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“Then I thought … of Bridgeman’s question of … 

which co-ordinate system Einstein had used … The 

definition of coordinates is even worse than that of 

the Cadastre; it is completely ignored.” 

Baarda in a letter, dated 28 July 1997 
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Foreword 

In the autumn of 1967, I attended the first lectures of the geodesy curriculum of the Faculty 

of Geodesy of Delft University, together with a number of other freshmen. These lectures 

introduced us into the basic principles of this discipline, which was entirely new to us. One 

lecture series dealt with an introduction into Adjustment Theory. The meaning of that term 

was still entirely unknown to us. By way of familiarisation, we were asked to perform a simple 

exercise. A wooden plank, about one metre in length, was passed from person to person. Four 

small wood blocks had been attached to it at intervals of approximately 30 cm. Each wood 

block contained a rough hole, which had been filled with wax. The task was to stick a pin into 

the wax of each hole, such that it was located in the middle of each wood block. Each of us 

was asked to measure the distance between the successive pins with a ruler and add up these 

three distances to obtain the distance between the first and last block. And guess what, the 

results of the twenty students showed considerable differences. 

That exercise was intended to make it clear to us that, although the concepts of ‘distance’ and 

‘length’ are mathematically well defined, the application of these concepts to measurements 

in physical reality is not that simple. In fact, it turned out that the interpretation of the concept 

of ‘length’ was not straightforward and that it was not possible to assign an unambiguous 

value to a length. We were made to understand that in this situation the concept of ‘true value’ 

is meaningless. With real measurements, in the real world, one has to accept the fact that 

repeated measurements will yield different outcomes. That simple exercise demonstrated 

why Adjustment Theory, based on the least squares method, is important for geodesists. 

In the later stages of the geodesy course, it became clear that at Delft University the 

foundations of this method were being subjected to renewed investigation. In the beginning 

of the twentieth century some fundamental thinking about the significance of mathematical 

models for the description of natural phenomena took place in various institutions. The 

exercise described above illustrated that challenge. A wider group of thinkers, including 

mathematicians, physicists and philosophers struggled with this problem and a suitable 

language to express its essence with clarity was lacking as yet. During the period from about 

1930 to 1980, described in this monograph, the Delft School of Geodesy took shape, initially 

under the leadership of Jacob Menno Tienstra and then of Willem Baarda. Their struggle 

during these fifty years was strongly influenced by the challenge described in this paragraph. 

This monograph is mainly based on the publications of the protagonists and their close fellow 

workers. Whilst that yields a somewhat monolithic approach, I hope it will provide the reader 

with some insight into the background of these developments and the manner in which the 

key ideas took shape. This monograph describes the development of their ideas up to the 

time of Willem Baarda’s retirement. 

Upon completion of the first draft, I sent this text to a number of friends and colleagues. Many 

replied, but I wish to mention a few of them in particular: Sieb Dijkstra, Robert Kroon, Jan de 

Kruif and Roel Nicolai. They supplied valuable additions and improvements on the text. 

Additionally, Hiddo Velsink provided some suggestions for historically-interesting 

references.  

I especially thank Roel Nicolai, who acted as the final editor of the text and prepared most of 

the illustrations. He also translated the text for this English version. In several cases we found 
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that Dutch formulations and terminology could not be translated directly into English. We 

had to find new expressions that preserved the meaning of the original Dutch expressions. 

Roel proved to be very inventive in these cases. I sincerely thank him for his efforts to produce 

this present text. I also thank Richard Wylde, FRICS, who was kind enough the check Roel’s 

English translation. 

 

Martien Molenaar, December 2021 
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1 Introduction 

During the twentieth century and particularly in its second half, a number of developments took 

place at the Faculty of Geodesy of Delft University of Technology that drew much attention, 

nationally, but definitely also internationally. These developments exerted an increasing influence 

on professional practice in geodesy and land surveying. These concerned the way in which 

reconnaissance surveys were conducted, measurement results processed and particularly the 

manner in which measurement quality was assessed. In the world of geodesy these developments 

are collectively referred to as the Delft School. Its most important pioneers were Jacob Menno 

Tienstra, his successor Willem Baarda and their co-workers. Their active contributions to this field 

span the period from 1930 to 1980 and that is roughly the period that will be discussed in this 

monograph. 

The fascinating thing about this period is that problems, that were encountered in the work 

practice of the land surveyor and the geodesist, led to a thorough theoretical analysis of the work. 

That analysis yielded new concepts that were subsequently tested in practice, which led, in turn, 

to fine-tuning of the theoretical models. Therefore, any description of the developments of this 

period will have to be based on the interaction between theoretical developments and 

professional practice. Nevertheless, a split approach was chosen. This monograph discusses the 

development of theoretical framework in particular. 

Two sub-periods are discussed in this monograph, focussed on the key players Tienstra and 

Baarda respectively. This format has been chosen for two reasons. 

The Tienstra period was mainly aimed at the structuring of data processing methods: the so-called 

five Standard Problems of adjustment calculus. In that period the beginnings of an improved 

theoretical framework for the analysis of the quality of measurements became visible. 

The Baarda period focusses in particular on the continuation of the development of that 

theoretical framework for quality analysis of geodetic measurements. The concept of data quality 

or data accuracy was refined by breaking it down into the separate concepts of precision and 

reliability. Additionally, Baarda applied new mathematical concepts to the analysis of the 

structure and quality of geodetic control networks. 

The emergence of, firstly, so-called total stations (the combination of measurement of direction 

and distance in a single instrument) and secondly GPS from the 1980s onward, as well as the 

continually accelerating development of information technology and computing, have changed 

the daily practice of the geodesist fundamentally. The subsequent emergence of laser altitude 

measurement, radar interferometry and many other novel measurement techniques contributed 

to more changes in the work methods of the geodesist in an even shorter time frame. Additionally, 

the closing of the Faculty of Geodesy at the Delft University of Technology in 2003 and the 

termination of the geodesy curriculum at the Utrecht Polytechnic (….) have almost stopped the 

inflow of new Dutch geodesists in this professional field. Therefore, in the Netherlands, geodetic 

tasks are increasingly performed by professionals from other disciplines, who were not educated 

with the concepts of the Delft School. Because of this, this system of ideas is at risk of falling into 

oblivion, which is an important justification for writing this monograph. It is to be hoped that 

people do retain the awareness of what has been achieved in this phase of Dutch geodetic history. 

This contribution to geodesy had a global importance and impact. 

The most important development phase of the ideas of the Delft School happened before those far-

reaching technological changes in geodesy. For a proper understanding of this development 
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phase, a brief description of geodetic survey practice will be provided after this introduction. The 

period after that tipping point might be described in a later paper. 

A large number of articles dedicated to various aspects of the theoretical developments of the Delft 

School have been published over the last decades, in part authored by the key players themselves. 

This monograph will make use of such publications; a selection of publications has been compiled. 

Taken together, these publications provide a good summary of the period described. This 

monograph provides the context in which these articles should be interpreted. 

In the professional field, geodesy is often distinguished from land surveying. The development of 

the methods by the Delft School of Geodesy were of equal importance for both. These concepts 

will therefore be used interchangeably; use of one term implies the other. Furthermore, the terms 

‘observations’ and ‘measurements’ will be used as synonyms.  

  



3 

 

2 Land survey practice in the twentieth century and 

the beginnings of the Delft School 

 

A number of basic land surveying principles will be clarified in this chapter, because the ideas of 

the Delft School arose mainly from experiences in land survey practice. At a later stage these ideas 

were also applied to photogrammetry, but attention will be paid to that separately and later; only 

a brief outline will be provided in this monograph. For further details the reader is referred to the 

textbooks that were available at the time (Schermerhorn and Van Steenis 1964), (Alberda 1983), 

(HTW ’56). 

2.1 The primary control network of the Rijksdriehoeksmeting (RD-

network). 

The Netherlands is covered by a triangulation network that was constructed in the nineteenth and 

twentieth centuries. see Figure 1. The sides of the triangles vary between twenty and thirty 

kilometres. At the time, the theodolite was still the most important and most accurate survey 

instrument. Triangulation was therefore the mainstay of so-called ‘higher-order measurements’, 

that is, measurements with a, for that time, very high accuracy. 

 

Figure 1: RD-network. The first-order geodetic control network, 1888-1904. See also Figure 13. 
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The coordinates of the corner points of the triangles were calculated in a national coordinate 

frame, of which the positive Y-axis pointed north and the positive X-axis east. This convention was 

also adopted in many other countries, but not all. Many countries adopted an alternative 

convention, as shown in Figure 2. The origin (0, 0) of the coordinate system was initially chosen 

to be the centre of the vertical bar of the weather vane on top of the spire of the Onze Lieve 

Vrouwetoren (Our Lady’s tower) at Amersfoort. Later the origin was shifted such that all 

coordinates in The Netherlands have positive values and everywhere within the country Y>X. 

 

Figure 2: Definition of (X, Y) coordinates 

The length of the sides of the triangles in the RD-network were calculated from a few baselines 

that were measured with high precision; see Figure 3. The length of the shortest side b was 

determined with high precision and by applying local triangulation the length of side DPk – DPk+1, 

one of the sides in the RD-network, could be calculated. 

 

Figure 3: Measurement of the baseline of a triangulation network 

The triangulation network of Figure 1 was the primary or first-order network of the 

“Rijksdriehoeksmeting”, the governmental triangulation agency. This was densified in several 
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steps by second and third-order measurements to networks with shorter sides. That resulted in a 

relatively dense field of control points, to which local measurements could be tied. 

2.2 The theodolite 

Because of the role of the theodolite, it is important to understand its construction principles, as 

that provides good insight into the nature of angular measurements. The core structure of the 

theodolite consists of a telescope, that can be rotated about a vertical and a horizontal axis. 

Figure 4 (left) shows an image of a Wild T2 theodolite, in which the design principles are readily 

recognised. Figure 4 (right) shows a schematic drawing of a theodolite. The theodolite is set up 

such that the vertical axis is aligned with the local direction of gravity. When the telescope is 

pointed successively at two distant targets, readings on the horizontal circle, which is 

perpendicular to the theodolite’s vertical axis, can be taken, representing the directions to the 

targets. The difference between the values of those two directions is the angle subtended by the 

station and the two target points in the horizontal plane. A reading on the vertical circle, which is 

perpendicular to the horizontal axis of the instrument, can also be taken, representing the vertical 

direction to the target point. This reading is the zenith angle of the line between station and target. 

The elevation (or depression) angle can be derived from this, that is, the angle of the line between 

station and target with the horizontal plane. 

 

Figure 4: Wild T2 Universal Theodolite (left) and a schematic drawing of a theodolite (right) 

The horizontal and vertical circles of theodolites used in The Netherlands and many other 

countries did not have a 360° graduation, but a graduation of 400 decimal grads, abbreviated as 

gr. A grad is also called gon. Thus, a right angle would be 100 gr. Every grad was subdivided to 

enable readings to a resolution of 10–4 gr = 1 dmgr (decimilligrad). With this unit a decimal system 

for angular measurements was realised. This approach was not universal; Anglo-

Saxon (-oriented) countries preferred the 360° system. 

2.3 Local densifications of fields of control points 

In many cases geodetic control points were still too far apart to allow direct tying of local survey 

measurements to available control points. Hence, supplementary survey work had to be carried 

out to densify the control network further. For this task several measurement configurations were 
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in use. The first was the traverse; see Figure 5. This consisted of the establishment of a string of 

new points, called the turning points of the traverse, between two known control points. 

 

Figure 5: Measurement of a closed traverse 

The angle, subtended at the first known point by another (distant) control point and the first new 

point of the traverse was measured by means of a theodolite. Thereafter, the theodolite was set 

up successively at each turning point of the traverse and the angle was measured between the 

forward target and the back target. The traverse was closed at the second known point by 

measuring the direction to another (distant) control point. This last step made it a closed traverse. 

When omitted, one spoke of an open traverse. Additionally, the distances between all points of the 

traverse were measured. 

Hence this technique was based on the measurement of both angles and distances. Especially the 

accuracy of the distance measurement in lower-order surveys was limited and was conducted by 

means of measurement tape, optical distance-measurement equipment or by using a subtense bar, 

as shown in Figure 6. 

 

Figure 6: Subtense bar (left) and its principle of distance measurement (right) 

Distance measurement with a subtense bar worked as follows: BL-BR is the subtense bar, which 

has a precisely determined length, usually 2 metres. It is set up such that the line between 

observer (P) and the middle of the bar (B) is the perpendicular bisector of the subtense bar. By 

measuring the angle subtended at P by the two end points of the subtense bar, the distance PB can 

be calculated. 
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Should there be no suitable control point in the area to serve as the start or end point of the 

traverse, the following solutions were available. 

1. A baseline, consisting of two intervisible control points, was sought and a triangle was 

created with a new point as top. By measuring the two angles to the new point from each 

of the two baseline points the coordinates of the new point can be calculated. This 

technique is called intersection. 

2. The theodolite was set up at a new point, from which three or more known points, evenly 

spread across the horizon, were visible and to which directions were measured.  From 

these measurements the coordinates of the new point could be calculated. This technique 

is called resection; see Figure 7. 

In the end these densification measurements yielded a group of control points, of which the 

coordinates were now known, which was dense enough to be used as tie points for survey 

measurements used for the mapping of local topography. 

 

Figure 7: Resection from three control points 

2.4 Research questions for the Delft School of Geodesy 

Because measurement errors might occur, more measurements than were strictly necessary for 

the calculation of the coordinates of all points, so-called redundant measurements, were made. 

These enabled checks to be performed, which revealed that small contradictions occurred without 

any real measurement errors having been made. As early as the eighteenth century, this had led 

to the understanding that measurements have a stochastic nature and therefore behave like 

random variables, which show variations in their value when measured repeatedly. Based on this 

understanding it was no longer sufficient to calculate the coordinates of newly surveyed points; 

the small discrepancies that were caused by the stochastic nature of the measurements had to be 

resolved first. Furthermore, it was important to provide insight into the quality, or accuracy, of 

those coordinates. 

These ideas generated the research programme of the Delft School of Geodesy, in which the 

following questions were addressed. 
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1. How does one resolve the contradictions, caused by the stochastic nature of the 

measurements, in a justifiable manner? 

2. In what way does the stochastic nature of the measurements propagate into the calculated 

coordinates? 

3. How can non-stochastic errors (gross errors) in the measurements be prevented? 

4. How can the order of magnitude of any potentially undetected measurement errors and 

their impact on the calculated coordinates be estimated? 

5. How should a survey plan be designed that ensures that the effects of 2, 3 and 4 are kept 

within acceptable limits? 

In the Tienstra period work focussed mainly on the first two questions. Tienstra built upon 

advances in mathematical statistics, achieved in the nineteenth century. The Method of Least 

Squares had been developed during that century, partly based on experience with geodetic and 

astronomical measurements. Some well-known mathematicians had been involved, such as 

Legendre, Gauss and Laplace. See also (Stigler 1986) and (Teunissen 2000). 

This period was completed in 1956, after Tienstra’ death. In that year, his book (Tienstra 1956) 

was published posthumously. This book provides a schematic overview of five standard methods 

for processing measurements with redundant observations, the five so-called Standard Problems. 
It also addresses the question of how measurement uncertainties propagate into the calculated 

coordinates. These ideas are applied to the composition of the HTW ‘56, which stands for 

Handleiding voor de Technische Werkzaamheden van het Kadaster (Manual for Technical Work of 

the Cadastre), published in the same year. This manual was the successor to the 1938 version of 

the manual (HTW ‘38), also aimed at cadastral land surveyors and survey practice in general. The 

HTW contained guidelines for the reconnaissance, measurement and calculation of geometric 

structures in land surveying. 

After Tienstra’s death Baarda took over the baton. His focus would be mainly on questions 3 

through 5. At around the early 1980s these questions had led to the completion of an attractive 

and consistent theory on the basis of which updated guidelines for survey practice were 

formulated. The advent of electronic distance measurement combined with angular measurement 

enabled novel designs of survey networks to be made. In conjunction with the rapidly developing 

information technology and computing, this provided a good basis for improving both the 

understanding of the theory and its application in survey practice. 

At Baarda’s retirement in 1982, he was offered a book in two volumes entitled Forty Years of 

Thought (LGR 1982). This book was a collection of articles written by colleagues, undergraduates 

and friends in honour of Baarda’s contributions to geodesy, nationally, but also globally. 
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3 The Tienstra period 

3.1 The first draft of a research programme 

On October 26, 1931 Jacob Menno Tienstra accepted the position of Lecturer for the land 

surveying curriculum at what was then called the Agricultural University at Wageningen. The title 

of his inaugural address was Usage of the method of least squares in land surveying. The least 

squares method had been developed in the nineteenth century by some leading mathematicians 

in France and Germany. This story is exhaustively and absorbingly described in (Stigler 1986). 

The book shows how astronomy, but especially geodesy, played a stimulating role in the 

development of this method. A shorter and clear description is provided in (Teunissen 2000). 

As described in Chapter 2, more observations were always taken in geodesy and land surveying 

than were strictly required for the calculation of the positions of new points. ‘Redundant’ 

observations were thus available to verify that no measurement errors were present. Because of 

the stochastic nature of the measurements, variations in the measurement results occurred, that 

always led to contradictions in the calculated results, even when no real measurement errors had 

been made. Particularly in scientific circles the least squares method was considered to be the 

purest way of reconciling these contradictions. 

However, in survey practice it was a long way from being customary. The calculation processes 

for the solution of large systems of linear equations were too complex and time-consuming. The 

era of the computer had not yet begun. Calculations were executed by hand, with the aid of 

logarithmic tables and manual or electrical mechanical calculators, such as the Brunsviga and 

Friden respectively. Therefore ad-hoc methods were invented for the execution of the calculations 

needed to reconcile data contradictions. 

In his inaugural address Tienstra showed that these practical solutions led to problems, because 

measurement errors and stochastic variations in the measurements were not taken into account 

correctly. That became even clearer when measurements were processed in successive stages for 

the stepwise expansion and densification of survey point sets. Improperly processed errors and 

contradictions in previous measurements then led to distortions that created problems when new 

measurements were being tied to earlier ones. He also stated that it was important to provide 

some indication of the quality of the calculated coordinates, to assess whether the quality of 

existing points was good enough for ties to additional measurements. 

Tienstra used a metaphor in which a group of people began to occupy an uninhabited island. He 

explained how that island would be mapped. A land surveyor first established a triangulation 

network covering the island, which was densified subsequently by finer control networks. That 

was followed up by further densification by means of traverses and resections and then finally, a 
detailed survey of the topography. 

This example thus showed the various work phases in survey practice. In the remainder of his 

lecture, he abandoned this example and addressed the aforementioned problems. After that he 

made a plea for the application of the least squares method, in which he discussed the following 

subjects: 

− The processing of measurement results, whether done by ad-hoc methods or least 

squares, was aimed at calculating coordinates. It was not customary to provide 

information about the quality of these coordinates, but that ought to be done. Tienstra 

made a plea to additionally calculate the standard error ellipses (or error curves) of the 

coordinates (see Appendix 4). 



10 

 

− Because the activities of the surveyor or geodesist were divided up into several stages, a 

phased application of the least squares method, following the successive work steps was 

meaningful. The results of one step could then be used as input to the next, without the 

adjustment of the earlier step having to be repeated. 

− Tienstra also argued in favour of a survey plan that would lead to circular error ellipses of 

the computed coordinates (see Appendix 4). As a result, the accuracy of the results is not 

sensitive to the direction from which a point is intersected. This places demands on the 

execution of the survey. Because he was mainly considering the surveying of triangulation 

networks, the accuracy of the angle measurement is important, as is the geometry of the 

triangulation network. This will be addressed in the next chapter. 

3.2 Pursuing circular error ellipses 

Tienstra indicated in his public lecture that he had found a way to generate point sets with circular 

error ellipses (he actually describes ‘error curves’, which are derived from error ellipses). He 

considered this the ideal result, as was common in geodetic survey practice of the time. This was 

followed by a publication with the Royal Academy of Sciences (KNAW), in which he explained his 

approach (Tienstra 1933). 

In the introduction he stated: 

When by measurement the position of a point in a plane has been determined, the accuracy of this 

determination is represented by the error-curve of the point according to the theory of the least 

squares. This curve is a foot-point curve of an ellipse. The determined point is the centre of this 

curve.  In particular cases the error-curve is a circle. The point is then determined with the same 

accuracy in all directions. Generally, it will deserve recommendation to require equal accuracy in 

all directions when determining a point. This will, for example, be the case with an angle point of 

a net of triangles. 

Furthermore, he claimed that he would prove that: 

... if the angles of a net of triangles without obtuse angles are measured with weights which are 

per triangle proportional to the cotangents of the angles, all the points of the net will have circular 

error-curves. 

The proof is provided through quite a few hefty mathematical derivations. Error ellipses will 

indeed be circles when the weights (see Appendix 1) of the measured angles are proportional to 

the cotangents of those angles. Tienstra demonstrated first that this is valid for the calculation of 

coordinates in a free network. This is a network that has not been tied to the established control 

network, hence a network with its own coordinate system. After that he showed that these results 

are retained when the free network is subjected to a similarity transformation, that is, when the 

coordinates are converted to an arbitrary other system. Mathematically speaking, that is correct, 

but it does invite a few comments: 

1. The requirement is placed on the weights of the angles. If the survey is set up such, that 

the angles measured are uncorrelated, the weight coefficient (in that case the inverse of 

the weight) and therefore the variance of an angle is proportional to the tangent of that 

angle. However, the value of the tangent is infinite for an angle of 100 gr (90°) and negative 

for angles greater than 100 gr. That is impossible for the variance, which must always be 

positive. Tienstra does state that a triangulation network should not contain any obtuse 

angles, but the point is that a function is used for the calculation of the variance that is 

inadmissible on principle. 
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2. This approach only formulates requirements for the shape of the error ellipse of each 

point. The quality of the entire set of points, as it would be described later by the complete 

covariance matrix, is not considered. As a result, it would appear later that this form of 

network optimization does not work properly. The requirement to pursue circular error 

ellipses with a prespecified radius would turn out to be too strict. It cannot be met. 

3. The previous two points were fundamental. But there were also practical objections 

against the specified requirement. This was due to the fact that the surveyor preferably 

measured several series of directions to the other points per station. Measurement of 

individual angles was considered impractical and inefficient. This drawback was 

compounded by the fact that each of the angles would have had to be measured with a 

different precision, depending on the value of its tangent or cotangent. The last point was 

not practicable anyway.  

Apart from these comments, this study by Tienstra does indicate that criteria for the quality of 

geodetic measurements were being sought. Here the focus is mainly on the precision of point 

coordinates, as expressed by the standard (or ‘one-sigma’) error ellipses. The underlying idea is 

that optimal geodetic networks are obtained if they are measured in such a way that points with 

circular error ellipses are eventually generated. This idea will persist with many people well into 

the 1980s. 

The idea of pursuing optimal geodetic networks would eventually be dropped in the Delft School 

tradition, because the requirement was considered to be too strict, as will be shown in section 3.3 

below. The surveyor had to be free to adapt the structure of the network to be surveyed to the 

local terrain. Moreover, the objection described in point 3 above applied. Experience had shown 

that stable measurement procedures lead to good results. The land surveyor had to be able to 

work according to a fixed work routine, but the proposed method did not permit that. Therefore, 

it was considered better to aim for a precision that would not be worse than a certain lower limit: 

measurements had to be good enough. The search for a criterion theory for the precision of 

measurements would be continued with this new formulation in mind. This quest would lead to 

an approach in the early 1970s that appeared to be usable. 

3.3 HTW ‘38 

In 1932 Tienstra, together with geodesist Th.L. Kwisthout and land surveyor P.J. Hamelberg, was 

asked to work on the design of a manual for the technical activities for land surveyors of the 

Cadastre. This manual was published in 1938 and was therefore referred to as HTW ‘38. 

This manual briefly described the structure of the coordinate system of the Rijksdriehoeksmeting, 

the RD-network. This was followed by an explanation of the survey designs that were used to 

densify this network in several successive steps, to finally arrive at the level at which the set of 

points was densified sufficiently to allow ties to local topographical surveys. In addition to the 

survey design, attention was given to the calculation methods for processing measurement results 

and the calculation of the coordinates of newly established points. Particular attention was paid 

to the adjustment of contradictions (misclosures), resulting from the stochastic nature of the 

observations. In addition, it was explained how the accuracy (standard deviations, variances) of 

the measurements affect the calculated coordinates, through the so-called propagation laws, and 

how standard error ellipses for the newly established points are derived from those results. The 
reconnaissance requirements were now formulated less strictly than Tienstra had done (Tienstra 

1933) for reasons that have already been given in paragraph 3.2 above. Or, as Baarda put it 

(Baarda 2002): 
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Allocation of a weight to an angular measurement, proportional to the cotangent of the angle, 

turned out to generate circular standard error ellipses of the corner points (the standard error 

ellipse is the ‘image’ of the covariance matrix of the two coordinates of the point; orthogonal 

projection of the standard error ellipse in a certain direction yields twice the standard deviation 

– the square root of the variance – in that direction). Circular standard error ellipses were the 

ideal in the geodetic world. However, an efficient and reliable measurement process precludes the 

measurement of angles with different weights. Selection of network points that ensures all angles 

are approximately sixty degrees provides the solution. Analogous reasoning holds for single point 

positioning and traversing. Hence, prior reconnaissance in situ of this measurement pattern – the 

so-called geometric framework – in an area to be surveyed is required to meet the objectives. As 

lead editor in an editing committee of three, Tienstra worded all this in the ‘Manual for Technical 

Work of the Cadastre (HTW) of 1938 in a way that was unique for that time. The objective was 

formulated that the standard error ellipse of all points to be established had to lie inside a circle 

with a radius of ‘d’ cm. A value of d=3 was imposed on points of the Rijksdriehoeksmeting; for 

points in medium to small urban and rural areas, d=6; for areas where boundaries consisted of 

ditches or hedges d=12 (especially with a view to aerial mapping). 

Hence, accuracy requirements were no longer formulated in terms of pursuing ideal point 

precision. They were now worded as follows (HTW ‘38): 

… the square root of the mean of the squares of the major axes of the error ellipses, computed for 

a large-enough number of newly established points, shall be … 

and then the specifications for types of terrain were given. Incidentally, these requirements 

differed slightly from what Baarda stated in the citation above. 

Although the reconnaissance requirements were more relaxed now than in (Tienstra 1933), the 

limitation that only point error ellipses were considered remained. No consideration was given to 

covariances between points, from which, as we will see, relative standard error ellipses can be 

computed (see Appendix 4). 

3.4 Revisiting the least squares method 

3.4.1 Questions about the least squares method 

In 1935 Tienstra switched to University of Technology at Delft, where he was initially appointed 

as associate professor and in 1939 as full professor. In his inaugural address he explained his 

struggle with the foundations of the method of least squares. From the beginning of the twentieth 

century until immediately after the Second World War, much thought was given to the 

relationship between mathematically formulated laws of nature and the stochastic nature of 

measurements, which was not yet well understood. In a broader context, this was about the 

meaning of mathematical models in relation to measurements that yield variable outcomes. In the 

Netherlands, the mathematicians G. Mannoury and L. J. E. Brouwer were the leading minds of this 

period. Their ideas were taught to a wider audience by David van Dantzig, a student of Mannoury 

and Brouwer. 

Tienstra had contacts in that group, in particular with Van Dantzig, and was influenced by their 

ideas. His experience was that application of the least squares method yielded good results, whilst 

in the thinking of the time its foundations were considered questionable. His reflections concern 

two important aspects of current thinking about the relationship between the measurement 

process and scientific models: 
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1. Physical phenomena are described by means of characteristic quantities, between which 

relationships exist that are established in a mathematical model. Measurements are 

aimed at obtaining values for those quantities, thus quantifying the model. 

2. Measurements are thus aimed at finding the values of those quantities, but due to their 

stochastic nature, variations occur in the measurement results, so that unambiguous 

values for those quantities can never be definitively established.   

Regarding point 2, he indicates that justifying the method of least squares from the foundations 

of probability theory is problematic. This is because it is assumed that measurements comply with 

the Central Limit Theorem. That implies that repeated measurements will yield a spread of results, 

but that, if the number of repetitions is very large, this spread will approximate the normal 

distribution. Mathematically it is assumed that the normal distribution will turn out to be the limit 

of the spread function (probability density function) of a variable x, if the number n of 

measurements xi would increase to infinity. The consequence is that for the mean Xn of each of the 

observations the following holds: 

𝑋𝑛 = σ
𝑥𝑖

𝑛
𝑛
𝑖=1   with E{x}= lim

𝑛➔∞ 
𝑋𝑛 = 𝜇𝑥  

in which μx is the mathematical expectation of the measurement results. Variable x is referred to 

as stochastic. The mathematical expectations of the measured quantities were also referred to as 

‘true values’, that is, values for a model as referred to in item 1 above. The problem now is that in 

real measurement sequences hardly ever enough observations are made to establish the validity 

of these axioms. So, if the validity of these axioms is a condition for the applicability of the least 

squares method, there is a problem. But it is also questionable whether measurement processes 

can be specified that are stable enough to allow such large amounts of data to be collected. 

Moreover, a mathematical model is always an idealisation of physical reality which one wishes to 

describe. Tienstra clarified that by means of an example in which the distance between two terrain 

points is measured. Let us elaborate on the example with three terrain points. One will have to 

understand that that these ‘points’ are idealisations of terrain objects. These objects are 

represented in the model by dimensionless points and that always implies some uncertainty about 

the link between the terrain object and the mathematical point. That means that it is not clearly 

defined which triangle is involved and that makes it problematic to specify the angles between the 

three points in a mathematical sense. Moreover, a theodolite that has its own physical 

characteristics is used, whilst the light rays involved propagate through the atmosphere from 

point to point and are subject to refraction that occurs during the measurement process. So, it is 

not certain either that the angles, even when they could be specified exactly, can also be measured 

in reality. Instead, something similar will be recorded. 

Hence the link between physical phenomena and mathematical models is subject to inherent 

uncertainties and, additionally, the measurement process carries its own uncertainties. 

Measurement processes can therefore never supply definitive, true values. One is forced to work 

with estimates resulting from the measurements and the application of the least squares method. 

That means that the validity of the models as referred to in item 1 above can never be established 

with certainty; all one can attain are estimates. Even while those are frequently quite good, a 

method will have to be found to establish their reliability. Moreover, experience had shown that 

more accurate measurements, resulting from improvements of measurement techniques, often 

led to model adjustments. 

After the Second World War, Tienstra therefore investigated the foundations of the method of 

least squares as it usually was applied in geodesy. His effort is nicely described in (Baarda 2002, 

pp. 133-134). He was mostly interested in gaining a thorough understanding of the reasons why 
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use of the method was justified and the true nature of the information it processed and made 

understandable. According to Baarda, in addition to being influenced by people such as Mannoury 

and Van Dantzig, Tienstra was also strongly influenced by the ideas of Von Mises, in particular by 

his book Wahrscheinlichkeit, Statistik und Wahrheit from 1936. 

3.4.2 Foundations of observational calculus and the least squares method 

(Tienstra 1948) 

The 1948 article (in English) begins immediately with strong criticism of the common terminology 

of the time: 

In most classical textbooks on the calculus of observations in the first chapter we find a discussion 

on different kinds of errors: the true error, the systematic error and the accidental error. In 

connection with the true error, also a true value of an observation is introduced. Sometimes the 

true value is considered as a mysterious ‘super value‘, that, may it not be measured by the 

imperfect methods of mankind, nevertheless must be considered to exist; sometimes it is defined 

as the limit to which tends the arithmetic mean of a number of observations when this number 

increases ad infinitum. It is clear that in both ways the conception is perfectly meaningless. 

Moreover it is in full contradiction with the theories in modern physics about the structure of 

matter. Therefore the true value and with it the true error has to be abandoned as belonging to a 

passed period of the history of science. … The theory can be built up simply, if we only begin with 

the beginning:  the observations. The observations are a physical reality and in them is to be found 

the source of all our knowledge on measuring. It is nonsensical to introduce incontrollable highly 

mysterious and metaphysical conceptions on a domain of pure physics. 

Tienstra objected to the use of the Gauss-Laplace normal distribution, because its tails ran to 

infinity. In real measurement processes such large deviations did not occur. Moreover, as 

described above, he objected to the use of the concept of mathematical expectation. He also 

wanted to avoid the concept of probability as a mathematical concept. He wanted to avoid these, 

in his view, hypothetical concepts and develop his theory on a purely empirical foundation. This 

approach presumably arose from his contacts with people like Mannoury and Van Dantzig. As 

mentioned above, they were representatives of a group of scientists and philosophers who were 

retrying to get a grip on the empirical foundations of science in a broader sense. 

Tienstra developed his ideas from this background. He made a very large number of observations 

of two mutually independent quantities x and y and, from those, built up a two-dimensional 

histogram. The values of x and y were plotted along two axes. He recorded the number of 

observations belonging to each pair of (x, y) values, that is, the relative frequency of occurrence of 

that pair of values. He then showed that the (x, y) pairs with the same relative frequencies formed 

approximately an ellipse of which the major and minor axes were parallel to the x- and y-axes. By 

means of a conversion to different length units along the x- and y-axes the ellipses can be 

converted to circles. Then it was explained how relative frequency distributions can be derived 

from this histogram for linear functions of x and y. 

This idea can be extended for larger numbers of quantities xi, with i = 1, …, n and linear functions 

of xi. To this end, the propagation laws for the mean, the variance and the covariance were 

explained, or, instead of those, the propagation laws for weight coefficients (see Appendix 1), 

referred to as cofactors by Tienstra. He then introduced a n-dimensional space in which the 

coordinates of a point x corresponded to the n observations xi. In that space points with the same 

relative frequency values generate hyper-ellipses or hyper-spheres instead of ellipses or circles. 

This was followed by an explanation of least squares adjustment according to Standard Problem I; 

see Appendix 1. This was elucidated by a geometrical interpretation as shown in Appendix 3. The 
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conclusion of the story is that the method of least squares can be explained without invoking the 

normal Gauss-Laplace error distribution function and without invoking the formal concept of 

probability. He formulates this as follows: 

To justify this we put for us once more the n-dimensional coordinate system … on which the 

representation of the n-dimensional frequency distribution of the observations had the property 

that points of equal frequency formed a system of concentric hyper-spheres and also a same 

system on which we represent the [Y-ruimte] and the ‘observed point’, both systems being placed 

before us in a same orientation. We now apply a translation on one of the systems relative to the 

other one, so that the observed point is placed on the hyper-sphere with the smallest radius and 

the centre of the hyper-spheres is in the [Y-ruimte]. Then this centre is the ‘adjusted point’ and as 

the observed point is now on the smallest hyper-sphere, its relative frequency is a maximum. 

In short: the point with the corrected observations as coordinates X is in the Y-space [Y-ruimte]. 

The original point x now lies on a hyper-sphere with the point X as its centre and radius R. All 

points that satisfy the condition equations of the adjustment must be in Y-space. It now turns out 

that, of all points in Y-space, point X yields the smallest value for R. In essence, this result is actually 

the starting point of the adjustment: the search for the shortest projection of point x on the Y-

space; see Appendix 3. 

The formulation above is somewhat cumbersome; essentially, he explains the principle of what is 

referred to in literature as maximum likelihood estimators. But that concept was probably not 

known to him at the time. Of course, the train of thought developed by Tienstra is not quite 

independent of the approach developed in the textbooks, because, instead of adopting Gauss’s 

normal distribution, he introduces a hypothesis that the measurements will generally behave in 

the way he discusses in his example. This is therefore a hypothetical induction step. In the 

textbooks this leads to the introduction of a mathematical error distribution and the concept of 

probability, which he wants to avoid. Baarda would later deal with this more pragmatically by 

following the philosophy of engaging and disengaging mathematical models. 

At the end of his discourse Tienstra states that the functional model (he refers to it as the algebraic 

model) that applies to the measurements must be tested. At Baarda’s suggestion he indicates that 

the function vT∙ gxx–1∙ v of the corrections to the measurements contains the information for this 

test. He will not work that out in detail; Baarda will do that later. 

3.5 The five Standard Problems and adjustment in steps 

3.5.1 An Extension of the Technique of the Method of Least Squares to Correlated 

Observations (Tienstra 1947)   

In his 1947 publication, Tienstra first addressed the fact that applications of the least squares 

method usually rely on the input of uncorrelated observations. He demonstrated that this method 

could be generalized in a simple way, so that correlated observations could also be used as a 

starting point. At that time, this was an innovative insight, especially for geodesists. He then 

formulated four variants for the application of the least squares method. These variants make use 

of this generalization of the method. 

The use of Ricci Calculus 

To formulate these variants with their solutions, he used Ricci Calculus, a complicated index 

notation that defines additions and products of several types of variables in the following style: 

yr = Br
s xs  
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See the explanation in annex 7, pp. 302-303 in (Tienstra 1947). This notation is used in tensor 

calculus. Geodesists have come to know that through differential geometry, a special application 

of tensor calculus is used in geometric calculations on curved surfaces such as the ellipsoid. This 

notation is very useful for formula systems in which many different types of quantities occur, but 

this flexibility is at the expense of the readability of the developed formulas. This made Tienstra's 

theoretical developments difficult to fathom for many. See also the remarks on this in 

(Alberda 2005). Tienstra probably opted for this notation because he was not yet sufficiently 

familiar with matrix calculus. 

From uncorrelated to correlated quantities 

Tienstra now re-derived the propagation laws for mathematical expectations and covariances of 

functions y of the original observations x with the aid of Ricci Calculus. See also annex 7, pp. 304-

305 in (Tienstra 1947) and Appendix 1. The values of the variances and covariances are often not 

exactly known. Therefore, so-called weight coefficients are used instead. Tienstra also refers to 

these as cofactors; see Appendix 1. When starting with the assumption of uncorrelated quantities 

x, it will appear that quantities, derived by applying the propagation laws, will be correlated. In 

other words, if gxixj
 =0 for all xi and xj (i ≠ j), then for two functions of x: y and z, it will be found 

that gyz = gzy ≠ 0. 

The least squares method therefore appears to be applicable whether or not the entered 

observations are correlated. When v are the corrections to the observations to be calculated, and 

the least squares requirement is to minimize the expression (see Appendix 1): 

vT∙ gxx–1∙ v 

then it is irrelevant for the solution algorithm whether gxx–1 and hence gxx are or are not diagonal 

matrices. If both are diagonal matrices, the quantities are uncorrelated; if not, they are correlated. 

With this remark Tienstra made the method more generally applicable than was customary in 

geodetic practice, because, in general, uncorrelated observations were assumed. In addition, 

observations with equal weights were usually assumed, which implies that all observed quantities 

would have been measured with equal accuracy. 

Five Standard Problems 
After these introductory considerations (Tienstra 1947) took a fresh look at the structure of 

adjustment problems in geodesy. Four basic structures were distinguished in that publication and 

a fifth was added later. An overview of these five Standard Problems is given in Appendices 1 and 

2. In this chapter the notation used in the appendices is used.  

The first formalism, Standard Problem I, was based on the fact that redundant observations were 

included in the survey design as check measurements. These were used to formulate condition 

equations, such as ‘the sum of the angles of a triangle equals 200 gr (180°)’, or, ‘the sum of all 

angles measured at a single station equals 400 gr (360°)’, etc. These conditions concerned 

functions of the observations, the values of which were known in advance. These functions can 
always be written such that the value of the function equals zero. If the observations are 

designated by x, as in Appendix 1, and the conditions are formulated as follows: 

t = U∙ x + U0 

then the expected result will be E{t} = 0. However, as a rule, t ≠ 0 due to the stochastic nature of 

the observations. These contradictions will have to be resolved, which is done by applying the 

least squares algorithm of Appendix 1. 

In practice the formulation and processing of condition equations is not always as straightforward 

as described above. This led to the formulation of Standard Problem II, an alternative algorithm in 
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which the corrected observations were expressed as a function of the unknown quantities, or 

unknowns, leading to the observation equations. Hence, the corrected directions, angles or 

distances – let these be X – were expressed as functions of the coordinates Y. If these relationships 

have the simple, linear form: 

X = A∙ Y + A0 

the solution can be found by applying the algorithm of Appendix 2. Usually, this relationship is not 

linear. Then an approximate solution will be found for the functional relationships X = F (…Y…). 

Under the assumption that the residual quantities ΔX and ΔY are small, this relationship will be 

linearised, so: 

ΔX = A∙ ΔY + A0 

Standard Problems I and II are the key algorithms for formulating the other three Standard 

Problems, which are described in Appendix 2. It is noted here that the fifth formalism was not 

given in (Tienstra 1947), but in his later book (Tienstra 1956); see below. It was therefore 

probably not recognized as a new variant until later. 

Solution to Standard Problem III and adjustment in steps 

Evaluating Standard Problem III deserves more attention here, because it led to the insight that 

the method of least squares allows problems to be solved in several steps. Here, the starting 
equations consist of two groups (see Appendix 2): 

X = A∙ Y + A0 and U∙ Y + U0 =0 

The first group consists of observation equations, as per Standard Problem II. The solution to the 

first step can thus be found with the algorithm from Appendix 2. This yields interim results. The 

set of equations of the second step specifies condition equations with the unknowns. 

Dependencies will therefore exist between the unknowns. Hence too many unknowns have now 

been introduced. The interim results for the unknowns will be written as Y’ which has the matrix 

of weight coefficients gY’Y‘. 

The second group of equations therefore consists of condition equations as per Standard 

Problem I, but now formulated in terms of the unknowns Y’. In (Tienstra 1947) it was 

demonstrated that the conditions can also be formulated for functions of the original 

observations. That implies that the solution algorithm of Appendix 1 can be applied. The input to 

the algorithm is the interim result Y’ instead of the observations x, and, furthermore, the weight 

coefficients matrix gY’Y‘ is used instead of gxx . 

This yields the least squares estimator Y for the unknowns. The corrected observations are then 

computed from: 

X = A∙ Y + A0   

Tienstra demonstrated that a solution obtained in multiple steps will yield the same results as a 

single-step solution. Solutions for Standard Problems IV and V are readily derived through such a 

division into steps. 

For the case in which the adjustment is based on the formalism of Standard Problem I, the 

adjustment in steps proceeds as follows. When the observations are entered into the condition 

equations, the followed misclosures are obtained: 

t = U∙ x + U0 

These equations can be split into two groups: 
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t1 = U1∙ x + U01 and t2 = U2∙ x + U02 

When the first group is solved by applying the Appendix 1 algorithm, the interim result is X’ with 

gX’X’. When entered into the second group of equations, this yields: 

t’2 = U2∙ X’+ U02 

Entering gX’X’ into the Appendix 1 algorithm instead of gxx will yield the adjusted observations X as 

the final result. Again, the same result would be obtained from a single-step adjustment. The 

condition equations therefore can be adjusted groupwise. Baarda would make use of this property 

later in the development of testing methods for the detection of gross errors in observations. 

Tienstra also demonstrated that a two-step solution could be split further into an arbitrary 

number of steps. The maximum number of steps depended on the number of redundant 

observations and therefore the number of conditions. Moreover, he showed that this approach is 

valid for all least squares problems. The method thus proved to be generally applicable. 

Tienstra refers to the option to split adjustment problems into several steps as “the principal 

property of the method of least squares”. This was of immense importance to land surveying and 

geodesy, because surveys were often executed in several successive steps. The processing results 

of an earlier step could now be entered into the next processing step after the addition of new 

measurements; that is, as survey networks were extended in a piecemeal fashion. Moreover, 
Baarda in particular would later distinguish between the adjustment of newly surveyed networks 

in isolation and their tying to known control points as a second step. 

Note: the process of adjustment in steps, as described above, is defined for the situation in 

geodesy and land surveying in which the surveying of control networks is done piecemeal over a 

relatively long period of time. That implies a rather static approach. However, the algorithm is 

consistent with the Kalman filter, which was formulated for dynamic measurement processes. 

3.5.2 The book 

The contents of (Tienstra 1947) and (Tienstra 1948) was incorporated into the syllabus of a 

course that Tienstra presented at the Mathematical Centre in Amsterdam in 1949. The lecture 

notes Observational calculus, parts I and II were published in 1951, the year of Tienstra’s death. 

These lecture notes probably have a considerable overlap with the earlier mentioned syllabus. 

Standard Problem V was also added to part II of the lecture notes; see Appendix 2. 

This course therefore provided a fairly complete overview of the work with which he shaped 

observational calculus over many years. This approach would henceforth be followed in the 

further development of the philosophy of the Delft School, up to the 1980s. After his death in 1951, 

the lecture notes were converted into a book, published by Elsevier in English in 1956 with the 

title The Theory of the Adjustment of Normally Distributed Observations. This book has had a large 

impact in international geodetic circles. References to this book in scientific publications and later 

textbooks were made until long after its publication. 

The book mentions that its publication was facilitated by his friends. After Tienstra’s death Baarda 

took over the baton. It is clear that he played a major role in its publication. He would continue 

where Tienstra had to leave off. 

3.6 Some concluding remarks 

3.6.1 The use of complex numbers 

The publication (Tienstra 1933) was discussed in Section 3.2. In addition to the main theme of 

this publication, it is interesting to see how Tienstra used complex numbers. He did this for 
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defining circular standard error ellipses and for performing a similarity transformation on the 

coordinates. Geodesists were familiar with complex numbers because these were used in 

mathematical formulations of map projections. In one of the derivations (Tienstra 1933, bottom 

of p. 664), he arrived at the following formula, somewhat paraphrased here: 

ln ξjik = Ajik +i∙ ajik  

Ajik is the natural logarithm of length ratio of two sides of a triangle, ij and ik, and ajik is the angle 

between these two sides. In this formula the structure of Π-variates, which Baarda would 

introduce later, may be recognized; see section 4.4 below. 

Baarda wrote in (Baarda 2002) that Tienstra also used complex numbers in an article about 

traverses. I have been unable to locate that article. Presumably it concerns a report that was 

discussed during conferences of the “Nederlandse Landmeetkundige Federatie” (Netherlands 

Land Surveying Federation) in 1937-39 (Tienstra 1937). The HTW ’38 also used complex numbers 

for performing similarity transformations. In chapter 15 of HTW ’38 (pp. 68-69) the 

transformation formulas are described with complex numbers, as in (Tienstra 1933). This 

approach is clearly recognisable as a precursor of the use of complex numbers in the 

S-transformation which would be formulated later by Baarda.  

3.6.2 The development of a theory without good computational facilities 

As explained in Section 3.1, computation techniques were still based on manual methods in the 

time Tienstra began his research. Calculations were executed by hand, with the aid of logarithmic 

tables and manual or electrical mechanical calculators, such as the Brunsviga and Friden 

respectively. Therefore, practical ad-hoc methods were invented for the execution of calculations 

for reconciling, or at least controlling, data contradictions. The computational processes for 

solving large systems of linear equations were felt to be too complex and time-consuming. The era 

of the computer was still far away. 

It was therefore so admirable that Tienstra had the insight that the use of all those approximation 

methods would lead to tensions in geodetic networks, which would eventually become very 

disturbing. He understood that geodesy needed a coherent scientific theory that allowed 

computational methods to be developed that dealt with the stochastic nature of measurements in 

a justifiable manner. 

His approach was in line with developments in mathematical statistics of his time, but he was very 

reluctant to apply the mathematical models of the nineteenth century without further ado. He 

attempted to work from a purely empirical basis without (too many) a priori assumptions, as was 

described in Section 3.4. Widespread application of his ideas in survey practice was delayed until 

the advent of modern computers in the 1960s and 1970s. Later Baarda would provide a great 

impulse to this with the establishment of the Geodetic Computing Centre (LGR). But Tienstra’s 

work did form the scientific basis on which Baarda would continue to build. 

3.6.3 Few references to source literature 

Few traces exist that might shed light on influences on Tienstra’s thinking in addition to his having 

been strongly influenced by the circle around Van Dantzig and Mannoury. Baarda mentions the 

book by Von Mises and additionally the philosophers A. N. Whitehead and H. Reichenbach in 

(Baarda 2002). 

A handful of references to literature exist in (Tienstra 1956). His remaining publications contain 

few or no references to literature. Yet many important publications had appeared before his time. 

For example, Gauss had already identified the importance for geodesists of adjustment based on 

condition equations (Gauss 1828) and Legendre had formulated the adjustment method based on 
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observation equations (Legendre 1805). Additionally, the principle of adjustment with correlated 

observations had been explained already by (Aitken 1936). And in (Helmert 1907) a summary 

treatment was given of the use of the least squares method in geodesy, among other disciplines. 

No references to these or other sources are found in Tienstra’s publications. Apparently, this was 

not customary in the past and journal editors might not have asked for them yet. 
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4 The Baarda period 

4.1 Practical experience as a land surveyor 

Willem Baarda, born on July 20, 1917 at Leeuwarden, was appointed lecturer in Land Surveying, 

Spirit Levelling and Geodesy at the Civil Engineering faculty of Delft University of Technology 

(TU Delft) on November 1, 1946. Before that, he had held various positions as land surveyor at the 

Cadastre from 1940 onwards (Hoek 1982), (Alberda 2005). During the time he had been 

appointed associate surveyor at Zwolle, his task consisted largely of establishing a geometric 

framework for the recently reclaimed Noordoostpolder. As described by Van der Hoek, the 

experience he gained during that period was to have a major impact on his later theoretical work. 

Baarda was appointed Land Surveyor with the Cadastre on January 1st, 1942 and transferred two 

months later to the Zwolle Office of the Service for Exceptional Land Surveys. This service had been 

set up shortly before to provide re-surveys and other cadastral innovations. Baarda arrived as an 

‘associate’ land surveyor, which means that he was deployable throughout the wide area covered 

by the Zwolle Office. A major part of a land surveyor’s work at the Service for Exceptional Land 

Surveys consisted of the establishment of geodetic frameworks in accordance with the guidelines 

in the Manual for Technical Activities of the Cadastre, the “HTW 1938”. In short, the method of 

plane point positioning of that time boiled down to choosing resection stations, connecting these 

to traverses and designing a network of survey lines within the framework of traverses that 

allowed topographical surveys to be tied to.  This procedure was entirely acceptable even to those 

with a more than superficial professional interest. But not so to Baarda! He soon arrived at the 

conclusion that the method was ‘not quite right’, that is, that it led to contradictions. 

One of the things that were ‘not quite right’ was the incorporation of the known coordinates of RD 

control points in the calculations from the outset, as a result of which the checking of one’s own 

measurements was obscured by errors in those coordinates, among other things. The fact that 

following various paths through the adjusted traverse network led to different coordinates for the 

same point led Baarda to the conclusion that it was actually not clear what the meaning and the 

value of the coordinates were! Yet another aspect that drew Baarda’s scientific attention were 

the, at first sight inexplicable jumps in the observation sequences of direction measurement. 

The Noordoostpolder had been reclaimed during 1942 and was developed piece by piece using the 

limited means available during the war. The establishment of the cadastral administration of this 

wide expanse of mud flats and reed beds was one of the Zwolle Office’s tasks. Baarda completed a 

very substantial part of this work. He used the opportunity to conduct research into various 

aspects of error theory. He also conducted measurements of refraction, as a result of which he 

formulated a theory for the calculation of regular density differences. The Head of the Zwolle 
Office, mr. H. Vermeulen, pursued a wise policy and allowed Baarda complete freedom in doing 

this work. Baarda never forgot the opportunity he had been offered. For years he kept in touch 

with his former boss until his death. 

While living in digs at Zwolle, Baarda began reconstructing the theory he had been taught by 

Tienstra. He had to work from memory because he had not brought the relevant lecture notes and 

travelling had become impossible due to the war circumstances (it was in the year 1944). 

Building on the experience that misclosure vectors of traverses usually pointed in the direction of 

the traverse he designed adjustment method no. II. In the same lodgings Baarda also found the 
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principle that would later lead to the entire theory of S-referencing.1 The year 1944 was probably 

his most fertile period of contemplation. All his later scientific work consisted of working out the 

ideas of that period. As he used to say himself: the execution of a programme of action. 

It is clear from the text above that in that period Baarda realised it was desirable to design the 

measurements such that the new framework could be tested in isolation to verify that no errors 

were present in the new measurements. Only after that, in a second step, would the new survey 

be tied to existing control points, to check whether these were undisturbed. With this he had 

essentially formulated the basic ideas of his later theory of S-referencing. 

Around 1950, inspired by these findings, he made an analysis of the various methods for tying 

new survey networks to established control points used in land surveying. He compared the 

results of these methods with the results obtained by the application of least squares adjustment 

to ties based on similarity transformations. The results of this analysis were published later as an 

extended explanation of the treatment of these subjects in the HTW ’56; see (Baarda 1956). This 

was the first step of a process that would ultimately lead him to the formulation of the theory of 

S-referencing. Additionally, it became clear to him that the approximation of the precision of 

established control points and the desired precision of the end results, as described in the 

HTW ’38, were too simple and too stringent. This insight led him later to the formulation of his 

criterion matrices and the replacement matrices derived from them. 

At that time, he was frequently in contact with his teacher, Tienstra; these contacts will have 

played an important role in his appointment as lecturer at the TU Delft. As a lecturer he worked 

closely with professor Tienstra and was introduced to the latter’s approach to his theoretical 

work. Hence he was the ideal successor to Tienstra and took over Tienstra’s role in the 

preparation of the HTW ’56. He also had a major part in the posthumous publication of the book 

(Tienstra 1956), which summarised Tienstra’s work. Baarda would adopt Tienstra’s approach of 

adjustment calculus as a starting point for his further work, which was aimed at the development 

of a theoretical framework for the assessment of the quality of geodetic measurements. 

4.2 David van Dantzig’s influence 

As discussed above, Tienstra was influenced by the ideas of Mannoury and particularly those of 

David van Dantzig. He introduced Baarda to those ideas. During the first half of the twentieth 

century, Van Dantzig worked at the Mathematical Centre in Amsterdam and at the TU Delft. 

Particularly at the Mathematical Centre he was involved in the revolutionary development of 

mathematics of that time, as described in (Albers 2000, a, b and c. A central theme in that 

development was the search for the role that mathematics began to play ever more emphatically 

in application areas such as physics, economics, biology and technology. It became increasingly 

evident that those disciplines always assumed measurements of which the values showed a 

certain spread. Hence the results of those measurements could not automatically be used as input 

 

1  Baarda introduced the concepts of S-referencing, S-base and S-system for the first time in his public 

lecture of 1947. He proposed to connect a newly measured network to only two control points, to check 

how the shape of the network fitted to the shape defined by the configuration of the whole set of control 

points. He likened this method with carpenters suspending a door or window to two hinges. If the door 

or window is not strong enough it will deform and will not fit into its frame. Dutch carpenters call such 

a deformation ‘schranking’. His lecture of 1947 was in Dutch. Later in his publication of 1973 he realised 

that this term was an unfortunate choice. For non-Dutch readers he explained his symbol ‘S’ as being an 

abbreviation of ‘similarity’. 
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into self-consistent mathematical models. This created a problem that was not understood 

straight away. It invited philosophical questions about the role and applicability of mathematics 

and mathematical statistics, which had been developed recently. 

Baarda attended the statistics course that Van Dantzig gave at the TU Delft in 1946-47. This course 

treated the following themes: 

a) the meaning of the stochastic nature of observations (measurements); 

b) the role of mathematical models in the processing of these observations; 

c) engaging and disengaging these models in the processing of measurement results; 

d) the occurrence of contradictions in those results, due to: 

− the stochastic nature of the observations, or: 

− deficiencies in the mathematical model, or: 

− (gross) measurement errors. 

Presumably he also attended the course that Van Dantzig gave in the context of the Studium 

Generale at the TU Delft, a series of public academic lectures (Dantzig 1945-47). A summary of 

those ideas can be found in (Dantzig 1947). These ideas exerted a strong influence on Baarda 

during the remainder of his active life. Notably the items c) and d) above play an important role 

in Baarda’s work. Engaging and disengaging mathematical models occurs at two levels: 

1. The normal distribution is adopted as the probability density function of the observations, 

when supported by the behaviour of the observations, evidenced by the spread in the 

values of a large number of repeated observations. Regarding to this aspect, Baarda is 

more pragmatic and states that experience in land surveying provides enough support for 

usage of this model as a standard, unless the observations really suggest otherwise. In this 

pragmatic approach he thus uses the Central Limit Theorem.  As discussed earlier, in that 

case the arithmetic mean of a the values of a stochastic variable x will stabilize close to the 

mathematical expectation E{x} of that variable, when the number of repeated 

measurements n is large enough: 

𝑋𝑛 = σ
𝑥𝑖

𝑛
𝑛
𝑖=1   ➔ 𝐸{𝑥} = lim

𝑛→∞
𝑋𝑛 = 𝜇𝑥 

2. At the second level, this plays a role in the definition of a functional (mathematical) model 

for the observations. This is a model of the section of physical reality that is desired to be 

quantified through measurements. It is formulated by expressing mathematical 

relationships between the observation quantities (in the form of conditions that should be 

satisfied by the observations) and between the observation quantities and the parameters 

that need to be determined, for example the coordinates of new points. 

Baarda was strongly influenced by this way of thinking. He was therefore able to take a less 

dogmatic stance than Tienstra in the rejection of the axioms that were described as the 

foundations of the least squares method in professional literature. 

In the posthumous publication of (Tienstra 1956) the influence of this approach is evident in the 

introduction to chapter 9. 

THE CONTROL OF THE MODEL AND NUMERICAL  

DETERMINATION OF THE MODULUS; MEAN (SQUARE) ERROR. 

9.1 Introduction. – It is obvious that an observer will be interested in knowing how well his 

observations fit the assumed mathematical model. If the model is given in the form used in 

Standard Problem I, the contradictions in the relationships apparently provide this information. 
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However, the difficulty is that these contradictions depend not only on the fluctuating character 

of the observations, but also on the degree of perfection with which the assumed model fits the 

actual conditions. 

In the existing terminology the contradictions resulting from the observations are called 
‘accidental errors’; those resulting from the model are called ‘systematic errors’. Systematic errors 

are considered to be traceable to the influences of temperature, the observation model employed, 

etc. When these have been sufficiently removed, the remaining errors are considered to be 

accidental. This notion of ‘error’ is the central point in the classical development. The concept of 

“true value” is also used: there is a true value of each quantity to be measured, and a true value 

minus a measured value is a ‘true error’. The classical theory also uses an “apparent error”. By 

this is meant a reference value minus an observation. The reference value is the adjusted value 

found by the application of least squares. The apparent error is therefore the opposite of the 

‘correction’ applied to the observations in the theory as developed in this book. 

Criticism of the classical development is based on the following points. 

1. It is wrong to base the theory on the concept of ‘error’ as starting point. We may only speak of 
an error after we have defined a reference value. This reference value can be nothing but a 
function of the observations. The observation, therefore, is primary and should logically be the 
point of departure in developing the theory. 

2. The concepts of ‘true value’ and ‘true error’ are completely fictitious and physical absurdities. 
There is, for instance, no true length of a measuring rod. 

3. It is certainly improper to speak of an ‘accidental error’ as a defined quantity, as there is no 
end to eliminating systematic errors. 

4. The term ‘systematic error’ is at best misleading. In the classical theory ‘error’ is always 
connected with observation. The fact that systematic errors indicate imperfections in the 
mathematical model is more or less concealed by the misleading name. 

None of these doubtful concepts were necessary to the development of the theory presented here. 

We are only concerned with the observations, the mathematical model, and the method of least 

squares for adjusting the observations in such a manner that they fit the assumed model. The 

model may be more or less complete, the observations may be made carefully or roughly; these 

two factors determine the size of the contradictions when the observations are substituted in the 

model. This is the true character of the problem. 

A remark on page 305 in (Tienstra 1948) and one in the chapter “FILOSOOF” (Philosopher) in 

(Baarda 2002) lead us to suspect that this chapter was added at Baarda’s initiative, initially to the 

syllabus (Tienstra 1951) and later to the book (Tienstra 1956). This introduction discusses the 

same subjects as mentioned in (Tienstra 1948), but they are expanded here to the starting points 

of the testing theory that Baarda would develop later. In this chapter Baarda puts words into 

action by demonstrating that Tienstra’s histograms are described well by the Gauss-Laplace 

probability density function (the normal distribution). Later this allowed him to use testing 

methods based in this distribution. that had been developed in mathematical statistics. 

From this point on Baarda would formulate the functional model for the expectation values of the 

observation variates and the unknown parameters. The original observations do not comply with 

the model on account of their stochastic nature. The least squares method yields estimators that 

do comply with that model. This philosophy of engaging and disengaging models allowed him to 

opt for a pragmatic approach. This necessitates the use of effective testing methods to evaluate 

whether the modelling choices made were justified. The misclosures of the condition equations 
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contain the information on which these tests must be based. Baarda would devote a large part of 

his work to the formulation of such a testing method. 

4.3 The HTW ‘56 

In 1950 Tienstra and the Cadastral Land Surveyors 1st Class D. de Groot and F. Harkink were asked 

to compile a new HTW. After Tienstra died in 1951, Baarda took over his role. A few aspects of 

this new HTW are noteworthy.  

Chapter II discussed the surveying of new point fields and their tying to the RD network. Section 

II.2 discussed straight away the reconnaissance criteria for new surveys. Baarda’s experience, 

gained from his work in the Noordoostpolder, are evident from the fact that criteria for absolute 

point accuracy were de-emphasized. The new criteria were formulated in terms of the required 

relative point accuracy, that is, the accuracy of one point relative to another point. The required 

accuracy of the coordinate differences of two points was specified as a circle with a radius that 

was a function of the distance between these points. The required absolute point accuracy was 

specified as a circle with a radius that is a function of the distance to the closest existing control 

point. These circles were interpreted as accuracy criteria; calculated standard error ellipses had 

to lie within them. Baarda discovered later that this approach would also lead to problems and 

developed a criterion matrix in his 1973 publication. 

Section II.3 began with a treatise on the essence of coordinates. Here too Van Dantzig’s influence 

could be discerned, particularly in the first paragraph. Whether an average practical land surveyor 

would have been able to understand this is a valid question. 

Section IV.10 discussed the tying of densification networks (triangulation networks) to the RD 

network. The similarity and affine transformations were described, both the direct (on the 

minimum number of tie points) and the overdetermined (on more tie points than required) 

versions. The overdetermined similarity transformation was explained in section 1.1a (pages 106 

and 107) with the remark that it is advisable to tie to only two points initially, to evaluate whether 

any significant deformations exist between the two systems. This remark clearly foreshadowed 

adjustment and testing in steps, as executed by applying the later methodology of S-systems.  

The overdetermined non-linear similarity transformation was described in Section I.2 (pages 108 

and 109) by means of complex numbers, as Tienstra did in the HTW ’38. The example described 

the tying of two sets of points by means of a second-degree polynomial. The RD coordinates of the 

newly surveyed points were computed between the tie points using so-called Lagrange 

interpolation. When simplifying interpolation to a polynomial of degree one (that is, a regular 

similarity transformation), the formulas of Baarda’s later S-transformation can be easily derived 

from the interpolation formulas. As will be shown later he indeed developed his ideas while the 

concept of S-transformations was germinating in his head. He had been working with this idea in 

mind from the 1940s. It is not entirely clear why he omitted to mention this explicitly in his 

publications. 

Chapter X discussed the testing of measurement and calculation results. For the explanation of 

symbols used in this paragraph, see Appendix I. For the condition equations t = u∙ x + u0, the 

expectation values of the misclosures t are zero: E{t} = 0. Therefore, it is to be expected that any 

measurement errors or disturbed tie points will result in values for t that differ significantly from 

zero. In chapter X, a testing method was introduced that was aligned rigorously with recent 
developments in mathematical statistics, as Baarda had become acquainted with through Van 

Dantzig. For his work he made extensive use of earlier editions of (Cramer 1957). The approach 

in that book is aligned with the comments that had also been made in chapter 9 of (Tienstra 1956).  
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For the corrected observations X = x + v the following equation held: u∙ X = 0, which confirmed that 

they satisfied the requirements. For the least squares corrections v, the following equation was 

valid: vT∙ gxx
–1∙ v = tT∙ gtt

–1∙ t and variable σt
2 was computed as: tT∙ gtt

–1∙ t/b = σt
2. 

Long-term experience led to the choice of a value for the variance factor σ2, such that the matrix 

σ2∙ gxx = σxx correctly represents the precision of the observation variates x. The existence of b 

condition equations led to the variable σt2/σ2 having a Fisher distribution with degrees of freedom 

b and ∞ (Cramer 1957 and Hogg and Craig 1970). Hence, σt
2/σ0

2 = Fb,∞ . This led to the introduction 

of a rigorous statistical testing method. Additionally, the concept of Power of the Test was 

explained.  That indicated the magnitude of a bias in the observations that might be detected with 

a probability of β, which was commonly fixed at 80%. With these concepts Baarda would later 

develop the so-called B-method of testing and introduce the concept of Marginally Detectable Bias 

(boundary value). 

4.4 The birth of Π-variates2 

4.4.1 The introduction of the variable ΔΛik, calculated from coordinates 

Baarda had been occupied for some time by the subject matter addressed in chapter X of the 

HTW ’56. In 1957 he published an article in the journal Kadaster en Landmeetkunde, in which he 

elaborated on this subject (Baarda, 1957). This elaboration was formulated entirely in terms of 

complex numbers, as Tienstra had done before him in (Tienstra, 1933) and the HTW ’38, and 

Baarda had done himself in the HTW ’56. He considered the transformation of coordinates (x, y) 

in a given coordinate system to coordinates (x’, y’) in another system with only small differences 

in the values of the coordinates, such that (x’, y’) = (x + Δx, y + Δy). See Figure 8. 

 

Figure 8: Extract from (Baarda, 1957) 

Baarda’s formulation, shown in Dutch in Figure 8, is noteworthy: 

 

2 Baarda used the term “Π-quantities”. 
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We obtain the angle A by subtracting two azimuths (Φ) and the length ratio V by dividing two 

lengths. To achieve additional symmetry, we will henceforth consider the (natural) logarithm 

ln V of V. This implies extension and modification of (3) to: 

[followed by two lines of formulas] 

A bit further down (not shown in Figure 8) the usage of complex numbers was introduced:  

z = y + i∙ x and z’= y’ + i∙ x’ and, based on the paragraph above:  z’= z + Δz = (y + Δy) + i∙ (x + Δx). 

The coordinate differences of two points i and k could then be expressed as: 

zik = zk – zi with azimuth Φik and length Lik and 

z’ik = z’k – z’i with azimuth Φ’ik and length L’ik . 

The variable ΔΛik was then defined as: ΔΛik = ln (z’ik / zik) = ln (z’ik ) – ln (zik) 

Considering that ΔΦik = Φ’ik – Φik and Δln Lik = L’ik – Lik ,   the following relationship held: 

ΔΛik = Δln Lik + i∙ ΔΦik 

Later, these variables were extended to cover the relationships between three points j, i and k, 

with the length ratio Vjik = zik / zij and the angle Ajik = Φik – Φij. This led to the following relationship. 

ln ΔVjik + i∙ ΔAjik = ΔΛik – ΔΛij 

In this article Baarda described the tie between two coordinate systems with small differences in 

coordinate values of the same point. He did not yet arrive at the following interpretation. 
Λik = ln zik and from there ln Vjik + i∙ Ajik = Λik – Λij. 

Tienstra had adopted this approach earlier, be it with different symbols, in (Tienstra 1933). 

Baarda referred to that in the introductory chapter of (Baarda 1973) and in (Baarda 2002) and he 

also mentioned an article about traverse calculations in which Tienstra used complex numbers. In 

(Baarda 1977) he stated that, around 1958, he had completed formulating the theory of the 

description of plane point positioning entirely in terms of complex-number algebra. Yet it was not 

until the second half of the 1960s that he published on this. His lecture notes about plane point 

positioning were published from 1966 and his publications with the Netherlands Committee for 

Geodesy about this subject also appeared around 1966. See below. 

4.4.2 Arrival of the Π-variates (Baarda 1962) 

Whilst, in Baarda’s opinion, the HTW ’56 was a step forward compared to the HTW ’38, the 

following questions remained unanswered.  

a) How should the quality (precision) of the coordinates of the tie points in densification 

surveys be described in a satisfactory manner? 

b) What requirements should be formulated for the precision of newly surveyed stations? 

c) How should one test for measurement errors in densification networks? 

d) How should tie points be tested for possible disturbances? 

e) How can these two sources of error be separated?  

In the meantime, Baarda had joined Special Study Group 1:14 (SSG 1:14) of the International 

Association of Geodesy (IAG). In this group he met a number of colleagues who were studying the 

same subjects, but their approaches were all different. He tabled Van Dantzig’s ideas there and 

worked these out in detail in a number of reports that were later published by Netherlands 

Committee for Geodesy. These may be found now at www.ncgeo.nl under menu item Publications. 

Van Dantzig had pointed out that the specification of a functional model is of vital importance for 

the processing of observation data. That implied that this model ought to be specified in terms of 

estimable quantities that are generated by the measurement process. In other words, the Central 

Limit Theorem had to be applicable. Therefore, the model should not be based on non-repeatable 

http://www.ncgeo.nl/
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observation variates, nor should it dependent on incidental choices. Only when these conditions 

are met will it be possible to investigate, on the basis of the processed measurement results, 

whether: 

a) the measurements have been taken correctly; 

b) the functional model has been well chosen (that is, it aligns with the measurements). 

The position of stations 
These ideas are worked out in a report for IAG-SSG 1:14 (Baarda 1962) for the positioning of 

stations in a network. The argument used is that a coordinate system must be chosen whenever 

coordinates are computed. This concerns the origin (two coordinates), the orientation of the 

Y-axis (and, consequently, the X-axis) and a scale parameter to relate the unit of measure of the 

measured distances to the metric of the coordinate system. That amounts to four parameters that 

must be chosen. One might alternatively choose the coordinates of any two stations (also four 

parameters). Those points then serve as the computational base for the calculation of the 

coordinates of the remaining stations. Baarda therefore concluded that coordinates do not meet 

the requirement of being estimable quantities. In the report for SSG 1:14 he elaborated on this; 

see Appendix 5, where we find that: 

Λik = ln zik   

From that, it follows that: 

Πjik = ln (zik / zij )= ln zik - ln zij = Λik – Λij  = ln Vjik + i Ajik  

The definition of this Π-variate is identical to the expression used in (Tienstra, 1933); see Section 

3.6 above. When two stations are chosen as the computational base for calculating the coordinates 

of the remaining stations in the network, the precision σXY of the new stations turns out to depend 

only on the Π-variates that were used in their calculation. Hence, the precision of the coordinates 

is a direct function of the precision of these Π-variates. When a different computational base is 

chosen, a different precision σXY will result for the coordinates of the remaining stations. This 

demonstrates again that Baarda was already thinking in terms of the concept of S-systems. 

An analysis of the measurement process 
The idea of the Π-variates was expanded, and its results are described in chapter 4 of (Baarda, 

1967). An analysis of the measurement process in land surveying demonstrated the following 

points. 

− Direction measurement by means of a theodolite yielded quantities that did not meet the 

requirements of the Central Limit Theorem, because each time a theodolite was used at a 

new station, or each time its horizontal circle was rotated, the reference (zero) direction 

for direction measurement changed. However, measuring the angle αjik in station i, 

subtended to two other points j and k, would eliminate this problem, because the same 

reference direction would be used for both directions rij and rik, because αjik  = rik  –  rij . 

− Distance measurement was conducted with equipment that had its own unit of measure 

of length, which might vary over time. Hence, the length of, for example, the side ij of a 

triangle, equals lij = s ∙ dij , where s is an unknown scale factor for length and dij is the 

distance, measured by (or with) the instrument. Because s might change over time, 

distance dij did not satisfy the requirements of the Central Limit Theorem either. However, 

when an additional distance dik between stations i and k was measured, the following 

relationship held: vjik = lik / lij   =  dik / dij . 

By adopting angles as estimable quantities, the relevance of the instrument’s reference direction, 

hence, its relationship to north, is eliminated from the measurement process. Because length 

ratios (distance ratios) are also estimable quantities, the relevance of the recording of absolute 
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time is also eliminated. For electronic distance measurement, when measuring multiple distances 

from one station, local time measurement to determine the travel time of the electromagnetic 

signal suffices. For length ratios only the ratios of the travel times matter. 

The use of natural logarithms of length ratios, ln vjik , in the measurement process yields Π-variates, 

which can now be formulated in terms of measurement results: Πjik = ln vjik + i∙ αjik . That 

demonstrates that the analysis of coordinate systems and measurement results can be based on 

the same Π-variates. It also follows from this analysis that that the tying of two coordinate 

systems, but also the tying of new survey measurements to an existing system, must be performed 

by means of a similarity (or: conformal) transformation. Such a transformation does not distort 

the Π-variates. Essentially, this agrees well with the comparison of tying methods in (Baarda, 

1957), in which a preference for this method was also expressed. 

Remark 1: In the above paragraphs αjik and vjik were introduced as estimable quantities but do 

require a footnote. The angle αjik is computed as the difference between two readings on the 

horizontal circle of a theodolite, whilst its horizontal circle is considered to be parallel to the 

horizontal plane, hence at right angles with the direction of the local vertical. Whether that is true 

depends on how well the vertical axis of the theodolite is aligned with the local gravity direction 

(see Chapter 2). It is commonly assumed that the deviations in the alignment of a theodolite are 

so small, that αjik can indeed be considered to represent a horizontal angle. The ratio vjik is 

computed from two distances, measured from the set-up station i to the target points j and k. In 

general, these points will have different heights, but the height difference will be small in The 

Netherlands. The zenith angles from the set-up station to the target points can be determined by 

taking readings of the vertical circle of the theodolite, which allows slope distances to be projected 

to the horizontal plane. Because of the small height differences the effect of this computational 

step on the accuracy of the projected distances will be small, so that one may assume that this 

accuracy is the same as that of the slope distances. With these two assumptions the quantities αjik 

and vjik can be considered to be estimable. This leads to the concept of plane survey networks. 

Remark 2: In aligning the vertical axis of a theodolite with the local vertical, the additional 

assumption is made that the gravity directions of several set-up stations are parallel. This 

assumption is valid if the survey network covers an area that is sufficiently small. For larger 

networks this is not the case. Those should be treated as spatial survey networks. See Section 4.9. 

4.5 Traverse circuits 

In the period around 1960, when Baarda was formulating his concept of Π-variates, the first 

electronic distance measuring instruments became available commercially. The first versions 

were still somewhat unstable, as a result of which the length unit of the instruments would vary 

over time. Additionally, corrections for temperature and pressure had to be applied and these 

corrections had to be updated several times during the day. These issues led to the idea of deriving 

distance ratios from the recorded distance values at each station. That was analogous to the angles 

computed from the recorded directions and aligned neatly with the parallelism of angles and 

length ratios in Π-variates. However, over the years the instruments became increasingly stable 

and accurate. Soon, distances of several kilometres could be measured with good accuracy. This 

resulted in more freedom for the land surveyor in choosing survey configurations in the field. 

Until then high-accuracy densification networks depended on surveying triangulation networks 
and/or triangulation chains. That required a theodolite to be set up in at least two of the three 

stations of each triangle, preferably all three, from which angular measurements would be carried 

out. This imposed severe constraints on reconnaissance and led to an intensive measurement 

process. The new instruments allowed the configuration of each triangle to be determined by 



30 

 

surveying the complete Π-variate in only one of the three stations, hence one angle and one length 

ratio.3 

 

Figure 9: Three traverse circuits and their ties to stations A and B (four known coordinates) 

Around 1961–62 this already led to the insight that it was better to build up survey networks from 

closed polygons, or traverse circuits, as shown in Figure 9. Personal reminiscences in (Kruif 2019) 

indicate that first experiences with this survey approach were gained by students during their 

field work in the summers of 1961 and 1962. This proved that the quality of these traverse 

circuits, surveyed with the then modern instruments, was the same or even better than that of the 

triangulation networks of the past. Moreover, not only were fewer stations required, because it 

was no longer necessary to measure complete triangles, but it was also possible to have a less 

dense distribution of stations, so that fewer open sightlines were required. That resulted in faster 

and cheaper surveys, which meant a considerable gain for practical surveying. 

This method was elaborated on in a series of voluminous lecture notes (Baarda 1969). These 

discussed a number of standard designs, for which condition equations were formulated to 

facilitate adjustment according to the First Standard Problem. These were described in terms of 

complex numbers. Baarda preferred this formulation for analytical reasons. It provided good 

insight in the possibilities of finding errors in the measurements or in the coordinates of the tie 

points. Quee would revert to this later in his research into the structure of three-dimensional 

networks. He supplied a number of reasons why survey analysis based on the First Standard 

Problem leads to a better understanding of the functional model, because of the explicit 

elimination of unknown parameters. These parameters might remain hidden when using the 
formulation of the Second Standard Problem (Quee 1983).   

However, from a practical perspective, it was much more convenient to use the Second Standard 

Problem (Appendix 2) for the processing of the observations, because the observation equations 

have a relatively simple structure in which each observation is expressed as a function of the 

 

3 A ‘distance’ is a measured quantity; a ‘length’ its mathematical abstraction. In practical terms the length 

ratio is identical to the distance ratio, because both distances share the same scale factor, which relates the 

distance to the corresponding length. See page 27, An analysis of the measurement process. 
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unknown coordinates. Consequently, the software did not need to be adapted each time to the 

surveyed network structure, which did have to be done in the case of the formulation of condition 

equations. Use of the First Standard Problem additionally required linear independence of the 

condition equations. 

Soon distance measurement equipment became so good, that practical experience indicated that 

the scale factor of an instrument tended to remain constant during the surveying of the entire 

network, so that only a single scale factor for each instrument used had to be established. The 

implication of this was that the length of each traverse leg did not have to be measured from both 

stations. The length of each traverse leg only needed to be measured once, which speeded up the 

surveying process. The consequence was that not all Π-variates in the closed traverse networks 

were measured. The formulation of condition equations became less systematic as a result, while 

the formulation of the observation equations for the Second Standard Problem could be adapted 

in a straightforward manner. 

Remark 1. The approach for adjusting measurement results, described above, demonstrated that 

the formulation of the First and Second Standard Problems sufficed in land survey practice. As a 

result, the remaining three standard problems disappeared from the lecture notes. According to 

(Alberda 2005), it was around 1967 that Baarda introduced the term Adjustment Theory instead 

of the term Observations Calculus, used by Tienstra.  

Remark 2. Baarda had taken over the use of Ricci notation from Tienstra. In the meantime, he had 

become acquainted with matrix calculus (Hoek 1982) and adapted his notation accordingly. That 

resulted in a hybrid notation form, a combination of Ricci and matrix notation (indices and 

parentheses), which made his publications rather inaccessible for the non-expert reader. This 

turned out to be a considerable barrier to the uptake of his ideas. See also the remark on this in 

(Alberda 2005). 

4.6 The B-method of testing 

Chapter X of the HTW ’56 gave the first impetus to the development of a method to check the 

results of a calculation for the possible occurrence of errors. This was based on the quadratic sum 

of the misclosures of the conditions: 

tT∙ gtt–1∙ t/b  = σt2 

This quantity yields a Fisher-distributed variable σt2/σ02 ~ Fb,∞ in which σ02 is an assumed variance 

factor, based on experience. The assumption is that: E{σt
2} = σ0

2, or, formulated differently: 

E{σt
2 / σ0

2} = 1. When true, σt
2 is a good estimator of the variance factor σ0

2. All information 

required for the testing of adjustment results is captured in the misclosures t of the condition 

equations. 

Earlier in Chapter X of the HTW ’56 it was shown that vT∙ gxx
–1∙ v = tT∙ gtt

–1∙ t . This means that the 

corrections (or: residuals) v contain the same information as the misclosures t.4 Therefore, when 

the adjustment was done according to the Second Standard Problem, testing can also be performed 

on the basis of the least squares corrections (or residuals) v. That also holds for Standard Problems 

III, IV and V. 

 

4 Strictly speaking the residuals are minus the corrections. So, when the corrections are designated by v, the 

residuals would be -v. In Dutch geodetic literature the preference is to speak of corrections; in English 

geodetic literature residuals appears to be preferred. 
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These findings formed the starting point for the development of a method for finding errors in the 

original observation data. This method could be formulated entirely in terms of mathematical 

statistics, which allowed the ad hoc methods, common in land surveying, to be abandoned. As it 

turned out, this new approach also made it possible to estimate the magnitude of errors that could 

be detected with it. This gave an idea of the reliability of the measurements. 

4.6.1 Introduction of the concept of “Boundary Value” (Baarda and Alberda 1962) 

The first elaboration on these ideas was published in (Baarda and Alberda 1962). This article was 

largely a brief recapitulation of (Tienstra 1956). It began with an extensive introduction, which 

explained how, in accordance with Van Dantzig’s line of thought, mathematical-statistical models 

were linked to the measurement process in land surveying. It asserted that the normal 

distribution (the ‘Gauss bell curve’) provides a good description of the stochastic nature of the 

observations. Then it was demonstrated that the results, the least squares-corrected observations 

X, are so-called Best Linear Unbiased Estimators (BLUEs) of the expectations E{x}, that were sought 

to be determined. It was also reiterated that an adjustment might alternatively be executed in 

multiple steps and that this would yield the same results as adjustment in a single step. 

The introduction of -variates 

Next, in chapter 5, hypothesis testing was discussed. The null hypothesis H0 is the assumption that 

the observations and the known coordinates are unbiased, hence E{x} = μx. Therefore E{t} = 0, 

where t are the misclosures of the condition equations; hence E{t} = 0. An alternative hypothesis 
Ha assumes that one or more observations are biased. Under an alternative hypothesis the 

following holds: 

Hai: E{xi} = μxi + ∇xi and E{t} = 0 + ∇i t = ∇i t 

This group of alternative hypotheses, in which only the i-th observation is assumed to contain a 

bias, is, as we shall see below, the basis for the testing of individual observations and the 

calculation of the effects of undiscovered biases on the computed coordinates. Baarda termed this 

group the Conventional Alternative Hypotheses. 

The power of the test and the concept of Boundary Values 
In the presence of b redundant observations, b mutually independent condition equations can be 

formulated. The number b is also referred to as the number of degrees of freedom. The effect of a 

bias ∇x on the value of the above-mentioned estimator of the variance of the misclosure is: 

E{σt2/σ02} = 1 + λ/b, in which λ ≥ 0. 

In the HTW ’56 it had already been demonstrated that, under H0, the variable σt2/σ02 is Fisher-

distributed; hence σt2/σ02 ~ Fb,∞ . This creates the option of testing whether σt2/σ02 does not deviate 

from unity by too much, or, in other words, whether σt
2 does not deviate from σ0

2 by too much. 

That might be an indication of the presence of biases in one or more observations. Testing 

proceeds as follows. 

1. Choose a value for ⍺ and compute the value F1–α;b,∞ = C. Parameter ⍺ is called the 

significance level of the test and indicates the probability that the test will incorrectly lead 

to rejection of the null hypothesis. 

2. When there are no biases present, that is, under H0: P(σt2/σ02 > C | H0 ) <  α. 

That is, the probability that σt2/σ02 > C is smaller than the chosen value of ⍺. 

3. In practice common values for the significance level are α = 0.05 and α = 0.001. 

When H0 is not valid, but instead some alternative hypothesis Ha is, a bias in one of the 

observations is assumed. In that case E{σt2/σ2} = 1 + λ/b. This results in a shift of the Fisher 

distribution. The question is how large this shift needs to be for the bias to be noticed with a 
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probability greater than β, that is, how large λ needs to be such that P(σt2/σ02 > C | Hai) > β. 

Parameter β is known as the power of the test. In practice a common value for β is 0.80. In other 

words, there is a probability of 80% or greater that a bias is detected. When that bias generates 

the value λβ, the combination (λβ , β) defines the reliability of the test. 

The above description concerns subject matter that can be found in textbooks on mathematical 

statistics. Baarda referred to an earlier version of (Cramer 1957). In (Baarda and Alberda1962) 

this information was interpreted in the context of the processing of geodetic measurements. 

Furthermore, it was supplemented at two important points: 

1. For every alternative hypothesis Hai, that is, for every observation xi for which a test is 

being executed, one can calculate the value ∇β xi that leads to the value of λβ , such that 

P(σt2/σ02 > C | Hai ) = β . For this value ∇β xi the concept of boundary value5 was introduced. 

2. Additionally, it was explained how this test works for an adjustment in steps. Three steps 

were proposed: 

a. calculation of the arithmetic mean of repeated measurements (angles and distance 

ratios), per station: the station adjustment. 

b. The adjustment of the newly surveyed network, independent of any tie points. This 

enables new measurements to be tested on their own for possible gross 

measurements errors (biases). 

c. The tying of the new network to known control points. This allows the coordinates of 

these points to be tested for potential disturbances. 

Evidently the number of steps can be increased for each new expansion of the new survey 

network, that is, each densification phase of a given section of the control network can be 

individually tied to the expansions that have been surveyed before. 

Notably the separation of the steps b. and c. is an important step towards the concept of S-systems, 

which was not long in coming. 

The reliability of a network (Baarda, 1967) 
The above-mentioned ideas were further elaborated on in (Baarda 1967) and (Baarda 1968). 

Firstly, it was explained in (Baarda 1967), which was originally a paper presented at a conference 

at Brussels in 1966, that adjustment according to the First and Second Standard Problems yields 

identical results. That meant that, whilst Baarda preferred to use the formalism of the First 

Standard Problem for his analyses, its results are also valid for the outcome of the Second Standard 

Problem. He then explained how the Fisher test works for an adjustment in steps and what the 

implications are for the choice of the critical region of the test (that is, for the choice of α). He 

proceeded to show what the effect of a measurement error is on the results of the adjustment and 

the Fisher test if that error is not detected. Additionally, he showed what its impact on quantities 

correlated with the measurements would be. He introduced the latter as XR-variates (derived 

quantities). Essentially, this concerns the following two types of quantities. 

1. The coordinates of control points that are not tie points but are correlated with the 

coordinates of the tie points. 

2. The survey results that were adjusted in an earlier phase and are correlated with the 

input data of a later survey phase. 

 

5 The concept of boundary value is referred to in some geodetic literature as Marginally Detectable Bias 

(MDB). 
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Several types of -variates were introduced, but the term boundary value is not used. 

Furthermore, he discussed the situation in which the original covariance matrix is unavailable, 

and a substitute matrix is used instead. This subject will be encountered later. 

In addition, an analysis followed of the requirements of this approach for the formulation of a 

mathematical functional model for observation variates. Based on that, Baarda concluded that the 

geodetic survey process yields distance ratios and angles as estimable quantities. These should 

therefore be central in the formulation of condition equations and observation equations for 

adjustment according to the First and Second Standard Problem respectively. We were also able 

to see this in the last paragraph of Section 4.3 above. 

4.6.2 “Data Snooping” and the B-method of testing (Baarda 1968) 

In 1965 Baarda became President of IAG’s Special Study Group 1.14. In that quality he prepared an 

IAG meeting in 1967 with a very extensive report that was eventually published as (Baarda 1968). 

Although he presented this report as chairman of the study group, its contents appear to be mainly 

his own work. Nowhere it appears that others contributed, although reference is made to the work 

of others. This publication begins with a geometric interpretation of adjustment according the 

First Standard Problem; see Appendices 1 and 3. This is therefore an adjustment with condition 

equations. 

t = U∙ x , in which E{t} = 0. 

In this equation x is a vector with m elements in m-dimensional space. Let this be named the 

x-space; See Figure 10. Each of the m observation variates in a geodetic network therefore 

specifies a dimension of this space and has its own axis in the m-dimensional axis frame. Because 

there are b conditions (b << m), vector t lies in a b-dimensional subspace. Let this be named the 

t-space. The least squares corrections v calculated for the observations x then span a vector with 

m elements, such that v = B∙ t (see Appendix 1). This is in agreement with the assertion made 

earlier that t and v contain the same information. 

Baarda now introduces the group of conventional alternative hypotheses, which means that an 

error is assumed in only one of the observation variates xi successively. This aligns with the 

findings in (Baarda and Alberda 1962) mentioned earlier. This means that, in the x-space, an 

incorrect value is assumed along the axis corresponding with xi . Figure 10 shows the effect of this 

assumed error on the misclosure vector t. Figure 10 shows a two-dimensional t-space, in which 

the projection of the xi-axis on this space has been drawn. The direction of that projected axis is 

determined by the i-th column of matrix U. 

 

Figure 10: The geometric representation of the specifying test variate wi 
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An error in observation xi yields the misclosure vector t + ∇i t. The shift ∇i t is parallel to the 

projected xi-axis. When t is projected orthogonally on the projected xi-axis, variate σ0.wi is 

produced (σ0 is used as a scale factor here). This illustrates that the effect of the error in 

observation xi corresponds entirely with the difference between the values of σ0.wi with the error 

and without the error. This w-variate is the starting point of the testing of each individual 

observation. That procedure is called Data Snooping; see Appendix 6. 

The proposed method entails that after the adjustment the first test to be executed is: 

σt2/σ02 < F1–α; b, ∞   

in which b is the number of condition equations. A value for ⍺ needs to chosen that is 

commensurate with b. If this test leads to rejection, which is usually the case, Data Snooping is 

required. Baarda named this the B-method of testing. The usual question at the time was where 

this name came from. (Alberda, 2005) answered this question in its discussion of (Baarda, 1968): 

… As usual Baarda had studied the international literature extensively. He provides some 

quotations from a book by the well-known American statistician R.L. Ackoff, among other things 

about multi-dimensional tests according to a method Ackoff named the ‘A-method’. With a 

satisfied smile Baarda said: “In that case we shall call our method of testing the B-method!” 

Remark. For the test wi2 < F1–α0; 1, ∞, described in Appendix 3, it can be demonstrated that it is the 

most powerful test (Cramer 1957) – in (Hogg and Craig 1970) and other textbooks this is called 

the best test – for the testing of H0 (no errors in the observation xi) against Hai (error in observation 

xi). That means no more sensitive test can be found. Baarda does not use this term, even though it 

would be an essential argument in proposing this procedure as a protocol for data processing in 

survey practice. He must have known that it is an optimal test. He was familiar with an earlier 

edition of (Cramer 1957) and according to Alberda he had familiarised himself extensively with 

literature on this subject. I suspect that he became aware of the fact that this is a best test through 

the geometric interpretation of the adjustment problem, as shown in Figure 10. That is apparent 

from the illustrations in his publications and from the way he discussed this subject matter during 

lectures. During those he explained the algorithms with illustrations as shown in Appendix 6.  

4.6.3 Internal and external reliability of networks 

In addition to the proposed testing procedure the new concept of reliability of geodetic networks 

was now introduced (Baarda 1968, Chapter 11). With every wi-test the associated variate ∇xi was 

now calculated. Their values collectively describe the internal reliability of a network, which is the 

order of magnitude of the errors that might be detected in the network. Additionally, the effects 

on the coordinates of all newly surveyed points (∇X, ∇Y) for every ∇xi are calculated. Those values 

are collectively referred to as the external reliability of the network. This quantifies the potential 

biases in the calculated coordinates if the tests failed to identify the error(s). This is important 

when using this data for the expansion of the network in densification surveys. In (Baarda 1968) 

he describes the ∇-values as the lower bound of the error-detecting capability of the tests, but he 

uses neither the term Marginally Detectable Bias nor the term boundary value. 

Data Snooping and the associated reliability analyses are elaborated on in (Baarda 1968) for an 

adjustment in multiple steps. That was definitely important for survey practice, but to understand 

the concepts an explanation for an adjustment in a single step suffices. 

4.6.4 Testing the functional model 

Baarda formulated the Data Snooping procedure as the test of a specific group of alternative 

hypotheses, for each of which, a shift in the expectation value of one of the observations was 

file:///C:/for
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assumed. However, his starting point was a more generalized formula that also allowed other 

alternative hypotheses to be tested. In (Baarda 1968) he introduced a C-vector, indicating to what 

extent the various observations are involved for any alternative hypothesis. See Appendix 6. With 

Data Snooping this C-vector carries the value 1 (unity) only for the element that corresponds with 

the observation that is to be tested; all other elements have a value of zero. In that way all 

observations in turn can be tested. 

Other alternative hypotheses, hence other tests against the functional model are represented by 

different specifications of this C-vector. What Baarda mainly had in mind was the testing for 

disturbances of the coordinates of tie points. This had to be done after new measurements had 

been adjusted in the first step, that is, as a free network, hence before tying the free network to 

existing control points. The tying to existing control was then done in the second adjustment step. 

Because the measurements had already been tested in the first step, any problems showing up in 

the second step would be attributable to errors in the coordinates of the tie points. Individual 

points might possibly be affected, but alternatively the whole group of tie points, or a subset of 

those, might be distorted. His method offered the possibility of a focussed search for errors 

through the formulation of relevant alternative hypotheses. 

4.7 S-transformations, criterion matrices and substitute matrices 

4.7.1 S-systems 

Section 4.1 describes how Baarda was commissioned to create a geometric framework in the 

newly reclaimed Noordoostpolder and how the experience he gained provided the impetus for his 

later work. In (Baarda 2002) the following passage can be found: 

During the war years a close pupil of Tienstra tried to put his ideas into practice. However, the 

surveyed regions turned out to be larger than Tienstra had envisioned, so that the theory had to 

be refined. Moreover, the pattern of the detected coordinate differences in the tie points of 
traverses deviated from the expected pattern according to the above objective, which further 

complicated the checking for measurement errors. Eventually the solution was found by changing 

the definition of the concept of ‘coordinate’. That did not change the numerical values, but the 

stochastic influence (according to probability theory) of absolute position, length scale and 

orientation on the geometric framework in a region was eliminated; in short: stochastically, only 

shape was relevant. It would take years for these so-called ‘S-referenced’ coordinates to be truly 

understood. The HTW ’56 was still in two minds about that. 

This is a somewhat curious formulation because that pupil was Baarda himself: a strange kind of 

modesty? Essentially the above quotation shows that the concept of S-systems was conceived there 

and then. In the first chapter of (Baarda 1973) he briefly describes these early roots of his later 

work. 

In 1946 he was appointed lecturer in Land Surveying, Spirit Levelling and Geodesy at the faculty of 

Civil Engineering of TU Delft. 

He elaborated on his experiences in the Noordoostpolder in his public lecture (Baarda, 1947). He 

discussed two main themes: the definition of coordinate systems and the assessment of the quality 

of calculated coordinates. He explained that land surveyors actually determine length ratios and 

angles between triplets of stations and that coordinates cannot be calculated until the coordinates 

of one point, as well as the orientation of one of the sides plus a scale factor for the distances 

measured, are adopted. However, it is easier to choose the coordinates of two points as the basis 

for the calculation and to enter them as error-free quantities. He preferred the latter option for 

practical reasons and named the selected pair of points an S-system. Hence, a network is 

‘suspended’ from those two points. He names that the S-referencing of a network. In the remainder 
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of the discourse, he explains that the computed standard error ellipses of the points, the relative 

error ellipses between pairs of points and the S-referencing of the network describe the quality of 

the coordinates. Thus, he laid the foundation of the theory of S-transformations and criterion 

matrices. In 1966 he described his ideas in an internal publication (Baarda 1966). It was not until 

1973 that that the theory was really published (Baarda 1973). 

The quotation above mentions that the HTW ’56 (chapter II) already contained the first hints of a 

development in this direction. Baarda discusses in (Baarda 1960) the meaning of the calculated 

(co)variances of coordinates and shows how the S-referencing of coordinates in one S-system can 

be transformed to another S-system. He wrote the formulas with complex numbers. These show a 

strong relationship with the formulas encountered in the earlier-mentioned publications of 

Tienstra and of Baarda himself. This concerns two internal publications. For that matter, this 

principle is also described in textbooks such as (Schermerhorn and Van Steenis 1964, chapters III 

and XIV). These describe how standard error ellipses of newly surveyed points should be 

calculated relative to a computational base, just like for an intersection. That implies that their 

value for the representation of point accuracy by means of these ellipses must always be 

interpreted as being relative to such a base. Furthermore, just before the publication of (Baarda 

1973) a paper had been published in the USA by Allan Pope (Pope 1971), which also discusses the 

same subject matter. It is unclear whether Baarda was aware of that; he does not refer to it. 

4.7.2 Distinction between precision and reliability 

(Baarda 1968) is the first real publication in which Baarda commented briefly on the fact that 

error ellipses depend on the computational base (S-base) of a network; see Figure 11. For that 

figure a covariance matrix of the coordinates was calculated twice from the adjusted observations. 

The first calculation was based on the base points 1 and 3; the second on points 69 and 71. It is 

easy to see that this leads to different point standard error ellipses and relative error ellipses for 

the remaining points and hence to different covariance matrices for these points. However, he did 

not yet use the term S-base here. 

From this point on he divided the concept of accuracy into the concepts of precision and reliability. 

The precision of a survey network is expressed by the covariance matrix of the coordinates of 

these points; reliability by the boundary values of the adjusted observations. In an example he 

demonstrated that the internal reliability of a network, as expressed in the boundary values of the 

adjusted observations, was not directly related to the precision of the calculated coordinates, 

visualised by point error ellipses and relative error ellipses. That is because the internal reliability 

does not depend on the chosen S-base. But the external reliability does depend on the S-base. This 

distinction between precision and reliability was new in geodesy at the time. 

4.7.3 S-transformations 

When wishing to merge two adjacent survey networks into one, it will generally be found that 

these networks have been computed in two different S-systems. One then needs to identify 

common points and select two of those as the S-base of the merged network. That means that the 

points of each network need to be recalculated from their respective original S-base to this new 

common S-base. These ideas were elaborated on in (Baarda 1966) and, later, the concept of 

S-transformations is published (Baarda 1973). 

He formulated the S-transformation in terms of complex numbers. In the text below, the notation 

introduced in Section 4.4.1 shall be used. The position of an arbitrary point i is designated by the 

complex number zi. The concept of S-systems was developed mainly to describe the stochastic 

nature of the calculated coordinates. That is, the accuracy of the coordinates must be expressed 

relative to an S-base, as shown in Figure 11. The reasoning is as follows:  
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It will be assumed that the two adjacent networks are described in the same coordinate system, 

for example the Dutch RD system. Let one network having been calculated relative to base points 

p and q (their S-base). The coordinates of point i can then be designated by complex number zi 

p,q.The coordinates of some point j in the other network, calculated relative to points u and v, the 

S-base of the second network, can be designated analogously by zj u,v. When both networks have 

been calculated in the same coordinate system, zi p,q = zi u,v for a point i common to both networks. 

The numerical values of the coordinates of common points are the same and do not need to be 

transformed. However, there might be small differences Δz between these values and the 

expectation values of the coordinates. It is for that reason that the stochastic characteristics of 

the coordinates. expressed by their covariance matrices, differ for the two S-systems, as shown 

in Figure 11.  

Expressed in symbols: E{ zi 
p,q} ≠  E{ zi 

u,v}. 

 

Figure 11: Error ellipse dependency on S-base (Baarda, 1968, p. 90) 

When two common points r and s are chosen as the new S-base for the merging of the two 

networks, the old (p, q) system and the old (u, v) system need to be transformed to the new (r, s) 

system. In the configuration chosen here, this concerns the transformation of the relatively small 

difference quantities Δz. Baarda derived the formulas for this transformation from first-degree 

Lagrange polynomials, which he had also used in (Baarda 1957). In short, the transformation from 

an old system to a new (r, s) system takes the form: Δzi 
r,s = Sr.s∙ Δzi 

p,q 
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The indices of transformation S refer only to the new S-system, because it does not matter what 

the old system was, provided it satisfies the description above. Baarda therefore often used an 

index a to refer to the old system when it was not specified. Hence, it is not necessary to know 

exactly what the S-base of the old system was, to be able to transform to a new S-base that is 

specified. This is relevant for the reworking of the covariance matrix of existing survey networks 

to a new S-system. Let the coordinates be defined in an unknown S-system, designated by Δzi a. 

Their covariance matrix will then be σzz
a. When these coordinates are transformed to some (r,s) 

system, the formula, analogous the one above is: 

Δzi r,s = Sr.s∙ Δzi a 

the laws of propagation of covariances dictates that: 

σzzr,s = Sr.s ∙ σzza ∙ Sr.s T 

in which matrix Sr.s T is the transpose of matrix Sr.s.  

This then yields the covariance matrix of the coordinates in the new (r, s) system. 

4.7.4 Criterion matrices 

The history 
To gain insight in the origin of the theory of criterion matrices and the role that S-systems play in 

it, it might be helpful to summarise some of the findings from the foregoing. 

We saw that (Tienstra 1931) and (Tienstra 1933) specified that circular point error ellipses 

were considered ideal, because these imply no directional preference regarding the precision of 

surveyed points. In other words, when these points are used to tie to new surveys, it does not 

matter from which direction they are surveyed. In the same vein, it was also desired that the size 

of these error ellipses be independent of the location of these points, so that their location is not 

a factor for precision considerations when they are used in the expansion or densification of 

survey networks. However, it soon became clear that it was impossible to achieve circular error 

ellipses in practice. 

Reconnaissance requirements were therefore formulated differently in the HTW ’38; see Section 

3.3. above. Ideal precision was no longer pursued. Instead, a criterion was formulated for the 

mean of the squared major axes of the standard error ellipses for moderately large networks. 

That mean value should not exceed a certain threshold and was specified for three terrain types. 

Baarda's experiences in his time as a practicing surveyor in the early 1940s led to the following 

three findings. 

1. It turns out to be practically impossible to carry out a survey such that the requirement 

for the mean square of the major axes of the point standard ellipses is met. It is better to 

formulate a criterion as a lower limit for the desired precision. 

2. In formulating such a criterion, the focus should not be exclusively on the precision of the 

surveyed points. The relative precision of pairs of points is at least as important. This is 

relevant because new survey will always be tied to multiple control points. The relative 

precision of these points is therefore more important than their ‘absolute’ precision, 

expressed in the point error ellipses. 

3. In point 2 the word ‘absolute’ has been placed in quotes because it had become clear to 

Baarda that the precision of the points in a network is always calculated relative to a 

computational base for which the coordinates are adopted. This is therefore an S-base, of 

which the coordinates are not stochastic. 
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The HTW ’38 already took item 1 into account in its formulation of requirements for 

reconnaissance. In addition, item 2 formed the basis for the formulation of these requirements in 

the HTW ’56. Item 3 was not yet taken into consideration. If the reconnaissance requirements are 

based only upon point error ellipses and relative error ellipses, it is unclear how an S-base can be 

factored in. That is probably why the third item played no role at the time. However, later Baarda 

repeatedly stated that he was unhappy about the formulation of the reconnaissance rules in the 

HTW ’56. It was a half-hearted approach that demanded improvement. In (Baarda 1973), he 

published a consistent and more satisfying approach for the first time. 

The search for a criterion matrix 
The improved insights into the correct application of the least squares method since the 1940s 

gave a better understanding of how, as well as estimating the unknown parameters, the 

covariance matrix of these parameters could be calculated. In the application of this method to 

land surveying, the coordinates of the surveyed points constituted the unknown parameters. This 

meant that their full covariance matrix could also be calculated. From the 1960s onwards, better 

computation facilities quickly became available, due to the rapid development of computer 

technology. That enabled these extensive calculations to be carried out. 

This new situation offered the option to implement the concept of S-systems rigorously. It was now 

also possible to calculate the covariance matrix of the new coordinates relative to a specified S-

base for larger networks, as shown in Figure 11. The question now was how to formulate a 

criterion for the precision of those coordinates. That criterion should be valid for the entire 

covariance matrix of the coordinates of all points and not just for the covariances of coordinates 

of individual points and/or the covariances of coordinate differences of point pairs. The question 

therefore came down to how to formulate a criterion for this matrix. The search was for the 

structure of a criterion matrix, which will be designated by the letter H. 

Of course, the point error ellipses and the relative error ellipses still can be derived from the 

calculated covariance matrix. It was therefore reasonable to require that it should be possible to 

derive circles for points, and pairs of points, from a criterion matrix H, which could then serve as 

upper bounds for those standard error ellipses. However, that would be an incomplete criterion. 

The complete criterion ought to apply to the entire covariance matrix. Moreover, in an S-system 

the magnitude and the orientation of the point error ellipses depends on the location of those 

points relative to the points of the S-base, as shown in Figure 11. Furthermore, the points of the S-

base are treated as non-stochastic, so that the circles of those points, derived from the criterion 

matrix would necessarily have a radius of zero. These two requirements make it clear that H needs 

to be calculated in the same S-system as the covariance matrix of the coordinates. The search is 

therefore for a matrix Hr,s. 

In (Baarda 1973) a solution to this problem was published for the first time. Baarda had developed 

this in close cooperation with his co-worker ir. Jouke Alberda and had described this earlier in an 
internal report (Baarda 1966). The chapters of (Baarda 1973) that eventually led to the 

formulation of the criterion matrix show some fierce juggling of equations, but, in short, the 

reasoning is approximately as follows. 

a. The covariance matrix of the coordinates in an S-system is a direct function of the 

covariance matrix of the shape elements, that is, the Π-variates, of the network. Therefore, 

it should be possible to derive a criterion for the covariance matrix from a criterion for 

these shape elements. 

b. The old requirement of circular error ellipses for points and point pairs of which the size 

is independent of their location in the network must be translated to a requirement for 

the shape elements. The criterion for the precision of these shape elements should be 
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independent of their location in the network. Hence the criterion should depend only on 

the shape and the size of the triangle spanned by the three points of the shape element. 

c. In a triangle with points 1, 2 and 3, the elements of the criterion matrix, corresponding 

with the coordinates of the points, are defined as follows (the symbol h is used here 

instead of σ; additionally, i ≠ j and i, j = 1, 2, 3). 

hxi,xi = hyi,yi  = d2   and   h xi,yi = hyi,xi = 0    and  

hxi,xj = hyi,yj  = d2 -  dij2   and  hxi,yj = hyi,xj = hxj,yi = hyj,xi  = 0  

It must be pointed out that symbol d does not designate distance, as earlier in this report. Here, d2 

designates a constant used in the criterion matrix. 

If dij
2 = f( lij ), that is, if dij

2 is a function of the length between points i and j, the precision of the 

shape elements calculated from this triangle is only a function of the length of its sides and a 

chosen constant d2. For the variates αi (angle) and ln vi (natural logarithm of length ratio), both 

calculated for point i, the following relationships hold: hαi, αi = hln vi,,ln vi  and hαi,,ln vi  = 0.  

On Alberda’s advice, Baarda chose the function: dij2 = c. lij. Other options were available but were 

constrained by the requirement that the matrix thus generated had to be positive definite. 

 

Figure 12: The structure of criterion matrix Ha 

Based on this line of thought a solution could be found by generating a Ha matrix in an unspecified 

S-system; see Figure 12. That matrix will satisfy requirements b and c. This matrix can be 

transformed to matrix Hr,s on S-base (r, s) through an S-transformation. If the covariance matrix 

σr,s of the coordinates has also been computed relative to this base, the standard error ellipses for 

points and relative standard ellipses for pairs of points can be calculated. Those can be compared 

with the corresponding criterion circles that are computed from Hr,s. Visual comparison will then 

reveal whether the standard error ellipses lie within the criterion circles. Therefore Baarda 

proposed to execute the testing of matrix σr,s against criterion matrix Hr,s by solving the eigenvalue 

problem, as formulated in text books on linear algebra and matrix calculus. 

| σr,s – λ Hr,s| = 0  

Hence, all information contained in both matrices is used instead of only the calculated standard 

error ellipses. The eigenvalues λ do not depend on the chosen S-base. 
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To solution must satisfy the requirement that the smallest eigenvalue λmin ≥ 0, which is dictated by 

the requirement that covariance matrices, hence also the criterion matrix, have to be positive 

definite (see the textbooks). But it is additionally required that the largest eigenvalue λmax ≤ 1.  

 

Figure 13: Standard error ellipses of the Dutch RD network, compared with criterion circles.  

The S-base is (33, 57). 
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This may be visualised as follows. The geometric equivalent of the covariance matrix for n points 

is a 2n-dimensional hyper-ellipsoid and that of the criterion matrix is a 2n-dimensional hyper-

sphere.  When the largest eigenvalue λmax < 1, the hyper-ellipsoid lies entirely within the hyper-

sphere and when λmax = 1, the hyper-ellipsoid is tangent to the hyper-sphere. In both cases the 

precision of network is within the specified requirements. When some eigenvalues are greater 

than unity, the hyper-ellipsoid will protrude from the hyper-sphere, indicating weak parts in the 

network. From the associated eigenvectors it can be deduced which parts of the network are out 

of spec. 

Point standard error ellipses and relative standard error ellipses can be derived from the 

covariance matrix. Analogously, the criterion matrix yields point criterion circles and relative 

criterion circles. When the maximum eigenvalue λmax ≤ 1, all ellipses will either lie within the 

circles or will just be tangent to them. Figure 13 shows the comparison of the point standard error 

ellipses and relative standard error ellipses of the Dutch RD network with a criterion matrix. The 

largest part of the network satisfies the criterion, except in the lower right corner. Here the 

ellipses just protrude from the criterion circles in several places. However, were an S-base 1-5 

chosen (Berkheide – Schoorl, along the west coast), poor quality would be concluded for the entire 

network. The results of the visual comparison thus depend on the chosen S-base. The specification 

of the criterion can be tailored to the precision requirements imposed on the network by choosing 

an appropriate value for parameter c in the above-mentioned function dij2 = c∙ lij in addition to the 

value that is chosen for the parameter d2.  

In fact, parameter c determines the part of the criterion that relates to the correlation between 

points and is determined by the structure of the network. To a large extent parameter d2 

determines the quality of the identification of points. These two parameters replace the 

parameters in chapter II of the HTW ’56. 

4.7.5 Substitute matrices 

The structure of the criterion matrix described above could also be used in a different way. In the 

practice of that time, it was customary to omit the coordinates of existing control points from the 

adjustment when tying new measurements to these points. These points were used to tie to, but 

their coordinates did not participate in the adjustment. In other words: they received no 

corrections. They were even considered non-stochastic. 

There was a good pragmatic reason not to correct them because the coordinates of these control 

points were recorded on maps and in printed tables, which made it impractical to correct them 

each time they were used in a new survey. Even later, when this data was available in digital files, 

it remained impractical to continually change them. However, that was not a valid reason to 

consider them non-stochastic. Originally, their coordinates had been calculated from survey 

measurements and therefore they ought to have a covariance matrix. But this matrix was never 

stored, because technically that could not easily be done. The history of the origin of those 

coordinates was not recorded in data files either, so reconstructing the matrix was impossible. 

Initially this was not seen as problematic because it was assumed at the time that higher-order 
densification surveys were so much better than later (and lower-order) network densifications 

that the control point coordinates resulting from the former could be considered error free. 

However, due to advances in survey technology this argument was rendered obsolete. All new 

densification surveys had a quality comparable with the earlier higher-order surveys. Moreover, 

the approach of adjustment in steps offered the possibility to calculate and test new survey 

measurements on their own first. After this first phase the new survey network could be tied to 

the existing control points, which would be tested in the next step. This led to the realisation that 

the coordinates of existing control points had to be considered stochastic and had to be tested. 
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The unavailability of their original covariance matrix could now be remedied by introducing a 

substitute matrix that described the approximate precision of those coordinates. The structure of 

the criterion matrix could be used for this, with the values of the parameters c and d2 chosen such, 

that a reasonable approximation of the precision of the existing control points was achieved. This 

substitute matrix could then be referenced to an S-base, common with the new survey network. 

The adjustment would be executed in two runs, the first run rigorously, which would include the 

coordinates of the tie points in the adjustment, so that their coordinates could be tested in 

accordance with the method described in Section 4.6. After removing any control points rejected 

in the test, a second adjustment run would be executed, in which the coordinates of the remaining 

tie points were left uncorrected. But the substitute matrix was used in the calculation of the 

precision of the new points, by applying the laws of propagation of covariances, be it in a 

somewhat amended form. The latter was referred to as a pseudo least squares adjustment. 

4.8 The Geodetic Computing Centre (LGR) 

4.8.1 Beginnings 

In the 1950s Baarda had the idea of establishing a centre, in which theoretical research could be 

conducted, linked to the development of computing technology; see (Alberda 2005). Electronic 

computing technology was on the rise, and it was clear that the ideas being developed then led to 

the need for large computing capacity. With the support of the Board of Trustees of the TU Delft 

he established the Geodetic Computing Centre (Dutch: Laboratorium voor Geodetische 

Rekentechniek) in 1958. Its first employees were ir. B.G.K Krijger, ir. F. Meerdink and ir. J.E. 

Alberda. 

One of the ambitions of LGR was to participate in large international projects. The first 

opportunity was the adjustment of the European levelling network in the middle of the 1950s. 

That consisted of levelling chains covering the whole of Western Europe. Its data was processed 
by Institut Géographique National (IGN) in Paris, the Technische Hochschule (TH) in Munich and 

LGR. This was a good opportunity for the Delft group to try out the methodology of adjustment in 

steps, as well as the ideas regarding the testing of large survey networks. Moreover, LGR was the 

only group that used electronic computation facilities. These facilities concerned TNO’s ZEBRA-

computer, which had been designed and built by PTT’s laboratory. 6  LGR was the only group that 

had computed the full covariance matrix of the heights. With this project LGR established its name 

both at home and abroad. 

Around 1960 the decision was made internationally to compute a new pan-European adjustment. 

The intention was to improve the ties between the national triangulation networks in order to 

define an improved European ellipsoid. In the meantime, electronic distance measurement 

equipment had become commercially available, initially the Geodimeter and later the 

Tellurometer. These allowed tests to be carried out with the configuration of traverse circuits, 

which would be processed by LGR. 

 

6  TNO (Technisch Natuurkundig Onderzoek) is an independent research organisation that conducts 

research on a contract basis for and in cooperation with government agencies, commercial companies, and 

educational and other institutes. PTT (Post, Telegraaf and Telefoon) was the government-owned company 

responsible for post, telegraph, and telephone communications, as well as some radio communications 

services in the Netherlands. 
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In 1967 a length base was measured by means of invar wires at the Afsluitdijk.7 This new base 

was part of a dedicated survey network ‘Afsluitdijk’, which had to be tied to the RD-network. It 

was in those days that the connection with the German triangulation network was being 

recalculated. The computations associated with these activities were so extensive that they had to 

be executed on computers. 

4.8.2 The development of computational facilities at the TU Delft 

In the same period the mathematician Professor R. Timman established the Computing Centre of 

the TU Delft. He became the chairman of a committee that had to consider the purchase of a 

computer for the university. Baarda became the secretary of this committee. Initially the question 

of whether the university should purchase an analogue, or a digital computer was debated. Based 

on the committee’s recommendations a digital computer was selected, the Telefunken TR4. 

Many debates took place in the committee about the consequences of the purchase of such a 

computer for the disciplines that would be making use of it. Soon it became clear that these would 

be radical. Their impact would be greater than the mere fact that computations would be faster. 

Baarda states the following about this (Baarda 1977). 

In that period there were consultations with the mathematician R. Timman concerning the 

establishment of a computer centre for the Delft University of Technology. We both held the view 

that independent programming of existing methods was the easiest but also the least efficient way 

to introduce automation. It was better to consider existing methods as variants of a basic pattern 

which should be as simple as possible and concentrate on the programming of this pattern. In 

addition, it was required to limit the volume of the output by the choice of suitable parameters. In 

other words: programming should be preceded by model research. 

Obviously, this dovetailed neatly with his research interests. In addition to the more theoretical 

influence by Van Dantzig, which pushed him towards fundamental model research, this 

constituted a second, supplementary impulse in that direction. The research described in the 

preceding sections originated from a twofold stimulus to the extent that these were required in 

addition to Baarda’s own curiosity. Perhaps it is better to speak of a twofold justification. 

4.8.3 Software development 

Eventually the TR4 was put to service by the TU Delft in 1963, with an Algol-60 compiler. That 

enabled the real programming work of LGR to begin. Jan de Kruif was one of the first 

undergraduates who wrote a computer programme in Algol-60 for LGR as part of his master’s 

thesis. After he graduated in 1964, he became an LGR employee. He began writing software 

procedures needed for the execution of adjustments, such as multiplication and inversion of 

matrices. It was important to pursue efficiency in input and output and in the storage of 

intermediate results, because, at that time, computers still had limited memory capacity and the 

input and output of data was not very fast. That is why the software was initially only usable for 

processing networks of a limited size. Furthermore, the software was aimed at working with 

sparse matrices, matrices of which most elements have a value of zero. Separate procedures were 

developed for such matrices.  

 

7 See https://en.wikipedia.org/wiki/Afsluitdijk.  

Invar is nickel-iron alloy with a very low coefficient of thermal expansion. In geodesy it was used for the 

calibration of length bases of triangulation networks, but it was also used in land surveying in subtense 

bars (see Section 2.3). 

https://en.wikipedia.org/wiki/Afsluitdijk
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In 1968 development started for the programming of adjustment according to the First and Second 

Standard Problems. As was mentioned in remark 1 of Section 4.5, the insight that these two forms 

sufficed for the processing of land survey data had been gained. The First Standard Problem 

required formulation of condition equations for traverse circuits. The Second Standard Problem 

required formulation of the observation equations. Due to the consistence of the structure of 

traverse circuits, both the condition equations and the observation equations acquired a fixed 

form, which lent itself well to being programmed. The measured angles and length ratios 

(directions and measured distances), as well as the approximate values of the station coordinates 

involved in the survey, had to be entered into the calculation. Here the advantage of 

standardisation, as Baarda intended it in the quotation shown above, became apparent. The 

software that was developed became known as SCAN. Later Jan de Kruif’s successors, led by Johan 

Kok and Henk de Heus, developed a new version called SCAN II. 

4.8.4 The computation of land survey networks 

In 1968, consultations took place between Baarda and associates with A.L.J. Claassen of the Dutch 

Cadastre (Kruif 2019). The Cadastre was in the process of preparing many reallotments, for which 

geodetic frameworks had to be surveyed to create ground control points for (aerial) 

photogrammetric mapping. The Cadastre was prepared to test the principle of traverse circuits in 

practice and to have several of their employees undergo additional training. Using their software, 

LGR would adjust the survey data of those traverse circuits. The methods for the testing of 

observations and the testing of the precision of the calculated coordinates against a criterion 

matrix, as developed by Baarda, had to be implemented in the software. 

Around 1969 the software was expanded to the application of the w-test for the detection of errors 

in traverse circuits. After an adjustment a test on the entire network was executed first with 

σt2/σ02 < F1-α; b, ∞; see Section 4.6. This proved to be unsatisfactory because it (almost) always led 

to rejection of the adjustment result for the entire network. Experience thus led to the rule that 

the w-variates for all observations always needed to be tested, that is, Data Snooping would always 

have to be used. That allowed gross errors to be located faster, so that remeasuring of the whole 

network could be avoided. This software addition also allowed the boundary values for all 

observations (internal reliability) to be computed together with their effects on the boundary 

values of the calculated coordinates (external reliability). 

Around 1970 programming efforts for setting up criterion matrices and substitute matrices and 

executing S-transformations began. Software was also developed for the comparison of the 

covariance matrix of coordinates with a criterion matrix through calculation of the eigenvalues. 

Suitable parameter values for the testing of the precision of coordinates were found through test 

calculations. The first results for simulated survey networks were published in (Baarda 1973). 

Suitable parameter values were also sought for substitute matrices for the purpose of tying new 

survey measurements to existing control in a second adjustment phase. That really enabled 

adjustments to be carried out in two steps. In the first step, traverse circuit networks were 

adjusted as free networks and in the second step this adjusted network would be tied to existing 
control points. The substitute matrix was used in that second step instead of the real, but usually 

unknown, covariance matrix of the coordinates of existing control points. That enabled the 

coordinates of existing control to be tested for possible disturbances. After that test, the second 

adjustment step was usually repeated as a pseudo-adjustment, because correcting the coordinates 

of existing control points was too cumbersome. The substitute matrix was also used to calculate 

the final precision of newly surveyed points. 
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4.8.5 Reconnaissance of land survey networks 

With this software it was possible to make an important improvement in the efficiency of survey 

work. It was now feasible to design a survey network while being in the field. The availability of 

approximated coordinates enabled the calculation of internal and external reliability, as well as 

the covariance matrix of the coordinates of the planned network points. Usually, these 

approximated coordinates could be scaled from a topographical map. Thus, on the basis of such a 

test computation, the reliability of the network could be assessed, and the covariance matrix 

compared with a criterion matrix. From then on it was possible to assess the quality of the planned 

network in advance and, where necessary, to amend its design before actual survey work would 

begin. This resulted in significant time savings and cost reduction in the execution of land survey 

work. In (LGR-staff 1982) the LGR staff of that time give a nice overview of the state of 

development of ideas of the Delft School in the early 1980s. 

4.9 Expansion to three dimensions 

With the developments described above, the methodology for plane point positioning and the 

assessment of its quality was largely completed. These methods were practicable enough for use 

in established land survey practice. Parallel to this development, since the early 1960s, the 

question arose of how to escape from plane surveying and create truly spatial, that is, three-

dimensional, networks. Traditionally, a two-pronged approach had been followed with separate 

horizontal (x, y) and vertical (H or height) positioning. For surveys covering larger areas, the 

curvature of the earth’s surface had to be considered. The common and approximate solution was 

to project the horizontal positioning on the surface of a sphere or an ellipsoid. From a theoretical 

perspective this was judged to be inadequate and therefore research was conducted into the 

development of truly three-dimensional methods. 

Baarda’s objections to the ellipsoidal approximation arose from his following Van Dantzig’s ideas. 
The starting point was that the measurement process determined what the estimable quantities 

were, based on which the functional model would be developed. Transformations of this model 

should leave these quantities unchanged. In other words, the estimable quantities must be 

invariant under these transformations. Since angles and length ratios are the estimable quantities 

in geodesy, this concerns similarity transformations. These entail scale changes, rotations and 

shifts in x- and y-directions. The shape elements on the surface of an ellipsoid are only invariant 

with rotations about the minor (polar) axis, not about any other axis. Although the distorting 

effects would only be noticeable in very large networks, Baarda rejected the ellipsoid model on 

principle. 

What he was seeking was an approach for spatial networks along the same lines as that he had 

used for plane networks. The starting point remained that angles and length ratios are the 

estimable quantities in the measurement process, but in this case not projected on the horizontal 

plane. So, this concerned truly spatial quantities. In the plane, an elegant approach was possible 

based on complex numbers, because complex number algebra allowed angles and length ratios to 

be described well. In scientific literature, in the early 1960s, he found that quaternions provided 

an extension of complex numbers to four dimensions, which, thanks to a convenient 

interpretation, could also be used for the description of three-dimensional spatial shape 

quantities; see Appendix 8. Now, the following three questions had to be answered. 

a) How should an S-base in three-dimensional space be defined? 

b) What is the form of a criterion matrix in three-dimensional space? 

c) Wat is the structure of three-dimensional survey networks? 
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These questions are related to the formulation of the mathematical model. The procedures for 

Data Snooping and the calculation of internal and external reliability followed directly from the 

adjustment algorithm and thus did not require reformulation for three-dimensional applications. 

4.9.1 Spatial S-systems and criterion matrices 

Naturally, with the transition from two to three dimensions, Baarda immediately came up with 

the question of how coordinates ought to be defined and how they were linked to the 

measurement process. The estimable quantities in three-dimensional applications are also angles 

and length ratios, but these are now defined in a triplet of points in three-dimensional space and 

hence not projected on a horizontal plane. 

Seven parameters are required to be chosen to define a three-dimensional coordinate system: 

three coordinates for the origin, two directional components that will fix the direction of one of 

the three axes in space, a rotation about that axis to fix the spatial direction of the other two axes, 

and one scale factor. By choosing the coordinates of two network points, let those be Pr and Ps , six 

parameters are chosen. In effect, this defines the coordinates of the origin and the scale factor (for 

the traverse side r, s). This fixes the entire coordinate system apart from one more rotation. That 

requires a third point Pt , but its role is different from that of the first two points. It does not 

participate fully, because point Pt is needed to fix only one parameter and not three, as the other 

two points do. By choosing this third point, the rotation about traverse side r, s is chosen, thus 

fixing the spatial direction of the (unit) vector orthogonal to the plane spanned by points Pr, Ps and 

Pt . To visualise this, see the illustration with formulas (4.2.1) and (4.2.2) in Appendix 8 and replace 

the indices i, j, k by r, s, t respectively. 

This definition of an S-base for 3D-coordinates no longer has the simplicity of that for 2D-

coordinates. Added to this is the difficulty that quaternion multiplication is not commutative (see 

Appendix 8). Those facts make the analysis of 3D-networks considerably more complicated than 

that of plane networks. 

Notes show that Baarda probably developed his ideas for 3D S-systems as early as the 1960s or 

early 1970s and also derived the associated S-transformations, but he never published them. I first 

defined an S-base myself in my master’s thesis (Molenaar 1972) for the analysis of the structure 

of Doppler satellite measurements. Later I elaborated on this definition with the associated 3D 

S-transformation for my doctoral dissertation (Molenaar 1981). I ran into this issue in the 1970s 

when I wanted to apply the concept of criterion matrices to the results of adjusted 

photogrammetric blocks. A 3D criterion matrix, which had to be transformed to an S-base, was 

also developed for this. I discussed this extensively with Baarda during my PhD research. He 

wanted to adopt the principle of spherical point error ellipses and relative error ellipses. My 

objection to that was twofold. 

a) This would only be valid for a criterion matrix that had not been S-referenced. As soon as 

that is transformed to an S-base, the error ellipsoid for base point Pt would be flattened 

to a circle in the plane spanned by base points Pr, Ps and Pt. Consequently, the remaining 

error ellipses would have a flattened shape. 

b) The experiences in aerial photogrammetry as well as in geodesy led to the insight that 

the accuracy of height determination is generally worse than that of horizontal point 

positioning. 

Baarda never really admitted I might be right, but he did let me elaborate on the criterion matrix 

in my own way. I did that by elaborating on the horizontal criterion for spherical coordinates, so 

that it would ‘bend along’ with the earth’s surface for varying horizontal positions. Likewise, the 

criterion for height would bend along with the earth’s surface. This applied to survey 
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measurements covering large areas. For smaller-sized networks this matrix defaulted into the 

structure of the criterion matrix for the plane (Molenaar 1981). Test calculations demonstrated 

that for area of 500x500 km2, the differences between the (plane) matrix from (Baarda 1973) and 

this new matrix were negligible. That was enough reason for me to cease refining the model and 

stop looking for a matrix that would bend along with the surface of an ellipsoid. 

4.9.2 Spatial networks 

Besides the problem of the operational definition of coordinates, that is, of 3D S-systems, the 

question of how Baarda's approach to networks in the complex plane could be extended to three 

dimensions was still unanswered. What was the structure of spatial traverse circuits? Baarda had 

already explored at an early stage how quaternions could be used as analogues of complex 

numbers for the calculation of spatial networks. The results of this work are unfortunately only 

recorded in personal notes. The first study accessible to others was Erik Vermaat’s master’s thesis 

(Vermaat 1970). In this thesis he investigated the structure of quaternion rotations. This was 

important preparatory work for the analysis of the structure of networks. 

The first to take up that task was Herman Quee. He developed software for calculating the 

condition equations of spatial traverse circuits with LGR as part of his master’s thesis in 1971. He 

formulated these equations in terms of quaternion relationships. Their structure was comparable 

with those that were given in (Baarda 1969) for traverse circuits in the complex plane. The 

numerical results indicated dependencies between these conditions, but, at the time, that had not 

yet been demonstrated analytically. In his PhD research he elaborated on this and published that 

in (Quee 1983). It should be noted that this took place at a time before the advent of GPS and other 

new measurement techniques. He distinguished two network types. 

a) Networks with traverse circuits, covering larger areas and surveyed as higher-order 

geodetic control networks. The height differences in these networks are relatively small, 

compared to length of the traverse legs. The survey stations are relatively far apart and 

the direction of gravity follows the earth’s surface. As a result, it can no longer be assumed 

that the directions of the theodolite’s vertical axis in multiple stations are approximately 

parallel. Astronomical latitude and longitude will then have to be determined to establish 

the change in the direction of gravity. Additionally astronomical north will have to be 

measured for the orientation of the horizontal direction measurements. This data is 

therefore part of the formulated condition equations, which makes the functional model 

considerably more complex than for plane closed traverses. 

b) Local networks as surveyed for civil engineering and cadastral work. In such networks the 

stations are sufficiently close for the gravity vectors in all points to be considered parallel. 

That implies that all stations share a common horizontal plane. That eliminates the need 

for astronomical observations. For such a survey the height differences are generally 

larger relative to the length of the traverse legs. 

This study practically completed the development of a functional model for 3D terrestrial 

networks based on the use of quaternions. The methodology, which Baarda had developed for 
applications in the plane, had thus been extended to applications in 3D space. Spatial S-systems, 

spatial S-transformations, spatial criterion matrices and the structure of spatial networks of 

traverse circuits had now been defined. Application in practice, aimed at establishing whether this 

approach was practicable, was now awaited. 

4.9.3 Photogrammetry 

In parallel with the above developments Baarda also attempted to find a description of 

photogrammetry using quaternions.  He made a design for that himself and discussed it with 
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photogrammetry experts such as Schermerhorn, Roelofs and Van der Weele, as well as with their 

co-workers. However, they responded with little enthusiasm. At the time this took place 

photogrammetry worked mainly with instrumental solutions for mapping from aerial 

photography and, where calculations were needed, analogue methods were preferred. 

The rise of computer technology led to the development of mathematical models, but these were 

based on entirely different principles than those used in land surveying and geodesy. As shown 

above, models in land surveying were mainly developed from the principle of angle and distance 

measurements. In the photogrammetry two approaches existed. 

a) Aerial photographs were processed in pairs with photogrammetric instruments that 

formed stereographic models. 3D-coordinates of terrain points were measured in these 

models. Then blocks were formed from groups of contiguous models, in which the 

models were converted to a common coordinate system through similarity 

transformations and then subjected to a so-called block adjustment by independent 

models. This approach thus focussed on transformation of coordinate systems instead of 

adjustment based on shape elements. 

b) The second approach consisted of measuring terrain point images in the overlap zone of 

aerial photographs. These points were subsequently linked to the physical terrain points 

by applying the projective transformation formulas to their measured coordinates. If the 

terrain coordinates of a sufficiently large number of terrain points were known, the 

terrain coordinates of all other points measured on the photographs could be calculated 

by applying a so-called bundle block adjustment. 

The method of working in photogrammetry was therefore so different from that in land surveying, 

that Baarda was unable to find an opening for the use of his approach. Personal notes that I saw 

from him also showed that his approach was wrong. His assumptions regarding the relationship 

between point triplets on the aerial photograph and the terrain were incorrect. He determined 

the Q-variates8 based on the shape elements of the point triplets on the photograph and linked 

those to the corresponding Q-variates in the terrain. The trouble was that the relationship 

between photograph and terrain is described by a projective transformation and not by a 

similarity transformation. This approach therefore failed. 

In the 1970s, during my first period at ITC9, Baarda asked me to investigate this. This question 

occupied me for some time and led to the research on the spatial S-transformation and criterion 

matrix. What Baarda was looking for was an alternative formulation of the bundle block 

adjustment mentioned in item b) above. His fundamental assumption was that shape elements 

between terrain points played a key role in that. However, that was incorrect. If aerial 

photographs are interpreted as bundles of direction measurements from the camera focal point 

to points in the terrain, the analogy with theodolite measurements is obvious. That is the approach 

I followed. In formulating the functional model by means of quaternions I ran into the issue that 

only direction measurements were available and no distance measurements of length ratios. 

Consequently, all relationships between quaternions defaulted to their vectorial components and 

the model might just as well be described by vector algebra (Molenaar 1982). 

 

8 The Q-variate is the 3D analogy of a П-variate in the plane. See Appendix 8. 

9 The International Training Centre for Aerial Survey (ITC) was established at Delft in 1950 to provide 

training to survey department members of development countries. Later, it relocated to Twente University 

and is now known as the Faculty of Geo-Information Science and Earth Observation. 
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Remark: The formulation in (Molenaar 1982) was new in photogrammetry. It turned out that 

only three and not five unknown parameters, as was customary, had to be resolved for 

determining the relative orientation of two overlapping aerial photographs. Moreover, no 

accurate approximate values were required for these unknown parameters to start the solution 

algorithm. Furthermore, this approach offered the option of formulating the block adjustment in 

accordance with the First Standard Problem (actually, Tienstra’s Standard Problem IV), which 

enabled adjustment in steps. This algorithm was similar to that of the Kalman filter, as was 

mentioned at the end of Section 3.5.1 above. 
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5 Epilogue 

The end of an era 
The completion of the theoretical extension from two to three dimensions approximately 

coincided with Baarda’s retirement. This ended the period that is discussed in this monograph. 

However, this last part of the methodology has not really been tested in practice. Moreover, there 

was some doubt about the feasibility of this approach to an adjustment in two steps of three-

dimensional networks. In particular, networks of type a), described in Section 4.9.2, would 

probably not be stable enough to be processed as free networks in step one of the adjustment. 

Experiences in photogrammetry led to similar findings. 

The rise of GPS in particular has given enormous impetus to the changing role of geodesy and 

geodesists. However, another, be it rather delayed, conclusion of covered period came with an 

updated version of the HTW in 1996. Its subject matter clearly showed the dawn of a new period. 

Geodesists were being confronted with different questions, while GPS made it possible for precise 

positioning for most applications to be executed by professionals from other disciplines. Earth 

observation really took flight and modern computer science made a definitive breakthrough, with 

major consequences for the work of the geodesist. All this provides a good reason to describe the 

developments after the early 1980s in a separate monograph. 

Publications and external influences 
It is quite remarkable that this successful research tradition, covering about fifty years, has led to 

a relatively small number of publications, of which only a handful was published in internationally 

acknowledged scientific journals. Nevertheless, the results of this work have been taken up in a 

major way in geodesy and its associated disciplines. Tienstra’s book and Baarda’s publications in 

the ‘Yellow Series’ of the Netherlands Centre of Geodesy and Geo-Information Science (NCG)10, 

have had a considerable impact. Equally remarkable is the fact that by far the largest number of 

publications are attributed to the two main actors, Tienstra and Baarda. Baarda wrote one article 

together with Alberda (Baarda and Alberda 1962) and Alberda contributed to several of Baarda’s 

publications, but ultimately these were published under Baarda’s name alone. 

In the fifty years described in this monograph a consistent methodology, highly relevant for 

survey practice, took shape. It is therefore surprising that no textbook has ever been published, 

providing an accessible and coherent introduction of this work with examples of how the methods 

can be used in practice. 

In the current monograph I adopted a somewhat monolithic approach in my reconstruction of the 

history of the development of the Delft School methodology, doing so mainly based on the 

publications of the protagonists and those that were involved directly. It is unclear from those 

publications how others might have influenced Tienstra’s and Baarda’s work. Naturally an 

exception must be made for Van Dantzig and his circle. Baarda did refer to the standard literature 

about mathematical statistics. Cramer has been mentioned earlier and Fisher’s work was clearly 

addressed. However, any influence exerted by fellow geodesists remains unclear. He did refer to 

their work but did not show how he incorporated that in the development of his own ideas. That 

would be worth investigating more closely. To get an idea of the thoughts formulated elsewhere 

in the geodetic community, especially around the 1980s, see (Mierlo 1982), in which Jan van 

Mierlo provides an overview of international developments in mathematical geodesy. 

 

10 See https://www.ncgeo.nl/index.php/en/publicatiesgb 
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PhD students 
Another remarkable point is that from the generally well-qualified co-workers no one was ever 

awarded a doctorate. Baarda himself had not been awarded one either. On this subject there was 

considerable restraint, just as in the publication of work results. Not until towards the end of his 

career did he accept four PhD students and even that he did with some hesitation. I remember I 

had regular meetings with Baarda regarding the research I conducted with the aim of applying his 

ideas in photogrammetry at ITC in the 1970s. One of those meeting was attended by my friend 

and then colleague Cor van der Hout. Baarda let slip that the material I showed was actually 

worthy of a doctoral dissertation, at which point Van der Hout jumped in and said, "I'm a witness, 

Baarda!" After the work had progressed a few years, another meeting took place in which Diederik 

van Daalen participated. At the end of the meeting Van Daalen remarked that more than enough 

material was now available to draw the research project to a conclusion. Baarda consented and a 

date was agreed for the PhD award process, during which I had to publicly defend the project, to 

be awarded a doctorate, subject to the defence being successful. 

Of the four PhD projects Baarda supervised towards the end of his career, Herman Quee’s and 

mine (Molenaar 1981 and Quee 1983) contributed clearly to the conclusion of the research period 

described in this monograph. Frits Brouwer’s research concerned the application of the 

methodology developed to a related discipline: astronomy, specifically Very Long Baseline 

Interferometry (Brouwer 1985). Finally, Peter Teunissen brought this research into a new phase 

with his doctoral dissertation (Teunissen 1985). He would continue the work after Baarda and 

give it new impetus. 

Finally … 
The term Delft School is customary among geodesists, particularly those with a background from 

TU Delft. Diederik van Daalen, as a non-geodesist and hence a relative outsider, devoted an essay 

(in Dutch) to this subject in a quintennial festive book of the society of geodetic students 

Landmeetkundig Genootschap Snellius (Daalen 1985).  

In summary, we may conclude this monograph describes a development in geodesy that was of 

great importance for the discipline, both nationally and abroad. The appreciation for this is also 

apparent from the many honorary titles awarded to Baarda. One of the most important was an 

honorary doctorate of the University of Stuttgart, awarded to him in 1982. 

What has been shown in this monograph is that this line of research was initiated and elaborated 

on by the personal commitment of two great men, Tienstra and Baarda. Their intuition and power 

of work have been decisive for the success of the Delft School. Tienstra died too early, so that he 

had to hand over his tasks prematurely to Baarda, who proved himself a more than worthy 

successor. At his retirement in 1982 the question therefore was whether he was going stop. 

Evidently that was not the case. 

The question of the connection between measurement systems and the definition of coordinate 

systems continued to occupy him. An essay about these questions had been published by NCG in 

1979, just before his retirement and in 1995, he was 78 years old then, a sequel was published. 

These publications were difficult to understand but they did demonstrate that he persisted into 

old age. That also became apparent in 1997, at his eightieth birthday. On that occasion his four 

former PhD students and the chairman of the then Netherlands Society of Geodesy (NVG) were 

asked to contribute to a special issue of the trade magazine NGT-Geodesia. They were thanked for 

this by a personal letter from Baarda (Baarda 1997). In those letters he briefly responded to the 

contributions, after which he wrote that he was still wrestling with the concept of coordinates in 

modern geodesy. This shows that this question occupied him all his life, into old age, as the 

following sentence from this letter shows: 
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Then I thought … of Bridgeman’s question of … which coordinate system Einstein 

had used … The definition of coordinates is even worse than that of the Cadastre; 

it is completely ignored. 

 



55 

 

Appendices 

Appendix 1: Standard Problem I 

Least squares adjustment with condition equations 

Let x be a vector of n observation variates with covariance matrix σxx =  σ2∙ gxx , in which σ2 is a 

scale factor (variance factor).  

− Matrix gxx is then called the matrix of weight coefficients of x. 

− Matrix gxx–1 is the inverse van gxx and is called the weight matrix of x. 

− Diagonal elements of this matrix are the weights of the observation variates x. 

For linear functions y = B · x the propagation laws of probability calculus hold: 

− for the mathematical expectation values: E{y} = B∙ E{x} 

− and for the matrix of weight coefficients: gyy = BT∙ gxx∙ B and hence also σyy = BT∙ σxx∙ B. 

If t = U∙ x + U0 designates b (linear) functions of the observation variates (b<n), E{t} = U∙ E{x} + U0 . 

If E{t} = 0 these functions are termed condition equations. These are conditions that should be 

satisfied by the observation variates. If, for a certain set of measurements: t=U∙ x + U0 ≠ 0, vector t 

is termed misclosure vector and corrections need to be applied to the measurements, such that: 

X = x + v  and U ∙  X=0 . Many solutions for v exist, but in this case the so-called least squares solution 

is sought, for which the following equation is valid. 

vT∙ gxx–1∙ v = minimal! 

The propagation laws of weight coefficients yield the matrix of weight coefficients of the 

misclosure vector t: 

gtt = UT∙ gxx∙ U ; hence also:  σtt =  σ2∙ gtt 

The solution for v can be found in textbooks: 

v = gxx∙ UT∙ gtt–1∙ t = B∙ t 

where: gvv =  B∙ gtt∙ BT = gxx∙ UT∙ gtt
–1∙ U∙ gxx 

and the matrix of weight coefficients of the corrected observations X equals: GXX = gxx – gvv . 

Remark: With Tienstra’s terminology gxx might be termed the matrix of cofactors of x. This term 

is also used in tensor calculus. 
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Appendix 2: Standard Problems II, III, IV and V 

Standard Problem II: Least squares adjustment with observation equations. 

In this form the n corrected observations X are expressed as a function of the n-b unknowns Y. 

X = A · Y + A0 , where X = x + v; hence: A · Y + A0 = x + v 

In this case too the corrections v must satisfy: vT∙ gxx
–1∙ v = minimal! 

When N is defined as: N = AT∙ gxx-1∙ A; then:  Y = N–1∙ AT∙ gxx–1∙ (x – A0) , where  gYY = N–1. 

Usually the starting point is a non-linear function X = F ( Y ). The values of Y are now sought. By 

choosing good approximate values y0, a solution between approximate values can be found as 

follows. 

x0 = F ( y0 ) 

Corrections to the approximate values x0 and y0 need to be found in order to compute the 

corrected values X = x0 + ΔX and Y = y0 + ΔY that do satisfy the start equations X = F ( Y ). When ΔX 

and ΔY are relatively small, a linear relation can be found from this that has the structure of 

Standard Problem II: 

ΔX = A ∙ ΔY +A0 

where A is the Jacobian matrix of function F. As a result of the introduction of x0 the quantity 

Δx = x – x0 will take over the role of the original observations x. The least squares solution is then 

found as follows: 

ΔY = N –1 · AT · gxx–1 · Δx , with N defined as above. 

Tienstra formulated another three variants of the standard problems. Only the start equations 

are given here. The reader is referred to relevant textbooks to find the solutions. 

Standard Problem III: 

Using the same symbols, the start equations consist of two groups: 

X = A ∙ Y + A0  and  U ∙ Y + U0 =0 

The first group thus consists of observation equations as in Standard Problem II. The second 

group consists of condition equations, but applied to the unknown parameters Y. 

Standard Problem IV: 

Using the same symbols, the start equations are: 

A ∙ Y = U ∙ X + U0  ; or  A ∙ Y – U ∙ X – U0 = 0 

In these equations the observations are not expressed as functions of the unknowns, but (linear) 

functions of the observations are expressed as functions of the unknowns. This approach is often 

adopted for more complex problems, for example in photogrammetry. 

Standard Problem IV: 

The start equations are in this case a combination of the equations given for Standard Problems 

III and IV. 

A ∙ Y + A0 = U1∙ X  and  U2 ∙ Y + U0 = 0 
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Appendix 3: The geometric interpretation of the standard problems 

Let n observations xi (i = 1 … n) be the scalar components of the n-dimensional observation vector 

x. These can be represented geometrically in a space (‘x-space’) with n axes. Two complementary 

subspaces can be defined in x-space, viz.: 

− A b-dimensional t-space. This is the subspace of the condition equations; vector t lies 

entirely in t-space; 

− An a-dimensional Y-space. This is the subspace of the unknown parameters Y, which are 

to be estimated. 

The two subspaces are complementary, that is, a+b=n; the dimensions of two subspaces added 

together yields the dimension of x-space.  

 

Figure A3: Geometrical representation of the X-space, Y-space and t-space 

In Appendix 1 and 2 it was shown that in the case of least squares estimators: X = A · Y, which 

implies that vector X lies entirely in Y-space. Additionally U · X = 0 . 

When a measurement process is repeated, the results for x will vary and that means the results 

for Y and X will vary. However, for all results the following relation holds: U∙ A∙ Y = 0 . From that 

follows: U ∙ A = 0 . Vector X is therefore orthogonal to t-space; hence Y-space and t-space are 

orthogonal. These relations are graphically represented in Figure A.3. 

xi and xj are the parallel projections of vector x (the observation vector) on the respective axes of 

x-space. Vector v lies entirely in t-space and is therefore orthogonal to Y-space. The vector of 

corrections v projects vector x therefore also orthogonally to Y-space and that is exactly what least 

squares estimators do. The (weighted) sum of the squares of the corrections vT∙ gxx-1∙ v is the length 

of the correction vector and that is minimal when it is orthogonal to Y-space. 

In x-space, as it is drawn in Figure A.3, the axes are not orthogonal. Therefore, the length of a vector 

X cannot be calculated by adding the sum of the squares of the scalar components Xi, that is, by 

applying Pythagoras’s Theorem. Its length must be calculated from the product XT∙ gxx-1∙ X. In this 

product gxx is called the metric tensor; this compensates for the effect of the non-orthogonality of 

the axes and for the effect of potentially different units of measure along different axes. In our 

application that is the matrix of weight coefficients. In t-space the length of the t-vector is 

computed analogously as tT∙ gtt-1∙ t. 
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Appendix 4: Standard error ellipses and error curves 

Let x be a normally-distributed random variable with expected value E{x}= μ and variance 
E{(x – μ) 2} = σ2. The probability density function is then represented by Figure A.4. 

 

Figure A.4: Normal distribution 

Figure A.4 demonstrates that σ determines the shape of the curve, which is why this parameter is 

used as a measure to express the spread of x. The following relations are valid (see mathematical 

statistics textbooks, e.g. (Cramer 1957) and (Hogg and Craig 1970)). 

E{(x – μ) 2/ σ2 ) = 1 

This holds for the spread of a single normally-distributed variable. In the case of n normally-

distributed variables, expressed jointly as vector x, the expected value is: 

E{x} = μ  

where μ is now also a vector. 

Instead of the (scalar) variance used above, the n observation variates now jointly have a n x n 

covariance matrix σxx . This matrix takes over the role of the variance σ2. That yields: 

E{(x – μ)T∙ σxx–1∙ (x – μ)} = 1 

Analogous to the above case, σxx determines the shape of the n-dimensional distribution. If two 

variates are involved and x – μ = x’ is substituted, then, the formula: 

x’T∙ σxx–1∙ x’ = 1 

describes an ellipse, of which the shape is determined by σxx . In geodetic surveying point 

standard error ellipses are calculated from the (X, Y) coordinates of surveyed points using the 

above formula. From the covariance matrix of the coordinate differences between two points 

relative standard error ellipses may be computed analogously. The latter ellipses reflected the 

relative accuracy of any two points. 
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Appendix 5: The definition of Π-variates 

Extract from (Baarda 1962). 
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Appendix 6: Data snooping 

See (Baarda 1968) p. 28, formula (4.3). 

Let Cp be a vector that indicates to what extent observations are part of an alternative hypothesis 

Hap. Data snooping is the procedure in which a series of alternative hypotheses Hai are tested. In 

each of these alternative hypotheses only one observation is assumed to contain an error. For each 

of these hypotheses the i-th element of the associated Ci vector will contain the value 1; all other 

elements will be zero. Data snooping proceeds as follows. 

For each value of i = 1 … n, calculate:  

Ni = Ci
T∙ gxx

–1∙ gvv∙ gxx
–1∙ Ci  

Ni is therefore the i-th diagonal element of the following matrix: N = (gxx-1∙ gvv∙ gxx-1) 

The test variate for observation xi is then: 

wi = CiT∙ gxx–1∙ gvv∙ gxx–1∙ (x - A0)/σ√Ni 

All observations are tested individually and successively for the occurrence of possible errors by 

applying the criterion: 

wi2 < F1-α0; 1, ∞  

A fixed value for α0 is used these tests, commonly α0 =0.001. 
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Appendix 7: Ricci calculus 

The accessibility of Tienstra’s publications and later also Baarda’s is difficult for most readers 
because of the index notation both authors used. Geodesists might be somewhat familiar with 

Ricci notation from their exposure to differential geometry. The effects of earth curvature will be 

felt when geodetic survey measurements start cover medium-large areas. When high accuracy is 

pursued and when large areas are covered, the fact that the polar axis of the earth is shorter than 

its equatorial diameter must also to be taken into account. In that case the shape of the earth is 

approximated by an ellipsoid. That means that a north-south cross section of the earth will have 

the shape of an ellipse with the equatorial diameter as major axis and the polar axis as minor axis. 

By allowing the ellipse to rotate about its polar axis a three-dimensional ellipsoid is obtained. 

Euclidean geometry does not suffice for geometric calculations on such a surface; Riemann 

geometry is required for curved surfaces. Calculations on curved surfaces are performed by 

means of differential geometric calculus, an important application of tensor analysis. It is here that 

Ricci notation was used. This approach had become more widely known in the early twentieth 

century because Einstein applied it in the formulation of the Theory of Relativity. 

Tienstra probably used the Ricci notation because he was not yet well versed in linear algebra 

and matrix calculus; see the remark made on this in (Hoek 1982). The Ricci notation has a great 

expressive power and makes it possible to distinguish many types of quantities through the 

combination of basic symbols and indices it uses, whereby many types of spaces could be 

distinguished in the geometric interpretation of formulas (Tienstra 1947). 
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In his 1947 publication Tienstra explained the Ricci notation and his use of it (Tienstra 1947). 

This introduction, chapter 2 of his article, has been reproduced entirely as support for those 

people who wish to consult these early publications. 
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Appendix 8: The use of quaternions 

In (Molenaar 1981), chapter IV, pp. 33-34 the following definition of quaternions is found. 
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This description makes it clear that the spatial variate Qjik has the same structure as the plane 

variate Πjik. Because of the multiplication rules for quaternions, multiplications are not 

commutative, hence: a·b ≠ b·a. That makes the application of quaternion algebra considerably 

more involved than complex number algebra in the plane. 

Quee describes in (Quee 1983), chapter 2, p. 32 how quaternions are linked to the measurement 

of distances and angles in the field. 

 

If measurements are also made from point Pi to point Pj the quaternion qij can be derived, which 

enables calculation of variate Qjik. It must be noted that in situations mentioned above the angle 

αjik and the length ratio vjik are spatial observations between the points Pi, Pj and Pk. In other words, 

these measurements have not been projected on the horizontal plane, as was the case with Πjik . 
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Illustrations 

Fig. 1:  RD-network. The first-order geodetic control network, 1888-1904: 

https://kartoweb.itc.nl/geometrics/Bitmaps/refsurface%203.5d.gif 

Fig. 2:  Definition of (X, Y) coordinates: (Baarda 1973, amended by Roel Nicolai). 

Fig. 3:  Measurement of the baseline of a triangulation network: (Schermerhorn en van Steenis 

1964, redrawn by Roel Nicolai). 

Fig. 4:  Left: Wild T2 Universal Theodolite, 1962: homepage of Nicolàs de Hilster.  

Right: Schematic drawing of a theodolite: 

https://www.researchgate.net/publication/283666278_Horizontal_scale_calibration_of
_theodolites_and_total_station_using_a_gauge_index_table/figures?lo=1 (modified by 

Roel Nicolai). 

Fig. 5:  Measurement of a closed traverse (Roel Nicolai). 

Fig. 6:  Subtense bar (left): https://mindfulbalance.files.wordpress.com/2012/01/angle.gif  

Its principle of distance measurement (right): (Schermerhorn en van Steenis 1964, 

redrawn by Roel Nicolai). 

Fig. 7:  Resection from three control points: (Roel Nicolai). 

Fig. 8:  Extract from (Baarda 1957). 

Fig. 9:  Three traverse circuits and their ties to stations A and B (four known coordinates): 

(Baarda 1977, redrawn: Roel Nicolai). 

Fig. 10:  The geometric representation of the specifying test variate wi: (modified: Roel Nicolai). 

Fig. 11:  Error ellipse dependency on S-base: (Baarda 1968). 

Fig. 12:  The structure of the criterion matrix Ha: (Baarda 1973, redrawn: Roel Nicolai). 

Fig. 13:  Standard error ellipses of the Dutch RD network, compared with criterion circles:  

(Baarda 1973). 

Fig. A3:  Geometrical representation of the X-space, Y-space and t-space: (Martien Molenaar, 

modified: Roel Nicolai) 

Fig. A4:  Normal distribution: (Roel Nicolai). 
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