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Summary 

The reconstruction of building models has been heavily researched in the field 

of photogrammetry and computer vision. The two most used types of input 

data are lidar points and images. The goal of this thesis is to find an 

automatic method to reconstruct Level of Detail 2 (LOD2) building models 

from airborne lidar scanning data. A LOD2 building model contains distinctive 

roof structures and larger building installations like balconies and stairs. The 

state-of-the-art approaches can automatically reconstruct about 80% 

buildings, mainly in residential areas. This means a lot of complex buildings 

still cannot be automatically reconstructed. This PhD research is to increase 

the automation rate and provide a methodology which could be used to 

reconstruct buildings at a national scale. In order to achieve this goal, a 

sequence of problems has been solved. The two main contributions are: 

1. Flexible building primitives have been proposed to solve the problem 

that many complex buildings cannot be represented by the state-of-the-

art building primitives. The building primitives are key elements in the 

model-driven methods to reconstruct buildings. However, the current 

building primitives are all shape-limited. An open problem in the 

literature is whether there is a set of building primitives that is compact 

but flexible enough to represent complex buildings? Based on the finding 

that the roof topology graphs have basic sub-graphs, each of them 

represents a type of building primitives. Because any roof topology graph 

can be decomposed into such basic sub-graphs, building primitives based 

on them are able to represent any type of building. Meanwhile, the sub-

graphs are non-redundant, thereby, the building primitives are compact. 

2. A graph edit dictionary has been introduced to automatically correct 

the errors in roof topology graphs. A roof topology graph is the adjacency 

topology graph of roof patches of a building. Roof topology graphs are 

essential for inferring building structures and searching for building 

primitives. However, because of noise, data deficiency, and imperfection 

of pre-processing steps, roof topology graphs inevitably have errors. In 

order to improve the automation, the errors should be automatically 

corrected. By analysing over 1000 buildings, errors are found to be 

repeating. By learning the repeating errors, a graph edit dictionary, which 

stores pairs of errors and correction rules, is constructed to find and 

correct the errors in roof topology graphs. 

In order to solve the problems accompanying the two main contributions, 

several important contributions have been made:  

1. Several Shape regularities of buildings are introduced in addition to 

summarizing and analysing the regularities used in the literature. As 

man-made objects, buildings have strong shape and structure 

regularities. However, they are not equally important and cannot be used 
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in all situations. This thesis analyses the characteristics of those 

regularities, their advantages and disadvantages, and their application 

situations. 

2. Efficient interactive tools have been designed for correcting roof 

topology graph errors. The proposed automatic method based on graph 

edit dictionary can only correct part of the errors. In order to reconstruct 

all building models, the remaining errors should be corrected. 

Additionally, the graph edit dictionary is constructed based on learning 

errors in the roof topology graph. The correct model should be provided 

before the learning. The interactive tools enable us to reconstruct 

building models efficiently. 

3. Adaptive Constraints are applied to improve the model quality. The 

buildings are decomposed into building primitives, which contain 

constraints for guiding the reconstruction. Constraints are not forced 

obligatorily. A decision is taken as to which constraints are necessary and 

which constraints could be left aside based on both inferred building 

primitives and input data. 

4. A single quality criterion is proposed for evaluating a complete 

building model without the use of reference building. The building models 

could only be used when their quality is accepted. However, it is difficult 

and expensive to achieve reference data for 3D building models of large 

area. The proposed criterion is based on the comparison of input lidar 

points and reconstructed building models. 

By progressing step by step, this PhD research provides methods that can 

automatically reconstruct about 95% acceptable building models. The other 

5% buildings can be reconstructed manually efficiently by the developed 

interactive tools. The building models are available for large scale 

applications. The most common applications will be urban planning, tourism, 

navigation, security, training, and visibility analysis. 
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Samenvatting 

De reconstructie van gebouwmodellen is een welbekend onderwerp in het 

onderzoeksveld van de fotogrammetrie en computer vision. De twee meest 

gebruikte databestanden om de modellen te maken zijn 

laseraltimetriegegevens en luchtfotos. Het doel van dit proefschrift is een 

automatische methodie te presenteren die 3D gebouwmodellen genereert op 

basis van laseraltimetriegegevens. De gebouwmodellen worden met een hoge 

mate van gedetailleerdheid gegenereerd en bevatten dakvormen en 

elementen zoals dakkappelen en balkons. De bestaande methodes kunnen 

tot 80% van de gebouwen correct modelleren, vooral in woonwijken is het 

succespercentage hoog. Dat betekent dat vooral complexe gebouwen nog 

niet gereconstrueerd kunnen worden. Dit PhD onderzoek heeft als doel om 

het succespercentage te verhogen, en om een methode te maken die op een 

landelijke schaal ingezet zou kunnen worden. Om dit doel te bereiken, 

moeten er een aantal problemen opgelost worden. De twee belangrijkste 

bijdragen van het proefschrift zijn: 

1. De inzet van flexibele gebouwprimitieven zorgt ervoor dat zelfs 

complexe gebouwen gemodelleerd kunnen worden. Gebouwprimitieven 

zijn belangrijke bouwstenen in modelgedreven reconstructiemethoden. 

Het probleem is dat de meeste primitieven een vaste vorm hebben, 

waardoor variatie in gebouwvormen lastig aan te brengen is. De vraag is 

dus of er een methode bedacht kan worden die flexibel genoeg is om 

complexe gebouwen te kunnen modelleren. Een manier om dat te 

bewerkstelligen is gebruik te maken van daktopologien. Zo’n 

daktopologie hebben we beschreven als een combinatie van simpele 

gebouwprimitieven, zoals een enkel dakvlak. Deze simpele 

gebouwprimitieven hebben we als uitgangspunt voor gebouwprimitieven 

genomen, omdat ze zowel eenvoudig als flexibel genoeg zijn om allerlei 

complexe gebouwen te modelleren. 

2. Een zogenaamde “graph edit dictionary” zorgt ervoor dat foutjes in de 

topologie van dakvlakken worden opgespoord en gecorrigeerd. De 

topologie van de daken is een beschrijving van hoe dakvlakken aan 

elkaar grenzen. Deze daktopologie is handig om de structuur van het 

dak, en dus het dakmodel, te herkennen. Helaas kan de daktopologie 

niet altijd correct gevonden worden in de laserdata, ofwel door ruis in de 

data, of door verkeerde aannames in een van de data 

verwerkingsstappen. Het is belangrijk dat deze foutjes automatisch 

opgespoord kunnen worden. Dit is gedaan door eerst handmatig meer 

dan 1000 gebouwen te analyseren, en de computer te leren welke 

foutjes nu aanwezig zijn. Op deze manier is een “graph edit dictionary” 

opgebouwd die de combinatie opslaat van hoe het foutje eruit ziet en 

hoe het er eigenlijk uit zou moeten zien. Dus, deze ‘dictionary’, letterlijk 

een vertaalwoordenboek, vertaalt de manier waarop een gebouw er in 
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de data uitziet en hoe het er eigenlijk uit zou moeten zien om er een 

correct 3D model van te maken. 

Om bovenstaande mogelijk te maken, zijn de volgende stappen uitgevoerd:  

1. Een aantal repeterende patronen in gebouwvormen zijn 

geïntroduceerd naast reeds bestaande oplossingen uit de literatuur. De 

meeste gebouwen vertonen een min of meer regelmatig patroon, 

bijvoorbeeld qua symmetrie. Alleen is soms het ene patroon belangrijker 

dan andere. In dit proefschrift worden de verschillende karakteristieke 

patronen geanalyseerd op voor- en nadelen en hoe ze gebruikt kunnen 

worden in de gebouw modellering. 

2. Efficiënte interactieve methodes om fouten in de daktopologie te 

corrigeren. De graph edit dictionary kan een deel van de fouten 

automatisch corrigeren. Het overige deel moet op een andere, niet 

automatische manier opgevangen worden. Dat gebeurt op een 

interactieve manier waarop tegelijkertijd de graph edit dictionary 

aangevuld wordt. Deze interactieve methodes maken het mogelijk om 

efficiënt gebouwen te modelleren in 3D. 

3. Optionele geometrische voorwaarden worden toegepast om de 

kwaliteit van gebouwmodellen te verbeteren. De modellen zijn 

opgebouwd uit meerdere gebouwprimitieven, die elk geometrische 

voorwaarden bevatten om de dakvorm te beschrijven. Deze 

voorwaarden worden niet verplicht gesteld, maar optioneel. Er wordt 

gekeken naar welke voorwaarde noodzakelijk zijn, en welke overbodig. 

Dit wordt getoetst op zowel het uiteindelijke 3D model als de input laser 

altimetriegegevens. 

4. Een eenduidig kwaliteitscriterium wordt geïntroduceerd om de 

kwaliteit van elk 3D model te beoordelen zonder dat er 

referentiemateriaal voor nodig is. Op basis van dit kwaliteitscriterium 

wordt bekeken of het 3D model goed genoeg is of niet. Het criterium is 

gebaseerd op de vergelijking tussen de input laseraltimetriegegevens en 

de geproduceerde gebouwmodellen. 

De onderbouwing en de implementatie van bovenstaande stappen is 

beschreven in dit proefschrift. Aan de hand van deze stappen is het mogelijk 

om 95 % van alle gebouwen automatisch te reconstrueren. De overige 5% 

kan efficiënt met de interactieve methodes gemodelleerd worden. Dit maakt 

het mogelijk om op landelijke schaal gebouwmodellen te produceren. De 

belangrijkste toepassingen zijn te vinden in stedelijke planning, toerisme, 

navigatie, veiligheid, training en zichtbaarheidsanalyses.  
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Chapter 1 Introduction 

Introduction 

From the time when human started to record information on papyrus, 

parchment roll, and silk, we have been trying to record the 3D world on the 

2D media. A simple but essential reason is that we are living in the 3D world, 

not on a 2D planet. Many technologies have been invented for this purpose, 

including painting and mapping technology. Only until the information era 

came, we were able to store, manage, and use the information of the 3D 

world easily. Digital 3D worlds play an important role in fields like flood risk 

management, infrastructure constructing and management, water supply and 

quality, nature resource conservation, geologic resource assessment and 

hazard mitigation, navigation, and so on (Snyder, 2012). The lidar (LIght 

Detection And Ranging) technology, which provides accurate and direct 3D 

information, enables us to collect accurate 3D information. Moreover, the 

capability in vegetation penetration makes it the perfect method to measure 

objects under vegetation, e.g., ground. The flexibility of lidar provides multi-

angles and multi-distances measurements, including satellite-based, 

airborne, terrestrial, handheld laser scanner. Laser scanners are developing 

fast in the last 10 years, providing high density, high accuracy, and full 

waveform data. 

Algorithms for processing lidar data and reconstructing 3D maps, however, 

are delayed behind the hardware development of data acquirement 

technology. In fact, 3D reconstruction has become the bottleneck of the 

widely ranged application of high quality point clouds. Because buildings are 

the main part of cities, their reconstruction has drawn huge attention to 

researchers from photogrammetry and computer science. Though many 

scholars have done research on this topic and have acquired impressive 

results in the last two decades, they are still restricted to relatively simple 

buildings. Many complex buildings are left to be manual reconstructed. 

General and relatively simple buildings can be automatically reconstructed 

with the recent technologies. Nevertheless, architectures that have complex 

structure or incomplete data are still difficult to reconstruct and become a hot 

research topic nowadays. Due to the high percentage of those complex 

buildings, modelling of big city now is still expensive and time consuming. 

Automated algorithms that can deal with high quality data are in demand for 

application requirements 

Building shapes are regular but as well diverse. Comparing to natural objects, 

e.g. trees, buildings are man-made objects and have their own shape 

regularities. But when comparing to other man-made object, e.g. lamp, 
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traffic lights, buildings do not have that many repeat patterns. Those shape 

regularities can help us to interpret and reconstruct buildings. Knowledge 

based algorithms are the best solution for automatic reconstruction of 3D 

building. Human operators could immediately place and integrate buildings 

from mass data because they have rich knowledge about buildings and city 

environments. This knowledge and experience includes geometry topology, 

semantic information. The human brain can integrate this knowledge in 

different data processing stages and even improve the knowledge database 

by adding new discovered information of buildings. In the interpreting 

process, observed objects are matched with models and knowledge, which 

are learned and stored in brain. Due to the interaction of reconstruction and 

interpreting process in the intelligent system, research on utilization of 

knowledge on 3D model acquirement will not only improve reconstruction of 

3D architecture model but also deepen the understanding of human 

reasoning. 

1.1 Research problems 
Although building reconstruction techniques have dramatically improved 

recently (Brenner and Von Goesseln, 2004; Haala and Kada, 2010; Hu et al., 

2003; Musialski et al., 2013; Vosselman, 2002; Wang, 2013), many 

problems still prevents it from comprehensive utilization. Those problems 

stem from the characteristics of laser scanning data as well as the complexity 

of buildings and environments. It is helpful to list and discuss problems for 

determining further research. 

a) Complex scene 

Various kinds of objects exist in city scene, including vehicles, pedestrians, 

trees and street lamps. The first step of building reconstruction is to 

distinguish building points from other points. A 2D topographical map is very 

useful to complete this task. However, topographical maps are not always 

accessible. In many situations, we need to complete building reconstruction 

without a map. On the other hand, objects neighbouring to buildings are 

important context information that could be used to categorize building and 

refine building model. For instance, ground planes could be employed to 

determine footprint of building.  

b) Lack of data 

The laser scanning data is often imperfect for a building because of its 

surface material and environment. A laser scanner cannot receive data from 

roofs and walls covered by non-reflecting materials. For example, a laser 

beam is transmitted through glass, absorbed by slate and water surface, and 

mirrored by smooth surfaces. On the other hand, some surfaces have steep 

slopes or are occluded by other objects. So they cannot be scanned by laser 

scanner or the scanning data are sparse. Those buildings cannot be 
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reconstructed by detecting and assembling surfaces. In addition, a large part 

of vertical walls is partly scanned, so the reconstruction of those building 

walls depends on 2D maps. For example, no ridge line could be detected from 

lidar points of the churches shown in Figure 1-1. 

Figure 1-1. Buildings with many lidar points lost. 

c) Complex building shapes

Figure 1-2. Buildings with complex shape. 

Many buildings have complex shapes, which are difficult to be abstracted into 

a topological database. A part of buildings is constructed by curved surfaces, 

e.g. most large gymnasium use curved surface as roof. In addition, building 

surfaces constructed by planes also have manifold structures. Topological 

graphs are employed to introduce constraints to improve reconstruction 

results. However, these topological graphs are hard to be enumerated and 

pre-stored in knowledge database. As shown in Figure 1-2, the building 

shapes could not be represented by assembling primitive building shapes. On 

the other hand, if a larger number of topological graphs were listed, 

searching target graph for one specific building would be more difficult. One 

object could be matched with more than one graph. 

d) Complex Boundary

Edges connected by two faces are stable and simple to detect. Their 

parameters are fixed by intersecting the two adjacent faces. Nevertheless, 

other edges are hard to fit due to discreteness and noise of the lidar points 

near the building boundary. The working manner of laser scanner makes the 

laser scanning points near the building boundaries unstable. The error of pre-
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processing, except data noise, such as filtering and segmentation, will result 

in a poor boundary description by the lidar points. As we can see from  

Figure 1-3, it is hard to detect the boundary shape and fit boundaries for the 

segment marked by purple points. As a result, we need extra information on 

the geometry of the outer edges to help determine the roof face boundaries. 

Figure 1-3. Complex outer boundaries. 

1.2 Goal and objectives 
This PhD research is to provide an automated approach that reconstructs 

Level of Detail 2 (LOD2) building models from airborne laser scanning data. A 

LOD2 building model has distinctive roof structures and larger building 

installations like balconies and stairs (Kolbe, 2009). This research will focus 

on representation, learning, and utilization of knowledge on building shapes 

for 3D building model acquirement. It will first try to find the grouping type 

and dependences between geometric elements and regularities behind 

building structure. It will attempt to develop strategies on how such 

dependences and regularities are used in automatic algorithms for 3D 

building model acquirement. 

The general goals are narrowed to the following objectives: 

 To find a set of building primitives that is compact but flexible enough

to represent arbitrarily complex buildings.

 To define measures to evaluate building model quality. Considering

the current situation that ground truth data is hardly available, the

measure should not dependent on the ground truth data.

 To design and implement an automatic method that can correct

erroneous building models.

 To provide a set of efficient tools to manual correct errors in

reconstructed models.
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1.3 Building knowledge 
Building shape knowledge mainly includes geometry, topology and semantic 

information. This information can be transformed into reconstruction rules 

and introduce constraints for building modeling. Therefore, in this project, the 

first work to be done is to explore which knowledge about buildings could be 

used for building reconstruction and how to represent and acquire such 

knowledge. When the human brain interprets data to recognise buildings, it 

will inference all information from low-level data information and translate 

this information into reasonable buildings to match the original data. This 

information may be as follows:  

Age: Buildings in different ages have different structures and styles. Citizens 

design the architecture according to the economic condition, fashion, culture, 

and other factors. According to the building age, there are generally several 

building styles: Romanesque style, Gothic style, Baroque style, Rococo style, 

and so on. Every building style has its own features. E.g., Gothic style has 

Latin cross plane, the pointed arch, high height, and rose windows. 

Romanesque architecture is famous with its massive quality, its thick walls, 

round arches, sturdy piers, decorative arcading, and so on. In a short period, 

buildings also may have different types. For instance, buildings, which were 

built before and after World WarⅡ, have significantly different characters in 

the Netherlands. 

Usage: Buildings could be classified into different styles by its usage, for 

example, industry, residences, comitial, sports, religious, education, office, 

and so on. Generally, a residence building has a relative small area and two 

or three floors, while office buildings are larger and higher then residence 

buildings. A religious building often has a cross roof and tower. 

Street pattern: A city area is segmented into different plots by streets. 

Buildings are placed on these plots so their positions, directions form to 

street patterns. Besides, buildings in same area have similar structure and 

heights. By analysing street pattern and its neighbour buildings, one 

building’s coarse position, direction, height and structure could be detected 

(Figure 1-4). 
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Figure 1-4. Building styles vary with time, culture, location. 
(dudviscomm, 2014) 

Given building categories and building models, we can learn statistical data 

and mine building knowledge. By acquiring more and more buildings, the set 

of buildings from which the general knowledge on building shapes can be 

inferred will gradually expand. This could then lead to an increasingly reliable 

hypothesis generation to support further building model acquisition. The vital 

information about building style is height, roof type and slope, facade 

elements types and topology graph, and so on. In the reconstruction process, 

features, characteristic information, are acquired from the point cloud and 

sent to trained classifiers to determine the building type. Then the structure 

pattern for a specific building type could be used to reconstruct architectures. 

Building knowledge should also be learned from experts in the area of 

architecture and computer graphics.  

1.4 Dissertation Outline 
This dissertation consists of six chapters. The two core chapters (4 and 5) 

focus on the two main problems and have the main scientific contributions. 

Chapter 1 first described the reason behind the selection of the research 

topic. The concepts used, the objective and related research questions were 

presented. Lastly, the outline of the dissertation was given. 

Chapter 2 gives a literature overview on building reconstruction and 

procedural modelling, including roof, façade, indoors, from diverse source 

data. The aim of this review is to find the geometry regularities behind the 

object surfaces and determine when to use which regularities in building 

model reconstruction. 
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Based on the overview given in Chapter 2, Chapter 3 summarizes the 

regularities and suggests the suitable situations where and which regularities 

could be applied and the factors which need to be considered. This chapter 

also propose several new regularities and discuss three ways to represent 

building structures. Chapter 3 gives theory foundations for the methods 

shown in following chapters. 

Chapter 4 presents flexible building primitives which are able to represent 

any complex building. This chapter also solves several related issues that 

should be considered to use the new building primitives for building 

reconstructions, including primitive search, constrained least-squares fitting, 

outline enclosing, and the manual correction of roof topology graphs. This 

chapter ends with the experiments on testing the building reconstruction 

algorithm based on the developed flexible building primitives.  

Chapter 5 extends the work shown in Chapter 4, which uses roof topology 

graphs for searching building primitives. Roof topology graphs often have 

errors, which seriously influence the reconstruction results. Chapter 5 gives 

an automated method, which is based on a graph edit dictionary, to correct 

these errors. Accordingly, this chapter presents the definition, construction 

and application of the graph edit dictionary. Experiments are also presented 

to test the graph edit dictionary and demonstrate the improvement in 

automated 3D building modelling. 

Chapter 6 concludes the works of this dissertation and give 

recommendations for further research directions. 
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Chapter 2 Literature review 

Literature review 

This chapter gives a literature review of building reconstruction and 

procedural modelling, including roof, façade, indoors, from diverse source 

data. The aim of this review is to find the geometry regularities behind the 

object surfaces and determine when to use what regularities in building 

model reconstruction. There are several review papers on the building and 

urban reconstruction methods (Brenner and Von Goesseln, 2004; Haala and 

Kada, 2010; Hu et al., 2003; Musialski et al., 2013; Vosselman, 2002; Wang, 

2013).The methods of building reconstruction and modelling are 

fundamentally different according to the level of model details and data 

source. However, the research objects, buildings, and their geometry and 

topology behind do not change. By reviewing the literature the author would 

like to acquire a simple but uniform knowledge (rules, or regularities) that 

can be used to model any building with LOD 2 model. This review only 

considers the reconstruction algorithm of building geometries, therefore the 

detection of buildings are not discussed, as well as the acquisition of the 

input data, like DEM from stereo image pairs, SAR, lidar, and 3D lines and 3D 

point clouds from image matching. 

The assumptions about the regularities of building geometry are different 

when considering the quality of goal model and input data. Normally, the 

lower quality of input data requests higher level of assumptions, while the 

lower model quality needs looser geometry assumptions. No matter what 

kind the input data is, we should keep in mind that we are reconstructing and 

modelling the same objects: the architectures. The works can be classified 

according to the used input data, goal objects, and geometry assumptions. 

As the thesis is to reconstruct roofs from airborne data, the literature review 

will put more emphasis on roof reconstructions.  

Table 2-1 ． The types of input data, goal objects and geometry 

assumptions that are used in the object model reconstruction. 

Input data 
Single 

image 

Stereo 

images 
lidar KINECT SAR 

2D 

map 
 

Goal objects roof façades indoor scene 
small 

objects 
 

Geometry 

assumptions 
hierarchic 

line and face 

alliance 
templates Simple  region 

Table 2-1 gives input data types, goal objects and geometry assumptions 

that are usually commonly used in the literature. The objects mentioned here 



Literature review 

 10 

are mainly buildings, including roof, façade, and indoor, according to the level 

of details. Some small objects, like industry products and furniture, are 

skipped, because their reconstructions are very similar to buildings and some 

ideas and technologies can be borrowed to reconstruct buildings. The 

geometry assumptions chosen here are those frequently used in literature. 

Hierarchical regularities are defined to describe the decomposition and 

grouping relationship of objects. The line and face regularities are about the 

geometry regularities of single or a group of lines and faces. Templates 

provide uniform shapes for objects within a same type. The objects are 

modelled by matching a predefined geometry template to the data. The 

region regularities are the most basic characters that the valid geometry 

shapes need to meet. 

The input data include single images, stereo images, lidar, RGBD (from 

Kinect), SAR and topographic maps. Normally, a building reconstruction 

method uses several types of input data and combines different geometry 

assumptions. But topographic maps are usually used as auxiliary data, 

therefore could not be used individually. Stereo images can be used to derive 

several different data source, including digital elevation model (DEM), 

photogrammetric point cloud and 3D line segments. Each of them could be 

used for object reconstruction independently or combined with other data. 

Though images can be applied to reconstruct all kinds of objects, some data 

is only for one, depending on data characters. E.g. Kinect only has 5m 

effective detection range and is sensitive to light conditions therefore could 

not be used in outdoor modelling, while SAR is designed to be installed on 

airborne aircraft, therefore only suitable for outdoor modelling. The lidar data 

could be acquired by different scanners, airborne, terrestrial or hand-hold 

scanners. Therein, they are used for modelling different objects, airborne 

lidar for roof and façades, terrestrial lidar for façades and indoor scene and 

hand-hold lidar is for industry objects. 

Procedural modelling uses a lot of building knowledge and can create near 

real city scenes (Kelly and McCabe, 2006; Vanegas et al., 2010; Watson et 

al., 2008). Therefore procedural modelling is also discussed in this chapter to 

analysis the possible building knowledge that can be used in the 

reconstruction. To synthesize a virtual city is easier than to reconstruct a city 

which is already there. Because the synthesis only needs to model a 

reasonable scene but the model does not have to coincide with the actual 

situation. However, the rules used in the synthesis should coincide with the 

reality. We need to refine the rules so that they can be used in 

reconstruction. The procedural modelling has very few interests on roof 

structures. It may be because a simple CSG combination of a set of simple 

roof shapes is already enough to simulate divers building types for 

visualization. However, the synthesized roofs are not diverse enough to 

represent the real buildings. 
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The model reconstruction by mesh models and the procedural modelling are 

first discussed because they are widely used in other methodologies, like 

roof, façade and indoor modelling. The mesh model and its optimized model 

do not get enough emphasizes in the photogrammetry community. It is 

generally considered that they are too simple to need research. The mesh 

model is simple and flexible to represent arbitrary structures. However, it is 

still difficult to construct a complete mesh model from noisy and incomplete 

point cloud and to simplify and optimize the mesh model. On the other hand, 

the ideal simplified mesh model is a B-rep model. Therefore this chapter 

discusses the reconstruction of mesh models in detail. 

The other literature is divided according to the goal objects that the 

reconstruction algorithms aim at. The goal objects dramatically affect the 

selection of structure regularities and reconstruction strategies. Then each 

group is partitioned based on input data types. This organization enables a 

clearer understanding of the reconstruction algorithms. If the organization is 

only based on the input data, the reconstruction methods have large overlap. 

For example, the roof reconstruction from DEM and aerial lidar data 

sometimes are mutually used, and the indoor modelling from Kinect data, 

photogrammetric point cloud and terrestrial lidar data as well are almost 

equal. Though the input data may have large differences, the same goal 

objects make the selection of patterns and regularities of buildings to be 

almost the same. Even though a proper organization is chosen, there are still 

some works can locate in several groups. Those papers are categorized to the 

most related group. The literature can also be divided according to the 

geometry assumptions. But one geometry assumption can be used in the 

reconstruction of different objects from different input data. 

2.1 Procedural modelling of urban scene 

 
Figure 2-1. General pipeline for modelling urban spaces. (Vanegas et 
al., 2010) 

Computer graphics practitioners have successfully used procedural modelling 

to generate non-urban and urban contents. Kelly et al. (2006), Watson et al. 

(2008), Smelik et al. (2009) and Vanegas et al. (2010) give overviews of the 

state of art on generating urban environment, terrain modelling (Figure 2-1). 

In non-urban content, L-system grammars generate plants (Prusinkiewicz et 

al., 1988), while agent-based particle systems (Reeves, 1983) model fuzzy 

objects such as fire and smoke. Perlin’s noise (Perlin, 1985) simulates clouds 
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and natural textures, while Reynolds apply agent-based methods to animate 

flocks, schools, and herds (Reynolds, 1987). 

 
Figure 2-2. A city scene procedural modelled by CityEngine. (Parish 
and Müller, 2001) 

Procedurally generation of cities is commonly starting from creating a dense 

road network and afterwards identifying the polygonal regions, which are 

enclosed by streets. The process of city generation could be divided into 

several stages. A variety of methods can be used to generate road networks 

for cities, e.g. L-systems(Parish and Müller, 2001), agent simulations 

(Lechner et al., 2003) and tensor fields (Chen et al., 2008). Vanegas et al. 

(2010) generate roads based on weighted anisotropic shortest path algorithm 

by considering the slope of the terrain, natural obstacles. Polygonal regions 

surrounded by streets are subdivided into lots, which determine the 

architecture position. In order to enrich these lots with buildings, the lot 

shape can be used directly as the building footprint. Another way is to fit a 

building footprint on the lot. A city with skyscrapers and office buildings can 

be generated by simply extruding the footprint to a random height. To obtain 

building shapes more detailed, several approaches have been invented.  

Greuter et al. (2003) generate a floor plan by combining several primitive 2D 

shapes and extrude them to different heights, and then generate a complete 

building model by combining several floor sections. Parish and Müller (2001) 

apply an L-system to refine the building iteratively based on rectangular floor 

plans (Figure 2-2). Merrell (2007) generates buildings (and many other 

shapes) using a texture-synthesis-inspired technique. Cabral et al. (2009) 

reshape and combine existing textured models to model architectural scenes. 

They manipulate the geometry and texture in a tightly coupled way. Whiting 

et al. (2009) procedurally model realistic structural buildings considering 

physical interaction.  
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Figure 2-3. The split grammar of façade (Wonka et al., 2003). 

Creating detailed façades is of key importance to simulate buildings when 

perspective is near the building. After generating mass model of buildings, 

many researchers introduce façade grammar for synthesizing building 

façades as the next step. Wonka et al. (2003) iteratively split a façade into 

detailed façade elements (Figure 2-3). Larive and Gaildrat (2006) use a 

similar grammar, called a wall grammar, which enable them to generate 

building walls with additional details, such as doors, windows and balconies. 

Müller et al. (2006) apply context-sensitive rule grammar, named CGA 

(Computer Graphic Architecture) shape grammar. 

Automatic creation of indoor layouts and complete building models is also of 

high interest for computer graphics and agriculture planning. Merrell et al. 

(2010) stochastically construct floor planes given a set of high-level of 

requirements and use them as inner structure to construct a complete 3D 

building (Figure 2-4). Leblanc et al. (2011) procedurally generate complete 

buildings with coherent interior and exterior by combining spatial and 

semantic components. Tutenel et al. (2011) offer a framework to create 

buildings with consistently inter-related exteriors and interiors making use of 

a library of semantic objects and constraints. Chojnacki (2012) provides 

custom procedural mechanism based on a scoring function to automatically 

arrange and create business interior models.  

Though aiming at creating virtual environment, a large set of regularities of 

real world are applied. The synthesized objects are so real that a man cannot 

see that they are artificial.  Those regularities can also be used to reconstruct 

the real world, even though hard. 
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Figure 2-4．Stochastical construction of floor plans given a set of 

high-level of requirements and use them as inner structure to 
construct a complete 3D building. Merrell et al. (2010) 

2.2 Reconstruction of mesh models 
Surface meshes are commonly used to represent shapes in many computer 

graphics applications. These meshes are usually generated by scanning 

devices. Such processes, however, are inevitably erroneous, and the 

resulting raw meshes are hardly acceptable. Most of the time, they are 

oversampled and contain many redundant vertices. This complexity 

stimulates a considerable amount work of mesh simplifications. On the other 

hand, the scanning pattern is hard to be adjusted to coincide with sharp 
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edges and corners of the model, which are therefore removed by the 

sampling process. The sharp features are replaced by irregularly triangulated 

chamfers in the final model. The mesh simplification needs to reserve the 

sharp features. When considering transforming redundant triangle mesh into 

a B-rep model, leaving the minimum number of triangles, the mesh 

simplification is equivalent to the reconstructions of polyhedron models, 

which are usually the aim of building reconstruction. 

 

Figure 2-5. Adaptive MLS reconstruction of the Max Planck bust. (a) 
input point cloud with 5,413 points, (b) continuous sampling density 
map, (c) reconstructed MLS surface. (Pauly et al., 2003b) 

The reconstruct of mesh models from unstructured point cloud is a classic 

topic in computer graphics field. Edelsbrunner and Mücke (1994) extend the 

alpha-shape algorithm from 2D to 3D to detect the shape of a point cloud 

with the parameter alpha to control the detail of level. A triangle is accepted 

as surface mesh if it can be touched by a ball with user defined radius. 

Similarly, Bernardini et al. (1999) use a Ball-Pivoting Algorithm to efficiently 

and robustly compute a manifold subset of an alpha-shape. Kolluri et al. 

(2004) use a variant of spectral graph to participate the tetrahedrons inside 

and outside the original object while removing outliers. 

However these algorithms do not aim at averaging out noise. Pauly et al. 

(2003b) obtain the hybrid geometry representation by combining the 

unstructured point with the implicit surface definition of the moving least 

squares approximation (Figure 2-5). Usually the local facet is estimated by 

fitting plane using local points within a certain distance criteria. The 

estimation of an optimum neighbouring radius is a scale selection problem: 

the recovered surface should be smooth but detail enough. Guibas et al. 

(2004) find the optimal neighbourhood size based on the local information 

from the noisy point cloud. Pauly et al. (2003a) use the size of the local 

neighbourhoods as a discrete scale parameter to analysis line-type features 

at multiple scales. There is also a lot of research on optimizing the normal 

field by a global or semi-global penalty. The level of noise and outlier differ 

inheriting to sensor types, distance to scanner, acquisition condition and 
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light-material interaction. Considering the variable level of noise and outlier, 

Giraudot et al. use a noise-adaptive distance function to infer the shape 

(Digne et al., 2013; Giraudot et al., 2013).  

 
Figure 2-6. Repeatedly cluster faces into local smooth regions and 

construct approximating polygonal meshes. (Cohen-Steiner et al., 
2004) 

By the technology mentioned above, object models are created from point 

cloud. Nevertheless, the models are highly detailed and redundant, especially 

for objects with regular shapes. To control processing time and storage 

space, it is desirable to use approximation models instead of extremely 

detailed models. Garland and Heckbert (1997) simplify models by iteratively 

contracting vertex pairs and maintain surface error approximations. However, 

severe alias artefacts can be observed at sharp features on the extracted 

surfaces. Two main solutions are used to keep sharp features while 

simplifying models. One is to detect edges and corners directly on point 

cloud, sometimes with the estimated normal of local facets, and relocate the 

vertex to nearby sharp features.  Kobbelt et al. (2001) utilize a marching 

cubes algorithm to extract sharp features when recovering surface from 

volume data. Machine learning based on statistic information is also used to 

classify sharp features (Cohen-Steiner et al., 2004; Weber et al., 2010). 

Another one is to partition the mesh into a set of smooth regions and thereby 

sharp features are detected as border edges connecting different regions 

(Attene et al., 2003). Fleishman et al. (2005) use a forward-search paradigm 

method to classify local smooth regions which guarantee sharp features and 

remove outliers. Ohtake et al. (2003) detect local piecewise quadratic 

surfaces and blend them with a weighting functions to get sharp features on 

edges and corners. Cohen-Steiner et al. (2004) repeatedly cluster faces into 

local smooth regions and construct approximating polygonal meshes (Figure 

2-6). 

The (decimated) mesh models are commonly used to represent the shapes of 

animals, statuses, industry products, and other relative small objects. With 

the development of equipment which can measure lager objects, the mesh 

models are used to model bigger objects, including a single building and even 
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a whole city scene. Frueh et al. (2005) generate textured façade meshes of 

cities. Hähnel et al. (2003) create compact models for indoor and outdoor 

environment from mobile laser scanning data. Marton et al. (2009) fast 

create triangle models in real time for an indoor scene model from laser 

scanning data. Nie et al. (2013) model large scene from consumer depth 

camera data. Wahl et al. (2008)  first detect semantic shapes and use them 

as constraints in the simplification to derive city models from digital surface 

models (DSM). Walls are rarely scanned by the airborne laser scanner. 

Therefore large holes exist between roof layers. A typical mesh simplification 

will over simplify small parts, like chimneys will be lost, and create zigzagging 

boundaries of eave boundaries. Zhou and Neumann use 2.5D dual constraints 

to recover vertical walls and create simplified roof models while reserving 

sharp features (Zhou and Neumann, 2010; Zhou and Neumann, 2011)(Figure 

2-7). Lafarge and Alliez (2013) create and simplify mesh models from the 

structured points which are created from the noisy point cloud and regular 

distributed points on the detected planes and ridges. Lafarge (2013) provides 

a hybrid way to represent compact objects while preserving details: regular 

surface with primitives models and irregular surfaces with mesh models. 

 

Figure 2-7. 2.5D dual constraints is used to recover vertical walls and 
create simplified roof models while reserving sharp features (Zhou 
and Neumann, 2010) 

2.3 Roof model reconstruction 
The reconstruction of architecture roof models has developed a lot in the last 

two decades. There are two main methods to automatically reconstruct 

buildings, first one is the reconstruction from 3D features, including line 

segments, corners, matched from image sequence, and second one is the 

reconstruction from 3D point clouds, including those acquired by laser 

scanner and image matching. In the early period of building reconstruction, 

only coarse model of building could be reconstructed because of the low 

resolution of data, including satellite images and airborne laser scanning 
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data. Many systems provide user interface to interactively acquire basic 

model of architecture (Debevec et al., 1996; Sinha et al., 2008; Ziegler et 

al., 2003). They usually need users label corners, lines or planes, and provide 

primitive models types. 

Thanks to the recent development in laser scanning technology and image 

matching, dense point clouds with high precision and density can be cheaply 

and quickly acquired and open a great door for 3D modelling. SIFT operator 

presented by David Lowe provides scale invariant feature which enable us to 

reliably match different views of an object or scene (Lowe, 2004). Snavely 

and colleagues provide bundler adjustment to automatically detect interior 

and exterior orientation for large unstructured collections of photographs 

(Snavely et al., 2006) and then 3D point clouds are reconstructed 

simultaneously (Agarwal et al., 2009). Hirschmuller (2008) presents a linear 

complex dense match algorithm, Semi-Global Matching, resulting in sub-pixel 

accuracy, which employs Mutual Information for pixel-wise matching and 

semi-global constraint for path-wise smoothness constraint. Nowadays 

computer vision techniques can rapidly create detail 3D point clouds based on 

bundle adjustment and dense matching from unconstructed photo collections 

(Agarwal et al., 2010). 

Roof models can be reconstructed from images, lidar data or the combination 

of them. The reconstruction from single information source is described in 

following sections. Images provide accurate edge and corners, while lidar 

data provide stable surface segments. Their combination offers more 

complete data for building reconstruction (Hu et al., 2004; Sohn and 

Dowman, 2003; Sohn et al., 2013). However, the two different data conflict 

sometimes and bring difficulties to use them simultaneously. The category 

maps of buildings are also used to locate buildings, give precise footprints, 

and analysis building interior structures (Brenner, 2000; Brenner and Haala, 

1998; Haala et al., 2006; Taillandier, 2005; Vosselman and Dijkman, 2001). 

2.3.1 Image based roof model reconstruction 

Single image 

3D structure reconstruction from a single image is an ill-conditioned problem 

and is very difficult to solve. The imaging process from 3D world to 2D image 

loses 3D information. Multi-view images are usually required to retrieval the 

lost information. Many monocular information and geometric structures also 

give hints about camera parameters and scene depth. The structure of scene 

components, if not repeat, usually needs human input to interpret. To keep 

the interaction simple, the user only manipulates in the image space to mark 

out various architecture components such as walls and roofs. When no 3D 

geo-information given, the interpretation of scene structures is an image 

http://en.wikipedia.org/wiki/David_Lowe_(computer_scientist)
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understanding problem and still open for further research. The research on 

3D reconstruction from single image can be divided into two groups: 

1) Depth statistics method. This method link the depth information of 

image patches with monocular image cues, like brightness, texture, shapes, 

and maze and so on, by supervised learning over a large dataset of nature 

images. Then by a global optimization method, the 3D orientation and 

position of each planar patches of an input image are computed as well as 

the 3D scene that it presents. A serial of works on this method has been 

done by a team from University of Stanford (Saxena et al., 2008; Saxena et 

al., 2007a; Saxena et al., 2007b; Saxena et al., 2009)(Figure 2-8). Except 

assuming that the environment is made up of a number of small plane 

patches, this model makes no other explicit assumptions, therefore has wide 

adaptability. The models presented by TIN have accurate quality and pleasing 

visualization, however, the occluded parts are not considered in the 

reconstruction. 

 

Figure 2-8. The feature vector for a superpixel, which includes 

immediate and distant neighbors in multiple scales. (Saxena et al., 
2009)  

 

Figure 2-9. Reconstruction of 3D shapes of symmetric piece-wise 
planar objects via a Markov random field to recover the depth map 
based on the symmetric line pairs. (Tianfan et al., 2011) 

2) Geometric structure information. This method firstly uses the 

abound structure information in the image, including vanishing points, 

vanishing lines, parallel lines, parallel planes, perpendicular lines and 

perpendicular planes, to calibrate camera and obtain the rotation matrix, 

focal length, and scale, secondly incorporate the structure information to 

compute depth information, then finally use prior geometric constraints to 

reconstruct 3D object models. This method requests the scene and objects 
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have strong geometric regularities, and therefore cannot always be 

applicable. The scenes without repetition need human input to interpret. Li et 

al. (2001) reconstruct photorealistic scene models with freeform geometry 

from painting or photographs by assuming the scene as a non-uniform, 

piecewise continuous grid and optimizing the grid with a hierarchical 

transformation method with user given constraints. Sturm (2000) 

reconstructs 3D piecewise planar objects from single panoramic images 

based on user provide coplanarity, perpendicularity and parallelism 

constraints. Based on manual given object labels, Russell and Torralba 

(2009) recover implicit geometric information of relationships between 

objects and camera parameters and create high quality 3D information from 

a single image. Satoshi et al. (2012) model 3D scenes including a ground 

plane and walls as background and other objects as foreground based on a 

boundary between the ground plane and wall planes given by users. By 

manually given line drawing of objects, Zou et al. (2013) recover focal length 

and use a set of reference grid to find the precise 3D locations of corners and 

then recover object wireframe automatically. Just based on a few 2D control 

points interactively inputted, Zhou and Li (2011) model cone and cylinder 

objects.  

As the manual editing is time consuming, many works automatically infer the 

scene structures and reconstruct 3D models. The automatic methods typically 

need more strong geometric assumptions about scenes and objects than 

semi-automatic methods. Guillou et al. (2000) use vanishing points for 

camera calibration and box shaped object reconstruction from a single image. 

Wilczkowiak et al. (2001) calibrate camera and reconstruct 3D scene from a 

single image using the strong geometry regularity of parallelepiped, such as 

such as parallelism and orthogonally. Lee et al. (2009) interpret and 

reconstruct the 3D indoor scene from a collection of line segments 

automatically extracted from a single image with a set of geometric 

constraints between groups of line segments (Figure 2-10). Zheng et al. 

(2011) obtain 3D building models by automatically extracting building 

contours from building photo and match the contours with the projection 

contour of the 3D models from different views predefined in the model 

database. Jung and Kim (2012) estimate the 3D structure of a scene by 

decompose the 3D world space into a set of geometrical primitive subspaces 

which are easy to solve and reliable even with the presence of occlusion or 

clutter, without loss of generality. Tianfan et al. (2011) reconstruct the 3D 

shapes of symmetric piece-wise planar objects via a Markov random field to 

recover the depth map based on the symmetric line pairs (Figure 2-9). 

Vanishing points, repetition, symmetry regularities (including mirror 

symmetry, rotation symmetry) are often used in 3D reconstruction from 

single image (Diego and Javier, 2008; Sinha et al., 2012; Wang et al., 2005).  
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Figure 2-10.Generating hypotheses of grouping line segments with 
geometric constraints. (Lee et al., 2009) 

Stereo images 

Stereo images provide detail structure information about buildings including 

3D points (Agarwal et al., 2009; Hirschmuller, 2008), 3D lines (Hirschmuller, 

2008; Ok et al., 2012) and 3D planes (Micusik and Kosecka, 2009; Mičušík 

and Košecká, 2010). The extracted information could be used individually or 

combined to derive building models. Some algorithm for building 

reconstruction which is based on photogrammetric point clouds has very little 

difference with the one of lidar point cloud, so is discussed together with lidar 

point cloud in section 2.2, though the photogrammetric point cloud is less 

accurate. 

3D scenes can be directly represented by triangle mesh models from dense 

matching point cloud (Esteban and Schmitt, 2003; Pollefeys et al., 2004). 

However the triangle mesh models are noisy and redundant. Users prefer to 

B-rep models. Fischer et al. (1997b) show a model-based approach to 

automate 3D extraction of buildings from aerial images (Figure 2-11). 3D 

corners, denoting a group of vertex, lines and planes, play key role in this 

method, in which 3D corners connect low-level features such as point, edges, 

with building part model. 3D corners are detected from matching 2D corners 

and then used to find building parts, which have same classifications with its 

sub-graph corners. Then building models are reconstructed by merging 

building parts if their plug faces are the same type. Steinhage et al. (2013) 

incorporate the DSM and footprint and use a similar strategy to reconstruct 

buildings. 
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Figure 2-11. A generic hierarchical model for integrating of 2D and 

3D reasoning. (Fischer et al., 1997b) 

Taillandier and Deriche (2004) thoroughly search the possible plane 

arrangement based on the detected 3D planes and get the most possible 

building hypothesis that balance data adequacy and caricature needs. 

Taillandier (2005) generates plane candidates from each polygon segment of 

cadastral maps, create building hypotheses and choose the best 

representation which fit well to the digital elevation model computed from 

aerial images. Zebedin et al. (2008b) use graph cut to combine DSM and 3D 

line segments to generate building models. The 3D lines are used to partition 

the building area into regions, each assigned to a primitive (plane or surface 

of revolution).  

Because automatic systems fail to fully understand the building structures, 

many semi-automatic systems have be developed. Debevec et al. (1996) 

give an easy-to-use photogrammetric modelling system to interactively 

recover the basic geometric model of architectures. They creates novel views 

by view dependent texture mapping, and automatically recover additional 

geometric detail through stereo correspondence. Gülch et al. (1999) provide 

a semi-automatic system to support operators to adapt parametric models 

and their arrangements to multiple overlapping images. Sinha et al. (2008) 

present an interactive system for generating 3D models. Users draw outlines 

on 2D images and 3D structures are automatically computed by combing 

multi-view geometric information. Arikan et al. (2013) use O-Snap to 

automatically snap the polygons derived from point segments based on 

optimization (Figure 2-12). The users are involved to modify the coarse 

polygons if the initial polygons are not good enough to get a correct surface 

adjacency topology graph, e.g. in the area with large hole. 
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Figure 2-12. O-Snap for automatic optimization-based snapping of 

the polygons derived from point segments. (Arikan et al., 2013) 

2.3.2 Point cloud based roof model reconstruction 

Three types of approaches have been proposed to reconstruct LoD2 building 

models from point clouds and DSM: mesh simplification, fitting of building 

shape primitives, and segment based methods. Mesh simplification is initially 

used to speed up visualization, delivery and storage (Garland and Heckbert, 

1997). Wahl et al. (2008) use it to rapidly generate 3D city models. In order 

to keep sharp features (like plane intersections) and topological relationships, 

topology constraints are introduced (Verdie et al., 2011; Wahl et al., 2008; 

Zhou and Neumann, 2011). The mesh models are geometrically close to the 

raw data, and when textured, are close to the reality. Because no assumption 

about building shapes is needed, the mesh model is able to represent diverse 

building structures. This representation, however, does not contain semantic 

information as one roof face would be represented by several triangles. 

Besides, the models sometimes include artefacts caused by outliers that are 

included in the triangulation. 

Fitting of building shape primitives, which has few parameters and predefined 

topologies, is used to model buildings in low resolution data in the early 

researches. The point clouds from dense matching or lidar were noisy and 

sparse at that time. Therefore, the building roof structure could not be 

inferred from the original data by bottom-up methods. Additional data and 

building knowledge is necessary. Haala et al. (1998) use building primitives, 

like pent, flat, gable, and mansard roof, to represent building parts. Usually a 

2D map with building footprints is used as extra information. However, these 

basic primitive shapes are not flexible enough to generate precise building 

models with complex shaped footprints. To solve this problem, Taillandier 

(2005) extrudes given footprints to a uniform building eave height. Building 

footprints are decomposed into cells. Each one is used as the footprint of a 

building primitive (Haala et al., 2006; Kada and McKinley, 2009b). 3D 

primitives are constructed for all cells, and combined in a CSG-like manner to 

form a complex building model. Lafarge et al. (2010) use a Markov Chain 

Monte Carlo sampler (MCMC) and simulated annealing to find the optimal 

configuration of building primitives (Figure 2-13). Huang et al. (2011) narrow 

down the possible moves in the jump routine by only allowing change of a 

limited number of parameters in each step under some rules. This strategy 
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speeds up the search. But as it is a kind of blind search, the convergence of 

search is rather slow. Suveg and Vosselman (2004) combine cell 

decomposition and primitive searching for the optimization of a whole 

building model. Henn et al. (2013) propose to use RANSAC and a supervised 

classification method to search simple building primitives in sparse lidar data 

(1.2 points/m2). Fitting building primitives can be slow because types and 

parameters of building primitives for each cell are determined by an 

exhaustive search. Furthermore, due to the complexity of building structures 

and inaccuracies in the available building footprints, it is hard to generate 

exact decompositions that fit well with roof shapes. 

 

Figure 2-13. Searching for the optimal configuration of building 
primitives by Markov Chain Monte Carlo sampler (MCMC) and 
simulated annealing.  (Lafarge et al., 2008) 

With the further development of accuracy and density of point clouds 

obtained by laser scanning or dense image matching, roof faces can now be 

extracted more reliably from point clouds (Schnabel et al., 2007; Vosselman 

et al., 2004) and thereby can be taken as the basic unit for building 

modelling. By combining and intersecting roof faces of basic shape, a 

polyhedral model can be reconstructed (Brunn and Weidner, 1997; Lafarge 

and Mallet, 2011; Maas and Vosselman, 1999; Sampath and Shan, 2010; 

Sohn et al., 2008; Taillandier, 2005). The topological relations between roof 

faces are very useful in finding ridges, step edges, as well as roof structures. 

The roof topology graph is used to infer simple building primitives, like I, L, 

and U shaped primitives, which introduce geometric constraints for further 

improving models (Milde and Brenner, 2009; Oude Elberink and Vosselman, 

2009; Verma et al., 2006) (Figure 2-14). The topology graph is a powerful 

representation of the inner structure of building roofs and is easy to combine 

with prior knowledge. It is a low-level feature and gives hints about the 

structure to speed up the search. However, a roof topology graph may have 

errors if the point cloud segmentation fails because of outliers or low point 

densities on poorly reflecting surfaces (lidar) or textureless surfaces (image 

matching). The erroneous roof topology graph will result in incomplete 

interpretation and therefore a wrong model (Oude Elberink and Vosselman, 

2009; Sampath and Shan, 2010). The geometry of roof segments can be 

used to derive the roof topology graph. Brédif (2010) corrects the roof 

topology graph considering the 3D dual property. Lafarge and Alliez (2013) 

reconstruct polyhedron models from inexact adjacencies of surface planes. 
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Figure 2-14. Inferring building types from roof topology graphs and 
building primitives. (Verma et al., 2006) 

2.3.3 SAR 

 

Figure 2-15. Construction of building candidates and footprints from 

a set of low-level features from VHR SAR images. (Ferro et al., 2013) 

The improved ground resolution of synthetic aperture radar (SAR) sensors 

provides possibilities of its applications in building reconstruction. SAR 

systems are active survey systems and are highly attractive due to their 

daytime and weather independency. Besides, SAR has the advantage of low 

cost and high acquisition speed. It is as well valuable for rapidly acquiring 

area-wide information of regions hit by disasters such as flooding, landslides, 

or earthquakes. However, building reconstruction from SAR or InSAR data 

suffers from consequences of the inherent oblique scene illumination, such as 

foreshortening, layover, occlusion by radar shadow and multipath signal 

propagation. These shortages bring large problems in building reconstruction 

and block its possible applications. 

Experimental airborne synthetic aperture radar (SAR) systems reach spatial 

resolutions of approximately 10 cm, whereas the new space borne very high 

spatial resolution (VHR) SAR sensors onboard the TerraSAR-X and COSMO-
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SkyMed satellites achieve spatial resolutions down to 1 m. Bolter (2000) 

calculates the position and height of all walls facing away from the sensor 

from the position and length of the building shadows in a single slant range 

image, and then reconstruct the building geometry by assuming the building 

has orthogonally intersecting walls. Brunner et al. (2009) estimate heights of 

man-made objects from one aspect or a combination of two aspects of single 

VHR SAR imagery. Ferro et al. (2013) extract a set of low-level features from 

VHR SAR images, on their combination to more structured primitives, and 

derive building candidates and footprints.  

 

Figure 2-16．3D building reconstruction by fusion of InSAR and GIS 

data. (Thiele et al., 2010) 

The inherent oblique scene illumination makes it hardly possible to 

reconstruct buildings based on single SAR or InSAR data sets alone, 

especially in built-up areas. Thiele et al. (2007) extract line features from 

SAR images and group them into hypothesized buildings with rectangle 

footprints. The hypothesized buildings are then used to simulate SAR image 

and are compared with real image to filter false hypothesizes and obtain 

building heights. Brunner et al. (2010) estimate building height by 

hypothesizing the height of buildings with flat or gable roof structures until 

the matching of simulated SAR image with the actual SAR image is 

optimized. They achieve 2cm resolution for VHR airborne and 1m resolution 

TerraSAR-X SAR scenes. The GIS data which contains building footprint is 

reliable to provide building initiatives. Thiele et al. (2010) simulate building 

hypotheses based on the 2D footprint and estimate building heights (Figure 

2-16). The hypothesized buildings are used to synthetic InSAR phases and 

the building models are improved in an interactive adjustment between 

simulated and measured InSar phases. The inherent oblique scene 
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illumination gives hints about the building structures and heights. Based on 

the observation that gable-roofed buildings give salient pairs of parallel lines 

of bright magnitude, Thiele et al. (2008) locate gable-roofed buildings by 

considering SAR-specific effects and estimate the building height from 

geometric parameters from the amplitude image. TomoSAR uses multiple 

data stacks from different viewing angles and generates 4D point clouds from 

space with a point density comparable to lidar (Zhu and Bamler, 2010). 

Characterized by the side-looking SAR geometry, the TomoSAR point clouds 

have rich façade information and allow automatic reconstruction of building 

façades (Zhu and Shahzad, 2014). 

All in all, the state-of-art of building reconstruction from SAR could only 

provide footprints, LoD1 building models and some other very simple 

buildings. The precision of SAR is not high enough to support fine building 

structure reconstruction. 2D footprint maps are needed to analysis the inter 

structure of buildings and building primitive libraries are appreciated for 

reconstructing buildings with the model-driven methods. The primitives used 

in building reconstruction from SAR are still quite simple, like flat and 

gamble. The input SAR or InSAR image could not directly provide accurate 

DSM, and need hypothesis building types and simulate a SAR image to match 

with the actual SAR image. It is an iteration problem and therefore high 

complexity buildings are very hard to be reconstructed. 

2.4 Façade modelling 
Since the L-system has been successfully applied to procedurally model 

façade and city scene (see the section 2.1 on procedural modelling), the 

façade grammar has been of high interest to model real façades. In general, 

architecture façades can be horizontally divided into floors and vertically 

divided into rows of windows. Façade elements, like windows, doors, ledges 

and balconies, have strongly repeating patterns. The regularities provide 

prior knowledge for detecting façade grammar and reconstructing façade 

elements. The learnt grammar is also used to procedurally model new 

façades. Façade grammar detection could be divided into three steps: coarse 

detection of façade elements, finding possible relationship between façade 

elements, and refinement of façade elements. Some algorithms combine the 

last two steps together in an iteration schedule. The coarse detection is 

highly dependent on the available features that data provides. A large set of 

algorithms used for image and point cloud classification can serve as tools for 

the coarse detection. The input data including images and point cloud is 

usually not detailed enough to reconstruct fine models of façade elements. A 

library of these models is manually created beforehand, linked with the 

detected façade elements, and used to represent them in the final façade 

models. Façade reconstruction can also be divided into two sub-classes: 

image based detection and point cloud based detection. 
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2.5.1. Image based modelling 

In order to detect façade elements, images are usually segmented into 

regular grid (Koutsourakis et al., 2009; Tylecek and Sara, 2011; Weissenberg 

et al., 2013), irregular lattices (Dai et al., 2012; Riemenschneider et al., 

2012) and sometimes just irregular patches (Martinovi et al., 2012; Peng et 

al., 2012; Tyleček and Šára, 2013). The façade elements can also be directly 

searched on the image via supervised classification (Wenzel and Förstner, 

2008) and unsupervised classifications (Fröhlich et al., 2013; Xiao et al., 

2008; Xiao et al., 2009). Ripperda and Brenner (2006) use a process based 

reversible jump Markov Chain Monte Carlo (rjMCMC) to guide the 

construction of model tree. Dick et al. (2004) utilizes a Bayesian and model 

based approach to automatically reconstruct 3D architecture models from 

short image sequences. Debevec et al. (1996) present an interactive system 

to extract building grammars which facilitate the visualization and quick 

modification of architectural structures. Müller et al. (2007b) present an 

algorithm to automatically reconstruct 3D models with high visual quality 

from single façade images (Figure 2-17). Teboul et al. (2010) combine shape 

grammars, supervised classification and random walks for the perceptual 

interpretation of building façades. However, the repeat elements usually have 

variations (e.g., windows in different open or close positions) which pose 

challenges to the façade analysis algorithms. AlHalawani et al. (2013) 

propose a semi-automatic framework to recover both repetition patterns of 

the elements and their deformations. 

 

Figure 2-17. Automatic reconstruction of 3D models with high visual 
quality from single façade images. (Müller et al., 2007b) 

The methods mentioned above are all based on rectified orthoimages. The 

images are rectified based on the assumption that the main structural of 

walls are planar. Therefore if the walls have curved structure or have large 

convex/concave structures, the images cannot be well rectified. The façade 

reconstruction directly in 3D space is more reasonable. On the other hand, 

the overall structure of façades should be reconstructed before the modelling 

of detail façade elements. Werner and Zisserman (2002) first reconstruct the 

coarse planar model of the main scene, and then use these facets to guide 

the reconstruction of façade elements. Schindler and Bauer (2003) 

reconstruct the coarse polyhedral model from the photogrammetry points 
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and then refine the geometry of coarse model with predefined shape 

templates. Dick et al. (2004) utilizes a Bayesian and model based approach 

to automatic reconstruct 3D model of architectural from short image 

sequences. Based on 3D points and 3D edges from video images, Tian et al. 

(2010) detect planar surfaces and group them to building model by 

integrating building structure knowledge. Ceylan et al. (2012) use 3D lines to 

simultaneously detect symmetric line arrangements and refine the estimated 

3D models (Figure 2-18). 

 

Figure 2-18. Simultaneously detect symmetric line arrangements and 
refine the estimated 3D models. (Ceylan et al., 2012) 

2.5.2. Point cloud based  

Zheng et al. (2010) use the repeat façade elements to consolidate the 

imperfect data. The consolidation provides robust de-noising and allows 

reliable completion of missing parts. Automatic façade analysis is typically 

restricted to globally rectilinear grids. Shen et al. (2011) adaptively 

determine the splitting direction, the number and location of splitting planes. 

Becker and Haala (2007 ) present a grammar based façade reconstruction to 

automatically generate façade structures in regions where no or only limited 

lidar points are detected (Figure 2-19). Pauly et al. (2008) propose a 

computational framework to discover regular or repeat geometric structures 

in point or mesh based models. They introduce an optimization method for 

detecting such uniform grids specifically designed to deal with outliers and 

missing elements. Friedman and Stamos (2011) do real time detection of 

repeat elements from each scan line. By nearest-neighbouring clustering on 

feature space, Kerber et al. (2013) divide the façade elements into different 

types and detect partial symmetries. This method can handle very large 

scenes with many different façade grammars. As the point cloud is not detail 

enough to construct fine models, Nan et al. (2010) use a smartbox to 

interactively search and model façades. 
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Figure 2-19. Grammar based façade reconstruction in regions where 
no or only limited lidar points are detected. (Becker and Haala, 2007 
) 

Most research focuses on the façades with strong regularities, however most 

resident buildings only have a few doors and windows. Pu and Vosselman 

(2009) present a knowledge based method for automatic reconstruction of 

façade models of resident buildings from terrestrial laser scanning data 

(Figure 2-20). Demantke et al. (2013) provide a regularity-prone method to 

reconstruct façade with a deformable 2.5D grid. The method can be applied 

to a large amount of data regardless of the diverse building types. 

 

Figure 2-20. Automatic reconstruction of façade models of resident 
buildings from terrestrial laser scanning data. (Pu and Vosselman, 

2009) 

2.5 Indoor Modelling 
The indoor environments are essential for the life and work of human beings. 

Without the indoor models, the digital 3D cities are not complete. The indoor 

mapping for big public facilities are urgently needed now, like airports, train 

stations and museums. The location based serves can navigate people to 

accurate address but cannot help us to find the exact rooms. In order to 

monitor and maintain the facilities, factories and historic buildings also need 

to be reconstructed by reverse-engineering. 3D models of building interior 

scenes also play an important role in fields such as autonomous mobile 

robotics, unmanned aerial vehicle (UAV), smart home systems, and computer 

games. Compared to the 3D mapping of outdoor, indoor mapping shows a 

different set of technical challenges and requirements (Huber et al., 2011; 

Tang et al., 2010). Lack of GPS signal, crowded environments and 

unreflecting surfaces make the acquired data inaccurate and incomplete. The 

imperfection of the data acquisition explicitly affects the results of 
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interpretation and modelling. are The data used to interpret and reconstruct 

the indoor environment include lidar data, images, Kinect data and their 

combinations (El-Hakim et al., 2005; Izadi et al., 2011; Liu et al., 2010; 

Mozos et al., 2012; Rusu et al., 2008; Smisek et al., 2011).  

The indoor environment is quite complex: walls are interspersed with 

windows and doorways, parts may be occluded by furniture, pictures, and 

clocks and so on. The voxel representation and occupancy map is heavily 

used for decreasing data volume, fusing measurement from different 

scanners, detecting occlusion and gaps (Biber et al., 2004; Gutmann et al., 

2005; Turner and Zakhor, 2013; Wurm et al., 2010). No matter it is for 

modelling or interpretation, the semantic information of objects is essential. 

The main parts, including walls, floors, and ceilings are usually firstly 

identified and modelled (Valero et al., 2012b). Based on them, doors, 

windows, furniture and other objects are detected, spatially and semantically 

related, and modelled (Adan and Huber, 2011; Huber et al., 2011; Koppula 

et al., 2011; Valero et al., 2012a; Xiong et al., 2013). 

To allow for an accurate reconstruction such that the space decomposition is 

aligned with permanent structures,  Oesau et al. (2013) use Hough 

Transform to detect wall segments and use graph cut to predict 

inside/outside cells of the space decomposition with the data consistency. 

Turner and Zakhor (2012) separate lidar points for each floor, fit curves and 

line segments to walls and develop a watertight representation of the walls 

for each scanned area. Budroni and Boehm (2010) segment the point cloud 

into planar patches and create the ground plan through cell decomposition by 

trimming the 2D ground space using half-space primitives. The building 

models are created by extending the ground contours along the height 

direction. Mesh models including triangle and grid are flexible to represent 

complex indoor scenes so are often used. Rusu et al. (2009) reconstruct 

hybrid semantic 3D indoor household environments by triangular meshes 

(Figure 2-21). Turner and Zakhor (2013) use voxel presentation to reduce 

the data amount and to infer interior or exterior, and generate triangulated 

surfaces which are watertight and sharp feature preserving by analysing 

planar surfaces.  
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Figure 2-21. Reconstruction of hybrid semantic 3D indoor household 
environments by triangular meshes. (Rusu et al., 2009) 

The indoor scene presents a strong pattern: a building is composed by floors, 

a floor is grouped by rooms and corridors, and floors are connected by stairs. 

This pattern is used to design, to procedural model, as well as to reconstruct 

the indoor environment. Marton et al. (2009) use triangle meshes to model 

indoor scene using data resampling and a robust triangulation algorithm in 

near real-time. Okorn et al. (2010) detect floors and celling via a histogram 

of height data and infer walls by detecting line features on the 2D density 

map of the remaining data. Ochmann et al. (2014) segment points for each 

room and locate doors between adjacent rooms. Turner and Zakhor (2014) 

triangulate a 2D sampling of wall positions, separate theses triangles into 

interior and exterior sets, and participate the interior volume into rooms. 

Oßwald et al. (2011) reconstruct stairs for robust climbing by segmenting the 

3D point cloud into planar patches. The stair models are reconstructed by 

simply intersecting the vertical and horizontal planes for intersection lines, 

determining their end points and connecting end points of parallel lines. 
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Figure 2-22. Reconstruction of textured museum models from 

ground-lvel photographs and 3D laser points with cuboid 
assumptions. (Xiao and Furukawa, 2012a) 

Considering scene complexities and data imperfection, geometry assumptions 

are helpful for the reconstruction. Manhattan world assumption is a simple 

but effective one. A Manhattan world scene is a term used to describe a real 

world scene based on the Cartesian coordinate system. The scene is 

dominated by lines which are parallel with one of the X, Y or Z axes. 

The Manhattan World assumption was first discussed by Coughlan and Yuille 

to determine the orientation of the viewer given the scene structure and also 

to detect target objects that are not associated with the principle direction of 

the scene (Coughlan and Yuille, 1999; Coughlan and Yuille, 2000). Furukawa 

et al. use the Manhattan world assumption to improve the multi-view stereo 

algorithm and produce simplified 3D models (Furukawa et al., 2009a; 

Furukawa et al., 2009b). Using the Manhattan world assumption Neverova et 

al. (2013) estimate geometry of a whole environment from a single Kinect 

RGB-D image. Following the same direction, Xiao and Furukawa (2012a) 

assume that the indoor scene can be represented by Constructive Solid 

Geometry (CSG) representation consisting of cuboids and reconstruct 

textured museum models from ground-level photographs and 3D laser points 

(Figure 2-22). 

The scene configuration, including the relationship between walls, furniture 

and other objects, are also useful to interpret and model scenes. Lee et al. 

(2010) volumetrically reason about objects and surfaces and estimate the 

spatial layout of rooms from single image. Jia et al. (2013) interpret 3D 

scene from RGB-D images by reasoning the volumetric relationship between 

object blocks. Yun et al. (2013) notice that the indoor objects serve for 

human beings and therefore have strong semantic and spatial relationships 

between them. These relationships are derived and applied to label 3D indoor 

scenes. Zhao and Zhu (2013) find that the object geometry is also designed 

to serve its functions and formulate the nature of object functions into a 

stochastic grammar model to interpret the indoor scenes. Nan et al. (2012) 

interpret cluttered indoor scene by a search-classify approach which 
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iteratively interleaves segmentation and classification. Kim et al. (2012) use 

the repetition of objects (tables, chairs, monitors) to model 3D indoor 

environments (Figure 2-23). The 3D models of frequently occurring objects 

are learned firstly from a few Kinect RGBD data and used to identify and 

model objects from a single scan of a new area. 

 

Figure 2-23. Modelling 3D indoor environments with repeat 
furniture.(Kim et al., 2012) 

2.6 Conclusions 
This chapter reviews the literature on building model reconstructions. The 

literature can be divided according to input data, goal objects and geometry 

assumptions. In order to get a clear organization, the literature review 

groups the prior works according to goal objects on the first level and 

according to the input data on the second level. The work on building 

reconstruction has tried different input data, different goal objects and 

different methodologies. The data and goal objects are such diverse that no 

overall comparison of the methodologies could be concluded. The specific 

discussions for each subgroup have been made in each section. As this thesis 

focuses on building modelling from airborne lidar data, the author would like 

to emphasize the problems remaining in literature on this topic: 1) The 

primitive model libraries given in literature are all not complete, therefore the 

model-driven methods can only reconstruct buildings with simple shapes and 

some more complex buildings; 2) Roof topology graphs stand in the middle 

level between point clouds and building models. They play the linking role in 

modelling. However, the derived roof topology graphs are always erroneous. 

There is no work in literature to correct the errors in roof topology graphs. 

An extensive literature has accumulated on the structure knowledge which 

can be used to guide building reconstruction. In the next chapter, the author 

will organize the structure regularities proposed in the literature and present 

several novel regularities proposed by him. The author would like to 

summarize general rules and trends. Generally speaking, there is no way 

adaptive to all the data and objects. With the improvement of data quality, 

the requirement of the quality and detail of models are as well increasing. It 

is still an open question to automatically model diverse objects with high 

detail and high accuracy. 
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The 3D point cloud and 3D line segments with a good distribution, high 

density and accuracy directly provide 3D geometric information. They 

therefore provide the best possible input to analyse geometric structures and 

reconstruct 3D building models. The data acquisition ways are improving and 

the data quality increase day after day. Therefore we can see that in 

literature there is an increasing number of reconstruction algorithms which 

rely more on data and less on assumptions. However, the data are still noisy 

and incomplete, and will remain so. The model reconstruction algorithm 

should be robust enough to the data. On the other hand, structures and 

regularities of objects do not change with the data. Finding and employing 

the geometric regularities with wide adaptability are the indispensable means 

to reconstruct high quality models. 

The geometry assumptions sometimes just improve the model quality but not 

guarantee a complete model. More simple and general regularities of 

buildings need to be extracted. If we can infer regularities directly from data, 

it is unnecessary to heavily and randomly pick primitives from the primitive 

library to meet data. Most regularity based reconstruction methods request 

strong constraints to which reconstruction result needs to conform strictly. 

Those constraints, sometimes, are not followed by reality. Such situations 

require soft constraints, which could be switching on/off, thus are able to 

deviate from their ideal shapes. One way to introduce constraints for refining 

detection result is model-based methods, which can enforce model 

reconstruction according to defined shapes. However, as many researchers 

mentioned, model-driven techniques are not able to reconstruct arbitrary 

complex buildings. The option to expand the model library is necessary if 

some complex building shapes are not stored in it. 
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Chapter 3 Regularities of Building Structures 

Regularities of Building Structures 

As man-made objects, buildings have strong shape and structure regularities. 

The regularities are often used to simulate and reconstruct the buildings 

models. These rules are applied more or less, explicitly or implicitly in the 

literature. This chapter summarizes the regularities and suggests the suitable 

situations where regularities could be applied and the factors that need to be 

considered. The regularities have four types: hierarchical regularities, line 

and face regularities, template regularities, and simple region regularities, 

see Figure 3-1.  

d

d

d

2d

3d

(a) (b) (c) (d)  
Figure 3-1. Four types of regularities. (a) Hierarchical regularities; (b) 
Line and face regularities; (c) Template regularities; (d) Simple 

region regularities. 

These regularities are presenting the same structures but from different 

levels and perspectives. The hierarchical regularities present the relationships 

between objects and their parts, e.g. the black polygon could be 

hierarchically composed by three squares, see Figure 3-1 (a). Line and face 

regularities directly describe the orientation and alignment patterns of the 

geometry elements, e.g. the black polygon has six equal length edges, and 

eight right angles, see Figure 3-1 (b). Templates integrate regularities of a 

group of lines and faces. Illustrated in Figure 3-1 (c), the three polygons 

have same shape, but different positions, size, and orientation. The 

templates are at a higher level than lines and faces. Therefore the 

relationship between faces and templates can be seen as hierarchically 

related. The simple region regularities are to ensure the valid and watertight 

models. E.g., see Figure 3-1 (d), although the two polygons have similar line 

and face regularities with the case in Figure 3-1 (b), and can also be 

hierarchically composed to the black polygon as in Figure 3-1 (a), but this 

polygon is not simple. The simple region regularities are the most basic 
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requirement that a model needs to meet. The definitions of the regularities 

will be given in the following sections. 

This chapter is based on the literature review in Chapter 2 and is the 

foundation of the following chapters. In addition to summarize and analyses 

the regularities used in the literature, the author proposes several novel 

regularities. The regularities discussed in this chapter will be partly used in 

the building reconstruction methods shown in this thesis. The representation 

methods heavily influence the strategy selection for building reconstruction. 

Therefore their relationships are as well interesting to analyse. Three ways 

are proposed to represent surface structures in the literature: constructive 

solid geometry (CSG) model, binary space partitioning (BSP) tree, and 

topology graphs. This chapter first discusses the three types of regularities 

and then compares the three representation methods. By analysing the graph 

structure of polyhedrons, this chapter also proposes the definition of the 

minimum sub-graph basis and uses it to prove the definition of simple 

polyhedrons (cf. section 3.4). 

3.1 Hierarchical Regularities 
Hierarchical regularities are defined to describe the decomposing and 

grouping relationship of objects. All objects have components and also serve 

as components for the higher level objects. A building is usually composed by 

façades and roofs when only considering the outside. Buildings also group to 

a block, an area and a city. The hierarchical regularities contain the 

composition relationship between father and children and the alignment 

relationship of objects of the same level. A typical building has the 

hierarchical relationship shown in Figure 3-2. The interior and exterior are 

usually modelled independently because most application usually only 

consider one of them, either interior or exterior part. 

building

interior

exterior

main roof

facade

roof

wall

floor

stair

room

corridor

door window

balcony stair

wall door

windowceiling

chimney dormer

 

Figure 3-2. Hierarchical structures of buildings. 
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L-systems are an efficient and concise way to describe the hierarchical 

regularities. In 1968 Lindenmayer introduced L-systems or Lindenmayer 

systems to describe the behaviour of plant cells and to model the growth 

processes of plant development (Lindenmayer, 1968; Prusinkiewicz et al., 

1990). An L-system is composed of a collection of symbols that are used to 

make strings, a set of production rules that expand each symbol into larger 

strings of symbols, an initial axiom string where the construction starts, and 

a mechanism for explaining the produced strings into geometric structures. 

L-systems are widely applied in computer simulation (Parish and Müller, 

2001; Prusinkiewicz et al., 1990) and model reconstruction (Müller et al., 

2007a). When given all the parameters of an L-system and its translation 

mechanism, a photo-realistic object can be modelled. However, it is still an 

open question, given a structure, to find an L-system that can generate that 

structure. The difficulty of this problem is threefold. Firstly, it is very difficult 

to accurately reconstruct the objects from the imperfect data. Data inevitably 

has noise and gaps because of sensor accuracy, occlusion, sample resolution, 

and surface properties causing light absorption and mirror reflection. 

Secondly, the hierarchical level that certain information belongs to is 

ambiguous. The scale or the size of objects is not the only factor to check the 

hierarchical level. For example, the convex and concave parts of walls, 

although smaller than windows, are belonging to walls, but not windows. 

Therefore in the automatic interpretation, it is very hard to determine the 

hierarchical level of a certain object. Thirdly, different types of objects have 

different L-systems. The selection of a proper L-system is an object 

interpretation problem, which is also an open problem now. The buildings can 

be divided into several large groups: office buildings, residential buildings, 

historic buildings, and so on. Every group can also be hierarchically divided 

into combinations of smaller groups. All groups need a specific L-system to 

model. 

On the other hand, the advantages of hierarchical regularities and L-systems 

are obvious. They provide a way to integrate information from multiple 

levels. According to the data and interested level of detail, a certain level of 

hierarchy regularities should be chosen for guide building reconstruction. For 

example, the alignment regularities between buildings are rarely applied in 

building reconstruction. An object is supported by the information of lower 

level and verified by information of higher level. 

The hierarchical regularities can be represented by an attribute graph 

grammar. Figure 3-3 shows a hierarchical model for a toy building. From top 

to bottom, the three layers are, respectively, the compositional objects, the 

part templates and the generalized geometric primitives. The elements in one 

level are compositions of elements in the lower level. Several essential 

factors should be fully considered in the hierarchical model. Firstly, objects 

are decomposed into their constituent parts and then modelled by visual 
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vocabularies. Secondly, components at each level are composed to form 

large structures, and two different components may share common parts at 

the lower level. Thirdly, the compositions are specified through a set of 

attribute grammar rules. Each rule is associated with a number of hard or 

soft constraints on the attributes of the components, so as to model the 

pictorial relations. For example in Figure 3-3, a building façade is formed by 

grouping a door, two windows, and a wall by an “enchasing” relationship. 

Finally, each compositional building is represented by a hierarchical graph 

which is a graphical representation for the attribute grammar. 

Roof Wall WindowDoor

 

Figure 3-3. Hierarchical structures of the exterior of a building. 

Learning and reconstruction of a hierarchical model can be combined in an 

on-line learning algorithm, in which the learned model is employed as prior 

knowledge to instruct building reconstruction. In return, the reconstruction 

result can be used as training data to improve building models. As the 

hierarchical graph is an explicit model, it can be constructed and revised 

feasibly by human. Primitives, such as door, window, would be labelled by 

operators for component model training. Their models are presented as child 
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nodes in the whole graph. Constraint rules between primitives are learned 

from training data and part comes from expert architects. 

In order to reconstruct a single building, basic components or primitives 

should be detected by bottom-top detectors and then grouped into parsing 

graph with context constraint. The context constraints are verified and are 

used to prune or predict sub-components by top-bottom Bayesian Inference. 

E.g. a wall with rows of windows is detected and the relationship of windows 

is used to improve the detection of windows. In order to detect a single 

component (e.g. door and window), lines, surfaces and junctions should be 

firstly detected as basic elements and then organized into planes and objects 

within some fundamental rulers. An object entity is described by its line and 

surface parsing graph and statistic features of texture and colour. By 

comparing with learned object models, new detected objects could be 

identified and then refined or excluded and scattered into elements for 

grouping another object. 

3.2 Line and face regularities 
Lines and faces are the most basic elements in geometry shapes. All solids 

are composed by lines and faces. Here lines include straight lines and curved 

lines and faces include planar faces and curved faces. The line and face 

regularities are used to call the geometry regularities of single line and face 

or a group of lines and faces. The regular structures of buildings are designed 

for function, beauty and construction simplicity. The walls are constructed to 

support the roofs, therefore are usually vertical to hold the weight of itself 

and the supported roofs. Many buildings are designed to have symmetry and 

repeat structures, making the buildings a strong impression of beauty. 

Besides, the regularities would save construction time and materials. Because 

lines are formed by intersecting faces, some line regularities are included in 

the face regularities. 

The face regularities have been widely used to improve the model qualities in 

reconstructing models. Except buildings, other objects with the regularities 

are also reconstructed with the help of face regularities (Li et al., 2011; 

Werghi et al., 1999; Zhou and Neumann, 2012). Table 3-1 shows the 

frequently used geometry regularities. Although the categories and names 

are different, the constraints used in the three papers have a large overlap. 

The regularities of parallel and orthogonal relations, equal angle relations, 

coaxial relations, coplanar relations, equal radii, and equal distances are the 

most frequently used constraints. The regularities used by Zhou and 

Neumann (2012) are specially for roofs, so are a bit different with the other 

two sets. The single face regularities, like horizontal and vertical, are only 

valid for buildings. Ridge-height-equality and ridge-position-equality are also 

specially designed for buildings. Normal objects can be freely rotated, 

therefore the absolute geometries are usually not considered. 
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Table 3-1． Line and face regularities. 

(Li et al., 

2011) 

Orientation 
alignment: 
Parallel and 
orthogonal 
relations 
Equal angle 
relations 

Placement 
alignment: 
Coaxial relations 
Coplanar 
relations 

Equality 
alignment: 
Equal radii 
Equal distances 

(Zhou and 

Neumann, 

2012) 

Orientation 
regularities: 
Horizontal 

Vertical 

Orthogonal 
Parallel 
Opposite 

Placement 
regularities: 
Ridge-height-

equality 

 
Ridge-position-
equality 
 

Roof Boundary 
Regularities: 
Parallelism 

 

Orthogonality 

(Werghi et al., 
1999) 

Relative 
orientation: 

Parallelism 
Orthogonality 
Equal angle 

Coincidence 
 

Inclusion 

Relative separation 

The objects we want to reconstruct can usually be represented by watertight 

polyhedrons. Edges are formed by intersecting faces. Hence edges do not 

need to be reconstructed independently, and no edge regularities are needed. 

But when reconstructing building roofs, walls are not included. Eaves need 

special care in processing. Therefore the edge regularities are applied. And 

2D models only have edges, the edge regularities are the only possible 

constraints. The edge regularities are frequently used to regularize the 

building footprints (Keqi et al., 2006; Sohn et al., 2007; Weidner and 

Förstner, 1995). 

Two important issues need to be considered when applying the line and face 

regularities. The first one is the way to search regularities. Brenner (2005) 

introduces the idea of soft constraints. The regularities are forced only when 

they are supported by the data. The conflicts between regularities should be 

found in the searching. For example, in the case of a polygon with five angles 

not all angles can be right angles. Werghi et al. (1999) ask operators to 

manually choose regularities. Li et al. (2011) and Zhou and Neumann (2012) 

automatically derive the possible regularities from data. The second one is 

the enforcement of regularities. The problem is a constrained least-squares 

fitting problem. Li et al. (2011) and Zhou and Neumann (2012) split the 

constraints into orientation regularities and alignment regularities, and 

independently and iteratively enforce the two groups of constraints. However, 

the two groups of the constraints are not linearly independent. In this way 



Chapter 3 

 43 

they cannot achieve a global optimization result but will bring conflicts in the 

optimization. When the concurrency regularities are used in the optimization, 

the regularities must be enforced simultaneously. The problem can be solved 

by the method of Lagrange multipliers, in which the geometric regularities 

are used as constraints. Brenner (2005) points out that the constraint 

optimization can be solved in two ways. One is to treat the Lagrange 

multipliers as unknowns and solve them simultaneously with other 

unknowns. However, the constraint functions are not linear. The objective 

functions cannot be directly solved. Another one is to give the Lagrange 

multipliers very large values, however running the risk that the objective 

function is ill-conditioned. Werghi et al. (1999) introduce an iterative 

processing to solve the constrained least-squares fitting algorithm. The 

optimization algorithm iteratively increases the value of the Lagrange 

multiplayers and solves the objective functions. This algorithm can guarantee 

the objective function well-conditioned and the constraints enforced. 

IntersectionIntersectionPerpendicularPerpendicular

HorizontalHorizontal VerticalVertical

Single face 
regularitiy

Group faces 
regularity

Same SlopeSame Slope
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Intersection line 

Horizontal 
Intersection line 

Intersect at one 
point

Intersect at one 
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Line 
regularity

parallelparallel

 

Figure 3-4. Geometry regularities. 

Figure 3-4 shows the regularities used in this thesis. The regularities are 

carefully chosen to satisfy most of the cases. The constraints include roof 

plane and boundary constraints. The roof plane constraints enforce symmetry 

and horizontal and perpendicular intersections. The boundary constraints 

ensure identical heights, perpendicularity and parallelism of outlines. Apart 

from the often used constraints, the concurrent, a very important constraint, 

is also used in this thesis. The term concurrent is to express the situation 

that several planes intersect at one point. This constraint is necessary to 
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force a watertight polyhedron. If only enforcing other constraints, roof faces 

will not necessarily intersect at one point. 

3.3 Template Regularities 
Geometry templates provide uniform shapes for objects within a same type. 

The objects are modelled by matching a predefined geometry template to the 

data. This method is powerful when the objects repeat and when the data is 

not accurate or dense enough to derive the fine models. For example, when 

reconstructing the façade models, the lidar points and images only have the 

resolution to present the window frame model. Glass, finer structures and 

decorations cannot be modelled. When reconstructing the railway furniture 

from terrestrial lidar data, including the signal lights and power towers, the 

data does not completely cover the object surfaces due to the occlusion. 

However, most of the furniture can be divided into several groups, and each 

group has exactly the same shape. A simple identification of the objects will 

enable their complete modelling. 

The basic geometry shapes, like plane, cone and sphere, can also be seen as 

the templates. Their detection, like RANSAC algorithm, is to fit the predefined 

shape primitives to the data. However, the templates discussed here usually 

constitute a set of basic geometry shapes, which are composed with a certain 

orientation and position relationship. They are at a higher level than basic 

geometry shapes. For example, a simple window constitutes several cuboid 

frames and rectangular glass. 

A set of geometric templates should be defined before their application. The 

models can be drawn by typical CAD software or by a semi-automatic tool 

like SmartBox (Nan et al., 2010) and O-snap (Arikan et al., 2013). The semi-

automatic tool is a more practical way than normal CAD software. It can 

efficiently produce accurate models with the help of data and manual input. 

The object models, once modelled, can be used as templates. The semi-

automatic tool should have the ability to automatically detect basic geometry 

shapes and their combinations and also provide the function to manually 

refine models. 

The templates could be divided into two groups according their flexibility: 

rigid templates and elastic templates. The rigid templates request the 

reconstructed model exactly meet with predefined templates. The templates 

can be rotated and transformed. For example, the windows of a modern 

skyscraper building have an exact same shape. The elastic templates only 

ask the type of subparts and their topologies same, E.g., in reconstructing 

models of human faces, the topology of eyes, mouse, nose and ears is same, 

but their shape, size and relative positions vary with people. Some relative 

positions of the parts are fixed, like the two eyes are roughly horizontally 

placed and the mouse, nose, the mid of the two eyes and the mid of the two 
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ears are roughly vertically placed. As shown in Figure 3-5, when modelling 

the rail track and its furniture, the power tower can be modelled by a rigid 

template while the rail track and the power line can be modelled by elastic 

templates. 

 

Figure 3-5. Rigid and elastic templates. When modelling the rail track 
and its furniture, the power tower can be modelled by a rigid 
template while the rail track and the power line can be modelled by 
elastic templates. 

Another group of objects is that the main parts are the same but small parts 

are different. The small parts can also be modelled by solid templates. The 

whole object is modelled by combining a main part and small parts. Or the 

group is divided into several sub-groups according to the templates of the 

small parts. Each sub-group is manually defined by a rigid model. Then the 

modelling procedure is to directly identify the sub-group types.  

The template matching can be done by a fully model-driven method or a 

combination of data and model-driven method. The model-driven method is 

to directly fit the template to the data. But the parameter space is very large, 

and the searching is high time consuming, especially when many templates 

are optional. The data-model combination method is to derive features in the 

data and then use the features to select candidate templates. The feature 

extraction is data driven, and the template matching is done in the feature 

space, therefore the whole strategy is faster. The features sometimes are 

wrongly detected. Therefore in the template matching stage a global 

optimization strategy should be taken to supress those errors. The data-

model combined method requests the data is good enough to extract 

features. When the data is too poor, the model-driven method is a better 

alternative. 
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Template primitives are frequently used in roof reconstructions (Kada, 2009; 

Lafarge et al., 2008; Oude Elberink and Vosselman, 2009). The templates are 

usually called building primitives, which are elastic templates. The exact 

parameters of the building models are fixed when fitting to the data, like the 

height, length of the eaves and the intersection angle between roof faces. 

The building primitives are sub-part templates. A building is template 

matched part by part and combined to a complete building. This design is 

able to model a large variety of buildings with only a few building primitives. 

However, the state-of-the-art building primitives only provide a sub-set of 

the possible primitives. Many structures are not defined therefore cannot be 

accurately modelled. Chapter 4 will provide a complete library of building 

primitives based on the theory of the roof topology graphs. 

3.4 Simple region regularities 
Simple region regularities, including regularities of simple polygonal regions 

(2D) and simple polyhedral regions (3D), are the most basic regularities in 

modelling. They are the necessary qualities that valid geometry shapes must 

meet. Therefore they are frequently used in the self-checking of model 

qualities and model repairing (Brédif, 2010; Ledoux, 2013; Ohori et al., 

2012). The regularities are guaranteed in the process of translating strings 

into geometric structures in the procedural modelling. However, these 

regularities did not get enough attention in the field of object reconstructing, 

especially in building reconstruction. Nowadays the range sensor and the 

technology that create edges and point clouds from images are good enough 

to produce dense and accurate data, which enable a much more data-driven 

strategy. The simple polygonal and polyhedral region regularities are met by 

all the valid models, therefore, can be uniformly used. In addition, the simple 

polyhedral regularities guarantee the models are watertight, enabling the 

definition of a complete building primitive library. 

3.4.1 Simple polygonal region regularity 

 

Figure 3-6．2.5D polygonal regions, all outlined by simple polygons 

except the region outlined brown in the right image which has a hole. 

In geometry, a simple polygon is a flat shape consisting of straight, non-

intersecting line segments or "sides" that are joined pair-wise to form a 
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closed path. A simple polygon divides the plane into two regions. The interior 

region is called a simple polygonal region, which is a connected region. All 

polygonal regions used for modelling buildings will be outlined by simple 

polygons. However, we also allow regions to contain holes outlined by simple 

polygons. A planar partition of a polygonal region is a sub-division of the 

region into non-overlapping polygonal regions. Planar partitions are 

frequently used in GIS to model concepts such as land cover, the cadastre, or 

the administrative boundaries of a given country. As each region has different 

height, the GIS polygons have 2.5D properties: in 2D they are partitioning 

the X-Y plane but they are located at different Z-levels. The 2.5D planar 

partition is used to model building parts without height jumps (Zhou and 

Neumann, 2010; Zhou and Neumann, 2011). See Figure 3-6 (right side), a 

building has several roof parts that are disconnected in 3D. Each part may be 

composed of one or more connected roof faces. All roof parts have no overlap 

in 2D and together form a complete building region. The partitioning of the X-

Y plane is also frequently used to decompose a building region into sub-

regions, which used to guide the independent reconstruction of sub-

buildings(Haala et al., 2006; Lafarge et al., 2008; Vosselman and Dijkman, 

2001; Zebedin et al., 2008a). 

3.4.2 Simple polyhedral region regularity 

In geometry a polyhedron is a 3D solid with straight edges and flat faces. A 

simple polyhedron is usually defined to be a polyhedron that is topologically 

equivalent to a sphere and whose faces are simple polygons. Therefore a 

polyhedron consists of just one piece. It cannot, for example, be made up of 

two (or more) basically separate parts connected by only an edge or a 

vertex. However, the constraint that the simple polyhedron is topologically 

equivalent to a sphere request the polyhedron has no hole inside. This 

constraint implies that many buildings cannot be represented. The simple 

polyhedron is defined in the view of connected region: 

A simple polyhedral region is a connected 3D region that is enclosed 
by simple polyhedrons.  

(a) (b) (c) (d) (e) (f)  

Figure 3-7. A simple polyhedral region and combinations of simple 
polyhedral regions. 

The simple polyhedral region regularity is used to infer the adjacency 

relationships between roof faces and to reconstruct meaningful buildings. The 

roof planes are extracted from input data, including lidar point cloud, 
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photogrammetric point cloud, DSM, or 3D lines, and then enforced to be a 

polyhedron model. Taillandier and Deriche (2004) thoroughly search the 

possible plane arrangement based on the detected 3D planes and get the 

most plausible building hypothesis that balances fit of the model to the data 

and the model’s complexity. Chauve et al. (2010) adaptively decompose the 

3D space into polyhedral cells by iteratively splitting the space along planes 

detected in the point cloud. Brédif (2010) corrects the roof topology graph of 

the input building models when fitting to new DEM. Lafarge and Alliez (2013) 

reconstruct polyhedron models from inexact adjacencies of surface planes. 

The simple polyhedral region regularity ensures that each object has one 

connected 3D region. A building when considering both the outer and inner 

surfaces usually does not meet this constraint. However, each component 

can be seen as a simple polyhedral region. A building is usually divided into 

several corridors and rooms, which respectively have connected 3D regions 

(assuming that doors are closed). Therefore each corridor and room is 

modelled as a simple polyhedron. 

Two adjacent simple polyhedrons that share a face can be joined to a single 

polyhedron (Figure 3-7 (c)). However, two adjacent simple polyhedrons that 

only share a vertex or a line cannot be joined to one simple polyhedron 

(Figure 3-7 (d) and (e)). Besides simple polyhedrons we will also use 

polyhedrons with holes to model buildings (Figure 3-7 (b)). A complex 

polyhedron is composed by several simple polyhedrons, like polyhedrons (d) 

and (e). A simple polyhedron does not allow a surface cut through it, like 

Figure 3-7 (f). It also means that the face cutting a vertex, an edge, or a face 

should not exist. The definition of simple polyhedral region makes that the 

vertex-based, the edge-based, and the face-based graph representations are 

equivalent. An illegal simple polyhedral region will break this equivalence. 

Topology graphs are a concise way to represent the structures between 

objects and their parts, without considering the geometry. Each topology 

graph has a minimum sub-graph basis, composed by a maximum group of 

linear independent sub-graphs, which have physical meanings. The following 

sub-sections first introduce this minimum sub-graph basis and afterwards 

discuss the physical meaning of the independent sub-graphs. 

Minimum sub-graph basis 

A topology graph G has three basic elements: loose nodes, loose edges, and 

minimum cycles. A loose node has no adjacent nodes, and a loose edge 

cannot be a part of cycle. A cycle of G is any closed walk of G with no 

repeated vertices and edges, where a closed walk is a sequence of vertices 

and edges with a common first and last vertex. A maximal set of linearly 

independent cycles is called a cycle basis (Berger et al., 2004). The linear 

combination of sub-graphs is defined as the sum of all the sub-graphs minus 
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the overlapping edges and the corresponding nodes. All cycles can be 

represented by linear combination of the cycles in the cycle basis. While a 

graph may have many cycle bases, a cycle basis where the sum of the edges 

of the cycles is minimal is called a minimum cycle basis of G. The cycles 

which constitute the minimum cycle basis are called minimum cycles. We 

define the minimum sub-graph basis of G as the set of all loose nodes, loose 

edges, and minimum cycles. Figure 3-8 illustrates the linear combination of 

cycles, the cycle bases and the minimum cycle basis. The cycle basis in red 

dash frame is the minimum cycle basis on the right of Figure 3-8. Figure 3-9 

shows an example of the minimum sub-graph basis of a topology graph. 
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Figure 3-8. The linear combination of cycles, the cycle bases and the 
minimum cycle basis. The cycle basis in red dash frame is the 
minimum cycle basis.  
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Figure 3-9. Minimum sub-graph basis of a topology graph. A 
minimum sub-graph basis is constituted by loose nodes, loose edges, 

and minimum cycles.  
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Physical meaning of minimum cycles 

Minimum cycles have essential physical meaning in the topology graph 

representations of object faces. With the exception of information which is 

explicitly represented by nodes and edges, the other information is implicitly 

represented in the minimum cycle. There are three ways to represent 

building structures by a topology graph, Figure 3-10. The first one is face-

based, in which object faces are represented as graph nodes, and edges 

intersected by faces are represented as graph edges. The second one is 

vertex-based. The vertexes are graph nodes and the edges between vertexes 

are graph edges. The last one is edge-based topology graph, in which edges 

are represented as graph nodes, and the adjacent relationships between 

edges are represented as graph edges. The three ways are mutually 

interchangeable. In the face-based topology graph, a minimum cycle (MC) is 

a vertex, such as MC F1F2F3 is vertex V2 in Figure 3-10 (b). And in the vertex 

based topology graph, a minimum cycle is a face, for example, MC V1V2V3 is 

surface F1  in Figure 3-10(c). In the first two representations, edges are 

explicitly represented as graph edges, whereas in the edge-based topology 

graph, only the edges are explicitly described, and the vertexes and faces are 

all implicitly represented as MCs. For example, in Figure 3-10(d), the MC 

E12E24E14 is the face F2, and the MC E12E24E14 is the vertex V1. If we can infer 

the MCs, then one expression can be transformed to other representations. 

This would mean that anyone can be used for a specific application. 

(a) (b) (c) (d)

V1

V3 V2

V4
E14

E12E34

E23

E13
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Figure 3-10. Three topology graph ways to represent an object. (a) a 
tetrahedron; (b) face based topology graph; (c) vertex based 
topology graph; (d) edge based topology graph. The three ways are 
mutually exchangeable. With the exception of the explicit nodes and 

edges, the other information is implicitly presented in the minimum 
cycle (MC). 

Given that a polyhedron always encloses a space, we get the rule: 

The topology graph of a polyhedron does not have loose nodes and 

edges.  
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It means a polyhedron does not have loose vertexes, edges and faces. All the 

elements should form cycles in the topology graph. However, the roof model 

does not contain walls, therefore does not form polyhedron. The roof 

topology graph does not only constitute cycles. If the walls and the ground 

polygons are included, the building polyhedron will follow the rule. On the 

other hand, the inner corners of the roofs are always minimum cycles in the 

roof topology graphs. 

A suitable topology graph should be chosen according to the applications and 

the availability of data. In the building reconstruction from airborne lidar 

data, the point cloud has more information on roof faces. Because roof faces 

can be detected reliably, the surface based topology graph is usually used to 

present the roof structures (Oude Elberink and Vosselman, 2009; Verma et 

al., 2006). The corners could then be inferred from the MCs. Fischer et al. 

(1997a) use vertex based graphs which contain 3D corners to integrate the 

roof structures, because in images the corners and lines are more reliably 

detected. Gruen and Wang (1998) use vertex based topology graph to group 

manually measured corners. This representation way is natural because 

corners are the input elements. Line based topology graph is rarely used. 

This maybe because lines are not easy to detect, as well as faces and 

vertexes are all implicitly presented in the vertex based topology graph. Too 

much information is hidden in this expression. 

3.5 Three ways to interpret surface structure 
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Figure 3-11. Three ways to interpret building structure. a) the 
building to be integrated; b) CSG model; c) BSP-tree; d) roof topology 
graph. 

Three ways are used to represent building structures: constructive solid 

geometry (CSG) model, binary space partitioning (BSP) tree, and topology 

graphs (Figure 3-11). CSG model comes from the field of computer aided 

design. CSG allows an operator to create a complex surface or object by 

using Boolean operators to combine primitive shapes, which are usually 

cuboids, cylinders, prisms, pyramids, spheres and cones. The CSG model is 

not suitable to be used in the inverse engineering problem, reconstructing 
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models from the observed data. The main problem is that the Boolean 

operations are ambiguous to detect. A complex shape has several ways to 

combine primitive shapes. And the structure of the CSG tree will also be 

complex, especially for the buildings which are composed by planar surfaces. 

For example, a simple L-shape building has four CSG representation ways 

with only the union operation, see Figure 3-12. It is because that the size of 

the primitives and their relative positions are unknown if they are freely 

composed. Therefore their combination can create diverse structures. In the 

CAD software, all the parameters and the Boolean operations are manually 

given therefore operators can get the exact model that they want. But 

meanwhile, by adjusting the parameters and the Boolean operations, the 

operators can also get any models based on the flexibility of the CSG tree. 

Shapiro and Vossler (1993) convert B-rep to CSG for a curved solid object by 

separating half-spaces, in which construction of a sufficient set of separators 

is a difficult task. And it is also a complex problem to interpret the CSG trees 

in the reverse engineering applications. 

⋃ ⋃ ⋃ ⋃ ⋃ 

 

Figure 3-12． Ambiguity of CSG tree decomposition. A simple L-shape 

building has four CSG representation ways with only the union 

operation. 

 

Figure 3-13. The diversity of the CSG model. A simple combination of 

two gable buildings creates nine building models by adjusting the 
size of the two gable buildings and their relative positions. 

Another problem is there are not enough primitive shapes to represent all 

buildings. The buildings in the real world are not always regularly shaped. 

When only considering planar surfaces, the primitive shapes used in the 
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literature are not diverse enough to represent the structures. For example, in 

the reconstruction of indoor scene, many works assume the Manhattan-world 

rules (Furukawa et al., 2009a). They assume the scene is constituted by 

piecewise planar with orthogonal dominant directions. Therefore the scene 

can be reconstructed by CSG model with primitive shapes of rectangle in 2D 

and cubic in 3D (Rusu et al., 2008; Xiao and Furukawa, 2012b). However, 

the assumption is hard to meet. The objects with arbitrary intersection angles 

could not be modelled. Because the types of primitive shapes are not 

enough, the CSG model will fall into the dilemma of model-driven methods: 

the predefined primitive buildings are always not enough. 

The BSP is traditionally used in 3D computer graphics to increase rendering 

efficiency, including solid modelling, hidden surface removal, shadow 

generation, visibility orderings, and image representation. BSP uses (n-1)-

dimensional hyper planes to recursively subdivide n-dimensional space is into 

homogeneous convex sets. Thereby a complex special scene is represented 

by a consequence of this hierarchical subdivision by a binary tree data 

structure. Sohn gives another meaning to it, and use the BSP tree as an 

object reconstruction tool to produce prismatic models of buildings (Sohn and 

Dowman, 2003; Sohn et al., 2008). Labatut et al. (2009) use BSP to build a 

hierarchical description of the scene. BSP is able to extend detected shapes 

to areas with holes, allowing the reconstruction of areas which may be 

missed. However, the partitioning will have different results if a different 

sequence of organizing is applied. And the corners, the essential elements of 

the models, are implicitly presented. As illustrated in Figure 3-11 (c), the 

corner of L-shape building has three layers of trees. 

A given model can be structurally interpreted by the three ways. However, a 

model only has one unique topology graph. In fact, the topology graph is 

used to analyse the CSG or BSP-tree structures. The two methods are dual to 

the topology graphs. See the Figure 3-11, the topology graph is unique and 

unambiguous, and easy to be derived. In the vertex-based topology graph, 

faces and intersection lines are detected from raw data, and corners are 

inferred from the graph, a polyhedral model is then explicit presented. 

Therefore the topology graph is the recommended structure analysing ways 

in the reverse engineering. Its problem is that when the data has gaps and 

errors, the detected topology graph would have errors. Therefore the 

topology graph should be used only when the data is good enough. And we 

should always keep the idea in mind that the application should be robust to 

the errors in the topology graph or some special processing should be applied 

to correct the errors. The other two ways can also be used to improve the 

interpretation of the topology graph. 
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3.6 Conclusion 
This chapter analyses the structure regularities of buildings, discusses their 

advantages and disadvantages, and gives hints about how to use these 

regularities. These regularities can be used to help building reconstruction 

and to improve the model qualities. They are viewed at different level 

therefore are largely overlapped. The line and face regularities are at lowest 

level and most flexible. The simple polygonal and polyhedral regularities are 

the necessary request to guarantee the reconstructed models to be valid. The 

template regularities enforce the observed data to be a few predefined 

primitives. It is a kind of model-driven methodology, therefore are a strict 

regularities. The hierarchical regularities are a bridge to connect the 

information from different levels. When only considering one level of detail, it 

is not as valuable as to reconstruct models with several levels of information. 

This thesis only reconstructs the LOD2 models therefore does not use the 

hierarchical regularities. Three ways to interpret the model structures are 

also discussed and compared. The author would like to recommend the 

topology graph, an unambiguous way, to interpret the model structures. 
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Chapter 4 Flexible Building Primitives and Their Applications in Building Modelling 

Flexible Building Primitives and Their 
Applications in Building Modelling 

Because of their high complexity of structures, no fully automatic system is 

currently available for producing LoD2 models of buildings. In order to 

simplify the problem, a lot of research focuses only on particular buildings 

shapes, and relatively simple ones. Based on the analysis of the properties of 

topology graphs of object surfaces, roof topology graphs are found that they 

have three basic elements: loose nodes, loose edges, and minimum cycles. 

These elements have interesting physical meanings: a loose node is a 

building with one roof face; a loose edge is a ridge line between two roof 

faces whose end points are not defined by a third roof face; and a minimum 

cycle represents a roof corner of a building. This chapter introduces a library 

of flexible building primitives based on the regularities of simple polyhedron 

and minimum sub-graph bases. Building primitives, which introduce building 

shape knowledge, are defined according to these three basic elements. Then 

all buildings can be represented by combining such building primitives. The 

building parts are searched according to the predefined building primitives, 

reconstructed independently, and grouped into a complete building model in 

a CSG-style, see Figure 4-1. The shape knowledge is inferred via the building 

primitives and used as constraints to improve the building models, in which 

all roof parameters are simultaneously adjusted. 

Input point cloud Roof topology graph Reconstruction of building parts Complete model
 

Figure 4-1. Workflow of the building model reconstruction from a 
point cloud by applying the new building primitive library. The point 
cloud of buildings is segmented into roof patches and the roof 
adjacency graph is thereby constructed. The building parts are 
searched according to the predefined building primitives, 
reconstructed independently, and grouped into a complete building 

model in a CSG-style. 
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The remainder of this chapter is organized as follows: Section 4.1 gives a 

definition of a building primitive library and introduces an algorithm that 

searches for building primitives. The building roofs follow some geometric 

regularities, which are applied to improve the quality of the reconstructed 

models. Section 4.2 gives a set of geometry regularities, shows the inference 

method, and presents the algorithm for applying constraints. Section 4.3 

demonstrates how to obtain enclosed roof polygons by grouping the inner 

corners and inner boundaries, and the inferred outer corners and outer 

boundaries. As the whole algorithm is dependent on the roof topology graph, 

any error in the roof topology graph would seriously affect the quality of the 

model. Section 4.4 proposes a manual method of correcting any errors in the 

roof topology graphs. Section 4.5 discusses the results of the proposed 

method as applied to a dataset of Vaihingen (Germany) and Enschede (the 

Netherlands), including lidar point cloud and photogrammetric point cloud. 

The chapter ends in Section 4.6 with concluding remarks, a discussion of 

open questions and suggestions for further work. 

4.1 Building primitive library 
Model-driven methods are widely applied in reconstructing LoD2 building 

models (Dorninger and Pfeifer, 2008; Huang et al., 2011; Karantzalos and 

Paragios, 2010; Oude Elberink and Vosselman, 2009; Verma et al., 2006; 

Zebedin et al., 2008b). Model-driven methods reconstruct buildings with 

incomplete data and reconstruct all roofs at the same time. However, the 

usage of model-driven methods is limited because they require a library of 

prior defined models. Many buildings cannot be represented because of the 

high complexity of building structures. Verma et al. (2006) describe how a 

building can be represented as a group of assembled building primitives by 

analysing the roof topology graphs. They define primitive shapes as I-

shaped, L-shaped and U-shaped, and search for these using a roof topology 

graph. Primitive shapes are limited so only relatively simple buildings can be 

described. Oude Elberink and Vosselman (2009) expand the topological 

primitive library to include gable, hip, gambrel, etc. The primitive shapes 

defined by Oude Elberink are finer in granularity than those defined by Verma 

and are, therefore, more flexible. However there are still many building 

shapes are not described in the library. A lot of other studies also use 

building primitives to integrate building structures (Hammoudi and Dornaika, 

2010; Huang et al., 2011; Kada and McKinley, 2009a; Lafarge et al., 2010). 

This chapter goes further and thoroughly divides buildings into basic 

elements of the topology graph: loose nodes, loose edges and minimum 

cycles. As any roof topology graph can be decomposed into such basic 

elements, buildings with a planar structure can be assembled according to 

the primitive shapes defined. To allow the largest possible flexibility, a 

building primitive library is designed so that the graph of every primitive 
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corresponds to the minimum sub-graphs. The building primitives are also 

used to introduce geometric constraints to improve the model quality in the 

reconstruction process. This section shows the construction of a roof topology 

graph, provides a definition of the building primitive library, and indicates 

how to search for the building primitives. 

4.1.1 Roof topology graph (RTG) 

In the point cloud, roof segments can reliably be detected, so the face-based 

topology graph has been applied. A roof topology graph is constituted of roof 

segments (graph nodes) and their adjacent relationships (graph edges). A 

node represents a roof face, and an edge represents the adjacency 

relationship of two roof faces. If an intersection line exists between two roof 

segments, their corresponding nodes are connected by an edge. In order to 

precisely identify building types, the edges are labelled by attributes. The 

roof topology graph is an attributed relational graph, denoted by the 3-tuple 

( , , )G V E  , where V is the set of vertices (nodes), E is the set of edges, 

and ( )E V V  , μ is the attribute set of edges. The roof topology graph is 

illustrated in Figure 4-2. Roof segments are coloured randomly and 

represented by graph nodes. The graph edges are coloured according to their 

attributes. 
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Figure 4-2. Roof topology graphs. 

4.1.1.1 Roof Segments 

In city scenes, most buildings can be modelled as a group of planar roof 

faces. A surface growing method (Vosselman, 2012) is used to segment the 
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point cloud into homogeneous planar patches, which are called roof 

segments. The input point cloud is classified beforehand and only contains 

building points. Therefore, all segment patches are roof segments. The 

Hough transform is applied to the neighbourhood of a randomly selected 

point. When the point set fits well to a plane it is taken as a seed surface. 

Then points adjacent to the seed and within a given distance to the plane are 

accepted as surface extensions. This process iterates until no more points can 

be added to this surface. The remaining points are searched to form other 

planar patches in the same way. To correct overgrowing by the greedy 

surface growing, points initially assigned to a surface may be re-assigned to 

another surface when this surface better fits to the point and its 

neighbourhood. This surface growing algorithm is fast and robust even in a 

complex scene. The parameters of a roof plane are calculated by a least 

squares fit of a plane to all the points in the roof patch. 

4.1.1.2 Intersection Lines 

For each pair of nearby segments an intersection line is hypothesised. The 

hypothesis is verified by checking whether both segments have enough 

points close to the intersection line and by checking the length of the 

intersection line. The length of the intersection line is calculated by taking the 

overlap of two line segments computed on each roof segment. The points 

within a buffer around the intersection line are projected onto that line. Then 

the outmost points of the projected points are set as endpoints of the line 

segment. The thresholds of the number of laser points within the buffer area 

and the length of the intersection line are set to 10 points and 0.5m 

respectively. The buffer size is set to 0.5 m in our experiments. The 

thresholds and the buffer area size can be adjusted according to point 

density. 
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Figure 4-3. Definition of building primitives. 
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4.1.2 Building primitive definition 

It is difficult to define a finite library of building primitives that can be used to 

describe all building structures. The complexity of building structures is 

extremely high when considering the various ways of composing roof planes 

and the unknown number of roof facets. As discussed in the Section 3.3.4, a 

building topology graph only has three basic elements: loose edges, loose 

nodes and minimum cycles. This means that all buildings can be divided into 

three basic types. Building primitives are defined according to these basic 

elements. The problem of building reconstruction is thus translated into the 

detection of building primitives and their composition. Roof segments that 

form a minimum cycle intersect at one point in 3D space. Consequently, 

building primitives are divided into corner building primitives and non-corner 

building primitives. A corner building primitive forms minimum cycles in a 

roof topology graph, while non-corner building primitives only form loose 

nodes or loose edges. 

The enumeration of all loose nodes, loose edges and minimum cycles 

generates a building primitive library that is minimum but nevertheless 

complete. The building primitives are grouped according to the number of 

nodes, shown in Figure 4-3. The multiple instances of loose edges and cycles 

differ in the edge attributes. These attributes describe the relative geometry 

of the adjacency roof planes. The attributes are further applied to infer the 

geometry constraints which will be applied to improve model qualities. Five 

attributes are used here (shown in Figure 4-3). The first three attributes are 

for horizontal intersections, which are differentiated by roof geometry: the 

horizontal ridge has one horizontal face, the convex horizontal ridge has two 

sloped roof faces which form a convex angle, and the concave horizontal 

ridge has two sloped roof faces which form a concave angle. The last two 

attributes are for sloped intersection lines resulting from roof faces with a 

convex angle and those with a concave angle respectively. 
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Figure 4-4. Cycle and non-cycle. (a) the space is divided into P+ and 

P- by corner O; (b) The erroneous edge between face 1 and 3 causes 

faces 1-2-3-4 are not considered to be a cycle; (c) the topology graph 
of model shown in (b); (d) Faces 5-6-7-8 do form a cycle, but should 
not form a single inner corner; (e) the topology graph of model 
shown in (d). 
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A corner building primitive can only be formed by a minimum cycle. This 

means that a minimum cycle sub-graph is a necessary - but insufficient - 

condition for a corner building primitive. The 3D space is separated by the 

half-planes that form the vertex into two parts: inside the corner and outside 

the corner. Illustrated in Figure 4-4 (a), the corner SmonSnowSmow divides the 

space into two partitions P+ and P-. 

Necessary condition: If a group of roof segments forms a cycle but not a 

minimum cycle, then a sub-set of them can form a corner. The corner 

constructed by the sub-set of roof segments also divides the 3D space into 

two parts. And because the separation does not match the one formed by the 

whole set, the 3D space is then divided into more than two parts. In Figure 

4-4 (b), planes 1, 2, 3 and 4 form a cycle. Because plane 1 and plane 3 

intersect at line LAC, planes 1, 2, 3 and planes 1, 3, 4 also form cycles, see 

topology graph shown in Figure 4-4(c). The space SABF-AFE-AED-ABD formed by 

cycle 1-2-3-4 is divided by plane SAEC into two parts. The whole 3D space is 

split into three parts by planes 1, 2, 3, and 4. Therefore, a topology graph of 

a corner building can only be a minimum cycle. 

Insufficient condition: The roof segments form a finite area and do not 

extend infinitely as planes. If the roof segments do not extend to the position 

where they should meet, they will not form a corner even though they are a 

minimum cycle in the roof topology graph. In Figure 4-4 (d), planes 5, 6, 7 

and 8 have a limited area and do not extend to their final intersection, 

resulting in topology graph shown in Figure 4-4 (e). This means they do not 

divide the 3D space into two parts. When searching for corner building 

primitives, the roof segments of a minimum cycle need to be checked as to 

whether they really do extend to the intersection point. 

4.1.3 Search for building primitives 

After constructing a roof topology graph, a building can be decomposed into 

building primitives by searching for loose edges, loose nodes and minimum 

cycles. As discussed in last section, a corner building primitive is always a 

minimum cycle in a roof topology graph, but a minimum cycle is not always a 

building primitive. Therefore, the search for minimum sub-graphs is a way of 

carrying out an initial search for building primitives. The exact building 

primitives are recognized by checking the geometry of corners and ridge 

lines. The minimum cycle (MC) search is for speeding up the search, because 

of its fast speed in topology space. The roof segments of a minimum cycle 

that has been found are checked to examine whether they really meet at one 

point. If the input lidar points are noisy, then it is certain that the roof planes 

do not meet at one point, and a buffer area is set in order to check the 

consistency. Even if the roof planes do intersect at one point, they may not 

form a building primitive as roof segments are not infinite surfaces. The roof 
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segments are checked as to whether they extend to the intersection point. If 

a minimum cycle is recognized as a corner building primitive, the roof planes 

will be adjusted to be concurrent during subsequent refinement. As defined in 

the building primitive library, the property of edges is used to identify types 

of primitives precisely. 

It is vital to search for minimum cycles in the application of minimum sub-

graph basis. The search for loose nodes and loose edges is an easy process. 

What remains in the search for a minimum sub-graph basis is the search for 

the minimum cycles. An undirected graph has a cycle if - and only if - 

a depth-first search finds an edge which points to an already-visited vertex (a 

back edge). However, the minimum cycle could not be searched in this way. 

In order to speed up search, loose edges and nodes are first removed.  

A breadth-first spanning tree T is constructed to help search for all minimum 

cycles which contain the node of interest (see Figure 4-5). The node of 

interest is set as the root of its spanning tree T. If a node can form an MC 

with a node of its sibling branch, the cycle that its children form is not 

minimal. For example, in Figure 4-5 (b), cycle CN4N3N5
 is an MC, but CN4N5N6N1N3

 

is not, because N3 and N5 are connected in the graph (Figure 4-5 (a)). So 

when searching, if a node cannot form a cycle, the algorithm will iteratively 

go to its children. After all MCs that contain node n are searched for, node n 

is removed from the graph G, as well as other loose edges and nodes, for 

searching for remaining minimum cycles. The search continues until no edge 

and node is left in the graph G. 
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Figure 4-5. Search for Minimum Cycles. (a) Topology graph; (b) 
Spanning tree of Node 𝐍𝟒; (c) Spanning tree of Node 𝐍𝟏. (d) Searched 

minimum cycles. A dashed dark line represents a cycle, but only the 

one that is not crossed is minimal. 



Chapter 4 

 63 

 

Table 4-1. Algorithm for minimum cycles search. 

4.2 Geometry regularities and their inference 
Architectures have strong geometric regularities. These regularities, which 

are also called structure knowledge, are fully used when the human brain 

interprets the observed world. However, we still do not know which regularity 

plays what role in that interpretation, and we do not know how human brains 

identify specific regularities. One reason for this is that there are too many 

regularities. As discussed in Section 3.3.3, this thesis only uses building 

geometry regularities that can be satisfied by most cases. The constraints 

include roof plane and boundary constraints. The roof plane constraints 

enforce symmetry and horizontal, concurrent and perpendicular intersections. 

The boundary constraints ensure identical heights, perpendicularity and 

parallelism of outlines. A constrained least-squares fitting (CLSF) algorithm is 

applied to adjust the roof planes according to the constraints for which a 

search is carried out while minimizing fitting residual. The boundary 

Algorithm: Search for minimum cycles in a graph 
Input: graph G = (N, E); 
Output: minimum cycles C 
 
For each valid node n of N 

----Invalid all loose nodes and edges 
----Build spanning tree T for n 

----Initialize stack S1, S2 

 

----For l = all nodes of n in T  
--------Push l into S1 
--------Push all other valid children of n into S2 
 
--------While S1 is non-empty 
------------l := pop S1 

 
------------While S2 is non-empty 
----------------m := pop S2 
----------------If m has edge with l 
--------------------Construct c with m, l, their ancestors, 
--------------------up to root node n 
--------------------Add c into C 
----------------Else 
--------------------Push all children of m into S2 
------------End while 
 
------------if l does not form cycles 
----------------Push all children of l into S1 
--------End while 
----End for 
           
----Invalid n 

End 
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constraints are used to infer the outer boundaries and enclose the roof 

polygons, which is discussed in Section 4.3. 

Roof planes can be refined if they satisfy the geometric constraint criteria. 

Roof constraints are divided into two types: 1) single roof constraints, 2) 

group roof constraints. Single roof constraints denote geometric regularities 

of a single roof, which can be vertical or horizontal. When the normal of a 

roof plane has a small angle, e.g. 5 degrees, with the plumb line or the 

horizontal plane, this roof will be taken to be horizontal or vertical. Group 

roof constraints mean group roofs satisfy some regularities. These constraints 

include the fact that intersection lines of two neighbouring roofs are 

horizontal or vertical, two connected roofs have equal slopes, and a group of 

roofs intersect at one position. The constraints used hare are common for the 

roofs of buildings. These features are searched for according to roof topology 

graphs. Every roof and building primitive for which a search has been carried 

out is checked as to whether it satisfies some geometric constraints. 

The constraints are treated as adaptive constraints. This implies that the 

constraints are not strictly enforced based on the predefined models and are 

inferred according to the input data. The constraints are searched for inside 

the primitive models. They are local constraints, not global ones like GlobFit 

(Li et al., 2011), because local constraints are sufficient to improve 

reconstruction accuracy. More global constraints, like those inferred from 

repeated structures in buildings and from neighbouring buildings, are ignored 

as they would lead to a much higher complexity in the search for constraints. 

4.2.1 Constrained Least-Squares Fitting (CLSF) 

After the constraints have been found, roof faces should be adjusted 

simultaneously with the guidance of constraints to make all the roof planes fit 

the data well. As the noise of lidar points representing the roof plane is a 

Gaussian deviation, the solution of Least-Squares Fitting can provide the 

highest probability results. However, the CLSF cannot result in a linear 

solution due to the non-linear character of the constraints mentioned above. 

So an iterative process is reasonable. Werghi’s optimization method (Werghi 

et al., 1999) is used here to solve the CLSF problem and extend it to include 

the concurrent constraint. The method is briefly introduced first, closely 

following (Werghi et al., 1999). 

Suppose a set of surfaces is denoted s1, s2, … , sn  and the set of parameter 

vectors is denoted as p. A surface fit error criterion J, e.g. the residual square 

sum, has to be minimized by each vector p associated with the surface S. The 

object function to be minimized by the set of parameter vectors is: 

 1 2 nJ J J J    (4.1) 
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Each surface si  can be represented by a polynomial description of the 

surfaces in homogeneous coordinates: 

 0T

i ih p 
 (4.2) 

I.e., for a roof plane defined as 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 + 𝒅 = 𝟎, the measurement vector 

becomes 𝒉 = (𝒙, 𝒚, 𝒛, 𝟏)𝑻; and parameter vector 𝒑 = (𝒂, 𝒃, 𝒄, 𝒅)𝑻. 

The objective function minimizing the point to plane distances is written as 

 2

0 0

  ( )
i iM M

T T T T

i ij i i ij ij i i i i

j j

J h p p h h p p H p
 

 
   

 
   (4.3) 

When all parameter vectors 𝒑𝒊  are concatenated into one vector 𝒑 =

[𝒑𝟏
𝑻, 𝒑𝟐

𝑻, … , 𝒑𝒏
𝑻]

𝑻
 the objective function becomes: 

   TF p J p Hp 
 (4.4) 

 H = [

H1 0
0 H2

⋯
⋯

0
0

⋮    ⋮ ⋱ ⋮
0   0 ⋯ Hn

]  (4.5) 

Under the above form, the data and the parameters are separately listed in 

the objective equation. An off-line computation can be done to get data 

matrix H before optimization. Because the matrix H is positive, this objective 

function is convex. If we need to minimize the objective function F subject to 

constraints C, then the problem is a CLSF problem. Theoretically, the problem 

can be solved by determining the set (pT, λ1, λ2, . . , λM)  that minimize the 

following equation: 

     2

1

( ) ,     0
M

k k k

k

E p F p C p 


    (4.6) 
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while

2( )k kC p

1k M 

2 2( ) ( )k

k

C p C p

p
0p

 0

Initialize     and    p 

   

  2( )F p C p

find     minimizing p

update p

 
Figure 4-6. Constraint optimization algorithm. (Werghi et al., 1999) 

Even though the constraint functions Ck(p) are not necessarily convex, the 

Hessian matrix of the squared constraint function is positive and definite, 

making the squared constraint function a convex function as well as the 

whole optimization function E(p) in (4.6). Under the Khun-Tucker conditions 

(Fletcher, 2013), if the objective function and the constraint functions are 

continuously differentiable and the gradients of the constraint functions are 

linearly minimum, the solution of the system will be the optimal set 

(pT, λ1, λ2, . . , λM) minimizing Eq. (4.6): 

 
  2

1

( )
0

M
k

k

k

F p C p

p p




 
 

 
  (4.1) 

The term ∑ Ck(p)2M
k=1  serves as a penalty function that controls the constraints 

satisfaction. Shown in Figure 4-6, starting with a low value of λk the energy 

as defined in Eq. (6) is minimized with Levenberg Marquadt algorithm 

(Fletcher, 2013). Then λk is set to a higher value to give a higher weight to 

the constraint energy and  E(p)  is again minimized. The process of 

incrementing λk and minimizing the redefined E(p) continues until it reaches a 

very high value. At this point, solution p is the solution that minimizes the 

objective function F(p)  and meets the constraints C . For details of the 

optimization process, please refer to (Werghi et al., 1999). 
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4.2.2 Mathematic representation of the constraints 

Table 4-2. Mathematical Representation of Constraints. 

Constraint 
Mathematical 

Representation 
Parametric Matrices 

Horizontal 1i pN N   
( 2) ( )1; 0,

0, -1

i m else

A C

B B  

 
 

Vertical 0i pN N   
( 2) ( )1; 0,

0, 0

i m elseB

A C

B   

 
 

Orthogonal 0i jN N   

( , ) ( 1, 1) ( 2, 2)

( ,?

 ) ,0

0, 0

1i j i j i j

m n els

A

e

B C

A A

A

    









 

Equal 

slopes 
   

2 2

0i p j pN N N N   

( 2, 2) ( 2, 2)

( ,?

 )

1

0

, 1

,

0, 0

i i j j

m n

A A

A else

B C

     

 

  

Horizontal 

intersection 
( ) 0i j pN N N    

( , 1) ( 1, )

( , )

1, 1

0,

0, 0

i j i j

m n

A A

A else

B C

   



 

 

In the CLSF, constraints need to be continuously differentiable, which is 

satisfied by all the constraints. The following paragraphs list their Jacobi 

matrix (first-order derivative) and Hessian matrix (second-order derivative). 

Here the direction of the plumb line is denoted as Np, (0, 0, 1, 0), which is in 

homogeneous coordinates. The parameter for each roof plane is written as p. 

With the exception of concurrent constraint, all other constraints can be 

represented by expressions containing cross-product terms: 

   T TC p p Ap B p C    (4.2) 

Where A and B are, respectively, a square matrix and a vector, with the 

same dimensions as the parameter vector p, C is a scalar. Its Jacobi and 

Hessian matrix is simple: 

      
2

2 ( )T T TJ C p A A p B p Ap B p C      (4.3) 

       
2

 2( ) 4 ( ) ( )
T

T T T T TH C p A A p Ap B p C A A p B A A p B          (4.4) 

Table 4-2 lists a mathematical representation of constraints and their feature 

matrices. 
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The concurrent constraint differs from other constraints in the form of 

constraint function. The concurrent constraint means several planes (ai, bi, 

ci, di) go through a single intersection point (X, Y, Z). Each plane satisfies the 

equation: 

 ( , , , )( , , ,1) 0T

i i i ia b c d X Y Z   (4.5) 

By introducing intersection points (X, Y, Z) as unknowns in the CSLF 

optimization, each concurrent constraint is grouped by several coplanar 

constraints shown in Eq.(4.5) By concatenating all parameter vectors pi and 

intersection point vectors (X, Y, Z) into a single vector p = [p1
T, p2

T, … , pn
T, X, Y, Z]

T
, 

constraint function can be written in the form of Eq.(4.2). For each plane (ai, 

bi, ci, di), we get the equation: 
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 (4.6) 

4.3 Roof polygons 
The roof polygons are obtained by sequentially ordering all inner ridges, inner 

corners, outer boundaries and outer corners for each roof plane. The inner 

ridges and inner corners are already obtained by intersecting the roof planes. 

Outer corners are computed by assuming one auxiliary plane, which may be 

horizontal or vertical, and intersecting it with the two adjacency roof planes. 

Meanwhile, their intersection lines are determined. The new intersection lines 

and ridge lines still only provide parts of the polygon boundaries of roof 

faces. The remaining boundaries are hypothesized by inference based on the 

available boundaries. The hypothesized boundaries are constrained to be 

parallel and/or perpendicular to context boundaries. Figure 4-7 shows the 

workflow of enclosing roof polygons. The roof models are complemented with 

wall surfaces by projecting the roof outline onto the ground when a DTM is 

available, or onto a ground plane with a given height. 
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Figure 4-7. Enclosing Roof Polygons. (a) Fixed inner corners. (b) 
Estimate a vertical or horizontal plane. (c) Determine outer corners 
and boundary lines. (d) Enclose the roof polygon by connecting all 
boundaries. 

4.2.3 Detection of outer corners and boundaries  

There are two types of line segments of the roof polygon: inner boundary 

lines and outer boundary lines. An inner boundary line is the intersection line 

formed by two adjacent roof segments. The inner boundary lines are 

detected when the roof topology graph is constructed. Vertices of the roof 

polygon are defined as inner corners if they are formed by three or more roof 

planes. The other vertices are defined as outer corners. Inner corners, which 

are found by searching for building primitives in the topology graph, are 

calculated by intersecting the concurrent planes (step 1 in Figure 4-7).  

All corners in 3D space are formed by three or more concurrent surfaces. 

Therefore, outer corners are computed by assuming one auxiliary plane, 

which may be horizontal or vertical, and intersecting it with the two adjacent 

roof planes. The auxiliary plane is estimated by RANSAC detection from the 

points on the boundaries of the two supporting roof faces. When the third 

plane is estimated, the outer corner can be computed by intersecting the 

three planes. Sampath and Shan (2010) also find this knowledge, and 

introduced two vertical planes that pass through the building edges to join 

the two roof planes, thus providing the outer corners. However, because the 

two vertical planes are estimated independently, this method cannot ensure 

that the four planes are concurrent, and the resulting corners are less precise 

than when all boundary points are used. 

With the exception of the outer corners, the estimated plane can provide 

outer boundary lines by intersecting with the supporting roof planes (step b 

and c in Figure 4-7). In step d of Figure 4-7, vertexes A and B are inner 

corners; vertexes C-L are outer corners. Line segment AB is an inner 

boundary, and all other line segments are outer boundaries. However, the 

outer corners and outer boundaries detected by hypothesizing horizontal or 

vertical planes only provide parts of the outer corners and boundaries. For 

example, in step d of Figure 4-7, outer corners H and I, and outer boundaries 

JK and KL could not be detected. The remaining corners and boundaries are 

hypothesized by inferring the available boundaries, and are discussed in the 

following subsection. 
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4.2.4 Roof face outlining 

After the detection of outer corners and boundaries, the next step is to 

hypothesize boundaries to link all available boundary lines to obtain enclosed 

polygons. The hypothesized boundaries are constrained to be parallel and/or 

perpendicular to context boundaries, if the constraints could be met. The 

context boundaries for one boundary are all other the available boundary 

lines on the same roof face. Line pairs whereby one end node is not attached 

to another line are searched for in order to snap them together. The distance 

between a pair of lines is used to evaluate the possibility that two lines can 

be snapped together. The distance of a line pair is the distance between the 

two lines if they are parallel, otherwise it is the average distance from the 

intersection point to the nearest endpoint of both lines. If one line pair is 

found, four ways are introduced here for snapping them together according 

to different situations. The information required for the four different 

operations is angle and distance between the outer boundaries. The four 

operations are demonstrated in Figure 4-8 and corresponding examples are 

showed in Figure 4-9. 

1) Intersect. Two outer boundaries intersect at one point if they are 

not parallel. The intersection point is set as the final endpoint of both 

boundaries. In our implementation, the criterion for checking whether 

the two boundary lines are parallel is set to be 15 degrees. 

2) Merge. If two outer boundaries are parallel and close to each other, 

they should be on a single boundary line. The merge operation is 

implemented by simply linking the two initial endpoints. The distance 

threshold is set as 0.3 meter. 

3) Expand. Two parallel outer boundaries are considered to be two 

different boundaries if they are not near to one another. They both 

expand following their ray direction until the farthest lidar point on 

the roof segment. A third line segment is created by linking the far 

endpoint of the two boundaries. 

4) Rectify. The situation is very similar to the one of the expanding 

operation, the only difference being an inverse ray direction. An edge 

gradient, based on the ratio of the number of points of one roof 

segment on both sides of the edge, is used to determine the stability 

of the edge. The higher the edge gradient becomes, the more likely 

an edge is present. The most unstable boundary line is rectified and 

constrained to be perpendicular to the other one. Then the two 

boundaries can be treated as the situation of an intersection. 
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MergeIntersect

Expand Rectify
 

Figure 4-8. Four ways for enclosing a roof polygon. Dark lines are 

stable, red dashed lines need to be enclosed and red lines are after 
enclosing. 

A special situation that should be considered is a building with one roof 

segment. This kind of building has no intersection line, so it cannot be 

reconstructed as a building with multiple roof segments. In this thesis, this 

type of building was reconstructed by boundary approximation and 

regularization. The α-shape algorithm (Bernardini and Bajaj, 1997) is applied 

to detect points on the roof boundary, and then key points are identified by 

picking points with a large curvature. The discrete curvature is computed for 

each vertex of the boundaries. A line segment is constructed using the two 

neighbouring vertices of a vertex, and the curvature 𝜿 is defined as 𝜿 = 𝒅/𝒍, 

where 𝒅 is the distance of the vertex to the line segment, and 𝒍 is the length 

of the line segment. All key points of a roof boundary are connected 

sequentially to result in a closed polygon. Then the polygon is refined 

according to the building principles direction and line constraints, such as 

parallelism and perpendicularity (Matei et al., 2008; Sampath and Shan, 

2010). This boundary is already closed so does not need to be processed by 

the four enclosing operations. 



Flexible Building Primitives and Their Applications in Building Modelling 

 72 

(a) Intersect (b) Expand (c) Merge (d) Rectify  

Figure 4-9. Estimated outer boundary lines and enclosing results. 

4.4 Manual correction of roof topology graphs 

 
Figure 4-10. Incorrect models reconstructed from erroneous roof 
topology graph. From left to right: small roofs, wrong segmentations, 
incorrect combination of planes. (Rottensteiner et al., 2014) 

The roof topology graph is essential in the proposed building reconstruction 

algorithm based on the new library of building primitives. However, errors in 

the topology graph are inevitable and will affect building reconstruction 

negatively. Because of outliers and occlusion, as well as inevitable defects in 

the pre-processing steps, such as classification, segmentation and 

intersection detection, the topology graph will always have errors, which 

limits correct construction. A tool has been designed to edit graphs 

interactively. For the four elementary errors, operators simply have to locate 

the errors and select the related features as well as the error type. The 

remaining work is carried out automatically. 

Errors in the roof topology graph are inevitable and typically lead to 

incorrectly reconstructed building models (Rottensteiner et al., 2014). Figure 
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4-10 shows examples of incorrect models reconstructed from erroneous roof 

topology graphs. This section discusses the basic error types in the graphs, 

reasons for those errors and a tool developed to interactively repair roof 

topology graphs. 

4.4.1 Four error types 

Missing segment False segment False intersection line Missing intersection line

 

Figure 4-11. Errors in the roof topology graphs. Up: the roof 
segments of roof plane. Bottom: the roof topology graph. The edges 
and nodes in red dashed lines are the incorrect ones. 

The errors in the roof topology graph can be classified into four basic types: 

false node, missing node, false edge, and missing edge (see to Figure 4-11). 

False and missing nodes correspond to incorrect and failed detection of shape 

primitives, which are planar roof segments in our work. No matter how 

accurate the detection of primitive shapes is, some of them will still be wrong 

or missed. The graph edges, which present the adjacency relationship of the 

shape primitives, are searched according to the predefined criteria. These 

criteria cannot be formulated such that all relationships are correctly 

detected. Furthermore, incorrect shape primitives will also result in incorrect 

adjacency relationships. The cause of these errors is discussed in more detail 

below. 

a) Missing node. Small roof faces are often not well captured when the 

point density is low or when scanning direction is parallel to an 

elongated roof face. Low point densities also occur on roofs with 

reflecting materials (glass, solar panels) and absorbing materials 

(pitch, slate) and on flat roofs covered by water. These roof faces are 

often not detected. Narrow roofs are sometimes also missed because 

points may already have been assigned to the segments of their 

adjacent roof faces. 

b) False node. This error is mainly caused by the roof segment 

detection process. When strict thresholds are set, one roof face may 
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be detected as several ones. Besides, occlusion sometimes splits 

points on one roof face into disconnected parts, which will then be 

taken as several roof segments. 

c) Missing edge. The adjacency relationship is determined by checking 

the relative position of roof segments and the length of their 

intersection line. The number of connecting lidar points is used as 

criteria as well as intersection length. If two roofs only have a few 

points connecting them, or their intersection line is too short, these 

two roofs are not considered to be adjacent. These criteria sometimes 

overlook small roof face edges. 

d) False edge. A false edge will be determined if two roofs that should 

not be adjacent are detected to be connected. This is typically caused 

by the wrong detection of roof segment points. For example, the lidar 

points of a tree will be assigned to the building if it is near the 

building. Then the roof segment may incorrectly connect other roofs. 

Small objects on a roof will also result in incorrect intersection lines. 

False edges are the most frequent errors in the topology graph. 

4.4.2 Manual editing tool 

As discussed, it is difficult to correct automatically the errors in the roof 

topology graph. The practical way is to semi-automatically fix them. In this 

section, a group of tools is developed to interactively correct the four types of 

errors.  The operators just need to point out the location of the errors in the 

roof topology graph and identify the type of error. Then the computer will 

correct the errors automatically. The correction sequence is unlimited. The 

operators could randomly choose one error to correct. 

1) Remove an intersection. If an intersection line is checked by an 

operator to be wrong, then it will be simply removed. 

2) Restore an intersection. An intersection line will be created where 

two roofs are checked by an operator to be adjacent. The intersection 

will also be evaluated by checking whether the two roof segments are 

nearby and not parallel. 

3) Merge roof segments. Two selected segments will merge into one 

when an operator tells the computer that they belong to one roof. 

The roof plane will be recalculated according to all lidar points of the 

two segments. The intersections of the two segments with other 

segments will also be grouped together, and their geometries are 

adjusted according to the new roof plane. 

4) Restore a roof segment. When an operator finds one roof segment 

is missing, then select its nearby roof segments to be support planes. 

The support planes give clues about the missing roof. The computer 

will use the support planes to restore a reasonable roof plane, and 

get intersections with its adjacent roof segments. 
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The missed roof plane is estimated by automatic inference from its 

supporting roof segments. Figure 4-12 illustrates the restoration of a lost roof 

segment. With interactive input, computer knows one roof segment is lost; 

its next work is to estimate this roof. The missing roof is estimated by testing 

the points on the boundaries of the supporting roofs (Step b in Figure 4-12). 

All possible planes are estimated by RANSAC detection from all the 

boundaries. Then only the most likely one is kept. In the example of Figure 

4-12, one plane is perpendicular to the ridge (top one in Step c), and another 

one is parallel to the ridge (bottom one in Step c). The perpendicular one is 

vertical, therefore, should be a wall. And the parallel one, which is under the 

other two roofs, rarely occurs in reality. Both the two roof planes should not 

exist. Therefore, the last plane, which is oblique to the ridge, is chosen as the 

final estimated roof plane (Step d). 

Human 
Input

 

Figure 4-12: Restore a roof face. (a) Input roof patches, intersection 
line, and corresponding topology graph. (b) The goal graph is given 
by manual input and boundary points (high light points on the roof 

boundary) on the two supporting planes are automatically detected. 

(c) Three possible estimated planes. Only middle one is kept because 
the left two ones should not happen. (d) The final models and roof 
topology graph. 

4.5 Experiments 

4.5.1 Results of the new building reconstruction method 

A dataset of Enschede is selected to fully test the new building reconstruction 

method. The city is characterized by residential buildings with diverse 

structures on the outskirts and a small number of commercial buildings in the 

city centre. The laser scanning data has been acquired by the FLI-MAP 

system of Fugro Aerial Mapping B.V at a flight height of 275 m and with a 

30% strip overlap. The point density is on average about 20 points/m2. 3 test 

sites with a total of about 500 buildings are selected for the performance test 

of the new building primitive library. The building reconstruction method 

designed by Oude Elberink and Vosselman (2009) is used to compare with 

the new method. The new building primitive library and a fully automatic 
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method are used for reconstructing the building models, including the graph 

edit dictionary, to correct the erroneous roof topology graph. 

In order to decide whether the quality of a building model is acceptable we 

need a single criterion for the complete building model. This measure should 

take into account that small deviations of a model from reality are allowed. 

These could be either small building parts, like chimneys or antennas that do 

not need to be modelled, or small geometric discrepancies between 

reconstructed and actual roof planes. Therefore a poorly reconstructed 

building model is defined as a model with an area of at least µ m2 in which 

the lidar points deviate by more than ν m from the model. Reconstruction 

failures in areas smaller than µ m2 are therefore ignored. It is assumed that 

these failures will not significantly impact the usefulness of the reconstructed 

model. In the experiments the values µ = 5 m2 and ν = 0.3 m. After 

reconstruction, the distance to the model is calculated for every lidar point. A 

connected component analysis is applied to the points that deviated from the 

model by more than 0.3 m. Where the component sizes are below 5 m2, the 

building model is considered acceptable. This quality criterion does not make 

use of reference data and hence may not capture all errors. It serves, 

however, as well as a self-diagnosis for the reconstruction method. 

Table 4-3. Model improvements due to the new method. 

Area 

Number 

of 

building

s 

Number 

of 

points 

Metho

d 

Incorre

ct 

building 

models 

(%) 

Averag

e 

absolut

e 

residua

l 

Area 1 61 182502 
old 25 0.39 

new 5 0.04 

Area 2 188 695446 
old 35 0.22 

new 6 0.03 

Area 3 224 731404 
old 29 0.21 

new 3 0.07 

Table 4-3 shows the difference in quality of models reconstructed using the 

old reconstruction method and using the new one. The old building primitive 

library is proposed by (Oude Elberink and Vosselman, 2009) and the new one 

is being introduced in this thesis. The percentage of poorly reconstructed 

building decreases from about 30% to about 5%. The average absolute point 

residual also shows improvements by evaluating the test site as a whole. E.g. 

in area 1, the average absolute residual decreases from 0.39 to 0.04. With 

the new method, we can see a correct reconstruction of about 95% of 
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buildings and the models fit well to the input data. Figure 4-13 shows several 

examples of buildings that cannot be represented by the primitive library 

used in the old method but are well-reconstructed using our method. The 

most common cases relate to buildings with more than 4 faces. The reason 

for this is that the old library does not include such primitives. The building 

primitive library plays an important role in the building reconstruction. Only 

the buildings which are already defined in the library can be well 

reconstructed. Buildings which have not been predefined will be modelled by 

the most similar ones. Therefore the resulting models often appear to be 

well-reconstructed in visualizations, though in fact they are not correct. In 

theory, the library introduced can represent all buildings with plane surfaces. 

Therefore, most buildings will be modelled correctly. 

 

Figure 4-13. Model improvements due to the new library. First row: 
lidar points coloured by surface segments; Second row: models 
reconstructed using the old library; Third row: models reconstructed 
using the new library. 

The improvement only resulting from the new library definition is not very 

large in the three test areas: only a few buildings could not be represented 

by the library defined by Oude Elberink and Vosselman (2009). A larger 

improvement lies in the fact that, with the old library, many roof faces are 

just not well outlined even though correct primitives have been found. In 
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Figure 4-14 (a) some ridges are incorrectly extended, leaving many points 

outside the roof polygons. In Figure 4-14 (b) the ridge line is given incorrect 

endpoints because of chimneys at both sides of the ridge line. In Figure 4-14 

(c) several ridge lines are indicated on one roof plane, and their sequence is 

not correctly detected. This results in failure to create a closed polygon. In 

Figure 4-14 (d) and (e), one ridge line is incorrectly detected and one ridge 

line is not found. These problems are solved by the new roof face outlining 

algorithm and the roof topology graph correction algorithm. 
<0.05m 0.1m 0.2m 0.5m >0.8m

(a) (b) (c) (d) (e)  
Figure 4-14. Model improvements by the new polygon-enclosing 
algorithm. First row: roof polygons reconstructed by old method and 
point distances to the models; second row: roof polygons 
reconstructed by the new method and point distances to the models; 

third row: the correct roof models. The lidar points are coloured by 
the distance to the model. 
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4.5.2 Geometric constraints 
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Figure 4-15. An example of constraint least-squares fitting. Left: the 
input roof segments; Right: the convergence of data energy and 
constraint energy with the iteration number. 

This section tests the constrained least-squares fitting algorithm. Figure 4-15 

shows the input roof segments and the energy convergence including data 

energy 𝑭(𝒑) and constraint energy ∑ 𝑪𝒌(𝒑)𝟐 𝑴
𝒌=𝟏 with the iteration number. This 

building has eight roof segments and eight geometric constraints, including 

horizontal intersection constraints between surface pairs S0-S3, S1-S4 and S5-

S6, equal slope constraints between surface pairs S0-S3, S1-S4, and S5-S6, 

and concurrent constraints between surface pairs S0-S1-S4-S3 and S1-S5-S6-

S4. In the constrained least-squares fitting, the energy of geometric 
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constraints iteratively decreases until it reaches acceptable criteria. After 

every increase of l, the total energy function (Eq. (6)) is minimized. Because 

of the increased weight of the geometric constraints, this leads to an increase 

in the data energy term. The X-axis represents the integration number of the 

all-gradient decent. The red bars are the locations where 𝜆  changes. The 

initial plane parameters are obtained by only considering the input points of 

roof segments. Therefore the data energy has small value at the start of 

optimization, and increase with the weight of constraint energy. Table 4-4 

shows the roof plane geometries before and after optimization. In Table 4-4, 

slope ridge means the angle between the ridge line with the horizontal plane, 

slope difference means the slope difference between the two roof planes, 

concurrent distance means the average distance between intersection points 

to all planes. We can see that all constraints are met, e.g. the slope of ridge 

line Rid(S0, S3) is enforced from 2.75 degrees to 0 degrees, and the 

concurrent distance of intersection point (S0, S1, S4, S3) is enforced from 

0.09m to 0m. 

Table 4-4. Roof plane geometries before and after applying the 
geometric constraints. 
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4.5.3 Interactive correction 

<0.05m

0.1m

0.2m

0.5m

>0.8m

 
Figure 4-16. Model quality before and after manual input. Column 1: 
building image; column 2 and 4: building model before and after 
manual input; column 3 and 5: point clouds coloured by their 
distance to the corresponding models. The model quality is improved 

both in model structure and point distance to model. 

In order to test the model improvements by the interactive correction, the 

quality of reconstructed models is evaluated. The point distances to the 

building models are used to evaluate the model quality. By visualizing the 

point distances to the building model, the model quality can be clearly 

observed, and the operator’s attention is drawn to the poor models. The 

mean distance of a 10 points/m2 density point cloud is typically below 0.2 m 

to a well reconstructed model, but above 0.2 m to poor models, and 

sometimes higher than 0.8 m for completely incorrect roofs (see Figure 

4-16). The improvements obtained by graph editing are also directly shown 

in the reconstructed model. The models without manual input miss some roof 

faces, and the roof structures are wrong. These errors are rectified in the 

models with manual inputs. Both models show a high error value at the lidar 

points of outliers and the small objects that do not need to be modelled like 

chimneys, trees, and air conditioners on the roof. Some lidar points have 

large distance to the model because they are outside the building contour. 

In addition, the operation frequency and time are used to evaluate the 

efficiency of interactive refinement (See Table 4-5). In the four test areas, 

about five percent of the buildings needed manual correction. The frequency 

of interactive correction depends on the data quality and the complexity of 

building structure. The most often used action is ‘Remove Intersection’. In 

most situations, the operator needs to find where to remove unnecessary 

intersection lines. The action ‘Restore a Segment’ is the least used tool, 
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usually less than ten times in one test area, because most roof faces are well 

detected. According to the complexity of test area, the refinement time 

changes from three minutes to ten minutes for about three hundred and fifty 

buildings. The time for the computer's automatic reconstruction is usually 

less than two minutes for each test area. The total consuming time is 

acceptable according to the building numbers. 

Table 4-5. Operation Efficiency.  
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307 14 16 5 4 0 3 

Are
a 2 
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Are
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345 20 35 9 3 1 7 

Are
a 4 

318 16 17 6 8 2 3 

 

4.5.4 Lidar point cloud vs photogrammetric point cloud 

The building primitive library introduced in this thesis is based on building 

structures, and is therefore not restricted to input data types. In this 

experiment, we compare the influence of input data quality to the quality of 

the reconstructed model. The input data includes the airborne laser scanning 

point cloud and the photogrammetric point cloud from dense matching of 

stereo images. 

The Vaihingen dataset is chosen for the evaluation. The Vaihingen dataset is 

part of a benchmark to compare 3D building reconstruction algorithms 

(Rottensteiner et al., 2014). It consists of 20 high-resolution DMC images 

and subsets of Airborne Laser Scanning data used in that test. The Airborne 

Laser Scanning data used in that test are acquired by a Leica ALS50 system 

with average 500 m flying height above ground and 45° field of view. The 

mean strip overlap is 30% and the mean point density is 5 points/m2. There 

are three test sites: Area 1 is densely built and contains historic buildings 

with rather complex shapes. Area 2 contains a few high-rise residential 

buildings. Area 3 is a residential area with isolated houses. The reference 

LoD2 building models for building reconstruction have no roof overhangs or 

façade details, except detailed roof faces. The model accuracy is about 10 cm 

in planimetry and height. Further details are described in (Rottensteiner et 

al., 2014). 

A dense matching algorithm (Jancosek and Pajdla, 2011) is used to produce 

photogrammetric point cloud from the calibrated and oriented stereo images. 
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The method uses visual-hull to reconstruct the difficult surfaces that are 

weakly supported by images. In order to handle large amount of data, the 

space is divided into boxes, each is fitted to memory and processed 

separately. The boxes are cut with overlaps for avoiding conflict between 

boxes. The method can reconstruct difficult surfaces while preserving noise 

and improving computation efficiency. The photogrammetric point cloud 

currently has a higher noise level than the lidar point cloud, and hence 

provides a less reliable roof topology graph for interpreting roof structures. 

Errors in the roof topology graph from photogrammetric point cloud are more 

complex and more diverse than ones from lidar point cloud. As a 

consequence, the roof topology graphs from the photogrammetric point cloud 

require more manual correction operations than those from the lidar point 

cloud. 

Table 4-6 shows the model qualities from the two different point clouds. 

ITCX_G2 is a reconstruction method using lidar data and a graph edit 

dictionary. IMAGE is a reconstruction method using photogrammetric point 

cloud and manual correction. From Table 4-6, we can see that the image 

point cloud provides more complete building data, thus achieving higher 

completeness. The image pixels have a more regular distribution and the 

produced photogrammetric point cloud is denser than the lidar point cloud. 

The correctness is, however, lower because of occlusion and noise. The 

photogrammetric point clouds have a higher residual than lidar data, so the 

geometric accuracy of reconstructed models from photogrammetric data is 

lower than ones from LiDAR data, both in the X-Y plane and in the Z-

direction. Although images are known to be more suitable for outlining, this is 

not evident from our results, because only point clouds from dense matching 

were used and no edges that could have been extracted from the images. In 

the photogrammetric point cloud, the walls and roofs are difficult to 

distinguish, especially when the point cloud is smoothed. Furthermore, points 

on adjacent trees sometimes also affect the classification and thereby 

decrease the precision on the X-Y plane. 

Table 4-6. The qualities of models from lidar point cloud and 
photogrammetric point cloud in the Vaihigen dataset. 

area Abbrev. 

Compl 

roof 

[%] 

Corr 

roof 

[%] 

Compl 

roof 

10 

[%] 

Corr 

roof 10 

[%] 

Topo 

1:M 

Topo 

N:1 

Topo 

N:M 

RMS 

[m] 

RMSZ 

[m] 

1 
ITCX_G2 89.2 96.4 93.2 97.7 5 39 6 0.81 0.23 

IMAGE 94.1 93.2 94.2 98.3 10 33 15 0.69 0.31 

2 
ITCX_G2 71.0 100.0 89.6 100.0 3 4 1 0.53 0.21 

IMAGE 88.4 95.2 98.8 99.2 13 4 1 0.97 0.54 

3 
ITCX_G2 88.1 88.2 96.8 95.8 3 50 2 0.69 0.12 

IMAGE 96.2 86.5 99.2 99.9 12 43 15 0.79 0.25 
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Figure 4-17 provides two examples of buildings showing the quality 

difference between lidar point cloud and photogrammetric point 

cloud. Photogrammetric point cloud provides more complete data, 

e.g. smaller structures in both examples can be seen in the 

photogrammetric point cloud, and the two flat buildings near to the 

main building in the bottom example are more complete. The two 

small hip roofs of the gable building in the bottom example have only 

several points in the lidar point cloud and could therefore not be 

detected. Though they could be seen in the photogrammetric point 

cloud, the noise is too high so that the correct roof structures could 

not be detected. As a result, an incorrect building model is 

reconstructed. 

<0.1m 0.2m 0.4m 0.6m >0.8m

Images
Models from Lidar 

point cloud
Residual of Lidar 

point cloud to models
Models from stereo 

point cloud
Residual of stereo 

point cloud to models  
Figure 4-17. Quality difference of building models from Lidar point 
cloud and photogrammetric point cloud. 

4.6 Conclusion 
This chapter presents an algorithm for the reconstruction of 3D building 

models. The main innovation of this work is the definition of flexible building 

primitives which enables the representation of any complex building with 

planar surfaces. The problem of reconstructing complex roofs is reduced to 

the problem of detecting and reconstructing building primitives. We have 

demonstrated that a small but effective vocabulary of simple parametric 

shapes is capable of expressing extremely complex roof structures. The 

improvements in model quality are experimentally demonstrated by 

comparing our new building reconstruction method with an older method. 

This new method is capable of processing both lidar point clouds with good 

quality and photogrammetric point clouds with a higher level of noise. As 
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there are many errors in the roof topology graphs automatically derived from 

the photogrammetric point clouds, lots of manual inputs are needed to 

correct the roof topology graphs.  

This chapter have also developed a constraint least-squares fitting (CLSF) 

algorithm to include building shape constraints that can simultaneously 

adjust all roof parameters. The experiments show that shape constraints 

such as multi-plane concurrency and multiple horizontal roofs can be 

achieved while minimizing the average distance of lidar points to roof planes. 

Future improvements include adapting the current framework to include non-

flat roof shapes such as domes, improving the robustness of our algorithm to 

decrease errors in the topology graph, and reconstructing entire buildings, 

including walls, by incorporating ground-based LIDAR. 

The roof topology graph can be expanded to include top-graphs of faces of 

walls, as well as any primitive shapes, like cylinders, cones and squares. The 

basic elements in those top-graphs are still meaningful. Therefore, the work 

territory could be expanded to include the modelling of indoor scenes, as well 

as industrial products. As the roof topology graph is not restricted by data 

type, this process could also be used to reconstruct objects from stereo 

images, Kinect points, as well as Terrestrial Lidar points. The proposed 

method is dependent on the surface segment topology graphs, which are 

inevitably erroneous. Although an efficient interactive tool is designed to 

efficiently correct the erroneous topology graph, there is clearly still a need to 

automatically correct errors in graphs. In the following chapter, an automatic 

method will be introduced. 
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Chapter 5 A graph edit dictionary for correcting erroneous roof topology graphs 

A graph edit dictionary for correcting 
erroneous roof topology graphs 

In the task of 3D building model reconstruction from point clouds we face the 

problem of recovering a roof topology graph in the presence of noise, small 

roof faces and low point densities. Errors in roof topology graphs will 

seriously affect the final modelling results. The aim of this research is to 

automatically correct these errors. The graph correction is defined as a 

graph-to-graph problem, similar to the spelling correction problem (also 

called the string-to-string problem). The graph correction is more complex 

than string correction, as the graphs are 2D while strings are only 1D. A 

strategy based on a dictionary of graph edit operations is designed to 

automatically identify and correct the errors in the input graph. For each type 

of error the graph edit dictionary stores a representative erroneous sub-

graph as well as the corrected version. As an erroneous roof topology graph 

may contain several errors, a heuristic search is applied to find the optimum 

sequence of graph edits to correct the errors one by one. The graph edit 

dictionary can be expanded to include entries needed to cope with errors that 

were previously not encountered. 

Input point cloud
Construction of roof 

topology graph

Correction of roof topology 

graph

Reconstruction of 

building parts
Complete model

 

Figure 5-1. Workflow of the building model reconstruction from a 

point cloud. The core part of the workflow is the automatic correction 
of roof topology graph. A graph edit dictionary which stores 
representative erroneous sub-graphs as well as the corrected 
versions is applied to search and correct the errors in the input roof 
topology graph. 

Chapter 4 introduces a tool to interactively correct errors in roof topology 

graphs. Although the tool is efficient and easy to use, we still need to 

automatically correct errors in graphs. The tool has been used to construct 

the corrected sub-graphs for all entries in the dictionary and to construct 

ground truth data for evaluating the model qualities. Because dictionary 

entries typically consist of sub-graphs with multiple errors, making use of the 
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dictionary for error correction is faster than manually correcting all errors. As 

illustrated in Figure 5-1, after automatically correcting the erroneous graphs, 

the roof topology graphs are then used to reconstruct building models, as 

discussed in Chapter 4. 

The remainder of this chapter is organised as follows: Section 5.1 will present 

an overview of the proposed method. The innovative components of this 

method will be presented in more detail in Section 5.3, Section 5.4, and 

Section 5.5. Section 5.6 will discuss the results of the method as applied to a 

dataset of Vaihingen (Germany), and Enschede (the Netherlands). The 

chapter ends in Section 5.7 with concluding remarks, a discussion of open 

questions and suggestions for further work. 

5.1 Overview 
This section describes the main processing flow. The key components are 

further elaborated in the next sections. The procedure starts with the initial 

retrieval of roof topology graphs, similar to the methods presented by Verma 

et al. (2006) and Oude Elberink and Vosselman (2009). In contrast to these 

approaches, the most simple target graphs are used to obtain the largest 

possible flexibility in modelling complex buildings. The reconstructed roof 

topology graphs are the basis for the 3D geometric model of the buildings. 

After the initial model reconstruction by the method discussed in Chapter 4, it 

needs to be decided for every building model whether the quality is 

acceptable. The measures proposed by Rutzinger et al. (2009) are frequently 

used to describe the final building model quality. However, it is not 

straightforward to use one of the measures or a combination of measures to 

make the acceptance decision. Therefore this chapter introduces a simple 

new measure that will accept a building model, if there are no larger areas in 

the point cloud that are not close to the reconstructed model. The various 

quality measures are discussed in Section 5.3. 

The main goal of this work is to analyse and improve the building models that 

did not pass the acceptance test. After analysing reconstruction results of 

over a thousand buildings, we found that various types of errors frequently 

reoccur in the reconstructed models. This led to the question whether it 

would be possible to recognise these types of errors and apply a standard 

correction to the roof topology graph. From this idea the concept of a graph 

edit dictionary was developed. The entries of this dictionary are pairs of 

erroneous sub-graphs of roof topology graphs and the corresponding 

corrected sub-graphs. By looking up an erroneous sub-graph in the dictionary 

the translation to the correct sub-graph can be found. To realise such a graph 

correction strategy various components have been developed: a method to 

characterise the errors such that the erroneous part of a roof topology graph 

can be localised, and a method to decide on the best correction option. 
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An error in a roof topology graph is typically not a single missing or false 

node or edge. If e.g. a roof segment is not detected in the point cloud, the 

node of this roof segment is missing in the roof topology graph as well as the 

edges representing the intersections with adjacent roof faces. Similarly, if a 

false edge is present in the graph, this will also impact the quality of the 

nodes on both sides. Consequently, the entries of the graph edit dictionary 

do not consist of the elementary graph errors only, but of compositions of 

various elementary errors. In addition to the nodes and edges that are 

incorrect the dictionary entries also contain a few adjacent correctly 

reconstructed nodes and edges. These latter nodes and edges provide some 

further context in which the error happened and are valuable for the 

identification of the right error type and selection of the right graph edit rule. 

In order to describe the erroneous sub-graphs in terms of well and poorly 

reconstructed nodes and edges, we need to be able to evaluate the quality of 

the individual nodes and edges. For this purpose quality measures were 

defined (Section 5.3). After the detailed quality analysis of a graph a quality 

label is assigned to every node and edge. The roof topology graph thereby 

becomes an attributed graph. The entries of the graph edit dictionary consist 

of pairs of the attributed erroneous sub-graphs and manually corrected sub-

graphs. Section 5.4 further discusses the construction of the dictionary. 

Once the graph edit dictionary has been composed it can be applied to the 

target graphs of building models that did not pass the overall acceptance 

test. First, the quality of all nodes and edges is evaluated leading to an 

attributed roof topology graph with one or more erroneous sub-graphs. Sub-

graph isomorphism are then determined between the roof topology graph of 

a rejected model and the erroneous sub-graph entries of the graph edit 

dictionary. Typically, multiple graph isomorphism will be found as the sub-

graphs in the dictionary are relatively simple. To select the best match a 

distance between the sub-graphs is defined on the basis of the quality 

attributes of the nodes and edges. Section 5.5 defines this distance measure 

and further explain how to search for the best graph edit rule. 
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Figure 5-2. Graph correction workflow. The colour of nodes and 
edges presents their qualities. Red present erroneous nodes and 

edges, while green means good ones. 

Figure 5-2 visualises the use of the graph edit dictionary. A roof topology 

graph with some errors is matched against the entries of the dictionary. The 

best sub-graph matching is determined and the corrected sub-graph of the 

best matching erroneous sub-graph is used for the correction of the input 

roof topology graph. 

Once the best edit rule has been applied to a roof topology graph a new 3D 

building model is reconstructed. The new nodes and edges are created based 

on the found edit rules. Their geometries (plane and line equations) are 

calculated based on the neighbouring surfaces and the local lidar points. The 

quality of this new model is again evaluated and the editing is accepted if the 

model quality improved. As many roof topology graphs will contain errors in 

several sub-graphs, the building model may not be accepted after the first 

application of an edit rule. In this case the graph correction procedure 

iterates by again searching for the best match with sub-graphs in the 

dictionary. This procedure continues until the building model is accepted or 

until no further edit rules can be found that improve the building model. 

 

Figure 5-3. An example of iterative improvement of a building model. 

Figure 5-3 gives an example of an iteratively improved reconstruction. The 

first reconstruction contained multiple errors. Various larger segments of 

points do not match well with the reconstructed model and are shown in red. 
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After the application of the best editing rule, the model is still not accepted as 

one side of a dormer window was not modelled well. The use of another edit 

rule corrects this error. The point cloud shows no larger patches of points 

that deviate from the reconstructed final building model. 

5.2 Overall quality assessment of building models 

5.2.1 Currently used evaluation measures 

After the reconstruction we need to check the model quality and decide 

whether the model can be accepted. Measures to evaluate the model quality 

have been proposed by Rutzinger et al. (2009). These measures were also 

used in the ISPRS Benchmark on Urban Object Classification and 3D Building 

Reconstruction (Rottensteiner et al., 2014). The evaluation focuses on the 

segmentation quality and the geometrical errors of the reconstructed models. 

The per-roof-plane completeness and correctness of the extracted roof planes 

are reported on a basis (Ccomp, Ccorr). Ccomp10 / Ccorr10 report the completeness 

and correctness for planes covering an area of at least 10 m2. The 

correspondence analysis (N1:M / NN:1 / NN:M) provides the numbers of 

instances where 1:M, N:1, and N:M relations between roof planes in the 

reference and planes in the reconstruction results occur. N1:M is an indicator 

for over-segmentation, NN:1 for under-segmentation and NN:M for clusters of 

planes that are both over- and under-segmented. The RMS errors of the 

planimetric distances are derived by comparing the reconstructed boundary 

points of roof planes to their nearest neighbours on the corresponding 

reference boundaries. The RMS errors of the height differences (RMSZ) are 

based on the separation in height between reference planes and the 

corresponding extracted planes. 

5.2.2 A criterion for accepting a reconstructed building 
model 

As elaborated above the measures proposed by Rutzinger et al. (2009) 

primarily focus on the correctness and completeness of individual roof planes. 

To decide whether the quality of a building model is acceptable we need a 

single criterion for the complete building model. This measure should take 

into account that small deviations of a model from the reality are allowed. 

These can be either small building parts like chimneys or antennas that do 

not need to be modelled, or small geometric discrepancies between 

reconstructed and actual roof planes. Therefore define a poorly reconstructed 

building model is defined as a model with an area of at least µ m2 in which 

the lidar points deviate by more than ν m from the model. Reconstruction 

failures in areas smaller than µ m2 are therefore ignored. It is assumed that 

these failures will not significantly impact the usefulness of the reconstructed 

model. In the experiments the values are set that µ = 3 m2 and ν = 0.3 m. 
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After a reconstruction the distance to the model is calculated for every lidar 

point. A connected component analysis is applied to the points that deviate 

from the model by more than 0.3 m. When the component sizes are below 3 

m2, the building model is considered acceptable. This quality criterion does 

not make use of reference data and hence may not capture all errors. It 

serves, however, well as a self-diagnosis for the reconstruction method. 

Building models that do not pass the quality test will be further analysed and 

improved with the graph edit dictionary. In the quality analysis of building 

reconstruction in larger datasets presented in section 5, the measure eb is 

proposed to denote the percentage of building models that have been 

rejected by the above criterion. Next to this measure the evaluation 

measures developed by Rutzinger et al. (2009) is also presented. 

5.3 Local quality assessment in roof topology 
graphs 

In order to locate the elementary errors in the roof topology graph, we need 

to evaluate the quality of the nodes and edges. These qualities are also used 
as attributes in the roof topology graph for the detection of erroneous sub-
graphs. In our work, the supports by nearby points are the only hints for the 
quality of nodes and edges. Therefore, two measures based on the 
distributions of these points are defined as node and edge attributes. 

5.3.1 Node Attributes 

The node attributes should reflect the probability that a roof polygon is well 
reconstructed. In case of a good reconstruction the distances of the roof 
segment points to the roof polygon will show a normal distribution. We use 

G-tests, a maximum likelihood statistical significance test, to test whether 
the remaining point distances show the expected normal distribution. 

 2 ln( / )i i i

i

G O O E    (8.1) 

Here Oi is the observed frequency in a bin of the point distance histogram, Ei 

is the expected frequency under the null hypothesis of a correct 

reconstruction. The sum is taken over all non-empty bins. 

The distance of a point to the roof plane is defined as the orthogonal distance 

to roof polygons, see Figure 5-4. If the projection of a point is located inside 

the polygon, the orthogonal distance is the orthogonal distance to the 

polygon plane. Otherwise the orthogonal distance is the orthogonal distance 

to the nearest boundary line of the polygon. Similarly, the nearest distance to 

the line segment is the orthogonal distance to the line if the projection lies 

inside the line segment. Otherwise, it is the distance to the nearest end 

point. Incorrect roof polygons caused by errors in the roof topology graph 

typically have many points that are far away from the polygon and will 

therefore receive a low value of the quality attribute. 
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Figure 5-4. Orthogonal distance of a point to the line segment and 
polygons. Left: orthogonal distance to a line segment. Right: 
orthogonal distance to a polygon. 

The G-test is a good alternative to the well-known χ2-test when the expected 

value Ei is small. The distribution of G is approximately χ2, with the same 

number of degrees of freedom as in the corresponding χ2-test. We choose G-

tests because the expected frequency is very small for residuals larger than 

0.3 m when the standard deviation of point distance is small, typically 0.03m. 

The quality attribute of a node in a roof topology graph is defined as p-value 

for the computed G-test value and degree-of-freedom. The p-value is the 

probability of observing a test statistic at least as extreme in a χ2 

distribution. It expresses the goodness-of-fit of the observed frequencies to 

the expected normal distribution. The expected mean is always 0, and the 

standard deviation is computed for each roof segment, because the roof 

material and with it the standard deviation may vary. As we know the 

orthogonal distance should be less than 0.3 m, only the points within 0.3 m 

are used to compute the standard deviation. The node quality χ2 is defined by 

 ( , ) 1 _ ( , )p G chi cdf G      (8.2) 

 

( 2)/2 /2

/20
_ ( , )

2 ( / 2)

t
G t e

chi cdf G dt







 


  (8.3) 

Where p is the p-value, chi_cdf is the cumulative distribution function of χ2 

distribution, λ is the degree of freedom, and Γ( · ) is the Gamma function. 

The degree of freedom is essential for the χ2 test. The degree of freedom is 

the number of independent frequencies reduced by the number of 

parameters of the fitted distribution. In our implementation the histograms of 

point distances always have 50 bins, and the number of parameters of the 

fitted distribution is 2 (mean and standard deviation of the Gaussian). Then 

the degree of freedom is 47 (50-1-2). For a 95% confidence level this results 

in a critical value of 64.0. In experiments it is, however, noted that most 

correct roof polygons had G values below 5 and that many incorrect roof 

polygons had G values below the critical value. It is experimentally 

determined that a degree of freedom of 2 led to a much better 

characterisation of the quality of the reconstructed nodes. The thus defined 

statistical measure is added as a quality attribute to all points. 



A graph edit dictionary for correcting erroneous roof topology graphs 

 94 

5.3.2 Edge Attributes 

The edges of the roof topology graphs have two types of attributes: line type 

and edge gradient. For the line type, we only consider horizontal and sloped 

lines. 

   ,L Horizontal Sloped  (8.4) 

More line types, like convex, concave attributes, could also be applied. 

However, the two types are enough for the application of the graph edit 

dictionary in our tests. 

The edge gradient evaluates the point distribution along the ridge lines. The 

edge gradient is similar to image line gradient, but is adjusted to discrete 

point set. Unlike image pixels, the discrete points do not distribute uniformly. 

Consequently, the edge gradient is calculated based on the equally sized cells 

of the buffer zones along the line segment. The point distribution is described 

more precisely with these cells. In Figure 5-5(a), the points distribute 

uniformly, therefore splitting the edges into bins does not have an effect on 

the edge gradient. However, when the point distribute irregularly, the 

difference will be large.  

(a) 0.91 vs 0.91 (b) 0.45 vs 0.99
 

Figure 5-5. Edge gradient difference of splitting the edge into bins or 
not. First number in each case is the edge gradient with splitting, and 
second number is the one without splitting.  

The edge gradient is based on the ratio of the number of points of one 

segment on both sides of the edge (Eqs. (8.5)-(8.7)). Figure 5-5 illustrates 

how the edge gradient is calculated and the gradient change when an edge 

line transforms along the orthogonal direction of the edge line on the roof 

plane. The gradient is calculated on each of the two supporting roof segments 

(Gl, Gr), and averaged. On each segment, the buffer zone of the edge is split 

into two sides and N bins. A bin pair is a set of two bins, one on either side of 

the intersection line. Each bin pair has a point ratio, and all point ratios are 

averaged together, subtracting the mean ratio from 1 gives the edge 

gradient. The gradient of each bin pair is the ratio of larger number of points 

to the smaller number of points in the two bins. Therefore the ratio is in the 

range of 0 to 1. If both bins of one bine pair are empty, the point ratio is 

defined to be 1.  
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   / 2l rG G G   (8.7) 

The edge gradient, with interval [0, 1], presents the confidence of an edge. 

The higher the edge gradient becomes, the more likely an edge is present. 

An ideal edge has the edge gradient 1, because it has many points on one 

side and no points on the other side, when only considering one supporting 

roof segment. When a model line is located at the real boundary, it reaches 

the maximum edge gradient. Figure 5-6 shows the edge gradient of all model 

lines. Good lines are shown as green or grass yellow, while incorrect lines are 

tagged as red or black. The edge gradient can be used to evaluate the model 

quality and guide the reconstruction process. 

0.0

1.0

 
Figure 5-6. Example of edge gradient. Left: the gradient of one 
intersection line is computed on both roof segments. Right: the 
gradient on one segment, and the gradient changes if the line 
position shifts along the orthogonal direction of the intersection line. 
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Figure 5-7. Edge gradients of model lines. Up: input lidar points. 
Bottom: line gradients. 

5.4 Graph edit dictionary 
The principle of spelling correction is used to correct errors in the topology 

graph. There are, however, a few differences between the spelling and graph 

corrections. Words can be considered as one-dimensional graphs, whereas 

roof topology graphs are two-dimensional. The creation of a full dictionary of 

building topology graph, as a dictionary of English words, will be infeasible. 

Unlike spelling errors, errors in roof topology graphs usually occur in groups. 

A group of errors can be represented by a single erroneous sub-graph and be 

used as entry of a graph edit dictionary. In analogy to the 80-20 law we aim 

to correct a large percentage of the errors by creating editing rules for a 

small number of most common erroneous sub-graphs (Figure 5-8). It is 

accepted to leave the rare errors for interactive processing by a human 

operator. The dictionary can expand to include new error types when further 

training data becomes available. Therefore, it is adaptable to specific 

situations (e.g. architectural styles). The construction and expansion of graph 

edit dictionary (GED) will be discussed in the next sections. 
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Figure 5-8. Typical error correction. Top: typical errors and correction 
methods. Bottom: entries in the graph edit dictionary. The red dashed 
lines are false intersection lines in the building model and false edges 
in the top-graph. The red shadowed polygons in the building models 
are undetected roof faces. The red circles and lines represent new 

generated nodes and edges. 

5.4.1 GED construction 

The structure and attributes of the erroneous and corrected sub-graphs are 

automatically learned from a training data set. The training strategy is aiming 

at automatically constructing and updating the graph edit dictionary 

according to provided training data set. The dictionary can be updated to 

better identify stored erroneous graphs or to correct new error types. The 

users only need to provide a new training data set. Maximum overlaps of 

training graphs are identified by graph isomorphism, which is discussed later. 

The greatest common sub-graph of all training graphs for one error type is 

then used as the entry graph. The attributes of nodes and edges are 

averaged over all training graphs. The entry graph can be seen as the cluster 

centre of the set of error graphs of the same type. The distance between two 

graphs is evaluated by the graph edit distance (discussed in section 5.5) and 

depends on the number of nodes and edges, as well as their attributes. The 

distance between two clusters determines the classification sensitivity. As 

larger graphs are easier to classify we use the greatest common divisor of 

training graphs as the entry graph. In this way the entry graphs not only 

contains nodes and edges with a low quality, but also the surrounding nodes 

and edges with a high quality. The latter nodes and edges serve to 

understand the context of the error and improve the error classification. 

The interpretation graphs for each entry graph are the possible correction 

ways (corrected sub-graphs). In the training data, an interpretation graph is 
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manually assigned to an erroneous graph. Then in the training period, the 

interpretation graphs are learned in the same way as the entry graphs. As 

one erroneous block may have several correction ways, the entry graph may 

also have several interpretation graphs. But in most cases, one entry graph 

only has one interpretation graph in our tests. 

5.4.2 GED expansion 

While working with the graph edit dictionary, the dictionary can be improved 

in two ways. When an entry of an existing error type is correctly applied to 

new data, the averaged node and edge attributes of the erroneous sub-graph 

can be updated. In the case of encountered new error types, the operator 

can manually correct the roof topology graph and insert the pair of erroneous 

and corrected graph as a new entry into the dictionary. In this way dictionary 

gradually grows and can be trained to specific application areas. 

5.5 Searching the best graph edits 

5.5.1 Graph matching 

The graph matching is implemented by recursively traversing a tree, which 

enumerates all possible transformations between graphs X and Y (Fig. 11). 

The costs of each transformation are determined by an edit distance 

measure, which will be defined further on. The transformation with the 

minimum edit distance is chosen as the best match. More advanced tree 

search methods are not required as both the graphs in the dictionary and the 

data graphs are usually small, less than one hundred nodes. The graph 

matching is used for both the training and use of graph edit dictionary. In the 

training phase the graph matching is applied to find error blocks of the same 

type. In the correction phase the graph matching is used to search for 

potential sub-graphs in the edit dictionary.  

The similarity of two graphs is determined by a graph edit distance, which 

measures the editing effort to transform one graph into the other. Classically, 

the graph edit distance is defined as the number of required operations for 

deleting and inserting nodes and edges. For looking up erroneous graphs in 

the dictionary, we require a one-to-one correspondence between the nodes, 

but not for the edges. Hence costs only incur for missing or extra edges. In 

addition to these costs, we also include costs for differences in the attributes 

of the nodes and edges defined in section 5.3. The edit distance between 

graphs X and Y is defined as: 

     1 1 2 2, , ,
i i ij ij ij ij ij ijX Y X Y X Y X Y

i ij

W X Y G G L L L L             (8.8) 

Where the first sum captures the differences in the quality of the nodes and 

the remainder measures the differences in the edges. The three parts of the 
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latter sum describe the differences in the edge gradient values G, costs for 

different edge labels where δ1 evaluates to 1 if the labels are different and 0 

if the labels are the same, and costs for missing edges where δ2evaluates to 

1 if an edge is missing on one of the two graphs and 0 when corresponding 

edges are present. In experiments weights k1  = 2 for differences in edge 

slope and a high k2 = 10 for missing edges. These values were determined 

experimentally. 

5.5.2 Looking up in the GED 

By comparing all entries in the GED, the entry best matching the input graph 

as defined by the graph edit distance will be determined. The nodes of sub-

graph are exactly corresponding to the nodes of entry graph. In this way, the 

error sub-graphs in the input graph are recognised. In Table 5-1 two input 

graph are looked up in a graph edit dictionary with four entries. The first 

input graph best matches with the third entry. Nodes 90, 78 and 89 in first 

input graph are matched with nodes 3, 1 and 2 in third entry graph. 

Table 5-1. Looking up in the graph edit dictionary. The colours 
present the attributes of nodes and edges.  The number in the circle 
is the node number, and the number below the graph is the edit 
distance between the sub-graphs of the input graph and the entry 
graphs. The edit distance in green is the minimum edit distance for 
matching all entries. 
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5.5.3 Heuristic searching of shortest path 

The problem of correcting an erroneous graph is a graph-to-graph problem. 

By analysing thousands of buildings, we found repetitive erroneous sub-

graphs and their corrections, which are taken as the basic corrections. Hence, 

a roof topology graph can be corrected by sequentially applying various basic 

corrections. Each correction can be formulated as a transition rule: 

  1G = ti k iG   (8.9) 

Where 1Gi  is the previous graph, G i  is the new and improved graph, and 

kt is a basic transition taken from the graph edit dictionary. 

One transition path is composed by a sequence of several basic transitions: 

 
1 2

= t , t , , t
nk k k kT   (8.10) 

The graph correction problem can be represented as an energy optimization 

problem (Eq. (8.11)): the target topology graph is the one which minimizes 

the model energy. The erroneous graph is at a high-energy state. After 

releasing energy in each transition, the graph gradually arrives at a stable 

state with a minimum energy. Hence, we are seeking the sequence of edit 

operations Ti leading to the best graph: 

 


  
  

: arg min
i

output i input
T T

G E T G


  (8.11) 

Where Ginput and Goutput are the graph before and after correction and E is the 

energy defined as the sum of one minus the quality of each of the nodes and 

edges of the graph. 

The transition may have many alternative status goals and many possible 

paths. The objective is to search the best correction path, which needs the 

fewest basic transactions, from the set of all possible transaction paths. The 

best-first search strategy is used to search the shortest path. In each 

iteration step, the correction with the maximum energy release is taken. This 

is done by searching the most similar error pattern stored in the dictionary. 

The correction stops when no erroneous sub-graph could be found. The 

advantage of this heuristic search is that it can find a good solution in 

reasonable time, though not always the best one. When correcting one sub-

graph, some other nodes and edges also change their states. For example, 

the segment attribute is determined by all cycles neighbouring to the node. If 

one cycle changes, the attribute will also change. Each step corrects one 

error block, which is only influenced by its members, and then the next 

erroneous sub-graph will appear when the last one is corrected. 
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5.6 Experiments 
In the experiments we want to test the ability of the dictionary to correct roof 

topology graphs, the robustness of entries with the training data set, and the 

expandability of dictionary. We use the evaluation methods described in 

(Rutzinger et al., 2009) and the measure based on the point-to-model 

distances as described in Section 5.2.2 to evaluate the model qualities. Two 

data sets were used for the experiments. 

5.6.1 Vaihingen (Germany) 

The Vaihingen dataset is part of a benchmark to compare 3D building 

reconstruction algorithms (Rottensteiner et al., 2014). The Airborne Lidar 

Scanning data used in that test are acquired by a Leica ALS50 system with 

average 500 m flying height above ground and 45° field of view. The mean 

strip overlap is 30% and the mean point density is 5 points/m2. There are 

three test sites: Area 1 is densely built and contains historic buildings with 

rather complex shapes. Area 2 contains a few high-rise residential buildings. 

Area 3 is a residential area with isolated houses. The reference LoD2 building 

models for building reconstruction have no roof overhangs or façade details, 

except detailed roof faces. The model accuracy is about 10 cm in planimetry 

and height. Further details are described in (Rottensteiner et al., 2014). 

Table 5-2. Evaluation of the building reconstruction results in 
Vaihingen. 

Name Nb GED 
eb 

[%] 

Ccomp 

[%] 

Ccorr 

[%] 

Ccomp10 

[%] 

Ccorr10 

[%] 

N1:M/NN:1 

/NN:M 

RMS 

[m] 

RMSZ 

[m] 

area1 38 

No 18.4 84.7 96.2 87.8 99.2 
13 / 41 / 

16 
0.46 0.24 

Yes 7.9 89.2 96.4 93.2 97.7 
5 / 39 / 

6 
0.42 0.23 

area2 15 
No 20.0 88.9 99.1 91.7 100.0 

15 / 3 / 
1 

0.72 0.36 

Yes 13.3 71.0 100.0 89.6 100.0 3 / 4 / 1 0.49 0.21 

area3 57 
No 10.5 86.0 84.4 93.5 95.0 

5 / 48 / 
2 

0.32 0.15 

Yes 3.5 88.1 88.2 96.8 95.8 
3 / 50 / 

2 
0.32 0.15 
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Figure 5-9. Reconstructed models of Vaihingen test areas. From left 
to right: area 1, area 2 and area 3. 

The lidar data is classified and segmented into roof segments. As this 

reference dataset only has about 100 buildings, and only a few building 

models need to be corrected, there are not enough samples to test the 

influence of the number of entries in the graph edit dictionary and amount of 

the training samples. Therefore we only test the correction ability of the 

graph edit dictionary. Table 5-2 shows the quality of models before and after 

graph correction. Nb is the number of buildings in the area. The GED column 

shows whether or not the graph edit dictionary was applied. The measure eb 

is the percentage of erroneous building models as defined in Section 5.2.2 

with a maximum size of 3 m2 of points further than 0.3 m away from the 

model. The measures Ccomp, Ccorr, Ccomp10, Ccorr10, N1:M, NN:1, NN:M, RMS, and 

RMSZ were all introduced in Section 5.2.1. Most measures show the models 

are improved.  

 

Figure 5-10. Two often wrong reconstructed buildings in the 
Vaihingen dataset. 1) Roof segments and ridges without correction; 
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2) Reconstructed models from 1); 3) Roof segments and ridges with 
correction; 4) Reconstructed models from 3). 

Figure 5-9 shows the reconstructed models after the graph correction. Models 

in area 1 are improved most obviously because their complex shapes often 

result in topology graph errors. One building could not be corrected because 

the sparse point density results in a lack of data on a major part of the 

building. Models in area 2 are hardly improved because the large number of 

small point segments on high rising buildings strongly affect the roof topology 

graph and are hard to interpret. In this area the completeness for all roof 

faces and the correctness for roof faces with more 10 m2 show the model 

quality was reduced. The correction algorithm sometimes incorrectly detects 

errors and then deteriorates the model. Figure 5-10 illustrates some model 

improvements in area 1. The two buildings are incorrectly reconstructed by 

most methodologies participating in the ISPRS test (Rottensteiner et al., 

2014). The main reason for this is that the low point density (about 5 

point/m2) requires a low threshold to detect ridge lines. Hence, false ridge 

lines are likely to be created. With a higher threshold many ridge lines would 

be missed. The experiments show that the wrong roof topology graphs were 

correctly detected and corrected by the proposed GED, resulting in correct 

models. 
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5.6.2 Enschede (Netherlands) 

`̀ `

` `

`

`

`

`

 

Figure 5-11. Reconstructed models of one area in Enschede. 

A dataset of Enschede is selected to fully test the graph edit dictionary 

because the number of buildings in the ISPRS benchmark are not enough to 

evaluate the performance of the graph edit dictionary. The city is 
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characterized by residential buildings with diverse structures in the outskirts 

and a small part of commercial buildings in downtown. The laser scanning 

data has been acquired by the FLI-MAP system of Fugro Aerial Mapping B.V 

at a flight height of 275 m and a 30% strip overlap. The point density is on 

average about 20 points/m2. Figure 5-11 shows the reconstructed models for 

one area of the dataset. 

Performance of dictionary correction 

Table 5-3. Evaluation of the building reconstruction results in 
Enschede. 

Area Nb GED eb [%] RMS [m] RMSZ[m] N1:M /NN:1 /NN:M 

De_Laares 751 
No 5.3 0.16 0.13 14 / 3 / 9 

Yes 3.7 0.15 0.11 15 / 7/ 9 

Gerfert_2 409 
No 5.6 0.13 0.13 3 / 2 / 3 

Yes 3.2 0.11 0.05 2 / 1/ 0 

Gerfert_3 233 
No 9.4 0.40 0.24 11 / 5 / 6 

Yes 8.2 0.39 0.24 10 /5 / 5 

Gerfert_4 418 
No 9.1 0.32 0.29 15 / 1 / 20 

Yes 6.7 0.26 0.24 10 / 3 / 12 

Gerfert_5 235 
No 7.7 0.32 0.24 18 / 1 / 6 

Yes 6.8 0.32 0.24 16 / 7 / 6 

Gerfert_w_1 427 
No 7.5 0.24 0.14 18 / 9 / 9 

Yes 5.9 0.22 0.13 15 / 5 / 7 

Gerfert_w_2 472 
No 6.4 0.14 0.09 18 / 9 / 9 

Yes 5.1 0.13 0.09 15 / 5 / 7 

Gerfert_w_3 682 
No 9.8 0.18 0.15 35 / 4 9 

Yes 7.3 0.17 0.14 21 / 2 / 9 

Hogeland_n_1 431 
No 4.4 0.35 0.2 50 / 9 / 17 

Yes 3.5 0.33 0.11 46 / 9 / 12 

Hogeland_n_2 433 
No 6.5 0.22 0.13 78 / 10 / 42 

Yes 4.4 0.22 0.12 66 / 12 / 38 

We selected 10 test sites with a total of about 4500 buildings for the 

performance test of graph edit dictionary because of their diverse building 

structures. For each area, we compare the model quality before and after the 

graph correction. The full dictionary has 15 entries. Table 5-3 shows that the 

initial reconstruction already had an acceptance rate of 93%. The graph edit 

dictionary corrected around 25% of the erroneous buildings, leaving only 5% 

of the buildings in total which are not accepted. The correction rates vary 
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from 5% to 45% because the building types and complexities are different in 

the 10 test sites. The errors in some test sites are well learned in the graph 

edit dictionary, while less learned in others. The correction rates are also 

influenced by the permissible size of an area with a poor reconstruction result 

as defined in section 4.2.2. Figure 5-12 shows that the relative correction 

rates for all test sites increase with the area size threshold. This implies that 

our method performs better in correcting the larger errors. Small errors, e.g. 

caused by chimneys and other small constructions on roofs, are more difficult 

to correct automatically. In the next experiment, we test the performance of 

dictionary with different entries. 

 
Figure 5-12. Correction rate as a function of the acceptable size of an 

area with a poor reconstruction. 

Performance of expanded dictionary 

In this experiment, we test the performance of graph edit dictionaries with 

different numbers of entries. We assume the dictionary could correct more 

building error types by expanding it. Four areas, Gerfert_2, Gerfert_3, 

Gerfert_4, and Gerfert_5, are selected for the test. In each area, we 

compared the reconstruction results after correction by the graph edit 

dictionary with different entry sets. The full dictionary has 15 entries. We 

choose the most frequent one entry and two entries of the full dictionary for 

the two new dictionaries. The dictionary with zero entry means the models 

are not corrected. Results are shown in Figure 5-13. As expected the model 
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quality improves with the dictionary size. Therefore, when adding more 

suitable entries, the correction ability of GED increases although the first few 

entries will have the largest impact. 

 

Figure 5-13. Effects of entry numbers in the GED. Gerfert_2, 
Gerfert_3, Gerfert_4, and Gerfert_5 are the test areas. 

Effects of training samples 

In this experiment, we test the performance of the dictionary entry with 

different training data. As the attributes of the entry graphs are the average 

attributes of graphs in the training dataset, the representativeness of training 

dataset determines the ability of entry to match with a graph containing the 

same error. We select one of the most frequent errors in the Enschede test 

area, and manually collect the lidar points of buildings with this error. The 

test area has 24 buildings of this type in total. In each group, a part of them 

are randomly chosen and used as training data, and the rest of them as test 

data. E.g., when 1 sample is taken as training data, the remaining 23 

buildings are used as test data. One building with this error is shown in 

Figure 5-14. For simplification, only the chimney and its supporting roof part 

are shown. In the Netherlands, many resident buildings have chimneys of 

less than 0.5 meters in height. The laser segment of the chimney is often 

incorrectly detected to be intersecting with the supporting roof. Therefore, 

two wrong ridges will be detected. In the corrected roof topology graph the 

corresponding two wrong edges, as well as node of the chimney roof are 

deleted. Figure 5-15 shows the detection rates as a function of the number of 

training samples. The detection rate clearly increases with the number of 
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training samples. With 7 or more training samples, the algorithm detects all 

buildings in the test dataset.  

(a) (b) (c)
 

Figure 5-14. One frequently incorrectly constructed building. a) Roof 
segments and ridges; b) Roof topology graph; c) Reconstructed 

model. Up: without correction; Bottom: with correction. 

 
Figure 5-15. Detection rates as a function of the number of training 

samples. When the number of training samples reaches 7, all 
remaining 17 buildings are correctly detected. 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

D
e

te
ct

io
n

 R
at

e
 

Number of traing samples 



Chapter 5 

 109 

5.6.3 Problems not solved with the graph edit dictionary 

 

              (a)                      (b)                       (c)                      (d) 
Figure 5-16. Buildings could not be well reconstructed now. First 

row: images; second row: lidar segments; third row: reconstructed 

models. (a) free form surfaces; (b) tiny roof pieces; (c) steep roofs; 
(d) light absorbing surfaces. 

Figure 5-16 shows some buildings that could not be reconstructed well. The 

main problems are caused by the complex shape of the buildings and the lack 

of data. Our algorithm could approximate some smooth curved surfaces, like 

cylinders, spheres, and cones, by a group of planar surfaces. Figure 5-16 (a) 

shows that a building with ellipsoidal surfaces is approximately modelled, but 

many buildings with freeform surface could not be modelled by planar 

surfaces. Though in theory any surface can be represented by a set of planar 

surfaces, the limited point density restricts the detection of such small planar 

segments. Another problem is that our method can only recover topology 

graphs when the larger majority of a building is well captured. Figure 5-16 

(b) shows a building with very small roof faces that are not well captured by 

the laser scanner. This resulting misdetection of these surfaces seriously 

affects the whole model as these surfaces play an important role in the whole 

roof topology graph, unlike a chimney which could be ignored. Some steep 

roofs, shown in Figure 5-16 (c), although captured, are not well extracted by 

surface growing algorithm. The church shown in column (d) of Figure 5-16 is 
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not well recorded because of its light absorbing surfaces. This kind of 

incorrectly reconstructed building models constitutes around 5% of our 

dataset of reconstructed models. 

5.7 Conclusion 
This paper presents a graph edit dictionary to detect and correct errors in 

roof topology graphs. The graph edit dictionary with 15 entries on the 

average corrects 25% of the erroneous building models in our test areas 

rising to about 50% for some test areas. It increases the successful 

reconstruction rate to about 95% in the Enschede test dataset. The dictionary 

is expandable towards error types which have not yet been considered. The 

training data for each entry is as well crucial. About 5 training samples are 

usually enough to train an entry.  

Still about 5% buildings could not be automatically reconstructed. The 

problem mainly comes from the seriously lack of data and complex freeform 

surfaces. What is more, the point clouds with poor quality, like 

photogrammetric point cloud,  cannot provide good roof segments therefore 

the roof topology graph based method cannot be applied to reconstruct 

buildings. In contrast to only considering the individual building, further work 

can be taking into account the information that might be learned from the 

building’s context. The geometric and topological relations between building 

parts could be learned to constrain the model reconstruction. Obvious further 

ways for improvement are the inclusion of maps and images. 
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Chapter 6 Conclusions and Recommendations 

Conclusions and Recommendations 

This thesis introduced new methods on 3D building reconstruction from 

airborne lidar data. Various novel methods have been discussed, including 

building regularities, definition of flexible building primitives and automatic 

correction of roof topology graphs. The conclusions for each step have been 

given in the previous chapters. This chapter concludes with an overview of 

the approaches in section 6.1 and a discussion of perspectives for further 

research in section 6.2. 

6.1 Conclusions 
This thesis has made two main contributions. Firstly, flexible building 

primitives have been proposed to solve the problem that many complex 

buildings cannot be represented by the state-of-the-art building primitives. 

Secondly, a graph edit dictionary has been introduced to automatically 

correct the errors in roof topology graphs. In order to solve the problems 

accompanying the two main contributions, several important contributions 

have been made, including shape regularities, efficient interactive tools, 

adaptive constraints, and a single quality criterion. By introducing the 

improvements inch by inch, the method presented in this thesis is able to 

automatically reconstruct 95% buildings now. 

The work presented in this thesis still has some limitations. The first problem 

is that about 5% buildings still could not be automatically reconstructed, 

especially the buildings that are seriously lacking data. It is very difficult to 

design an algorithm which gives considerations for all buildings. Therefore it 

is better to manually reconstruct the remaining 5% buildings. The second 

problem is that most test areas are in the Netherlands. Further tests should 

be carried out for other kinds of buildings in a number of countries. The 

flexible building primitives are able to represent all buildings in theory. But 

the adaption ability of graph edit dictionary should be tested in area where 

building style differs from the Dutch buildings. Additionally, roofs in other 

areas, like China, are not as clean as buildings in the Netherlands. Many 

objects, like air conditionings, clothes hangers, vegetation, and so on, are 

located on the roofs and will affect the correct detection of roof segments. 

Only when all differences are considered and adapted, the workflow for 3D 

building reconstruction can be universally applied. 

Another problem is that the proposed method is designed for lidar data, but 

not well suitable for the photogrammetric point clouds. The photogrammetric 
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point clouds are similar to lidar point clouds, but are much cheaper and have 

texture by themselves. The photogrammetric point clouds produced by the 

state-of-the-art methods are less accurate than lidar point cloud. Therefore 

roof segments cannot be well detected. The methods proposed in this thesis 

require derived roof topology graphs of a reasonable quality, be it is not 

perfect. In order to use photogrammetric point clouds, the algorithm should 

be less relaying on the good roof topology graphs. More model-driven 

methods could be a choice because they are less sensitive to noise. However, 

the pure model-driven methods exhaustively fit models to input data and are 

therefore less accurate and much more time consuming. Roof topology 

graphs are the middle level information between input data (point clouds, 

lines and segments) and final building models. Roof topology graphs will still 

provide valuable hints for building modelling from noisy data. The methods to 

derive and use roof topology graphs should be well designed. 

The building primitives defined in this thesis are more flexible than other 

building primitives. However, the flexibility is used at the cost of strong 

constraints. When the input data is of high quality, the flexibility enables us 

to reconstruct buildings accurately. However, when the input data is poor, 

the algorithm may result in some odd models. Therefore, the flexible 

primitives are better to be applied with high quality data. 

6.2 Recommendations 
This thesis only uses point cloud for the building reconstruction. But in most 

situations 2D topographic maps are already available. The users who are 

interested in 3D models usually want the 3D models to be consistent with the 

2D maps. Therefore the 2D maps should be taken into account in the 

reconstruction. Besides, one important application of 3D models is 

visualization. The models should be mapped with textures for showing 

details. For large-scale applications we also need to consider update, 

management and storage. 

This thesis uses airborne lidar point clouds to reconstruct LOD2 buildings. 

Two main research topics would be interesting to extend this research. The 

first one will be to still reconstruct LOD2 buildings, but using other input data 

or combination of other data, e.g. stereo images and SAR. The building 

regularities used in this thesis still hold for any type of data, but the way to 

use regularities should be adapted to input data. The roof topology graphs 

derived from data that are less accurate than lidar point cloud have more 

serious errors and the errors are rarely repeated. Therefore, the graph edit 

dictionary may be inefficient to correct errors in those roof topology graphs. 

The second research topic should be to extend the reconstruction to other 

objects. All of the important objects that can be seen from airplanes, 

including trees, towers, lamps, roads, railway, and so on, would be taken into 
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account. The application of lidar will dramatically transform field works of 

survey into indoor works in near future. In addition, because of the fast 

improvements of cloud computing and artificial intelligence, the automation 

will increase quickly, meaning the survey industry is changing and lots of new 

applications will boom. The 3D maps will be the infrastructure data for better 

understanding the relationship between societies, cities and nature, and 

further on for better serving human beings.  From this view, the combination 

of 3D maps with other disciplines, including economics, hydrology, urban 

planning, and archaeology and so on, will be important research topics in 

near future. 
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