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S U M  M A  R Y

In this paper an outl ine for the continuation of the work in I.A.G. Special Study Group No.

1.14 is given, based on the paper "Statistical Concepts in Geodesy". As a first step, a

testing procedure for geodetic networks is discussed, using one-sided F-tests; a definit ion of

the concept "reliabil i ty of geodetic networks" is proposed.

l. The testing procedure is a part of the so-called unlinking of the computing model and

consequently a part of the prediction. This new theory was developed to obtain a clearer

line of thought in testing and to overcome existing confusion by pointing out the intercon-

nection of consequences. The theory is as much as possible connected to current methods;

the purpose was to find a theory applicable in practice.

2. For geodetic networks it is important to have the possibil i ty to make checks soon

after completion of the measurements in order to make partial remeasurements possible

while towers and signals are sti l l  standing. Remeasurement shortly afterwards, even re-

measuring slightly too much, wil l in the long run prove to be cheaper than hidden {gross}
errors. The latter will often lead to strong local distortion of the network and render difficult

the effective control of densification measurements or possibly even prevent that the ob-

jectives of such measurements are attained.

3. Because of the random character of observations it is impossible to signalize {gross}
errors with certainty. At the best only statements having a certain probability of success, can

be made. The order of magnitude of this probabil ity Bo, has to be agreed upon;it is one of

the parameters in the theory. po leads to a lower bound for the order of magnitude of a

function tro of gross errors which can just be signalized by a test; ,1o is determined by one

specified alternative hypothesis, provided that a second parameter is fixed. Multidimensional

tests are reduced to a one-dimensional test via this particular alternative hypothesis. The

second parameter then is the significance level ao of this one-dimensional test. The signifi-

cance level a of a D-dimensional test is then dependent on D, if in combination with the

same Bo the same bound for the signalization of errors ,to is required. This leads, on the one

hand, to the designed testing procedure, and on the other hand to the definit ion of the

"reliability of geodetic networks".

4. Planning the precision as well as the reliabil i ty of geodetic networks requires a

quantification of the demands following from the purpose of the network. This quantifica-

tion is the most difficult problem and it is certainly not solved yet. In view of the difficulty of

foreseeing future applications of the network, it is questionable whether more than the

formulation of partial or relative purposes and their quantifications can ever be attained. It

wil l be necessary to come to a conclusion in order to make a justif ied choice of values

{or, fo}, possibly by applying the decision theory approach.

5. Methods for "data-snooping" follow from the reasoning developed. Connections

with publications by BlsRna,vuen are given, whereas a comparison is made with related

problems from mathematical statistics.
6. The reasoning is generally applicable and need not be restricted to geodetic networks.

It can also be applied when arbitrary distribution functions are used, possibly along with

F-statistics, provided the power function of the tests can be computed. In this paper only

the method using .F-distributions has been worked out.



I  T H E  P R O B L E M S

The report  of  l .A.G.  Specia l  Study Group No.  l . l4  presented at  the Berkeley Assembly of

1963 [ ]  can be considered as the conclus ion of the f i rs t  phase of the work of th is  group.

A limited number of recommendations for the structure of networks were carefully worded.

The recommendations have a practical character, they are more founded on experience

than on theoretical considerations. A coherent theory is sti l l  lacking, so that for the time

being it was not possible to proceed on the road chosen. This is also connected with the fact

that it was diff icult to broaden the field of work of the Study Group.

In continuation of the views expressed in the introduction of [], the President of SSG

No. 1.14, Professor AseLUNo, proposed in a circular letter to the members, dated August,

1965, to init iate a second phase in the work of the group, in which the emphasis should be

laid on preliminary theoretical considerations. Lack of t ime compelled Prof. AspruNn to

hand over the Presidency of the group to the author of this paper.

Preliminary discussions took place in November, 1964, in Stockholm, and it was agreed

to start from an earlier study [2], in which a sort of programme had been developed for

further and more coherent specifications. At that t ime the theory seemed to be developed far

enough to serve as a basis for discussion. The most important problem was considered to be:
(1.1) the construction of an artif icial covariance matrix, to serve as a mathematical

translation of the lower l imit of precision required by the purposes of geodetic

networks {cf. t3l pages 7l and 37}.
The formation of such a matrix is only possible if one disengages oneself from coordinates

and similar dimensioned quantit ies, so that the quantif ication of variances is freed from the

effects of systematic errors in scale and azimuth. The relevant theory, already sketched in

[2], has since been developed to the so-called "PolygonTheory in the Complex Plane". A
practical test on a proposed solution of(l. l) was therefore possible, but the solution proved

not to satisfy essential theoretical requirements.
Further preliminary study showed that a second problem had to be solved:
(1.2) the use of statistical tests in connection with the adjustment of networks - in

particular the choice of crit ical regions and the computation of the values of model

errors which can just be detected with a certain probabil ity f {see [3] pages 73 and
16 to 321 in order to assure the reliabil i ty of geodetic networks in relation to their
purpose in society.

This second problem is a notorious one in mathematical statistics. A generally accepted

satisfactory solution is not known. [n geodesy one is confronted with this problem by the

extensive mechanization and rationalization of adjustment computations. ln these compu-

tations consciously {or perhaps unconsciously} a choice is made from different simplif ied
methods. Therefore it seems to be acceptable to try the same for solving problem (1.2).

The paper [3] was written to give a sLrrvey of the connection between statistical and func-
tional problems in geodesy. In its f inal form, [3] is meant to be a basis for further considera-
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t ions and discussions in SSG 1.14. In particular it tr ies to indicate the problems that should

be solved in the first instance. This may explain a certain one-sidedness, which is present

in spite of the fact that of course much more l iterature was consulted than the l ist of ref-

erences on page 54 in [3] shows.

Since [3] was written, considerable progress has been made, in particular with respect to

problem (1.2). This makes it possible to present now some more concrete ideas. Because of

the computations that had to be executed, it was not possible to distribute this paper among

the members of the Study Group before the Lucerne Assembly in 1967. Reactions can there-

fore only be assimilated in a subsequent paper.

The study ofthe problem (l. l), in particular, has led to a careful investigation on the quan-

tit ies that must be deemed essential for the l inking of a mathematical computing model to

observations. This gave rise to considerations about model theory, as sketched in [3] pages

44 ff. Although this approach does not exclude more general probabil ity distributions, the

probabil ity distribution of Laplace-Gauss is accepted for simplicity. But one should be

aware of more complicated situations, as indicated by Rou.LNowsrt [[4] and references

indicated) and BrrRnntrunn [5]. Working in phases or steps with testing may cause trun-

cation of distribution functions. But it wil l be better to reserve problems of this type for

SSG 1.24, although some consequences must be discussed in this paper.

The study on computing models, in [2] and [3] is mainly restricted to the plane. This

corresponds with most investigations into the precision of geodetic networks, also with

those developed in previous papers of SSG 1.14. However, this restriction causes diff iculties

when astronomical observations are analysed, not to mention satellite observations. The

classical l ine of thought to overcome all or part of these diff iculties was the extrapolation of

results obtained in the plane to the curved surface ofthe reference ellipsoid used as a quasi-

spatial computing model. On this way one meets mathematical difficulties, as were found

in an attempt to generalize the "Polygon Theory in the Complex Plane" to an ell ipsoidal

theory; cf. also the remarks in [3] pages 43 and 52.

For the purposes of this Study Group, a generalization to the so-called "Spatial Polygon

Theory" is more important. This is a truly spatial computing model of which an indication

is given in [3] page 52.
In the theory that was developed for the plane, the adoption ofa coordinate system is not

essential, and consequently the direction of north is not essential either. It is interesting to

search for the analogue of this matter in the spatierl theory. That the idea is not new is shown

by a remark made by JosN A. O'Ksena in 1958, cf [6] page 28:

"What I contend is that north is obsolete. that the concept of north should not be a

part of modern geodesy".

Restricting oneself to what is called "geometric geodesy" and leaving gravimetric geo-

desy out of consideration, this seems indeed possible. However, this has consequences for

the use of astronomical measurements as a contribution to the construction of a geodetic

network. The absolute character of the astronomical coordinate system aimed at can then

perhaps be relativated, by which possibly the importance of sources of systematic errors

can be diminished. It is clear that this has a repercussion on the concept "time", whereas

"simultaneousness" gains in importance, as with satell i te observations. Thus one obtains a

possibil i ty to broaden the field of study, which is nevertheless closely connected to the
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considerations in [3] pages 45 ff. In course of t ime one wil l certainly have to consider also

the third problem:
(1.3) the consequences for geodetic networks of a relativation of the concepts north

and time.
It will be clear that in this way the restriction on the field of work, which had to be accepted

in [], can be lifted. Also, one need not recoil from the search for closer ties with gravi-

metric geodesy. For some indications about this, see [3] page 53. As things are now, it does

not seem possible to eliminate the concept "north" in this field, although at f irst sight its

importance is  not  great .

In the following sections of this paper, only the problem (1.2) wil l be treated, as a con-

tinuation and sharpening of [3]. In this way, the discussion on the reliability of networks can

be started.



2  A D J U S T M E N T  I N  O N E  S T E P
E F F E C T S  O F  A L T E R N A T I V E  H Y P O T H E S E S

It is assumed that a vector of observations (xi.; has been obtained, to which by way of the
registration R a computing model 11o has been linked up. See (2.2.1) and (2.2.2) in [3]. We
use "condition model" for "laws of nature":

{covariance matrix of (t-)} : oz(gii) : o'(Ai,)-t )

condition model: (rf) (; '- c[,) : (0) ] 
Qj)

With (a"i) from, see (2.2.3) in [3]:

(uf)(ai) : (0)

a first orthogonalization with respect to the probability distribution of (xi) is reached by
the transformation, entirely aimed at the condition model :

from which follows, see (2.2.11) in [3]:

An illustration of adjustment and testing can be obtained by mapping on to a standardized*)
sample space with:

{metric of coordinate system} : {covariance matrix} 
- I (2.4)

The loci of the representations of vectors (xt; with equal probability density and conse-
quently also the standard {hyper} ellipsoid of (Ii) then are hyperspheres.

*) Tcrminology used by TrrNsru in [7]. The name sample space comes from mathematical statistics,
see also [8], [9] and [0].
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A two-dimensional sketch is given in figure 2-1, in which is also pictured an alternative

hypothesis Ho, as defined in (3.1.5) in [3], e.i. only a possible shift ing of the probabil ity

distribution from l1o is considered. In this figure we have the following notation:

"measured point" P

"adjusted point" P,p.,

p(e')

Mo

M3'

Mo

pllpl

: repl'esentation of veotor (x')
: representation of vector (X')
: projection of P on /p-subspace
: projection of P on ys-subspace
: representation of vector (i ')

{situation in yp-subspace unknown}
: representation of vector (o;)
: projection of Mo on yo-subspace.
: representation of vector (i '+Vx'.)
: projection of Mo on yn-subsPace

{ M o P t p , } '

dista'ce'z{MnP}' : (L=).tai,)(L=) :

: (trt),u",(u v')

{PP,o,} '  :  {Mt;tPr' tr tz 
-

{n ty ) r ,0 ,1 ' :

{ M o M " } 2 :

{ M ' M ^ p r } t :

{ M o M , < B } ' :

{M|W}',  -

(2.2.14) in [3]: MFrFd

t rM 
oP,  Br ] '  + ' ,  P  P \  l t r \2

{MoM" tB } '+ {M,M, (D}2

(#)i'.,,(#)
(+:).,u",(?)

\Nr,; 'pf :  ("  - : i I  r : i . , , t ( ' - is) :  inr ' ; 'p*,1'+ tr trWf'  
\  o  / ' ' ' \  o  /

with analogous formulas for V-quantit ies, such as:

(*).'u,''19:) :

(*|,o,(9
(*).,'..,(#)

(  t  ) +
I  r  - l

l r l

l o -  )

(3 .1 .6 )  in  i . l l :  l t - ; i l 1v | " ' : ; :

(2.s)
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Fis. 2-l

Because in I1o only limited assumptions concerning 1ii) are made, see (2.1), the transforma-
tion (2.2) is aimed at a maximum use of these assumptions. Of all the quadratic forms
mentioned above, we can only use a single one for the theory of testing, because its prob-
ability distribution can be derived.

With the central and non-central f -and F-distributions we have:

u

( ' r  )
1 ,E lHo l  =  z i  =  b ' r t . -
l o ' ) -

( r  )
1 -E ln" f  =  tL !^  =  b ' f  i , , , ; ,
( o ' ) -

(2.6)

The importance of A as a quadratic V-quantity follows from,
quoted:

see the formulas from [3]

(see (2.7) on page 12)

( X ' + 9 x . t
(7,:,.)
('(' )
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(32,): ("t+,".1) : ("{+'".).(Y) : (+).(+)
(#) :""(*6)

(+) :"'(Y)
(323): ("{+'""}) : ("{+'".}).(Y; :.,.(#)

5:E);,*,,(#)
':(Y)i"(+)

(3  1  13 ) :  ' { 3 , . }  :  
" {5 ,n " \+ ; . :  

b+ ) .

(2.7)

Here it is essential that, because of the restriction imposed by the formulation of the null

hypothesis Hs, wE must always work in a subspace, the y0-subspace. As follows from (2.5)

we have the following inequality:

l+ < uottt, (2.8')

with the extreme case:

M. in yr-subspace: ,t : 0 (2.8")

From this it follows that a model error in means can be present without manifesting itself

in adjustment and test. It is clear that this is very undesirable in view of the later use of

geodetic networks, and every effort should be made to build up a network in such a way

that possible errors of this type can be signalized {which does not mean the same as:

traced!].

These "possible" model errors are now described by a number of alternative hypotheses,

which in principle do not have to occur silmultaneously {this is essential for the line of thought

leading from (3.1.9) to (3.1.10) in [3]]. The hypotheses are, see (3.2.21) in [3], with para-

meters Vo:

(2.e)Hoo

- @ < V o < + m
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From (2.9) with (2.7) follows for eachp-value separately, the directi on of lloE,,and conse-

quently, in the projection on the y,-subspace, the direction of M" iF). vo acts here as a
kind of scale parameter.

On account of the following equality:

@)'(A )@n) : (A i)(g'' 
i' - c'' ii@ 

i,,)

it also follows that, see (3.2.5) and (3.2.7) in [3]:

t ro :  Nr ' {Yo} '

N o : @)'@ i)(g'' 
i' - Gt' t)@ 

i,)(c'p)

By decomposing (go') into the product of two triangular matrices according to CnorEsrv,
with a subsequent orthogonal transformation, it proves to be always possible to change
over to variates 4!:

{covariance matrix (A'r)}: (d01 : unit matrix

(w!) : (0)

tlfi;, {*'o,...,f*X) : {J4, o, ..., o;

(2.11) is illustrated by figure 2-2 asa sketch of the ya-subspace of figure 2-1.

(2.10)

Fig.2-2
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The transformation to be executed, of which only a part is relevant, can be written as:

" . . 1

" ' , 2 (C'n)

(cx)

i +gi,).(ui)'(o,n)',/^L

(2.r2)

DI  t t ) "

or, with (2.7) and (2.9), compare (2.10):

I
I

lvw;l : -(c").(uj).(0,n)@f)(cto)' lvol : J^L'lvrt : J4
!  /Vp

For completeness, (2.7) is supplemented by:

(2.1 j )

From (2.12), several forms can be deduced which may contribute to a better insight in the

results of computations. With ^l 
o and other notations defined in figure 2-2, we have:

(#)

1: L ,E*t
O -  A =  1

Ao: f*tr'f*',

E{+ta.) :  u+s.,
lo '  )

-l

I
')(r,,)(""1:,j,): 

tfrr';li 
a i)(si'i' -Gi'i

: !r.;l-ttr,)(l)
V N n  \ d , /

t \:  
" o t l o 'V  7E

(2.r4)

As was already remarked in [3] pages 30, 31, it is in most cases practically impossible to

form vectors (cot). But it is possible to calculate the effect of a model error in one mean

value it". Of course this is only a choice from several possibilities, but it is a choice that

makes it possible to arrive at a conventron concerning statements about reliability of geo-

detic networks.
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All vectors (cr'), with p : i" running from I to m, ear. then be taken together to form a
matrix, viz. a unit matrix (di,,).

Instead of (2.9) one obtains:

CONVENTIONAL group of m alternative hypotheses ]- T -
(2.rs)

From (2.10), (2.11), (2.14) follows then:

N r, :  (A y,y) (g' '  i '  -  Ct '  i ' )  
@ i,r ,)

H or,,

wl,,: + o,,,,t(='\
V N ' "  \ o  /

: 
1|;''u'" 

) k'' i' - c' t'l ra'' ;(.l4)

: cosZi,, 
J*

As imp l i f i ca t i ono f  t heno ta t i on i sposs ib leonaccoun to f  ( 2 .15 )whereon l v thecase  i , , :  i
does not result in zero values. Then:

Remark concerning the meaning of 4tr1 and N, x)

Several formulas of this paper can be developed further. An example will be given con-
cerning formulas relating to variates q1 and quantities N.

Introduce the variates (I;), sometimes called reciprocal variates of (Xt):

(r-;,,): (0i4@')

*) The author is indebted to J. C. P. oE Knurr for his remark that an elucidation as given here might be
important with a view to inclusion of the computations in the algorithm of the adjustment problem.

' l v , , , l : ' l i



variates; matrix of weight coefficients

least-squares estimators; matrix of weight coefficients

6 y - a1,,1 : (a r, )(X' - a'o)

6 ;,(xi = (G t,y,) : (0 ti(G'' 
i ')@ 

i,r,)

correction variates; matrix of weight coefficients

(s. i , ,) = (Xr'-xi ') :  (0;,, ,)(e')

1rr-Xr,. : (0 t,r, - G i,,i : (A i,,r) (gt'i'-c,' j)(0 
i,r,) I

l 6 puBLIcATIoNs oN GEoDEsy, NEw sERIEs, vor-. 2, No. 5

(2.te)

Next, introduce the derived variates:

(xr) : (ci)'(tjr)(ri) {q,p : ...} . (2.20)

Then one obtains, for the right-hand column see (2.19):

variates; matrix of weight coefficients

least-squares estimators; matrix of weight coefficients

@o-ol)

(g oo)

6r-al \

(Gno)

(cj)'(o t)(x'- ab)

(g or)

("')'@ i)G',)

(cD.@ j)(x'- aL)

(Gno)

(ci) '  (g t , .)  (c ' ' ' '  )  @,. ) ( t ' r)

('i) '@i-ol)

('j).(71)Gio)

(cl)'G)

(cil.(a it- G i)@tr)

(2.2r)

correction variates; matrix of weight coefficients

(X,-x) I (c,)

(qr) (ti)'Gi)k)

(eo), (er)' | @ or- Gor)

(o oo- Go) | {"in)'@ 1)@'' 
i'

(c')'(X,- al)

(c).(Gtt)(c'r)

-Gt' j)(a j)@tp)
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A comparison of (2.16) with (2.19) gives:

N ,  =  e ; ,  E i :  A i i - G i i

as the l-th element of the main diagonal of (e ,,), (s,.i
(2.22)

;  ]  
t " , , ) ' -  o ' . N ,

(2.10) and (2.14), compared with (2.21), give:

N ,  :  t ,E r :  gpp -Ger :  k r -G i , -G i )Q ' r )

as the p-th elenrent of the main diagonal 
"f 

GjId (2.23)

t:- 
| {o",}' _l

Further, 4ro1 could be written as a function of the (a/) whenever this would be a real ad-

vantage. This might be meaningful in the sense that (2.15) is seen as an intermediate step

towards the use of (2.9) {possibly in a later stage}. In this case, the complete computation

of the matrix (rr.), G)- may be considered.

Testing @o1 amounts to the same as testing - e, , provided the standard deviation o"o is

taken into account.
Instead of (3.2), one obtains:

B9' ,  -Ft r -no, , , -  < A (  *F?-oo.  r , -
oE-

. . (2.24)

t 7
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page 3l), then the relations determined by the model must be taken into account. In the

sketch given here we shall not go into this, the reader is referred to [12].
In consequence of the deduction(4.4)-(4.12), it turns out that the followingholds un-

ambiguously for (5.5):

J J

(o)2 :

w t :

(c).(Gn")(c,) '  o2

(fi)"r.,,r(r:; (s.6)

:9.1cn)-(Gn')
ov

This implies that the functions aor and ry' in the sections 2 to 4 can also be called "con-

trasts".

Data-snooping

The foregoing gives the possibility to apply the reasoning developed in section 4. One can

use the contrasts wot, wt or rlr.

The S-method of multiple comparison

Methods of "multiple comparison" have grown into a new area of mathematical statistics.

The book [4] is exclusively devoted to it. Scsnrrf developed his S-method for this kind of

investigation, cf. [2] pages 66ff. Clear applications of this method are given in [13].
As far as the author of this paper has understood the method, the purpose is to judge a

great number of contrasts pimultaneously with respect to significant deviations. To do this,

confidence intervals for thcse contrasts are derived. The S-method is the most analogous to

the method developed in the previous sections, which will be referred to as the "B-method".

ScnErrf starts with the assumption that for the adjustment problem the test (3.9), cf. also

(5.3'), has been applied. The acceptance region B(P) has been sketched in figure 3-4'

From (5.6) and (4.12) it follows that contrasts - being functions r!, after division by ot, -

can be considered as variates 4rr.
We consider now an acceptance region 6(a), as indicated in figure 5-1. If now the 4r1-axis

is rotated in all directions, corresponding to as many variates rlt, the overlap of all these

regions B(e) will coincide *i16 3ta) more and more as the number of variates ty' increases. On

this ground ScnEppE arrives at the confidence interval of his S-method to which can be

opposed the corresponding confidence interval (4.13") of the B-method:

(*)
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Then a case like (8.11) would mean, for practical application:

Situation

49

I

I I

Nf + lv f  :  { t -62}Ne ;  d 'z  = 0.2? 
I

r l i l l+ iv i , ' :  t t -6 'z)Ne.  ;  62 x0.2" !  l
.rr i1,+.rr i1i:  {1-6'z}Ne,, ;  6' xo.2? J

f ig. 8.1
with
(8.10)

and
(8. r 1)

f i g . 8 - 2

with

(8.14)

(8.1)

(8.2)

(8.3)

H

H ^ ,

H ^ ,

r '+r t

1 2 + I I 1

l I t  + I I 2

l + l I

lvi,ol

lVt"t ' ,oi

lVo",o l

lvilt"l : lVIo,ol
tv;1{$'l

lv','it"'l = lvl,,ol

(8.12)

(8. r s)

This means the solution for (8.9a); all three tests are applied, but the interpretation is
different with regard to the alternative hypotheses.

The problem (8.9b) remains, but this provides perhaps a directive for data-snooping
according to (8.a)-(8.6), because there the formulation of alternative hypotheses is the first
requirement.

The problem (8.9c) remains also, because the alternative hypothesis Ho",, requires the
test (8.3). In that case, b is greater than bt or blr and hence in view of (8.8'):'

& 2 &r, ott > oo . (S.13)

To meet this difficulty, one could split each of the steps I and II again into two, as sketched
in fisure 8-2:

step

I 1

SrcP

P

step

I I I

step

II2

Fig. 8-2

in such a way that instead of (8.10) we obtain, e.g.:

.  .  (8 .14)

Then we obtain instead of (8.12):

lVol

H.

H - , ,

H - ,

in step I lvol

Situation ll test 11, I in step
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For b-dimensional tests we have the "Type I error probability":

65

a from:

wi th:

fro
1o

Hence, this implies a constant value for 1o. From (3.6) or (10.2) follows then:

so that in fact the task ofthe partial scale parameter (11.1) is taken over by, see (2.10):

From (10.2) it follows that a more general parameter d occurs, which is determined by the
planning of the precision. If so desired this parameter can be united with N, to give:

1  - _  ' . t  . , . ,
-Nr: -(r 'r).@i)(st ' i ' -Gt' i)ki)ki) (11.6,,)
(r- o-

The quantities (11.6) depend on the precision ofthe observation variates and the adjusted
observation variates, or on the precision of the correction variates (gt):

GtGf :(s'i)-(G'i) . (rr.7)

and consequently they depend on the shape and the measuring procedure of the network.
By adding more or fewer measured elements to the network, keeping the same measuring
procedure, or by modification of the measuring procedure, the results (11.6) can be made
smaller or greater.

However, in view of the remarks on (8.16)-(8.17), this can only be done within certain
limits. Also, it must be taken into account that addition of more measured elements also
possibly introduces new errors and hence new alternative hypotheses.

Now one may ask what is the use of observations if there is no possibility to check the
possible occurrence of alternative hypotheses, or to keep their influence within certain limits.
An observation will have to have a function in the network. for it costs monev and that
money must be justified.

This means that in the first instance it is important to consider, see (10.2):

($ or flfrxr) per Hoo (11.8)

As stated already in [3] and in section 2, the formulation of the more general form (2.9) for
an alternative hypothesis is difficult if not impossible. Therefore it seems to be best to accept
the CONVENTION that the study is limited to the form (2.15):

lvr,rl : 
J









































A TESTING PROCEDURE FOR USE IN GEODETIC NETWORKS 85

Test No.

A I
A 2
A 3
A 4
A 5
A 6
A 7
A 8
A 9
A l 0
A l l
A t2
A t 3
A^14
A 1 5

Test No.

C I
C 2

26.09
4.05

17.98
9.08

24.46
19.64
8.80

12.06
5.71
4.88
8.80
7.48
2.45
3 .  l 3
2.22

reject
accept
reject
accept
reject

action

reject
accept

(r2.2e)

(12.30)

(r2.3r)

6
7
6
9
9
9
8
8
6
6
8
6
6
8

0.7
2.6
1 . 5
2.7
2.2
1 . 0
1 . 5
0.7
0.8
1 . 5
0.9
0.4
0.5
0.3

) ' )
2.4
2.2
2.4
1 . 9
1 . 9
1 . 9
2.0
2.0
z .+

2.4
2.0
2.4
a i

2.0

25
22

Elb

2.0
0.8

1 . 3
1 .4

Data-snooping

The action in the tables (12.29)-(12.31) is now followed by an attempt to locate errors.

For each alternative hypothesis Ho. one might then establish the acceptance region (4.3),

which, however, must now be modified according to (8.4)-(8.5). The statistics 4'; {the super-

script I can further be omitted without objection) are computed for each test. We have

chosen here the computation by way of partial values of corrections ei per step and sub-

sequent addition - like was done for the values for N and E - per test according to the des-

cription in (12.2D-02.26).

b I  E lb  lF r -ou , r , - l  ac t ion

Test No. E b Elb Ft -no;b,* action

B I
B 2
B 3
B 4
B 5
B 6

30.r4
15.49
27.01
14.51

I . J J

4.33

J

2
2
4
2
I

z . J

1 . 3
2.2
1 .0
0.6
0.4

.7

.8

.8

.6

.8

.8

reject
accept
reject
u":n'




























