NETHERLANDS GEODETIC COMMISSION

PUBLICATIONS ON GEODESY NEW SERIES

VOLUME 1 NUMBER 2

REPORT ON THE ADJUSTMENT OF
THE UNITED EUROPEAN LEVELLING NET
AND RELATED COMPUTATIONS

compiled by IR. J. E. ALBERDA

COMPUTING CENTRE OF THE DELFT GEODETIC INSTITUTE

1963
RIJKSCOMMISSIE VOOR GEODESIE, KANAALWEG 4, DELFT, NETHERLANDS



PRINTED IN THE NETHERLANDS BY W.D. MEINEMA N.V.,, DELFT



II1

PREFACE

"T'he Symposium on the establishment of a United European Levelling Net, which
Section II of the I.LA.G. held in May 1955 in Florence, belongs already to the
not-so-recent past. However, the report presented here goes back, in many respects,
to the discussions held there, in particular with regard to the set-up to test the value
of different methods of computation and of interpretation of the results of measure-
ments and computations.

In Florence, Ir. A. WAALEWIN in consultation with the undersigned proposed
that the contribution of Delft to this project would be the practical trial of the
adjustment by steps developed by the late Prof. J. M. TiensTtra. Newer develop-
ments of adjustment theory and statistical lines of thought could also be tried and
valuated in this application. For this field, the study of “linking up’’ and ‘““unlinking”
mathematical models in geodesy, offering possibilities for a sharper interpretation
of results of measurements and computations, is, in particular, the field of work of
the Computing Centre of the Delft Geodetic Institute.

I wish to express here my great appreciation of the enthusiasm with which all
collaborators of the Computing Centre have worked on this project under my direc-
tion. Whereas, in particular, Ir. J. E. ALBERDA is to be thanked for many funda-
mental studies and computations and for the final editing of this report, we owe
to Ir. B. G. K. KrijGeRr the investigations and computations on the power of the
different tests used and the systematic set-up which was needed to execute the chosen
adjustment method on a modern computer. Ir. E. F. MEERDINK directed his atten-
tion, among other things, to the set-up of F-tests and the interpretation of their
results. The collaborators mentioned had regular contacts with Ir. WAALEwWIN
whose valuable advice contributed very much to a realistic interpretation of the
material.

The most valuable aspects of the methods applied is that besides the results of
the adjustment and of the tests of hypotheses, there could also be given a valuation
of the results found and statements made. May this aspect receive the attention it

deserves.
Prof. Ir. W. BaARDA
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1 INTRODUCTION

In 1955, at the Florence meeting of the Permanent International Commission on
European Levellings, it was agreed among other things that the Computing Centre
of the Delft Technological University would undertake to compute the adjustment
of the United European Levelling Net by a method based on principles indicated
by the late professor J. M. TiENsTRA. It was decided from the start that the Delft
adjustment would be an adjustment by steps (or, in TIENSTRA’s terminology in [13],
an adjustment in phases).

Some small test-computations were made in 1956 to see what would be the most
suitable set-up of the adjustment.

The data for the adjustment were received from the Commission’s President,
Dr. O. SiMonseN, in May 1958.

The organization of the actual computations started in October 1958. The adjusted
geo-potential numbers of bench marks were presented at the meeting of represent-
atives of computing centres which was held at Delft in January 1959. Part of the
weight coefficients of these geo-potential numbers were also ready by then; the rest
of the weight coefficients followed soon.

The geo-potential numbers of mean sea level, as resulting from the net, were
received at the end of August, 1959 from Dr. SiMONSEN. A statistical investigation
of these values was carried out in September 1959 and a provisional report on the
adjustment and connected investigations was presented to the Liverpool Symposium
in October 1959; an outline of this report is published in [1]. Finally, some checks
and re-computations were made in 1960. The re-computations were necessitated by
the discovery of a gross error in the line 218— J-D-F-2. All results in this report
are based on the corrected data.



9 THE ADJUSTMENT

2.1 Method of adjustment

It is well known that the two main forms in which an adjustment problem may be
expressed are:

a. condition equations,

b. observation equations.

Any adjustment problem may be split up into different steps, and each step may
be adjusted according to a. or b., so that even the most general adjustment problem
can be solved with the rules of computation of a. and b., provided they are used
in their general form, i.e. for correlated observations. A problem in the form of a,
was called by TienstrA Standard Problem I, b. was called Standard Problem II,
names which we shall also use here.

Adjustment by steps does not as a rule result in less computational work, but
splitting up the total adjustment affords greater possibilities for the analysis of
results, in particular when use is made of test methods of mathematical statistics.
The different steps can usually be interpreted directly, so that a clear outline of the
whole computation can be kept in mind. Smaller matrix inversions are involved in
the computation of the precision of the final results. Alterations in certain parts of
the adjustment or the addition of new parts can as a rule be effectuated easily.

The way adjustment by steps was used in the adjustment of U.E.L.N. can be
briefly described by saying that the total net was split up in four partial nets, which
were separately adjusted (first step) and later joinéd together (second step).

Furst step. Let Fig. 1 represent a partial net with the antennae that connect it to
adjacent partial nets. The partial net is adjusted according to the method of observa-
tion equations. Let O; be a datum point in the partial net, and let the differences
in geo-potential numbers (g.p.n.) between the nodal points and O; be denoted by 1.
The observed differences in g.p.n. between the nodal
points are f?, their least-squares corrections p¢. (The
underscore denotes a stochastic quantity.) The obser-
vation equations are then:

—x'+a2 =14
+a2 = A4t
—3245% = 3413

etc.

or, in matrix notation:
Ax =f+4v

The weights of the observations are given; let their matrix be G. Since it is assumed
that there is no correlation between observations, G is a diagonal matrix. The normal

Figure 1.
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equations, which can be easily established without writing down the observation
equations, are:
A'GAx = A'Gf
Let
(A'GA)1 = Q
Then
x = QA'Gf

and Q is the matrix of weight coefficients of the variates x".

For a point like 3 in Fig. 1, no unknown need be introduced in the adjustment,
because the observations f3 and f4 can be replaced by a new observation. Let, in
Fig. 2, ¢ be such a point and r and s the adjacent nodal points.

We replace fr7 and fes by f7s:

frs =frq_+_qu
If the weight coeflicients are denoted by fs, fr* etc.,
we have:
I75, o = 115, fratfe, fot2 f7, fo
and, because 7 and f% are not correlated:
S S =", frt e, fo
The weight g5 rs of f™, which we can more simply denote by g, in this case is
obtained by reciprocation:

Figure 2.

_ 1 1 _ &ra'8as
Frofr frt, fratfes, o gratéw
in which gy and ggs are the weights of /77 and f.
After the adjustment, corrections to /7 and f% can be computed from the correc-

tion to f5. According to a theorem indicated by J. M. TIENSTRA and later generally
proved by W. BAARDA we have:

Zrs

Yty = g
e = Lgrs.yra
&ra e ¢ £ §)
I
8as

It is necessary to find the weight coefhicients of the g.p.n. of points like ¢ after the
adjustment. We define:

o
bra 21
8rs _

r

8as
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It is seen that
al+al =1
The g.p.n. of ¢ will be denoted by »7; it can be found in two ways
)4 = "+ fradpre )
Y = x5 —fas—pas

Multiplying the first equation by a? and the second by &! and adding the results,
we obtain

)1 = alx"+alxs-al fra—al fo

If x* is the g.p.n. of an arbitrary nodal point in the net, x* is a function of the
observations, and in particular a function of f75, so that we can write

xt = btfrs4-...
in which b¢ is some coeflicient.
For the non-diagonal weight coefﬁcientw we get:
P = al x5 (df— )
We will show that the last term is zero.
Since f7¢ and f% are not correlated to any observation but f7%, we obtain:

.yq, xt = df xr, xt _|_ (1? xs, xt _|_ btagfrq,frs . btagqu,frs
According to (2):

— 1 al
frq,frs :frq’frq = =
&rq &rs
Similarly:
q
fo fro =2
8rs
Hence
- 1
P % = af o, xt a5t b al — o) —
Zrs
yxt=alx,xt+al skt L L L (21-3)

If D is a matrix whose row-numbers correspond to the intermediate points, whose
column-numbers correspond to the nodal points and whose elements are the numbers
a?, it is easily seen that, in matrix notation:

y,x =DQ

If ¢’ is another intermediate point, we have to distinguish two cases:
a. ¢ and ¢’ are points on the same levelling line,
b. ¢ and ¢’ are situated on different lines.

In the first case we can compute »7, y¢’ as follows:

P, = (alx - atx), (a7 3" 4al'x5) 4 (b fra—a? f95), (a¥' fra—a¥ fo)

Yo = aldl w7, x7 + (alaf +af'al) x7, x5 + dfa x5, x5 +

+ alal' fro, 1 — alal fr0, f0's — dlaf fo5, fre + dlal’ fo5, f0
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Now (see Fig. 3):
jrq,frq’ = fra, fre = alfrs, frs
s W —0
qu’frq’ :qu”qu’ :frq”frq’ _frq’frq =
— (@ —a) fr, f

, Figure 3. . qu’fq,s :fq,s;fq,s _ dg,frs,frs
Substituting these results, one obtains:
T = [, 57+ (dlal el dl) w18+ dlal w8, a0+ dladlfe fre L L (2.1-4)

When ¢ and ¢ are situated on different lines r — s and 7~ s’ we obtain by a similar
derivation

98, 90" = aZal a7, &7 + a%a’ a7, x5 + aaf x5, a7 + alall x5, x5
It is easily seen that, using the matrix D defined before, we have in general:
y,y = DQD’
For points situated on the same line, an addition according to (2.1-4) has to be made.
We finally have to compute the weight coefficients of the g.p.n.’s of the junction-

points with other partial nets, e.g. 14 in Figure 1. Denoting these g.p.n.’s by z, we
see:

714 — 265+f13

214, 214 = x5 x5 | f13 f13

214, x4 = (x5 f18) x4 = x5 x4

214, 213 = (x5 f13), (x6+f14) = 5, x6
etc.

The matrix of weight coeflicients of all the variates x,  and z is finally

Q S W
B=|S R V
W VT

in which
Q has been defined before

R ory,y contains elements like y3, 93

S or x,y contains elements like x4, 33

T or z, z contains elements like 214, 213 and z14, z14

V or y, z contains elements like 33, z14

Figure 4.

W or x, z contains elements like z14, x4

All information concerning the adjusted partial net can now be expressed in the
new variates x, » and z and their matrix of weight coefficients B.
The situation is represented in Fig. 4.
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Remark. If the partial net had been adjusted according to Standard Problem I, we
would have arrived at exactly the same result by writing the variates x, y and z as
functions of adjusted observations, e.g.:

8= —(f5+15) + (f5+u5)
56 — —(f8+l)8)
etc.

and then computing the weight coefficients of these functions by the appropriate
formulae of least squares theory. The numerical establishment of the functions is an
easy but rather tedious work, in which great care must be taken to avoid blunders.
Standard Problem II was chosen for the first step mainly to avoid this work. The
resulting matrix of normal equations had a higher order than the one that would
have resulted from a treatment according to Standard Problem I, but since it
could still be inverted, without partitioning, by the machine used, this offered no
inconvenience.

Second step. The unification of the partial nets was done by applying Standard
Problem I for correlated observations. In Fig. 5, three partial nets have been drawn.
There is no more reason to distinguish the different types of observations x, y and z
from each other, and we shall denote by p the vector of all observations %, y and z
of all partial nets together. )

The conditions are easily established, e.g.:

— (?13+§13) + <£14_+_§14) — (£15_+_§15) _+_ (£16+§16) =0
- (1)12_Jr_§12) -+ <£13_+_§13) — (£16_+_§16) _+_ (?17_}_(317) =0
etc.

or, in matrix notation:

Up+e) =0
Hence:
Ue=0-Up=t

The matrix of weight coefficients C
of the variates p is known from the
first step:

B, 0 0
PP = C=10 B, 0 Figure 5.
0 0 B;

in which B;, By and B3, denote the matrices of weight coefficients of the observa-
tions” p in the first, second and third net respectively.

There is no correlation between variates belonging to different partial nets, so the
“’non-diagonal” sub-matrices in G are zero.

The normal equations are

UCU'k =t
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From this we obtain the correlates
k — (UCU")¢
The corrections are:
e = CUk
The matrix of weight coefficients of the correlates is
k k = (UCU")-!
and consequently that of the corrections
e, e = CU'k, k UC
The matrix of weight coefficients of the adjusted observations is (see e.g. [13],
p. 112):
(p+e), (P+€) =p,p — ¢, € = C—CUT(UCU")-1UC

The ultimate aim of the adjustment is to find the adjusted differences in g.p.n. ¢
between each point and a certain datum point. Let this datum point, which serves
as a reference point for the whole net, be Os.

Then it is seen in Fig. 5 that, ¢.g.:

@ =pi+el
§14 — p14+§14
§23 — (£10+§10) __ (£21+§21) + (?23+§23)

etc.

In matrix notation:
¢ =A(pte
The matrix of weight coefficients ¢, ¢ is then
c,c = Alp+e), (p+e€) AT = ACAT—ACU"(UCU")-1UCA"

CHI CHII

3
from B fromB, EE from B,

Figure 7. Figure 8.
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Most of the variates p will have a coeflicient zero in all the condition equations.
Because they are correlated with variates whose coeflicient is not zero in all the
condition equations, they will receive corrections from the second step of the adjust-
ment. Up to and including the computation of the correlates the second step can
be treated as if it pertained only to the variates whose coefficient is not zero in all
condition equations (in Fig. 3 those indicated by a heavy line). This is easily seen
if we re-arrange the order of the variates, so that p!, ..., p™ are the ones that have
non-zero coefficients, and pm+1 ... p* the ones with only zero coefficients. The
matrix U is then built as in the diagram in Fig. 6. The matrix of weight coefficients
is as in Fig. 7.

It is easily seen that UCU" = U;CrUj. In the computation one will of course as
much as possible take advantage of the many zero elements in the different matrices.
The matrix G deserves special attention in this respect. If the above-mentioned
re-arrangement of variates is made, G is built up as in Fig. 8 (considering the
example of three partial nets).

The formulae for the total adjustment are recapitulated on page 9 in matrix
notation, for the case of four partial nets.

Remark., The second step could also have been performed by the method of
Standard Problem II or rather by what TiENSTRA has called Standard Problem IV:
condition equations containing unknowns.

If in Fig. 5 unknowns X, and X3 are introduced for the differences in g.p.n.
between O: and O and between O3 and O; respectively, we have:

X, — <£,14_|_,_314) — <£15+§15)
X, — @13_|_§13) _ <£)16_|_§16)
X; — (£9+§9) _ <£,22_|_§22)

X3 — <£,10+§10) . <£,21_|_§21)

..........................

/_Yzﬁ/_yii — <£,19_|_§19) _ <£18+§18)
etc.

Introducing new variates in the right hand members:

[t = pta—p15
[2 = p13_p16
etc.

or, in general
1=Vp
we deduce for their matrix of weight coefficients

Li1=Vp,pV
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By inversion we obtain the matrix of weights, after which the whole problem can
be treated as Standard Problem II for correlated observations. From the correc-
tions to 1, the corrections to p can be derived, the final differences with respect to
O, are, e.g.: -

¢ =pi+e

= Xyt

An application of the law of propagation of weight coefficients results in the
weight coefficients of the variates ¢. Although this application is simplified by the
well-known properties that any X is not correlated to any ¢ and that

(pi+gi)’ (pk_}_dc) = pis Pk - Eiz &k
the number of matrices involved and their computation make this solution some-
what complicated from an organizational point of view. Therefore the method of
condition equations was used in the second step. Test computations indicated that

the total amount of purely computational work for both methods is about equal,
at least in small nets.

RECAPITULATION OF FORMULAE

1st step Observations f
Weights G (diagonal)
Observation equations Ax = f-+vy
Normal equations ATGAx — A'Gf
Inversion (ATGA)1 = Q
Solution x = QA'Gf (nodal points only)

”Sum of squares” E: = v'Gy = f'Gf—A'Gfx
Intermediate points y
Antennae-points z
Total partial net ¢: pPi = (X
y
z
x,x=0Q x,y=DQ X, Z
Weight coefficients B—p,p—|yx y,y=DQD" vy, z
z, x zZ,y z,z
2nd step Observations Pp1
p=(p
P3
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Weight coeflicients B.0 0 0
C- |0 B:0 O
“PP= |9 0 B
0 00 B
Conditions U(p+e) =0
Ue=—-Up=t
Normal equations UCU'k =t
Correlates k= (UCUH1¢
Corrections e=CU k

Weight coefficients

k, k = (UCU")-1

e, e = CU'k, kUC
”Sum of squares” En=€¢Cle=k't
Weight coefficients of adjusted observations
(pte), (p+€) =p,P —€E€
(p+e), (p+€) = C—CU(UCU")-1UC
¢ = A(pt+e)
¢, ¢ = A (p+te), (p+e) AT
¢, ¢ = ACA"—ACU"(UCU)-1UCA’

Functions

Weight coefficients

2.2 Execution and results

The partition of the net was done as shown in Fig. 9 (see folding page at the end
of this publication}. This choice was made for several reasons:

a. These nets have a convenient size with a view to the capacity of the computing
machine used.

b. It was expected that these parts were fairly homogeneous as far as their reli-
ability is concerned.

c. This choice was also suggested by geographical features.

The datum points chosen were:

Partial net D: 301, the N.A.P. datum point at Amsterdam, which is also the datum
point for the total net.

Partial net F: 339

Partial net C: 603

Partial net E: 429

The observational values were taken from the documents furnished by the Presi-
dent of the Permanent Commission on European Levellings. The weights of the
observations were obtained from the same documents by inverting the weight coeffi-



REPORT ON THE ADJUSTMENT OF U.E.L.N. 11

cients 1/P given there. These data have been established by using the different
values of the variance 2 of 1 km levelling given by the various countries, expressed
in mm2/km (see [12], page 25). But the adjustment is executed with observations
expressed in geopotential units, so that the use of variances expressed in mm?2/km
is theoretically not correct. However, the difference has little practical significance.

The adjusted differences after the first step in g.p.n. between the points of each
partial net and the respective datum points are given in Table I *), column 2. The
corrections to these differences resulting from the second step are listed in Table I,
column 3.

The final geo-potential numbers of the points with respect to the Amsterdam
datum are listed in Table I, column 4.

The corrections from the second step indicate the influence which the partial nets
exert on each other. A clear example is the partial net E, which is tilted by the
connection to the other nets: the western part is depressed, the depression diminishes
from 0.042 g.p.u. in 416 to 0.005 g.p.u. in JM-42. The eastern part is lifted by an
amount diminishing from 0.048 g.p.u. in 420 to 0.002 g.p.u. in 405. A ’neutral
axis”’ may be imagined to lie between 417 and 418, between 421 and 422, through
429, between 427 and 428, ending between JM-44 and 406.

The corrections from the second step are biggest along the edges of the partial
nets. It should be noted that the dividing lines often lie across polygons with large
misclosures, in the Pyrenees and the Alps. The decrease of the corrections for points
away from the edges is illustrative (corrections in 103 g.p.u.):

In partial net F:

Point 313 312 333 332
Correction from 2nd step -+36.8 +22.4 +6.2 +4.1

In partial net C:

Point JM-47 518 JM-48 517 516
Correction from 2nd step +105.3 | +15.4 -+8.8 +2.5 +1.3
In partial net E:

Point 420 419 402 403 404
Correction from 2nd step +48.3 | +23.1 | +23.7 4+9.6 +4.9

*) The tables with roman numbering are printed on the pages 42 ff.
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3 THE PRECISION AND THE ACCURACY

3.1 Tests on model errors

The four partial nets can be assumed to be fairly homogeneous as far as their
accuracy *) is concerned. One may now ask the following questions:

1. Are there such differences between the results of the partial nets that a conclu-
sion can be drawn on the occurrence of model- or systematic errors in levelling?

2. Have the different countries given a good estimation of £ (variance per km
levelling line)?

An objective guide to the answers may be obtained by statistical tests.

A basic assumption is that our original observations are normally distributed and
mutually independent in the probability sense. Let ¢? be the standard deviation of
an observational quantity p¢, Weights g;; are determined by introducing the con-
stant variance factor o2, according to:

e
g

The weight formula for the original observations is
200
Gt = m

£2 is an estimate of the square of the standard deviation of 1 km levelling. The way
it is evaluated is described in [12]. If #2 has been computed from a large number
of levelling observations, it is such a good estimate that it can be considered in
practice as the ’true” variance of 1 km levelling. For a discussion on the meaning
of a statement of this kind, reference is made to [4], page 4. L2 is then the variance
of a section L km long. It follows when using this weight formula, that the variance
factor is

o2 = 200

If the observations are adjusted by the method of least squares to fulfill b condi-
tions, corrections p¢ are found. The quantity

E = [guziv']
can then be computed; in the diagram on page 9 it has been called sum of

squares” and the well-known formulae for its computation have been added. Of
course the notation [ g;*v?] is not appropriate in the case of correlated observations.

*) The terms precision and accuracy are used in accordance with the definitions given by CHURGHILL
EisenHART in: The reliability of measured values, Photogrammetric Engineering, Vol. 18, page 545.
See also: M. G. KEnpALL and W. R. BuckLaND, A dictionary of statistical terms, 2nd ed., Edin-
burgh, 1960.
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As is well-known, sce e.g., reference [2], the quantity
E

g2 — =
- b
is an unbiased estimator of ¢2.
The stochastic quantity

42

Foyo = o e o e e (B

has a known probability distribution (a distribution of FISHER-SNEDECOR) which is
dependent on b only; its mean (expectation) is 1.

If two stochastically independent estimates 62 and G,2 of the same 62 have been
made after adjusting on b, and b, conditions respectively, we can use the quantity

=N
o

By by = e o e e e e (302

q

=N
o

which has also a FisHER-SNEDECOR distribution, that is dependent only on the
number of degrees of freedom b, and b,.

Since the distributions corresponding to (3.1-1) and (3.1-2) are known and have
been tabulated we can carry out F-tests using the found values of 42.

It can be shown that if model- or systematic errors occur, the expectation of §2
is greater than o2, so that in general the value found for g2 is greater than 2.

Therefore, using the relation (3.1-1) we will generally find in this case:

Fb,oo>1

Using a 59, rejection or critical region in the right-hand tail of the F-distribution,
containing all F-values greater than a so-called critical value Fo95,0,», we are
inclined to reject the hypothesis of non-occurrence of model errors if

42

Fp o = > > F0.95;b,oo

o

This type of test is called a one-sided test.

If on the other hand the estimation obtained for 2 was too low, it can be shown
that the expectation of E is too high, so that this may also give rise to a value of 2
that is too high. Consequently the testing on model errors may be mixed up with
the effect of a wrong estimation of 2.

By comparing the values of 42 in the different partial nets or in different steps of
the adjustment, we obtain a possibility of investigating the effect of these two factors,
For this investigation, (3.1-2) is used, which leads in principle to a two-sided test
with a 21/;9, critical region in the left and right tail of the F-distribution. By using
the greatest of the two 4’s in the numerator, we can use a one-sided test, with a
21/5%, critical region in the right tail only.

The different values 2 that were found, the resulting F-values and the corres-
ponding critical F-values are listed in Tables A and B. The critical values were found
in [7], Table VII. Table A contains one-sided tests, Table B two-sided tests; all
tests are on the 5%, level of significance.
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TABLE A
Number of ” ) . 42
Net conditions & Lgve] ? ? By = a? Foaso.
D 14 8038 574 200 2.87 1.68
E 14 5341 382 200 1.91 1.68
C 11 2983 271 200 1.36 1.80
F 15 4048 270 200 1.35 1.65
I 54 20410 378 200 1.89 1.33
11 14 4743 339 200 1.69 1.68
1411 68 25153 370 200 1.85 1.30

I denotes the total first step of the adjustment.
IT denotes the second step.
I+II denotes the total adjustment.

TasLE B
G2
g Zz =Fy,n, | Fo915,6,. 5,
D-E 1.50 2.97
D-C 2.12 3.45
D-F 2.13 2.90
D-1II 1.69 2.97
E-C 1.41 3.45
E-F 1.41 2.90
E-II 1.13 2.97
C-F 1.00 3.05
I1I1-C 1.25 3.35
II-F 1.26 2.90
I-1I 1.12 2.65

Starting with an analysis of Table A we see that the nets D and E, the total first
step, the second step and the adjustment as a whole lead to a rejection of the hypoth-
esis of non-occurrence of model-errors, or to the assumption that several of the
estimates of #2 given by the different nations, are too stnall. It is remarked that all
F-values in Table A are greater than one, which fact also indicates that the conclu-
sion drawn above is based on good evidence.

The test for the partial net I has been given for completeness only; it has no real
meaning because according to [12], page 39, # for this net has been computed from
the polygons contributed to U.E.L.N. themselves. The resulting dependency inval-
idates the test.

If we now analyse Table B, it appears that the occurrence of model errors is not
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very likely and that the results of Table A are more probably due to the value given
for 2 being too small. The fact that all F-values are greater than one need not cause
surprise; this is a consequence of the method of testing in which the greatest value
of ¢2 is always put in the numerator. Nor does Table B give rise to the conclusion
that the used formula for the weights, inversely proportional to the length of the
levelling line, is wrong.

In Table B the different partial nets are compared among themselves and with
the second step, and the whole first step with the second. The described test is not
suited for comparing the partial nets with the first step as a whole or with the whole
adjustment, since the required stochastic independence is not then present. The
result of these tests is that there are no significant differences.

In conclusion, it is evident that the value 6% = 200 cannot be used for evaluating the precision
of the results of the adjustment, since the estimate 6% computed from the adjustment is significantly
higher. This value 62 = 370 will therefore be used in the sequel to compute standard deviations
of adjusted geo-potential numbers.

Apart from the described tests, which follow from the method of adjustment, one
can easily test each polygon separately. Let {* be the misclosure of polygon nr. .
The weight coefficient g* is the sum of the weight coefficients of the sections of the

1
polygon; the weight of ¢ is EQ = g, From the adjustment of the polygon follows
the estimator

1%
62 = gggi == g, (192
while
42
2 thT

The critical value for a test on the 59, level of significance is
Fo9s5.1,- = 3.84

so that a model error in the polygon may be suspected if
Zoo(19)% > 3.84 x 200
2] > /768 g%

Nine out of 68 polygons turn out to have a significantly too large misclosure, namely

to Critical value

Nr. 2001
Nr. 2010

(nodal points 201, 202, 226, 227, 228) + 39.31-10-2 gpu 26.41

( . 207,208, 209) — 27.85 23.43
Nr. 3002 ( ,, . 305, 306, 307, 308, 309, 310, 329) | —204.34 154.60
Nr.4003 ( ,, ., 401,402, 419, 420) +123.91 122.34
Nr. 4012 ( ,, ., 435, 436, 437, 438, TM-42) + 69.36 36.95
Nr. 9003 ( ., , 301, 302, 303, 219, 220, 221) — 65.11 44.64
Nr. 9009 ( ,, ., 313,314, 519, 508, 507, 501) —152.92 126.73
Nr. 9010 { ,, ,, 314,315, 316, 518, 519) —179.76 129.81
Nr. 9013 ( ., . 601,602, 603, 511, 510, 505, 504) | + 75.74 69.37
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3.2 Precision of results

The weight coefficients of the adjusted geo-potential numbers after the total adjust-
ment were computed according to the method explained in Section 2.1. Not all the
weight coeflicients are printed in this report, but only the most important ones,
those pertaining to the mareograph stations. These stations are denoted by RM,
and their geo-potential numbers are obtained by adding the observed g.p.n. dif-
ferences of the antennae JM~RM to the g.p.n. of the JM points as found from the
adjustment. The weight coefficients of the g.p.n. of the RM points are found in the
same way as described in Section 2.1 for antennae-points. They are given in Table I1
(see folding page at the end of this publication); the unit is 10-6 (g.p.u.)2. The weight
coeflicients pertaining to the mareograph stations of the Northern Block have been
computed by using the weights furnished by the Commission.

By multiplying the diagonal weight coefficients by the variance factor 370, one
obtains the squares of the standard deviations of the geo-potential numbers of the
mareograph stations with respect to the Amsterdam datum. The square of the
standard deviation of the g.p.n.-difference between two mareographs, ¢“—¢’ is,
according to the law of propagation of weight coefficients:

e opy = ("% —2¢")-370

in which g and g” denote the diagonal weight coefficients pertaining to ¢* and ¢,
and g“ their non-diagonal weight coefficient.

When interpreting the thus obtained standard deviation it should be borne in
mind that the value 370 is an estimate. We may obtain a 959, confidence interval

for the mean 62 of 62 by means of the following critical values obtained from [7],
Table VII:

Fo,975.68, = = 1.36
Fo.975,00,68 = 1.44
The resulting 959, confidence interval is

370
2 s < 1.44.370
136 =7 <

272 < 3% < 533

This illustrates the uncertainty of the computed standard deviations.

The use of 370 as variance factor in the Northern Block results in standard devia-
tions of the g.p.n.-differences that are some 309, greater than the ones published
by E. KAARIAINEN in [8], Table 4. Dr. KAARIAINEN used (15.08)2 ~ 227 for the
Finnish net and (16.34)2 ~ 267 for the Norwegian net; these values include an
allowance for the effect of land uplift and both are based on the estimate 62 =
= (14.55)2 ~ 212 resulting from the adjustment of the 23 loops of the Northern
Block.

Since

370

m o 1.75 and F0.95;63,23 o) 1.85
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the difference between the variance factors is not quite significant, so that the above-
mentioned difference of 309 is rather acceptable in view of the uncertainties of the
estimates. The resulting standard deviations are likely to be on the high side as far
as the Northern Block is concerned, but in view of the isolated position of the
constituent parts of this Block, this can be considered as a welcome safety-margin
which prevents over-estimation of the accuracy.

In Fig. 10 the increase of the standard deviations in different directions, before
and after the adjustment, is pictured. The values before the adjustment have been
obtained by considering the observations along the most direct route between the
points considered, multiplying the sum of their weight coefficients (as furnished by
the Commission) by 370 and taking the square root.

Fig. 11 (see folding page at the end of this publication) pictures the standard de-
viations in the whole Central Block by means of contour lines of a surface whose
height at a certain nodal point is equal to the standard deviation of the g.p.n. of
that point. Its visualises roughly the precision of the net; outside the mentioned
discrete points the surface has of course no significance.

3.3 Power of the tests used

In Section 3.1, F-tests were used to investigate whether model errors made them-
selves felt in the adjustment. The level of significance adopted was 59, which means
that there is a probability of 5%, to make a ”Type I error’, i.e. to reject a true null
hypothesis. We will now deal with the following question: if our null hypothesis is
wrong, what probability do we have of nevertheless accepting it and make a > Type I1
error’’?? In other words, what size can a model error attain before it leads (with
a certain specified probability) to a significantly too high F-value? This question,
which forms an essential part of the application of statistical tests, has been treated
from a geodetic point of view by W. Baarpa in [4], page 21 ff. By ’model error”
we mean now a systematic error that manifests itself in the misclosures, and it is
convenient to think of a gross error or blunder, because we will consider cases where
one observation is “’falsified”’. If we think of one polygon, a very large error in one
of its sections will almost certainly lead to rejection of the null hypothesis that no
model-errors are present, because it will result in a very large misclosure. A small
error, that has the size of the standard deviation of the observation in question will
very seldom lead to rejection: the probability § of detecting an error is dependent
on its size. This probability g is called the power of the test with respect to the alter-
native hypothesis that an error of the given size occurs (this hypothesis is an alternative
to the null hypothesis).

We may now fix g, e.g. § = 0.8 and derive the size of the corresponding error,
which consequently is the size an error has to attain to be detected with 809,
probability (”’be detected” means here: lead to rejection in the test. The test cannot
in general indicate the particular observation affected by the error.)

We will use the notation which is customary in tensor analysis, see [13]. Let us
consider observations p¢(i = 1, .. ., n), subject to & conditions. The weights are g,
the variance factor is o2.
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The conditions are
w(pt+et) = uf (L, kI=1,...,m)
yeen by b <m)

—

ulet = ug—uipt = ¢ (0,0 =
The weights are gi, the weight coefficients gt if
lifl =1
m=&=f
ST ST 0ifr i
Normal equations

g uuk, = t*

Put

ghhutuf = g
and

8580 = &
Then

ks = goul”

is the solution of the normal equations.
The estimator of the variance factor is:

ik eyo

g2 BEE oot t
- b b

One of the basic assumptions of least squares theory is that the means of the correc-
tions ¢g¢ are zero. If the observations are affected by systematic errors or blunders,
Vi, the means of the ¢ will not be zero. The means of the misclosures will be
Ve = —ufVi; the variate ‘

g% gikg’e® ol

o2 b b
has then a non-central F-distribution; its mathematical expectation can be shown
to be

Az 1
E{%} =14 g9V > 1
We define
= 8osVV?
a2
42

The distribution of — 1 dependent on 4, hence we write:
¢

g* ,
072 =I"
Similar considerations hold for the type of F-test according to (3.1-2), where we have

A
2
%y

R ~]
== E bI'bll’l
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in case the quadratic form in the numerator is non-central. For illustrative purposes
we will only discuss the case that by = o.

The probability that F'y o ; is greater than the critical value Fi_,.5, « of the test
is by definition the power of the test:

P{Fib,“’.l > F1~a;b, “’} - ﬂ

B is a function of the significance level « adopted, of b and of 4; ¢ and & being fixed,
it is a monotonic function of 4. If we now suppose that there is only one V¢ different
from zero, i.e. that only one observation is affected by an error, we may find the
size of that error that corresponds to § = 0.8 with the aid of tables or charts of the
power function. Such charts are published ¢.g. in [9] and [10]. The latter are used
here; they have been constructed for f = 0.8 and a« = 0.05.

The first test we will investigate is based on the estimate 62 for each polygon
separately. This adjustment can be considered as a first step of the adjustment of
a net,

For the polygon numbered ¢ we get for the estimate

(6%)¢ = got*t*
t%is then the misclosure of the polygon numbered g, whereas g,, = —, and g* equals

o0
the sum of the weight coefficients of the observations (sections or levelling lines) in
the polygon.

Now suppose there is a model error V¢ in some section of the polygon. It is im-
material in which section it occurs, because all sections are in the same position
with respect to the polygon. By establishing the condition we see that the error in
the misclosure is:

Vg = —V°
Fixing ¢ = 0.05 and # = 0.8, we can compute V? from:
1
Z.l,oo - OT_‘)gQQV[QVtQ == ;ggg<vg)2

The indices 1 and » of 4 are explained by the fact that 62, computed from one
supernumerous observation, is tested against the variance factor ¢2 (= 200). With
the aid of the nomogram [10] we find

(A1,0)>  7.85-200

oo oo
The result of this computation is found in Table III, column 2, giving the result
per section. Most sections are part of two polygons; in that case the smallest of the
two V’s is given.

We now consider an adjustment on b conditions, and we suppose that the adjust-
ment is executed according to Standard Problem II (observation equations). For
convenience we recall the formulas in the notation used in this section: p? are the
observations, ¢! the corrections, £ the unknowns (in this case geo-potential numbers
with respect to the datum).

(Ve)2 — — 1570g%
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Observation equations:
ahr = pitst
Weights:
Zik
Normal equations:

. ,
gua,ahr = gua p*

Put

gikdfdf = Zrs

grag® = 0,
and

gua p* = F
Then

er — grsf"9

Weight coefficients

}l", hs —= grs
Estimator of variance factor:
32 = gue'ed = gap'p*—Fsls = gupipt—gFrFs. . . . . . . . . (3.3-])

If model errors Vpi occur in the pf, it can be shown that (indicating the error
in Fy by VF; etc.):

VF, = gika’,‘Vpi
gisziVek = gikV_inpk—ngVFrVFs
By definition we have (¢ = 0.05 and § = 0.8 being understood)

1
/'1.1,' @ = gika”iV&‘k

T o2
so that
gisziVe’f = 0‘2 . Ab, ©

Now the model error Vpt is the error in the observation between 47 and A% and
therefore we indicate it by V7s. We suppose there is a model error in one observation
pt so that

guVPiVpt = gi(VrY2 . o Lo oo oL (3.3-2)
Furthermore we have

VF, = gud'Vpt = g;:a'Vrs (no summation on r or 7)
The coefficients a' are either -1 or —1, so that

VF, = —giiVrs |

- (3.3-3)
VFS = -{—g“-VTS I
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From (3.3-1), (3.3-2) and (3.3-3) it follows that
gikvaivak — g”(Vrs)Z_(gtt)Z(Vrs)z{grr+gss_Qgrs}

or

guVeiVer = (Vro)2g{1 —gu(g+g%—2£7)}
and consequently

02-2p, o
gu{l —gu(gm+g°—2g7)}

If we denote the relative weight coefficient of A7 and 45, i.e. the weight coefficient
of their difference, by gr—57—s we see:

(Vrs)2 —

0% Ap, o

Vrs)2 = N 0 B
V= ll—gug ) 8574
gis is the weight of pt before the adjustment, and g7=s:7=% can be computed easily if
the matrix of weight coefficients of the unknowns is available.
Formula (3.3-4) shows clearly the relation existing between V75, g, 4p,» and

gr—s7-s. Before the adjustment gr—s7—s = — (assuming non-correlated original
observations). Hence 8u

(Vrs)z — ﬂm_ — o
gu(1—1)

This confirms the self-evident truth that we cannot detect a model error if there
is no adjustment. Further we see from (3.3-4) that the smaller the relative weight
coeflicient between the end points of a section, the smaller the model error that can
be detected. We can also compute as follows a lower bound for Vrs:

greTTE > 0
g”gr—s.r—s >0
l_gttgr—s,r—s <1

gu(l —gug77%) < gus

(Vrs)z > Uz.lb’m
8t
. . 200
Using the weight formula gy = I We get

L
(Vrs)2 > 9 0% b,

(Vrs)2 > Ltzj-b'm
Ve > tV L o

The best test is obviously the one in which the smallest model error leads to rejec-
tion. It is evident from (3.3—4) that to obtain this test we must not take the highest
possible number of conditions (polygons), for by adding more and more conditions,
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gr—sr=¢ will finally hardly decrease, whereas 4y, » will increase with the number of
conditions.
In order to verify this, the tests on

__Eb,m

s —

Q

per partial net, as described in Section 3.1, have been investigated. The value of
Vrs was computed for each levelling line (section). The result is found in column 4
of Table III. Of course, the lines between the partial nets had to be left out.

The result of this computation is remarkable. For each levelling line, the minimum
model error leading to rejection has increased, in most cases considerably. Evidently
the increase of 1» » has much more influence than the decrease of gr—s:r—s. Con-
sequently it may be concluded that it is better to test per polygon than to test per
partial net, if one wants to detect model errors of minimum size. But we may also
use tests involving two, three or more polygons. Can we thus find a test that is still
better than the test per single polygon? To answer this question we must try to find
a test, in which the decrease of g7—#:r—¢ has a greater influence in (3.3-4) than the
increase of 4p, ». If we take a levelling line that occurs in two polygons, we see that
the adjustment of these two polygons has a great influence on gr—#-7—s, The obvious
thing to do is therefore to examine the test in which 42 is computed from two polygons
having a line in common. Actually, an adjustment was necessary for each line; this
adjustment has been done according to Standard Problem II. One of the end points
of the line in question was taken as a reference point, the g.p.n. of the other end
point being the only unknown in the adjustment. We simply get:

1
2 gis

grsrTs =

in which 2 gy is the sum of the weights of the three levelling lines occurring in

the problem.

The results of this computation are given in column 3 of Table III. In general
we find indeed that the minimum model error that leads to rejection in 809, of the
cases is smaller in the test on two polygons than it is in the test on a single polygon.
In general, the improvement is not great; in several cases we even find that the
minimum model error is larger in the two polygon case. This is mainly the case
when the two polygons concerned are very different in precision. In this case the
relative precision of the two points is only very slightly improved by the addition
of the least precise polygon.

The computation has been done only for lines which are situated between two
polygons, because it cannot be expected that the relative precision of the two end
points of a line is much improved by adding a polygon which does not contain
the line.

Since the relative weight coefficient gr—#7=5 of geo-potential numbers resulting
from the adjustment of the total net are available, it is very easy to compute for
every line V¢ for the test using 62 of the total adjustment. The result can be found
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in Table III, column 5. The model error corresponding to a power of 0.8 is consid-
erably larger except for the lines forming the edges of the partial nets. This is caused
by the fact that the relative precision is increased most at those edges.

We might now want to investigate the power of the test when 42 is computed
from e.g. three polygons. It is not impossible that we find a V7s that is still some-
what smaller than in the case for two polygons. But we meet some difficulties. In
the first place, one can add a third polygon to two other ones in many different
ways, and it is not self-evident which combination results in the highest power. In
the second place, this investigation involves much extra computational work, there-
fore it has not been pursued.

One might investigate the power of the tests on §7,/d»; concerning estimates of
o? from different partial nets. In that case formula (3.3-4) is still valid, when 4y, »
is replaced by Ay, »,. In our case, Ay b, ~ 24p, , so that the model error leading to
rejection in 809, of the cases will become approximately 1/2 times as large. The
power of this test is therefore much smaller than that of other tests. Nevertheless,
this type of test has the advantage that the assumed value of ¢2 has no influence.

This investigation has not resulted in a statement saying which test has the
greatest power: this question has not been answered fully. But the tests having
greatest power are definitely not the tests involving two estimates, nor the tests on
estimates obtained from a large number of supernumerous observations. It is well
to test the estimate resulting from two contiguous polygons. In the line they have
in common one can then detect a model error that is not likely to be much greater
than the model error that can be detected by any other F-test. If the line to be
investigated is only contained in one polygon, it is probably best to test the estimate
resulting from that polygon. If the line is part of two polygons of very different
quality, the best one can do is test the estimate from the most precise polygon.
Tests on 2 obtained from all observations will have minimum detectable errors that
are nearly twice as large as the tests recommended above.

We give a small survey where for convenience the model errors are expressed
in cm:

Model error Vs leading to
rejection with 809, probability
(¢ = 0.05; B = 0.8) varies from

Number of conditions
from which g2 is computed

1 2.5-28 cm
2 2.5-24 cm
11-15 (partial net) 3.5-40 cm
68 (total net) 5-54 cm

These values illustrate that even the hypotheses that were not rejected may be
quite unreliable; the fact that a hypothesis is not rejected in a test does not imply
that it is a true hypothesis.
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It must be remarked that the above-mentioned investigations are based on the
adopted 5 per cent level of significance, which is an arbitrary choice. Finally it is
emphasized that, e.g., n tests based on one degree of freedom are not equivalent to
one test with n degrees of freedom because the critical regions used are not the same.
In this respect, a closer investigation of the phenomena mentioned here must be
made. The reader is referred to [3] for an outline of the underlying theory.
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4 THE GEO-POTENTIAL OF MEAN SEA LEVEL

4.1 The data on mean sea level

In the preceding sections we have mentioned *’mareograph stations’. In reality this
expression referred to bench marks in the immediate vicinity of mareographs; these
bench marks are indicated in the Commission’s notation by a number preceded by
RM, e.g. RM 34. From the g.p.n. of an RM point, the g.p.n. of mean sea level
(MSL) as indicated by the observations of the mareograph in question can be
computed. This work was done by L. CAHIERRE and provisionally published in [5].
The results, with small corrections applied in 1960, are printed in Table Ia.

We can summarize the connection between the g.p.n. cray of the RM point and
the g.p.n. cymsz of MSL as follows:

¢msL = cru+a+d

The variate g corresponds to the levelled g.p.n.-difference between the RM bench
mark and the reference plane for the sea level observations; 4 corresponds to the
difference between MSL and this plane. The standard deviation of g can be neg-
lected when it is compared to that of ¢rar; however, gross errors in a, caused by, e.g.,
maintenance of the mareograph, seem to be possible. The value 4 actually used was
a function of the annual means of sea level observation in a series of years: a straight
trend line was fitted to these means and the ordinate for 1950 of this trend line was
defined as MSL.

From the scatter of the annual values about the trend line one could formally
estimate the standard deviation of 4 but such a computation has not been carried
out, and it would indeed be difficult to interpret the resulting standard deviation.
The problem belongs to the field of oceanography, as well as the problem of deciding
whether the mareographs indicate the sea level without bias.

Consequently, we will in the present report leave the stochastic character of g
and d out of consideration. This means that it is assumed that the matrix of weight
coefficients of the variates ¢arsz is the same as that of the variates ¢y, i.e. the matrix
in Table II. (When more is known about the distribution of the aforementioned
variate d, it may be possible to take it into account by simply increasing the diagonal
elements of the matrix of weight coefficients by a corresponding amount.)

Under this assumption, we have at our disposal a number of observations of the
g.p.n. of MSL and their matrix of weight coefficients. The mareographs concerned
are those numbered from 1 to 50, excepted nrs. 40, 41 and 43, which are not attached
to the net. From the report [5] it is concluded that some more mareographs must
be left out, namely nrs. 32 and 33 for which no usable observations are available,
and nr. 44, whose observations were stopped in the year 1923.

4.2 Tests of hypotheses on mean sea level

We will denote the observation of the g.p.n. of MSL at a mareograph numbered i,
by ¢t and the matrix of weight coefficients of the variates ¢t by ||g#||. For simplicity
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we will suppose that whenever a group of » mareographs is considered, they are
numbered 1, 2, . . ., 7 so that the index ¢ need not be the number actually given by
the Commission. A hypothesis on the properties of MSL can be expressed in a
number of condition equations, which have to be fulfilled by the means ¢t of the ¢.
For example, the hypothesis that MSL as defined above is an equipotential surface
whose potential is equal to that of the N.A.P. (Amsterdam) datum, is expressed by:

it=20 (GLpk=1...,n)
The actually observed values ¢! do not fulfill these conditions; they have to be
adjusted. The corrections ¢f resulting from the adjustment are immediately known,

namely

gt = —¢t

The number 7 of mareographs considered may vary from one to the total number
of mareographs attached to the net. It may be noted that the number of condition
equations is equal to the number of observations, and in this case it is more evident
than usual that the condition equations, forming the condition model, are the
expression of certain hypotheses.

To test the hypothesis expressed by the conditions

&#=0
we use the estimate of the variance factor resulting from the adjustment. Denoting

any estimate of the variance factor from mareograph observations by an index M,
we can compute for any combination of mareographs

. &ug'd!
Om =

n

The values ¢¢ are given, and the matrix of weights ||gs|| is obtained by inverting
the n, n (partial) matrix of weight coefficients ||g*]|[.

The estimate obtained can be tested with respect to the estimate found from the
adjustment of the net:

because 2 has been computed from an adjustment on 68 conditions.

4.2.1  Tests concerning single mareographs

The weight coefficient of the g.p.n. of each mareograph is directly available. By
reciprocation one finds its weight. Each mareograph furnishes an estimate for the
variance factor according to

5’,2\4 = gtifiét

The test is based on the identity

&
Py EEI,BB
¢
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The level of significance we use is 5%,. For the practical computation we compare
¢t with the critical value y¢ which follows from
gu'yf)ﬂ = 6‘2~F0,95;1,68 = 370.3.98 = 14—73

or

The power of the tests can in principle be evaluated in the way described in
Section 3.3, but here we meet a complication. In the actual adjustment the power
of tests could be computed in the system based on ¢2 = 200. However, the adjust-
ment resulted in an estimate 42 that was significantly too high, which, as explained
in Section 3.1, is probably not due to systematic errors but to the assumption of
too high weights. We can now use the value 62 = 370 instead of ¢2 = 200 in the
formula

1
A 68 = — g VciVel
0'2

in which V¢t is the model error which on the average in 8 out of 10 tests will lead
to rejection of the null hypothesis. The difficulty is, however, that to the authors’
knowledge no tables are available for the power function of this more complicated
non-central F-distribution, In the following we will therefore take ¢2 = 370 in the
above formula and consider this as the true variance factor. Theoretically, the
results will be more or less incorrect but it is hoped they give a sufficient practical
indication.

We find
(Vei)? = gui-02- 11,65 = g¥-370-8.2 = 3034 gt
|Vet| = 55.0 /gt

The results are given in Table IV.

From the table it is evident that only 16 out of 44 g.p.n.’s of mareographs are
significantly different from zero. It is very likely that several significant differences
are caused by the fact that NAP is not identical with MSL. If we take the g.p.n.
of MSL at the mareograph 34 (Den Helder) as our reference value, we find 12
significant differences from zero.

4.2.2  Tests concerning pairs of mareographs

From the geo-potential difference between MSL at any two mareographs numbered
7 and j one can estimate o2 by exactly the same formulae as used in the previous
section. Instead of ¢! one must introduce ¢! —¢/ and instead of gé their relative weight
coeflicient, which may be denoted by g¢—=.

The results are given in Table V. Of course, not all combinations have been
investigated, but it was tried to make a representative choice. Of 132 combinations
considered, 59 show a significant difference.

A closer investigation shows that strong significance can be ascribed to some com-
bination Gulf of Bothnia — North Sea (1-23, 12-23, 15-17, 15-24, 15-34), to several
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combinations North Sea - Mediterranean (28-48, 38-48, 38-50, 39-46, 39-48, 39-50,
42-46, 42-48, 42-50) and only to one combination Gulf of Bothnia - Mediterranean
(15-48). It is to be noted that not all of these tests are mutually independent.

4.2.3  Tests concerning groups of mareographs

Up to now we have computed each estimate 42 from one geo-potential difference
only, and the tests concerned at most two mareographs. We will now include more
mareographs in computing 62. In view of the results of the previous section we
compute three different estimates:

1. From mareographs situated on the North Sea or the Atlantic Ocean (nrs. 17 to
23, 29, 31, 34 to 39 and 42; group A).

2. From mareographs situated on the Mediterranean or the Adriatic Sea (nrs. 45
to 50; group MA).

3. From mareographs situated on the Mediterranean (nrs. 45 to 48; group MZ).

The mareographs situated on the Gulf of Bothnia will be discussed separately.

The three estimates will be denoted by 642, §x42 and dumz? The estimates 6a142
and &2 pertain to only 6 and 4 mareographs respectively. Their computation
involves inversions of matrices of the order 6 and 4, which were executed on a desk
machine,

#42 was computed by an electronic computer.

The tests are summarized in the following table:

TasLe G
G as2
M T afz n F0,95;n,68 Result
é
A 4886 13.2 16 1.79 reject
MA 10351 28.0 6 2.23 reject
MZ 11869 32.1 4 2.50 reject

The computations of §42, G 4% and éuz2 are found in Table VI.

We see that all of these tests lead to rejection, and even with considerable signif-
icance. The null hypothesis was: the g.p.n. of all mareographs in a group is zero.
The conclusion that the test indicates that not all mareographs in a group have a
zero g.p.n. However, this does not all mean that the group as a whole lies higher
or lower than NAP. We can illustrate this by considering the case that two mareo-
graphs a and b are tested with respect to NAP. Then we have

_ Baat®?+2gapcc® 4 gopete?

2

Differentiating with respect to ¢# gives

G m?
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d 82 »
i 8aat® +-garc
Considering ¢® as fixed and ¢® as variable, 2 reaches an extreme value for
ca —_— — gﬂcb
Zaa
This extreme value is a minimum, for
d2 2 0
dep 57

If a and b are not too far apart the computations show that

Zab &~ —Zaa

Consequently, 42 reaches a minimum if ¢* a~ ¢b. If] e.g., ¢ = —¢P, 642 is much
greater; the probability of rejecting the null hypothesis is also greater, meanwhile
we can certainly not say that the combination of the two mareographs lies higher
or lower than NAP.

We can also in this case compute V¢t, 7.e. the model error in the mareograph ¢,
which with 809, probability leads to rejection of the null hypothesis tested. The
computation is done according to

5 . guVetVet
n,68 — T
(V(:i)z . 0'2},,,,68
Gii

For o2 we use again the value §2 = 370 obtained from the net adjustment, which,
as indicated before, is theoretically wrong.

The computation is found in Table VI. On comparing the results with those in
Table IV one notes that the power in the former case is in general smaller, but in
some cases a little higher. An exception is formed by the mareographs 22 and 23,
for which the “’detectable’ model error has become much smaller in Table VI.
It is very likely that this can be explained by the fact that these mareographs are
strongly dependent on each other.

An entirely different result is obtained if we do not assume a model error in a
single mareograph, but in a group of mareographs, e.g.:

Vet =V for i = ay, ..., an (n mareographs)
We then get
V222g¢j
VeiVet =<
Angs =S i (4.2.3-1)
a2 a2
v - An,6802
22 gy

ij

We find:
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8695

2 _ — == 4- — 4- . -3
Va 54560 159 Va 0-10-8 gpu
5550
2 = = 4- = . -3 PR 4.2.3—2
4736
2 = = = 4-- —3
Mz 04413 10732 Vuz = 104.-10-8 gpu

If a model error occurs in the assumed way, we can detect with 809, probability
in the Atlantic group a model error of about 4 cm, in the Mediterranean one of
about 1 dm.

4.2.4  Computation and use of > adjusted’ geo-potential numbers of mean sea level

In all tests so far executed (except the testing of pairs of mareographs in Section
4.2.2) geo-potential numbers were used whose zero reference surface was defined
by the NAP datum. However, it is a well-known fact that NAP differs considerably
from MSL. This is of course a model error which contributed to the high significance
with which many estimates 42 exceeded their critical value in the tests described.
We will have to use another model to compare the level of the different seas. We
do not put the adjusted g.p.n.’s of MSL at the mareographs equal to zero but to a
value ¢ which is the same per group of mareographs. We then get three separate
adjustments for the determination of ¢4, ¢M4 and ¢MZ. Each adjustment has the fol-
lowing form (we use Standard Problem II):

cit-gt = ¢M (i = a, . .., an; n mareographs)
or
AigM — ¢t gt with At =l fori=a,..., a

MM = gikAiAk

_FM — gikA’igk
FM

M ==

B MM

From the simple form of A4¢ it follows that:

%n

:
MM = Z Z ik and M = Z Gikc®

i=a, k=a,

The estimator for o2 is:

W o Gukg'et  guclch — FM.cM

oM’

n—1 n—1

The estimator is denoted by ¢x2 to distinguish it from the previously computed
¢m?. The computation of ¢¥ and gy is found in Table VII. The computation of
ém? is given in the following Table D.
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TABLE D
\ 6ar2 !
M gikdidk FM. M giksiek n—1 o2 pys F0,95;n—l,68 Result
g
|
A 78175 | 30818 | 47357 15 3157 8.53 1.81 reject
MA 62106 | 51797 | 10309 5 2062 5.57 2.35 reject
Mz 47475 | 38937 8538 3 2846 7.69 2.74 reject

It is seen that the significance is much lower than in Table C in Section 4.2.3,
but still it is very high. This means that the result of the tests on §x2 cannot be
explained completely by the difference in level between the seas compared, for the
null hypothesis tested is now that all the mareographs of a group indicate the

same MSL,
Another test can be designed by using the estimator

Fmr? = gumcMcM

using the identity:

MM

gllM,z = Fi 63
&
The result is
TasLeE E
402 \
M &Muz 0'1&:12 — Fg.gasl,ﬁg Result
l
A 30694 83.0 3.98 reject
MA 51717 139.8 3.98 reject
MZ 38927 105.2 3.98 reject
|

The result is striking. We can draw the conclusion that the ’mean’ level of the
Atlantic as well as that of the Mediterranean differs significantly from NAP. From
the computations in Table VIT it follows that these levels are —75-10-3 gpu and

/ 3157
—297.1073 gpu with estimated standard deviations of about L 545640 24.10-#
12062 '
gpu and l/ 025%?; ~ 60-10-3 gpu respectively (see also Table D).
We can examine the power of these tests too. The following relation is valid:
gM1uVCMVCM
Mg =
4
2.2 370x8.2 3034
(Vemyz = 2198 — e (4241

MM MM MM
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We find
Ved = 24.108 gpu
VeMA = 72.10-8 gpu
VeMZ = 83.1073% gpu

On comparing these results with (4.2.3-2) we see that the power is increased con-
siderably. This is also evident from a comparison of the formulae: if the V from
(4.2.3-1) is denoted by Vi and the V from (4.2.4-1) by Vi it is evident that:

o2 2168
Vir2 MM A168
—_— = = —— for =2y
Vi2 62 A 68 An 68 smm i &
SMM

Consequently
A

Vo — Vi V 1,68

171.,68

4.2.5  Muitual testing of " adjusted” geo-potential numbers of mean sea level

We know the diagonal weight coefficients of the “adjusted” g.p.n.’s of MSL in

different groups. If these g.p.n.’s are to be compared with each other, we must also

know the correlation between these variates, ¢.e. we must have the disposal of their

non-diagonal weight coefficients. These can be computed by the law of propagation.
Put

At
Sk — B,
SMM
Then
FM Atck
oo = B qudit
ImMm SmM

The non-diagonal weight coefficient ¢M1, ¢M2 is found by
My cM2 = By. By-ck, ¢!

The matrix ||c%, ¢!|| is known; the coefficients By are easily computed. The com-
putation is carried out in Table VIII. We find

A, cMA = 1.0.1335
A MZ = 1-0.1365

We can now compute the weight coefficient of ¢M1—¢M2 from:

(ch_cM2)’ <€M1_6M2) o gM1M1+gM2M2_2gM1M2

Table F gives the results.
Estimates for ¢2 can be computed from
(Emy—M,)% = gMy—My, My M- (€M1 —cM2)2

and these estimates can again be compared to §2 = 370, see Table G.
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TABLE F

M, | M, gM1M1 gM2M2 gMM2 gM1—M2. M1—M2 EM,_ M, M,—M, cM1__ M2

A | MA | +0.1833 | 41.7056 | +0.1335 +1.6219 +0.6166 +222
A | MZ | +0.1833 | +2.2660 | +0.1365 +2.1763 +0.4595 4222

TABLE G
4 2
M;-M; (631,—n1,)? <UM1:2M2) Fo.95.1.68 Result
é
A-MA 30389 82.1 3.98 reject
A-MZ 22646 61.2 3.98 reject

All tests result in rejection with very strong significance. These results indicate
that there is a difference in level between the Atlantic and the Mediterranean.

4.3 The Gulf of Bothnia

In principle, the mareographs around the Gulf of Bothnia could have been included
in the preceding investigations. Here, however, some peculiar difficulties present
themselves, which are caused by the following facts (see Fig. 12).

1. All the RM-points nrs. 1 to 14 are connected by a single levelling line to the
Stockholm point RM 15.

2. This single levelling line running from RM 15 to about RM 12 (more exactly,
to nodal point 011) has a very low precision.

These facts imply that the very accurate Finnish net is connected to the remaining
part of the U.E.L.N. by a very weak line. A glance at Table II reveals that in the
matrix of weight coeflicients, the rows (and columns) corresponding to mareographs
1 to 15 are practically proportional, so that the determinant of the partial matrix
of weight coefficients of mareographs 1 to 15 practically vanishes. If, with the proce-
dure of Section 4.2.3, we should want to test if the geo-potential of the Gulf of
Bothnia is the same as that of the NAP datum (i.c. zero), we should have to invert
this partial matrix which leads to entirely unreliable results, because it is extremely
ill-conditioned. What we can do is: select a small number of mareographs, and base
our test on these. To get an impression of how this works, we consider successively
the following groups:

Nr. 15 (type of test considered in Section 4.2.1)
Nrs. 15 and 14

Nrs. 15, 14 and 3

Nrs. 15, 14, 10 and 3

The matrices of weights, being the reciprocals of the matrices of weight coeflicients,
are successively:



RM T2
RM 11

RM13 em 109l g

JM 10

IM4 001

RM4 IMT_AgIM2
cﬁ% RMZ

RM3

[%)
020X019 JMigs

014,

015

15

15
14

15
14

15
14
10

(4.268) 1

(

(4.253

4.268
4.253

4.268
4.253

4.268
4.253
4.253
4.253

4.253
90.991

4.253
90.991
90.990

4.253
90.991
90.990
90.990

Figure 12.
= 0.234302

A1 _ { +0.245748 —0.011486
) -\ —0.011486 +40.011527

4.253\ 1 +0.245748 —0.011486 —0.000000
90.990 | = | —0.011486 +4-0.035720 —0.024193
132.322 —0.000000 —0.024193 —+0.024194

4.253  4.253\ 1t /40.245728 —0.011486 —0.000000
90.990 90.990} ( —0.011468 +-0.035999 —0.019944
131.876 131.745 —0.000000 —0.019944 +1.428685
131.745 132.322, —0.000000 —0.004528 —1.408740

—0.000000
—0.004528
—1.408740
+1.413269
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The last row of the 4 x4 matrix to be inverted is seen to be approximately equal
to the third one, but the inversion of this matrix by the Gauss method (using ten
digits) gives a satisfactory result, which was proved by re-inversion. It may be noted
that in the inverse, the diagonal element of RM 15 remains the same in the last
three cases.

From Table Ia we take the observed geo-potential numbers of MSL at the
mareographs involved:

Nr. CMSL
15 +0.137
14 +0.167
10 +0.242

3 +0.223

The resulting F-values in the four cases considered and the critical values of tests
on the 59, level are

b
Number of observations X Fo.95,0.68

4397

1 —_ =11.88 3.
370 98
4408
—— = 5,96 3.13

2 2.370
4484 ’
— = 4,04 .74

3 3.370 2
5044

4 — = 341 50
4.370 2

All these values lead to rejection in a test on the 59, level of significance; from the
tables in [7] it follows that the approximate probabilities for the various F-values
to exceed the values found, are respectively 0.001, 0.005, 0.01 and 0.015. A thorough
investigation of this peculiar situation would be interesting from a general geodetic
point of view but would lead beyond the scope of the present report.

By the procedures of Section 4.2.4 one might want to compute an ’adjusted”
MSL for the Gulf of Bothnia, but it can easily be shown that the adjusted’> MSL
will be the value indicated by the Stockholm mareograph nr. 15: no amount of
levelling around the Gulf of Bothnia can give information about its mean g.p.n.
with respect to NAP if nr. 15 remains the only mareograph directly connected with
the main net of U.E.L.N.

To prove this we consider a simplified case, consisting of the mareographs 15, 14
and 13. The ommission of the mareographs 1-12 and the fact that the Finnish net
is not a single line are not essential.
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Let the adjusted value sought for the geo-potential of the Gulf of Bothnia be ¢¥,
Calling the levelling observations p! and p? and their corrections ¢! and g2, the
observation equations take the form:

M — (15| gls
¢M = (Ui glt = (15 g5 | pl{ gl
(M = (13413 = (184 gl0 A plA-gl - p2+¢2
Subtraction of the first equation from the other two results immediately in:
p'4-¢ = 0 and p%+¢? = 0, and consequently one finds ¢¥ = ¢154-¢1% for all three
equations so that g5 = 0. A formal solution of the adjustment problem expressed
by the three equations leads to the same result. Denoting the weight coefficients of

¢!, p! and p2 by g'5, g! and g2 respectively, the matrix of weight coeflicients of the
right-hand members is

‘ ;18 cla ;13

¢ls | gls gis g1
i | gl gl+tgl gls
18 | gls gis gt gl g
Inversion of this matrix and formation of the normal equation shows that the
normal equation for the determination of ¢ is

1 1
M — 15
gB” gB
or
M = (15

The computation of an ’adjusted’” mean sea level for some group of mareographs
may be thought to smooth out the effect of individual deviations of each mareograph
(i.e. the effect of the variate d mentioned in Section 4.1). The above computation
shows that this is not the case here, unless the corresponding variate is included in
the model, the result of which would be an increase in the diagonal elements of the
above matrix of weight coefficients.
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5 COMPUTATIONAL ASPECTS

Since it had been decided from the start that after the actual adjustment the final
matrix of weight coefficients for all points would have to be computed, calculation
by desk machines would have taken too much time and work. The numerical execu-
tion was done by the Computing Centre of the Central Organization for Applied
Scientific Research (Afdeling Bewerking Waarnemingsuitkomsten van T.N.O.).

The electronic computer was a "ZEBRA” (a Dutch abbreviation for ’Very simple
binary computer”), then *) a new machine. It is a rather small but flexible com-
puter; the memory consists of a magnetic drum with 8192 registers of 32 bits each.
Two different codes are available, viz. the “’simple code” and the ’normal code™.
The simple code works in the floating decimal technique and takes up much room
in the memory. Consequently, the maximum order of a matrix to be inverted with-
out partitioning is about 30. In some computations, up to 75%, of the memory is
used to store instructions. Programming in the normal code is more economical but
also more difficult because the numbers have to be normalized.

The basic matrices for the computation, as can be found in the recapitulation of
formulae on pages 9 and 10 were furnished to the Computing Centre of T.N.O.,
where the programming and computation were carried out. Regular contacts were
of course indispensable. Some difficulties were encountered owing to the newness
of the machine and the consequent lack of experience of the staff, so that the com-
plete results were not available at the time originally foreseen.

All computations were carried out with about nine significant figures. This may
be somewhat more than is needed for keeping rounding-oft errors under control,
but the machine uses nine figures anyway so that this accuracy did not cost any-
thing extra.

As pointed out before, the method of Standard Problem II (observation equations)
was chosen for the first step of the adjustment, because the preliminary computations
take somewhat less time. To have a check on the formulae and on the effect of
rounding-off errors, and to be able to make a good comparison between the methods
of Standard Problems I and II, the net F was also adjusted by the method of
Standard Problem I (condition equations). The two results differed only ten units
of the last decimal at most.

The partition of the net was such that no inversion or multiplication of the first
step exceeded the capacity of the Zebra. In the second step, however, the computa-
tion of the final matrix of weight coeflicients of adjusted g.p.n.’s necessitated par-
tioning, and consequently much programming work of an organizational nature.

*) This was in 1958. In the meantime, a modified version has become available.
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6 FINAL REMARKS

It seems useful to recapitulate some conclusions that can be drawn from the work
described and to try to find suggestions for future similar undertakings and research.

There is no numerical specification of the desired accuracy of the final results of
an international levelling net, the only realistic specification being that the net
should be as accurate as possible. No doubt, the participating nations have taken
all care to furnish the best possible data. However, in the future it will be important
that the precision of the contribution is evaluated in a correct and uniform way
from as much statistical data as possible. Otherwise no reliable and sharp statement
about the precision of results can be given. In this respect, reference can be made
to the important work of A. M. WasseF, published in [14], [15] and [16] and to
the report [6] of the discussions in Section II of the I.A.G. at the General Assembly
of Helsinki, 1960. Statistical tests, which form an objective quide to reach conclusions
about the presence of systematic errors, may be used, but an investigation of the
power of these tests shows that in the present net large parts have such a low precision
that large errors may be present without leading to rejection in tests.

From the matrix of weight coeflicients (here published for the mareograph stations
only) the variance-covariance matrix of the geo-potential numbers can be obtained
by multiplying it by the estimate of the variance factor 42 = 370. The result should
give a reasonably good impression of the precision. As to the accuracy, the possibility
of systematic errors cannot be excluded, so that one should not jump to conclusions
even if the results show that there are highly significant ‘differences in the geo-
potential of MSL at different mareographs. For a discussion on this and other points,
the reader is referred to [1].

In Section 4, the hypotheses on MSL were the rather obvious ones from a geodetic
point of view. The formulating of more refined null- and alternative hypotheses on
MSL belongs to the domain of oceanography; as an example can be seen the
excellent paper [11] by J. R. RosstTer, which deals with the reduction of sea level
observations for secular variations and meteorological effects. Any “reduction’ of
the sea level observations on account of oceanographic considerations is essentially
a hypothesis that the thus reduced MSL is an equipotential surface. In order to test
statistically such a hypothesis by comparing the resulting surface with results of
levelling, it is important that the precision of the reductions is evaluated (in fact
the whole probability distribution of the reductions should be known). Especially
in more refined hypothesis, the neglecting of the stochastic character of the reduc-
tions may be more dangerous to the results of tests than the neglecting of the stochastic
character of 4 in the tests of Section 4.

It will probably take a rather long time before a new European levelling net,
consisting of a large number of polygons of high precision levelling, can be estab-
lished. In the meantime, the fruitful collaboration between oceanographers and
geodesists can be continued if attention 1s focused on areas where the results of the
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existing U.E.L.N. suggest further local investigations. International cooperation on
a smaller scale than required for U.E.L.N. may result in the adjustment of networks
in those restricted areas.

The rapid development of computing techniques should make it possible to estab-
lish in the future a much denser U.E.L.N., even to consider the joining together of
complete national levellings. This work could be greatly simplified by letting each
nation adjust its own contribution, so that only the organization and computation
of the final step of the adjustment would require international cooperation.
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TasLe I. Partial Net D TaBre I. Partial Net F
1 2 3 4 5 1 2 3 4 5
Point| G.p.-dif- | Correction| Final g.p.- | Final g.p.n. Point | G.p.-dif- | Correction| Final g.p.- | Final g.p.n.
Nr. | ference with | from 2nd | difference Datum Nr. | ference with | from 2nd | difference Datum
301 after 1st step with 301 N.A.P. 339 after 1st step with 339 N.A.P.
steping.p.u. | in g.p.u. in g.p.u. in g.p.u. steping.p.u. | ing.p.u. in g.p.u. In g.p.u.
201 |+ 10.99467 | —0.00030 | + 10.99437 | + 12.39547 304 | —118.52200 | +0.00663 | —118.51537 | + 2.76546
202 | + 41.82635 | —0.00031 | + 41.82604 | + 43.22714 305 | + 93.26132 | +0.00422 | + 93.26554 | +214.54637
203 | + 52.31319 | —0.00033 | + 52.31286 | + 53.71396 306 | +128.62598 | +0.00387 | +-128.62985 | +249.91068
204 | + 65.73514 | —0.00035 | + 65.73479 | + 67.13589 307 | + 88.09546 | +0.01315 | -+ 88.10861 | +209.38944
205 |+ 97.14861 | —0.00048 | + 97.14813 | + 98.54923 308 | + 16.35363 | +0.02343 | + 16.37706 | +137.65789
206 | +262.74520 | —0.00083 | +-262.74437 | +264.14547 309 | +113.15639 | +0.01034 | +113.16673 | +234.44756
207 | +265.88709 | —0.00135 | +265.88574 | +267.28684 310 | +165.14956 | +0.01045 | +165.16001 | +286.44084
208 | +368.67591 | —0.00201 | +368.67390 | +370.07500 311 | +156.99621 | +0.01196 | +157.00817 | +278.28900
209 | +371.08420 | —0.00139 | +371.08281 | +372.48391 312 | +348.91450 | +0.02242 | +348.93692 | +470.21775
210 | +543.64668 | —0.00117 | +543.64551 | +545.04661 313 | -+279.81470 | +0.03677 | +279.85147 | -+401.13230
211 | +533.03064 | —0.00101 | +533.02963 | +534.43073 314 | +635.33033 | —0.01866 | +635.31167 | +756.59250
212 | +589.55354 | —0.00066 | +589.55288 | +590.95398 315 | + 85.04256 | —0.04452 | + 84.99804 | +206.27887
213 | +571.77482 | +0.00046 | +571.77528 | +573.17638 316 | + 52.27807 | —0.05492 | + 52.22315 | +173.50398
214 | +653.37735 | +0.00005 | +653.37740 | +654.77850 317 | —109.92133 | —0.03820 | —109.95953 | + 11.32130
215 | +278.18345 | —0.00043 | +278.18302 | +279.58412 318 | — 12.56585 | —0.03491 | — 12.60076 | -+ 108.68007
216 | +104.26188 | —0.00064 | +104.26124 | +105.66233 319 | +583.04256 | —0.04503 | +582.99753 | +704.27836
217 | +101.44437 | —0.00066 | +-101.44371 | +102.84481 320 | + 53.61706 | —0.00165 | + 53.61541 | +174.89624
218 | +182.87344 | —0.00065 | +182.87279 | +184.27389 321 | — 80.92655 | +0.00875 | — 80.91780 | + 40.36303
219 | +160.18637 | —0.00007 | +160.18630 | +161.58740 322 | — 99.04297 | —0.00662 | — 99.04959 | + 22.23124
220 | +123.53091 | —0.00014 | +123.53077 | +124.93187 323 | —112.11620 | —0.00461 | —112.12081 | + 9.16002
221 |+ 28.17834 | —0.00015 | + 28.17819 | + 29.57929 324 | — 48.72443 | —0.00226 | — 48.72669 | + 72.55414
222 |+ 20.71191 | —0.00024 | + 20.71167 | + 22.11277 325 | —115.15108 | +-0.00109 | —115.14999 | + 6.13084
223 |+ 6.14606 | —0.00023 | + 6.14583 | + 7.54693 326 | — 64.50668 | +0.00356 | — 64.50312 | + 56.77771
224 |+ 9.30875 | —0.00028 | + 9.30847 | + 10.70957 327 | — 88.96913 | +0.00540 | — 88.96373 | + 32.31710
225 | — 0.59881 | —0.00030 | — 0.59911 | + 0.80199 328 | — 1.15924 | +0.00606 | — 1.15318 | +120.12765
226 |+ 12.51741 | —0.00030 | + 12.51711 | + 13.91821 329 | + 15.57322 | +-0.00614 | + 15.57936 | +136.86019
227 |+ 0.34074 | —0.00030 | + 0.34044 | + 1.74154 330 | — 15.51998 | +0.00612 | — 15.51386 | +105.76697
228 |+ 7.35248 | —0.00030 | + 7.35218 | + 8.75328 331 | +146.99739 | +-0.00841 | +147.00580 | -+268.28663
229 |+ 290662 | —0.00029 | + 2.90633 | + 4.30743 332 | + 76.26221 | +-0.00413 | + 76.26634 | +197.54717
230 | + 91.27613 | —0.00029 | + 91.27584 | + 92.67694 333 | + 43.41451 | +0.00623 | + 43.42074 | +164.70157
231 | +105.12709 | —0.00035 | +105.12674 | +106.52784 334 | — 26.77916 | —0.01386 | — 26.79302 | + 94.48781
301 0 0 0 + 1.40110 335 | +420.28533 | —0.01398 | +420.27135 | +541.55218
302 | + 94.59528 | +0.00046 | + 94.59574 | + 95.99684 336 | + 40.66934 | —0.02975 | + 40.63959 | +161.92042
303 | +493.67715 | +0.00108 | +-493.67823 | +495.07933 337 | — 89.95447 | —0.01027 | — 89.96474 | + 31.31609
306 | +248.50704 | +0.00254 | +248.50958 | +249.91068 338 | + 80.79153 | —0.00447 | + 80.78706 | +202.06789
307 | 4+207.99102 | —0.00268 | +207.98834 | +209.38944 339 0 0 0 +121.28083
308 | +136.25873 | —0.00194 | +136.25679 | +137.65789 340 | — 35.61041 | —0.00082 | — 35.61123 | + 85.66960
503 | +434.93761 | +0.00449 | +434.94210 | +436.34320 341 | — 85.23454 | +0.00354 | — 85.23100 | -+ 36.04983
601 |-+419.03538 | —0.00385 | +-419.03153 | 1-420.43263 417 | +690.72018 | —0.00467 | +-690.71551 | +811.99635
602 | +617.77381 | —0.00319 | +617.77062 | +619.17172 420 | +997.33884 | —0.05937 | +997.27947 |+ 1118.56029
606 | +343.69743 | —0.00026 | +343.69717 | +345.09828 JM35| —117.02417 | +0.00685 | —117.01732 | + 4.26351
607 | +321.39186 | —0.00469 | +321.38717 | +322.78828 JM36 | — 84.24583 | +0.00087 | — 84.24496 | + 37.03587
JM28| + 20.76958 | —0.00030 | + 20.76928 | + 22.17038 JM37 | —100.40031 | —0.00063 | —100.40094 | + 20.87989
JM29| + 6.56254 | —0.00030 | + 6.56224 | + 7.96334 JM38| —116.49282 | —0.00355 | —116.49637 | + 4.78446
JM30| + 14.93318 | —0.00031 | + 14.93287 | + 16.33397 JM39| —115.77405 | -£0.02799 | —115.74606 | + 5.53477
JM31 |+ 3.20138 | —0.00029 | + 3.20109 | + 4.60219 JM46 | —100.03459 | —0.03810 | —100.07269 | + 21.20814
JM32 |+ 0.99243 | —0.00027 | + 0.99216 | + 2.39326 JM47 |+ 80.08400 | —0.05955 | + 80.02445 | +201.30528
JM33 )+ 3.96919 | —0.00024 | + 3.96895 | + 5.37005
JM34 | + 6.51452 | —0.00009 | + 6.51443 | + 7.91553
JM35 |+ 2.86213 | +0.00028 | + 2.86241 | + 4.26351
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Tapre I. Partial Net E Tasre I. Partial Net G (continued)
1 2 3 4 5 1 2 3 4 5
Point| G.p.-dif- | Correction| Final g.p.- | Final g.p.n. Point | G.p.-dif- | Correction | Final g.p.- | Final g.p.n.
Nr. | ference with | from 2nd | difference Datum Nr. | ference with | from 2nd | difference Datum
429 after 1st step with 429 N.A.P. 603 after Ist step with 603 N.A.P.
steping.p.u. | ing.p.u. in g.p.u. in g.p.u. steping.p.u. | ing.p.u. in g.p.u. in g.p.u.
401 | —404.36715 | +0.03888 | —404.32827 | + 52.33405 511 | +361.29800 | —0.00075 | +361.29725 | +-924.39322
402 | —450.14897 | +0.02366 | —450.12531 | + 6.53701 512 | +158.83391 | —0.00042 | +158.83349 | +721.92946
403 | —415.65360 | +0.00955 | —415.64405 | + 41.01827 515 | —554.06216 | +0.00152 | —554.06064 | + 9.03533
404 | —453.40726 | +0.00431 | —453.40235 | + 3.25997 516 | —505.72171 | +0.00131 | —505.72040 | + 57.37557
405 | —447.77791 | +-0.00180 | —447.77611 | + 8.88621 517 | —506.72325 | +0.00252 | —506.72073 | + 56.37524
406 | —452.47755 | +0.00009 | —452.47746 | + 4.18486 518 | —560.04400 | +0.01542 | —560.02858 | + 3.06739
408 | + 78.89674 | —0.00315 | + 78.89359 | +535.55591 519 | —346.08196 | +0.00440 | —346.07756 | +217.01841
409 | —245.94522 | —0.00254 | —245.94776 | +210.71456 520 — — — | +334.26603
410 | — 54.72784 | —0.00298 | — 54.73082 | +401.93150 601 | —142.65322 | —0.01012 | —142.66334 | +420.43263
411 | +333.04979 | —0.00574 | +333.04405 | +789.70637 602 | + 56.07569 | +0.00006 | + 56.07575 | +619.17172
412 | +169.79100 | —0.00743 | +169.78357 | +626.44589 603 0 0 0 +563.09597
413 | +222.71282 | —0.01161 | +222.70121 | +679.36353 604 | + 66.65143 | +0.00195 | + 66.65338 | +629.74935
416 | —451.22079 | —0.04202 | —451.26281 | + 5.39951 605 | — 28.15377 | +0.00248 | — 28.15129 | +534.94468
417 | +355.34658 | —0.01255 | +355.33403 | +811.99635 606 | —218.00171 | +0.00402 | —217.99769 | + 345.09828
418 | — 81.76924 | +-0.00406 | — 81.76518 | +374.89714 607 | —240.31447 | +-0.00678 | —240.30769 | +322.78828
419 | —307.54976 | +0.02307 | —307.52669 | +149.13563 608 | —302.84046 | +0.00524 | —302.83522 | +260.26075
420 | +661.84966 | +0.04831 | +-661.89797 |+1118.56029 612 | — 90.88530 | +-0.00370 | — 90.88160 | +472.21437
421 | +240.91486 | —0.00030 | +240.91456 | +697.57688 614 | — 68.09463 | +0.00167 | — 68.09296 | +495.00301
422 | + 63.50649 | +0.00137 | + 63.50786 | +520.17018 615 | — 14.74865 | --0.00138 | — 14.74727 | +548.34870
423 | +402.24556 | +0.00452 | +-402.25008 | +858.91240 616 | — 35.77169 | --0.00374 | — 35.76795 | +527.32802
424 | 4-459.43851 | +-0.00261 | +-459.44112 | +916.10344 309 | —328.63138 | —0.01703 | —328.64841 | +234.44756
425 | +208.27216 | 4-0.00285 | -208.27501 | +664.93733 313 | —161.92521 | —0.03846 | —161.96367 | +401.13230
426 | +229.08106 | +0.00117 | +-229.08223 | +685.74455 314 | +193.49218 | +0.00435 | +193.49653 | +756.59250
427 | 4+239.28079 | +0.00026 | +-239.28105 | +695.94337 M 47 | —361.90273 | +0.11204 | —361.79069 | +201.30528
428 | + 74.55349 | —0.00095 | + 74.55254 | +531.21486 [M48| —562.50257 | +0.00880 | —562.49377 | + 0.60220
429 0 0 0 +456.66232 TM49 | —562.00468 | +-0.00141 | —562.00327 | + 1.09270
430 | + 25.05668 | +0.00034 | + 25.05702 | 4-481.71934 M50 — — — | + 0.40505
435 | —331.48274 | —0.00460 | —331.48734 | 4+125.17498
436 | +539.92824 | —0.00458 | +539.92366 | +996.58598
437 | —128.29418 | —0.00443 | —128.29861 | +328.36371 T apLE IA.
JM39 | —451.08139 | —0.04616 | —451.12755 | + 5.53477
JM42 | —443.46149 | —0.00451 | —443.46600 | + 13.19632 Mareograph eMSL Mareograph CMSL
JM44| —453.80406 | —0.00109 | —453.80515 | + 2.85717 Nr. Nr.
JM45| —453.40726 | +0.00491 | —453.40235 | + 3.25997 ) £0.250 93 0111
JM46 | —435.49299 | +0.03882 43545417 | + 21.20814 9 10212 24 0,056
3 +0.223 25 —0.015
4 +0.225 26 —0.036
5 +0.242 27 —0.062
TapLe I. Partial Net C 6 +0.240 28 —0.088
7 +0.241 29 —0.038
1 2 3 4 5 8 +0.243 30 —0.079
Point| G.p.-dif- | Correction| Final g.p.- | Final g.p.n. 9 +0.233 31 +0.027
Nr. | ference with | from 2nd | difference Datum 10 +0.242 34 —0.089
603 _after Ist _ step \./vith 603 'N.A.P. 11 10.265 35 —0.142
steping.p.u. | in g.p.u. in g.p.u. in g.p.u. 12 40272 36 —0.168
501 | — 78.57484 | —0.02072 | — 78.60456 | +484.49141 3 ol o o008
502 | —169.78729 | —0.02181 | —169.80910 | +393.28687 15 +0'137 39 40.142
503 | —126.72783 | —0.02494 | —126.75277 | +436.34320 )
504 | —151.96862 | —0.01293 | —151.98155 | +411.11442 16 —0.041 42 +0.142
505 | — 46.17025 | —0.01127 | — 46.18152 | +516.91445 17 —0.077 45 —0.030
506 | +849.56317 | —0.01450 | +849.54867 |+ 1412.64464 8 —oea e o
507 | +901.55841 | —0.01443 | +-901.54398 |+ 1464.63995 90 —0'060 48 —0.329
508 | —363.37211 | —0.00223 | —363.37434 | +199.72163 ’
509 | —357.39641 | —0.00149 | —357.39790 | +205.69807 21 —0.078 49 —0.291
510 | +305.79797 | —0.00319 | +305.79478 | +868.89075 22 —0.011 50 —0.330
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TasLe III. Model error in line z, which with 809, probability would lead to
rejection in a test after adjustment on b condition equations (¢ = 0.05).
See page 20. Unit 1073 g.p.u.

1 2 3 4 5 1 2 3 4 5
b per b per
i b=1| b=2 | partial | =68 i b=1| b=2 | partial | =68
net net
201-202 38 56 76 227-228 38 56 76
201-228 38 33 44 60 229-230 34 30 41 56
201-228 43 66 91 301-302 64 94 125
202-203 42 58 79 302-303 64 68 94 121
202-226 38 31 43 60 302-304 158 252
203-204 34 46 62 303-306 89 88 148
203-229 34 33 44 61 304-305 158 | 176 340 328
204-205 49 66 89 304-327 238 340 339
204-230 34 33 42 58 305-306 158 | 144 317 227
205-206 44 60 82 305-329 221 | 193 259 284
205-231 44 42 54 75 306-307 89 98 317 179
206-207 46 66 88 307-308 121 | 135 317 248
206-217 44 37 48 66 308-309 102 | 113 317 204
207-208 34 50 68 309-310 172 | 161 317 266
207-209 34 33 45 61 309-502 102 | 104 183
208-209 34 34 50 63 310-311 172 | 157 273 279
208-607 53 104 310-329 203 | 193 259 326
209-210 46 41 66 70 311-312 172 | 169 285 301
210-211 41 39 61 72 311-331 203 | 173 227 300
210-215 41 38 51 69 312-313 172 | 160 324 266
211-212 41 41 61 73 312-333 210 | 182 241 302
211-602 74 67 106 313-314 181 | 185 324 328
211-606 53 52 93 313-501 172 | 141 233
212-213 41 39 61 69 314-315 186 | 173 324 312
212-601 58 56 99 314-519 181 | 162 290
213-214 41 43 61 75 315-316 186 | 172 341 296
213-503 58 58 98 315-334 224 | 207 280 344
214-215 41 43 61 76 316-317 260 341 435
214-308 102 90 163 316-518 186 331
215-216 46 49 66 87 317-318 164 | 161 341 278
216-217 44 36 47 65 317401 | lo64 314
216-218 44 47 61 81 318-319 164 | 161 332 294
217-231 44 40 55 75 318-336 228 | 195 262 331
218-219 44 46 61 80 319-320 213 | 201 332 357
218-307 89 86 160 319-420 164 | 153 279
219-220 44 41 54 73 320-321 154 | 149 332 266
219-303 64 61 94 108 320417 154 | 152 279
220-221 49 46 59 81 321-322 228 332 390
220-231 44 39 52 71 321416 154 292
221-222 49 43 57 78 322-323 238 300 399
221-301 52 50 68 93 322-337 228 | 188 246 319
222-223 35 34 46 63 323-324 242 318 424
222-230 35 33 44 60 323-338 238 | 220 292 394
223-224 35 50 68 324-325 280 401 540
223-301 52 75 103 324-340 242 | 220 287 386
224-225 42 58 - 84 325-326 259 347 461
224-229 35 30 42 57 325-340 259 | 241 326 441
225-226 25 26 35 48 326-327 219 299 370
225-227 25 35 48 326-341 219 | 197 254 336
226-227 25 25 34 47 327-328 219 | 207 280 354
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Tasre I11I.  (continued)
1 2 3 4 5 1 2 3 4 5
b per b per
i b=1 | b=2 | partial | =68 i b=1| b=2 | partial | $=68
net net

328-329 203 | 177 237 289 424-430 183 | 159 210 287
328-330 203 | 179 237 303 425-426 183 | 171 224 308
330-331 203 | 182 239 312 426427 183 | 166 214 294
330-341 219 | 191 251 336 427-428 187 | 172 219 300
331-332 210 | 190 255 336 427429 183 | 161 207 284
332-333 210 | 199 264 342 429430 183 | 161 209 287
332-339 220 | 197 250 336 435-436 53 57 79 108
333-334 224 | 199 265 336 435437 53 81 111
334-335 250 | 228 301 403 436437 53 58 79 108
335-336 206 | 203 266 357 501-502 91 96 128 166
335-337 206 | 197 258 347 501-507 91 98 128 173
335-338 238 | 212 273 363 502-503 90 81 120 172
336-337 206 | 193 255 336 502-506 90 81 104 141
338-339 242 | 203 264 347 503-504 58 61 120 111
339-340 242 | 217 286 386 504-505 90 79 101 133
339-341 220 | 207 268 350 504-601 58 58 133 104
401402 175 267 331 505-506 90 79 100 139
401-420 164 | 149 267 276 505-510 92 85 110 147
402403 203 289 382 506-507 91 71 91 134
402419 175 | 158 211 285 507-508 92 96 119 155
403404 195 260 357 508-509 92 77 96 188
403-423 195 | 171 224 303 508-519 101 | 104 146 188
404405 215 283 386 509-510 87 79 100 141
404425 195 | 177 233 319 509-517 87 78 98 138
405406 226 292 399 510-511 87 77 99 130
405426 215 | 201 266 363 511-512 87 69 91 121
406408 237 332 454 511-603 93 80 99 123
406428 226 | 210 2717 382 512-516 87 80 101 143
408-409 169 | 159 204 280 512-615 93 86 111 150
408437 169 226 310 516614 98 131 182
409410 169 | 156 208 285 516-517 87 115 159
409428 187 | 175 223 306 517-518 101 146 198
410411 169 | 165 219 300 518-519 101 | 107 146 198
410429 187 | 179 235 321 601-602 74 80 133 147
411412 171 | 158 207 284 602-603 89 74 133 119
411-436 169 | 149 198 271 603604 89 86 127 156
412413 227 281 378 604-605 89 79 151 140
412-435 171 252 344 604-615 93 85 107 146
413-416 233 336 424 605-606 89 87 148 136
413-421 227 | 201 257 347 605-616 111 | 100 128 182
416417 154 | 159 336 292 606607 53 57 148 103
417418 213 | 186 336 323 607-608 111 148 190
418419 203 | 176 289 308 608-612 100 141 201
418-422 203 | 183 246 333 608-616 100 94 122 168
419-420 175 | 167 267 303 612614 111 151 207
421-422 183 | 164 212 287 612616 100 84 110 158
421-430 183 | 180 233 321 614-615 98 86 108 155
422-423 183 | 165 212 290

423-424 183 | 162 213 296

424-425 183 | 165 219 300
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TasLe IV. Tests of mareographs relative to N.A.P. See page 28.
¢t, [»*] and |4¢t| in 1073 g.p.u.
Observed| Crit- |Model Observed| Crit- (Model
CMSL ical | error CMSL ical | error
value value
i g Vg ¢ Iy | Ve ¢ g Vgt ¢ | Ve
1 132.2 11.50 +250 442 633 23 135.8 11.65 —111 447 642
2 132.2 11.50 +212 442 633 24* 1.5 1.22 — 56 47 67
3 132.3 11.50 +223 442 | 634 25 1.5 1.21 — 15 46 66
4 132.2 11.50 +225 442 633 26 1.2 1.08 — 36 41 59
5 132.2 11.50 +242 442 | 633 27% 1.2 1.08 — 62 41 59
6 | 132.2 11.50 +240 442 | 633 28* 1.0 1.00 — 88 38 55
7 132.2 11.50 +241 442 | 633 29 1.0 1.00 — 38 38 35
8 | 132.2 11.50 +243 441 633 30* 0.7 0.84 — 79 32 46
9 132.1 11.49 +233 441 633 31 0.6 0.75 + 27 29 41
10 131.9 11.48 +242 441 633 34* 0.2 0.50 -— 89 19 27
11 131.7 11.48 -+265 441 632 35% 0.9 0.97 — 142 37 53
12 131.5 11.47 +272 440 | 632 36* 12.3 3.50 — 168 134 193
13 106.0 | 10.30 +243 395 | 567 37 16.3 4.04 — 12 155 | 222
14 91.0 9.54 -+ 167 366 525 38 10.2 3.19 + 8 122 176
15 4.3 2.07 +137 79 114 39%* 12.6 3.55 +142 136 195
16 2.1 1.44 — 41 55 79 42* 18.7 4.32 +142 166 | 238
17 2.9 1.72 — 77 65 95 45 17.4 4.17 — 30 160 | 230
18 8.1 2.85 — 62 109 157 46%* 10.8 3.29 —217 126 181
19 11.7 3.42 —114 131 189 47* 6.1 2.46 —169 95 136
20 13.4 3.67 — 60 141 202 48* 2.5 1.57 —329 60 86
21 12.1 3.48 — 78 134 192 49* 2.2 1.49 —291 57 82
22 138.0 | 11.75 — 11 451 647 50* 2.5 1.58 —330 61 87
Observations marked with * exceed the critical value,
TaBLE V. (continued)
Observed | Crit- [ Model Observed | Crit- |Model
difference| ical | error difference| ical | error
value value
i—f g9 +/gli=h) cimgd || 9| |V i~ gl +/ gli=9) dogd || pi-D||| V-]
37-38 12.954 3.599 — 20 138 198 39-50* 13.361 3.655 +472 140 | 201
37-39 20.527 4.531 — 154 174 | 250 42-45% 8.211 2.865 +172 110 158
37-42 26.957 5.192 —154 199 | 286 42-46* 12.764 3.573 + 359 137 197
37-45 25.728 5.072 + 18 195 279 42-48%* 18.671 4.321 +471 166 238
37-46% | 19.787 | 4448 | +205 | 171 | 245 49 50x | 19445 | 4410 | +472 | 169 | 243
37-48%* 16.928 4.114 +317 158 227 45-46% 11.115 3.334 -+ 187 128 184
38-39% 11.697 3.420 —134 131 188 45-48% 17.344 4.165 -+299 160 | 229
38-42 18.297 4.277 — 134 164 | 236 45-50* 18.126 4,257 + 300 163 | 235
3845 17.112 4.137 + 38 159 | 228 46-47 10.070 3.173 — 48 122 175
38-46* | 11481 | 3.388 | +225 | 130 | 187 4548 | 10685 | 3.260 | +112 | 125 | 180
38-48* 10.558 3.249 +337 125 179 46-50 11.511 | . 3.393 +113 130 187
38-50* 11.128 3.336 -+338 128 184 47-48%* 5.307 2.304 -+ 160 88 127
39-42 10.284 3.207 0 123 177 47-50% 6.483 2.546 -+ 161 98 140
39-45% 9.837 3.136 +172 120 173 48-49 1.952 1.397 — 38 54 77
39-46%* 7.854 2.802 +359 108 154 48-50 2.499 1.556 + 1 60 86
39-48* 12.607 3.551 +471 136 196 49-50* 0.962 0.981 -+ 39 38 54

Observations marked with * exceed the critical value.
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TasLe V. Tests of differences between mareographs. See page 28.
¢i—dl, || and |VED|in 1072 g.p.u.

Observed| Crit- | Model - |Observed| Crit- |Model
difference| ical | error difference| ical | error
value value

Z"‘j g(i-i) \/g(i—j) ) |),(z'_j)‘ |V('i—j)| i g(ifj) \/g(i-j) cigd |),(i;j)| |V(i_j)|
1-2* 0.243 0.493 + 38 19 27 1542 22.450 4,738 — 5 182 | 261
1-4* 0.367 0.606 + 25 23 33 15-48%* 6.171 2.484 +466 95 | 137
1-12 0.730 0.854 — 22 33 47 16-17 0.888 0.942 + 36 36 52
1-15 127.994 | 11.313 +113 434 | 623 1619 9.669 3.110 + 73 119 | 171
1-18 134.439 | 11.595 +312 445 | 639 16-20 11.375 3.373 + 19 129 | 186
1-21 138.312 | 11.761 +328 451 | 648 16-23 133.728 | 11.564 + 70 444 | 637
1-23* 4977 2.231 +361 86 | 123 1624 0.652 0.807 + 15 31 44
1-34 132.298 | 11.502 +339 441 | 634 17-18 5.752 2.398 — 15 92 132
1-36 144.036 | 12.001 +418 460 | 661 18-19 5.439 2.332 + 52 89 | 128
1-42 150.414 | 12.264 + 108 471 | 676 18-21 11.677 3.417 + 16 131 188
1-48* 134.135 11.582 +579 444 638 19-20 9.618 3.101 — 54 119 171
2-3 0.233 0.483 — 11 19 27 19-23 141.601 | 11.900 - 3 457 | 655
34 0.307 0.554 — 2 21 31 20-21 16.520 4.064 + 18 156 | 224
4-5 0.193 0.439 — 17 17 24 20-23 143.291 | 11.970 + 51 459 | 659
4-12* 0.727 0.853 — 47 33 47 20-34 13.498 3.674 + 29 141 | 202

4-15 127.991 | 11.313 + 88 | 434 | 623 20-36 25.236 5.024 4108 193 | 277
5-6 0.216 0.465 + 2 18 26 2042 31.614 5.623 —202 216 | 310
6-7 0.283 0.532 — 1 20 29 20-48* 15.335 3.916 +269 150 | 216
7-8 0.193 0.439 - 2 17 24 21-22 144.073 | 12.003 — 67 | 461 | 661
8-9 0.346 0.588 4+ 10 23 32 22-23* 5.200 2.280 +100 87 | 126
9-10 0.400 0.632 - 9 24 35 2224 136.562 | 11.686 4+ 45 | 448 | 644
9-14 41.063 6.408 4 66 | 246 | 353 22-34 138.059 | 11.750 + 78 | 451 | 647

10-11* 0.207 0.455 23 17 25 22-36 149.797 | 12.239 +157 | 470 | 674
11-12 0.197 0.444 — 7 17 24 2242 156.175 | 12.497 —153 | 480 | 688
12-13 26.498 5.148 + 29 198 | 284 2248 139.896 | 11.828 +318 | 454 | 651

12-14 40.535 6.367 4105 | 244 | 351 24-25% 0.181 0.425
12-15 127.286 | 11.282 4135 | 433 | 621 25-26 0.299 0.547
12-23* 4.327 2.080 4383 80 | 115 26-27* 0.013 0.114
13-14 15.005 3.874 + 76 149 | 213 27-28* 0.208 0.456
13-18 108.201 | 10.402 4305 | 399 | 573 28-29* 0.357 0.597

L +++ 1
]
[=]
N
[=]

13-23%* 30.759 5.546 4354 | 213 | 305 26-30* 0.653 0.808 + 43 31 45
13-34 106.060 | 10.299 4332 395 | 567 28-34 1.060 1.030 + 1 40 57
13-36 117.798 | 10.853 4411 416 | 598 28-36 12.798 3.577 + 80 137 | 197
13-42 124.176 | 11.143 4101 428 | 614 28-42% 19.176 4.379 —230 168 | 241
13-48* | 107.897 | 10.387 4572 399 | 572 28-48* 2.897 1.702 +241 65 94
14-T5 86.753 9.314 4+ 30 357 | 513 29-31* 0.531 0.729 — 65 28 40
14-18 93.198 9.654 4229 | 370 | 532 30-31* 0.264 0.514 —106 20 28

14-21 97.071 9.852 +245 | 378 | 543 31-34* 0.620 0.787 +116 30 43
14-23* 44.796 6.693 4278 | 257 | 369 34-35% 1.130 1.063 + 33 41 59
14-34 91.057 9.542 4256 | 366 | 526 35-36 12.358 3.515 + 26 135 | 194

14-36 102.795 | 10.139 4335 389 | 558 35-39* 12.912 3.593 —284 138 | 198
1442 109.173 | 10.449 4 25 | 401 | 576 3542* 19.024 4.362 —284 167 | 240
14-48* 92.894 9.638 4496 370 | 531 35-48* 2.991 1.729 + 187 66 95
15-17* 1.915 1.384 4214 53 76 36-37* 10.763 3.281 —156 126 | 181
15-18* 6.475 2.545 4199 98 | 140 36-38* 11.771 3.431 —176 132 | 189
15-21* 10.348 3.217 +215 123 | 177 36-39* 17.824 4.222 —310 162 | 233
15-23 131.547 | 11.469 4248 | 440 | 632 36-42* 24.178 4917 -310 189 | 271
15-24* 2.837 1.684 +193 65 93 3645 22.929 4.788 —138 184 | 264

15-34* 4.334 2.082 +226 80 | 115 3647 14.890 3.859 + 1 148 | 213
15-36* 16.072 4.009 + 305 154 | 221 36-48* 13.027 3.609 +161 138 | 199

Observations marked with * exceed the critical value.
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TasrLe VI. Testing groups of mareographs. See page 29. ¢f and |V¢t| in 10-2 g.p.u.
Group A (Atlantic—-North Sea)
2.2 )
P | e | e | v
811
17 — 77 — 26 0.624 13934 118
18 — 62 + 8 0.339 25649 160
19 —114 — 11 0.206 42209 205
20 — 60 + 3 0.136 63934 | 253
21 — 78 — 1 0.111 78333 280
22 — 11 + 19 0.193 45052 212
23 —111 — 19 0.196 44362 211
29 — 38 — 9 2.099 4142 64
31 + 27 +254 3.608 2410 49
34 — 89 —395 4.331 2008 45
35 —142 —156 1.109 7840 89
36 —168 — 21 0.143 60804 | 247
37 — 12 + 9 0.114 76272 276
38 + 8 + 1 0.170 51147 226
39 + 142 + 14 0.169 51450 227
42 + 142 + 3 0.101 86089 293
gixcic® = 18175
G4° = 4886
o? = 370
Moes = 235
%A o5 = 8695
Group MA (Mediterranean— Adriatic)
&ij
JREE % | 47 4 i i P hom | g
i 8 49 50 ¢ 8:i¢ 8ii P |Véd
11
45 +0.0946 | —0.0713 | —0.0087 | —0.0035 | —0.0018 | —0.0008| — 30 | +16.04 | 0.0946 58668 | 242
46 —0.0713 | +0.1672 | —0.0509 | —0.0140 | —0.0049 | —0.0030 | —217 | —18.52 | 0.1672 33194 182
47 —0.0087 | —0.0509 | +0.2307 | —0.1061 | —0.0170 | —0.0078 | —169 | +14.72 | 0.2307 24057 155
48 —0.0035 | —0.0140 | —0.1061 | +0.6881 | —0.3032 | —0.0720 | —329 | —93.32 | 0.6881 8066 90
49 —0.0018 | —0.0049 | —0.0169 | —0.3032 | +1.4015| —0.8877 | —291 —11.16 | 1.4015 3960 63
50 —0.0008 | —0.0030 | —0.0078 | —0.0720 | —0.8877 | +1.1095| —330 | —82.14 | 1.1095 5002 71
Zite? = 62106
oma? = 10351
o? = 370
j-e,mz = 15
%A = 5550
Group MZ (Mediterranean)
&ij
; 2.1 ]
N 45 46 47 48 é gt i Thuee |y
1 it
45 +0.0946 -0.0713 —0.0087 —0.0048 — 30 + 15.68 0.0946 50063 224
46 —0.0713 +0.1671 —0.0512 —0.0180 —217 — 19.55 0.1671 28342 168
47 —0.0087 —0.0512 +0.2299 —0.1187 —169 + 11.57 0.2299 20600 144
48 —0.0048 —0.0180 —0.1187 +0.4951 —329 —138.78 0.4951 9566 98
giic’c! = 47475
omz® = 11869
a? = 370
Ayes = 12.8
Gtdy 0 = 4736



TasLe VII.
See page 31.
A (Atlantic — North Sea)
i gird*
17 0.00702
18 0.00027
19 0.00002
20 0.00006
21 0.00017
22 0.00001
23 0.00001
29 0.08405
31 0.93924
34 3.58024
35 0.80643
36 0.00916
37 0.00195
38 0.01305
39 0.01113
42 0.00368

g4 = gipAiA* = 5.45649

49

Computation of ’adjusted’”” MSL per group of mareographs.

MA (Mediterranean — Adriatic)

t &ixA*
45 0.0085
46 0.0231
47 0.0403
48 0.1893
49 0.1869
50 0.1382

EMAMA = 83 A°A* = 0.5863

FMA = g, Alck = —174.4
FMA
cMA = = —297-10—* g.p.u.
EMAMA

MZ (Mediterranean)

, o
FA — g dicc = —410.9 ! girA
4 FA 45 0.0098
4 = g—A; = —75-10-2 g.p.u. 46 0.0266
47 0.0513
48 0.3536
gmz Mz = g A'A* = 04413
FMZ = g, Ai* = —131.1
FMz
Mz = = —297-10"2 g.p.u.
EMZ MZ
TasrLe VIII. Computation of coefficients Bg. See page 33.
i (By)a i (Br)ma i (Br)mz i (By) 48"
17 0.00129 45 0.0145 45 0.0222 45 0.17881
18 0.00005 46 0.0394 46 0.0603 46 0.16860
19 0 47 0.0687 47 0.1162 47 0.14406
20 0.00001 48 0.3229 48 0.0013 48 0.13181
21 0.00003 49 0.3188 49 0.12971
22 0 50 0.2357 50 0.12933
23 0
29 0.01540
31 0.17213
34 0.65614
35 0.14779
36 0.00168
37 0.00036
38 0.00239
39 0.00204
42 0.00067







Figure 9. Partitioning of the net.
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TasLE II1.

r\.s RM 1
RM 1 132.232
RM 2 132.102
RM 3 132.082
RM 4 132.047
RM 5 132.021
RM 6 131.994
RM 7 131961
RM 8 131.945
RM 9 131.873
RM 10 131.743
RM 11 131.676
RM 12 131.513
RM 13 105.510
RM 14 90.990
RM 15 4.253
RM 16 2.070
RM 17 2.649
RM 18 2.949
RM 19 2.955
RM 20 2.963
RM 21 3.030
RM 22 131.520
RM 23 131.520
RM 24 1.456
RM 25 1.378
RM 26 1.161
RM 27 1.157
RM 28 0.974
RM 29 0.818
RM 30 0.607
RM 31 0.511
RM 32 0.403
RM 33 0.350
RM 34 0.090
RM 35 0.121
RM 36 0.224
RM 37 0.231
RM 38 0.241
RM 39 0.252
RM 42 0.253
RM 44 0.253
RM 45 0.253
RM 46 0.255
RM 47 0.269
RM 48 0.280
RM 49 0.283
RM 50 0.283

RM 2

132.215
132.152
132.095
132.060

132.023
131.984
131.964
131.883
131.744

131.676
131.513
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.520
131.520

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM 3

132.322
132.122
132.077

132.035
131.992
131.971
131.886
131.745

131.677
131.513
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.520
131.520

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM 4

132.229
132.125

132.064
132.013
131.988
131.895
131.747

131.677
131.513
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.520
131.520

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM 5

132.214

132.099
132.036
132.005
131.902
131.748

131.677
131.513
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.520
131.520

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM 6

132.200
132.068
132.029
131.911
131.749

131.677
131.513
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.520
131.520

1.456

1.378

1.161

1.157 -

0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM 7

132.219
132.106
131.934
131.752

131.678
131.513
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.519
131.519

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM 8

132.186
131.946
131.754

131.678
131.513
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.519
131.519

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM 9

132.052
131.764

131.679
131.513
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.518
131.518

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.24]
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

Matrix of weight coeflicients of geo-potential numbers of MSL. Unit 10-¢ (gpu)?2

RM 10

131.876

131.685
131.514
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.516
131.516

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM 11

131.701
131.514
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.514
131.514

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

Rl
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701
514
510
990
253

070

94-9

12 1
224

241
252
253
253
253
255

269
280
283
283

RM 12

131.524
105.510
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
131.491
131.491

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RMI13 RMI14 RMI5

105.994
90.990
4.253

2.070
2.649
2.949
2.955
2.963

3.030
105.510
105.510

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

90.991
4.253

2.070
2.649
2.949
2.955
2.963

3.030
90.990
90.990

1.456

1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

4.268

2.070
2.649
2.949
2.955
2.963

3.030
4.253
4.253
1.456
1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RMI6 RMI17 RMI18 RMI19 RM20

2.083
2.070
2.070
2.070
2.070

2.070
2.070
2.070
1.456
1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

2.945
2.649
2.649
2.649

2.649
2.649
2.649
1.456
1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

8.105
7.196
6.518

4.284
2.949
2.949
1.456
1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

11.726
7.770

4.395
2.955
2.955
1.456
1.378

1.161
1.157
0.974
0.818
0.607

0.511

0 350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

13.432

4.526
2.963
2.963
1.456
1.378

1.161

1.157

0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM21

12.140
3.030
3.030
1.456
1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM22 RM23 RM24 RM25

137.993
134.289
1.456
1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

135.785
1.456
1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

1.481
1.378

1.161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

1.456

1,161
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

RM

1.1¢

0.6(
0.5]

0.2:

02‘

0.2¢
0.2¢
0.2¢
0.2¢
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RM26 RM27 RM28 RM29 RM30

1.165
1.157
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

1.162
0.974
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

0.994
0.818
0.607

0.511
0.403
0.350
0.090
0.121

0.224
0.231
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.283
0.283

0.999
0.602

0.512
0.404
0.350
0.090
0.121

0.224
0.230
0.241
0.252

0.253
0.253
0.253
0.255

0.269
0.280
0.282
0.283

0.702

0.497
0.399
0.347
0.089
0.122

0.226
0.232
0.243
0.254

0.255
0.255
0.255
0.257

0.271
0.282
0.285
0.285

RM31

RM32 RM33 RM34 RM35

The matrix is symmetric

0.556
0.416
0.358
0.091
0.119

0.219
0.225
0.235
0.246

0.247
0.247
0.247
0.249

0.262
0.273
0.276
0.276

0.470
0.376
0.094
0.115

0.210
0.216
0.225
0.236

0.236
0.237
0.237
0.239

0.251
0.261
0.264
0.264

0.417
0.100
0.107

0.195
0.200
0.208
0.218

0.218
0.219
0.219
0.220

0.232
0.241
0.243
0.243

0.246
0.029

0.052
0.053
0.056
0.058

0.058
0.058
0.058
0.059

0.062
0.064
0.065
0.065

0.942

0.418
0.391
0.349
0.307

0.303
0.303
0.302
0.294

0.245
0.207
0.197
0.196

RM36 RM37 RM38 RM39

12.252
8.889
5.320
3.506

3.381
3.370
3.348
3.103

1.710
0.844
0.671
0.647

16.289
6.747
4.173

4.010
3.995
3.967
3.651

1.927
0.912
0.715
0.688

10.159
5.523

5.275
5.253
5.210
4.739

2.331
1.032
0.789
0.757

12.584

10.494
10.337
10.060

7.765

3.086
1.220
0.894
0.853

RM4:

18.688
16.286
13.925

8.362

3.178
1.240
0.905
0.863



33 RM34 RM35

0.246
0.029

0.052
0.053
0.056
0.058

0.058
0.058
0.058
0.059

0.062
0.064
0.065
0.065

0.942

0.418
0.391
0.349
0.307

0.303
0.303
0.302
0.294

0.245
0.207
0.197
0.196

RM36 RM37 RM38 RM39

12.252
8.889
5.320
3.506

3.381
3.370
3.348
3.103

1.710
0.844
0.671
0.647

16.289
6.747
4.173

4.010
3.995
3.967
3.651

1.927
0.912
0.715
0.688

10.159
5.523

5.275
5.253
5.210
4.739

2.331
1.032
0.789
0.757

12.584

10.494
10.337
10.060

7.765

3.086
1.220
0.894
0.853

RM42 RM44 RM45 RM46

18.688
16.286
13.925

8.362

3.178
1.240
0.905
0.863

23.275
14.789
8.419

3.186
1.242
0.906
0.864

17.373
8.529

3.202
1.246
0.908
0.865

10.800

3.394
1.289
0.930
0.886

RM47 RM48 RM49 RM50

6.058
1.607
1.089
1.029

2.463
1.358
1.262

2.205
1.863 2.483






