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Chapter 1 Introduction 
Change detection is defined as the process of identifying differences in 
the state of an object or phenomenon by observing it at different times 
(Singh, 1989). In 19th century change detection was closely associated 
with military technology and was commonly used for civilian 
applications in 20th century as regular acquisition of digital data of earth 
surface was possible and suitable computer programs became available. 
Change detection has become quite an important topic due to increasing 
concerns about the overall consequences of global and local change. 
Over the past fifty years, remarkable progress has been made in 
developing the techniques for change detection. Techniques, as 
documented by Lu et al. (2004), can be divided into five categories: 
visual analysis, algebraic approaches, transformation, classification, and 
combination of images with geographic information systems (GISs). 
 
Visual analysis entails the observation of changes by collating epochs of 
data manually. It is an original method and is most widely used in the 
manufacturing of physical products. Visual analysis is, however, highly 
dependent on the analyst’s experience and is often quite time-consuming. 
With the introduction of algebraic processing, such as image differencing 
and rationing, in the 1970s, change detection underwent a significant 
evolution. Algebraic processing can be used to remove most of any 
unchanged information, thereby greatly improving the efficiency of 
detecting change as compared to visual analysis. Algebraic techniques 
are, however, sensitive to noise. Roughly a decade later, transformation 
methods were introduced by Byrne (1980) to monitor changes in forest 
areas. One of the most popular transformation methods is principle 
component analysis (PCA), which is often applied to detect changes in 
land use.  Early in the 21st century, with the development of computing 
techniques and the gradual maturation of theoretical approaches, 
classification methods were developed and applied to change detection. 
Simultaneously, these methods were combined with geographic 
information systems (GISs) to create a vital tool for change detection and 
change analysis. 
  
In the past twenty years, light detection and ranging (lidar), a very 
successful remote sensing invention, has created enormous new 
opportunities for exploring the world in 3D. Compared to traditional 
remote sensing techniques, such as aerial and satellite photography, lidar 
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has the advantages of being able to accurately measure elevation and to 
penetrate forested areas. The era of change detection using lidar data 
began in 1999, when Murakami et al. (1999) first compared two epochs 
of lidar data sets to detect the changes in buildings after an earthquake. 
Change detection using lidar has a wide range of applications, including 
the fields of archaeology, geography, geology, geomorphology, 
seismology, forestry and civil engineering. From the perspective of the 
civil engineering applications, the results from the change detection can 
be applied to a variety of situations according to the data acquisition 
approaches used. Changes extracted from airborne laser scanning (ALS) 
data are commonly used to update maps (e.g. Vosselman et al. (2004a) 
and Matikainen et al. (2004)), as well as to evaluate damage to buildings 
after the occurrence of physical disasters (Murakami et al., 1999). 
Terrestrial laser scanning data offers more local change information, 
which is often used to monitor changes to a variety of structural 
deformations (Roberts and Hirst, 2005), in particular mountain slides 
(Sui et al., 2008). Mobile laser scanning systems may be installed to 
distinguish permanent objects from temporary objects (Xiao et al., 2013), 
or to track the motion of vehicles or pedestrians. 

1.1 Research motivation 
My PhD research is centred on the use of ALS data in building change 
detection. Detection of changes to buildings can have many applications. 
For example, when a change is made to a building it may have been done 
without permission, which would mean the change was made illegally. 
To be able to quickly locate such illegal activity it is essential to first 
know where any changes have been made to a building. Nevertheless, in 
practice it will always be rather challenging to manually detect changes 
occurring among potentially millions of objects within a metropolitan 
environment, whether from images or from ALS data. Compared with 
aerial or satellite images, ALS data has the advantage that buildings 
under trees remain visible.  Some municipalities are making their ALS 
data available so that they can be used to explore the possibility of 
automating the detection of changes to buildings. Among them is the 
Municipality of Rotterdam, which, by using change detection derived 
from ALS data, is interested to verify changes to buildings against 
building permits issued, and to check the quality of the base registration 
of addresses and buildings (BAG). To explore the feasibility of various 
applications of lidar, the Municipality of Rotterdam contracted the 
company Fugro Aerial Mapping to capture multi-temporal ALS data sets 
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of the Rotterdam area (the Netherlands) for the years 2008, 2010 and 
2012.  
 
As part of my PhD research I have been exploring the use of these ALS 
data sets for detecting both large and small changes to buildings. Large 
changes would usually be a newly built or demolished building or 
extensions to a building. Small changes, which are also of interest to the 
municipality, are changes attached to building roofs, for example 
dormers built on top of roof gables in residential areas.  Some of the new 
constructions are likely to have been built or extended without permits. 
Unless these illegal constructions are registered and taxed, the 
municipality’s building management system will fall into disorder.  
 
For buildings, change detection by visual analysis is often an enormous, 
time-consuming activity. According to the statistics, visual analysis can 
account for up to 40% of the time and labour costs related to inspection 
of changes to objects in a dense city area, with the remaining 60% being 
taken up by charting and updating (Champion, 2007). Yet, in general, 
95% of buildings in large cities remain unchanged for periods of 5-10 
years (Frontoni et al., 2008). To avoid these disadvantages, my research 
therefore focuses on using the ALS data provided by the Municipality of 
Rotterdam to automatically detect and interpret changes to buildings that 
are of interest to its planning office.  
 
Automated change detection in an urban environment that comprises 
thousands of real-world objects, large numbers of which are undergoing a 
wide variety of changes every second of the day, is a challenging task. If 
relevant changes are to be distinguished from among the total number of 
changes occurring, the detection approach taken should be able to not 
only separate real changes from spurious ones but also to identify 
changes considered to be relevant from those considered irrelevant, in 
addition to being able to distinguish buildings from other objects in the 
first place! (Spurious and irrelevant changes are described in more detail 
in Section 1.4) Furthermore, the approach chosen should be capable of 
detecting these changes automatically. Once detected, change to 
buildings needs to be found out and interpreted in order to know what the 
changes are. For this reason, another focus of my research has been the 
automated classification of buildings and the detected changes. 
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1.2 Research scope and limitations 
This research mainly focuses on detecting changes to buildings, 
including newly built and demolished walls, roofs and roof elements. 
Roof elements are defined as things that are attached to the roofs of 
buildings, such as dormers, chimneys and antennas. Changes detected in 
roof elements are classified as one of four types: construction, vehicle, 
dormer, or undefined object. Changes to building walls fall outside the 
scope of my research. Descriptions of other aspects of the scope and 
limitations of my research follow in the remainder of this section. 
 
Data processing 
ALS points were directly used in the pre-processing and subsequent 
processing steps. To date, most methods for detecting and classifying 
changes in buildings have made use of either multi-temporal aerial 
images (Rottensteiner, 2007; Champion et al., 2009) or DSMs derived 
from ALS data (Murakami et al., 1999; Rutzinger et al., 2010). Often, 
changes to buildings are verified in classified DSMs or classified images. 
Several other methods, for example that of Hebel et al. (2013), run on the 
occupancy grid – directly derived the ALS data. Compared against aerial 
images and DSMs, ALS data offer better visibility of buildings in tree-
covered areas and more accurate information on heights. Utilization of 
solely ALS data can avoid information loss. 
 
Registration 
The ALS data used have systematic strip differences of no more than 5 
cm, whether within the same epoch or between different epochs. The 
standard deviation of noise in the height measurements is also less than 5 
cm. It was decided to track changes larger than 10 cm, because it is very 
unlikely that a change of less than 10 cm will be made to a building. 
Therefore, no improvement of data registration was needed before 
change detection was performed.  
 
Data filtering 
It was assumed that the input data sets for classification had already been 
accurately filtered to separate ground and non-ground points. Data 
obtained in year 2010 had been already manually filtered into ground and 
non-ground points by the data supplier. The DTM from the 2010 data set 
was taken as the reference DTM in my research. Other epochs of data 
sets, which had not been filtered, were first filtered using “LASground” 

 4 



Chapter 1 

software from the “LAStools” suite. Thereafter the filtered data sets were 
refined automatically based on the reference DTM of year 2010.  
 
Classification 
Besides to change detection, classification is another but equally 
important focus in this thesis. There are two types of classification 
relevant to my research. Scene classification is performed on the whole 
data set to distinguish points as either water, ground, vegetation, wall, 
roof, roof element or an undefined object. Although during scene 
classification the main emphasis is on extracting building points, other 
objects of interest to the municipality, such as vegetation (e.g. high 
vegetation) and water were also extracted. In this classification step, 
buildings are divided into wall, roof and roof elements, thus providing 
the rough context for any building.  
 
The other, second type of classification dealt with in this thesis may be 
called the “classification of change in buildings”. Following the change 
detection process for buildings, any change detected in roof elements was 
classified as being either a dormer, a vehicle on a roof top, a construction 
on top of a roof or an undefined object, and changes in large construction 
sites are classified as being a change in a roof, a roof element or a wall.  
This “classification of change” step helps to interpret changes detected in 
roof elements. When scene classification and classification of change are 
mentioned in the rest of my thesis, they refer to the concepts explained 
above. 
 
Unless specifically stated otherwise, all processes described in my 
research are automated, i.e. no human activity is involved in the 
segmentation, classification, and change detection or evaluation steps. I 
assume that these activities do not include data capture with sensors, 
filtering, making reference data for evaluation and adjusting parameters 
of algorithms, which will involve manual input. 

1.3 Research problems and questions 
The research for my thesis has focused on classification and change 
detection applied in an urban environment. The problems, that have 
arisen and their related research questions, which form the basis of my 
investigations, are described briefly in the following subsections.  
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1.3.1 Classification 
Scene classification is fundamental to the process of change detection, as 
you have to know where buildings exist. The same holds for the 
“classification of change” process, since the aim is to identify which 
building changes are related to dormers. Classification generally includes 
the steps of entity definition, feature selection, classifier selection and 
evaluation. Entity definition entails specifying the grouping rules of 
points. Before generating features for classification, one should consider 
which entity should be adopted for calculating its features. Most 
literature makes efforts to discuss the importance of feature and classifier 
selection, in doing so raising such questions as: “Which features can be 
selected from a long list of potential features?”; “What method can be 
used for feature selection?”; and “Which classifier performs well in 
certain situations?”. Before addressing these questions, the characteristics 
of the target classes need to be analysed.   
 

    
(a) 2009 (b) 2013 (c) 2008 (d) 2010 

Figure 1.1. (a) and 1(b) are two images of the same building obtained in 2009 
and 2013 from Google Earth. The image in  (b) is a street view of the wall in the 
rectangle in image (a). These two images indicate that there is no change on the 
roof and wall from year 2009 to 2013. (c) and 1(d) are the corresponding laser 
points scanned in years 2008 and 2010. In (c) there is a lack of points for the 
roof and the wall in the rectangular area, whereas in (d) the points are adequate 
for identifying the roof and the wall. Problems caused by lack of data in one 
epoch of data set. The lack of points in (c) yields two problems. First, in (c) it is 
difficult to classify the roof and the wall with common features. Second, a 
change will be found as soon as the laser points in (c) and (d) are compared. 
However, as shown in (a) and (b), these changes are not real. 
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Building 
As the municipality is specifically interested in dormers on rooftops, all 
buildings need to be classified into walls, roofs and roof elements in 
order to provide better context information about dormers. There are 
potentially thousands of types of building walls, roofs and dormers in the 
urban scene. For this reason there is little chance of drawing up a uniform 
list of defining features for the simultaneous identification of all types of 
these elements, even if the list of features is long and all these features 
are uncorrelated with each other. In addition, many roofs lack 
corresponding points in the data (e.g. Figure 1.1), probably caused by 
absorption of the laser signal or an inappropriate laser scanner angle. 
This only makes definition of features more difficult.  
 
Vegetation 
Unlike man-made buildings, vegetation is a seasonal object involving a 
variety of species. Multiple-pulse information in ALS data is usually 
considered to be an important indicator of vegetation: in areas of 
vegetation, multiple reflectance of ALS laser beams is common. Other 
features, for instance “surface roughness” (or “sphericity” (Hebel et al., 
2013), “plane fitting residual” (Niemeyer et al., 2012)) and “intensity”, 
have also been found helpful in recognising the presence of vegetation. 
However, the expression of these features will differ in data from 
different seasons and for various tree species.  In seasons when trees have 
their leaves, especially in forested areas, reflectance from vegetation is 
similar to that of flat roofs: the leaf canopy may be too dense to allow the 
emitted laser beams to generate multiple-pulse returns. The use of these 
features may not allow classification of all types of vegetation, even if an 
exhaustive list is incorporated in the classifier.  
 

Water and ground 
Sometimes, if laser beams strike water bodies they will not be reflected 
back to the sensor. On average this will result in a relatively low point 
density for a water surface as compared to a ground surface. 
Nevertheless, this is not always the case. The point density for a water 
surface may occasionally increase, due to a high specular reflectance 
from directly below the aircraft such that the point density of that water 
surface is approximately as high as that for the ground surface (Figure 
1.2a). Another factor that may influence point density is strip overlap, 
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which occurs when the same area is scanned twice during the flight (e.g. 
Figure 1.2b).  
 

  
(a) (b) 

Figure 1.2. Examples of varying point density. Different colours indicate 
different height values. (a) High point density attributed to specular reflectance  
(point density varies in the image). (b) Varying point density caused by strip 
overlap on the ground surface. 
 
The problems associated with the defined classes mentioned above show 
that a long list of features is not always a good solution for classification. 
In addition, it is often quite expensive to calculate a large number of 
point features in large ALS data sets. Even when feature selection allows 
us to reduce the points needed, it will still be a time-consuming step. For 
example,   it takes more than 50 minutes to generate nine features from 
point clouds of an area of 50 m x 50 m.  Therefore, the questions for the 
classification are: As generation of large number of features is infeasible 
for the classification of all the objects represented in large data sets, is 
there a strategy that makes it possible to obtain promising classification 
accuracy by applying only a few commonly used features? If the answer 
is “yes”, then what results can be expected from using different entities 
with a few features and how can a compromise between accuracy and 
computation speed be achieved with the utilization of different entities?  
 
Entity 
The term “entity” has various definitions depending on the specialization 
under discussion. In classification, the term is introduced to indicate a 
certain division of ALS points. In the current literature, commonly used 
entities with ALS data are “point”, “segment”, and “voxel”. With 
differently defined entities, we can generate multiple divisions of points 
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that are adaptive for the shapes of different objects. Different entities can 
represent different objects (Figure 1.3). The same feature calculated for 
different entities may yield different values, which allows features to 
behave more distinctly among different objects. If multiple entities can 
handle the classification problem, even when only a few features have 
been derived and when the data sets are extremely large, the main 
problem then becomes what entities and their corresponding features can 
be used for classification? 
 

 
Figure 1.3. An example of different entities, segmented using the method 
published by Vosselman (2013). Different colours indicate different segments. 
There are points in circles, planes in rectangles and a tree as one segment in the 
keystones. 

1.3.2 Change detection 
The research problems associated with change detection do not lie in the 
characteristics of objects or defined classes. Rather, they lie in the ability 
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to separate relevant changes from spurious and irrelevant changes.  
Spurious changes, which are the result of shortcomings of the change 
detection algorithm or a lack of data in one epoch of data, are the most 
common problem. An example of a spurious change caused by failure of 
the algorithm is error propagated from classification. In this type of 
algorithm, the target object is extracted after classification so that 
comparisons to identify change can be made. If the target object is 
correctly classified in one data set but is wrongly classified in another, a 
spurious change will be detected upon comparison. Spurious changes 
may also be caused by occlusion: a spurious change is detected when 
there is no point in one epoch of data because of occlusion but points for 
the same location are available in another epoch of data.  
 
Besides spurious changes, there are some real changes that indeed occur 
in the real world and are detected as change in the data. Nevertheless, 
these real changes are not always changes we are interested in. Such 
irrelevant real changes also present a challenge for change detection 
processing. An obvious research problem is, then, how to separate 
spurious changes from real changes and how, simultaneously, to 
distinguish irrelevant changes from relevant ones.  
 
Spurious change and irrelevant change 
Spurious change: A spurious change is defined as a change detected in 
the data while in reality no change has occurred. Often, spurious change 
is caused either by incorrect classification or by lack of data points, the 
latter commonly the result of either occlusion or absorption of the laser 
beams by water after rainy days. Despite the fact that many researchers 
tried to solve the problem of occlusion by using occupancy grids (Hebel 
et al., 2013), there are still a significant number of problems to solve.  
 
Figure 4 shows an example of spurious change that is caused by laser 
signal absorption on a building roof that cannot be solved using an 
occupancy grid. In Figure 4, we can visualize a “change” on the roof if 
we compare the two epochs of data in 1.4(a) and 1.4(b). However if one 
inspects the attached walls in the two data epochs no change to the roof 
would be expected: no change appears to have occurred on the walls, 
which implies that very probably the roof was in the same condition for 
both data sets. Nevertheless, in this case an occupancy grid would have 
detected a change. Another case is the newly built dormer on top of a 
gable roof shown in Figure 1.5. One would expect changes to be detected 
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both for the dormer and for the roof below the dormer.  Most existing 
methods would only detect changes on the dormer, however; the part on 
the roof below the dormer would be detected as occluded.  
 
Irrelevant change: Elements attached to a building are quite dynamic and 
many small changes are commonplace. Vehicles are parking and leaving 
the flat roofs of buildings (parking places are sometimes created on the 
roofs of buildings), flags are flapping in the wind, sun shade panels and 
windows are open and closed from time to time, etc. Such changes, 
which are frequent and temporary, are irrelevant. To be useful, any 
algorithm used should be capable of distinguishing these from the long-
term activities such as building construction or demolition.        
 

                 
  (a) 2008                                                         (b) 2010 
Figure 1.4. Spurious change caused by lack of data for the roof in epoch 2008. 
 

 
                  (a)                               (b)                                   (c) 
Figure 1.5. An example of a newly built dormer. Points in (a) and (b) are from 
different epochs. There is a newly built dormer located within the rectangle in 
(c). The dormer in (b) is newly built and part of the roof under the dormer has 
been demolished, i.e. changes have been made to both the roof and the dormer. 
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Challenges for the algorithm 
Next to the challenges arising from detecting spurious and irrelevant 
changes, still further challenges are presented by gradual increases 
requirements such as high level modeling for the changes in dormers, 
chimneys, tree growth, etc. The aim is to be able to detect changes in roof 
elements such as dormers and vehicles on roof tops: to be satisfactory, 
the algorithm should be capable of classifying these roof elements. 
Previous researchers detected changes by comparing classified DSMs 
from different epochs. Unfortunately this leads to propagation of errors 
occurring from classification to change detection. The algorithm should, 
therefore, be capable of avoiding error propagation arising from 
classification. 

1.4 Goals and objectives 
The general goals of my research are: (1) to present an automated 
approach for explicitly classifying ALS point clouds into the categories 
water, ground, vegetation, building wall, building roof,  roof element and 
undefined object; and (2) to automatically detect changes to buildings 
and to distinguish and quantify changes for dormers using the 
“classification of change” approach. 
 
These general goals can be subdivided into the following specific goals: 

• to design, implement and analyse an algorithm that can achieve a 
highly accurate classification result for each object class. 
Especially since a long list of object features is not suitable for 
large data sets, there is a practical advantage in exploring the 
potential of using “entity definition” rather than “feature 
selection” and “classifier selection” during classification. The 
results of this approach need to be evaluated and analysed. 

• to design, implement and analyse a change detection algorithm 
that is capable of distinguishing real changes from spurious and 
irrelevant changes. The results should be visualized in an object-
based manner so that customers are able to access each changed 
object.  

• to design, implement and analyse a method for extracting dormers 
from the changed objects. The number of changed dormers also 
needs to be calculated. 

• to statistically evaluate change detection results. 
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1.5 Thesis outline 
This thesis is composed of seven chapters, of which the middle four 
chapters set out the main contributions to the methodologies and 
experiment results. 
 
Chapter 1 places the research described in this thesis in its broad context:  
the reasons for the research, its scope, the problems to be addressed and 
the goals set for solving them. 
 
As the study involves large data sets, the information in the data sets, 
such as data organization and pre-processing procedures, including 
pyramid generation and data filtering, are introduced in Chapter 2. 
Chapter 3 includes a literature review of algorithms suitable for the 
classification of lidar data and explains how the data sets used in this 
PhD research are classified into water, ground, vegetation, wall, roof, 
roof element and undefined objects. By estimating that promising results 
can be achieved with multiple entities, even if only a few features are 
used, the data sets have been sorted into planar segments and a planar-
segment-based classification performed. For each planar segment, values 
of five commonly used features from the literature were calculated, as 
well as the value of another feature especially for vegetation if multiple 
returns are unavailable in the data. After this step is carried out, most 
points for roofs, vegetation, water, ground and undefined objects are well 
separated. Classifying points from wall and roof elements is challenging 
because of their diversity and, as well, because occasionally points are 
missing. To compensate for this, contextual information and multiple 
entities are included in the strategy. Chapter 3 explains why they are 
included and how the choice of entity is made and combined with the 
method.  Examples of classified data sets for both epochs are shown in 
Chapter 4. The chapter also includes an evaluation and analysis of the 
classification, including accuracy, confusion matrices, impact of features, 
and the impact of multiple entities. 
 
Chapter 5 reviews the state-of-the-art of change detection with lidar, and 
covers the change detection methodology used in my research. The 
classification result from Chapter 3 is not immediately used for 
comparison to identify change. Instead, a point-wise search for possible 
areas of change is made by merging two epochs of unclassified data. 
After identifying possible areas of change, areas that belong to a building 
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in either epoch of data are extracted as changes in buildings. These areas 
are organized as object-based components and put into the “classification 
of change” step in order to extract dormers. The results and analysis in 
Chapter 6 involves examples of all types of change in buildings and a list 
of errors and the reasons for their occurrence.  Examples of dormer area 
and volume calculation are also described in Chapter 6. To conclude this 
thesis, I present the conclusions and recommendations arising from my 
research in Chapter 7.  
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Chapter 2 Data sets 
 
The lidar data used, its quality and the pre-processing procedures are 
explained in this chapter. The study area and the data sets are introduced 
in Section 2.1. Section 2.2 describes the data quality, in particular the 
point density and strip differences that occur. These latter two factors 
have the greatest impact on the classification and change detection 
results. Point density is considered during the feature extraction 
procedure and strip difference determines how well the data sets register 
with each other and thus affect the quality of change detection. Although 
they lead to uncertainties in X, Y and Z coordinates, other data quality 
indices such as errors due to sensor position, sensor and aircraft 
alignment, and time measurement are not discussed because strip 
differences already incorporate the effects of these errors. Moreover, if 
the expected change is larger than the offset between two strips, the 
errors mentioned above will not affect the change detection result. Data 
pre-processing procedures, which include data organization and data 
filtering, are introduced in Sections 2.3 and 2.4.  

2.1 The study area 
Three epochs of data of Rotterdam, the Netherlands, were made available 
by the Municipality of Rotterdam. Two epochs of the data, which were 
obtained in 2008 and in 2010, cover most of Rotterdam (Figure 2.1 (a)), 
stretching over approximately 120 km2. The other epoch, which was 
obtained in 2012, covers 0.8 km2 and is located in the northeast of 
Rotterdam (Figure 2.1 (b)). The study area is generally flat with only 
slight variations in relief; canals can be found throughout the whole area.  
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(a) (b) 

Figure 2.1. The study area (from Google Maps). (a) Boundaries of data sets 
2008 , 2010 and 2012(largest boundary for 2008 and 2010 data sets) (b) 
Boundary of data set 2012 

2.2 Data Quality 
The average point densities for the data sets are 20-30 points/m2 for 
2008, 30-40 points/m2 for 2010, and 40-50 points/m2 for 2012.  As the 
data sets only have minor strip differences, no further registration was 
required. To verify that the registration accuracy is better than the 
maximum of 10 cm, several randomly chosen roofs were checked by 
comparing the planar surfaces in the different strips, either from within 
the same epoch or between different epochs: the systematic discrepancies 
were less than 10 cm. Furthermore, checking of the distances between 
ridgelines of building roofs in the overlapping strips showed that the 
differences were also less than 10 cm.  Figure 2.2 is a sample of a 
randomly selected roof. 
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Figure 2.2 A sample of a randomly selected roof showing strip differences 
between different strips in the same epoch (top row); and different strips from 
different epochs (bottom row).(a) Colour stands for segment number; (b) Colour 
denotes different epochs 
 
As the data sets are registered well enough to meet requirements for 
detecting change in buildings, pre-processing of the data could proceed, 
including: (1) organization of the large data sets for process and display; 
and (2) filtering (separating terrain points from non-terrain points). 

2.3 Data organization 
The data sets are stored in LAS file format, which is a compact binary 
file format specific to lidar data. It is a public file format for the 
interchange of 3-dimensional point-cloud data between data users 
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-
Exchange-Activities.html). These large data sets are processed by cutting 
the data sets into small pieces (tiles) and visualising them by generating 
lidar data pyramids. Lidar data pyramids, which are similar to image 
pyramids, are composed of several levels. In each level, the point density 
decreases by selecting one point from a set of points in the previous 
level.  Figure 2.3 (a and b) shows different levels in the data pyramids. 
The same tile boundaries are used in the data sets of all three epochs 
facilitating tile-wise change detection. 
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(a) (b) 

Figure 2.3 Data view in different levels of the  pyramid. (a) level 3, (b) level 0. 
Colours indicate the altitude. 
 

 
Figure 2.4 Example of a block with overlapping tiles. 
 
Blocks and tiles 
Figure 2.4 shows how a block is divided into many tiles. A tile comprises 
the ALS points within a 50 m x 50 m area; all processing is done tile by 
tile. In the data set, one block was generated for each epoch of data. The 
blocks for 2008 and 2010 each have 39,953 tiles, while the block for 
2012 has 320 tiles. In total the blocks contain some 3 billion points. 
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Tile overlap 
The tile overlaps are shown in Figure 2.5. They are used in scene 
classification in order to provide as much contextual information as 
possible. Usually, if an object such as a building or a tall tree by chance 
appears on tile boundaries, this object will be cut into different parts and 
stored separately in different tiles. In some of these tiles, only a small 
part of the object will be stored (e.g. Figure 2.5 (a)). If the tiles are 
processed one by one, it will be very difficult for the algorithm to 
interpret the object from the small piece of it occurring in the tile. In such 
cases, tile overlaps with its neighbours offer larger parts of the object and 
therefore can help to interpret these objects accurately.  
 

   
(a) (b) (c) 

Figure 2.5 An example of tile overlap. Overlapping of tiles helps provide more 
contextual information about objects along tile boundaries. (a) Tile A ; (b) 
Combination with its eight neighbours; (c) Tile A with overlap. 
 
Block bound 
The block bound, shown as the large red rectangle in Figure 2.4, is a 
rectangular range that determines the positions of the first and last tiles in 
each block. For the purpose of generating correspondences for change 
detection, the same block bound is required to ensure that the same tile 
number represents the same location in two epochs of data sets.   

2.4 Filtering 
Besides the pre-processing explained above, “filtering” of lidar data is 
also required for classification since we want to calculate the height of 
points above the ground (represented by the Digital Terrain Model 
(DTM)). The term “filtering” usually indicates the process of bare-earth 
extraction of laser scanning point clouds.  
In general, filtering methods belong to one of two categories: 
interpolation-based methods; or morphological methods (Chen et al., 
2007). Lindenberger (1993) described how mathematical morphology 
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can be used for filtering data recorded by a laser profiler (Vosselman, 
2000); morphology opening was then improved by researchers to become 
a classic method for filtering. Chen et al. (2007) describes in detail about 
how they choose window size and how they cope with problems caused 
by tree areas, small outliers and built areas, as well as missing data. 
Sithole and Vosselman (2004) assessed eight different filtering methods; 
outliers, object complexity, detached objects, vegetation and 
discontinuity are the qualitative factors found in their report. In addition, 
they analysed the frequency of Type I (rejection of bare-earth points) and 
Type II errors (acceptance of object points as bare earth) of the various 
methods.  
 
Filtering algorithms are a research topic in their own right,  and I have 
not attempted to develop any filtering algorithms for my study. 
Nevertheless, the bare earth (or DTM) needs to be extracted to estimate 
the height of objects above the ground in the classification.  
 
To quickly filter the data sets, use was made of LAStools, free and 
commercial versions of which are available, to process lidar point clouds. 
After filtering, the output was visualized. Most DTM points were 
correctly extracted, although some errors were observed for roofs (Figure 
2.5): some roof points were wrongly assigned as terrain, due to the small 
height differences between some low buildings and the surrounding 
terrain. Incorrect assignment has an effect later for the scene 
classification process, since it was assumed that all the input data sets are 
correctly filtered into ground and non-ground elements.  
 
Fortunately, such filtering errors can be corrected. The data set obtained 
in 2010 was already interactively filtered before it was made available for 
my study. Hence, the DTM for 2010 is more accurate. Under the 
assumption that the urban topography of the study area will have 
remained virtually unchanged over a period of 5 years, the DTM in 2010 
was selected as a reference for correcting filtering errors in other epochs. 
Figure 2.6 shows an example of the correction of filtering error in the 
2008 data set. In the left-hand image there are some green points in the 
rectangles that are actually roof points but have been filtered as ground. 
This error was corrected by: (1) extracting the nearby DTM from 2010 
datasets which is taken as a reference DTM; (2) comparing the filtered 
terrain points to the reference DTM, and; (3) checking their fitness per 
point by calculating the vertical height difference. If the height difference 
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is greater than 1 m, the terrain points will be re-labelled as “non-terrain” 
points, as is shown in the rectangles in the right-hand image. 
 

 
(a)                                                    (b) 

Figure 2.6 Correction of filtering errors from “LAStools” (red = above ground; 
green = ground points). (a) Filtering with LAStools;(b) Correction against the 
reference DTM in 2010. 
 
As correction has been performed under the assumption that there has 
been no change to the terrain, the correction method may still result in 
errors if there have been great changes to the terrain, e.g. on large-scale 
construction sites. After correction, all buildings are labelled as non-
terrain points. The data sets are then fully prepared for the scene 
classification process. 
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Chapter 3 Methodology for the scene classification 
 
This chapter is an introduction to the methodology of the scene 
classification, by which we intend to classify all the data sets into water, 
ground, vegetation, wall, roof, roof element and undefined object. The 
“vegetation” is defined as trees taller than 2.0m. Low vegetation such as 
meadow and bush are taken as the “undefined objects”. The “Building 
roof" is defined as a structure larger than 3m in size and larger than 
4.0m2 in area. The “Roof element” is attached to and on the top of the 
“building roof”, such as dormers, chimneys, sun panels etc. The 
“Building wall” refers to facade as well as the attachments to the facades, 
such as sun shades, balconies, windows etc. All other objects belong to 
“undefined objects”. These rules, which are the basic rules for the scene 
classification, are also the basis for making reference data for training 
and evaluation. 

3.1 Introduction 
In the past few years, ALS data have been widely used in urban 
applications, such as building extraction (Sithole and Vosselman, 2004), 
building reconstruction (Oude Elberink and Vosselman, 2009a), building 
change detection (Murakami et al. 1999), bridge detection (Sithole and 
Vosselman, 2006), road extraction (Samadzadegan, 2009) and road 
reconstruction (Oude Elberink and Vosselman, 2009b). With the 
improvement of ALS data point density and accuracy, there are more and 
more high-level requirements for updating maps, disaster evaluation, 
illegal activity detection and detailed modelling, etc.. Fine pre-processing 
of ALS data, such as high-level classification with high accuracy, is 
necessary for these requirements.  
 
Most ALS data classifications are two-class problems, in which 
researchers focus on extracting one certain object. In most of the scene 
classification cases, three classes are frequently used, namely: vegetation, 
building and ground (Samadzadegan et al. 2010), these are the 
elementary objects in urban areas. Although multiple classes are usually 
defined and classified in terrestrial laser scanning points, a multiple-class 
system with seven classes is rarely seen in airborne lidar data. As we will 
classify the urban scene into: water, ground, building, vegetation and 
undefined object, in which "building" is further divided into roof, wall 
(including windows, balconies and all objects attached to walls), and roof 
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element. We face two difficulties to classify the targeted classes: (1) 
Walls and roof elements are quite irregular in geometry, due to either 
various construction styles or a lack of data for walls and roof elements 
(mainly caused by occlusion or rainfall). It is hard to define proper 
features for them. (2) Roofs partly or largely covered by vegetation add 
another complication to the classification. When vegetation is both above 
roofs and near roof elements, the classifier cannot distinguish vegetation 
from a roof element because they are both irregular in geometry and are 
above the roof in space (shown in Figure 3.1). In these areas, if we can 
ensure different objects belong to different segments, the classification 
will be much easier.  
 

 
Figure 3.1. Example of an urban scene. Many roofs are covered by vegetation in 
this area, roof elements and vegetation are not easily distinguished as they both 
contain multiple pulse returns and have a wide variety of shapes and sizes. 
 
Current approaches to complex urban “scene classification” using ALS 
data are: Lafarge and Mallet (2011) use an energy function and Potts 
model (based on Li., 2001) to combine local features and local context. 
Chehata et al. (2009) select several best performance features from a 
large amount of possible features generated from both discrete-return and 
full-wave ALS data. Rottensteiner et al. (2007) fuse multi-spectral 
images and ALS data.  
 
Most of the above approaches use only a single entity to calculate 
features. The combination of multiple entities, however, has been seldom 
discussed in previous literatures. A portion of the existing classifications 
is implemented with point- (or pixel-) based features. These methods can 
obtain accurate classification results, but are time consuming for large 
data sets.  Other works use segment or voxel-based features, which 
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attempt to speed up the computation. Multiple-entity features are utilized 
in several literatures (Lim and Suter, 2009), (Kim and Sohn, 2011). 
However, Lim and Suter (2009) did not study the impact of the entity on 
classification accuracy. Although Kim and Sohn (2011) generated point-
based and object-based features, to achieve a classifier fusion, they used 
these two entities separately to generate two classifiers.  
 
Therefore, we put forward the assumption is that if points are organized 
in multiple ways to be adaptive to the shapes of different classes of 
interest, a few features will obtain high accuracy and a multiple-entity 
strategy will achieve higher accuracy than a single-entity method.  
 
To verify this assumption, we propose a strategy to classify ALS data 
which combines three types of entities. The impact of these entities on 
the overall accuracy, and the accuracy for each class of interest is also 
studied. The particularities of the classification strategy are: 
 
1. Seven classes are classified simultaneously and directly on 3D lidar 

points. These classes are basic elements (ground, water surface, 
building, vegetation and undefined object) in an urban scene. To 
enhance the capability to perform building analysis and modelling, 
the building class is further decomposed into roof, wall and roof 
element.  

 
2. A multiple-entity strategy is employed and researched. By analysing 

the challenges in the urban scenes in Figure 3.1, we generate three 
entities (planar segments, segments obtained by mean shift 
segmentation, and individual points) according to the characteristics 
of different classes. 

 
3. The contextual information of a building is employed to separate 

walls and roof elements, and is proved to be a good feature for all 
types of walls and roof elements. 

 
4. We define a new feature, namely, “average point spacing” in planar 

segments for classifying vegetation.  
 
The remainder of this chapter is organized as follows: Section 3.2 
contains a literature review on how various entities, features and 
classifiers are currently being used in ALS data classification methods. 
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Our proposed entities, features for the entities are described in Section 
3.3, and the classification strategy is discussed in Section 3.4.  

3.2 Literature Review 
The classification of ALS data in urban areas has long been studied and 
discussed in many literatures. Lidar-data classification methods on DSMs 
can be found at (Matikainen et al. 2007; Rutzinger et al. 2006; 
Rottensteiner et al. 2004). Matikainen et al. (2007) use a list of features 
calculated from first pulse, last pulse DSM segments and image 
segments, and they run a classification tree on four different 
combinations of these features to extract buildings in urban area. They 
explain that the difference in accuracy between the four different groups 
of feature combinations is very small, and that the overall mean accuracy 
is about 90%. Rutzinger et al. (2006) choose crisp thresholds for features 
derived from DSM segments to detect buildings. Different from these 
two segment-based methods, Rottensteiner et al. (2004) initially achieve 
a per-pixel classification with Dempster-Shafer Fusion on first and last 
DSM and NDVI derived from multi-spectral image, and then use 
morphologic opening to eliminate single building pixels. Finally, they 
run the Dempster-Shafer for the second time to improve the results, but 
still there are errors caused by shadows in the image and the resolution of 
the lidar data. Khoshelham et al. (2010) evaluate these automated 
approaches to building detection on both pixel level and object level and 
draw the conclusion that Dempster-Shafer and AdaBoost work best. 
They state that most errors occur at building boundaries and in areas 
where dense trees are present.  
 
Chehata et al. (2009) explicitly select, analyse, and compare Lidar point 
features. They propose 21 features which are grouped into height-based 
features, echo-based features, eigenvalue-based features, local plane-
based features and full-wave lidar features. Feature selection is 
accomplished by iteratively fitting the Random Forests after eliminating 
a small fraction of features according to the importance of features 
ranked in Random Forests.  Finally, six features from height-based, local 
plane-based and full-wave features are kept for the final classification, 
which keeps the error of the classification stable and below 6%.  
 
Classifiers that are usually seen in lidar data classifications are Random 
Forests (RF) (Chehata et al. 2009).), AdaBoost (Lodha et al., 2007), 
Artificial Neural Networks (ANN) (Priestnall et al., 2000), Supported 
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Vector Machine (SVM) (Lodha et al., 2006), Expectation-Maximum 
(EM) (Lodha et al., 2007) and Dempster-Shafer (Rottensteiner et al. 
2004). These classifiers are irrespective of the contextual information and 
only consider local features. However, they are automatic and work 
stable. Lodha et al. (2007) claim that the classification accuracies 
obtained by EM, SVM and AdaBoost appear to be quite similar. Popular 
classifiers which take contextual knowledge into account are Markov 
Random Field (MRF) and Conditional Random Field (CRF), and these 
techniques are increasingly applied to lidar data classification. Anguelov 
et al. (2005) use the associate MRF classifier, and Munoz et al. (2008) try 
to improve the results of the associate MRF by using more accurate pair 
wise potentials. Munoz et al. (2009) and Lim and Suter (2009) separately 
use CRF on points of a clique, and on voxels, to speed up the 
computation. The limitations of these classifiers are that they are slow, 
and both small and big objects are easily wrongly classified due to over 
smoothing. If a small region in particular is wrongly classified, it is 
possible that a large region near it will be wrongly classified due to the 
error propagation (Shapovalov et al., 2010). 
 
For classification methods that directly run on 3D point clouds, there are 
typically four kinds of entities mentioned in current literatures: point, 
segment, voxel and object. 

3.2.1 Classification using point features 
Methods using point-based features can be found at (Lafarge and Mallet 
2001; Niemeyer et al. 2011, Brodu and Lague, 2012). Lafarge and Mallet 
(2011) use discrete features generated from points with neighbours. 
These features are normalized and formalized in an energy function, 
which is composed of a sum of partial data term and pairwise interaction 
as defined by the Potts model (Li, 2001). The class label choices are 
made by minimizing the energy function. Lafarge and Mallet concludes 
that some local errors which have no consequence on the final results. 
Niemeyer et al. (2011) combine features with contextual information 
using conditional random fields in point-wise classification. They use 
features derived from full-wave form lidar data, which results in an 
overall accuracy of 94% with a lower correctness of only 87.7% for 
building compared with the other two classes (ground and vegetation). 
Brodu and Lague (2012) introduce a multi-scale dimensionality criterion 
for point features to classify complex natural scenes. They use local 
dimensional properties at each point, and at different scales, as input 
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features for classification. These local dimensional properties are 
expressed by eigenvalues calculated from points in stepwise increasing 
neighbourhoods.  

3.2.2 Classification using segment/voxel features 
Classification approaches that work on segments are (Wei et al. 2009; 
Darmawati, 2008). In Darmawati’s (2008) method, a rule-based 
classification method is applied to planar segments derived by surface 
growing (Vosselman et al. 2004). Pulse count information is used to 
separate buildings and vegetation in urban areas. A normalized cut 
approach is used to classify segments derived by mean shift in Wei’s 
(2009) work in order to extract flyovers and vehicles in complex urban 
areas. Results from the mean shift segmentation are further classified 
based on geometric features such as the horizontal and vertical similarity 
within each mean shift segment. The flyovers are 100% extracted, 
however, vehicles have a much lower extraction rate at about 50-70%, 
which happens in areas such as parking places with many vehicles. 
 
Examples of methods using voxel features can be found in (Lim and 
Suter, 2008; Lim and Suter, 2009). Lim and Suter (2008) over-segment 
the 3D data using 3D scale theory to form super-voxels. Multi-scale 
Conditional Random Field (mCRF) is run regionally on super-voxels, 
and locally within each voxel on the points. Lim and Suter (2008) 
conclude that mCRF improves the classification accuracy by 5% - 10%. 
Based on this work, Lim and Suter (2009) discuss the advantages of 
using super-voxels instead of points, and conclude that, with super-
voxels, the total amount of data is reduced to 5% (in most cases) of the 
original data. 

3.2.3 Classification using multiple entity features 
The work of Kim and Sohn (2011) is an example of using both point-
based and object-based features. They propose a method which uses 
multiple classifiers (Random Forests) to classify an urban scene into: 
building, vegetated, wire and pylon. Line and plane segments have been 
obtained by RANSAC and Minimum Description Length (MDL) based 
on voxel-segmentation results. These line and plane segments are further 
examined with shape criteria to correct erroneous segments. Point-based 
features and object-based features are extracted from these segments. 
Point features and object features are used as separate inputs for two 
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Random Forests-classifier generations. They conclude that the classifier 
fusion improved the accuracy by 10%.  Xiong et al. (2011) use both 
bottom level (point) and top level (segment) features to classify lidar 
point clouds. They incorporate the context information by using the k-
class logistic regression model to train the weights of both the geometry 
and contextual features in a stacking method. These weights indicate the 
up-middle-down relationship possibilities between the classes. They 
conclude that by using both bottom and top level features, both the 
classification accuracy and computation cost are improved.   
 
Unlike the classifiers that only consider local features, there are one kind 
of classifier which takes contextual knowledge into account by checking 
the homogeneity and configuration of the whole classified points. 
Representative ones that belong to this kind are Markov Random Field 
(MRF) and Conditional Random Field (CRF), and these techniques are 
gradually extended from 2-D images to 3-D lidar data classification. 
Anguelov et al. (2005) use the associate MRF classifier, and Munoz et al. 
(2008) try to improve the results of the associate MRF by using more 
accurate pair wise potentials. Munoz et al. (2009) and Lim and Suter 
(2009) separately use CRF on points of a clique, and on voxels, to speed 
up the computation. The limitations of these classifiers are “over 
smoothing” and “error propagation”. The over smoothing problem will 
happen when for example a small tree is standing closely to a tall 
building. In this case, if a small part of the tree is incorrectly classified as 
building, it will be very likely that whole tree will be classified as a 
building by using the homogeneity theory.  If a small region in particular 
is wrongly classified, it is possible that a large region near it will be 
wrongly classified due to the error propagation (Shapovalov et al., 2010). 
Unless stated above, these classifiers are also very slow in computation.  
Therefore, we will not choose this kind of classifier for large data sets. 

3.3 Entities for classification and their features 
Based on the analysis of the complexity of the scene in Figure 3.1 and the 
overview of the previous works, we start our classification by first 
considering different entities. Because different entities can form 
different divisions of points that are adaptive to the objects. After 
considering the entities and their features, we designed a four-step 
classification strategy to use different entities and their features in 
different steps. Definitions of entities and their features are introduced in 
Section 3.3.1 and 3.3.2, and the strategy is illustrated in Section 3.4. 
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3.3.1 Three types of entities 

3.3.1.1 Introduction to three entities 
There are seven classes for the scene classification, and it is difficult to 
choose one type of entity suitable for all classes. In our observations, we 
noticed that water, ground and roof are mostly planes, and objects from 
other classes are quite irregular in geometry. Therefore, we defined three 
kinds of entities (Figure 3.2), namely, (a) single points, (b) planar 
segments and (c) segments obtained by mean shift segmentation 
according to the characteristics of each class and errors that may occur 
during the classification (introduced in Section 3.4). Features of single 
points are derived from either a point itself or from a set of neighbouring 
points within a radius. This entity represents the local characteristics of 
an object, and it is sensitive to outliers and noise. Planar segments are 
obtained through surface-growing segmentation (Vosselman et al. 
2004b). Segment features are derived from properties of the segment or 
by aggregating features of the points within a segment. Every point in a 
segment has the same feature values. The same holds for the segments 
derived by mean shift segmentation (Comaniciu and Meer, 2002; Ferraz 
et al., 2010). Because of different segmentation algorithms, the grouping 
ways of points into segments, as well as the segment feature values, are 
different. Both planar segments and segments derived by mean shift are 
stable in the case of data noise, and represent the uniform characteristics 
of a segment. 
 

 
 
Figure 3.2. Three types of entities used. (a) Point features, the central points are 
in black in the middle. (b) Planar segments in vegetation, vegetation is cut into 
different planes (grey and dark points belong to different segments). (c) One 
mean shift segment from part of a tree (all points belong to one segment). 
 
In our workflow, we first choose planar segments to obtain a rough 
classification of the following: ground, water, vegetation, roofs and 
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undefined objects. We subsequently use this classification result as 
context for point-wise classification of walls and roof elements. Finally, 
errors caused by the contextual information are re-segmented with mean 
shift segmentation and are reclassified.  
 
The reason for using three entities, rather than a single one, is because a 
single entity cannot represent various complicated objects. For example, 
building walls do not have any unique characteristics because walls have 
different types, and because laser points have different point density on 
walls, which is caused by the scanning angle of a scanner. A unique 
property of walls is that they are always below the nearest building roofs. 
Similar reasons also hold for roof elements.  However, areas with 
vegetation above the roof are often present in urban scenes (Figure 3.3 
(a)). In these areas, vegetation is also above and near the building roof 
and is normally classified as roof element (Figure 3.3 (b)) because it has 
the same property as roof element. To locate these areas, points that share 
the same topological relationship with the same building roofs are 
grouped into one component (Figure 3.3 (c)). These components are the 
areas in which errors may occur.  
 
Mean shift is a non-parametric mode-seeking algorithm, and through 
mean shift we can obtain some genuine clusters of 3D point clouds 
without enforcing any model assumptions (Wei et al. 2009). Therefore, 
mean shift is performed on components that are near and above a 
building to re-cluster points according to their locations and features 
(Figure 3.3 (d)). A ratio of distances from a point to the nearest roof and 
vegetation, and the X-, Y- and Z-coordinates are the input features for 
mean shift; the band width is adaptive to the range (difference between 
the largest value and the smallest value) of each feature value within one 
component. This ensures that most of the vegetation and roof elements 
belong to different segments. 
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(a) (b) 

  
(c) (d) 

 
Figure 3.3. (a) Building roofs with vegetation and roof elements are 
misclassified as vegetation; (b) All points above the roof are classified as roof 
element after using the contextual information for the building; (c) Potentially 
wrongly-classified points are grouped into components, and different colours 
represent different components; (d) Potentially wrongly-classified points near 
roofs and above roofs. These points are re-clustered (different colours represent 
different MS segments) by mean shift, which separates the vegetation and roof 
element points from each other. 

3.3.1.2. Parameters for segmentation 
Two segmentation methods, namely, surface growing and mean shift, are 
used to form different entities. There are some important parameters used 
in our experiments which should be mentioned (Table 3.1). The values of 
these parameters are determined by repeated adjustments and tests.   
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Table 3.1 Parameters for segmentation.  
Surface Growing Mean shift 
Parameters for seed selection Parameters for growing 

Window size Seed neighbourhood 
radius 1.0m Growing radius 1.0m 

Minimum number of 
 seed points 

 
10 pts 

Maximum distance of 
a point to the plane 0.2m (Valuemax-

Valuemin)/4 

 
In Table 3.1, the “seed neighbourhood radius” and the “growing radius” 
indicate the maximum radius for allowing a point participating in the 
seed plane extraction and the plane growing phase. The “minimum 
number of seed points” means the minimum amount of points that are 
required for initialization of a plane. The “maximum distance of a point 
to the plane” ensures that only nearly co-planar points are added to the 
seed plane. 

3.3.2 Features for classification 
Various features are computed for these three entities. These features are 
listed in Table 3.2 and feature behaviours are analysed in this section.  
 
Table 3.2. List of entities and features. 

Entity 
name Point Planar segment Segment derived by mean 

shift 

Feature 
name 

Height variance Segment size Average distance ratio Maximum height to DTM 

Distance ratio 
Average point spacing (APS) Segment size 
Percentage of points with 
multiple pulse count Average height-variance 

Local plane  
fitting residual 

Plane fitting residual Normal of planes Normal  

3.3.2.1 Point features 
Point features are employed either as a feature for classification of a 
single point or as a feature that is aggregated to a segment feature for a 
segment-based classification. We calculated three point features. 
Height-variance is the variance of the Z-coordinates of the 
neighbourhood points; it has been introduced mainly to separate the roof 
elements from vegetation above roofs. Dormers above the roofs have a 
smaller Height-variance than vegetation. 
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Distance ratio is calculated based on the results of the classification for 
planar segments (as introduced in 3.3.1). Assuming that all points are 
labelled correctly, the points located nearer to vegetation, and further 
away from roofs, are more likely to be vegetation points. This feature is 
used as an input feature for mean shift, and is also used as a feature for 
classifying the resulting segments. 
 
Local plane fitting residuals represent the roughness of a plane fitted to a 
point and its neighbours. Planar objects like roofs tend to have a smaller 
value than irregular objects like vegetation.      

3.3.2.2 Features for planar segments 
Planar segments are derived by a surface-growing algorithm. Their 
features are used in a rule-based classifier to obtain a rough classification 
result.  
 

 
Figure 3.4. Planar segments derived by surface growing (a) Surface-growing 
segmentation on vegetation (different colours show different segments); (b) and 
(c) are two segments from (a); (d) one segment from roof; (e) one segment from 
water surface; (f) one segment from ground surface. The average point spacing 
in (d) is smaller than (b) and (c), and the average point spacing in (f) is smaller 
than in (e).  
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The size of each segment is expressed by the number of points in the 
segment and is an approximate indication of the area of the segment. The 
maximum height to the nearest DTM points allows for a distinction 
between high objects (roofs and vegetation) and low objects. Average 
point spacing (APS) is introduced to separate water from ground surface 
(Figure 3.4 (e)(f)). It also shows a significant difference in value for 
planar segments of vegetation and building roofs (Figure 3.4 (b~d)). As 
the point density within a segment in vegetation is low, the APSs for 
these segments are larger than for roof segments. This provides an 
alternative feature for ALS data when pulse counts are not available. If 
pulse count information is available, the percentage value of points with 
multiple echoes differs between vegetation and roof segments. 
Combinations of APS and pulse count information may improve the 
detection rate of vegetation, as will be identified later in the results. 
Different behaviours of these features are shown in various colours in 
Figure 3.5. 
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Figure 3.5. Behaviours of planar-segment features. (The colour red represents 
low feature values; the colour green represents high feature values). All the 
behaviours of features for above ground objects are shown in (a)-(f), white 
points are DTM points; feature behaviour for ground and water is shown in (g)-
(h), white represents no points. 

3.3.2.3 Features for mean shift segments 
For the segments derived by mean shift, four features (Listed in Table 
3.1) are calculated. Mean shift segments are irregular in space; therefore, 
we generate the features by aggregating the point feature values within 
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the segment. Segment size is useful to distinguish vegetation from a roof 
element when a large area of roof is covered by vegetation. For lighter 
vegetation coverage, average height-variance and number of non-vertical 
and non-horizontal planes within the segment are used, and greater 
values for these features indicate a high probability of being vegetation. 
Examples of mean shift segments can be found in Figure 3.3(d). 

3.4 Classification Strategy 

 
Figure 3.6. Classification strategy: the classification is composed of four steps 
as listed in the left side in the figure, and the corresponding input data, entity 
and feature used, and final output, are listed in columns. 
 
The classification entails four steps. The data is first filtered into ground 
points and non-ground points. This is done by the data supplier. The non-
ground points are segmented into planar segments using the surface-
growing method. With the features from Table 3.1, planar segments are 
classified into: water surface, ground surface, building roof, vegetation 
and undefined objects. These classified points offer general contextual 
information for the next step. Points which are not classified as roof are 
point-wise classified as either a wall or roof element based on the 
contextual information which indicates the relationship between these 
points and the nearby roof points. This step leads, in the meantime, to the 
misclassification of vegetation to roof elements in cases where the 
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vegetation covers the roof. The possible areas for these cases are 
searched for and found. In these areas, neither points nor planar segments 
are suitable entities to distinguish roof elements from parts of vegetation. 
Therefore, mean shift is used to re-segment these areas to separate 
vegetation from roof elements. The flow of the classification and the 
entity and features used are shown in Figure 3.6. 
 
In order to find out whether the classification strategy performs well with 
different classifiers, both planar and mean shift segments are classified 
with five different classifiers. These classifiers are frequently used and 
are introduced in Section 3.4.1. The contextual-rule classification step (in 
Section 3.4.2), for which wall and roof element are point-wisely 
classified, is performed equally for all classifiers.  

3.4.1 Classification for Planar Segments 
The data set is filtered into terrain and above terrain by the data supplier. 
Our first step is to segment the data into planar segments using the 
surface-growing method.  Planar segment classification is decomposed 
into a two-class problem (water and ground) for ground points and a 
three-class problem (roof, vegetation and undefined objects) for the non-
ground points. For water and ground, the distinguishing characteristic is 
that the point density on water is lower than that on ground because of 
the water absorption and mirror reflection of the laser beam. Within each 
planar segment, the average point spacing (APS) is calculated. 737 
training samples of planar segment are generated and the threshold for 
water and ground can be found with the histograms shown in Figure 3.7. 
Water and ground is classified with only one feature: average point 
spacing. Because Random Tree cannot be generalized with only one 
feature, we only used the other four classifiers (as introduced in the 
following paragraph) to classify water and ground.  
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Figure 3.7. Histogram of average point spacing value of water and ground from 
the training data 
 

  

  

 
Figure 3.8. Learning curves for planar segments with five different classifiers. 
All accuracies are calculated with a 2-fold cross validation method (holdout 
method). 

  water 
 ground 
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For the three classes above ground, five classifiers are used, namely: 
Rule-based classifier (RB), Random Tree (RT), Extended AdaBoost for 
Multiple Classes (ADB), Artificial Neural Networks–Multiple Layer 
Perceptrons (ANN_MLP) and Supported Vector Machine (SVM). RB is 
similar to a classification tree, and we use the RB in (Xu et al. 2013). RT 
is a variant of bagging proposed by Breiman (2001). It is a decision tree-
based ensemble classifier which performs excellently in classification 
tasks, comparable to that of boosting (Breiman, 2001), even SVMs (Pal, 
2005) (Chehata, 2009). ADB is an elegant algorithm which automatically 
combines rough guesses or weak hypotheses into a stronger, more 
general classifier by training on some data set with a known 
classification. ADB is at heart a binary (2-class) algorithm; however, 
there are several extensions (such as AdaBoost.M2, AdaBoost.MH, or 
error-correcting codes) which allow for multi-class categorization (Lodha 
et al. 2007). ANN_MLP is the most commonly used type of artificial 
neural networks (from: http://opencv.willowgarage.com/). SVM is a 
kernel-based method, it maps feature vectors into higher-dimensional 
space using a kernel function, and then it builds an optimal linear 
discriminating function in this space (from 
http://opencv.willowgarage.com/). RT, ADB, ANN_MLP and SVM are 
implemented in the OpenCV library, and all of the parameters for these 
classifiers are the suggested parameters, which are optimized in OpenCV. 
 
Learning curves for these classifiers are graphed for planar segments 
(Figure 3.8), and all of the curves can converge when both errors from 
training and testing data do not have any big changes. Although a few 
training samples are sufficient to obtain high accuracy in RT and 
AdaBoost, other classifiers, such as SVM, still require more training 
samples to converge. To treat every classifier equally, we chose the 
largest training sample number (4,028 planar segments) from SVM for 
all the classifiers. 

3.4.2 Contextual classification for walls and roof elements 
Assuming that all roof points classified in the planar segment 
classification are correct, walls and roof elements are classified according 
to the contextual information of a building. The defined contextual 
information is that "wall" is always near and below a roof, and "roof 
element" is always near and in a higher location than a roof. Following 
this rule, we associate each point with the nearest roof point (check its 
planimetric (2D) distance within 1.0m) and check their spatial relations. 
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For complicated buildings, such as tall buildings connected to low 
buildings, the classification of wall points will be incorrect if the lower 
roof is nearer than the higher roof (light points in Figure 3.9 (a)). 
Therefore, we always search for the nearest highest roof point within a 
1.0m planimetric neighbourhood. The defined context is treated as a 
point feature to classify wall and roof element. (Figure 3.9 (b)). 
 

     
(a)                                               (b) 

Figure 3.9. Example of a complex building. (a) Wall points are wrongly 
classified as roof element (light) in the blue rectangles, which is caused by the 
wrong choice of the nearest roof points; (b) Points in rectangles in (a) are 
corrected by using the “nearest, highest roof point” constraint (the darkest 
points are roof points, lighter points connected to the roof are roof elements, 
slightly darker points are wall points.) 
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3.4.3 Classification for mean shift segments 
After the planar-segment classification process and the contextual-rule 
classification, two categories of errors emerge. The first kind of error 
occurs if the features used are insufficient to distinguish undefined 
classes. The second kind of error is caused by the context-rule 
classification of wall and roof element. Vegetation above the roof is 
wrongly classified as roof element. This error can be corrected. To 
correct this error, 4,981 mean shift segments in total are derived in areas 
where vegetation covers the roof. (These areas are near building roofs, 
and the generation of mean shift segments is explained in 3.3.2). 
Learning curves show that 10% (498 from all 4,981 segments) of the 
reference data can train high-accurate classifiers for all five situations. 
(Figure 3.10) 
 

 

 
Figure 3.10. Learning curves for mean shift segments with different classifiers 
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With the defined features, the learning curves from the five classifiers 
show that the overall accuracy of the training data can reach over 95%. 
By visualizing the results in the training area, we found that: (1) the 
defined seven classes are separated; (2) most walls are corrected 
classified using the contextual reasoning; (3) vegetation, even when 
covering part of the roof, is well separated from the roof elements using 
the multiple entity based method. Chapter 4 reports a numerical 
evaluation of the classification results. 
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Chapter 4 Evaluation of the scene classification 
Using the trained “rule based” classifier and the proposed strategy, we 
classified the whole Rotterdam data set for the year 2008 and the year 
2010. An overall view of the classification results is shown in Figure 4.1. 
To analyse and evaluate the accuracy of the classification results, we 
extracted 30 tiles (not from the training area) and did the following 
experiments: 
 
1. Impact of classifiers: five different supervised classifiers are used for 
our classification strategy, and the overall accuracy and the accuracy for 
each individual class are calculated and compared for each classifier.   
 
2. Impact of features: the performance of the newly generated  feature 
"average point spacing" is compared to feature generated from “multiple 
pulse count” information, and testing demonstrates if it is a good feature 
for separating vegetation from other objects when the vegetation is not 
too dense. Conclusions on how well average point spacing performs in 
comparison with multiple pulse count are drawn. 
 
3. Impact of entity: the performances of multiple-entity classification is 
compared to the single-entity classification results, these single-entity 
classifications are only point based and only planar segment based 
methods. 
 
The introduction to the extracted area and their classification results are 
in Section 4.1, followed by the three impacts analysis mentioned above. 
Impact of different classifiers, features and entities are elaborated in 
Section 4.2, 4.3 and 4.4. Besides the above stated impacts, there are some 
other discussions on the classification results. For instance, part of the 
classification errors will not influence our purpose of change detection 
and are therefore not important errors etc.  All these are finally explained 
in Section 4.5. 
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(a) 

 

(b) 

 

(c) 

 
Figure 4.1 Classification of part of the data sets in (a) 2008; (b) 2010; (c) 2012.  

 46 



Chapter 4 

4.1 Results analysis 
To analyse the classification result, we extracted a small area (Figure 4.2) 
from data set of 2010 which was obtained in March with a point density 
of 30-40 pts/m2 on average. Pulse return was recorded up to a maximum 
of four echoes. This area is located in the centre of Rotterdam, and is 
almost flat with occasional topographic relief. It contains canals, tall, 
large, and irregular building groups and residential buildings, buildings 
under tall vegetation, vegetation, construction sites, vehicles and other 
objects. The data was already filtered into ground points and above 
ground points in the original data set. The area is about 2.4km2, and it has 
been organized into 960 50m×50m tiles for processing the data. 
 

 
 
Figure 4.2. Test area (left), image from Google; (Right) ALS data in test area (a 
black area means no data; the lighter the shade, the higher the point). 

4.1.1 Reference data 
For training, we randomly chose 113 tiles as the subset of the data 2010, 
and manually classified them into the classes of interest. A three-person 
group was organized to unify the standards for labelling each class of 
interest, and to specify the rules for ambiguous cases.  The labelled data 
subset was taken as reference data for training and testing. Finally, the 
whole area was classified with the classifiers generated from the subset.  
13,428 planar segments were derived for objects above terrain, 737 
planar segments for terrain and 4,981 mean shift segments were derived 
from the reference data. Point features were calculated with a 
neighbourhood radius of 0.5m, 1.0m and 1.5m. It is notable that the point 
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feature number increased with the increase of the radius. This is because 
point features were calculated with points in a neighbourhood. If there 
are less than two points in the neighbourhood, the feature cannot be 
computed because three or more points are required to fit a plane. 
Therefore, by increasing the radius, the number of points which can 
generate features increases. Features on each entity are listed in the 
subset in Table 4.1. 
 
Table 4.1. Feature numbers generated from data 
 Planar segments  Mean shift 

segments Points with a feature 

Total Above terrain Terrain 4,981 0.5m 1.0m 1.5m 13,428 737 

Indivi-
dual 

Roof Veg. Undefined 
objects 

Ground Water Veg. Roof 
element 141,602 147,622 147,946 

1,659 8,361 3,408 574 163 310 4,671 

4.1.2 Classification results 
We tested the multiple-entity classification strategy with five classifiers 
on planar segments and mean shift segments, and computed the accuracy 
on 30 tiles with a total of 3,142,237 points which were randomly selected 
from the reference data but not from the training data. Special objects 
such as cranes, boats and bridges were not included in the accuracy 
calculation, as these objects have not been considered.  
 
Some results from the rule-based method are shown in Figure 4.3. We 
select several successful instances such as connected buildings with 
different heights in (a), building walls with different shape of balconies 
in (b), a building roof covered by vegetation in (c), ground surface and 
dense water surface in (d) and a building roof cut by a tile boundary in 
(e). Failures in classification of water, roof, vegetation and wall are 
shown in Figure 4.3(f-i), and wrong parts are emphasized with blue 
rectangles. 
 
The incorrect assignment of water to undefined objects is mainly caused 
by a filtering error in which water points are regarded as objects above 
ground, as indicated in confusion matrix in Table 4.3. A large area with 
this incorrect assignment can be redressed by defining a rule that large 
horizontal planar segments with small height to water are corrected as 
water points. However, there are still some small incorrect areas as 
shown in Figure 4.3 (f).  
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A lack of data on roofs (scan angle or water on roof may cause this 
problem) results in the wrong classification of "building roof" as "wall" 
as shown in Figure 4.3 (g). However, this is not a huge error as a building 
wall is still a part of a building. The case depicted in Figure 4.3 (i) shows 
some building wall points wrongly labelled as vegetation. These points 
are far away from the building roof points in 2D distance (larger than 
1.0m), thus, there is insufficient contextual information to classify them 
as wall. Although this kind of error can be eliminated by enlarging the 
radius for searching roof points, this may lead to new problems such as 
vehicles parked near a building may be classified as wall. In Figure 4.3 
(h), some vegetation is wrongly classified as either building roof, wall or 
roof element. Some of these vegetation points were misclassified as roofs 
in the planar-segments classification step, and surrounding vegetation 
points were classified as walls and roof elements in the contextual 
classification step. This error propagation was caused by the assumption 
that all roof points classified during the planar segment classification 
were correct and error free.  
 

   
(a) (b) (c) 

   
(d) (e) (f) 
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(g) (h) (i) 

   
(k) (l) Rule based (m) RT 

   
(n) ANN_MLP (o) AdaBoost (p) SVM 

 
Figure 4.3. Some classification results. (a~e) are correct, (f~i) show some 
incorrect results within blue rectangles. (k) an example of ground truth data (l-
p) are comparisons of results among five classifiers. 
 
Figure 4.3 (k) contains the ground truth data, and (l) to (p) are the results 
of the rule-based, RT, AdaBoost, ANN_MLP and SVM methods. They 
are placed in sequence according to the similarity to the ground truth data 
in (k). For example, the rule-based method (l) has the highest similarity 
to the reference data (k), and SVM (p) the lowest. 
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4.2 Impact of classifier 
We used five classifiers on planar segments in the mean shift segments 
classification step. The same context rule and features were applied; 
(Random Tree, AdaBoost, ANN_MLP and SVM were implemented with 
OpenCV.) 4,028 planar samples and 498 mean shift samples were used to 
train the classifiers. The accuracy was computed point-wise on 30 tiles, 
with a total of 3,142,237 points. 

4.2.1 Overall accuracy 
The overall accuracy, as well as the KAPPA accuracy in Table 4.2 show 
that the rule-based classification method performs better than the other 
classifiers. The other four perform nearly equally. Both two measures 
agree. We also calculated the significances of classifier differences using 
the kappa statistics and their variances. These differences are significant 
at a 99% confidence level.   
 
Table 4.2. Overall accuracies and kappa statistics of the five classifiers. 

       
The correctness and completeness of each class were calculated and are 
shown in bar charts in Figure 4.4. Excepting wall, roof element and 
undefined object, the other classes obtained, on average, an accuracy of 
over 90%. The reason for 30-60% accuracy for the wall, roof element 
and undefined object classes is analysed in Section 4.2.2. For vegetation, 
all classifiers show similar completeness, except SVM. SVM also 
indicates a much lower completeness of “undefined object”. The 
classifier itself is the main reason for this. We observed many vegetation 
and roof points which were wrongly classified as undefined object with 
SVM. This occurred mainly because the features were not weighted, and 
were treated equally in SVM. 
 

 Random tree AdaBoost ANN_MLP SVM Rule based 
Overall 

accuracy 95.5% 94.3% 95.0% 94.1% 97.0% 

Kappa 
accuracy 93.4% 91.6% 92.6% 91.3% 95.7% 
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Figure 4.4. Completeness and correctness for each class of interest. In order to 
make the accuracy difference in each classifier dominant, we changed the bar 
scale for the roof element because the accuracy was low in comparison with 
other classes. 
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4.2.2 Confusion matrix analysis 
In order to analyse the accuracy of the roof elements, walls and 
undefined objects, we generalized the confusion matrix, which is listed in 
Table 4.3 (confusion matrices from all five classifiers), and categorized 
the errors into two kinds: filtering errors (light grey in the tables) and 
classification errors (dark grey in the tables).  
 
1. Analysis on confusion matrix 
The confusion matrix indicates that most of the wrongly-classified 
vegetation and wall points are labelled as undefined object. These errors 
are caused by our algorithm in the planar-segment classification step. 
Some points at the foot of the building are wrongly classified as 
undefined object, and this occurs when the point density is low at the foot 
of the building and these points are un-segmented and are classified as 
undefined object. Some of the stairs which extend from the building are 
quite irregular and are, therefore, classified as undefined object rather 
than as part of a building. 
 
Table 4.3. Confusion matrices computed from five classifiers. Left column with 
dark grey figures represents reference data. Top row contains classified points. 
The number of true positives is listed in the white cells; light grey cells 
represent filtering errors, and dark grey cells represent classification errors. 
Random 

Tree Water Ground Vegetation Wall Roof 
Roof 

Elements 
Undefined 

Objects 

Water 146,014 6,663 0 0 1 0 1,557 

Ground 1,210 1,388,065 0 12 964 0 3,297 

Vegetation 0 107 127,528 3,155 1,557 957 4,228 

Wall 1 9 863 220,363 35,905 15,337 10,015 

Roof 0 0 81 2,693 1,005,752 1,690 9,974 
Roof 

Element 0 0 48 5,318 27,087 15,119 1,189 
Undefined 

Object 1 261 2,544 2,091 1,650 165 98,712 

Adaboost Water Ground Vegetation Wall Roof 
Roof 

Elements 
Undefined 

Objects 

Water 147,354 5,323 0 0 0 0 1,558 

Ground 31,577 1,357,698 1 11 0 0 4,261 

Vegetation 0 107 122,303 3,548 1,752 4,962 4,860 

Wall 1 9 1,029 216,400 36,677 16,796 11,581 
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Roof 0 0 90 3,559 1,006,091 2,770 7,680 
Roof 

Element 0 0 43 4,836 26,741 14,155 2,986 
Undefined 

Object 1 261 2,647 2,068 2,330 114 98,003 

ANN_MLP Water Ground Vegetation Wall Roof 
Roof 

Elements 
Undefined 

Objects 

Water 146,687 5,990 0 0 0 0 1,558 

Ground 14,848 1,374,427 1 3 964 0 3,305 

Vegetation 0 107 126,225 2,829 769 2,778 4,824 

Wall 1 9 1,529 220,874 30,835 16,131 13,114 

Roof 0 0 173 5,665 999,318 4,499 10,535 
Roof 

Element 0 0 136 5,608 23,670 18,262 1,085 
Undefined 

Object 1 261 3,236 2,501 1,336 346 97,743 

SVM Water Ground Vegetation Wall Roof 
Roof 

Elements 
Undefined 

Objects 

Water 146,014 6,663 0 0 1 0 1,557 

Ground 1,210 1,388,065 1 11 2,521 0 1,740 

Vegetation 0 107 98,149 13,981 4,384 14,395 6,516 

Wall 1 9 852 218,599 36,118 15,722 11,192 

Roof 0 0 128 10,077 997,127 5,851 7,007 
Roof 

Element 0 0 198 7,016 15,645 24,708 1,194 
Undefined 

Object 1 261 2,505 2,749 14,829 529 84,550 

Rule based Water Ground Vegetation Wall Roof 
Roof 

elements 
Undefined 

objects 

Water 147,760 4,917 0 0 1,499 0 158 

Ground 1,901 1,387,374 0 43 3,402 0 824 

Vegetation 1 106 128,745 2,998 1,863 2,003 1,800 

Wall 1 9 1,191 251,452 20,640 7,064 2,126 

Roof 0 0 266 7,530 1,007,341 2,805 2,248 
Roof 

element 0 0 494 5,386 9,894 32,347 636 
Undefined 

object 38 224 2,608 2,797 5,334 324 94,088 
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From all the five confusion matrices, we noticed that most undefined 
objects are classified as roof or wall. These undefined objects are mostly 
large vehicles such as trucks, which are easily classified as roof, and 
fences around gardens, which are wrongly classified as wall. 
Furthermore, roof and wall are frequently mixed up by the classifiers, as 
some long balconies in the walls are wrongly classified as roof. 
The comparison of the five confusion matrices shows that the rule based 
classifier performs better in distinguishing wall, roof, and roof element 
than the other four classifiers, but poorer in classifying the undefined 
objects than the other classifiers except the SVM.  
 
2. Analysis on errors 
We also observed that many roof elements and walls were classified as 
building roofs in the planar-segment classification phase. These errors 
are not severe errors, as these laser points can still be considered part of a 
building (as shown in Figure 4.5). If we ignore these errors, the overall 
accuracy of classification is much higher and the results from every 
classifier resemble, as shown in Table 4.4 
 
Table 4.4. Accuracy analysis. When ignoring the classification errors for roof 
elements and walls (white figures in the table), the errors for each classifier, 
except SVM, resemble each other. If the filtering errors could be eliminated, the 
accuracy of each classifier would improve by 0.2%. 

Classifiers Random Tree AdaBoost ANN_MLP SVM Rule based 
Filtering errors 0.20% 0.20% 0.20% 0.20% 0.20% 

Classifica-
tion 
errors 

Wrongly 
classified 
as roof 
element 4.28% 

1.14% 

5.54% 

1.17% 

4.85% 

0.98% 

5.69% 

1.15% 

2.76% 

0.66% 

Wrongly-
classified 
wall points 

0.86% 0.85% 0.75% 0.5% 0.31% 

Not severe  2.00% 2.02% 1.73% 1.65% 0.97% 

Severe  2.28% 3.52% 3.12% 4.04% 1.79% 
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(a)                                              (b)    (c) 

 
(d)         (e) 

Figure 4.5. Most roof elements and wall points (light grey within building) are 
wrongly classified as roof points (dark) as shown in the rectangles, however, 
these points still belong to buildings and are, therefore, not considered to be 
severe errors.(a) Random Tree; (b) AdaBoost; (c) ANN_MLP; (d) SVM; (e) 
Rule based. 

4.3 Impact of Features 
Pulse count is considered a useful feature for separating points on 
vegetation from points on roofs. However, in summer, vegetation can be 
too dense to generate multiple echoes of laser pulses. If this is the case, 
“average point spacing” is considered a feature which can distinguish 
vegetation from roofs for planar segments. To make sure how well the 
feature “average point spacing” performs to separate the “roof” from the 
“vegetation”, we compared it to the feature generated from pulse count 
information. The results are in Section 4.3.1 
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Meanwhile, as the point density for “water” is usually lower than that for 
“ground”, the average point spacing can be used to distinguish the 
“water” and the “ground” as well, and the performance is discussed in 
Section 4.3.2. 

4.3.1 Average point spacing for vegetation and roof 
In order to compare the performances of the feature “average point 
spacing per segment” and the “percentage of points with the multiple 
pulse count per segment” on roof and vegetation, the overall accuracy 
and the accuracy of roof and vegetation are calculated with all five 
classifiers by using both and separately, and the results are shown in 
Table 4.5 and Figure 4.6. 
 
Table 4.5. Overall accuracy and accuracy on vegetation comparisons on 
performance of average point spacing and the percentage of points with 
multiple pulse count. 

 
With only Average Point 
Spacing (%) With only Pulse Count (%) With both (%) Without both (%) 

Classifiers Overall Veg Roof Overall Veg Roof Overall Veg Roof Overall Veg Roof 

Random 
Tree 95.36% 83.71% 92.98% 95.24% 90.51% 92.26% 95.52% 90.39% 92.49% 94.66% 87.66% 90.59% 

AdaBoost 94.10% 81.17% 92.67% 94.22% 85.90% 92.40% 94.26% 86.52% 92.50% 93.18% 77.60% 89.76% 

ANN_MLP 93.02% 75.87% 90.28% 94.05% 82.26% 91.51% 94.95% 88.50% 92.72% 94.63% 89.65% 91.58% 

SVM 93.79% 61.07% 91.16% 94.11% 69.55% 91.18% 94.11% 69.50% 91.17% 94.18% 68.63% 91.42% 

Rule based 97.07% 85.47% 95.70% 97.32% 91.36% 95.75% 97.03% 90.06% 94.72% 96.33% 79.95% 94.23% 

 

 
Figure 4.6. Comparison of overall accuracy and the accuracy for vegetation and 
roof classes 
 
For the overall accuracy, except in the case of ANN_MLP and SVM, the 
three other methods demonstrated that using both features obtains results 
similar to using only pulse count information, or only APS, and 
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classification with neither of the features achieved lower accuracy. 
ANN_MLP and SVM showed that, when only APS was used, the overall 
accuracy was lower.  
 
For vegetation and roof, using only pulse count information obtained 
similar results to using both. However, APS did not always improve the 
accuracy of the vegetation or roof class. With the ANN_MLP classifier, 
using only APS achieved the lowest accuracy.  

4.3.2Average point spacing for water and ground 
There are many literatures on classifying water in ALS data, in which a 
list of features are derived and researched such as height, point density, 
slope difference along scan line, eigenvalues etc. (Brzank and Heipke, 
2006, Smeeckaerta et al., 2013). However, as no information on scan 
lines is stored in our data sets, we use the feature “average point density” 
and only this feature to distinguish “water” from “ground”. Except the 
Random forest which is not suitable for the classification with only one 
feature and therefore not used, other four classifiers are tested, and the 
results are in Table 4.6. 
 
Tabel 4.6 Completeness and correctness of classification of “water” and 
“ground”. 

  

AdaBoost ANN_MLP SVM Rule Based 

Comp Correct Comp Correct Comp Correct Comp Correct 

Water 95.79% 99.50% 95.79% 99.50% 95.79% 99.50% 96.09% 99.86% 

Ground 99.68% 99.87% 99.68% 99.87% 99.68% 99.87% 99.83% 99.77% 
 
Except that the completeness of the “water” is slightly lower than the 
“ground”, the results are promising. The low completeness is caused by 
either wrong filtering or wrong classification. As shown in Figure 4.3 (j), 
some points in water are classified as “undefined objects” (caused by 
filtering error) and some are assigned to “ground” (classification error).  

4.4 Impact of Entity 
The multiple-entity based strategy is designed to compromise between 
the computation time and the classification accuracy. To see the 
performance of multiple-entity strategy, we compare it to the single-
entity strategy: point only and planar segment only, by using exactly the 
same features and contextual reasoning for classification. Solely for 

 58 



Chapter 4 

point-based classification, features were computed using the 
neighbouring points of the central point. We calculated the classification 
error with different neighbourhood sizes of 0.5m, 1.0m and 1.5m for each 
classifier.  The classifier errors became stable when we increased the 
radius from 1.0m to 1.5m (Figure 4.7). Therefore, the radius of the 
neighbourhood was a fixed 1.0m. No mean shift or point-based features 
were used for only planar-segment based classification. It is very slow to 
run mean shift over all the points; therefore, we did not add the accuracy 
of only mean shift segment based classification.  
 

  
Figure 4.7. Learning curves generated from different features derived with 
neighbourhood different sizes 

4.4.1 Comparison on computation cost 
The computation costs for single entity based and multiple entity based 
method are shown in Table 4.7. Apparently, point based classification 
method is the slowest. Multiple based classification is several minutes 
slower than planar based classification, which is caused by the mean shift 
segmentation procedure, we however expect an improvement in the 
accuracy and especially an increase in accuracy of the “vegetation” in 
areas where buildings are covered by tall vegetation.  
 
Table 4.7. Approximate computation time per tile. These computation times are 
listed here to give an   
Multiple entity based Planar segment based Point based 

5 minutes 3 minutes 60 minutes 

4.4.2 Comparison on Accuracy 
One example of the classification result is shown in Figure 4.8. The 
example is from the rule based classifier and all three results are 
generated from the same strategy with different entities. From a visual 
point of view, the results in vegetation are improved with multiple-entity 
based method, comparing to the other two single entity methods. 
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(a)        (b)            (c) 

Figure 4.8. an example from rule based classifier. (a) Multiple-entity based; (b) 
Planar-segment based; (c) Point based 
 
We also calculated the results in statistics. As shown in the results in 
Table 4.8, the overall accuracy of classification with multiple entities is 
clearly higher than the accuracy of the point-based classification, as 
expected but nearly the same as the accuracy of the classification with 
only planar segments. The accuracy of vegetation, in particular, is 
improved when using multiple entities instead of single entities (except 
for ANN_MLP and SVM). 
 
Table 4.8. Comparisons of overall accuracy and accuracy on vegetation with 
different entity-based experiments 

 
Multiple entity Planar segment Point 
Overall Veg. Overall Veg. Overall Veg. 

Random Tree 95.5% 90.4% 95.4% 88.1% 84.8% 52.0% 
AdaBoost 94.3% 86.5% 94.3% 86.5% 89.1% 54.2% 
ANN_MLP 95.0% 88.5% 95.0% 88.8% 88.5% 57.7% 
SVM 94.1% 69.5% 94.1% 69.5% 87.0% 65.0% 
Rule based 97.0% 90.1% 96.9% 86.7% 87.8% 60.3% 

 
The reason why the overall accuracy was not greatly improved for the 
multiple-entity and planar segment-based methods is mainly that the 
number of vegetation points is relatively small compared to the number 
of building points. Hence, the vegetation points contributed little to the 
overall accuracy. 

4.5 Discussion 
A multiple-entity based classification strategy to classify seven classes in 
urban areas with lidar data was proposed. Promising results have been 
achieved with different classifiers using the multiple-entity based 
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classification strategy. The rule-based classifier achieves an overall 
classification accuracy of 97.0%. The completeness and correctness of 
each class of interest is over 90%. A correctness of 85%, on average, for 
all classifiers for undefined objects indicates incorrect classification of 
“undefined objects” in the other classes. This is mainly because that 
undefined object belongs to a collection of objects with different shapes, 
sizes, appearances, etc. The confusion matrix (Table 4.3) indicates that 
most of the wrongly-classified undefined objects are classified as roof, 
wall or vegetation. The misclassification of undefined object as wall was 
mainly caused by the lack of a class definition for poles and wires in 
urban areas. The difficulty of separating big vehicles from roofs resulted 
in the misclassification of undefined objects and roofs.  The roof element 
has a relatively low accuracy. Most roof element points are classified as 
roof or wall, as indicated in the confusion matrix. However, this is not a 
vital error because roofs and walls are still parts of a building.   
 
The multiple-entity method can improve the classification accuracy for 
vegetation by 3.3% with a rule-based classifier, in comparison to the 
planar-segment based method. Compared to the point-based method, the 
multiple-entity method can achieve a 9.21% improvement in overall 
accuracy and a nearly 30% increase for vegetation. It is notable that the 
overall accuracies for the multiple-entity method and for the planar-
segment method are only slightly different. Vegetation points account for 
only a small proportion of all the points, and mean shift segments are 
employed to correct the wrongly-classified vegetation. Therefore, the 
overall accuracy is nearly the same.  
 
Contextual information for the building is identified as working well in 
classifying the walls and roof elements. Although the accuracies are 
lower on these two classes, compared to the other classes, most of the 
wrongly-classified roof element and wall points still belong to buildings. 
In addition, we can visualize some roof, wall and roof element points 
among vegetation in the results (Figure 4.3 (h)). These errors are caused 
by vegetation being wrongly-classified as roof during the planar segment 
classification phase. The surrounding points are, therefore, wrongly 
classified as walls and roof element during the context-rule classification.  
Among the five classifiers, the rule-based classification method works 
better than the other classifiers and SVM obtains the lowest accuracy. 
The rule-based classifier is a supervised classifier. Experienced experts 
can make complex rules and organize a decision tree with rule-based 
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classification. In this process, the tree needs to be adjusted by adding or 
deleting rules in the tree and the results need to be repeatedly observed. 
Therefore, it can obtain higher accuracy than the other four methods. For 
inexperienced operators, the other four methods are recommended; these 
can also obtain high accurate results. 
 
Average point spacing can be employed as a new feature to classify 
vegetation and building roofs when multiple echoes are not dominant in a 
dense vegetation area. However, the combination of APS and MPC 
cannot greatly improve the accuracy of vegetation. Compared to MPC, 
the combination performs worse in detecting vegetation points. However, 
except with SVM, an average accuracy of 90% for roof and 80% for 
vegetation when using APS is still acceptable, especially when pulse 
count information is unavailable. 
 
The multiple-entity based classification strategy performs better on large 
point clouds in complex urban scenes than point-based method. 
Compared with planar-based method, multiple-entity based classification 
strategy nearly has the same overall accuracy, but a slight accuracy 
improvement in vegetation can be observed. Data with pulse count 
information are classified with higher accuracy than data without pulse 
count information. The rule-based method slightly outperformed other 
supervised methods. With the same classifier, higher accuracy can be 
obtained by using a multiple-entity based strategy than using a single 
entity. These high-accuracy classified data sets will be used for the 
change detection. 
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5.1 Introduction 
In urban areas, changes to buildings may be caused by natural disasters 
or geological deformation, but more often they are the result of human 
activities. These activities may lead to temporary or permanent changes, 
as, for example, discussed by Xiao et al. (2013). Detection of structural 
changes to urban objects, e.g. renovation of infrastructural objects and 
buildings, is important for municipalities, which need to keep their 
topographic object databases up-to-date.  
 
Analysis of the geometric differences between point clouds from 
different epochs of data provides insight into how scenes change over 
time. The general approach in using point clouds for change detection is 
to focus on areas where points are present in one epoch of data and 
absent – at least in the close vicinity – in the other. As the need for 
detecting changes at higher levels of detail is growing, demand for more 
detailed interpretation of differences between epochs of data has also 
grown. There can be several reasons for absence of data of points for a 
certain location in one epoch of data while data points for that same 
location are present in another epoch:  
1. the area around the location may have been occluded in one of the 

data epochs;  
2. the surface around the location may have absorbed the ALS laser 

pulses; 
3. outliers (either on the ground or inside buildings) may be present; or 
4. the object may have undergone change.  
 
In the first three cases, differences in the data do not correspond with real 
changes. In the fourth (last) case, some of the changes may not be 
relevant for a municipality’s databases, e.g. a parking lot changes due to 
the temporary presence or absence of cars, which results in different 
arrangements of point clouds. The main problem is that it is not known 
whether a difference between two data sets is because of differences in 
scanning geometry, surface properties or changes – relevant or irrelevant 
– to an object. A better understanding of differences between epochs of 
data would allow us to precisely determine whether there has been a 
change in an area and, if so, what kind of change it is.  
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Our study aims to develop a method for detecting relevant changes 
occurring in urban objects using point clouds from ALS data. Our focus 
is on changes to buildings, including changes to roof elements and those 
associated with car parking lots on top of buildings. The main challenge 
is how to separate irrelevant differences from relevant object changes. 
 
With the above aims in mind, we set up the following change detection 
procedure: first, in each point cloud, objects are classified as “ground”, 
“water”, “vegetation”, “building roof”, “roof element”, “building wall” 
or “undefined object” as described in Xu et al. (2013). This classification 
step is referred to as “scene classification” in the remainder of this thesis. 
Next, a surface difference map is generated by calculating the point-to-
plane distances between the points in one epoch of data to their nearest 
planes in the other epoch. By combining scene classification information 
with the surface difference map, changes to building objects can be 
detected. Points on these changed objects are grouped and further 
analysed in a rule-based context to classify them as changes related to a 
roof, a wall, a dormer, cars on flat roofs, a construction on top of a roof, 
or undefined objects. Reference data was collected manually to 
determine the accuracy of this approach. 
 
To begin, we describe the state-of-the-art of the change detection 
techniques in Section 2. The explanation of the method  in Section 3 
looks at our use of surface difference maps (Section 3.1), our change 
detection algorithm (3.2), the classification of changes (3.3), and our 
analysis of object-based changes (3.4). The data sets used are described 
in Section 4, followed by presentation of results and their analysis in 
Section 5. We offer our conclusions in Section 6. 

5.2 Related research  
Research related to change detection is discussed in two parts. First, an 
overview is given of previous research done on change detection from 
imagery. In the second part, we discuss techniques using lidar point 
clouds for detecting changes in buildings . 

5.2.1 Change detection from imagery 
Originally, change detection was usually done by visual interpretation. 
Visual interpretation, in which all changes are found manually by an 
analyst, was the most common method. It is, however, time consuming, 
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in particular when frequent updates of changes are needed. Automated 
approaches for change detection began with image differencing and 
image regression. Later, transformation methods such as principle 
component analysis (Byrne et al., 1980) and RANSAC (Sharma et al., 
2006) were introduced to detect change from images. RANSAC can be 
used to identify a linear or higher order relationship between two epochs 
of data that indicates an unchanged area. When a change does occur this 
will result in a mismatch with the relationship. Given a probability 
equation and an assumption on the radiometric variation, changes are 
then found. For example, Sharma et al. (2006) introduced the Lambertian 
assumption and the Gaussian function to determine change using  
RANSAC. 
 
There are two different approaches to detecting change from imageries: 
(1) one based on differences being distinguished between two classified 
images. Both images are classified independently and differences in pixel 
labels are assumed to be caused by changes in, for example, land cover 
(Di et al., 2009). Obviously, the quality of the change detection depends 
on the quality of the classification. (2) the other approach is based on 
pixels being directly classified as changed or unchanged according to 
differences distinguished between features of the pixels and/or those of 
their neighbourhoods (Yang and Zhang, 2006). Classification methods 
can be supervised and unsupervised. Di et al. (2009) and Yang and 
Zhang (2006) both used the Supported Vector Machine(SVM) as a 
supervised classifier. Unsupervised methods have been described by 
Tanathong et al. (2009), who defined a classifier agent and an object 
agent, and Kasetkasem and Varshney (2002), who introduced Markov 
Random Field Models for change detection. 

5.2.2 Change detection in lidar point clouds 
Similar to image differencing, the first approach used for detecting 
change in multi-temporal lidar point clouds involved the subtraction of 
two DSMs (Murakami et al., 1999) from each other. Classification is also 
used to directly distinguish changed objects from unchanged ones; this is 
usually applied in disaster assessment. For an example of this method of 
classification, see Khoshelham et al. (2013), who, using an ALS data set, 
performed several supervised classifiers on a small number of training 
samples to distinguish damaged roofs from undamaged roofs. 
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In cases of 3D change detection in buildings, depending on the nature of 
the application and the availability of data sets, comparisons can be made 
between data sets of multi-temporal images, between multi-epoch lidar 
point clouds, and between image and lidar point clouds. With 
improvements in the accuracy of obtained images, as well as 
improvements in processing skills, 3D point clouds can also be derived 
from images by, for example, dense matching algorithms (Gerke, 2009).  
 
Whatever the data source, there are two basic approaches to the problem 
of change detection, each determined by the availability of original data: 
(1) original data is available from both epochs to be used for detecting 
change in cases of disasters or geological deformation; (2) original data is 
only available for one epoch, while the other epoch of data is an existing 
map or database (Vosselman et al., 2004a). The literature of these two 
approaches is reviewed: 
 
Approach 1  
In 1999, Murakami et al. (1999) used two ALS data sets, one acquired in 
1998 and the other in 1996, to detect changes to buildings after an 
earthquake in a dense urban area in Japan. A difference map was 
obtained by subtracting one DSM from the other. This difference map 
was laid over an ortho-image and an existing GIS database to identify 
changes to buildings. Vögtle and Steinle (2004) presented their research 
as a part of a project using DSMs from two ALS data sets to detect 
changes after strong earthquakes. Segmentation was run to find all the 
buildings. The changes were identified by the overlay rate of all the 
buildings in both epochs of data. Rutzinger et al. (2010) extracted 
buildings from DSMs of two data epochs using a classification tree. 
Shape indices and mean height difference of the building segments were 
compared. Differences between classified DSMs derived from two 
epochs of ALS data have also been used by Choi et al. (2009) to detect 
changes. 
 
Approach 2 
Vosselman et al. (2004a) compared ALS data to an existing medium-
scale map. Change detection was done by segmentation, classification 
and the implementation of mapping rules. Pixel overlay rates on a 
classified DSM and a raster map were used to finally identify changes. 
This method was then improved by using aerial images to refine the 
classification results (Matikainen et al., 2004). Rottensteiner (2007) 
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employed data fusion with the Dempster-Shafer theory for building 
detection. He then improved his method by adding one more feature to 
the data fusion, which makes the classification suitable for building-
change detection. Champion et al. (2009) detected building changes by 
comparing a DSM with a vector map. The similarity measure between 
building outlines in the vector map and the DSM contours were used to 
identify the demolished, modified and unchanged buildings. New 
buildings were detected separately in the DSM. Chen, et al. (2010) used 
lidar data and an aerial image to update old building models. After 
registration of the data, the area of change was detected and height 
differences were calculated between the roof planes in the lidar data and 
planes in the old building models. A double-thresholding strategy was 
used to identify main-structure changed and unchanged areas, while 
uncertain parts were identified from the line comparisons between 
building boundaries extracted from an aerial image and the projection of 
the old building models. The double-thresholding method was reported to 
improve overall accuracy from 93.1% to 95.9%.  
 
Both approaches described above enable changes to be detected in 2D 
(maps) or 2.5D (DSMs). In 2011, Hebel et al. (2013) introduced an 
occupancy grid to track changes explicitly in multi-temporal 3D ALS 
data. In order to analyse all the laser beams passing through the same 
grid, they defined belief masses {empty, occupied, unknown} for each 
voxel in the object space. For the data sets they compared, they computed 
belief masses resulting from all the laser beams, with conflicts in belief 
masses denoting a change. By adding an extra attribute to indicate the 
smoothness and continuity of a surface, they were able to achieve reliable 
change detection results even when occlusion had occurred in either of 
the data epochs. Later on, Xiao et al. (2013) introduced an occupancy 
grid to the mobile laser scanning system to detect permanent objects in 
street scenes, where occlusions frequently occur. They too reported that 
occupancy grids are resistant to occlusion. However, when point density 
is too low, for example on walls, and the size of the occupancy grid is 
small, parts of walls were identified as occluded since no occupied points 
were included in the grid because of the low point density. The size of 
the occupancy grid may, therefore, influence the detection result when 
the point density of the lidar data varies from place to place.  
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5.3 Methodology 
To interpret changes in a scene, we start by calculating the differences 
between two data sets. A surface difference map is generated by 
calculating the point-to-plane distance between the points from one data 
epoch to their nearest planes in the other (see Section 3.1 for more 
details). As the points on building roofs, walls and roof elements are 
considered to be extracted in the scene classification step, it is possible to 
combine the scene classification result with surface difference 
information. This combination enables us to not only detect changes on 
building objects but also to detect occluded areas, where it is not known 
whether there has been a change or not (see Section 3.2). Points on the 
changed objects are grouped and analysed according to a rule-based 
context; besides changes to  roofs and walls (see Section 3.3), changes to 
roof elements are further classified as cars, construction, dormer or 
undefined objects,. The classified changes are finally grouped into 
building objects and analysed (see Section 3.4). Reference data were 
collected manually at random locations to determine the accuracy of our 
method. 

5.3.1 Generating the 3D surface difference map  
The 3D surface difference map records the disparities of points between 
two epochs of ALS data. The disparity per point is computed as the 
distance from a point to its nearest fitted plane from another epoch. 
Surface difference was employed by Vosselman (2012), who evaluated 
the quality of data using overlapping strips. In our methodoloy the 
surface difference map is used to indicate 3D differences between two 
lidar data sets.  
 
For every point in one epoch of data, we search within its 1.0 m (radius) 
3D neighbourhood to check whether there is a point from the other 
epoch. No point from the other epoch implies a difference greater than 
1.0 m and we record the difference value as being greater than 1.0 m. If 
there are points from the other epoch of data, we define the surface 
difference as the distance from the selected point to the nearest fitted 
plane in the point cloud of the other epoch.  
 
A 3D neighbourhood of 1.0 m radius is chosen because most data sets 
have a point density that is greater than 1 point/m2, which ensures that 
the comparison is not affected by the point density. Although we have 
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two data sets that have similar point densities, in order to make sure that 
a 1.0 m neighbourhood is suitable for comparisons between different 
point-density data sets, we simulated several data sets with our test data 
by reducing the point density of one of the epochs (see Figure 5.1). 
 

 Compared data sets Surface difference map (All 
compared to epoch 2008) 

Epoch 2008 
With point density 
of 40 points/m2 

 

 

Epoch 2010 
With point density 
of 40 points/m2 

  

Epoch 2010 
With point density 
of 4 points/m2 

  

Epoch 2010 
With point density 
of 1 point/m2 

  
 
Figure 5.1. Examples of the surface difference map for various point densities. 
Comparison of data sets with different densities from year 2010 with the data 
year 2008 showed that the locations of the changes are the same in all the 
difference maps. This indicates that the surface difference map generated with a 
neighbourhood of 1.0 m is suitable for all the data sets that have a point density 
larger than 1 point/m2. 
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The difference map contains the geometric indication of whether there is 
a change or not. However, not every difference is a change (Figure 5.2), 
and sometimes part of a change is not represented as a large value in the 
difference map (Figure 5.3). Figure 5.2(c) shows the difference map 
containing several points with a surface difference greater than 10 cm. 
However, these differences are caused by lack of data in the other epoch 
and cannot therefore be considered as a change in an object. Conversely, 
points with a difference value less than 10 cm may belong to a changed 
object. Figure 5.3 is an example that displays points with a surface 
difference of less than 10 cm in the connections between a dormer and a 
roof; the change was detected because the dormer was newly built. 
 
Our task is to assign the labels of “changed”, “unchanged” and 
“unknown” to each point according to the surface difference map. 
 

   
(a) 2008 (b) 2010 (c) Difference map (merged) 

Figure 5.2. (a) and (b): Different colours represent different epochs of data. (c): 
Surface difference map derived from the two epochs. Points with a great 
difference do not always denote a change. For example, in (c) blue points in the 
rectangle are unknown points because there is no data for the roof in 2008 
epoch data (perhaps caused by water on the roof), although they have high 
difference values. 
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(a) 2012 (b) 2010 (c) Difference  map (merged) 

 
Figure 5.3. (a) and (b): Different colours represent different epochs of data. (c): 
Surface difference map. The points in the rectangle have a distance difference ≤ 
0.08 m, although there is indeed a change. The difference value is small because 
the points on the roof from the other epoch are in the neighbourhood of the 
points on the dormer and they are quite close to each other. The problem is to 
identify the areas in the rectangle as being changed when the difference value is 
low.  

5.3.2 Detecting a change 
The strategy for interpretation of the surface difference map is as follows: 
points classified as building (wall, roof or roof element) in the scene 
classification are selected. All building points are assumed to be 
unchanged except for those distinguished as “unknown” or “changed”.  
 
Points with a difference value greater than 1 m in one epoch for which, 
even in 2D, no nearby points can be found in the other epoch are 
considered “unknown”( see  Figure 5.4) . This occurs in areas where 
there is a lack of data in one epoch because of occlusions or pulse 
absorption by the surface. For walls, large surface difference values may 
occur. However, our algorithm will label the points for the wall as 
“unknown” instead of “changed” if there has been no change to the  roof 
of that same  building. Due to a lack of evidence as to what happened 
with the wall, the points are labelled as “unknown”.  
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(a) (b) (c) 

Figure 5.4. Points labelled as “unknown” for walls.  (a) a wall scanned with 
dense points; (b) the same wall scanned with sparse or (c) no points in another 
epoch.  
 
Generally, “changed” points have a high difference value, although they 
cannot be selected using a simple threshold in the difference map. 
Therefore, we derived a rule-based decision-tree to detect “changed” 
points in surface difference maps. The decision-tree is shown in Figure 
5.5. The “unknown” points are first excluded from the data sets. The 
remaining points are grouped into planar segments using the surface 
growing method (Vosselman et al., 2004b). Within each segment, points 
are further separated into connected components with a smaller radius 
than during the planar surface growing step. This separates two nearby 
objects that are located in same plane. For example, Figure 5.6(a) shows 
two dormers belonging to the same planar segment, and after deriving 
connected components, they are separated into two components. These 
components are used as the basic units for identifying changed points. 
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Figure 5.5. Identification of changed and unchanged points using a decision-tree 
 
If for each connected component the vast majority of points have surface 
differences greater than 10 cm, the whole component is very likely to be 
a change and will be labelled as “changed”. Otherwise, the component 
may be unchanged or only partly changed (if the number of the points 
with a surface separation value larger than 10cm is larger than 160, these 
points are labelled as changed. The 160 is set, because we assume that 
the point density is 40pts/m2 on average and an area of 4 m2 is roughly 
160 points).After testing on several tiles, the definition of ‘vast majority’ 
was set at 80%. 
 

                     
(a)                                                     (b) 

Figure 5.6. (a): The two dormers in the red rectangle belong to the same planar 
segment and therefore need connected components analysis to separate them 
(different colours indicate different segments); (b): Both changes to roofs and 
dormers are detected (two data epochs are merged). 

 73 



Methodology for the change detection 

5.3.3 Classification of building change 
Points detected as changes in a building are extracted and a second 
classification step is performed on these changes. This second 
classification step is required to understand the activities that could have 
possibly led to the changes detected for a building. For example, by 
identifying changes to roof elements on top of a building (Figure 5.7(a)), 
we can infer that these elements may be cars, and that there is a parking 
lot on top of the building.  

  
(a) 2008 vs. 2010 (b) 2010 vs. 2012 
 
Figure 5.7. Connected components of changed objects are classified based on 
their context. 
 
There are various types of objects that may be present on building roofs 
or attached to walls. Most changes to walls are caused by sun shades, 
stairs, flags, or vegetation near walls. Compared to the changes to roofs 
(e.g. a new dormer or the addition of a floor), changes near walls are less 
likely to be related to construction activities. For this reason, the second 
classification step is performed only for changes concerning roofs and 
roof elements.   
 
Based on the size of changes and the underlying building structure, 
changes on a roof top are classified as dormers, cars or “other 
constructions”. The difference between a dormer and “other 
constructions” above the roof line is that the latter involves relatively 
large changes compared to a dormer. The attributes used for the 
classification are area, height to the nearest roof, the normal vector 
direction of the nearest roof (which indicates a pitched or a flat roof) and 
the labels from the scene classification results. 
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Figure 5.8. Rule-based classification of changes. 
 
Rules are defined to classify these components. Large areas of points 
labelled as changed indicate a changed to a roof. Small changes 
occurring on a pitched roof are more likely to be newly built or removed 
dormers or chimneys. If changes occur on a flat roof, they are probably 
constructions above the roof line or cars. These rules are used in a 
decision-tree, and have been established as a rule-based classifier (see 
Figure 5.8). All thresholds used, such as the area of change being greater 
than 4 m2 or a height greater than 3 m, are chosen based on the authors’ 
knowledge. 

5.3.4 Analysis of changed building objects  
After the points are identified as “changed” and classified, the results are 
points organized as connected components. These components are not 
building objects yet, and they may represent only a small part of an 
object.  How points are organized as building objects and how the 
changed objects are analysed is described in the following subsections. 

5.3.4.1 Changed building objects 
The points that are identified as changed can be organised into building 
objects once we have labelled all the points with: (1) the type of object 
class from the change classification; (2) the labels “changed”, 
“unchanged”, or “unknown”; and (3) the signs from a difference map 
indicating a newly built or demolished structure . We distinguish 
buildings as being entirely changed or partly changed.  
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If there is a change to the roof of a building, all points that group together 
in a 2D connected component step will be labelled as an entirely changed 
building. If changes are made to building elements, the local 3D 
connected points will be only labelled as partly changed.  

5.3.4.2 Merging objects at tile boundaries 
So far, changes are detected within tiles of, for example, 50 m x 50 m. 
Typically, buildings are stored in different tiles, as shown in Figures 5.9 
(a), (b) and (c). As changed objects may occur on tile boundaries, a 
merging step is needed to detect a single object instead of two (i.e. one in 
each neighbouring tile). To solve this problem, adjacent components are 
merged across tile boundaries as described by Vosselman (2013). Figure 
5.9(d) shows the components after they have been merged. 
 

  
(a) (b) 

  
(c) (d) 
Figure 5.9. Objects are cut and stored in different tiles during the processing of 
large data sets. Components have been merged in (d). 
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When building objects have been formed, minimum 3D bounding boxes 
are calculated for these objects. Their width, length, height, area, volume 
and location of their centre point are determined from their 3D bounding 
boxes.  
 
Among all the changes near buildings we found, there are some that are 
irrelevant for the municipality. Common examples are changes to 
extensive areas of flowers and shrubs, to fences and railings in gardens 
on rooftops of buildings. Bounding boxes have been used to measure 
more precisely the size of a change. This measure of size is used to 
separate irrelevant changes (< 4 m2) from relevant ones. For changes < 4 
m2 and a length: width ratio greater than 10, no 3D bounding boxes are 
calculated.  
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Chapter 6 Evaluation for the change detection 
Our change detection procedure comprises change detection, 
classification of any change detected, and object-based analysis. This 
procedure includes generation of surface difference maps and change 
identification. The results for each step in the procedure are described 
below. As the compared data sets are merged into one with different 
epoch numbers, all the results will be shown in a merged version. 

6.1 Detecting Change  
Results of the change detection step are shown and the causes of errors in 
detecting change to buildings are discussed here. 

6.1.1 Surface difference mapping 
A surface difference map is generated from original data sets, regardless 
of the scene classification results. Some difference maps have already 
been shown in Figure 5.1 (Section 5.3.1) and, as discussed, the point 
density does not affect the surface difference map. More difference maps 
can be seen in Figure 6.1. The surface difference map gives only clues as 
to where changes may have occurred in the data sets. To improve their 
display, all the data sets have been merged into one. Different colours 
show different values of the differences between the compared data sets.  
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2008 vs. 2010 2010 vs. 2012 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

 
Figure 6.1. Surface difference maps for (a) 2008 vs. 2010 and (b) 2010 vs. 
2012. 
 
In Figure 6.1, significant differences can be directly observed on the 
surface difference maps where the colours become deeper. Red points 
appearing in the middle of water in  6.1(a) indicate large differences in 
water surfaces. This large difference is caused by lack of points on the 
water in one of the epochs, while points were recorded in the other 
epoch.  These difference maps are the inputs for the change identification 
step. 
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6.1.2 Change detection results 
Using the surface difference map, we labelled the data sets as “changed”, 
“unchanged” and “unknown”}. Figure 6.2 shows some results of both 
types of change (an entire building change (a), as well as changes to 
building elements, e.g. changes (b) & (c)). The interpretations 
“demolished” and “new” can be decided from the sign of the surface 
difference value in the difference map. For example, the points seen in 
epoch 2008 but not in epoch 2010,are “demolished” objects. A small 
change is shown horizontally for clearer visualisation in Figure 6.2 (c). 
As there are new points in epoch 2010, as well as demolished points 
beneath them in epoch 2008, we can infer that there are some extensions of 
the objects. To understand which objects caused the extension, the 
changes need to be classified. 

  
(a) (b) 

 
(c) 

 

 
We selected 20 tiles randomly from each test area to evaluate the 
performance of the change detection method. There are more false 
positives than false negatives, so completeness is greater than accuracy, 
i.e. 50% of identified changes are not relevant. However, the vast 
majority of changes to buildings are actually detected, making it 

Figure 6.2. (a) & (b): Examples of large changes in buildings. Figure 6.2 (c): 
changes to dormer sizes in the merged data sets (removed dormers and 
extensions to dormers in height and length). 
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convenient to only look at the detected changes and ignore the irrelevant 
ones.   
 
Table 6.1. The completeness and correctness of detected change. 

 True 
positive 

False 
positive 

False 
negative Correctness Completeness 

2008 vs. 2010 34 34 3 50.00% 91.89% 
2010 vs. 2012 35 30 6 53.86% 83.33% 
 
Table 6.2. Percentage of errors due to scene classification and errors due to the 
method of change detection used. 

 False positive False negative  

2008 vs. 2010 
(Test area 1) 34 

14 

3 

1 
Errors due to the scene 
classification error 
40% 

20 2 
Errors due to limitations of the 
change detection method 
60% 

 

2010 vs. 2012 
(Test area 2) 30 

18 

6 

6 
Errors due to the scene 
classification error 
67% 

12 0 
Errors due to limitations of the 
change detection method 
33% 

 
As shown in Table 6.2, 40% of the errors (false positives and negatives) 
are due to incorrect scene classification in Test area 1, and 67% in Test 
area 2. In Test area 1, which is a commercial area of Rotterdam, the main 
propagation errors from scene classification are large and long balconies 
in walls, which are incorrectly classified as roofs. In Test area 2, a 
residential area, the error propagation mainly comes from trees that are 
so dense that they are wrongly classified as building roofs. So, changes in 
trees were incorrectly detected as changed building objects. 
 
Note that in Table 6.2 there are two false negatives (relevant changes that 
are not detected) due to our method in Test area 1. These two relevant 
changes are detected in the change detection method, but the 3D 
bounding boxes are not generated. The reason for this is that we applied a 
threshold value for the ratio of the length to width to exclude some thin 
and long objects such as fences and railings during the change 
quantification stage. These two relevant changes were roofs that are long 
and narrow, so 3D bounding boxes were not generated for them. 
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6.1.3 Change detection error due to scene classification error 
Those points on the surface difference map that are labelled as part of a 
building are selected for the building change-detection step. When 
buildings are not correctly classified in the scene classification in any one 
of the epochs, it will influence the quality of building change detection.  
Errors in scene classification give rise to false positive and false negative 
results. 
 
False positives occur when a change has occurred in the areas where non-
building objects have been incorrectly classified as “buildings”. In the 
yellow rectangles shown in Figure 6.3, there is an error in the scene 
classification of one of the epochs such that cars are incorrectly classified 
(in the top row) as a building roof; the water surface is also incorrectly 
classified as a building roof (in the bottom row). As there are changes in 
these areas, and one of them is incorrectly classified as part of a building, 
the changes are confirmed as a “change to a building”. Although these 
represent real changes that that have occurred, they are not changes to 
buildings. In fact, most false positives occur with trees, when a tree is 
incorrectly classified as a building roof in one of the epochs. 

  
Year 2008 Year 2010 

 
Change detection in building (merged) 
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Year 2008 Year 2010 

 
Change detection in building (merged) 

Figure 6.3. Scene classification errors (black rectangles) that have no influence 
on the change detection results, and ones that have a negative influence (yellow 
rectangles).  
 
False negatives occur when a change is confirmed but this has not been 
classified as being part of a building in the data sets being compared: the 
change will not be signalled as a “change to a building”. Some examples 
of false negatives resulting from scene classification errors are shown in 
Figure 6.4. If one of the data sets is correctly classified, false negatives 
can be avoided. 
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Data set 2010 Data set 2012 

  

  

 
 

Change detection in building 
(merged) Image from Google maps 

  

  
  

 
Figure 6.4. Examples of false negatives caused by scene classification errors. 
Because a building has been classified as an “undefined object” in the “Data set 
2012” (in the rectangle), changes to this building  will not be detected (Change 
detection(merged)). 
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In addition, sometimes cranes, bridges, etc., are classified as being part of 
a building. Nevertheless, we did not analyse changes in these objects 
because they did not fall within the scope of our research and we had not 
defined their features. Consequently, errors related to these objects have 
been ignored and not discussed in this thesis. 

6.1.4 Errors in change detection due to our algorithm 
In addition to errors propagated from scene classification results, other 
errors arise that are caused by limitations of the change detection 
algorithm used.  From visual inspection, we could conclude that no 
changes were missed (false negatives) due to our change detection 
method; some unchanged walls were, however, classified as changed 
(false positives). Figure 6.5 (a) shows the incorrect classification of 
occluded walls as “changed”.  We assumed that if no change to the roof 
of a building had occurred, the attached walls would not change either, 
even if they had a large difference value. Under this assumption, all wall 
points in the left-hand image of Figure 6.5 (a) should be labelled 
“unchanged”. However, there are some projections –balconies, sun 
shades, etc. – on the walls that are far away from the roof, and these 
projections will be identified as “changed” because they have a large 
difference value and there was no unchanged roof found in their 2D 
neighbourhood.  
 
Figure 6.5 (b) shows an example of what should be “unknown” points 
being incorrectly labelled as “unchanged”. The lack of data for the roofs 
in one epoch was caused by a water layer that absorbed the laser signals.  
In the other epoch, the point distribution is rather regular. We expected 
that the entire area for which data are missing would be classified as 
“unknown”. However, only the central part of the area was classed as 
“unknown” (light blue). The reason is because only the central parts of 
these areas in the merged data sets have a large difference value (> 1.0 m 
radius). In other parts there are points from another epoch with a 
difference value is less than 10cm. Finally, these errors are not important 
because they did not influence the identification of the “changed” areas; 
they only resulted in a mix up between the designation “unchanged” and 
“unknown”.  
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(a) 
  

 

(b)  

 
 (1) Classification result for the 

compared epochs of data 
(2) Difference map and 
detected change  

Figure 6.5. Errors 
due to our change 
detection algorithm. 
Colours in this 
figure represent the 
same objects as in 
Figure 6.4. Group 
(1a:) some errors in 
the circle are due to 
scene classification 
errors, and some in 
the box are due to 
lack of the 
contextual 
information (wall 
points far away 
from the roof). 
Group (1b): 
unknown points 
labelled as 
unchanged. As seen 
in the classification 
result of Group (1b, 
left-hand), there is a 
lack of data (some 
holes) due to limited 
reflection (red) in 
the left-hand image 
of the roof, but the 
roof in the right-
hand image is quite 
well covered . We 
expected the entire 
area where data is 
lacking to be 
labelled “unknown”, 
but in the result in 
(2) only the central 
parts of the “gaps” 
are “unknown”(light 
blue), while other 
parts are labelled 
“unchanged” 
(brown). 
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6.2 Change classification 

6.2.1 Results 
The change classification results for the two test areas are visualised in 
Figure 6.6; for examples with higher level of detail see Figure 6.7. We 
chose several sites where changes were successfully detected and 
properly classified. These sites included examples of: (a) newly built 
dormers on roofs, (b) lack of data for roofs in one epoch (unknown) and 
lack of data for walls and ground because of occlusion, (c) undefined 
changes on roofs, (d) newly built constructions above roofs, (e) cars 
parked on top of buildings, (f) newly built and demolished buildings (two 
examples in one image), (g) add-on building constructions, and (h) 
insulation layers added to roofs.  
 
Some change detection errors are also caused by errors in scene 
classification – in addition to those arising from the limitations of our 
algorithm. These are discussed in Subsection 6.1.2. More false positives 
are observed, lowering the accuracy, which is analysed in Section 6.3. 
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2008 vs. 2010 

 

 
2010 vs. 2012 

Figure 6.6. Classification of change in the test areas 
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 (a)     (b) 
 

 
 

  (c)    (d) 

 
 

  (e)    (f) 
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  (g)    (h) 
 
Figure 6.7. Successfully detected and classified examples of changes. 

6.2.2 Error analysis 
We randomly chose another 20 tiles from each study area to cover all 
types of changes on roofs. Error analysis of the change classification was 
done by manually assessing the correctness and completeness of changes 
detected (see Table 6.3) .  
 
Table 6.3. Completeness and correctness of the changed objects. 

Label 
2008 vs. 2010 2010 vs. 2012 

Correct 
ness 

Complete 
ness 

Number of 
objects Correctness Complete 

ness 
Number of 

objects 
Undefined object 91% 35% 29 100% 26% 23 

New dormer 6% 100% 1 80% 24% 17 
Demolished 

dormer -- -- 0 -- -- 0 

New car on roof 
top 33% 11% 9 50% 7% 14 

Car no longer on 
rooftop 100% 100% 1 -- -- 0 

New construction 
on rooftop 13% 25% 8 42% 56% 9 

Demolished 
construction on 

rooftop 
100% 40% 5 -- 0% 2 

New roof 78% 81% 26 59% 100% 17 

Demolished roof 91% 100% 20 90% 100% 18 

New wall 100% 100% 8 100% 100% 7 

Demolished wall 100% 100% 8 100% 100% 4 
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The accuracy of change classification for roofs and walls is high 
compared to other objects because changes to roofs and walls occur most 
often in buildings undergoing entire change. In addition to that, scene 
classification is more reliable for larger objects: changes to buildings are 
generally large and can easily be correctly classified. Small changes are 
not so easily separated into their correct change classifications. Most 
constructions and undefined objects on rooftops are incorrectly classified 
as new or demolished dormers, especially if they are near a pitched roof. 
We have assumed that dormers are normally located near the pitched 
roof, but often roofs are in fact a combination of flat and pitched roofs, 
and there are as many changes on these roofs, which are not changed 
dormers but incorrectly classified as such. It is also difficult, based only 
on their size, to distinguish large cars on a rooftop parking lot from 
building constructions. As a result, some of these large cars are classified 
as constructions. We conclude that, even if the changes are detected 
correctly, in highly complex urban areas it is hard to completely and 
correctly classify the detected changes using geometrical and relational 
rules.  

6.3 Object-based analysis 

6.3.1 Results 
Minimum 3D bounding boxes are generated around the connected 
components to enable selection of relevant changes in the buildings; for 
some results see Figure 6.8. The location of the centre point, the area and 
the volume of the minimum 3D bounding box have been calculated. 
Changes are shown in Figure 6.8 (a). Figures 6.8 (b) and  6.8 (c) give two 
examples of 3D bounding boxes: 6.8 (b) for a building object that has 
undergone complete change; and 6.8 (c) a changed building element 
(newly built dormer). The bounding box in Figure 6.8 (c) is larger than 
the dormer because of the influence of some outliers occurring in the 
same plane as the dormer. 
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(a) 

 
2008 vs. 2010 

 
2008 vs. 2010 

 
2010 vs. 2012 

 
2010 vs. 2012 

(b) 

  

 93 



Evaluation for the change detection 

 
Figure 6.8. 3D bounding boxes and the centre points of the relevant changes, 
together with the calculated area and volume; the label, area and the volume are 
shown in the point number window. In this figure, points without bounding 
boxes are irrelevant changes.  

6.3.2 Error analysis 
We used connected component labelling to form objects and their 3D 
bounding boxes to estimate their area and volumes. We found that 
connected component labelling failed to correctly form objects under two 
circumstances: 
 
(1) False positives in buildings 
Sometimes points on walls or roofs are false positives. These points may 
belong to an unchanged wall that has been incorrectly detected as 
changed (see discussion in Subsection 6.1.4), or they can be sparse points 
of plants on a balcony or rooftop (irrelevant changes). If such points are 
close together, connected component labelling will form an object that is 
as big as an entire wall or even a complete building; see Figure 6.9 (a). 
 
(2) Small objects that are too close to each other 
Small objects that are too close to each other will be connected together 
as one object. This often occurs with cars parked on rooftops of buildings 
and shelters at bus stops that are very close to each other. Figure 6.9 (b) 
shows an example of cars parked on a rooftop. The consequence is an 
incorrect shape of detected change.  
 

(c) 
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(a) (b) 

Figure 6.9. (a) Incorrectly indicated changes to walls and irrelevant changes on 
roofs; (b) Cars that are close to each other and close to some fences are 
represented as several large objects. 

6.4 Discussion 
In chapter 5 we present a method for detecting and classifying changes to 
buildings by using classified laser data from several epochs. The analysis 
of our results in this chapter leads us to put forward several discussions. 
 
Provided distances between surfaces are greater than 10 cm and the area 
of change more than 4 m2, both large and small changes be automatically 
detected using a surface difference map and a rule-based change 
detection algorithm. Areas classified as “unknown” can be correctly 
identified in cases of occlusions and water reflection. The surface 
difference map is not affected by the point density of the compared data 
sets.  
Larger changes can be correctly assessed as belonging to a building 
provided that building has been correctly classified as such in the scene 
classification step for one of the data sets being compared. The accuracy 
of object recognition was evaluated by overlaying the 3D bounding 
boxes of the buildings for which change was detected on manually 
generated reference data. Our method detected 91% of actual changes in 
Test area 1 and 83% in Test area 2. Nearly half of the changes detected in 
objects were irrelevant changes.  
 
About half the false positives occurring were caused by scene 
classification error. The other false positives can be mostly attributed to 
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our change detection algorithm. Mostly they are spurious changes in a 
wall that is far removed from a roof or plants growing in a rooftop 
garden. On classifying changes, we conclude that even if changes are 
identified correctly, in highly complex urban areas it is difficult to 
completely and accurately classify the smaller detected changes using 
geometrical and relational rules. 
 
The classification result for the changed object shows that large changes 
affecting an entire building, for example its roof or a main wall, can be 
detected with a higher degree of accuracy than changes made to a 
building element,  such as dormers or construction on top of the building.  
 
Overall, our method detected 80-90% of changes to buildings. The 
method is, however, not yet capable of distinguishing small irrelevant 
changes to objects from relevant ones. A more accurate definition of a 
“changed building object” and its characteristics are required in order to 
better interpret differences between two data sets.  
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Chapter 7 Conclusions and recommendations 
Conclusions relating to the scene classification and change detection 
methodologies used in this research are presented, and limitations 
discussed, in Section 7.1. Finally, I make some recommendations in 
Section 7.2. 

7.1 Conclusions  
Conclusions relating to the advantages and shortcomings of the 
methodology used for scene classification are given in Subsection 7.1.1. 
Those for the change detection methodology as applied to buildings are 
given in Subsection 7.1.2. Finally, in Subsection 7.1.3 I present some 
general conclusions drawn from both the scene classification and change 
detection methodologies. 

7.1.1 Scene classification 
The methodology and features I have described in this thesis have proven 
to be suitable for the classification of airborne laser scanning (ALS) data: 
a scene classification accuracy reaching 97% could be achieved using the 
rule-based classifier. Over 95% of the building points were extracted and 
further classified as “wall”, “roof” or “roof element”. With the exception 
of adjustments to some parameters, the entire scene classification process 
is fully automated.  
 
Nevertheless, the methodology still suffers from several limitations: 
- the defined features are not suitable for terrestrial laser scanning 

data, as several features such as “segment size” and “average point 
spacing” were used, which requires that point density is not 
influenced by the distance between the scanned objects and the laser 
scanner. There are large differences in point density in the terrestrial 
laser scanning data. 

 
- the strategy of using multiple entities can solve problems arising 

from vegetation occurring above building roofs, but it cannot solve 
problems resulting from vegetation near or even connected to 
building walls. Parts of such vegetation will be classified as 
“building wall” during the contextual reasoning step. 

 
- - low vegetation, such as bushes and grass, are not classified as 

vegetation due to the definition of vegetation used. Only tall trees 
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(height above DTM > 2.0 m) are classified as vegetation; lower 
vegetation is classified as “undefined object”. 

 
- the methodology requires the data to be filtered before the 

classification. 
 
In addition to the above, some objects cannot be clearly distinguished 
from each other due to limitations of the lidar data, which does not 
include colour and texture information. The following objects are easily 
mixed up: 
 
- roofs of small buildings and large trucks (undefined object) 
- building roofs and wall elements, such long balconies, sun shades or 

opened windows set into walls. 
- building roofs and dense, flat vegetation. 
 
In lidar data, these objects have similar geometries, so it is difficult to 
separate them using only x,y, z or other information from lidar data. If 
vegetation is too dense to allow pulses to penetrate, that vegetation may 
appear as a smooth surface with no features suitable for distinguishing it 
from building roofs in the lidar data.  

7.1.2 Change detection in buildings 
Change detection based on a surface difference map is not influenced by 
the point density of the compared data sets, so this method of change 
detection can avoid signalling spurious changes due to occlusion or 
different reflection characteristics of object surfaces.  
 
The accuracy of the change detection is evaluated per object and the 
detection rate is around 90%. However, nearly half the detected changes 
are spurious or irrelevant changes. The spurious changes are detected 
because of errors in scene classification (incorrect labelling of walls and 
vegetation as “building roof”. The irrelevant changes are real changes, 
but they are not distinguished from relevant changes because the method 
does not have enough rules to separate one from the other. 
 
The connected component method can also be used to compose changed 
building objects for either changes to an entire building or to a roof 
element. However, although this method is suitable for larger changes, 
such as those to an entire building, it is not very suitable for detecting 
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changes to roof elements when several different types of roof elements 
are very near to each other (these different roof elements are then 
grouped to one object using the connected component). 

7.1.3 General conclusions 
In addition to the specific conclusions I have drawn above, there are 
some general conclusions to be drawn from both the scene classification 
and the change detection processes. The parameters, both those for the 
surface-growing method and those in the grouping rules, need to be 
adjusted for different data sets when the point density differs, since the 
surface-growing method, as well as some of thresholds for the features, 
are influenced by point density. 
 
Furthermore, outliers in the data sets were the cause of incorrect 
classifications and spurious changes. Such outliers could be: 
 
- points on floors inside the building. These points are scanned if laser 

beams penetrate  window glass and hit the floor inside the building.   
 

- points that are far below ground level or up in the sky (e.g. balloons 
or helicopters). 

 
Outliers related to floors are partly classified as “building roof” or 
“building wall” in the scene-classification step and are will be detected as 
changes to the building if the outliers appear in only one epoch of the 
data and are absent in another. Points below ground level will influence 
the calculation of the height to the DTM if they are misclassified as 
ground. Consequently, incorrect distances from the object to the DTM 
will be calculated. 

7.2 Recommendations 
Buildings either partly or fully covered by trees can be classified and 
changes detected. Buildings (walls, roofs or roof elements) extracted in 
the scene classification step can be used to detect change and for the 
detailed modelling of buildings. Larger trees extracted can also be used 
for the modelling trees, as well as change detection (Xiao et al., 2012). 
The change detection methodology can be used to detect building 
changes that display differences in their geometry greater than 10 cm (in 
the data the maximum strip difference is 10 cm; this may vary with 
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differences in registration accuracy) and have an area greater than 4 m2 

(the area can be adjusted according to application requirements). Such 
changes provide insight into building construction activities and help in 
verifying building permits. Quantification of changes can assist in the 
efficient updating of maps.  
 
As already noted in Subsection 7.1.1, the methodology studied has 
several limitations. These can be addressed by: (1) adding new features 
to indicate the size of a segment for terrestrial laser scanning data so that 
the method can be used for this type of data too, and; (2) using different 
segmentation methods to allow one segment to represent one object 
(something already investigated by Vosselman (2013)).  
 
I have mentioned that some points in trees and on buildings have similar 
geometries and are difficult to separate during scene classification of 
lidar data. Here I would suggest incorporating images and exploiting the 
texture and colour information available to improve the accuracy of 
classification of high and low vegetation.  
 
Improved scene classification can also improve the accuracy of change 
detection.  In particular, some spurious changes are identified in trees 
because the trees were incorrectly classified as building roofs. Such 
spurious changes can be eliminated if trees and roofs are 100% separated. 
Irrelevant changes are difficult to distinguish from the relevant ones 
because the wide range of types of changes in a city complicates the 
detection process. This can be addressed by defining certain patterns for 
each type of change to assist recognition of the relevant ones. For 
example, for the change resulting from construction of a new dormer, 
surface difference values may have a characteristic distribution that 
distinguishes this type of change from other changes. 
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Summary 
Detailed change detection in buildings using airborne laser scanning data 
(ALS data) has become possible with the availability of multi-temporal 
ALS data sets. In this thesis we present a methodology for building 
change detection in urban scenes, which is composed of two main parts: 
the classification of point clouds of an urban scene and the detection of 
changes in buildings. A classification methodology is put forward to 
solve the problem of how to detect buildings in point clouds and how to 
distinguish the building roofs, building roof elements, and building walls. 
The change detection methodology is not only used to detect changes but 
also aims to interpret the type of change that occurred to a building. The 
two methodologies are suitable for application to raw ALS laser points. 
They do not require the ALS data to be organised in Digital Surface 
Models.  
 
The thesis consists of seven chapters. Chapter 1 gives the motivation of 
this research and an introduction to the background of the two main 
topics mentioned above. Research problems and questions are raised, and 
goals and objectives are defined on the two topics. Furthermore, the 
limits of the research scope of this thesis are set.  Chapter 2 introduces 
the study area used in this thesis, the available data, including the data 
quality and the data organization, and some pre-processing steps of the 
data. 
 
Chapter 3 describes the methodology of the classification, explaining the 
entities, features, classifiers and the classification strategy. We introduce 
a classification procedure that combines classifications of three different 
entities: points, planar segments, and segments obtained by mean-shift 
segmentation. Seven types of objects, namely, water, ground, vegetation, 
roof, roof element, wall and undefined object, are distinguished based on 
feature values of the entities. Some features were already defined in 
literature. Other features are defined by us. Five commonly used 
classifiers (rule based classification, Random Tree, AdaBoost, SVM, and 
ANN) are tested. The rule-based method provides over 99% accuracy for 
the ground and roof classes, and a minimum accuracy of 90% for the 
water, vegetation, wall and undefined object classes, resulting in an 
overall accuracy of 97%. The accuracy of the roof element class is only 
70% with the rule-based method, or even lower with other classifiers. All 
experimental results for the classification methodology are presented and 

109 



Summary 

discussed in chapter 4. These results include the evaluation of the 
classification accuracy, comparisons between different classifiers and 
comparisons between different features derived from the different 
entities. 
 
Chapter 5 explains the methodology of the change detection comprising a 
point-based change detection method and an object-based change 
analysis. The detection process starts with two data sets that are classified 
using the classification methodology in chapter 3. Next, a point-to-plane 
surface difference map is generated by merging the two data sets to be 
compared. By applying rules to the surface difference map the change 
status of points is set to “changed”, “unchanged”, or “unknown”. Rules 
are defined to solve the problems caused by the lack of data. “Unknown” 
are locations where due to lack of data in at least one of the epochs it is 
not possible to reliably detect changes in the structure. Points on 
buildings labelled as “changed” are re-classified into changes related to 
roofs, walls, dormers, cars, constructions above roofs and undefined 
objects in a second classification step. Next, all the classified changes are 
grouped to changed building objects. Geometric descriptions of the 
changed building objects, such as the location of the centre point of the 
change objects, the height, area and volume of the change objects, are 
derived from their minimum 3D bounding boxes. Performance analysis 
showed that 80% - 90 % of the real changes are found, of which 
approximately 50% are considered relevant. The results of the change 
detection and analysis and their accuracy are discussed in chapter 6.  
 
Finally, chapter 7 draws the main conclusions from the test results 
obtained with the classification and the change detection methodology. 
Limitations of our methodologies are summarized and potential solutions 
to these limitations are suggested. 
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Samenvatting 
Dankzij het feit dat steeds meer organisaties herhaaldelijk gedetailleerde 
laser scan data inwinnen is het mogelijk om nauwkeurig vast te stellen of 
er in de gebouwde omgeving iets veranderd is. In dit proefschrift staat 
beschreven hoe laser datasets van verschillende jaren gebruikt kunnen 
worden in stedelijk gebied om verschillen te detecteren die tussentijds 
zijn opgetreden. De focus in dit proefschrift ligt op veranderingsdetectie 
van gebouwen. Dit gebeurt aan de hand van twee belangrijke stappen: de 
classificatie van laser data en de feitelijke veranderingsdetectie. De 
classificatie stap geeft inzicht in welke objecten er aanwezig zijn in de 
datasets, en dus ook waar er zich gebouwen bevinden. Dankzij de hoge 
mate van detail kunnen daken, muren en zelfs dakkapellen onderscheiden 
worden. Onze veranderingsdetectie is niet alleen in staat om een 
verandering te herkennen, maar ook om aan geven wat voor soort 
verandering heeft plaatsgevonden. Voor deze twee stappen wordt gebruik 
gemaakt van de ruwe laser altimetrie gegevens, puntenwolken genaamd, 
zonder enige vorm van nabewerking zoals interpolatie naar een 
regelmatig raster.  
 
Het proefschrift bestaat uit zeven hoofdstukken. Hoofdstuk 1 bevat de 
introductie tot classificatie en veranderingsdetectie in puntenwolken, 
aangevuld met de onderzoeksvragen en doelstellingen. Hoofdstuk 2 
beschrijft de gebruikte data, inclusief de opbouw en geometrische 
kwaliteit. De classificatie methode wordt beschreven in hoofdstuk 3. De 
methode is gebaseerd op informatie op verschillende schaalniveaus: per 
laser punt, per segment met laser punten die in een plat vlak liggen, en 
per segment met punten die anderszins gegroepeerd kunnen worden. De 
laser data wordt geclassificeerd in zeven klassen: water, terrein, 
vegetatie, gebouwdaken, objecten op die daken, muren en een restklasse 
voor alle overige objecten. Op alle drie schaalniveaus worden parameters 
berekend die geometrische informatie bevatten over tot welke klasse dat 
gedeelte van de laser data behoort. De beste classificatiemethode geeft 
een 99% nauwkeurig resultaat voor de klassen gebouwdaken en terrein, 
en is voor minimaal 90% correct in het geval van vegetatie, muren, water 
en de restklasse. Echter, voor objecten op daken is het voor ongeveer 
70% correct. Verschillende classificatiemethoden en hun resultaten 
worden vergeleken en beschreven in hoofdstuk 4. 
Hoofdstuk 5 behandelt de veranderingsdetectie, waarbij gebruik gemaakt 
wordt van de geclassificeerde puntenwolken uit tenminste twee 
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verschillende opnameperiodes. Eerst wordt per punt de afstand tot het 
dichtstbijzijnde vlak in de andere dataset bepaald. Dit resulteert in een 
zogenaamde verschilkaart tussen twee datasets. Aan de hand van de 
verschilkaart en de classificatie informatie wordt bepaald of een deel van 
een gebouw (niet) veranderd is, of dat het onmogelijk is om een 
verandering te detecteren. Een gebouw is veranderd indien er een aantal 
laserpunten zijn die een bepaald verschil vertonen in de verschilkaart én 
die als gebouw geclassificeerd zijn, dus ook punten op muren, daken en 
dakkapellen. De gevonden veranderingen worden nader geïnspecteerd en 
de verder geclassificeerd om aan te geven wat voor soort verandering er 
heeft plaatsgevonden. De verandering worden vastgelegd als kaartobject, 
inclusief grootte, locatie en aard van de verandering. Onze methode kan 
80-90% van alle daadwerkelijke veranderingen opsporen, waarvan de 
helft relevant is in praktijk. De resultaten van de veranderingsdetectie 
worden beschreven en geanalyseerd in hoofdstuk 6. 
 
Tenslotte worden in hoofdstuk 7 conclusies getrokken over de 
classificatie en de veranderingsdetectie. Ook worden beperkingen aan de 
voorgestelde aanpak besproken en aanbevelingen gegeven hoe 
beperkingen van deze methode kunnen worden opgelost. 
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