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P R E F A C E ,

In this paper the starting point is fbrmed by some clementzrry applications of
statistical metl 'rods to seodctic adjustmcnt problems. In its l inc ol 'thought the paper
is connccted to earlier publications, such as IBeanne 1960, 62] . An indication is
gi,, 'en of some di{hcultics of'principle whic}r arc inherent in these applications, and
which o{ten make thc value of tcsts i l lusory. f 'his leads to what the author in recent
years has come to consider as thc central problcm of geodesy, viz. the introduction
(linking-up) of mathematical models lor thc description oi-me asured quantit ies and
their relations, including the possibil i ty of choicc betwecn different but related
modcls. These thoughts have becn directir, 'e fbr the design of ser.eral new geodetic
theorics, one of which, the so-called "polygon theory in the complcx plane" is now
nearly complcte both from a theorctical and practical point of view. An impression
of this thcory has been given in thc paper,,A Gencralizaticin o1'the Concept Strcneth
of Figurc", which was written in 1962 {br t}rc I.A.G. Speciri l  Study Group No. l: 14,
now included as an appendix. This paper also sivcs an imprcssion of the possibil i t ies
(and diff iculties) of a quantif ication of the olrjectives of seodesy. Other aspects of
this theory are treated by Knr;cnn [1966].

Mention should be made of a different approach to thcse problems, which is
based on decision tl 'rcory and of which ArsBnDe [1966] gives an outl ine. An inte-
resting problem for the yezrrs to comc wil l be to find thc l ine of thousht connecting
tl 'rese approaches.

The author is much indcbted to Ir. J. E. Arsonne for his translation of the
manuscript and for his stimulatins rcmarks in discussing the underlying thcory.

Delft, Junc 1966 W. Beenoe
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I N T ' R O D U C T I O N

In a discussion on the application of methods of'mathematiczrl statistics to gcodcsy,

it is necessary to indicatc very prccisely what actually is the subjcct of t l ic discussion.

In gcneral, mathematical statistics, in conncction with mathcmaticai physics,

aims at the description of a chain (in time) of physical events, which has been

observed by man, by a mathematical model, so that an analysis bccomes possible,

and it can be hoped to obtain a possibil i ty Ibr predicting future evcnts. Aitcr f irst

experiences one can try to lend nature a hclping hand to acccntuatc connections

and relations, the stage of experimentation is entcred. A gcodesist taking part in this

game is not different from scientists in other profcssions, and he, too, wil l bc forced

to make himself acquainted with thc disciplinc of mathcmatical st:rt istics, for which

he has many excellent handbooks at his disposal. Many articles in the present-day

geodetic periodicals bear witness of such studies and treat a part of mathcmatical

statistics which the author judgcs to be applicable in his ficld of work. An example

is fBaanoa 1960].

Until recently, the description was usually considered to havc been evolved lrom

series of rcpeated mcasurements, so that from the frequcncy thcorv, by further

abstraction, one arrived at thc theory of probabil ity. Characteristic of t ir is l ine of

thought was the work of thc English school (Frsrton, NnvueN, PoensoN) and the

theory prcsented by voN Mrsns. A beautiful mathematical ror-rnding-off l inked to thc

abstract-axiomatic theory of the Russian school was givcn by Cnerlfn [1946]. See

also the approach in fBaenor 1960, 62].

In opposition to this approach there has of old been tl 'rc approach using a more

personal, subjectivc concept of probabil ity, which is being incrcasinglv appealcd

to in thcsc last decadcs after the dc'u'elopment of decision theorv bv \{aro. !\rhereas

many mathcmatical formulations in this thcory arc in asrcement with the first

mentioned theory, thc interpretation can bc complctely diffcrcnt. And it is cxactly

this circumstance which makes it so diff icult to gencralize on the application of

mathematical statistics in geodesy. One wil l havc to choosc, and indicatc explicit ly

what part of mathematical statistics is under discussion and which thcoretical

approach one wishes to follow with regard to the intcrpretation.

From a purely mathematical point of vicw, a diffcrcnce in the lbundations (basic

axioms) does not makc any diffcrcnce in thc question whether a thcory is truc or

false. However, it is an entirely differcnt matter i{ 'onc wislics to providc mathe-

matical quantit ies with labcls establishing a connection with mcasurable character-

istics of physical quantit ies. Naturally it is possiblc to do this labell ing carelessly, it

is only a matter of names. But if a geodcsist wishes to arrivc at a dcscription or an

analysis of physical events, thereby aiming at the possibil i ty to predict, he is essen-

tially leaving pure mathematics, and cnters geodesy. It is generally agrced that only

the execution of experiments makes it possiblc to choosc a mathcmatical descriptive

model. The choice of the design of experiments is a personal one ; this explains the
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existence of confl icting views amons scientists working in the same field. For everyone
will aim at a dcsign which looks most appropriate to him, and on the basis of his
experiment he wil l arrive at the choice of a mathematical theory which is most
acceptablc to himsclf: cvcry theory is true in itself. Thus the situation is possible,
that a mathematical theory is true, but the theory plus its application to measurc-
rnentsfa lse.But fa lse is  an e last ic  concept ;  depending on the s i tuat ion i t  may mean:
good enolrgh, almost good enough, dcfinitely unsatisfactory, cntirely usclcss. This
means that one of the tasks of scicntists working in the samc ficld, l ikc geodesists, is
to find criteria for judging tl 'rc dcgrcc of {alschood. But how must wc formulate
these criteria, and from what should thcy bc dcrived?

When working on a practical problem, the geodesist has in principle only a
sezgle measurement at his disposal for cach of the quantit ies observed. He is then
faced with the diff icult problcm how to conncct thc numbers rcsulting from the
measurements, with mathematical rcl:rt ions, dcscribing on the onc hand functional
relationships, on the other hand ranclomncss. Thc obscrvations arc no part of an
experiment, because in geodetic practicc, mcasurcmcnts arc in principlc not re-
peatcd. The conncction with a mathcmatical model describing functional relation-
ships and randomness must therelore be established with the aid of information
which has been obtained in addition to the collcction of observational numbers.
This information is givcn by the dcscription of thc measuring procedure and the
circumstanccs, such as thc weather, the charzrcter o{'the terrain etc. In fBeenla
1960,62] this has bccn called the "registration" R. Let the observational numbers
form the vector (x'); thcn thc total observation is given by:

[ ( r ' ) ;  R ]

One can now comparc R with previous experiments, possibly executed with special
reference to the mcasurcment at hand. Usually, such experimcnts are very restricted
in size, but by thc comparison one arrives at the statemcnt:
a. (xt) is a sample (of'size one) of thc vcctor of stochastic variablcs (n,). Thc prob-

abil ity distribution of the stochastic variables is determined up to at most a
numbcr ol- unknown parametcrs.

b. Between the unknown cxpcctations E{li l  : f, there exist a certain number of
functional relationships. which can be derived from a consistent functional
model.

To prevent misunderstanding, it should be notcd that this formulation cannot be
seen as a gcnerally accepted one. The problem of the "l inking-up of a mathematical
model or {brmalism" is hardly mentioned in thc l itcraturc on mathcmatical statistics.
Perhaps thc formulation must be scen as a pcrsonal one, but it has enabled the
author to arrive at a system of intcrconnected conclusions pertaining to different
areas of geodesy.

The requirement of a very careful comparison of rcgistrations ,R implies a very
sharp analysis of measuring procedurcs and circumstances. The statements under
a. en b. imply that a well-dirccted analysis is made of experiments, affording the
possibil i ty o1' making sr.rch statements. Special attention should be given to the
attachment ol ' labels to mathematical concepts. This construction of a mathematical
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model, proceeding stcp by step and accompanicd by carcful analysis, can be con-

sidcred as an application of operational defning. The latter name applics in this case

more to the method followed than to the choice of a phiiosophical systcm.

Once the combination of statements a. and b. has bcen made, the processing of

the observations by the geodcsist has been reduced to an application of the theory of

cstimation from mathematical statistics, in particular the part that is often denoted

by the mislcading namc of regression-analysis.

One is naturally frec to choose for thc probabil ity distribution under a. a distribu-

tion which is not a f,aplacc-Gauss distribution, but thcn one cannot without further

preface apply the theory of regression analysis as it has been clallorated in mathe-

matical statistics. In many cases, such an adoption of non-normal distri l tutions is

harmless provided the correct cor,'ariance matrix is used, i.e. the matrix of second

reduced momcnts about the mcans (El(x, i i)(.yi i i) |) . Regrcssion analysis is then

essentially the same as the method of'adjustment by le ast slluares, and thc possibil-

it ics of testing by F-tests as well as thc theory of power {unctions havc been com-

pletely worked out. If one wishes to cstimate elcments of the covariance matrix,

repeatcd measurements arc nceded, and one has to use the mathematically more

involved theory of multivariatc analvsis, where instead of the F-distribution the

Wishart-distribution is used. The latter technique is not yet used in geodesy for a

simple economic reason: a large geodctic network can only be measured once. The

apparent rcpetit ion of direction- and distance measurcments is mainly done to

indicatc the possible presence of certain disturbing functional e{Iects ("systematic

errors") or to climinate them by taking the averasc.

Whcreas the choice under a. can bc done within rather wide l imits without

materially affecting the cstimation, the choicc under b. has morc drastic conse-

quenccs, especially when the size o{'the gcodetic nctworks considered is increased.

The ideas oi'Manussr and HorrNs published in the last decades have no doubt causcd

the geodesist to considcr his choicc much more carefully than hc used to do. As the

size of thc network increases he can choose Euclidean planc gcometry, then gcomctry

on one curved sur{'acc, such as sphcre or ell ipsoid (with all "reduction" di{f iculties)

and {inally spatial Euclidean gcometry with as variants different possibil i t ies of

curvil inear coordinate systems. Whcn networks reach a certain size, potcntial

theory mu.rt be applie d in somc lbrm or othcr; sincc the last publications lty HolrNp,

even thc applicabil ity of Newtonian mechanics is doubted.

Each of the mathematical theorics mentioncd forms a consistent wholc, e ach has

been devcloped by abstraction l iom scarcc cxperience ; from a mathematical point

of view each theory is true, though there are marked differenccs in complexity.

Only the l ink to observational numbers from a certain mcasurins procedure can

explain a prefcrcnce for one of the theories. Recourse to an cxperimcnt wil l seldom

lead to an unambiguous dccision, because economically I 'easible experimcnts are

only concerncd with networks which arc very l imitcd in sizc. Conscquently a

choice wil l have to be made, and one must try to predict where a check on the

acceptabil ity of the choicc can be made by mcans of thc computed valuc of some

quantity which has been derived using the theory. How diff icult this complcx prob-

lem is, is apparent from thc cxamplcs constructcd by Horrxo, from which hardly
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resulted a distinct difference in coordinates between his geometric method and the
classical ell ipsoidal computation. The problem becomes even more diff icult because
ofthe fact that apparent differences can be generated by diffcrent types ofroundins
errors, and, in particular, because the functional relations derived from a mathe-
matical theory are almost always non-lincar. Regression analysis, and consequently
the method of least squarcs, is only consistent if these relations are l inear ones. With
non-linear relations, thcre appears a freedom of choosing thc method of computation,
i.e. a non-uniqueness which is already hidden in the classical methods of adjustment,
and which can certainly give rise to differences in thc results (although the differences
are small and will only make thcmselves felt appreciably in large networks) . Given
one mathematical theory, it even makes a difference which system of functional
relationships one chooses, so that isomorphy in theory does not guarantee equality
of results of computations.

In an earlier era of geodesy it was the custom to give, before measurement, only
a provisional indication of the statcments a. and b.; after the measurement, changes
in the set-up of the computation were made if indicated by the observational results.
In the present era of computers, a careful preliminary planning wil l be made on the
basis of concrete statements a. and b., taking account of all consequences, aimed at
reaching the purpose in an economical way. Measurement and computation are
then executed strictly according to design. The tests, also executed according to
plan, can give an indication how far the observational numbers or the mathematical
model theories are acceptable, and possibly they may result in the necessity of new
observations, or of a revision of the model theory and with it the whole plan.

The statements under a. und b., which must be incorporated in the planning are
indicated by the (historically grown) name of null hypothesis, 11e. Tests and power
functions can only be applied and worked out if preliminary guesses can be made
concerning possible alternative statements a. and b., which are indicated as alter-
native hypotheses Hor, Hor, ...

This formulation means that in this papcr the discussion wil l be based on the
statistical theories of NevlreN and Plansorv, dating from about 1935, in which have
been incorporated many elements from the theory of R. A. Frsrrnn dating from about
1925 and containing a number of ideas going back to Gauss and Hnrvnnr.

This is a restriction because the theories mentioned can be considered as special
cases of decision theory, founded by Wero during the last war and since developed
by many others. Some aspects of it are treated by Arnnnoa [ 1966] . The restriction may
be useful, however, because many applications have led to reflection on the many
difficulties, often of principle, which are connected with the linking-up of mathe-
matical model theories by the geodesist. It was partly by these difficulties that the
author was led to design modifications to existing geodetic methods of work.



2 POINT ESTIN,IATION

2.1 Notation

The notation is a mixed ricci- and matrix notation.

( ) indicates vector or matrix, but ordinary brackets when used for indices

( ) 
* transpose of vector

{ } brackets, especially in function notation

(rr) vector of me asured numbcrs (readings) from a practical geodctic problem

interpreted as a random samplc, sometimes to al 'oid misunderstanding

indicated as ( r ' r )

R registration ol thc mcasurement process applied in this geodetic problem

{ (ru) ; R} or { (x'") ; R} total outcome of practical measurement

(r,) vector of variates or stochastic variables; sample s indicated as (x'r),,S : . . .

(t,) vector of mcans (matl-rcmatical expectations) of thc t:t

( o , i , ; )  cova r i ance  ma l r i x :  ( o - ' , i l  oz .  ' 1 i ) , 1 r j ) i

62 variancefactor (,,variance of unit wcight")

(r,Xrr) - matrix of weight-coefficients, somctimes indicatcd as (nii)

({t) vector of estimators of ("i i)

2.2 NuIl hypothesis and adjustrnent

If in a practical geodetic problem thc following observational rcsults have been

obta ined:

{ (" ') ; Rl
compare then R with thc rcgistration of previous expcrimcnts, and usc this com-
parison to l ink thc rcsults to a mathematical model which consists o{'a probabil ity
distribution of thc same number of'variates (4i), between wirose means a number of

functional rclationships ("laws of nature") are asssumed to exist. The relationships
are dcrived from a consistent mathcmatical modcl. For simplicity we shall only

consider a probabil ity distribution of' Gauss-Laplacc ("normal") probabil ity dis-

tribution, whcreas to begin with the "laws of natl lre" are takcn to be l inear relations.
(xt) is thcn considcred as onc of the possible samples (x'-) of (.ri). This model, l inked
to (2.2.1) ,  is  ca l led "nul l  hypothcsis"  - I {y ;  the {brm we c}roosc herc is :

H r ,  q i t )  r o  l l c  cs t ima t t ' d

Covariance matrix (,.rankm), r 'ariance factor o'2:

o z . 1 x t 1 1 x i \ *  : 6 2 . ( s i i )  ( i , j  -  1 , . . . , m )

"Laws of nature", (zrf) rank h, (.ui) \.ector:

( r , , )  ( ; , )  ( r3)  :  (o)  ( .Q, '  :  r , . . . ,b)

t r ,  , \
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A second form of the
Determination of the

(u',) (o') -

gives (m-b) Iincarly

(ai')
Hence:

"laws of nature" is possible.
vector (ad) from:

(0)

independcnt vectors, forming tlrc matrix with the rank m-b:

( n ,  f i  -  h ! 7 , . . . , m )
(2 .2 .3 )

(ro,) (oi,)

The vector (ai,) is

/n l

then detcrmincd (up to rn 6 degrecs of freedom) from:

(.u) (oi) - (,3) (2.2.+)

Then the "laws of nature" can also be writtcn in a parametric form, with the

parameters (j"):

( f r t  -a : r )  -  (o")  ( - t r ' )  .  (2 .2.5)

from which, with (,2.2.3), thc first lorm follows in a modified representation:

(uo,) (fr' ol,) : (0) (2.2.6)

whence, with (.2.2.4), again follows (2.2.2).
Mixed forms are possiblc, but we wil l not go into these details.

The classical problem of "least squares adjustment" can be intcrpreted as a point

estimation problem, giving estimates for the unknown values (ft) and, where appro-

priate , (j") . Estimates are then again considered as a random sample of stochastic

variables, thcsc variables being called estimators.
The form in which the "laws of naturc" has been introduced implics the choice

of the vector (xi) from the (sub-)space covcrcd by the (rr), whiclt must be introduced

into the functional model in ordcr to obtain consistent relations. The choicc (which

can actually be motivatcd) is (. i,). This impiies that in an application of'an adjust-

ment procedure, the variables in the choscn functional mathematical model must be

provided with a ti lde -.

However, thcse quantit ies are unknown because thcy are just thc ones that must

be estimated. If one wants to make computations with the model relations as if one

were working with thc means, then the relations valid for the mcans must also be

valid for the estimators.
For both forms of the "laws of naturc" this leads to the establishment of the

"condition equations", in thc terminology of TrnNsrne:

f rt ,tu,rau.a p.ofrf.- I trll 1;i a; : 1O;
(2 .2 .7 )

(I") sometimes indicated as "unknowns"
(I") then to be indicated as "unknown-variates"

It is curious that although (2.2.7) is not valid for the (rt) and in general (/") is t-tot

even defined, it ei always possiblc to define so-called derived variates:

lst standard p.obl.- 
I 

(r',) (X, oi) : (0)
I

2nd standard problem 
| 

(Xt n ) - (!,) (!')



STATISTICAL C]ONC]EPTS IN GEODESY l l

( t ' )  -  (  l l )  ( r ' ) l  ( / ; )  ( ' ,  ' -  . . . )

(t ,  a, l ;  - (. l i )  (r '  ai,)

They may be entirely arbitrary functions, but in gcneral they are relations derived

within the chosen functional modcl, such as coordinates computed from angles and

distances in two-dimensional Euclidean geomctry.
In the case of l inear functions (.2.2.8), the law of propagation of the means gives:

(f i ,-oi) - (,4:) (r,  ai,) Q.2.9)
which is in accordance with the choicc of thc vcctor in the "laws of nature", so that

for these relations thc relations betwecn thc estimators can be introduced:

( x , - a [ , ) - ( A ' ; ) ( x t - a L ) .  .  ( 2 . 2 . 1 0 )
This in its turn has as a consequence tl 'rat in estimation problcms thc rclation (.2.2.10)

between estimators is always joined to (.2.2.8).

In the theory of adjustment, several types of thcsc dcrivcd variatcs are introduced,

such as:
(/o) : ,rector of misclosure variates, with Lr') - (0)
(,1,r) : ,r..tor of reciprocal unknown-variates, (_y,) I (0)

whereas in fact all cstimators can bc considcred as dcrived variates.
After (2.2.6) it was mentioned that mixed forms cxist. In corrcspondence with

this, there are problems forming a mixture of lst and 2nd standard problems. An

analysis shows that all these forms can be rcduced to onc of thc two standard
problems, for which special techniques have been developed with a view to the
present possibil i t ies of computer technique. We will therefore only indicate the
algorithms of the two standard problcms, in a form which brings out the parallelism
in the solutions.

(see (2.2.11), (2.2.12) and (2.2.13) on page 12 and l3)

/ o  o  o \
\ z . z . o  )
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lst standard problem ] 2nd standard problem

ition equations

part ol ' the adjustment: estimators

A') : (uo,) (at - a'o)

@\, U'Y - (g")
(go') - k't (4)*

O'W'f - (gn')
(go') : (u't) @i) (J4)*

( 6  \  -  / o q ' )  1
\5  rc l  \5  /

(eo) : (g") (c,.) ( /')
(x i \  :  (xr )  _t  ( r i )

aor . " lu  ra- , rur ia t  es
(not nceded)

({,) : (3,.) (-l')
(e') : k\ (.K,)

cond

(,ua;) (f,t-ai,)

(."',) (.Xt) - (.u3)

puBLrcATroNS oN GEoDESv. NEw sERIES. vor-. 2, No. 4

(0)

(0)

I s t

(Xi -a i , \  :

(Xo) - (.o1,)
(oi,) (Y")
(Y " ) * (oL )

( o.. \  -  (  o'r \  r' D / l /  \ D  /

Q,,) 
- 1oi,)* (g;,) ( xt aL)

( , f ,C, f  -@i , )

@, U"Y - (cP,,)
(sp,,) : (a'r)* ki;) @'")
(g'') : (g,,J '

(xt-o} : (.a) (e"i') (Ji,)

( r ' )  -  ( X i  - a ' , , )  ( l - a o )

;;k;;;;-";;i;;;
(sometimes needed)

(Y") - (g"') Un)
(Xt ai,) - (ai,) (Y")

(2.2.rr)

l ,  ,  1 9 \

controles

(o) - (r')*(,i) (e') (o) - (oil*(g;) (e')

derived

(.X' a,l,) (.1) r Xt ao)

varlattes

I (f-. o[,)
I
I

Ilst standard problem I z"J r,""J"rd problem

2nd part of the adjustment: weight-cocfficients

/ r r ! )  1 r \ x :  / O \
\ J  ) '  \ - r i l )  \ " , /

: (A',) (o',,) (Y") 
I: (/:,) (Y") |

/ - i t  / v / \ t <  -  / n l
\ c  , l r  \ "  /  \ " /

(x'), (x)* - (G,)

t-rL, r-r,l- - (.G'j)

(G") - (g") (g")(J'o)(go')

t  n r i t  /  t t \  /  a , i i \
\ u ' l  -  l / r i l  \ L '  I

(r ' ) ,  (XJ)* :  ( I ) ,  (x ' )*

1x1, gay: g"'1

1X';, 1rt'y ic'p;
(v), (rT*.- (c"r)

(Gi) - (o:") Gq') (oi)*

(G,') : (o:") (g"t)

(G',\ : (A:) (c"p)

(G"'') - k"a)
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If (X,) has been computcd from the sample (rt)

(X,) are represented as "measured point" P

standardized x'-sample space, then the distance

PP',  : { :4 ' ' '

according to (2.2.11)  and (x ' )  and

and "adjusted point" P' in the

PP' js uivcn by:

(2.2.r+)

point P to point P'.

to take the formulas of the two standard

f rom (2 .2 .11 )  and  (2 .2 .12 ) :

j

I ' ' Q'2't5')
l

(R :  i ,u , r )  . (2 .2 .15" )
( s : y , f , r )

1 0
I J

- t
I

I
aL) +

l

m

)

stanjlarcl p.oll.

ing variate

iJ (e')

(aj a'i* (E) @'
(J)* (8"'') (J,

-  
fz"a,

nt: shifti

: (e') * (g;,
l F  -

l =
I

.cm

ustmc

E
^,9\

qrobl

he adj

(3',,,) ('

'o) (Jo

I  
lst  standard

| 3rd part oft

t -
I
l F  -  / _ " , r l x

l -  
\  /  l

I  :  b ' ) * (3
t -

(2.2.r3)

&'

lp

or it can be said that the adjustment shifts

For theoretical considerations it is better

problems together. For example, it follows

(X'- a') -- (G'j) (E) @' -aJ)

(y" -o) - (G"r) (3;) (r' aL)

(x' oi) - (G', (g',) (xt -a',)

These can be taken together in:

1{"-af) :  (cn) (Eio) @'-aL)

Instead of (2.2.11) (2.2.13) we then get:

Adjustment

ls t  par t (xo at) - (c^i) (&) (r'-a'o)

2nd part (2.2.16)

3rd part

It is a fine quality of the computing system of the method of least squares that
- provided all equations are l inear - the system is a consistent whole, so that one

can arbitrari ly transfer from the lst standard problem to the 2nd standard problem

and vice versa.
In the l inear casc, (20) wil l always approximately have a Laplace-Gauss probab-

ility distribution, even if this is not strictly so for (rt) ; this follows from the central

l imit theorem. Under the null hypothcsis H6,we have then (i ') : (0).

(x"), (x')* : (G^')
(c") - (G^f (3;,) (Go)

E : (tj - aL) * (cj') k'' 
j' - G'' 

j') (gj,)
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This implies for the positive definite quadratic form of rank D, sce (2.2.13):

E : (2) * (g,o) Lru)
( r  F l

t ha t  {  
' .  

] l  has  t hc  4 , . - d i s t r i bu t i on .
lo2 b l

Because:

EIF,. -l - |

the following estimator can be introduced for o2:

so that u

t)

2.3 Adjustrnent

Decompose ("yn) i"

(!, I
I J o "  I
I Y'rrrr I

[;,,' )

in steps (phases)

a number of partial vectors:

(2 .2. t7)

(2 .3 .1 )

(e,  -  7 ,  . . . ,  br )
(et t  -  br+1,  . . . ,  br+brr )
(grrr :  br +brr + 7, . . . ,  br + brr+rI[)
(gtu : br+brr +brrr+ l ,  . . . ,  ,)
(b : br+hrr+brrr+brv)

Adjustment in steps according to Trnl'rsrnA mcans essentially that the partial

vectors (Jn'),...., (2n' ') are orthogonalized with respect to thc probabil ity distribu-

tion of On) . I" fact this can be performed by thc generalized reduction procedure of

Gauss.
TrnNsrRa.'s interpretation is that the adjustment is split up into (in our case four)

partial adjustments which are consecutively cxecuted; the first is the adjustment

on the first Dr condition equations, the second adjusts the estimators ol 'the first

together with new observations to the next Drr condition equations, etc. Or, the

procedure of adjustment in stcps can be seen as a procedure which can practically

follow step by step the progress of measurement of a geodetic network. An extreme

situation is that all 2a-variates are orthogonalized, i.e. that every timc when new

observations make possible the establishment of one more condition equation, the

corresponding phase in the adjustment is computed.

Although the method of adjustment in steps, too, has other theoretical aspects,

the preceding gives a certain directive for the design of an adjustment in steps. We

need not go into the different possibil i t ics of technique: cvery problem will have to

be considered separately.
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If we leave this directive suggested by adjustment in steps out of consideration, it

is diff icult to arrive at a single unambiguous rule for the design of'an adjustment.

This diff iculty is causcd by the many possibil i t ics of ordcring the orthogonalizations.

Modern computer technique brings this diff iculty more to the fore, because the size

of networks that can be adjusted in onc stcp is continually increasing. There is room

for doubt whether this is going in the risht direction and whether the computing

facil i t ics do not tempt us to forget techniques that work on better principlcs. Especial-

ly in testing problems, this qucstion turns out to be very important, although sound

directives lor a method to bc followed have not yet been found.

For the problems conncctcd with testing, a decomposition of E corresponding

with the adjustmcnt in steps is important. It is not easy to find a fitt ing notation;

the following choice is made :

In s tep

t 5

I

I I

I I I

IV

I

I I

I I I

IV

EI

EII

Errr

EIV

br

bII

hrrr

hrY

(Cii t l

(Gi i . r r

(Gi ; ' t t t ;

(G i i  t v ;

(2.3.2)

(2 .3.3)

i  { c , r1  (G i ; . r v ;  E  -  E r+ . . .+Erv  b  :  b r+ . . . l b r v' l -  -  
t

Then the following can be shown to be valid, compare (2.2.16):

E - (r i -ai l*  GiL) G" ) (gr.)

F I I F I I I F I I I  ]  F I V

Er - (u' ai)* kit,)
Etr - (aj afi*(E;L)
Errr : ej oil* Gir)
Erv - (uj - ol)* (Eir)

(gi,i' _G{j'.\ (.!;,;) (at_at)

(Gi j . r  _Gi j ' . r t )  ( .4 ; . , )  ( { i_  4, i )

(Gi j  . r r  _Gi j ' . r r r )  (3; . )  ( r r  o ' , , )
(cii ' .nr G, j ') (g;,,) (x, _ ai,)

Instead of (2.2.7) one thcn has to introduce, with stochastically independent

Iu ' . * ,  . .  ' ,  Fr ' " .  -  I

(see (2.3.1) on page 16)
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b . 6 "  -  b r . 1 6 t ] 2 ) . . .  r r l v . , 1 q i r v , z  I  n , ,
l I

t
6 2  -  . E-  

b -

I
! AI\2 . FI

hr

{dr r !2  :  
t  .a ''  h r r -

{ 6 ' r p :  
I  . g r ')  h r r -

I
. ( ,6 rv \ ,2  _  .ErY

L lTrY 
-

- F , E!F,,  * I  -  1

( AIt.2

oz
(  A t  r rz
t v  )

1;r I I  1.2

. ; -

{ ; r \ - )2
L ' f  t

D
A t , I I  -

EIf  * ,* j  -  1

ElF,,,,  _l - I

E{!6,",-)y - |

E{!,,"

(2.3.4)

62

But also we have, for example (F6,,,1,,,...1 F6n',6r not being stochastically indepen-

den t ) :

.{ Arr\2

Grl,
tgr"y

{6'}'
J XIY}2

{6'}'

D
a  t , l l  J , l

D
- I LIII J,I

l i  . . ,

E

E

E

iry;r,",') - t
l b r  - 2  |

[  
"  

' !1t ' , .1, , '1- 1

\+? ',"'ul: r
b r >  2

From (2.3.5) it appears that adjustmcnt in steps makes it possible to use other mem-

bcrs of the family ofF-distributions. At the same time the effect of greater or smaller

uncertainty about the value of o2, which in 110 is assumed to bc given, is eliminated.

But this elimination wil l in later formulas turn out to be only apparent. Besides, if

the tests bascd on (2.3.5) are to be effcctivc, it is required that br)> 2, which means

in practice that the first step in thc adjustment can only be executed after the com-

pletion of an appreciable part of the measurcmcnts. This is contrary to the directive

mcntioned previously.
It is important that if an appropriate partit ion of the adjustment into steps has

becn made, it suffices to usc l idistributions only, provided that the covariance

matrix of (r,) can be considered as known.
All this sounds bcautiful. Unfortunately, thc practical execution is subject to

many disturbing influcnccs and cannot be donc by just following clear-cut direc-

tives; the author and his collaborators are sti l l  scarching for better directives for the

the application of the theory.
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2.4 Critical regions. Choice of a

No experiment gives infinite ranges for (li) , only the mathematical model of the
probabil ity distribution of Laplacc-Gauss does.

This means that a part of the sample space of (at), outsidc a boundary surface
situated around (f ') on a certain distance, contains vectors (x!) wtrich are non-realistic
if they are taken to represent samples on (ri) .

This region we indicate by thc namc:

crit ical region, K(d).

This implies that the sub-samplc space of the (y0) has a similar crit ical region:

crit ical region, -K(e)).

For several reasons one takcs:

lkt) - the region outside a D-dimcnsional ell ipsoid, a locus of points with
the samc probabil ity density, whose centre is (/a) : (0)

and, writ ing P for probabil ity:

P,, ( l ' )  eKalHsj :  a  e.+. t )
in which a is sufficiently small, but can curiously not be brought in connection with
the range of stochastic variablcs in an experiment. Here, much is left to the user.
In practice one uses the values:

a :  0 .05 or  0.01 or  0.001

On the basis of this l ine of thought it is intuit ivcly felt that a certain observed sample
(x!,) is not in agrcement with 1/o if:

(r!) - (-r!'); (y3) = KQ' e.+.2)
One is then, with different nuances of conviction, led to rejection of the assumption

that (xr1) is in agreement with 11e.
This is called the execution of a test; it wil l have to be carefully investigatedwhat

actually is being tested.
The formulation given here leads to a different and also supplementary termin-

ology:

6(a) ' rejection region

B@ - non--K(o): acceptancc region

P { ( / ) € K t u ) ) H o ) \ : a

P { ( .1 \  e  BQ)  Hs l :  r - a

By mathematical deduction it is shown that (2.4.3) corresponds with the right
hand tail region of the Fr,--distribution; the so-called crit ical value F, ,.r.- can be
found in tables of percentiles of the F-distribution:

t 7

K''ot '

B ts t  '

15: u' -r'l.

lfi: r,-tu'l.
)  Ft  .u;r , ,o

{  F r  o ; t , , n
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However it is a nuisancc that K(a) and consequcntly B(a) is not invariant with

respect to a partit ion of the adjustment into steps.

If for K(0'),..., K(p' ') regions are taken as defincd in (2.4.1 ), with successive dimen-

s ions Dr,  . . . ,brY and wi th,  instead of  a,  successively  dr , , , , ,  orY,  thcn one can in

correspondence with (2.3.+) establish the following table, analogous to (.2.4.4):

I
I u'," - ; _ - _ ]

B'o ' t
! Art.'z
t Y t z D

"  
' - ' l

I ; I I  12
l l z  |  -- .< l ' ,

a I I b I . o

f u r r ;  D r ,  oB(au)

g(ortr)

g(0,r,)

l ,6rtt tz
. : i = \

62

ldrv  12

Ft . ' . l t .brtr ,6

F1 ,""

(2.+.5)

the multiplication rule for

IV  o f  lBennon  19601 ,  t he
(.lo) u product space -B(a),

Then we have,  c f .  (2.+.3) :

Because !u, ,  * ,  . . . ,  Ft , , , -  are stochast ica l ly  indcpendent ,

probabil it ics can be applied. As indicated in par. 3 note

regions Bln), ..., -B(a'") generate in the sample space of

formed by the intersection of four ell ipsoidal cylinders'

adjustment one step Urnt Hoir

adjustme nt
( r  4 6 \

B(0) wil l never coincide completely with -B(n), so that the outcome of a test con-

nected with an adjustment in one step may be different from the outcome of tests

connected with an adjustment in more steps.

Theoreticalt;t a certain degree of coincidcnce can be attained, by making the a's

subject to the condition:

t - u  -  { t - o ' } { l - C I r l x t  a u r } { l  a I Y }  ( 2 . + . 7 )

In order to be more or less independent of the chosen grouping of the condition

equations, one might choose:

I  u  : [ 1  o ] u

. lin lour ste Pl(l\  e B@)1Hs1 -
-  { l  " tX l  " tX l  

c I I rX l  orY)

BQ) N BQ)

(t as parameter or the a-r.alue for

a step with only one condition

e quation

{ I - a } "

{ I u1t"

{  I  -a} '" '

{  I  -a } ' ' "

(2 .4 .8 )

'I 
-III -

l l  
a t v :
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In table (2.4.9) the curious consequences of the choice (2.4.8) are given for some
values ofa:

r - u : { 1 - a } a

o : 0 . 0 1  l a : 0 . 0 5
I

l 9

I
2
4
B

I R
1 . ,

30
60

150
300
600

1000

0.001
0.002
0.004
0.008
0 .015
0.030
0.058
0.  l4
0.26
0.45
0.63

0.0I
0.02
0.04
0.08
0.  l4
0.26
0.45
0.78
0.95
1 .00
1 .00

0.05
0 . 1 0
0.  l9
0.34
0.54
0.79
0.95
1 .00
1 .00
1 .00
1.00

. (2.4.e)

According to (2.4.2) one rejccts agreement between (x!) and Hoin l)\aoA of the
cases, even if 110 is not doubted. Although this is an interpretation which is only
valid within the adopted theoretical probabil ity model, it follows from (2.4.9) that,
starting from, e.g. a:0.05, one should always reject when there are about 150
condition equations !

In practice another choice has usually been made for the a's:

a : a T - a I I : o r r r - ( I r v  t
e . e . : 0 . 0 5  l '  

( 2 ' 4 ' 1 0 )

But this means for (2.4.6):

e BalHoj :  l -a

e B,1uo1 : 1t oj4 .  ( 2 .4 .1  1 )

f i{e) I gto). f i{o) I 6{e) e.4.12)

so that in an adjustment in four steps there is a greater probabil ity to reject than in
the case that the whole adjustment is done in one step!

Attention is once more drawn to the fact that the indicated consequences of the
choices (2.+.8) and (2.4.10) are only valid within the theoretical probabil ity model,
whereas from the introductory considerations in par. 2.4 it is evident that crit ical
regions may be a consequence of the fact that the theoretical model only describes
experimental data in an approximate way.

:  0.95
: 0 . 8 1



20 puBLrcA'froNS oN GEoDESv, NEw sERrES, vor-. 2, No. 4

Howcver, it follows with ccrtainty lrom our considcration that the different crit ical
regions based on the F-distribution do not form a consistent system, although the
adjustment itself is consistent with respect to a decomposition into steps.

Our discussion so I 'ar was based on (2.3.+), but we can also establish crit ical
regions based on (2.3.5) .  The t rcatmcnt  wi l l  be somewhat  morc compl icated,
because F6,,-, F6u,1,,, ..., F1,,,..7,, are not stochastically indcpendent.

It is not entircly clcar what wil l bc thc bcst l inc to follow. I am convinced that
it wil l rcmain ncccssary to split up thc adjustment into steps. Although one is not
always awarc of it, this method is olten practised, e.g. when the adjustment of
geodetic networks is split up into firstly the station adjustments and secondly the
adjustment on triangle- and side conditions. But it is an opcn question how far one
should go. The sulrjects treated in thc followins paragraphs wil l play an important
r6lc in thc answer.

Pcrhaps one should search {br an entirely different approach to the problem of
testing. The present-day theory o{' mathematical statistics undoubtcdly offers
possibil i t ies for this.
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3  E R R O R  T H E O R Y

3.1 Alternative hypotheses

The null hypothcsis Ho in (2.2.2) is chosen on the b:rsis of factu:rl knowlcdee con-
ccrn ing forcscen s i tuat ions.

Apart from tiris, one usually knows r, 'ery well that errors in mcasurements cannot
be avoided entircly, whereas factors l ike refraction may also be prescnt for which
it may be impossiblc to give a realistic mathematical description. Besides, the
"laws of nature" arc just as relative as all laws made by man.

Because of  a l l  such inf luences i t  can very easi ly  happen that ,  see (2.2.  I  1) - (2.2.  l3)  :

(E{ / j )  +{ ( r )  -  (0)  f rom110} (3.1.1)

W, U'Y *  {k ' )  f rom l1o j  (3 .1.2)
oz-value in 110 doubtful (3.1.3)

To examine thc influence of this, one wil l try to formulatc his doubt in a mathe-
matical form, i.e. to formulate onc or more alternative hypothcses:

H o ,  H o *  H o " , , . .  ( 3 . 1 . 4 )

and to compare these with, or oppose them to, 110.
For alternativc hypothescs concerning (3.1.1), a theory has lteen developed by

NByuaN and Prensclr.
Instead of:

(E{f lHo)) : (0)

an alternative hypothcsis 11" is introduced:

(Et,2alH"l :  t i , t  + tOl
o r :

U')H") : U'lH,)+(i'')
We denote by an acceut the non-centr:rl F-distri l tr,rt ion which replaccs in this case

thc F-distribution, see fBeanre 19601. Insteacl of (2.2.17) we rhen har.,e:

1 6 2  I

\ ; " t H , i : f u * ,
E { 6 r l H " ) : r r ( r + : )

(D')*(g,.) (D')

(3.1.5) means a translation of the probabil ity distribr-rt ion 
"f 

(lo) in the standard-
ized sample space over thc distance 1'.1.

Instead of (2.+.3) and (.2.4.4) we have, undcr 11,:

I)
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f l  :  P{()n)  .  K@)lH,} :  , \#,  p,  
" , , , * lH" l

( 3 . 1 . 7 )

r-fr : P{(!) e B@1H,S : l F t

p is a monotonic increasing function of )" (a and fr being given) and is called the
powerfunction of the test with crit ical region K(or. See also fBeenoe 1960, 62]. This
makes it possible to compute the size 2 must at least have to let it be indicated with
a probabil ity fo (e.g.80"/") by the test. Tables are available for:

) ' o  -  1 {a ,  Bo ,  b ,  a l  ( 3 .1 .8 )

Generally we are less interested in this than in the computation of the vector

(V;t) which generates this value ,10.
From (3.1.6) follows the relation:

l -
Ao :  

oz 
(Vo/ ' ) *  (g,o)  (Voln)  (3.1.9)

but we
a s a f u

From (3.1.9) with (3.1.10) i t  fo l lows that:

Ao: ( t ' )*  (g,n) (rn).{Vo} '

(r)* (3.n) (ro)
( 3 . 1 . 1  l )

Remark

Starting from a given vecto. (On), one can just as with (2.3.1) decompose theya into
groups, with subsequent orthogonalization. This means a transformation of the
problem, similar to the one used in the adjustment in steps.

Analogously as with E in (2.3.3) we then obtain:

7 :1 r+ i l r+ i l I l +ArY  (3 .1 .12 )

from which it follows that )., being a positive definite quadratic form, in general
increases with 6.

(3.1.12)  can be e luc idated,  by wr i t ing in  (3.1.6) :

/ v;.\
l - . - . . l :
\ ( t /

,'T;-i
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t E t ) "
E i  ,  H " i  :  o2 Io2  ;

l 0  |  t )

I . E l E l H , , 1 , +  7 ( 3 . r . r 3 )

Z J

Et,qr lH,, ,

o r ,  w i th  (2 .2 .17) :

I . E l E t H " l
' )  r - l  * l

3.2 Errors (rnistakes) in rneasurernents

A very striking cxample o{'(3.1.1) are (gross) crrors in measuremcnts, errors which

in spite of all care are always being made. They may be mistakes in pointing when

measuring angles, errors in distance measurement, wrong position of signals or

instruments, but also influenccs of lateral refraction and errors of given coordinates.

This does not necessarily invalidate tire covariances of (l i) , so that a mathcmatical

dcscr ipt ion can be establ ished by put t ing,  as in  (3.1.5) :

( E { a t l H " ) ) : ( t ' ) + ( v ; ' ) -  
} .  ( 3 . 2 . 1 )

or :  ( t t lH")  :  ( r iL l1 . )+(r ;1)  I

For the same reason as in  (3.1.10) ,  Ho is  madc more speci f ic ,v iz . :

:  ( r ' ) ' v o - tl,o2

(cd) a vector

Ho
I( * )

r , d , /

V a parameter

Application of the law of propagation of means on derived variates in the adjust-

ment  process:

(2.2.11) t  (Jo)  -  ( . r0, )  ( t '  a ; )

(2.3.16) : (X^-at) - Gn, (3;,) (r '  aL)

Wi th (3.2.1)  and (3.2.2)  thesc g ivc:

:  ( i ' ! : 0 ) t r f l , l ' )
\ J  " l  \ ,  J  /

(af)  (c ' )  .V

(tn)+V?/r

(Goi) (giJ (d') . V

(E\"Y'lH'l)

r i ' t
t t
\ ( t . /

(E\XRlH"\)

r  YX l r t
l  

- -  
|

t ,\ , o l

Subst i tut ion of (3.2.3) in (3.1.6),  or,  in view of (3.1.13),  direct subst i tut ion of
(3.2.1) into E in (2.2.16) gives thc formula, which is appropriate for theoretical
considerations:

)" : (tj)* (i;, ') (g'1' G''j) ki (ci; ' vz (3'2'5)

Subsequcnt ly the l ine of thought of (3.1 .7)-(3.1.1l)  can be appl ied again, so that:
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io _,  lVoL

and, from (3.2.3) and (3.2.4):

/  \ o - l - \
\  I  \a ' ; )  ( r ' ) '  f , ' ]
\ 6 /

l rl,roi
t _ | : {cnt\ (g;J (' '). ivul\ o /

With (3.2.6) the eilcct of a minimum vil lue of V in (3.2.2) on dcrived r, 'ariates can
be computed, which accorcL'ng to (3.1.7) can be lbLrncl with proberbil ity ps in a tcst
with the crit ical region Ka.

Tlre results (3.2.6) arc oi 'thc utmost importancc, for they gir.t: an indication of
the reliabil i t2 of the rcsults o" measuremcnt and adjustmcnt.

For example, a computed coordinatc may have a star.rclard clcviation of l0 cm,
but a value Vifn of 100 cm. This means that influen.e, V-i, which sencrate in the
final result an amount of v?s < 100 cm, in 8091, of thc cases wli l not bc noticed in
the computation (inclusivc of test) . Oftcn, thcse 100 cm are much more cletrimental
to thc purposes of the mcasurcment than the standard dcviation of l0 cm, so that
the "strength" of a network is determined by thc values (V;Y) rather than by thc
covariance matrix or. (Xf , (X'f o2. (GRS).

From (3.2.5) it follows that in a geodctic netrvork without supernumerous
(redundant) obscrvations (and consequcntly wittrout conclit ion cquations so that
(Gti1 lgii)), for eVerv v2lus V, one obtains )" : 0. Converselv, it follows that lV6l
is indcfinite, or, in (3.2.6) onc must introduce ]vul oo. This again means that
there is no check on crrors in mcasuremcnt or computation, or, in other words, in
this case there is ne errlr control.

This is an cxtremc example; current seodctic practicc shclws constructions with
a sreat number of condition cquations (olten 6 r I m) , so that it may be stated
that thc gcodesist usu:rl ly aims at a reasonaltlc error control. Computations l ike
(3.2.6), howcver, are scldom or nevcr found in scodctic l i tcrature, so that quantita-
tive data about values (VliX^) arc lacking. But somc published rcscarch dcals with
thcse problems though in a cliffcrent form; a typical examplc is fRnrcunNnorn l94l].

Research computations havc sl.rown that therc are sreat differenccs in error con-
trol bctwecn diffcrent types of geodetic networks, ancl one of thc aims t|c author
wantcd to sct for his work in I.A.G. Spccial Study Group No. I : 14, was a sharper
and more general lbrmulertion of the concept "strensth of Figure" of a geodetic
network, see also the anncxecl publication iBaenoa 19621. A number of theoretical
and practical diff icult ies have prevcnted him from actually execr-rting this idea.
Some of these questions wil l hcre bc treated in more cletail.

Most adjustment problems in geodcsy arc exccutecl in one way or another by
splitt ing the adjustment into steps. Tl-rercfore we wil l f irst follow thc l ine of par.2.3
and 2'4 to find thc consequences of this. l, from (3.2.5) is then split up as inclicatecl
i n  ( 3 . 1 . 1 2 ) .

Introducins for brer-ity :



STAf'ISTI(IAI, (]ONCEP'TS IN (}EOI)ESY 25

rs i l *  1n .1 1, r ;  i '  ( ; i  i  )  (g i , i \  (c i )

I

I - r  l -  l y ' r r  I  A / r r r  rv r \  f , .N" . . . . , / \ / r \  ( , )

iy'r - (ri)* (Ei) k,i Grj'a Gj,,) (.c,)

I/rr : (ci)* (,sji,) (;i'j'r Gi'j'rr) (gj.) (.c)

1y'rrr: (4* (S;r) ((; i ' i ' .rt Ci' j ' .rt\ (,gi,) k,)

iy'rv - (.t)* (g;,,) (G;'i'.ttr Gi'i'1 {,9,,,1 (ci';

I

Ar

,,'. *lOrl

ur, - rrl

,".- Orl

,'.- Orl

, t6''  
lot

(3 .2 .7 )

(3.2.8)

we gct ,  see a lso (3.1.7)  :

t

- lHol12 - y ' / .V2

I
1  :  ) . r+ . .+2 r ;

i l  -  I / r .V2

2[ - i,rrr. v2

llIr - ly'rr. v2

lr\r : /y'r\r. v2

,lty- ) r", ,,,
,lt6::: ) F' .

,lt6::t:'' i- .,,,,

rl]dl"i' > _1,., ,,,,.

Rl

AII -

/lrlI
t '  -

/]IV

T l r i s  i m p l i e s ,  t l r a t  3 . 1 . 6  1 i s  s p l i t  i n t o  l i , r u  p r r r t s :  t l r c  I b r r r  n o r r - c c r r t r : r l  f - r l r r i a t e s :

! -  r , r ,  - , ; . r t  .  .  . ,  F '6 , r ' .  - .1 r t '

are inclepcndently distri l lutccl.
Thc  l i nc  o f  t hough t  ( . 3 .1 .7 )  (3 .1 .1 i )  o r  ( 3 .2 .3 )  (3 .2 .6 )  can  rhc re f i o re  be  app l i ed

fbur tirnes, oncc for each step:

io - 1(1u, fo, h, cx:t l , I  lon

)"', - liu', l1',,, h', cn)

)'ii - )'lr,n", lJi", b", *') / q 9 q )

i  I I I Ltrn"', fi i l ', h"', cxt)

l (r t ' ,  f t i i ' ,0",  - l

/'o

, I |

l ! , ' l  -  \ '
A  r l

I Y

7 t l

l f : l  - ' t" ly'"
.  I I I

1y", 1 _ 1',)
, \ I t t l

tf))t ..- 1ii
I  

I '  
I  

, \ " '
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The question arises what is the (practical) signi{icance of the ]Vel-values in

hand column of  (3.2.9) .

To see this considcr (2.4.6), but now under thc alternative hypothesis
( 3 . 2 . 2 \ :

adjustment in one stcp D f  /  ^ , ? \  -  p t r \  L t  \  1r i \ ) ) t D ' , t l a i  I  P

adjustmcnt in lour steps p,,( l )  e B,o' , lHoj -

: i I Bt l[ I /t" lI I fit"]{ I Pt'' }

lJ - i)\a, h, cn, ) 't i (3.2.  l  o)
i t  

-  
i l u t .  1 l r .  o o .  a r l

[JIr 
-- 

[J.t\uII , brI, -, 2lr]

firr _ l)trrtLrr, 6III , oa, lrtl)

/ i r \ '  :  l ) l rcl \ ' ,  l1w, -,  2ru )

Now the situation is possiblc that:

_ f l :  [ 1 - l t ] { 1 - 1 i l r r t l  p r n i t l  p r v t  ( 3 . 2 . 1 1 )

which, in view of the ratios bctween thc ,i 's givcn by (3.2.8) , rcquires a certain rclation

between the a's.

Consequent ly ,  s tar t ing f rom (2.4.7)  wi th ( .2.+.8) ,  (3.2.11)  wi l l  be fu l f i l lcd wi th

some approximat ion.
(3.2.11)  suggests an approach lbr  t l ic  conversc problem in v icw of  (3.2.9)  ;  l l ; ,  . . , ,

plv must be dctermincd with rcspect to an acloptcd valuc ps, makine use of:

1-t t0 :  {1 / t , l i l l  Bl i } { l  p;"} l l  f r l , ' }  .  ( .3.2.12)

If, for example, the tr 's arc chosen according to (2.a.8) and the ratios of thc ,10's

according to (3.2.8) ,  one can computc valucs {J / , , . . . ,  f l \ ' .  Howcver,  thcn th is  is  not

necessary any morc, becausc from the ratios of i,,, )"1,, ..., 2f,\ '  Irom (3.2.8) it follows

wi th (3.2.9)  that :

lvul -  lv;  :  v l i l  :  v,1"1 :  lv, l '  (3.2.13)

Possibly onc can also attain (.3.2.13) by computing p,i, . ' ., Plt '  in the same way

from Bs as nI , . . . ,  &rv were computed f rom a according to (2.4.8)  .  I f  thcn the rat ios

of the valucs Lo from (3.2.8) arc used again, r 'alues &r, ..., arv wil l have to be labouri-

ously computed, so that the crit ical regions arc in fact determined by the correspond-

ing l, 's and conscquently by the spccial alternative hypothesis Hoftom (3.2.2)-

The two thcoretical possibil i t ies leading to (3.2.13) havc the practical (and

actually even theorctical) di{f iculty that it is tacit ly assumed that it is possible to

have a complcte view of the total adjustment in one step.

But if one considers a geodetic network as a work which €pows over a period of

many years, durinu which it is impossiblc to get a total picture in all details, then

this assumption turns out to be a fiction.

the right-

Ifo from
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Therefore it is in practice admissiblc that besidcs (2.4.10) one makes the simplifying
assumption:

fr,, : fii : 0i: :01," : d,1" I e.2.r4)e.g. :  0.80 )

(3.2.9) with (3.2.14) wi l l  then in general  result  in:

lv,, l  * lv, l l  * vl l l  + lvl" l  + lv'); l  (3.2.15)

which givcs rise to thc question which of thcsc values (3.2.15) should be substituted
into (3.2.6) .

An analogous problem was treated already in fArannoa 1963], where it was
tried to reach a minimum value in (3.2.5) by choosing a certain group of condition
equations for each alternativc hypothesis specified there. In this case, the measure-
ment of the whole network had becn completed, so that the formulation of the pro-

blem was not entirely cquivalent to the one here treated.
An extreme il lustration of (3.2.15) is given in the following case :

27

4,, ,f..iut .ur.
I

(3 .2.7)  I  1 / r  -

(2.4.  r0)
(.3.2.4)

1y'rr : ly'rrr : 0, therefore: ly'rv :

. " 1  - - I I - - r r r

oI oll oIII
P o :  l ) o :  l ) o (3 .2 .16 )

(3.2.e) r I  r I I  I I I I  r I \ '  j  .
A|D Ai t  Ao > Ai =F \ t

g l I I
Y  ( l

, l -  2 n l= l " n  - t l

In this example, no chcck on the occurrcnce of H" is possible in the steps I-III, this
possibility is only provided by step IV.

In fact one is faced with a decision problem:

.  ( 3 .2 .17 )

At this stagc it is not clear what should be the basis of the solution of this decision
problem, if it is not the directive to adapt the adjustment in steps to the order of
execution of the measurements in a certain geodetic network.

For i l lustrative purposes this wil l be worked out for a more general case of 11o. For

the tests, the following decision scheme can be established:

a r V : a

fito' - fu

either adjustment in one step + lVsl I
or adjustment in four steps -  Vlv 

I
including the choice of a 's and fo 's I

lv,l : lvlil

[ , " t ' : $
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case: ly'r, iv[, jvlrr, ly'rvi 11n, genet

t
Sequcncc

i l
1 o  

l

al

,u'l;, 1 16"1'
62 62

J o
,.;rri,

;  ]  Act ion
I

- - t

__l
I
I

.J ;IIT I2
I : J  {

02 I

2 "

1 a
7

. 6 i 0 , )  
l

e B b )  i
i' .  I  ,  l

€ B ' , 0 , t  ' e K ' 0 " t

i
€ B i o t )  |  € B ( o , r )

i  . , .

€ B(ar ' )  l )  €  B to t t )  I  €  K lP t " )

E  j { a 1 )  I  
5  j ( o u )  i  6 3 t 0 " ' )

e B(o) I, e Btai e /J(0",1

e B(.a) a 3\0t) e B(0,,,)

**, k;, - *; I
go to 2"

rcject (x'") in steps I, II

go to 3o

rcject (xi) in steps I-III

go to 4"

reject (x'.) in steps I-IV

1:1ent J!)L

C ]((oI\ ')

€ B(or\')

(3 .2 .18 )
This scheme is remarkable in several resDccts:

a. In Ho of (3.2.2) there is only onc parameter V and yct one is working in steps.
But because in every step ncw obscr.n'ations are bcing added, one has thc possibil i ty
to check the occurrence of Hoatan carlicr stase, so that in the case of rcjection the
number of xt to be remeasured is a minimurn.

b. It is possiblc that thc null hypothesis is rejccted in the different steps in spite
of the fact that 11o docs not occur. Tire probabil ity to takc such a wrons action
(NnvueN and PnansoN: errors of' the first kind or Typc I crrors) are, successively:

a,l

I  - l l  r r r ) { l - & r I }

l - { 1  r l t } l l  
" t l t l  

( r r t r )

1 - l l  o t ) { l  r l t } f l  o t t t } f l  , r I \ ' }

c. It is possible that in the different steps one docs not reject the nr-rl l  hypothesis,
in spite of thc fact that l1o occurs. Thc probabil it ics to take such a wrong action
(NovlraN and PnensoN: errors of the sccond kind or Type II errors) are, successir, 'clv :

I l I

{r P'}{l rn1
{1-p ' } {1 -pu l r l  p ru r

{ l  -pt{ l  - / t t t i { l  prrrrr l  ptvt

(3 2 20\

d. There is somc similarity betwcen (3.2.18) and so-called ,,scquential tests".
There arc, howcvcr, characteristic differenccs: for thc reasons mentioned before, it
is particularly diff icult to indicate in ad'u'ancc I 'alues for a and /is to which (3.2.18)
can be adapted, whereas the mcasurinu process is f inished whcn the vector (x!,) is
complete (except in thc case of remeasurements).

/ ?  ,  l q l
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(3.2.19) may give risc to quite high values for a, as has already been remarkcd
with re{-crence to tablc (2.4.9) . II ' the cost of'remeasuring is also considercd, the
lrcsitation of practical geodesists to lbllow consequently the scheme (3.2.18), is
very understandable . Thc choicc of' rrr, . .., ur\ becomes tl ien a question of confl ict
bctwecn conscience and cost !

In addition one is faced with the alsc-r incrcasing valucs (3.2.20), in which the

B's increasc as thc rr's arc choscn smallcr. This is thc next confl ict of conscience for
tlre geodesist who wants his crrors lH"' i tn be indicated.

Using (3.2.9) hc can computc thc magnitude of the errors in (x'r) which, with a
certain probabil ity, wil l be just detected, but in practice he is then faced with the
situation indicated in (3.2.15). It seems diff icult to find a satisfactory solution for
th is .  The wholc schcmc (3.2.18)  must  bc worked throueh,  so that  one f ina l ly  has an
zrcccptance region B'o) {rom (2.+.6), which, choosing e.g. aI arv, may be
quitc different from Bru' from (2.4.6), er-en if c is computcd from (2.+.7). For this
rcason, the comparison between tests based on adjustment in four steps and tests
bascd on adjustment in one step wil l be very diff icult if not totally impossible. And
because of this, it bccomcs practically impossiblc to compute a unique value for

lVsl ,  and consequent ly  lbr  (VsXn) I iom (3.2.6) .
There is no need to be too pessimistic about this conclusion. Thcory is just theory;

sometimes it may sharpen our intuit ive insight, sometimcs it docs not. Many years
o1'experience in the application of'this theory har,'e taught us that a sharpening of
intuit ive insisht has resulted) e\:en if the final decision does not always conform
to the theory.

Every geodesist who has a practical mind wil l of course ask: whe rc should I start
looking for  cr rors in  casc (3.2.18)?

This question leads to a refinement of the formulation of H" in (3.2.2) . For, by
definit ion, (.3.2.2) does not give an answer to this question becausc on account of

the introduction of only one vector (ci) there is a depcndence bctween all (Vlz; .
From a practical point of vicw, (3.2.2) is thcrclbre nonsense: no functional

relationship can be indicated lor most types of mcasuring errors.
Thcrc, (3.2.2) is rcplaccd by thc following composite alternative hypothesis:

lu".
I  !  

:  r,2,3,+

: (,1) 'v, o  :  ! 1 ' o z

vectors Vr, parametcrs

The line of thougl

29

" )

- t -
l Y ,

i [ "
l u ,

( 3 . 2 . 3 ) :

rt rs now

l  V, ,  v t ' \
I  r ' J  t .

I  
-  

l r
t 6 /

for cach 11o, thc samc

r v i n r
(3.2.4) :  I

as for Ho. The notation becomes:

(3.2.22)



30 puBLrcATroNS oN GEoDESv, NEW sERTES) vol. ,  2, No. 4

(3.2.7)t  No, Ni ,  . . . ,  Nr"
(3.2.8) , )'I, etc.; fr., 0i, ,t .
(3.2.9) : ), j,0, etc.; lvj,nl, etc.

Now put the case that a decomposition into four
compare  (3 .2 .16 ) :

1
l

steps can

. . (3.2.22 cont.)

be made, so that,

(3.2.23)
Nre

N;'

Nto"

lij"

Sum : y'y'p Nl

Now the indicated difficulty
making a choicc o[d i f ferent  ] fo

1/,

of intcrpreting (3.2.15) can be circumvented
to be computed, such as:

Ao
(3.2.e)

otV

. T
^1,o

ti
a  1 t
A2,o

1/F
l  I I I

A 3 , o

tf"
r  l \ r
A+,o

1/il

(Vt,uXo)

(v;x')

/v-  YR\

(v;xj

0
0
0
1/1"

by

Har pi,u

,qII
P2.t)Itaz

I  Iaz

ltat

I I

I I IHor, Ho,

Hor, Ho* Ho, r I\ '
A+ .o

(3.2.2+)

(3.2.24) is now used in connection with (3.2.18), whercby a certain indication

for the detection of errors is now present. But this will bc no more than an indication,
because, essentially, the remarks given after (3.2.18) wil l be valid for the situation in
(3.2.23)  too.

(3.2.21) with (3.2.23) only give an utterly simplif ied picture of the real situation in

practice. It might be said that the four steps are in fact four groups each consisting
of many partial steps. In addition, (3.2.21) cannot be established in reality either,
so that, on account of the fact that the four vectors (cj) cannot be established, in

practice one often makes as many alternatil'e hypotheses as there are ff'e. Every

p : r l p : z l p : z
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separate hypothesis 11o,,, consists then of the hypothcsis that only r]t has a measuring

error ,  whose s ize is  V, , ,x i .  T l i is  makes thc schemcs (3.2.18) ,  (3.2 '23)  and (3.2.24)  very

large and complicated, so that one usually restricts oneself to a l imited choice out of

all possiblc combinations. Experiencc has shown that in this way it is possible to

gct an ovcrall picture of thc decision problem, but that in practice it is very diff icult

to actually make a decision.

A typical example of the situation $.2.23) is thc classical triangulation network,

where the measurement of directions is sprcad over two or more nights in order to

check on possible lateral refraction. One gcts the lbllowins arrangement:

Step I Every station adjustment pcr station per night can be seen as a partial

step of step L Ho, is concerned with rcading mistakes. The problem is

then to decide whether a certain scries o{'direction me asuremcnts can be

acceptcd or must be rejectcd. If the measurement has been done with great

care, Ho, can olicn be lc{t out of consideration, and the computed d2 of

all partial steps scrve to tcst if the adopted o2 of (2.2.2) has an acceptable

order of magnitude. This may e.g. bc done by means of confidence in-

tervals.
The partial steps mentioncd here occr,rr during the gradual progress of the

measurcment of thc network, alternating with partial stcps of step II and

step III, which is simplif ied by the practical abscnce of stochastic depen-

dence betwccn the partial steps within step I

Step II The joining of the different station adjustments made for each night for

thc same station can bc considercd as a partial stcp of step II. 11r, is then

concerncd with influences of lateral refiaction. f 'he establishment of

vectors (ri) from (3.2.21) mccts with great diff icultics, or is impossible

evcn per partial step. This makes it vcry diff icult to estimate lvil,r] from

(3.2.2+), so that in this respect the theory developed offers relatively few

possibil i t ies Ibr practical application.

We wcre very disagreeably reminded of t l 'r is when the base extension net-

work which was measurcd in 1965 in thc North of our country clearly

showed signs of latcral re{raction influences which could not bc localized,

although expcriments durins thc wholc 1964 season seemcd to indicate

that such influcnces werc not occurring thcre.

Step III Trianglc- and sidc-conditions and sometimcs base- and Laplace-conditions,

grouped in partial steps or not, can be considered as step III. Hq is then

concerned with pointins errors in dif lerent form, such as e.g., are caused

by the centering of instrument and signals. The decomposition into partial

steps, which is necessary for thc analysis of the progressing measuring pro-

cess, is here hampered by the (often strong) stochastic dependence be-

tween thc misclosure variatcs. Because variates corresponding to directions

may occur in many condition cquations and consequcntly in a relatively

large number of partial steps, one is in step III forcibly confronted with

thc theoretical diff icult ies o{'the decision problcm mentioned in connection

wi th (3.2.17) .  In  addi t ion,  wc have hcre a lso the problem of  establ ish ing
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Step IV
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thc vector or vectors (ri) per partial stcp, so that usually one just decom-
poses 11o, into zrs many altcrnatir.c hypothcscs as therc are direction
variates.
The difl iculty of actually dcciding to reject or accept is well i l lustrated by
thc base extension network mentioncd bcforc, whcrc wc actually do not
know lrow to make a decision which is justi l iablc economically and scicn-
tifically.
Fitt ing the net to givcn coordinates by establishing coordinate conditions
is the last step; thesc conditions may be grouped in pzrrtial stcps..I lon is
now concerned with errors in tl iese coordinates or with faulty signals in the
corrcspondins points. Again we mect thc diff icult and olien unsatis-
factori ly solvablc problcm of'thc establishment o{'the vector or vectors (cl)
pcr partial step. The test problem is of :rn cxtraorclinary diff iculty because
as a rule so l itt le is known about thc ccivariancc mzrtrix of givcn coordinates.
This problcm, which we shall touch upon in par. 3.3, is almost daily met
in smallcr local networks. Br-rt also in larsc scodctic nctwclrks this problem
turns up, as e.g. was cviclcnt lrom the fi l l ing up of the first order chain nct
in  the U.S.A.

Docs the preceding lcad to a ncgatir, 'c conclusion about the applicabil ity of
methods of testing? Certainly not, we could not do r'vithout them any more. But it
appcars that our l ine o{'thought must be ordered better, perhaps the true simplicity
is lackins.

3.3 Effects of the assurnption of a covariance rnatrix

In par. 2.2 it has been sketchecl how one can arrir.e at thc choice o1'the covariance
matr ix  of  ( l i ) :

( o ' . r - i )  :  o2 . (p i i )  ( 3 .3 .1 )

in  Hs,  see (2.2.2) .
The quest ion may bc asked i f  i t  is  important  that  thc choicc of  (3.3.1)  is  done as

carefully as possible. Research and practical experience show that this choice is of
fundamental importancc for t l ic intcrpretation of the results of measurement and
computation, with thc rcstriction that it sufficcs to ascerrtain the clermcnts of (3.3.1)
in only a I 'ew (two) digits. This is a colrscqucncc of thc l imitations of estimatine
covariances from an (always restricted) expcriment consisting of rcpcatcd mcasure-

mcnts. Furthermore, the comparison between the registration R of'thc measure-
ment of zr geodetic network :rnd the suppclsedly equivalent resistration o{'such an
experiment contains so many doubtful clcmcnts that it woulcl be self-deception to put

the e lements of ' (3 .3.1)  down in more than two d ig i ts .
This set-up, i.e . the assignmcnt of a cor.ariance-matrix to a lector (x'.) (obtained

Iiom thc mcasurcmcnt of a gcodetic network) by mezrns of a comperrison of the registra-

tion ,R, could in principle bc replaccd by a set-up where experiment and measure-
ment arc cxccutcd togcthcr. In thzrt casc thtr zrcljustmcnt lry the method of' least
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squares with tests based on the F-distribution could bc replaced by the so-called
multivariate analysis with tests based on the Wishart-distribution. The theory con-
cerned has been completely elaborated and is available, although tables have not
been elaborated to a sufficicnt extent. Principle is onc thing, application another:
it wil l rarely happcn that a geodesist is able to measure a geodetic nctwork, covering
one or more countries, more than once ! Therefore wc can restrict our discussion t<-l
the set-up of par. 2.2 ff.

In (3.3'l) the usual decomposition of (o.-1i) into the variancc factor o.s and the
matrix of weight coefficients (g''i) has bcen indicated.

The adoption of a value for o2 turns out to have no influence on thc I st part of thc
adjustment (2.2.11), the computation of the least squares estimarors. Nor has this
choice any influence on the Znd part of the adjustment (2.2.12), the computation of
the matrix of weight coefficients of these estimators. Only when we transfer to the
covariance matrix, o2 has the function of a kind of scalc factor. Also in the 3rd part
of the adjustment (2.2.13), the computation of the shift ing variate, the adopiion
of oz has a similar influence. However, there is a serious influence if one .onrid".,
tests with powcr functions; at first sight it seems that o2 has again an effect like a scale
factor, but in reality a wrong assumption Ibr o.2 may have a ruinous effect on the
interpretation of results of the computation. This is also true for the situation where
no alternative hypothesis needs to be assigned to Step I of the acljustment, so thatin
testing-formulas o2 can be replaccd by the estimate {,4r}2. See thc remarks referring
to tlr is at the end of par.2.4.It would lead us too far if we discussed this further.

It is particularly t ioublesome that just this latter influence of'o.2 turns out to be a
disturbing factor for the testing theory. For, in the way described in par.2.2,experience
shows that the ratios of elements of o,;,i can be established with a grcater ..tiubitity
than their actual numerical value. Or in other words, it might be said that the matrix
of weight coefficients (giJ) can be established more rcliably than (o.,;,r), and con-
sequently that the assumption of a value for o2 is always a more or less precarious
affair ' see (3.1'3) . This question wil l always have to be taken into account in thc
decision problem of the testing theory.

More drastic are the consequences of an incorrect assumption of the matrix (gzi),
from which (ga') follows, sec (3.1.2).

The elements of (gzl), just as those of (o;,;), wil l nevcr have a realistic number
of digits higher than 2. As is easily shown from thc geometrical i l lustration of the
adjustment and testing process in the sample space of (ai), the consequences of this
restriction are hardly appreciable. LrNrwrrz has quantitatively studied these con-
sequences [LrNrwIrz l96l] and found an admissible deviation of l0l/o for the ele-
ments of (gii) , which checks reasonably with the afbre mentioned restriction to two
digits' I often have the feeling that we should bc happy if thc possible deviation is
within 30o/". we therefore definitely do not rrave to worry atout,,true,,weight
coefficients, as long as we have acceptable ones.

In ordinary practice one takes much less care, evcn to-day. It sti l l  happens that
for (gzi) a unit matrix is assumed without more ado, whcreas oftcn thc rrrobabilitv
distribution of siven coordinates is ignorcd or forgotten. Such a matrix, which
(often unjustif iably) is put in thc placc of (gir) wil l be called a matrix of pseudo

J J
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weight coc{ficients,to be denoted l ty :

lht i l
(3 .3 .2 )

so that as the pscudo cot ariance matrix is introch-rcecl:

02.  ( .h i . i )  instcad of  o" .  ( .g i i )  .  (3 .3.3)

If-this is done thor-rghtlessly, one is casilv lcd to an automatic application of the

a l so r i t hm o { ' t hc  me thod  o f  l eas t  squa rcs ,  i . c .  ( 2 .2 .11 ) - (2 .2 .13 ) .  Bu t  one  ob ta ins

pseudo lcast squares cstimators, which wil l bc clzrssificd irs unbiasecl l inear cstimators,

dcnoted by:

({ ' ' ;)) (3'3'4)

Accordinuly on<: sets pseuclo weight coclficicnts of'the cstimators and a pseudo

shift ing variate.
Summariz in{ ,  ancl  us ing a nc i tzr t ion rv l i ich is  in  accordancc wi th (3.3.2)- (3.3.+)

wc get  in  analogy wi th (2.2.16)  :

Adjustment witir (/zir)

l s t  pa r t

i9ry"
3rcl part

(,Xf,,,-a[) - (H"') {.h,i) (t' ait)

(H^') - (.HRj') (,hj) (H"',) ' t
E,,,t : (rj a')* (\) (.hi'j' -- Hi'j)(.i,i) @' a:0)

(3.3.s ' , )

(3 .3 .5" )

(3,3.5" ' , )

As far as the computation of cstimators is conccrned, the introduction of (.3.3.2)

nccd not be harmful. Many satislactory approximate adjustment methods have been

devcloped, and it can be proved fB,tenn.t 1961] that always a matrix (/zri) can be

found with rvhich the estimators from the approximate metirod can be intcrpreted as

pseudo least squarcs estimators, proaided that the same "laws of nature" (2.2.2) ot

(2.2.5) are used. The algcbraic technique devcloped for this has only rarely been

used,  because the resul ts  (3.3.5")  and (3.3.5" ' )  usual ly  cannot  l le  in tcrpreted '

To i l lustratc this wc opposc to cach othcr thc:

least squarcs estimators ({1r)

pseudo lcast sqr-rares cstimators ({l1,,)

Consiclcr now a l inear furrction l ikc (2.2.9) with an arbitrary row vcctor (,4rr) :

j  -  (; ln)(r") (3 .3 .7 )

Then f rom (3.3.7)  wi th (3.3.6)  fo l low the est imators:

[  -  ( l l r ) ( { " )  (3 '3 'B ' )

f  , t , t  -  ( . l " ) ( { ' r i , )  .  (3 .3.8")

An application of thc law of propagation ol weisht coelhcients to (3'3.5") and

(3.3.8)  wi th (x ; ) ,  ( r i ) *  . -  (a, i )  rcsul ts  in  the ( in terprctablc)  weight  cocf f ic ients:

tr i i , l ,  tr), l i  -  (,H"i)(hi)(,s,")1h,,,)(.H;\) - in general + (.HRS) (3.3.9)

(3.3.6)
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1", F', - (.1n) (G1rs) (.1,s) *

F  : t j t ,  ( . 1 , , ) r x ' i , . Y ) ) *  ( . 1 ' ) *  F , F
I
i  

(3 .3 .10)

From (3.3.8")  fo l lows wi th (3.3.5")  the pseudo weight  cocf f ic ient  of  ! , , , , :

( ,1n)  (11n,s)  ( ,1s)  *  (3.3.1 1)

Also taking into consicleration E from (2.3.16) and E,,,, from (3.3.5"'), the following
seneral result can bc obtained:

( .  la )  1114s)  ( .  |  . ) *  l "  1  ,  F , t ,
(3 .3 .12 )

F

F, l;

E

The indefinitcncss of'the inequirl it ics in (3.9.12) is the reason that without further
analysis of'(fZa1 it is not known whcther its use in the planning of nctworks leads to
an under- or an overestimation o{'the precision of ({i},,), *he.cas with respect to E,r,,
it is not known whethcr its usc in tests incrcases or decrcases the probabil ity of re-
jecting I1u. Att cxamination of the thc rcsults of earlicr adjustments has in this respect
lcd to very remarkable conclusions, and tl 'r is may be the c:rusc that the theory of
observations is so impopular witl i  many mcn {rom practicc .

A further analysis shows, howe.u'er, th:rt, i f used with prudencc, the introduction of
(lzl i) which in practicc is almost unavoidablc, can in ccrtain cases give interpretable
results.

For ,  i f  two matr iccs of  pseudo wcig- l r t  coef f ic ients 1/21," , )  and 1/2f , , , , )  can l re founc
satisfying:

(h'1,,^*- g'j) is positivc (scmi-) definitc 
I f 3.3.13)

(h'1,,,,- g' j) is negatir,c (scmi-) definite I 
'  \- '- '  -/

and (/z$^^) is used in the 2nd part, (ri i  r,,) in the 3rcl part of thc adjustmcnt, so that in
fact thc adjustmcnt alsorithm is computed twice, t iren:

|  |  \ t L t R \ , /  |  , x  t r  E
\ '  ' R / '  ' r r ' , . r r l ' .  I . r i  ,  , , , , , - , .  .  ,  / , , , , . , . , (3 .3 .  r4 )

F,F

E

Thc consequencc is that when (11,1;l*) is uscd an overcstimation of variances occurs,
and that 11.her Ep,,,,;,,) is used in a test, &r wil l bc rcjccted sooner. This means that

one is actually using morc strinsent rcquiremcnts, which, as practice in the Nether-
lands has sirown, need not cause diff icultics.

Thc d isadvantage of ' (3 .3.13) ,  r ' iz .  thc dor- rb le computat ion,  can bc e l iminated by
making the two (/zii)-matriccs ful{l l l  the relation:

( i i ' . , , * )  - r z ' ( . h i , i , , t , , ) ,  z r l l  ( 3 . 3 . 1 5 )

If now with a vicw to thc plannins of the precision o{'geodctic networks the adjust-
ment computation is done with (/zfj,,,), thcrr it can ltc strown that:
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(.4^) (11*:.)(,l t) * >. Fr,,".*,, Fur^.t .,- {, F
(3 .3 .16 )

T-tr ,

(3.3.16) m:rkes it possible to answer the question whether the elcmcnts of the main

diagonal of' (gii l  shor-rld be increascd or clccreascd when rounding them off, in the

case of uncertainty in the assumption of (r, i i) and altsence of corrclation. According

to (3.3.15)  and (3.3.16)  onc s l ' rould do hoth,  to  get  a possib i l i ty  for  f ind ing thc s izc of

thc factor 22.
FIcre too, thc practical application of thc thcory is not simple. It is possible to es-

tairl ish a practically applicable theory lBeanne 19641 for distance- and direction

mcasurcments in such a way that uncorrclatedness can be introduced, but the same

thcory shows that in principlc lbr given cor.rrclinates thc introduction of correlation

is ncccssary, c\lcn incvitable . Onc wil l thcrelore hal'e to re\,crt to the general rcquire-

men ts  (3 .3 .13 ) ,  poss ib l y  t oge thc r  w i t h  (3 .3 .15 ) .

The thcory mcntiotred sccms to lcad to thc conscquence that given coordinates

mllst never gct a corrcction, i.c. in an adjustmcnt problcm the part of the covariancc

matrix pertaining to gi 'u'en coordinates must be assumed to bc zero. This is in agree-

ment with gcodctic practice, whcre the same thing is done to preve nt confusion about

thc date when tire coordinates of monumcnts have bcen fixed.

l{cre onc is lacccl with a vcry particular application of (i11,,,,), {br which (3.3.15)

is not valid. Becausc, in particul:rr in small nctworks, thc influence of given coordi-

natcs on the rcsults o1'zrn zrdjustmcnt can bc importzrnt, it has in practice bcen found

that in this case :

Ei1,.,,,,t ):t E (3 .3. t7 ' , )

anci  consequent ly ,  sec (2.2.17)  :

E' ,6 i , , , , , , , , ,1Hu' ,  t ' r ) ,  r " , , , ,  Hr l l> ,  , t2  (3 .3.17")

so that the usc of E1l,,,,;,,) fcrr tcsting purposcs leads too olien to rejection of 11o if only

i t  i s  becausc  o f ' ( 3 .3 .17 " ) .
For small nctworks a solution of this problcm has been found by executine mainly

acceptable tcsts in the steps I-III ns indicatcd in (3.2.23) ff.; after this, step IV is in

principle computcd twice, thc first t imc with the special (Dii ' ,) ignoring the

probabil ity distribr,rt ion o1'the sivcn coordinatcs in order to find estimates Xf;,.,,,,,,

the second time with a (i11,.,.) in wlrich a rathcr rough estimation of the covariance

matrix of-givcn coorclinzrtcs hzrs been used to complemcnt (i11,,,,), whereas also the

Ihctor z2 is cstimatcd for computing z2.E{n,,,,,*).

Tl 'rc same (it l,,,) is also used to find a practically usable pseudo covariance matrix

of ({t i,,,,,,,t), br.rt this mcthod which sincc about ten years is used in thc Nethcrlands

will not be further discusscd here.

It should lte mentioncd, irowe'n'cr, that the solution indicated has led to quite

different requirements for thc cstablishment of small gcodetic networks. Thcsc
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requirements wil l in thc yc:rrs to comc bc tcstccl in practice on thcir mcrits regarding

economy.
The attempts to establislr a (/2ii,.,,)-matrix fcrr given coordinates in a ccrtain adjust-

ment problcm, have clearlv revealed the lundamental diff iculty o{'the exact defini-

t ion of the concept "coordinatc". This is alrcady thc czrse with computations in the

planc. An exposition of t irese diff iculties is lbund in [Bennle 1962], where a first

version was givcn of thc theory now called "Polygon theory in the complcx plane"

iBeanoe 19641. If 'one wishes to find such a (/z' i.,*) for coordinatcs, one must be able

to detach oneself in the first instancc Irom the two berse points (generalized or not) , as

are def ined in par .  6 o l ' fBaenre 1962] .  In  par .  7 of ' thc same papcr  a possib lc  solut ion

has been suggcsted, which might also proviclc a conncction with the purpose of

measurement .
In spite o{' intcnsive research by Alne,nue and mysclf we ll.rvc not yet succceded

in constructing a satisfactory positive (scmi-) dcfinitc ma.trix which nlso has the

relative in'n'ariancc properties requircd by thc thcory. Shor.rlcl this construction suc-

ceed, then a generalization lor spatial computations is ccrtainly possible bccausc the

basic theory {br a spatial polygon theory has already lrccn dcvclopccl.

The plannine of geodetic networks with respcct to prccision as wcll as thc analysis

of statistical tcsts and crror control considerations call actuzrlly only lte exactly

formulatcd i l ' this matrix can bc constructe cl.

3.+ Effects of non-linearity in functional relationships

Generally the different fr-rnctional relationships mentioncd in par. 2.2 wil l not be

linear.
Consequcnt ly  ( .2 .2.6) ,  (2.2.5)  and (2.2.9)  wi l l  har . 'c  to  be wr i t tcn as,  sLrccessively :

3 7

( 0 )  :  ( y , [ . . . ,  i "  . . . ) )

( t , )  :  ( x i " . . . , j " , . . . t t

I  J . ' i .  r  /

For a compar ison wi th the l i r . rear  rc lat ionships f iom par .2.2,  (3.4.1)  (3.4.3)  arc

expanded in Taylor's series omitting thircl- and li isher orclt:r terms. This cxpansion

must be done operationally, i.e. with respect to a vector of'actuall-v assignablc approx-

imate values, not with rcspcct to (i,) or (-!") , bccausc the lattcr are just thc vcctors

to bc estimated.
Because we have to makc a connection with acljustment problcms anywzry, wc shall

follow the usual way of computing thc 2nd standzrrd problcm, r' ' iz. the assumption

of a vector of approximatc valltes lor the unknowns (I") :

(4 ) (3.+.+)

from which, following in principlc 3.+.2) i lnci (3.4.3), the vc-ctors o{'dcrived approx-

imate valucs lbr (I ') and (-Y") are computecl:

i  -  \ , . . . , m  I
Q  - 1 , . . . , 1 )  I

( 3 . 4 . 1 )
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(x, i)  -  ( .x", , . . ,  y ' ; ,  . . . ))  (3.4.5)
(x6)  :  (x ' [ . . . ,  x , i , . . . ] )  (3 .4 .6)

The choice (3.+.+) (3.4.6) is made in orclcr to get cxpansions in the samc "point"
of the sample space of (rt).

For partial derivati 'u'cs thc lbllowing notation is introducecl:

!av' \  , , , . ,  t la2v' l  , , , ,
l a i ' 1 1 . r ; ;  

u i )  
2 l a . t i a ; ; l 1 r 1 , ;  

u i i  u ' l i

lax'l ^i 1 | a2x' I ^, ^;
I a1"l1.r', ' ,1 

u"' 
zla1,"a;"11', ' , '7 

(t ' : ' '  u" ' i

lax\  , ,  r  I  arx ' l  , ,  , ,
I a ; ' 1 1 . ' ; i ;  

' ' i '  
z I a t i a r : ' f 1 t i , )  

' " ' '  ' ' i ' i

The choice (3.+.+) (3.4.6) thcn gives the relation, compare (2.2.3):

(af)(af,) : (o) (3.4.8)

The expansions sought can then, omitting dctails, be written in the form:

(0) - @'1) at' x;l i t;; r,l)-1,,1L (i' x;) I
(fr' x;) : (o",) (i" rfi) + 0, v3)* @h,,,)(jf -y3) r ? 4 q )

I rs.+.sy(t'-X;) - (.A',) (i ' )tj)+(t, Xi1)*(.,\,)(i ' Xi)

(3.+.7)

Up to and including thc sccond ordcr tcrms, wc havc thcn again
cons i s ten t  sys tem o f  equa t i ons .

If (3.4.9) is rcplaced by differencc cquations omittins the second ordcr
these are opposed to (2.2.6) ,  ( .2 .2.5)  and (2.2.9) ,  one scts:

obtained a

terms, and

- (ua,) (.i' ai) (0)

(3.4.  l0)

I rt'-"nl - ulro-n ] rr "; 
- ( ll)(r :x.,,1 l

From (3.4.8) and (3.4.10) it lbllows how, with some unimportant changes, the
adjustment algorithm indicated in par. 2.2. can be applied to non-linear relation-
ships (3.4.1)- (3.4.3) .  Here,  too,  we lcavc out  thc many dcta i ls .

The effect of adjusting on the basis of the differencc equations (3.4.10) is twofold:

a. Substitution of the obtaincd cstimates into (3.4.1)*(3.4.3) wil l show theoretical
misclosures (remaindcrs) .

b. All derived variates generatcd by thc adjustment algorithm will have a bias,
depending on the choice (3.+.+.)

Schematically we can indicatc itcm zr. as:

(3.+.2)
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r  B" ; .  (  B ' ) .  , ,8 , )  r ro t  spcc i f ied  l rc rc

(0, '  l ' ' ' l  . .  . .  -Y'.  . .  .  i  '  -  n
f  X r l  -  ( X ; i . . . .  Y " .  . . . 1 ,  -  ( R ' )

r X ' )  ( X ' 1  .  . . .  X ' .  . .  .  1 )  .  (  R ' )
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Some formulas conceming item b. rvil l  bc givcn, lrt it with some reservc bccausc

the theory has been dcveloped only recently.

Subst i tu t ion of  (3.a.2)  in to (3.4.3)  makcs i t  possib lc  to compute the par t ia l

derivative:

I a x " l
l$t ar';lqx;';

' 1 " , ,  -  - l l ,  , (3.+.12',)

Then thc following is valid,

( 3 . 4 . 1  l )

(3.+.12")

(3.+.12"',)

I

c o m p n r e  ( 2 . 2 . 1 5 ) :

(  ) , '  Y  , ' , ) *  o ' ,  , , t  1 "  -  Y ' , : ,1

(,.i,' yii)*(1iJ.") u" -Y';)

/ F I  r r l - O )  :\ " 1 2 ,  |  " /

(Elx') r) :
(E{Y"1,  - r - " ) :

( E l x ' , t , - t ' ) -

(r")(Ri,)

(G4)(&,,)(1?b) ( f i i , )

(G'')(gi) (Ri,)

(G'r)(g,J (1r;) (n,1)

From:
(.8{2"i) * {,0)

follows a similar effcct on E ancl conscquentlv on f2 as ltas bcen indicated in (3.1 .5) tr

for an altcrnatir.c hypothesis. Hcncc', writ ing ,1- instead of ,tr:

_ l
t r  - ,  ( E l . l ' D x 1 g . " ; ( E { y ' } )

Because when dccomposing in to stcps thc same is  val id  for ' , ,1 . -  as Ibr  L in  (3.1.12) ,  the

phenomcnor.r that the cstimatc 62 lor o2 has a tendcncy to incrcase as & (: number

of condition equations) increases, might possibly be ascribed to tl"rc influence o1'

non- l inczrr i tv  of  (3.4.1)  and 13.4.2) . In  geodet ic  pr i rc t ice th is  s i tuat ion is  repeatcdly

noticed.
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If an adjustment shows appreciablc rcmainders, i.e . if the least squares estimates
do not fulf i l l  the condition cquations to a sufficient dcgrcc, iterative procedures are
often used. Usually the procedure converges well enough, but it can be shown that
the bias caused by non-linearity persists, evcn if the resulting estimates fulf i l l  the
equations exactly. In thc 2nd standard problem it also rcmains to be shown that
the result of an iterativc proccdure is indepcndcnt of the assumed approximate
values for the unknowns.

Note on the choice of (3.4.+)- (3.4.6)

This is indeed a choice. The practice of adjustment technique shows that other
choices can be made. T'he most important one is, that in the lst standard problem
one tries to evade the assumption of the vector (Xj) . Instead of computing, according
t o  ( 3 . 4 . 1 0 ) :

U\ - Uo,) (! xd)
one fo l lows (3.4.1)  d i rect ly ,  so that  wi th (3.4.9) :

u,) (y.{. . .. x" . . . '}) - (ri) Qt- Xi) l, (_*' xfi* (ui)(i - xil Q.+.r4)
Further one follows the adjustment algorithm of the lst standard problem in
(2.2.r l )  f f .

This means that the solutions accordins to the lst and the 2nd standard problem
do not give entirely identical results.

The method of (3.4. 14) has a very favourable effect, the remainders R are in
general smaller and their expectation can always bc computed. For example,
instead of  (3.4.11)  and (3.4.12)  one gets:

lst standard problem with (3.4.14)

(Ei R?)) :

(0) :

/  \-r  \
( \  z r i ; .o . ; . ; )
\ - l.  t , l

( y ' { . . . ,  { " . . . i )+ (4 ' ) .  ( 3 . 4 . 1 5 )

(Et f  i_o)  -  0 'u i , .o , ; . i \, T t

I @{X')-ft): - (g")(g*) (E{f\)

It follows from (3.4.15) that the influence of the vector (X,l) has been practically
eliminated by the choice (.3.4.14). Only the small influence of rhe partial derivatives
according to (3.+.7)  remains.

Because in many problems the number of digits which must be used for the
elements of (uf) is l imited, uaoin (3.4.7) is often replaced by:

.,,o tay'\,': : 
i;;.if.ll 

(3'4'16')

Actually one gets then stochastic coefficients:
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I ayol
t ! ' ! ; - l ^ ^ - - , 1  "  ( 3 .4 .16 " )

I  0 i , f  1 , ;  ,

Besides, if there are redundant obscrvations (D 1 m) onc cannot get a unique result,
in contra-distinction to (3.4.7) and (3.4.5). This problem is becoming more and
more important as further consequences are drawn o{' t}re application of large
computcrs. Actually, a solution must be sought in the much wider context o{'the
theory of roundins-o{I, but herc wc cannot go furthcr into this question.

Final remark

The assumption of Iunctional rclationships l ike (3.4.1) (3.4.3) in the formulation
of thc null hypothesis wil l only lead to unambiguous results if thcse relationships are
taken from a uniquc model of functional relations, e.g. from planc or spatial Eu-
clidean geometry, etc.

In general, thcre wil l then be a possibil i ty of choice, the only rcquircment being
that certain conditions of functional indepcndence are fulf i l led. This mcans that
systems of equations can be submittcd to certain transformations admitted by thc
theory.

The theory of rounding-off errors, as well as the theory of non-lincarity sketched
here, show that one choicc of a systcm of cquations rcsults in smaller remainders
than another. The systems may be isomorphic l lom a theoretical mathematical point
of view, but numerical computations may nevertheless lead to rcsults that are some-
times appreciably different. This, together witl"r thc subjcct-matter of previous
parauraphs, makcs error controL to one of the most diff icult subjects in geodesy.

One of the most remarkable outcomcs of thc theory developed is that cffects of
non-linearity may bc made smaller by a particular choice for thc relation between
the precision of distance- to the precision of direction measuremcnts, together with
a par t icu lar  choice Ibr  the systcms (3.4.1)  ( .3 .+.2) .  The resul t  seems to imply that
from a theoretical point of view the measurement of distances and directions in all
points of a geodetic nctwork should bc prcferrcd to mcasurement ol 'only distances
(tri latcration) or only dircctions (triangulation).

Here it conscqucntly appears that there is a strong influencc of the probabil ity
distribution of the diffcrcnt obsen ed or dcrivcd variatcs, an influencc which is also
known from the thcory o{'roundine-off errors.

3.5 Effects of the assurnption of a rnodel of functional relationships

Thc purposeful use of the word "model" indicates that the expression "laws ol'
nature" in (2.2.2) ff. can only have a relative value. As a result of the clear and di-
dactic teaching in high schools or univcrsit ics, almost everyone is convinced of the
acceptabil ity (if not the truth) of the laws of physics, and only rarely such "laws ol'
nature" arc seen as parts of a model consisting of mathematical relations, where
quantit ies have been labeled with a physical name (often in a rather careless and
arbitrary manner) . But the more onc trics to gcncralize in his own field and to seek
connections with generalizing trends in other fields, thc morc it becomes evident

4 l
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that there is a po.r.ribilitlt of cltoice with respcct to thc mathematical framework dc-

scribing physical events.
For  example,  onc may bcside (3.4.  1)- (3.4.3)  arr ive at  a possib le a l ternat ive

assumDtion:

(0) i  : 1 , . . . , m

Q  -  l r  " ' r o ( 3 . s . 1 )
( t )  :  ( . x " r . . . , j " , . . . r )  a  : 5 + 1 , . . . , f r  

t
( . f r ' ) : ( . X " r . . . , t ' , . . . i )  r - . . .  )

If we oppose to each other two models which arc not isomorphic, such as e .g. the

classical ell ipsoidal computing model and a really spatial computing model, we see

that e.g. the measurement of vcrtical anglcs in the second model is a necessity,

whereas in the first model the mcasurement of vcrtical ansles can often bc omitted.

This means) conseclucntly, that:

m * m .  ( 3 . 5 . 2 ' )

But this example shows also that thc number of condition equations and/ or

parameters can be different, or:

6 + t  .  ( 3 . s . 2 " )
From (3.5.1)  and (3.5.2)  i t  fo l lows that  the stat is t ic :

62  .  ( 3 .5 .3 )

wil l certainly bc dif lerent in thc two models, so that in principle a test might be uscd

to decide in favour of one or the othcr.

In principle .. ., becausc the following shor"rld not be fbrgottcn:

a. Thc diff iculties inhcrent in every mcthod of testing (par. 3.2);

b. Thc effects treated in par. 3.3. and 3.4;

c. The innumerable corrections to measuremcnts which havc to bc applied to

establish corrcspondence with mathematical quantit ies, and which arc often

assumcd to be constants (cmorless quantit ics) ;
d. The insufficiency of any mathematical modcl to describe physical events

completely, not to mention thc lact that the rccognition and definit ion of

"physical events" has a strongly subjcctive aspect, and is usually directcd

towards the mathematical model assumed.

Thereforc it nced not be surprising that testing by (3.5.3) is not conclusive. This

might be an explanation o{'the negativc rcsults of thc tcst computations by Hortun

mentioned in par. l.
It therefore appears to me that actually the only critcrion for the choicc of a

mathematical model of functional relationships is given by the results of predictions

based on the model. Of course onc is here again faced with a ncw diff iculty, viz. the

assumption concerning the registration R (sce (2.2.1)) of future measuremcnts. In

this respect the cxccution of experiments (r-rnfortunately always too l imited) may

give some likclihood of success, although as a warning we must rcfer to thc basc

extension net in the examplc treated at the end of par. 3.2.
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The question how one arrives at the construction of an alternative model when

predictions based on a prcviously used model do not work satisfactori ly, seems to

me to contain elemcnts that arc too strongly personal to permit a general answer.

It is done on the basis of experience, experiments, influences from literature, but

above all by intuit ion. Modern computer technique with its urge towards generality

wil l often be a stimulus; sometimes a set-up for a modern computing technique

brings out that the consistency of the model is not satistactory. The latter is e.g. the

case with classical ell ipsoidal computation mcthods, at least in the form as was

analysed in fBaanna 195+,571. Curiously, this may be masked by choosing the

adjustment algorithm of the 2nd standard problcm, usine coordinates as para-

meters.

+3
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4  M O D E L  T H E O R Y .  A  T E N T A T I V E ,  A P P R O A C H

4.1 Experirnent and rnodel

This paragraph is devotcd to a sketchy sur\rey of the significance of (2.2.6), (.2.2.5)'

(2.2.9)  or  (3.4.1)-  (3,+.3) ,  or  (3.5.1) .  From par.  3.5 i t  fo l lows that  these re lat ionships

are supposcd to be derived from a consistent functional model. In par. 2.2 it was

stated that a reasoning could be given, lcading to the notation of these relationships

as being valid bctween quantit ies with the ti lde sign (-).

In view of the cstablishment of a l ink in (2.2.1) ff. between a vector of observa-

tional numbers and the results of an (earlier) experiment, the notation indicated

must have a connection with the analysis of an experiment.

From the frequentist background, we consider the experiment to be conceived as

an l/-fold "repetit ion" of a vector (xt) , each repetit ion consisting of one measure-

ment of a number of directions, distances etc., to which the registration R is assigned;

compare fBeenra 1960, 62]. We obtain:

{ ( r i ) ;  / ? ' } , . . . ,  i ( t l ' ) i R . . j , . . . ,  | ( r n ' ) ; R " ) }  ( 4 . 1 . 1 )

Now we leavc out of consideration such differences in registration as, according to
t'personal" judgement, are irrelevant, resulting in:

R r : . . . - R , e  R , r ' + R  ( 4 . 1 . 2 )

Then (4.1.1) gives "repeated measurements under the same circumstances"'

In many physical experiments, this set-up can be followcd by computing (alge-

braic) means (xi), thc "first moments". These quantit ies have, in the probabil ity

model, equivalents with particularly welcome mathematical properties. One obtains:

{ ( i ' ) ;  / i }  : ( 4 . 1 . 3 )

The further description of (a.1.1) with (4.1.2) can if necessary be done with higher-
order mome nts, of which we shall only mention the second reduced moments:

{(r,,";); ^}: (f"-, (a- 1 4\

If now "repetition" of this experiment with sufficiently large iy' gives "almost"
(personal  judgement)  the same resul ts  (4.1.3)  and (4.1.4)  etc . ,  then (4.1.1)  wi th

(4.1.2) can be considered as the frequency distribution of a vector of stochastic

quantit ies (variates) . Ignoring many details, wc can then oppose to each other equi-

valent quantit ies in experiment and probabil ity model:

/l i,,\
\1're"""/
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Probability modcl

vector ofvariatesl. (ao)

vector of means: (t ') : P[at\)

covariance matrix:

(o*o,t) - (E\at-It){tt fri})

45

t -
I  -Lxperlment

(4 . l . s )

If the numbcr of variatcs 4i incre ases, thcn 1y' must be many times larger than 100,

whereas the experiment must certainly be repeated several t imes. This means that

the execution of all measurements wil l take a long time, so that (+.1 .2) wil l no doubt

be a too strong simplif ication in most cases. In view of the costs (in differe nt respects)

of such experiments in the field of geodesy, the expcrimcnt wil l usually be restricted

to some J, 's .  In  other  words:  (4.1.1)- (4.1.5)  wi l l  main ly  be a hypothet ica l  exper i -

ment, executed and elaborated in thought. Or in sti l l  other words: the subjective

approach to the whole theory is inevitable.

Nevertheless this approach can be directive for a furthcr elaboration of the

thcory.

+.2 Considerations concerning the linking-up of a rnodel of functional

relationships

Consider in an extensive experiment the measurement of one horizontal direction

from Pito P*: r*. Can this measurement be repeated over a longer period with the

same registration? From experience we know that this is not possible because

variations in the measuring instrument are unavoidable. It is possible to make each

time a reference pointing to a point Pi, but in doing so one actually introduces an

angle:

(L j ik  :  r ik- r i j  9 .2.1)

Concerning ajik we can reasonably say that repeated measurement with the same

registration is possible. Consequently, the execution and cvaluation of an experi-

ment according to par.4.1 is only possible for ai*.

If one now successively measures a series of dircctions, e .g.:

ri j , r ik, ri l  $.2'2)

then (4.1.1)  - (4.1.4)  can be executed for  the pai rs  of  angles:

(4 .1 .1 ) ,  (+ . r .2 )
(4.  r .3)
(+.r.+)

ku
tii

tij
tik

1 t;r' I t;t
) t * 1 r y -

but it is clear that only one of the pairs may be introduced as functionally indepen-

dent .  such as:



+6 puBLrcATroNS oN GEoDESv, NEW sERIES, vot,.  2, No. 4

aiik - rih rii 
I

ak i l  :  r i t - f i k  I
(4 .2.3(

In order to be independent of this choice (+.2.3) one introduces according to
(4.1.5),  beside

s j i k )  qk i l  $ .2 .+)

the (theoretical) variates:

! i i )  ! i k >  l i l  ( + . 2 . 5 ' )

under the str ict requirement:

qjik : ! ik-!,t i  hcnce : E{qii*) : E{ru'} E{.nil 
I

sk i t  :  ! i t - ! ik  Er t r tnur)  -  E{r i }  E{r*}  |  
'

so that in the modcl the variates r can be considered as theoretical

variates.
Along with (4.2.5) one further has to establish a theoretical probabil ity distribu-

tion for the variates 1, in such a way that from (4.2.5") follows the probabil ity

distribution of (+.2.+) derived from the cxperiment. It would secm that in practice

this is only possible if a restriction to the Laplace-Gauss distribution is made.

The introduction of the model now proceeds one step further: we assume a

method of measurement and computation which fits a dcscription in a two-dimcn-

sional Euclidean space (plane).

Then the variates y in (4.2.5') can be interpreted as bcaring-variates in a local

( i ) -system:

, t ( ; )  -  " -1 a : :  -  I i l

4!r) - to*
, 1 \ t )  _  - ,

1 1 : r  -  I i l

The notation is in agreement with [Beenoe 19621.

The next step, which fits completely in the assumed modcl, is the introduction of'

the orientation of this (i)-system with respcct to a more gencral (regional) (a)-

svstem. with orientation-variate oi:

A! : '  :  oo, IA ' , ; , '_  |  _ , J

Alf) : e",+Ai'r)
4!i - e',+Atl)

If one goes back frorn (4.2.7) to (4.2.4), than all these theoretical entit ies disappear,

e . g . :

4l? -4:? : 4::r) 4:;' : !;1,-!;1 : e1;r (.+.2'B)

Consider now a triangulation in this geometric model. It appears that measure-

ment of angles suffices to fix the relativc position of points. In these computations it is

remarkable that by using the law of sines in a triangle, no distanccs but distance

ratios u are derived. Hence, thc u's seem to play a part analogous to the a's. There-

fore we shal l  search for  the development  which is  para l le l  to  (4.2.1)-  (4.2.8) .

.  (+.2.5")

t tobserved"

( L 9  7 \
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Consider, then, the mcasurement of the distancc from Pi to Pn: d6.The meaning

of d* is the number of t imes an instrumental unit of length is comprised in P.iPr.

In an experiment wc are again faced with the diff iculty of "repeating" the mea-

surement with thc same registration. Experience shows that the instrumental unit

of length is not constant over a period of somc duration, whereas the principle of

standardizing the instrumcnt is left out of consideration at this early stage of exper-

imentation. If the unit ol ' length of the instrument changes slowly, we can meet this

difficulty by measuring each time also the distance from Pi to a point Pi, and by

in t roduc inq  thc  d i s tance  ra t i o :

d* (4 '  q \
a1t1; - - -

a.i j

Also, a series of distancc mcasurements can lte measured in Pz:

dii, dip, di1 (4.2.  t  o)

and we can c.s. introduce thc distance ratios:

Ju i k
. 

di.i

f,u i l
aki t  -  

,
a ik

I{ 'now, in analogy to (.4.2.4) and (4.2.5), one wishes to introduce, beside !i6 and

ppi1, Ihe variates

dri, d,r, dt,

then, for the theoretical model, two diff iculties arise:

E1 d,r t ,
a .  E(ru l i r r ' ,  +  ; , - ; "  j ,  . t . .

L  t ! ! i i  t

b. For a Laplace-Gauss distribution wc have

- o o < r a n g c ( f o o

whereas Ibr a distance d wc havc

d > 0
hence

u > 0

(for quantit ies r and a this diffrculty does not arise becausc of the theoretical

multiple-valuedness) .

Both diff iculties can bc met lty introducing in the model the natural logarithm

of quant i t ies:

ln  a j ik)  ln  ur i t  $ .2.12)

+7
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and also the (theoretical) variates:

\, d,tt, ln d,tr, In dit (+.2.13')

under the strict requirement:

lnfltr - ln dir ' ln d1i I

i i in l  
(+ '2 ' r3")

hence :

. (+.2.13"',)

with considerations urlulogou, to those given with refercnce to (4.2.5).

Now, (4.2.13') can be interprctcd as the ln of distance-variates in a local (l)-

system:

ln s( i r  --  ln d.
U I ]

Fiii ' - '11d'
ln s l t  - ln d, I

The notation is in asreement with lBeente 19621 .
After this, the connection with a morc scneral (regional) (a)-system can be made,

with the scale factor 21:

l" {,!t, :1"l,q+ln1t)

ln s!,) : ln r.,q*ln {ii)

l" J'f' : ln 2'l*lrL sil)

A return from (4.2.15) to (4.
entit ies:

fn1,fr-1n1,!:, : try, ' i , l" l!;, :44r lnd,,:1!!1;r (+.2.16)

The variate lnJq makes it possible to include in thc model the influcnce of standard-

ization of mcasuring apparatus, but for brevity wc shall lcavc this out of con-

sideration.
In view of the remarkable parallelism bctween (.+.2.+) (4.2.8) and (4.2.12)-

(4.2.16)  ,  we int roducc complex var iates,  such as:

E' , ln-u1i t i  -  E l ln  d i r i  -  E[ ln  dt1\ ,  I
E| ln  up11i  -  E i In d i1t ,  -  t1 t ,  a , r f  I

( L 9 1 \ \.  \  , . - .  ̂  " , /

.12) causcs the disappearance of all theoretical

I
I
z

n . . .  -  I n  u  ,  I  i  a . ,  l n  yo .  -  l n  ) , ' - i  o ' .-  
J l A  . - . t t [  

- J I K  t  t

Hence:

, ' l\, - ln -r!i) +i ,4(a)- 1 1  q  - q

-  l { l t  :  l n  s f j , + i  l 1 l )- r A  r A  '  - l E

l I . , : , ' l ( ' - ' ' l \ '  -
- | r t  - 1 8  - r l

,1lQ : ln slrt +i A\: 't- t t  . _  q  - q

- l ( . i '  :  l n  s { l )+ i  , 4 ' i )- t t  l E  - 1 t r

. _ :

(+ .2 . t7 )

(4 .2.1B)/1.\ !)_ T J

a  l a )

l n  v q t . l t i t' - r  - 4

l n  yo . i_ - l ( . : r
t  I  

- 1 8
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Our mathematical model contains two-dimensional vectors z whose modulus is
s and whose argument (bearing) is ,4, see lBaenoe 1962]:

x + i ) : z : 5 . s i ' t : r l n r i i l  .  ( 4 . 2 . 1 9 )

so that the following interpretation follows from (4.2.17) and (a.2.lB) :

u'" : r-\:li' UY' - rn z!;t -rn z[|t

(4.2.17) and (4.2.20) provide the possibil i ty to obtain coordinates from measure-
ments of distances and directions, or rather to obtain coordinate differences from
them. The Z-variate acts as a connecting l ink. The following diagram il lustrates
th is :

(+.2.2r)

z,!9' is known

Here we also meet an example of the subject-matter of par. 3.4, because <[;) is a
derived variate:

4lt):r""[t)- rr" '11)+Y,or . (+.2.22)

Suppose now that we can ignore the probability distribution of zl;l:

<[f)-- zlyt . 9.2.22)
then it follo'*'s from (4.2.21) with (4.2.23) that:

E{ln z[;t] -lriz(:) : ln z'if,1liu,n*d,* . (+.2.2+)

From (4.2.22) with (4.2.2+) it follows that:

<[t, : ;",[l ;!,,:1itii,:i;* : ,r{!,f) +).,,1;t t;,i;r\+ir!1;t .,i ir,\

With the expansion:

e .  :  l * a l \ z a z l . . .

one obtains for the expectation under (+.2.23):

E{<:f,} : ;f,!,;\y1+}{"i, .1,^-o?,;,^.rlid,.o1;1,,o1ir) @.2.2s')

+9

| ,1,,:t-11

) /1 \a)

1 ' - ; r
- L l -  ' ( i )| - ' ,: i j

J _ 1 n  7 ( a )-'- -ik

ln 2.9)u
ln zl;t
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In general we consequently have :
.  - .  1 d ) .

E',<,,f,) t '  sr.it ' \ :;1 t

Up to and including second order terms, this bias is absent if:

Ei<,f ,  |  (+.2.23)Y , t ' : t " ' i f ' t

(4.2.26') can bc interpreted as bcing generated by the covariance matrix:

(+.2.25")

(4.2.26',)

(+.2.26")

cov.

\ 4,,
ln d*

f i i

! i t t

ln dii In d* 'Iij lik

0
0
0

0

U -

0
0

0 0
6 2 0

2

Fig. 4.2 I

Let us now look at Fig 4.2-1. Thc niathematical model requires the closure of

the polygon

o -  zn*ztz lzzs lz , r ,+*zqs (4.2.27)

Start {rom zli] without probabilrty dislribution and apply (4.2.22), with succes-

sively:

i  i  I  k 
-n 

I

s  I  |  2  l U s n js  I  I  z  1u , , ,
i  1  |  z  |  :  l l L r p s
| 2 I  3 |  + l lUzt+
1 : + I t il 1_r*'
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Thcn from (.+.2.27) {bllows the complex misclosurc-varizrte:

I , .
?l - _t,t, t,r{l i <',i l,<fr' + <::} +<l? | --

a i l

-  I  tu"" r l  ,u ' " , ' ' ,1  eu." ,1 l  -eu"" r , .  .  .1  9.2.29)
If Uan has also been mcasured, then onc call establish in a similar way e.g.:

4,  :  1  'u ' , " r \  ' u " , " , ,1  'u " ' " "1  'u , " ,1 . . ) ,  . (+ .2 .30)

(+.2.30) may also bc replaced by:

!1" :  Usr" l  aps+Uzz4lUsssl l - [$r 5 ln( 1) (+.2.31)

because (,+.2.31) turns out to bc dependent on (+.2.29) and (4.2.30).  In al l  thcse
relationships onc must c:rrcfully take accour"rt of' the multi-valuedncss of complex
quantitics.

From (4.2.25) is fol lows that:

E l ! 1 . , * 0 ;  E t . l ' l * 0 ;  E ' , l _ l " l - 0 .  .  ( 4 . 2 . 3 2 )

which is again an illustration of what was said in par. 3.4.
(4.2.29) and, e.e., (4.2.3I) may be thought to reflcct "laws of nature" which can

bc vcr i f ied l ty means ol 'an experimcnt.  Putt ing t t  - t io I  iCt:

I1 ) l

The computation of <:f), on the contrary, makcs use of derivcd functions.
l{aturally, all these considcrations arc only valid within the framework of the

function model chosen, which is herc the two-dimensional Euclidean geometrv.
In the situation (.+.2.26) one obtains instead of (4.2.32):

I yt:rl a'ril - Ei!'I - E,, ",, - o I g.2.2+)

By the exposition pil 'en, the "Polyeon thcory in the complcx plane" is essentially
establishcd; the name choscn is characterizcd by figurc 4.2-1. The paper by Knr;cnn

[l966| deals with computational aspects of the thcory (the notation is here chosen in
agreement with the one which is customary in the Netherlands) . A complete elab-
oration of thc theory would of course rcquire more space than was available in
these papers.

Some vcry rcmarkable stochastic aspects, wl-rich are important .rtrr the planning
of geodctic networks, are indicated in fBeanoe 19621 . In this publication the point
of departure is given by mathematical rclationships in the two-dimensional Euclidean
geometry. Aftcr ccrtain tr:rnsformations of thcse relationships and applying the
ti lde sign to ccrtain quantit ies, we arri l 'c at the samc "laws o{'nature" and other
relationships as were given in the prccceding pagcs. However, thc l ine of thought
given here has been dircctive for the dcvclopment in the previous paper.

The line of thought dcveloped in l inkins-up the chosen mathematical model
demonstrates that this model is rcquircd to be invariant with resDcct to a similaritv

I  0  *  I  ( "  "11  e " ' - ' , 1  e " - " ,  1  , " " " ' ,  . . . )
I

I  o :  iTrrr+ t7. , ,s+t lz.e++i- Ien l f lasr-Sln(t " - -
(+.2.33)
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transformation. This implies that the choice of the classical ell ipsoidal computation

model (a two-dimcnsional curved space) must in principle be deemed incorrect.

For in this model, with a reasonable approximation, a rotation is permissible, but

not achangc in thc scale of distanccs. This explains the inconsistency of this compu-

tatiol model in combination with the measuring procedure, which inconsistency was

pointed out at the end o{'par. 3.5. Probably the effect of this wil l only be appreciablc

in geodetic networks over distances larger than 1000 km, so that it can be ignored in

smallcr nctworks.
'I l i i :  

establishment of "laws of naturc" in the form of relations between dimension-

lcss qr-rantit ies, as i l lustrated by (.4.2.33), seems to be a characteristic of this develop-

mcnt of the theory of' l inking-up a mathematical model.

Tlris providcs a connection with the dimensional anal2sis of mathematical physics.

Many conclusions of this analysis can now again be used as a dircctive for further

clevelopments. On the other hand the theory dcvelopcd in the foregoing appears to

Iead to sharper conclusions on some particular points.

+.3 Further considerations

From expericnce it iras already for a long time becn known that the two-dimensional

theory as devcloped in par. 4.2 leads to insufficient realization of predictions in

morc cxtensive gcodetic networks. A{ier the intermediate phase of the now already

classiczrl cl l ipsoidal geometric and gravimetric geodcsy, an incrcasing number of'

theories are being advanced whicir arc based on a truly three-dimensional space.

The speculative element in the construction of these theorics incrcases accordingly,

bccausc the actual exccution of conclusive experiments with geodetic measurements

strctching over cxtensive areas of the carth, is practically and economically almost

impossiblc.
Eycry scicntist in this ficld thcrcfore chooses again directivcs for a further develop-

mcnt of theories.
l 'rom a theoretical point of vicw it is interesting that the l ine of thought developed

in par. 4.2 can be generalized to a spatial polygon theory, in which the model is the

three-dimensional Euclidean space. The place of complex numbers is then taken by

quatcrnions; thc algebraic elaboration, however, is considerably complicatcd by

thc non-commutativity of the latter quantit ics. Thcre are also diff iculties in the

interprctation of' the quaternion-equations.

Although it proved possible to bring methods of geodetic astronomy, photo-

srammctry ancl satcll i te gcodesy (Vaisali methods) under this theory, thc problems

of the l inking-up of the mathematical model arc very diff icult. The knowledge rc-

quircd exceeds in different respects the l imits of geodesy proper' so that such a

tireory can only be considered as a Irame which must be complemented or extended

lty expcrts. For example, the application of methods of geodetic astronomy and

satcll i te gcodesy invol'n'es thc dif l iculty of the interpretation of stellar coordinates,

ol'the direction of thc rotational axis of the earth, etc.

To eliminate from the thcory the (physical) vertical in each theodolitc station, is

as impossible as to eliminatc the direction of thc rotational axis of the earth. These
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verticals provide the connection bctween the previously described gcometric theory

and the mcthods of gravimetric geodcsy; they indicate the direction of the acceiera-

tion of gravity in distinct points on thc carth, the magnitude of thcsc acceleration

vectors being measured by gravimcters. Whereas by methods of gcodetic astronomy

the directions of the vertical in different stations can be intcrconnected with a

rcasonable accuracy, thc relative positions of'points on the eartl 'r in the direction

pcrpendicular to the surlacc of the earth are not reliably determined by terrestrial

theodolite measurements bccause of t lre influence of rcfraction on verticzrl angle

measurements. It re mains to ltc seen if mcthods ol'satell i tc gcodesy wil l givc a great

improvcment in this respect.

It is an interesting cxperiment now to transform tentativcly the mathcmatical

model theory of gravimctric geodesy, as de'n'eloped by others, according to thc

directivcs of par. 2.4. Then indeed this theory proves in principle to fi l l  this weak

spot of geometric gcodesy. Besidc dimensionlcss quantit ies l ikc distance ratios, angles

and ratios of gravity in distinct points, there appear in the translbrmcd integral

equations a number of dimensionless coefficients or numbers, in which also thc

results of spirit levell ing find thcir place. In thcse integral equations which can be

interpreted as "laws of nature", quantit ies l ikc the mass of thc earth, "geoccntric"
coordinates and potential do not appcar as essential quantit ies; thcy car.r be cou-

sidered as derived quantit ies.

Of course the mathcmatical analysis and thc connection with classical mcthods

remain as diff icult as they are in other approaches to this ficld. Consequcntly the

mathcmatical treatmcnt need not be original, since the primary goal aimcd at is to

increase the possibil i ty of a sharper insight based on better interpretabil ity.

Whereas for the questions so far discusscd a reasonablc connection could be estab-

lished between thc measuring procedure and mathematical theory, t ime / is a

quantity which is much more diff icult to undcrstand.

Thinking of modern methods of distance measurcment, let l;; be a timc interl 'al

and r, e.g., the velocity of l ight in somc medium, thcn the following mathcmaticzrl

relationship exists:

s t j - v . t i j .  ( 4 . 3 . 1 )

If we follow thc l ine of thought o{' par. 4.2, then the qucstion can bc posccl which

of thc followins rclationships must be used:

tn sj;) - !y,f ln t lr) (+.3.2)

ln s(i) - l ,r  r{;)f  ln lu (4.3.3)

ln  s1 i )  -  ln  r / ( t )+ ln , r t )  (+.3.+)

Or to put it in another way: when is it sufficient to usc local t imc, when do wc

need ,,absolutc" t ime?
And then: where do ratios of t ime intervals occur in geodctic astronomv?

The conclusion is that the l ine of thought devcloped in chapte r 4 for thc time bcing

raises more questions than it answcrs.

:)J
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6 l

A  G E N E R A L I Z A T I O N  O F  T H E  C O N C E P T

S T R E N G T H  O F  F I G U R E

I Introduction

One practical problem in geodesy is the measurement of a geodetic network,

resulting in the numerical values of the observations and their registration, i.e. the

description of the procedure and the circumstances of measurement fBeenoe
1960 ,62 ] .

A second problem in geodesy, even more important l iom a practical point of

view because of the financial and other consequences, is the question, wltat, how and

how much has to be measured. In answering this question one wil l f irst of all have to

investigate what use wil l be made of the network; this includes in particular the

use by those who are not geodesists. This means that a purpose has to be formulated -

a very difficult task indeed.
The prediction of the registration that can be expected for future measurements is a

fundamental part of the second problem, and it is as diff icult as thc formulation of

the purpose.
For only by way of the registration it is possible to l ink up the adjustment model

with the measuring process. This model consists of the probabil ity model of the ob-

servational quantities or variates and the functional model with the condition equa-

tions; what these models express can be summarized under the name "null hypo-

thesis' ' .

Experience concerning possible disturbances and mistakes in the measuring

process leads here to the formulation of "alternative hypotheses" fBeenoe 1960, 62].

A good geodesist is characterized by the way he constructs a model, by well-

balanced simplif ications in the null hypothesis and the alternative hypotheses. He

also deliberates upon the function of the observational quantit ies which has to be

introduced as the estimator in the adjustment procedure; a least-squares estimator,

a pseudo least-squares estimator, or other types of estimators, known from the

theory of mathematical statistics.

When these problems have been decided upon, the probabil ity distribution of the

estimators is theoretically known, and a comparison with the precision requirements

resulting from the purpose can be made. The reliabilir-t of this probability distri-

bution is dependent, f irstly, on the correctness of the predicted registration, and

secondly on the influence of simplif ications made in the null hypothesis.

But a second requirement resulting from the purpose is that, with a reasonable

certainty, the test procedure connected with the adjustment shows up certain

situations corresponding to alternative hypotheses. This implies that the user of the

geodetic network wil l have no appreciable trouble resulting from disturbances and

mistakes in the geodetic measurement and computing procedures. For this purpose,
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extra checks must be built into the geodetic network, which in themselves would not

be necessary to obtain the precision required.

The precision and the checks, together with consequences of personncl, instru-

ments and finance, will have to be weighted in the final and total decision process.

Here, the purpose is fundame ntal; therefore the geodesist can only give a partial

contribution to the final decision. After this, he has the responsibil i ty for the execu-

tion of the measurements and the computations.

2 Scope of the paper

The main subject is: how to find a basis for the comparison of probabil ity distribu-

tions of estimators from a geodetic adjustment, with precision requirements re-

sulting from the purpose.

Wherever in thc sequel mention is made of a covariance matrix, a Laplacc-Gauss

probabil ity distribution is suggested; of course this is not essential.

The theory has bcen developed for survey systems in the plane. This is not esscntial

either, but it has the advantage that the theoretical model is consistent. The material

treated here is only a part of a more comprehensive theory whose merits are now

being investigated in Delft.

A generalization of the theory to three dimcnsional space has bccn framed,

making use of certain hypercomplex numbers.

The possibil i ty of an application to ell ipsoidal computations is also being studied.

The fundamental diff iculty here is that research has given strong evidence that the

classical model of ell ipsoidal computations is not consistent.

Nevertheless it seems to be desirable to include ell ipsoidal computations in the

projected theory, because the spatial computations by HouNr, could not demon-

strate significant differences in cp, )" coordinates with ellipsoidal computations.

Against the greater complexity of spatial computations we have therefore only the

advantage of a better theoretical insight in the model, but so far no practical ad-

vantage.
Conclusions can be found in section 7. The reference that is made, in the tit le of

this paper and in section B, to the concept ((strength of f igure", is not essential for

the theory developed here. But it has the advantage that a connection can be made

with a complex of ideas familiar to practically all geodesists.

Fundamental thoughts of the theory date from 1944. In a first stage, the theory

provided a basis for the cadastral manual fBeenoe et al. 1956]. In this manual,

particular attention was paid to the requirements made by the users of a network

with respect to the juridical status of landed propcrty in the Netherlands.

3 Essential quantities

Coordinates of points are not directly measurable; they are artif icial and not con-

crete. Only the points themselves can be concretely indicated; for the character-

ization of the mutual position of points one must therefore try to find quantit ies that

are invariant with respect to the arbitrary adoption of a coordinate systcm.
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If we consider a rectangular r, y coordinate system with equal units of measure-

ment on the axes, thc only transformation admissible within Euclidean geometry is

the general similarity transformation.

The arbitrary choice of a coordinate system can therefore be expressed by the

introduction of a coordinate system which is not uniquely determined but can be

subjected to similarity transformations.

If we introduce the complex quantity

z -  x{ i1 t

this means that the following z' system is equally admissible:

2 '  -  yz !6

in which y and 6 are complex transformation constants.

Fig. 3-l Fig. 3-2

For the theory to be developed, the essential quantit ies are those that are invariant

with respect to the transformation (3.2.)

Consider the points Pi, Pj, P*, Pt and define relative coordinates or coordinate

differences as follows:

x i j :  x j - x t

) i i  
-  

) i  ) i

and consequently

z i i : x i i l i 2 i j - z j - z i (3 .3)

( 3 . 1 )

(3.2)

For point coordinates we have, by (3.2):

Z', - YZ, r- b 
,

i j  - y z i - b l
)

z p : y z l l d l  
'  ( 3 ' 4 )

z l ,  -  y z , 1  l l

and for relative coordinates, by (3.3) :

rF)
\i/

zu : Tzij I
z l u : T z t t  I

Thc introduction of
with respect to changcs

(3.s)

relative coordinates results in quantit ies that are invariant

in d, but not with respect to changes in 7.
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Quarrtities invariant with respect to changes in both 6 and y follow from (3 . s ) :
zu Zrt

Z;; Z;;

?!! - ,r^r,-^,p
Z;;

(3 .6)

(3 .7a)

with (ln denotes the natural logarithm):

Ari : ln z6 : ln s1i-l-i,4r1 
|

Art : ln z1r1 : ln srrtl iArt I
(3 .7b)

tn3+ \A ik ,A t j )  (3 .8b)
s i j

(3.8c)

Fig. 3-3

Separating the real and imaginary parts results in:

R{A1,1-Ai1}  :  l .  s t t  -  ln , r ,  :  f t  T Ir n i  l .  ( 3 .7c )

I {Au -A r } :  A * t -A i i  )

It wil l turn out to be more important to consider (3.7) for three points instead of

four, and we will consequently introduce a new symbol for this case.

For the points Pi, Pj and Pi, Pk, (3.7) results in the quantity:

gni ; * :  r r , r * -^rP -?
- N j

(3.8a)

with:
- Ztrc

171* :  ln  
) , t ,  

-

If we put
sik

a j i h :
.rij

a j i k :  A * - A u

we obta in:

(3 .8d)

In the complex plane we can represent If i i ,rc in the same way as ajtk in the real

plane, i.e. with the direction of rotation. The positive direction is chosen as in Fig.

3-l and Fig. 3-3, i.e. clockwise. See Fig. 3-4.

I I i * : l n u i * ! i a i u t
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@)

Irig. 3-,i

The quantit ies (,117 ,41i) , which are in a

constructed from the 1/-quantit ies, see Fig. 3-4.

Ap- t f  i i  -  ln  z t t  ln  z i i  :  11 2n,  ln

Or ,  w i t h  (3 .8 )  and  w i th  l n ( -1 )  :  i z :

jr, 411 - i,,,rlllit,tlln(
I

I
g.ttt ,1;1 _ guj;* il;rt

If we compare 11 and 11 in the complex plane with,

and the angle a in the real plane, (3.9a) i l lustrates the

can be made with the quantit ies,' l  and //. Of course this

valid.

/

certain sense morc gcneral, can
From (3.7)  we have:

znil ln zils!ln( l) ln zi1

be

- r ) (3 .ea)

(3.eb)

respectively, the bearing ,4

way  i n  wh i ch  ca l cu la t i ons
parallelism is only partially

4 The rnutual position of points

If we leave out of consideration translations and changes in scale and oricntation, the

mutual position of three points is entirely determined by one Z-quantity.

A third point is thcrcby fixed with respect to two other points, which we shall

call base points. For the latter we choose the points Pr and Pi, and (3.8a) gives us

( 4 . 1 )

by wlrich Pr' is fixed with respect to Pi, Pi.

If we consider a systcm of more than three points, this relation is valid when,t runs

through the sequence of point numbcrs other than i and j.

For a system formed by z points we need consequently (r-2) 1/-quantit ies in

order to determine the mutual positions.

However, we are lree to use another way of expressing thc relative positions, by

introducing other I/-quantit ies.

Let us first consider four points, as indicated in Fig. 3-4. Than it {bllows from
( 3 . 7  a \ :

z7r1 :  T i rg( ' t r t  
' r ;1

or ,  w i th  (3 .9b) :

(+.2a)

(+.2b)l:v--:l=-1
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Besides, we have:

I  '  ( L q \
z i . t . - z i k + z k l  l .  \ - ' J . /

i

so that  f rom (4.1) ,  (4.2)  and (4.3)

zi1 :  z i1(gt t ) l ' -gt t i ;k I  
I t ; r t }

i t  fo l lows that :
(L  4 \

Simplif ication of (4.4) leads back to the form of (a.l) bccause:

zir - ziieilj;t(.1 -stt;*t) : Trrgni;r' 
ttr;r - 7' ,il;;1

The technique of such reductions wil l not be further considered hcrc, since it is

not essential lbr the problem to be formulated.

According to (4.1), (4.2b) and (4.3), the mutual position of Pi, P1 and Pp, P1

are now in principle determined by the quantit ies

Ifi6 and fliu,

(4. 1) and (4.2b) i l lustrate furthcrmorc thc necessity ol 'the introduction of a pair

of base points if a calculation in coordinates is to be made.

Adoption of zi and 21, or of zt and zii determines the two translation constants,

the scale constant and the orientation constant, since

z i  : x i l i l i  
I

ln  z i i  -  ln  s17 f  iA i ,  :  1r ,  I

5 Differential relations *)

Since the purpose of our study is an analysis of the probabil ity model of computed

coordinates, we wil l deduct in this section the necessary di{Ierential relations. At the

same time we obtain the l inearization of the rclationships, which is extrcmely valu-

able for obtainins an insight in and a survcy of the results.

F r o m  ( 3 . 1 ) :

From (3 .3) :

From (3.7b)

F r o m  ( 3 . 7 a ) :

F rom (3 .8a ) :

c l z i  -  dx ; f i c ! 2 r  . .  ( 5 .1 )

dzij - dxii i  i  dli i  : dzi dzi (5.2)

I
d l4  :  dz i i

zi j

dzi l  :  zi1 dAil

dA i j  -  d ln  s i i  +  ldA i j  :  dA i t

1 l
d(Am At i )  :  dz t t  - '  dz i i'  zk t  z i j

dl l i i l ,  - .  d(Aik-Ai j)  .  (5.5a)

l l
d f l i i k :  d z r o - - d z i i

z i k  z i j

/ 4  5 l

(5 .3a)

(5 .3b)

(s .3c)

(5 .4 )

(s .5b)

*) A11 relations rnay be replaccd by diffcrence rclations, the apprrximation error is practicallr'

negl ig ib lc.



A GENERALIZATION OF THE CONCEPT STRENGTH OF FIGURE

From (3.8d) :  d[ Iy*  -  d ln u i*  |  ida l*  .

From (3.9a): d(.Au Ari) : dll i i ,r!d[[*t

Taking logarithms in (a.1) and (4.2) results, with (3.7b) in (compare also
and (3 .9b) ) :

A* :  A i l l l f y r

An :  ln( -  l )  a A6i!  I fyrI  I I iu

Or, with (5.3a),  (5.5a),  (3.7a) and (3.8a),  we have on account of (5.6):

dzil, : erlittdrr, * rrtd[I iin

6 7

(5.sc)

(5.6)

(3.8a)

From (4 .1) :

From (4 .2) :

From (4 .3) :

In this section, all differential quantit ies wil l be considered as stochastic quantit ies

(variates). In the following sections variates wil l be characterized by an underscore.

A superscript o indicates, on thc contrary, a quantity for which an adopted value

can be inserted.
A rough approximation suffices for the numerical values of the coefficients of

differential quantit ies.

6 The significance of the choice of cornputational base points for the

cornputation of variances of coordinates

Suppose that a geodetic network (triangulation, tri lateration or traverse net) has

been adjusted and computed in coordinates, starting from two computational base

points Pt Pz, for which coordinates have been adopted, i.e.:

' o a o I': ' ': I
or zl,  zl l ,  l  .  (6.1)

or z'1, l1t'1, I
One can then, in principle, assumc too that ,4- and Z-quantit ies have been com-

puted,  e.g.  by (3.7b)  and (3.8d) .

Consider now two arbitrary points of the ner Pi,4. Itt (5.7), (5.8) and (5.9) we

replace

i  b y  I l
j  b y  2 l  .r n v  i  l '  

1 6 ' 2 a )

l b v i )

For the upplicution of the law of propagation of variances we put, in view of (6.1):

d z i  : 0  |
d z l r : o J

(6.2b)
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then it follows from (5.2):

d  < u :  d  < i '
1 2  t 2

d 4i : a,idl-Izti
t 2

d  < i j  
-  , , i d ( / i i -  / n )

d < j  :  d 4 r l d a i
t 2  \ 2  t 2

(o . raJ

(6 .3b)

(6.3c)

in which for d has been writtcn d in order to indicate that the computations have
t 2

been made in the system which is based on the base points Pt Pz.

Fig. 6-1

The formulation of (6.3) has been chosen so as to make possiblc a comparison with

existing l iterature on the subject.
The application of the law of propagation of variances on (6.3) furnishes then

expressions for the precision of the position of Pl and P1 with respect to Pr, Pz
- which in the sequel we shall call "point-precision" - and for the precision of the

relative position of Pi, Pi, asain with respect to P1, P2 which we shall call "relatiue
precision" .

From American geodetic l i terature ideas have spread about a part of these

concepts of precision, namely on what is called the "strength of f igure". This

concept concerns only a small part of (6.3) , namely:

d (A r i - l n )  :  d ( l ns t i  l ns rz )  l i  d (A i i -A rz )  .  ( 6 .4 )

In many respects, the point precision is much more important than the relative

precision. Therefore, considerations on the "strength of f igure" should also be

concerned wi th (6.3a) :

dazr i ,  .  (6 .5)

Consider now two other points Pr, P1.

@@
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rA\_/

Then it follows:

from (5.7) : d z,i -
t 2

from (5.8) :  d gt1 -
T 2

Or,  in  v iew of  (5.2)  and (6.3b) ,  and wi th
d z r i :  d z i -  d < ,
t 2  1 2  1 2

d Zr t  :  zr ld(Ay1 /n)
t 2

it follows that:

f rom (6.6a)  :  d<i  :  zr tdUl i l ld  4, !z , id( -A, t -11." - )
1 2  1 1 2

from (6.6b) d <ij - zi id(..\ i i-,4,t) *ziid(A,, Atz)

et'r i  d zrt l  zrtdl-[ tr i  (6.6a)
I 2

e( ' l i j  
j )  

d  g , t l zad(At i -Ar t )  (6 .6b)
t 2

(6.7 a)

(6.7b)

would have started fromIl for the computation of variances of coordinates, one
the computational basc points Pr, Pr, see Fig. 6-2, with

,1, ,l I
u o " o (-r ,  - r t  

I
z?, Al, )

(6 .8 )

that as far as the stochastic properties are concerned one would have worked in
transformed coordinatc system, then we would have according to (6.3) :

d 41 - zri,dl-[trt (6.9a)
rt

d  4 i i  -  zad(A i1-Ay1)  .  (6 .9b)
,, -

or

or

SO

a 1
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Substituting (6.7) into (6.9) gives finally:

1 r ,  -  d < ,  l d 4 t z , i d ( . 4 , ,  r ' r l , ) \

) r,  12 112 
-l (6.  l0a)

(6 .10b)

of section 6 can easily be made into a positive

the subject of scctions 3 and 4 by considering

] d <,.r. -- d <" t1zif i(/,1 - .4zr) |
r t  12

If we consider (6.10) as the base for the application of the law of propagation of

variances, then (6.10) expresses in symbolic form that thc concepts point precision and

relatiue precision are dependent on the choice of a computational base. Therefore,

these concepts arc unsuitablc for the formulation of requirements concerning the
precision of geodetic networks.

7 The fundarnental problern of discussions on the precision of geodetic
networks

The negative conclusion at thc cnd
one.

Let us for this purpose continue
four points Pt, Pj, Pr and Pt.

We

@
@

By

Fig.  7-1

introduce Pt, Pi as computational base points with

z? : known zi

zl - known z;

a change of indices wc have from (6.3):

<*t :  z*d(Am- At i)  -  zm(dUnrldA*t)

From (7.1) it follows, entirely in agreement with
cerning the precision of the mutual positions of the
the covariance matrix of thc quantities

[i* and U*t

is known.

section 4, that formulations con-
points considered are possible if

<1, - zi76dl_[i*t d

l '
d
ij

(7 . ra)

( 7 . 1 b )
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Converscly, one wil l no doubt bc able to deduct this covariancc matrix from the

re lat ions rcsul t ing f rom (7.1) :

dl_tiik :

dU i i * *dUiu  -

(7 .2 )

<kt

Thefundamental problem is caused by the lact that, in general, no precisc information

on the covariance matrix of the quantit ies z is available, and that consequently one

has to manage with an appraisal of this matrix (not an estimate in the statistical

sense) . This means that an artif icial cor.ariancc matrix must bc constructed. The

solution of this problem will not bc easy, for on thc one hand a matrix wil l have to

be constructed which is positive dcfinite, and, on thc other hand, simplc and prac-

tically manageable rules for establishing such a matrix wil l have to bc givcn.

From (7.2) it follows that the artif icial covariancc matrix to bc cstablished wil l

have to be deductcd in the first instance from an analysis of the precision of gcodetic

networks. This is understandable, becausc the attainablc lower l imit for r. 'ariances

will always be determined by thc geodetic possibil i t ies.

This looks suspiciously l ike a reversal of the problcm, because thc purpose of the

establishment of the covariance matrix involved is to formulate rules {br a gcodetic

network whose precision fulf i l ls certain rcquirements.

However, from a more or less idealizcd form of the gcodetic network we can deduct

the covariance matrix, and use the thus obtained matrix for testing thc precision

of nets that are more adopted to actual practice .

Whereas thc lower l imit of varianccs is determincd by geodctic possibil i t ies, an

upper l imit wil l have to be deducted from requirements finding their source in

essentially non-geodctic practical problems. Perhaps thc lower l imit wil l also have

to be made dependent on thcsc rcquirements, if this is possible.

One of  the very important  task.r for  the mcmbers of  Spccia l  Studygroup No.  1:14

will therefore be an invcstigation into and an analysis of the, mostly non-geodetic,

uses to which geodetic coordinatcs are put. In this way one arrives at a formulation

of the purpose of geodetic networks; in this formulation the concept of precision wil l

be of paramount importance .
A clear illustration of the significance of /I-quantitics is the setting out of tecltnical

projects. When the measurcs of these have bccn compute d in coordinatcs, the differcnt

corner points must be set out in the terrain. If in the tcrrain we havc the points Pi

and Pi, already known in coordinates, we may obtain any other point Pa by setting

out the quantit ies:

Unt

Another application is possiblc if Pi, P1, P1, and P1 are corners of a tcchnical

project, in which case (7.1) can bc used to develop a study on the precision.

If onc is concerned with a project where certain constructional units are built in

another place and later moved to the site, and where consequcntly the scale of the

I - d
zik ; ;

I, d
zkt  i ;
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distances is important, onc must add to (7.1) the cffcct
the units of distance measuremcnt of sur.n'ev and of
developed here, this proves to be possii:r le.

Another problem prcsents itsclf in nauigation, such
equipment

sravr @

-, (d

I I I L k

l)r-'

S L A V E  { T , 1v

Lt ig.7-2

If, in Fig. 7-2, Pk is an arbitrary point in the Decca pattern, the precision of

Uiii' and Aiir

is important for the navisation.
The quantity l_l*ti ' is not independent, because

Uu,i' : Uiii'-I-Iir*

The precision of the Decca pattern is determined by the coordinate precision of
Pt, Pj, P1,, i.e. by

Aiti,

Then Uit* determines thc possibil i t ics of navisation in Pr'.
Analogous problems are met in aerial navigation, in the determination of direction

and distance for radio- and television communications, etc. One may have to deal
with distances of hundreds of kilometrcs, but thc points already known in coordinates
may be only 20 km apart on account of the possibil i t ies of dircct vision.

Of special importance are navigational problems in thc overlapping areas of two
or more different navisation systems. In Fig. 7-3 is given a situation with two
Decca systems.

The terrain point P,, is now determincd by:

Uiu* in sYstcm I

Utr* in system II

In this case it is essential for a sufficient identity in the determination of P- that
one obtains a reasonable prccision in

of a scale difference between
construction. In the set-up

as nar.igation with Decca-
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v

o^\\-/

Fig. 7-3

Uiii' I'or systcm I

l_[yry for systcm II

l_f ru and Iip1 for the mutual consistency of thc systcms I and II.

B Strength offigure

From the prccedine - see in particular (6.4) and the related text - it follows, that
for a figure formed by z points the customary concept "strength of f is111's" can be
generalized by establishing a theoretical l imit lor the covariance matrix of (n-2)
functionally independent 11-quantit ies.

The cxpression "strength of'f igure", howcvcr, may cause confusion; it would be
bettcr to speak about "precision of f igurc". For the formulas arc only related to the
probabil ity distribution of a group of coordinates.

An entirely different approach to the concept "strcnsth of f igurc" is made if one
requires thc network to be such that it gives ccrtain guarantees concerning the
signalization of errors made in the measurcmcnt or the computation.

From gcodetic l i terature, thc papcr by RnrcrrENEDER ll94l] must be honorably
mentioned here. His considcrations are, howcvcr, l imitcd to a very simplc case of
a geodctic network and thcy cannot be gencralized.

A general thcory can be established with the aid o{' the powcr function of a
statistical test. For this subject, reference is made to fBeanle 1960, 62] and for some
gcodetic applications to fBeenre 19601 and [Beenre et al. 1956]. I{ ' this aspect is
taken account o{, one could spcak ol'"accuracy offigurc" in the sense ofErsnNnenr

fErsrunenr 1952] .
From a theorctical as well as from a practical point of view it would be best if both

"precision ol-f i.gure" and "accuracy of f igure" could be treated together; both
theories are intimately conncctcd.

The combination might thcn rcsult in rules conccrning a strongly generalized
concept "strength of f igure".
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Personally, I am convinccd that only then thc "specifications for fundamental

gcodetic networks" wil l havc actual significance for gcodetic practice. Some traces

are indecd lbund in the provisional specil ications of Spccial Studygroup No. l: l4

adopted at Hclsinki 1960.
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