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PREFACE 

T h e  Symposium on the establishment of a United European Levelling Net, which 
Section I1 of the I.A.G. held in May 1955 in Florence, belongs already to the 
not-so-recent past. However, the report presented here goes back, in many respects, 
to the discussions held there, in particular with regard to the set-up to test the value 
of different methods of computation and of interpretation of the results of measure- 
ments and computations. 

In  Florence, Ir. A. WAALEWIJN in consultation with the undersigned proposed 
that the contribution of Delft to this project would be the practical trial of the 
adjustment by steps developed by the late Prof. J. M. TIENSTRA. Newer develop- 
ments of adjustment theory and statistical lines of thought could also be tried and 
valuated in this application. For this field, the study of "linking up" and "unlinking" 
mathematical models in geodesy, offering possibilities for a sharper interpretation 
of results of measurements and computations, is, in particular, the field of work of 
the Computing Centre of the Delft Geodetic Institute. 

' 

I wish to express here my great appreciation of the enthusiasm with which all 
collaborators of the Computing Centre have worked on this project under my direc- 
tion. Whereas, in particular, Ir. J. E. ALBERDA is to be thanked for many funda- 
mental studies and computations and for the final editing of this report, we owe 
to Ir. B. G. K. KRIJGER the investigations and computations on the power of the 
different tests used and the systematic set-up which was needed to execute the chosen 
adjustment method on a modern computer. Ir. E. F. MEERDINK directed hi5 atten- 
tion, among other things, to the set-up of F-tests and the interpretation of their 
results. The collaborators mentioned had regular contacts with Ir. WAALEWIJN 
whose valuable advice contributed very much to a realistic interpretation of the 
material. 

The most valuable aspects of the methods applied is that besides the results of 
the adjustment and of the tests of hypotheses, there could also be given a valuation 
of the results found and statements made. May this aspect receive the attention it 
deserves. 

Prof. Ir. W. BAARDA 
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1 I N T R O D U C T I O N  

I n  1955, at the Florence meeting of the Permanent International Commission on 
European Levellings, it was agreed among other things that the Computing Centre 
of the Delft Technological University would undertake to compute the adjustment 
of the United European Levelling Net by a method based on principles indicated 
by the late professor J. M. TIENSTRA. I t  was decided from the start that the Delft 
adjustment would be an adjustment by steps (or, in TIENSTRA'S terminology in [13], 
an adjustment in phases). 

Some small test-computations were made in 1956 to see what would be the most 
suitable set-up of the adjustment. 

The data for the adjustment were received from the Commission's President, 
Dr. 0. SIMONSEN, in May 1958. 

The organization of the actual computations started in October 1958. The adjusted 
geo-potential numbers of bench marks were presented at the meeting of represent- 
atives of computing centres which was held at Delft in January 1959. Part of the 
weight coefficients of these geo-potential numbers were also ready by then; the rest 
of the weight coefficients followed soon. 

The geo-potential numbers of mean sea level, as resulting from the net, were 
received at the end of August, 1959 from Dr. SIMONSEN. A statistical investigation 
of these values was carried out in September 1959 and a provisional report on the 
adjustment and connected investigations was presented to the Liverpool Symposium 
in October 1959; an outline of this report is published in [l]. Finally, some checks 
and re-computations were made in 1960. The re-computations were necessitated by 
the discovery of a gross error in the line 218-tJ-D-F-2. All results in this report 
are based on the corrected data. 



2 T H E  A D J U S T M E N T  

2.1 Method of adjustment 

I t  is well known that the two main forms in which an adjustment problem may be 
expressed are : 

a. condition equations, 
b. observation equations. 
Any adjustment problem may be split up into different steps, and each step may 

be adjusted according to a. or b., so that even the most general adjustment problem 
can be solved with the rules of computation of a. and b., provided they are used 
in their general form, i.e. for correlated observations. A problem in the form of a. 
was called by TIENSTRA Standard Problem I, b. was called Standard Problem 11, 
names which we shall also use here. 

Adjustment by steps does not as a rule result in less computational work, but 
splitting up the total adjustment affords greater possibilities for the analysis of 
results, in particular when use is made of test methods of mathematical statistics. 
The different steps can usually be interpreted directly, so that a clear outline of the 
whole computation can be kept in mind. Smaller matrix inversions are involved in 
the computation of the precision of the final results. Alterations in certain parts of 
the adjustment or the addition of new parts can as a rule be effectuated easily. 

The way adjustment by steps was used in the adjustment of U.E.L.N. can be 
briefly described by saying thai the total net was split up in four partial nets, which 
were separately adjusted (first step) and later joined together (second step). 

First step. Let Fig. 1 represent a partial net with the antennae that connect it to 
adjacent partial nets. The partial net is adjusted according to the method of observa- 
tion equations. Let 01 be a datum point in the partial net, and let the differences 
in geo-potential numbers (g.p.n.) between the nodal points and 01 be denoted by ra. 
The observed differences in g.p.n. between the nodal 

5 '4  points are fi their least-squares corrections U;. (The 
underscore-denotes a stochastic quantity.) The obser- 
vation equations are then : 

etc. 

or, in matrix notation: 

Ax = f + y  
Figure 1. 

The weights of the observations are given; let their matrix be G. Since it is assumed 
that there is no correlation between observations, G is a diagonal matrix. The normal 
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equations, which can be easily established without writing down the observation 
equations, are : 

A ~ G A ~  = A T G ~  
Let 

(ATGA)-1 = Q 
Then 

?4 - QATGf 

and Q is the matrix of weight coefficients of the variates g". 

For a point like 3 in Fig. 1, no unknown need be introduced in the adjustment, 
because the observations f 3  and f 4  can be replaced by a new observation. Let, in 
Fig. 2, g be such a point and r and s the adjacent nodal points. 

We replace S, and fqs by fss : 
p =fr,+fqa 

If the weight coefficients are denoted by p,frs etc., 
we have : 

fYfT8 =fTQ,fT,+fqa, f,s+2fTq, f4s r 

and, because p and fqa are not correlated : l 
Figure 2. 

The weight g,,, ,, of p, which we can more simply denote by g,, in this case is 
obtained by reciprocation : 

in which g,, and gqs are the weights ofSq andfqs. 
After the adjustment, corrections t oy ,  andfq8 can be computed from the correc- 

tion to p. According to a theorem indicated by J. M. TIENSTRA and later generally 
proved by W. BAARDA we have: 

I t  is necessary to find the weight coefficients of the g.p.n. of points like g after the 
adjustment. We define : 
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I t  is seen that 

a,"+a: = l 

The g.p.n. of q will be denoted by - yq; it can be found in two ways 

yq = gr +frq +p 
yq = gs-f qs-_uqs - 

Multiplying the first equation by a: and the second by a: and adding the results, 
we obtain 

J J ~  = a:gT + a:gs + a: f'" - a:fqs 

If zt is the g.p.n. of an arbitrary nodal point in the net, zt is a function of the 
observations, and in particular a function offrs, so that we can write 

gt = b p +  ... 
in which bt is some coefficient. 

For the non-diagonal weight coefficient yq, xt we get: 

We will show that the last term is zero. 
Sincefrq and f q ~  are not correlated to any observation but f7s, we obtain: 

-- P P 

yq, xt = a: xT, xt + a: xS, xt + btaPFq, f7S - btuq S fqS? 
According to (2) : 

Similarly : 

Hence 

If D is a matrix whose row-numbers correspond to the intermediate points, whose 
column-numbers correspond to the nodal points and whose elements are the numbers 
a:, it is easily seen that, in matrix notation: 

Y,X = DQ 
If g' is another intermediate point, we have to distinguish two cases 

a. q and g' are points on the same levelling line, 
b. q and g' are situated on different lines. 

In  the first case we can compute yq,yql as follows: 
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Now (see Fig. 3) : 

f r q , f r q f  = f r q , f r q  a;frs, frs 
frq, fq's = 0 
pp--- 

fqs,frqf = fqq', fqq'  ,frq',frqf -frq,frq = 

= (ay1-a:) frs,frs 
Figure 3. 

P fqs ,  f q t k  fq's, fq's = a:'frs, frs 
Substituting these results, one obtains 

When q and g' are situated on different lines r  L s and r ' L  S' we obtain by a similar 
derivation 

I t  is easily seen that, using the matrix D  defined before, we have in general: 

Y , i  = D Q D ~  

For points situated on the same line, an addition according to (2.1-4) has to be made. 
We finally have to compute the weight coefficients of the g.p.n.'s of the junction- 

points with other partial nets, e.g. 14 in Figure 1. Denoting these g.p.n.'s by z, we 
see : 

etc. 

The matrix of weight coefficients of all the variates g, y and g is finally 

in which 
Q  has been defined before 

R or y, y contains elements like y3, y3 

S or X, y contains elements like x4, y3 
-p 

T or G contains elements like 214, 213 and 214, zl4 ,/ \ 9 10 1 1  

V or y, z contains elements like y3, 214 
Figure 4. 

W or X, z contains elements like 214, x4 

All information concerning the adjusted partial net can now be expressed in the 
new variates S, y and g and their matrix of weight coefficients B. 

The situation is represented in Fig. 4. 



6 PUBLICATIONS ON GEODESY, NEW SERIES, VOL. 1, NR. 2 

Remark. If the partial net had been adjusted according to Standard Problem I, we 
would have arrived at exactly the same result by writing the variates 3,y and g as 
functions of adjusted observations, e.g. : 

3 5  = -(f5+u5) + (f6+u6) 
3 6  = - ( f8+uS)  

etc. 

and then computing the weight coefficients of these functions by the appropriate 
formulae of least squares theory. The numerical establishment of the functions is an 
easy but rather tedious work, in which great care must be taken to avoid blunders. 
Standard Problem I1 was chosen for the first step mainly to avoid this work. The 
resulting matrix of normal equations had a higher order than the one that would 
have resulted from a treatment according to Standard Problem I, but since it 
could still be inverted, without partitioning, by the machine used, this offered no 
inconvenience. 

Second step. The unification of the partial nets was done by applying Standard 
Problem I for correlated observations. In  Fig. 5, three partial nets have been drawn. 
There is no more reason to distinguish the different types of observations g , ~  and g 
from each other, and we shall denote by - the vector of all observations g, - y and g 
of all partial nets together. 

The conditions are easily established, e.g.: 

etc. 

or, in matrix notation: 

U(_p+.) = 0 
Hence : 

U. = 0-Up = t - 
The matrix of weight coefficients C 
of the variates p is known from the - 
first step : 

in which B1, B2 and BQ, denok the matrices of weight coefficients of the "observa- 
tions" p in the first, second and third net respectively. 

 here is no correlation between variates belonging to different partial nets, so the 
Y 5  non-diagonal" sub-matrices in C are zero. 

The normal equations are 

UCUTk = t 
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From this we obtain the correlates 

k = (UCUT)-lt 

The corrections are : 

5 = CUTk 

The matrix of weight coefficients of the correlates is 

k, k = (UCUT)-1 

and consequently that of the corrections 

E, E = CUT k, k UC 

The matrix of weight coefficients of the adjusted observations is (see e.g. [13], 
p. 112): 

(P+€), (P+€) = p, p - E, E = C-CUT(UCUT)-1UC 

The ultimate aim of the adjustment is to find the adjusted differences in g.p.n. c 
between each point and a certain datum point. Let this datum point, which serves 
as a reference point for the whole net, be 01. 

Then it is seen in Fig. 5 that, e.g.: 
c3 - 3 - - p  +c3 
c14 = 14 - p +cl4 
c23 = (plc'+ $0) - (p21+g21) - + (p23+g23) 

etc. 

In matrix notation: 

E = Q+E) 
The matrix of weight coefficients c, is then 

P' .  . . . . . . . . . p m  p?':!, . . . . , , . . . . p" 

Figure 6. 

Figure 7. 

m f r o m B 1  = f r o m B 2  = f r o r n B 3  

Figure 8. 
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Most of the variates p will have a coefficient zero in all the condition equations. 
Because they are correlated with variates whose coefficient is not zero in all the 
condition equations, they will receive corrections from the second step of the adjust- 
ment. U p  to and including the computation of the correlates the second step can 
be treated as if it pertained only to the variates whose coefficient is not zero in all 
condition equations (in Fig. 3 those indicated by a heavy line). This is easily seen 
if we re-arrange the order of the variates, so that p', . . .  , p m  are the ones that have 
non-zero coefficients, and pm+', . . .  , p n  the ones with only zero coefficients. The 
matrix U is then built as in the diagram in Fig. 6. The matrix of weight coefficients 
is as in Fig. 7. 

I t  is easily seen that UCUT = UICIIU:. I n  the computation one will of course as 
much as possible take advantage of the many zero elements in the different matrices. 
The matrix C deserves special attention in this respect. If the above-mentioned 
re-arrangement of variates is made, C is built up as in Fig. 8 (considering the 
example of three partial nets). 

The formulae for the total adjustment are recapitulated on page 9 in matrix 
notation, for the case of four partial nets. 

Remark. The second step could also have been performed by the method of 
Standard Problem I1 or rather by what TIENSTRA has called Standard Problem IV:  
condition equations containing unknowns. 

If in Fig. 5 unknowns - X 2  and g 3  are introduced for the differences in g.p.n. 
between 0 2  and 0 1  and between 0 3  and 0 1  respectively, we have: 

Introducing new variates in the right hand members: 

etc. 

or, in general 

= vp - 
we deduce for their matrix of weight coefficients 

1,1= vp, pvT 
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By inversion we obtain the matrix of weights, after which the whole problem can 
be treated as Standard Problem I1 for correlated observations. From the correc- 
tions to 1, the corrections to p can be derived, the final differences with respect to - 
01 are, e .g . :  

4.5 = p 5 + g 5  

4.23 = - x3+p23+g23 - 

etc. 

An application of the law of propagation of weight coefficients results in the 
weight coefficients of the variates 4.. Although this application is simplified by the 
well-known properties that any X - is not correlated to any g and that 

p. 

(pk+&k) = Pi, pk - E ~ ,  

the number of matrices involved and their computation make this solution some- 
what complicated from an organizational point of view. Therefore the method of 
condition equations was used in the second step. Test computations indicated that 
the total amount of purely computational work for both methods is about equal, 
a t  least in small nets. 

RECAPITULATION OF FORMULAE 

l st step Observations f 
Weights G (diagonal) 

Observation equations Ax = f + y  

Normal equations ATGAx = ATGf 

Inversion (ATGA) -1 = Q 

Solution x = QATGf (nodal points only) 

"Sum of squares" - EI = yTGp = f TGf-ATGfz 

Intermediate points y 

Total partial net i: pi - = 

G - D Q  g] 
Weight coefficients B = y,y = DQD~ y, z 

P P 

z, Y z, z 

2nd step Observations .= (E) 
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Weight coefficients B 1 0  0 0 
0 B 2 0  

O O O B q  

Conditions U(P+E) = 0 

Ug = -U2 = t 
Normal equations UCUTk = t 
Correlates k = (UCUT) -1 

Corrections g = C U T k  

Weight coefficients k, k = (UCUT)-1 
P 

E, E = CUT k, k UC 

"Sum of squares" - E11 = gTC-1 g = kTf 

Weight coefficients of adjusted observations 
P 

(P+€), (P+€) = P, P - E, E 

(p +E), (p +E) = C -CUT(UCUT) -WC 

Functions E = A(P+E) 

Weight coefficients c, = A (p+€), (p+€) AT 

2.2 Execution and results 

The partition of the net was done as shown in Fig. 9 (see folding page at the end 
of this publication). This choice was made for several reasons: 

a. These nets have a convenient size with a view to the capacity of the computing 
machine used. 

b. I t  was expected that these parts were fairly homogeneous as far as their reli- 
ability is concerned. 

c. This choice was also suggested by geographical features. 

The datum points chosen were: 

Partial net D: 301, the N.A.P. datum point at Amsterdam, which is also the datum 
point for the total net. 

Partial net F: 339 
Partial net C: 603 
Partial net E: 429 

The observational values were taken from the documents furnished by the Presi- 
dent of the Permanent Commission on European Levellings. The weights of the 
observations were obtained from the same documents by inverting the weight coeffi- 
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cients 1 /P  given there. These data have been established by using the different 
values of the variance t 2  of 1 km levelling given by the various countries, expressed 
in mm2/km (see [12], page 25). But the adjustment is executed with observations 
expressed in geopotential units, so that the use of variances expressed in mm2/km 
is theoretically not correct. However, the difference has little practical significance. 

The adjusted differences after the first step in g.p.n. between the points of each 
partial net and the respective datum points are given in Table I *), column 2. The 
corrections to these differences resulting from the second step are listed in Table I, 
column 3. 

The final geo-potential numbers of the points with respect to the Amsterdam 
datum are listed in Table I, column 4. 

The corrections from the second step indicate the influence which the partial nets 
exert on each other. A clear example is the partial net E, which is tilted by the 
connection to the other nets: the western part is depressed, the depression diminishes 
from 0.042 g.p.u. in 416 to 0.005 g.p.u. in JM-42. The eastern part is lifted by an 
amount diminishing from 0.048 g.p.u. in 420 to 0.002 g.p.u. in 405. A "neutral 
axis" may be imagined to lie between 417 and 418, between 421 and 422, through 
429, between 427 and 428, ending between JM-44 and 406. 

The corrections from the second step are biggest along the edges of the partial 
nets. I t  should be noted that the dividing lines often lie across polygons with large 
misclosures, in the Pyrenees and the Alps. The decrease of the corrections for points 
away from the edges is illustrative (corrections in 10-3 g.p.u.) : 

In  partial net F: 
Point 
Correction from 2nd step 

In  partial net C: 
Point 
Correction from 2nd step 

In  partial net E: 
Point 
Correction from 2nd step 

*) The tables with roman numbering are printed on the pages 42 K. 
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3.1 Tests on model errors 

The four partial nets can be assumed to be fairly homogeneous as far as their 
accuracy*) is concerned. One may now ask the following questions: 

1. Are there such differences between the results of the partial nets that a conclu- 
sion can be drawn on the occurrence of model- or systematic errors in levelling? 

2. Have the different countries given a good estimation of t2 (variance per km 
levelling line) ? 

An objective guide to the answers may be obtained by statistical tests. 
A basic assumption is that our original observations are normally distributed and 

mutually independent in the probability sense. Let oi be the standard deviation of 
an observational quantity Pi. - Weights gii are determined by introducing the con- 
stant variance factor 02, according to: 

0 2  
(0i)2 = - 

gii 

The weight formula for the original observations is 

t2 is an estimate of the square of the standard deviation of 1 km levelling. The way 
it is evaluated is described in [12]. If t" has been computed from a large number 
of levelling observations, it is such a good estimate that it can be considered in 
practice as the "true" variance of 1 km levelling. For a discussion on the meaning 
of a statement of this kind, reference is made to [4], page 4. Lt2 is then the variance 
of a section L km long. I t  follows when using this weight formula, that the variance 
factor is 

0" 200 

If the observations are adjusted by the method of least squares to fulfil1 b condi- 
tions, corrections _vi are found. The quantity 

E = [gii_vi_vi] - 
can then be computed; in the diagram on page 9 it has been called "sum of 
squares" and the well-known formulae for its computation have been added. Of 
course the notation [gii_viyi] is not appropriate in the case of correlated observations. 

*)  The terms precision and accuracy are used in accordance with the definitions given by CHURCHILL 
EISENHART in: The reliability of measured values, Photogrammetric Engineering, Vol. 18, page 545. 
See also: M. G. KENDALL and W. R. BUCKLAND, A dictionary of statistical terms, 2nd ed., Edin- 
burgh, 1960. 
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As is well-known, see e.g., reference [2], the quantity 

is an unbiased estimator of 0 2 .  

The stochastic quantity 

has a known probability distribution (a distribution of FISHER-SNEDECOR) which is 
dependent on b only; its mean (expectation) is 1. 

If two stochastically independent estimates Gp2 and Gq2 of the same 0 2  have been 
made after adjusting on bp and h, conditions respectively, we can use the quantity 

which has also a FISHER-SNEDECOR distribution, that is dependent only on the 
number of degrees of freedom bp and ha. 

Since the distributions corresponding to (3.1-1) and (3.1-2) are known and have 
been tabulated we can carry out F-tests using the found values of 6 2 .  

I t  can be shown that if model- or systematic errors occur, the expectation of 8" 
is greater than 02, SO that in general the value found for 6 2  is greater than 03. 

Therefore, using the relation (3.1-1) we will generally find in this case: 

F b , m  > l 
Using a 5% rejection or critical region in the right-hand tail of the F-distribution, 

containing all F-values greater than a so-called critical value F0,95;b,m, we are 
inclined to reject the hypothcsis of non-occurrence of model errors if 

This type of test is called a one-sided test. 
If on the other hand the estimation obtained for t" was too low, it can be shown 

that the expectation of E is too high, so that this may also give rise to a value of $2 
that is too high. Consequently the testing on model errors may be mixed up with 
the effect of a wrong estimation of t2. 

By comparing the values of $2 in the different partial nets or in different steps of 
the adjustment, we obtain a possibility of investigating the effect of these two factors. 
For this investigation, (3.1-2) is used, which leads in principle to a two-sided test 
with a 21/Z0/, critical region in the left and right tail of the F-distribution. By using 
the greatest of the two 8's in the numerator, we can use a one-sided test, with a 
2 1 / 2 %  critical region in the right tail only. 

The different values $"hat were found, the resulting F-values and the corres- 
ponding critical F-values are listed in Tables A and B. The critical values were found 
in [7], Table VII. Table A contains one-sided tests, Table B two-sided tests; all 
tests are on the 5% level of significance. 
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Number of 
conditions b 

I denotes the total first step of the adjustment. 
I1 denotes the second step. 
If11 denotes the total adjustment. 

D-E 
D-C 
D-F 
D-I1 
E-C 
E-F 
E-I1 
C-F 
11-C 
11-F 
1-11 

Starting with an analysis of Table A we see that the nets D and E, the total first 
step, the second step and the adjustment as a whole lead to a rejection of the hypoth- 
esis of non-occurrence of model-errors, or to the assumption that several of the 
estimates of t 2  given by the different nations, are too small. I t  is remarked that all 
F-values in Table A are greater than one, which fact also indicates that the conclu- 
sion drawn above is based on good evidence. 

The test for the partial net F has been given for completeness only; it has no real 
meaning because according to [12], page 39, t 2  for this net has been computed from 
the polygons contributed to U.E.L.N. themselves. The resulting dependency inval- 
idates the test. 

If we now analyse Table B, it appears that the occurrence of model errors is not 
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very likely and that the results of Table A are more probably due to the value given 
for t2 being too small. The fact that all F-values are greater than one need not cause 
surprise; this is a consequence of the method of testing in which the greatest value 
of G 2  is always put in the numerator. Nor does Table B give rise to the conclusion 
that the used formula for the weights, inversely proportional to the length of the 
levelling line, is wrong. 

I n  Table B the different partial nets are compared among themselves and with 
the second step, and the whole first step with the second. The described test is not 
suited for comparing the partial nets with the first step as a whole or with the whole 
adjustment, since the required stochastic independence is not then present. The 
result of these tests is that there are no significant differences. 

In conclusion, i t  is evident that the value u2 = 200 cannot be used for evaluating the precision 
of the results of the adjustment, since the estimate $2 computed from the adjustment is significantly 
higher. This  value $2 = 370 will therefore be used in the sequel to compute standard deviations 
of adjusted geo-potential numbers. 

Apart from the described tests, which follow from the method of adjustment, one 
can easily test each polygon separately. Let t q e  the misclosure of polygon nr. Q. 

The weight coefficient gee is the sum of the weight coefficients of the sections of the 
1 

polygon; the weight of te is - = g,,. From the adjustment of the polygon follows 
the estimator g@ 

while 

The critical value for a test on the 5% level of significance is 

so that a model error in the polygon may be suspected if 

Nine out of 68 polygons turn out to have a significantly too large misclosure, namely 

Nr. 2001 (nodal points 201, 202, 226, 227, 228) 
Nr. 2010 ( ,, ,, 207, 208, 209) 
Nr. 3002 ( ,, ,, 305, 306, 307, 308, 309, 310, 329) 
Nr. 4003 ( ,, ,, 401, 402, 419, 420) 
Nr. 4012 ( ,, ,, 435, 436, 437, 438, JM-42) 
Nr. 9003 ( ., ,, 301, 302, 303, 219, 220, 221) 
Nr. 9009 ( ,. ,, 313, 314, 519, 508, 507, 501) 
Nr. 9010 ( ,, ,, 314, 315, 316, 518, 519) 
Nr. 9013 ( ,, ,, 601, 602, 603, 5 11, 510, 505, 504) 

1 Critical value te 

+ 39.31.10-3 gpu 
- 27.85 
-204.34 
+ 123.91 
+ 69.36 
- 65.11 
- 152.92 
- 179.76 
+ 75.74 

26.41 
23.43 

154.60 
122.34 
36.95 
44.64 

126.73 
129.81 
69.37 
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3.2 Precision of results 

The weight coefficients of the adjusted geo-potential numbers after the total adjust- 
ment were computed according to the method explained in Section 2.1. Not all the 
weight coefficients are printed in this report, but only the most important ones, 
those pertaining to the mareograph stations. These stations are denoted by RM, 
and their geo-potential numbers are obtained by adding the observed g.p.n. dif- 
ferences of the antennae JM-RM to the g.p.n. of the J M  points as found from the 
adjustment. The weight coefficients of the g.p.n. of the R M  points are found in the 
same way as described in Section 2.1 for antennae-points. They are given in Table I1 
(see folding page at the end of this publication) ; the unit is 10-6 (g.p.u.)2. The weight 
coefficients pertaining to the mareograph stations of the Northern Block have been 
computed by using the weights furnished by the Commission. 

By multiplying the diagonal weight coefficients by the variance factor 370, one 
obtains the squares of the standard deviations of the geo-potential numbers of the 
mareograph stations with respect to the Amsterdam datum. The square of the 
standard deviation of the g.p.n.-difference between two mareographs, c"-cB is, 
according to the law of propagation of weight coefficients: 

in which g"" and gBP denote the diagonal weight coefficients pertaining to ca and cB, 
and g"B their non-diagonal weight coefficient. 

When interpreting the thus obtained standard deviation it should be borne in 
mind that the value 370 is an estimate. We may obtain a 95% confidence interval 
for the mean 3 2  of 62 by means of the following critical values obtained from [7], 
Table V I I :  

The resulting 95% confidence interval is 

This illustrates the uncertainty of the computed standard deviations. 
The use of 370 as variance factor in the Northern Block results in standard devia- 

tions of the g.p.n.-differences that are some 30% greater than the ones published 
by E. KAARIAINEN in [8], Table 4. Dr. KAARIAINEN used (15.08)" 227 for the 
Finnish net and (16.34)2 W 267 for the Norwegian net; these values include an 
allowance for the effect of land uplift and both are based on the estimate 6" 
= (14.55)2 W 212 resulting from the adjustment of the 23 loops of the Northern 
Block. 

Since 

370 
- W 1.75 and F0.95~68 .23  W 1.85 
2 12 
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Figure 10. Standard deviations before and after adjustment, cf. p. 18. 
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the difference between the variance factors is not quite significant, so that the above- 
mentioned difference of 30% is rather acceptable in view of the uncertainties of the 
estimates. The resulting standard deviations are likely to be on the high side as far 
as the Northern Block is concerned, but in view of the isolated position of the 
constituent parts of this Block, this can be considered as a welcome safety-margin 
which prevents over-estimation of the accuracy. 

In  Fig. 10 the increase of the standard deviations in different directions, before 
and after the adjustment, is pictured. The values before the adjustment have been 
obtained by considering the observations along the most direct route between the 
points considered, multiplying the sum of their weight coefficients (as furnished by 
the Commission) by 370 and taking the square root. 

Fig. 11 (sre folding page at the end of this publication) pictures the standard de- 
viations in the whole Central Block by means of contour lines of a surface whose 
height at a certain nodal point is equal to the standard deviation of the g.p.n. of 
that point. Its visualises roughly the precision of the net; outside the mentioned 
discrete points the surface has of course no significance. 

3.3 Power of the tests used 

In  Section 3.1, F-tests were used to investigate whether model errors made them- 
selves felt in the adjustment. The level of significance adopted was 5%, which means 
that there is a probability of 5% to make a "Type I error", i.e. to reject a true null 
hypothesis. We will now deal with the following question: if our null hypothesis is 
wrong, what probability do we have of nevertheless accepting it and make a "Type I1 
error"?? In  other words, what size can a model error attain before it leads (with 
a certain specified probability) to a significantly tbo high F-value? This question, 
which forms an essential part of the application of statistical tests, has been treated 
from a geodetic point of view by W. BAARDA in [4], page 21 ff. By "model error" 
we mean now a systematic error that manifests itself in the misclosures, and it is 
convenient to think of a gross error or blunder, because we will consider cases where 
one observation is "falsified". If we think of one polygon, a very large error in one 
of its sections will almost certainly lead to rejection of the null hypothesis that no 
model-errors are present, because it will result in a very large misclosure. A small 
error, that has the size of the standard deviation of the observation in question will 
very seldom lead to rejection: the probability P of detecting an error is dependent 
on its size. This probability is called the power of the test with respect to the alter- 
native hypothesis that an error of the given size occurs (this hypothesis is an alternative 
to the null hypothesis). 

We may now fix p, e.g. p = 0.8 and derive the size of the corresponding error, 
which consequently is the size an error has to attain to be detected with 80% 
probability ("be detected" means here: lead to rejection in the test. The test cannot 
in general indicate the particular observation affected by the error.) 

We will use the notation which is customary in tensor analysis, see [13]. Let us 
consider observations Pt(i = 1, . . ., n), subject to b conditions. The weights are gtk, 
the variance factor is a? 
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The conditions are 

up(p"+.a) = U; (i, k J l  = l , .  . .,m) 

The weights are gik, the weight coefficients gkl if 

Normal equations 

gikufu;ia = te 
Put 

giku:~; = gw 
and 

gwgu7 = 8: 
Then 

i a  = g0z.t' 

is the solution of the normal equations. 
The estimator of the variance factor is: 

One of the basic assumptions of least squares theory is that the means of the correc- 
tions gi are zero. If the observations are affected by systematic errors or blunders, 
V{, the means of the will not be zero. The means of the misclosures will be 
Ve = -uPV" the variate 

has then a non-central F-distribution; its mathematical expectation can be shown 
to be 

We define 

$2 
The distribution of - is dependent on 1, hence we write: 

0 2  

Similar considerations hold for the type ofF-test according to (3.1-2), where we have 
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in case the quadratic form in the numerator is non-central. For illustrative purposes 
we will only discuss the case that b11 = m .  

The probability that F f b ,  m ,  A is greater than the critical value F I - , ; ~ ,  m of the test 
is by definition the power of the test: 

P(&, m ,  A > FI-,; b ,  m) = P 
,B is a function of the significance level a adopted, of b and of A;  a and h being fixed, 
it is a monotonic function of A. If we now suppose that there is only one Vi different 
from zero, i.e. that only one observation is affected by an error, we may find the 
size of that error that corresponds to B = 0.8 with the aid of tables or charts of the 
power function. Such charts are published e.g. in [g] and [10]. The latter are used 
here; they have been constructed for P = 0.8 and a = 0.05. 

The first test we will investigate is based on the estimate 82 for each polygon 
separately. This adjustment can be considered as a first step of the adjustment of 
a net. 

For the polygon numbered Q we get for the estimate 

1 
t@is then the misclosure of the polygon numbered Q ,  whereas g,, = -, and g" equals 

gee 
the sum of the weight coefficients of the observations (sections or levelling lines) in 
the polygon. 

Now suppose there is a model error Ve in some section of the polygon. I t  is im- 
material in which section it occurs, because all sections are in the same position 
with respect to the polygon. By establishing the condition we see that the error in 
the misclosure is: 

VtQ z -VQ 

Fixing a = 0.05 and P = 0.8, we can compute Ve from: 

The indices 1 and m of A are explained by the fact that 82, computed from one 
supernumerous observation, is tested against the variance factor 0 2  (= 200). With 
the aid of the nomogram [l01 we find 

The result of this computation is fbund in Table 111, column 2, giving the result 
per section. Most sections are part of two polygons; in that case the smallest of the 
two V's is given. 

We now consider an adjustment on h conditions, and we suppose that the adjust- 
ment is executed according to Standard Problem I1 (observation equations). For 
convenience we recall the formulas in the notation used in this section: pi are the 
observations, ci the corrections, _hr the unknowns (in this case geo-potentia! numbers 
with respect to the datum). 
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Observation equations : 

Weights : 

Normal equations : 

gtkafa%@ = gtka;pk 
Put 

gikafa,k = grs 

grsgst = 6: 
and 

gixa:pk = _F, 
Then 

= grsfs 

Weight coefficients 

(i = l , .  . . ,m)  

( r  = 1 , .  . .,m-b) 

Estimator of variance factor : 

If model errors V p  occur in the pi, it can be shown that (indicating the error 
in F, by VF, etc.) : 

By definition we have ( a  = 0.05 and p = 0.8 being understood) 

1 
; Ib ,m  = -gtkVeiVeX 

(S2 

so that 

giXO~iVek = d. 10, m 

Now the model error Vpi is the error in the observation between h 7  and and 
therefore we indicate it by Vrs. We suppose there is a model error in one observation 
pi so that - 

gikvpivpk = gii(vrs)2 . . . . . . . h . . . . . . . . . . .  (3.3-2) 

Furthermore we have 

VF, = gikafVp" gp.siafVrs (no summation on r or i) 

The coefficients af are either + 1 or - 1, so that 
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From (3.3-l), (3.3-2) and (3.3-3) it follows that 

and consequently 

If we denote the relative weight coefficient of _hr and _hs, i.e. the weight coefficient 
of their difference, by gr-ssr-s we see: 

gii is the weight ofp' before the adjustment, and gr-~,r-S can be computed easily if 
the matrix of weight coefficients of the unknowns is available. 

Formula (3.3-4) shows clearly the relation existing between VrS, gig, and 
1 

gr-ssr-S. Before the adjustment gr-szr-s = - (assuming non-correlated original 
observations). Hence 

u 2 ' I b ,  m - 
(vrs)2 = gii(l -1) - CO 

This confirms the self-evident truth that we cannot detect a model error if there 
is no adjustment. Further we see from (3.3-4) that the smaller the relative weight 
coefficient between the end points of a section, the smaller the model error that can 
be detected. We can also compute as follows a lower bound for Vrs: 

200 
Using the weight formula gii = -, we get 

Lt2 

The best test is obviously the one in which the smallest model error leads to rejec- 
tion. I t  is evident from (3.3-4) that to obtain this test we must not take the highest 
possible number of conditions (polygons), for by adding more and more conditions, 
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gr-Ssr-s will finally hardly decrease, whereas lb . ,  will increase with the number of 
conditions. 

In  order to verify this, the tests on 

per partial net, as described in Section 3.1, have been investigated. The value of 
V ~ S  was computed for each levelling line (section). The result is found in column 4 
of Table 111. Of course, the lines between the partial nets had to be left out. 

The result of this computation is remarkable. For each levelling line, the minimum 
model error leading to rejection has increased, in most cases considerably. Evidently 
the increase of l b , ,  has much more influence than the decrease of gr-ssr-8. Con- 
sequently it may be concluded that it is better to test per polygon than to test per 
partial net, if one wants to detect model errors of minimum size. But we may also 
use tests involving two, three or more polygons. Can we thus find a test that is still 
better than the test per single polygon? To  answer this question we must try to find 
a test, in which the decrease of gr-83'-8 has a greater influence in (3.3-4) than the 
increase of l b ,  ,. If we take a levelling line that occurs in two polygons, we see that 
the adjustment of these two polygons has a great influence on gr-s.r-8. The obvious 
thing to do is therefore to examine the test in which 6 2  is computed from two polygons 
having a line in common. Actually, an adjustment was necessary for each line; this 
adjustment has been done according to Standard Problem 11. One of the end points 
of the line in question was taken as a reference point, the g.p.n. of the other end 
point being the only unknown in the adjustment. We simply get: 

in which Zgt t  is the sum of the weights of the three levelling lines occurring in 
i 

the problem. 
The results of this computation are given in column 3 of Table 111. In  general 

we find indeed that the minimum model error that leads to rejection in 80% of the 
cases is smaller in the test on two polygons than it is in the test on a single polygon. 
In  general, the improvement is not great; in several cases we even find that the 
minimum model error is larger in the two polygon case. This is mainly the case 
when the two polygons concerned are very different in precision. In  this case the 
relative precision of the two points is only very slightly improved by the addition 
of the least precise polygon. 

The computation has been done only for lines which are situated between two 
polygons, because it cannot be expected that the relative precision of the two end 
points of a line is much improved by adding a polygon which does not contain 
the line. 

Since the relative weight coefficient gr-ssr-8 of geo-potential numbers resulting 
from the adjustment of the total net are available, it is very easy to compute for 
every line V's for the test using 6 2  of the total adjustment. The result can be found 
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in Table 111, column 5. The model error corresponding to a power of 0.8 is consid- 
erably larger except for the lines forming the edges of the partial nets. This is caused 
by the fact that the relative precision is increased most at those edges. 

We might now want to investigate the power of the test when 3 2  is computed 
from e.g. three polygons. I t  is not impossible that we find a V ~ S  that is still some- 
what smaller than in the case for two polygons. But we meet some difficulties. I n  - . -  

the first place, one can add a third polygon to two other ones in many different 
ways, and it is not self-evident which combination results in the highest power. I n  
the second place, this investigation involves much extra computational work, there- 
fore it has not been pursued. 

One might investigate the power of the tests on &,/B$ concerning estimates of 
from different partial nets. In  that case formula (3.3-4) is still valid, when Ab, 

is replaced by Abl,b2. I n  our case, Abl,b2 M 2Ab, m, SO that the model error leading to 
rejection in 80% of the cases will become approximately 4 2  times as large. The 
power of this test is therefore much smaller than that of other tests. Nevertheless, 
this type of test has the advantage that the assumed value of 0 2  has no influence. 

This investigation has not resulted in a statement saying which test has the 
greatest power: this question has not been answered fully. But the tests having 
greatest power are definitely not the tests involving two estimates, nor the tests on 
estimates obtained from a large number of supernumerous observations. I t  is well 
to test the estimate resulting from two contiguous polygons. In  the line they have 
in common one can then detect a model error that is not likely to be much greater 
than the model error that can be detected by any other F-test. If the line to be 
investigated is only contained in one polygon, it is probably best to test the estimate 
resulting from that polygon. If the line is part of two polygons of very different 
quality, the best one can do is test the estimate from the most precise polygon. 
Tests on $2 obtained from all observations will have minimum detectable errors that 
are nearly twice as large as the tests recommended above. 

We give a small survey where for convenience the model errors are expressed 
in cm: 

1 
2 
1 1 - 15 (partial net) 
68 (total net) 

Number of conditions 
from which $2 is computed 

These values illustrate that even the hypotheses that were not rejected may be 
quite unreliable; the fact that a hypothesis is not rejected in a test does not imply 
that it is a true hypothesis. 

Model error V ~ S  leading to 
rejection with 80% probability 

( a  = 0.05; p = 0.8) varies from 
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It  must be remarked that the above-mentioned investigations are based on the 
adopted 5 per cent level of significance, which is an arbitrary choice. Finally it is 
emphasized that, e.g., n tests based on one degree of freedom are not equivalent to 
one test with n degrees of freedom because the critical regions used are not the same. 
I n  this respect, a closer investigation of the phenomena mentioned here must be 
made. The reader is referred to [3] for an outline of the underlying theory. 



4 T H E  G E O - P O T E N T I A L  O F  M E A N  SEA L E V E L  

4.1 The data on mean sea level 

In  the preceding sections we have mentioned "mareograph stations". In  reality this 
expression referred to bench marks in the immediate vicinity of mareographs; these 
bench marks are indicated in the Commission's notation by a number preceded by 
RM, e.g. R M  34. From the g.p.n. of an R M  point, the g.p.n. of mean sea level 
(MSL) as indicated by the observations of the mareograph in question can be 
computed. This work was done by L. CAHIERRE and provisionally published in [5]. 
The results, with small corrections applied in 1960, are printed in Table IA. 

We can summarize the connection between the g.p.n. CRM of the R M  point and 
the g.p.n. C M ~ L  of MSL as follows: 

CMSL = C R M + G + _ ~  

The variate g corresponds to the levelled g.p.n.-difference between the R M  bench 
mark and the reference plane for the sea level observations; _d corresponds to the 
difference between MSL and this plane. The standard deviation of g can be neg- 
lected when it is compared to that of CRM; however, gross errors in a, caused by, e.g., 
maintenance of the mareograph, seem to be possible. The value d actually used was 
a function of the annual means of sea level observation in a series of years: a straight 
trend line was fitted to these means and the ordinate for 1950 of this trend line was 
defined as MSL. 

From the scatter of the annual values about the trend line one could formally 
estimate the standard deviation of _d but such a computation has not been carried 
out, and it would indeed be difficult to interpret the resulting standard deviation. 
The problem belongs to the field of oceanography, as well as the problem of deciding 
whether the mareographs indicate the sea level without bias. 

Consequently, we will in the present report leave the stochastic character of a 
and _d out of consideration. This means that it is assumed that the matrix of weight 
coefficients of the variates CMSL is the same as that of the variates CRM, i.e. the matrix 
in Table 11. (When more is known about the distribution of the aforementioned 
variate _d, it may be possible to take it into account by simply increasing the diagonal 
elements of the matrix of weight coefficients by a corresponding amount.) 

Under this assumption, we have at our disposal a number of observations of the 
g.p.n. of MSL and their matrix of weight coefficients. The mareographs concerned 
are those numbered from 1 to 50, excepted nrs. 40,41 and 43, which are not attached 
to the net. From the report [5] it is concluded that some more mareographs must 
be left out, namely nrs. 32 and 33 for which no usable observations are available, 
and nr. 44, whose observations were stopped in the year 1923. 

4.2 Tests of hypotheses on mean sea level 

We will denote the observation of the g.p.n. of MSL at a mareograph numbered i, 
by c h n d  the matrix of weight coefficients of the variates by )Jgikl l. For simplicity 
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we will suppose that whenever a group of n mareographs is considered, they are 
numbered 1, 2, . . ., n so that the index i need not be the number actually given by 
the Commission. A hypothesis on the properties of MSL can be expressed in a 
number of condition equations, which have to be fulfilled by the means ? o f  the c$. 
For example, the hypothesis that MSL as defined above is an equipotential surface 
whose potential is equal to that of the N.A.P. (Amsterdam) datum, is expressed by: 

E" 0 (i,j, k = l , .  . ., n) 

The actually observed values c$ do not fulfil1 these conditions; they have to be 
adjusted. The corrections ~hesul t ing from the adjustment are immediately known, 
namely 

The number n of mareographs considered may vary from one to the total number 
of mareographs attached to the net. I t  may be noted that the number of condition 
equations is equal to the number of observations, and in this case it is more evident 
than usual that the condition equations, forming the condition model, are the 
expression of certain hypotheses. 

To test the hypothesis expressed by the conditions 

we use the estimate of the variance factor resulting from the adjustment. Denoting 
any estimate of the variance factor from mareograph observations by an index M, 
we can compute for any combination of mareographs 

The values ci are given, and the matrix of weights l lgvl l is obtained by inverting 
the n, n (partial) matrix of weight coefficients I lg"1. 

The estimate obtained can be tested with respect to the estimate found from the 
adjustment of the net: 

because 8 2  has been computed from an adjustment on 68 conditions. 

4.2.1 Tests concerning single mareographs 

The weight coefficient of the g.p.n. of each mareograph is directly available. By 
reciprocation one finds its weight. Each mareograph furnishes an estimate for the 
variance factor according to 

$L = gwcgc" 

The test is based on the identity 
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The level of significance we use is 5%. For the practical computation we compare 
ci with the critical value yi which follows from 

The power of the tests can in principle be evaluated in the way described in 
Section 3.3, but here we meet a complication. In  the actual adjustment the power 
of tests could be computed in the system based on 0 2  = 200. However, the adjust- 
ment resulted in an estimate $2 that was significantly too high, which, as explained 
in Section 3.1, is probably not due to systematic errors but to the assumption of 
too high weights. We can now use the value 3 2  = 370 instead of 0 2  = 200 in the 
formula 

in which VcGs the model error which on the average in 8 out of 10 tests will lead 
to rejection of the null hypothesis. The difficulty is, however, that to the authors' 
knowledge no tables are available for the power function of this more complicated 
non-central F-distribution. In  the following we will therefore take 0 2  = 370 in the 
above formula and consider this as the true variance factor. Theoretically, the 
results will be more or less incorrect but it is hoped they give a sufficient practical 
indication. 

We find 

(VC" = 55.0 dgii  

The results are given in Table IV. 
From the table it is evident that only 16 out of 44 g.p.n.'s of mareographs are 

significantly different from zero. I t  is very likely that several significant differences 
are caused by the fact that NAP is not identical with MSL. If we take the g.p.n. 
of MSL at the mareograph 34 (Den Helder) as our reference value, we find 12 
significant differences from zero. 

4.2.2 Tests concerning pairs of mareograph.~ 

From the geo-potential difference between MSL at any two mareographs numbered 
i and j one can estimate 0 2  by exactly the same formulae as used in the previous 
section. Instead of c b n e  must introduce ci-cj and instead ofgii their relative weight 
coefficient, which may be denoted by g(i-j). 

The results are given in Table V. Of course, not all combinations have been 
investigated, but it was tried to make a representative choice. Of 132 combinations 
considered, 59 show a significant difference. 

A closer investigation shows that strong significance can be ascribed to some com- 
bination Gulf of Bothnia - North Sea (1-23, 12-23, 15-1 7, 15-24, 15-34), to several 
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combinations North Sea - Mediterranean (28-48,38-48,38-50,39-46,39-48,39-50, 
42-46, 42-48, 42-50) and only to one combination Gulf of Bothnia - Mediterranean 
(15-48). I t  is to be noted that not all of these tests are mutually independent. 

4.2.3 Tests concerning groups of mareographs 

U p  to now we have computed each estimate 82 from one geo-potential difference 
only, and the tests concerned at  most two mareographs. We will now include more 
mareographs in computing 82. In  view of the results of the previous section we 
compute three different estimates: 

1. From mareographs situated on the North Sea or the Atlantic Ocean (nrs. 17 to 
23, 29, 31, 34 to 39 and 42; group A). 

2. From mareographs situated on the Mediterranean or the Adriatic Sea (nrs. 45 
to 50; group MA). 

3. From mareographs situated on the Mediterranean (nrs. 45 to 48; group MZ). 

The mareographs situated on the Gulf of Bothnia will be discussed separately. 

The three estimates will be denoted by gA2,  gMA2 and G M Z ~ .  The estimates ~ M A ~  

and ~ M Z ~  pertain to only 6 and 4 mareographs respectively. Their computation 
involves inversions of matrices of the order 6 and 4, which were executed on a desk 
machine. 

8~~ was computed by an electronic computer. 

The tests are summarized in the following table: 

Result 

The computations of 8 ~ ~ ,  8 f i f ~ ~  and 8 ~ z ~  are found in Table VI. 

A 
MA 
MZ 

We see that all of these tests lead to rejection, and even with considerable signif- 
icance. The null hypothesis was: the g.p.n. of all mareographs in a group is zero. 
The conclusion that the test indicates that not all mareographs in a group have a 
zero g.p.n. However, this does not all mean that the group as a whole lies higher 
or lower than NAP. We can illustrate this by considering the case that two mareo- 
graphs a and b are tested with respect to NAP. Then we have 

Differentiating with respect to ca gives 

4886 
10351 
1 1869 

13.2 
28.0 
32.1 

reject 
reject 
reject 

16 ' 1.79 
6 
4 

2.23 
2.50 
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Considering cb as fixed and ca as variable, reaches an extreme value for 

gab ~a = - cb  

gas 
This extreme value is a minimum, for 

If a and b are not too far apart the computations show that 

gab W -gas 

Consequently, 8 ~ 2  reaches a minimum if ca W cb. If, e.g., ca = -cb, 8 ~ 2  is much 
greater; the probability of rejecting the null hypothesis is also greater, meanwhile 
we can certainly not say that the combination of the two mareographs lies higher 
or lower than NAP. 

We can also in this case compute VC" i.e. the model error in the mareograph i, 
which with 80% probability leads to rejection of the null hypothesis tested. The 
computation is done according to 

02An,68 
(Vc"2 = - 

gti 

For 02 we use again the value 5 2  = 370 obtained from the net adjustment, which, 
as indicated before, is theoretically wrong. 

The computation is found in Table VI. On  comparing the results with those in 
Table IV one notes that the power in the former case is in general smaller, but in 
some cases a little higher. An exception is formed by the mareographs 22 and 23, 
for which the "detectable" model error has become much smaller in Table VI. 
I t  is very likely that this can be explained by the fact that these mareographs are 
strongly dependent on each other. 

An entirely different result is obtained if we do not assume a model error in a 
single mareograph, but in a group of mareographs, e.g.: 

VC" V for i = al, . . ., an (n mareographs) 

We then get 

An,6802 
v2 = - 

gtj 
i j  

We find: 
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VMZ = 104.10-3 gpu I 
If a model error occurs in the assumed way, we can detect with 80% probability 

in the Atlantic group a model error of about 4 cm, in the Mediterranean one of 
about 1 dm. 

4.2.4 Computation and use of "adjusted" geo-potential numbers of mean sea level 

I n  all tests so far executed (except the testing of pairs of mareographs in Section 
4.2.2) geo-potential numbers were used whose zero reference surface was defined 
by the NAP datum. However, it is a well-known fact that NAP differs considerably 
from MSL. This is of course a model error which contributed to the high significance 
with which many estimates 62 exceeded their critical value in the tests described. 
We will have to use another model to compare the level of the different seas. We 
do not put the adjusted g.p.n.'s of MSL at the mareographs equal to zero but to a 
value CM which is the same per group of mareographs. We then get three separate 
adjustments for the determination of CA, cMA and cMZ. Each adjustment has the fol- 
lowing form (we use Standard Problem 11): 

~ t + c t  = 4.M (i = al, . . ., a,; n mareographs) 

or 
At4.M = ~ t + ~ t  with At = 1 for i = al, . . ., a, 

From the simple form of At it follows that: 

  MM = gix and F M  = 2 gtkck 
i =a ,  k = a ,  i = n ,  

The estimator for 02 is: 

gtk~t4.~ - _FM CM - 
n-l 

The estimator is denoted by to distinguish it from the previously computed 
3 ~ ~ .  The computation of CM and  MM is found in Table VII. The computation of 
~ M T ~  is given in the following Table D. 
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I t  is seen that the significance is much lower than in Table C in Section 4.2.3, 
but still it is very high. This means that the result of the tests on 2 ~ 2  cannot be 
explained completely by the difference in level between the seas compared, for the 
null hypothesis tested is now that all the mareographs of a group indicate the 
same MSL. 

Another test can be designed by using the estimator 

A 
MA 
MZ 

using the identity: 

The result is 

TABLE E 

78175 
62106 
47475 

Result 

30818 
51797 

The result is striking. We can draw the conclusion that the "mean" level of the 
Atlantic as well as that of the Mediterranean differs significantly from NAP. From 
the computations in Table V11 it follows that these levels are -75.10-3 gpu and 

-297. 10p3 gpu with estimated standard deviations of about m 24.10-3 

2062 
gpu and u 60 10-3 gpu respectively (see also Table D). 

47357 
10309 

A 
MA 
MZ 

We can examine the power of these tests too. The following relation is valid: 

38937 8538 

83.0 
139.8 
105.2 

30694 
51717 
38927 

15 3157 
5 2062 

3.98 ~ reject 
3.98 reject 
3.98 ~ reject 

1 2846 , 7.69 2.74 ~ reject 

8.53 
5.57 

1.81 reject 
2.35 reject 
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We find 
VCA = 24.10-3 gpu 

On  comparing these results with (4.2.3-2) we see that the power is increased con- 
siderably. This is also evident from a comparison of the formulae: if the V from 
(4.2.3-1) is denoted by VI and the V from (4.2.4-1) by VII it is evident that: 

Consequently 

4.2.5 Mutual testing of "adjusted" geo-potential numbers of mean sea level 

We know the diagonal weight coefficients of the "adjusted" g.p.n.'s of MSL in 
different groups. If these g.p.n.'s are to be compared with each other, we must also 
know the correlation between these variates, i.e. we must have the disposal of their 
non-diagonal weight coefficients. These can be computed by the law of propagation. 

Put 

Then 

The non-diagonal weight coefficient cM1, cM2 is found by 

The matrix Jlck, cl11 is known; the coefficients Bk are easily computed. The com- 
putation is carried out in Table VIII. We find 

We can now compute the weight coefficient of ~ ~ 1 - c ~ 2  from: 

( C M ~ - C M ~ ) ,  (cMl-cM2) = gMIMl  fgM2M2- 2gMlM2 

Table F gives the results. 
Estimates for a2 can be computed from 

( ~ M ~ - M ~ ) ~  = ~ M ~ - M ~ ,  M ~ - M ~ -  ( ~ ~ 1 - ~ ~ 2 ) ~  

and these estimates can again be compared to 82 = 370, see Table G. 




















































