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Summary

Currently, a tremendous improvement is observed in the accuracy and spatial
resolution of global Earth’s gravity field models. This improvement is achieved
due to using various new data, including those from satellite gravimetry missions
(CHAMP, GRACE, and GOCE); terrestrial and airborne gravity data, as well as
altimetry data. The new gravity field models can be applied, in particular, to improve
our knowledge of the Earth’s interior structure. The aim of this study is to compile
a global map of the Moho interface using a global gravity model and additional
available information about the crust density structure. In our study, we use the
gravity field model EIGEN-6C2 and the global crustal model CRUST1.0 derived
from seismic data. In addition, we utilize seismic-based models of Moho as prior
information: CRUST1.0 model, as well as the Crust07 model, which was derived by
a fully non-linear inversion of fundamental mode surface waves.

The observed gravity field contains nuisance signals from the topography and
density heterogeneities related to bathymetry, ice, sediments, and other crustal
components. Therefore, we model and sequentially subtract these signals by ap-
plying so-called stripping corrections. This results in crust-stripped gravity field
quantities (gravity anomalies and gravity disturbances). In the course of research,
we review different analytical, semi-analytical, and numerical forward modeling
techniques to compute the gravitational attraction of a body. We also derive an
analytical formula for the computation of gravitational potential generated by a
polyhedral body having linearly varying density. We compute the correction to
observed gravity field using the analytical methods in the vicinity of the body and
using semi-analytical methods in the far zone. We demonstrate that the sequential
correction of gravity disturbances and gravity anomalies for nuisance signals in-
creases the correlation with the Moho depths. We use the corrected gravity field
to find the global (mean) value for the crust-mantle density contrast using the
Pearson’s correlation method. We use an empirical technique in which the absolute

xv



xvi Summary

correlation between the Moho depth from CRUST 1.0 model and the updated crust
stripped gravity disturbances/anomalies is minimized. The updated stripped gravity
disturbances/anomalies are obtained by adding a contribution (attraction) related
to the density contrast between the reference crust and the upper most mantle to
stripped gravity disturbances/anomalies.

The recovery of the Moho geometry is based on solving a system of linear equa-
tions which relates the crust-stripped gravity field (represented in terms of spherical
harmonic coefficients) and the geometry of the Moho interface (represented in terms
of Moho depths at the nodes of an equiangular geographical grid). In this way,
corrections to the prior Moho configuration are estimated. It is known that a stand-
alone inversion of gravimetric data may lead to inaccurate results because it is
impossible to separate the signal from the interface under consideration and gra-
vimetric signals from other sources (particularly, those located deeper inside the
Earth). To suppress the latter signals (e.g, related to inhomogeneities of the mantle
density and deep Earth structure), we propose to eliminate the contribution of
low-degree spherical harmonics from input gravity data. Furthermore, we apply
degree-dependent weights to the remaining spherical harmonics coefficients. The
weight matrix is designed in such a way that low degrees are weighted less and high
degree more.

We have developed an advanced inversion procedure in which gravity data and
information from other (seismic) sources are exploited simultaneously, using zero-
order and first-order Tikhonov regularization concepts. The variance components
estimation (VCE) procedure is used for the estimation of relative weights of different
data sets.

We consider a number of inversion strategies based on different combinations of
data sets, regularization types, degree-dependent weights applied to input gravity
data, as well as input gravity data minimum and maximum truncation degrees.
For the selection of optimal inversion parameters, we compare the developed Moho
models with the two regional Moho models for the European crust. The two models
includes the EuCrust07 and EuM09 developed by Magdala Tesauro et al. and Marek
Grad et al., respectively. We find that the best model is obtain when using a joint
inversion (gravity data plus CRUST 1.0 and CRUST07 seismic models), first-order
Tikhonov regularization, degree-dependent weights proportional to the fourth power
of the degree and setting the minimum and maximum truncation degree equal to



xvii

90 and 180, respectively. The final Moho model (DMM-1) is compared with two
regional models: (1) for the South America and (2) for Africa. From the comparison
and statistical analysis we found that our developed model DMM-1 have the best
RMS fit with the two regional models as well as with observed point values.
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1

Introduction

1.1 Background

To learn more about the Earth’s structure, geophysicists and geologists use two main
sources of information: direct evidence from rock samples and indirect evidence
from geophysical data. Geophysical data are the main source of information about
the deep interior of the Earth. With geophysical data, the researchers have analysed
the Earth’s lithosphere and mantle, and their composition, structure and dynamics.
Geophysical data are divided into two categories: those received through artificial
sources, and those retrieved from the natural sources. In case of artificial sources,
the researchers drill holes in the Earth’s surface and blast rocks, and make inference
about the deep conditions of the Earth. While the natural sources includes the data
generated by earthquakes. The former is a time-consuming, expensive, and difficult
method, because it is difficult to drill a deep hole due to the high temperature and
pressure. The most common type geophysical data used for those purposes is the
records of seismic waves generated by the earthquakes. However, such data can not
provide a global coverages, for studying the Earth’s crust and upper mantle.

An alternative source of information about the Earth’s interiors is the gravity
field. Gravity measurements sense density distribution inside the Earth. They play
a vital role in modeling the Earth’s interior especially in global and regional studies.
Application of gravimetry in studying the global structure of the Earth is facilitated
by the advent of modern satellite gravimetry missions as well as by the rapid
increase in computational power. Several satellite missions, such as Challenging
Mini-satellite Payload (CHAMP) (Reigber et al., 1996, 1999, 2002), Gravity Recovery
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2 Introduction

and Climate Experiment (GRACE) (Tapley et al., 2004) and Gravity field and steady-
state Ocean Circulation Explorer (GOCE) (Drinkwater et al., 2003, Floberghagen
et al., 2011) are delivering data that allow the accuracy and spatial resolution of
global gravity field models to be improved drastically. The latest models based on the
data from these missions have a spatial resolution of about 80 km in terms of half
wavelengths. These models have global and homogeneous coverage and well-known
stochastic properties. Further improvement of the spatial resolution can be achieved
by combining satellite gravity data with airborne and ground-based gravity data
and radar altimetry data over the oceans.

One of the primary interfaces of the Earth interior is the boundary between
the crust and mantle, which is called the Mohorovičić discontinuity, or Moho. Geo-
physicists widely use seismic and gravity data to investigate the depth of the Moho
discontinuity. Regional and global models of Moho are produced this way. In 1980,
the establishment of International Lithosphere Program (ILP) emphasized the im-
portance of investigating the Moho depth variation. The ILP seeks to explain the
nature, dynamics, origin and evolution of the lithosphere through international,
multidisciplinary geoscience research projects and coordination. The research aim
to address societal needs, e.g. understanding natural catastrophes and other solid
earth processes that affect the biosphere. The research provide information for
improved resource exploration, environmental protection, and satisfying scientific
curiosity. Lithosphere is a Latin words which mean stony layer. The crust and upper
portion of the mantle called the lithosphere. It is a layer where most important
geological processes occur, such as mountain-building, earthquakes and the source
of volcanoes. The movements of Earth’s tectonic plates is due to the slow churning
and overturning of the mantle.

In gravimetry the gravity data are used to study the deep Earth structure.
Generally, the gravity field functionals that are computed from the global gravity
field models, are free air gravity anomalies or gravity disturbances. These gravity
field functionals contain also the signal from terrain over continents, bathymetry
variation over oceans, ice, sediments, and different density heterogeneity inside the
crust and mantle. To use gravity data for the inversion into the Moho, the aforemen-
tioned signals contributors have to be removed from the gravity data. The relation
between anomalous density distribution and gravitational attraction/potential is
provided by the Newton volume integral. Various numerical methods are applied
to evaluate the Newton’s volume integral when studying the local gravity field. A
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simple form of the integration is used, such as splitting the integration volume
into right rectangular parallelepipeds (prisms) with constant density within each
individual prism. For better accuracy of gravity field generated by a body having
homogeneous/inhomogeneous density formations, the approximation of geological
structures by more general geometrical forms than rectangular prisms has been
adopted.

1.2 Objectives

The primary goal of this research is to use state-of-the-art information about the
gravity field to improve the estimates of Moho depths globally. The basic procedure
of gravimetric Moho modeling consists of two numerical steps; (1) the gravimetric
forward modeling and (2) gravimetric inverse modeling. Gravity data used for a
recovery of the Moho depths should comprise only the gravitational signal of the
Moho geometry. Prior to used gravity data for Moho inversion, the gravitational
signal generated by all know anomalous density structures should be modeled and
subsequently removed from the observed gravity data. One can use either spatial or
spectral description of the gravity field. Therefore, we first apply the gravimetric
forward modeling step to calculate the gravity corrections and respective gravity
data. For this purpose we use analytical expressions for computing the gravitational
attraction and potential of a polyhedral body. The numerically efficient expression
for computing the gravitational attraction of a polyhedral body is found in literature.
However, numerical efficient expression for the gravitational potential is needed.
In the course of research we derive the analytical expression for computing the
gravitational potential of polyhedral body.

Traditionally, the gravity disturbances or anomalies are used for the inversion of
the Moho depth. The crust corrected gravity (stripped gravity) data has maximum
correlation with the Moho depth and hence best suited for the recovery of Moho
geometry and the density contrast between the reference crust of constant density
and mantle. Using the stripped gravity data, the global mean value for the crust-
mantle density contrast can be estimated. The second step is implemented by
establishing a linear relation between the topography of the Moho and the available
gravity data (gravity disturbance and gravity anomaly), and then inverting the
gravity data, together with the available information from seismic methods, into
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the Moho topography. Gravity anomalies contains the long wavelength feature of
the Earth structure, i.e., the signals from deep Earth structure, on the other hand
gravity disturbances are more effected by the local variation in density structure.
Therefore, gravity disturbances are more suitable for the refinement of shallow
structure as compared to gravity anomalies.

Our procedure for solving the gravimetric Moho inverse problem is based on
some assumptions: First assumption is the use of spherical approximation. The
second assumption is adopting a global constant value for the crust-mantle density
contrast. By applying proper corrections, the Earth crust density is replaced by a
constant reference density of 2670 kg/m3. The value of the crust-mantle density
contrast is estimated relatively to the reference crust with constant density. In Moho
geometry recovery, we use the input gravity data in the form of spherical harmonic
coefficients (spectral domain). This allowed us to adopt degree dependent weights
to the spherical harmonic coefficients of input gravity data, so that the signal from
mantle heterogeneities is suppressed. Moreover, we assumed that the effects due to
deeper Earth structure, mantle convection, oceanic lithosphere thermal contraction,
tectonics motion, plate flexure, and elastic respond of the mantle are suppressed by
eliminating the low degree coefficients of input gravity data.

1.3 Outline of the thesis

The remainder of the thesis is organized as follows:

Chapter 2: We present a brief literature overview in this chapter. It covers the
structure of the Earth, a detailed history of the Moho interface studies, the isostatic
crust models based on different hypothesis, and the existing crust models from
seismic studies. Furthermore, this chapter includes a discussion on geopotential
theory, Earth global geopotential models, and definitions of different gravity field
functionals such as geoid, gravity disturbance, gravity anomaly etc.. Moreover, we
discuss the computation of global gravity field functional from the Stokes coefficients
and the transformation between spherical harmonic coefficients of various gravity
field functional. Finally, the chapter is concluded with finding the global Moho using
the Vening Meinesz’s Model.
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Chapter 3: In this chapter, we present different analytical and semi-analytical
methods used for the forward modeling of the gravitational attraction and potential
related to topography, bathymetry, ice, sediments, and other heterogeneities in the
crust. We derived a new formula for the computation of gravitational potential of
polyhedral bodies with constant or linearly changing density. We also present the
numerical accuracy and efficiency of this formula.

Chapter 4: This chapter discusses the implementation of forward modeling al-
gorithms and presents the preparation of the input gravity disturbances and gravity
anomalies by removing the effects of the signals due to topography, bathymetry, ice,
sediments and other heterogeneities in the crust. Based on these corrections the
sequentially-stripped gravity field functionals are computed.

Chapter 5: In this chapter, we present the correlation of the gravity field functionals
with topography, bathymetry, and Moho interface. We show that the application of
subsequent corrections to the gravity field functionals improves their correlation
with Moho topography. This confirms that the information content of the gravity
field functionals is suited for the recovery of the Moho. Furthermore, we have
demonstrated that the gravity disturbances are more suitable for the refinement of
the Moho as compare to the gravity anomalies. The chapter is concluded with the
estimation of the Moho density contrast by using an empirical formula.

Chapter 6: In this chapter, we propose and discuss the functional model for the
recovery of Moho. The solution of linear stand-alone (gravity data) and joint (gravity
and seismic data) inverse problems with zero and first order Tikhonov regularisa-
tion is presented. Weights for the individual data sets are estimated, using the
variance component estimation technique. Application of zero weights to low-degree
spherical harmonic coefficients to suppress the signal from deep Earth structure is
discussed.

Chapter 7: In this chapter, we validate our adopted procedure for the recovery of the
Moho geometry. These procedure include, the choice of the best data combination
strategy, low-degree contribution of input gravity spherical harmonic coefficients
and degree-depended weights of input gravity data. To get the optimal procedure
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for the Moho recovery, we compare the develop models of the Moho depth with the
high resolutions regional models for the European Moho. After the selection of final
optimal model among our develop models, we compare it with the available global
models. We also compare our final model with two available regional models of the
Moho. One of the model is for the continent of the South America and the other is
for the Africa.

Chapter 8: Finally, in this chapter, we have provided a summary and main results
of the dissertation. Additionally, we have made suggestions for the future research
in this field.



2

Earth structure and gravimetric methods
for the recovery of the Moho geometry

In this chapter, we briefly discuss the structure of the Earth, and its different layers
and interfaces. We discuss the historical background of different crust structure
models. Furthermore, we present a thorough review of local, regional and global
isostatic crust models. Additionally, we present the analytical formula for gravity
disturbances and gravity anomalies and link them to an expansion of the gravity
field in spherical harmonics. Moreover, we illustrate different gravimetric methods
for the determination of the Moho geometry. The solution of Vening Meinesz’s
inverse problem for the Moho recovery is reviewed.

2.1 Composition of the Earth

Geophysical studies reveal that the Earth consists of several distinct layers with
different physical properties and chemical compositions. The three main layers
are the crust, the mantle and the core. The crust is the outermost and thinnest
layer. The next layer is the mantle, which extends to a depth of 2900 km. This is
further subdivided into two parts: the upper mantle and the lower mantle. The
innermost layer is the core. This is also further divided into the outer core and the
inner core. The boundaries of these layers form discontinuities that may refract and
reflect seismic waves. Global density models for different layers assume a spherically
symmetric density distribution, which is a function of radial distance from the centre
of the Earth (Dziewonski and Anderson, 1981, Bullen, 1975).

7
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The crust consists of silica-rich rocks which developed due to the melting of
underlying mantle material, and subsequent metamorphic or erosional processes.
Crustal rocks are broadly classified as igneous, metamorphic, or sedimentary, ac-
cording to their individual characteristics. The crust is mainly divided into oceanic
and continental crust. The thickness of the oceanic crust ranges from 6 to 12 km,
while the continental crust is thicker, its thickness is more than 70 km. The oceanic
crust is formed due to the decompression melting in the mantle at shallow depths
beneath the mid-ocean ridges. The upper part of the crust consists of the exposed
rocks and thin sedimentary layers having sharp variations in density and thickness.
In the continental area, the upper crust below the sedimentary layer consists of
granitic rocks with a mean density of 2700 kg/m3(Torge, 1991). The granitic zone
does not exist in the oceanic area. The lower crust is located beneath the upper crust,
with a mean density of 2900 kg/m3. The lower crust consists of basic rocks such as
Gabbro (basalt). Below the lower crust, an abrupt increase in the velocity of seismic
body waves and density is observed. For instance, the P-wave velocity increases
from 7.1 km/s to 8.1 km/s. The lower boundary of the crust is called Mohorovičić
discontinuity, or in short, Moho. The Moho separates the crust from the underlying
mantle.

2.2 Moho discontinuity

Andrija Mohorovičić (1857-1936) discovered the Moho discontinuity in 1910, while
he was studying the seismogram of the 8 October, 1909 earthquake in the Kulpa
Valley, together with other earthquakes in this region (Mohorovičić, 1910, 1992). He
observed two distinct pairs of compressional and shear waves. He wrote: “When
I was sure, based on data, that two kinds of first preliminary waves exist, both
kinds reaching all locations from 300 km to 700 km distance, and that from the
epicentre to approximately 300km distance only the first kind arrives, whereas from
700 km distance onward only the second kind arrives, I tried to explain this until now
unknown fact”. This observation led Mohorovičić to the conclusion that the Earth
is not homogeneous, and at a specific depth there has to be a boundary surface,
which separates two media with different elastic properties, and through which the
waves must propagate with different velocities. He suggested that the first kind
of arrival is from crystalline crust while the second kind of arrival corresponds to



2.2 Moho discontinuity 9

the mantle. The interpretation of two sets of arrival times led Mohorovičić to the
discovery of a velocity discontinuity. The estimated depth from his study was 50
km, the P-wave velocity was 5.6 km/s above and 7.747 km/s below this discontinuity
and the S-wave velocity was 3.27 km/s above and 4.182 km/s below. In the past 100
years, seismologists studied different seismic profiles generated by earthquakes
at different locations and proved that this discontinuity is present throughout the
globe.

The discontinuity discovered by Mohorovičić provides the primary definition of
the boundary between the crystalline crust and the upper mantle in terms of seismic
waves velocities. Generally, the velocity of P-waves within the lower crust is smaller
than 6.5 km/s, while that of S-waves is smaller than 4.4 km/s. The velocity of the
P-waves in the upper mantle is about 7.9 km/s or more, and consequently, shows a
velocity contrast of more than 1.0 km/s. This large velocity contrast indicates that
there is a significant difference between the Earth crust and mantle in terms of
elastic parameters, which can be explained by a difference in composition. Another
definition for the Moho is in term of the density contrast between the Earth crust
and mantle. The commonly used mean density of the crust is 2670 kg/m3, while for
the mantle it is about 3300 kg/m3 providing a density contrast of about 630 kg/m3

at the Moho interface (Heiskanen, 1967). Many studies discuss the variation of the
Moho density contrast and its mean value, including our own study (Tenzer et al.,
2012a).

Many researches about the Moho geometry have been published in the last 10-15
years (e.g. Mooney et al., 1998, Kaban et al., 1999, Braitenberg et al., 2000, King
et al., 2002, Banjeree and Satyaprakash, 2003). Meier et al. (2007), computed a
global crustal model using fully non-linear inversion of fundamental mode surface
waves. Moho in Australia was studied by Aitken et al. (2013) using the gravity data.
The Moho model for the European Plate has been produced by Grad et al. (2009)
using seismic as well as gravity maps. A new reference model for the European crust
(EuCRUST-07) was presented by Magdala et al. (2008). Recently Van der Meijde
et al. (2013) have produced gravity-derived Moho for the South America. Mariani
et al. (2013) have identified a thick crust in Parana basin, Brazil, with GOCE gravity
data.
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2.3 Reference density of crust and Moho density contrast

The numerical value of the mean density of the crust used in the gravity reduction
(Bouguer anomaly) is 2670 kg/m3 (Woollard, 1971). The average density of the upper
continental crust 2670 kg/m3 is often adopted for defining the topographic and
reference crust densities. This density better corresponds to the average density of
the upper continental crust (cf. Hinze, 2003). The oceanic crust is typically heavier
than the continental crust (e.g., Rogers N., 2008). Carlson and Raskin (1984), for
instance, estimated the average density of the oceanic crust as 2890±40 kg/m3. This
estimate is based on seismic refraction data in combination with drilling results,
laboratory studies of seismic properties of oceanic and ophiolitic rocks, and ophiolite
lithostratigraphy.

In global studies, most of authors use a constant value of the Moho density
contrast and compute the stripping corrections relative to the reference crustal
density. The constant value of the Moho density contrast is again computed relative
to the constant reference density of crust.

Tenzer et al. (2012a) used the consolidated crust-stripped gravity data to esti-
mate the average Moho density contrast with respect to a homogenous crust layer of
a reference density of 2670 kg/m3. From that study, the average value is determined
as 485 kg/m3. The results are obtained by minimizing the correlation between the
isostatic gravity disturbances and the Moho geometry. In that study the Moho
geometry was taken from the global CRUST 2.0 model and stripped gravity distur-
bances were also computed using CRUST 2.0 model. This Moho density contrast
closely agrees with the value of 480 kg/m3, adopted in the definition of the PREM (cf.
Dziewonski and Anderson, 1981, Table 1), which is derived based on seismic data.
This value differs by about 7% from the global average 448±187 kg/m3 estimated by
Sjöberg (2011b) based on solving the Vening Meinesz-Moritz (VMM) inverse problem
of isostasy. Sjöberg (2011b) developed and applied also a least-squares approach,
which combines seismic and gravity data in the VMM isostatic inverse scheme for
a simultaneous estimation of the Moho depth and the Moho density contrast. The
authors demonstrated that the Moho density contrast estimated that way varies
considerably depending on the lithospheric structure of a particular region.
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2.4 Earth structure models

Several global models of the Earth’s structure have been developed based on the
analysis of seismic data. Dziewonski et al. (1975) introduced the Parametric Earth
Models (PEM) consisting of piece-wise continuous analytical functions of the radial
density and velocity variations defined individually for the oceanic (PEM-O) and
continental (PEM-C) lithosphere down to a depth of 420 km, below this depth
these models are identical. They also provide an averaged function for the whole
lithosphere (PEM-A). Dziewonski and Anderson (1981) presented the Preliminary
Reference EarthModel (PREM), which provides information on the seismic velocities
and density structure within the whole Earth’s interior by means of spherically
homogenous stratigraphic layers. Van der Lee and Nolet (1997) prepared the 1-
D averaged model MC35 based on the PEM-C, while replacing the high and low
velocity zones of the PEM-C by a constant S-wave velocity of 4.5 km/s within the
upper mantle down to a depth of 210 km. Kustowski et al. (2008) derived the
transversely isotropic reference Earth model STW105. In addition to these Earth’s
synthetic models, several other global and regional seismic velocity models were
developed. A summary of these models can be found in Trabant et al. (2012).

The PEM and PREMmodels provide 1-D density information. Models based on a
stratigraphic layering with a variable depth, thickness and laterally varying density
distribution obviously represent the Earth’s interior more realistically. Currently
available global models provide information on a 3-D density structure only within
the crust and upper mantle. The recently developed model by Simmons et al. (2010)
contains the 3-D density structure of the whole mantle.

Nataf (1996) derived a global model of the crust and upper mantle density
structure based on the analysis of seismic data and additional constraints such
as heat flow and chemical composition. Mooney et al. (1998) compiled the global
crustal model CRUST 5.1 with a 50×50 spatial resolution. More recently, the global
crustal model CRUST 2.0 was compiled with a 20 ×20 spatial resolution (Bassin
et al., 2000). This model has been prepared and administered by the U.S. Geological
Survey and the Institute for Geophysics and Planetary Physics at the University of
California. Both models were compiled based on seismic data published until 1995
and a detailed compilation of the ice and sediment thickness.
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Meier et al. (2007) produced a global crustal model CRUST07, using fully non-
linear inversion of fundamental mode surface wave. The resolution of CRUST07
model is 20 ×20. They use neural networks for finding 1-D marginal probability
density functions (pdfs) of global crustal parameters. They have inverted the fun-
damental mode Love and Rayleigh wave phase and group velocity for the pdfs of
crustal thickness. The constructed model provides the mean Moho depths and its
standard deviations. In our work, we have utilized the data provided by this model
as a-priori information.

Most recently, CRUST 1.0 has been released, which has a 10×10 spatial resolution
(Laske et al., 2013). CRUST 1.0 is the result of a comprehensive effort to compile
a global model of the Earth’s crust and lithosphere, LITHO 1.0 (Pasyanos et al.,
2012, Laske et al., 2013). LITHO1.0 is a 10×10 model of the crust and uppermost
mantle of the Earth. It is created by constructing an appropriate starting model
and perturbing it to fit high-resolution surface wave dispersion maps. The CRUST
1.0 consists of the topography, ice, water layer, sediments layers and crustal layers.
In addition, lateral varying density structure of the upper mantle is incorporated
into CRUST 1.0. The globally averaged data from active seismic methods and deep
drilling profiles were used to predict the sediment and crustal structure. In regions
where no seismic measurements were available (most of Africa, South America,
Greenland and large parts of the oceanic lithosphere) the crustal structure assigned
by a generalization to similar geological and tectonic settings. For cells with no local
seismic or gravity constraints, statistical averages of crustal properties, including
crustal thickness, were extrapolated. The Moho depth in CRUST 1.0 is based on
10 × 10 averages of a recently updated database of crustal thickness data from
active source seismic studies as well as from receiver function studies. This model
incorporates an updated version of the global sediment thickness.

The compilation of CRUST 1.0 initially followed the philosophy of the crustal
model CRUST 2.0 by assigning elastic properties in the crystalline crust according to
the basement age or tectonic settings. This reduces the possibilities of errors in both
models. The sediment model (Laske, 1997) is an independent part of the CRUST
1.0 model. The sediment layers in CRUST 5.1 and CRUST 2.0 are divided into two
layers of soft and hard sediments, while CRUST 1.0 consist of three sediment layers
namely, upper, middle and lower sediments. Each 10×10 cell of CRUST 1.0 provides,
thickness, compressional and shear wave velocity and density for eight layers: water,
ice, three sediment layers and three crustal layers. Topography, bathymetry and
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ice cover are taken from the 1
′ ×1

′ ETOPO1 model (Amante and Eakins, 2009).
Chen and Tenzer (2014) compiled the Earth’s Spectral Crustal Model (ESCM80) by
incorporating more detailed information on the topography, bathymetry, polar ice
sheets and geoid surface into the CRUST 1.0 model.

Beside the global models, there are some regional models of the crust available in
the literature (e.g., Magdala et al., 2008, Grad et al., 2009, Tedla et al., 2011, Van der
Meijde et al., 2013 and Mariani et al., 2013). The model developed by Magdala et al.
(2008) is termed as Eucrust-07. The model is 15

′ × 15
′ point spacing for download

and it is based on the results of seismic reflection, refraction and receiver functions
studies. The Moho model of the European plate developed by Grad et al. (2009)
has a point spacing of 0.10 degree and is compiled using more than 250 data sets of
seismic profiles, 3-D models obtained by body and surface waves, receiver function
results and maps of seismic and gravity data. Recently a regional model of the
Moho for South America has been published by Van der Meijde et al. (2013). This
model is based upon the EIGEN-6C (Förste et al. (2011)) model derived from GOCE
satellite and other gravity data. The authors inverted the gravity data by assuming a
two-layer model with constant density contrast over the interface. The point spacing
of the model is 15

′ × 15
′ . The regional model developed for the crustal thickness

of Africa is derived from global gravity field data using Euler deconvolution (Tedla
et al. (2011)). The model has a point spacing of 3

′ × 2.5
′ . The model is based on

EIGEN-GL04C (Foerste et al. (2008)) free air gravity anomalies which contain 30
months of GRACE Level 1B data covering the period from February 2003 to July
2005 together with surface gravity data from seven different sources. More recently,
Tugume et al. (2013) developed a regional crustal model for Precambrian Crustal
Structure in Africa and Arabia (PCSAA). The Model of crust thickness for Africa
and Arabia is based on the gravity data from EIGEN-6C gravity field model.

In our research, we use thickness and boundary layers and density from the
recently published CRUST 1.0 model. We compute the gravitational attraction
(stripping correction) and potential using forward modeling technique with data
from CRUST 1.0 model. We use the above mentioned regional models of the Moho
for the validation of our developed Moho model results (in Chapter 7).
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2.5 Gravitational potential of a solid body

According to Newton’s law of gravitation, the gravitational potential Wa of an at-
tracting body with density ρ is given by the Newton integral (Mader, 1951)

Wa(x, y, z)=G
Ñ

v

ρ(x
′
, y

′
, z

′
)√

(x− x′)2 + (y− y′)2 + (z− z′)2
dx

′
d y

′
dz

′
(2.1)

over the volume v of the body, where G is the Newtonian gravitational constant,
dv = dx

′
d y

′
dz

′ is the volume element, and l =
√

(x− x′)2 + (y− y′)2 + (z− z′)2 is the
euclidean distance between the computation point (x, y, z) and integration point
(x

′
, y

′
, z

′
).

The potential Wa is continuous throughout the space and for l →∞ it behaves
like the potential generated by a point mass located at the body’s centre of mass.
The first derivatives of the potential are also continuous throughout the space but
the second derivatives are not continuous at density discontinuities (Kellogg, 1929).
It can be shown that

4Wa =−4πGρ, (2.2)

where 4= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator. Outside the surface of the body
the density ρ is zero, so Eq. (2.2) turns into

4Wa = 0. (2.3)

Eq. (2.3) is called the Laplace equation and its solutions are called harmonic
functions.

2.6 Earth gravity and geoid

The total force acting on an object located at the surface of the Earth is the sum of
gravitational force and centrifugal force. The centrifugal potential is

Φ(x, y, z)= 1
2
ω2(x2 + y2),
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where ω is the angular velocity of the Earth’s rotation and x, y, z are the coordinates
defined in an Earth-fixed reference frame. The gravity potential W is the sum of the
Earth gravitational potential Wa and the centrifugal potential Φ :

W(x, y, x)=Wa(x, y, z)+Φ(x, y, z). (2.4)

The gravity vector g is the gradient of the gravity potential (Moritz, 2006).:

g =∇W , (2.5)

with components

gx = ∂W
∂x

=−G
Ñ

v

x− x
′

l3 dx
′
d y

′
dz

′ +ω2x,

g y = ∂W
∂y

=−G
Ñ

v

y− y
′

l3 dx
′
d y

′
dz

′ +ω2 y,

gz = ∂W
∂y

=−G
Ñ

v

z− z
′

l3 dx
′
d y

′
dz

′
,

where ∇ = ∂
∂x î+ ∂

∂y ĵ + ∂
∂z k̂, and î , ĵ and k̂ are the unit vectors in the terrestrial

reference frame along the x, y and z direction, respectively. The magnitude of the
gravity vector

g = ∣∣∇W
∣∣ (2.6)

is called gravity.

Surface W = constant is called the geops, and one particular geops W =W0, is
the geoid. It is the geops which best approximates mean sea level.

The force of gravity at the geoid surface is always normal to it. The gravity
potential W can be split into the normal potential U usually generated by a level
ellipsoid and the disturbance potential T:

W =U +T.

Thus, the disturbance potential is defined as the difference between the actual
gravity potential and the normal gravity potential. In geodetic coordinates, it can



16 Earth structure and gravimetric methods for the recovery of the Moho geometry

be written as
T(h,λ,φ)=Wa(h,λ,φ)−Ua(h,φ). (2.7)

where h is the ellipsoidal height, λ is the longitude and φ is the latitude. The
gradient of the normal potential is called the normal gravity vector

−→γ =−→∇U ,

and its magnitude is called the normal gravity

γ= ∣∣−→∇U
∣∣.

2.7 Gravity disturbance and gravity anomaly

The gradient of the disturbance potential is called the gravity disturbance vector
and is denoted by δg (Moritz, 2006):

δg =−→∇ (W −U)=−→∇T,

and the difference in magnitude is the gravity disturbance (Moritz, 2006)

δg = ∣∣−→∇W
∣∣− ∣∣−→∇U

∣∣= gP −γP . (2.8)

The classical gravity anomaly vector ∆g is defined as the difference between the
gravity vector gP at a point P on the geoid and the normal gravity vector γQ at the
corresponding point on the reference ellipsoid (see Figure 2.1):

∆g = gP −γQ ,

and the difference in magnitude is the gravity anomaly

Now consider the geometrical representation of geoid and reference ellipsoid as
given in Figure 2.1, where n is the local normal at P while n

′ is the normal to the
reference ellipsoid at Q passing through point P on the geoid. Omitting subscript P
for brevity, the gravity disturbance can be written as

δg =−
(
∂W
∂n

− ∂U
∂n′

)
.
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Figure 2.1 Geometrical representation of geoid and reference ellipsoid

The direction of the normal vectors n and n
′ almost coincide, moreover the normal n

is directed along the elevation h therefore, gravity disturbance can be approximately
written as

δg ≈−∂T
∂h

.

In spherical approximation, the gravity disturbance is the negative radial deriv-
ative of the disturbance potential (Heiskanen, 1967)

δg ≈−∂T
∂r

(2.9)

and similarly, the expression for the gravity anomaly reads

∆g ≈−∂T
∂r

− 2
r

T. (2.10)

Eqs. (2.9) and (2.10) relate gravity disturbances and gravity anomalies to the
disturbance potential.
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2.8 Harmonic expansion of the gravity field

The total potential W of the Earth can be represented outside a sphere comprising
all masses (Brouillon sphere) in term of spherical harmonic (Moritz, 2006)

W(r,θ,λ)= GM
R

∞∑
l=0

(
R
r

)l+1 l∑
m=0

(
Clm cosmλ+Slm sinmλ

)
P lm (cosθ)+ 1

2
ωr2 sin2θ,

(2.11)
where G = 6.674×10−11m3kg−1s−2 is Newton’s gravitational constant, and M is the
mass of the Earth. The numerical value of the scaling terms {GM,R} are: GM =
3986004.415×108m3s−2 and R = 6378136.3m , θ is co-latitude, λ is longitude, Clm

and Slm are the fully normalised spherical harmonic coefficients (Stokes coefficients),
l is degree and m is the order. P lm are normalized associated Legendre’s functions
of degree l and order m; they are defined by (Moritz, 2006)

P lm =


p

2l+1Plm if m = 0

√
2(2l+1) (l−m)!

(l+m)! Plm if m 6= 0

Similarly, the normal potential can be written as

U(r,θ,λ)= GM
R

∞∑
l=0(2)

(
R
r

)l+1

C
U
l0P l0 (cosθ)+ 1

2
ωr2 sin2θ. (2.12)

The summation over l has a step size of 2. Using Eq. (2.11) and Eq. (2.12), one can
express the disturbance potential as

T(r,θ,λ)= GM
R

∞∑
l=2

(
R
r

)l+1 l∑
m=0

(
∆Clm cosmλ+∆Slm sinmλ

)
P lm (cosθ) , (2.13)

where 
∆Clm

∆Slm

=


Clm −CU

lm

Slm −SU
lm

 .

Assuming that the total mass of the level ellipsoid is the same as the mass of
the Earth, the zero degree term vanishes (i.e., ∆C00 = S00 = 0). Furthermore,
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assuming that the centre of mass of the Earth and the level ellipsoid coincide with
the origin of coordinate system, the disturbance potential vanishing degree 1 terms
(i.e., C11 = C10 = S11 = 0).

Eq. (2.13) can be written for a points at the mean sphere, which approximates
the Earth’s surface of radius r = R:

T(R,θ,λ)=
∞∑

l=2

l∑
m=0

(
∆C

T
lm cosmλ+∆S

T
lm sinmλ

)
P lm (cosθ) ,

where 
∆C

T
lm

∆S
T
lm

= GM
R


∆Clm

∆Slm

 (2.14)

are the Stokes coefficients associated with the disturbance potential of the Earth.
From Eq. (2.9) and Eq. (2.10) it follows that the expressions for gravity disturbances
and gravity anomalies on the sphere with radius r = R are

δg(R,θ,λ)= GM
R2

∞∑
l=2

(l+1)
l∑

m=0

(
∆Clm cosmλ+∆Slm sinmλ

)
Plm (cosθ) (2.15)

and

∆g(R,θ,λ)= GM
R2

∞∑
l=2

(l−1)
l∑

m=0

(
∆Clm cosmλ+∆Slm sinmλ

)
Plm (cosθ) , (2.16)

respectively. From Eq. (2.15) and (2.16) it follows that the expression for the
corresponding Stokes coefficient of the gravity disturbances and gravity anomalies
are 

∆C
δg
lm

∆S
δg
lm

= GM
R2 (l+1)


∆Clm

∆Slm

 , (2.17)

and 
∆C

∆g
lm

∆S
∆g
lm

= GM
R2 (l−1)


∆Clm

∆Slm

 , (2.18)
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respectively.

2.9 Global gravity field model

In April 2008, the National Geospatial-Intelligence Agency (NGA) released “the
Earth Gravitational Model 2008” (EGM2008) (Pavlis et al., 2008). The model is
complete to spherical harmonic degree and order 2159. It is a combined model based
on information from CHAMP, GRACE satellite gravity missions as well as a global
gravity anomaly database. In April 2011, a new combined global gravity field model
EIGEN-6C (Förste et al., 2011) had been developed by GeoForschungsZentrum
Potsdam and Groupe de Recherche de Geodesie Spatiale (GRGS) Toulouse. The
EIGEN-6C gravity model is complete to the spherical harmonic degree and order
1420 and it is based on the data from CHAMP, GRACE, GOCE satellite gravity mis-
sions and terrestrial global gravity anomaly data provided by the Danish Technical
University (DTU10 gravity model) (Anderson et al. 2009, Anderson 2010). Recently,
EIGEN-6C2, a new combined global gravity field model complete to degree and order
1949 (10 km spatial resolution) is released by GFZ Potsdam and GRGS Toulouse
(Förste et al., 2013). The EIGEN-6C2 model is based on data from GOCE together
with data from previous satellite gravity missions, and surface gravity data from
DTU10. These high-resolution, high-accuracy, and combined modern gravity models
offer new opportunities to study different interfaces and the dynamics of various
processes which occur inside the Earth.

The improved resolution and accuracy of available gravity field models enhance
the interest of researchers to studies the interior of the Earth structure in detail
especially in region where limited or inhomogeneous seismic data is available.
These models provides an opportunity for improving our knowledge of basic crustal
structure of the Earth.

2.10 Isostasy and crust models

The term Isostasy is used to describe the state of equilibrium to which the Earth
lithosphere and asthenosphere tend, in the absence of external disturbance forces.
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The alternative view of isostasy is the Archimedes principle of hydrostatic equilib-
rium. According to this principle, a lighter solid body always floats on the denser
underlying fluid. From the hydrostatic equilibrium, the pressure generated by the
column of the Earth crust at a given depth of compensation at the underlying mantle
is constant, otherwise a lateral pressure gradient occurs, which causes the mantle
material to move until a constant pressure condition is reached. The theory of
isostasy states that a distribution of hydrostatic pressure exists below the surface of
compensation (Torge, 1991).

The theory of isostasy is in line with the observation that the global Bouguer
anomalies (free air gravity anomaly corrected for the effect of the topography above
the geoid) have a systematic pattern over the globe. It is generally positive in
the oceanic regions, mostly negative in the continental regions and shows strong
correlation with the topographic heights. This means that the mass excess and
deficiency are at least partially compensated by the corresponding mass distribution
inside the Earth. According to the isostasy principle, the mass of mountains must
be compensated by a mass deficit below it, while the mass deficit at an ocean basin
must be compensated by an extra mass at depth. In the mid of the nineteen century,
two compensation mechanisms were proposed by Airy and Pratt.

1. The Airy model is based on constant density, where different topographic
heights are compensated by changes in the lithospheric thickness (Airy, 1855,
Heiskanen, 1958).

2. The Pratt model, where different topographic heights are compensated by lat-
eral changes in the lithospheric density (Pratt, 1855, Hayford, 1909a, Hayford
and Bowie, 1912).

Airy isostatic model

Figure 2.2a illustrates the Airy isostatic model. The Airy model is based on a
constant density ρ0 and varying thickness of crust columns (Torge, 1991). T0 is
the thickness of normal column of crust which has the height H = 0 above sea level.
The continental column of mountain height H forms mountain roots of thickness
dcont beneath the normal column of crust, and the oceanic column of depth t forms
anti-roots with thickness docean beneath the oceanic column.
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Figure 2.2 (a) Isostatic model of Airy (b) Isostatic model of Pratt

According to the isostatic condition, the pressure p produced by a column of
homogeneous density is given by

p = weight
area

= ρ0 gV
∆S

= ρ0 gh = constant,

where g is gravity, V is the volume of the column, ∆S is the column area, ρ0 is
the column density and h is the total column thickness. If ρm and ρw represent
the density of mantle and sea water, respectively, then the pressure exerted by the
normal column having height H = 0 is given by

p = ρ0 gT0 +ρm gdcont (2.19)

and pressure exerted by the continental column of mountain height H is given as

p = ρ0 gH+ρ0 gT0 +ρ0 gdcont. (2.20)

Similarly, for the oceanic column we have,

p = ρw gt+ρm g(docean +dcont)+ρ0 g(T0 − t−docean) (2.21)

According to the condition of hydrostatic equilibrium, from Eqs. (2.19) and (2.20) we
get (

ρm −ρ0
)
dcont = ρ0H (2.22)
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for the continents equilibrium. Using Eqs. (2.19) and (2.21) we get

(
ρm −ρ0

)
docean = (

ρo −ρw
)
t (2.23)

for oceanic equilibrium. Using the conventional values for the homogeneous density
ρ0 = 2670 kg/m3, mantle density ρm = 3270 kg/m3, and density of water ρw =
1030 kg/m3 the relation for the thickness of the roots and anti-roots are given by,
dcont = 4.45H , docean = 3.72t, respectively.

The isostatic phenomena have a direct link with the observed gravity field of
the Earth. The thickness T0 of the normal column of crust can be estimated using
isostatic gravity anomalies obtained for different depths of compensation. Generally,
for the depth of compensation equal to T0=30 to 40 km the gravity anomalies are
independent of topographic height. This result is in line with the result from seismic
studies, which show that the isostatic surface of compensation can be approximated
by the Mohorovičić discontinuity.

Pratt isostatic model

The Pratt model is based on the layer of constant thickness T0 with lateral variations
in crust density ρ (Torge, 1991). The isostatic model of Pratt is illustrated in Figure
2.2b. The normal column of height H = 0, has a density ρ0, continental columns
have smaller densities, while oceanic columns have higher densities. According to
the Pratt model the equilibrium condition can be written as

ρ0T0 = ρcont(T0 +H), for contenents

and
ρ0T0 = ρwt+ρocean(T0 − t), for oceans.

Using the values ρcont = 2670 kg/m3, ρw = 1030 kg/m3 for the normal crust density
and sea water density, respectively, the relation for the densities of the continental
column and oceanic column can be written as

ρcont = 2670
T0

T0 +H
,
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and
ρocean = 2670T0 −1030t

T0 − t
,

respectively.

Both Airy and Pratt isostatic models are based on local compensation. They
assume that the compensation takes place along the vertical columns. In 1931,
Vening Meinesz modified the Airy isostasy theory and introduced a regional instead
of a local compensation. In this model the topography is considered as a load on
unbreakable but yielding elastic crust. Moritz (2006) summarised the two models
as, “standing on the thin ice sheet, Airy will break through, but under Vening Meinesz
ice is stronger and will bend but not break”.

2.11 Gravimetric methods for the Moho geometry

Classical isostatic models are typically not able to model realistically the actual Moho
geometry. First of all, this is because the isostatic mass balance depends on loading
and effective elastic thickness, rigidity, rheology of the lithosphere and viscosity
of the asthenosphere (Watts, 2001). Moreover, the glacial isostatic adjustment,
present-day glacial melting, plate motion, mantle convection and other geodynamic
processes contribute to the overall isostatic balance. Kaban et al. (1999), for instance,
demonstrated that the isostatic mass balance takes place not only within the crust
but essentially within the whole lithosphere (see Kaban et al., 2004, Tenzer et al.,
2009a, 2012b). Gravity data also contain a long-wavelength signal from mantle
heterogeneities including the core-mantle geometry (Sjöberg, 2009). Therefore,
gravimetric methods should optimally combine gravity and seismic data. An example
of the combined data processing strategy is the study of Braitenberg (1999). They
proposed a method based on the iterative 3-D gravity inversion with integrated
seismic data for the Moho recovery.

Generally, seismic data are used in geophysical studies to determine the Moho
geometry. Seismic methods provide a more realistic image of the Moho interface.
However, due to the limited coverage of seismic observation, their application for
the recovery of the Moho interface is difficult. In the absence or a low coverage with
seismic data, gravimetric or combined gravimetric-seismic methods have to be used.
Several gravimetric methods for finding the Moho depths have been developed and
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applied in global and regional studies. Examples of the gravimetric methods include,
but are not limited to, studies by Oldenburg (1974), Cadek and Martinec (1991),
Arabelos et al. (2007), Sjöberg (2009), Braitenberg et al. (2010), Sampietro (2011),
Bagherbandi (2012), Bagherbandi and Eshagh (2012), Bagherbandi et al. (2013),
Tenzer et al. (2013).

Parker method of gravity inversion: The relation between Bouguer gravity an-
omalies ∆gB and the depth of an interface h(r) is given by Parker (1973)

F(∆gB)=−2πG∆ρe−|k|h0
∞∑

l=1

|k|l−1

l!
F

[
hl(r̄)

]
, (2.24)

where F(∆g) is the Fourier transform of the gravity anomalies, k is the wave number,
h(r) is the interface depth, h0 is the mean depth of horizontal interface, and r is the
projection of the position r = (x, y, z) onto x− y plane. Oldenburg (1974) rearranged
the above Parker’s relation to

F [h(r̄)]=−F
[
∆gB(r)

]
e−|k|h0

2π∆ρ
−

∞∑
l=2

|k|l−1

l!
F

[
hl(r̄)

]
. (2.25)

Eq. (2.25) can be used to compute the regional Moho depth from gravity anomalies
iteratively,

The regional compensation model was adopted in the Parker-Oldenburg isostatic
method (Oldenburg, 1974). Moritz (1990) utilized the Vening Meinesz inverse prob-
lem of isostasy for the Moho depth estimation. Sjöberg (2009) reformulated Moritz’s
problem, called herein the Vening Meinesz-Moritz (VMM) problem of isostasy, as
that of solving a non-linear Fredholm integral equation of the first kind.

The isostatic mass balance is described commonly in terms of isostatic gravity
anomalies. Vajda et al. (2007), however, argued that the definition of gravity dis-
turbances was theoretically more appropriate in the context of gravimetric studies.
Following this concept, Tenzer and Bagherbandi (2012) reformulated the VMM
inverse problem of isostasy in terms of the isostatic gravity disturbances; see also
Bagherbandi et al. (2013). They also demonstrated that the Moho depths from
isostatic gravity disturbances better agreed with global seismic models than those
based on isostatic gravity anomalies. The concept of isostatic gravity disturbances
is used also for global lithospheric studies in (Kaban et al., 1999, 2003, 2004)
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Least-squares inversion of gravity data can be used to determine the Moho depth.
It leads to an ill-posed problem due to lack of uniqueness. The non-uniqueness can
be overcome if we take into account some restrictive assumptions to the density
distribution. Normally, these assumptions are provided from the geology of the study
area as well as from seismic sources. Furthermore, the Bouguer gravity should be
corrected for the known short and long wavelength effects. The short wavelength
signal are due to heterogeneities of the crust, while the long-wavelength are due to
the deeper structure heterogeneities.

The geophysical inversion consists of two processes, one is called the forward
process (method) and the other the inverse process. Before the inversion, the effects
of shallow structures on the observed gravity must be removed, to obtain the gravity
associated with the structures and Moho geometry. For this purpose the forward
modeling technique have been used. Furthermore, for the Moho recovery, the gravity
signal associated with deep structure deeper than the Moho must also be removed.
For example, to remove the effects of topography, the Bouguer reduction is applied
to the gravity data. In Bouguer reduction the gravitational attraction of a Bouguer
plate of height h and density ρ, is subtracted from the observed gravity anomaly,
i.e.,

∆gB =∆g−2πGρh.

The methodology used for the forward modeling of gravity signal is addressed in
Chapters 3 and 4, while the inverse problem for the recovery of Moho is given in
Chapter 6.

2.12 Vening Meinesz’s Model (VMM)

Vening Meinesz’s inverse problem deals with the recovery of the Moho depth h,
using Bouguer gravity anomalies and the normal Moho depth h0 (mean Moho
depth). Adopting the principle of solving Moritz’s generalization of the Vening-
Meinesz inverse problem of isostasy is based on generating the isostatic gravity
disturbances/anomalies, such that these are equal to zero. The formulated problem
is under the assumption of varying Moho depths h, and adopting a constant value of
theMoho density contrast∆ρ = ρm−ρc; where ρc and ρm denote the constant density
of the Earth’s crust and the uppermost mantle respectively (cf. Vening Meinesz,
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1931). The isostatic gravity disturbances δgi at a position (r,Ω) is then defined as
(cf. Tenzer and Bagherbandi, 2012)

δgi (r,Ω)= δgcs (r,Ω)+ gc (r,Ω)= 0 (2.26)

where δgcs is the crust-stripped gravity disturbance,Ω= (φ,λ) denotes the spherical
direction with spherical latitude φ and longitude λ, and gc is the gravitational
attraction of isostatic compensation masses (e.g., Moritz, 1990), which fully com-
pensate the crust-stripped gravity disturbances (δgcs) . It can be written as (cf.
Sjöberg, 2009)

gc = gc
0 +dgc, (2.27)

where
gc

0 =G∆ρ
Ï
Ω

′

ˆ R−h0

R

r
′2(r− r

′
cosψ)

l3 dr
′
dΩ

′

and
dgc =G∆ρ

Ï
Ω

′

ˆ R

R−h

r
′2(r− r

′
cosψ)

l3 dr
′
dΩ

′
, (2.28)

where G is Newton’s gravitational constant, R is the radius of a mean Earth sphere,
r and r

′ are the distance from computation point and integration point, respectively,
dΩ

′ = cosφ
′
dφ

′
dλ

′
, φ

′ ∈ [−π
2 , π2 ], λ′ ∈ [0,2π], ψ is the spherical distance between two

points (r,Ω) and (r
′
,Ω

′
), and l =

√
r2 + r′2 −2rr′ cosψ. From Eqs. (2.26) , (2.27) and

(2.28), we obtain

G∆ρ
Ï
Ω

′

ˆ R

R−h

r
′2(r− r

′
cosψ)

l3 dr
′
dΩ

′ =−[
δgcs + gc

0
]

Sjöberg (2009) simplifies the above equation and formulates the VMM inverse
problem of isostasy in the following generic form

−GR∆ρ
Ï

K
(
ψ, s

)
dΩ

′ = f (r,Ω) (2.29)

where f (r,Ω)=−[
δgcs + gc

0
]
, the integral kernal K

(
ψ, s

)
in Eq. (2.29) is a function

of parameters ψ and s; and s = 1− h
R . The spectral representation of K

(
ψ, s

)
reads

(cf. Sjöberg, 2009)
K(ψ, s)=

∞∑
l=0

l+1
l+3

(1− sl+3)Pl(cosψ),

where Pl is the Legendre polynomial of degree l.
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The expression given in Eq. (2.29) is a non-linear Fredholm integral equation
of the first kind for the unknown Moho depths h. Its solution for finding the Moho
depths was given by Sjöberg (2009) under a second-order approximation:

h(Ω)= h1(Ω)+ h2
1(Ω)
R

− 1
32πR

Ï h2
1(Ω′)−h2

1(Ω)

sin ψ

2

dΩ
′

(2.30)

The term h1 is given in the spectral domain using the following expression

h1(Ω)=
∞∑

l=0

(
2− 1

l+1

) l∑
m=−l

f l,mYl,m(Ω)

The coefficients f l,m of the isostatic gravity disturbance functional f (r,Ω) are defined
as

f l,m = 1
4πG∆ρ

δgcs
0,0 − gc

0 if l = 0

δgcs
l,m otherwise

where δgcs
l,m are the spherical harmonics coefficients of the crust stripped gravity dis-

turbance δgcs. The nominal compensation attraction (of zero-degree) gc
0 stipulated

at the sphere of radius R is given by (cf. Sjöberg, 2009)

gc
0 '−4πG∆ρh0,

where h0 is the adopted global mean Moho depth.
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Analytical and semi-analytical methods
for computing gravitational attraction
and potential

An inhomogeneous density distribution inside the Earth (for example the bathy-
metry, ice and sedimentary layers effects) require that the corresponding signals
are removed from gravity field data. Furthermore, one has to compute the effect
of topographic masses above the geoid. The link between density distribution and
gravitational attraction/potential is provided by the Newton volume integral. Vari-
ous numerical methods are applied to evaluate the Newton’s volume integral when
studying the local gravity field. A simple form of the integration can be used, such
as splitting the integration volume into right rectangular parallelepipeds (prisms)
with constant density within each individual prism. Bessel (1813) derived a closed
analytical expression for the gravitational potential of a prism. The potential-related
formulae for a prism were studied also by Zach (1811), Mollweide (1813), Everest
(1830) and Mader (1951). Nagy et al. (2000) summarized the closed analytical ex-
pressions for the potential and its first and second derivatives of a rectangular prism
of homogeneous density. However, in most geological structures the constant density
assumption is not practical. For this reason, some authors derived analytical expres-
sions for volume elements with linearly or otherwise varying density distribution
models. Chai (1988) computed gravity anomalies using a rectangular prism with
density changing linearly with depth. Gallardo-Delgado et al. (2003) derived the
analytical solution for the forward gravity modeling utilizing a rectangular prism
with density varying according to a quadratic polynomial law. García-Abdeslem

29
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(1992, 2005) introduced the analytical expression for the rectangular prism with
depth dependent density distribution in the form of a cubic polynomial.

For efficient gravity field modeling of homogeneous/inhomogeneous density form-
ations, the approximation of geological structures by more general geometrical
forms than rectangular prisms has to be implemented. Hubbert and King (1948)
introduced a methodology called the line integral approach; the surface or volume
integrals are converted to line integrals after applying the Gauss divergence the-
orem. Following this idea, Talwani et al. (1959) applied the line integral approach
to the polygon in 2-D. Talwani and Ewing (1960), Collette (1965) and Takin and
Talwani (1966) decomposed the 3-D body into parallel, typically horizontal laminae.
Paul (1974) and Barnett (1976) generalised this concept for a polyhedron in 3-D.
Pohánka (1988) derived a simple algorithm for the attraction of a homogeneous poly-
hedral body using the line integral approach (see also Pohánka, 1990, Ivan, 1990).
The formulae for polyhedral bodies with homogeneous density were studied also by
Okabe (1979), Götze and Lahmeyer (1988), Kwok (1991), Holstein and Ketteridge
(1996), Werner and Scheeres (1996), Holstein et al. (1999) and Holstein (2002a,b).
Petrović (1996) presented in more complete form the formulae for the potential and
its derivatives using the line integral approach for arbitrary polyhedral bodies of
homogeneous density (see also Tsoulis and Petrović, 2001).

Combining the benefits of using more generalized geometrical bodies, Pohánka
(1988) introduced an optimum expression for the computation of gravity field (grav-
itational attraction) of a constant homogeneous density polyhedral body by means
of line integrals. To avoid singular terms and obtain a maximal numerical accuracy
and efficiency, Pohánka (1998) derived the optimum expression and proposed a
simple computational algorithm for computing the gravity field (attraction) of a
polyhedral body with linearly increasing density. An alternative expression was
derived by Hansen (1999) for the gravitational attraction of a polyhedral body with
linearly varying density. In gravimetric geoid modeling and related subjects not
only the attraction-related term (direct effect) but also the potential-related terms
(secondary indirect effects) are computed. Therefore, Holstein (2003) generalized
their work having derived formulae also for the gravitational potential and its second
derivatives.

Following the concept used by Pohánka (1988, 1998) in this chapter we derive
the expression for computing the gravitational potential of an arbitrary polyhedral
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body having a linearly varying density. Due to the singularities, the methods used
for computing the gravitational attraction and potential need special attention.
They arises depending on the location of computation point relative to the object.
In comparison to the formula for the potential given by Holstein (2003), the main
advantage of our approach is adopting the computational strategy developed by
Pohánka (1988, 1998), so that our expressions have no singular terms. Furthermore,
we propose a numerical scheme which efficiently combines various existing methods
of solving the Newton’s volume integral. We start this chapter from an overview of
existing methods, the simple method using point mass approach (Section 3.1), then
Gauss cubature (Section 3.2), then linear vertical mass approach (Section 3.3), then
rectangular prism approach (Section 3.4) and finally using line integral analytical
approach. The potential of an arbitrary polyhedral body having a linearly varying
density is derived in Section 3.5. At the end we describe numerical experiments
where the above mentioned methods are compared. We present our result over
computational accuracy and efficiency of the methods in a graphical and tabulated
form.

3.1 Point Mass Approach

A simple point mass approach can be applied to compute gravitational potential
V (x, y, z) and the component of gravitational attraction gx, g y and gz . Consider a
homogeneous rectangular prism having boundary from x

′
1 to x

′
2 along the x-axis,

from y
′
1 to y

′
2 along y-axis and from z

′
1 to z

′
2 along z-axis. Using the most simple

approximation of the gravitational potential of a prism is to replace it by a point
mass located at the geometric centre of the prism:

V (x, y, z)=Gρ
∣∣l∣∣−1

(
x
′
2 − x

′
1

)(
y
′
2 − y

′
1

)(
z
′
2 − z

′
1

)
(3.1)

where l= ∣∣r−r′∣∣ is the euclidean distance between the computation point r(x,y,z)

and the geometrical centre of the rectangular prism r
′ =

(
x
′
, y

′
, z

′)
; x

′ = x
′
2−x

′
1

2 , y
′ =

y
′
2−y

′
1

2 ,z
′ = z

′
2−z

′
1

2 .

The components of gravitational attraction vector will be
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gx =Gρ
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∣∣l∣∣3

(
x
′
2 − x

′
1

)(
y
′
2 − y

′
1

)(
z
′
2 − z

′
1

) , (3.2)

g y =Gρ


(
y− y

′)
∣∣l∣∣3

(
x
′
2 − x

′
1

)(
y
′
2 − y

′
1

)(
z
′
2 − z

′
1

)

gz =Gρ


(
z− z

′)
∣∣l∣∣3

(
x
′
2 − x

′
1

)(
y
′
2 − y

′
1

)(
z
′
2 − z

′
1

)

3.2 Gauss Cubature Approach

Gravitational potential of a homogeneous rectangular prismwith dimension x1 to x2,

y1 to y2, and z1 to z2 is

V (r)=Gρ

x2ˆ
x1

y2ˆ
y1

z2ˆ
z1

1∣∣l∣∣dx
′
d y

′
dz

′
, (3.3)

where
∣∣l∣∣=√(

x− x′)2 + (
y− y′)2 + (

z− z′)2is the Euclidean distance between the com-
putation point r = (x, y, z) and the integration point r′ = (x

′
, y

′
, z

′
). By integrating

the right-hand side of Eq. (3.3) with respect to z
′ we get

V (r)=−Gρ

x2ˆ
x1

y2ˆ
y1

∣∣ln[(
z− z

′)+ ∣∣l∣∣]∣∣z2
z1

dx
′
d y

′
. (3.4)

After applying the Gauss cubature discretization, the expression for the gravita-
tional potential of homogeneous rectangular prism is:

V (r) = −1
4

Gρ
(
x
′
2 − x

′
1

)(
y
′
2 − y

′
1

)[∣∣∣ fv(x
′
a, y

′
a)+ fv(x

′
b, y

′
b)

+ fv(x
′
a, y

′
b)+ fv(x

′
b, y

′
a)

∣∣∣z
′
2

z′1

]
(3.5)

where the function fv = ln
[(

z− z
′)+|l|

]
is computed at the four Gauss nodes:
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x
′
a =

x
′
1+x

′
2

2 + 1p
3

x
′
2−x

′
1

2 , y
′
a =

y
′
1+y

′
2

2 + 1p
3

y
′
2−y

′
1

2

xb = x
′
1+x

′
2

2 − 1p
3

x
′
2−x

′
1

2 , yb = y
′
1+y

′
2

2 + 1p
3

y
′
2−y

′
1

2 .

The expression for the vertical components of the gravitational attraction vector
reads:

gx = −Gρ

x2ˆ
x1

y2ˆ
y1

∣∣∣∣l∣∣−1∣∣z2
z1

d y
′
dz

′

= −1
4

Gρ
(
y
′
2 − y

′
1

)(
z
′
2 − z

′
1

)[∣∣∣ fg(y
′
a, z

′
a)+ fg(y

′
b, z

′
b)

+ fg(y
′
a, z

′
b)+ fg(y

′
b, z

′
a)

∣∣∣x2

x1

]
, (3.6)

g y = −Gρ

x2ˆ
x1

y2ˆ
y1

∣∣∣∣l∣∣−1∣∣z2
z1

dx
′
dz

′

= −1
4

Gρ
(
x
′
2 − x

′
1

)(
z
′
2 − z

′
1

)[∣∣∣ fg(x
′
a, z

′
a)+ fg(x

′
b, z

′
b)

+ fg(x
′
a, z

′
b)+ fg(x

′
b, z

′
a)

∣∣∣y2

y1

]
, (3.7)

gz = −Gρ

x2ˆ
x1

y2ˆ
y1

∣∣∣∣l∣∣−1∣∣z2
z1

dx
′
d y

′

= −1
4

Gρ
(
x
′
2 − x

′
1

)(
y
′
2 − y

′
1

)[∣∣∣ fg(x
′
a, y

′
a)+ fg(x

′
b, y

′
b)

+ fg(x
′
a, y

′
b)+ fg(x

′
b, y

′
a)

∣∣∣z2

z1

]
, (3.8)

where fg =
∣∣l∣∣−1

In Gauss cubature approach one analytical integration ( in the z direction) and
two numerical integrations ( in the x and y direction) are used.
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3.3 Linear Vertical Mass /Semi-analytical Approach

The equations for the vertical mass approach are most easily expressed in terms of
spherical coordinates (r,φ,λ) . The gravitational potential and the vertical compon-
ent of the gravitational attraction vector generated by a volume element of a sphere
having homogeneous density are given by (cf. Martinec, 1998):

V (r) = Gρ∆φ
′
∆λ

′
cosφ

∣∣∣1
2

(∣∣r′∣∣+3
∣∣r∣∣cosψ

)∣∣l∣∣
+ 1

2

∣∣r∣∣2 (
3 cos2ψ−1

)
ln

∣∣∣∣∣r′∣∣cosψ+ ∣∣l∣∣∣∣∣∣∣∣r
′
2

r′1
(3.9)

and

g(r) = −Gρ∆φ
′
∆λ

′
cosφ

∣∣∣∣∣l∣∣−1
(∣∣r′∣∣2 +3

∣∣r∣∣2)cosψ+ ∣∣l∣∣−1 (
1−6 cos2ψ

)∣∣r∣∣∣∣r′∣∣
+ ∣∣r∣∣(3 cos2ψ−1

)
ln

∣∣∣∣∣r′∣∣− ∣∣r∣∣cosψ+ ∣∣l∣∣∣∣∣∣∣∣r
′
2

r′1
(3.10)

where φ is the latitude, λ is the longitude, ψ is the spherical angle between com-
putation point r and integration point r′ , cosψ= sinφ

′
sinφ+cosφ

′
cosφcos(λ

′ −λ);
and the Euclidean distance is computed from:

∣∣l∣∣=√∣∣r2
∣∣+ ∣∣r′2

∣∣−2
∣∣r∣∣∣∣r′∣∣cosψ.

3.4 Homogeneous Rectangular Prism Method

The rectangular prism method is used when the topography in the region of interest
is represented by a regular grid. The method is often used for precise gravity field
modeling at the vicinity of the computation point. Eq. (2.1) solved analytically for a
homogeneous rectangular prism (Mader, 1951, Nagy, 1966, Gruninger, 1991, Nagy
et al., 2000, 2002, Heck and Seitz, 2007), results in the following formula for the
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potential in Cartesian coordinate system:

V (x, y, z) = Gρ
2∑

i=1

2∑
j=1

2∑
k=1

(−1)i+ j+k

×
[
X iY j ln

∣∣∣∣ Zk + r i jk√
X2

i +Y 2
j

∣∣∣∣+Y jZk ln
∣∣∣∣ X i + r i jk√

Y 2
j +Z2

k

∣∣∣∣
+Zk X i ln

∣∣∣∣ Y j + r i jk√
Z2

k + X2
i

∣∣∣∣− 1
2

(
X2

i tan−1 Y jZk

X i r i jk

+Y 2
j tan−1 Zk X i

Y j r i jk
+Z2

k tan−1 X iY j

Zk r i jk

)]
, (3.11)

with X i = x− xi, Y j = y− yj Zk = z− zk and r i jk =
√

X2
i +Y 2

j +Z2
k.

Here the point r(x, y, z) is the computational point and r(xi, yj, zk) are the integ-
ration point.

Similarly, the vertical components of the gravitational attraction vector at a
point r(x, y, z) reads (Mader, 1951, Gruninger, 1991, Nagy, 1966, Nagy et al., 2000,
2002, Heck and Seitz, 2007 ):

gz = Gρ
2∑

i=1

2∑
j=1

2∑
k=1

(−1)i+ j+k ×
[
X i ln

∣∣∣∣ Y j + r i jk√
X2

i +Z2
k

∣∣∣∣+Y j ln
∣∣∣∣ X i + r i jk√

Y 2
j +Z2

k

∣∣∣∣
−Zk tan−1 X iY j

Zk r i jk

]
. (3.12)

The other two components of gravitational attraction vector can be obtained from
Eq. ((3.12)) by cyclic permutation, i.e.,

gx = Gρ
2∑

i=1

2∑
j=1

2∑
k=1

(−1)i+ j+k ×
[
Y j ln

∣∣∣∣ Zk + r i jk√
X2

i +Y 2
j

∣∣∣∣+Zk ln
∣∣∣∣ Y j + r i jk√

X2
i +Z2

k

∣∣∣∣
−X i tan−1 Y jZk

X i r i jk

]
; (3.13)
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g y = Gρ
2∑

i=1

2∑
j=1

2∑
k=1

(−1)i+ j+k ×
[
Zk ln

∣∣∣∣ X i + r i jk√
Y 2

j +Z2
k

∣∣∣∣+ X i ln
∣∣∣∣ Zk + r i jk√

X2
i +Y 2

j

∣∣∣∣
−Y j tan−1 X iZk

Y j r i jk

]
. (3.14)

3.5 Line Integral Analytical Method

It was mentioned in Chapter 2 (see Eqs. 2.9 and 2.10 ), that the computation of
gravity disturbances require the computation of gravity attraction, while for gravity
anomalies both gravity attraction and potential are pre requisite. The formula for
computing gravity attraction of polyhedral body with linearly varying density have
been derived by Pohánka, 1988. Therefore, following the concept used by Pohánka
(1988, 1990), we derive the optimum expression for computing the gravitational
potential of polyhedral body with a linearly varying density. The expression for the
gravitational attraction of a polyhedral body with homogeneous density is given in
Pohánka (1988). The formula for gravitational attraction of polyhedral body with
linearly increasing density is given by Pohánka (1998). In comparison to the formula
for the gravitational potential given by Holstein (2003), the main advantage of
adopting the computational strategy developed by Pohánka (1988, 1990) is that our
expressions does not have singular terms. We also demonstrate that the algorithm
for computing the gravitational attraction proposed by Pohánka (1988) can directly
be applied for computing the potential.
Let us consider a linearly varying density distribution (cf. Pohánka, 1998):

ρ(r
′
)= ρ0 +ρ1 ·r

′
, (3.15)

where ρ0 is the value of density at a suitably chosen origin of the local coordinate
system used for a description of the density model within the volume D of the
polyhedral body and ρ1 is the gradient of the linear density distribution function.
Combining Eqs. (2.1) and (3.15), we get

V (r)=G
(
ρ0 +ρ1 ·r

)Ñ
D

1∣∣r′ −r∣∣dτ
′ +Gρ1 ·

Ñ
D

r
′ −r∣∣r′ −r∣∣dτ

′
. (3.16)
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Using the identities

∇r
′ · r

′ −r∣∣r′ −r∣∣ = 2∣∣r′ −r∣∣ , ∇r
′
∣∣∣r′ −r

∣∣∣= r
′ −r∣∣r′ −r∣∣ ,

Next, we can re-write Eq. (3.16) as

V (r)=G
ρ0 +ρ1 ·r

2

Ñ
D

∇r
′ · r

′ −r∣∣r′ −r∣∣dτ
′ +Gρ1 ·

Ñ
D

∇r
′
∣∣∣r′ −r

∣∣∣dτ
′
. (3.17)

To convert the volume integrals on the right-hand side of Eq. (3.17) to the surface
integrals, the Gauss divergence theorem is applied. If f (r

′
) is a vector function with

integrable gradient in the domain D, it holds:

Ñ
D

∇r
′ · f (r

′
)dτ

′ =
Ó
S

f (s
′
) ·dσ′

,

where the surface element vector dσ
′ is defined as the product of the unit normal

vector n(s
′
) oriented outwards from the volume D and the scalar surface element

dσ
′at the point s′on the surface S, i.e. dσ

′ =n(s
′
)dσ

′ . Correspondingly, if f (r
′
) is

a scalar function with integrable gradient in the domain , the Gauss divergence
theorem holds

Ñ
D

∇r
′ f (r

′
)dτ

′ =
Ó
S

f (s
′
)dσ

′
.

The application of the Gauss divergence theorem to Eq. (3.17) yields:

V (r)=G
ρ0 +ρ1 ·r

2

Ó
S

s
′ −r∣∣s′ −r∣∣ ·dσ′ +Gρ1 ·

Ó
S

∣∣∣s′ −r
∣∣∣dσ

′
, (3.18)

where
∣∣∣s′ −r

∣∣∣ is the Euclidean distance between the computation point r and the
running integration point s′ on the surface S.
We further define the surface integrals on the right-hand side of Eq. (3.18) as a sum
of the surface integrals over the polyhedral faces {Sk : k = 1,2, ....,K}, where K is the
total number of the faces. At any surface point s′ of the k−th polyhedral face Sk we
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have dσ
′ =nkdσ

′ , where nk is the unit normal vector oriented outwards from the
polyhedral face Sk. Hence,

V (r) = G
ρ0 +ρ1 ·r

2

K∑
k=1

Ï
Sk

s
′ −r∣∣s′ −r∣∣ .nkdσ

′ +G
K∑∑∑

k=1
ρ1 ·

Ï
Sk

nk

∣∣∣s′ −r
∣∣∣dσ

′

= G
K∑

k=1

[
ρ0 +ρ1 ·r

2
nk ·

Ï
Sk

s
′ −r∣∣s′ −r∣∣dσ

′ +ρ1 ·nk

Ï
Sk

∣∣∣s′ −r
∣∣∣dσ

]
, (3.19)

In accordance with (Pohánka, 1998), we denote

Gk(r)=
Ï
Sk

s
′ −r∣∣s′ −r∣∣dσ

′
(3.20)

and

Hk(r)=
Ï
Sk

∣∣∣s′ −r
∣∣∣dσ

′
. (3.21)

The gravitational potential in Eq. (3.19) then takes the following form

V (r)=G
K∑

k=1

[
ρ0 +ρ1 · r

2
nk .Gk(r)+ρ1 ·nkHk(r)

]
. (3.22)

The analytical solution of the surface integral in the vector functionGk(r) (Eq. 3.20)
was derived by Pohánka (1998). We use a similar procedure for finding a closed
analytical solution of the surface integral in the scalar function Hk(r). Firstly, we
apply the Gauss divergence theorem for converting the surface integral to a sum of
line integrals along the closed polygon which forms the boundary of the polyhedral
face Sk . If hk(s

′
) is a vector function with integrable gradient in the domain Sk,

and nk .hk(s
′
)= 0 (i.e. the vector hk(s

′
) lies in the plane of the polyhedral face Sk),

it holds

Ï
Sk

∇s
′ ·h(s

′
)dτ

′ =
˛

Lk

h(l
′
) ·dξ′

, (3.23)
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where the line element vector dξ
′ at the point l′ on the curve Lk is orthogonal to the

curve Lk and to the vector nk, and oriented outwards from the face Sk . To convert
the surface integral in Eq. (3.21) to a sum of line integrals, we have to find a vector
function h(s

′
) in the domain Sk which satisfies the following two conditions:

∇s
′ ·h(s

′
)=

∣∣∣s′ −r
∣∣∣ (3.24)

and

nk ·hk(s
′
)= 0 . (3.25)

For this purpose, we decompose the vector s′ −r into two sub-components; the first
component (s′ −r)|| is parallel to the polyhedral face Sk , and the second component
(s

′ −r)⊥ is perpendicular it, i.e.,

(s
′ −r)⊥ = Zknk,, Zk =nk ·(s

′ −r), (3.26)

(s
′ −r′

)|| = s
′ −r−(s

′ −r)⊥ = s′ −r−nknk ·(s
′ −r). (3.27)

It follows from the second condition (cf. Eq. (3.25)) that the vector h(s
′
) must lie in

the plane of the polyhedral face Sk. Therefore, we can write

hk(s
′
)= (s

′ −r′
)|| g(ρk, zk), (3.28)

where g(ρk, zk) is a scalar function to be found in order to satisfy the first condition
given in Eq. (3.24). The parameters ρk and zk read:

ρk =
∣∣(s′ −r′

)||
∣∣ , zk =

∣∣Zk
∣∣.

The substitution of Eq. (3.28) into Eq. (3.24) yields:

∇s
′ · [(s′ − r)|| g(ρk, zk)

]= ∣∣s′ −r∣∣ (3.29)

or
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g(ρk, zk)∇s
′ · (s′ − r)||+ (s

′ − r)|| .∇s
′ g(ρk, zk)= ∣∣s′ −r∣∣. (3.30)

Since ∇s
′ · (s′ − r)|| = 2, Eq. (3.30) becomes:

2g(ρk, zk)+ (s
′ −r)|| ·∇s

′ g(ρk, zk)= ∣∣s′ −r∣∣, (3.31)

where (s
′ −r)|| ·∇s

′ = ρk
∂
∂ρk

(cf. Pohánka, 1998).
Realising that (s

′−r)= (s
′−r)||+(s

′−r)⊥ = (s
′−r)||+Zknk,we re-write the right-hand

side of Eq. (3.31) as follows:

∣∣∣s′ −r
∣∣∣=√∣∣(s′ −r)||

∣∣2 + ∣∣Zk
∣∣2 =√

ρ2
k + z2

k. (3.32)

From Eq. (3.31) and Eq. (3.32), we get

1
ρk

∂

∂ρk

[
ρ2

k g(ρk, zk)
]=√

ρ2
k + z2

k. (3.33)

The general solution of Eq. (3.33) is found to be

g(ρk, zk)= 1
3ρ2

k

[
(ρ2

k + z2
k)

3
2 + c

]
, (3.34)

where c is an arbitrary integration constant. However, in order to have the function
hk(s

′
) which satisfies the condition of the applicability of the Gauss divergence

theorem (that the function h(s
′
) has the integrable gradient in the whole domain

Sk), we have to treat the singularity when ρk → 0. The condition limρk→0 g(ρk, zk)= 0

is met only if c =−z3
k. The expression in Eq. (3.34) then becomes

g(ρk, zk)= 1
3ρ2

k

[
(ρ2

k + z2
k)

3
2 − z3

k

]
. (3.35)

The right-hand side of Eq. (3.35) is finally rearranged as follows

g(ρk, zk)= 1
3

[√
ρ2

k + z2
k +

z2
k√

ρ2
k + z2

k + zk

]
. (3.36)

Substituting Eq. (3.36) to Eq. (3.28), we get
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h(s
′
)= (s

′ −r)||
3

(√
ρ2

k + z2
k +

z2
k√

ρ2
k + z2

k + zk

)
. (3.37)

Consequently, the substitution of Eqs. (3.26), (3.27) and Eq. (3.32) to Eq. (3.37)
yields

h(s
′
)= s

′ −r−nknk · (s′ − r)
3

[∣∣(s′ −r)
∣∣+ ∣∣nk · (s′ −r)

∣∣2∣∣(s′ −r)
∣∣+ ∣∣nk · (s′ −r)

∣∣
]
. (3.38)

From Eqs. (3.21) and (3.23), the function Hk(r) becomes

Hk(r)=
˛

Lk

h(l
′
) ·dξ′

. (3.39)

Finally, the substitution of Eq. (3.38) into Eq. (3.39) yields:

Hk(r)=
˛

Lk

l
′ −r−nknk · (l′ −r)

3

[∣∣(l′ −r)
∣∣+ ∣∣nk · (l′ −r)

∣∣2∣∣(l′ −r)
∣∣+ ∣∣nk · (l′ −r)

∣∣
]

.dξ
′
, (3.40)

where
∣∣(l′ −r)

∣∣ is the Euclidean distance between the computation point r and the
running integration point l on the polygon Lk . Since the vector dξ

′is perpendicular
to the vector nk, i.e. nk .dξ

′ = 0, we write

Hk(r)=
˛

Lk

l
′ −r
3

[∣∣(l′ −r)
∣∣+ ∣∣nk · (l′ −r)

∣∣2∣∣(l′ −r)
∣∣+ ∣∣nk · (l′ −r)

∣∣
]

.dξ
′
. (3.41)

By analogy with the notation used in Pohánka (1988), the polygon segments {Lk,l :

l = 1,2, ...,L(k)} form the closed polygon Lk of the polyhedral face Sk ; L(k) is the
total number of polygon segments Lk,l of the polyhedral face Sk. We further denote
the position vectors ak,l and ak,l+1 of the end points of the polygon segment Lk,l

(note that the vertices of the polyhedral face Sk are numbered counter-clockwise as
viewed from outside, and ak,L(k)+1 =ak,1). For every polygon segment Lk we define
the unit vectors µk,land νk,l . The unit vector µk,l is parallel to the polygon segment
Lk,l and has the same orientation. It reads
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µk,l =
ak,l+1 −ak,l

dk,l
, (3.42)

where dk,l is the length of the segment Lk,l i.e.

dk,l =
∣∣∣ak,l+1 −ak,l

∣∣∣. (3.43)

The unit vector νk,l is perpendicular to the polygon segment Lk and lies in the plane
of the polyhedral face Sk . It reads:

νk,l =µk,l ×nk. (3.44)

We define the position vector l′of a point on the polygon segment Lk,l as a function
of the unit vector µk,l in the following form:

l
′ =ak,l +µk,lξ

′
(0≤ ξ′ ≤ dk,l). (3.45)

Similarly, we define the line element vector dξ
′ as vector parallel to the unit vector

νk,l :

dξ
′ =νk,ldξ

′
, (3.46)

where dξ
′ is the scalar line element of the polygon segment Lk,l .

Since nk .µk,l = 0, the quantity nk . (l
′ −r) =nk . (ak,l −r) in Eq. (3.41) is the per-

pendicular distance between the computation point and the polyhedron face k. It
neither depends on ξ

′ nor on the index l. Let us denote this quantity equal to
zk(r)= ∣∣Zk(r)

∣∣

zk(r)= ∣∣nk · (l
′ −r)

∣∣= ∣∣nk · (ak,1 −r)
∣∣. (3.47)

The line integral in Eq. (3.41) then takes the following form

Hk(r)=
˛

Lk

l
′ −r
3

[∣∣(l′ −r)
∣∣+ zk

2∣∣(l′ −r)
∣∣+ zk

]
·dξ′

. (3.48)
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The polygon Lk in Eq. (3.48) is further rewritten as a sum of the polygon segments
Lk,l . After substituting Eqs. (3.45) and (3.46) to Eq. (3.48), we have

Hk(r)=
L(k)∑
l=1

dk,lˆ

0

νk,l · (ak,l −r µk,lξ
′
)

3

[∣∣ak,l−r+µk,lξ
′∣∣+ z2

k(r)∣∣ak,l −r+µk,lξ
′∣∣+ zk(r)

]
dξ

′
.

Since νkl ·µkl = 0, we arrive at

Hk(r)=
L(k)∑
l=1

dk,lˆ

0

νk,l · (ak,l −r)
3

[∣∣ak,l −r+µk,lξ
′∣∣+ z2

k(r)∣∣ak,l −r+µk,lξ
′∣∣+ zk(r)

]
dξ

′
.

(3.49)
We decompose the vector ak,l −r in Eq. (3.49) into the vector components µk,l , νk,l

and nk, and adopt the following notation (cf. Pohánka, 1998, Eqs. 28 and 29):

µk,l(r) = µk,l · (ak,l −r)

wk,l(r) = νk,l · (ak,l −r)

Zk(r) = nk ·(ak,l −r) (3.50)

From Eqs. (3.45) and (3.50), we write:

∣∣∣l′ −r∣∣∣= ∣∣∣ak,l −r+µk,lξ
′∣∣∣=√

(µk,l(r)+ξ′)2 +w2
k,l(r)+ z2

k(r). (3.51)

The substitution of Eqs. (3.50) and (3.51) into Eq. (3.49) yields:

Hk(r) =
L(k)∑
l=1

dk,lˆ

0

wk,l(r)
3

[√
(µk,l(r)+ξ′)2 +w2

k,l(r)+ z2
k(r)

+ z2
k(r)√

(µk,l(r)+ξ′)2 +w2
k,l(r)+ z2

k(r)+ zk(r)

]
dξ

′
.



44 Analytical and semi analytical methods ..

Furthermore, after applying the substitution µk,l +ξ′ = ξ, we get:

Hk(r)=
L(k)∑
l=1

νk,lˆ
µk,l

wk,l(r)
3

[√
ξ2 +w2

k,l(r)+ z2
k(r)+ z2

k(r)√
ξ2 +w2

k,l(r)+ z2
k(r)+ zk(r)

]
dξ,

(3.52)
where

νk,l =µk,l +dk,l . (3.53)

Denoting

Φ(µ,ν,w, z)=
νˆ

µ

w√
ξ2 +w2 + z2 + z

dξ (3.54)

and

Φ3(µ,ν,w, z)=
νˆ

µ

w
√
ξ2 +w2 + z2dξ, (3.55)

we finally arrive at

Hk(r)= 1
3

L(k)∑
l=1

[
z2

k(r)Φ(µk,l(r),νk,l(r),wk,l(r), zk(r))+Φ3(µk,l(r),νk,l(r),wk,l(r), zk(r))
]
.

(3.56)
The closed analytical expression for Φ reads (Pohánka, 1988, 1998):

Φ(µ,ν,w, z)= w L(µ,ν,w, z)+2z A(µ,ν,w, z), (3.57)

where

L(µ,ν,w, z)= ln

p
ν2 +w2 + z2 +ν√
µ2 +w2 + z2 +µ

(3.58)

and
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A(µ,ν,w, z)=−arctan
2w (ν−µ)

T2(µ,ν,w, z)− (ν−µ)2 +2 z T(µ,ν,w, z)
. (3.59)

By integrating the right-hand side of Eq. (3.55), we get

Φ3(µ,ν,w, z)= w
4

(ν−µ)
[

(ν+µ)2

T(µ,ν,w, z)
+T(µ,ν,w, z)

]
+ w

2
(w2+ z2)L(µ,ν,w, z), (3.60)

where

T(µ,ν,w, z)=
√
µ2 +w2 + z2 +

√
ν2 +w2 + z2. (3.61)

The expression for numerical calculation of the vector functionG(r) in Eq. (3.22)
was derived by (Pohánka, 1998, Eqs. (33), (34) and (35)) in the following form:

Gk(r) =
L(k)∑
l=1

[
Φ2(µk,l(r),νk,l(r),wk,l(r), Zk(r))νk,l

+ Zk(r)Φ(µk,l(r),νk,l(r),wk,l(r), Zk(r))nk

]
, (3.62)

where the expression for Φ2 reads:

Φ2(µk,l(r),νk,l(r),wk,l(r), Zk(r)) = 1
4

(ν−µ)
[

(ν+µ)2

T(µ,ν,w, z)
+T(µ,ν,w, z)

]
+

+ 1
2

(w2 + z2)L(µ,ν,w, z). (3.63)

Comparing the expressions for Φ3 and Φ2 in Eqs. (3.60) and (3.63), the following
relation between them is obtained

Φ3(µ,ν,w, z)= wΦ2(µ,ν,w, z). (3.64)

Utilising Eq. (3.64), the expression for the scalar function Hk(r) in Eq. (3.56)
becomes
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Hk(r)= 1
3

L(k)∑
l=1

[
z2

kΦ(µk,l(r),νk,l(r),wk,l(r), zk(r))+wk,l(r)Φ2(µk,l(r),νk,l(r),wk,l(r), Zk(r))
]
.

(3.65)
The vectors µk,l and νk,l are perpendicular to nk, i.e nk ·µk,l = 0 and nk ·νk,l = 0.
From Eq. (3.63), it also follows that

Φ2(µk,l(r),νk,l(r),wk,l(r), Zk(r))=Φ2(µk,l(r),νk,l(r),wk,l(r), zk(r)).

The substitution of the functionsGk(r) and Hk(r) from Eqs. (3.62) and (3.65) to Eq.
(3.22) then yields

V (r) = G
K∑

k=1

[L(k)∑
l=1

(ρ0 +ρ1 · r
2

Zk(r)+ρ1 ·nkz2
k(r)

)
Φ(µk,l(r),νk,l(r),wk,l(r), zk(r))

+
L(k)∑
l=1

ρ1 ·nk

3
wk,lΦ2(µk,l(r),νk,l(r),wk,l(r), zk(r))

]
. (3.66)

As seen from (3.22), only those components of the functionGk(r) contribute to the
potential which are parallel to the surface normal (i.e. the components along the
unit normal vector nk).
The expression for the potential in Eq. (3.66) has very close resemblances with the
formula for the attraction derived by (Pohánka, 1998, Eq. 52). To obtain the final
form of (3.66), we follow the same way as Pohánka proposed. We introduce a small
positive number ε in order to avoid any undefined operations when the computation
point is near the surface of the polyhedral body ( cf. Pohánka, 1988, 1998). The
functions Φ(µ,ν,w, z) and Φ2(µ,ν,w, z) are replaced by the functions Φ(µ,ν,w, z,ε)

and Φ2(µ,ν,w, z,ε), respectively:

V (r) = G
K∑

k=1

L(k)∑
l=1

[(ρ0 +ρ1 ·r
2

Zk(r)+ρ1 ·nkz2
k(r)

)
Φ(µk,l(r),νk,l(r),wk,l(r), zk(r),ε)

+
L(k)∑
l=1

ρ1 ·nk

3
wk,lΦ2(µk,l(r),νk,l(r),wk,l(r), zk(r),ε)

]
, (3.67)

where
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Φ(µ,ν,w, z,ε)= wL(µ,ν,w, z+ε)+2 z A(µ,ν,w, z+ε), (3.68)

and

Φ2(µ,ν,w, z,ε)= 1
4

(ν−µ)
[

(ν+µ)2

T(µ,ν,w, z+ε)+T(µ,ν,w, z+ε)
]
+1

2
(w2+z2)L(µ,ν,w, z+ε).

(3.69)
Eq. (3.67) represents the potential of an arbitrary polyhedral body with a linearly
varying density distribution. Setting ρ1 = 0 in Eq. (3.67) gives the expression for
the potential generated by a homogeneous polyhedral body:

V (r)= Gρ0

2

K∑
k=1

L(k)∑
l=1

Zk(r)Φ(µk,l(r),νk,l(r),wk,l(r), zk(r),ε). (3.70)

The gravitation attraction vector for the polyhedral body with linearly varying
density reads (Pohánka, 1998, Eq. (58)):

g(r) = −G
K∑

k=1

L(k)∑
l=1

[((
ρ0 +ρ1 · r+ρ1 ·nk Zk(r)

)
Φ(µk,l(r),νk,l(r),wk,l(r), zk(r),ε)

+ ρ1 ·νkΦ2(µk,l(r),νk,l(r),wk,l(r), zk(r),ε)
)
nk

−1
2

Zk(r)Φ(µk,l(r),νk,l(r),wk,l(r), zk(r),ε)ρ1

]
, (3.71)

Setting ρ1 = 0 in Eq. (3.71), gives the expression for the gravitational attraction
vector generated by a homogeneous polyhedral body:

g(r)=−G ρ0

K∑
k=1
nk

L(k)∑
l=1
Φ(µk,l(r),νk,l(r),wk,l(r), zk(r),ε). (3.72)

We have derived by means of line integrals the analytical formula for the gravi-
tational potential of an arbitrary polyhedral body having a linearly varying density.
The corresponding analytical formula for the components of the gravitational attrac-
tion vector was given by Pohánka (1998). As seen from Eq. (3.22), the derivation
of the expression for gravitational potential was reduced to finding only the closed
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analytical solution for the surface integral in the scalar function Hk(r), while the
solution for the surface integral in the vector functionGk(r) was already derived
in Pohánka (1998). We further adopted the optimized expressions from Pohánka
(1988, 1990) by reducing the number of logarithm and arctangent terms, treating the
undefined operations (e.g. expressions of the type 0/0) and improving the precision
of numerical operations when the computation point is far away from the polyhedral
body. The expressions and uniform algorithm for computing the gravitational po-
tential and attraction are numerically very simple and valid for any point in space
and need no special care for the points near or on the surface of the polyhedral body.
The designed algorithm for calculation of the gravitational potential and attraction
generated by polyhedral body having a linearly varying density is given in Appendix
A.

3.6 Test For Numerical Accuracy And Efficiency

A numerical experiment was conducted for three different sizes of rectangular prism
having base areas equal to 30×30 m2, 150×150 m2, and 300×300 m2, each prism
having constant height of 100 m.. First, analytical methods were used to compute the
gravitational potential and gravitational attraction. The analytical methods, namely
line integral approach and rectangular prism approaches were applied. After that
the linear vertical mass, the Gauss cubature and point mass approach were applied.
In this experiment the computation point is taken in such a way that it start just
from the vicinity of the body and span to distance of approximately 1800 m away
from the body. Only the horizontal x direction of the computation point is changing.
The y and z- values for the computation points is constant and represent the centre
of the body. For the semi-analytical linear vertical mass approach, we have consider
the spherical shell of the same dimension of above prisms. The prism methods
assume a planer approximation and it give best result at the computation point near
to the body, while the semi-analytical methods used spherical approximation and
give best result for the far-zone computation.

The relative accuracy of the linear vertical mass, Gauss cubature, and point mass
approach with respect to the analytical methods of rectangular prism approach at
the vicinity of the body up to a distance of 1800 m are calculated. Figures 3.1a and
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Figure 3.1 The inaccuracy of linear vertical mass approach relative to prism method (a)
gravitational potential and (b) gravitational attraction. Red, green, and blue colour represent
the computation for a spherical shell of the same dimension of a prisms of the height 100 m
and the base area, 30x30 m2, 150x150 m2, and 300x300 m2, respectively.
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Figure 3.2 The inaccuracy of Gauss cubature approach relative to prism method (a) gravita-
tional potential and (b) gravitational attraction. Red, green, and blue colour represent the
computation for prisms of the height 100 m and the base area, 30x30 m2, 150x150 m2, and
300x300 m2, respectively.
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Figure 3.3 The inaccuracy of the point mass approach. relative to prism method (a) gravita-
tional potential and (b) gravitational attraction. Red, green, and blue colour represent the
computation for prisms of the height 100 m and the base area, 30x30 m2, 150x150 m2, and
300x300 m2, respectively.



52 Analytical and semi analytical methods ..

(a) (b)

Figure 3.4 The relative time efficiency with respect to the line integral analytical method (a)
potential (b) attraction.

3.1b describes the relative precision of linear vertical mass approach with respect
to analytical methods for gravitational potential and attraction, respectively. The
relative accuracy of the Gauss cubature methods is shown in Figures 3.2a, and
3.2b for gravitational potential and gravitational attraction, respectively, while the
corresponding relative accuracy of the point mass approach is shown in Figures
3.3a and 3.3b. The Gauss cubature approach is more accurate than the linear
vertical mass and the point-mass approaches. The relative accuracy of computing
the gravitational potential and gravitational attraction reaches to 99.9% and 99%,
respectively, if the computation point is 600 m away from the centre of the body,
provided that the geographical resolution of input data i.e., terrain model resolution
is higher than 300×300 m2 (see Figures. 3.2a and 3.2b). The relative precision of
computing the gravitational potential better than 99% can be achieved by the linear
vertical mass approach if the computation point is 600 m away from the source
and the geographical resolution of input data is 300×300 m2 or higher (see Figure.
3.1a). The same relative accuracy of computing the gravitational attraction by the
linear vertical mass approach is, however guaranteed only if 30×30 m2 geographical
resolution of input data is used for the linear vertical mass approach (cf. Figure
3.1b). From this experiment we observed that more that 99% numerical accuracy
can be archived by using the semi-analytical method, when the computation point is
away at-least 6 times the size of the body (Figures 3.1a and 3.1b).
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The comparison of the time-efficiency of the analytical (line integral/prism meth-
ods), semi-analytical (linear vertical mass) and numerical methods (Gauss cubature
and point mass) applied for computing the gravitational potential and attraction is
given in Figure.3.4. The time-efficiency is provided in terms of the relative computa-
tion time. The line integral approach is the most time-consuming (cf. Figure. 3.4).
The rectangular prism approach is less time-consuming; it requires 25% of the total
time otherwise needed for computing the potential by line integral approach, and
less than 15% for computing the attraction. The time efficiency of the semi-analytical
methods is similar, reducing the calculation time by an order of magnitude compared
to the line integral approach. The point-mass approach is the most time-efficient.
Compared with the line integral approach, it reduces the calculation time by almost
two orders of magnitude.

The use of the numerical point-mass approach is inadequate when the compu-
tation point is within the source body vicinity up to 1 arc-min. It introduces large
errors, especially in computing the gravitational attraction. Based on the above
comparison we adopted a scheme in which the region around the computation point
is divided into different zones, namely, inner zone, near-zone and far-zone. The
inner zone comprises all prisms with a spherical distance not exceeding 5 km of
the computation point. The near zone comprises all prisms between the inner zone
and the spherical distance of 50 km from the computation point, and rest is far
zone. We choose analytical methods for the inner zone and near zone and semi
analytical method for the far zone computation. The most suitable method in each
particular zone is applied. For near zone computation the rectangular prism method
is appropriate. For the rest of the globe i.e., in the far zone linear vertical mass
approach are the best option. Further detailed are given in the next chapter.

3.7 Summary

In this chapter different analytical, semi-analytical and numerical methods for
calculating the gravitational attraction and potential were presented. Near to the
computation point the use of analytical methods provides better accuracy. Away
from the source body the semi-analytical linear vertical mass approach is used. The
optimal and efficient expressions for computing the potential of a polyhedral body
with constant or linearly varying density were derived for the first time. The relative
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accuracy of these methods and their time efficiency were compared. Furthermore,
the optimal choice of a particular method for gravity field calculation with in a
particular zone, i.e., inner, near and far zone were discussed. In this research we
have used the more accurate analytical method for the inner-zone and near-zone
computation and semi-analytical methods for the far-zone computation.



4

Global maps of the CRUST 1.0 crustal
component stripped gravity field

One of the major sources of information about the Earth’s structure is its gravity
field. In studies of the Moho boundary geometry, the gravitational effect of the
topography density, bathymetry, ice, sediments, and other crust residual density
effects are modelled and are subsequently removed from the observed gravity. To
that end, a technique known as “stripping” has been used. In stripping procedure,
forwards modeling has been used to modeled the gravitational corrections due to
residual densities and subsequently applied these corrections to the gravity data,
so that to unmask the remaining gravitational signal from the source of interest.
The strongest signal in gravity data is due to topographic relief onshore and ocean
bottom relief offshore. Due to this signal the observed gravity data show little
correlation with the Moho geometry and are relatively rough. The gravitational
effects of the reference (e.g., constant average density) topographic masses onshore
and sea water density contrast offshore can be removed from the gravity data by
means of topographic and bathymetric stripping corrections, respectively. The next
strongest signal in the gravity data is due to the ice density contrast, sedimentary
layers and crustal/lithospheric density variations. A crustal/lithospheric model
should be adopted or produced to compute the crustal or lithospheric stripping
correction. In this latter step various approaches may be taken depending on the
purpose of the study, (e.g., Kaban et al., 1999, Kaban and Schwintzer, 2001, Kaban
et al., 2003, 2004 for global studies and Bielik, 1988, Artemjev and Kaban, 1994,West
et al. (1995), Kaban and Schwintzer (2001), Zeyen et al. (2002), Dérerová et al. (2006),
Braun et al. (2007), Tassara et al. (2007), Alvey et al. (2008), Jiménez-Munt et al.
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(2008); and references therein for regional investigations). For global studies the
best currently available global crustal models are CRUST 2.0 (Bassin et al., 2000)
and the publicly-available CRUST 1.0 (Laske et al., 2013), which is an upgrade of
the early CRUST 2.0 model. For our purpose, we have used the boundaries and
laterally varying densities of different layers of CRUST 1.0.

When the gravimetric inverse problem is formulated in terms of gravitational
attraction, the anomalous gravity data required as input in the inversion are usually
gravity disturbances (e.g., Vajda and Vaníček, 2006, Vajda et al., 2007). The normal
gravity values are subtracted from the observed gravity values according to the
definition of the gravity disturbance. This has two implications ( Vajda and Vaníček,
2006, Vajda et al., 2008). Firstly, the surface of the reference ellipsoid (not the geoid)
is the bottom interface of topographic masses globally, as well as the upper interface
of all residual density defining the stripping corrections. Secondly, Earth’s crust
density is replaced with a reference density of 2670 kg/m3, and is the background
density distribution model against which the residual density used in stripping
corrections are defined. These two conditions must be satisfied in order to keep the
consistency between decomposing the real Earth’s subsurface density distribution
and the observed gravity disturbances (cf. Vajda and Vaníček, 2006, Vajda et al.,
2008).

Our aim here is to evaluate on a global scale the gravity disturbances and anom-
alies corrected for the attraction of the topography (ellipsoid-referenced topographic
correction), the ocean residual density effect (ellipsoid-referenced bathymetry strip-
ping correction), ice residual density, sedimentary layer residual density and the
crustal residual density (down to the Moho-discontinuity). We have used the grav-
ity disturbances for the estimation of crust-mantle density contrast as well as for
the recovery of Moho geometry, whereas the gravity anomaly have used for the
crust-mantle density contrast only. We take into account the global distribution
of ice, sediments, and consolidated crustal components based on the CRUST 1.0
model (crustal stripping correction). The crustal stripping correction is computed
and applied in several consecutive steps: (1) the attractions of the topography and
residual density (relative to the constant reference crustal density of 2670 kg/m3) of
the bathymetry, ice, and the soft and hard sediments; and (2) the attractions of the
residual density (relative to the constant reference crustal density of 2670 kg/m3) of
the upper, middle, and lower consolidated crust according to the CRUST 1.0 model.
The application of the topographic and stripping corrections of the above steps (1)
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and (2) removes the topographic masses above the reference ellipsoid and transforms
the volumetric domain between the ellipsoid and the Moho discontinuity globally
(disregarding the heterogeneities within topography other than sediments and ice,
and disregarding the crustal heterogeneities not accounted for by the CRUST 1.0
density model) into a crust with a constant density of 2670 kg/m3. The gravity
disturbances computed at the stripping stage correspond to an Earth model of no
topography above the ellipsoid, constant crust down to the Moho interface, and real
density below the Moho interface. The strongest signal in these gravity disturb-
ances is due to geometry of the Moho interface. We expect that this type of gravity
disturbances is best suited for refining the Moho geometry.

All the step-wise corrections are presented in detail in Section 4.1, while the
gravity disturbances and gravity anomalies with the individual corrections ap-
plied are described in Section 4.2. We refer to the bathymetrically-stripped and
topographically corrected gravity disturbances/anomalies as “BT gravity disturb-
ances/anomalies”.

The gravity disturbances/anomalies are computed globally at the Earth’s sur-
face using the spherical harmonic coefficients complete to degree 180 from the
EIGEN-6C2 model (which represents roughly 100 km resolution in terms of half-
wavelengths). To define the computation points, we have used the topography
of CRUST 1.0 model. The topographic, bathymetry, ice, upper sediment, middle
sediment, lower sediment, upper crust, middle crust and lower crust stripping cor-
rections are computed on a 10 ×10 grid of the geocentric spherical coordinates. The
computed corrections are applied to the gravity data.

4.1 Corrections to gravity disturbances and anomalies

Our aim is to evaluate and compute the gravity disturbances and gravity anomalies
on a global scale, which are corrected for the effects of topography, bathymetry, ice
and the crustal residual density. Assuming a global distribution of ice, sediments,
and crustal components based on the CRUST 1.0 model, the total crust correction is
split into several components:

1. Corrections due to the attraction of topographic masses above the reference
ellipsoid, and the bathymetry residual density.
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2. Corrections due to the residual density of the ice, upper, middle, and lower
sediments from the CRUST 1.0 model.

3. Correction due to the residual density of the upper, middle, and lower crust
from the CRUST 1.0 model.

The gravity disturbance in spherical approximation is given by

δg =−∂T
∂r

, (4.1)

and gravity anomaly is given by

∆g =−∂T
∂r

− 2T
r

= δg− 2T
r

, (4.2)

where r = R+h, R is the radius of a sphere which approximates the Earth, and
h is the height of computational point above the ellipsoid.

There are two types of corrections; first one is given by the first term (-∂T
∂r ) in

the right hand side of Eq. (4.2), whereas, the second one is given by the second
term (2

r T). The first correction is termed as the Direct Correction (DC), while the
second one is called the Indirect Correction (IDC). Due to the definition of gravity
anomalies, the IDC is only applicable to gravity anomalies, whereas, the DC is
applicable to both gravity disturbances and gravity anomalies. The mathematical
expressions for the direct and secondary indirect correction are given by

DC= ∂

∂r
δV , (4.3)

and
IDC= 2δV

r
, (4.4)

respectively, where δV is the potential generated by residual mass density, and is
given by

δV =G
Ñ
v′

δρ

l
dv

′
,

where δρ is the residual mass density, which is the difference between actual density
of a layer of crust and reference crust density of 2670 kg/m3, v

′ is the volume of the
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layer, and l =
√

(x− x′)2 + (y− y′)2 + (z− z′)2 is the distance between the computation
point p(x, y, z) and integration point q(x

′
, y

′
, z

′
).

Total Correction (TC) is the sum of Direct Correction and Indirect Correction,
and is given by

TC= ∂

∂r
δV + 2

r
δV . (4.5)

In the next section the description of different computational schemes for these
corrections are discussed.

4.1.1 Topographic stripping corrections

We have used a combination of different analytical and semi-analytical methods
for the computation of gravitational corrections. To get sufficient numerical accur-
acy and save computational time we used the combination of analytical and semi-
analytical methods. In the close proximity of computational point, we have used
analytical methods, while, in case of more distance from the computational point,
we have used semi-analytical methods. The global ellipsoid-referenced topographic
correction has been computed using the following analytical and semi-analytical
computational formulae:

(a) Analytical constant density polyhedral method given by Eq. (3.72) .

(b) Analytical constant density rectangular prism method given by Eq. (3.12).

(c) Semi-analytical method for constant density spherical shell given by Eq. (3.10).

For every computation point, the Earth surface is divided into an inner-zone, near-
zone, and far-zone. The inner-zone comprises all prisms with a spherical distance not
exceeding 5 km from the computation point. The near-zone comprises of all prisms
between the inner-zone and far-zones within a spherical distance not exceeding 50
km from the computation point. The remaining globe is considered as the far-zone.
The analytical homogeneous density polyhedral method given by Eq. (3.72) has been
used for the computation of topographic correction in the inner-zone. The constant
density prism methods given by Eqs. (3.12) and semi-analytical method for constant
density spherical shell given by Eq. (3.10) are used for the computation of near and
far-zone contribution, respectively. For numerical efficient computation and to avoid
the singularities, we have used analytical polyhedral method for the inner-zone
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Table 4.1 Statistics of ellipsoid-referenced direct correction

Direct correction
(Relative to
2670kg/m3)

Min
(mGal)

Max
(mGal)

Mean
(mGal)

Topography -657 -17 -68
Bathymetry 129 705 331
Ice 2 319 21
Sediments 15 174 45
Crust -527 -170 -289

Table 4.2 Statistics of ellipsoid-referenced indirect correction

Indirect correction
(Relative to
2670kg/m3)

Min
(mGal)

Max
(mGal)

Mean
(mGal)

Topography 68 262 110
Bathymetry -898 -515 -704
Ice -108 -9.7 -22
Sediments -120 -60 -85
Crust 487 668 567

computation of gravity correction. For the computation in the inner zone the Global
Digital Elevation Model (DEM) GTOPO30C which has a resolution of 30

′′ ×30
′′

(provided by U.S. Geological Survey (USGS)) has been used. For the computation
in the near and far zone the 1

′ ×1
′ global elevation model from ETOPO1 (Amante

and Eakins, 2009) has been applied. Both models GTOPO30C and ETOPO1 provide
the mean elevation height at the corresponding grid cell. The average topographic
density 2670 kg/m3 is adopted. The ellipsoid-referenced topographic correction to
the gravity disturbances varies from −657 to −17 mGal with mean of −68 mGal and
standard deviation of 100 mGal (see Table 4.1). The largest topographic correction
are located in the mountainous regions and the smallest over the oceanic areas and
flat regions (see Figure 4.1a).

The statistics of the ellipsoid-referenced direct, secondary indirect and total
corrections are given in Tables 4.1, 4.2 and 4.3, respectively. The corresponding
maps of direct and indirect corrections are given in Figure 4.1a, while the total
correction is presented in Figure 4.2a.

4.1.2 Bathymetric stripping correction

The ellipsoid-referenced bathymetry correction, which is the removal of the attraction
of the ocean water density contrast enclosed between the surfaces of the reference
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Figure 4.1 Direct corrections (left), and the secondary indirect corrections (right) (a) topo-
graphy, (b) bathymetric, (c) ice, (d) sediments, and (e) crust.
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Figure 4.2 Total corrections: (a) topography, (b) bathymetry, (c) ice, (d) sediments and (e)
crust.
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Table 4.3 Statistics of ellipsoid-referenced total correction

Total correction
(Relative to
2670kg/m3)

Min
(mGal)

Max
(mGal)

Mean
(mGal)

Topography -415 137 42
Bathymetry -642 -62 -373
Ice -52 218 -1
Sediments -84 68 -40
Crust 45 412 278

ellipsoid and the sea bottom, is computed as follows. For the inner-zone we have used
the ETOPO1, 1

′ ×1
′ global bathymetry model. The computation has been performed

using the analytical constant density polyhedral method given by Eq. (3.72). The
constant density prism methods given by Eqs. (3.12) and semi-analytical method for
constant density spherical shell given by Eq. (3.10) are used for the computation of
near and far-zone contribution, respectively. The mean value of the ocean residual
density of -1640 kg/m3 (i.e., the difference between the mean ocean seawater density
of 1030 kg/m3 and the reference crustal density of 2670 kg/m3) is adopted. The
ellipsoid-referenced bathymetry correction to the gravity disturbances varies from
129 to 705 mGal with the mean of 331 mGal and the standard deviation of 163

mGal. The maxima are located above the oceanic trenches, and the minima in the
central parts of the continental regions. The oceanic trenches and the convergent
ocean-to-continent tectonic plate boundaries represent the regions with the largest
variations of the bathymetry correction.

The statistics of direct, secondary indirect and total correction related to the ba-
thymetry are given in Tables 4.1, 4.2, and 4.3, respectively. The corresponding maps
of direct and indirect corrections are given in Figure 4.1b, while the total correction
is presented in Figure 4.2b. The bathymetric correction takes up maximum values
in deep ocean areas and minimum values on the continents (see Figure 4.1b).

4.1.3 Ellipsoid-referenced topographic and bathymetric stripping
correction

In the beginning of the chapter, we have argued that the geophysical interpretation
of gravity data requires the computation of the ellipsoid-referenced topographic
and bathymetric corrections, as opposed to the commonly used geoid-referenced
ones. Figure 4.3 illustrates the difference between the ellipsoid-referenced and
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Figure 4.3 The difference between the ellipsoid-referenced and geoid-referenced bathymetric
and topographic correction.

geoid-referenced bathymetric and topographic corrections. Though the magnitude
of the correction is rather small, the differences are systematic over larger areas,
and therefore, they must be taken into account.

The difference between the geoid-referenced and the ellipsoid-referenced global
topographic corrections is the gravitational attraction of the ocean water enclosed
between the surfaces of the geoid and reference ellipsoid (liquid topography offshore),
accounting for the water surplus or deficiency, and the gravitational attraction of
the topographic masses onshore (of constant reference topographic density) enclosed
between the same two surfaces. The spherical harmonic coefficients of EIGEN-6C2
(Förste et al., 2013) complete to degree and order 180 were used to compute the global
geoidal undulations. The attraction due to liquid topography (of constant mean
ocean water density of 1030 kg/m3 ) is positive everywhere over the oceans, because
the computation points (offshore) are on the geoid (sea surface), thus either above
the water surplus (positive geoidal undulations) or below the water deficit (negative
geoidal undulations). It varies between 0 and 4.5 mGal with the mean of 0.7 mGal
and standard deviation of 0.8 mGal. The attraction of the solid topographic masses
onshore enclosed between the surfaces of the geoid and reference-ellipsoid varies
between −12.2 and 10.3 mGal with mean of −0.4 mGal and standard deviation of
2.0 mGal. The ellipsoid-referenced topographic correction is obtained by subtracting
the attractions of topographic and ocean masses enclosed between the geoid and
reference ellipsoid from the geoid-referenced topographic correction.

The ellipsoid-referenced bathymetry correction has been obtained by subtracting
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from the geoid-referenced bathymetry correction the attraction of the ocean water
residual density (-1640 kg/m3) offshore enclosed between the geoid and reference-
ellipsoid. The correction varies between −7.2 and 0.0 mGal with mean of −1.0 mGal
and standard deviation of 1.2 mGal.

4.1.4 Ice stripping corrections

We have used the ice data from ETOPO1 model. We have computed the ice stripping
corrections for the three zone as mentioned in the previous section. The adopted
value of the ice residual density is -1757 kg/m3 (i.e., the difference between the
mean ice density of 913 kg/m3 and the reference crustal density of 2670 kg/m3).
The statistics of direct, secondary indirect and total correction related to the ice
are given in Tables 4.1, 4.2 and 4.3, respectively. The maps of direct stripping and
secondary indirect stripping correction are presented in Figure 4.1c. The map of
the total correction is depicted in Figure 4.2c. The maximum and minimum values
of the ice correction are 319 mGal and 2 mGal, respectively, while the standard
deviation is 56 mGal. For ice correction the maximum value is found at the region
of Antarctica and Greenland, whereas the remaining parts of the globe has the
minimum value (see Figure 4.1c).

4.1.5 Sediment corrections

The 10×10 global data set of the upper, middle and lower sediment thickness and
density from the CRUST 1.0 is used to compute the sediment stripping correction.
The values of residual density of sediment, i.e., the difference between the actual
laterally varying sediment density and the reference crust density have been used for
the stripping correction of sediments. Information about sediments in CRUST 1.0
is taken over from an independent model produced by Laske (1997). The maximum
total thickness of marine sediments reaches 20 km, and the average thickness is
about 1.2 km. The thickness of sediment at the bottom of deep oceans is less than
2 km. Large sediment accumulations are beneath marginal seas, with maximum
sediment thickness. The largest sediment accumulation are due to river discharge.
The sediment accumulations at oceanic sedimentary basin is typically very low.
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We have adopted the same strategy as for the ice stripping correction. Each
individual stripping correction (for upper, middle and lower sediment layers) has
been computed and then added to make the total sediment correction. We have
used the laterally varying densities of upper, middle and lower sediments and have
taken the sediment residual density as the difference of actual sediment density
and the reference crustal density of 2670 kg/m3. The maxima of the correction are
located over the areas with largest sediment deposits in the continental shelves and
the Caspian Sea region. The minima are in Greenland and Antarctica, and across
the central parts of the Pacific, Atlantic, and the Indian Ocean. The statistics of
direct, indirect and total corrections related to sediments are given in Tables 4.1,
4.2 and 4.3, respectively. The maps of direct corrections and indirect corrections are
given in Figure 4.1d, and the total correction map is shown in Figure 4.2d. It has a
maximum value of 174 mGal, a minimum value of 15 mGal with a mean value of 31
mGal over the globe.

4.1.6 Crustal corrections

The 10 ×10 global data of the density and thickness of the upper, middle, and lower
crust components from the CRUST 1.0 have been used to compute the stripping
corrections for the remaining consolidated crust. We have taken into account the
laterally varying densities of each individual crust layer. The inhomogeneity of
upper, middle and lower crust are mostly far away from the computation point (Earth
surface) as compared to previously mentioned corrections, therefore we neglect the
inner zone and work with only two zones; one is the near zone with a radius of 50 km,
and the other is the far zone which corresponds to the remainder of the globe. For
the computation of the corrections we used the analytical prism method for the near
zone and the semi-analytical method for the far zone, respectively. The statistics of
direct, secondary indirect and total correction related to the corresponding crustal
components are given in Tables 4.1, 4.2 and 4.3, respectively. The maps of direct
and secondary indirect corrections are given in Figure 4.1e and the total correction
is shown in Figure 4.2e. The maximum value for the total crust correction is -170
mGal, minimum of -527 mGal and mean value of -289 mGal for the Earth crust.
The minima is found in the Himalaya region and maxima in the oceanic region.
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4.2 Stripped gravity disturbances and gravity anomalies

We have used the EIGEN-6C2 model (Förste et al., 2013) to compute gravity dis-
turbances and gravity anomalies on a one-degree global equal-angular grid. The
resulting gravity disturbances and gravity anomalies are shown in Figures 4.4a and
4.4b, respectively. The stripped corrected gravity disturbances and gravity anom-
alies has been obtained by subsequent applications of the individual corrections as
described in Section 4.1. Statistics of the stepwise stripped corrected gravity disturb-
ances and gravity anomalies are summarized in Tables 4.4 and 4.5, respectively.

The expressions for the crust stripped gravity disturbance δgTBISC and the
corresponding gravity anomaly ∆gTBISC, is given by

δgTBISC = δg+∆grs = δg+ gt + gb + gi + gs + gc, (4.6)

and

∆gTBISC = δgTBISC − 2
r

(
T +V t +V b +V i +V +V c

)
, (4.7)

where r is the geocentric radius of the computation point; T is the disturbance
gravity potential; ∆grs = gt + gb + gi + gs + gc, is the sum of gravitational attraction
due to residual density. V t, V b, V i, V s and V c are the gravitational potentials
generated by the topography and residual density of ocean, ice, sediments, and
remaining anomalous density structures within the Earth’s crust, respectively. The
respective gravitational attractions in Eq. (4.6) are denoted as gt, gb, gi, gs and
gc.

The topographically-corrected gravity disturbances δgT and gravity anomalies
∆gT are depicted in Figures 4.5a and 4.5b, respectively. Compared to the original
gravity disturbances, the topographically-corrected gravity disturbances δgT change
significantly in the mountainous regions and become predominantly negative re-
vealing the presence of the isostatic compensation.

The bathymetrically and topographically corrected gravity disturbances δgTB

and gravity anomalies ∆gTB (see Figures 4.5c and 4.5d) are computed by applying
the bathymetry correction to the topographically-corrected gravity disturbances and
anomalies. Since the bathymetric correction over the continental areas is small
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Figure 4.4 (a) Gravity disturbances (δg) (b) gravity anomalies (∆g) at the Earth’s surface.

Table 4.4 Statistics of sequentially corrected gravity disturbances ( the superscripts ’T’ stands
for topography; ’TB’ for topography and bathymetry; ’TBI’ for topography, bathymetry, and
ice; ’TBIS’ for topography, bathymetry, ice, and sediments; and ’TBISC’ for topography,
bathymetry, ice, sediments, and crust).

Gravity disturbances Min
(mGal)

Max
(mGal)

Mean
(mGal)

δg -303 294 -0.7
δgT -637 191 -70
δgTB -499 656 261
δgTBI -496 659 283
δgTBIS -474 687 328
δgTBISC -906 466 39

and has mostly a long-wavelength character, the higher-frequency pattern of the
gravity disturbance signal onshore remains almost unchanged. Over the oceans, the
application of the bathymetric correction to the topographically-corrected gravity
disturbance show the global pattern of the oceanic lithospheric plates.

The ice and sediment residual density stripping corrections transform the volu-
metric domain of the global ice mass (Greenland and Antarctica) and global sed-
iments from their actual densities to the constant reference crustal density. The
laterally-varying densities for upper, middle and lower sediments from CRUST 1.0
model have been used. The ice and sediment corrected gravity disturbances δgTBIS

and gravity anomalies ∆gTBIS are shown in Figures 4.5e and 4.5f, respectively.
Compared to the bathymetry and topography corrections, the signature of the ice
and sediment corrections is less noticeable. The ice correction changed the topo-
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Figure 4.5 Gravity disturbances (left) and gravity anomalies (right), from top to bottom:
sequentially corrected for topography, bathymetry, ice and sediments, and crust heterogen-
eities.
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Table 4.5 Statistics of sequentially-corrected gravity anomalies.

Gravity anomalies Min
(mGal)

Max
(mGal)

Mean
(mGal)

∆g -282 284 -0.5
∆gT -376 259 41
∆gTB -822 -14 -331
∆gTBI -833 -23 -332
∆gTBIS -889 -32 -372
∆gTBISC -1345 -297 -662

graphically and bathymetrically corrected gravity disturbances δgTB in Greenland
and Antarctica. The sediment correction primarily changed the topographically
and bathymetrically corrected gravity disturbances over the areas with the largest
sediment thickness at continental shelves and in the Caspian Sea region.

The remaining consolidated crust residual density correction replaces the density
of the upper, middle, and lower CRUST 1.0 crustal components with the constant
reference density of 2670 kg/m3. When this correction is applied to the ice, sedi-
ment, topographically and bathymetrically corrected gravity disturbances δgTBIS

and gravity anomalies ∆gTBIS , it produces corrected gravity disturbances δgTBISC

and gravity anomalies ∆gTBISC, shown in Figures 4.5g and 4.5h, respectively. The
consolidated gravity disturbances δgTBISC and gravity anomalies ∆gTBISC corres-
ponds to a model Earth consisting of no topography, a constant 2670 kg/m3 reference
crust density down to the Moho interface, and the real Earth’s sub-Moho density
distribution. The statistics of consolidated crust-stripped gravity disturbances and
gravity anomalies are given in Tables 4.4 and 4.5, respectively.

4.3 Accuracy of the corrections applied

It is important to consider the model uncertainties associated with the topography
and the crust when the corrections are computed. The uncertainties in modelling
the global topographic correction relatively to the average topographic density are
difficult to estimate in the global field due to the lack of knowledge on the actual
topographic density globally. They may be anticipated at the level of a few tens of
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mGal. The uncertainties in modelling the global bathymetry correction due to the
deviation of the actual seawater density from constant model ocean water density
(of about -10 to 20 kg/m3) are up to 1.5 mGal. Tenzer et al. (2012a) reported an
error up to 17 mGal, based on errors in gravity modeling. The uncertainties in the
remaining corrections are also hard to estimate, but may be anticipated at the level
from a few tens to about 100 mGal over continents and up to 40 mGal over oceans
(Kaban et al., 2003). They are mostly due to the heterogeneities of the consolidated
crust, especially over continents.

4.4 Discussion

To match the resolution of the CRUST 1.0 global crustal models, we have computed
the global corrections and the global gravity disturbances and anomalies at 10x10

grid on the Earth surface. A higher spatial resolution may be adopted once a global
crustal model of higher resolution becomes available. Our objective was to compute
and apply global crustal stripping corrections, based on a best currently available
global crustal model. The upper, middle and lower sediments components, as well
as density variability, reflect to a certain degree the increasing density of sediments
with depth due to compaction. In regional studies, a more accurate dependence of
sediment density on depthmay be adopted for sedimentary basins (cf. Artemjev et al.,
1994). In spite of the already-conducted investigations, there is still room for further
improvements, by incorporating new or more accurate geophysical/geoscientific
constraints and by improving the crustal models used when computing stripping
corrections.

Tenzer et al. (2009a) computed topography, bathymetry, ice, sediment, and crust
residual density corrections, and sequentially corrected gravity disturbances. For
these corrections, they have used data of CRUST 2.0 model. The values of our
computed corrections are comparable with the results of Tenzer et al. (2009a). Our
estimated values for topography and sediments corrections are slightly greater than
the earlier estimated values. Whereas, our estimated values of bathymetry and
ice corrections are slightly lower. These difference are probably due to a higher
resolution and accuracy of CRUST 1.0, as compared to CRUST 2.0. Bagherbandi
et al. (2013) computed the topography, bathymetry and sediment corrections and
gravity disturbances using data of CRUST 2.0 model in spectral domain . His results
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are also comparable with our result, there are slightly differences of few mGal in
bathymetry, and sediments corrections. The minimum and maximum values for
the topographic correction from the study of Tenzer et al. (2009a) is -619 mGal 71
mGal, and from the study of Bagherbandi et al. (2013) -659 mGal and -19 mGal, and
from this study -657 mGal and -17 mGal, respectively. Similarly, for bathymetric
correction, from the study of Tenzer et al. (2009a) is 129 mGal 715 mGal, and from
the study of Bagherbandi et al. (2013) 127 mGal and 650 mGal, and from this study
129 mGal and 705 mGal, respectively.

4.5 Summary

The global topographic, bathymetric, ice, sediments and crust stripping corrections
for the major known residual density are computed using the input data from
GTOPO30C, ETOPO1, and CRUST 1.0 models. These corrections are applied to
clean gravity disturbances and gravity anomalies from signal due to topography,
bathymetry and the inhomogeneity of the crust assuming a known residual density.
The residual density include the effects of sea water, ice, sediments, and upper,
middle, lower crust and are taken relatively to the adopted value of the reference
crustal density of 2670 kg/m3. Furthermore, we compute the correction due to the
masses enclosed between the geoid and the surface of reference ellipsoid.

In next chapter, the correlation of gravity fields functionals (gravity disturbances
and gravity anomalies) with different physical interfaces (topography, bathymetry,
and Moho) are discussed. We will demonstrate that corrected gravity disturbances,
are highly correlated with the a priori Moho as compared to the corrected gravity
anomalies. These highly-correlated (with Moho) gravity disturbances and anomalies
are used to investigate the global crust-mantle density contrast, which is treated as
a constant in the Moho recovery from gravity data.
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Estimation of global crust-mantle
density contrast

In this chapter we investigate the correlation of gravity disturbances and anomalies
with topography, bathymetry and Moho depth. The purpose of this investigation is to
show that the application of sequential correction to gravity field functionals reduces
nuisance signals in gravity data and hence make them best suited for the recovery
of global Moho density contrast. Our investigation is based on to find the correlation
between the sequentially corrected gravity disturbances/anomalies with the prior
Moho model from CRUST 1.0. We will show that the gravity disturbances data
are more correlated with Moho depth than gravity anomalies data. Furthermore,
we apply an empirical method to estimate the global Moho density contrast using
gravity disturbances and anomalies. In this method, we replace the Earth crust
with mantle density using different values of crust-mantle density contrast and then
estimate the correlation between the updated gravity disturbances and anomalies
with theMoho depth. The value that yields zero correlation is selected as an estimate
of the actual crust-mantle density contrast. For this estimation we use the Moho
depth from a priori model, in our case from CRUST 1.0.

The estimation of the crust-mantle density contrast is done using two types of
gravity data, namely the consolidated crust-stripped gravity disturbances and the
corresponding gravity anomalies. The consolidated crust stripped gravity disturb-
ances differ significantly from the corresponding gravity anomalies due to large
contributions of the secondary indirect effects. The methodology used for the pre-
paration of gravity data and computation of correlation is discussed in Section 5.1.

73



74 Estimation of global crust-mantle density contrast

The correlation of gravity disturbances and anomalies with topography, bathymetry
and Moho depth are discussed in Sections 5.2, 5.3 and 5.4, respectively. The global
crust-mantle density contrast is estimated in Section 5.5. Finally, the summary and
conclusions are given in Section 5.6.

The density contrast of crust-mantle is traditionally assumed to be 600 kg/m3

(e.g., Heiskanen, 1967). Martinec (1994) have claimed that this value corresponds
well with the Moho density contrast only over the ocean. For the continental areas,
he estimated crust-mantle density contrast of 280 kg/m3 by minimising the external
gravitational potential induced by the Earth’s topographic masses and the Moho
discontinuity. The continental Moho density contrast of 200 kg/m3 has been reported
by Goodacre (1972) for Canada. Dziewonski and Anderson (1981) (see Table 1)
adopted the value of 480 kg/m3 for the global crust-mantle density contrast in the
definition of the Preliminary Reference Earth Model (PREM). In PREM the value
of density contrast is derived using seismic reflection data. The density contrast
across the Moho boundary has also been determined regionally from seismological
studies using the wave receiver functions (e.g., Niu and James, 2002, Julia, 2007).
The results of these studies indicate that the density contrast across Moho may
regionally vary from 160 kg/m3 (for the mafic lower crust) to 440 kg/m3 (for the
felsic lower crust). Tenzer et al. (2009b) estimated that the average value of the
crust-mantle density contrast is about 520 kg/m3. Recently, Sjöberg (2011a) have
solved Moritz’s generalisation of the Vening-Meinesz inverse problem of isostasy,
and have estimated that the Moho density contrast varies globally from 81.5 kg/m3

in the Pacific region to 988 kg/m3 in Tibet, with the average values of 678 ± 78 and
334 ± 108 kg/m3 for the continental and oceanic areas, respectively. That research
has also concluded that the global average of the Moho density contrast is 448 ±
187 kg/m3. This estimated value (480 kg/m3 ) is approximately 7% smaller than the
value adopted (480 kg/m3 ) in PREM.

We adopt the reference crustal density of 2,670 kg/m3. This value is often as-
sumed for the upper continental crust in geological and gravity surveys, geophysical
exploration, gravimetric geoid modelling, compilation of regional gravity maps, and
other applications. Although this density value is widely used, its origin remains
partially obscure. Woollard (1966) argues that this density was used for the first time
by Hayford (1912). In reviewing several studies seeking a representative average
density from various rock type formations, Hinze (2003) argued that this value was
used earlier by Hayford (1909b) for gravity reduction. Hayford (1909b) referred to
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Harkness (1891) who averaged five published values of surface rock density. Hark-
ness (1891) value of 2,670 kg/m3 was confirmed later, for instance, by Gibb (1968),
who estimated an average density for the surface rocks in a significant portion of
the Canadian Precambrian shield from over 2,000 individual measurements of rock
samples. Woollard (1962) examined more than 1,000 rock samples and estimated
that the average basement (crystalline) rock density is about 2,740 kg/m3. Subrah-
manyam (1981) determined that crystalline rocks in India have an average density
of 2,750 kg/m3 in low-grade metamorphic terrains and 2,850 kg/m3 in high-grade
metamorphic terrains. We note here that the choice of the reference crustal density
is somewhat optional, depending on a particular purpose of the study. For example,
for the regional studies, one needs to work with the values that better correspond to
the region.

When solving the inverse problem for the Moho recovery most of the author
assume a constant value of the Moho density contrast. For example, Tugume et al.
(2013) has been used a constant value of crust-mantle density contrast 200 kg/m3.
They have also tested different contrast values between 100 to 300 kg/m3 with an
interval of 50 kg/ m3, and have claimed that the results didn’t show much variation
of crust thickness.

The presented study is based on using most recent gravity field model together
with crust models. There are two major reasons for estimating the average value of
the crust-mantle density contrast. In the context of a global recovery of the Moho
density interface from gravimetric data, this value is a required parameter in the
functional model relating the (known) consolidated crust stripped gravity disturb-
ances and (unknown) crustal-thickness data. We have removed all the nuisance
signals and replaced the crust with constant reference density and hence the data
only contain the signal due to Moho density contrast. When speaking of the Moho in-
terface density contrast or the crust-mantle density contrast, we have to distinguish
between the contrast of the lower crust with respect to the upper mantle, and the
average crust density with respect to the mantle. The consolidated crust stripped
gravity field (used to estimate the crust-mantle density contrast) describes the grav-
ity field generated by the Earth of which all the masses outside the Earth’s ellipsoid
are removed and the known crust density distribution is replaced by a reference
crustal density. We have used two type of gravity data i.e., gravity disturbances
and gravity anomalies for the investigation of correlation and for the crust-mantle
density contrast. There are two reason for taking the two type of gravity data. One
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is to demonstrate that after applying the sequential correction to gravity disturb-
ances and gravity anomalies remove successfully the signals due to topography,
bathymetry, ice, sediment, and other inhomogeneities of the crust and hence its cor-
relation with Moho geometry is increases. The other reason is to demonstrate that
the gravity disturbances have the most prominent local nature i.e., the link between
the density variations and gravity disturbances is more prominent as compared to
gravity anomalies. The gravity anomalies have the term associated with indirect
effect. The indirect effect are directly associated with potential. The signal related
to the potential decay slowly as compare to the signal related to the attraction, and
hence the gravity anomalies contains more signals from mantle heterogeneities and
other deeper structure as compare to the gravity disturbances.

5.1 Methodology

Pearson’s correlation coefficient (Pearson, 1896) is used to describe the correlation
of the topography, bathymetry, and Moho depth with gravity disturbances and
anomalies.

The correlation coefficient kab for two data set a and b is given by

kab =

I∑
i=1

(ai − ā)
(
bi − b̄

)
(I −1)σaσb

, (5.1)

where ā and b̄ are the average values of a and b over the area of study, respectively;
σa and σb are the corresponding standard deviations, and I quantifies the total
number of data points in the area of study. The average values are computed using
the latitudinal dependent weights:

ā =

I∑
i=1

ai ·cosφi

I∑
i=1

cosφi

,

where φ is the spherical latitude.

The standard deviations are given by
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Figure 5.1 (a) The global topography and bathymetry, (b) The depth of the Moho boundary;
10×10 discrete data from CRUST 1.0.

σa =

√√√√√ I∑
i=1

(ai − ā)2

(I −1)
,

The correlations are investigated globally for the gravity disturbances and gravity
anomalies. The global topography and bathymetry used for the correlation are shown
in Figure 5.1a. The Moho depth (shown in Figure 5.1b) used for the calculation of
correlation is taken from 10×10 CRUST 1.0 model (Laske et al., 2013) .

5.2 Correlation of gravity field quantities with topography

The relation between various step-wise corrected stripped gravity disturbances
evaluated at the Earth’s surface and the corresponding topographic height H of
the computation points above the geoid is shown in Figure 5.2. The corresponding
correlation coefficients computed over the continents are given in Table 5.1. As it
is depicted in Figure 5.2a, there is no significant correlation between the observed
gravity disturbances (δg) and the topographic height H. It reveal the isostatic
compensation of the Earth crust. The corresponding correlation coefficients have
the value of only 0.10 (see Table 5.1). A significant correlation of the topography
corrected gravity disturbances (δgT) and bathymetry corrected gravity disturbances
(δgTB) with the topography is depicted in Figures 5.2b and 5.2c, respectively. In both
cases, the dispersion of gravity disturbances at a particular computation point is
mostly within 100 mGal, except over the oceans and the regions with low elevations,
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where it reaches about 150 mGal and 200 mGal for the topography corrected gravity
disturbances (δgT) and for the bathymetry corrected gravity disturbances (δgTB),
respectively. On the other hand, the dispersion of observed gravity disturbance (δg)
is more than 300 mGal. The decrease in dispersion of gravity data reveals that
they get smoothed by the application of topography and bathymetry corrections.
Over the continents, the topography corrected gravity disturbances (δgT) have the
highest negative correlation (among all the investigated types of gravity disturb-
ances) with the topography, i.e., -0.97 (see Table 5.1). This large negative correlation
is mainly due to the presence of the isostatic compensation in the mountain regions.
It means that in the absence of topography correction the gravity corresponds to
the isostatically adjusted Earth. The bathymetry-corrected gravity disturbances
has nearly the same correlation with the topography over the continents (i.e., -0.96).
The application of the ice and sediment corrections to the bathymetry-corrected
gravity disturbances significantly reduces the correlation with the topography: to
-0.72. Compared to the bathymetry-corrected gravity disturbances the dispersion
of (δgTBIS) is larger as shown in Figure 5.2d. The reason is that the application
of the ice correction to the bathymetry-corrected gravity disturbances (δgTB) sub-
stantially decreases a large negative contribution of the topographical correction.
Consequently, it increases the dispersion of gravity disturbances over the ice sheets
in Antarctica and Greenland. Analogically, the application of the sediment correc-
tion increases the dispersion of gravity disturbances over the continental regions
with large sediment deposits, due to the fact that the densities of the upper, middle,
and lower sediment components are lower than the adopted average topographical
reference crust density. The application of the crust correction which results in the
consolidated crust stripped gravity disturbances (δgTBISC) further decreases the
absolute value of the correlation coefficient to -0.52. The reason of this decrease is
the reduction of excess masses in the crust.

The correlation of the observed gravity disturbances and gravity anomalies with
the topography is similar (the difference is merely 0.04, as shown in Table 5.1).
Nevertheless, the correlation coefficient of the stripped gravity disturbances and the
corresponding gravity anomalies with the topography are not very similar (see Table
5.1). It also reveals that gravity anomalies are less correlated with topography than
the gravity disturbances. As early stated the gravity disturbances have prominent
features associated with local variations in the density and hence it successfully
remove the signals due to different inhomogeneities. Furthermore, the gravity
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Figure 5.2 The relation between the topography H and sequentially corrected gravity dis-
turbances: (a) observed δg, (b) topography corrected δgT, (c) topography and bathymetry
corrected δgTB, (d) topography, bathymetry, ice, and sediment corrected δgTBIS and (e)
topography, bathymetry, ice, sediment and consolidated crust corrected δgTBISC.
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Table 5.1 Pearson’s correlation of the sequentially corrected gravity field quantities with the
topography H over the continents.

Type Gravity
disturbances

Gravity
anomalies

Earth 0.14 0.10

Topography corrected -0.97 -0.94

Topography and bathymetry (TB) corrected -0.96 -0.90

Topography, bathymetry, ice and sediment
corrected (TBIS) -0.72 -0.65

Topography, bathymetry, ice, sediment and
crust corrected (TBISC) -0.52 -0.42

disturbances contains less signal of deep inhomogeneities as compared to gravity
anomalies.

5.3 Correlation of gravity field quantities with bathymetry

The relation between the stripped gravity disturbances evaluated at the ocean
surface and the ocean depth D, taken from CRUST 1.0 is shown in Figure 5.3. The
observed gravity disturbances (δg) are practically uncorrelated with the bathymetry
over the oceans as shown in Figure 5.3a, their correlation is only -0.22 (see Table
5.2). The dispersion of the gravity disturbances evaluated at the ocean surface is
mostly within the range of 250 mGal. As shown in Figure 5.3b, the application of
the topography correction to the observed gravity disturbances at the ocean surface
changed this dispersion to about 200 mGal over the shelf seas. The correlation
of the topography corrected gravity disturbances (δgT) with bathymetry increases
to 0.26. Due to the location of topography (mostly away from ocean surface), the
application of topography correction reduces the dispersion of gravity data only
slightly. The application of the bathymetry correction to the topography corrected
gravity disturbances leads to a strong correlation between the bathymetry corrected
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Figure 5.3 The relation between the Ocean depth D and sequentially corrected gravity
disturbances: (a) observed δg, (b) topography corrected δgT, (c) topography and bathymetry
corrected δgTB, (d) topography, bathymetry, ice and sediment corrected δgTBIS, and (e)
topography, bathymetry, ice, sediment and consolidated crust corrected δgTBISC.
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Table 5.2 Pearson’s correlation of the sequentially corrected gravity field quantities with the
bathymetry.

Type Gravity
disturbances

Gravity
anomalies

Earth -0.22 -0.23

Topographically corrected 0.26 0.43

Topography and bathymetry (TB) corrected 0.96 0.70

Topography, bathymetry, ice and sediment
corrected (TBIS) 0.96 0.76

Topography, bathymetry, ice, sediment and
crust corrected (TBISC) 0.95 0.81

gravity disturbances (δgTB) and the ocean floor depths D. The magnitude of the
topography and bathymetry corrected gravity disturbances increases with the depth
D of the oceans. Compared to the topography corrected gravity disturbances (δgT),
the dispersion of the topography and bathymetry corrected gravity disturbances
remains almost unchanged. The application of the ice and sediment corrections
to the topography and bathymetry corrected gravity disturbances (δgTB) does not
change the predominantly linear trend in the relationship between the topography
and bathymetry corrected gravity disturbances and the ocean floor depths. But the
dispersion of corrected gravity disturbances (δgTBIS) significantly decreases over
the shelf seas, as shown in Figure 5.3d. The correlation coefficient between gravity
disturbances (δgTBIS) and the bathymetry reaches 0.96. The linear trend and the
dispersion of the gravity disturbances remains almost unchanged after applying the
crust correction. Similarly, the correlation of the crust corrected gravity disturbances
(δgTBISC) with the bathymetry over the oceans decreases only slightly, to 0.95.

The correlation between the consolidated crust stripped gravity disturbances
and gravity anomalies with the bathymetry over the oceans is summarised in Table
5.2. The observed gravity anomalies (∆g) have almost the same correlation with the
bathymetry over the oceans as the observed gravity disturbances (δg) (see Table
5.2). The correlation between the step-wise stripped gravity anomalies and the
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bathymetry, is also comparable to the correlation in the case of gravity disturbances,
although it stays lower in all the cases.

5.4 Correlation of gravity field quantities with Moho

The relation between the step-wise stripped gravity disturbances evaluated at the
Earth’s surface and the depths of the Moho boundary Hm from the CRUST 1.0 model
is shown in Figure 5.4. It can be observed that the sequential application of the
corrections to the observed gravity disturbances increases the correlation with the
Moho boundary. This is also confirmed by the correlation coefficients given in Table
5.3. The observed gravity disturbances (δg) are practically uncorrelated globally
with the Moho boundary. The dispersion of the gravity disturbances at a given Moho
depth is mostly within 400 mGal. After applying the topography correction to the
observed gravity disturbances, the correlation with the Moho boundary increases to
-0.54 . This can also be observed in Figure 5.4b, which shows a tendency of decreasing
the topography corrected gravity disturbances (δgT) with an increase in the Moho
depth Hm beneath the continental regions. The application of the bathymetry
correction further enhances this tendency and extends it to the ocean area. The
correlation of the topography and bathymetry corrected gravity disturbances with
the Moho boundary increases to -0.89. Finally, the application of the ice, sediment,
and crust corrections increases the absolute value of the correlation coefficient with
the Moho boundary to 0.95.

Similar to the observed gravity disturbances, the observed gravity anomalies
are uncorrelated with the Moho relief, most probably due to the isostatic balance of
the Earth’s lithosphere. The step-wise application of the corrections significantly
increases the correlation of the gravity anomalies with the Moho boundary (see
Table 5.3). The correlation of gravity anomalies corrected for all effects reaches in
absolute value of 0.88. The correlation of gravity disturbances withMoho is higher as
compared to that of gravity anomalies. It again confirmed that gravity disturbances
have prominent feature of local density variation as compared to gravity anomalies.
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Figure 5.4 The relation between the Moho depth Hm and sequentially corrected gravity
disturbances: (a) observed δg, (b) topography corrected δgT, (c) topography and bathymetry
corrected δgTB, (d) topography, bathymetry, ice, and sediment corrected δgTBIS, and (e)
topography, bathymetry, ice, sediment and consolidated crust corrected δgTBISC.
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Table 5.3 Pearson’s correlation of the sequentially corrected gravity field quantities with the
Moho depth Hm from CRUST 1.0.

Type Gravity
disturbances

Gravity
anomalies

Earth -0.01 0.03

Topography corrected -0.54 -0.45

Topography and bathymetry (TB) corrected -0.89 -0.72

Topography, bathymetry, ice and sediment
corrected (TBIS) -0.91 -0.74

Topography, bathymetry, ice,sediment and
crust corrected (TBISC) -0.95 -0.88

5.5 Estimation of the Moho density contrast

We estimated the Moho density contrast in two different ways: using the crust-
stripped gravity disturbances, and using the crust-stripped gravity anomalies. The
Moho depth Hm from CRUST 1.0 model has been exploited. We use an empirical
technique in which the absolute correlation between theMoho depth fromCRUST 1.0
model and the updated consolidated crust stripped gravity disturbances (δgupdated)
or gravity anomalies (∆gupdated) is minimized. The updated stripped gravity dis-
turbances and anomalies are obtained by adding a contribution (attraction) related
to the density contrast between the reference crust and the upper most mantle to
stripped gravity disturbances and anomalies. Mathematically, the updated gravity
disturbance (δgupdated) is given by:

δgupdated = δgTBISC + ∆ρm

2670
· g2.67c, (5.2)

where ∆ρm is the Moho density contrast in kg/m3 and g2.67c is the gravitational
attraction generated by a crust having the reference density of 2670 kg/m3 and
bounded by the ellipsoid and the Moho interface from CRUST 1.0. The first term on
the right hand side of Eq. (5.2) corresponds to the gravity disturbances generated by
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the homogeneous crust of density 2670 kg/m3 and the other term is the crust-mantle
density contrast contribution. The term δgupdated (gravity disturbances) represents
the crust replaced by a material of the mantle density.

Figure 5.5a shows the plot of absolute correlation between Moho depth Hm

and updated gravity disturbances (δgupdated) and gravity anomalies (∆gupdated), as
functions of Moho density contrast. This figure is based on the results generated
by using the CRUST 1.0 model for gravity stripping correction, and Moho depths
for correlation were taken from CRUST 1.0. We have estimated the values of the
Moho density contrast corresponding to the lowest correlation coefficients as 445
kg/m3 and 460 kg/m3, in case of gravity disturbances and anomalies, respectively.
The difference in these two values are due to the removal of indirect effect on the
compensation attraction, when using gravity anomalies. The adopted reference
crustal density and the estimated values of the Moho density contrast yield the
values of 3115 kg/m3 and 3130 kg/m3 for the global average density of the upper-most
mantle based on gravity disturbances and anomalies, respectively. Figure 5.5b is
the plot of absolute correlation with Moho depth with our earlier study based on
CRUST 2.0 model. In that study CRUST 2.0 were used for stripping corrections,
as well as for defining the Moho geometry for the correlation. The values of the
Moho density contrast (based on CRUST 2.0 Model) corresponding to the lowest
correlation coefficient are 485 kg/m3 and 481 kg/m3 for gravity disturbances and
anomalies, respectively.

These estimated value based on CRUST 2.0 are very similar to the theoretical
value of 480 kg/m3 adopted in the definition of PREM. These values of the crust-
mantle density contrast differ by about 7% from the global average of the Moho
density contrast of 448 kg/m3 estimated by Sjöberg (2011a). The value of 445 kg/m3

based on CRUST 1.0 model and gravity disturbances agrees with the value reported
by Sjöberg (2011a). We have used this value when solving the inverse problem for
the Moho geometry (Chapters 6-7).

It is observed that the density contrast for gravity anomalies, when using CRUST
2.0, is smaller than for gravity disturbances, but for CRUST 1.0 is the opposite. The
only possible explanation for this change is a higher accuracy of CRUST 1.0 model
as compared to CRUST 2.0.
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Figure 5.5 The absolute Pearson’s correlation between the updated crust stripped gravity
data and the Moho depths for different values of the Moho density contrast. Diamonds
represent gravity disturbances and circles gravity anomalies (a) using CRUST 1.0 Model (b)
using CRUST 2.0
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5.6 Summary

We have computed and applied the topographic and crust-stripping corrections to
observed gravity data. The step-wise corrected gravity data have been used for
the analysis of the correlation with the crust thickness. We have demonstrated
that the crust-stripped gravity disturbances have the largest correlation with the
crust thickness as compared to other sequentially corrected gravity disturbances
and anomalies. We have demonstrated that the application of stripped correction to
gravity disturbances and gravity anomalies improves its correlation with the Moho
geometry. It confirmed that the gravity data is successfully cleaned from nuisance
signals related to crust inhomogeneities. Furthermore, we have demonstrated
the correlation of gravity disturbances with the Moho is higher than the gravity
anomalies. It confirmed the local nature of the link between the density variations
and gravity disturbances. Therefore, we concluded that gravity disturbances are the
most appropriate type of input data for the recovery of Moho geometry as compared
to gravity anomalies.

We have used the crust-stripped gravity data and the CRUST1.0 crust-thickness
data to estimate the global average value of the crust-mantle density contrast. This
is performed by minimising the correlation between the consolidated crust-stripped
gravity data and crust thickness data by adding the crust-mantle density contrast
to the original reference crustal density of 2670 kg/m3. Our estimated value are 445
kg/m3 and 460 kg/m3 for gravity disturbances and anomalies, respectively.

The adopted reference crustal density of 2,670 kg/m3 and the estimated values
yields the values for the upper mantle density of 3115 kg/m3 and 3130 kg/m3 for
gravity disturbances and gravity anomalies, respectively. First of these values of
Moho density contrast has been used as input, when solving the inverse problem for
the Moho geometry as discussed in Chapter 6.



6

Recovery of the Moho geometry as an
inverse problem

In this chapter, we formulate the functional model for the Moho geometry recovery.
This model is established by linking the spherical harmonic coefficients of residual in-
put gravity data (gravity disturbances) with the Moho undulations. The preparation
of input gravity data (spherical harmonics coefficients) is presented. Furthermore,
we describe the solution strategy for the most probable model of Moho depths using
the least-squares estimation method. We discuss the regularisation issue and derive
the expressions for the elements of the regularisation matrix. Moreover, we present
a combined approach for Moho recovery in which the Moho models from seismic
sources are used as an additional input. Subsequently, the estimation of proper
weights for each individual data set is discussed. For this purpose, we have used
Variance Components Estimation (VCE) procedure.

We used the input data in the form of spherical harmonic coefficients. The motiv-
ation to use the input data in the form of spherical harmonic coefficients is a need
to suppress the gravity signal due to the deep Earth structure, i.e., the signal due
to the core-mantle boundary and heterogeneity of the mantle as well as the impact
of the difference between the normal gravity field and its approximation adopted in
Eq. (6.6). For this purpose, we have removed the low-degree coefficients from the
data vector, and have applied tailored weights to the remaining coefficients.
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6.1 Residual gravity data as input for the computation of

the Moho geometry

In our study, the residual input data are defined as the difference between the obser-
vations (observed gravity disturbances ) and the reference gravity disturbances:

gres = g− g0, (6.1)

where g = observations, g0 = reference gravity and gres is the residual gravity.

We can further write g0 as the sum of reference gravity generated by crust (gc),

generated by mantle (gm) and centrifugal acceleration (Z) of the Earth i.e.,

g0 = gc + gm+Z. (6.2)

To take into account inhomogeneities in the crust, we further split the crust
contribution to gravity into two parts:

1. The part g2.67c generated by standard crust having nominal density of 2670
kg/m3, and

2. The residual part ∆grs generated by the residual density δρ,

where δρ = ρa−ρ2.67c, and ρa and ρ2.67c are the actual crust density taken from a
model and nominal crust density, respectively:

gc = g2.67c +∆grs. (6.3)

Now from Eq. (6.2) and (6.3) we can write

g0 =∆grs + g2.67c + gm +Z (6.4)

Let us introduce a parameter β (relative density contrast) as,

β= ∆ρ

ρ2.67c
= ρm

ρ2.67c
−1,
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where ρm is the mantle density, and ∆ρ = ρm −ρ2.67c, is the crust-mantle density
contrast.

Now, we can add and subtract the term β g2.67c from Eq. (6.4):

g0 = ∆grs + g2.67c +β g2.67c −β g2.67c + gm +Z

= ∆grs + (1+β)g2.67c −β g2.67c + gm +Z, (6.5)

The value γ= (
1+β)

g2.67c+gm+Z, which can be interpreted as an approximation
of the normal field. It is the gravitational attraction of the Earth, whose crust density
is replaced by mantle density. Therefore, Eq. (6.5) turns into

g0 = γ+∆grs −β g2.67c. (6.6)

By inserting the value of g0 from Eq (6.6) into Eq. (6.1), we get

g− g0 = g−γ−∆grs +β g2.67c (6.7)

Now, in view of the definition of gravity disturbance δg = g−γ, Eq. (6.7) is
further reduced to

gres = δg−∆grs+β g2.67c (6.8)

or
gres = δg− (∆grs −β g2.67c)= δg−δgr, (6.9)

where δgr =∆grs−β g2.67c, ∆grs is the sum of gravitational attraction (stripping
corrections) of the residual part of the crust having residual density δρ. and β is
parameter which is estimated from the values of crust-mantle density contrast
∆ρ and nominal crust density. The term ∆grs are described in Eq. (4.6). In the
next section, we have described the procedure for the computation of spherical
harmonic coefficients of residual gravity disturbances (δgr). To get the spherical
harmonic coefficients of input gravity disturbances, we subtracted the spherical
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harmonic coefficients of residual gravity disturbances from that of observed gravity
disturbances. By doing so, we have used the spherical harmonic coefficients of
observed gravity disturbances without further processing, and hence minimized the
processing error.

6.2 Computation of spherical harmonic coefficients of

gravity disturbance (residual part δgr)

For the preparation of input data for the Moho recovery, we first compute the
spherical harmonic coefficients of residual gravity disturbances δgr (see Eq. (6.9))
and then the estimated spherical harmonic coefficients are subtracted from the
spherical harmonic coefficients of observed gravity disturbance (according to Eq.
(6.9) ). The later ones are obtained from the EIGEN-6C2 model after subtracting
the coefficients of normal field (for l even and m=0).

The residual gravity disturbances and corresponding spherical harmonic coeffi-
cients are linked by Eq. (6.10). That expression can be written as follow:

Ax=d (6.10)

where x= [
C̄0,0, C̄1,0, ....C̄LL, S̄1,1, S̄1,2, ....S̄LL

]T is the unknown vector composed of
spherical harmonic coefficients, d = [δg1,δg2, ....δgJ]T is the observation vector
composed of residual gravity disturbances computed on the Earth surface, andA is
the design matrix.

The unknown spherical harmonics coefficients are found as the least-square
solution of Eq. (6.10).

6.3 Linear Model for Moho configuration recovery

The updated Moho model z(θ,λ) can be written as

z(θ,λ)= z0(θ,λ)+∑
i j

bi jΨi j(θ,λ), (6.11)
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where θ is the co-latitude, λ is the longitude, i and j are the indices of the node at
which the Moho are estimated. The indices i and j are taken along the latitudinal
direction and the longitudinal direction, respectively. z is the updated Moho depth
to be found, z0 is the input Moho depth taken from the reference model (CRUST
1.0), bi j is the unknown Moho correction at node i j, and Ψi j is the basis function
given by,

Ψi j(θ,λ)=


(
1−

∣∣θ−θi

∣∣
∆θ

)(
1−

∣∣λ−λ j

∣∣
∆λ

)
if

∣∣θ−θi
∣∣<∆θ and

∣∣λ−λ j
∣∣<∆λ

0 otherwise,

where ∆θ and ∆λ are cell sizes in the latitudinal and longitudinal direction, respect-
ively. The function Ψi j is equal to 1 at node i j and reaches zero at the outer border
of the cells adjacent to the node i j.

Let the surface density s i.e., the mass per unit area, be defined as

s = ρb,

where ρ is mass density (mass per unit volume ) and b is the height of the volume
element.

The expression for surface density variation δsi j associated with variation of the
Moho depth at the node i j is subsequently given by

δsi j(θ,λ)=∆ρΨi j(θ,λ) ·bi j, (6.12)

where ∆ρ is the density contrast at the Moho boundary, which is estimated in
Chapter 5.

The variation of the spherical harmonic coefficients δClm of the Earth’s gravity
disturbances associated with the variation of surface density δs on the surface of a
sphere is given by (described in Appendix B):

δC̄lm,i j =
R̃2

M (2l+1)

(
R̃
R

)l Ï
Ω

δs(θ′,λ′)Ȳlm(θ
′
,λ

′
)dΩ

′
. (6.13)
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where R is the radius of a mean sphere,which approximate the Earth, and R̃ = R−z0

, z0 is the reference Moho depth taken from the reference model (CRUST 1.0), and
dΩ

′ is an element of the unit sphere Ω′
.

In view of the value of δs from Eq. (6.12), Eq. (6.13) turns into

δC̄lm =
R̃2

i j

M (2l+1)

(
R̃
R

)l Ï
Ω

∆ρbȲlm(θ
′
,λ

′
)dΩ

′

By taking discrete of integration domain, and neglecting the Moho undulation at
the vicinity of node i j, the variations of spherical harmonic coefficients becomes:

δC̄lm,i j =
∑
i j

R̃2
i j

M (2l+1)

(
R̃i j

R

)l

∆ρ ·bi j

Ï
Ω

Ψi j(θ′,λ′)Ȳlm(θ
′
,λ

′
)dΩ

′
. (6.14)

Eq. (6.14) represents a linear problem which links the variation of spherical
harmonic coefficients of gravity disturbances δClm (observations) with the Moho
undulations bi j (unknown parameters). An element of the design matrix A for this
linear inverse problem can be obtained as:

Alm,i j =
∂
(
δC̄lm,i j

)
∂bi j

=∑
i j

R̃2
i j

M (2l+1)

(
R̃i j

R

)l

∆ρ

Ï
Ω

Ψi j(θ′,λ′)Ȳlm(θ
′
,λ

′
)dΩ

′
. (6.15)

6.4 Least-squares estimation

The unknown Moho model parameters bi j are arranged as a vector x of length u.
The residual spherical harmonic coefficients are arranged as an observation vector
d of length n. Then Eq. (6.14) can be written in matrix-vector notation

Ax=d, (6.16)

whereA is the n×u design matrix.

The final model is obtained by the addition of the reference model to the computed
model corrections.
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The data to be inverted contain noise. If it is random Gaussian and having the
zero mean, then the functional model of Moho corrections from gravity data Eq.
(6.16) may be interpreted as a standard Gauss-Markov model:

E{d}= Ax, D{d}=Cd,

where E and D denote the expectation and the dispersion operator, respectively, and
Cd is the variance-covariance matrix of data noise.
In the absence of a prior information, the weighted least-square solution is obtained
by minimizing the quadratic function

φ(x)= (d−Ax)TC−1
d (d−Ax) , (6.17)

which is equivalent to solving the system of normal equations:

x̂=N−1(ATC−1
d d), (6.18)

whereN is the normal matrix:

N =ATC−1
d A. (6.19)

Eq. (6.18) provides the statistically optimum solution in the presence of noise in
the data.

Multiple data sets, d1, d2, d3, .....dn can be combined to form a single set of
observation equations

A ix=di, i = 1,n (6.20)

In the absence of correlation between noise in different data sets, its least-squares
solution can be written as:

x̂= Ñ−1y, (6.21)

where
Ñ =

n∑
i=1
AT

iC
−1
di
Ai
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and
y =

n∑
i=1
AT

iC
−1
di
di

where Cd1 , Cd2 ,Cd3 , . . .Cdnare the covariance matrices of noise in the data sets
d1, d2, d3, . . dn, respectively.

6.5 Regularization

Available data frequently do not allowmodel parameters to be determined accurately.
In this case, an additional a priori information has to be used. A way to formulate and
exploit the existing knowledge about the a priori information and the model is offered
by statistical regularization, assuming that according to a priori information, the
most probable model is equal to x0. Let the model satisfy the Gaussian distribution
and is characterized by the most probable model x0, and the covariance matrix
Cx:

E{x}=x0, D{x}=Cx,

Then the a priori probability density function (pdf) of the model is :

P(x)∝ e−
1
2 (x−x0)T C−1

x (x−x0).

Furthermore, assuming that the noise is Gaussian and has zero mean i.,e.,

E{n}= 0, D{n}=Cd,

where Cd is the covariance matrix of data noise. Similarly, the data vector d can be
treated as random with stochastic properties

E{d}=Ax, D{d}=Cd.

Then, the a-posteriori pdf of the model can be determined as:

P(x |d )∝ e−
1
2 (d−Ax)T C−1

x (d−Ax)− 1
2 (x−x0)T C−1

x (x−x0). (6.22)
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Let us denote the optimal model estimation x̂ as the most probable model for
which the a posteriori pdf (Eq. 6.22) is maximum. Then, such a model can be found
as the minimum of a quadratic objective function (Ditmar, 2010):

x̂= argmin
x

[
(Ax−d)TC−1

d (Ax−d)+ (x−x0)TC−1
x (x−x0)

]
. (6.23)

Differentiating Eq. (6.23) with respect to elements of the vector x and assigning the
result to zero yields:

x̂=
(
ATC−1

d A+C−1
x

)−1 (
ATC−1

d d+C−1
x x0

)
(6.24)

Let
C−1

d = 1
σ2

d

Pd, (6.25)

where Pd is the data weight matrix, whereas, σ2
d is data noise variance. A similar

representation of the model covariance matrix can be introduced:

C−1
x = 1

σ2
x
Px. (6.26)

By inserting the expression for C−1

d and C−1

x given by Eqs. (6.25) and (6.26) into Eq.
(6.24), we obtain:

x̂=
(
ATPdA+αPx

)−1 (
ATP dd+αPxx0

)
,

where α= σ2
d

σ2
x
is the regularization parameter. For initiial model correction x0 = 0,

the above Eq. becomes

x̂=
(
ATPdA+αPx

)−1
ATP dd. (6.27)

Eq. (6.27) is an alternative form of the regularized least-squares adjustment formula,
which yields the minimum of the corresponding objective function:

x̂= argmin
x

(Ax−d)TPd (Ax−d)+αxTPxx. (6.28)

Knowledge of covariance matrices of the data noise and a priori model uncer-
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tainties is mandatory when statistical regularization is used. In the most cases,
the former is not a problem, while the latter is less obvious because we need to
define some properties of a phenomenon that might be totally unknown before the
measurements are made. For this reason, the statistical regularization is frequently
replaced in practice with the Tikhonov regularization (Tikhonov, 1963a,b).

Originally, the Tikhonov regularization concept was developed for continuous
inverse problems, however it can also be applied to discrete problems. According to
Tikhonov, the objective function (6.28) is replaced with the following one:

x̂= argmin
x

(Ax−d)TPd (Ax−d)+αφ(x), (6.29)

where φ(x) is a regularization functional. If the vector x is represented by a one-
dimensional function f (t), then the Tikhonov regularization functional can be writ-
ten as:

φ(x)=
bˆ

a

[
ζ0(t) f 2(t)+ζ1(t)

(
d f (t)

dt

)2
+·· ·ζn(t)

(
d(n) f (t)

dt(n)

)2]
dt, (6.30)

where ζ0(t), ζ1(t) · · ·ζn(t) are a priori non-negative functions. The maximum order n
of derivative of function f (t) is called the order of regularization.

Now, the regularized least-squares solution of the inverse problem, for which the
objective function of Eq. (6.29) is minimized is given as:

x̂ =
(
ATPdA+αR

)−1
ATPdd, (6.31)

where R is the regularization matrix, N = (
ATPdA+αR)

is the normal matrix
and y =ATPdd is the right hand side vector.
By comparing Eqs. (6.27) with (6.31), and using Eq. (6.26), we get

Cx =σ2
xR

−1.

For more than one data set, Eq. (6.31) can be rewritten as:

x̂=N−1y, (6.32)
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where

N =
n∑

i=1

(
AT

i PdiAi

σ2
di

+ 1
σ2

x
R

)
, (6.33)

and

y =
n∑

i=1

AT
i Pdidi

σ2
di

, (6.34)

where n is total number of data sets.

6.6 Discrete zero-order and first-order Tikhonov

regularization

From Eq. (6.30), the zero- and first-order Tikhonov regularization function φ(x) can
be written for an unknown function on the surface (ΩR̃) of a sphere as follows:

φ0(x)=
ˆ ˆ

ΩR̃

x2(θ,λ)dΩR̃ , (6.35)

and
φ1(x)=

ˆ ˆ

ΩR̃

(∇x(θ,λ))2 dΩR̃ , (6.36)

where x(θ,λ) is the unknown function, i.e., Moho model correction, ΩR̃ is the surface
of a sphere of radius R̃, θ is co-latitude and λ is longitude.
A discrete analogue of Tikhonov zero-order regularization given by Eq. (6.35) is:

φ(x) = ∑
i,k

x2(θi,λk)R̃2 sinθi∆θ∆λ, (6.37)

where ∆θ and ∆λ are the cell sizes. After denoting xi,k = x(θi,λk), the above equation
can be rewritten as

φ(x)=∑
i,k

∑
i′ ,k′
Riki′k′ xi,kxi′ ,k′ =xTRx,
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whereR is the regularization matrix whose elements are given by

Riki′k′ =
R̃2 sinθi∆θ∆λ if i

′ = i, k
′ = k

0 otherwise
. (6.38)

In case of the first-order regularization, discretization of Eq. (6.36) yields:

φ(x)=∑
i,k

[(
x(θi+1,λk)− x(θi,λk)

R∆θ

)2
R2 sinθi+ 1

2
∆θ∆λ+

(
x(θi,λk+1)− x(θi,λk)

R sinθi∆λ

)2
R2 sinθi∆θ∆λ

]
,

where the term θi+ 1
2
is the value of co-latitude at the mid-point between the nodes

with indices i and i+1. By simplifying the above equation, we get

φ(x) = ∑
i,k

[
(x(θi+1,λk)− x(θi,λk))2 sinθi+ 1

2

∆λ

∆θ
+ (x(θi,λk+1)− x(θi,λk))2 ∆θ

sinθi∆λ

]
= ∑

i,k

[(
xi+1,k − xi,k

)2
χi+ 1

2
+ (

xi,k+1 − xi,k
)2 1
χi

]
, (6.39)

where

xi,k = x(θi,λk)

χi = sinθi∆λ

∆θ

Eq. (6.39) further transforms into:

φ(x) = ∑
i,k

[(
x2

i+1,k −2xi+1,k · xi,k + x2
i,k

)
χi+ 1

2
+

(
x2

i,k+1 −2xi,k+1 · xi,k + x2
i,k

) 1
χi

]
= ∑

i,k
x2

i+1,kχi+ 1
2
+∑

i,k
x2

i,kχi+ 1
2
+∑

i,k
x2

i,k+1
1
χi

+∑
i,k

x2
i,k

1
χi

−

2
∑
i,k

xi+1,k · xi,kχi+ 1
2
−2

∑
i,k

xi,k+1 · xi,k
1
χi

= ∑
i,k

x2
i,kχi− 1

2
+∑

i,k
x2

i,kχi+ 1
2
+∑

i,k
x2

i,k
1
χi

+∑
i,k

x2
i,k

1
χi

−

2
∑
i,k

xi+1,k · xi,kχi+ 1
2
−2

∑
i,k

xi,k+1 · xi,k
1
χi

(6.40)

= ∑
i,k

x2
i,k ·νi −2

∑
i,k

xi+1,k · xi,kχi+ 1
2
−2

∑
i,k

xi,k+1 · xi,k
1
χi

, (6.41)
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where
νi = χi− 1

2
+χi+ 1

2
+ 2
χi

.

After rearranging the indices i and k, Eq. (6.41) further reduces to:

φ(x) = ∑
i,k

x2
i,k ·νi −

∑
i,k

xi+1,k · xi,kχi+ 1
2
−∑

i,k
xi,k · xi−1,kχi− 1

2
−

∑
i,k

xi,k+1 · xi,k
1
χi

−∑
i,k

xi,k · xi,k−1
1
χi

(6.42)

= ∑
i,k

∑
i′ ,k′
Riki′k′ xik · xi′k′ =xTRx, (6.43)

where

Riki′k′ =



νi if i
′ = i, k

′ = k

−χi+ 1
2

if i
′ = i+1, k

′ = k

−χi− 1
2

if i
′ = i−1, k

′ = k

− 1
χi

if i
′ = i, k

′ = k−1 or i
′ = i, k

′ = k+1

0 otherwise

(6.44)

is the regularization matrix. In this study, Eq. (6.38) and (6.44) are used for
the computation of the regularization matrix when the zero-order and first-order
regularization is applied.

6.7 Solution strategy

To estimate the Moho depths, we discretize the whole globe into a 2×2 arc-degree
cells. It results in 16200 unknown parameters, called Moho corrections. The input
data are defined as a set of spherical harmonic coefficients up to maximum degree
and order L. Three cases for the maximum degree and order of input data have
been considered: L = 90, L = 150, and L = 180. The total number of coefficients
(observations) in these cases is equal to 8281, 22801 and 32761, respectively. The
maximum degree does not exceed 180 in order to match the resolution of the CRUST
1.0 model, which has been used for the forward modelling of gravity data (stripping
corrections). We have used the following procedure for solving the inverse problem.
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• Compute the elements of the design matrixA, as described in Eq. (6.15), using
numerical integration.

• Compute the elements of the regularization matrixR, using Eqs. (6.38) and
(6.44) in case of the zero-order and first-order regularization, respectively.

• Compute the regularization parameter using the Variance Components Es-
timation (VCE) procedure.

• Compute the normal matrixN as described in Eq. (6.33) and the right-hand
side vector y of Eq. (6.34), and then solve the system of linear equations
described by Eq. (6.32).

The Variance Components Estimation (VCE) technique (described in Appendix C) is
used to estimate the regularization parameter and data weights. The weights are
estimated by using the iteration solution and minimising the root means square
value of the difference of two consecutive solutions.

6.8 Summary

In this chapter, we have described the functional model for the Moho configuration
recovery. The model is established by linking the spherical harmonic coefficients of
residual gravity disturbances with the Moho undulations. We present a procedure
for the preparation of input data to be used for the Moho recovery. Furthermore, the
least-squares estimation procedure for finding the most probable model (unknown
Moho corrections) is described. We present the zero and first-order Tikhonov regu-
larisation schemes and derive the expressions for the computation of the elements
of zero and first-order Tikhonov regularization matrix. Moreover, we present a
combined approach for Moho recovery in which the Moho models from seismic data
are used as an additional input. Subsequently, the estimation of proper weights
for each individual data set is presented. To that end, we have used the Variance
Components Estimation (VCE) procedure.
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The Moho model and its validation

In this chapter, we present Moho model which have been developed using advanced
numerical schemes for forward and inverse modeling. It has been argued in Chapter
2, that the large scale features can not be recovered from gravity data due to signals
related to mantle inhomogeneity and core-mantle boundary. The pure gravimetric
inversion may leads to an ill-posted problem due to a lack of uniqueness. Therefore,
we have used gravity disturbances data together with a priori models based on
seismic data. For this purpose, the global models CRUST 1.0, and CRUST07 have
been used as a priori models. Moreover, we have used zero-order and first-order
regularization. We have estimated the weight for each individual data set, using the
Variance Components Estimation (VCE) procedure. To damp the nuisance signal
related to mantle and core-mantle boundary heterogeneities, we have eliminated the
first few degree of input spherical harmonic coefficients. Additionally, we have apply
degree-dependent weight to the input spherical harmonic coefficients. In Section
7.1, we discuss the procedure for selecting the optimal values of the parameters
required for Moho inversion. These parameters include input data combination
schemes, choice of regularisation, degree up to which the input spherical harmonic
coefficients are eliminated, degree-dependent weights, and the maximum degree of
the input spherical harmonic coefficients.

Furthermore, we have produced three variants of Moho model using the above
optimal combination strategy, by truncating the maximum degree of spherical
harmonic coefficients at: (1) degree 90, (2) degree 150, and (3) degree 180. Then,
we compare these three variants of Moho models with the European Moho model
EuM09. We named our optimal Moho model as “Delft Moho Model Release 1”
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(DMM-1). In Section 7.2, we have re-estimated the Moho density contrast using the
DMM-1 model and stripped gravity disturbances. In Section 7.3, we present the
analysis of our final product DMM-1, by comparing it with the available global Moho
models. In Section 7.4, we present the comparison of Moho model DMM-1 with two
regional models. These regional models include (1) the Gravity Derive Moho for
South America (GDMSA) (Van der Meijde et al., 2013), (2) and (2) Precambrian
Crustal Structure in Africa and Arabia (PCSAA) (Tugume et al., 2013). Finally, the
summary is presented in Section 7.5.

7.1 Optimal data processing strategy

During the course of this research, we have adopted the following data processing
strategies, which can be classified on the basis of combining gravity disturbances
data with a-priori models, and the choice of the regularization scheme:

1. Moho Model using gravity data with a priori model CRUST 1.0 and Zero-order
regularization (MMC1Z)

2. Moho Model using gravity data with a priori model CRUST 1.0 and First-order
regularization (MMC1F)

3. Moho Model using gravity data with a priori model CRUST07 and Zero-order
regularization (MMC07Z)

4. Moho Model using gravity data with a priori model CRUST07 and First-order
regularization (MMC07F)

5. Moho Model using gravity data with a priori models CRUST 1.0, CRUST07
and Zero-order regularization (MMJZ)

6. Moho Model using gravity data with a priori models CRUST 1.0, CRUST07
and First-order regularization (MMJF)

The gravity disturbances data used in the development of these models are based on
EIGEN-6C2 model, with the CRUST 1.0 stripped corrections applied. We have taken
the contribution of gravity data up to maximum degree L = 180, in order to match
the 10 ×10 resolution of CRUST 1.0 model. The other reason to limit the maximum
degree L to 180, is to minimize the signal due to the uncertainties of crust model,
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which may contribute at higher degrees. The long wavelength component of the
gravity data contain nuisance signals due to the 3-D density distribution within the
mantle and core-mantle boundary. For this reason we eliminate first few degrees of
the spherical harmonic coefficients of the input gravity data; up to degree 5, second,
up to degree 10, and third, up to degree 15. For the further suppression of deep
inhomogeneities, we have applied low weights to low-degree coefficients and high
weights to high-degree coefficients.

7.1.1 Optimal data combination and the choice of regularisation

For the selection of the best data combination strategy, the optimal set of elimin-
ated low-degree spherical harmonic coefficients, and the optimal degree-dependent
weights of spherical harmonic coefficients, we have compared our models with two
regional models for the European Moho: EuM09 developed by Grad et al. (2009)
and EuCrust07 developed by Magdala et al. (2008). The EuCrust07 model spans
the latitudes range 350N−710N, and the longitudes range 250W−350E, whereas
the EuM09 model covers the region between the latitudes 280N and 870N, and the
longitudes between 400W and 700E. For analysis, we have split the European region
into two parts: (1) the continental part (2) the oceanic part. We have chosen these
models due to the fact the Moho for European crust is well known as compared to
other parts of the globe, and due to their high resolutions and the compilation of
currently available seismic and gravity maps.

In order to choose the best seismic model and gravity data combination, we have
run the inversion of various data combinations along with the zero-order and first-
order regularization. We have eliminated the contribution of low-degree spherical
harmonic coefficients up to 5, 10, and 15 degree. In this experiment, we have taken
the input gravity spherical harmonic coefficients up to maximum degree 180. As
highlighted in the last column of Tables 7.1 and 7.2, the RMS differences for the
MMJF strategy are minimum with both of European Moho models EuM09 and
Eucrust07. From these results, we can conclude that the optimum strategy is to
utilize the gravity data in combination with both global a priori models CRUST 1.0
and CRUST07 and with the first-order regularization. Tables 7.1 and 7.2, present
the Root Mean Square (RMS) difference between our models as well as CRUST 1.0
and CRUST07 on the other hand and the EuM09 and EuCrust07 Moho models on
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Table 7.1 Comparison of our different strategy based Moho models with EuM09 model, RMS
difference in [km].

(a) Elimination of low-degree l ≤ 5 contribution

l ≤ 5 CRUST 1.0 CRUST07 MMC1Z MMC1F MMC07Z MMC07F MMJZ MMJF

continental part 2.95 4.73 2.65 2.83 3.83 3.83 2.57 2.49

oceanic part 3.48 3.09 3.25 3.43 2.98 2.96 2.74 2.88

total 3.13 4.47 2.93 3.13 3.78 3.25 2.80 2.71

(b) Elimination of low-degree l ≤ 10 contribution

l ≤ 10 CRUST 1.0 CRUST07 MMC1Z MMC1F MMC07Z MMC07F MMJZ MMJF

continental part 2.95 4.73 2.62 2.74 3.61 3.19 2.54 2.29

oceanic part 3.48 3.09 2.96 3.29 2.23 2.10 2.61 2.55

total 3.13 4.47 2.88 3.01 3.44 2.93 2.57 2.48

(c) Elimination of low-degree l ≤ 15 contribution

l ≤ 15 CRUST 1.0 CRUST07 MMC1Z MMC1F MMC07Z MMC07F MMJZ MMJF

continental part 2.95 4.73 2.65 2.84 3.75 3.33 2.57 2.52

oceanic part 3.48 3.09 3.12 3.38 2.40 2.14 2.74 2.85

total 3.13 4.47 2.91 3.09 3.59 3.04 2.79 2.74
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the other hand. Based on this comparison, we have found that the strategy MMJF
which incorporates the combination of gravity data with CRUST 1.0 and CRUST07
models, using first-order regularization scheme, yields the best result.

7.1.2 Spherical harmonic coefficients low-degree contribution

The choice to eliminate low degrees is based on the RMS fit between the developed
models and the existing regional models for the European Moho EuM09 and Eu-
crust07. We run the inversions for the Moho recovery, using the following spherical
harmonics coefficients of the input gravity data:

• of degree l > 5

• of degree l > 10

• of degree l > 15

We compare our models with EuM09 and Eucrust07 models, and the results are
summarised in Tables 7.1 and 7.2, respectively. From Tables 7.2b and 7.1b, it can
be noted that the minimum RMS difference is achieved when the contribution of
those input spherical harmonic coefficients is eliminated which have degree ≤10.
As shown in the Tables 7.1 and 7.2, we have obtained the minimum RMS difference
for all three regions in this way.

From the above results we conclude that the elimination of spherical harmonic
coefficients up to degree 10 provide the best RMS fit of gravimetric solutions with
high-resolution European Moho models. This is due to the fact that gravitational
signals of mantle density heterogeneities are more or less contained within the long
wavelength up to degree l ≤ 10. For further analysis, we have used the strategy
MMJF, and have taken contribution of input spherical harmonic coefficients degree
l > 10.

7.1.3 Degree dependent weights of gravity data

To damp the signal from deep inhomogeneities we have adopted a strategy, in which
lower degrees are given lesser weights, whereas the higher degrees are given higher
weights. For this purpose, we have performed numerical experiments, in which we
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Table 7.2 Comparison of our different strategy based Moho models with Eucrust07 model,
RMS differences in [km].

(a) Elimination of low-degree l ≤ 5 contribution

l ≤ 5 CRUST 1.0 CRUST07 MMC1Z MMC1F MMC07Z MMC07F MMJZ MMJF

continental part 4.12 6.36 3.88 3.91 5.89 5.15 4.03 3.88

oceanic part 4.42 3.40 3.94 4.13 4.34 3.89 3.38 3.63

total 4.165 5.84 3.90 3.92 5.01 4.74 3.91 3.72

(b) Elimination of low-degree l ≤ 10 contribution

l ≤ 10 CRUST 1.0 CRUST07 MMC1Z MMC1F MMC07Z MMC07F MMJZ MMJF

continental part 4.12 6.36 3.82 3.77 5.50 4.70 3.86 3.71

oceanic part 4.42 3.40 3.78 4.09 4.72 3.64 3.21 3.59

total 4.165 5.84 3.84 3.90 5.01 4.34 3.78 3.62

(c) Elimination of low-degree l ≤ 15 contribution

l ≤ 15 CRUST 1.0 CRUST07 MMC1Z MMC1F MMC07Z MMC07F MMJZ MMJF

continental part 4.12 6.36 3.87 3.78 5.67 4.96 3.99 3.84

oceanic part 4.42 3.40 3.95 4.09 4.13 4.04 3.86 3.75

total 4.165 5.84 3.84 3.90 5.01 4.34 3.91 3.81
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Table 7.3 RMS differences [in km] between EuM09 and MMJF based strategy Moho model
for different weights to spherical harmonics coefficients.

RMS difference [km] 1 l2 l4 l6

Continental region 3.17 2.84 2.29 2.62

Oceanic region 2.99 2.99 2.55 3.16

Combine region 3.10 2.96 2.48 2.90

have obtained the Moho models using different weights proportional to the spherical
harmonic coefficients degree (degree-dependent weights). We apply the following
weighting schemes:

• Pd ∝ l2

• Pd ∝ l4

• Pd ∝ l6

where Pd is the weights matrix of the input gravity data and l is the spherical
harmonic degree. Using the above weighting scheme, we have produced the Moho
model using the MMJF strategy and by using the spherical harmonic coefficients up
to degree 180 of input gravity data. The quantitative values in table 7.3, represent
the RMS difference between our proposed Moho model and the high-resolution
EuM09 Moho model, with the above-mentioned weighting schemes. The results
reveal that the best RMS fit (see Table 7.3) can be achieved by applying weights
proportional to l4. This implies that the application of weights proportional to l4

properly suppress the long wavelength part of gravity signals and amplify the signals
from shallow structures.

7.1.4 Maximum degree truncation

We further produce three variants of MMJF strategy by setting the maximum degree
of input spherical harmonic expansion equal to (1) 90, (2) 150, and (3) 180. There is
the following reasons for the elimination of coefficients above degree 180: (1) The
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Table 7.4 RMS difference [in km] between EuM09 and MMJF based strategy Moho model
for different maximum-degree L truncations.

L=90 L=150 L=180

2.82 2.56 2.48

resolution of the CRUST 1.0 model, which is used for the stripping correction of
gravity data is 10 ×10, which is equivalent to degree 180. (2) The coefficients above
degree 180 are strongly contaminated by the signals of upper crust heterogeneities.
(3) the computation of Moho for taking maximum degree L > 180 would be time
consuming and will required large computational time and machine memory. We
have compared our results with the EuM09 Moho model for the European region.
The RMS fit is provided in Table 7.4. The RMS fit between the EuM09 model
and our Moho models improves by increasing the maximum degree L, yielding the
minimum RMS difference for L = 180. The results indicate that the Moho signature
is still present at high degrees up to 180, despite the contribution of the crust model
uncertainties, which may be significant at high degrees (typically above degree 100).
We named our optimal Moho model as “Delft Moho Model Release 1” (DMM-1). The
conclusion is that, the DMM-1 is obtain by using the input gravity data with a priori
models CRUST 1.0 and CRUST07, eliminating coefficients up to degree 10, applying
degree-dependent weight to input coefficients, and taking maximum degree input
coefficients up to L=180. For further analysis and comparison we have used this
model.

7.2 Moho density contrast estimation from MMJF model

In Chapter 5, we have estimated crust-mantle density contrast using complete crust-
stripped gravity disturbances and the Moho depth from the a priori CRUST 1.0
model. Now, we recompute the crust-mantle density contrast using the stripped
gravity disturbances and the Moho depth from DMM-1 model. For the estimate, we
followed the same procedure as in Chapter 5. From this study, we have estimated
the value of 454 kg/m3 for crust-mantle density contrast. This value differs from
our early estimate (445 kg/m3) by only 2%.
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Figure 7.1 Global Moho maps from (a) CRUST 1.0, (b) CRUST 2.0, (c) CRUST07, and (d)
DMM-1 models
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Figure 7.2 Difference between DMM-1 and (a) CRUST 1.0, (b) CRUST 2.0, and (c) CRUST07
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Table 7.5 Statistics of different Moho models, unit [km].

Model Min Max Mean STD

MMJF 6.1 70.2 22.83 12.1

CRUST 2.0 8.6 69.9 22.96 12.3

CRUST 1.0 7.4 74.0 22.90 12.04

CRUST07 5.9 75.97 20.78 11.87

Table 7.6 Statistics of the differences between a DMM-1 on the one hand and CRUST 2.0,
CRUST 1.0 and CRUST07 models on the other hand, [km].

Model RMS Min Max STD

CRUST 2.0 3.25 -25.2 21.9 3.9

CRUST 1.0 1.66 -8.6 9.5 1.83

CRUST07 5.03 -20.3 33.5 5.14

7.3 Analysis of the obtain Moho model and comparison

with alternative global models

The best data processing strategy comprises eliminating the spherical harmonic
coefficients up to degree 10, applying degree-dependent weights proportional to l4,
and truncating degree 180 above spherical harmonic coefficients of the input gravity
data. In our analysis we have considered three global Moho models: CRUST 2.0,
CRUST 1.0 and CRUST07, shown in Figure 7.1. The statistics of these models are
given in Table 7.5. We compare our Moho model DMM-1 with these global models.
The RMS differences between the above-mentioned three global models, and our
models are summarized in Table 7.6. The global maps of Moho models are depicted
in Figure 7.1 , while the differences are shown in Figure 7.2. The differences between
DMM-1 model and the CRUST 1.0 is minimum. One possible explanation for it
is that we have used the data from CRUST 1.0 in the forward-modeling of crust
inhomogeneities, while the other explanation is that the CRUST 1.0 is used as
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a-priori model and VCE assigns a higher weight to it as compared to the CRUST07
model (The VCE weights assigned to a priori models CRUST 1.0 are one order of
magnitude greater than that assigned to CRUST07 model). On the other hand, in
some parts of the globe we can observe a significant difference between our model
and CRUST 1.0. These parts include the Himalaya region, Africa, South America,
India, and Antarctica.

Figures 7.1a, 7.1b, and 7.1d show a typical pattern of the crustal structure. The
most pronounced feature a steep transition from a thin oceanic crust to a thick
continental crust along the marginal seas. The maximum crustal thickness is under
the orogens of the Andes, Himalaya with an extension till the Tibetan Plateau.
These structures correspond to the continent-to-continent and oceanic-to-continent
collision. The contrast between the thin continental crust of the Tarim sedimentary
basin relative to the surrounding oronens (Atlay, Hindu Kush, and Tibet) is well-
pronounced to the north of Tibet. Towards the east of Tibet, the sedimentary basin of
Sichuan is well-pronounced, similar to Indo-Gangetic basin to the south of Himalaya.
Ural orogen is seen in Figures 7.1a, 7.1b, and 7.1d.

We observe also a thick continental crust in Fennoscandia, which is explained by
glacial load and consequently crustal flexure, which is not rebalanced into original
position (glacial rebound). This is not observed however in the Hudson Bay area.
In North America, the crustal thickness is controlled mainly by the geological
composition. For the oceanic crust, the largest crustal thickness is found under
Island. It correspond to location of hotspot.

7.4 Regional comparison

As mentioned earlier, we compare our Moho model with two regional models, one
for the South America (GDMSA) and the other for the Africa (PCSAA).

7.4.1 Moho model for South America (GDMSA)

The DMM-1 model fits the GDMSA as compared to the other models. Our model
has predicted the small scale as well as the large scale features of the Moho, and
are similar to those in the GDMSA model. All three models show the Orogenic
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Figure 7.3 Histograms of differences between the GDMSA and (a) CRUST 1.0 (b) CRUST07
(c) DMM-1
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Figure 7.4 Top: differentMohomodels, middle: differencewithGDMSA, bottom: observation
v.s. derive model. From left to right GDMSA, CRUST 1.0, DMM-1, and CRUST07
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Table 7.7 Statistics for the Moho models over the South America.

Model Min Max Mean STD

GDMSA 23.4 56.5 35.8 4.2

CRUST 1.0 23.3 55.7 37.3 4.8

CRUST07 18.4 48.6 32.8 5.11

DMM-1 24.1 52.5 37.1 4.0

Table 7.8 RMS differences over the South America, between GDMSA Model on the one hand,
and CRUST 2.0, CRUST 1.0 and DMM-1 models on the other hand

CRUST 2.0 CRUST 1.0 CRUST07 DMM-1

RMS [km] 4.2 3.9 5.6 3.3

formation of Andes very well, as a result of the ocean-to-continent collision zone of
Nazca and South American tectonic plates, characterized by largest crustal thickness
especially in central Andes (see Figure 7.4). The DMM-1 model (Figure 7.4) shows
clearly the continental sedimentary basin to the East of Andes. The contours of
this sedimentary basin are well-recognized by low crustal thickness relative to large
thickness under orogenic belt of Andes (to the west) and in the Amazon craton (to
the east). This sedimentary basin can not be clearly seen in the other two models.
All three models show clearly the extended crust structure (characterized by the thin
crust) in the most part of Argentina. Moreover, cratonic formation with thicker crust
can be witnessed in south Brazil, Uruguay and Paraguay (i.e., contrast between
extended crust and craton).

The RMS differences over the South America region between Moho geometries
based on various global models and GDMSA Moho model are described in Table
7.8. Different Moho maps for the region are presented in Figure 7.4 (top of the
Figure). The difference between GDMSA Moho and other models is shown in Figure
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Table 7.9 RMS[km] differences between CTMAF Moho model with others Moho models for
Africa.

CRUST 2.0 CRUST 1.0 CRUST07 DMM-1

RMS [km] 4.35 4.8 5.02 3.95

Table 7.10 Statics for the Moho models of the Africa.

Model Min Max Mean STD

PCSAA 18.5 43.6 33.6 3.2

CRUST 1.0 18.7 44.8 36.4 4.5

CRUST07 16.1 50.5 32.5 5.2

DMM-1 18.9 46.2 35.8 4.5

7.4 (middle of the Figure). The plot of the observed point values and the value for
GDMSA, CRUST 1.0, DMM-1 and CRUST07 are shown in the Figure 7.4 (bottom of
the Figure). The observed point values are provide by Van der Meijde et al. (2013).
The histogram of the differences between the GDMSA and the others models is
shown in Figure 7.3. The comparison from the histograms reveal that the DMM-1
has relatively good fit with GDMSA, as compare to CRUST 1.0 and CRUST07. In
the histograms shown in Figure 7.3, 92% of the point values of GDMSA has less
than 5 km difference with DMM-1 model, whereas these value are 80%, and 61%

for the CRUST 1.0 and CRUST07, respectively. In other words only 8% of data
point of DMM-1 have difference with GDMSA greater than 5 km and less than 15
km, whereas for CRUST 1.0 and CRUST07 it is 20%, and 39%, respectively. The
statistics of different models for the South America are summarized in Table. 7.7.
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Figure 7.5 Histograms of differences between the PCSAA and (a) CRUST 1.0 (b) CRUST07
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Figure 7.6 Top: different Moho models, middle: difference with PCSAA, bottom: observation
v.s. derive model. From Left to right, PCSAA, CRUST 1.0, DMM-1, and CRUST07.
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7.4.2 Moho model beneath Africa (PCSAA)

In this section, we compare our Moho model DMM-1 with another regional model
called, the Precambrian Crustal Structure in Africa and Arabia (PCSAA) (Tugume
et al., 2013. All the three models, PCSAA, DMM-1 and CRUST 1.0 show distinctively
thin crustal structure along the East-African rift zone as well as along the continent-
to-continent collision zone between Africa and Eurasian tectonic plates (Figures
7.6 ), . At that place, the old oceanic crust has been captured between these two
continental plates and as a result we observe a relatively thin crust. Themodels show
thicker crust under cratonic shield and platform in sub-equatorial Africa and West
Africa. The sedimentary basin in west Mali is marked by smaller crustal thickness.
Furthermore, the orogenic formation of the Atlas in Morocco is not recognized by
the thick continental crust.

The RMS differences between various Moho models over Africa and PCSAAMoho
model are described in Table 7.9. The available and developed Moho maps for the
region are shown in Figures 7.6 (top of the Figure). The differences between PCSAA
Moho model and the other models are shown in Figures 7.6 (middle of the Figure).
The plot of the observed point values and the value for GDMSA, CRUST 1.0, DMM-1
and CRUST07 are shown in the Figure 7.6 (bottom of the Figure). The observed point
values are taken from the published paper by Tugume et al. (2013). As compared to
the other models, our Moho model (DMM-1) is in a good agreement with the PCSAA
as well as with the point observed values. The RMS difference for the DMM-1 Moho
model is minimum. The histograms of differences between PCSAA model on one
hand and CRUST 1.0, CRUST 07 and DMM-1 on the other hand are shown in Figure
7.5. The result reveals that the DMM-1 have the best fit with PCSAA as compared
to the others two models. In the histograms shown in Figure 7.5, 77% of the point
values of PCSAA has less than 5 km difference with DMM-1 model, whereas these
value are 63%, and 70% for the CRUST 1.0 and CRUST07, respectively. In other
words only 23% of data point of DMM-1 has difference with PCSAA greater than
5 km and less than 15 km, whereas for CRUST 1.0 and CRUST07 it is 37%, and
30%, respectively. Table. 7.10, summarized the statistics of different models for the
Africa.



122 The Moho model and its validation

7.5 Summary

In this chapter, we identified the optimal data processing strategy. For this, two
models for the European Moho, the EuM09 and Eucrust07 are used for the compar-
ison of different data processing schemes, and selecting the optimal values of the
parameters involved. These parameters include input data combination schemes,
choice of regularisation, degree up to which the input spherical harmonic coefficients
are eliminated, degree-dependent weights, and the maximum degree of the input
spherical harmonic coefficients. Based on the RMS fit of the produced estimates to
the two models mentioned before, it is found that the best data processing strategy
consist of: using gravity data together with the others a priori models based on seis-
mic studies CRUST 1.0 and CRUST 07, using the first-order Tikhonov regularisation,
elimination of low-degree coefficients up to l = 10, using the l4 degree-dependent
data weighting scheme, and exploiting input gravity spherical harmonic coefficients
up to degree 180. The model produced with this scheme is called Delft Moho Model
release 1 (DMM-1).

Furthermore, we have compared our final Moho model with the available global
and regional Moho models. For a global comparison we use the global Moho models
CRUST 2.0, CRUST 1.0 and CRUST07. We find that our Moho model is in a good
agreement with CRUST 1.0. There are two reason for this agreement, the one is,
we have used CRUST 1.0 for the computation of the stripping corrections and the
other we have used CRUST 1.0 as a priori model in the solution of inverse problem.
Furthermore, for the regional comparison of our final DMM-1 model, we use two
independent models, one for the South America (GDMSA) and the other for the
Africa ( PCSAA). Our produced model DMM-1 has good RMS fit with the two regional
models as compare to the other models for the region.

The elimination of spherical harmonic coefficients up to degree 10 give best
results in terms of RMS fit of our gravimetric Moho with the regional Moho models.
This mathematical procedure largely removes the unmodelled gravitational signal
of the mantle heterogeneities. However, it also partially removes the gravitational
signals of theMoho geometry. Therefore, our gravimetric model makes use of CRUST
1.0 and CRUST07, which are the only source of information at low degrees.

We have also re-estimated the crust-mantle density contrast using the stripped
gravity disturbances and the Moho depth from DMM-1 model. The new value
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are slightly differs from our early estimated value, which is based on CRUST 1.0
model.





8

Summary, conclusions and
recommendations

The research presented in this dissertation is aimed at developing advanced proce-
dures for the recovery of global Moho geometry by using state-of-the-art models of
Earth’s gravity field and the additional geophysical information about various crust
layers and the Earth’s density structure. In Section 8.1, we summarize the work
presented in this dissertation. In Section 8.2, we present the major results of the
research. Finally, Section 8.3 provides recommendations for future researches and
details remaining open questions.

8.1 Summary and conclusions

The main objective of this research is to use state-of-the-art information about the
gravity field to improve the estimates of Moho depths globally. We have achieved
this goal, using the basic principles of gravimetric Moho modeling; (1) the forward
modeling (2) the inverse modeling. Furthermore, our focus was to develop and apply
methods for forward modeling of gravity signal related to crust heterogeneities; and
finding the global crust-mantle density contrast.

In Chapter 1, we briefly describe the background of research, research objectives,
outline of the thesis and the adopted research methodology. The literature overview
of activities, and a background study are presented in Chapter 2.

125



126 Summary, conclusions and recommendations

In Chapter 3, we derived an analytical expression for the computation of gravita-
tional potential of a polyhedral body having a constant or a linearly-varying mass
density. Furthermore, numerical experiments were performed to investigate the
numerical accuracy and efficiency of different methods used for the forward modeling
the gravitational potential and attraction due to residual densities of crust layers.
Moreover, a particular methodology for the computation of the gravity attraction
and the potential is proposed.

The observed gravity disturbances and gravity anomalies contains signals related
to topography, bathymetry, ice, sediments and other density inhomogeneities in the
crust. In Chapter 4, we have computed the global component-wise stripped gravity
disturbances and gravity anomalies. To model the effects of topography, bathymetry,
and ice, we have used the global elevation and bathymetry models GTOP30C and
ETOPO1, respectively. Furthermore, we have used the laterally-varying thickness
and density estimates from the CRUST 1.0 model for the computation of the residual
effects due to ice, sediments, upper, middle, and lower crust inhomogeneities. Fur-
thermore, we have modeled the effect of the masses between the reference ellipsoid
and the geoid, and corrected the corresponding gravity disturbances and anomalies.
We have computed the Earth gravity disturbances and anomalies using the spherical
harmonics coefficients of the recently-published EIGEN-6C2 model. Finally, after
applying subsequent corrections, we have generated corrected gravity disturbances
and anomalies. These gravity disturbances and anomalies are associated with Earth
having a homogenous crust of a reference crust density between the ellipsoid and
the Moho interface and the real mantle density below the Moho interface.

In Chapter 5, we have presented some analysis of the sequentially-corrected
gravity disturbances and anomalies and estimated the crust-mantle density con-
trast. For this purpose, we computed the correlation coefficients between the depth
of different interfaces and the sequentially corrected gravity disturbances and an-
omalies. We have demonstrated that the observed gravity is uncorrelated with
the topography, bathymetry and Moho interface. It shows that the Earth’s crust
is isostatically compensated. When we apply the corrections, the correlation of
gravity disturbances and anomalies with Moho depth increases. Hence, the correc-
ted gravity data are the most suitable for the estimation of global mean value of
crust-mantle density contrast. We have estimated the crust-mantle density contrast
from gravity disturbances and anomalies by using an empirical method based on
minimizing the correlation between the updated crust stripped gravity data and
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the Moho depth. Our estimated values are in complete agreement with the those
published in the literature. Moreover, based on the gravity data analysis, we have
concluded that gravity disturbances are more suitable input data for the refinement
of Moho as compared to gravity anomalies. Furthermore, we demonstrated that
the application of stripping corrections to gravity data increase its correlation with
Moho geometry.

In Chapter 6, we have presented the linear functional model for recovery of
the Moho interface. The functional model links the residual spherical harmonic
coefficients of the corrected gravity disturbances to variations in the Moho interface.
To separate the signals due to Moho geometry from that of mantle heterogeneities
and the deep Earth structure, we have proposed to eliminate low-degree spherical
harmonic coefficients of the input data vector. Additionally, we have applied-degree
dependent weights to the input spherical harmonic coefficients in such a way that
low-degrees coefficients are weighted less than high-degrees coefficients. In this way
the gravity signals from deep structures is further suppressed. To constrain the
resulting model (particularly at large spatial scale), we have utilized the statistical
regularisation and a priori Moho models CRUST 1.0 and CRUST 07. Simultaneously,
we have used Variance Components Estimation (VCE) procedure for the estimation
of weights to be applied to the data and to the a priori models.

In Chapter 7, we performed some analysis to select the best data processing
strategy. For this analysis, we have utilized two European regional Moho models.
Based on the RMS fit between these model and the obtained estimates of Moho
geometry. We have found that the best strategy consist of using the gravity data
together with a priori Moho models (CRUST 1.0 and CRUST 07). We named our
optimal Moho model as “Delft Moho Model Release 1” (DMM-1). The conclusion
is that, the DMM-1 is obtain by using the input gravity data with a priori models
CRUST 1.0 and CRUST07, eliminating coefficients up to degree 10, applying degree-
dependent weight to input coefficients, and takingmaximumdegree input coefficients
up to L=180. We analysed and compare the DMM-1 model with alternative global
and regional models. Based on the statistics (Histogram), we have concluded that
the DMM-1 has good agreement with the other two independent high resolution
regional models as compared to CRUST 1.0 and CRUST07.
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8.2 Major results

The major results of the conducted research are listed below:

• Derived an analytical expression for the computation of the gravitational
potential generated by a polyhedral body with a linearly-varying density.

• Computed sequentially-corrected gravity disturbances and anomalies on 10×10

geographical grid. The corrections for the topography, due to residual density
of bathymetry, ice, sediments, upper, middle, and lower crust are applied.

• Computed the global mean value of crust-mantle density contrast from the
sequentially-corrected gravity disturbances and gravity anomalies. The esti-
mated values of 445 kg/m3 and 460 kg/m3 for the gravity disturbances and
gravity anomalies, respectively.

• Devised an algorithm for the computation of the Moho depth corrections, using
the spherical harmonic coefficients of the corrected gravity disturbances.

• Developed and evaluated a new Moho model based on the optimal selection of
the regularization scheme, a priori models, elimination of low-degree spherical
harmonic coefficients, and degree-dependent weighting.

8.3 Future recommendations

Though we have shown a high quality of the designed model, there is still room
for further improvements. A summary of open questions and recommendations for
further researches is given below.

• The work presented in this dissertation can be further extended to make an
inversion for the Moho configuration and the Moho density contrast simulta-
neously.

• We have replaced the actual density distribution in the crust with a reference
density of 2670 kg/m3 and estimated themean crust-mantle density contrast by
minimizing the correlation between corrected gravity disturbances/anomalies
andMoho depths. We have used the global mean value for crust-mantle density
contrast in the solution of our inverse problem. It is recommended that the
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Moho model should be recovered by assuming laterally-varying crust-mantle
density contrast between the reference crust of density 2670 kg/m3 and the
mantle density ( from the seismic studies). In the first instance, it will be
logical to estimate the mean value of crust-mantle density contrast for the
oceans and continents separately.

• Our research can be extended for the modeling of other interfaces, for instance,
the core mantle boundary zone. This can be achieved by a proper truncation
of low-degree spherical harmonic coefficients and modeling of inhomogeneities
in the mantle.

• New data of GOCE satellite mission is expected to be released during the
summer of 2014, which will assist the release of new gravity field models of
high resolution and accuracy. Although improved gravity models have only
marginal impact on the Moho accuracy, once these models are available, the
Moho model may be updated accordingly.

• Another possible extension of our work is to develop Moho models of a higher
spatial resolution. This extension is definitely possible for a regional Moho
modeling, however, it will be a challenging computational task to do a global
Moho recovery. Because the global recovery of high-resolution Moho requires
enormous computational power and machine memories.

• The gravimetric model in this study is heavily constrained by a priori seismic
models. Such models have a good quality over most of the continental areas,
but are poorer over the oceans. Hence, we recommend the use of spatially-
varying weights assigned to the a priori models, which may take into account
the variations in models accuracies.





A

Algorithms for the computation of
gravitational potential and attraction for
polyhedral body

For an efficient calculation of the gravitational potential and attraction given in Eqs.
(3.67) and (3.71) we adopted the same optimum algorithm as proposed by Pohánka
(1998). The input parameters are: the value of density ρ0 at a suitably chosen origin
of the local coordinate system used for a description of the density model within the
volume of the polyhedral body (we note that this coordinate origin can be located
either inside or outside of the polyhedral body), the gradient of a linear density dis-
tribution function ρ1, the total number of polyhedral faces K , and the total number
of polygon segments L(k) given for every polyhedral face Sk . For every vertex of
the polyhedral face Sk, we compute the radius vector ak,l . As stated previously, the
vertices of the polyhedral face Sk are numbered in the counter-clockwise sense as
viewed from outside, and ak,L(k)+1 =ak,1. The last input is the radius vector r of the
computation point. We note here that the expressions in (3.67) and (3.71) for the
potential and attraction respectively holds for any computation point outside and on
the surface of the polyhedral body.
The computation is then realized as follows: We compute the lengths {dk,l : l =
1,2, ....,L(k); k = 1,2, ....,K} of the polygon segments Lk,l , and the corresponding unit
vectors {µk,l : l = 1,2, ....,L(k); k = 1,2, ....,K} according to the following equations,

dk,l =
∣∣ak,l+1 −ak,l

∣∣, µk,l = ak,l+1−ak,l
dk,l
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For every polyhedral face {Sk : k = 1,2, ....,K} we compute the unit normal vector
nk oriented outwards from the polyhedral face Sk using the following expression,

nk = Nk∣∣Nk

∣∣where

Nk =
L(k)−1∑

l=2

(
ak,l −ak,1

)× (
ak,l+1 −ak,1

)

For every polygon segments {Lk,l : l = 1,2, ...,L(k)} of the polyhedral face Sk we
compute the normal unit vectors {νk,l : l = 1,2, ...,L(k)} using Eq. (3.44); i.e.
νk,l =µk,l ×nk

We further compute the parameters µk,l ,νk,l ,wk,l , Zk, and zk which depend on the
position vector r of the computation point. With reference to Eqs.(3.50) and (3.53),
we have
µk,l(r)=µk,l . (ak,l −r)

νk,l =µk,l +dk,l

wk,l(r)=νk,l . (ak,l −r)

Zk(r)=nk .(ak,l −r), zk =
∣∣Zk

∣∣
For the given numbers µ, ν

(
ν=µ+d, d > 0

)
, w , z (z ≥ 0) and the parameter ε,

the computation of the functions Φ(µ,ν,w, z,ε) and Φ2(µ,ν,w, z,ε) in Eqs. (3.68) and
(3.69) is carried out in the following consecutive steps:

(a) zε = z+ε,
(b) W2 = w2 + z2, W2

ε = w2 + z2
ε ,

(c) Uε =
√
µ2 +W2

ε , Vε =
√
ν2 +W2

ε , (d) Tε =Uε+Vε,

(e) sign(µ)= sign(ν) : Lε = sign(ν) ln
Vε+

∣∣ν∣∣
Uε+

∣∣µ∣∣ )

( f ) sign(µ) 6= sign(ν) : Lε = ln
(Vε+

∣∣ν∣∣)(Uε+
∣∣µ∣∣)

W2
ε

)

(g) Aε =−arctan 2w d
(Tε+d)

∣∣Tε−d
∣∣+2Tεzε

.

(h) Φ(µ,ν,w, z,ε)= w Lε+2zAε

(i) Φ2(µ,ν,w, z,ε)= 1
4 d

[
(ν+µ)2

Tε
+Tε

]
+ 1

2W2Lε
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Finally, the gravitational potential and attractions is obtained from Eqs. (3.67)
and (3.71) respectively.





B

Link between the Stokes coefficients Clm

and the mass distribution inside the
Earth

The expression for the gravitational potential generated by the entire Earth of
volume v is

V (r,θ,λ)=G
Ñ

Earth

1
d
ρ(r′,θ′,λ′)dv

′
(B.1)

where dv
′ = r′2 sinθ

′
dr

′
dθ

′
dλ

′ is the volume element, ρ(r
′
,θ′,λ′) is density at the

given point, and d is the distance between the observation point (r,θ,λ) and the
integration point (r′,θ′,λ):

d =
√

r2 −2rr′ cosψ+ r′2 (B.2)

where ψ is the angular distance between these points. Hence,

1
d
= 1

r

√
1−2

(
r′
r

)
cosψ+

(
r′

r

)2
,

the explicit expression for 1
d can be written as (cf. Moritz, 2006 Eq. (2-65)):
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1
d
=

∞∑
l=0

r
′l

rl+1 Pl(cosψ), (B.3)

where Pl(cosψ) is Legendre polynomials. Eq. (B.3) converges for r > r
′ . Using the

addition theorem, the expression for the Legendre function can be re-written as

Pl(cosψ)= 1
2l+1

l∑
m=−l

Ȳlm(θ
′
,λ′)Ȳlm(θ,λ) (B.4)

after substituting Eqs. (B.3), and (B.4) into Eq. (B.1), the expression for the gravita-
tional potential can be written as:

V (r,θ,λ)= G
r

∞∑
l=0

l∑
m=−l

1
2l+1

Ȳlm(θ,λ)
Ñ

Earth
ρ(r

′
,θ′,λ′)

(
r
′

r

)l

¯Ylm(θ
′
,λ

′
)dv

′
. (B.5)

On the other hand, the gravitational potential of the Earth can be represented as:

V (r,θ,λ)= GM
r

∞∑
l=0

l∑
m=−l

C̄lm

(
R
r

)l

¯Ylm(θ,λ) (B.6)

where R = 6378136.3 m is major semi-axis of the reference ellipsoid.

Comparing Eq. (B.5) and Eq. (B.6), we get the link between the Stokes coefficients
and the density distribution inside the Earth

C̄lm = 1
M (2l+1)

Ñ
Earth

ρ(r
′
,θ′,λ′)

(
r
′

R

)l

¯Ylm(θ
′
,λ

′
)dv′. (B.7)

Now the variation in Moho depth b produces a variation in the Stokes coefficients
δCl,m of gravity field. This variation is produced due to surface mass changes. At the
spherical surface of radius R̃: these mass changes can be represented as a variation
of surface density δs(θ

′
,λ′) in a thin layer between radii r1 and r2

δs(θ,λ)=
r2ˆ

r1

δρ(r
′
,θ′,λ′)dr

′
, (B.8)
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After integration in the radial direction, the 3-D integral in Eq. (B.7) turns into 2-D
integral:

δC̄lm = 1
M (2l+1)

(
R̃
R

)l Ï
ΩR̃

δs(θ′,λ′) ¯Ylm(θ
′
,λ

′
)dΩ

′
R̃ ,

where Ω′
R̃
is the sphere of radius R̃ = R− z0 , z0 is the reference Moho depth, and

dΩ
′
R̃
is an element of this sphere. Moreover, dΩ

′
R̃
= R̃2dΩ

′
, where dΩ

′ is an element
of the unit sphere Ω′

. Hence,

δC̄lm = R̃2

M (2l+1)

(
R̃
R

)l Ï
Ω

δs(θ′,λ′) ¯Ylm(θ
′
,λ

′
)dΩ

′
. (B.9)





C

Optimum regularization parameter
estimation using Variance Component
Estimation (VCE)

The Variance Components Estimation (VCE) technique is one of the methods sug-
gested in literature to estimate the regularization parameter and data weights. The
variance factor of a given data set is given by (Kusche, 2003)

σ2
d = 1

n−τd
(d−Ax̂)TPd (d−Ax̂) ,

where n is the total number of observations in the data set and

τd = trace
[
NdN

−1] ,

where N is the normal matrix defined by the least squares adjustment formula
(6.33). It can be written as the sum of two matrices

N =Nd +Nx, (C.1)

The part of the normal matrix related to the data vector d is

Nd = 1
σ2

d

ATPdA,
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and the part of the normal matrix related to the model x

Nx = 1
σ2

x
R.

Similarly, the variance of the model parameter x can be estimated by

σ2
x =

1
u−τx

x̂TRx̂,

where u is the total number of unknown parameters and τx = trace
[
NxN

−1].
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Samenvatting

Momenteel wordt een enorme verbetering waargenomen in de nauwkeurigheid
en ruimtelijke resolutie van globale zwaartekrachtmodellen van de aarde. Deze
verbetering wordt bereikt door het gebruiken van verschillende nieuwe gegevens,
waaronder die van gravimetriesatellietmissies (CHAMP, GRACE en GOCE); ter-
restrische en vliegtuiggravimetriegegevens, evenals altimetriegegevens. De nieuwe
modellen van het zwaartekrachtveld kunnen in het bijzonder worden toegepast
om onze kennis van de interne structuur van de aarde te verbeteren. Het doel
van deze studie is om een globale kaart van de Moho-interface samen te stellen
door gebruik te maken van een globaal zwaartekracht model en extra beschikbare
informatie over de korstdichtheidstructuur. In ons onderzoek gebruiken we het
zwaartekrachtveldmodel EIGEN-6C2 en het wereldwijde aardkorstmodel CRUST
1.0, afgeleid uit seismische gegevens. Daarnaast gebruiken we op seismische data
gebaseerde modellen van de Moho als a-priori-informatie: het CRUST 1.0-model en
het Crust07-model, dat werd afgeleid van een volledige niet-lineaire inversie van
fundamentele oppervlaktegolven.

Het waargenomen zwaartekrachtveld bevat hindersignalen van de topografie
en de dichtheidheterogeniteit met betrekking tot bathymetrie, ijs, sedimenten en
andere aardkorstcomponenten. Daarom modelleren en verminderen we opeenvol-
gend deze signalen door het toepassen van zogenaamde strippingcorrecties. Dit
resulteert invan korst ontdane zwaartekrachtgrootheden (zwaartekrachtanomalieën
enzwaartekrachtverstoringen). In de loop van het onderzoek bespreken we verschil-
lende analytische, semi-analytische en numerieke voorwaartse modelleringstech-
nieken om de zwaartekracht van een lichaam te berekenen. We leiden ook een
analytische formule af voor de berekening van de zwaartekrachtpotentiaal gegene-
reerd door een polyhedraal lichaam met lineair variërende dichtheid. Wij berekenen
de correcties van het waargenomen zwaartekrachtveld met analytische methoden in
nabijheid van het lichaam en met semi-analytische methoden voor het verre veld. We
laten zien dat de opeenvolgende correctie voor de ongewenste signalen de correlatie
van de zwaartekrachtverstoringen en zwaartekrachtanomalieën met de Moho-diepte
verhoog. We maken gebruik van het gecorrigeerde zwaartekrachtveld om de globale
(gemiddelde) waarde voor korst-mantelcontrastdichtheid te vinden met behulp van
de Pearson’s correlatiemethode. We gebruiken een empirische techniek waarbij de
absolute correlatie tussen de Moho-diepte uit het CRUST 1.0-model en de van korst
ontdane zwaartekrachtverstoringen/anomalieën zijn geminimaliseerd. Deze gecor-
rigeerde zwaartekrachtverstoringen/anomalieën worden verkregen door toevoeging
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van een bijdrage (aantrekking) gerelateerd aan het dichtheidscontrast tussen de
referentiekorst en de bovenste mantel.

Het bepalen van de Moho-geometrie is gebaseerd op het oplossen van een lineair
stelsel vergelijkingen dat het van korst ontdane zwaartekrachtveld (weergegeven in
termen van sferische harmonische coëfficiënten) verbindt aan de Moho-geometrie
(weergegeven in termen van Moho-diepte op de knooppunten van een gelijkhoekig
geografisch rooster). Zo worden correcties op de voorafgaande Moho-configuratie
geschat. Het is bekend dat een opzichzelfstaande inversie van gravimetrische
gegevens kan leiden tot onjuiste resultaten, omdat het onmogelijk is om het sig-
naal van de discontinuïteit in kwestie te scheiden van gravimetrische signalen
van andere bronnen (in het bijzonder van bronnen die zich dieper in de aarde
bevinden). Om de laatstgenoemde signalen te onderdrukken (bijvoorbeeld die be-
trekking hebben tot inhomogeniteiten van demanteldichtheid en diepe structuur van
de aarde) stellen we voor om de bijdrage van lage sferisch harmonische graden van
de inputzwaartekrachtgegevens te elimineren. Verder passen we maatafhankelijke
gewichten toe aan de resterende sferisch harmonische coëfficiënten. De gewichts-
matrix is zodanig ontworpen dat een lage graad minder weegt en een hoge meer.

We hebben een geavanceerde inversieprocedure ontwikkeldwaarbij zwaartekracht-
gegevens en informatie van andere (seismische) bronnen tegelijk worden uitgebuit,
gebruikmakend van de nulde orde en eerste orde Tikhonov-regularisatieconcepten.
De variance components estimation (VCE) procedure is gebruikt voor het schatten
van de relatieve gewichten van de verschillende datasets.

We beschouwen een aantal inversie strategieën gebaseerd op verschillende com-
binaties van datasets, regularisatiesoorten, graadafhankelijke gewichten toegepast
op inputzwaartekrachtgegevens, alsmede minimum- en maximumafbreekgraden
van de input zwaartekrachtgegevens. Voor de selectie van optimale inversie para-
meters vergelijken we de ontwikkelde Moho-modellen met twee regionale Moho-
modellen voor de Europese korst. De twee modellen omvatten EuCrust07 en EuM09,
ontwikkeld door respectievelijk Magdala Tesauro et al. en Marek Grad et al. We
ondervinden dat het beste model te verkrijgen is door het gebruiken van een geza-
menlijke inversie (zwaartekracht gegevens plus CRUST1.0 en CRUST07 seismis-
che modellen), eerste -orde Tikhonov-regularisatie, graadafhankelijk gewichten
evenredig met de vierde macht van de graad en het gelijk stellen van de minimale
en maximaleafbreek graad aan respectievelijk 90 en 180). Het uiteindelijke Moho-
model (DMM-1) is vergeleken met twee regionale modellen: (1) voor Zuid-Amerika
en (2) voor Afrika. Uit de vergelijking en statistische analyse vonden we dat ons
ontwikkeld model DMM-1 de geschiktste RMS-waarden heeft voor de twee regionale
modellen, evenals met geobserveerde puntwaarden.
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Propositions
accompanying the PhD dissertation

Global Earth structure recovery from state-of-the-art models of the Earth’s gravity
field and additional geophysical information

by Hamayun

1. Gravity disturbances are more suitable for the recovery of the Moho than
gravity anomalies.

2. Nuisance signals in gravity data can be effectively damped using degree-
dependent data weights.

3. The combination of gravity data and seismic models of the Earth crust amelio-
rate the Moho recovery.

4. Gravity data complete to degree 180 contain substantial information about
the Moho geometry.

5. Data of the GOCE satellite gravity mission facilitate the improvement of Moho
models in remote areas.

6. Military operations cannot change the human mentality.

7. Instead of spending lavishly on higher education, Pakistan must focus on the
primary education.

8. There is no such thing like the best model for a given phenomenon.

9. There is no space for research if there is an issue of survivability.

10. Access to the Internet must become a basic human right.

11. People demanding for a ’dislike’ button on Facebook actually mean a ’hate’
button.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor, Prof. Dr.-Ing. Habil Roland Klees.
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Stellingen
behorende bij het proefschrift

Global Earth structure recovery from state-of-the-art models of the Earth’s gravity
field and additional geophysical information

door Hamayun

1. Zwaartekrachtverstoringen zijn geschiker voor het bepalen van de Moho dan
zwaartekrachtanomalieën.

2. Ongewenst signaal in zwaartekrachtgegevens kunnen effectief gedempt wor-
den met behulp van graad-afhankelijke dataweging.

3. De combinatie van zwaartekrachtgegevens en seismische modellen van de
aardkorst verbeteren het bepalen van de Moho.

4. Het zwaartekrachtsveld tot en met graad 180 bevat substantiële informatie
over de geometrie van de Moho.

5. Meet gegevens van de GOCE zwaartekrachtsatellietmissie vergemakkelijken
de verbetering van Moho modellen in afgelegen gebieden.

6. Militaire operaties kunnen de menselijk mentaliteit niet veranderen.

7. In plaats van royaal te besteden aan het hoger onderwijs moet Pakistan zich
richten op het basisonderwijs.

8. Er bestaat geen beste model voor een bepaald fenomeen.

9. Er is geen ruimte voor onderzoek als er een overlevingskwestie is.

10. Toegang tot het internet moet een fundamenteel mensenrecht geworden.

11. Mensen die een vind-ik-niet-leuk-knop eisen op Facebook bedoelen eigenlijk
een haat-ik-knop.

Deze stellingen warden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotor Prof. Dr.-Ing. Habil Roland. Klees.
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