficients of the normal equations (gaB) - the algorithm and notation as 
given by BAARDA [l01 are used throughout this publication - are zero whereas simple 
analytic expressions could be derived for the diagonal elements. 

As also for the vector of reciprocal unknown variates (yB) simple analytic expressions 
could be found, it was obvious to write a special ALGOL programme based on these prop- 
erties. The simple form of the matrices (gaB) and (yB )is due to the orthogonality relations 
that exist between the trigonometric functions. The derivation of some of these relations 
is given in section I .  

In the sections 2 and 3 the adjustment of the Bessel and Schreiber programmes is dealt 
with in extenso. The results can be summarized as follows. Let m directions r[i] be observed 
in n circle positions. Let r be the circle reading, 2711~ the period of the trigonometric func- 
tions and a[], p] and a[2,p] the amplitudes arranged in two one-dimensional arrays. The 
regular part Rr of the deviation in the graduation lines is then given by the Fourier series: 

For the Bessel and Schreiber method the following weight coefficients are obtained respec- 
tively : 
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Breithaupt circle testing device alier R o t ~ o ~ s  
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For the direction r[i]: 

1 2 
- and - 
n mn 

and for the parameters a [I,p], a [2,p] 

and : 
1 m - l  m  - 1 

- n ( X j = i + l  X sin2tp(r[jl - r[il)) 

The ratio of these weight coefficients is m/2 and the time needed for a Schreiber programme 
is (m- l) times the time needed for a Bessel programme. These facts demonstrate the effi- 
ciency of the Bessel programme for m > 2, although it should be remembered that such a 
programme is not always feasible, neither in the field nor in a laboratory (cf. the mechanical 
test method with the Askania apparatus [l I I). 

For m = 2 there is no difference between the Bessel and Schreiber method. A circle testing 
programme carried out on two directions therefore can be elaborated with both computa- 
tional programmes. 

In section 4 some remarks are made especially referring to the aspect of circle testing 
whereas in section 5 the ALGOL programmes for the elaboration of the Bessel and Schreiber 
method with directives for their use are given. 

Tn the latter section also a few examples are worked out to elucidate the theory. The 
worked-out examples refer to laboratory tests. A comparitive investigation of a number of 
primary theodolites, based on extensive trial measurements in the field, will be carried out 
in the near future. 



1. S O M E  O R T H O G O N A L I T Y  RELATIONS O F  T H E  
T R I G O N O M E T R I C  F U N C T I O N S  S I N p 4 ,  COS q4 

For all integers p and q and provided that both p and q are not zero, the following relations 
hold : 

2 a 2 n 2 a 

j cos p 4  cos q 4  d 4  = f j cos(p + q)4 d 4  + f j cos(p - q)4 d 4  = 0, n 
0 0 0 1 

where the value n is taken for p = q. 
Because of these properties the system of trigonometric functions sin p4, cos q4  is called 

orthogonal in the interval 2n. Similar relations exist for finite sums if the arguments for the 
trigonometric functions are equally distributed over the interval 271. 

From De Moivre's relations : 

COS p4  1 1 eiP4 
(Sin P4) = ' (-i i)(e-ipb) 

follows : 

n= l 

n 
J L 

\n= l J 
Let us consider: 

in which m may be any integer. As the individual terms in this sum form a geometric 
progression, their sum is : 
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The value n is taken only if m is a multiple of n. In that case both nominator and denomina- 
tor are zero and the sum is n because the terms of the series are all equal to one. In all other 
cases only the nominator is zero, which means that the value of the sum is zero. Conse- 
quently, substituting ( 3 )  in (2) the following table can be constructed. 

n 2n . 2n E sin p(n - 1) - sln q(n - 1) - = 
n =  l n 

l 

From the last two columns it is apparent that not all sums of products of trigonometric 
functions with different values for p and q  are zero, for instance for the combination: 
n = 10,p = 7, q  = 3. 

However, limiting the range for p, q  to all positive integers less than 4 2 ,  the last two 
columns can be left out of consideration. whereas from the first two columns follows : 

n 2n 2n E cos p(n - 1) - cos q(n - 1) - 
n = l  n 
n 

0 for p # q  

2n 2n E sin p(n - 1) - sin q(n - 1) - n/2 for p  = q  
n =  l n n 

The relations ( 5 )  for a finite summation are similar to the relations (1) for an integral. 
Let: 

be three sets of n arguments equally distributed over the interval 2n. The first arguments in 
the sets are indicated by: 

r[l,a], r[l ,b] and r[l ,c] 
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Again limiting the range for p, q to all positive integers less than n/2, the following 
relations can now successively be derived. The last values on the right hand side of the 
equations refer to p = q. 

n n C sinpr [n,a] cosqr [n,b] = 0,-sinp(r [l ,a] - r [l, b]) 
n =  1 2 I 

n 

C cos pr [n, a] cos qr [n, b] 
n =  l 

n l n 
= 0,-cosp(r[l ,a] - r[1, b]) 

2 - C sin pr [n, a] sin qr [n, b] 
n =  l 

n 

C (COS pr [n, a] -cos pr [n, c]) (cos qr [n, b) - cos qr [n, c]) 
n =  l 

n I - - E (sin pr  [n, a] - sin pr [n, c]) (sin q r [n, b] - sin q r [n, c]) 
n =  l 

(6)  

= 0, n(sin2fP (r [l, a] - r [l ,  c]) + sin2ip (r  [l, b] - r [l, c]) - sin2tp (r  [l ,  a] - r [l, bl)} 

n 

C (sin pr [n, a] - sin pr [n, c])(cos qr [n, b] -cos qr [n, c]) = 0 
n =  l 

(8) 

and finally: 

n 

(COS pr  [n, a] -cos pr  [n, b])2 
n =  l 

n I = 0, 2n(sin2ip(r [l ,  a] - r [l ,  b])} (9) 
C (sin pr [n, a] -sin pr  [n, b])2 
n =  l 



2  T H E  A D J U S T M E N T  O F  A BESSEL P R O G R A M M E  

In this paper a particular direction, set or programme is indicated by a running index given 
in italic type whereas the same letter is used in bold type when indicating the uppef limit 
of the range of the running index in question. 

Thus : 
S = l ,  ..., S 

n  = l ,  ..., n 
nl  = l ,  ..., n l  
n2 = 1, ..., n2 
i , j  = 1, ..., m 

In the elaboration of the adjustment use will be made of the notation and algorithm as 
given by BAARDA in [10]. 

Suppose that m directions have been observed in a number of circle positions regularly 
distributed over 27112, where z takes the values 1 or 2,  depending on whether a single or 
diametrical circle reading device has been fitted into the theodolite. 

Suppose that the whole observational programme is divided into S partial programmes 
and let each partial programme consist of n circle positions. The total number of circle 
positions thus amounts to sn. The introduction of partial programmes is necessary to eli- 
minate the collimation- and azimuth error (in case of field measurements) or to avoid 
observational programmes that last too long (in case of special circle testing measurements). 

A programme for testing circles is usually designed in such a way that each partial pro- 
gramme itself can be considered as a complete circle testing programme. That means that 
the following sequence of circle positions is used: 

n - l  271 
c [ s , n ]  = c [ s , l ]  +--- 

n z 

hence : 

c [ s , n ]  = c [ l , l ]  + n - l  +- - ( " l ) : :  

A field programme usually has the following sequence of circle positions: 

n - l  271 
c [ s , n ]  = c [ s , l ]  +-.- 

s . n  z 
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hence : 

It should be noted that the algorithm as will be given in this section can only be applied 
to the first mentioned programme. The second programme results in a matrix (gaP) with 
no zero elements. Therefore the first programme is also recommended for the measurements 
in the field which means only a slight modification of the usual observational programme. 

In circle testing programmes, in contrast with the field measurements, all directions are 
more than once observed in each circle position. Such an increase of the number of obser- 
vations in each circle position is not only needed to obtain a higher precision in the para- 
meters to be determined but also to give the observer the possibility to verify the stability of 
the bundle of rays during the observational period. Consequently in each circle position 
the bundle of rays is observed in clockwise and anticlockwise order. The number of sets 
that are observed immediately after each other, need not necessarily be limited to two. Let 
the total number of sets be denoted by nl.  After the bundle of rays is observed in all circle 
positions, the observational programme thus obtained, is repeated in the reversed order 
of these circle positions. The total number of repetitions, denoted by n2, need not neces- 
sarily be two. 

The design of the above sketched observational programme enables the observer to 
divide the adjustment into three phases. The first two phases refer to the averaging of the 
different observations in the same circle position whereas in the third phase the relation 
between these means and the circle positions is analysed. It will be clear that this last phase 
covers the whole adjustment if the observational programme concerns the usual field 
measurement. 

Let a single observation of direction i, in the partial programme S, observed in the circle 
position n, in the sets with indices nl and n2 be denoted by: 

r [S, n, n2, nl, i] 

In the system of weights this observation is given unit weight whereas the variance factor aZ 
is introduced as an unknown. 

The angles that are obtained when all directions are referred to the first direction, are 
denoted by: 

The addition of a suffix to the kernel I serves to distinguish the angle in the different phases 
of the adjustment. 

For shortness sake the indices between the brackets will be omitted henceforth when no 
loss of clarity is to be feared. 

The following three phases in the adjustment problem can be distinguished. 
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Phase I 

If n l  > 1, the number of correction equations, according to the 2nd standard problem, that 
can be formed in a first phase is s .n.nl .n2.(m- l). These equations - written in the variates, 
hence with an underscore - are: 

The matrix of weight coefficients (g 'j) of the observation variates 14 is composed of S. n n2 - n l  
- 

submatrices (gii),, which are connected along the principal diagonal. These submatrices of 
rank (m- l )  have the elements 2 resp. 1 for i = j resp. i # j ( i , j  = 2, . . ., m) 

The submatrices (gji), of the matrix of weights have the elements (m- l)/m and -(l/m) 
for i = j and i # j respectively. 

According to the algorithm of the 2nd standard problem: 

the shifting variate becomes: 

m - l  m 2 m - 1 m  

E' = - - m i=2 ( [ ] - 4 [ ] ) 2 - . . .  - - i = 2  j = i + l  1 ( 1 3 [ i ] - l 4 [ i ] ) ( l 3 [ j ] - l 4 [ j ] )  - - - - 

and the number of redundant observations: 

b1 = s.n.n2.(nl- 1) (m- 1) 

Phase I1 

If n2 > 1, the number of correction equations, according to the 2nd standard problem, that 
can be formed in a second phase is s .n .  n2 .(m - 1). 

These equations are: 

with the matrix of weight coefficients of the observation variates 13: (gap.'). - 
The following formulas are found: 

1  ,, m - l  m 2 m - l  m 

- . E  = -E ... E ( 12[i] - 13[i])2 - - E ... C ( 12[i] - 13[i])(12[j] - 13[j]) n l  - m  l = 2  - m i = 2  i = i + l  - 
- - 

b" = s.n(n2- 1) (m- 1) 
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The test on the stability of the directions is executed by computing a value of the statistic: 

(8")" F b ~ , b ~  = - AI 2 E' E" 
with: ( g )  = = and (an)2 = I 

(d')" b1 b11 ' 

and using the right-hand tail critical region of this Fisher distribution with a careful choice 
of the significance level a [10, p. 161. 

Phase 111 

Assuming that the departure of the actual circle graduation from an idealized one can be 
described by the Fourier series : 

R(r) = C a [l, zp] cos zpr + a [2, zp] sin zpr 
- - 

the following number of s.n.(m- l )  condition equations according to the 2nd standard 
problem can be formed: 

12 [S, n, i ,  11 +c2 [S, n, i, 11 = 11 [S, i, l] +C a [l ,  zp]{cos zpr [S, n, i l  -coszpr [S, n, 111 + - - - 

+ C a [2, zp]{sin zpr [S, n, i] -sin zpr [S, n, l]} - 

with the matrix of weight coefficients of the observation variates 12: (ijUB.") - 
and i = 2, . . ., m 

p = l ,  ..., p 

The coefficients of _a [l ,  zp] and _a [2,zp] may be regarded as non-stochastic. 
The elaboration of the adjustment is given in the diagrams shown on pp. 16-20. In 

these diagrams the non-essential quantity z has been omitted. 





Matrix (a,') 

, . , . , . , . I / , . : .  
, . , . : :  

1 : :  
j j , . , . . . , . , , 1 cosr[l,1,2] -cosr[1,1,1] i cospr[l , l ,2]  -cosr[1,1,1] . . j j . , . . : :  

. , 
, . . , 
, . 

. , 
, . 1 i j  . , 

: :  . . . , . . . , / cosr[ l , l , i ]  - c o s r [ l , l , l ]  i i cospr[ l , l , i ]  - c o s r [ l , l , l ]  
j j . . , , 

. , 
, , . . , . . , 
, , . . . , 

l i  I . . . . . . . . . . . . 1 c o s r [ l , l , m ] - c o s r [ l , l , l ]  i , i , cospr[l,l ,m]-cosr[l, l , l:  j  : . . , , , , . , 
........................................................................................................................................................................................................................................................................ . , . . . . . . : :  : i 

. . . . . . i j j  j 

. . . . . . j j . . j  i . . . . . , , . 
, , i j 

j i 
. , . , . , j ; j  j . , . , . . . , i i . , , , j  j 
, , , , i i 
, , , . i j : i ........................................................................................................................................................................................................................................................................ 
, . , . . . , :  . . . . . . . . j  j . . . . . . 
j  : l  . ! 

j  j j cos r[s,n,2] - cos r[s,n, l ]  . i i . cospr[s,n,2] - cospr[s,n, l . . : ; 
. . . , i [ . . 

: ; . . . . . , 

j j  
, , . . 1 j j  
, . : j 

i cos r [S,  n, i ]  - cos r [S,  n, l ]  I . j . cospr [S,  n, i ]  - cospr [s,n, l 
: :  . . 
, . i j 

. . 
, . . . . . . . , . 
: :  . . . . . . 1 :  i j COS r[s,n,m] - cos r[s,n, l ]  ; ; cospr[s,n, m] - cospr[s,n, l 
: :  i , . . . , , . , 

....................................................................................................................................................................................................................................................................... , . 
. . 
, . , . , . , , 

, . , . j :  
, . , . , , 
, . , , 
, . , , 
, . , , 

, . , , , . i j  
, , , , , . , . i j 
, . . . . , 

: j 
. . . , . , 

; j 
. . . . . , . , i i 

.......................................................................................................................................................................................................... . . . . . , , , . . , , . , 
, , . , . , 

j  i l  
: :  

j cos r [s,n,2] - cos r [s,n, l ]  i . i . cospr [s,n,2] - cospr [s,n, l 
: :  . . , . 
: :  . . . . 
j j 

. . 
: :  : :  1 j cos r[s,n,i] - cos r[s,n, l ]  j I cospr[s,n,i] - cospr[s,n, l 
, . . , . . . , 
, . , , . . . , 
, . . , . , 

: :  : :  : ; 1 1 cos r [ S ,  n,m] - cos r [S ,  n, l ]  j ; cos pr [ S ,  n, m] - cospr [s,n, 1 
. . . . . . . . 

1 the matrix can be divided in S - n  submatrices 
Matrix - 

n l . n f  the submatrix with running indices s,n is given below. 

m - l  

1 ". - sinr[s ,n, l]  -- 1 ( s inr[s ,n , i ]  - s inr[s ,n , l ] )  
m i = 2  

1 " 
os pr [ S ,  n, 21 - cospr [ S ,  n, l ]  -- 1 (cospr [ S ,  n, i] - cos pr [ S ,  n, l ] )  

m i = 2  

1 " 
sinpr [ S ,  n, 21 - sin pr [ S ,  n, l ]  -- ( sin pr [ S ,  n, i] - sinpr [ S ,  n, l ] )  i 

m 

1 "  os pr [ S ,  n, 21 - cos pr [ S ,  n, l ]  - - 1 (cos pr [ S ,  n, i]  - cos pr [ S ,  n, 11) [ 
m i = 2  

1 "  
sin pr [ S ,  n, 21 - sin pr [ S ,  n, l ]  - - 1 (sin pr [ S ,  n, i] - sin pr [ S ,  n, 1.1) 

m i=2  

/COS r [ S ,  n, i] - cos r [ S ,  n, l ]  - A C 
m i = 2  

1 m 
jsinr[s, n, i]  - sinr [ S ,  n, 11 - - C 

m i = 2  

1 
j sin pr [ S ,  n, i] - sin pr [ S ,  n, l ]  - - 

m i  

1 
!cos pr [ S ,  n, i] - cos pr [ S ,  n, l ]  - - 

m i  

1 I sin pr [ S ,  n, i]  - sin pr [ S ,  n, l ]  - - 
m i 



~ p r  [S, n, l] [ sin pr [S ,  n, 21 - sin pr [S ,  n, l] 

~ p r [ s ,  n, l] sin pr [S ,  n, i] - sin pr [S ,  n, l] 

~pr[s,n, l] j sin pr [S ,  n, m] - sin pr [s,n, l]  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

sin pr [S ,  n, 21 - sin pr [S ,  n, I ] 

sin pr [S ,  n, i] - sin pr [S ,  n, I ] 

sin pr [S ,  n, m] - sin pr [S ,  n, I ]  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

~ p r  [S ,  n, l]  j sin pr [ S ,  n, 21 - sin pr [ S ,  n, l]  

~ p r  [s,n, l]  sin pr [ S ,  n, i] - sinpr [ S ,  n, l]  

~ p r  [S ,  U ,  l]  j sin pr [ S ,  n, m] - sin pr [ S ,  U ,  l]  

sin pr [ S ,  n, 21 - sin pr [ S ,  n, l ] 

sin pr [ S ,  n, i] - sin pr [ S ,  n, l]  

sin pr [ S ,  n, m] - sin pr [S ,  n, l]  

1 - - 
m 

m - l  

1 m 
- - L (COS r [ S ,  n ,  i] - cos r [ S ,  n ,  l]) 

m i = 2  

1 m 
- - L (sin r [ S ,  n ,  i] - sin r [ S ,  n ,  l]) 

m i = 2  

1 m 
l] - - C (cos pr [ S ,  n, i] - cos pr [ S ,  n ,  l]) 

m i = 2  

l -- 

l] - - C ( sin pr [ S ,  n, i] - sin pr [ S ,  n ,  l]) 
m i = 2  

1 
l] - - C (cos pr [ S ,  n ,  i] - cos pr [ S ,  n ,  l] 

m i = 2  

l] - L C ( sin pr [ S ,  n ,  i] - sin pr [ S ,  n ,  l]) 
m i = 2  

i -- 
m 

m - l  

1 
:COS r [ S ,  n ,  m] - cos r [ S ,  n ,  l]  - - C (cos r [ S ,  n ,  i] - cos r [ S ,  n ,  l]) 

m i = 2  

1 ; sin r [ S ,  n ,  m] - sin r. [ S ,  n ,  l] - - C ( sin r [ S ,  n ,  i] - sin r [ S ,  n ,  l]) 
m i = 2  

1 " 
!cos pr [ S ,  n ,  m] - cos pr [ S ,  11 ,  l] - - C (cos pr [ S ,  n ,  i] - cos Pr [ S ,  n ,  11 

m i = 2  

1 
sin pr [ S ,  n ,  m] - sin pr [ S ,  n, I ]  - - ( sin pr [ S ,  n, iI - sin Pr [ S ,  n, 11 

m i = 2  

1 m 
icos pr [ S ,  n, m] - cos pr [ S ,  n ,  l.] - - C (cos pr [ S ,  n ,  i] - cos Pr [ S ,  n ,  11 

m i = 2  

1 i sin pr [ S ,  n, m] - sin pr [ S ,  n ,  I ]  - - C ( sin pr [ S ,  n, i] - sin pr [ S ,  n, l] 
m i = 2  
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Matrix n l  .n2 (gnP.  'I) 
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1 
Matrix ---- (gs.. ,,) 

n l  .n2 

m - l  1  1  -- -- . . . 1 -- 
m  m  m  m  

1  m - l  1 -- ... l - - 
m  m  m  m 

1  1  m-1 1  - - - - . . . 
m  m  m  m  

1 1 1  m - l  - - - - - . . . 
m  m  m  m  

0 

0 

0 

1 

0 

m - l  1 1  - -- -- . . . 1  - - 
m  m  m  m  

1  m - l  1 -- -- . . . 1 -- 
m m  m  m  

1 1  m - l  . . . l -- -- -- 
m  m  m  m  

1 1 1 m - l  -- -- 
-K m  

. . . 
m  m  
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A further explanation of some of the diagrams is given below. As to the matrix (gsa.,,,) it 
can easily be seen that for p less 1112, the non-diagonal elements of the (2p,2p) submatrix 
are zero, as these elements are summations of products of the form as given in (7) for 
p # 4 or as given in (8). 

From the general expression (gsa) = (a;)' (aji) (a,') it follows that the elements on the 
principal diagonal of the (2p, 2p) submatrix of matrix (l/nl en2) (gaa. I,I) are, for p = 1, . . ., p: 

m 

C ... C (cos zpr [S, n, i] - cos zpr [S, n, l])'+ 
i = 2  

1 m 

- -C .. . C (COS zpr [S, n, i] - cos zpr [S, n, l]) cos zpr [S, n, i] - CoSzPr [S, n, 11 
m  i = 2  i = 2  

and : 

m 

C ... C (sin zpr [S, n, i] - sinzpr [S, n, l])'+ 
i = 2  

1 m 

- -C ... C (sin zpr [S, n, i] - sin zpr [S, n, l]) sin zpr [S, n, i] - sin zpr [S, n, 11 
m  i = 2  i = 2  

Let us focus the attention to the first expression. This expression can successively be written 
as : 

m m - l  C . . . C (cos zpr [S, n, i] - cos zpr [S, n, 11)' + 
m  i = 2  

2 m - 1  m 

- -C . . . C C (cos zpr [S, n, i] - cos zpr [S, n, l]) (cos zpr [S, n,j] - cos zpr [S, n, 11) 
m  i = 2  j = i + l  

Carrying out first the summation over n using (7) and (9) : 

m m - l  
- 2n C C sin2+zp(r [ S ,  1, i] - r [S, 1, l]) t 

m  i = 2  

- sin2+zp (r [S, l ,  j] - r [S, 1, i]) 1 
which equals : 
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The elaboration of the second expression gives the same results so that the (2p,2p) sub- 
matrix of (gau. 111) consists of non-diagonal elements zero and diagonal elements: 

2s-n .n l .n2  "-l I m  f sin2+zp(r [ j ]  - r [ i ] )  
i = 1  j = i + l  

This general analytic expression for the inverse of the weight coefficients of the parameters 
of the periodic part of the deviation in the graduation lines proved to be the key to simple 
computational programmes for the Bessel and Schreiber method of direction measurement. 

As to the vector (y,. l,,) it must be stressed that the first s(m - 1) elements of (y,. ,,,) need not 
be computed separately because from the general relation: 

immediately follows that the first s(m- 1 )  elements of (yu 'ul)  are equal to: 

which means a simple averaging of the observations of each angle in the n circle positions 
in each set S. 

The general expression given in the diagram for the last 2p elements of the vector (y,. - ,,,), 
denoted by y, . ,,, [ l ,  zp] and y, . ,,, [2, zp], indicating that they refer to the unknown variates 
_a [l ,zp] and _a [2,zp],.are transformed in the following general expressions which are more 
suitable for the elaboration with a computer. 

With c [S, n]  = r [S, n, l ] ,  the following relations, given in matrix form, hold : 

cos zpr [S ,  n, i ]  - cos zpr [S,  n, l ]  ss[s,n,p,i, I ]  sc[s,n,p,i,l] 

sin zpr [s,n, i ]  - sin zpr [s,n, l ]  -sc[s,n,p,i,l] ss[s,n,p,i,l] 

with : 
ss [S, n,p, i, l ] = sin Jzp (r [S, n, i ]  - r [S, n, 1 I )  sin 3zp (r [S, n, i] - r [S,  n, 1 I )  
sc [S, n,p, i, 1 ] = sin +zp (r [S, n, i ]  - r [S,  n, l I )  cos Jzp (r [S,  n, i] - r [S ,  n, 1 I )  

In these last two expressions the directions need only to be given in tenth of a degree, hence: 

r [S, n, i ]  - r [S,  n,  l ] G r [i] - r [l ] 
and : 

ss [S, n,p, i, 1 ] G ss [p,  i, 1 ] 

From the diagram for (y,. ,,,) it follows that: 
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and : 

l 
-Ya.III [2, ZP] = + 2  C .. . C sc [p, i, l] cos zpc [S, n] 12 [S, n, i, l] nl.112 i = 2  - 

m 

-L(:  sc [p, i ,  l]) ... E COS zpc [S, n] - 12 [S, n, i, 11 
m i = 2  i = 2  - 

The shifting variate becomes : 

2 m - l  m 

--C... C C (ll[s,i,1]-/2[s,n,i,1])(11[s,j,1]-12[s,n,j,1]) 
m i = 2  j = i + t  - - - 

2ns P 
m - l  m 

- -- ((. [ l ,  zp]2 +Q [2, z p 1 2 ~  sin2+zp ( r  01 - r  PI)) 
m , = l  ;= l  j = i + l  

and the number of redundant observations: 

The estimate of the variance factor in the third phase includes, besides the effect of pointing 
and reading, the random effect of the deviation in the graduation lines and thus depends on 
the degree of approximation p of the Fourier series. Consequently it should be borne in 
mind that this estimate cannot simply be compared with the estimation in the first two phases 
by computing a value for the statistic FbI,bIII or _Fb~I ,bIII .  The question as to the total number 
of periods p that should be determined is touched upon in section 4. 

Finally the following remark can be made. When taking the mean of all sets: 
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it follows from the inverse of ( g p . , , , )  (see page 19), that the variates l [i, l ]  correlate: 

2 
l [ i ,  l ] ,  l [l, l ]  = for i = j and l for i + j 

n-nl.112-S n.nl.n2.s 

Although a horizontal direction variate cannot be obtained by means of an experiment 
[10, p. 45,461 the probability distribution of the angles 1 [i, l ]  may be described by the prob- 
ability distribution of theoretically defined direction variates r [i] which appear to be non- 
correlating. With ! [i, l ]  = r [i] - r [ I  ] ,  the (m - l )  variates 1 [i, l ]  are substituted by m variates 
r [i]. The probability distribution of one of these latter variates is arbitrary. 

When taking: 

1 
r [ l l ,  r [ l I  = 

n-nl-n2.s 

r [ l ] , r [ i ]  = O  for i = 2 ,  ..., m 

and the sample value r [ l ]  = 0,  the following information is obtained: 

r [ l ]  = 0 

r [ i ] = l [ i , l ]  for i = 2 ,  ..., m 
and : 

l 1 for i = j 
r [ i ] ,  r [ j ]  = 6;. with 6: = 

n.nl.n2.s 0 for i # j 



3 T H E  A D J U S T M E N T  O F  A S C H R E I B E R  P R O G R A M M E  

According to the Schreiber method all possible combinations of two directions which can 
not be suppplemented to a full round, are observed. 

Let m be the number of directions, then combinations or angles are possible. Let 

these anglg be arranged in the usual sequence (1,2), (1,3), . . ., ( l ,  m), (2,3), (2,4), . . ., (2, m), 
. . ., (i ,  j), . . . (m - l ,  m), then the sequence number of the angle (i, j) is 

Let each angle be observed in s positions of the telescope, in order to eliminate the collima- 
tion error, and let each telescope position include n circle positions. The sn circle positions 
for each angle (i, j) are equally distributed over 2n/z where z takes the values 1 or 2 depending 
on whether a single point or diametrical reading device has been fitted into the instrument. 

For the angle (i ,  j) with sequence number k these circle positions, denoted by c [s,n, k], are 
usually taken as follows: 

k - l  27l 
c [ l , l , k ]  = c [ l , I , l ]  +P*- 

thus with : 

For the adjustment the following matrix of weight coefficients is introduced: 

r [S, n, i], r [S, n,jl  = 6: 

with the unknown variance factor a'. 
The transfer from directions to angles can be represented by: 

with : 

12[s,n,i,j], 12[s,n,k,l] = 6i61.2 
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and : 
S = l ,  ..., S 
n = l ,  ..., n 
i = l ,  ..., m-l 
j = i + l ,  ..., m 

C) In a first phase sn correction equations, according to the 2nd standard problem, can 

be formed with (I;) S unknown variates 11 [S, i, j] and 2p unknown variates _a [l, zp], _a 12, zp] : - 

P 

12 [S, n, i, jl + c2 [S, n, i, j] = 11 [S, i, j] + C _a [l, zp] (cos zpr [S, n , j l  - cos Z P ~  [S, n, ill + - - p =  l 

+ 2 _a [2, zp] (sin zpr [S, n, j] - sill zpr [S, n, i]) 
p =  l 

As to the unknown variates 11 [S, i, j], it can easily be seen that the adjustment is reduced to 

a simple averaging of the observations of each angle viz. : 

1 
11 [S, i, j] = - C 12 [S, n, i, j] 

n - 
with : 

2 
11 [S, i, j], 11 [S, k, l] = 6;61ei 

As to the unknown variates _a [l, zp], _a [2, zp], expressions for ys [l, zp], ys [2, zp] and gsa [l, zp] 
gsa[2,zp], denoting the elements of (ys) and the diagonal elements of (gsa), can easily be 
found from the corresponding expressions obtained for the Bessel method. 

The contribution of the observations of the angle (i, j)  to the above mentioned elements of 
(ls) is found by substituting 1 = i, i = j, m = 2 and nl = n2 = 1 in the expressions for 
(ys) of the Bessel method, see (l l). 

The elements of - ys are found after summation over i and j: 

m - l  m  

ys [l, zp] = C .. . C C - ss [zp, i, j] cos zpc [S, n, k] 12 [S, n, i,j] 
i = 1  j = i + l  1 

- sc [zp, i ,  j] sin zpc [S, n, k] 12 [S, n, i, j] - 
m - l  m  

ys [2, zp] = C .. . C C + sc [zp, i, j] cos zpc [S, n, k] . 12 [S, n, i, j] 
i = 1  j = i + l  I 

- ss [zp, i, j] sinzpc [S, n, k] . 12 [S, n, i, j] 1 - 

Substituting in the expression for (gsa) of the Bessel method in (10): m = 2, nl = n2 = 1 
and summing over i and j gives for the diagonal elements of (gsa): 

m - l  m  

Spa [l, ZPI = gsa [2, ZP] = sn C C sin2Szp (r [j] - r [ill 
i = 2  j = i + l  
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Least square estimates of the unknown variates _a [l,zp], _a [2, zp] are found from: 

If the adjustment in the first phase has been carried out without taking into consideration 
a periodical deviation in the circle graduation, which means p = 0, the shifting variate 
becomes : 

m - l  m 

with: 

If p periods have been taken into account this value should be decreased by (2,)' (gaB) (yB), 
thus (see [10], p. 9): 

E'(P) = E'(0) - ( y,).(gaB)(yp) - 
and : 

b'(p) = bl(0) - 2 p 

Before carrying out the second phase of the adjustment, means are taken of the angles (i, j )  
as obtained in the s face positions 

l 
l [i, j] = - X 11 [S, i, j] with: - S - 

2 
1 [i, j], l [k, l] = 6${ 

In a second phase condition equations according to the 2nd standard problem can be (3 
formed with (m - I )  unknown variates N [ l ,  j] with j = 2, . . ., m 

- 

observation variates I[i, j] unknown variates I1 [l, j] - 
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In order to give the algorithm in a generalized form, fictitious observations N[1, l ]  = 0, 
l[j,i] = -l[i,j] and I[i,i] = 0 are introduced. These ,,observations" may be interpreted as 
sample values of observational variates which need no further definition. 

A general expression can now be given for the correction equations: 

l[i,j]+~[i,.j] = ll[l,j]-ll[l,i] 
with : 

i = l ,  ..., m-l  

Applying the algorithm of the 2nd standard problem the following expressions are found: 

ns m 
yp[j-l] = -C -l [i,j], for j = 2, ..., m 

2 ,,, 
for a = p 

Ss. = 

for a # p 

for a = fl 
yQB = 

for a # fl 
mns 

and : I: 1 "  

yQ[j-l] =11[l,j] - =-C( l [ l , i ] - l [ j , i ] ) ,  for j = 2  ,..., m 
m i E 1  - - 

The above expressions can be verified for m = 5 with the example in [l ,  p. 3021. 
The shifting variate in the 2nd phase becomes: 

with : 
m-l  

6" = ( ) 
From (aQa), which elements are 2.2/nsm for a = and 2/nsm for a # P, it follows that the 
quantities Il[l,j], with j = 2, . ..., m, are correlating. 

- 

When introducing (see the reasoning in section 2): 

ll[l,j] = r[j]-r[l] - 
with: 

l 
r[l], r[1] = - and r[l], r[j]  = 0 

nsm 
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and taking the sample value r [ l ]  = 0, it follows that: 

1 
r [ i ] ,  r [j] = df - 

nsm 

which means that the probability distribution of l1 [l, j] may be substituted by the probability 
distribution of the non-correlating direction variates _r[i]. 

In order to obtain equal precision for the directions in different stations, nsm is made 
constant for the whole network. 



4 S O M E  S P E C I A L  R E F E R E N C E S  T O  C I R C L E  T E S T I N G  

a. As to the relation between the weight coefficients of _a [l, zp], _a [2, zp] and the function Rr 
on the one hand and the directions of the bundle of rays on the other hand, the following 

remark can be made. 
The formulas for the weight coefficients: 

" C-' - 1 

a p ,  zp], a [l ,  zp] = a p ,  zpl, a 12, z p l =  -- E E sin2tzp (r [jl - r [ill) 
2ns i = l  j = i + l  

and : 

are evaluated for three bundles of 4 rays for a theodolite with diametrical reading on the 
same circle graduation, thus z = 2. 

The total number of circle positions is ns = 50 

Table of weight coefficients a[l,zp], a[l,zp] 

From the table it appears that the weight coefficients of the parameters g, and especially of 
Rr, hardly depend on the choice of the bundle of rays in a circle testing. The conclusion is - 
that any sensible combination of test directions is acceptable, cf. ROELOFS [g]. 

b. An important question is: how many members of the Fourier series are needed for an 
adequate representation of the regular deviation of the circle graduation? An upper limit 

for p is set by the ALGOL programme as this programme makes use of the diagonal form 
of the [2p, 2p] submatrix of (gsa), which form is only adapted for p < n/2 as is demonstrated 
in section 1. Consequently the ALGOL programme permits only the determination of the 
amplitudes of the harmonics with p less than 42 .  The choice of p, however, should not be 
dictated by numerical considerations but should be based on the experience and intuition 
of the observer. 

1 
2 
3 
4 
5 
6 
7 

Rr 

0,20,40,80 gr. 

0.01 64 
0.0106 
0.01 13 
0.0106 
0.0133 
0.0106 
0.01 13 

0.0841 

0, 40,80, 100 gr. 

0.0127 
0.0117 
0.0102 
0.0140 
0.0133 
0.01 17 
0.0103 

0.0849 

0, 15, 37, 90 gr. 
(cf. ROELOFS [8]) 

0.0141 
0.01 32 
0.01 16 
0.01 13 
0.0123 
0.0102 
0.0120 

0.0847 
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In [I l ]  a possible occurrence of short periodical components has been made plausible. 
These components, with a period of about 2,5 gr, are directly due to the manufacturing 
process - e.g. run of screws - and manufacturers will certainly do their utmost to keep these 
deviations within acceptable limits. 

The methods of circle testing under discussion are primarily concerned with the deter- 
mination of regular deviations of a larger extent. The shorter periods are only signalized 
by an off-balance ratio of a:, and 8;. 

The larger periods might be brought about by stress in the glass introduced by tempera- 
ture - or other effects. It is also possible that repeated checks, carried out during the manu- 
facturing process have led to a more or less continual change of the interval of graduation. 
In view of the very nature of these deviations it is not very likely, that, when developing the 
deviation in a Fourier series, some of the harmonics will have significant large amplitudes 
with respect to the amplitudes of the other harmonics. It is only the combination of all 
harmonics of subsequent order up to a certain limit, that may give a fair picture of the 
regular deviation in the circle graduation. Theoretically it is not possible to indicate apriori 
the order of the harmonic from which the deviations of the graduation should be considered 
of stochastic nature, and therefore it has been suggested ([8], [10]) to consider the normal 
use of a theodolite in the field. 

In primary field measurement directions are observed in at least 8 sets. That implies that 
in the means the effect of all harmonics of Rr is eliminated except those of order 8, 16, and 
so on. Consequently it should be convenient to determine in a circle testing programme the 
first seven harmonics of Rr, as this means that the estimate of the variance factor in the 
corresponding adjustment will give a fairly good insight into the combined effect of pointing, 
circle reading, and that part of the circle deviation which actually contributes to the variance 
of primary field measurements. 

It should, however, be remembered that pointings under laboratory and field conditions 
are not comparable. Therefore it may be useful to have the effect of pointing and reading 
separated from the random circle deviation. This can be realised as most circle testing pro- 
grammes have the possibility of determining separately the precision of pointing and read- 
ing. A measure for this precision is obtained from the estimate of the variance factor in the 
first two phases. 

A few experiments [7], [8] have shown that the determination of seven harmonics means 
a considerable improvement with respect to the original Heuvelink programme [5], where 
three harmonics were determined. 

c. The determination of Rr is not of interest when the theodolite is exclusively used for 
normal field measurements where observations can be repeated in different circle 

positions. For such instruments a general testing programme under field conditions is 
preferred to a special circle testing programme in a laboratory. Such a testing programme 
in the field need not be designed specially. The usual primary field measurements, carried 
out in a specified period during which the theodolite is subjected to trial, may be used. 

All these programmes now should be adjusted to a mathematical model, as given in 
sections 2 and 3, that takes full account of the presence of the regular part of the deviation 
in the circle graduation, as represented by a number of lower order harmonics in the 
Fourier series. The estimate of the thus obtained variance factor, multiplied by the weight 
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coefficient which equals unity, represents the precision - including the effects of pointing, 
reading, and random circle deviation - in a single direction and this value actually charac- 
terizes the quality of a theodolite as a whole. 

A special circle testing programme in a laboratory is only necessary when the utmost 
precision is wanted. Then it might be useful to separate the effects and have an idea of the 
quality of the circle graduation itself. A special circle test is also needed when the theo- 
dolite is used for special purposes - e.g. for technical measurements or astronomical work - 
where observations in different positions of the circle are not always possible. 



5 T H E  A L G O L  P R O G R A M M E S  

Explanation to the programmes 

The programmes are written in an ALGOL 60 version, especially adapted to the TR 4 com- 
puter. The instructions for use are given below. The notation before the brackets is used 
in the ALGOL programme whereas in the preceding sections the same quantity is denoted 
by the bold type between the brackets. 

Programme for the Bessel method 

The following data must be introduced in the given order: 

observer, date, instrument, 

tel [l  : m], 

r[ l :s ,  l :n ,  

the number of directions that has been observed. 
for the field measurements: the number of telescope positions. S is two when the 
telescope is reversed halfway the observations. 
for circle testing measurements: the number of partial programmes; each partial 
programme is designed in such a way that it can be considered as a complete 
circle testing programme itself. 
the number of circle positions in each partial programme or telescope position. 
These circle positions are regularly distributed over 2nlz. 
the number of sets observed in the same circle position, immediately after each 
other; for normal field measurements this quantity is always equal to l .  
the number of subprogrammes in each partial programme. 
The first subprogramme is observed in ascending progression of the circle 
positions, the second subprogramme in the reversed order, and so on. 
Consequently the total number of observations of each direction in the same 
circle position is n l  en2. 
For normal field measurements this quantity is always equal to 1. 
the number of periods that is to be determined in the Fourier series for the 
regular part Rr of the circle deviation.. 
a variable thattakes the value 1 or 2; z = 1 when the fundamental period of 
Rr is 27~; z = 2 when this period is 7c. 

the very first circle reading in degrees given with one decimal; c is usually 0.0. 
a variable that takes the value l or 2; 
q = 1 if the observations are fully introduced in degrees and with all digits; 
this will be the case for the field measurements. 
q = 2 if the observations only consist of the micrometer readings in cc; this 
will always be the case for a circle testing programme. 
this array must be introduced only if q = 2; it consists of the approximate 
values for the directions in degrees with two decimals. 

l : n2, I : nl,  I :m], the array of observations; 
if q = 1 the observations are fully introduced in degrees and with all digits; 
if q = 2 the micrometer readings are introduced in cc. 
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Programme for the Schreiber method 

The same quantities in the same order must be introduced with the exception that the quan- 
tities nl ,  n2 and the array tel [l :m] are omitted; S, n and q are now respectively the number 
of telescope positions, the number of circle positions in these positions and the number of 
decimals of the circle reading. The observations are arranged in the array: r [l : k,  l :S, l  : n, 
1 :2], and are always introduced with all digits in degrees. The quantity k(k = 1 ,  . . ., k) is 
the sequence number of the angle, see section 3. 

Programme for the Bessel method 

' B E G I I i '  ' i N T E G E R '  Et4,ES,Eti,ENl,EN2,PE,Z,C,4; 
' R E A L '  RH0 ,P I ;  
'PROCEDIJRE' STREEP; 
W R I T E !  ": "1; 
'PROCEII I IRE'  D A S H ( 1 ) ; ' I t J T E G E R ' I ;  
' B E G I N '  ' I N T E G E R '  K; 
'FOR'  K : -1 'STEP '  1 ' U N T I L '  1  'DO' W R I T E ( " - " )  
'EWD'; 
'ARRAY NAAMi,NAAH2,NAAMnCl:loI; 
R E A I ) ( N A & M l ,  t iAAR2,  t i A k M 3 ) ;  
W R I T E ( " T H E  ADJUSTMENT O F  A  B E S S E L  P R O G R G M " ) ; N L C R ( ~ ) ;  
W R I T E ( " I N S T R L I M E I i T :  " ,NABMI,"  

DATE: ",NAAM2," 
OBSERVER: " ,NAAM3);  N L C R ( ~ ) ;  

READ(EM,ES,EN,E!~I,EIJ~,PE, Z,C,P); 
RHO: -63.66197724; P I :=3.14159269; 
' B E G I N '  ' I N T E G E R '  I ,J ,S,N,NI ,N2,P;  

' R E A L '  E~,E~,FI,F%,F~,GI,G~,G~,~~CO, B l , B 2 ,  C L l , C L 2 , C L 3 ,  S L l ,  SL2 ,  S L 3 ,  SS, SC, S1,CO; 
' H E A L '  'ARRAY '  R,L4[1:ES,1:EW,1:EN2,1:EN1,1:EMI,'TEL,TELL[l:EMl, 
Lj[l:ES,l:EN,l:EN%,1:EM], 
L:!Cl.:ES,l:EN,l:EMI, 
L I C l : E S , I : E M I ,  
LC1:  EM], CL, SLC2 :  Ell ] ,  E3,  N o :  PE], 
G A L F R E C l :  P E I , Y  f lETA[ l :%, l :  PE]; 
' I F '  U 'ERUAL '  3. "THEN' R E A D ( T E L ) ' E L S E '  ' F O R '  
i : = l ' S T E P '  I ' U N T I L '  EM'DO' T E L C I I : = o ;  
F l : -F%: -F3 :=G l :  =G2:=G3: 4; 
NCO: . l / ( E W x E t J l x E N % ) ;  
REA[ ) (R)  ; 
'FOR' S : - l ' S T E P '  I ' U N T I L '  ES'DO'  
'FOR' N:. l 'STEP' 1 ' U N T I  L' EN 'DO '  
'FOR' Na:.1'STEP8 1 ' U N T I  L' ENa 'DO '  
'FOR'  N l : = I ' S T E P '  1 ' L I N T I  L '  E N l ' D O '  
'FOR'  I: = l ' S T E P '  1 ' U N T I  L' EM'DO' 
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'REGIN'L4[S,H,N%,Nl ,  Il:-RCS,N,ti2,Nl, 1 1 - R [ S , N , N 2 , N l , l l ;  
'END'; 
WRITE(-ADJUSTED DIRECTIONS; THE N U M B E R S  I N  THE F I R S T  R O W  REFER TO 
T H E  I ) I R E C T I O t 4  I , T H E  NLIMBERS I N  T H E  F I R S T  COLUMN 
T I I  T H E  P A R T I A L  P R O G R A # S " ) ; N L C R ( ~ ) ;   SPACE(^); STREEP; 
' I F '  P ' E q U A L '  i 3 k N D '  L4[S,N,N2,Nl ,  11 
' L E S S '  o ' T H E N '  L4[S,N,td2,Nl, l ] : - L4 [S , t i ,N2 ,N l ,  I I t 4 o o ' E L S E '  ' B E G I N '  TELL[II:=TEL[II-TEL[I]; 
L4[S,N,H2,t i l ,  l l : =L4 [S ,N , t42 , t i l ,  I l / l o o o o + T E L L [ I l ; ' E N D '  
'FOR'  1 : - 1 ' S T E P '  1 ' U N T I L '  EM 'DO' 
' d E G i N '  S P R C E ( 3 ) ;  V A S K O ( l , o ,  l ) ;  S P k C E ( 7 ) ;  STREEP; 
'ENU'; 
W H I T E ( "  WCOEF ");  STREEP; R L C R ( 1 ) ;  
'FOR'  S : = I ' S T E P '  I ' U N T I L '  E S  'DO'  
' H E G I N '  V A S K O ( l , o ,  S) ;  S'TREEP; 

'FOR'  I : = l ' S T E P '  I ' U N T I L '  EM'DO' 
'HEG I t i '  L I [  3, I]: -0; 

'FOR '  H : = l ' S T E P '  1 ' U N T i L '  EN'DO' 
' B E G I N '  L%[S,ti, I I :=o; 

'FOR'  t i 2 : = l ' S T E P '  I ' U t i T  I L '  E H 2 ' D O '  
' B E G I N '  b [ S , t i , N z ,  I l :=o; 

'FOR '  N l : = l ' S T E P '  1 ' U N T I  L '  E N l ' D O '  
L3[S,ti,N%', I I : = L 3 [ S , N , N 2 ,  l I t L 4 C S , N , N 2 , N l ,  I l / E N l ;  
L%[S,N, I] :=L%[S,t i ,  I l t L 3 [ S , N , t i 2 ,  I l l E ~ 2  

'Et iD ' ;  
L1[;, 1 1 : - L l [ S ,  I l t L 2 [ S , t i ,  l l / E N  

'END'; 
VASI(O(:r,(,,Ll[S, 11); S T R E E P  

'END'; 
VHSKO(I,~,WCO); S T R E E P ; N L C R ( l ) ;  

'EH I)'; 
W R I T E ( " M E A N ~ ) ; S T R E E P ;  
'FOR' L : = l ' S T E P '  l ' U f 4 T I L '  EM'DO' 
' Y E G I N '  L [ I ] :=o ;  'FOR'  S:= I ' S T E P '  1 ' U N T I L '  ES 'DO '  

L [ I I := L [ I l + L l [ S ,  I l / E S ;  
V A S K O ( : ~ , ~ , L C  11); 

S T R E E P  
'Et4l)'; 
V A S K O ( ~ , ~ , W C O / E S ) ;  STREEP; 
'FOR'  S:-1 'S 'TEP'  1 ' U N T I L '  ES 'DO '  
' d E G I N '  'FOR'  I : = x ' S T E P '  1 ' U H T I L '  EM'DO'  
'FOR '  t i :  - 1 ' S T E P '  1 ' U t i T I  L' E t i  'DO'  
' d E G i N '  'FOR'  N x : = l ' S T E P '  1 ' U M T I L '  Et42 'DO'  

' B E G I N '  ' F O R '  M l : = l ' S T E P '  1 ' U N T I L '  E t i I . ' 0 0 '  
FI:=FI+((EM-~)/EM)-(L:~[S,N,~~~, 1 1 - L 4 C S , N , N 2 , N l ,  11 ) - (L3CS,N ,N2 ,  I I - L 4 [ S , N , N 2 , N l , I l ) ;  
F%:.F~+[(EM-I ) /EM) - (L~ [s , I~ ,  I ] -L3[S,N,N2,  I ] ) ( L , N  I S , N  2 ,  I ] )  

'END'; 
F:~:.F~+((EI'I-I)/EH)-(L~[S, 11-L2[S,N,  11)-(LIES, I ] -Lz [S ,N ,  I ] )  

'ENDD; 
'FORD I : - Z ' S T E P '  l ' U t 4 T I  L' E M - 1 ' 0 0 '  
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'FOR' J:-IiI' STEP' I ' U N T I L '  EM'DO' 
'FOR'  N : - I 'STEP '  1 ' U N T I L '  EN'DO'  

' d E G I N '  'FOR' N Z : - I ' S T E P '  I ' U N T I L '  EH2 'DO '  
' B E G I N '  'FOR'  N I : - I ' S T E P '  1 '11NTI  L' E N I ' D O '  

GI:-GI-(Z/EH)-(L~[S,N,N~, 11-L4[S,N,N2,N1,  ~ I ) - ( L ~ [ S , N , N ~ , J ~ - L ~ ~ S , N , N ~ , N ~ , J ]  ); 
G Z : = G ~ - ( ~ / E M ) - ( L ~ [ S , N ,  1 1 - U [ S , N , N Z ,  I I ) - (L~[S,N,J] -L~[S,N,N~,JI )  

'END': 

'END#; 
E l :  - ( F 1 + G 1 ) q o o o o o o o 0 ;  E2:  = E N ~ - ( F ~ + G ~ ) ~ o o o o o o o o ;  E 3 [ 0 l :  = E N ~ ~ E N P ( F ~ + G ~ ) ~ O O O O O O O O ;  

B I : - E S = E N - E N ~ - ( E N ~ - ~ ) ~ ( E M - ~ )  ; 
B%: -€S-EN- (EN2- l ) x (EM-1 )  ; 
@[o]:-ES-(EH-1)-(EM-1); 
H LCR (B); 
W R I T E ( " P H A S E  : SIGKWA : B " ) ; s T R E E P ; M L C R ( ~ ) ; D A S H ( ~ ) ;  
S T R E E P ; D A S H ( y ) ;  S T R E E P ; D A S H ( ~ ) ;  ~ T R E E P ; N L C R ( ~ ) ;  
U R I T E ( " F I R S T  ") ;  STREEP; ' I F '  E N l ' E Q L I A L '  1"THEN' W R I T E ( " U N D E F 1 N E D " )  
' E L S E '  VASKO(~,~,EI/BI); s T R E E P ; v A s K o ( ~ , Q , ~ ~ ) ;  STREEP; 
H L C R ( l ) ; U R I T E ( " S E C O N D  "); S'TREEP;' I F '  E N 2 ' E P U A L '  1"THEN'  W R I T E ( " U N D E F I N E D " )  
' E L S E '  VASK0(4 ,2 ,  E 2 / B 2 ) ;  STREEP; V A S K O ( ~ , O ,  8 2 ) ;  STREEP;NLcR (3);  
U H I T E ( " T H I R D  PHASE ( E X P R E S S E D  I N  C C ) " ] ; N L C R ( 2 ) ;  
W R I T E ( "  P A 1 1 1  A 1 2 1  U C O E F F  SIGKWA B");  
NLCR(I);NRITE(" 0");  SPACE(^^); 
VASKO(4 '2 ,  E 3 1 0 1  / B 3 C o l ) ;  
VASKO(3 ,oS  83[o]); 
t i L C R ( 1 ) ;  
'FOR'  P : = l ' S T E P '  I ' U N T I L '  P E  'DO'  
' H E G I N '  G A L F B E [ P I : = o ;  

SS:~SC:~CL1:.CL2:=CL3:=SL1:=SL2: = S U :  =o; 
'FOR'  1 : -1 'STEP '  1 ' U N T I L '  EM-1 'DO '  
'FOR'  J : - I t I ' S T E P '  1 ' U N I ' I L '  EM 'DO '  
GALFBE[ID]: -GALFBE[P~+(ES=EN-EN~-EN~-P(S IN(~Z- (L [J I -L [  I I ) / ( 2 4 ~ 0 ) ) )  
- [ s I N ( b z - ( l [ ~ ] - L [  I ] ) / ( M H O ) )  ) ) / E M ;  GALFBE[P] :  -I/GALFBE[PI ; 
' I F '  G A L F B E C P ]  'GREATER ' l o o ' T H E N  ' 
' B E G I N '  VASKO(~,O,P.Z);WRITE("~INDEFINED");  N L c R ( ~ ) ;  

E X P I :  = E 3 [ P - I ] ;  8 3 C P I :  = B 3 [ P - l ] ;  
'GOTO' E l N D E  

'END'; 
'FOR'  I : - Z ' S T E P '  I ' L I N T I  L' EM'DO' 
' B E G I N '  C L [ I ] : - 8 L [ I ] : = o ;  

'FOR'  S:.l'S'IEP' I ' L I N T I L '  ES'DO'  
'FOR'  H : = I ' S T E P '  1 ' U N T l L '  EN 'DO '  

' B E G I N '  C I . [ I ] : ~ C L [ I ] ~ ( C O S ( ~ ( Z ~ C / R H O + (  ( S - ~ ) / E s + N - ~ ) + P ~ / E N ) ) ) x L ~ [ s , N ,  IIXIOOOO; 
S ~ [ ~ ] : - S L [ ~ ~ + ( S ~ N ( ~ ( Z - C / R H O + ( ( S - ~ ) / E S + N - ~ ) - P P I / E N ) ) ) - L ~ [ S , N ,  1 1 - l m ;  

'END'; 
S ~ : . ~ ~ N ( P . Z = L C I I / ( H H O ) ) ;  
CO:-C03(P.Z-LC I l / ( H H O ) ) ;  
C l l : . C L l + C L C I l - S l - S l ;  



THE ADJUSTMENT OF PRIMARY DIRECTION MEASUREMENTS, ETC. 

CL2:  .CL2+CL[ 11-SI-CO; 
CL3:.CL3+CLC 11; 
S L l : = S L 1 t S L ~ 1 1 ~ S l - S I ;  
SL2:. S L 2 t  SLC 11-Sl-CO; 
SL3:.SL3+SLC 11; 
S S : . d S + S l ~ S I ;  
SC:. sc t  SI-CO; 

'END'; 
Y B E T A [ ~ , P ] : = & E N & E N ~ - ( - c L ~ - s L ~ + ( ~ ~ ~ ~ + S C ~ S L ~ ) / E M ) ;  
Y R E T A [ ~ ,  P]: 5 ~ ~ ~ & ~ ~ 1 - ( + ~ ~ 2 - ~ ~ 1 + ( - ~ ~ x C L 3 + s ~ S ~ ) / E M ) ;  
E3[p ] :  . E ~ [ P - ~ ] - ( Y B E T A [ ~ ,  P ] - Y B E T A [ ~ , P I + Y B E T A [ ~ , P I ~ Y B E T A [ ~ , P ~  ) x G & L F B E I P I ;  
B 3 [ P l  : = K i [ P - 1 1 - 2 ;  
VASK0(2,o,  PZ) ; 
VASK0(2,2,GALFEE[P1-YOETA[l9 p1 1; * 

V A S K O ( ~ , ~ , G A L F E E [ P I = Y E E T A C ~ ,  P I  ); 
VASK0(1,4,  G A L F E E L P I  ); 
V A S K O ( ~ , Z , E ~ [ P I / B ~ C P ~ ) ;  
VASK0(3 ,o ,B3 [P I  1; 
NLCR(I); 

EINDE:'END,; 
NPAG; 
'END' 

'EPI D' 
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Example applying the Bessel programme 

INSTRUMENT: T:3 HRl81571 
DATE: 17 OKT 1968 
OBSERVER: BUURMAfi 

A D J U S T E D  D I R E C T I 0 H S ; T H E  NUMBERS I N  T H E  F I R S T  ROW R E F E R  TO 
T H E  D I R E C T I O N  1,I'HE NUf4BERS I N  T H E  F I R S T  COLUMN 
T U  T I i E  P k R T l  A L  PROGRAMS 

: 1 : 2 : 3 : 4 : WCOEF : 
1 : O,O~OOOO : 17.001665 : 37.001178 : 90.000821 : 0.0500 : 
2 : o.oooooo : 15.001761 : 37.001144 : 90.000557 : 0.0500 : 
: : o,oooooo : 15.001424 : 37.000922 : 90.001089 : 0-0500 : 
4 : 0.000000 : 15.00118~ : 37.000666 : 90.000493 : O . O ~ O O  : 

MEBN: o.oooooo : 15.001499 : 37.00@73 : 90.000740 : 0.0125 : 

PHASE : S i G K W A  : B : 
......................... 
FIR:[ :UNI IEF IHE[ I :  o : 
SECOND : 3s.07 : 120 : 

T H I R D  B H k S E  ( E X P R E d 3 E D  I N  CC)  

P k C l l  AC2I U C O E F F  S IGKWA B 
0 49.31 108 
2 2.79 - 0.36 0.0088 42.07 l06 
4 0.98 0.31 0.0082 42.46 1a4 
6 - 0.99 - 2.01 0.0073 37.40 102 
8 - 0.N - 0.87 0.0071 36.07 loo 

10 0.6ll - 0.M 0.0077 35.65 90 

Note: The above observational programme was carried out by an inexperienced student-group which is 
revealed by the large value of the estimate of the variance factor. This should be taken into conside- 
ration when a comparison is made between this example and the one shown on page 41. 
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Programme for the Schreiber method 

' B E G I N '  ' I N T E G E R '  EM,ES,EN, PE,Z,C,Q,KA; 
' R E A L '  RHO, P I ;  
'PROCEDURE' STREEP; 
WRITE( ' '1  "); 
'PROCEDURE' DASH( I ); ' INTEGER' I; 
' B E G I N '  ' I N T E G E R '  K; 

'FOR' K : = l ' S T E P '  1 ' U t i T I L '  1 ' 0 0 '  H R I T E ( " - " )  
'END'; 
'ARRAY 'NAAM1,NAAM2,NAA~Cl:lol; 
R E A D ( N A ~ H ~ , N A A M ~ , N ~ A M ~ ) ;  

WR i T E ( ' ' T H E  ADJUSTMENT O F  A SCHRE l BER PROGRAM" ) ; N L C R ( ~ ) ;  
UR lTE( " lNSTRUI4ENT:  ",NAAMl, " 

DATE: ",NAAM2, " 
OBSERVER: " , N A A M ~ ) ; N L c R ( ~ ) ;  

R E A D ( E M , E S , E N , P E , Z , C , Q ) ; R H O : = ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ;  P I  :-3.14159269; 
KA: .EM-(EM-1 ) 12; 
'BEGIN '  ' I N T E G E R '  I,J,S,N,P,K,B2; 

'REAL'  CL, SL, S I, CO; 
'REAL '  E2, UC; 
'REAL'  'ARRAY' R[I:KA,I:ES,~:EN,~:~I, 
L:![r:EM,i:EM,i:ES,i:Et41, L lC i :EM, i :EM, l :ESI ,  
L [~ :EM,~ :EMI ,LL [~ :EMI ,B~ ,E~ [O:PEI ,  
G A L F R E C l :  PE], A, YBETA[ l :2,1:  P E 1  ; 
READ(R);K:.o;wc:=~/(E+EW-EM); 
'FORy 1:-1 'STEP'  1 ' U N T i L '  EM-1'DO' 
'FORy J : = I + l ' S T E P '  1 ' U N T I L '  EM'DO' 
'AEGIN '  L [ I , J I : = o ; K : = K + l ;  

'FOR' S:=l 'S'TEP' 1 ' U N l ' I L '  ES 'DO'  
'REGIt4 '  L l [ I , J , S I : = o ;  

'FOR' W:= l 'STEP '  1 ' L I N T I L '  EN'DO' 
' B E G I N '  L2[I,J,S,NI:=RCK,S,N,2I-RCK,S,N,11; 

' I F '  L%[I,J,S,N] ' L E S S '  o 'THEN'  L~[~,J,S,NI:=L~[I,J,S,NI+~OO; 
L~[I,J,SI:=L~CI,J,SI+L~CI,J,S,NI/EN 

'END'; 
L[I,JI:-LCI,JI+LlCI,J,SI/ES 

'END'; 
L[J,II:=-L[i,JI 

'END'; 
'FOR' 1:=1 ' S T E P '  1 ' U N T I L '  EM 'DO' L [ \ ,  II:=o; 
'FUR' J : - 1 ' S T E P '  l ' U t 4 T I  L' EM'DO' 
'BEG I N '  L L C J I  : -0; 

. 'FOR' I : = l ' S T E P '  1 ' U N T I L '  EM'DO' 
L L [ J I : - L L [ J I + ( L C l ,  1 1 - L [ J ,  \])/EH; 

'END'; 
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E l C o ] :  SO; E%: -0; BI[o] : =E+(EN-1)xKA;  
B:!:-(EH-I]-(EM-z)/~; 
'FOR' l: U l ' S T E P '  I ' U N T I  L' EM- I 'DO'  
'FOR' J : - I t I ' S T E P '  I ' U N T I L '  EM'DO' 
'HEGIN '  'FOR' S : = I ' S T E P '  I ' U N T I  L' ES'DO' 

'FCIR' N : = I ' S T E P '  I ' U N T I  L' EN'DO' 
E I [ ~ ] : = E I [ ~ ] + ( ( L ~ [ I , J , S ~ - L Z ~ ~ , J , S , N I ) ~ ( L ~ ~ I , J , S I - L ~ C ~ , J , S , N I ) / ~ ) ~ ~ ~ ~ ~ ~ ~ ~ ~  
E~:=E~+M-E+( (LL [J I -LL [~ I -L [  I ,J1)-(LL[Jl-LLC 11-L [  I ,J1)/2)-100oooooo; 

'END'; 
W R I T E ( " F I R S T  PHASE (EXPRESSED I N  C C ) " ) ; N L C R ( 2 ] ;  
M I T E ( "  P I A [ 1 1  I A[2 ]  I WCOEFF I SIGKWA I B I M ) ; N L C R ( 1 ) ;  
DASH(?);  STREEP;  DASH(^); STREEP; o A S H ( 7 ) ;  STREEP; 
D A S H ( 0 ) ;  S T R E E P ; D A S H ( ~ ) ;  S T R E E P ; D A S H ( ~ ) ;  STREEP; 
t i L C R ( 1 ) ;  WZI ' IE ( "  o "); S'TREEP;  SPACE(^); s'TREEP;  SPACE(^); STREEP; 
S P A C E ( 8 ) ;  STREEP;VASKO(~ ,Z ,E I [O~ /B~ [OI ) ;  STREEP; 
VA~KO(~,O,BI~OI 1; STREEP;NLCR(I); 
'FOR' P: = l ' S T E P '  I ' U N T  I L '  PE'DO' 
'BEG I N '  K:=o;YBETA[ l ,  P I : - Y B E T A [ 2 , P I :  = G A L F E E L P I :  =o; 

'FOR' I : - I ' S T E P '  I ' U M T I L '  E M - I ' D O '  
'FOR' J : = I + I ' S T E P '  I ' U N T I L '  EM'DO' 
'BEG I N '  CL:=SL:=o; K : = K + I ;  

'FOR' S : = I ' S T E P '  I ' U N T I L '  ES'DO' 
'FOR' N : = I ' S T E P '  I ' U N T I L '  EN'DO' 
'BEGIN' CL:.CL+((COS(P.(Z-C/RHO+((N-I)/ 

E N t  S-I / E  S+ ( K - 1  ]-%PI / ( KA-EN-E S) ) ) )-Lz[ I , J , S, N I  )-loom; 
SL:=SL+((SIN(P.(Z~C/RHO+((N-I) /EN+S-I)~PI/ES+(K-I)-%PI/(KA-EN-ES))))-  

L2[ l ,  J, S ,  N I ) - l o o m ;  
'END'; 

S I : = S I N ( P . Z - ( L L E J I - L L [  l l ) / ( H H O ) ) ;  
CO:=COS(P.Z-(LLCJI-LL[  I I ) / ( H H O ) ] ;  
Y B E T A [ I ,  P]: = Y B E T A [ l ,  P 1  - S I - S I - C L - S I - C b S L ;  
Y EETA[Z,  P] : =Y BETA[Z,  P] + S I - C b C 1 . - $ 1 4  I-SL; 

GALFOE[?] :=GALFBE[P]+ EN-ESYSI-SI ; 
'END'; 
GALFBECP]: = l / G k L F B E [ P ]  ; 
~[I,P]:=GALFBE[PI-YBETA[I, P 1  ; 
AC2,PI:  =GALFf lE[PI-YBETACZ, P I ;  
EI[P]:-EI[P-~]-(A[I, PI-A[1, PI+A[Z,PI-A[z,  P l ) / G A L F B E C P l ;  
B 1 [ P I : - B 1 [ P - I 1 - 2 ;  

'END'; 
'FOR' P : = l l S T E P '  I ' U N T I L '  PE'DO' 
'BEG IN' VASKO(x,o, P.2);  STREEP; 

VASK0(2,2,A[l,P]); STREEP; 
VASKO(2,2, ACZ, P I  ); STREEP; 
VkSK0(1 ,4 ,  G A L F B E [ P I  );STREEP; 
V A S K O ( ~ , ~ , E ~ [ P I / B ~ [ P I ) ;  STREEP; 
V k S K O ( 3 , o , f l l [ P l j ;  STREEP; 
N L C R ( 1 ) ;  

'END'; 
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NLCR(3); URITE("SECOND PHASEH);NLCR(3); 
URITE("THE ESTIMATE OF THE VARIANCEFACTOR I S SIGKWA-"); 
V A S K Q ( ~ , ~ ,  E2lB2) ; NLCR (I ) ; 
WR ITE("THE NUMBER OF SUPERNUMEROUS OBSERVATIONS I S B="); 
VASK0(2,o, 02) ; 
NLCR(1); 
WRITE("THE HEIGHTCOEFFICIEtiT OF THE kDJUSTED DIRECTIONS I S"); 
VASKO( I ,~ ,WC) ;NLCR(~) ;WRITE( "THE ADJUSTED DIRECTIONS AREH);NLCR(l); 
'FOR' I :=I'STEP' 1'LIti*rIL3 EM'DO'  
'BEGIN' VASK0(3,Qtl,LL[II);tiLCR(l); 
'ENO'; 
I4 PkG ; 

'END'  
'END' 

Example applying the Schreiber programme 

INSTRUMENT: MILD T3 NO 1%51 
3RT E : 14 ClKT 6R 
JBSERVER: VERHOEF 

FIRST PHASE (EXPRESSED i N  CC) 

P I AC11 I A[21 I UCOEFF I SIGKUA I B I 
- - - - - 1 - - - 1 - - - 1 - - - - - - - 1 - - - - - - - - 1 - - - - - - - - - 1 - - - - - - 1  

o l I I I 10.51 1 42 1 
2 1 2.71 1 0.88 1 0.439 1 6.41 1 40 1 
4 l 2.12 1 0.49 1 0.0411 I 3.70 1 38 I 
6 1 -0 .121-1 .~7 I0 .03641 2.021 36 1 
8 1 0.02 l -  0.42 1 0.03% 1 1.99 1 34 1 

10 1 0.57 1 -  0.56 I 0.03M 1 1.59 1 32 1 

SECOND PHASE 

THE E S T I M A T E O F T H E  VARIANCEFACTOR IS SIGKUA= 2.43 
THE NUMBER OF SUPERNLIMEROUS OBSERVATIONS IS B= 3 
THE WEIGHTCOEFFICI ENT OF THE ADJUSTED D I R E C T I O N S  I S 0.0313 
THE ADJUSTED DIRECTIOtiS ARE 

Q .000000 

17 .a00995 
37.0006M 
90.000%3 
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