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PREFACE

In this paper the starting point is formed by some clementary applications of
statistical methods to geodetic adjustment problems. In its line of thought the paper
is connected to earlier publications, such as [Baarpa 1960, 62]. An indication is
given of some difficultics of principle which are inherent in these applications, and
which often make the value of tests illusory. This leads to what the author in recent
years has come to consider as the central problem of geodesy, viz. the introduction
(linking-up) of mathematical models for the description of measured quantities and
their relations, including the possibility of choice between different but related
models. These thoughts have been directive for the design of several new geodetic
theories, one of which, the so-called “polygon theory in the complex plane” is now
nearly complete both from a theoretical and practical point of view. An impression
of this theory has been given in the paper ,,A Gencralization of the Concept Strength
of Figure”, which was written in 1962 for the I.A.G. Special Study Group No. 1: 14,
now included as an appendix. This paper also gives an impression of the possibilities
(and difficulties) of a quantification of the objectives of geodesy. Other aspects of
this theory are treated by Krijaer [1966].

Mention should be made of a different approach to these problems, which is
based on decision theory and of which ALBERDA [1966] gives an outline. An inte-
resting problem for the years to come will be to find the line of thought connecting
these approaches.

The author is much indebted to Ir. J. E. ALBerpaA for his translation of the
manuscript and for his stimulating remarks in discussing the underlying theory.

Delft, June 1966 W. Baarbpa
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1 INTRODUCTION

In a discussion on the application of methods of mathematical statistics to gcodesy,
it is necessary to indicate very precisely what actually is the subject of the discussion.

In general, mathematical statistics, in connection with mathcmatical physics,
aims at the description of a chain (in time) of physical events, which has been
observed by man, by a mathematical model, so that an analysis hecomes possible,
and it can be hoped to obtain a possibility for predicting future events. After first
experiences one can try to lend nature a helping hand to accentuate connections
and relations; the stage of experimentation is entered. A geodesist taking part in this
game is not different from scientists in other professions, and he, too, will be forced
to make himself acquainted with the discipline of mathematical statistics, for which
he has many excellent handbooks at his disposal. Many articles in the present-day
geodetic periodicals bear witness of such studies and treat a part of mathcmatical
statistics which the author judges to be applicable in his field of work. An example
is [Baarpa 1960].

Until recently, the description was usually considered to have been evolved from
series of repeated mcasurements, so that from the frequency thcory, by further
abstraction, one arrived at the theory of probability. Characteristic of this line of
thought was the work of the English school (Fisimer, NEYMAN, PEARSON) and the
theory presented by von Mises. A beautiful mathematical rounding-ofl linked to the
abstract-axiomatic theory of the Russian school was given by CraMER [1946]. See
also the approach in [Baarpa 1960, 62].

In opposition to this approach there has of old been the approach using a more
personal, subjective concept of probability, which is being increasingly appealed
to in these last decades after the development of decision theory by Warp. Whereas
many mathematical formulations in this theory arc in agrcement with the first
mentioned theory, the interpretation can be completely different. And it is exactly
this circumstance which makes it so difficult to gencralize on the application of
mathematical statistics in geodesy. One will have to choose, and indicate explicitly
what part of mathematical statistics is under discussion and which thcoretical
approach one wishes to follow with regard to the interpretation.

From a purely mathematical point of vicw, a difference in the foundations (basic
axioms) does not make any diffcrence in the question whether a theory is truc or
false. However, it is an entirely differcnt matter if onc wishes to provide mathe-
matical quantities with labcls establishing a connection with mecasurable character-
istics of physical quantities. Naturally it is possible to do this labelling carelessly, it
is only a matter of names. But if a geodesist wishes to arrive at a description or an
analysis of physical events, thereby aiming at the possibility to predict, he is essen-
tially leaving pure mathematics, and enters geodesy. It is generally agrced that only
the execution of experiments makes it possible to choosc a mathecmatical descriptive
model. The choice of the design of experiments is a personal one; this explains the
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existence of conflicting views among scientists working in the same field. For everyone
will aim at a design which looks most appropriate to Aim, and on the basis of his
experiment he will arrive at the choice of a mathematical theory which is most
acceptable to himsclf: cvery theory is #rue in itself. Thus the situation is possible,
that a mathematical theory is true, but the theory plus its application to measure-
ments false. But false is an elastic concept; depending on the situation it may mean:
good enough, almost good enough, definitely unsatisfactory, entirely uscless. This
means that one of the tasks of scientists working in the same ficld, like geodesists, is
to find criteria for judging the degree of falschood. But how must we formulate
these criteria, and from what should they be derived?

When working on a practical problem, the geodesist has in principle only a
single measurement at his disposal for each of the quantities observed. He is then
faced with the difficult problem how to conncct the numbers resulting from the
measurements, with mathematical relations, describing on the onc hand functional
relationships, on the other hand randomness. The observations arc no part of an
experiment, because in geodetic practice, mecasurements arc in principle not re-
peated. The connection with a mathematical model describing functional relation-
ships and randomness must therefore be established with the aid of information
which has been obtained in addition to the collection of observational numbers.
This information is given by the description of the measuring procedure and the
circumstances, such as thc weather, the character of the terrain etc. In [BaarpA
1960, 62] this has been called the “registration” R. Let the observational numbers
form the vector (x%); then the total observation is given by:

{(x%); R}

One can now comparc R with previous experiments, possibly executed with special

reference to the measurement at hand. Usually, such experiments are very restricted

in size, but by the comparison one arrives at the statement:

a. (x%) is a sample (of size one) of the vector of stochastic variables (x%). The prob-
ability distribution of the stochastic variables is determined up to at most a
number of unknown parameters.

b. Between the unknown cxpectations F{x’} = & there exist a certain number of
functional relationships, which can be derived from a consistent functional
model.

To prevent misunderstanding, it should be noted that this formulation cannot be
seen as a generally accepted one. The problem of the “linking-up of a mathematical
model or formalism™ 1s hardly mentioned in the literature on mathematical statistics.
Perhaps the formulation must be scen as a personal one, but it has enabled the
author to arrive at a system of interconnected conclusions pertaining to different
areas of geodesy.

The requirement of a very careful comparison of registrations R implies a very
sharp analysis of measuring procedurcs and circumstances. The statements under
a. en b. imply that a well-dirccted analysis is made of experiments, affording the
possibility of making such statements. Special attention should be given to the
attachment of labels to mathematical concepts. This construction of a mathematical
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model, proceeding step by step and accompanied by carcful analysis, can be con-
sidered as an application of operational defining. The latter name applics in this case
more to the method followed than to the choice of a philosophical system.

Once the combination of statements a. and b. has been made, the processing of
the observations by the geodesist has been reduced to an application of the theory of
estimation from mathematical statistics, in particular the part that is often denoted
by the mislcading name of regression-analysis.

One is naturally frec to choose for the probability distribution under a. a distribu-
tion which is not a Laplace-Gauss distribution, but then one cannot without further
preface apply the theory of regression analysis as it has been claborated in mathe-
matical statistics. In many cases, such an adoption of non-normal distributions is
harmless provided the correct covariance matrix is used, i.e. the matrix of second
reduced moments about the means (E{ (x—x%)(x7—37) }). Regression analysis is then
essentially the same as the method of adjustment by least squares, and the possibil-
itics of testing by F-tests as well as the theory of power functions have been com-
pletely worked out. If one wishes to cstimate elements of the covariance matrix,
repeatcd measurements arc nceded, and one has to use the mathematically more
involved theory of multivariate analysis, where instead of the F-distribution the
Wishart-distribution is used. The latter technique is not yet used in geodesy for a
simple economic reason: a large geodetic network can only be measured once. The
apparent repetition of direction- and distance measurcments is mainly done to
indicate the possible presence of certain disturbing functional effects (‘‘systematic
errors”’) or to climinate them by taking the averagc.

Whereas the choice under a. can be done within rather wide limits without
materially affecting the estimation, the choicc under b. has morc drastic conse-
quences, especially when the size of the geodetic networks considered is increased.
The ideas of MARrusst and HoTinE published in the last decades have no doubt caused
the geodesist to consider his choice much more carefully than he used to do. As the
size of the network increases he can choose Euclidean plane gcometry, then geometry
on one curved surface, such as sphere or ellipsoid (with all “reduction™ difficulties)
and finally spatial Euclidean geometry with as variants different possibilities of
curvilinear coordinate systems. When networks reach a certain size, potential
theory must be applied in some form or other; since the last publications by HoriNe
even the applicability of Newtonian mechanics is doubted.

Each of the mathematical theorics mentioned forms a consistent wholc, each has
been developed by abstraction from scarce cxperience; from a mathematical point
of view each theory is true, though there arc marked differences in complexity.
Only the link to observational numbers from a certain mcasuring procedure can
explain a preference for one of the theories. Recourse to an experiment will seldom
lead to an unambiguous decision, because economically feasible experiments are
only concerned with networks which are very limited in size. Conscquently a
choice will have to be made, and one must try to predict where a check on the
acceptability of the choice can be made by mcans of the computed valuc of some
quantity which has been derived using the theory. How difficult this complex prob-
lem is, is apparent from the cxamples constructed by Hoting, from which hardly
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resulted a distinct difference in coordinates between his geometric method and the
classical ellipsoidal computation. The problem becomes even more difficult because
of the fact that apparent differences can be generated by diffcrent types of rounding
errors, and, in particular, because the functional relations derived from a mathe-
matical theory are almost always non-lincar. Regression analysis, and consequently
the method of least squares, is only consistent if these relations are linear ones. With
non-linear relations, there appears a freedom of choosing the method of computation,
i.e. a non-uniqueness which is already hidden in the classical methods of adjustment,
and which can certainly give rise to differences in the results (although the differences
are small and will only make themselves felt appreciably in large networks). Given
one mathematical theory, it even makes a difference which system of functional
relationships one chooses, so that isomorphy in theory does not guarantee equality
of results of computations.

In an earlier era of geodesy it was the custom to give, before measurement, only
a provisional indication of the statcments a. and b.; after the measurement, changes
in the set-up of the computation were made if indicated by the observational results.
In the present era of computers, a careful preliminary planning will be made on the
basis of concrete statements a. and b., taking account of all consequences, aimed at
reaching the purpose in an economical way. Measurement and computation are
then executed strictly according to design. The tests, also executed according to
plan, can give an indication how far the observational numbers or the mathematical
model theories are acceptable, and possibly they may result in the necessity of new
observations, or of a revision of the model theory and with it the whole plan.

The statements under a. und b., which must be incorporated in the planning are
indicated by the (historically grown) name of null hypothesis, /f,. Tests and power
functions can only be applied and worked out if preliminary guesses can be made
concerning possible alternative statements a. and b., which are indicated as alter-
native hypotheses Hy,, Hy,, ...

This formulation means that in this paper the discussion will be based on the
statistical theories of NEyman and Pearson, dating from about 1935, in which have
been incorporated many elements from the theory of R. A. Fisaer dating from about
1925 and containing a number of ideas going back to Gauss and HELMERT.

This is a restriction because the theories mentioned can be considered as special
cases of decision theory, founded by WaLp during the last war and since developed
by many others. Some aspects of it are treated by ALBERDA [1966]. The restriction may
be useful, however, because many applications have led to reflection on the many
difficulties, often of principle, which are connected with the linking-up of mathe-
matical model theories by the geodesist. It was partly by these difficulties that the
author was led to design modifications to existing geodetic methods of work.



2 POINT ESTIMATION

2.1 Notation

The notation is a mixed ricci- and matrix notation.

() indicates vector or matrix, but ordinary brackets when used for indices
()* transpose of vector

{} brackets, especially in function notation

(x?) vector of measured numbers (readings) from a practical geodctic problem

interpreted as a random sample, sometimes to avoid misunderstanding
indicated as (x{)

R registration of the measurement process applied in this geodetic problem
{(x0); R} or {(x{); R} total outcome of practical measurement

(x%) vector of variates or stochastic variables; samples indicated as (x}),S =...
(&%) vector of mecans (mathematical expectations) of the x?

(0,i4) covariance matrix; (o,,7) = o2- (%), (xf);‘

o? variancefactor (,,variance of unit wcight™)

(x8),(xF)* matrix of weight-coeflicients, somctimes indicated as (g#)

(X1 vector of estimators of (#%)

2.2 Null hypothesis and adjustment

If in a practical geodetic problem the following observational results have been
obtained:

{(x7); R) G = Looam) o (22,0

compare then R with the registration of previous experiments, and use this com-
parison to link the results to a mathematical model which consists of a probability
distribution of the same number of variates (x?), between whose means a number of
functional relationships (“laws of nature’) are asssumed to exist. The relationships
are derived from a consistent mathematical model. For simplicity we shall only
consider a probability distribution of Gauss-Laplace (“normal”) probability dis-
tribution, whereas to begin with the “laws of nature™ are taken to be linear relations.
(x?) is then considered as onc of the possible samples (x) of (x). This model, linked
to (2.2.1), is called “null hypothesis” fy; the form we choose here is:

1 ) . ]
H, 1 (1) to be estimated ‘

Covariance matrix (rankm), variance factor ¢?:

o2 (x1), (x)* = o2 (g} (i, j=1,...,m)

|
B (2.2.2)

“Laws of nature”, («¢) rank b, (u§) vector:

1

() (#)—() = (0) (o7 =Lub)
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A second form of the “laws of nature’ is possible.
Determination of the vector (at) from:

() (a') = (0)
gives (m—b) linearly independent vectors, forming the matrix with the rank m—¥:

() (e, p=0b+1,....m) ]

) () = (0 |
The vector (a)) is then determined (up to m—b degrees of freedom) from:
W (@) = (W) . . . . . ..o (2,24

Then the “laws of nature” can also be written in a parametric form, with the
parameters ( §):

Hence:

(2.2.3)

(F—a)) = (@) () . -~ « « . .o (2.2)5)
from which, with (2.2.3), the first form follows in a modified representation:
W) (F—a)) = (0) . . . . . ... (226

whence, with (2.2.4), again follows (2.2.2).

Mixed forms are possible, but we will not go into these details.

The classical problem of “least squares adjustment’” can be interpreted as a point
estimation problem, giving estimates for the unknown values (#?) and, where appro-
priate, (7). Estimates are then again considered as a random sample of stochastic
variables, these variables being called estimators.

The form in which the “laws of nature” has been introduced implies the choice
of the vector (x?) from the (sub-)space covered by the (), which must be introduced
into the functional model in order to obtain consistent relations. The choice (which
can actually be motivated) is (#7). This implies that in an application of an adjust-
ment procedure, the variables in the chosen functional mathematical model must be
provided with a tilde ~.

However, these quantities are unknown because they are just the ones that must
be estimated. If one wants to make computations with the model relations as if one
were working with the means, then the relations valid for the mcans must also be
valid for the estimators.

For both forms of the “laws of naturc” this leads to the establishment of the
“condition equations”, in the terminology of TIENSTRA:

Ist standard problem | (u8) (Xi—a}) = (0)

. ' (2.2.7)
2nd standard problem (Xt—ay) = (a) (Y

(Y*) sometimes indicated as “unknowns”
(Y*) then to be indicated as “unknown-variates’”

It is curious that although (2.2.7) is not valid for the (x7) and in general (") is not
even defined, it is always possible to define so-called derived variates:
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(x7) = (A (&) +(A5) (s =...) [
or:

(2.2.8)
(¢ —af) = () (¥ —a)) ]
They may be entirely arbitrary functions, but in general they are relations derived
within the chosen functional model, such as coordinates computed from angles and
distances in two-dimensional Euclidean geometry.

In the case of linear functions (2.2.8), the law of propagation of the means gives:

(Fr—a)) = (A) (F—d) . . . . L (229)

which is in accordance with the choice of the vector in the ““laws of nature”, so that
for these relations the relations between the estimators can be introduced:

(Xr—al) = (A) (Xi—d)) . . . . . ... {2.2.10)

This in its turn has as a consequence that in estimation problems the rclation (2.2.10)
between estimators is always joined to (2.2.8).
In the theory of adjustment, several types of these derived variates are introduced,
such as:
(") : vector of misclosure variates, with () = (0)

(74) : vector of reciprocal unknown-variates, (J;) # (0)

whereas in fact all estimators can be considered as derived variates.

After (2.2.6) it was mentioned that mixed forms exist. In correspondence with
this, there are problems forming a mixture of lst and 2nd standard problems. An
analysis shows that all these forms can be reduced to one of the two standard
problems, for which special techniques have been developed with a view to the
present possibilities of computer technique. We will therefore only indicate the
algorithms of the two standard problems, in a form which brings out the parallelism
in the solutions.

(see (2.2.11), (2.2.12) and (2.2.13) on page 12 and 13)
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|lst standard prgglém 2nérstand;1rd problem

condition equations

(0) = (u) (X' —a) (Xi—a) = (@) (Y7)
(0) = () (X)— (uf) (X1) = (al) (Y")+ (@)
Ist part o{ the adjustment: estimators

(&) = (¢
O = W) (¥ —ay) ) = (@))* (&) (¥ —a)
(), ()% = (g7 (40), ()* = (al)
(€7 = (g) (w)*
(), O = (¢ O 0* = ()
(€)= (u9) (g) (u)* (gp) = (a3)*(g5) (a0)
(@) = (&1 @) = (gu)™
(&) = (¢") (&) (V") (Xi—ay) = (a) (&) (5)
(X1 = (") +(¢) (¢1) = (X' —ap) — (¥ —ap)
correlate-variates - unknown-variates
(not nceded) (sometimes needed)
(K)) = (§) (") (¥ = (@) (o)
() = (" (K) (Xi—a) = (a) (Y)

controles

(0) = () + ) (¢ | (0) = (a})*(g;) (£1)

derived variaties

(Xr—aj) = (A (X)) . (Xr—ap) = () (a}) (¥

st staﬁd;d problgrinw [ 2nd staﬂaiz;rd problem T

2nd part of the adjustment. weight- cocﬂi(:lents

( G (a)* = (0)
(&), (X)* = (0) (), (X)* = (X9, (X)*
(X7), (X)* = (&) (X, (¥)*= (")
(X, (X)* = (67) (X7), (Y= (G7)
(Y), (¥)*= (GY)
(G7) = (&) — (¢ g e | (6") = (@) (§7) (ah)*
(G7) = (4) (67) (G") = (az) (&)
(G") = (42) (&)
(G7) = (&)

(2.2.11)

(2.2.12)
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15t standard probi&:m ‘ 2nd standard problem

3rd part of the adjustmcnt: shifting variate
S 2.2.13
— (&)*(@) () (2:2.13)

g)*
E = (5 —a)*(g) (5'—ap)+
f(y«)*(g“”) )

X
wa.

E = (-07)*(&x) (iy“)
= 0*(8) ()

If (X7) has been computed from the sample (x?) according to (2.2.11) and (xf) and
(X?) are represented as “measured point” P and “adjusted point” P’ in the

standardized xi-sample space, then the distance PP’ is given by:

1,
PP’ﬁ{éE} (2214

or it can be said that the adjustment shifts point P to point P’.
For theoretical considerations it is better to take the formulas of the two standard
problems together. For example, it follows from (2.2.11) and (2.2.12):

(X' —a) = (67) (&) (¢'—ag) 1
(Y«—0) = (Gi”) (8:) (gcffa'f,) J e e e e e e e e (22200
(X" —ag) = (G”) (&) (¥'—a)
These can be taken together in:
(X¥—af) = (G") (g,) (¥'—a) (R =d,a,r) . . . . . . . .(2.215")
(S =JsPs9)
Instead of (2.2.11) —(2.2.13) we then get:

Adjustment
Astpart | (X —a) = (G") (g) (' —ai)
9nd part | (X7, (X%)* = (G™) (2.2.16)
By = (6") (&) (G%)

(©
rdpart | E = (e *(g) (67 —C7) (&) (5 i)

It is a fine quality of the computing system of the method of least squares that
— provided all equations are linear — the system is a consistent whole, so that one
can arbitrarily transfer from the st standard problem to the 2nd standard problem
and vice versa.

In the linear case, (%) will always approximately have a Laplace-Gauss probab-
ility distribution, even if this is not strictly so for (x?); this follows from the central
limit theorem. Under the null hypothesis Ho, we have then (7°) = (0).
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This implies for the positive definite quadratic form of rank &, see (2.2.13):
E= (07)%(8) )

1 E
that {2 ;}} has the F, _-distribution.

o
Because:

ElF, .} =1

the following estimator can be introduced for ¢%:

E

62:,—

b

so that under the condition Hy: N A )

{; | Ho} —F.

E{(32 | Hy} = o?

2.3 Adjustment in steps (phases)

Decompose ()°) in a number of partial vectors:

AN (o = 1,..., 0%
yu (o = bI_H ., BT 1)
b (o1 = b1+bH+1 . DT DI pIIT) (2.3.1)
\ng J (01V = I bII+bIII+1 ’b)
(b = BlpH4pUIL pIV)
Adjustment in steps according to TIENSTRA means essentially that the partial
vectors (J%), ...., () are orthogonalized with respect to the probability distribu-

tion of (*). In fact this can be performed by the generalized reduction procedure of
Gauss.

TIENSTRA’s interpretation is that the adjustment is split up into (in our case four)
partial adjustments which are consecutively executed; the first is the adjustment
on the first ! condition equations, the second adjusts the estimators of the first
together with new observations to the next ' condition equations, etc. Or, the
procedure of adjustment in steps can be seen as a procedure which can practically
follow step by step the progress of measurement of a geodetic network. An extreme
situation is that all y®-variates are orthogonalized, i.e. that every time when new
observations make possible the establishment of one more condition equation, the
corresponding phase in the adjustment is computed.

Although the method of adjustment in steps, too, has other theoretical aspects,
the preceding gives a certain directive for the design of an adjustment in steps. We
need not go into the different possibilities of technique: every problem will have to
be considered separately.
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If we leave this directive suggested by adjustment in steps out of consideration, it
is difficult to arrive at a single unambiguous rule for the design of an adjustment.
This difficulty is caused by the many possibilitics of ordering the orthogonalizations.
Modern computer technique brings this difficulty more to the fore, because the size
of networks that can be adjusted in onc step is continually increasing. There is room
for doubt whether this is going in the right direction and whether the computing
facilitics do not tempt us to forget techniques that work on better principles. Especial-
ly in testing problems, this question turns out to be very important, although sound
directives for a method to be followed have not yet been found.

For the problems connected with testing, a decomposition of E corresponding
with the adjustment in steps is important. It is not easy to find a fitting notation;
the following choice is made:

After step | (X?), (X7)* In step E Rank

1 (G- I EI B
II (GiiL 1I ET BT
111 (G- 111 g pIII (2'3'2)
v (Giy) v EIV pIv
IV (GH) = (GUV) |E = Elf . +EV | b = blp . b1V

JE ) I - . P .

Then the following can be shown to be valid, compare (2.2.16) :

E = (y—a)*(gw) (g7 C) (&) (¢'—ay)

E — EILEN | FUI| FIV

Bl = (¥ —a))*(gy) (¢7—C") (g) (¥ —a) (2.3.3)

BN = (¥ —af)*(gy) (G7'=G") (gn) (&' —a

EIIT — (Zj*aé)*(_ﬁJ (Gi’j’.II‘Gifjr_In) (g—] 1) (chfaz-))

EY — (r—a))*(g:) (671 67) () (5 —a)

Instead of (2.2.7) one then has to introduce, with stochastically independent
F F

Lo e 2 Y, o

(see (2.3.4) on page 16)
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r 42 1 ¢ {
o} :Z‘E ;ZEI),@ Elfb,m}: I
b-g2 = Bl (G124 .. b1V {gIV] Hy valid
1 {g1)2
AT =
{Q’I}z = ﬁﬁl 70_2;“ - _Fb',oo E{.Fbl,oo} =1
1 {611}2 (2-3-4’)
e e L R
1 {(;IH}Z
{QHI}z = ﬁ'EHI ’ 02"4 = Lo E{fbm,oo} =1
’ 1 {(_flv}z
{Q-IV}Z — ﬁ.EIV ;0-2 = Ay E{_F‘bn’m} =1

But also we have, for example (Fyu,, ..., Fuv, not being stochastically indepen-
dent):

| sz p_o 1
S T } — 1
(1) ; | o ;
[ STIT12 B
< L oL Ay N B
{gp ’ et = . (2.3.5)
AIV2 bI*
?{éni — Fuy | E {712 Firp =1
27y
B> 9

From (2.8.5) it appears that adjustment in steps makes it possible to use other mem-
bers of the family of F-distributions. At the same time the effect of greater or smaller
uncertainty about the value of 62, which in Hy is assumed to be given, is eliminated.
But this elimination will in later formulas turn out to be only apparent. Besides, if
the tests based on {2.3.5) are to be effcctive, it is required that 5 >» 2, which means
in practice that the first step in the adjustment can only be executed after the com-
pletion of an appreciable part of the measurcments. This is contrary to the directive
mentioned previously.

It is important that if an appropriate partition of the adjustment into steps has
been made, it suffices to usc F-distributions only, provided that the covariance
matrix of (a?) can be considered as known.

All this sounds becautiful. Unfortunately, the practical execution is subject to
many disturbing influences and cannot be done by just following clear-cut direc-
tives; the author and his collaborators are still searching for better directives for the
the application of the theory.
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2.4 Critical regions. Choice of ¢

No experiment gives infinite ranges for (x?), only the mathematical model of the
probability distribution of Laplace-Gauss does.

This means that a part of the sample space of (x), outside a boundary surface
situated around (#7) on a certain distance, contains vectors (x5) which are non-realistic
if they are taken to represent samples on (x).

This region we indicate by the name:

critical region, K®,

This implies that the sub-sample space of the ()°) has a similar critical region:
critical region, K@),

For several reasons one takes:

K% = the region outside a b-dimensional ellipsoid, a locus of points with

~0

the same probability density, whose centre is (%) = (0)
and, writing P for probability:
PO ek Hoy =a . . . . . ..o L (24)

in which « is sufficiently small, but can curiously not be brought in connection with
the range of stochastic variables in an experiment. Here, much is left to the user.
In practice one uses the values:

a=10.05 or 0.01 or 0.001

On the basis of this line of thought it is intuitively felt that a certain observed sample
(xs) is not in agreement with Hy if:

(%) — (%); U e K9 Lo (249)

One is then, with different nuances of conviction, led to rejection of the assumption
that (x) is in agreement with Hj.
This is called the execution of a test; it will have to be carefully investigated what
actually is being tested.
The formulation given here leads to a different and also supplementary termin-
ology:
K9 rejection region
B® = non-K@: acceptance region ]

P{(1*) € K¥|Hy} = « J (2.4.3)

P{(y%) e BYHo} = | —«
By mathematical deduction it is shown that (2.4.3) corresponds with the right

hand tail region of the £, _-distribution; the so-called critical value F, Ca;p, CAN be
found in tables of percentiles of the F-distribution:

52
K@-. {; = [ b)m[Ho} > F1~a;b,m ]
(2.4.4)

72
B©. {g bm]Hg} < F_ a;b, o I

o2
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However it is a nuisance that K and consequently B® is not invariant with
respect to a partition of the adjustment into steps.

If for K, ..., K regions are taken as defined in (2.4.1), with successive dimen-
sions bL, ..., 8"V and with, instead of «, successively ¢l, ..., ¢!V, then one can in

correspondence with (2.3.4) establish the following table, analogous to (2.4.4):

42
B@ g F
‘ 702”4 < 1 ~u;b, oo
{512 i
‘ {81}
! B(Ql> 02 < Fl al;bl, o
[ 4T12 :
(M} |
B(Qu) o ,2,* < I;'1 a0, l e e e e e e e e e e e (2.4‘.5)
‘ o |
i {412
) 14 !
Blem = J < Flfa‘”;b‘”,o: |
o2 ‘
(5IV12
: ¢
Blow) sz < Fy_gvipv o
- \
Because Fy o, ..., Fyv ., are stochastically independent, the multiplication rule for

probablhtles can be apphed As indicated in par. 3 note IV of [Baarpa 1960], the
regions B, ..., B generate in the sample space of () a product space B,
formed by the intersection of four ellipsoidal cylinders. Then we have, cf. 2.4.3).

adjustment in one step | P{()?)

€ BHy) = 1« 7‘
i

(

| adjustment in four steps | P{()?) € BY|H,} = (2.4.6)
g
t

[ — -17(11} 17(111111 aIII}{liaIV}

B® will never coincide completely with B®, so that the outcome of a test con-
nected with an adjustment in one step may be different from the outcome of tests
connected with an adjustment in more steps.

Theoretically a certain degree of coincidence can be attained, by making the o’s
subject to the condition:

l—¢ = {l—aM1—aT}{1 -yl —av} . . . . . . . . ... (247

In order to be more or less independent of the chosen grouping of the condition
equations, one might choose:

|0 —(l_a¥* | B@ ~ B®
t
l—ot ={l—a” a as parameter or the a-value for
|l — {Iia}b“ a step with only one condition ; (2.4.8)

cquation
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In table (2.4.9) the curious consequences of the choice (2.4.8) are given for some
values of a:

| 1o = {1—ap

a |

b e RS

azamﬂ}:am‘a:&%‘

1 0.001 0.01 0.05 |

2 0.002 0.02 0.10 |
4 0.004 0.04 0.19

8 0.008 0.08 0.34 cee e (249

15 0.015 0.14 0.54
30 0.030 0.26 0.79
60 0.058 0.45 0.95
150 0.14 0.78 1.00
300 0.26 0.95 1.00
600 0.45 1.00 1.00
1000 0.63 1.00 1.00

According to (2.4.2) one rejects agreement between (x5) and Hy in 10029, of the
cases, even if Hy is not doubted. Although this is an interpretation which is only
valid within the adopted theoretical probability model, it follows from (2.4.9) that,
starting from, e.g. @ = 0.05, one should always reject when there are about 150
condition equations!

In practice another choice has usually been made for the ¢’s:

¢ = ol = 1 = I — IV

e — 005 | . (2.4.10)
But this means for (2.4.6):
D Qim‘ 0 H — _ — .
P(") € B} = 1—a 0-95 . (2.4.11)
P{(»*) € B*|Ho} = {1 —a}* | = 0.8]
or: ' o -
B® < B9; D G ¢ A $))

so that in an adjustment in four steps there is a greater probability to reject than in
the case that the whole adjustment is done in one step!

Attention is once more drawn to the fact that the indicated consequences of the
choices (2.4.8) and (2.4.10) are only valid within the theoretical probability model,
whereas from the introductory considerations in par. 2.4 it is evident that critical
regions may be a consequence of the fact that the theoretical model only describes
experimental data in an approximate way.
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However, it follows with certainty from our consideration that the different critical
regions based on the F-distribution do not form a consistent system, although the
~ adjustment itself is consistent with respect to a decomposition into steps.

Our discussion so far was based on (2.3.4), but we can also establish critical
regions based on (2.3.5). The trcatment will be somewhat more complicated,
because £y ., Ly ..oy Fyv o are not stochastically independent.

It is not entirely clecar what will be the best line to follow. I am convinced that
it will remain necessary to split up the adjustment into steps. Although one is not
always awarc of it, this method is often practised, e.g. when the adjustment of
geodetic networks is split up into firstly the station adjustments and secondly the
adjustment on triangle- and side conditions. But it is an open question how far one
should go. The subjects treated in the following paragraphs will play an important
réle in the answer.

Perhaps one should search for an entirely different approach to the problem of
testing. The present-day theory of mathematical statistics undoubtedly offers
possibilities for this.
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3 ERROR THEORY

3.1 Alternative hypotheses

The null hypothesis Hy in (2.2.2) is chosen on the basis of factual knowledge con-
cerning forescen situations.

Apart from this, one usually knows very well that errors in measurements cannot
be avoided entirely, whereas factors like refraction may also be prescnt for which
it may be impossible to give a realistic mathematical description. Besides, the
“laws of nature” arc just as relative as all laws made by man.

Because of all such influences it can very easily happen that, see (2.2.11)-(2.2.13):

(E{p*)) #1100 = (0) from Ho} . . . . . . . ... ... (3.1.1)
O, ON* £ (g fromHe}, . . . . . . ... .. (3.1.2)
o?-value in Hy doubtful . . . . . . . . . . . . ... (3.1.3)

To examine the influence of this, one will try to formulate his doubt in a mathe-
matical form, i.e. to formulate onc or more alternative hypotheses:

Hopy Hagy Hagy ..o o o 0 0o oo oo oL (314

ags 2%
and to compare these with, or oppose them to, H,.
For alternative hypotheses concerning (3.1.1), a theory has been developed by
NevmaN and Prarson,
Instead of:

(E{*[Hoj) = (0)

an alternative hypothesis H, is introduced:
(E{*|Hay) = (V)F) # (0) 1

or: _ e e e e oo oL (315)
FIH) = H) ()

We denote by an accent the non-central F-distribution which replaces in this case
the F-distribution, see [Baarpa 1960]. Instead of (2.2.17) we then have:

g2 .
{&2|Ha} :_Fb,oo,;.
i
E{észa}:021+—b—) ... (316
1 - -
A== (V)*(g,) (V)
(o)

(3.1.5) means a translation of the probability distribution of (»*) in the standard-
ized sample space over the distance }/A.
Instead of (2.4.3) and (2.4.4) we have, under H,:
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— — i
B = P{()") e K9 H,} = P\— > F, ., .|Ha ‘
]‘02 v !
IR B )
|

G2
1—p = P{(y) € BY|Ho} = P {i;é = 'H:

g is a monotonic increasing function of 4 (¢ and f being given) and is called the
power function of the test with critical region K@, See also [Baarpa 1960, 62]. This
makes it possible to compute the size A must at least have to let it be indicated with
a probability fo (e.g. 809%,) by the test. Tables are available for:

Jo=Ma, Bo, b, ool . . . ... (3.1.8)

Generally we are less interested in this than in the computation of the vector

(V;y") which generates this value 4.
From (3.1.6) follows the relation:

| -
fo= o (Voo)* (&) (Vo)) -« oo (319)

but we can only obtain an unique solution from this if the ratios of the Vj* are given,
as a further specification of H,. This can e.g. be done in the following form:

[ s o

. ) — v Lom by

| . (3.1.10)
| (¢%) a vector V a parameter ‘
From (3.1.9) with (3.1.10) it follows that:
ho = (e7)* (&) (¢*) -{Vo}?
Ao Vo
v =] * ( ):(cﬁ)v ... (31D
M= Ve e |1 o

Remark

Starting from a given vector (V}"), one can just as with (2.3.1) decompose the »* into
groups, with subsequent orthogonalization. This means a transformation of the
problem, similar to the one used in the adjustment in steps.

Analogously as with £ in (2.3.3) we then obtain:

A= NIV L (3.1.12)

from which it follows that 4, being a positive definite quadratic form, in general
increases with &.
(3.1.12) can be elucidated, by writing in (3.1.6):
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E{gt|H,} = Elg\Hal = 02+02—;:
- s b
or, with (2.2.17):
1
—EfE|Ha}:—E‘E[H(,,—|~l 3103

o2

3.2 Errors (mistakes) in measurements

A very striking cxample of (3.1.1) are (gross) crrors in measurements, errors which
in spite of all care are always being made. They may be mistakes in pointing when
measuring angles, errors in distance measurement, wrong position of signals or
instruments, but also influences of lateral refraction and errors of given coordinates.
This does not necessarily invalidate the covariances of (x7), so that a mathematical

description can be established by putting, as in (3.1.5):
E{x!|H,)) = (%) (Vxi
(B = (050 ) 3o
or: (xi|Ha) = (xi[Ho)+ (V&)

For the same reason as in (3.1.10), H, is made more specific, viz.:

|
|

g = +l//02

(3.2.9)

(¢?) a vector ‘ V a parameter

Application of the law of propagation of means on derived variates in the adjust-
ment process:

(2.2.10): () = (@) (&' —ap)

(2.3.16):  (X"—af) = (GV) (&) (+'-a))
With (8.2.1) and (3.2.2) thesec give:

(E{p*|Ha)) = (3° = 0)-+(V)¥)

(‘ ) ()-8 ‘.............(3.2.3)
(E{XP|H,}) — (#R)-+VXE 1

(\Vfﬁ) = (C%) (&) )V | - (324)

Substitution of (3.2.3) in (3.1.6), or, in view of (3.1.13), direct substitution of
(3.2.1) into E in (2.2.16) gives the formula, which is appropriate for theoretical
considerations:

A= ()* (g (&G (&) (H-V2 . ..o (3.2)5)
Subsequently the line of thought of (3.1.7)~(3.1.11) can be applied again, so that:
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/1() —> ‘VOl
and, from (3.2.3) and (3.2.4):

(V%y) — ) () [V ]

(VXXR\-

(3.2.6)
) = (GR) (gy) () -]Vl J

o

With (3.2.6) the effect of a minimum value of V in (3.2.2) on derived variates can
be computed, which according to (3.1.7) can be found with probability fo in a test
with the critical region K°.

The results (3.2.6) arc of the utmost importance, for they give an indication of
the reliability of the results o” measurement and adjustment.

For example, a computed coordinate may have a standard deviation of 10 c¢m,

but a value VoX% of 100 cm. This means that influences Vx? which generate in the

final result an amount of VX% < 100 cm, in 80%, of the cases will not be noticed in
the computation (inclusive of test). Often, these 100 cm are much more detrimental
to the purposes of the measurcment than the standard deviation of 10 cm, so that

the “strength” of a network is determined by the values (V;XR) rather than by the

covariance matrix o2- (Tﬂ, (X5)* 2 g2 (GRS),

From (3.2.5) it follows that in a geodetic network without supernumerous
(redundant) observations (and consequently without condition equations so that
(G7) = (g')), for every value V, one obtains 4 = 0. Conversely, it follows that Vol
is indcfinite, or, in (3.2.6) one must introduce |Vy| = co. This again means that
there is no check on errors in measurement or computation, or, in other words, in
this case there is no error control.

This is an extreme example; current geodetic practice shows constructions with
a great number of condition cquations (often b ~ ] m), so that it may be stated
that the geodesist usually aims at a reasonable error control. Computations like
(3.2.6), however, are scldom or never found in geodetic literature, so that quantita-

tive data about values (V;XR) arc lacking. But some published rescarch deals with
these problems though in a diflerent form; a typical example is [REICHENEDER 1941].

Research computations have shown that there are great differences in error con-
trol between different types of geodetic networks, and one of the aims the author
wanted to set for his work in I.A.G. Special Study Group No. 1 : 14, was a sharper
and more general formulation of the concept “Strength of Figure” of a geodetic
network, see also the annexed publication [BAARDA 1962]. A number of theoretical
and practical difficulties have prevented him from actually executing this idea.
Some of these questions will here be treated in more detail,

Most adjustment problems in geodesy are executed in one way or another by
splitting the adjustment into steps. Thercfore we will first follow the line of par. 2.3
and 2.4 to find the consequences of this. 2 from (3.2.5) is then split up as indicated
in (3.1.12).

Introducing for brevity:
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N = ()% (@) (¢ —GT) (é; i) (¢ )
N = ATI+NII+ NIII+NIV N N1, va o
NT = ()* (&) (&7 —G7) (g) (o) .. (327
NI = ()% (&) (G =G (&) ()
. NI (cj)* (é,,) (Gu.ui(wf’j’.m) (g- ) (ci)
NI — ()% (g) (G7M—G7) (g,) ()
we gct, see also (3 1.7):
[ T O a - !
‘ &2
;.. = sz ﬁ e P{_ > Fl ~, b m’Ha}
o2 ' !
- I |
PR, SR |
{U"I}Vz i ;
;LI — NIVZ /;1 - P{’—T* = ["1 al, bl m‘Ha} \
()‘ H
(i | (3.2.8)
lll — NII'VZ /:;II = P{ B .;JW > '[;I— wlt, i, CC‘HU/} !
o2
(12 }
AL = NOIL V2 piL = P{ it F, «,m./»".oc‘Ha} |
o2 ‘
{1V 12 |
| )»IV = NIV- V‘Z /’fl\v e P {_’; = >’ 1"1 ”l\'.bl\'.:‘H(L} :
| g&
|

This 1mphes that (3 l. 6) 1s spht into four parts;

}' F[)I\‘M_/l\

are independently distributed.

DY, o0,01s v ey

the four non-central F-variates:

The line of thought (3.1.7)—(3.1.11) or (3.2.3) -(3.2.6) can therefore be applied

four times, once for each step:

Ao = A, fo, b, oo} | Vol =
\

Ao = Ald, B, b, oo Vol =

Ay = A By, b7, oo V| =

Aot = ™, [, b, ool Vi =

Ay = A", By, b7, oo} Vo] =

(3.2.9)

()

ATHI i

A(J

e
|
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The question arises what is the (practical) significance of the [Vy|-values in the right-
hand column of (3.2.9).
To see this consider (2.4.6), but now under the alternative hypothesis H, from

(3.2.9):

adjustment in one stcp | P{(y") e BYH, =18 |
adjustment in four steps \ P{(y") € BY|H,} =
g )
i ; . '
Ps and 2’s from (3.2.8), | = Ble, b, oo, 4]
[ : 5 ] ( ) / /la oo J (3.2.10)
as functions of:
’ /))1 = ﬁ{aI, bl: 0, ;LI}
BIL — Bledl, bl co, AT}
BUIL — Bt pUT oo, AITT
BV = BladV, b1V, oo, A1V}
Now the situation is possible that:
1—f = {1—puH1 —puy I gl —pve o oo .. (3211

which, in view of the ratios between the A’s given by (3.2.8), requires a certain relation
between the a’s.
Consequently, starting from (2.4.7) with (2.4.8), (3.2.11) will be fulfilled with
some approximation.
(3.2.11) suggests an approach for the converse problem in view of (3.2.9); By s
v must be determined with respect to an adopted valuc fo, making use of:

LBy = {11 —pu T WA o o oo (3:2.12)

If, for example, the «’s arc chosen according to (2.4.8) and the ratios of the Ao’s
according to (3.2.8), one can computc valucs B, ..., B’ . Howcever, then this is not
necessary any more, because from the ratios of Ay, Aj, ..., A" from (3.2.8) it follows

with (3.2.9) that:
Vol = (V5| = Vi = V" = [V&" ] . - o o oo (3.2.13)

Possibly onc can also attain (3.2.13) by computing f, ..., i’ in the same way

from fo as dl, ..., 'V were computed from « according to (2.4.8). If then the ratios
of the values 2o from (3.2.8) arc used again, values of, ..., aIV will have to be labouri-
ously computed, so that the critical regions arc in fact determined by the correspond-
ing 2’s and conscquently by the special alternative hypothesis H, from (3.2.2).

The two theoretical possibilities leading to (3.2.13) have the practical (and
actually even theorctical) difficulty that it is tacitly assumed that it is possible to
have a complcte view of the total adjustment in one step.

But if one considers a geodetic network as a work which grows over a period of
many years, during which it is impossiblc to get a total picture in all details, then
this assumption turns out to be a fiction.
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Therefore it is in practice admissible that besides (2.4.10) one makes the simplifying
assumption:

Bo =B = By = Bt = Bo”
e.g. — 0.80 (3214

(3.2.9) with (3.2.14) will then in general result in:
Vol 2 IVl # Vo | # IV = V'S - - - o o o o oo o L. (3.2.15)

which gives rise to the question which of these values (3.2.15) should be substituted
into (3.2.6).

An analogous problem was treated already in [ALBERDA 1963], where it was
tried to reach a minimum value in {3.2.5) by choosing a certain group of condition
equations for each alternative hypothesis specified there. In this case, the measure-
ment of the whole network had been completed, so that the formulation of the pro-
blem was not entirely cquivalent to the one here treated.

An extreme illustration of (3.2.15) is given in the following case:

H,, special case

3.2.7) | Nl— NU — N — 0, therefore: NIV — N

324) ﬂ(l) - 10I - (I)H = (I)V = /30
3.2.9) Aoy Ay Aoy Aot A

(3.2.16)

(

(2.410) | @ — ol — T — @IV — ¢
(
(

|V(I>‘ = Wffl = W(I)H‘ = 0

Y Ao
VIV _ ) ; i V _ 7}
i l 0 ‘ N 77& ‘ 0 ‘ N

In this example, no check on the occurrence of H, is possible in the steps I-I1I1, this
possibility is only provided by step IV.
In fact one is faced with a decision problem:

either adjustment in one step — |V
or adjustment in four steps — |[Vg¥| ¢ . . . . . . . . . . (3.2.17)

including the choice of «’s and S¢’s

At this stage it is not clear what should be the basis of the solution of this decision
problem, if it is not the directive to adapt the adjustment in steps to the order of
execution of the measurements in a certain geodetic network.

For illustrative purposes this will be worked out for a more general case of H,. For
the tests, the following decision scheme can be established:
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Ha, generdl case: NI, N1 NIH NIV ¢ 0
[ g [ ggme | ggme v | -
(¢ d é (¢ .
Sequence| = YL S . ——— | Action
o2 ‘ o2 oz | o?
i
1° e K | : reject (x%) in step I
e B ‘ go to 2°
2° e B% e K% reject (xg) in steps I, 11
c B | ¢ Bew ‘ go to 3°
3° € B® ¢ B% | ¢ K'aw reject (x4) in steps I-TT1
e B® ¢ B ¢ Bow g0 to 4°
4° e B% e Bw ¢ B ¢ Kl reject (xi) in steps I-IV
: e _ [
e B% e B | g B ¢ B | accept (x)) :

(ﬁ3.2.18)—

This scheme is remarkable in several respects:

a. In H, of (3.2.2) there is only onc parameter V and yet one is working in steps.
But because in every step ncw obscrvations are being added, one has the possibility
to check the occurrence of H; at an carlicr stage, so that in the case of rcjection the
number of x? to be remeasured is a minimum.

b. It is possible that the null hypothesis is rejected in the different steps in spite
of the fact that H, docs not occur. The probability to take such a wrong action
(NEYMAN and PEarson: errors of the first kind or Typc I errors) are, successively:

ol
I ¥
1—{1—a}1—a}

B P oV R Y I |0y

[ —{1—at}{1 —alt}{]—qlll) J
LT ] IV
] — eIV}

1 —{1—ed}{1—a}{1
c. Itis possible that in the different steps one does not reject the null hypothesis,
in spite of the fact that H, occurs. The probabilitics to take such a wrong action
(NevMAN and Prarson: errors of the sccond kind or Type 11 errors) are, successively:

1t
(11 —pm ]
.

(1= p 11— puy

(L1 g1 — o

d. There is some similarity between (3.2.18) and so-called ,,sequential tests”.

There are, howcever, characteristic differences: for the reasons mentioned before, it

is particularly difficult to indicate in advance values for ¢ and fy to which (3.2.18)

can be adapted, whereas the mcasuring process is finished when the vector (x}) is
complete (except in the case of remeasurements).

(3.2.19)

(3.2.20)
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(3.2.19) may give rise to quite high values for «, as has already been remarked
with reference to table (2.4.9). If the cost of remeasuring is also considered, the
hesitation of practical geodesists to follow consequently the scheme (3.2.18), is
very understandable. The choice of o, ..., a'V becomes then a question of conflict
between conscience and cost!

In addition one is faced with the also increasing values (3.2.20), in which the
f’s increasc as the «’s are chosen smaller. This is the next conflict of conscience for
the geodesist who wants his crrors { H,} to be indicated.

Using (3.2.9) he can compute the magnitude of the errors in (x§) which, with a
certain probability, will be just detected, but in practice he is then faced with the
situation indicated in (3.2.15). It seems difficult to find a satisfactory solution for
this. The whole scheme (3.2.18) must be worked through, so that one finally has an
acceptance region B from (2.4.6), which, choosing e.g. ! = ... = a1V, may be
quite different from B from (2.4.6), even if « is computed from (2.4.7). For this
rcason, the comparison between tests based on adjustment in four steps and tests
based on adjustment in one step will be very difficult if not totally impossible, And
because of this, it becomes practically impossible to compute a unique value for
[Vo], and consequently for (V;XR) from (3.2.6).

There is no need to be too pessimistic about this conclusion. Theory is just theory;
sometimes it may sharpen our intuitive insight, sometimes it does not. Many years
of experience in the application of this theory have taught us that a sharpening of
intuitive insight has resulted, even if the final decision does not always conform
to the theory.

Every geodesist who has a practical mind will of course ask: where should I start
looking for crrors in case (3.2.18)?

This question leads to a refinement of the formulation of H,; in (3.2.2). For, by
definition, (3.2.2) does not give an answer to this question because on account of
the introduction of only one vector (¢f) there is a dependence between all (Vjcl)

From a practical point of view, (3.2.2) is thcrefore nonsense: no functional
relationship can be indicated for most types of measuring errors.

There, (3.2.2) is replaced by the following composite alternative hypothesis:

R
I ( /’,,,,) ) o = +1/0-2

Hap |‘ - - (C;) 'V/;

(3.2.21)

b= 1,234 ‘ (¢;) vectors i V, parameters J

The line of thought is now for cach H,, the same as for Ha. The notation becomes:

(3.2.3): (V;ij; (3.2.4): (V;XR)

.o o
(3.2.5):  Jmy Apo— Vol C ... (3229
Vpor'\ [ VpoXE
(3.2.6) - (1"”), ( 2.0
g / [#)
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(32.7): Ny, N, .., NV 1
(3.2.8): 4, etc.; B, B, etc. . (3.2.22 cont.)
(3.2.9): A4 etc; |V,l, etc. J

Now put the case that a decomposition into four steps can be made, so that,
compare (3.2.16):

" N, from (3.2.7), with (3.2.21) and (3.2.22)

- p=1|p=2 p=3 p=—+4
N, Ni 0 0 0
NI N N 0 0 Coe e . {8.2.29)
N[I,H N{H N;II N;II 0
NIV N{V N,IZV Név Ni\/

p .
Sum = Ny N, N, N, N,

Now the indicated difficulty of interpreting (3.2.15) can be circumvented by
making a choice of different |Vy| to be computed, such as:

Influence of only | iy | choice of | 4o selection (V;XR)
" ifnot |then | SteP | @ fo | (3.29) | of [V (3.2.6)
o | o
Hy |1 a', Bio ﬂ,o |V§,o| = 7\/’1' (V) o XR)
1
| -
Hal H‘lz II aH: EO Z'EO \Vifo = jvyﬁ (VZ)OXR>
2
|-
Hapy Hay | Hay | TIL | e, BN G | 98] = U | (Va0X)
3
, . Y -
Hals Haza Ha3 Ha4 IV aIV) [))—1,\() }'-’I}VO |V-Ih\(/)| = ﬁ,]\ <V4,0XR) 1
4
(3.2.24)

(3.2.24) is now used in connection with (3.2.18), whereby a certain indication
for the detection of errors is now present. But this will be no more than an indication,
because, essentially, the remarks given after (3.2.18) will be valid for the situation in
(3.2.23) too.

(3.2.21) with (3.2.23) only give an utterly simplified picture of the real situation in
practice. It might be said that the four steps are in fact four groups each consisting
of many partial steps. In addition, (3.2.21) cannot be established in reality either,
so that, on account of the fact that the four vectors (c;) cannot be established, in
practice one often makes as many alternative hypotheses as there are x§. Every
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separate hypothesis Hq;, consists then of the hypothesis that only x5 has a measuring

error, whose size is V;x?. This makes thc schemes (3.2.18), (3.2.23) and (3.2.24) very
large and complicated, so that onc usually restricts oneself to a limited choice out of
all possible combinations. Experience has shown that in this way it is possible to
get an overall picture of the decision problem, but that in practice it is very difficult
to actually make a decision.

A typical example of the situation (3.2.23) is the classical triangulation network,
where the measurement of directions is spread over two or more nights in order to
check on possible lateral refraction. One gets the following arrangement:

Step 1

Step 11

Step 111

Every station adjustment per station per night can be seen as a partial
step of step L. Hq, is concerned with rcading mistakes. The problem is
then to decide whether a certain scries of direction measurements can be
accepted or must be rejected. If the measurement has been done with great
care, Hy, can often be left out of consideration, and the computed 62 of
all partial steps scrve to test if the adopted o2 of (2.2.2) has an acceptable
order of magnitude. This may e.g. be done by means of confidence in-
tervals.

The partial steps mentioned here occur during the gradual progress of the
measurcment of the network, alternating with partial steps of step IT and
step 111, which is simplified by the practical abscnce of stochastic depen-
dence between the partial steps within step I .

The joining of the different station adjustments made for each night for
the same station can be considercd as a partial step of step I1. Hy, is then
concerncd with influences of lateral refraction. The establishment of
vectors (cb) from (3.2.21) mccts with great difficulties, or is impossible
even per partial step. This makes it very difficult to estimate |Val| from
(3.2.24), so that in this respect the theory developed offers relatively few
possibilities for practical application.

We were very disagreeably reminded of this when the base extension net-
work which was measured in 1965 in the North of our country clearly
showed signs of latcral refraction influences which could not be localized,
although experiments during the whole 1964 season seemed to indicate
that such influences were not occurring there.

Triangle- and sidc-conditions and sometimes base- and Laplace-conditions,
grouped in partial steps or not, can be considered as step I1I. Mg, 1s then
concerned with pointing errors in different form, such as e.g., are caused
by the centering of instrument and signals. The decomposition into partial
steps, which is necessary for the analysis of the progressing measuring pro-
cess, is here hampered by the (often strong) stochastic dependence be-
tween the misclosure variates. Because variates corresponding to directions
may occur in many condition cquations and consequently in a relatively
large number of partial steps, one is in step I11 forcibly confronted with
the theoretical difficulties of the decision problem mentioned in connection
with (3.2.17). In addition, we have here also the problem of establishing
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the vector or vectors (¢;) per partial step, so that usually one just decom-
poses H,, into as many alternative hypotheses as there are direction
variates.

The difficulty of actually deciding to reject or accept is well illustrated by
the base extension network mentioned before, where we actually do not
know how to make a decision which is justifiable economically and scien-
tifically.

Step IV~ Fitting the net to given coordinates by establishing coordinate conditions
is the last step; these conditions may be grouped in partial steps. H,, is
now concerned with errors in these coordinates or with faulty signals in the
corresponding points. Again we mect the difficult and often unsatis-
factorily solvable problem of the establishment of the vector or vectors (c})
per partial step. The test problem is of an extraordinary difficulty because
as a rule so little 1s known about the covariance matrix of given coordinates.
This problem, which we shall touch upon in par. 3.3, is almost daily met
in smaller local networks. But also in large geodetic networks this problem
turns up, as e.g. was cvident from the filling up of the first order chain net
in the U.S.A.

Does the preceding lcad to a negative conclusion about the applicability of
methods of testing? Certainly not, we could not do without them any more. But it
appears that our line of thought must be ordered better, perhaps the true simplicity
is lacking.

3.3 Effects of the assumption of a covariance matrix

In par. 2.2 it has been sketched how one can arrive at the choice of the covariance
matrix of (x):

(o) = 02-(g¥) . L . L L 0o oo e e e e e e ... {838

in H, see (2.2.2).

The question may be asked if it is important that the choice of (3.3.1) is done as
carefully as possible. Research and practical experience show that this choice is of
fundamental importance for the interpretation of the results of measurement and
computation, with the restriction that it suflices to ascertain the elements of (3.3.1)
in only a few (two) digits. This is a consequence of the limitations of estimating
covariances from an (always restricted) experiment consisting of repcated measure-
ments. F'urthermore, the comparison between the registration R of the measure-
ment of a geodetic network and the supposedly equivalent registration of such an
experiment contains so many doubtful elements that it would be self-deception to put
the elements of (3.3.1) down in more than two digits.

This set-up, i.e. the assignment of a covariance-matrix to a vector (x}) (obtained
from the mcasurement of a gcodetic network) by means of a comparison of the registra-
tion R, could in principle be replaced by a set-up where experiment and measure-
ment arc cxccuted together. In that case the adjustment by the method of least
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squares with tests based on the F-distribution could be replaced by the so-called
multivariate analysis with tests based on the Wishart-distribution. The theory con-
cerned has been completely elaborated and is available, although tables have not
been elaborated to a sufficient extent. Principle is one thing, application another:
it will rarely happen that a geodesist is able to measure a geodetic network, covering
one or more countries, more than once! Therefore we can restrict our discussion to
the set-up of par. 2.2 ff,

In (3.3.1) the usual decomposition of (0,,;) into the variance factor ¢* and the
matrix of weight coefficients (gi) has been indicated.

"The adoption of a value for o2 turns out to have no influence on the 1st part of the
adjustment (2.2.11), the computation of the least squares estimators. Nor has this
choice any influence on the 2nd part of the adjustment (2.2.12), the computation of
the matrix of weight coefficients of these estimators. Only when we transfer to the
covariance matrix, o2 has the function of a kind of scale factor. Also in the 3rd part
of the adjustment (2.2.13), the computation of the shifting variate, the adoption
of 62 has a similar influence. However, there is a serious influence if one considers
tests with power functions; at first sight it seems that o2 has again an effect like a scale
factor, but in reality a wrong assumption for ¢2 may have a ruinous effect on the
Interpretation of results of the computation. This is also true for the situation where
no alternative hypothesis needs to be assigned to Step I of the adjustment, so that in
testing-formulas 62 can be replaced by the estimate {412, See the remarks referring
to this at the end of par. 2.4. It would lead us too far if we discussed this further.

It is particularly troublesome that just this latter influence of 62 turns out to be a
disturbing factor for the testing theory. For, in the way described in par. 2.2, experience
shows that the ratios of elements of ,i,; can be established with a greater reliability
than their actual numerical value. Or in other words, it might be said that the matrix
of weight coeflicients (gi7) can be established more rcliably than (o,:,), and con-
sequently that the assumption of a value for ¢? is always a more or less precarious
affair, see (3.1.3). This question will always have to be taken into account in the
decision problem of the testing theory.

More drastic are the consequences of an incorrect assumption of the matrix (gi),
from which (g*") follows, see (3.1.2).

The elements of (g%), just as those of (0,:,j), will never have a realistic number
of digits higher than 2. As is easily shown from the geometrical illustration of the
adjustment and testing process in the sample space of (x%), the consequences of this
restriction are hardly appreciable. LiNkwiTz has quantitatively studied these con-
sequences [Linkwrtz 1961] and found an admissible deviation of 109, for the ele-
ments of (g¥7), which checks reasonably with the aforementioned restriction to two
digits. I often have the feeling that we should be happy if the possible deviation is
within 30%,. We therefore definitely do not have to worry about “true” weight
coeflicients, as long as we have acceptable ones.

In ordinary practice one takes much less care, even to-day. It still happens that
for (¢¥) a unit matrix is assumed without more ado, whereas often the probability
distribution of given coordinates is ignored or forgotten. Such a matrix, which
(often unjustifiably) is put in the place of (g¥) will be called a matrix of pseudo
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weight cocflicients, to be denoted by:

(R) . L (33.2)
so that as the pscudo covariance matrix is introduced:
o2 (k) instcad of ¢2-(g¥) . . . . . . ..o (3.3.3)

If this is done thoughtlessly, one is casily led to an automatic application of the
algorithm of the method of least squares, i.c. (2.2.11)-(2.2.13). But one obtains
pseudo least squares estimators, which will be classified as unbiased linear estimators,
denoted by:

(XB) oo o (38

Accordingly one gets pseudo weight cocflicients of the estimators and a pseudo
shifting variate.

Summarizing, and using a notation which is in accordance with (3.3.2)-(3.3.4)
we get in analogy with (2.2.16):

Adjustment with (k%) I

stpare | (& —al) — HY ) (f—a) | (335
| 2nd part | (L") = (1Y) (k) (H") (3.3.5")
srd part | Egy — (¢ —al)* () (7 HOV ) (=) (3.3.5")

As far as the computation of cstimators is concerned, the introduction of (3.3.2)
need not be harmful. Many satisfactory approximate adjustment methods have been
developed, and it can be proved [Baarpa 1961] that always a matrix (hif) can be
found with which the estimators from the approximate method can be intcrpreted as
pseudo least squares estimators, provided that the same “laws of nature” (2.2.2) or
(2.2.5) are used. The algebraic technique developed for this has only rarely been
used, because the results (3.3.5) and (3.3.5""") usually cannot be intcrpreted.

To illustratc this we opposc to cach other the:

least squares estimators (X*)

pseudo least squares cstimators (X)) | (3.3.6)
Consider now a linear function like (2.2.9) with an arbitrary row vector (Az):

J=(ARGER) . . . . ..o (33T
Then from (3.3.7) with (3.3.6) follow the estimators:

F o= (A(XB) . . ... ..o (338

Foo=p)(X5) -« o o v o oo (3.3.8")

An application of the law of propagation of weight coellicients to (3.3.5"") and

3.3.8) with (x%), x\* = (gi7} results in the (interpretable) weight cocflicients:
g P )

(X0, (X0)F = (HY) (k) (g7 (hy) (HY) = in general 7 (HR)  (3.3.9)
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F,F = (AR (GRS)(Ag)* l

R . e oL (8810)

Fupy Foy = (An) (X5, X5)% (Ag)* = F,F |

From (3.3.8") follows with (3.3.5") the pseudo weight coefficient of F',:
(Ap)(HES)(A* 0 o 0 o 0 o o o o o ... .. .. (331D

Also taking into consideration E from (2.3.16) and E ,, from (3.3.5"”"), the following
general result can be obtained:

(AR) (HRS)(Ag)* FW F[,,{: FF :
E(/t) - E

(3.3.12)

The indefinitencss of the inequalitics in (3.3.12) is the reason that without further
analysis of (H®%) it is not known whether its use in the planning of networks leads to
an under- or an overestimation of the precision of (X7, ), whercas with respect to E
it is not known whether its usc in tests incrcases or decreases the probability of re-
jecting Hy. An cxamination of the the results of earlier adjustments has in this respect
led to very remarkable conclusions, and this may be the causc that the theory of
observations is so impopular with many men from practice .

A further analysis shows, however, that, if used with prudence, the introduction of
(k%) which in practice is almost unavoidable, can in certain cases give interpretable
results.

For, if two matrices of pseudo weight coeflicients (A7, ) and (A7) can be found
satisfying:

(R —g") s positive (semi-) definite l

(3.3.13)

(hi..—¢") is negative (semi-) definite |

and (A7) is used in the 2nd part, (A%, ) in the 3rd part of the adjustment, so that in

min

fact the adjustment algorithm is computed twice, then:

(AR (HE ) (A)* - F,
E (h

ftmax)? F[:/I ax) ’F
a max e e e e (3.3.14’)

The consequence is that when (H2 ) is used an overestimation of variances occurs,

max

and that when £, _, is used in a test, Hy will be rcjected sooner. This means that

mo o

min!

one is actually using more stringent requirements, which, as practice in the Nether-
lands has shown, need not cause difficultics.

The disadvantage of (3.3.13), viz. the double computation, can be eliminated by
making the two (£¥)-matrices fulfill the relation:

(hi) — v (), =1 . . . .. ... .. .....(3315)

max min

If now with a view to the planning of the precision of geodcetic networks the adjust-
ment computation is done with (A% ), then it can he shown that:

max
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( )(Htlflsx\) (‘1 S>* = FT/’ma\ F(/’mux> = F’ F 1

(3.3.16)

Im

2 e
T2E, =
/In l\)

(3.3.16) makes it possible to answer the question whether the elements of the main
diagonal of (gi#) should be increascd or decreased when rounding them off, in the
case of uncertainty in the assumption of {(¢#) and absence of corrclation. According
to (3.3.15) and (3.3.16) onc should do both, to get a possibility for finding the size of
the factor 2.

Here too, the practical application of the theory is not simple. It is possible to es-
tablish a practically applicable theory [Baarpa 1964] for distance- and direction
measurcments in such a way that uncorrelatedness can be introduced, but the same
theory shows that in principle for given coordinates the introduction of correlation
is necessary, even inevitable. One will therefore have to revert to the general require-
ments (3.3.13), possibly together with (3.3.15).

The thcory mentioned scems to lead to the consequence that given coordinates
must never get a correction, i.c. in an adjustment problem the part of the covariance
matrix pertaining to given coordinates must be assumed to be zero. This is in agree-
ment with geodctic practice, where the same thing is done to prevent confusion about
the date when the coordinates of monuments have been fixed.

Here one is faced with a very particular application of (k%

min

), for which (3.3.15)
is not valid. Because, in particular in small nctworks, the influence of given coordi-
nates on the results of an adjustment can be important, it has in practice been found
that in this case:

Euo > E o o oo oo (3.3.17"

and consequently, see (2.2.17):
Il I G 1
E:_U’nun |Ho} = Elb' Ehi l]‘[()| 02 L 0 .o . ... (83177

so that the use of E;, , for testing purposcs leads too often to rejection of Hy if only

it is because of (3.3.17").

For small nctworks a solution of this problem has been found by executing mainly
acceptable tests in the steps I-IIT as indicated in (3.2.23) ff.; after this, step IV is in
principle computed twice, the first time with the special (k%) ignoring the

probability distribution of the given coordinates in order to find estimates X

fmin)?

the second time with a (47, ) in which a rather rough estimation of the covariance
matrix of given coordinates has been used to complement (47}, whereas also the

factor 72 is estimated for computing 7*-E,
The same (k!

max

maé lx>

) is also used to find a practically usable pseudo covariance matrix
of (/_\’(,l 1)» but this method which since about ten years is used in the Netherlands
will not be further discussed here.

It should be mentioned, however, that the solution indicated has led to quite
different requirements for the establishment of small geodetic networks. These
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requirements will in the years to come be tested in practice on their merits regarding
economy.

The attempts to establish a (47, )-matrix for given coordinates in a certain adjust-
ment problem, have clearly revealed the fundamental difficulty of the exact defini-
tion of the concept “coordinate”. This is alrcady the case with computations in the
planc. An exposition of these difficulties is found in [Baarpa 1962], where a first
version was given of the theory now called “Polygon theory in the complex plane™
[BaarDpA 1964]. If one wishes to find such a (£,,) for coordinates, one must be able
to detach oneself in the first instance {rom the two base points (generalized or not), as
are defined in par. 6 of [BaarDA 1962]. In par. 7 of the same paper a possible solution
has been suggested, which might also provide a conncction with the purpose of
measurement.

In spite of intensive research by ALBERDA and myself we have not yet succeeded
in constructing a satisfactory positive (semi-) definite matrix which also has the
relative invariance properties required by the theory. Should this construction suc-
ceed, then a generalization for spatial computations is certainly possible because the
basic theory for a spatial polygon theory has already heen developed.

The planning of geodetic networks with respect to precision as well as the analysis
of statistical tests and crror control considerations can actually only be exactly
formulated if this matrix can be constructed.

3.4 Effects of non-linearity in functional relationships

Generally the different functional relationships mentioned in par. 2.2 will not be
linear.
Consequently (2.2.6), (2.2.5) and (2.2.9) will have to be written as, successively:

0) = (Yl @) i=1..,m|

o =10 | (3.4.1)
(#) = (X 9" .0 a=>b+1,...om . . . . . . ... . (342
(#) = (Xl @ ,00) 7 (343)

For a comparison with the linear rclationships from par. 2.2, (3.4.1)-(3.4.3) are
expanded in Taylor’s series omitting third- and higher order terms. This cxpansion
must be done operationally, i.e. with respect to a vector of actually assignable approx-
imate values, not with respect to (&) or (), because the latter are just the vectors
to be estimated.

Because we have to make a connection with adjustment problems anyway, we shall
follow the usual way of computing the 2nd standard problem, viz. the assumption
of a vector of approximate values for the unknowns (¥*):

(YO . (34

from which, following in principle (3.4.2) and (3.4.3), the vectors of derived approx-
imate values for (X?) and (X"} are computed:
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(X)) = (X0 VL0 o . (345)
(Xp) = (XX .0 . (346

The choice (3.4.4)—(3.4.6) is made in order to get cxpansions in the same “point”
of the sample space of (x?).
For partial derivatives the following notation is introduced:

& . lfeeye .

{69?’}(){3) e 2{57cf axf}(.\@ T

o 1 I P
) (¥5) 219791 (x5)

{aﬁ'} o 1{61('} T

ol (xy) 7 2lexex](x) e

The choice (3.4.4)—(3.4.6) then gives the relation, compare (2.2.3):
@ (@) = 0) . . . . .. (348

The expansions sought can then, omitting details, be written in the form:

(@MJ) ©) ) FX) P @ x)
(342) | (FX) = (@) O Y+ 0T Y@ 0T | (349)
| (3:43) | (7 Xp) = () (F— X5 + (¥ XD * () (7 X))

Up to and including the sccond order terms, we have then again obtained a
consistent system of equations.

If (3.4.9) is replaced by difference cquations omitting the second order terms, and
these are opposed to (2.2.6), (2.2.5) and (2.2.9), one gets:

O —eEd
() = ()5
|

(
(F=Xj) = (@)0—1) . . . (3410
(

VX = (A)F-XG)

From (3.4.8) and (3.4.10) it follows how, with some unimportant changes, the
adjustment algorithm indicated in par. 2.2. can be applied to non-linear relation-
ships (3.4.1)—(3.4.3). Here, too, we lcave out the many details.

The effect of adjusting on the basis of the difference equations (3.4.10) is twofold :

a. Substitution of the obtained cstimates into (3.4.1)—(3.4.3) will show theoretical
misclosures (remainders).

b. All derived variates generated by the adjustment algorithm will have a bias,
depending on the choice (3.4.4.)

Schematically we can indicate item a. as:
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{ (R%, (RY), (B') not spr(;ciiﬁed here

H(0) = (s X ) 4 (B L (34
(X = (X, 7))+ (R

(X=X L)+ ()

Some formulas concerning item b. will be given, but with some reserve because
the theory has been developed only recently.

Substitution of (3.4.2) into (3.4.3) makes it possible to compute the partial
derivative:

{BX’} A A (3.4.12/
Sasy e = M (B )

Then the following is valid, compare (2.2.15):

R ,,,,:( Y;:>*<,f,,>< ~¥5) )
(R) = THAIOT) - (34127
(B —0) = ()(R)
(BLX &) = (G7)(g,) (RD)— (RY)
. - . (3.4.12"
(E{Y") 5% = (G)(g)(R) 34127
(B[} %) = (67)(g)(R) — (R

From:
(E{y"}) + (0)

follows a similar effect on E and consequently on g2 as has been indicated in (3.1.5) fI.
for an alternative hypothesis. Hence, writing 4 instead of 4:

b, oo
o2

(3.4.13)

Because when decomposing into steps the same is valid for 4 as for 2 in (3.1.12), the
phenomenon that the estimate 42 for o2 has a tendency to increase as b (== number
of condition equations) increases, might possibly be ascribed to thc influence of
non-lincarity of (3.4.1) and (3.4.2). In geodetic practice this situation is repeatedly
noticed.
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If an adjustment shows appreciable remainders, i.e. if the least squares estimates
do not fulfill the condition equations to a sufficient dcgree, iterative procedures are
often used. Usually the procedure converges well enough, but it can be shown that
the bias caused by non-linearity persists, even if the resulting estimates fulfill the
equations exactly. In the 2nd standard problem it also remains to be shown that
the result of an iterative procedure is independent of the assumed approximate
values for the unknowns.

Note on the choice of (3.4.4)—(3.4.6)

This is indeed a choice. The practice of adjustment technique shows that other
choices can be made. The most important one is, that in the Ist standard problem

one tries to evade the assumption of the vector (X;). Instead of computing, according
to (3.4.10):

07 = (1) (¢~ X)
one follows (3.4.1) directly, so that with (3.4.9):
O = (Tl o) ~ (W) (@ —X5) + (¢~ XD * () ('~ X)) (3.4.14)
Further one follows the adjustment algorithm of the Ist standard problem in
(2.2.11) ff.
This means that the solutions according to the Ist and the 2nd standard problem
do not give entirely identical results.
The method of (3.4.14) has a very favourable effect, the remainders R arc in

general smaller and their expectation can always bc computed. For example,
instead of (3.4.11) and (3.4.12) one gets:

Ist standard problem with (3.4. 14)

(E(R)) = (Z fowo)

0) = (Yo X' oo D (R) | v e e e e e e e (3.4.15)

(E—0) = (Z 040

L]

(E{X—7) = — (") () (B

It follows from (3.4.15) that the influence of the vector (.X;) has been practically
eliminated by the choice (3.4.14). Only the small influence of the partial derivatives
according to (3.4.7) remains.

Because in many problems the number of digits which must be used for the
elements of (f) is limited, #¢ in (3.4.7) is often replaced by:

9Ye
u"}_{aﬁi}@i,) e (3.4.16")
S

Actually one gets then stochastic coefficients:




STATISTICAL CONCEPTS IN GEODESY 41

[

l_t”‘:-:—az:} P & R R
ox' ).y

Besides, if there are redundant observations (5 << m) one cannot get a unique result,

in contra-distinction to (3.4.7) and (3.4.5). This problem is becoming more and

more important as further consequences are drawn of the application of large

computers. Actually, a solution must be sought in the much wider context of the

theory of rounding-off, but here we cannot go further into this question.

Final remark

The assumption of functional rclationships like (3.4.1)-(3.4.3) in the formulation
of the null hypothesis will only lead to unambiguous results if these relationships are
taken from a uniquc model of functional relations, e.g. from planc or spatial Eu-
clidean geometry, ctc.

In general, there will then be a possibility of choice, the only requirement being
that certain conditions of functional independence are fulfilled. This mecans that
systems of equations can be submitted to certain transformations admitted by the
theory.

The theory of rounding-off errors, as well as the theory of non-linearity sketched
here, show that one choicc of a system of cquations results in smaller remainders
than another. The systems may be isomorphic from a theoretical mathematical point
of view, but numerical computations may nevertheless lead to results that are some-
times appreciably different. This, together with the subject-matter of previous
paragraphs, makes error control to one of the most difficult subjects in geodesy.

One of the most remarkable outcomes of the theory developed is that effects of
non-linearity may be made smaller by a particular choice for the relation between
the precision of distance- to the precision of direction measurements, together with
a particular choice for the systems (3.4.1)-(3.4.2). The result seems to imply that
from a theoretical point of view the measurement of distances and directions in all
points of a geodetic network should be preferred to measurement of only distances
(trilateration) or only dircctions (triangulation).

Here it conscquently appears that there is a strong influence of the probability
distribution of the diffcrent observed or derived variates, an influence which is also
known from the theory of rounding-off errors.

3.5 Effects of the assumption of a model of functional relationships

The purposeful use of the word “model” indicates that the expression “laws of
nature” in (2.2.2) fI. can only have a relative value. As a result of the clear and di-
dactic teaching in high schools or universities, almost everyone is convinced of the
acceptability (if not the truth) of the laws of physics, and only rarely such “laws of
nature” are seen as parts of a model consisting of mathematical relations, where
quantities have been labeled with a physical name (often in a rather careless and
arbitrary manner). But the more one trics to generalize in his own field and to seek
connections with generalizing trends in other fields, the more it becomes evident
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that there is a possibility of choice with respect to the mathematical framework de-
scribing physical events.

For example, onc may beside (3.4.1)-(3.4.3) arrive at a possible alternative
assumption:

(0> :(Yg{a;gl))}) lzl,,ffl
(f1>:<Xl{,)7“,}> (i:5+1,...,777l J e e e e e e e (351)
() = (X{.., &, ...) r =

If we oppose to each other two models which arc not isomorphic, such as e.g. the
classical ellipsoidal computing model and a really spatial computing model, we see
that e.g. the measurement of vertical angles in the second model is a necessity,
whereas in the first model the mcasurement of vertical angles can often be omitted.
This means, consequently, that:

But this example shows also that thc number of condition equations and/ or
parameters can be different, or:

b==b . .. (852
From (3.5.1) and (3.5.2) it follows that the statistic:
2 (Mo M)

will certainly be different in the two models, so that in principle a test might be used
to decide in favour of one or the other.
In principle ..., because the following should not be forgotten:

a. The difficulties inherent in every method of testing {par. 3.2);
The effects treated in par. 3.3. and 3.4;

¢. The innumerable corrections to measurements which have to be applied to
establish corrcspondence with mathematical quantities, and which are often
assumed to be constants (errorless quantities) ;

d. The insufficiency of any mathematical model to describe physical events
completely, not to mention the fact that the recognition and definition of
“physical events” has a strongly subjective aspect, and is usually directed
towards the mathematical model assumed.

Therefore it need not be surprising that testing by (3.5.3) is not conclusive. This
might be an explanation of the negative results of the test computations by Horing
mentioned in par. 1.

It therefore appears to me that actually the only criterion for the choice of a
mathematical model of functional relationships is given by the results of predictions
based on the model. Of course onc is here again faced with a new difficulty, viz. the
assumption concerning the registration R (sce (2.2.1)) of future measurements. In
this respect the exccution of experiments (unfortunately always too limited) may
give some likelihood of success, although as a warning we must refer to the base
extension net in the example treated at the end of par. 3.2.
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The question how one arrives at the construction of an alternative model when
predictions based on a previously used model do not work satisfactorily, seems to
me to contain elements that are too strongly personal to permit a general answer.
It is done on the basis of experience, experiments, influences from literature, but
above all by intuition. Modern computer technique with its urge towards generality
will often be a stimulus; sometimes a set-up for a modern computing technique
brings out that the consistency of the model is not satistactory. The latter is e.g. the
case with classical ellipsoidal computation methods, at least in the form as was
analysed in [BAAarDA 1954, 57]. Curiously, this may be masked by choosing the
adjustment algorithm of the 2nd standard problem, using coordinates as para-
meters.
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4 MODEL THEORY. A TENTATIVE APPROACH

4,1 Experiment and model

This paragraph is devoted to a sketchy survey of the significance of (2.2.6), (2.2.5),
(2.2.9) or (3.4.1)-(3.4.3), or (3.5.1). From par. 3.5 it follows that these relationships
are supposed to be derived from a consistent functional model. In par. 2.2 it was
stated that a reasoning could be given, leading to the notation of these relationships
as being valid between quantities with the tilde sign (~).

In view of the cstablishment of a link in (2.2.1) fI. between a vector of observa-
tional numbers and the results of an (earlier) experiment, the notation indicated
must have a connection with the analysis of an experiment.

From the frequentist background, we consider the experiment to be conceived as
an N-fold “repetition” of a vector (x%), each repetition consisting of one measure-
ment of a number of directions, distances etc., to which the registration R is assigned ;
compare [Baarpa 1960, 62]. We obtain:

{(xli)§Rl}:---s{(x.is%RSJ":.--,{(xiv);RN)} B R Y

Now we leave out of consideration such differences in re istration as according to
5
“personal” judgement, are irrelevant, resulting n:

Ri—...=Rs—=...=Ry—>R . . ... . u......(4l2

Then (4.1.1) gives “repeated measurements under the same circumstances”.

In many physical experiments, this set-up can be followed by computing (alge-
braic) means (%), the “first moments”. These quantities have, in the probability
model, equivalents with particularly welcome mathematical properties. One obtains:

N

uwmz%Z@..”.”.”.”.”.wuw

S=1

The further description of (4.1.1) with (4.1.2) can if necessary be done with higher-
order moments, of which we shall only mention the second reduced moments:

e
1 A

{(xxixj);R}:(A,_l-Z{xfe‘f'}'-{%v—W})- P (R 12
' S=1

If now “repetition’ of this experiment with sufficiently large N gives “almost”
(personal judgement) the same results (4.1.3) and (4.1.4) etc., then (4.1.1) with
(4.1.2) can be considered as the frequency distribution of a vector of stochastic
quantities (variates). Ignoring many details, we can then oppose to each other equi-
valent quantities in experiment and probability model:



STATISTICAL CONCEPTS IN GEODESY 45

| Experiment Pr(;k;ability model

(4.1.1), (4.1.2) | vector of variates: (x?)
(4.1.3) vector of means: (&) = (FE{xt}) ... (41.5)
(4.1.4) covariance matrix:

(o) = (E{xi—A}{ — )

If the number of variates & increases, then N must be many times larger than 100,
whereas the experiment must certainly be repeated several times. This means that
the execution of all measurements will take a long time, so that (4.1.2) will no doubt
be a too strong simplification in most cases. In view of the costs (in different respects)
of such experiments in the field of geodesy, the experiment will usually be restricted
to some xi’s. In other words: (4.1.1)—(4.1.5) will mainly be a hypothetical experi-
ment, executed and elaborated in thought. Or in still other words: the subjective
approach to the whole theory is inevitable.

Nevertheless this approach can be directive for a further elaboration of the
theory.

4.2 Considerations concerning the linking-up of a model of functional
relationships

Consider in an extensive experiment the measurement of one horizontal direction
from P; to Py: rix. Can this measurement be repeated over a longer period with the
same registration? From experience we know that this is not possible because
variations in the measuring instrument are unavoidable. It is possible to make each
time a reference pointing to a point Pj, but in doing so one actually introduces an
angle:

Concerning a;;x we can reasonably say that repeated measurement with the same
registration is possible. Consequently, the execution and cvaluation of an experi-
ment according to par. 4.1 is only possible for ;.

If one now successively measures a series of directions, e.g.:

7’”,7’119,711(422)
then (4.1.1)—(4.1.4) can be executed for the pairs of angles:

« || ik | kil | | kil ok | i
Gl ko uk | G| ik | ki

but it is clear that only one of the pairs may be introduced as functionally indepen-
dent, such as:
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Qjik = Tik—Tij |

‘ (4.2.3(

Agil = Til—Tik ]

In order to be independent of this choice (4.2.3) one introduces according to
(4.1.5), beside

Ajik, Akil e e e e e e e e e e e e e e e e e e e e e e (4—24—)
the (theoretical) variates:
Tidy Tiks THL « «+ « o o e e e e e e e e e e e e (42)0)

under the strict requirement:

ajk = rixk—ry  hence: El{gjn} = E{ra}—E{ry} | (4.2.57)

arit = Fi—rik Elgru} = E{ru}—E{ru} I o
so that in the model the varlates r can be considered as theoretical “ohserved”
variates.

Along with (4.2.5) one further has to establish a theoretical probability distribu-
tion for the variates 7, in such a way that from (4.2.5") follows the probability
distribution of (4.2.4) derived from the experiment. It would secm that in practice
this is only possible if a restriction to the Laplace-Gauss distribution is made.

The introduction of the model now proceeds one step further: we assume a
method of measurement and computation which fits a description in a two-dimen-
sional Euclidean space (plane).

Then the variates r in (4.2.5") can be interpreted as bearing-variates in a local
(1)-system:

1_‘15]’:) =T 1
1_45,") =Tu ‘

The notation is in agreement with [Baarpa 1962].

The next step, which fits completely in the assumed model, is the introduction of
the orientation of this (7)-system with respect to a more gencral (regional) (a)-
system, with orientation-variate o%:

A = o'+ 4] 1

4 = o447 |

47 = o447
If one goes back from (4.2.7) to (4.2.4), than all these theoretical entities disappear,
e.g.:

(4.2.7)

(a) (@) __ A @ __ .
1_41'/? 44; = Azll» *Ai; =Ip—1; =

(4.2.8)

Consider now a triangulation in this geometric model. It appears that measure-
ment of angles suffices to fix the relative position of points. In these computations it is
remarkable that by using the law of sines in a triangle, no distances but distance
ratios v are derived. Hence, the o’s seem to play a part analogous to the «’s. There-
fore we shall search for the development which is parallel to (4.2.1)—(4.2.8).

=ik
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Consider, then, the measurement of the distance from P; to Px: diz. The meaning
of d;x is the number of times an instrumental unit of length is comprised in P,-P;.

In an experiment we are again faced with the difficulty of “repeating” the mea-
surement with the same registration. Experience shows that the instrumental unit
of length is not constant over a period of some duration, whereas the principle of
standardizing the instrument is left out of consideration at this early stage of exper-
imentation. If the unit of length of the instrument changes slowly, we can meet this
difficulty by measuring each time also the distance from P; to a point P;, and by
introducing the distance ratio:

dz'k

L 8
Uik ds; ( )
Also, a series of distance mcasurements can be measured in P;:
dijy digy diz . . . . . . . o .o oo oL (4200)
and we can e.g. introduce thc distance ratios:
d;
Vjik = ——
jik dij l
(4.2.11)
o J
kil — dz]c

If now, in analogy to (4.2.4) and (4.2.5), one wishes to introduce, heside yj;x and
vril, the variates

di)'s diky d’il
then, for the theoretical model, two difficulties arise:
Eldix}
a. Elojw) # —— ) etc
Wik )
E{dy)

b. For a Laplace-Gauss distribution we have
— oo < rangc < 4 oo
whereas for a distance d we have

d>0
hence

v >0

(for quantities r and « this difficulty does not arise becausc of the theoretical
multiple-valuedness).

Both difficulties can be met by introducing in the model the natural logarithm
of quantities:

lerﬂk,lnvkzl(A}QIQ)
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and also the (theoretical) variates:
ln-dij, Mik’ lggzl e s e e e e e e e e e s e a e e (4213,)

under the strict requirement:

In vjux = In die — In dyy 4.9
— — — 2,137
In v = Indy — Indu } ( !
hence:
Elln vy} = E{ln dix} — E{In dy;}
"""" — T (4.2.13"")
I v} — Efln du} — E{In du}

with considerations analogous to those given with reference to (4.2.5).

Now, (4.2.13") can be interpreted as the In of distance-variates in a local (7)-
system:

g —Ind, )

In s/ = Ind, (4.2.14)

Ins{) =Ind, I

The notation is in agreement with [BAArRDA 1962].

After this, the connection with a more general (regional) (a)-system can be made,
with the scale factor A%:

In g = In 2i+1n 5 l

In s = In 2i+1n 5 (42.15)

In s = In A5+1n 5 J

A return from (4.2.15) to (4.2.12) causes the disappearance of all theoretical
entities:
o s —ln s = In s’ —In 5 = In & —In d; = In 2, (4.2.16)
The variate In A9 makes it possible to include in the model the influcnce of standard-

ization of mcasuring apparatus, but for brevity we shall leave this out of con-

sideration.
In view of the remarkable parallelism between (4.2.4)—(4.2.8) and (4.2.12)-
(4.2.16), we introduce complex variates, such as:

[Ty = In g, +1ay ‘

|
AW — 11 49 |
‘_11‘; - ln Sij +1 1_4,]

A0 — 11 4@
A = In s i 4G

Iyt =Iniotio |

A = In s i A (4.2.17)

77777 5
Ala) — (@) L1 Afa
AR = In s +1 A

Hence:

— N

— AD A0 — @ A |
L]jik = i ‘—11';' = dj ‘Ji;

A = In yeg 49 (4.2.18)

ealt]

Ao — A
4 =Inyi+d5




STATISTICAL CONCEPTS IN GEODESY 49

Our mathematical model contains two-dimensional vectors z whose modulus is
s and whose argument (bearing) is 4, see [BAARDA 1962]:

xtiy=z=s"=¢"""" ... 000, (4219
so that the following interpretation follows from (4.2.17) and (4.2.18):

A = |n z® A@ == 1n z@

—l] 7 -1 i

A9 = ln In 2§ A% =1In 2z

— 1k » ik

In z{¥ = In y4+1In z{f C e e e e (42.20)
Inz{) = Elv;_/i—Hn z{

I, = Inz z<'>—1n z<” =Inz z<" —In z(‘”

(4.2.17) and (4.2.20) provide the possibility to obtain coordinates from measure-
ments of distances and directions, or rather to obtain coordinate differences from
them. The [/-variate acts as a connecting link. The following diagram illustrates
this:

Measurement — {(dij, dix, 7ij, rix) * j

(4.2.21)

In z(” —In z

- 1 —]zk In v, lx+1 —]1k

J

estimate z{{’ if z{ is known

Here we also meet an example of the subject-matter of par. 3.4, because zi is a
derived variate:

(a) (a)
2@ =tk = T L L. (4.229)
. oy . . - <a>.
Suppose now that we can ignore the probability distribution of z;/:
2P =20 L (42.29)

then it follows from (4.2.21) with (4.2.23) that:

E{ln z{)} =In z(") = In z(“H—ln VG - (4.2.24)
From (4.2.22) with (4.2.24) it follows that:
2P = n ZEja)'f Inwgpidag, g';ﬂ%u Moy — W3 ity — )
With the expansion:
= 1 twtlott...
one obtains for the expectation under (4.2.23):
E{0) = elfrzglg)[l—l—%{Uﬁnﬁk O] e e (42.25)
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In general we consequently have:

. (a) 1
Efz@0 £ ePmait L (4.2.957)

Up to and including second order terms, this bias is absent if:

2 7 2 _

‘ Oln ik = O-rzj‘-k ! O Yiiks ik - 0

; : (4.2.26")

E{z{| (4.2.23)} = ") |

(4.2.26") can be interpreted as being generated by the covariance matrix:

- cov. o In d; In dix fz] !%;ci \
Lrl,,d” o2 0 0 0 i
In dix 0 o2 0 0 N € .
Tij 0 0 o? 0
Tik 0 0 0 o2

2
Fig. 4.2-1

Let us now look at Fig 4.2-1. The mathematical model requires the closure of
the polygon
0= zs1+z1o+zZestzzat2za5 . . . . . L o oo oo (4.2.27)

Start from z|¥ without probability distribution and apply (4.2.22), with succes-
sively:

Jo ik

‘ 5 1 2 VIESY!

1 1 2 3 L[123 . . . . . . . . . . . . « . (4’.2.28)
|2 3 4 o34

3 4 5 1345

I




STATISTICAL CONCEPTS IN GEODESY 51

Then from (4.2.27) follows the complex misclosure-variate:

P 1 { la) (a) (a} (a) {ayy
= F W2l H 21 12 s 2 ) e

al

= Lol el L=l o)) L L L (4.2.29)
If I7451 has also been mcasured, then onc can establish in a similar way e.g.:
7 B e B Iy L1 FU N € 2 2%: 10)|
(4.2.30) may also be replaced by:
0 = Usio-tLhos+ Loga+ s+ 151 —5In(—1) .. . . . . . (42.31)

because (4.2.31) turns out to be dependent on (4.2.29) and (4.2.30). In all these
relationships one must carefully take account of the multi-valuedness of complex

quantitics.
From (4.2.25) is follows that:

Elyy 05 Ely} #0; Ely'}=0. . .. .. ... ... (4232
which is again an illustration of what was said in par. 3.4.
(4.2.29) and, e.g., (4.2.31) may be thought to reflect “laws of nature’” which can
be verified by means of an experiment. Putting /7T = In o + i a:

0 — 1 761’751:{ 1 geﬁmx{ 1 *”6’7:‘“‘{ I 761‘7315} .. .}

0 = [Is10+ ITiog+ IMogg—+ 45+ 135, —5 In(—1)

(4.2.33)

The computation of z;’, on the contrary, makes use of derived functions.
Naturally, all these considerations arc only valid within the framework of the
function model chosen, which is here the two-dimensional Euclidean geometry.
In the situation (4.2.26) one obtains instead of (4.2.32):
} (4.2.26) | E{y} — Ely/} = E{y"} =0 . . . . . . ... (4234

By the exposition given, the “Polygon theory in the complex plane” is essentially
established; the name chosen is characterized by figure 4.2-1. The paper by Krijcer
[1966] deals with computational aspects of the theory (the notation is here chosen in
agreement with the one which is customary in the Netherlands). A complete elab-
oration of the theory would of course require more space than was available in
these papers.

Some very remarkable stochastic aspects, which are important ‘or the planning
of geodetic networks, are indicated in [Baarpa 1962]. In this publication the point
of departure is given by mathematical rclationships in the two-dimensional Euclidean
geometry. After certain transformations of these relationships and applying the
tilde sign to certain quantities, we arrive at the same ““laws of nature” and other
relationships as were given in the preceeding pages. However, the line of thought
given here has been dircctive for the development in the previous paper.

The line of thought developed in linking-up the chosen mathematical model
demonstrates that this model is required to be invariant with respect to a similarity
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transformation. This implies that the choice of the classical ellipsoidal computation
model (a two-dimensional curved space) must in principle be deemed incorrect.
For in this model, with a reasonable approximation, a rotation is permissible, but
not a change in the scale of distances. This explains the inconsistency of this compu-
tation model in combination with the measuring procedure, which inconsistency was
pointed out at the end of par. 3.5. Probably the effect of this will only be appreciable
in geodetic networks over distances larger than 1000 km, so that it can be ignored in
smaller nctworks.

The establishment of “laws of nature” in the form of relations between dimension-
less quantities, as illustrated by (4.2.33), seems to be a characteristic of this develop-
ment of the theory of linking-up a mathematical model.

This provides a connection with the dimensional analysis of mathematical physics.
Many conclusions of this analysis can now again be used as a dircctive for further
developments. On the other hand the theory developed in the foregoing appears to
lead to sharper conclusions on some particular points.

4.3 Further considerations

From expericnce it has already for a long time been known that the two-dimensional
theory as devcloped in par. 4.2 leads to insufficient realization of predictions in
more cxtensive geodetic networks. After the intermediate phase of the now already
classical cllipsoidal geometric and gravimetric geodesy, an incrcasing number of
theories are being advanced which are based on a truly three-dimensional space.
The speculative element in the construction of these theories increases accordingly,
because the actual execution of conclusive experiments with geodetic measurements
stretching over extensive areas of the carth, is practically and economically almost
impossible.

Every scientist in this field therefore chooses again directives for a further develop-
ment of theories.

From a theoretical point of view it is interesting that the line of thought developed
in par. 4.2 can be generalized to a spatial polygon theory, in which the model is the
three-dimensional Euclidean space. The place of complex numbers is then taken by
quaternions; the algebraic elaboration, however, is considerably complicated by
the non-commutativity of the latter quantitics. There are also difficulties in the
interpretation of the quaternion-equations.

Although it proved possible to bring methods of geodetic astronomy, photo-
grammetry and satcllite gecodesy (Vaisala methods) under this theory, the problems
of the linking-up of the mathematical model arc very difficult. The knowledge re-
quired exceeds in different respects the limits of geodesy proper, so that such a
theory can only be considered as a frame which must be complemented or extended
by experts. For example, the application of methods of geodetic astronomy and
satellite geodesy involves the difficulty of the interpretation of stellar coordinates,
of the direction of the rotational axis of the earth, etc.

To eliminate from the theory the (physical) vertical in each theodolite station, is
as impossible as to eliminate the direction of the rotational axis of the earth. These
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verticals provide the connection between the previously described geometric theory
and the mecthods of gravimetric geodesy; they indicate the direction of the accelera-
tion of gravity in distinct points on the carth, the magnitude of thesc acceleration
vectors being measured by gravimecters. Whereas by methods of geodetic astronomy
the directions of the vertical in different stations can be interconnected with a
rcasonable accuracy, the relative positions of points on the earth in the direction
perpendicular to the surface of the earth are not reliably determined by terrestrial
theodolite measurements because of the influence of refraction on vertical angle
measurcments. [t remains to be seen if methods of satellitc gecodesy will give a great
improvement in this respect.

It is an interesting experiment now to transform tentatively the mathematical
model theory of gravimetric geodesy, as developed by others, according to thc
directives of par. 2.4. Then indeed this theory proves in principle to fill this weak
spot of geometric gecodesy. Beside dimensionless quantities like distance ratios, angles
and ratios of gravity in distinct points, there appear in the transformed integral
equations a number of dimensionless coefficients or numbers, in which also the
results of spirit levelling find their place. In these integral equations which can be
interpreted as “laws of nature”, quantities like the mass of the carth, “geocentric™
coordinates and potential do not appcar as essential quantities; they can be con-
sidered as derived quantities.

Of course the mathematical analysis and the connection with classical methods
remain as difficult as they are in other approaches to this ficld. Consequently the
mathematical treatment need not be original, since the primary goal aimed at is to
increase the possibility of a sharper insight based on better interpretability.

Whereas for the questions so far discusscd a reasonable connection could be estab-
lished between thec measuring procedure and mathematical theory, time f is a
quantity which is much more difficult to understand.

Thinking of modern methods of distance measurcment, let #;; be a time interval
and », e.g., the velocity of light in some¢ medium, then the following mathematical
relationship exists:

S”:Vtu.(‘l'?}l)

If we follow the line of thought of par. 4.2, then the question can be posed which
of the following relationships must be used:

Ins® —Inwflndd ... ... (432
or:

Ins® = lnw@flng, . ..o (43.3)
or:

Ins® —Ino@4In s . . L. (434)

Or to put it in another way: when is it sufficient to usc local time, when do we
need ,,absolute” time?

And then: where do ratios of time intervals occur in geodectic astronomy?

The conclusion is that the line of thought developed in chapter 4 for the time being
raises more questions than it answers,
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A GENERALIZATION OF THE CONCEPT
STRENGTH OF FIGURE

1 Introduction

One practical problem in geodesy is the measurement of a geodetic network,
resulting in the numerical values of the observations and their registration, i.e. the
description of the procedure and the circumstances of measurement [BaarDA
1960, 62].

A second problem in geodesy, even more important from a practical point of
view because of the financial and other consequences, is the question, what, how and
how much has to be measured. In answering this question one will first of all have to
investigate what use will be made of the network; this includes in particular the
use by those who are not geodesists. This means that a purpose has to be formulated —
a very difficult task indeed.

The prediction of the regisiration that can be expected for future measurements is a
fundamental part of the second problem, and it is as difficult as the formulation of
the purpose.

For only by way of the registration it is possible to link up the adjustment model
with the measuring process. This model consists of the probability model of the ob-
servational quantities or variates and the functional model with the condition equa-
tions; what these models express can be summarized under the name “null hypo-
thesis™.

Experience concerning possible disturbances and mistakes in the measuring
process leads here to the formulation of “alternative hypotheses” [Baarpa 1960, 62].

A good geodesist is characterized by the way he constructs a model, by well-
balanced simplifications in the null hypothesis and the alternative hypotheses. He
also deliberates upon the function of the observational quantities which has to be
introduced as the estimator in the adjustment procedure; a least-squares estimator,
a pseudo least-squares estimator, or other types of estimators, known from the
theory of mathematical statistics.

When these problems have been decided upon, the probability distribution of the
estimators is theoretically known, and a comparison with the precision requirements
resulting from the purpose can be made. The reliability of this probability distri-
bution is dependent, firstly, on the correctness of the predicted registration, and
secondly on the influence of simplifications made in the null hypothesis.

But a second requirement resulting from the purpose is that, with a reasonable
certainty, the test procedure connected with the adjustment shows up certain
situations corresponding to alternative hypotheses. This implies that the user of the
geodetic network will have no appreciable trouble resulting from disturbances and
mistakes in the geodetic measurement and computing procedures. For this purpose,
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extra checks must be built into the geodetic network, which in themselves would not
be necessary to obtain the precision required.

The precision and the checks, together with consequences of personnel, instru-
ments and finance, will have to be weighted in the final and total decision process.
Here, the purpose is fundamental; therefore the geodesist can only give a partial
contribution to the final decision. After this, he has the responsibility for the execu-
tion of the measurements and the computations.

2 Scope of the paper

The main subject is: how to find a basis for the comparison of probability distribu-
tions of estimators from a geodetic adjustment, with precision requirements re-
sulting from the purpose.

Wherever in the sequel mention is made of a covariance matrix, a Laplace-Gauss
probability distribution is suggested; of course this is not essential.

The theory has been developed for survey systems in the plane. This is not essential
either, but it has the advantage that the theoretical model is consistent. The material
treated here is only a part of a more comprehensive theory whose merits are now
being investigated in Delft.

A generalization of the theory to three dimensional space has been framed,
making use of certain hypercomplex numbers.

The possibility of an application to ellipsoidal computations is also being studied.
The fundamental difficulty here is that research has given strong evidence that the
classical model of ellipsoidal computations is not consistent.

Nevertheless it seems to be desirable to include ellipsoidal computations in the
projected theory, because the spatial computations by HoTiNE could not demon-
strate significant differences in ¢, 4 coordinates with ellipsoidal computations.
Against the greater complexity of spatial computations we have therefore only the
advantage of a better theoretical insight in the model, but so far no practical ad-
vantage.

Conclusions can be found in section 7. The reference that is made, in the title of
this paper and in section 8, to the concept *strength of figure”, is not essential for
the theory developed here. But it has the advantage that a connection can be made
with a complex of ideas familiar to practically all geodesists.

Fundamental thoughts of the theory date from 1944. In a first stage, the theory
provided a basis for the cadastral manual [BAARDA et al. 1956]. In this manual,
particular attention was paid to the requirements made by the users of a network
with respect to the juridical status of landed property in the Netherlands.

3 Essential quantities

Coordinates of points are not directly measurable; they are artificial and not con-
crete. Only the points themselves can be concretely indicated; for the character-
ization of the mutual position of points one must therefore try to find quantities that
are invariant with respect to the arbitrary adoption of a coordinate system.
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If we consider a rectangular x, y coordinate system with equal units of measure-
ment on the axes, the only transformation admissible within Euclidean geometry is
the general similarity transformation.

The arbitrary choice of a coordinate system can therefore be expressed by the
introduction of a coordinate system which is not uniquely determined but can be
subjected to similarity transformations.

If we introduce the complex quantity

z=x+1y (3.1)
this means that the following z’ system is equally admissible:
2 =yzEd o e e e e e e e e (82)

in which y and ¢ are complex transformation constants.

@ ‘®

Fig. 3-1 Fig. 3-2

For the theory to be developed, the essential quantities are those that are invariant

with respect to the transformation (3.2.)
Consider the points P;, P;, Pi, P; and define relative coordinates or coordinate

differences as follows:
Xij = Xj—Xq
Jig = Vi—Di

and consequently

Zij = Xty = zj—2zi . (3.3)
For point coordinates we have, by (3.2):

z; = yz; +9

2z, = yz+0

z, = yz;-+6
and for relative coordinates, by (3.3):

z; = yzi l (3.5)

zu=vzir |
The introduction of relative coordinates results in quantities that are invariant
with respect to changes in 8, but not with respect to changes in y.
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Quantities invariant with respect to changes in both é and y follow from (3.5):

Z’Z
P X))
z; z;

Let
W gy .. (37a)
Ze

i
with (In denotes the natural logarithm):

Aij =In Zij = In Sij—f—iAij l

] (3.7b)
Ag = In zig = In sa+idi |
X
iy
Fig. 3-3
Separating the real and imaginary parts results in:

Ski

Ri{Ag—Ag} =1 — In sy = In—
{ K ]} ook Y nSij C e e e e e e e e e (37C)

K An—Ay) = Au—Ay
It will turn out to be more important to consider (3.7) for three points instead of
four, and we will consequently introduce a new symbol for this case.
For the points P;, P; and P;, P, (3.7) results in the quantity:

ik = ey — L. (3.8)
Zij
with:
Zik Sik .
Zij Siy
If we put
Sik ]
Vil = —
T sy (3.8¢)
®jik :Aik_Aij I
we obtain:
Hjik:hll)jik—l—iajik # T (38d)

In the complex plane we can represent /7; in the same way as a; in the real
plane, i.e. with the direction of rotation. The positive direction is chosen as in Fig.
3-1 and Fig. 3-3, i.e. clockwise. See Fig. 3-4.
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I'ig. 3-4

The quantities (Az— ), which are in a certain sense morc general, can be
constructed from the //-quantities, sce Fig. 3-4. From (3.7) we have:

/llcl‘Aij =1In Z]leln Zij — In zkl—ln zki+ln znﬁ—ln(—l)—ln Zij
Or, with (3.8) and with In(—1) =i=x:

| Mm—Am::Um+Hm+m@4>i.. ... (39)

PN — U . (3.9D)

If we compare .1 and 7 in the complex plane with, respectively, the bearing 4
and the angle « in the real plane, (3.9a) illustrates the way in which calculations
can be made with the quantities /1 and /7. Of course this parallelism is only partially
valid.

4 The mutual position of points

If we leave out of consideration translations and changes in scale and oricntation, the
mutual position of three points is entirely determined by one /l-quantity.

A third point is thereby fixed with respect to two other points, which we shall
call base points. For the latter we choose the points P; and Pj, and (3.8a) gives us

I A 9

by which Py is fixed with respect to Py, P;.

If we consider a systcm of more than three points, this relation is valid when £ runs
through the sequence of point numbers other than 7 and ;.

For a system formed by n points we need consequently (r—2) //-quantities in
order to determine the mutual positions.

However, we are free to use another way of expressing the relative positions, by
introducing other //-quantities.

Let us first consider four points, as indicated in Fig. 3-4. Than it follows from
(3.7a):

Zkl:Zije(‘/]“‘/llﬂ (4—.221)

or, with (3.9b):

\ Zp = —zgge!ik T ik e e e e e e e e e (42D)
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Besides, we have:

:le:Z¢k+2kll(43)

so that from (4.1), (4.2) and (4.3) it follows that:
Zil:Zz'j((?”f”‘—e”ﬁkHlikl) O - X3

Simplification of (4.4) leads back to the form of (4.1) because:

zip = zye" k(1 —elikl) = 2otk ik — z50" il
The technique of such reductions will not be further considered here, since it is
not essential for the problem to be formulated.
According to {4.1), (4.2b) and (4.3), the mutual position of Pi, P; and P, P
are now in principle determined by the quantities

Hjik and [

(4.1) and (4.2b) illustrate furthermore the necessity of the introduction of a pair
of base points if a calculation in coordinates is to be made.

Adoption of z; and zj, or of z; and z;; determines the two translation constants,
the scale constant and the orientation constant, since

Z; = x; + iy \ (4.5)
ln Zij — ln Sij + iAij - /11']' ’ '

5 Differential relations *)

Since the purpose of our study is an analysis of the probability model of computed
coordinates, we will deduct in this section the necessary differential relations. At the
same time we obtain the linearization of the rclationships, which is extremely valu-
able for obtaining an insight in and a survey of the results.

From (3.1): dz; =dy+idys oo o . o o o oo oo oo (D)
From (33) dZij = dx“ + ldy” == de*dZi e e e e e e e e e e (52)
1
Zij
dZi]' = Zij d/l” e e e e e e e e - e . (53b)
1 1
From (3.72.): d(/l;ng/li;) = —dzpy —— dZij e e e e e e e e (54)
ZK1 Zij
1 |
Zik Zij

#) All relations may be replaced by difference relations, the approximation error is practically
negligible.
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From (3.8d): dlfjie = dlnwjse +idegee . . . . . . . . . . . . . . (5.5¢)
From (3.9a): d(Ag—Ay) = dllge+dlg . . . . o . . . . . . . (5.6)
Taking logarithms in (4.1) and (4.2) results, with (3.7b) in (compare also (3.8a)
and (3.9b)):
Awe = g+ 1k
Agr = In(—1) 4 Ay -+ 1+ 1l
Or, with (5.3a), (5.5a), (3.7a) and (3.8a), we have on account of (5.6):

From (4.1): | dzi — eikdzs + zud [y B

From (4.2): dzgy = """ dzg+ zg(d T jig+ A1 Tixd) ‘ e B8
= ¢ i dzy+ zid (Ag— Ayg) |

From (4.3): | dzy — dzu+dzx N o X)

In this section, all differential quantities will be considered as stochastic quantities
(variates). In the following sections variates will be characterized by an underscore.
A superscript 0 indicates, on the contrary, a quantity for which an adopted value
can be inserted.

A rough approximation suffices for the numerical values of the coefficients of
differential quantities.

6 The significance of the choice of computational base points for the
computation of variances of coordinates

Suppose that a geodetic network (triangulation, trilateration or traverse net) has
been adjusted and computed in coordinates, starting from two computational base
points Py, Ps, for which coordinates have been adopted, i.e.:

0o 0

215 &
or 29, 20, N N )
or 2, A9,

One can then, in principle, assume too that /- and //-quantities have been com-
puted, e.g. by (3.7b) and (3.8d).

Consider now two arbitrary points of the net P;, P;. In (5.7), (5.8) and (5.9) we
replace

¢ by 1
J by 2
6.2

k by i 16.23)
[ by J

For the application of the law of propagation of variances we put, in view of (6.1):
0 __

dzy =0 (6.2b)

dzl, =0 J
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then it follows from (5.2):

d§1i:d§i

12 12

dzi — zud Do ... (63
12

dgij:Zijd(/lij—/llz) foe e e e e e e e e e e e e e e (63b)
12 -

dz; = dzi+dzy Y (19
12 12 12

in which for d has been written d in order to indicate that the computations have
12
been made in the system which is based on the base points Py, Po.

The formulation of (6.3) has been chosen so as to make possible a comparison with
existing literature on the subject.

The application of the law of propagation of variances on (6.3) furnishes then
expressions for the precision of the position of P; and P; with respect to Pi, P»
— which in the sequel we shall call “point-precision” — and for the precision of the
relative position of P;, Pj, again with respect to P1, P2 — which we shall call ““relative
precision’.

From American geodetic literature ideas have spread about a part of these
concepts of precision, namely on what is called the “strength of figure”. This
concept concerns only a small part of (6.3), namely:

d(/lij—/hg) :dUIlSijflIlSlz)A}—i d(AUfAlg) e e e e e e e e (64)

In many respects, the point precision is much more important than the relative
precision. Therefore, considerations on the “strength of figure” should also be
concerned with (6.3a):

Alsts o o o e e e . (6.5)

Consider now two other points Py, Py
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E e

Then 1t follows:

from (5.7): dzre = e"vidzn+zpdllyyy . . . . . . . . . . . ... (6.6a)
12 12

from (58) dg,’q;j:e(“/1"1'7‘1’f)dgrt—l—zijd(x/lij‘zlrt) e e e e e e e (66b)
12 12 T

Or, in view of (5.2) and (6.3b), and with
d_Zri = d»_Zi— dZJr

12 12 12
d irt = Zrtd</1rt*/]12)
12 -

it follows that:
from (66&) d i — ZridL[lri+ d §r+2ﬂd(/1”—/]12>

12 12 —— (6.7a)
from (66b) d;ij = Zijd</lj,j—/]rt) —|—Zijd(/lrtf/112) e e e e e e e e (67b)
12 - -

If, for the computation of variances of coordinates, one would have started from
the computational basc points Py, Py, see Fig. 6-2, with

o .0
Zr’zt

or 2%, 208 O (X )
0 40

or z,, A,

so that as far as the stochastic properties are concerned one would have worked in
a transformed coordinate system, then we would have according to (6.3):

7t
d Lij = Zijd(/lij—/lrt) s e e e e s e e e e e e e e e e (69b)

rt
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Substituting (6.7) into (6.9) gives finally:

dzi = dzi — d§r+zrid<Art'A21)} e e e e e e e (610&)
1rt 12 12

d gy = d gy {zpd{du—du)} ‘ ... (6.10D)
rt 2 - |

If we consider (6.10) as the base for the application of the law of propagation of
variances, then (6.10) expresses in symbolic form that the concepts point precision and
relative precision are dependent on the choice of a computational base. Therefore,
these concepts are unsuitable for the formulation of requirements concerning the
precision of geodetic networks.

7 The fundamental problem of discussions on the precision of geodetic
networks

The negative conclusion at the end of section 6 can easily be made into a positive
one.

Let us for this purpose continue the subject of scctions 3 and 4 by considering
four points P;, P;, Py and P

ik Y

() »—" ®)

Fig. 7-1

We introduce P;, P; as computational base points with
z) = known z;
z) = known z;

By a change of indices we have from (6.3):

Cd g = ZiéaL[jik W A T £
| i
qgkz = zd(Ap—Aiy) = zi(djie+d L) N 1 )

y

From (7.1) it follows, entirely in agreement with section 4, that formulations con-
cerning the precision of the mutual positions of the points considered are possible if
the covariance matrix of the quantities

e and i

is known.
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Converscly, one will no doubt be able to deduct this covariance matrix from the
relations resulting from (7.1):

1
difsi = —d 2 1
Zilcz'j
di i+ dlw = — d 2z J
Zklz'j

The fundamental problem is caused by the fact that, in general, no precisc information
on the covariance matrix of the quantities z is available, and that consequently one
has to manage with an appraisal of this matrix (not an estimate in the statistical
sense). This means that an artificial covariance matrix must be constructed. The
solution of this problem will not be easy, for on the one hand a matrix will have to
be constructed which is positive definite, and, on the other hand, simple and prac-
tically manageable rules for establishing such a matrix will have to be given.

From (7.2) it follows that the artificial covariance matrix to be cstablished will
have to be deducted in the first instance from an analysis of the precision of geodetic
networks. This is understandable, because the attainable lower limit for variances
will always be determined by the geodetic possibilities.

This looks suspiciously like a reversal of the problem, because the purpose of the
establishment of the covariance matrix involved is to formulate rules for a gecodetic
network whose precision fulfills certain requirements.

However, from a more or less idealized form of the geodetic network we can deduct
the covariance matrix, and use the thus obtained matrix for testing thc precision
of nets that are more adopted to actual practice.

Whereas the lower limit of variances is determined by geodetic possibilities, an
upper limit will have to be deducted from requirements finding their source in
essentially non-geodctic practical problems. Perhaps the lower limit will also have
to be made dependent on thesc requirements, if this is possible.

One of the very important fasks for the members of Special Studygroup No. 1: 14
will therefore be an investigation into and an analysis of the, mostly non-geodetic,
uses to which geodetic coordinates are put. In this way one arrives at a formulation
of the purpose of geodetic networks; in this formulation the concept of precision will
be of paramount importance.

A clear illustration of the significance of IT-quantitics is the setting out of technical
projects. When the measures of these have been computed in coordinates, the different
corner points must be set out in the terrain. If in the terrain we have the points P;
and Pj, already known in coordinates, we may obtain any other point Py by setting
out the quantities:

]_ink

Another application is possible if P;, P;, Py, and P; are corners of a technical
project, in which case (7.1) can be used to develop a study on the precision.

If one is concerned with a project where certain constructional units are built in
another place and later moved to the site, and where consequently the scale of the
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distances 1s important, onc must add to (7.1) the cffect of a scale difference between
the units of distance measurement of survey and of construction. In the set-up

developed here, this proves to be possible.
Another problem presents itsclf in navigation, such as navigation with Decca-

equipment

SLAVE

SLAVE

Fig. 7-2

If, in Fig. 7-2, Pi is an arbitrary point in the Decca pattern, the precision of
Ly and [y
is important for the navigation.
The quantity [/ is not independent, because
vy = Ly — ik

The precision of the Decca pattern is determined by the coordinate precision of

Pi, Pj, Pj/, 16 by
iy
Then [/ determines the possibilitics of navigation in Py.

Analogous problems are met in aerial navigation, in the determination of direction
and distance for radio- and television communications, etc. One may have to deal
with distances of hundreds of kilometres, but the points already known in coordinates
may be only 20 km apart on account of the possibilities of direct vision.

Of special importance are navigational problems in the overlapping areas of two
or more different navigation systems. In Fig. 7-3 is given a situation with two
Decca systems.

The terrain point P, is now determined by:

Hjim in system 1
Iiem 10 system 11

In this case it is essential for a sufficient identity in the determination of Py, that

one obtains a reasonable precision in



A GENERALIZATION OF THE CONCEPT STRENGTII OF FIGURE 73

? (7)

@

SYSTEM I
SYSTEM I

Fig. 7-3

{15 for system 1
[z for system 11

11;ix and [/ for the mutual consistency of the systems I and I1.

8 Strength of figure

From the preceding — see in particular (6.4) and the related text — it follows, that
for a figure formed by 7 points the customary concept “strength of figure” can be
generalized by establishing a theoretical limit for the covariance matrix of (n—2)
functionally independent //-quantities.

The cxpression “strength of figure”, however, may cause confusion; it would be
better to speak about “precision of figurc”. For the formulas are only related to the
probability distribution of a group of coordinates.

An entirely different approach to the concept “strength of figurc” is made if one
requires the network to be such that it gives certain guarantees concerning the
signalization of errors made in the measurcment or the computation.

From gcodetic literature, the paper by RelcHeNeDER [1941] must be honorably
mentioned here. His considerations are, howcever, limited to a very simple case of
a geodetic network and they cannot be gencralized.

A general theory can be established with the aid of the powcr function of a
statistical test. For this subject, reference is made to [BAarDA 1960, 621 and for some
geodetic applications to [BAARDA 1960] and [Baarpa et al. 1956]. If this aspect is
taken account of, one could speak of “accuracy of figurc” in the sense of EIsENHART
[EsEnmART 1952].

From a theorctical as well as from a practical point of view it would be best if both
“precision of figure” and ‘“accuracy of figure” could be treated together; both
theories are intimately connccted.

The combination might then result in rules concerning a strongly generalized
concept “strength of figure”.
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Personally, I am convinced that only then the “specifications for fundamental
geodetic networks” will have actual significance for geodetic practice. Some traces
are indeed found in the provisional specifications of Special Studygroup No. 1:14
adopted at Helsinki 1960.
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