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VERTICAL ANGLES, DEVIATIONS O F  T H E  VERTICAL 

AND ADJUSTMENT 

1 Introduction 

The possibility of using vertical angle measurement as a means for determining 
deviations of the vertical has been investigated by several geodesists. I n  his papers 
[3], [4], [5] and [6], R. FINSTERWALDER did important pioneering work which was 
and is continued especially in Germany and Switzerland. F. KOBOLD gave in [l01 
a survey of the results that have been reached in this field, whereas W. HOFMANN 
in his comprehensive study [8] investigated the possibilities of determining accurate 
geoidal heights and deviations of the vertical by vertical angle measurements. 

The present author hopes to make a contribution to the discussion and to the 
solution of some existing problems by examining the subject in the light of the cal- 
culus of observations. 

One of the main characteristics of the mathematical model used by the authors 
mentioned is that the coefficient of refraction k is assumed to be constant over a 
whole net or at least in parts of the net. The use of a coefficient k usually implies 
the assumption of a circular path of the light-rays, and the assumption of its being 
constant has far-reaching consequences. ~ l t h o u ~ h  it seems that in high mountainous 
areas k is more constant than in lower parts of the atmosbhere, there is always a 
possibility that the accuracy of vertical angle measurements is considerably reduced 
by fluctuations of refraction. 

The interesting article [l41 by L. HRADILEK deals with the computation of a co- 
efficient of refraction for each line of sight, on the basis of a formula given by A. A. 
I z o ~ o v  and L. P. PELLINEN. This formula expresses k as a function of atmospheric 
pressure and temperature (measured at the station), in the temperature gradient 
(which can be introduced as an unknown) and in the so-called aequivalent height, 
which is a function of the height of the line of sight over the surface of the earth 
in the profile between the two stations concerned. In view of the difficulties which 
are peculiar to the mathematical model using a constant coefficient of refraction, 
this method seems to be a big step forward. I t  would have been interesting to connect 
the results of the present paper to those of [14], but when the author came in the 
possession of HRADILEK'S paper, his own work was too far advanced to widen its 
scope to that extent. 

Consequently, this paper is devoted mainly to the properties of the "classical" 
model of trigonometric levelling and to the examination of some approximation 
methods used in practice. The results of computations will, as a rule, not be inter- 
preted physically; this means that no conclusion will be drawn as to, for example, 
what kind of heights are found by trigonometric levelling. 
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2 Notation and basic formulae 

The following notation will be used. 

pt point on the surface of the earth, numbered i. 

Ht length of the normal from Pc on the ellipsoid of reference. 

Ht j 
Ht + Hj -- 

2 

fit3 angle of elevation of Pj as measured in Pi, corrected for heights of instru- 
ment and target. 

au ellipsoidal angle of' elevation corresponding to fit3. 

ei magnitude of the deviation of the vertical in Pt. 

e t j  component of et in the direction from Pt to Pj.  

Ei, qi respectively North-South and East-West component of ea. The sign con- 
vention is such that if both Ei and qi are positive, the astronomical zenith is 
situated North and East of the ellipsoidal zenith. 

st i length of the ellipsoidal arc between the projections of Pt and P,. 

Rij radius of curvature of the normal section of the ellipsoid from the projection 
of Pi to that of P!. 

k Rt, coefficient of refraction; k = -- if rij is the radius of curvature of the 
light-ray from Pt to P,. rif 

l y t j  azimuth from Pt to P,. 

pcC = 636620 centesimal seconds. 
Stochastic quantities are indicated by an underscore e.g. Hi, J j .  

Figures 1 and 2 demonstrate the notation and conventions used. Zy. and ZTt'. are 
the ellipsoidal respectively astronomical zenith of Pt. 

Figure 2 



VERTICAL ANGLES, DEVIATIONS OF THE VERTICAL AND ADJUSTMENT 7 

We shall base our investigation on W. JORDAN'S formula, see [g], page 358: 

Several other formulae have been developed. HOFMANN mentions in [8] the formulae 
by REICHENEDER and WILD-BAESCHLIN, and he develops still another formula. Their 
accuracy has been carefully investigated in HOFMANN'S study. The differences prove 
to be small; JORDAN'S formula is used here because it is generally known and the 
different parts are conveniently arranged. I t  is assumed that sir has been determined 
so accurately that it can be considered as a non-stochastic quantity in (1). The same 
applies to Hii. 

Not the ellipsoidal elevation angle aij has been measured, but the angle pii. 
Therefore we have to introduce: 

to be able to use the actually observed elevation angles in the ellipsoidal model. 
@i j  being a small quantity, tg(,f?ij-@ij) can be expanded in Taylor's series. We will 
confine ourselves to the study of nets in which (tgprj(<O. 1, JBiil  <50cc and sij has an 
order of magnitude of 10 km. In the second term on the right hand side of (1) 
we can then replace aii by pu and consider pij as being non-stochastic. We then ob- - 
tain from (1): 

We call the framed part in equation (2):  _hii and introduce the following relation 
which is evident from Figure 2: 

B(j = (i cos yij + qi sin yij . . . . . . . . . . . . . . . . . .  (3) 

Furthermore we call the coefficient of B i j  in (2) Sij: 

By expressing and qi in centesimal seconds we can now write (2) as follows: 

Si, Si j sij2 @,-Hi + - COS ~ i j  liCC f - sin lyij yiCC + k = _hij ( + ~ i j )  (5) 
P P 2 Rijcos2Bii 

The addition (+gii)  on the right hand side represents the correction to be given 
to hii if the number of observations in the net gives rise to a least squares adjustment. 

3 The relation between computed deviations of the vertical and the 
coefficient of refraction 

If in a triangulation net the relative horizontal positions of the stations are known 
with sufficient accuracy (see 181, page 25), one can measure vertical angles with the 
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purpose of computing for each station Pi the quantities g i ,  {i and ri. Each 
measured vertical angle furnishes an equation (5), and if there are more observations 
hii than unknowns g i ,  {i, TJ~ and k we get an adjustment problem. 

Of course, vertical angle measurement cannot provide an absolute determination 
of Hi, ti and qi: in such a net one must know or assume one H, one E and one 7. 
I n  practice one usually selects a certain point whose H is chosen about equal to its 
height above mean sea-level, and whose E and 7 are assumed to be zero. One then 
obtains H- respectively E- and 7-differences with respect to this datum point, which 
we shall call PO. 

The coefficient of refraction k has in the above been introduced as an unknown 
because at first sight this seems natural. I n  reality, k will not have the same value 
for all observations; however in high mountain areas it usually proves to vary much 
less than in lower parts of the atmosphere, so that it seems reasonable to assume a 
mean value of k, which is indeed the simplest way in which this physical phenomenon 
can be introduced in the mathematical model. One may of course introduce different 
values of k for different parts of the net. 

T o  simplify the argument we will now for a moment replace the reference ellip- 
soid by a sphere with an appropriate radius R - this is frequently practised in tri- 
gonometric levelling. If we consider an area where the deviations of the vertical 
increase proportionally to the distances and equally in all directions, we can conclude 
that the level surfaces are also spheres. One might now introduce, instead of Et and 
ri, an unknown A &  representing the "extra curvature" (in German: "zusatzliche 
Krummung") of the level surfaces, respectively of the geoid. I n  order to linearize 
the formula one has then to introduce 4 = ko+Ak in which ko is an approximate 
value. Instead of (5) we would then get: 

If we compare in (6) the coefficients of A k  and AB, it appears that the coefficient of AB 
in each equation is a constant multiple of the coefficient of Ak, the constant being 
l -ko 

R .  
If we have m equations (6) with n unknowns (n m), the rank of the matrix of 

the equations is not n but n- 1 : the column of coefficients of AB is a multiple of the 
column of coefficients of Ak, so that k and AB cannot be determined separately. 
Increasing the number of equations (6) does not help: in an adjustment the matrix 
of the normal equations will be singular. 

The reasoning followed above is generally known, see for example [4] and [7]. I t  
will be clear that introduction of an ellipsoidal model, with different radii Rtj in 
different directions, does not remove the difficulty that makes it impossible to deter- 
mine Ak and AR simultaneously. The variations of Rij in different directions are so 
small that numerically the indicated relation remains valid.*) However, it is not 
self-evident that the same problem manifests itself in the equations (5), where we 

*) It may be noted that in this case the assumption of a constant k implies that rays of light in 
different directions have slightly different radii of curvature. 
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have irregular deviations of the vertical and no constant extra curvature. We shall 
show that in this case, too, it is impossible to determine the coefficient of refraction 
and the deviations of the vertical simultaneously; the coefficient of k in each equa- 
tion (5) is practically linearly dependent on the coefficients of the other unknowns. 
T o  prove this we write these coefficients under the unknowns to which they belong: 

-- COS pij 
P 

If the statement is true, it must be possible to find coefficients aj, ai, pi and yi, 
such that: 

The following set of values satisfies this condition: 

sio2 JioCOs yS0 S ~ O S ~  yJio ai = + pi = +2p ~i = + 2 ~  2R cos2B ; (7a) 
2R cos2B ' 2R cos2B ' 

in which sio is the distance from Pi to the datum point PO, ylo is the azimuth Pi-PO; 
1 

R is the geometric mean of the radii in the meridian and prime vertical and - is 
1 cos2 B 

the mean value of A in the net. 
cos2pij 

If we substitute these values in the left hand side of (7), we'get: 

Application of the law of cosines in PoPiPj in Figure 3 gives: p. 

Jjo2 = sio2+Sij2 -2~i0sij~0~(yij-yi0) 

sig2 = - Jio2 +sjo2 + ~ S ~ O S ~ ~ C O S  (yij-yio) 

If we neglect for a moment the differences between sij and 
Sii and between Rcos2B and Rijcos2pij, it is readily seen that 7 
both sides of (7b) are equal. In  Appendix I it is shown that 
the maximum difference of both sides is about 5 percent. This 
maximum value will seldom occur in trigonometric nets that 
are approximately flat; differences found in the Isartal net 
measured by Dr. HOFMANN are also given in Appendix I. 9 
The  result is that from a numerical point of view, in equations Figure 3 
(5) like in equations (6), the coefficients of k are linearly 
dependent on the coefficients of the other unknowns. If we have m observation equa- 
tions with n unknowns (m > n), the matrix of coefficients of these equations will 
theoretically have the rank n, but numerically it will behave as if the rank were n- 1. 
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The matrix of coefficients of the normal equations will consequently be singular. 
The fact that equations (7b) are not exactly valid manifests itself even less in the 
normal equations than in the observation equations because the coefficient of _k in 
each normal equation is a linear combination of its coefficients in the observation 
equations. The slight differences between right-hand and left-hand sides of (7b) are 
thereby cancelled out to a great extent. 

In  order to make the problem mathematically manageable we shall assume that 
the indicated linear dependency is exactly valid. The normal equations cannot be 
solved but we can only express Hi, {g and yi as functions of _k. 

We now generalize our notation and change over to the notation used in tensor 
calculus, for which reference is made to [12]. The unknowns are called g". The 
observation equations are indicated by the index i (which differs from the previous- 
ly used index i which was a point number!) The coefficient of g" in the ith equation 
is called A:. The column of coefficients of _k can, because of the demonstrated linear 
dependency, be written as -baAh, in which -b" is the general notation of the coeffi- 
cients ai, ,!It and yg in equation (7). 

The observation hii is called pi; - we assume that m vertical angles have been ob- 
served (i = 1, ..., m). 

In  a net which includes n points beside the datum point we can write the ob- 
servation equations as follows : 

Ah_xa-baAh_k = p i + ~ i  - (i, j, l = 1, .... m; a, p, y = 1, .... 3n; m 2 3n) (8) 

Let the matrix of weights have elements gij. 
The normal equations are: 

ggjA:A$ (ga-b"_k) = gtjA$pi - 
Putting : 

giiA: A$ = gap 

and 

the solution for the unknowns is: 

From (10) it is evident that the influence of _k on the unknowns can be separated 
completely from the influence of the observations pi. From the values (xa)l corre- 
sponding to a certain value kl of the coefficient of refraction, one obtains very easily 
the values (xa)2 corresponding to a value k ~ ,  namely: 

The corrections to the observations can be determined from (8) : 

-= Ai bnAi k-pi 
a-  n -  - 
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orwith (10): 

This leads to the remarkable conclusion that the corrections are independent of k.  
A further conclusion is that the quantity 

E = gi.jgipj - 
by which the usual estimate for the variance factor 0 2  ("mean square error of an  
observation of unit weight ") is determined, is also independent of the value of b. In  
practice one usually adopts a certain value of &, found by means of astronomical 
observations, in order to get a determinate solution for the unknowns. If in an ad- 
justment as discussed here a "wrong" value of & is used, this will influence the 
values one finds for the unknowns, but it does not influence the estimate one finds 
for the variance factor. Of course this does not mean that the coefficient of refraction 
does not have an influence on the accuracy of trigonometric levelling. If one finds 
a value E that is significantly too high one may conclude that there is a model error; 
we have found here that if this model error is caused by refiaction, it is not the 
value of k that makes E too high, but the assumption that k is constant over the whole 
net. 

Let us now consider a net of n +  1 points PO, PI, . . ., P,. Not counting k, we have 
3n unknowns, successively HI, . . ., H,, 61, . . ., E, and rjl, . . ., 7,. The values of 
the coefficients b" follow from (7a) : 

Formula ( 10) was : 

g" = ba& +g'lpgiiAhpi - 

We see that a change in the coefficient of refraction (kz-kl) has an effect on Hi 
which is proportional to the square of the distance sio between P6 and PO, and pro- 
portional to (kz-kl). The effect on Ei and rji is proportional to (kz-kl) and to the 
rectangular coordinate differences (Xi-XO) respectively (Yt- Yo) in a system whose 
X-axis is directed to the North and whose Y-axis is directed to the East. 

The components 6.1 and form the vector Oi; the changes in 66 and qi can be 
composed to form the vector [g, which according to the above goes through PO and 
whose length is proportional to sio and to (k2-kl). If we designate the values be- 
longing to kl by (&)l and those belonging to kz by (Bi)z, it is easily seen that one 
obtains (&)2 by composing and (&)l (see Figure 4). 

One thus obtains a clear picture of the influence of a change in the coefficient of 
refraction on the computed deviations of the vertical. By varying k one can find a 
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value for which the sum of the squares of the lengths of the 191 vectors is a minimum. 
The system of deviations of the vertical thus found mighi be called a system in 
which there is "no extra curvature". I t  is, however, doubtful if this procedure has 
any physical meailing. An example is given in Paragraph 7.4. 

Figure 4 

In the above we have found an indeterminate solution, in which one parameter 
is contained. If in the net beside the datum point,'one ellipsoidal height H or one 
E or 7 is known, the system can be determined. If the coefficient of refraction cannot 
be determined from meteorological data or other considerations, the method of 
finding deviations of the vertical by vertical angle measurements will thus always 
have the character of an interpolation method. If more than one H, 6 or 17 in the 
net is known (( and from gravimetrical or astronomical observations) one obtains 
an  adjustment problem for the determination of k. An example is given in Paragraph 
7.5. 

4 The consequences of introducing k as an observation 

I n  the line of thought followed in Section 3, k was left as a parameter in the solution, 
and after the indeterminate solution had been found, a value of k could be introduced 
to make the solution determinate. A somewhat different approach to the problem 
is to introduce the coefficient of refraction as an observation and transport it to the 
right-hand side of equations (5). This has been done, for example, by W. HOFMANN 
in [8], page 60. A value of k can for instance be found by taking two points A and B 
in the same meridian and determining their difference in latitude (as accurate deter- 
mination~ of latitude are as a rule simpler to execute than observations for longitude 
or combinations of the two). If the distance AB is known and reciprocal vertical 
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angles are measured, a value for k can then be computed, as follows easily from 
Figure 1. With the thus found value of k one can correct all measured angles for 
refraction and then carry out the adjustment. The procedure is approximately 
equivalent to the one treated in Section 3, with a subsequent choice of k in such a 
way that the "trigonometric difference in latitude" between A and B is equal to the 
astronomically observed difference. The method of Section 3 is more general because 
there one is not restricted to two points in the same meridian, even if only latitude 
observations are used. 

A difficulty with the "separate" determination of k is that the vertical angles 
measured in A and B influence the accuracy directly. Usually, A and B will be 
stations of the net, and if the vertical angles used for the evaluation of k are the same 
that are used in the adjustment of the net, the computed coefficient of refraction is 
stochastically dependent on these observations, which complicates the adjustment 
problem. I n  the method of Section 3, all vertical angles are treated in the same way, 
and none are "favoured" by being used for a separate computation of k. 

A point of principle, which to the author's knowledge has not received any 
attention in literature, is that vertical angles, corrected for refraction (making use 
of the same k) are not stochastically independent. The coefficient of refraction, 
whatever has been the way of determining it, cannot be considered as a quantity 
"without error". Let us consider again the equations (8). Correcting the observations 
for refraction means that the refraction term is transported to the right-hand side, 
so that we get "new" observations?: 

fi = b"Ai k+pi 
a -  - 

The general law of propagation of variances (or of weight-coefficients *)) as given 
by J. M. TIENSTRA, for which reference is made to [12], gives for the weight-coeffi- 
cients, in TIENSTRA'S notation: 

f",f" = FA:,  k+pi), (b"j k +PI) 

= b"A:, b P ~ i c k  + 2baAiZk, P3 + Pi, pj 
p 

Now k,pj is zero if the vertical angles used for determining k are not also used in 
the adjustment. I n  this case we have: 

p- 

f', f j  = baAhb%jk, k +pi ,pj  . . . . . . . . . . . . . . . . . (13) 

One can assume that the observed vertical angles are not correlated, so: 
-p 

p" ,pi = 0 for i # j 

But because of the first term on the right-hand side of ( 1  3), all observations corrected 

for refraction are correlated. Consequently the matrix of weight-coefficients fz,  f j  

is not a diagonal matrix. The adjustment problem as indicated here takes the form 
of what TIENSTRA has called "Standard Problem IV"; it can be reduced to a ,,Stand- 
ard Problem 11": a problem in the form of observation equations with correlated 
observations. The computations of this problem can be carried out and one finds 
p- 

*) 'The term cofactor as used by TIENSTRA is here replaced by: weight-coefficient, which agrees 
better with the terminology of mathematical statistics. 
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the corrections to be given to the "compound" observationsfi. By the appropriate 
rules one could then compute how the correction given tofishould be distributed 
to its composing parts, baAbk and Pi. However, we have seen in Section 3 that the 
quantity E = gUgigj is independent of the value of k, no matter what weight matrix 
llgvll we have. From this, one can conclude directly that the correction found for k 
will be zero: loosely speaking one might say that "variation of k cannot help minimize 
E". But what will be the results of the adjustment for the unknowns H, 5 and q? - - 
I n  principle we have the same adjustment problem whether we introduce k as a 
parameter or as an observation; the latter is a special case of the former. At first 
sight the complicated computation of the adjustment of correlated observations seems 
bound to give values for the unknowns that are quite different from the values found 
from a straightforward, "Standard Problem 11" with uncorrelated observations, as 
treated in Section 3, with a subsequent choice of k equal to the observed value. 
However, it can be proved that both methods give the same values for the unknowns. 
The proof is given in App. I1 ; it is based on the fact that the matrix of weight-coeffi- 

cients (13) is composed of a diagonal matrix //pi, P! I and a matrix I lbaAb bBAjl lk, k, 
whose rank is one. I t  is to be noted that the variance of k whose effect we have just 
discussed is the variance caused by the determination of k, e.g. from astronomical 
measurements. I t  has been shown that this variance has no effect on the results of 
the computation (although it of course affects the "external" accuracy). This is 
plausible, for the same value of k is used to correct all observations and this proce- 
dure is equivalent to considering k as a constant. The whole situation bears a strong 
resemblance to the effect of a scale (systematic) error in distance measuring. 

We have not discussed the random fluctuations of k within the net: the assumption 
was that they were negligible. If we do want to take account of these random 
fluctuations, we must increase the main diagonal of the matrix of weight-coefficients 
accordingly : the non-diagonal elements are zero, the diagonal ones follow from ( 13) 

for i = j, when for k, k the value x, x corresponding to the random fluctuations is 
taken, see Appendix I11 and, e.g., [g] page 396. 

I t  may be that in reciprocal observations between two stations the random 
fluctuations are not independent; the same applies to all observations made on the 
same station within a certain time interval. One might therefore use a stochastic 
model in which non-zero correlation is assumed between reciprocal observations 
and between observations made from the same station. The difficulty is of course to 
assess numerical values. The influence of random fluctuations on the weight-coeffi- 
cients is analysed in Appendix 111. 

5 Approximation methods; R. Finsterwalder's method nr. 2 

U p  till now we have only discussed a "rigorous" solution of the problem, in so far as 
we have adhered to the chosen mathematical model and have applied the method 
of least squares rigorously. In  Section 3 we did assume a relation that was not quite 
exact, but this was admissible for the practical applications considered. 

A rigorous least squares adjustment of vertical angles for obtaining deviations of 
the vertical has not often been carried out in practice. The practical geodesist usually 
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shrinks back from the large amount of computational work that is involved and uses 
a less elaborate approximation method. The principle is of course very sound, as the 
"last millimetre" has no practical significance and even a very "rigorous" theory 
cannot describe reality completely. 

But in a theoretical investigation, an approximation method should only be used 
after indicating sharply what approximations are made, and this can usually only 
be done by examining the relationship between the rigorous and the approximate 
method. An approximation method that has been found rather intuitively may be 
excellent, but when its connections with the rigorous method have not been investi- 
gated, it remains dangerous to draw theoretical conclusions from it. 

R. FINSTERWALDER has in [6], page 130, given a survey of the different methods 
for computing trigonometric heights and deviations of the vertical from vertical 
angle measurements. These methods are: 

1. Simultaneous computation of heights and deviations of the vertical in one ad- 
justment. 

2. The usual adjustment of trigonometric levelling ignoring deviations of the verti- 
cal; in the second step of the adjustment these deviations are computed. 

3. To begin with, deviations of the vertical are computed from reciprocal obser- 
vations. The influence of these deviations on the observed vertical angles is com- 
puted, and the angles are corrected for this influence, after which the adjustment 
of heights is effected. 

4. The net is arranged in profiles running North-South and East-West, so that 
"vertical traverses" are formed, which at each end are closed on astronomical 
observations. 

Method nr. 1 has been treated in Section 3; method nr. 2'will be discussed in this 
section and method nr. 3 in Section 6. Method nr. 4 will not be discussed because 
it is only a special case of method nr. 1 as treated in Section 3. 

Method nr. 2 has been described in detail in [3] and. [5]. As remarked before, one 
starts in this method adjusting the net ignoring the deviations of the vertical. The 
coefficient of refraction is supposed to be known. One obtains a number of observa- 
tion equations of the form: 

in which hij has been corrected for refraction. The indices i and j are here again 
point numbers. From this first height adjustment one finds the corrections ~ i j .  These 
corrections are considered as observations of the influence of flij on the observed 
height difference hu. 

If we call the corresponding correction to the vertical angle concerned C;., we have : 

where Sij is defined by (4). 
One consequently puts: 

. . . . . . . . . . . . . . . . . .  {i COS ~ i j  f yi sin yij = (22) 
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Every observed vertical angle furnishes an equation ( 2 2 ) .  If there are a sufficient 
number of equations, one can compute all quantities li and J i  from them. If there 
are more equations than unknowns, the observations will again receive corrections; 
one then obtains the second step of the adjustment, expressed by the observation 
equations : 

. . . . . . . . . . . . . . . .  i COS y i j  f J i  sin y i j  = F&+_u,;. P 3 )  
in which _v;. are the corrections to be given in this second step. This adjustment gives 
values for ( i  and q i  by means of which the originally observed vertical angles can 
be corrected for deviations of the vertical. The thus corrected angles are again used 
in a second adjustment of the heights only, and these final heights can be con- 
sidered as the ellipsoidal heights. 

I n  practice, the heights from the second height adjustment proved to differ only 
very slightly from these found in the first height adjustment. This was explained by 

saying that in a flat and symmetrical net the influences 
of different deviations of the vertical would cancel each 
other. 

5 If in Fig. 5 vertical angles are measured in P7 towards 
PI, ..., PG, the effects of a deviation of the vertical in P7 
on the observations for P1 and P4 will be equal but of 
opposite sign. The same applies to the angles towards Pz 

PS 45 Pz and PS etc. However, this reasoning can never explain 
the indicated phenomenon because the deviations of the 

.... S vertical and the observations in the points PI, P6 

Figure 5 have not been taken into account. Nevertheless it was 
found that the heights resulting from the second adjust- 

ment of heights were always practically the same as those from the first, even in irreg- 
ularly shaped nets. 

The real cause is that ( i  and rji are determined from ( 2 3 ) .  By means of the method 
of least squares one makes the corrections v,:. "as small as possible", in practice they 
turn out to have the order of magnitude of the standard deviation of an angular 
observation. By correcting the original angles for deviations of the vertical, one obtains 
the following corrected observations for the height-differences: 

( b i j )  corrected = b i j -  ( i i  cos y)ij + J i  sin y i j )  S i j  

or with ( 2 3 )  : 

( b i j ) co r rec t ed  = b i j h S i j  (&;.+V,;.) 

or putting SijPh. = _vi j :  

( b i j )  corrected = b i j - F i j - P i j  

In  the second height adjustment we get the following observation equations 

. . . . . . . . . . . . . . . . .  H j - H i  ( h i i - ~ i j - ~ i j )  + e t j  (24)  
Cij being the least squares-corrections resulting from this second adjustment. 

We now use our general notation again, and write (24)  as the I-th equation of a 
system of observation equations: 

Aix" = ( b l - s l - p l ) + _ c l  
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Let the matrix of weights have elements gl,; the normal equations are: 

g l r n ~ : ~ ; x a  = glrn~; ;  (_hl-gl-pi) 

= glrnA; (hl-~l)  -glrnA; g' 

Because of (21), g1 is the correction that was given to h1 as a result of the first height 
adjustment. The second height adjustment is done with exactly the same matrices 
( IAf, l I and 1 lglm l l .  Consequently, according to a well-known formula from the theory 
of least squares (see e.g. [12], page 145) we have: 

glm AFg1 = 0 

The normal equations are then: 

glrnA:A~x" = glrnAF (Il-pl) 

In  this formula, has the order of magnitude of the standard deviation of hl, see 
[5], page 26; consequently the second height adjustment will give the same results 
xa as the first height adjustment, within the limits of the accuracy of the observations. 

Method nr. 2 gives results that agree rather well with a rigorous least squares 
solution, see [5] and Section 7 of this paper. However, it is very difficult to deduct 
this method from the rigorous one: indeed it has not been created on the base of the 
rigorous method by modifications on sharply indicated points, but by heuristic 
reasoning. 

Starting from the rigorous method one can obtain an adjustment problem which 
only contains unknowns Hi: for this it suffices to eliminate all Ei and qi from the 
observation equations. But by doing this one can never retain the same number of 
observation equations, because the number of equations decreases as the number 
of unknowns. The remaining equations are linear combinations of the original ones, 
and the right-hand sides will consist of linear combinations of the observations, so 
that one will get a so-called "Standard Problem IV" : condition equations containing 
unknowns. This adjustment problem differs greatly from the one expressed by 
equation (2  1 ) . 

Another simplification is that in the right-hand sides of the equations (22), the 
quantities are by no means non-correlated. By equations (2 1a) they are connected 
to the corrections resulting from the adjustment of equations (2 1). An adjustment of 
equations (22) according to the method of observation equations using a diagonal 
weight matrix is theoretically wrong. 

Summing up, one can say that method 2 is based on weak theoretical foundations 
which make it dangerous to draw far-reaching conclusions from it. The practical 
results however seem to be quite satisfactory. 

6 The method of reciprocal observations 

The method nr. 3 (according to R. FINSTERWALDER'S classification) starts by com- 
puting the deviations of the vertical from reciprocal observations. The principle 
follows from Figure 6, where for simplicity refraction has been ignored. 
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The following equations can be established: 

A = B f y i j  

Bij + Bji = pij f Bji + yij 

l i  cos Wij f Ji  sin Yij + 5j cos yji f J j  sin yji = Bij f Bji f ~ i j  

Introducing refraction and writing yji = yij+n we obtain: 

COS yrj - J j  COS Yij f )li sin Yfij - yj sin Yij  = B u f  pji f 1 - - ~ i j  . (25) ( cos Pij, 

(see e.g. [8], page 58). I t  is clear that, here also, we have to have a datum point to 
which the t- and v-differences can be referred, as equations (25) can only furnish 
differences of deviations of the vertical. 

I n  literature it is usually stated that this method can indeed furnish the above 
nlentioned differences ti and rli, if only one has a sufficiently large number of equa- 
tions (25). If in a net consisting of four points all possible vertical angles from and 

v Figure 7 

towards all points have been measured, one can establish 6 equations (25). One 
point is the datum point, the other ones have together 3 X 2 = 6 unknown compo- 
nents ti and vi, so that one obtains 6 equations in 6 unknowns. 

If there are more than four points, there are also more unknowns, but if all possible 
vertical angles are measured the number of equations (25) increases more than the 
number of unknowns. One could then from an adjustment of this over-determined 
system find values for [i and t j i .  

Let us now consider a net of four points PO, PI, P2 and P, (see Figure 7). The 
matrix of coefficients of equations (25) is in this case: 
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We will examine the rank of this matrix. The rank is not altered if we multiply each 
row by the length of the corresponding side, and change the signs of the first three 
rows : 

If we now consider the net as being flat, and imagine a rectangular coordinate 
system whose origin is PO, whose positive X-axis is directed northward and whose 
positive Y-axis is directed eastward, the elements of the thus obtained matrix can be 
interpreted as coordinate differences in this system and we'can write the matrix as 
follows : 

The matrix has now been reduced to a simple form and we can apply the Gauss 
algorithm to investigate its rank., This is done in Appendix IV:  the rank turns out 
to be 5. This means that the matrix is singular and that the system represents only 
five independent equations with six unknowns. ( In  view of the fact that the right- 
hand sides of equations (25) have an arbitrary value, the system will as a rule be 
inconsistent.) Consequently, the statement that in a net of four points a deter- 
mination of reiative deviations of the vertical is possible by vertical angle measure- 
ment only, is false. 

91 

-sin yol 

sin y12 
sin y13 

1 
2 
3 
4 
5 
6 

E2 

-COS y02 

-COS y12 

cos y23 

h 

-cos yol 

cos y12 
cos V13 
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-COS yo3 

-cos V13 

-COS y23 
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-sin v 0 3  

-sin yl3 

-sin y23 
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We can now continue by examining a net of five points (see Figure 8). If all 
possible vertical angles have been observed, there will be 10 equations. 

If we indicate the equations by the numbers 0-1, 0-2, 0-3, . . ., 3-4, we have 
seen above that the matrix of equations 0-1, 0-2, 0-3, 1-2, 1-3 and 2-3 has the 

rank 5. By adding a pcint P4 we get two additional 
PL unknowns (4 and ~74, and four additional equations. To  

A\\ determine the unknowns we need 8 independent equa- 
/ l \  \ tions, but we have only 7 of them: according to the 

p, 
above the coefficients of equation 0-4, for instance, are 
linearly dependent on those of equations 0-1, 0-3, 1-3, 
1-4 and 3-4 (in quadrangle PoPlP4P3) and the same 
applies to 3-4 with respect to 1-2, 1-3, 2-3, 1-4 and 

\ 2-4 (in quadrangle P o P ~ P ~ P ~ )  so that both 0-4 and 3-4 
P, are dependent on 1-4, 2-4 and the equations of quad- 

Figure 8 rangle Pop1 P#% 
The extra observations do not make it possible to 

remove the singularity. The reasoning can easily be extended for nets with more 
points: equations (25) will always have a matrix whose rank is one less than the 
number of unknowns. Consequently the matrix of the normal equations will also 
be singular: its deficiency is one, and the unknowns cannot be uniquely determined. 
The method can only be used as an interpolation method. As will be seen in the 
following, we cannot introduce the coefficient of refraction as an unknown for the 
same reason as indicated in Section 3, so for application of this method it is necessary 
to know two components E or 7 relative to the datum point of the net, of which one 
might be said to serve for determining the coefficient of refraction and the other for 
reducing the number of unknowns. 

The deduction of the method according to Figure 6 is as rigorous as required for 
numerical applications; nevertheless it is an approximation method. This is evident 
if one takes equations (5) for the observation from Pi to P k  and for the observation 
from P k  to Pi, and adds both equations. The unknowns Hi and H k  are then elimi- 
nated. Because in the cases considered here one can put Sik = Ski, the thus obtained 
equation must, after division by Sik, be identical with (25). I n  the two equations 
that were added, the coefficient of k was linearly dependent on the other coefficients, 
consequently in the resulting equation this must also be the case, which proves the 
abovementioned impossibility of determining k as an unknown. 

Every equation (25) is equivalent to the sum of two corresponding equations (5), 
so equations (25) contain only part of the information contained in the original 
equations (5). If refraction is known and if one component E or q in the net is known, 
the system (25) can furnish values for Ei and l / i ,  but the solution will not be complete; 
it can be considered as a first step. 

I n  [8], a solution has been found from the normal equations resulting from equa- 
tions (25), in spite of the singularity proved here. This was possible by putting one 
of the unknowns equal to zero (see [8], page 65) which was in this case approximately 
right. The observations were then corrected for the computed deviations of the ver- 
tical, after which the adjustment of heights was performed. The fact that this second 
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adjustment was necessary was of course caused by the incompleteness of the first 
adjustment. 

But exactly this incompleteness of the first step means that the values of adjusted 
observations and unknowns resulting from it are not the final values. In  the second 
step of the adjustment they must again receive corrections. If the second step is to 
be correct one must consequently: 

1. Compute corrections for - Pii from the corrections to (fiii-+fiii) m found in the first 
adjustment. 

2. Compute the weight-coefficients of the corrected - Pij as well as those of the 
computed and gi. 

The observations corrected for deviations of the vertical are by no means uncor- 
related, which makes the second step of the adjustment very complicated; it is a 
so-called "Standard Problem IV". Finally, if one realizes what is the number of 
conditions that are fulfilled in each step, it is easily seen that in the second step of 
the adjustment not all observation equations must be used but only half of them, 
namely one of each two from which an equation (25) is composed. However, in a 
rigorous adjustment this makes no difference. 

Method nr. 3 is consequently an approximation method, in which the deviations 
of the vertical are found from an adjustment on too few conditions; in [8] the 
ellipsoidal heights are then found by an adjustment with a wrong matrix of weights. 

7 Numerical applications 

The theoretical considerations given in the previous sections have been established 
in connection with numerical computations having regard to the trigonometric 
levelling net measured by Dr. W. HOFMANN around the valley of the river Isar. The 
observations have been published in [8], and the present author very gratefully 
acknowledges Dr. HOFMANN'S kind cooperation in furnishing additional data and 
information. Only height differences that had been observed reciprocally were used, 
and the following computations were carried out: 

1. Adjustment according to Section 3, using the same weights as used in [8]. 
2. Adjustment considering the observations as being correlated by the correction 

for refraction. 
3. Adjustment according to R. FINSTERWALDER'S method nr. 2. 
4. Adjustment according to Section 3, using weights computed from (13) for 

i = k to allow for random fluctuations of refraction, and using different numerical 
values of the coefficient of refraction. 

5. "Rigorous'' adjustment of the results of item 4 to fit three astronomically deter- 
mined deviations of the vertical in latitude. 

7.1 In  the first adjustment, the coefficient of refraction was treated as an unknown 
to begin with, so that the observation equations had exactly the form of (5). 

The normal equations were established, using the same weights as given in [8], 
page 55; for the observations hij the values computed by Dr. HOFMANN were taken. 
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The unknown k got the last number, so that in solving the normal equations it would 
be the first to be computed. By reducing the normal equations according to the 
Gauss algorithm, it was seen that after eliminating all other unknowns the coefficient 
of k in the resulting equation was zero: the computation was done with five decimal 
places and the numerical value of the diagonal element in question was 3.10-5, a 
deviation from zero that can be ascribed entirely to rounding off. The matrix of 
coefficients thus turned out to be singular. 

After this, the term containing k in the equations (5) was transported to the 
right-hand side and so the observed height differences were corrected for refraction. 
For k, the value 0.2012 was taken, in accordance with the value given by Dr. HOF- 
MANN. The observations corrected for refraction were considered as being uncor- 
related; the weights assigned to them were again those of [8], page 55, so that the 
computations already executed could be used throughout. The approach of the 
problem thus was indentical to that of Section 3, because the value k = 0.2012 was 
just a value of the parameter, not an observation. The matrix of the normal equa- 
tions was inverted and the unknowns computed, they are given in Table I in column 
1. The estimate for the variance factor was: 

4 .  gii&i&i oL ___- = 0.006969 
m-n 

In  the chosen system of weights an observation on a side of 8.5 km had unit 
weight. The estimate of the standard deviation of the mean of a measured angle as 
computed from the angle observations was 1.6CC, which in view of the large number 
of 18 observations for each angle can be considered a good approximation of the 
standard deviation. The observation of the height difference of unit weight thus has 
a variance 

8 2  
There were 28- 15 = 13 supernumerous observations, consequently - has an 

c72 

_F,,,, probability distribution (see [ l  l ]) .  With the aid of this distribution we can 
test statistically the hypothesis that no model error is present in our setup of the 
adjustment problem. The F-value found here is 0.006969/0.000456 = 15.3, whereas 
a one-sided test on the 5 O{, level of significance has a critical value 

and on the 5O/00 level: 

so that the hypothesis must be rejected because the F-value found is very significantly 
too high, even on the !jO/OO level. I t  is highly probable that the assumption of a 
constant k is the model error in question, as there does not seem to be any other 
possible influence that could explain the high F-value found. 
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7.2 The problem was also treated according to Section 4, taking into account the 
correlation between the observations corrected for refraction. The weight- 

coefficients were computed according to (13). The standard deviation of k was 
rather arbitrarily assumed to be 10% of the numerical value of k, so the values 
used were: 

The standard deviation of an observed angle was according to [8] 1.6CC. The weight- 
coefficients were expressed in dm2, which made it convenient to take unity as 
variance factor. For solving the adjustment problem, the thus obtained matrix of 
weight-coefficients had to be inverted to give the matrix of weights. This inversion 
of a 28 X 28 matrix was simplified by a transformation of the observation equations: 
the two equations pertaining to the same height difference were subtracted by 
which the resulting right-hand part did not contain the coefficient of refraction any 
more. The thus obtained 14 equations had non-correlated right-hand members. 
Half of the original equations were again included in the system, which as a conse- 
quence was equivalent to the original system. The matrix of weight-coefficients of 
the new system consisted of four sub-matrices of which only the lower right-hand 
one was not a diagonal matrix. Therefore the relationship of Frobenius-Schur 
(see e.g. [ l ] ,  page 20) could be used in the inversion. 

The matrix of weights thus being known, the normal equations were established 
and their matrix inverted. The result of the inversion proved to be insufficiently 
accurate: the product of the matrix and its computed reciprocal was not equal to 
unity with sufficient approximation. Therefore an iteration process was used for 
improving the reciprocal matrix (see e.g. [Z], page 120). This numerical difficulty 
is explained by the fact that the matrix of weight-coefficients consisted of the sum 
of a matrix with relatively small elements (from the angle observations) and a 
matrix with relatively large elements (from refraction). 

The latter matrix was singular (its rank being one), and by its preponderance the 
determinant of the matrix of weight-coefficients was, popularly speaking, small 
compared to the value of its elements. This cause of instability was also present in 
the matrix of weights. The inversion of the matrix of weight-coefficients was not 
completely checked by "back-multiplication" to give the unit matrix or by re- 
inversion, so that the instability did not manifest itself until the inversion of the 
matrix of normal equations. 

The values found for the unknowns are given in Table I, column 2. According to 
Section 4, solutions 1 and 2 should be the same; the differences are due to the fact 
that in solution 1 the weights were determined with fewer decimals than in solution 
2, and to the instability of the just mentioned inversion. Solution 2 gave as estimate 
for the variance factor 

whereas o" l ,  so that this solution generates practically the same _F,,,, value as 
solution 1. 
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7.3 Heights and deviations of the vertical were computed by R. FINSTERWALDER'S 
method nr. 2, in which for the second step of the adjustment (equations (23)) 

equal weights were used. No "ellipsoidal" heights were computed. The results are 
given in Table I,  column 3. The coefficient of refraction used was k = 0.2012. 

7.4 Weight-coefficients were computed allowing for random fluctuations of the 
coefficient of refraction. The formula used was formula (3) of Appendix 111, 

which corresponds to formula (13) for i = j, if C x  is substituted for k,. The 
standard deviations assumed were: 

The value a, = 0.014 is in accordance with values found in literature. The weight- 
coefficients were expressed in dm2; the variance factor was taken to be a2 = 1. The 
weights were the reciprocals of the weight-coefficients; they ranged from 0.35 to 
20.53. 

The solution was identical to solution 1, except for the weights, but the different 
weights proved, as usual, to make little difference in the value found for the un- 
knowns. The stochastic model turned out to be much more satisfactory than the one 
used in solution 1, where all variance was assumed to be caused by the angle meas- 
urements proper. The estimate for the variance factor was 

62 = 1.43 

thus generating an _F,,,, value that was not significantly too high. 
The unknowns were computed both for k = 0.2012 and for k = 0.13; both 

solutions gave the same 3 2  and the same corrections to the observations. The un- 
knowns for k = 0.2012 are given in Table I, together with their standard deviations 
(column 4 and 6). Starting from this solution we can compute the value of k for 
which the sum of squares of the deviations of the vertical is a minimum. If we put 

k = 0.2012+Ak 

and call the solution sought: p", and the solution for k = 0.2012: X", we must have, 
according to ( 1  1) : 

Y " = X"+ bUAk 
C(ya)2 = C(xa+b"Ak)2 

= C(xa)2+2Cb"x"Ak+C(b")2(Ak)2 

I t  is evident that the extreme value of this function is a minimum, which occurs 
when : 

C(b")2Ak+Cb"xa = 0 

I n  this case A k  proved to be -0.0229, so that the value of k which corresponds to 
"no extra curvature" is 0.2012-0.0229 = 0.1783. The values of the unknowns 
for k = 0.1783 are given in Tabel I,  column 5. The solutions for k = 0.2012 and 
k = 0.1783 are pictured in Figure 9, together with the vector construction which 
illustrates the connection between the two solutions. 
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7.5 In the net under consideration, the differences in latitude between the datum 
point and three other points had been determined astronomically. This pro- 

vided a possibility to find k from a rigorous adjustment. The stations in question 
were 1,2 and 5 (see Figure 9). 

If we denote the values of the components as determined by adjustment nr. 4 by 
1'1, 5: and 5 ,  the corresponding astronomically determined components by l;, 5; 
and i ,  and the relevant coefficients by bs, 6 7  and (in accordance with the number- 
ing system given in Section 3) ,  we can establish the following condition equations 
containing the unknown A&: 

( 5 s ~ ; )  +b6  A& = 5?+G? 
(l:+c:)+b7 A k  = :+G;  
(1: +G:) +b l0Ak = _ES+Gi 

in which the F'S represent least-squares corrections. By introducing "compound" 
observations - ti, the adjustment problem was reduced to a case of observation equa- 
tions with correlated observations. By applying the law of propagation of weight- 
coefficients to : 

the weight-coefficients of t i  were found; for the trigonometrically determined com- 
ponents the weight-coefficients resulting from adjustment nr. 4 were used, for the 
astronomically determined components a standard deviation of 1cc was introduced 
(see [8], page 65). The matrix of weights was found by inverting the matrix of 
weight-coefficients, whereafter the one normal equation was easily established and 
solved. The quantities E: had been referred to k = 0.2012, and the value of A k  
was found to be A k  = 0.0004, so that the result was k'= 0.2016; its standard 
deviation as computed from the adjustment was ok = 0.0062. The estimate $2 of 
the variance factor gave rise to an _F,,, value of 1.59, which is not significantly too 
high, so that no model errors are manifest. As a result of this adjustment, all values 
H, 5 and computed received corrections which were computed by the appro- 
priate rules of least squares theory; the final values are given in Table I, column 7. 
They contain the influence of Ak, which explains why some of their standard devia- 
tions (column 8) are larger than the corresponding ones in column 6. I t  appears that 
the standard deviations of the unknowns Ji and yi are very large compared to their 
size, so that the computed values have only a limited significance. 

For comparison, the values of the unknowns found by Dr. HOFMANN are given 
in Table I, column 9. 
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APPENDIX I 

The equation (7b) to be investigated can be written 

The numerator on the left-hand side can be transformed as follows: 

We now assume that ltg/3iilmax = 0.1, and consequently ( ---- l = 1.01; 
~ 0 9 ~ 8 ~ 3  max 

(Sij-Sij)max = 0.01 Sij  

For nets used in practice one can assume (si0)max = 2sii. In  these circumstances 
1 

we can choose - = 1.005, and the boundaries of the left-hand member of (7c) 
cos" 

can be indicated as follows 

Because at 50' latitude the radii of curvature of the ellipsoid in meridian and prime 
vertical differ about 20 km, we can put: 

(Rig)max = R+ 10 km 
(Rig)min = R- 10 km 

We can thus put the maximum and minimum values of the right-hand member 
of (7c) as follows: 

1.01 S$ 1.012 sii2 
Maximum: - or 

R ~ J  R 
sij2 0.998 

Minimum: - or S. .2 
Rij R 23 

The maximum difference between left- and right-hand members is thus seen to be 
0.047 

1 - sij2 or about 5 % of the value of the right-hand member. This value 5 % 
R 

will seldom occur in practice; as an example the following table gives the results for 
the net measured by Dr. HOFMANN; the numbers under the heading buA; represent 

sij2 
the left-hand sides of equations (7), those under the heading the right- 
hand sides. 2 Rij~0~2Pig 
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APPENDIX I1 

In  this appendix, matrix notation will be used. Matrices and vectors are represented, 
respectively, by capitals and lower case in bold type, scalars by Greek letters. The 
transpose of a matrix A is denoted by AT; stochastic vectors are underscored. 

Suppose we have a number of correlated observations; their matrix of weight- 
coefficients C can be written as the sum of a symmetric matrix Q and a symmetric 
matrix of rank one. The matrix of rank one can be written as a vector postmultiplied 
by its transpose : 

C = Q+qqT . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 )  
There is a theorem on the reciprocal of the sum of two matrices one of which has 

the rank one, which theorem is proved e.g. in [l]. In  our case we have, according 
to this theorem: 

C-1 = Q-i - Q - ~ ~ ~ T Q - I  

in which 

1 
Y E -  and a = qTQ-lq . 

l + a  

C-1 is the matrix of weights. If we call Q-1 : G, we have: 

C-' = G - yGqqTG 

By putting: 

d y G q  = r . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

we see that the matrix of weights can be written in .essentially the same form as the 
matrix of weight-coefficients : 

C-l = G-rrT . . . . . . . . . . . . . . . . . . . . . . .  (4) 
Let us now consider an adjustment problem, in which the observations have a 
matrix of weight-coefficients C as meant in (1). We write the problem in the form 
of observation equations: 

Ax = f + y  (y = correction) 

Because of (4), the normal equations are: 

(G - rrT) A~ = (G - rrT)f 

( ATGA - ATrrTA) X = ATGf - ATrrTf . . . . . . . . . . . . . .  (5) 

If we put 

. . . . . . . . . . . . . . . . . . . . . . . . . .  A T r = l  (6) 

we can write (5) as: 

( ATGA -IIT) x = ATGf- ATrrTf 

In  general, det (ATGA-IIT) f 0, so: 

= ( ATGA -IIT) -l(ATGf- ATrrTf) . . . . . . . . . . . . . .  (7) 
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We now use the above-mentioned theorem again. If we put 

p = - I ~ ( A ~ G A ) - ~ I  . . . . . . . . . . . . . . . . . . . . .  
and 

(8) 

(7) becomes : 

. . .  X = { (ATGA) -1 + 6 ( ATGA) -11IT ( ATGA) -1) ( ATGf - ATrrTf ) (10) 
Now it is essential that in the special case of Section 4 we could write: 

q = A b  . . . . . . . . . . . . . . . . . . . a . . . . .  (11) 

Hence, with (3) and (6) : 

r = d y G q  = d y G A b  

1 = ATr  = d y A T G A b  1 . . . . . . . . . . . . . . . .  (12) 

lIT = yATGAbbTATGA 1 
Now ( 10) becomes : 

= {(A~GA)  -1 + aybbT} ( A ~ G ~  - y ~ T ~ ~ b b T ~ T ~ f )  

= (ATGA) -lATGf - ybbTATGf + dybbTATGf - dy2b[bTATGAb] bTATGf 

The part in square brackets is, according to (2) : 

b T ~ T ~ ~ b  = q T ~ q  = 

Consequently : 

X = (ATGA)-lATGf-y(1-G+qd)bbTATGf . . . . . . . . . . .  (13) 

(8) gives with (2),  ( l  l )  and (12) : 

P = l T ( A T G A ) - ' l  = -ybTATGAb 
T = y q  G q  = -ya 

I n  (13) we have then, using (9):  

So that 
= ( A ~ G A ) - ~ A ~ G ~  

This is just the solution which would have been found if a matrix of weights G had 
been used. Q.e.d. 
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APPENDIX 111 

If the coefficient of refraction is introduced as an  observation, equations (5) of Sec- 
tion 2 can be written as follows: 

We now suppose that random fluctuations of refraction occur, and introduce a 
corresponding stochastic quantity xij (whose mean is zero). If we then replace the 
total "observational" part of ( l )  byf,j, we have: 

J . 2  J . 2  
f.. - h.  - %3 27 
-27 - - % I  k - X 6 j .  S . . . . . . . . . . 

2 Rijcos2/9ij - 2 R i i ~ ~ ~ ' / 9 i j  - (2) 

For brevity we write: 

Further we replace the indexing system by a system in which the observations are 
successively numbered from 1 to m. We retain the indexes i and j ,  but, like in 
Section 3, i and j do not represent station numbers any more! I n  tabular form we 
can then write equations (2) as follows: 

We can introduce the following system of weight-coefficients in which some plausible 
assumptions of zero correlation are made: 
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-- 
x1, %l X I ,  X 2  
-p 

%l,  X 2  m, X 2  

I t  is easy now to apply the law of propagation of weight-coefficients (which corre- 
sponds to the execution of two matrix multiplications). We see (in ordinary notation) : 

-- p 

fl, f i  = hi, h i + c i . c j . k ,  k + c i . c j . x i , ~ j  

I t  has been shown in Section 4 and Appendix I1 that the term containing k, k can 

be left out without affecting the results. If we assume that x i ,  xi = 0 for i # j and 
-- -- -- 

xi ,  xi  = xi,  x j  = X ,  x we get: 

J , f ,  - 0 when i # j 

f t , f i = h i , h i + ( ~ i ) 2 ~ , ~  . . . . . . . . . . . . . . . (3) 

which means that the effect of the random fluctuations is an increase in the main 
diagonal of the matrix of weight-coefficients. 
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APPENDIX IV 

Investigation of the rank of the matrix (see e.g. [13], page 86) : 

Add (row 1 + row 2) to row 4, (row 1 + row 3) to row 5 and (row 2 + row 3) 
to row 6: 

Now apply the Gauss algorithm 
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By the next step the element in the lower right-hand corner becomes: 

The matrix is singular; its rank is 5. 
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