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Summary

Currently, a tremendous improvement is observed in the accuracy and spatial
resolution of global Earth’s gravity field models. This improvement is achieved
due to using various new data, including those from satellite gravimetry missions
(CHAMP, GRACE, and GOCE); terrestrial and airborne gravity data, as well as
altimetry data. The new gravity field models can be applied, in particular, to improve
our knowledge of the Earth’s interior structure. The aim of this study is to compile
a global map of the Moho interface using a global gravity model and additional
available information about the crust density structure. In our study, we use the
gravity field model EIGEN-6C2 and the global crustal model CRUST1.0 derived
from seismic data. In addition, we utilize seismic-based models of Moho as prior
information: CRUST1.0 model, as well as the Crust07 model, which was derived by

a fully non-linear inversion of fundamental mode surface waves.

The observed gravity field contains nuisance signals from the topography and
density heterogeneities related to bathymetry, ice, sediments, and other crustal
components. Therefore, we model and sequentially subtract these signals by ap-
plying so-called stripping corrections. This results in crust-stripped gravity field
quantities (gravity anomalies and gravity disturbances). In the course of research,
we review different analytical, semi-analytical, and numerical forward modeling
techniques to compute the gravitational attraction of a body. We also derive an
analytical formula for the computation of gravitational potential generated by a
polyhedral body having linearly varying density. We compute the correction to
observed gravity field using the analytical methods in the vicinity of the body and
using semi-analytical methods in the far zone. We demonstrate that the sequential
correction of gravity disturbances and gravity anomalies for nuisance signals in-
creases the correlation with the Moho depths. We use the corrected gravity field
to find the global (mean) value for the crust-mantle density contrast using the

Pearson’s correlation method. We use an empirical technique in which the absolute

XV



xvi Summary

correlation between the Moho depth from CRUST 1.0 model and the updated crust
stripped gravity disturbances/anomalies is minimized. The updated stripped gravity
disturbances/anomalies are obtained by adding a contribution (attraction) related
to the density contrast between the reference crust and the upper most mantle to

stripped gravity disturbances/anomalies.

The recovery of the Moho geometry is based on solving a system of linear equa-
tions which relates the crust-stripped gravity field (represented in terms of spherical
harmonic coefficients) and the geometry of the Moho interface (represented in terms
of Moho depths at the nodes of an equiangular geographical grid). In this way,
corrections to the prior Moho configuration are estimated. It is known that a stand-
alone inversion of gravimetric data may lead to inaccurate results because it is
impossible to separate the signal from the interface under consideration and gra-
vimetric signals from other sources (particularly, those located deeper inside the
Earth). To suppress the latter signals (e.g, related to inhomogeneities of the mantle
density and deep Earth structure), we propose to eliminate the contribution of
low-degree spherical harmonics from input gravity data. Furthermore, we apply
degree-dependent weights to the remaining spherical harmonics coefficients. The
weight matrix is designed in such a way that low degrees are weighted less and high

degree more.

We have developed an advanced inversion procedure in which gravity data and
information from other (seismic) sources are exploited simultaneously, using zero-
order and first-order Tikhonov regularization concepts. The variance components
estimation (VCE) procedure is used for the estimation of relative weights of different

data sets.

We consider a number of inversion strategies based on different combinations of
data sets, regularization types, degree-dependent weights applied to input gravity
data, as well as input gravity data minimum and maximum truncation degrees.
For the selection of optimal inversion parameters, we compare the developed Moho
models with the two regional Moho models for the European crust. The two models
includes the EuCrust07 and EuMO09 developed by Magdala Tesauro et al. and Marek
Grad et al., respectively. We find that the best model is obtain when using a joint
inversion (gravity data plus CRUST 1.0 and CRUST07 seismic models), first-order
Tikhonov regularization, degree-dependent weights proportional to the fourth power

of the degree and setting the minimum and maximum truncation degree equal to



XVvii

90 and 180, respectively. The final Moho model (DMM-1) is compared with two
regional models: (1) for the South America and (2) for Africa. From the comparison
and statistical analysis we found that our developed model DMM-1 have the best

RMS fit with the two regional models as well as with observed point values.
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Introduction

1.1 Background

To learn more about the Earth’s structure, geophysicists and geologists use two main
sources of information: direct evidence from rock samples and indirect evidence
from geophysical data. Geophysical data are the main source of information about
the deep interior of the Earth. With geophysical data, the researchers have analysed
the Earth’s lithosphere and mantle, and their composition, structure and dynamics.
Geophysical data are divided into two categories: those received through artificial
sources, and those retrieved from the natural sources. In case of artificial sources,
the researchers drill holes in the Earth’s surface and blast rocks, and make inference
about the deep conditions of the Earth. While the natural sources includes the data
generated by earthquakes. The former is a time-consuming, expensive, and difficult
method, because it is difficult to drill a deep hole due to the high temperature and
pressure. The most common type geophysical data used for those purposes is the
records of seismic waves generated by the earthquakes. However, such data can not

provide a global coverages, for studying the Earth’s crust and upper mantle.

An alternative source of information about the Earth’s interiors is the gravity
field. Gravity measurements sense density distribution inside the Earth. They play
a vital role in modeling the Earth’s interior especially in global and regional studies.
Application of gravimetry in studying the global structure of the Earth is facilitated
by the advent of modern satellite gravimetry missions as well as by the rapid
increase in computational power. Several satellite missions, such as Challenging
Mini-satellite Payload (CHAMP) (Reigber et al., 1996, 1999, 2002), Gravity Recovery
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and Climate Experiment (GRACE) (Tapley et al., 2004) and Gravity field and steady-
state Ocean Circulation Explorer (GOCE) (Drinkwater et al., 2003, Floberghagen
et al., 2011) are delivering data that allow the accuracy and spatial resolution of
global gravity field models to be improved drastically. The latest models based on the
data from these missions have a spatial resolution of about 80 km in terms of half
wavelengths. These models have global and homogeneous coverage and well-known
stochastic properties. Further improvement of the spatial resolution can be achieved
by combining satellite gravity data with airborne and ground-based gravity data

and radar altimetry data over the oceans.

One of the primary interfaces of the Earth interior is the boundary between
the crust and mantle, which is called the Mohorovici¢ discontinuity, or Moho. Geo-
physicists widely use seismic and gravity data to investigate the depth of the Moho
discontinuity. Regional and global models of Moho are produced this way. In 1980,
the establishment of International Lithosphere Program (ILP) emphasized the im-
portance of investigating the Moho depth variation. The ILP seeks to explain the
nature, dynamics, origin and evolution of the lithosphere through international,
multidisciplinary geoscience research projects and coordination. The research aim
to address societal needs, e.g. understanding natural catastrophes and other solid
earth processes that affect the biosphere. The research provide information for
improved resource exploration, environmental protection, and satisfying scientific
curiosity. Lithosphere is a Latin words which mean stony layer. The crust and upper
portion of the mantle called the lithosphere. It is a layer where most important
geological processes occur, such as mountain-building, earthquakes and the source
of volcanoes. The movements of Earth’s tectonic plates is due to the slow churning

and overturning of the mantle.

In gravimetry the gravity data are used to study the deep Earth structure.
Generally, the gravity field functionals that are computed from the global gravity
field models, are free air gravity anomalies or gravity disturbances. These gravity
field functionals contain also the signal from terrain over continents, bathymetry
variation over oceans, ice, sediments, and different density heterogeneity inside the
crust and mantle. To use gravity data for the inversion into the Moho, the aforemen-
tioned signals contributors have to be removed from the gravity data. The relation
between anomalous density distribution and gravitational attraction/potential is
provided by the Newton volume integral. Various numerical methods are applied

to evaluate the Newton’s volume integral when studying the local gravity field. A
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simple form of the integration is used, such as splitting the integration volume
into right rectangular parallelepipeds (prisms) with constant density within each
individual prism. For better accuracy of gravity field generated by a body having
homogeneous/inhomogeneous density formations, the approximation of geological
structures by more general geometrical forms than rectangular prisms has been

adopted.

1.2 Objectives

The primary goal of this research is to use state-of-the-art information about the
gravity field to improve the estimates of Moho depths globally. The basic procedure
of gravimetric Moho modeling consists of two numerical steps; (1) the gravimetric
forward modeling and (2) gravimetric inverse modeling. Gravity data used for a
recovery of the Moho depths should comprise only the gravitational signal of the
Moho geometry. Prior to used gravity data for Moho inversion, the gravitational
signal generated by all know anomalous density structures should be modeled and
subsequently removed from the observed gravity data. One can use either spatial or
spectral description of the gravity field. Therefore, we first apply the gravimetric
forward modeling step to calculate the gravity corrections and respective gravity
data. For this purpose we use analytical expressions for computing the gravitational
attraction and potential of a polyhedral body. The numerically efficient expression
for computing the gravitational attraction of a polyhedral body is found in literature.
However, numerical efficient expression for the gravitational potential is needed.
In the course of research we derive the analytical expression for computing the

gravitational potential of polyhedral body.

Traditionally, the gravity disturbances or anomalies are used for the inversion of
the Moho depth. The crust corrected gravity (stripped gravity) data has maximum
correlation with the Moho depth and hence best suited for the recovery of Moho
geometry and the density contrast between the reference crust of constant density
and mantle. Using the stripped gravity data, the global mean value for the crust-
mantle density contrast can be estimated. The second step is implemented by
establishing a linear relation between the topography of the Moho and the available
gravity data (gravity disturbance and gravity anomaly), and then inverting the

gravity data, together with the available information from seismic methods, into
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the Moho topography. Gravity anomalies contains the long wavelength feature of
the Earth structure, i.e., the signals from deep Earth structure, on the other hand
gravity disturbances are more effected by the local variation in density structure.
Therefore, gravity disturbances are more suitable for the refinement of shallow

structure as compared to gravity anomalies.

Our procedure for solving the gravimetric Moho inverse problem is based on
some assumptions: First assumption is the use of spherical approximation. The
second assumption is adopting a global constant value for the crust-mantle density
contrast. By applying proper corrections, the Earth crust density is replaced by a
constant reference density of 2670 kg/m®. The value of the crust-mantle density
contrast is estimated relatively to the reference crust with constant density. In Moho
geometry recovery, we use the input gravity data in the form of spherical harmonic
coefficients (spectral domain). This allowed us to adopt degree dependent weights
to the spherical harmonic coefficients of input gravity data, so that the signal from
mantle heterogeneities is suppressed. Moreover, we assumed that the effects due to
deeper Earth structure, mantle convection, oceanic lithosphere thermal contraction,
tectonics motion, plate flexure, and elastic respond of the mantle are suppressed by

eliminating the low degree coefficients of input gravity data.

1.3 Outline of the thesis

The remainder of the thesis is organized as follows:

Chapter 2: We present a brief literature overview in this chapter. It covers the
structure of the Earth, a detailed history of the Moho interface studies, the isostatic
crust models based on different hypothesis, and the existing crust models from
seismic studies. Furthermore, this chapter includes a discussion on geopotential
theory, Earth global geopotential models, and definitions of different gravity field
functionals such as geoid, gravity disturbance, gravity anomaly etc.. Moreover, we
discuss the computation of global gravity field functional from the Stokes coefficients
and the transformation between spherical harmonic coefficients of various gravity
field functional. Finally, the chapter is concluded with finding the global Moho using
the Vening Meinesz’s Model.
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Chapter 3: In this chapter, we present different analytical and semi-analytical
methods used for the forward modeling of the gravitational attraction and potential
related to topography, bathymetry, ice, sediments, and other heterogeneities in the
crust. We derived a new formula for the computation of gravitational potential of
polyhedral bodies with constant or linearly changing density. We also present the

numerical accuracy and efficiency of this formula.

Chapter 4: This chapter discusses the implementation of forward modeling al-
gorithms and presents the preparation of the input gravity disturbances and gravity
anomalies by removing the effects of the signals due to topography, bathymetry, ice,
sediments and other heterogeneities in the crust. Based on these corrections the

sequentially-stripped gravity field functionals are computed.

Chapter 5: In this chapter, we present the correlation of the gravity field functionals
with topography, bathymetry, and Moho interface. We show that the application of
subsequent corrections to the gravity field functionals improves their correlation
with Moho topography. This confirms that the information content of the gravity
field functionals is suited for the recovery of the Moho. Furthermore, we have
demonstrated that the gravity disturbances are more suitable for the refinement of
the Moho as compare to the gravity anomalies. The chapter is concluded with the

estimation of the Moho density contrast by using an empirical formula.

Chapter 6: In this chapter, we propose and discuss the functional model for the
recovery of Moho. The solution of linear stand-alone (gravity data) and joint (gravity
and seismic data) inverse problems with zero and first order Tikhonov regularisa-
tion is presented. Weights for the individual data sets are estimated, using the
variance component estimation technique. Application of zero weights to low-degree
spherical harmonic coefficients to suppress the signal from deep Earth structure is

discussed.

Chapter 7: In this chapter, we validate our adopted procedure for the recovery of the
Moho geometry. These procedure include, the choice of the best data combination
strategy, low-degree contribution of input gravity spherical harmonic coefficients

and degree-depended weights of input gravity data. To get the optimal procedure
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for the Moho recovery, we compare the develop models of the Moho depth with the
high resolutions regional models for the European Moho. After the selection of final
optimal model among our develop models, we compare it with the available global
models. We also compare our final model with two available regional models of the
Moho. One of the model is for the continent of the South America and the other is
for the Africa.

Chapter 8: Finally, in this chapter, we have provided a summary and main results
of the dissertation. Additionally, we have made suggestions for the future research
in this field.



Earth structure and gravimetric methods

for the recovery of the Moho geometry

In this chapter, we briefly discuss the structure of the Earth, and its different layers
and interfaces. We discuss the historical background of different crust structure
models. Furthermore, we present a thorough review of local, regional and global
isostatic crust models. Additionally, we present the analytical formula for gravity
disturbances and gravity anomalies and link them to an expansion of the gravity
field in spherical harmonics. Moreover, we illustrate different gravimetric methods
for the determination of the Moho geometry. The solution of Vening Meinesz’s

inverse problem for the Moho recovery is reviewed.

2.1 Composition of the Earth

Geophysical studies reveal that the Earth consists of several distinct layers with
different physical properties and chemical compositions. The three main layers
are the crust, the mantle and the core. The crust is the outermost and thinnest
layer. The next layer is the mantle, which extends to a depth of 2900 km. This is
further subdivided into two parts: the upper mantle and the lower mantle. The
innermost layer is the core. This is also further divided into the outer core and the
inner core. The boundaries of these layers form discontinuities that may refract and
reflect seismic waves. Global density models for different layers assume a spherically
symmetric density distribution, which is a function of radial distance from the centre
of the Earth (Dziewonski and Anderson, 1981, Bullen, 1975).
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The crust consists of silica-rich rocks which developed due to the melting of
underlying mantle material, and subsequent metamorphic or erosional processes.
Crustal rocks are broadly classified as igneous, metamorphic, or sedimentary, ac-
cording to their individual characteristics. The crust is mainly divided into oceanic
and continental crust. The thickness of the oceanic crust ranges from 6 to 12 km,
while the continental crust is thicker, its thickness is more than 70 km. The oceanic
crust is formed due to the decompression melting in the mantle at shallow depths
beneath the mid-ocean ridges. The upper part of the crust consists of the exposed
rocks and thin sedimentary layers having sharp variations in density and thickness.
In the continental area, the upper crust below the sedimentary layer consists of
granitic rocks with a mean density of 2700 kg/m3(Torge, 1991). The granitic zone
does not exist in the oceanic area. The lower crust is located beneath the upper crust,
with a mean density of 2900 kg/m?. The lower crust consists of basic rocks such as
Gabbro (basalt). Below the lower crust, an abrupt increase in the velocity of seismic
body waves and density is observed. For instance, the P-wave velocity increases
from 7.1 km/s to 8.1 km/s. The lower boundary of the crust is called Mohorovicic
discontinuity, or in short, Moho. The Moho separates the crust from the underlying

mantle.

2.2 Moho discontinuity

Andrija Mohorovié¢ié¢ (1857-1936) discovered the Moho discontinuity in 1910, while
he was studying the seismogram of the 8 October, 1909 earthquake in the Kulpa
Valley, together with other earthquakes in this region (Mohorovic¢ié¢, 1910, 1992). He
observed two distinct pairs of compressional and shear waves. He wrote: “When
I was sure, based on data, that two kinds of first preliminary waves exist, both
kinds reaching all locations from 300 km to 700 km distance, and that from the
epicentre to approximately 300km distance only the first kind arrives, whereas from
700 km distance onward only the second kind arrives, I tried to explain this until now
unknown fact”. This observation led Mohorovi¢i¢ to the conclusion that the Earth
is not homogeneous, and at a specific depth there has to be a boundary surface,
which separates two media with different elastic properties, and through which the
waves must propagate with different velocities. He suggested that the first kind

of arrival is from crystalline crust while the second kind of arrival corresponds to
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the mantle. The interpretation of two sets of arrival times led Mohorovici¢ to the
discovery of a velocity discontinuity. The estimated depth from his study was 50
km, the P-wave velocity was 5.6 km/s above and 7.747 km/s below this discontinuity
and the S-wave velocity was 3.27 km/s above and 4.182 km/s below. In the past 100
years, seismologists studied different seismic profiles generated by earthquakes
at different locations and proved that this discontinuity is present throughout the

globe.

The discontinuity discovered by Mohorovici¢ provides the primary definition of
the boundary between the crystalline crust and the upper mantle in terms of seismic
waves velocities. Generally, the velocity of P-waves within the lower crust is smaller
than 6.5 km/s, while that of S-waves is smaller than 4.4 km/s. The velocity of the
P-waves in the upper mantle is about 7.9 km/s or more, and consequently, shows a
velocity contrast of more than 1.0 km/s. This large velocity contrast indicates that
there is a significant difference between the Earth crust and mantle in terms of
elastic parameters, which can be explained by a difference in composition. Another
definition for the Moho is in term of the density contrast between the Earth crust
and mantle. The commonly used mean density of the crust is 2670 kg/m?, while for
the mantle it is about 3300 kg/m? providing a density contrast of about 630 kg/m?
at the Moho interface (Heiskanen, 1967). Many studies discuss the variation of the
Moho density contrast and its mean value, including our own study (Tenzer et al.,
2012a).

Many researches about the Moho geometry have been published in the last 10-15
years (e.g. Mooney et al., 1998, Kaban et al., 1999, Braitenberg et al., 2000, King
et al., 2002, Banjeree and Satyaprakash, 2003). Meier et al. (2007), computed a
global crustal model using fully non-linear inversion of fundamental mode surface
waves. Moho in Australia was studied by Aitken et al. (2013) using the gravity data.
The Moho model for the European Plate has been produced by Grad et al. (2009)
using seismic as well as gravity maps. A new reference model for the European crust
(EuCRUST-07) was presented by Magdala et al. (2008). Recently Van der Meijde
et al. (2013) have produced gravity-derived Moho for the South America. Mariani
et al. (2013) have identified a thick crust in Parana basin, Brazil, with GOCE gravity
data.
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2.3 Reference density of crust and Moho density contrast

The numerical value of the mean density of the crust used in the gravity reduction
(Bouguer anomaly) is 2670 kg/m?® (Woollard, 1971). The average density of the upper
continental crust 2670 kg/m? is often adopted for defining the topographic and
reference crust densities. This density better corresponds to the average density of
the upper continental crust (cf. Hinze, 2003). The oceanic crust is typically heavier
than the continental crust (e.g., Rogers N., 2008). Carlson and Raskin (1984), for
instance, estimated the average density of the oceanic crust as 2890+40 kg/m?. This
estimate is based on seismic refraction data in combination with drilling results,
laboratory studies of seismic properties of oceanic and ophiolitic rocks, and ophiolite

lithostratigraphy.

In global studies, most of authors use a constant value of the Moho density
contrast and compute the stripping corrections relative to the reference crustal
density. The constant value of the Moho density contrast is again computed relative

to the constant reference density of crust.

Tenzer et al. (2012a) used the consolidated crust-stripped gravity data to esti-
mate the average Moho density contrast with respect to a homogenous crust layer of
a reference density of 2670 kg/m®. From that study, the average value is determined
as 485 kg/m?3. The results are obtained by minimizing the correlation between the
isostatic gravity disturbances and the Moho geometry. In that study the Moho
geometry was taken from the global CRUST 2.0 model and stripped gravity distur-
bances were also computed using CRUST 2.0 model. This Moho density contrast
closely agrees with the value of 480 kg/m?, adopted in the definition of the PREM (cf.
Dziewonski and Anderson, 1981, Table 1), which is derived based on seismic data.
This value differs by about 7% from the global average 448+187 kg/m?® estimated by
Sjoberg (2011b) based on solving the Vening Meinesz-Moritz (VMM) inverse problem
of isostasy. Sjoberg (2011b) developed and applied also a least-squares approach,
which combines seismic and gravity data in the VMM isostatic inverse scheme for
a simultaneous estimation of the Moho depth and the Moho density contrast. The
authors demonstrated that the Moho density contrast estimated that way varies

considerably depending on the lithospheric structure of a particular region.
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2.4 Earth structure models

Several global models of the Earth’s structure have been developed based on the
analysis of seismic data. Dziewonski et al. (1975) introduced the Parametric Earth
Models (PEM) consisting of piece-wise continuous analytical functions of the radial
density and velocity variations defined individually for the oceanic (PEM-O) and
continental (PEM-C) lithosphere down to a depth of 420 km, below this depth
these models are identical. They also provide an averaged function for the whole
lithosphere (PEM-A). Dziewonski and Anderson (1981) presented the Preliminary
Reference Earth Model (PREM), which provides information on the seismic velocities
and density structure within the whole Earth’s interior by means of spherically
homogenous stratigraphic layers. Van der Lee and Nolet (1997) prepared the 1-
D averaged model MC35 based on the PEM-C, while replacing the high and low
velocity zones of the PEM-C by a constant S-wave velocity of 4.5 km/s within the
upper mantle down to a depth of 210 km. Kustowski et al. (2008) derived the
transversely isotropic reference Earth model STW105. In addition to these Earth’s
synthetic models, several other global and regional seismic velocity models were

developed. A summary of these models can be found in Trabant et al. (2012).

The PEM and PREM models provide 1-D density information. Models based on a
stratigraphic layering with a variable depth, thickness and laterally varying density
distribution obviously represent the Earth’s interior more realistically. Currently
available global models provide information on a 3-D density structure only within
the crust and upper mantle. The recently developed model by Simmons et al. (2010)

contains the 3-D density structure of the whole mantle.

Nataf (1996) derived a global model of the crust and upper mantle density
structure based on the analysis of seismic data and additional constraints such
as heat flow and chemical composition. Mooney et al. (1998) compiled the global
crustal model CRUST 5.1 with a 5° x 5° spatial resolution. More recently, the global
crustal model CRUST 2.0 was compiled with a 2° x 20 spatial resolution (Bassin
et al., 2000). This model has been prepared and administered by the U.S. Geological
Survey and the Institute for Geophysics and Planetary Physics at the University of
California. Both models were compiled based on seismic data published until 1995

and a detailed compilation of the ice and sediment thickness.
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Meier et al. (2007) produced a global crustal model CRUSTO07, using fully non-
linear inversion of fundamental mode surface wave. The resolution of CRUST07
model is 2° x 2. They use neural networks for finding 1-D marginal probability
density functions (pdfs) of global crustal parameters. They have inverted the fun-
damental mode Love and Rayleigh wave phase and group velocity for the pdfs of
crustal thickness. The constructed model provides the mean Moho depths and its
standard deviations. In our work, we have utilized the data provided by this model

as a-priori information.

Most recently, CRUST 1.0 has been released, which has a 1° x 1° spatial resolution
(Laske et al., 2013). CRUST 1.0 is the result of a comprehensive effort to compile
a global model of the Earth’s crust and lithosphere, LITHO 1.0 (Pasyanos et al.,
2012, Laske et al., 2013). LITHO1.0 is a 1° x 1° model of the crust and uppermost
mantle of the Earth. It is created by constructing an appropriate starting model
and perturbing it to fit high-resolution surface wave dispersion maps. The CRUST
1.0 consists of the topography, ice, water layer, sediments layers and crustal layers.
In addition, lateral varying density structure of the upper mantle is incorporated
into CRUST 1.0. The globally averaged data from active seismic methods and deep
drilling profiles were used to predict the sediment and crustal structure. In regions
where no seismic measurements were available (most of Africa, South America,
Greenland and large parts of the oceanic lithosphere) the crustal structure assigned
by a generalization to similar geological and tectonic settings. For cells with no local
seismic or gravity constraints, statistical averages of crustal properties, including
crustal thickness, were extrapolated. The Moho depth in CRUST 1.0 is based on
19 x 19 averages of a recently updated database of crustal thickness data from
active source seismic studies as well as from receiver function studies. This model

incorporates an updated version of the global sediment thickness.

The compilation of CRUST 1.0 initially followed the philosophy of the crustal
model CRUST 2.0 by assigning elastic properties in the crystalline crust according to
the basement age or tectonic settings. This reduces the possibilities of errors in both
models. The sediment model (Laske, 1997) is an independent part of the CRUST
1.0 model. The sediment layers in CRUST 5.1 and CRUST 2.0 are divided into two
layers of soft and hard sediments, while CRUST 1.0 consist of three sediment layers
namely, upper, middle and lower sediments. Each 1° x 1° cell of CRUST 1.0 provides,
thickness, compressional and shear wave velocity and density for eight layers: water,

ice, three sediment layers and three crustal layers. Topography, bathymetry and
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ice cover are taken from the 1' x 1" ETOPO1 model (Amante and Eakins, 2009).
Chen and Tenzer (2014) compiled the Earth’s Spectral Crustal Model (ESCM80) by
incorporating more detailed information on the topography, bathymetry, polar ice
sheets and geoid surface into the CRUST 1.0 model.

Beside the global models, there are some regional models of the crust available in
the literature (e.g., Magdala et al., 2008, Grad et al., 2009, Tedla et al., 2011, Van der
Meijde et al., 2013 and Mariani et al., 2013). The model developed by Magdala et al.
(2008) is termed as Eucrust-07. The model is 15 x 15 point spacing for download
and it is based on the results of seismic reflection, refraction and receiver functions
studies. The Moho model of the European plate developed by Grad et al. (2009)
has a point spacing of 0.1° degree and is compiled using more than 250 data sets of
seismic profiles, 3-D models obtained by body and surface waves, receiver function
results and maps of seismic and gravity data. Recently a regional model of the
Moho for South America has been published by Van der Meijde et al. (2013). This
model is based upon the EIGEN-6C (Forste et al. (2011)) model derived from GOCE
satellite and other gravity data. The authors inverted the gravity data by assuming a
two-layer model with constant density contrast over the interface. The point spacing
of the model is 15 x 15. The regional model developed for the crustal thickness
of Africa is derived from global gravity field data using Euler deconvolution (Tedla
et al. (2011)). The model has a point spacing of 3 x 2.5. The model is based on
EIGEN-GLO04C (Foerste et al. (2008)) free air gravity anomalies which contain 30
months of GRACE Level 1B data covering the period from February 2003 to July
2005 together with surface gravity data from seven different sources. More recently,
Tugume et al. (2013) developed a regional crustal model for Precambrian Crustal
Structure in Africa and Arabia (PCSAA). The Model of crust thickness for Africa
and Arabia is based on the gravity data from EIGEN-6C gravity field model.

In our research, we use thickness and boundary layers and density from the
recently published CRUST 1.0 model. We compute the gravitational attraction
(stripping correction) and potential using forward modeling technique with data
from CRUST 1.0 model. We use the above mentioned regional models of the Moho
for the validation of our developed Moho model results (in Chapter 7).
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2.5 Gravitational potential of a solid body

According to Newton’s law of gravitation, the gravitational potential W, of an at-

tracting body with density p is given by the Newton integral (Mader, 1951)

,D(x,,y,,zl) / ' /
Wo(x,y,2)= fof dxdydz 2.1
W (-2 +(y-y)2+(z-2)

over the volume v of the body, where G is the Newtonian gravitational constant,
dv=dx dy dz is the volume element, and I = \/(x—x )2+ (y— y)2 + (z — 2)2 is the

euclidean distance between the computation point (x,y,z) and integration point

(x,y,2).

The potential W, is continuous throughout the space and for / — oo it behaves
like the potential generated by a point mass located at the body’s centre of mass.
The first derivatives of the potential are also continuous throughout the space but
the second derivatives are not continuous at density discontinuities (Kellogg, 1929).
It can be shown that

AW, = —-47nGp, (2.2)

% + 0‘3—; + 6722 is the Laplacian operator. Outside the surface of the body

the density p is zero, so Eq. (2.2) turns into

where A =

AW, =0. (2.3)

Eq. (2.3) is called the Laplace equation and its solutions are called harmonic

functions.

2.6 Earth gravity and geoid

The total force acting on an object located at the surface of the Earth is the sum of

gravitational force and centrifugal force. The centrifugal potential is

1
D(x,y,2) = §w2(x2 +%),



2.6 Earth gravity and geoid 15

where w is the angular velocity of the Earth’s rotation and «x, y, z are the coordinates
defined in an Earth-fixed reference frame. The gravity potential W is the sum of the

Earth gravitational potential W, and the centrifugal potential @ :
Wx,y,x) =Wu(x,y,2)+ D(x,y,2). (2.4)
The gravity vector g is the gradient of the gravity potential (Moritz, 2006).:
g=VW, (2.5)

with components

ow X—% 1.1
gx:E:—fof I dxdydz +w’x,
GW y—y, / i /
gy:E:—fof E dxdydz +w?y,

v

ow Z—Z/ / / /
= [ aaa,
v

where V = %i + % 7+ %k, and ¢z , 7 and k are the unit vectors in the terrestrial

reference frame along the x, y and z direction, respectively. The magnitude of the
gravity vector

g=|vw| (2.6)

is called gravity.

Surface W = constant is called the geops, and one particular geops W = Wy, is

the geoid. It is the geops which best approximates mean sea level.

The force of gravity at the geoid surface is always normal to it. The gravity
potential W can be split into the normal potential U usually generated by a level

ellipsoid and the disturbance potential 7'
W=U+T.

Thus, the disturbance potential is defined as the difference between the actual

gravity potential and the normal gravity potential. In geodetic coordinates, it can
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be written as
T(h,A, ) =Wu(h,A,p)—Ugy(h,p). 2.7

where £ is the ellipsoidal height, A is the longitude and ¢ is the latitude. The

gradient of the normal potential is called the normal gravity vector

—

v = ?U,
and its magnitude is called the normal gravity

y=|vU|.

2.7 Gravity disturbance and gravity anomaly

The gradient of the disturbance potential is called the gravity disturbance vector
and is denoted by 6g (Moritz, 2006):

5g=VW-U)=VT,
and the difference in magnitude is the gravity disturbance (Moritz, 2006)
6g=|VW|-|VU|=gp-vp. (2.8)

The classical gravity anomaly vector Ag is defined as the difference between the
gravity vector gp at a point P on the geoid and the normal gravity vector vq at the

corresponding point on the reference ellipsoid (see Figure 2.1):

Ag=gpr—g,
and the difference in magnitude is the gravity anomaly

Now consider the geometrical representation of geoid and reference ellipsoid as
given in Figure 2.1, where n is the local normal at P while n' is the normal to the
reference ellipsoid at @ passing through point P on the geoid. Omitting subscript P

for brevity, the gravity disturbance can be written as

. (aW aU)
= \on o)
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Figure 2.1 Geometrical representation of geoid and reference ellipsoid

. . ! . .
The direction of the normal vectors n and n almost coincide, moreover the normal n

is directed along the elevation A therefore, gravity disturbance can be approximately

written as
oT

0g~———.
£~ " 5n

In spherical approximation, the gravity disturbance is the negative radial deriv-
ative of the disturbance potential (Heiskanen, 1967)

dg~—— (2.9)

and similarly, the expression for the gravity anomaly reads

Ag~—-———--T. (2.10)
or r

Eqgs. (2.9) and (2.10) relate gravity disturbances and gravity anomalies to the
disturbance potential.
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2.8 Harmonic expansion of the gravity field

The total potential W of the Earth can be represented outside a sphere comprising

all masses (Brouillon sphere) in term of spherical harmonic (Moritz, 2006)

I+1

GM & (R Lo— — - 1
W(r,0,1) = — Z (_) Z (sz cosmA+S;, sinm/I)le(cose)nL ~wr? sin20,
R i3\r] 52 2

(2.11)
where G = 6.674 x 10" 1Um3k g~ 1572 is Newton’s gravitational constant, and M is the
mass of the Earth. The numerical value of the scaling terms {GM,R} are: GM =
3986004.415 x 103m?®s™2 and R = 6378136.3m , 0 is co-latitude, A is longitude, C;,,
and S;,, are the fully normalised spherical harmonic coefficients (Stokes coefficients),
[ is degree and m is the order. P;,, are normalized associated Legendre’s functions
of degree [ and order m; they are defined by (Moritz, 2006)

V2l +1P;, ifm=0
P, =

\/2(21 +1)EM P iEm £0

+m)!

Similarly, the normal potential can be written as

I+1

GM & (R U= 1
Uur,o,0)=— Y (—) C1oP10(cosd) + —wr2sin®0. (2.12)
R S\ r 2

The summation over / has a step size of 2. Using Eq. (2.11) and Eq. (2.12), one can

express the disturbance potential as

I+1 1

GM & (R _ _ _
T(r,0,0)=— Y (—) (ACym cosmA + A sinmA) i (cos0),  (213)
R 1=2\T m=0
where
AElm 6lm - C?m
ASim Sim-8SY.

Assuming that the total mass of the level ellipsoid is the same as the mass of

the Earth, the zero degree term vanishes (i.e., ACgo = Soo = 0). Furthermore,
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assuming that the centre of mass of the Earth and the level ellipsoid coincide with
the origin of coordinate system, the disturbance potential vanishing degree 1 terms
(i.e., C11=C10=S11=0).

Eq. (2.13) can be written for a points at the mean sphere, which approximates

the Earth’s surface of radius r = R:
oo I _r _r _
T(R,0,0=Y. Y (AC;,cosmA+ASy, sinmA) Py (coso),
[=2m=0

where

—_T —

=— (2.14)
AS; ASin

are the Stokes coefficients associated with the disturbance potential of the Earth.
From Eq. (2.9) and Eq. (2.10) it follows that the expressions for gravity disturbances

and gravity anomalies on the sphere with radius r =R are

GM = [ _ _ )
52(R,0,1) = F1_22(1 + 1)mz_0 (AClm cosmA + ASlmsmm/l) Py, (cosf)  (2.15)

and
GM = l _ _
Dg(R,0,) = — l_zz(z - 1)mz_0 (AClm cosmA +AS;,, sinmﬂt) Py, (cosf), (2.16)

respectively. From Eq. (2.15) and (2.16) it follows that the expression for the

corresponding Stokes coefficient of the gravity disturbances and gravity anomalies

are
—5 —
= RZ (+1) , (2.17)
ASE ASim
and
—A —
AglAnf A§lm
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respectively.

2.9 Global gravity field model

In April 2008, the National Geospatial-Intelligence Agency (NGA) released “the
Earth Gravitational Model 2008” (EGM2008) (Pavlis et al., 2008). The model is
complete to spherical harmonic degree and order 2159. It is a combined model based
on information from CHAMP, GRACE satellite gravity missions as well as a global
gravity anomaly database. In April 2011, a new combined global gravity field model
EIGEN-6C (Forste et al., 2011) had been developed by GeoForschungsZentrum
Potsdam and Groupe de Recherche de Geodesie Spatiale (GRGS) Toulouse. The
EIGEN-6C gravity model is complete to the spherical harmonic degree and order
1420 and it is based on the data from CHAMP, GRACE, GOCE satellite gravity mis-
sions and terrestrial global gravity anomaly data provided by the Danish Technical
University (DTU10 gravity model) (Anderson et al. 2009, Anderson 2010). Recently,
EIGEN-6C2, a new combined global gravity field model complete to degree and order
1949 (10 km spatial resolution) is released by GFZ Potsdam and GRGS Toulouse
(Forste et al., 2013). The EIGEN-6C2 model is based on data from GOCE together
with data from previous satellite gravity missions, and surface gravity data from
DTU10. These high-resolution, high-accuracy, and combined modern gravity models
offer new opportunities to study different interfaces and the dynamics of various

processes which occur inside the Earth.

The improved resolution and accuracy of available gravity field models enhance
the interest of researchers to studies the interior of the Earth structure in detail
especially in region where limited or inhomogeneous seismic data is available.
These models provides an opportunity for improving our knowledge of basic crustal
structure of the Earth.

2.10 Isostasy and crust models

The term Isostasy is used to describe the state of equilibrium to which the Earth

lithosphere and asthenosphere tend, in the absence of external disturbance forces.
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The alternative view of isostasy is the Archimedes principle of hydrostatic equilib-
rium. According to this principle, a lighter solid body always floats on the denser
underlying fluid. From the hydrostatic equilibrium, the pressure generated by the
column of the Earth crust at a given depth of compensation at the underlying mantle
is constant, otherwise a lateral pressure gradient occurs, which causes the mantle
material to move until a constant pressure condition is reached. The theory of
isostasy states that a distribution of hydrostatic pressure exists below the surface of

compensation (Torge, 1991).

The theory of isostasy is in line with the observation that the global Bouguer
anomalies (free air gravity anomaly corrected for the effect of the topography above
the geoid) have a systematic pattern over the globe. It is generally positive in
the oceanic regions, mostly negative in the continental regions and shows strong
correlation with the topographic heights. This means that the mass excess and
deficiency are at least partially compensated by the corresponding mass distribution
inside the Earth. According to the isostasy principle, the mass of mountains must
be compensated by a mass deficit below it, while the mass deficit at an ocean basin
must be compensated by an extra mass at depth. In the mid of the nineteen century,

two compensation mechanisms were proposed by Airy and Pratt.

1. The Airy model is based on constant density, where different topographic
heights are compensated by changes in the lithospheric thickness (Airy, 1855,
Heiskanen, 1958).

2. The Pratt model, where different topographic heights are compensated by lat-
eral changes in the lithospheric density (Pratt, 1855, Hayford, 1909a, Hayford
and Bowie, 1912).

Airy isostatic model

Figure 2.2a illustrates the Airy isostatic model. The Airy model is based on a
constant density pg and varying thickness of crust columns (Torge, 1991). T is
the thickness of normal column of crust which has the height H = 0 above sea level.
The continental column of mountain height H forms mountain roots of thickness
dcont beneath the normal column of crust, and the oceanic column of depth ¢ forms

anti-roots with thickness d,¢.qn beneath the oceanic column.
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Figure 2.2 (a) Isostatic model of Airy (b) Isostatic model of Pratt

According to the isostatic condition, the pressure p produced by a column of

homogeneous density is given by

_ weight  pogV
" area  AS

= pogh = constant,

where g is gravity, V is the volume of the column, AS is the column area, p is
the column density and 4 is the total column thickness. If p,, and p,, represent
the density of mantle and sea water, respectively, then the pressure exerted by the

normal column having height H =0 is given by

P =po8To+pm&dcont (2.19)
and pressure exerted by the continental column of mountain height H is given as
p =po8H + pogTo+ pogdcont- (2.20)
Similarly, for the oceanic column we have,
P =puw8t+pm&(docean +dcont) + P0&(To —t = docean) (2.21)

According to the condition of hydrostatic equilibrium, from Eqgs. (2.19) and (2.20) we
get

(Pm = po) deont = poH (2.22)
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for the continents equilibrium. Using Eqs. (2.19) and (2.21) we get

(pm - .00) docean = (po - pw) 4 (2.23)

for oceanic equilibrium. Using the conventional values for the homogeneous density
po = 2670 kg/m?, mantle density Pm = 3270 kg/m?, and density of water Pw =
1030 kg/m? the relation for the thickness of the roots and anti-roots are given by,
deont =4.45H | dycean = 3.72t, respectively.

The isostatic phenomena have a direct link with the observed gravity field of
the Earth. The thickness Ty of the normal column of crust can be estimated using
isostatic gravity anomalies obtained for different depths of compensation. Generally,
for the depth of compensation equal to T9=30 to 40 km the gravity anomalies are
independent of topographic height. This result is in line with the result from seismic
studies, which show that the isostatic surface of compensation can be approximated

by the Mohorovici¢ discontinuity.

Pratt isostatic model

The Pratt model is based on the layer of constant thickness 7'y with lateral variations
in crust density p (Torge, 1991). The isostatic model of Pratt is illustrated in Figure
2.2b. The normal column of height H = 0, has a density pg, continental columns
have smaller densities, while oceanic columns have higher densities. According to

the Pratt model the equilibrium condition can be written as
poTo = peont(To+H), for contenents
and

00To = pwt+ Pocean(To— 1), for oceans.

Using the values peon: = 2670 kg/m?, p,, = 1030 kg/m? for the normal crust density
and sea water density, respectively, the relation for the densities of the continental

column and oceanic column can be written as

To
To +H’

Pcont = 2670
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and
26707y —1030¢

,Oocean - TO —t ’

respectively.

Both Airy and Pratt isostatic models are based on local compensation. They
assume that the compensation takes place along the vertical columns. In 1931,
Vening Meinesz modified the Airy isostasy theory and introduced a regional instead
of a local compensation. In this model the topography is considered as a load on
unbreakable but yielding elastic crust. Moritz (2006) summarised the two models
as, “standing on the thin ice sheet, Airy will break through, but under Vening Meinesz

ice is stronger and will bend but not break”.

2.11 Gravimetric methods for the Moho geometry

Classical isostatic models are typically not able to model realistically the actual Moho
geometry. First of all, this is because the isostatic mass balance depends on loading
and effective elastic thickness, rigidity, rheology of the lithosphere and viscosity
of the asthenosphere (Watts, 2001). Moreover, the glacial isostatic adjustment,
present-day glacial melting, plate motion, mantle convection and other geodynamic
processes contribute to the overall isostatic balance. Kaban et al. (1999), for instance,
demonstrated that the isostatic mass balance takes place not only within the crust
but essentially within the whole lithosphere (see Kaban et al., 2004, Tenzer et al.,
2009a, 2012b). Gravity data also contain a long-wavelength signal from mantle
heterogeneities including the core-mantle geometry (Sjoberg, 2009). Therefore,
gravimetric methods should optimally combine gravity and seismic data. An example
of the combined data processing strategy is the study of Braitenberg (1999). They
proposed a method based on the iterative 3-D gravity inversion with integrated

seismic data for the Moho recovery.

Generally, seismic data are used in geophysical studies to determine the Moho
geometry. Seismic methods provide a more realistic image of the Moho interface.
However, due to the limited coverage of seismic observation, their application for
the recovery of the Moho interface is difficult. In the absence or a low coverage with
seismic data, gravimetric or combined gravimetric-seismic methods have to be used.

Several gravimetric methods for finding the Moho depths have been developed and
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applied in global and regional studies. Examples of the gravimetric methods include,
but are not limited to, studies by Oldenburg (1974), Cadek and Martinec (1991),
Arabelos et al. (2007), Sjoberg (2009), Braitenberg et al. (2010), Sampietro (2011),
Bagherbandi (2012), Bagherbandi and Eshagh (2012), Bagherbandi et al. (2013),
Tenzer et al. (2013).

Parker method of gravity inversion: The relation between Bouguer gravity an-

omalies Ag® and the depth of an interface A(r) is given by Parker (1973)

ko 2RI
F(8g®)=-2nGape ™y = —F [n')], (2.24)
=1 :
where F(Ag) is the Fourier transform of the gravity anomalies, & is the wave number,
h(r) is the interface depth, A is the mean depth of horizontal interface, and 7 is the
projection of the position r = (x, y,z) onto x — y plane. Oldenburg (1974) rearranged

the above Parker’s relation to

F[AgB(F)]e_IkV‘O ~ i |k|l—1
2nAp =y !

FIA(] = - F (7). (2.25)
Eq. (2.25) can be used to compute the regional Moho depth from gravity anomalies

iteratively,

The regional compensation model was adopted in the Parker-Oldenburg isostatic
method (Oldenburg, 1974). Moritz (1990) utilized the Vening Meinesz inverse prob-
lem of isostasy for the Moho depth estimation. Sjoberg (2009) reformulated Moritz’s
problem, called herein the Vening Meinesz-Moritz (VMM) problem of isostasy, as

that of solving a non-linear Fredholm integral equation of the first kind.

The isostatic mass balance is described commonly in terms of isostatic gravity
anomalies. Vajda et al. (2007), however, argued that the definition of gravity dis-
turbances was theoretically more appropriate in the context of gravimetric studies.
Following this concept, Tenzer and Bagherbandi (2012) reformulated the VMM
inverse problem of isostasy in terms of the isostatic gravity disturbances; see also
Bagherbandi et al. (2013). They also demonstrated that the Moho depths from
isostatic gravity disturbances better agreed with global seismic models than those
based on isostatic gravity anomalies. The concept of isostatic gravity disturbances
is used also for global lithospheric studies in (Kaban et al., 1999, 2003, 2004)
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Least-squares inversion of gravity data can be used to determine the Moho depth.
It leads to an ill-posed problem due to lack of uniqueness. The non-uniqueness can
be overcome if we take into account some restrictive assumptions to the density
distribution. Normally, these assumptions are provided from the geology of the study
area as well as from seismic sources. Furthermore, the Bouguer gravity should be
corrected for the known short and long wavelength effects. The short wavelength
signal are due to heterogeneities of the crust, while the long-wavelength are due to

the deeper structure heterogeneities.

The geophysical inversion consists of two processes, one is called the forward
process (method) and the other the inverse process. Before the inversion, the effects
of shallow structures on the observed gravity must be removed, to obtain the gravity
associated with the structures and Moho geometry. For this purpose the forward
modeling technique have been used. Furthermore, for the Moho recovery, the gravity
signal associated with deep structure deeper than the Moho must also be removed.
For example, to remove the effects of topography, the Bouguer reduction is applied
to the gravity data. In Bouguer reduction the gravitational attraction of a Bouguer
plate of height 2 and density p, is subtracted from the observed gravity anomaly,
ie.,

Ag® = Ag—271Gph.

The methodology used for the forward modeling of gravity signal is addressed in
Chapters 3 and 4, while the inverse problem for the recovery of Moho is given in
Chapter 6.

2.12 Vening Meinesz’s Model (VMM)

Vening Meinesz’s inverse problem deals with the recovery of the Moho depth A,
using Bouguer gravity anomalies and the normal Moho depth A9 (mean Moho
depth). Adopting the principle of solving Moritz’s generalization of the Vening-
Meinesz inverse problem of isostasy is based on generating the isostatic gravity
disturbances/anomalies, such that these are equal to zero. The formulated problem
is under the assumption of varying Moho depths A, and adopting a constant value of
the Moho density contrast Ap = p,, —p.; where p. and p,, denote the constant density

of the Earth’s crust and the uppermost mantle respectively (cf. Vening Meinesz,
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1931). The isostatic gravity disturbances §g* at a position (r,Q) is then defined as
(cf. Tenzer and Bagherbandi, 2012)

88 (r, Q) =6g°(r,Q)+g°(r,Q2)=0 (2.26)

where 6 g¢° is the crust-stripped gravity disturbance, Q = (¢, 1) denotes the spherical
direction with spherical latitude ¢ and longitude A, and g€ is the gravitational
attraction of isostatic compensation masses (e.g., Moritz, 1990), which fully com-
pensate the crust-stripped gravity disturbances (6g¢®) . It can be written as (cf.
Sjoberg, 2009)

gf=gp+dg", (2.27)
where Roh o ,
—o - ! !
g;;:GApff,/ e lrgcos‘”)dr dQ
Q JR
and R ,
dg® =GAp ff , / L (r_l'; sY) ir'aq (2.28)
Q JR-Ah

where G is Newton’s gravitational constant, R is the radius of a mean Earth sphere,
rand r are the distance from computation point and integration point, respectively,
dQ =cos¢p'dpdA, ¢ € [-3,5], A" €10,27], v is the spherical distance between two
points (r,Q) and (r,Q), and [ = \/r2 +7r'2-2rr cosy. From Eqs. (2.26) , (2.27) and
(2.28), we obtain

R 20, ./ o
GAPff / re(r-r cosw)dr 4 =~ (5% + g9
Q' JR-h

/3

Sjoberg (2009) simplifies the above equation and formulates the VMM inverse

problem of isostasy in the following generic form

—~GRAp f f K (y,s)dQ = f(r,Q) (2.29)

where f(r,Q) = - [6g° + g§|, the integral kernal K (v,s) in Eq. (2.29) is a function
of parameters ¢ and s; and s =1- 1%' The spectral representation of K (v,s) reads
(cf. Sjoberg, 2009)

K(y,s)= i l+—1(1 —s'*3)Py(cosy),

il +3

where P; is the Legendre polynomial of degree /.



28 Earth structure and gravimetric methods for the recovery of the Moho geometry

The expression given in Eq. (2.29) is a non-linear Fredholm integral equation
of the first kind for the unknown Moho depths A. Its solution for finding the Moho

depths was given by Sjoberg (2009) under a second-order approximation:

RIQ) 1 RAQ)-rAQ)
hO) =@+ == - ff - 0 (2.30)

The term A1 is given in the spectral domain using the following expression

oo 1 l
h1<9>:z(2——) S fimYim(@
1=0 I+1),=,

The coefficients f; ,,, of the isostatic gravity disturbance functional f(r,(2) are defined

as

; 1 {5ggf0—gg if1=0
m

4nGAp |5 g5 otherwise

where 6g7° are the spherical harmonics coefficients of the crust stripped gravity dis-
turbance 6g°®. The nominal compensation attraction (of zero-degree) gg stipulated

at the sphere of radius R is given by (cf. Sjoberg, 2009)
go=—4nGAphy,

where A is the adopted global mean Moho depth.



Analytical and semi-analytical methods
for computing gravitational attraction

and potential

An inhomogeneous density distribution inside the Earth (for example the bathy-
metry, ice and sedimentary layers effects) require that the corresponding signals
are removed from gravity field data. Furthermore, one has to compute the effect
of topographic masses above the geoid. The link between density distribution and
gravitational attraction/potential is provided by the Newton volume integral. Vari-
ous numerical methods are applied to evaluate the Newton’s volume integral when
studying the local gravity field. A simple form of the integration can be used, such
as splitting the integration volume into right rectangular parallelepipeds (prisms)
with constant density within each individual prism. Bessel (1813) derived a closed
analytical expression for the gravitational potential of a prism. The potential-related
formulae for a prism were studied also by Zach (1811), Mollweide (1813), Everest
(1830) and Mader (1951). Nagy et al. (2000) summarized the closed analytical ex-
pressions for the potential and its first and second derivatives of a rectangular prism
of homogeneous density. However, in most geological structures the constant density
assumption is not practical. For this reason, some authors derived analytical expres-
sions for volume elements with linearly or otherwise varying density distribution
models. Chai (1988) computed gravity anomalies using a rectangular prism with
density changing linearly with depth. Gallardo-Delgado et al. (2003) derived the
analytical solution for the forward gravity modeling utilizing a rectangular prism

with density varying according to a quadratic polynomial law. Garcia-Abdeslem

29
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(1992, 2005) introduced the analytical expression for the rectangular prism with

depth dependent density distribution in the form of a cubic polynomial.

For efficient gravity field modeling of homogeneous/inhomogeneous density form-
ations, the approximation of geological structures by more general geometrical
forms than rectangular prisms has to be implemented. Hubbert and King (1948)
introduced a methodology called the line integral approach; the surface or volume
integrals are converted to line integrals after applying the Gauss divergence the-
orem. Following this idea, Talwani et al. (1959) applied the line integral approach
to the polygon in 2-D. Talwani and Ewing (1960), Collette (1965) and Takin and
Talwani (1966) decomposed the 3-D body into parallel, typically horizontal laminae.
Paul (1974) and Barnett (1976) generalised this concept for a polyhedron in 3-D.
Pohanka (1988) derived a simple algorithm for the attraction of a homogeneous poly-
hedral body using the line integral approach (see also Pohanka, 1990, Ivan, 1990).
The formulae for polyhedral bodies with homogeneous density were studied also by
Okabe (1979), Gotze and Lahmeyer (1988), Kwok (1991), Holstein and Ketteridge
(1996), Werner and Scheeres (1996), Holstein et al. (1999) and Holstein (2002a,b).
Petrovic (1996) presented in more complete form the formulae for the potential and
its derivatives using the line integral approach for arbitrary polyhedral bodies of

homogeneous density (see also Tsoulis and Petrovié, 2001).

Combining the benefits of using more generalized geometrical bodies, Pohanka
(1988) introduced an optimum expression for the computation of gravity field (grav-
itational attraction) of a constant homogeneous density polyhedral body by means
of line integrals. To avoid singular terms and obtain a maximal numerical accuracy
and efficiency, Pohanka (1998) derived the optimum expression and proposed a
simple computational algorithm for computing the gravity field (attraction) of a
polyhedral body with linearly increasing density. An alternative expression was
derived by Hansen (1999) for the gravitational attraction of a polyhedral body with
linearly varying density. In gravimetric geoid modeling and related subjects not
only the attraction-related term (direct effect) but also the potential-related terms
(secondary indirect effects) are computed. Therefore, Holstein (2003) generalized
their work having derived formulae also for the gravitational potential and its second

derivatives.

Following the concept used by Pohanka (1988, 1998) in this chapter we derive

the expression for computing the gravitational potential of an arbitrary polyhedral
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body having a linearly varying density. Due to the singularities, the methods used
for computing the gravitational attraction and potential need special attention.
They arises depending on the location of computation point relative to the object.
In comparison to the formula for the potential given by Holstein (2003), the main
advantage of our approach is adopting the computational strategy developed by
Pohanka (1988, 1998), so that our expressions have no singular terms. Furthermore,
we propose a numerical scheme which efficiently combines various existing methods
of solving the Newton’s volume integral. We start this chapter from an overview of
existing methods, the simple method using point mass approach (Section 3.1), then
Gauss cubature (Section 3.2), then linear vertical mass approach (Section 3.3), then
rectangular prism approach (Section 3.4) and finally using line integral analytical
approach. The potential of an arbitrary polyhedral body having a linearly varying
density is derived in Section 3.5. At the end we describe numerical experiments
where the above mentioned methods are compared. We present our result over
computational accuracy and efficiency of the methods in a graphical and tabulated

form.

3.1 Point Mass Approach

A simple point mass approach can be applied to compute gravitational potential
V(x,y,2z) and the component of gravitational attraction g, g, and g, . Consider a
homogeneous rectangular prism having boundary from xll to x'2 along the x-axis,
from y’1 to y,2 along y-axis and from 2’1 to 2/2 along z-axis. Using the most simple
approximation of the gravitational potential of a prism is to replace it by a point

mass located at the geometric centre of the prism:

V(oc,y,z)ZGp|Z|_1 (x;—xll) (ylz—y;) (2’2—2’1) (3.1)

where [ = |'r - F'| is the euclidean distance between the computation point r(x,y, 2)
and the geometrical centre of the rectangular prism 7= (51,7,2'); X = x2;x1 , 7 =

o , o
Yo~Y1 5 _%27%
2 % =TT -

The components of gravitational attraction vector will be
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g:=Gp |Z_T(x’2—x,1) (y,z—yrl) (2’2—2’1) , (3.2)

£,=Gp %(x;—x;)(y;—y;)(z;—z;)

g8:=Gp

3.2 Gauss Cubature Approach

Gravitational potential of a homogeneous rectangular prism with dimension x1 to xo,

y1 to yo, and z1 to z9 is

X2 Y2 22

V(r)=Gp / / / lozx’dy’ozz’, (3.3)

1

X1 Y1 21

where |I| = \/ (x - x')2 +(y- y')2 +(z- z')zis the Euclidean distance between the com-
putation point 7 = (x,y,z) and the integration point r = (x,, y’,z'). By integrating

the right-hand side of Eq. (3.3) with respect to z we get

x2 Y2
V(r):—Gp//|1n[(z—z’)+|l|]|j§dx'dy’. (3.4)

X1 Y1

After applying the Gauss cubature discretization, the expression for the gravita-

tional potential of homogeneous rectangular prism is:

Vir)y = —iGp(x’z—x,l)(y'z—y,l)[fv(x;,y;)+fv(x;,,y;,)

!

22] (3.5)

!
21

+ fv(xaayb)-’_fv(xb’ya)

where the function f, =1n [(z - z,) + Ill] is computed at the four Gauss nodes:
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! ! ! ! ! ! ! !

oty 1 XY T _Y1tYe 1 YT
Xg=—5 F /3 2 Ya="35 T /3 2

! ! ! ! ! ! ! !

_ Xt 1 Xo™% Y11Ys + 1 Y™

=T T2 o YT T TR 2

The expression for the vertical components of the gravitational attraction vector

reads:

X2 Y2
g = —Gp//||z|—1|;jdy’dz’

X191
= —iGp(y,Z—yll)(le—le)Hfg(y;,z;)"‘fg(y;’zga)

+ fg(ya7zb)+fg(yb7za)

x2
xl], (3.6)

X2 Y2
g = ~Go [ [l axas

X1 Y1

!/

= —iGp (xlz —xll) (22 —2/1) Hfg(x;,z;)+fg(x;,,22,)

b ezt felenzn)| . 3.7)
)1

x2 Y2
g: = G [ [l zaxay

X1 Y1

= 360 (o) (vo 24 [| o) + oty )

+ fg(x;,y;,)+fg(x;,,y;) zz], (3.8)
21

where f, = |l|_1

In Gauss cubature approach one analytical integration ( in the z direction) and

two numerical integrations ( in the x and y direction) are used.
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3.3 Linear Vertical Mass /Semi-analytical Approach

The equations for the vertical mass approach are most easily expressed in terms of
spherical coordinates (r,¢, 1) . The gravitational potential and the vertical compon-
ent of the gravitational attraction vector generated by a volume element of a sphere

having homogeneous density are given by (cf. Martinec, 1998):

Vir) = GpA(,b/ AX cosgb‘% (|r/| +3|r| cosw) |1

+ %|r|2(3c052w—1)1n‘|r,|cosw+|l|Hr,2 (3.9
]
and
! ! _1 ! 2 2 _1 2 !
glr) = -GpA¢p AL cos¢‘|l| (\'r| +3|r| )cosu/+|l| (1-6cos w)|'r||r|
+ |r|(3cos2w—1)ln‘|r,}—|r|cosu/+|l|Hr,2 (3.10)
Ty

where ¢ is the latitude, A is the longitude, v is the spherical angle between com-

putation point  and integration point r, cosy = sin(p’sim/) +cos c/), cosc/)cos(?tr -A);

and the Euclidean distance is computed from: }l| = \/|'r2| + |r'2| — 2|r| |r' | cos Y.

3.4 Homogeneous Rectangular Prism Method

The rectangular prism method is used when the topography in the region of interest
is represented by a regular grid. The method is often used for precise gravity field
modeling at the vicinity of the computation point. Eq. (2.1) solved analytically for a
homogeneous rectangular prism (Mader, 1951, Nagy, 1966, Gruninger, 1991, Nagy
et al., 2000, 2002, Heck and Seitz, 2007), results in the following formula for the
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potential in Cartesian coordinate system:

2 2 2 o
Vix,y,2) = Gp Y. Y Y (-1)*/*k
i=1j=1k=1

Zk"'rijk Xi+rijk
x [X,-len ZE R Y Z,In —‘
2 2 2 2
,/Xi+Yj ,/YJ.+Zk
Y;+r;j 1 Y;Z
+7,X;In| LWk ——(Xiztan_lj—
JZ2exzl 2 XiTijh
l
7. X; X,Y;
+¥Ptan~! ZEEL 4 Z2tan T L, (3.11)

jTijk ZrTije
withX; =x—-x;, Yj=y-y; Zp=z-zpandr;j :,/X?+YJ.2+Z]%.

Here the point r(x,y,2) is the computational point and r(x;,y;,2;) are the integ-

ration point.

Similarly, the vertical components of the gravitational attraction vector at a
point r(x, y,z) reads (Mader, 1951, Gruninger, 1991, Nagy, 1966, Nagy et al., 2000,
2002, Heck and Seitz, 2007 ):

2 2 2 . Y~+rijk Xi+rijk
g = GpY Y ¥ (-1 x [ x;n| TR +len'—
i=1j=1k=1 [ VXE+Z2 \ /YJ.2 +Z2
X,Y;
~Zptan1 17 ] (3.12)

ETijk

The other two components of gravitational attraction vector can be obtained from

Eq. ((3.12)) by cyclic permutation, i.e.,

gx = GpZZZ(—l)”“kx len’—k 7k +Zk1n‘—J Lk
i=1j=1k=1 ,/XL.2+YJ.2 X2 +22
Y Z
~X;tan"t —2F ]; (3.13)
iTijk
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Xi“‘"ijk Zk+rijk

2 2 2
ik
gy = G,oZZZ(—l)“J+ x | ZpIn|————|+X;In| ——
— = 2 . 72 2 2
i=1j=1k=1 Yj +Zk X: +YJ.
X, Z
~¥;tan~! =R | (3.14)
erijk

3.5 Line Integral Analytical Method

It was mentioned in Chapter 2 (see Eqgs. 2.9 and 2.10 ), that the computation of
gravity disturbances require the computation of gravity attraction, while for gravity
anomalies both gravity attraction and potential are pre requisite. The formula for
computing gravity attraction of polyhedral body with linearly varying density have
been derived by Pohanka, 1988. Therefore, following the concept used by Pohanka
(1988, 1990), we derive the optimum expression for computing the gravitational
potential of polyhedral body with a linearly varying density. The expression for the
gravitational attraction of a polyhedral body with homogeneous density is given in
Pohanka (1988). The formula for gravitational attraction of polyhedral body with
linearly increasing density is given by Pohanka (1998). In comparison to the formula
for the gravitational potential given by Holstein (2003), the main advantage of
adopting the computational strategy developed by Pohanka (1988, 1990) is that our
expressions does not have singular terms. We also demonstrate that the algorithm
for computing the gravitational attraction proposed by Pohanka (1988) can directly
be applied for computing the potential.

Let us consider a linearly varying density distribution (cf. Pohanka, 1998):

pr)=po+p1-7, (3.15)

where pg is the value of density at a suitably chosen origin of the local coordinate
system used for a description of the density model within the volume D of the
polyhedral body and p; is the gradient of the linear density distribution function.
Combining Egs. (2.1) and (3.15), we get

1 / —r
V(r)=G(P0+p1-r]fffmdr +Gp1-fffﬁdr. (3.16)
D D
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Using the identities
v r—r 2 v , ‘ r—r
T = / ’ rro—=ri= / ’
"o " (A
Next, we can re-write Eq. (3.16) as
vy =g lorPrr ”1 Tfff |dr +Gpr- fff r —r dr. (317
r -r

To convert the volume integrals on the right-hand side of Eq. (3.17) to the surface
integrals, the Gauss divergence theorem is applied. If f(r') is a vector function with

integrable gradient in the domain D, it holds:

f f f V- fr)dt = # f(s)-do,
D S

where the surface element vector do is defined as the product of the unit normal
vector n(s) oriented outwards from the volume D and the scalar surface element
do at the point s on the surface S, i.e. do =n(s)do . Correspondingly, if f(r,) is
a scalar function with integrable gradient in the domain , the Gauss divergence
theorem holds

fff Vv, fe)dr = #f(s’)da’.
D S

The application of the Gauss divergence theorem to Eq. (3.17) yields:

V(r):Gp0+p1' S do +Gp1- #‘s—r (3.18)
> ]

where ‘s’ — r‘ is the Euclidean distance between the computation point  and the
running integration point s on the surface S.
We further define the surface integrals on the right-hand side of Eq. (3.18) as a sum

of the surface integrals over the polyhedral faces {S; : £ =1,2,....,K}, where K is the
total number of the faces. At any surface point s of the k—th polyhedral face S, we
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have do = ng dar, where ny, is the unit normal vector oriented outwards from the

polyhedral face S;. Hence,

. K ,— / K /
Vir) = GMfos,—r.nkda +G Zpl-ffnk‘s—r‘da
2 k:l |8 —T| k=1 5,

PO+Pl ff dO‘ +p1- nkff‘s —r‘da] (3.19)
o

In accordance with (Pohanka, 1998), we denote

GZ

k=1

Gk('r)—ff |z ::| o (3.20)

and

Hy(r) = ff (s’ _ r‘ do. (3.21)
Sk

The gravitational potential in Eq. (3.19) then takes the following form

+p1-r
%nk.Gk(r)+p1-nka(r) . (3.22)

K
V=G Y
k=1

The analytical solution of the surface integral in the vector function G (r) (Eq. 3.20)
was derived by Pohanka (1998). We use a similar procedure for finding a closed
analytical solution of the surface integral in the scalar function Hy(r). Firstly, we
apply the Gauss divergence theorem for converting the surface integral to a sum of
line integrals along the closed polygon which forms the boundary of the polyhedral
face Sy, . If hi(s) is a vector function with integrable gradient in the domain Sy,
and ny. hk(s/) =0 (i.e. the vector hk(s/) lies in the plane of the polyhedral face Sp),
it holds

ff V. h(s)dr = §1§ h()-de, (3.23)

Ly,
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where the line element vector d§ " at the point l' on the curve L & is orthogonal to the
curve L; and to the vector n, and oriented outwards from the face S . To convert
the surface integral in Eq. (3.21) to a sum of line integrals, we have to find a vector

function h(s) in the domain S, which satisfies the following two conditions:

v, his)=|s -7| (3.24)

and

ng-hy(s)=0. (3.25)

For this purpose, we decompose the vector s —r into two sub-components; the first
component (s, —7)) is parallel to the polyhedral face Sy, , and the second component

(s —r), is perpendicular it, i.e.,

(S/—T)L =Zpnp,, Zy, =nk-(sl—7°), (3.26)

(s —7)=8-1—(s —1)1=8 ~r—ngng-(s —r). (3.27)

It follows from the second condition (cf. Eq. (3.25)) that the vector h(s') must lie in
the plane of the polyhedral face Sj. Therefore, we can write

hi(s)=(s =1 8Pk, 21), (3.28)

where g(pz,21) is a scalar function to be found in order to satisfy the first condition

given in Eq. (3.24). The parameters p, and z; read:

pr=|(s" =7n| , 2 = | Za)-
The substitution of Eq. (3.28) into Eq. (3.24) yields:

Vo [(s' =) glor.2p)] =|s | (3.29)

or
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g(or 2V (8 =)+ (s =) .V glpr,zr) = |8 — 7). (3.30)

Since V (s — r) =2, Eq. (3.30) becomes:

28(pr,21) + (s =7)- Vg 8(pr,2r) = |8, -7, (3.31)

where (s’ -r)-Vy = pk% (cf. Pohanka, 1998).
Realising that (s —7) = (s -7 +(s' 1) = (s 7)) +Zny, we re-write the right-hand
side of Eq. (3.31) as follows:

[s'~r| = /I8 ~on P+ |2 = \Jo} + 22 (3.32)

From Eq. (3.31) and Eq. (3.32), we get

1
oo % [p2gtonzn)] = /o2 +22. (3.33)

The general solution of Eq. (3.33) is found to be

1 2, .2y3
8(pr,21) = (py, +23,)2 +c|, (3.34)
3pl2€[ ]

where c is an arbitrary integration constant. However, in order to have the function
hk(s,) which satisfies the condition of the applicability of the Gauss divergence
theorem (that the function h(s') has the integrable gradient in the whole domain
St), we have to treat the singularity when p; — 0. The condition lim,, , g(pr,2z) =0

is met only if ¢ = —22. The expression in Eq. (3.34) then becomes

&(pk,2r) = [(pk +23)2 —zk] (3.35)

The right-hand side of Eq. (3.35) is ﬁnally rearranged as follows

(3.36)

g(or,2k) =7 [\/ pk +Zk

Substituting Eq. (3.36) to Eq. (3.28), we get

\/pk+zk+zk
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, - 22
h(s)= &= (\/pi+zz+—k). (3.37)
3 \/ PR+ 25+ 21
Consequently, the substitution of Egs. (3.26), (3.27) and Eq. (3.32) to Eq. (3.37)
yields

!

—r—ngny-(s —r) Ing-(s' =)

/ S /
h(s)= (s —7r)|+— - . (3.38)
3 | | (8" =7)|+ |np, - (s' = 7)|
From Egs. (3.21) and (3.23), the function H(r) becomes
Hy(r) = }15 h)-d¢ . (3.39)
Ly
Finally, the substitution of Eq. (3.38) into Eq. (3.39) yields:
i ! U 2
Il -r-npng-0-r)[, |nk-(l —’l“)| '
H (r)z&lg I -—r)|+— - .d&, (3.40)
* 3 | | =7 +|ng-A =) ¢

Ly

where |(l, — 1“)| is the Euclidean distance between the computation point  and the
running integration point [ on the polygon L . Since the vector dﬁlis perpendicular

to the vector ny, i.e. ny .dfl =0, we write

-
Hk(?")=§l§ 3r

Ly,

|nk-(l’—1“)|2

dE . 3.41
=+ @ - % 341

|(l/ —7)|+

By analogy with the notation used in Pohanka (1988), the polygon segments {Ly; :
[ =1,2,...,L(k)} form the closed polygon L} of the polyhedral face S, ; L(k) is the
total number of polygon segments Ly ; of the polyhedral face S;. We further denote
the position vectors a; and a ;.1 of the end points of the polygon segment Ly ;
(note that the vertices of the polyhedral face S; are numbered counter-clockwise as
viewed from outside, and a 1,)+1 = ar,1). For every polygon segment L, we define
the unit vectors 15, jand v ; . The unit vector 1y, ; is parallel to the polygon segment

L ; and has the same orientation. It reads
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arl+1— Q1

Mrl = s (3.42)
dr,
where dj,; is the length of the segment L ; i.e.
dp,y = |Ari+1—ar | (3.43)

The unit vector v ; is perpendicular to the polygon segment L and lies in the plane
of the polyhedral face S;, . It reads:

Uk, = [k,l X M. (3.44)

We define the position vector l'of a point on the polygon segment L, ; as a function

of the unit vector p,; in the following form:

I = ap;+ Mk,l%r, 0=<¢ < dr,). (3.45)

Similarly, we define the line element vector dEI as vector parallel to the unit vector

Vk,l3

d¢ = vy ,de, (3.46)

where d f/ is the scalar line element of the polygon segment Ly, ;.

Since ny . pr = 0, the quantity n, (A -r)= ny.(ar; —7) in Eq. (3.41) is the per-
pendicular distance between the computation point and the polyhedron face k. It
neither depends on (fl nor on the index [. Let us denote this quantity equal to
z1(r) = | Zp(r)|

zp(r) = |nk‘(ll—7°)| =|ng -(ar1—-1)| (3.47)

The line integral in Eq. (3.41) then takes the following form

I -
Hk(’l“) = %TT

Ly,

Zk2

—k_ |.d¢. (3.48)
TESIET

@ )|+
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The polygon L;, in Eq. (3.48) is further rewritten as a sum of the polygon segments

Ly ;. After substituting Egs. (3.45) and (3.46) to Eq. (3.48), we have

dri ,
’ 2
BB vy -(aps—7 prid) 23, (r)

!

|lax, _"“+Nk,lfl|+

Hp(r)=)_ 3
I=1

Since vy - pup; =0, we arrive at

dp,
L& v -(ap;—) Z3(r)

Hp(r)=)_ |ak,l—r+ﬂk,lf,|+
=1

3

d¢

lar; — 7+ pp &' |+ 21 (r) '

!/

lar; — 7+ pp & |+ 21 (r) '

(3.49)

We decompose the vector a;; —r in Eq. (3.49) into the vector components iy, ; , v
and ny, and adopt the following notation (cf. Pohanka, 1998, Eqs. 28 and 29):

M i(r) = ppg-(ap;—T)
wry(r) = vpr-(ap;—T)
Zp(r)

ne - (ak,l bt 'r)

From Egs. (3.45) and (3.50), we write:

[V =r| =|ars—r+ i€ | = \Jara@r+ €2+ w? )+ 22).

The substitution of Egs. (3.50) and (3.51) into Eq. (3.49) yields:

Ly )
WE.1 r

Hp(r) = )
=y 3

VW p(r) + PR +w? () +22(r)

Zz(’l") ’

+ dé.
\/(Mk,l(T) +&)2+ wi,l(’r) +22(r) + z(r)

(3.50)

(3.51)
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Furthermore, after applying the substitution u; ; + & =¢ we get:

Vi,
L&) r 22(r)
Hp(r)=)Y Wi (1) \/§2+w%l(r)+zi(r)+ i de,
=) 3 ’ VEHwd (1) +22(r) + z4(r)
(3.52)
where
Vil = Heg +dpg. (3.53)
Denoting
v
O, v, w,2) = / d dé (3.54)
’ E2rw2+z22+2
and
@3(,u,v,w,z):/w\/€2+w2+22d€, (3.55)
U
we finally arrive at
14y,
Hy(r)= 3 Y 12 (P D(p 1 (1), Vi 1 (1), w1 (1), 2 (P )+ D3 (a1 (1), Vi 1 (1), w1 (1), 21 (1)) |
=1
(3.56)
The closed analytical expression for ® reads (Pohanka, 1988, 1998):
O(u,v,w,z)=wL(u,v,w,z)+2zA(u,v,w,z), (3.57)

where

2 2122+
L, v,w,z)=In— & 7= 7V (3.58)

ViZ+w?+22+p

and
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2wlv—p) (3.59)

A » VoW == t -
(u v,w Z) arctan T2('u’v,w,z)—(v—,u)2+22T(IJ,V,U),Z)

By integrating the right-hand side of Eq. (3.55), we get

(v+p)?

YT L
TGiv.w.2) (u,v,w,z)

Dy, v,w,2) = %(v—u) 4 %(wZ +22)L(u,v,0,2), (3.60)

where

T(u,v,w,z) =\/ 2 +w?+22+ Vv +w? + 22. (3.61)

The expression for numerical calculation of the vector function G(r) in Eq. (3.22)
was derived by (Pohanka, 1998, Egs. (33), (34) and (35)) in the following form:

L(k)
Gr(r) = Y [ @alur (), Vs (), wp (1), Zi(r) v
=1

+ Zp(r)P(up(r), vi 1 (1), w1 (7), Zp(r)) 10 | (3.62)

where the expression for ®9 reads:

1 (v + p)?
Dot 1 (1), Ve 1 (M), wh g (1), Zp(r)) = —(v=p) | o+ T(, v, w,2)| +
4 T(,U,V,w,Z)
+ %(w2+z2)L(u,v,w,z)- (3.63)

Comparing the expressions for ®3 and @9 in Eqgs. (3.60) and (3.63), the following

relation between them is obtained

D3, v,w,z) =w Po(u,v,w,z). (3.64)

Utilising Eq. (3.64), the expression for the scalar function Hx(r) in Eq. (3.56)

becomes
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L&)

Hp(r)= 3 > [Ziq)(uk,z(r),vk,z(r),wk,z('r),Zk(’r))+wk,z(’r)sz(ﬂk,z(’r),Vk,z(r),wk,z(r),zk(r)) .
=1

(3.65)
The vectors p;; and v ; are perpendicular to ng, i.e ng-pr; =0 and ng v, ; =0.
From Eq. (3.63), it also follows that

Do 1(r), Ve 1(1),wr 1 (1), Zr (1)) = Doug 1 (1), v 1 (), wp 1 (1), 21 (7).

The substitution of the functions G'(7) and Hy(r) from Eqgs. (3.62) and (3.65) to Eq.
(3.22) then yields

K .
Vir) = G |) (%Zk(r)+p1-nkz%(r)) O(up 1 (1), Ve 1 (), wi, 1 (1), 21 (1))
E=1li=1
L(k p1-
+ wr 1 Po(pr,1 (1), vy (1), wp 1 (1), 21(7)) | (3.66)
=1

As seen from (3.22), only those components of the function G (r) contribute to the
potential which are parallel to the surface normal (i.e. the components along the
unit normal vector ny).

The expression for the potential in Eq. (3.66) has very close resemblances with the
formula for the attraction derived by (Pohanka, 1998, Eq. 52). To obtain the final
form of (3.66), we follow the same way as Pohanka proposed. We introduce a small
positive number € in order to avoid any undefined operations when the computation
point is near the surface of the polyhedral body ( cf. Pohanka, 1988, 1998). The
functions ®(u,v,w,z) and ®o(u,v,w,z) are replaced by the functions ®(u,v,w,z,€)

and Po(u,v,w,z,¢€), respectively:

E LK, po+ o1 -1
Vi) = GY Y (%Zk(rnpl-nkz,f(r))@(pk,l(r),vk,l(r),wk,z(r),zk(r),e)
k=11=1
L&) . p
+ Y P S W Daljan 1), Vi1 (1), 031,231, (3.67)
=1

where
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O(u,v,w,z,e)=wL(u,v,w,z+€)+2zA(u,v,w,z +¢), (3.68)

and

(v + p?
T(u,v,w,z+€)

1
+T(u, v, w,2z+€) +§(w2+zz)L(u,v,w,z+e).

(3.69)
Eq. (3.67) represents the potential of an arbitrary polyhedral body with a linearly

1
Do(u,v,w,z,€) = Z(V_”)

varying density distribution. Setting p; =0 in Eq. (3.67) gives the expression for
the potential generated by a homogeneous polyhedral body:

Gpo K L®
V(r)= o Z Z Zr(r)O(up 1 (r),ve 1 (r),wp (1), 21 (1), €). (3.70)

k=11=1
The gravitation attraction vector for the polyhedral body with linearly varying
density reads (Pohanka, 1998, Eq. (58)):

K L(k)

g = -G ) )

k=11=1

((Po +p1-r+p1-Ng Zp(r)) O(ug 1 (1), v 1 (1), wp 1 (1), 21(1), €)
+ P11V q>2(uk,z(r),Vk,z(r),wk,z(r),zk(r),e))nk

1
—EZk(T)(D(#k,l(’I"), Vi1(T), wk,l(T),Zk(T),e)Pl] ; (3.71)

Setting p; =0 in Eq. (3.71), gives the expression for the gravitational attraction

vector generated by a homogeneous polyhedral body:

K L(k)
g(r)=-G py Z ny Z D(pp 1 (1), v (1), wp 1 (1), 21(7), €). (3.72)
k=1 =1

We have derived by means of line integrals the analytical formula for the gravi-
tational potential of an arbitrary polyhedral body having a linearly varying density.
The corresponding analytical formula for the components of the gravitational attrac-
tion vector was given by Pohanka (1998). As seen from Eq. (3.22), the derivation

of the expression for gravitational potential was reduced to finding only the closed
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analytical solution for the surface integral in the scalar function Hj(r), while the
solution for the surface integral in the vector function G(r) was already derived
in Pohanka (1998). We further adopted the optimized expressions from Pohanka
(1988, 1990) by reducing the number of logarithm and arctangent terms, treating the
undefined operations (e.g. expressions of the type 0/0) and improving the precision
of numerical operations when the computation point is far away from the polyhedral
body. The expressions and uniform algorithm for computing the gravitational po-
tential and attraction are numerically very simple and valid for any point in space
and need no special care for the points near or on the surface of the polyhedral body.
The designed algorithm for calculation of the gravitational potential and attraction
generated by polyhedral body having a linearly varying density is given in Appendix
A.

3.6 Test For Numerical Accuracy And Efficiency

A numerical experiment was conducted for three different sizes of rectangular prism
having base areas equal to 30 x 30 m2, 150 x 150 m?, and 300 x 300 m?, each prism
having constant height of 100 m.. First, analytical methods were used to compute the
gravitational potential and gravitational attraction. The analytical methods, namely
line integral approach and rectangular prism approaches were applied. After that
the linear vertical mass, the Gauss cubature and point mass approach were applied.
In this experiment the computation point is taken in such a way that it start just
from the vicinity of the body and span to distance of approximately 1800 m away
from the body. Only the horizontal x direction of the computation point is changing.
The y and z- values for the computation points is constant and represent the centre
of the body. For the semi-analytical linear vertical mass approach, we have consider
the spherical shell of the same dimension of above prisms. The prism methods
assume a planer approximation and it give best result at the computation point near
to the body, while the semi-analytical methods used spherical approximation and

give best result for the far-zone computation.

The relative accuracy of the linear vertical mass, Gauss cubature, and point mass
approach with respect to the analytical methods of rectangular prism approach at

the vicinity of the body up to a distance of 1800 m are calculated. Figures 3.1a and
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Figure 3.1 The inaccuracy of linear vertical mass approach relative to prism method (a)
gravitational potential and (b) gravitational attraction. Red, green, and blue colour represent
the computation for a spherical shell of the same dimension of a prisms of the height 100 m
and the base area, 30x30 m?, 150x150 m?, and 300x300 m?, respectively.



50 Analytical and semi analytical methods ..

10 T 5 5 ‘
= X: 309.2 : : : ]
£ 10k ' Y:06402 , , , ) , : .
© E
E 4
S . X:92.77 & . ' ‘
© 10 "Ei::: Y:0.003631 : 3
= ] ; X: 1701 E
g Y: 0.0008292
S 10k : T~
g ‘ ]
>
S 10t
(=)
©
g 10°k
>
8 . -6
@ 10
I X: 1701
% B Y: 8.403e-08
E 10 H H H H H H H H H H T

1078 1 L 1 Il 1 L 1 Il

0] 200 400 600 800 1000 1200 1400 1600 1800
distance from the origin [m]
(a)
10 ; ; ; ; ‘
] : : :
- X 1546”: e
0 :154.6 : 6,269

10 Ei:: Y:3.751 3
= N ]
S X: 92.77

107 E 11| ¥ oosete | : 3
E Y:0.02919 SacET E
‘%' L] Y:0.0101
£ 107}
®
S

-3
> 107k
S
>
S 10
()
=
8 10k : : 3
L X: 1701 E
Y: 1.012e-06 ]
10°L . G B ™ EA
107 ‘ : ‘ : ‘ : ‘ ‘ '
0] 200 400 600 800 1000 1200 1400 1600 1800
distance from the origin [m]
(b)

Figure 3.2 The inaccuracy of Gauss cubature approach relative to prism method (a) gravita-
tional potential and (b) gravitational attraction. Red, green, and blue colour represent the
computation for prisms of the height 100 m and the base area, 30x30 m?, 150x150 m?, and
300x300 m?2, respectively.
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Figure 3.3 The inaccuracy of the point mass approach. relative to prism method (a) gravita-
tional potential and (b) gravitational attraction. Red, green, and blue colour represent the
computation for prisms of the height 100 m and the base area, 30x30 m?, 150x150 m?, and
300x300 m?, respectively.
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Figure 3.4 The relative time efficiency with respect to the line integral analytical method (a)
potential (b) attraction.

3.1b describes the relative precision of linear vertical mass approach with respect
to analytical methods for gravitational potential and attraction, respectively. The
relative accuracy of the Gauss cubature methods is shown in Figures 3.2a, and
3.2b for gravitational potential and gravitational attraction, respectively, while the
corresponding relative accuracy of the point mass approach is shown in Figures
3.3a and 3.3b. The Gauss cubature approach is more accurate than the linear
vertical mass and the point-mass approaches. The relative accuracy of computing
the gravitational potential and gravitational attraction reaches to 99.9% and 99%,
respectively, if the computation point is 600 m away from the centre of the body,
provided that the geographical resolution of input data i.e., terrain model resolution
is higher than 300 x 300 m? (see Figures. 3.2a and 3.2b). The relative precision of
computing the gravitational potential better than 99% can be achieved by the linear
vertical mass approach if the computation point is 600 m away from the source
and the geographical resolution of input data is 300 x 300 m? or higher (see Figure.
3.1a). The same relative accuracy of computing the gravitational attraction by the
linear vertical mass approach is, however guaranteed only if 30 x 30 m? geographical
resolution of input data is used for the linear vertical mass approach (cf. Figure
3.1b). From this experiment we observed that more that 99% numerical accuracy
can be archived by using the semi-analytical method, when the computation point is

away at-least 6 times the size of the body (Figures 3.1a and 3.1b).
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The comparison of the time-efficiency of the analytical (line integral/prism meth-
ods), semi-analytical (linear vertical mass) and numerical methods (Gauss cubature
and point mass) applied for computing the gravitational potential and attraction is
given in Figure.3.4. The time-efficiency is provided in terms of the relative computa-
tion time. The line integral approach is the most time-consuming (cf. Figure. 3.4).
The rectangular prism approach is less time-consuming; it requires 25% of the total
time otherwise needed for computing the potential by line integral approach, and
less than 15% for computing the attraction. The time efficiency of the semi-analytical
methods is similar, reducing the calculation time by an order of magnitude compared
to the line integral approach. The point-mass approach is the most time-efficient.
Compared with the line integral approach, it reduces the calculation time by almost

two orders of magnitude.

The use of the numerical point-mass approach is inadequate when the compu-
tation point is within the source body vicinity up to 1 arc-min. It introduces large
errors, especially in computing the gravitational attraction. Based on the above
comparison we adopted a scheme in which the region around the computation point
is divided into different zones, namely, inner zone, near-zone and far-zone. The
inner zone comprises all prisms with a spherical distance not exceeding 5 km of
the computation point. The near zone comprises all prisms between the inner zone
and the spherical distance of 50 km from the computation point, and rest is far
zone. We choose analytical methods for the inner zone and near zone and semi
analytical method for the far zone computation. The most suitable method in each
particular zone is applied. For near zone computation the rectangular prism method
is appropriate. For the rest of the globe i.e., in the far zone linear vertical mass

approach are the best option. Further detailed are given in the next chapter.

3.7 Summary

In this chapter different analytical, semi-analytical and numerical methods for
calculating the gravitational attraction and potential were presented. Near to the
computation point the use of analytical methods provides better accuracy. Away
from the source body the semi-analytical linear vertical mass approach is used. The
optimal and efficient expressions for computing the potential of a polyhedral body

with constant or linearly varying density were derived for the first time. The relative
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accuracy of these methods and their time efficiency were compared. Furthermore,
the optimal choice of a particular method for gravity field calculation with in a
particular zone, i.e., inner, near and far zone were discussed. In this research we
have used the more accurate analytical method for the inner-zone and near-zone

computation and semi-analytical methods for the far-zone computation.
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component stripped gravity field

One of the major sources of information about the Earth’s structure is its gravity
field. In studies of the Moho boundary geometry, the gravitational effect of the
topography density, bathymetry, ice, sediments, and other crust residual density
effects are modelled and are subsequently removed from the observed gravity. To
that end, a technique known as “stripping” has been used. In stripping procedure,
forwards modeling has been used to modeled the gravitational corrections due to
residual densities and subsequently applied these corrections to the gravity data,
so that to unmask the remaining gravitational signal from the source of interest.
The strongest signal in gravity data is due to topographic relief onshore and ocean
bottom relief offshore. Due to this signal the observed gravity data show little
correlation with the Moho geometry and are relatively rough. The gravitational
effects of the reference (e.g., constant average density) topographic masses onshore
and sea water density contrast offshore can be removed from the gravity data by
means of topographic and bathymetric stripping corrections, respectively. The next
strongest signal in the gravity data is due to the ice density contrast, sedimentary
layers and crustal/lithospheric density variations. A crustal/lithospheric model
should be adopted or produced to compute the crustal or lithospheric stripping
correction. In this latter step various approaches may be taken depending on the
purpose of the study, (e.g., Kaban et al., 1999, Kaban and Schwintzer, 2001, Kaban
et al., 2003, 2004 for global studies and Bielik, 1988, Artemjev and Kaban, 1994, West
et al. (1995), Kaban and Schwintzer (2001), Zeyen et al. (2002), Dérerova et al. (2006),
Braun et al. (2007), Tassara et al. (2007), Alvey et al. (2008), Jiménez-Munt et al.
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(2008); and references therein for regional investigations). For global studies the
best currently available global crustal models are CRUST 2.0 (Bassin et al., 2000)
and the publicly-available CRUST 1.0 (Laske et al., 2013), which is an upgrade of
the early CRUST 2.0 model. For our purpose, we have used the boundaries and
laterally varying densities of different layers of CRUST 1.0.

When the gravimetric inverse problem is formulated in terms of gravitational
attraction, the anomalous gravity data required as input in the inversion are usually
gravity disturbances (e.g., Vajda and Vanicek, 2006, Vajda et al., 2007). The normal
gravity values are subtracted from the observed gravity values according to the
definition of the gravity disturbance. This has two implications ( Vajda and Vanicek,
2006, Vajda et al., 2008). Firstly, the surface of the reference ellipsoid (not the geoid)
is the bottom interface of topographic masses globally, as well as the upper interface
of all residual density defining the stripping corrections. Secondly, Earth’s crust
density is replaced with a reference density of 2670 kg/m?, and is the background
density distribution model against which the residual density used in stripping
corrections are defined. These two conditions must be satisfied in order to keep the
consistency between decomposing the real Earth’s subsurface density distribution
and the observed gravity disturbances (cf. Vajda and Vanicek, 2006, Vajda et al.,
2008).

Our aim here is to evaluate on a global scale the gravity disturbances and anom-
alies corrected for the attraction of the topography (ellipsoid-referenced topographic
correction), the ocean residual density effect (ellipsoid-referenced bathymetry strip-
ping correction), ice residual density, sedimentary layer residual density and the
crustal residual density (down to the Moho-discontinuity). We have used the grav-
ity disturbances for the estimation of crust-mantle density contrast as well as for
the recovery of Moho geometry, whereas the gravity anomaly have used for the
crust-mantle density contrast only. We take into account the global distribution
of ice, sediments, and consolidated crustal components based on the CRUST 1.0
model (crustal stripping correction). The crustal stripping correction is computed
and applied in several consecutive steps: (1) the attractions of the topography and
residual density (relative to the constant reference crustal density of 2670 kg/m?) of
the bathymetry, ice, and the soft and hard sediments; and (2) the attractions of the
residual density (relative to the constant reference crustal density of 2670 kg/m?) of
the upper, middle, and lower consolidated crust according to the CRUST 1.0 model.
The application of the topographic and stripping corrections of the above steps (1)
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and (2) removes the topographic masses above the reference ellipsoid and transforms
the volumetric domain between the ellipsoid and the Moho discontinuity globally
(disregarding the heterogeneities within topography other than sediments and ice,
and disregarding the crustal heterogeneities not accounted for by the CRUST 1.0
density model) into a crust with a constant density of 2670 kg/m3. The gravity
disturbances computed at the stripping stage correspond to an Earth model of no
topography above the ellipsoid, constant crust down to the Moho interface, and real
density below the Moho interface. The strongest signal in these gravity disturb-
ances is due to geometry of the Moho interface. We expect that this type of gravity

disturbances is best suited for refining the Moho geometry.

All the step-wise corrections are presented in detail in Section 4.1, while the
gravity disturbances and gravity anomalies with the individual corrections ap-
plied are described in Section 4.2. We refer to the bathymetrically-stripped and
topographically corrected gravity disturbances/anomalies as “BT gravity disturb-

ances/anomalies”.

The gravity disturbances/anomalies are computed globally at the Earth’s sur-
face using the spherical harmonic coefficients complete to degree 180 from the
EIGEN-6C2 model (which represents roughly 100 km resolution in terms of half-
wavelengths). To define the computation points, we have used the topography
of CRUST 1.0 model. The topographic, bathymetry, ice, upper sediment, middle
sediment, lower sediment, upper crust, middle crust and lower crust stripping cor-
rections are computed on a 1° x 1° grid of the geocentric spherical coordinates. The

computed corrections are applied to the gravity data.

4.1 Corrections to gravity disturbances and anomalies

Our aim is to evaluate and compute the gravity disturbances and gravity anomalies
on a global scale, which are corrected for the effects of topography, bathymetry, ice
and the crustal residual density. Assuming a global distribution of ice, sediments,
and crustal components based on the CRUST 1.0 model, the total crust correction is

split into several components:

1. Corrections due to the attraction of topographic masses above the reference

ellipsoid, and the bathymetry residual density.
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2. Corrections due to the residual density of the ice, upper, middle, and lower
sediments from the CRUST 1.0 model.

3. Correction due to the residual density of the upper, middle, and lower crust
from the CRUST 1.0 model.

The gravity disturbance in spherical approximation is given by

oT

0g=—— 4.1
8 P (4.1)
and gravity anomaly is given by
oT 2T 2T
Ag=———-——=0g——, 4.2)
or r r

where r =R + h, R is the radius of a sphere which approximates the Earth, and
h is the height of computational point above the ellipsoid.

There are two types of corrections; first one is given by the first term (-%—Z) in
the right hand side of Eq. (4.2), whereas, the second one is given by the second
term (%T). The first correction is termed as the Direct Correction (DC), while the
second one is called the Indirect Correction (IDC). Due to the definition of gravity
anomalies, the IDC is only applicable to gravity anomalies, whereas, the DC is
applicable to both gravity disturbances and gravity anomalies. The mathematical

expressions for the direct and secondary indirect correction are given by

DC= i6V, 4.3)
or
and 05V
IDC=——, 4.4)
r

respectively, where 0V is the potential generated by residual mass density, and is

5V=fof‘sl—pdv’,
U,

where dp is the residual mass density, which is the difference between actual density

given by

of a layer of crust and reference crust density of 2670 kg/m?3, v is the volume of the
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layer, and I = \/(x —x)2 + (y — )2 + (z — 2')2 is the distance between the computation

point p(x,y,z) and integration point q(x/,y,,z,).

Total Correction (TC) is the sum of Direct Correction and Indirect Correction,
and is given by
TC = 26V + g5V. (4.5)
or r
In the next section the description of different computational schemes for these

corrections are discussed.

4.1.1 Topographic stripping corrections

We have used a combination of different analytical and semi-analytical methods
for the computation of gravitational corrections. To get sufficient numerical accur-
acy and save computational time we used the combination of analytical and semi-
analytical methods. In the close proximity of computational point, we have used
analytical methods, while, in case of more distance from the computational point,
we have used semi-analytical methods. The global ellipsoid-referenced topographic
correction has been computed using the following analytical and semi-analytical

computational formulae:
(a) Analytical constant density polyhedral method given by Eq. (3.72) .
(b) Analytical constant density rectangular prism method given by Eq. (3.12).
(c) Semi-analytical method for constant density spherical shell given by Eq. (3.10).

For every computation point, the Earth surface is divided into an inner-zone, near-
zone, and far-zone. The inner-zone comprises all prisms with a spherical distance not
exceeding 5 km from the computation point. The near-zone comprises of all prisms
between the inner-zone and far-zones within a spherical distance not exceeding 50
km from the computation point. The remaining globe is considered as the far-zone.
The analytical homogeneous density polyhedral method given by Eq. (3.72) has been
used for the computation of topographic correction in the inner-zone. The constant
density prism methods given by Eqgs. (3.12) and semi-analytical method for constant
density spherical shell given by Eq. (3.10) are used for the computation of near and
far-zone contribution, respectively. For numerical efficient computation and to avoid

the singularities, we have used analytical polyhedral method for the inner-zone
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Table 4.1 Statistics of ellipsoid-referenced direct correction

Direct correction Min Max Mean
(Relative to (mGal) | (mGal) | (mGal)
2670kg/m3)

Topography -657 -17 -68
Bathymetry 129 705 331
Ice 2 319 21
Sediments 15 174 45
Crust -527 -170 -289

Table 4.2 Statistics of ellipsoid-referenced indirect correction

Indirect correction Min Max Mean
(Relative to (mGal) | (mGal) | (mGal)
2670kg/m3)

Topography 68 262 110
Bathymetry -898 -515 -704
Ice -108 -9.7 -22
Sediments -120 -60 -85
Crust 487 668 567

computation of gravity correction. For the computation in the inner zone the Global
Digital Elevation Model (DEM) GTOPO30C which has a resolution of 30" x 30"
(provided by U.S. Geological Survey (USGS)) has been used. For the computation
in the near and far zone the 1' x 1’ global elevation model from ETOPO1 (Amante
and Eakins, 2009) has been applied. Both models GTOPO30C and ETOPO1 provide
the mean elevation height at the corresponding grid cell. The average topographic
density 2670 kg/m? is adopted. The ellipsoid-referenced topographic correction to
the gravity disturbances varies from —657 to —17 mGal with mean of —68 mGal and
standard deviation of 100 mGal (see Table 4.1). The largest topographic correction
are located in the mountainous regions and the smallest over the oceanic areas and

flat regions (see Figure 4.1a).

The statistics of the ellipsoid-referenced direct, secondary indirect and total
corrections are given in Tables 4.1, 4.2 and 4.3, respectively. The corresponding
maps of direct and indirect corrections are given in Figure 4.1a, while the total

correction is presented in Figure 4.2a.

4.1.2 Bathymetric stripping correction

The ellipsoid-referenced bathymetry correction, which is the removal of the attraction

of the ocean water density contrast enclosed between the surfaces of the reference
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Figure 4.1 Direct corrections (left), and the secondary indirect corrections (right) (a) topo-
graphy, (b) bathymetric, (c) ice, (d) sediments, and (e) crust.



62 Global maps of the CRUST 1.0 stripped gravity disturbances and gravity anomalies

Latitude

-180-160 ~140-120 100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
Longitude
mGal

-450 -400 -350 -300 -250 -200 -150 -100 -50 O 50

-180-160 -140 -120 -100 -80 —60 -40 -20 O 20 40 60 80 100 120 140 160 180
Longitude
mGal

(b) -650 -600 -550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 O

Latitude

~180-160-140-120-100 80 60 ~40 20 O =20 40 60 0 100 120 140 160 180
i
mGal
(C) 100 150 200

Latitude

-180-160 -140-120 -100 -80 -60 -40 -20 O 20 40 60 80 100 120 140 160 180
Longitude
mGal

(d) -100 -50 0 50 100

Latitude
S

-180 -160 140 -120 -100 -80 -60 -40 -20 0 dzo 40 60 80 100 120 140 160 180
ongitude
mGal

(e) 50 100 150 200 250 300 350 400 450

Figure 4.2 Total corrections: (a) topography, (b) bathymetry, (c) ice, (d) sediments and (e)
crust.
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Table 4.3 Statistics of ellipsoid-referenced total correction

Total correction Min Max Mean
(Relative to (mGal) | mGal) | (mGal)
2670kg/m3)

Topography -415 137 42
Bathymetry -642 -62 -373
Ice -52 218 -1
Sediments -84 68 -40
Crust 45 412 278

ellipsoid and the sea bottom, is computed as follows. For the inner-zone we have used
the ETOPO1, 1'x1 global bathymetry model. The computation has been performed
using the analytical constant density polyhedral method given by Eq. (3.72). The
constant density prism methods given by Eqgs. (3.12) and semi-analytical method for
constant density spherical shell given by Eq. (3.10) are used for the computation of
near and far-zone contribution, respectively. The mean value of the ocean residual
density of -1640 kg/m? (i.e., the difference between the mean ocean seawater density
of 1030 kg/m? and the reference crustal density of 2670 kg/m?) is adopted. The
ellipsoid-referenced bathymetry correction to the gravity disturbances varies from
129 to 705 mGal with the mean of 331 mGal and the standard deviation of 163
mGal. The maxima are located above the oceanic trenches, and the minima in the
central parts of the continental regions. The oceanic trenches and the convergent
ocean-to-continent tectonic plate boundaries represent the regions with the largest

variations of the bathymetry correction.

The statistics of direct, secondary indirect and total correction related to the ba-
thymetry are given in Tables 4.1, 4.2, and 4.3, respectively. The corresponding maps
of direct and indirect corrections are given in Figure 4.1b, while the total correction
is presented in Figure 4.2b. The bathymetric correction takes up maximum values

in deep ocean areas and minimum values on the continents (see Figure 4.1b).

4.1.3 Ellipsoid-referenced topographic and bathymetric stripping

correction

In the beginning of the chapter, we have argued that the geophysical interpretation
of gravity data requires the computation of the ellipsoid-referenced topographic
and bathymetric corrections, as opposed to the commonly used geoid-referenced

ones. Figure 4.3 illustrates the difference between the ellipsoid-referenced and
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Figure 4.3 The difference between the ellipsoid-referenced and geoid-referenced bathymetric
and topographic correction.

geoid-referenced bathymetric and topographic corrections. Though the magnitude
of the correction is rather small, the differences are systematic over larger areas,

and therefore, they must be taken into account.

The difference between the geoid-referenced and the ellipsoid-referenced global
topographic corrections is the gravitational attraction of the ocean water enclosed
between the surfaces of the geoid and reference ellipsoid (liquid topography offshore),
accounting for the water surplus or deficiency, and the gravitational attraction of
the topographic masses onshore (of constant reference topographic density) enclosed
between the same two surfaces. The spherical harmonic coefficients of EIGEN-6C2
(Forste et al., 2013) complete to degree and order 180 were used to compute the global
geoidal undulations. The attraction due to liquid topography (of constant mean
ocean water density of 1030 kg/m? ) is positive everywhere over the oceans, because
the computation points (offshore) are on the geoid (sea surface), thus either above
the water surplus (positive geoidal undulations) or below the water deficit (negative
geoidal undulations). It varies between 0 and 4.5 mGal with the mean of 0.7 mGal
and standard deviation of 0.8 mGal. The attraction of the solid topographic masses
onshore enclosed between the surfaces of the geoid and reference-ellipsoid varies
between —12.2 and 10.3 mGal with mean of —0.4 mGal and standard deviation of
2.0 mGal. The ellipsoid-referenced topographic correction is obtained by subtracting
the attractions of topographic and ocean masses enclosed between the geoid and

reference ellipsoid from the geoid-referenced topographic correction.

The ellipsoid-referenced bathymetry correction has been obtained by subtracting
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from the geoid-referenced bathymetry correction the attraction of the ocean water
residual density (-1640 kg/m?) offshore enclosed between the geoid and reference-
ellipsoid. The correction varies between —7.2 and 0.0 mGal with mean of —1.0 mGal

and standard deviation of 1.2 mGal.

4.1.4 Ice stripping corrections

We have used the ice data from ETOPO1 model. We have computed the ice stripping
corrections for the three zone as mentioned in the previous section. The adopted
value of the ice residual density is -1757 kg/m? (i.e., the difference between the
mean ice density of 913 kg/m? and the reference crustal density of 2670 kg/m?).
The statistics of direct, secondary indirect and total correction related to the ice
are given in Tables 4.1, 4.2 and 4.3, respectively. The maps of direct stripping and
secondary indirect stripping correction are presented in Figure 4.1c. The map of
the total correction is depicted in Figure 4.2c. The maximum and minimum values
of the ice correction are 319 mGal and 2 mGal, respectively, while the standard
deviation is 56 mGal. For ice correction the maximum value is found at the region
of Antarctica and Greenland, whereas the remaining parts of the globe has the

minimum value (see Figure 4.1c).

4.1.5 Sediment corrections

The 1° x 1° global data set of the upper, middle and lower sediment thickness and
density from the CRUST 1.0 is used to compute the sediment stripping correction.
The values of residual density of sediment, i.e., the difference between the actual
laterally varying sediment density and the reference crust density have been used for
the stripping correction of sediments. Information about sediments in CRUST 1.0
is taken over from an independent model produced by Laske (1997). The maximum
total thickness of marine sediments reaches 20 km, and the average thickness is
about 1.2 km. The thickness of sediment at the bottom of deep oceans is less than
2 km. Large sediment accumulations are beneath marginal seas, with maximum
sediment thickness. The largest sediment accumulation are due to river discharge.

The sediment accumulations at oceanic sedimentary basin is typically very low.
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We have adopted the same strategy as for the ice stripping correction. Each
individual stripping correction (for upper, middle and lower sediment layers) has
been computed and then added to make the total sediment correction. We have
used the laterally varying densities of upper, middle and lower sediments and have
taken the sediment residual density as the difference of actual sediment density
and the reference crustal density of 2670 kg/m?3. The maxima of the correction are
located over the areas with largest sediment deposits in the continental shelves and
the Caspian Sea region. The minima are in Greenland and Antarctica, and across
the central parts of the Pacific, Atlantic, and the Indian Ocean. The statistics of
direct, indirect and total corrections related to sediments are given in Tables 4.1,
4.2 and 4.3, respectively. The maps of direct corrections and indirect corrections are
given in Figure 4.1d, and the total correction map is shown in Figure 4.2d. It has a
maximum value of 174 mGal, a minimum value of 15 mGal with a mean value of 31

mGal over the globe.

4.1.6 Crustal corrections

The 1° x 1° global data of the density and thickness of the upper, middle, and lower
crust components from the CRUST 1.0 have been used to compute the stripping
corrections for the remaining consolidated crust. We have taken into account the
laterally varying densities of each individual crust layer. The inhomogeneity of
upper, middle and lower crust are mostly far away from the computation point (Earth
surface) as compared to previously mentioned corrections, therefore we neglect the
inner zone and work with only two zones; one is the near zone with a radius of 50 km,
and the other is the far zone which corresponds to the remainder of the globe. For
the computation of the corrections we used the analytical prism method for the near
zone and the semi-analytical method for the far zone, respectively. The statistics of
direct, secondary indirect and total correction related to the corresponding crustal
components are given in Tables 4.1, 4.2 and 4.3, respectively. The maps of direct
and secondary indirect corrections are given in Figure 4.1e and the total correction
is shown in Figure 4.2e. The maximum value for the total crust correction is -170
mGal, minimum of -527 mGal and mean value of -289 mGal for the Earth crust.

The minima is found in the Himalaya region and maxima in the oceanic region.
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4.2 Stripped gravity disturbances and gravity anomalies

We have used the EIGEN-6C2 model (Forste et al., 2013) to compute gravity dis-
turbances and gravity anomalies on a one-degree global equal-angular grid. The
resulting gravity disturbances and gravity anomalies are shown in Figures 4.4a and
4.4b, respectively. The stripped corrected gravity disturbances and gravity anom-
alies has been obtained by subsequent applications of the individual corrections as
described in Section 4.1. Statistics of the stepwise stripped corrected gravity disturb-

ances and gravity anomalies are summarized in Tables 4.4 and 4.5, respectively.

The expressions for the crust stripped gravity disturbance §gT2°C and the

corresponding gravity anomaly AgTBISC, is given by
68 ™BC =50+ Ag,s =g +g' +g° +g' +g° + &, (4.6)
and
2 .
AgTBISC:6gTBISC__(T+Vt+Vb+V‘+V+VC), (4.7)
r

where r is the geocentric radius of the computation point; 7T is the disturbance
gravity potential; Ag,s = g* + g% + g' + g° + g€, is the sum of gravitational attraction
due to residual density. V7, Ve Vi Vs and V¢ are the gravitational potentials
generated by the topography and residual density of ocean, ice, sediments, and
remaining anomalous density structures within the Earth’s crust, respectively. The

respective gravitational attractions in Eq. (4.6) are denoted as g*, g%, g’, g° and

g°.

The topographically-corrected gravity disturbances §gT and gravity anomalies
AgT are depicted in Figures 4.5a and 4.5b, respectively. Compared to the original
gravity disturbances, the topographically-corrected gravity disturbances g™ change
significantly in the mountainous regions and become predominantly negative re-

vealing the presence of the isostatic compensation.

The bathymetrically and topographically corrected gravity disturbances g2
and gravity anomalies Ag™® (see Figures 4.5¢ and 4.5d) are computed by applying
the bathymetry correction to the topographically-corrected gravity disturbances and

anomalies. Since the bathymetric correction over the continental areas is small
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Figure 4.4 (a) Gravity disturbances (6g) (b) gravity anomalies (Ag) at the Earth’s surface.

Table 4.4 Statistics of sequentially corrected gravity disturbances ( the superscripts T’ stands
for topography; 'TB’ for topography and bathymetry; "TBI’ for topography, bathymetry, and
ice; "'TBIS’ for topography, bathymetry, ice, and sediments; and "TBISC’ for topography,
bathymetry, ice, sediments, and crust).

Gravity disturbances | Min Max Mean
(mGal) | (mGal) | (mGal)
5g -303 294 -0.7
5g7 -637 191 70
5g™® -499 656 261
5gTBl -496 659 283
5gTBIS -474 687 328
5gTBISC -906 466 39

and has mostly a long-wavelength character, the higher-frequency pattern of the
gravity disturbance signal onshore remains almost unchanged. Over the oceans, the
application of the bathymetric correction to the topographically-corrected gravity

disturbance show the global pattern of the oceanic lithospheric plates.

The ice and sediment residual density stripping corrections transform the volu-
metric domain of the global ice mass (Greenland and Antarctica) and global sed-
iments from their actual densities to the constant reference crustal density. The
laterally-varying densities for upper, middle and lower sediments from CRUST 1.0

model have been used. The ice and sediment corrected gravity disturbances §g Bl

and gravity anomalies AgTBIS

are shown in Figures 4.5e and 4.5f, respectively.
Compared to the bathymetry and topography corrections, the signature of the ice

and sediment corrections is less noticeable. The ice correction changed the topo-
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Figure 4.5 Gravity disturbances (left) and gravity anomalies (right), from top to bottom:
sequentially corrected for topography, bathymetry, ice and sediments, and crust heterogen-

eities.
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Table 4.5 Statistics of sequentially-corrected gravity anomalies.

Gravity anomalies Min Max Mean

(mGal) | (mGal) | (mGal)
Ag -282 284 -0.5
AgT -376 259 41
Ag™ -822 -14 -331
AgTBI -833 -23 -332
AgTBIS -889 -32 -372
AgTBISC -1345 | -297 -662

graphically and bathymetrically corrected gravity disturbances 5g™° in Greenland
and Antarctica. The sediment correction primarily changed the topographically
and bathymetrically corrected gravity disturbances over the areas with the largest

sediment thickness at continental shelves and in the Caspian Sea region.

The remaining consolidated crust residual density correction replaces the density
of the upper, middle, and lower CRUST 1.0 crustal components with the constant

reference density of 2670 kg/m®. When this correction is applied to the ice, sedi-

ment, topographically and bathymetrically corrected gravity disturbances §gTB!S

TBIS it produces corrected gravity disturbances §gTBISC

and gravity anomalies Ag B15C

and gravity anomalies Ag
, shown in Figures 4.5g and 4.5h, respectively. The

TBISC and gravity anomalies AgTBISC

consolidated gravity disturbances 6 g corres-
ponds to a model Earth consisting of no topography, a constant 2670 kg/m? reference
crust density down to the Moho interface, and the real Earth’s sub-Moho density
distribution. The statistics of consolidated crust-stripped gravity disturbances and

gravity anomalies are given in Tables 4.4 and 4.5, respectively.

4.3 Accuracy of the corrections applied

It is important to consider the model uncertainties associated with the topography
and the crust when the corrections are computed. The uncertainties in modelling
the global topographic correction relatively to the average topographic density are
difficult to estimate in the global field due to the lack of knowledge on the actual
topographic density globally. They may be anticipated at the level of a few tens of
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mGal. The uncertainties in modelling the global bathymetry correction due to the
deviation of the actual seawater density from constant model ocean water density
(of about -10 to 20 kg/m?) are up to 1.5 mGal. Tenzer et al. (2012a) reported an
error up to 17 mGal, based on errors in gravity modeling. The uncertainties in the
remaining corrections are also hard to estimate, but may be anticipated at the level
from a few tens to about 100 mGal over continents and up to 40 mGal over oceans
(Kaban et al., 2003). They are mostly due to the heterogeneities of the consolidated

crust, especially over continents.

4.4 Discussion

To match the resolution of the CRUST 1.0 global crustal models, we have computed
the global corrections and the global gravity disturbances and anomalies at 1%x1°
grid on the Earth surface. A higher spatial resolution may be adopted once a global
crustal model of higher resolution becomes available. Our objective was to compute
and apply global crustal stripping corrections, based on a best currently available
global crustal model. The upper, middle and lower sediments components, as well
as density variability, reflect to a certain degree the increasing density of sediments
with depth due to compaction. In regional studies, a more accurate dependence of
sediment density on depth may be adopted for sedimentary basins (cf. Artemjev et al.,
1994). In spite of the already-conducted investigations, there is still room for further
improvements, by incorporating new or more accurate geophysical/geoscientific
constraints and by improving the crustal models used when computing stripping

corrections.

Tenzer et al. (2009a) computed topography, bathymetry, ice, sediment, and crust
residual density corrections, and sequentially corrected gravity disturbances. For
these corrections, they have used data of CRUST 2.0 model. The values of our
computed corrections are comparable with the results of Tenzer et al. (2009a). Our
estimated values for topography and sediments corrections are slightly greater than
the earlier estimated values. Whereas, our estimated values of bathymetry and
ice corrections are slightly lower. These difference are probably due to a higher
resolution and accuracy of CRUST 1.0, as compared to CRUST 2.0. Bagherbandi
et al. (2013) computed the topography, bathymetry and sediment corrections and

gravity disturbances using data of CRUST 2.0 model in spectral domain . His results
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are also comparable with our result, there are slightly differences of few mGal in
bathymetry, and sediments corrections. The minimum and maximum values for
the topographic correction from the study of Tenzer et al. (2009a) is -619 mGal 71
mGal, and from the study of Bagherbandi et al. (2013) -659 mGal and -19 mGal, and
from this study -657 mGal and -17 mGal, respectively. Similarly, for bathymetric
correction, from the study of Tenzer et al. (2009a) is 129 mGal 715 mGal, and from
the study of Bagherbandi et al. (2013) 127 mGal and 650 mGal, and from this study
129 mGal and 705 mGal, respectively.

4.5 Summary

The global topographic, bathymetric, ice, sediments and crust stripping corrections
for the major known residual density are computed using the input data from
GTOPO30C, ETOPO1, and CRUST 1.0 models. These corrections are applied to
clean gravity disturbances and gravity anomalies from signal due to topography,
bathymetry and the inhomogeneity of the crust assuming a known residual density.
The residual density include the effects of sea water, ice, sediments, and upper,
middle, lower crust and are taken relatively to the adopted value of the reference
crustal density of 2670 kg/m®. Furthermore, we compute the correction due to the

masses enclosed between the geoid and the surface of reference ellipsoid.

In next chapter, the correlation of gravity fields functionals (gravity disturbances
and gravity anomalies) with different physical interfaces (topography, bathymetry,
and Moho) are discussed. We will demonstrate that corrected gravity disturbances,
are highly correlated with the a priori Moho as compared to the corrected gravity
anomalies. These highly-correlated (with Moho) gravity disturbances and anomalies
are used to investigate the global crust-mantle density contrast, which is treated as

a constant in the Moho recovery from gravity data.



Estimation of global crust-mantle

density contrast

In this chapter we investigate the correlation of gravity disturbances and anomalies
with topography, bathymetry and Moho depth. The purpose of this investigation is to
show that the application of sequential correction to gravity field functionals reduces
nuisance signals in gravity data and hence make them best suited for the recovery
of global Moho density contrast. Our investigation is based on to find the correlation
between the sequentially corrected gravity disturbances/anomalies with the prior
Moho model from CRUST 1.0. We will show that the gravity disturbances data
are more correlated with Moho depth than gravity anomalies data. Furthermore,
we apply an empirical method to estimate the global Moho density contrast using
gravity disturbances and anomalies. In this method, we replace the Earth crust
with mantle density using different values of crust-mantle density contrast and then
estimate the correlation between the updated gravity disturbances and anomalies
with the Moho depth. The value that yields zero correlation is selected as an estimate
of the actual crust-mantle density contrast. For this estimation we use the Moho

depth from a priori model, in our case from CRUST 1.0.

The estimation of the crust-mantle density contrast is done using two types of
gravity data, namely the consolidated crust-stripped gravity disturbances and the
corresponding gravity anomalies. The consolidated crust stripped gravity disturb-
ances differ significantly from the corresponding gravity anomalies due to large
contributions of the secondary indirect effects. The methodology used for the pre-

paration of gravity data and computation of correlation is discussed in Section 5.1.
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The correlation of gravity disturbances and anomalies with topography, bathymetry
and Moho depth are discussed in Sections 5.2, 5.3 and 5.4, respectively. The global
crust-mantle density contrast is estimated in Section 5.5. Finally, the summary and

conclusions are given in Section 5.6.

The density contrast of crust-mantle is traditionally assumed to be 600 kg/m?
(e.g., Heiskanen, 1967). Martinec (1994) have claimed that this value corresponds
well with the Moho density contrast only over the ocean. For the continental areas,
he estimated crust-mantle density contrast of 280 kg/m? by minimising the external
gravitational potential induced by the Earth’s topographic masses and the Moho
discontinuity. The continental Moho density contrast of 200 kg/m? has been reported
by Goodacre (1972) for Canada. Dziewonski and Anderson (1981) (see Table 1)
adopted the value of 480 kg/m? for the global crust-mantle density contrast in the
definition of the Preliminary Reference Earth Model (PREM). In PREM the value
of density contrast is derived using seismic reflection data. The density contrast
across the Moho boundary has also been determined regionally from seismological
studies using the wave receiver functions (e.g., Niu and James, 2002, Julia, 2007).
The results of these studies indicate that the density contrast across Moho may
regionally vary from 160 kg/m? (for the mafic lower crust) to 440 kg/m? (for the
felsic lower crust). Tenzer et al. (2009b) estimated that the average value of the
crust-mantle density contrast is about 520 kg/m?®. Recently, Sjoberg (2011a) have
solved Moritz’s generalisation of the Vening-Meinesz inverse problem of isostasy,
and have estimated that the Moho density contrast varies globally from 81.5 kg/m?
in the Pacific region to 988 kg/m? in Tibet, with the average values of 678 + 78 and
334 + 108 kg/m? for the continental and oceanic areas, respectively. That research
has also concluded that the global average of the Moho density contrast is 448 +
187 kg/m3. This estimated value (480 kg/m? ) is approximately 7% smaller than the
value adopted (480 kg/m? ) in PREM.

We adopt the reference crustal density of 2,670 kg/m3. This value is often as-
sumed for the upper continental crust in geological and gravity surveys, geophysical
exploration, gravimetric geoid modelling, compilation of regional gravity maps, and
other applications. Although this density value is widely used, its origin remains
partially obscure. Woollard (1966) argues that this density was used for the first time
by Hayford (1912). In reviewing several studies seeking a representative average
density from various rock type formations, Hinze (2003) argued that this value was
used earlier by Hayford (1909b) for gravity reduction. Hayford (1909b) referred to
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Harkness (1891) who averaged five published values of surface rock density. Hark-
ness (1891) value of 2,670 kg/m® was confirmed later, for instance, by Gibb (1968),
who estimated an average density for the surface rocks in a significant portion of
the Canadian Precambrian shield from over 2,000 individual measurements of rock
samples. Woollard (1962) examined more than 1,000 rock samples and estimated
that the average basement (crystalline) rock density is about 2,740 kg/m®. Subrah-
manyam (1981) determined that crystalline rocks in India have an average density
of 2,750 kg/m? in low-grade metamorphic terrains and 2,850 kg/m? in high-grade
metamorphic terrains. We note here that the choice of the reference crustal density
is somewhat optional, depending on a particular purpose of the study. For example,
for the regional studies, one needs to work with the values that better correspond to

the region.

When solving the inverse problem for the Moho recovery most of the author
assume a constant value of the Moho density contrast. For example, Tugume et al.
(2013) has been used a constant value of crust-mantle density contrast 200 kg/m?.
They have also tested different contrast values between 100 to 300 kg/m?3 with an
interval of 50 kg/ m?, and have claimed that the results didn’t show much variation

of crust thickness.

The presented study is based on using most recent gravity field model together
with crust models. There are two major reasons for estimating the average value of
the crust-mantle density contrast. In the context of a global recovery of the Moho
density interface from gravimetric data, this value is a required parameter in the
functional model relating the (known) consolidated crust stripped gravity disturb-
ances and (unknown) crustal-thickness data. We have removed all the nuisance
signals and replaced the crust with constant reference density and hence the data
only contain the signal due to M