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Summary

Roadmap to a mutually consistent set of offshore vertical reference frames

Dutch waters lack an accurate and easily accessible 3D description of the lowest
astronomical tide (LAT) surface, i.e., a so-called “separation model”. This tidal da-
tum, defined as “the lowest tide level that can be predicted to occur under average
meteorological conditions and under any combination of astronomical conditions”
(International Hydrographic Organization 2011a, Technical Resolution 3/1919), is,
in those regions where tides have an appreciable effect on the water level, adopted
as chart datum (CD) by the International Hydrographic Organization (IHO). Hav-
ing an accurate separation model of LAT provides numerous benefits to a variety of
commercial and non-commercial users, including faster, cheaper, and more accurate
hydrographic survey data for nautical charts; more precise navigation, even over ar-
eas with submarine hazardous objects; merging of depth data with height data for
coastal zone management; and an accurate planning of depth maintenance in port
approach areas.

The current practice to obtain a coastal-waters-inclusive continuous (CWIC) sep-
aration model of LAT is to express it as the sum of LAT values derived from a
global/regional ocean tide model and an altimeter-derived mean sea level (MSL)
model, complemented by LAT values derived from water level observations and
GNSS ellipsoidal heights at tide gauges. The latter are the sole information source for
deriving the separation model of LAT in coastal waters. This is due to the lack of in-
formation about the MSL in these waters as a consequence of the degrading accuracy
of radar altimeter data in the vicinity of land (e.g., Andersen & Knudsen 2000, Deng
et al. 2002). To obtain a continuous surface in coastal waters out of these point data,
strong interpolation is required. This interpolation is not trivial as the tidal behavior
at a particular tide gauge location, and hence the LAT value, is not necessarily repre-
sentative for nearby locations. Furthermore, significant gaps may exist between the
tide gauge locations. Alternatively, information about the MSL can be derived from
GNSS surveys (e.g., Pineau-Guillou & Dorst 2011). These are, however, expensive
and therefore this approach is not preferable.
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xiv SUMMARY

To derive an accurate and continuous separation model of LAT in Dutch waters in-
cluding the coastal waters, Wadden Sea, and Eastern and Western Scheldt estuaries,
avoiding interpolation, we developed an alternative approach. In this approach, the
ellipsoidal heights of LAT are computed as the sum of the quasi-geoid heights and the
heights of LAT relative to this quasi-geoid. The latter can be derived from modeled
water levels of a vertically referenced hydrodynamic model, which comprise the tide
and the time-averaged meteorological and steric contributions.

In this study, a new quasi-geoid model is estimated that covers the whole Netherlands
Continental Shelf and the Dutch mainland, because the European Gravimetric Geoid
2008 (EGG08) lacks accuracy for two reasons. First, EGG08 does not include data
acquired by the Gravity field and steady-state Ocean Circulation Explorer (GOCE)
satellite; these data have become publicly available in May 2010. Second, in the
estimation of EGG08, satellite radar altimeter data have been corrected for using a
global ocean tide model. In this study, we use a shallow water hydrodynamic model
which provides apart from tides also the surge and steric contributions to the dynamic
topography corrections. The fact that all contributions are obtained from the same
model has the additional advantage that any non-linear interaction between the three
contributions (e.g., between tide and surge (Prandle & Wolf 1978)) is accounted for.

The fact that we have to use a hydrodynamic model both in deriving the separation
between the quasi-geoid and LAT and in estimating the quasi-geoid itself requires a
small, but important, change of our approach to derive a separation model of LAT.
Instead of a one-way link between the quasi-geoid and the hydrodynamic model, a
two-way link exists. This two-way link results in a chicken-and-egg problem. On
the one hand, we aim to use a hydrodynamic model to derive a proper quasi-geoid,
while on the other hand this quasi-geoid needs to be the model’s reference surface.
The development of a methodology that solves this problem is our main research
objective.

In this thesis, we first present the overall procedure by means of a flowchart. Three
steps can be distinguished: (i) the data preprocessing; (ii) the estimation of the quasi-
geoid and the realization of a hydrodynamic model that provides water levels relative
to this quasi-geoid; and (iii) the realization of the LAT and mean dynamic topogra-
phy (MDT) surfaces once the final quasi-geoid and the vertically referenced hydrody-
namic model are available. The latter surface can be used to produce the ellipsoidal
heights of the MSL (as the sum of quasi-geoid and MDT), which is often used as a
vertical reference surface in the offshore industry. The model used in this study is the
Dutch Continental Shelf Model version 5 (DCSM), which is a 2D storm surge model.
In the remainder of the thesis, we elaborate on four key elements of this procedure.
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Vertical referencing of a shallow water model

First, we treat the question how a shallow water hydrodynamic model can be verti-
cally referenced to a given (quasi-)geoid and to which extent such a model benefits
from an improved (quasi-)geoid. In addition, we assessed the accuracy of the ob-
tained modeled (mean) water levels.

A prerequisite to reference a hydrodynamic model vertically is that the model in-
cludes all forcing terms needed to represent the instantaneous water levels. The main
missing forcing term in DCSM is the baroclinic forcing. Adding this term is realized
by adding the depth-averaged horizontal baroclinic pressure gradients to the model
equations. These are derived from 4D salinity and temperature fields of the Atlantic
— European North West Shelf — Ocean Physics Hindcast provided by the Proud-
man Oceanographic Laboratory (POL), hereafter referred to as POL’s hindcast. The
vertical datum of the extended DCSM model is fixed to that of EGG08. This is done
by an adjustment of the hydrodynamic model parameters that depend on the choice
of the reference surface (e.g., bathymetry) and by referring the water levels along the
open sea boundaries to this quasi-geoid.

Using different numerical experiments we investigated the effects on the water levels
of several approximations we made during the implementation. From the experi-
ments, we conclude that the (quasi-)geoid is only weakly constrained by prescribed
water levels along the open sea boundaries. Hence, if another (quasi-)geoid is cho-
sen as the reference surface, the water levels along the open sea boundaries change
accordingly, but this change will not propagate much inside the model domain. This
suggests that from a model quality perspective the hydrodynamic model hardly prof-
its from an improved (quasi-)geoid.

The ability of the model to reproduce both the MDT and instantaneous water levels
is assessed by a comparison with the MDT derived from POL’s hindcast, as well as
with instantaneous water levels acquired by various radar altimeter satellites. From
this comparison, we conclude that our model-derived MDT is in good agreement
with the MDT derived from POL’s hindcast: the standard deviation of the differences
is below 2 cm. Larger differences in MDT are observed when comparing the model
output with the MDT derived from radar altimeter data. They are attributed to ei-
ther errors in the EGG08 quasi-geoid or errors in the used salinity and temperature
fields. The root mean square (rms) differences between observed and modeled instan-
taneous water levels over the whole model domain vary from 9 cm for data acquired
by the TOPEX satellite to 11 cm for data acquired by the GFO-1 satellite. These rms
differences improve to 8–10 cm on the North Sea, for data acquired by the TOPEX
and ERS-2 satellites, respectively. These numbers are a factor two to three larger
than the expected accuracy of water levels derived from radar altimeter data (which
is∼4 cm (Chelton et al. 2001, Sandwell & Smith 2009)). About 25% of these differ-
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ences can be explained by a bias between the modeled water levels and the observed
water levels acquired during a single satellite pass. These biases are, among others,
attributed to errors in the applied correction for the net steric expansion/contraction
of the global oceans. This effect is not captured by DCSM that makes use of the
Boussinesq approximation.

Added value of a shallow water hydrodynamic model in quasi-geoid computa-
tions

Second, we focus on the actual estimation of the quasi-geoid. In particular, we evalu-
ated the added value of using a shallow-water hydrodynamic model for the reduction
of radar altimeter sea surface heights (SSHs) to quasi-geoid heights in the estimation
of a quasi-geoid for the North Sea. Here, we separately evaluated the contribution of
the tide to the dynamic topography (DT) corrections and the contributions induced
by surge and steric water level variations. As a reference, we used tidal corrections
derived from the global ocean tide model GOT4.7, surge corrections derived from the
MOG2D model, and corrections for the time-averaged steric contribution computed
as differences between the DTU10 mean sea surface model (DTU10-MSS) and the
EGG08 quasi-geoid.

The actual analysis consists of two parts. First, we compared for nine TOPEX passes
the mean signal and noise power spectral densities (PSDs) of the residual along-track
deflections of the vertical (DoV) obtained after applying different sets of DT correc-
tions to the SSHs. From this analysis, we conclude that both the steric and surge
parts mainly contribute to improvements in the signal-to-noise-ratios at longer wave-
lengths (a few hundred km) and that the improvements increase towards the southern
North Sea. For shorter wavelengths, no significant differences are observed between
the PSDs obtained after applying DT corrections with the surge and steric contribu-
tions and those without them (irrespective from which source they are derived). For
some passes, the PSDs even suggest that including the surge and steric contributions
increases the noise level. This especially applies to the surge corrections obtained
from the MOG2D model. Also the improved representation of the astronomical tide
by DCSM shows up at longer wavelengths, and also here the added value of using
DCSM instead of GOT4.7 is increasing towards the southern North Sea. In this re-
gion, improvements are visible over almost the entire spectrum. The improvements
associated with an improved representation of the tide by DCSM are dominant com-
pared to those associated with an improved representation of the surge and steric
contributions.

In the second part of the analysis, the added value is quantified in terms of quasi-
geoid heights. Using the different sets of DT corrections, different quasi-geoids are
estimated. Based on their mutual differences we conclude that, if shipboard gravity
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data are included in the estimation, the added value of using a shallow water model
for the reduction of SSHs to quasi-geoid heights is negligible. This is explained
by the fact that radar altimeter data hardly contribute at all to the estimated quasi-
geoid if shipboard gravity data are included. Except at some isolated spots along
the coasts of Belgium, Denmark, France, Great Britain, and the Shetland Islands,
and a feature along the Norwegian coast aligned with the Norwegian Trench, the
differences are below ±1 cm. Without shipboard gravity data the differences are
much larger. By a comparison of the solutions obtained with and without shipboard
gravity data, but after applying the same set of DT corrections, we conclude that
the systematic differences between the quasi-geoids have been reduced if we use a
shallow water model, especially along the coasts of the Netherlands and Great Britain
and in the English Channel.

To compute the NLGEO2013 quasi-geoid, the along-track DoV obtained after ap-
plying the DT corrections of the extended, vertically referenced DCSM model are
combined with terrestrial, shipborne, and airborne gravity data, and EGG08-derived
DoV in north and east directions. The quality of NLGEO2013 is assessed by com-
paring it with both the EGG08 quasi-geoid and the gravimetric quasi-geoid solution
underlying NLGEO2004 (NLGEO2004-grav). We conclude that NLGEO2013 best
fits to EGG08: the rms difference over the Netherlands is 1.42 cm. The obtained
differences have many causes, among which are the use/preprocessing of differ-
ent gravity data sets, differences in the applied computational strategy, and differ-
ences in the weights assigned to the various observation groups. By comparing the
NLGEO2013, EGG08, and NLGEO2004-grav quasi-geoids with geometric height
anomalies at 81 GPS/leveling points over the Netherlands, it was shown that NL-
GEO2013 has the best performance. Only for this model, the standard deviation is
below 1 cm, which is within the uncertainty of the 81 geometric height anomalies.

Deriving LAT relative to the quasi-geoid

Next, we treat the question how, and to which level of accuracy, we can derive the
separation between the quasi-geoid and LAT from a shallow water hydrodynamic
model. Deriving LAT from a shallow water hydrodynamic model relative to the
quasi-geoid is realized by an explicit modeling of the average meteorological and
steric conditions. Numerical experiments show that significant differences between
the traditional (deriving LAT relative to MSL) and the pursued approach exist if av-
erage monthly variations in MSL are accounted for. The obtained LAT surface is
validated using LAT values at 92 onshore and 10 offshore tide gauges. For the 92 on-
shore tide gauges, we found a mean of 0.5 cm and a standard deviation of 21.5 cm.
The obtained differences between observation- and model-derived LAT reveal a mix-
ture of errors in both model and control data. We found that systematic errors in the
representation of the tidal amplitude by DCSM dominate. We have also investigated
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whether the sense of safety evoked by using LAT as CD is justified. Indeed, since
LAT is computed as a once per 18.6 years event under average meteorological con-
ditions, the use of LAT as CD suggests that the instantaneous water depth is rarely
smaller than the charted depth. We showed that the probability that the water level
drops below LAT is high, with a maximum frequency of once per week in the eastern
North Sea. In that region, the magnitude of LAT relative to the quasi-geoid is low due
to the existence of two complete amphidromic systems and one degenerating one. In-
deed, in this region the contribution of the surge dominates the water level variations
and hence it is reasonable to expect a high probability that the instantaneous water
level drops below LAT. Therefore, we propose to reconsider the deterministic con-
cept of LAT by a probabilistic CD concept, and we quantified the differences between
them.

Solving spectral inconsistencies using a Slepian basis

The last question treated in this thesis is whether a spherical Slepian basis represen-
tation enables to obtain spectral consistency between a high- and low-resolution data
set. Spectral consistency between the quasi-geoid and the model-derived separation
between this quasi-geoid and LAT is required if we compute the ellipsoidal heights
of LAT as the sum of both. Following recent studies, this question is treated in the
context of MDT estimation using the so-called “geodetic approach”, i.e., by com-
puting the difference between a MSL model obtained from satellite altimetry and a
gravimetric geoid. Doing so, requires that both data sets are spectrally consistent.
In practice, it is quite common that the resolution of the geoid data is less than the
resolution of the MSL data. Hence, the latter need to be low-pass filtered before the
MDT is computed. For this purpose, conventional low-pass filters are inadequate
as they fail in coastal regions where they run into the undefined MSL signal on the
continents.

To study whether the use of a bandlimited, spatially concentrated Slepian basis en-
ables to obtain a low-resolution approximation of the MSL signal, we computed
Slepian functions for the oceans and parts of the oceans and compared the perfor-
mance of calculating the MDT via this approach with other methods. In particular,
we compared the approach with the iterative spherical harmonic approach in combi-
nation with Gaussian low-pass filtering, and various modifications.

Based on the numerical experiments, we conclude that none of these methods provide
a low-resolution MSL approximation at the sub-decimeter level. In particular, we
showed that Slepian functions are not appropriate basis functions for this problem,
and a Slepian representation of the low-resolution MSL signal suffers from broad-
band leakage. We also showed that a meaningful definition of a low-resolution MSL
over incomplete spherical domains involves orthogonal basis functions with addi-
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tional properties that Slepian functions do not possess. A low-resolution MSL signal,
spectrally consistent with a given geoid model, is obtained by a suitable truncation
of the expansions of the MSL signal in terms of these orthogonal basis functions.
We compute one of these sets of orthogonal basis functions using the Gram-Schmidt
orthogonalization for spherical harmonics. For the oceans, we could construct an
orthogonal basis only for resolutions equivalent to a spherical harmonic degree 36.
The computation of a basis with a higher resolution failed due to inherent instabil-
ities. Regularization reduced the instabilities but destroyed the orthogonality and,
therefore, provided unrealistic low-resolution MSL approximations. More research
is needed to solve the instability problem, perhaps by finding a different orthogonal
basis that avoids it altogether.

Principal innovations

In this thesis, the principal innovations developed and tested by the author are:

• An approach to realize a coastal-waters-inclusive continuous (CWIC) separa-
tion model of LAT where interpolation is avoided (Chapters 1, 2, and 5);

• An approach to include the depth-averaged baroclinic forcing into a 2D shallow
water hydrodynamic model (Section 3.3);

• A method to vertically reference a 2D shallow water hydrodynamic model to a
particular (quasi-)geoid (Section 3.4);

• The reduction of altimeter-derived SSHs to geometric quasi-geoid heights us-
ing a 2D shallow water hydrodynamic model that includes astronomical tidal
forcing, atmospheric wind and pressure forcing, and baroclinic forcing, to-
gether with a detailed analysis of signal and noise in dynamic topography cor-
rections for the North Sea and an assessment of the added value of using such
a model in quasi-geoid computations (Sections 4.4 and 4.5);

• A pragmatic approach to select the bandwidth and density of the radial basis
functions (Chapter 4);

• Harmonize various gravity data sets by including bias parameters into the func-
tional model (Chapter 4);

• Application of modeling the average surge and steric contributions in deriving
LAT relative to the quasi-geoid (Sections 5.3.2 and 5.3.3);

• Probabilistic design of chart datum (Section 5.4);

• An attempt to obtain spectral consistency between a high- and low-resolution
data set using a Slepian approach (Chapter 6).





Samenvatting

Roadmap naar een onderling consistente set van offshore verticale referentie-
vlakken

Voor het Nederlandse deel van de Noordzee ontbreekt een nauwkeurige en toeganke-
lijke 3D-beschrijving van het laagste astronomische getij (LAT) verticale referentie-
vlak. Dit referentievlak, gedefinieerd als het laagste getijdenniveau dat voorspeld kan
worden onder gemiddelde meteorologische omstandigheden en onder elke combi-
natie van astronomische omstandigheden (International Hydrographic Organization
2011a, Technische Resolutie 3/1919), is in de gebieden waar het getij een aanzien-
lijk effect op de waterbeweging heeft door de Internationale Hydrografische Orga-
nisatie (IHO) aangenomen als het reductievlak voor dieptes in zeekaarten (chart da-
tum (CD)). De beschikbaarheid van een nauwkeurige 3D-beschrijving van het LAT-
referentievlak levert een groot aantal voordelen op voor uiteenlopende commerciële
en niet-commerciële organisaties, waaronder een snellere, goedkopere en nauwkeu-
rigere inwinning van bathymetrische data ten behoeve van zeekaarten; een preciezere
navigatie, vooral in gebieden met gevaarlijke ondiepten; een vereenvoudigde combi-
natie van diepte en hoogte data ten behoeve van kustzonemanagement; en het maakt
een nauwkeurigere planning mogelijk van de baggerwerkzaamheden die worden uit-
gevoerd om de aanvaarroutes naar de havens op diepte te houden.

De gangbare praktijk om een continue 3D-beschrijving van het LAT-referentievlak te
verkrijgen dat de kustwateren omvat (hier aangeduid als een coastal-waters-inclusive
continuous (CWIC) model) is om het uit te drukken als de som van LAT-waarden
afgeleid met behulp van een mondiaal of regionaal getijmodel en een van radar al-
timetrie afgeleid model van het gemiddeld zeeniveau (MSL), aangevuld met LAT-
waarden afgeleid van waargenomen waterstanden en GNSS-hoogtes op getijdestati-
ons. Laatstgenoemde dataset is de enige bron van informatie om een continue 3D-
beschrijving van het LAT-referentievlak af te leiden in de kustwateren. Dit als gevolg
van een gebrek aan informatie over de ligging van het MSL-referentievlak, wat op
zijn beurt weer het gevolg is van de lagere nauwkeurigheid van uit radar altimetrie
afgeleide waarnemingen van de hoogte van het zeeniveau in de buurt van land (bv.
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Andersen & Knudsen 2000, Deng et al. 2002). Om uit deze puntwaarnemingen een
continue beschrijving van het LAT-referentievlak te verkrijgen, moet er sterk geïn-
terpoleerd worden. Deze interpolatie is niet triviaal, omdat de getijbeweging op een
bepaalde meetlocatie, en daarmee ook de LAT-waarde, niet noodzakelijk representa-
tief is voor de omgeving van deze locatie. Daar komt bij dat er behoorlijke afstanden
kunnen zijn tussen de locaties waar getijmeters zijn geïnstalleerd. Als alternatief
kan de ligging van het MSL-referentievlak bepaald worden uit GNSS-hoogtes van
het zeeniveau die met een schip zijn opgenomen (bv. Pineau-Guillou & Dorst 2011).
Vanwege de hoge kosten heeft deze aanpak echter niet de voorkeur.

Om een nauwkeurige en continue 3D-beschrijving van het LAT-referentievlak af te
leiden voor de Nederlandse zeewateren (waaronder de kustwateren, Waddenzee en
de Ooster- en Westerschelde), waarbij interpolatie wordt vermeden, hebben wij een
alternatieve aanpak ontwikkeld. In deze aanpak worden de ellipsoïdische hoogtes van
het LAT-referentievlak berekend als de som van de quasi-geoïdehoogtes en de hoog-
tes van LAT ten opzichte van deze quasi-geoïde. Laatstgenoemde hoogtes kunnen
worden afgeleid van waterstanden die de bijdragen van het getij en de tijdsgemiddel-
de meteorologische en sterische componenten bevatten, en die afkomstig zijn van een
ondiepwatermodel waarvan de ligging van het verticale referentievlak is vastgelegd.

In deze studie is een nieuw quasi-geoïdemodel geschat dat het gehele Nederlandse
deel van de Noordzee en het vaste land omvat. Reden hiervoor is dat het beschikbare
state-of-the-art quasi-geoïdemodel, de European Gravimetric Geoid 2008 (EGG08),
de minimaal vereiste nauwkeurigheid mist. Hiervoor zijn twee redenen te noemen.
Ten eerste is in de berekening van EGG08 geen gebruik gemaakt van data afkomstig
van de Gravity field and steady-state Ocean Circulation Explorer (GOCE) satelliet;
deze data waren pas beschikbaar in mei 2010. Ten tweede zijn in de schatting van
EGG08 de radar altimeter waarnemingen gecorrigeerd voor de dynamische zeetopo-
grafie met behulp van een mondiaal getijmodel. In deze studie gebruiken we een on-
diepwatermodel waarin naast het getij ook de bijdragen van de windopzet en sterische
waterstandsvariaties worden meegenomen. Het feit dat al deze drie bijdragen wor-
den bepaald met hetzelfde model heeft als bijkomend voordeel dat elke niet-lineaire
interactie tussen de drie bijdragen (bv. tussen getij en windopzet (Prandle & Wolf
1978)) wordt meegenomen.

Het gebruik van een ondiepwatermodel voor zowel het afleiden van de hoogte van
het LAT-referentievlak ten opzichte van de quasi-geoïde als voor de schatting van de
quasi-geoïde, vereist een kleine, maar wel belangrijke verandering in de voorgestelde
aanpak om een continue 3D-beschrijving van het LAT-referentievlak te verkrijgen.
Dit resulteert in een “kip-en-ei” probleem: enerzijds willen we het ondiepwatermodel
gebruiken om een goede quasi-geoïde te berekenen, terwijl anderzijds deze quasi-
geoïde het verticale referentievlak van het model moet zijn. De ontwikkeling van een
methode die dit probleem oplost is het belangrijkste doel van dit onderzoek.
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In dit proefschrift wordt eerst de algehele procedure gepresenteerd. Drie stappen
worden onderscheiden: (i) de voorbewerking van alle benodigde data; (ii) de schat-
ting van de quasi-geoïde en de realisatie van een ondiepwatermodel dat waterstan-
den levert ten opzichte van deze quasi-geoïde; en (iii) de realisatie van het LAT-
referentievlak en de gemiddelde dynamische zeetopografie (mean dynamic topograp-
hy (MDT)) zodra de uiteindelijke quasi-geoïde en het model waarvan de ligging van
het verticale referentievlak is vastgelegd beschikbaar zijn. Dit laatste referentievlak
kan worden gebruikt om de ellipsoïdische hoogtes van het MSL-referentievlak uit te
rekenen (als de som van de quasi-geoïde en de MDT), wat gebruikt wordt door de
offshore industrie als verticaal referentievlak. Het model dat we in deze studie ge-
bruiken is het Dutch Continental Shelf Model versie 5 (DCSM). Dit is een 2D-model
voor windopzet en getijberekeningen. In het resterende deel van dit proefschrift wor-
den vier sleutelelementen uit de procedure uitgewerkt.

Het vastleggen van het verticale referentievlak van een ondiepwatermodel

In de eerste plaats gaan we in op de vraag hoe van een ondiepwatermodel het verticale
referentievlak kan worden gerelateerd aan een gegeven (quasi-)geoïde, en in welke
mate een dergelijk model voordeel heeft van een nauwkeuriger (quasi-)geoïdemodel.
Verder bepalen we de nauwkeurigheid van de gemodelleerde waterstanden.

Een eerste vereiste aan een ondiepwatermodel waarvan we het verticale referentie-
vlak vast willen leggen, is dat het model alle bijdragen aan de momentane waterstan-
den modelleert. De belangrijkste ontbrekende component in het DCSM model is de
sterische. De toevoeging hiervan is gerealiseerd door het opnemen van de diepte-
gemiddelde horizontale barokliene drukgradiënten in de modelvergelijkingen. Deze
zijn afgeleid van 4D saliniteit- en temperatuurvelden van de Atlantic — European
North West Shelf — Ocean Physics Hindcast uitgevoerd door het Proudman Ocea-
nographic Laboratory (POL), hierna duiden we deze dataset aan als POL’s hindcast.
Het verticale referentievlak is gerelateerd aan de EGG08 quasi-geoïde. Dit is gerea-
liseerd door aanpassing van die modelparameters die afhangen van de keuze van het
referentievlak (bv. de bathymetrie) en door de waterstanden die als open randvoor-
waarden worden voorgeschreven te refereren aan deze quasi-geoïde.

Middels verschillende numerieke experimenten zijn de effecten onderzocht van ver-
scheidene aannames die we hebben gedaan tijdens de implementatie. Uit deze ex-
perimenten concluderen we dat het referentievlak niet goed wordt vastgelegd door
waterstanden langs de open randen van het model voor te schrijven. Als een ander
(quasi-)geoïdemodel wordt gekozen als referentievlak zullen de waterstanden langs
de open randen daarom meeveranderen, maar deze verandering zal zich niet ver in het
modeldomein voortplanten. Dit suggereert dat, vanuit het oogpunt van modelkwali-
teit, het ondiepwatermodel nauwelijks profiteert van een verbeterde (quasi-)geoïde.
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De mate waarin het model in staat is om de MDT en de momentane waterstanden te
reproduceren is bepaald door een vergelijking met de MDT afgeleid uit POL’s hin-
dcast en ook met momentane waterstanden afkomstig van meerdere radar altimeter
satellieten. Op basis van de eerste vergelijking concluderen wij dat de uit het model
afgeleide MDT goed overeenkomt met de MDT afgeleid uit POL’s hindcast: de stan-
daardafwijking is kleiner dan 2 cm. Wanneer we de model-output vergelijken met
de MDT afgeleid uit radar altimeter data nemen we grotere verschillen waar. Deze
schrijven we toe aan fouten in de EGG08 quasi-geoïde of aan fouten in de gebruik-
te saliniteit- en temperatuurvelden. Het kwadratisch gemiddelde van de verschillen
(rms) tussen de waargenomen en gemodelleerde momentane waterstanden over het
gehele modeldomein variëren van 9 cm voor data afkomstig van de TOPEX-satelliet
tot 11 cm voor data afkomstig van de GFO-1 satelliet. Over de Noordzee verbe-
teren deze rms verschillen tot 8–10 cm voor data afkomstig van respectievelijk de
TOPEX- en ERS-2-satellieten. Deze getallen zijn een factor twee tot drie groter dan
de nauwkeurigheid die we verwachten van waterstanden afgeleid van radar altimeter
data (deze is ∼4 cm (Chelton et al. 2001, Sandwell & Smith 2009)). Ongeveer 25%
van deze verschillen kan worden verklaard door een gemiddelde afwijking tussen de
gemodelleerde waterstanden en de waterstanden die worden waargenomen geduren-
de een enkele overkomst van de satelliet. Deze gemiddelde afwijkingen schrijven
we onder andere toe aan fouten in de toegepaste correctie voor de netto sterische
uitzetting/krimp van alle oceanen wereldwijd. Dit effect wordt niet meegenomen in
DCSM, omdat dit model gebruik maakt van de Boussinesq-benadering.

De toegevoegde waarde van een ondiepwatermodel voor ondiepe wateren in
quasi-geoïde berekeningen

Ten tweede richten we ons op de eigenlijke schatting van de quasi-geoïde. In het
bijzonder hebben we geëvalueerd wat de toegevoegde waarde is van het gebruik
van een ondiepwatermodel voor de reductie van radar altimeter zeespiegelhoogtes
(sea surface heights (SSHs)) naar quasi-geoïdehoogtes in de schatting van een quasi-
geoïde voor de Noordzee. Hier hebben we apart gekeken naar de bijdrage van het
getij aan de correcties voor de dynamische topografie (DT) en de bijdragen als ge-
volg van windopzet en sterische waterstandsvariatie. Als referentie hebben we ge-
bruik gemaakt van getijdecorrecties afkomstig van het mondiaal getijmodel GOT4.7,
windopzet correcties afkomstig van het MOG2D model en correcties voor de tijds-
gemiddelde sterische bijdrage berekend als verschillen tussen het DTU10 gemiddeld
zeeniveaumodel (DTU10-MSS) en de EGG08 quasi-geoïde.

De eigenlijke analyse bestaat uit twee delen. In het eerste deel hebben we voor
negen TOPEX-passes de gemiddelde spectrale dichtheden (power spectral densi-
ties (PSDs)) van het signaal en de ruis vergeleken van de residuele, langs de satel-
lietbaan berekende schietloodafwijkingen verkregen na toepassing van verschillende
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DT-correcties op de SSHs. Uit deze analyse concluderen we dat het toevoegen van
zowel de sterische als windopzet-componenten vooral bijdraagt aan verbeteringen
van de signaal/ruis verhouding in de langere golflengtes (een paar honderd km) en
dat de verbeteringen naar het zuiden van de Noordzee toenemen. Voor kortere golf-
lengtes zijn geen significante verschillen waargenomen tussen de PSDs verkregen na
toepassing van DT-correcties inclusief de windopzet en sterische bijdragen, en de
PSDs exclusief deze bijdragen. Voor enkele passes suggereren de PSDs zelfs dat het
opnemen van de windopzet en sterische bijdragen het ruisniveau verhoogt. Dit geldt
in het bijzonder voor de windopzet-correcties die zijn verkregen uit het MOG2D mo-
del. De betere representatie van het astronomisch getij door DCSM is ook zichtbaar
in de langere golflengtes en ook hier neemt de toegevoegde waarde van het gebruik
van DCSM in plaats van GOT4.7 toe naar het zuiden van de Noordzee. In de zuide-
lijke Noordzee zien we verbeteringen over bijna het hele spectrum. De verbeteringen
die zijn te associëren met een betere representatie van het getij door DCSM zijn do-
minant vergeleken met de verbeteringen van de windopzet en sterische bijdragen.

In het tweede deel van de analyse is de toegevoegde waarde gekwantificeerd in ter-
men van quasi-geoïdehoogtes. Gebruikmakend van de diverse sets van DT-correcties
zijn verschillende quasi-geoïdemodellen geschat. Op basis van hun onderlinge ver-
schillen concluderen we dat, als de zwaartekrachtmetingen op zee worden meegeno-
men in het schattingsproces, de toegevoegde waarde van het gebruik van een ondiep-
watermodel verwaarloosbaar is. De reden hiervan is dat in dit geval de radar altimeter
data zelf nauwelijks bijdragen aan de geschatte quasi-geoïde. Behalve op geïsoleer-
de locaties langs de kusten van België, Denemarken, Frankrijk, Groot Brittannië en
de Shetland eilanden, en voor een lijn langs de Noorse kust parallel aan de Noorse
Geul, zijn de verschillen kleiner dan ±1 cm. Tussen de quasi-geoïdes geschat zon-
der zwaartekrachtmetingen op zee zijn de verschillen veel groter. Op basis van een
vergelijking van de oplossingen verkregen met en zonder zwaartekrachtmetingen op
zee, maar na toepassing van dezelfde set van DT-correcties, concluderen wij dat de
systematische verschillen tussen de quasi-geoïdes zijn afgenomen als we een ondiep-
watermodel gebruiken, met name langs de kusten van Nederland en Groot Brittannië,
en in het Kanaal.

Om de NLGEO2013 quasi-geoïde te berekenen, zijn de langs de satellietbaan be-
rekende schietloodafwijkingen verkregen na toepassing van de DT-correcties uit het
uitgebreide DCSM model gecombineerd met zwaartekrachtmetingen op land en zee,
vliegtuiggravimetriegegevens en van EGG08 afgeleide schietloodafwijkingen in de
noord-zuid en oost-west richtingen. De kwaliteit van NLGEO2013 is beoordeeld
door een vergelijking met zowel de EGG08 quasi-geoïde als met de gravimetrische
quasi-geoïde die de basis vormt van NLGEO2004 (NLGEO2004-grav). We conclu-
deren dat NLGEO2013 het beste past bij EGG08: het rms verschil over Nederland is
1.42 cm. De verkregen verschillen hebben vele oorzaken, waaronder het gebruik/de
voorbewerking van verschillende zwaartekrachtmetingen, verschillen in de toegepas-
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te berekeningsstrategie, en verschillen in de gewichten die zijn toegekend aan de
diverse waarnemingsgroepen. Door het vergelijken van NLGEO2013, EGG08 en
NLGEO2004-grav met geometrische hoogte-anomalieën op 81 GPS/waterpaspunten
in Nederland is aangetoond dat NLGEO2013 de beste oplossing is. Alleen voor dit
model is de standaarddeviatie lager dan 1 cm. Dit valt binnen de onzekerheid van de
81 geometrische hoogte-anomalieën.

Het bepalen van LAT ten opzichte van de quasi-geoïde

Ten derde behandelen we de vraag hoe en met welke nauwkeurigheid we de hoogtes
van LAT ten opzichte van de quasi-geoïde kunnen bepalen met behulp van een on-
diepwatermodel. Het afleiden van deze hoogtes is gerealiseerd met behulp van een
expliciete modellering van de gemiddelde meteorologische en sterische omstandig-
heden. Numerieke experimenten tonen significante verschillen aan tussen de traditi-
onele (het afleiden van de hoogtes van LAT ten opzichte van MSL) en voorgestelde
aanpak als we de gemiddelde maandelijkse variaties in MSL meenemen. Het uit
het model afgeleide LAT-referentievlak is gevalideerd met behulp van 92 onshore
en 10 offshore getijreeksen. Voor de 92 onshore getijmeters komen we uit op een
gemiddelde van 0.5 cm en een standaard afwijking van 21.5 cm. De verkregen ver-
schillen tussen de uit waarnemingen en uit het model afgeleide LAT-waarden laten
een mix van fouten zien in beiden. Het is gebleken dat systematische fouten in de
modelrepresentatie van de getij-amplitude domineren.

Daarnaast hebben we onderzocht of het gevoel van veiligheid dat wordt opgeroe-
pen door LAT als CD te gebruiken gerechtvaardigd is. Omdat LAT berekend is als
een gebeurtenis die eens per 18.6 jaar optreedt onder gemiddelde meteorologische
omstandigheden, suggereert het gebruik van LAT als CD dat de momentane diepte
zelden kleiner is dan de gekarteerde waterdiepte. Wij laten zien dat de kans toch
groot is dat de waterstand lager is dan LAT, met een maximale frequentie van eens
per week in de oostelijke Noordzee. In dit deel van de Noordzee is het verschil tus-
sen LAT en de quasi-geoïde klein als gevolg van drie amfidromische punten. In dit
deel van de Noordzee domineert de windopzet de waterstandsvariaties en daarom is
het aannemelijk dat de kans groot is dat de momentane waterstand onder LAT komt.
Omdat de kans zo groot is, stellen wij voor het deterministische concept van LAT te
vervangen door een probabilistisch concept, en hebben we de verschillen tussen de
realisaties van deze concepten gekwantificeerd.
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Het wegwerken van spectrale inconsistenties met behulp van een Slepian basis-
representatie

De laatste onderzoeksvraag die we in dit proefschrift behandelen is de vraag of een
sferische Slepian basisrepresentatie ons in staat stelt spectrale consistentie te verkrij-
gen tussen data met hoge en lage resolutie. Spectrale consistentie tussen de quasi-
geoïde en de uit het model afgeleide hoogtes van LAT ten opzichte van deze quasi-
geoïde is vereist als we de ellipsoïdische hoogtes van LAT uitrekenen als de som van
beiden. In navolging van recente studies behandelen we deze vraag in de context van
MDT schatting met behulp van de zogenoemde geodetische aanpak, namelijk door
het berekenen van het verschil tussen een MSL-model verkregen uit radar altime-
ter data en een gravimetrische geoïde. Het op deze manier berekenen van de MDT
vereist spectrale consistentie tussen beide datasets. In de praktijk is gewoonlijk de
resolutie van de geoïde lager dan de resolutie van het MSL-model. Daarom zal de
laatste eerst gefilterd moeten worden met een low-pass filter voordat de MDT kan
worden berekend. Hiervoor zijn conventionele filters niet toereikend: in de kustge-
bieden is het probleem dat MSL niet is gedefinieerd op de continenten.

Om na te gaan of het gebruik van een bandgelimiteerde, in het ruimtelijke domein
geconcentreerde Slepian basis in staat is een lage resolutie benadering van het MSL-
signaal te verkrijgen, hebben we Slepian functies voor de oceanen en delen van de
oceanen berekend, en hebben we de prestatie van de berekening van de MDT via
deze methode vergeleken met andere methoden. In het bijzonder met de “iteratieve
sferisch harmonische aanpak” in combinatie met toepassing van een Gaussisch low-
pass filter en verschillende varianten op deze aanpak.

Op basis van numerieke experimenten concluderen wij dat geen van deze methodes
een benadering levert van het lage resolutie MSL-signaal op sub-decimeterniveau. In
het bijzonder hebben we laten zien dat Slepian functies geen geschikte basisfuncties
zijn voor dit probleem en dat een Slepian representatie van het lage resolutie MSL-
signaal onderhevig is aan “broadband leakage”. Verder hebben we laten zien dat een
zinvolle definitie van het lage resolutie MSL-signaal over een deel van de bol moet
worden uitgedrukt in orthogonale basisfuncties met extra eigenschappen die de Sle-
pian functies niet hebben. Een laag resolutie MSL-signaal, spectraal consistent met
een gegeven geoïdemodel, kan worden verkregen door een geschikte afbreking van
de uitdrukking van het MSL-signaal in termen van deze orthogonale basisfuncties.
Een van deze sets van orthogonale basisfuncties hebben wij berekend door gebruik
te maken van de Gram-Schmidt orthogonalisatie van sferisch harmonische functies.
Voor de oceanen waren we slechts in staat een orthogonale basis te construeren met
een resolutie die equivalent is aan een sferisch harmonische graad 36. De berekening
van een basis met een hogere resolutie lukt niet als gevolg van inherente instabiliteit.
Regularisatie reduceert de instabiliteit, maar vernietigt de orthogonaliteit en levert
daarom onrealistische benaderingen van het lage resolutie MSL-signaal. Meer on-
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derzoek is nodig om het instabiliteitsprobleem op te lossen. Mogelijk is het probleem
te omzeilen door de keuze van een andere orthogonale basis.

Overzicht van de belangrijkste innovaties

De belangrijkste, door de auteur van dit proefschrift, ontwikkelde en geteste innova-
ties zijn:

• Een methode voor de realisatie van een continue 3D-beschrijving van het LAT-
referentievlak dat de kustwateren omvat, waarbij interpolatie wordt vermeden
(Hoofdstukken 1, 2 en 5);

• Een methode voor het opnemen van de diepte-gemiddelde barokliene forcering
in een 2D-ondiepwatermodel (Sectie 3.3);

• Een methode voor het relateren van het verticale referentievlak van een 2D-
ondiepwatermodel aan een gegeven (quasi-)geoïde (Sectie 3.4);

• Het reduceren van uit radar altimetrie afgeleide SSHs naar geometrische quasi-
geoïdehoogtes met behulp van een 2D-ondiepwatermodel waarmee het getij en
de bijdragen als gevolg van windopzet en sterische waterstandsvariaties zijn
gemodelleerd. Dit omvat een gedetailleerde analyse van het signaal en de ruis
in DT-correcties voor de Noordzee en een beoordeling van de toegevoegde
waarde van het gebruik van een dergelijk model in quasi-geoïde berekeningen
(Secties 4.4 en 4.5);

• Een pragmatische aanpak voor de selectie van de bandbreedte en de dichtheid
van de radiale basisfuncties (Hoofdstuk 4);

• Het harmoniseren van verschillende zwaartekrachtdatasets door het opnemen
van bias parameters in het functionele model (Hoofdstuk 4);

• Toepassing van het modelleren van de gemiddelde windopzet en sterische bij-
dragen in het afleiden van LAT ten opzichte van de quasi-geoïde (Secties 5.3.2
en 5.3.3);

• Probabilistisch ontwerp voor een reductievlak voor dieptes in zeekaarten (Sec-
tie 5.4);

• Een poging om spectrale consistentie te krijgen tussen data met hoge en lage
resolutie met behulp van een Slepian basisrepresentatie (Hoofdstuk 6).



Chapter 1

Introduction

1.1 Background

Offshore vertical reference surfaces are part of the geometric infrastructure of all
coastal countries. In general, they are tidal surfaces, i.e., surfaces defined by a certain
phase of the tide (Gill & Schultz 2001). The reason why this type of vertical datum
(VD) is used rather than the gravity-based VDs commonly used on land, follows, on
the one hand, from user requirements. For example, safe navigation in shallow tidal
waters requires accurate knowledge of the bathymetry and submerged hazards at a
low-water phase of the tidal cycle, and passage underneath bridges requires knowl-
edge of the clearance at a high-water phase of the tide. On the other hand, their use
emerged from the possibilities available in the past to realize a VD and to reduce
observed water depths to the adopted VD. If a tidal datum is used as the adopted VD,
both can be achieved using observed water levels only.

As shown by the examples above, different applications require depths/heights rel-
ative to different tidal datums. For the hydrographic offices responsible for the ac-
quisition, storage, and distribution of bathymetric data, this requires the realization
of accurate transformations from the datum the stored depths/heights refer to, i.e.,
the chart datum (CD), to the ones requested by the users. However, nowadays one
needs not only to realize transformations between different tidal datums. Due to the
ever-increasing interest in the coastal zones as areas of particular ecological, social,
and economic value, there is a growing group of users who need to merge bathy-
metric and topographic data. Such a merge requires transformations between tidal
and gravity-based VDs. Moreover, the possibilities offered by the ever-increasing
accuracy of 3D positioning with GNSS systems, such as GPS, Galileo, GLONASS,
and/or COMPASS (about which more is to follow below), and the advent of light
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detection and ranging (LiDAR) technology, has brought the need for transformations
between ellipsoidal and tidal VDs.

These changing needs have put into question relative to which type of VD offshore
depth/height data should be stored. As noticed by the FIG Commission 4 Working
Group 4.2 (2006), CD is not a seamless reference surface as it varies from location
to location, where a seamless reference surface is considered to be one that does
not vary significantly either over time or area. In answering the question what the
Canadian Hydrographic Service should do to bring their VDs into a consistent dig-
ital database taking into account current and future Differential Global Positioning
System (DGPS) capabilities, Wells et al. (1996) recommended to adopt a reference
ellipsoid as the vertical reference surface. The motivation was that a reference el-
lipsoid is simple and can easily be made temporally invariant by convention, since
it is defined by adopting numerical values for certain parameters. Its use, of course,
requires the realization of transformations between the reference ellipsoid and the
reference surfaces used in practice (tidal or gravity-based VDs), i.e., it requires a
proper 3D description of these reference surfaces. The latter is sometimes referred to
as “separation model” (FIG Commission 4 Working Group 4.2 2006).

Despite a large and ever-increasing demand from both public and private sectors,
Dutch waters lack an accurate 3D description of most relevant vertical offshore refer-
ence surfaces and a well-defined and accurate relation to the national height system.
In particular, Dutch waters lack an accurate 3D description of the lowest astronomical
tide (LAT). This tidal datum, defined as “the lowest tide level that can be predicted
to occur under average meteorological conditions and under any combination of as-
tronomical conditions” (International Hydrographic Organization 2011a, Technical
Resolution 3/1919), is, in those regions where tides have an appreciable effect on the
water level, adopted as CD by the International Hydrographic Organization (IHO).
As such, it is the vertical reference surface used in nautical charts, i.e., charts that
provide, among others, information about the water depths and navigational hazards.
Obviously, such charts are crucial for safe navigation in the shallow waters of the
Netherlands Continental Shelf.

For the Netherlands Continental Shelf, the generation and updating of nautical charts
is one of the primary tasks of the Hydrographic Service of the Royal Netherlands
Navy (RNLN). Updating nautical charts is a costly affair, mainly due to the high sur-
veying costs. In times of budget cuts and delays in the updating cycle, innovative
approaches are required to reduce the costs and to accelerate the process while main-
taining the quality requirements. One way to achieve this is that the RNLN started
to make use of a sophisticated resurvey planning where the resurvey frequency de-
pends, among others, on the behavior of the sea floor (Dorst 2004, 2009, Van Dijk
et al. 2011). Another development that allows to realize efficiency improvements
and hence cost reduction is offered by the already mentioned increasing accuracy of
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3D positioning with GNSS. Due to this, GNSS is more often used for the vertical
positioning of hydrographic data collection platforms known as “ellipsoidally refer-
enced surveying” (Dodd & Mills 2011). Ellipsoidally referenced surveying enables
to derive seabed heights relative to the reference ellipsoid after which the reduction
to CD is trivial, provided CD is known relative to the same reference ellipsoid. One
major advantage of this so-called “water level reduction with GNSS procedure” is
that it eliminates the reliance on temporary, expensive tide gauge observations. For
the RNLN, however, this is not the main benefit as the use of temporary tide gauges
has been strongly reduced by the use of the PREdiction MOdule (PREMO) (Versteeg
2000, Hounjet et al. 2012) for the water level reduction. In PREMO, the reduction to
CD is carried out by combining a tide correction derived from a shallow water hydro-
dynamic model and a correction for the surge interpolated from nearby tide gauges.
The main benefit for the RNLN stems from the expected reduction of the vertical po-
sitioning error contribution to the total error budget. Due to this, the contribution of
other error sources are allowed to increase without violating the accuracy constraints
specified by the IHO S44 standards (International Hydrographic Organization 2008).
One of these, directly related to the survey efficiency, is the sounding accuracy of the
multi-beam echo sounder. This accuracy is, among others, dependent on the beam
angle of the received signals; the larger this angle, the lower the accuracy, but also
the larger the swath width (width of area measured). When the swath width becomes
larger, less time is needed to cover the whole survey area, which improves the effi-
ciency and hence reduces the costs.

Besides faster, cheaper, and more accurate hydrographic survey data for nautical
charts, other benefits of having accurate 3D descriptions of all relevant vertical off-
shore reference surfaces covering the Dutch waters are that they enable a more precise
navigation, even over areas with submarine hazardous objects; merging of bathymet-
ric data with topographic data to improve the protection of the coastal zone; and more
accurate planning of depth maintenance in port approach areas. Furthermore, they
are crucial in sea level rise studies, eco-system studies, integrated coastal zone man-
agement, and pro-active disaster-mitigation planning. In addition, they provide the
necessary geometric infrastructure (in line with the Infrastructure for Spatial Infor-
mation in Europe (INSPIRE) initiative) for maritime vertical positioning tasks such
as preventing vessel grounding, and they allow the output of data and products on the
VD requested by the user. Finally, they may pave the way to a more realistic, time-
varying representation of under keel clearances in response to increasing demands
from the shipping industry to load a ship as full as allowable by safety regulations.

So, to meet the demands from practice and by that the requirements imposed on mod-
ern vertical reference systems, this project aims to derive an accurate 3D description
of CD (LAT) for the Dutch waters. Before we explain the motivation and formulate
the research questions of this study, in the next section we provide a concise summary
of previous work in the development of ellipsoidal heights of CD.
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1.2 Previous work

The development of models that describe the ellipsoidal heights of CD was pioneered
by the Canadian Hydrographic Service in 1996 (Wells et al. 1996, O’Reilly et al.
1996). Since then, many countries have followed their example, among which are
the US (VDatum), Germany, Australia, France (BATHYELLI), and the UK (VORF).

A description of the basic procedure that should be implemented to realize separa-
tion models is provided by the FIG Guide on the Development of a Vertical Reference
Surface for Hydrography (FIG Commission 4 Working Group 4.2 2006). Two main
steps are considered: (i) derivation of the difference between CD and the reference
ellipsoid at discrete points (usually tide gauge stations) and (ii) interpolation of the
difference between those discrete points and extrapolation of the model for a reason-
able distance offshore. To perform the extrapolation, so-called co-tidal and co-range
charts can be used. These charts are constructed based on historical data, hydrody-
namic models, and/or other information sources, and show lines of equal times and
equal range of tides. This approach is known as “zoning”. If the co-tidal charts lack
accuracy, the FIG Commission 4 Working Group 4.2 (2006) proposes to obtain sep-
aration values at some offshore locations by, e.g., GNSS using the approach outlined
by the International Hydrographic Organization (2005).

In most countries, however, the separation models are realized by a combination of
hydrodynamic modeling and separation values derived from a tidal analysis of tide
gauge records and/or sea surface heights (SSHs) provided by radar altimeter satel-
lites. Without claiming to be exhaustive, in the remainder of this section we provide
an overview of the procedures applied in different countries. Here, we also include
a description of the procedure applied in the Netherlands to derive the separation
between mean sea level (MSL) and LAT, which can be considered as a first step to
obtain the separation between the reference ellipsoid and LAT.

1.2.1 US: VDatum (2000–)

VDatum is a software tool jointly developed by the US National Oceanic and Atmo-
spheric Administration, the National Geodetic Survey/Remote Sensing Division, and
the Center for Operational Oceanographic Products and Services. It allows users to
transform geospatial data among a variety of ellipsoidal, orthometric, and tidal VDs
(Parker et al. 2003, Myers et al. 2005). It was first developed for the Tampa Bay re-
gion (Milbert & Hess 2001) in 2000 and since then for other US near-coastal waters
(e.g., Spargo & Woolard 2005, Dhingra et al. 2008, Yang et al. 2012). It is expected
that by 2013 the software provides seamless coverage for all of the US coastal areas.

Within each of the three groups of VDs (ellipsoidal, orthometric, and tidal), there is
a primary datum. This is the North American Datum of 1983 (NAD 83) for the ellip-
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soidal VDs, the North American Vertical Datum of 1988 (NAVD 88) for the orthome-
tric VDs, and the MSL for the tidal VDs. Transformations between VDs belonging
to a different group are carried out via these primary datums. For the transformation
between NAD 83 and NAVD 88, VDatum makes use of one of the National Geodetic
Survey’s GEOID models (National Geodetic Survey 2012), while for the transforma-
tion between the geoid and MSL a mean dynamic topography (MDT) model is used.
This MDT model is constructed by interpolating MDT values derived from observed
water levels at benchmarked tide gauges to a grid (Myers et al. 2005).

The tidal datums, including mean lower low water, mean higher high water, and
mean tide level, relative to MSL are derived by hydrodynamic modeling (Myers et al.
2010). As part of the effort to adopt standard procedures for each regional application
of VDatum, the primary hydrodynamic model used is the ADvanced CIRCulation
model (Luettich et al. 1992). This hydrodynamic model, which can be run in 2D or
3D mode, uses unstructured grids in its solution of the hydrodynamic equations. For
each regional application of VDatum, such a grid is constructed. After calibration,
the model is forced by tides only and the tidal water levels are modeled over, nor-
mally, 37 days with a time step that accords with the smallest size of triangles in the
grid (typically it is on the order of a few seconds or less). From the time series of tidal
water levels, the tidal datums are derived. Note that the MSL (induced by tidal forc-
ing only) is also derived. Other tidal datums are reduced to this model-derived MSL.
As a final step, the model-derived grids are adjusted by the tidal datum realizations
derived from tide gauge records. For this adjustment, the so-called “tidal constituent
and residual interpolation” method is used (Hess et al. 2004). This method uses a
set of weighting functions (generated by solving numerically Laplace’s equation) to
quantify the local contributions from each of the tide gauges, taking into account
the effects of islands and complex shorelines. The same method is also used to de-
rive a continuous surface of the separations between all tidal datums and MSL if no
hydrodynamic model is available at all but only tide gauge records.

For each regional application of VDatum, the random uncertainties in both the VDs
and of the mutual transformations are quantified. We refer to National Ocean Service
(2012) for these values and an overview of the methods used to derive them.

1.2.2 Germany (2002–2006)

The derivation of a model describing the ellipsoidal heights of CD (LAT) for the
German North Sea sector is carried out by the Bundesamt für Seeschifffahrt und
Hydrographie (Ellmer & Goffinet 2006). Here, LAT is derived relative to the ETRF89
ellipsoid, which is the same ellipsoid used by the German satellite positioning service
SAPOS.
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Input data used to derive the separation model are: (i) ellipsoidal heights of CD at
about 140 tide gauges distributed over the German North Sea coast and rivers under
tidal influence; (ii) heights of the European Gravimetric Geoid 1997 (EGG97), used
as a preliminary reference surface for MSL determination; and (iii) LAT values rela-
tive to MSL at 32,000 grid nodes of a finite element model for the area of the German
Bight, provided by the Bundesanstalt für Wasserbau. The latter were derived from
tidal water levels modeled over one year with a time step of one hour. The ellipsoidal
heights of the tide gauge bench marks were derived from GPS data collected at the
bench marks.

Ellmer & Goffinet (2006) do not provide any information about the uncertainty of the
derived separation model.

1.2.3 Australia (2004–)

The first Australian project to derive a 3D description of CD (LAT) was the AUSHY-
DROID project (Martin & Broadbent 2004, Todd et al. 2004). During this project,
carried out in 2004, a model of the height of LAT relative to the WGS84 ellipsoid
was developed for Queensland waters. This surface is referred to as the “AUSHY-
DROID”. AUSHYDROID was developed by extrapolating offshore the ellipsoidal
heights of LAT at the tide gauge locations using the so-called “zoning” process. Here,
the area is divided into a number of zones, referred to as “co-tidal zones”, which are
defined small enough for the curved surface of LAT within each zone to be regarded
as planar. Depending on the number of tide gauges available within a co-tidal zone,
an interpolation is performed using the so-called “linear” or “planar” method (Todd
et al. 2004).

In February 2009, the Cooperative Research Centre for Spatial Information with sup-
port from Landgate and the Western Australian Department of Planning and Infras-
tructure, conducted a pilot project to develop a general approach to VD transforma-
tion across the littoral zone, i.e., the part of the ocean closest to the shore. The inten-
tion was to obtain topographic and bathymetric LiDAR data relative to a reference
ellipsoid and to investigate strategies for creating a seamless ellipsoidal height-based
digital elevation model. Following this, methods for transformation to other relevant
vertical reference frames including tidal datums were to be considered. However,
at the time the researchers were unable to obtain reliable and accurate ellipsoidal
elevation data from the data providers.

A new project followed in 2011, which main objective was “to facilitate the cre-
ation of seamless elevation data sets across the littoral zone” (Keysers et al. 2012).
This involved developing a method to enable the transformation between ellipsoidal
height data and other types of VDs. These datums include the GRS80 ellipsoid re-
alized through the Geocentric Datum of Australia 1994 and the Australian Height
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Datum (AHD), CD (LAT), MSL, mean high water springs (MHWS), and the high-
est astronomical tide (HAT). Due to (i) the limited number of tide gauges around
the Australian coast, (ii) the number of existing gauges which lack MSL and/or el-
lipsoid data, and (iii) the lack of metadata to determine the reliability and accuracy
of available tide gauge records, it was concluded that “an accurate and effective VD
transformation tool cannot be readily produced”.

Despite these limitations, a demonstration tool was developed for a small study area
as a proof of concept. For this area, gridded separation models have been created of
MSL, LAT, MHWS, HAT, and AHD. The MSL surface was derived from satellite
altimetry enhanced by MSL values derived from onshore tide gauge records. The el-
lipsoidal heights of the other tidal datums were obtained by summing the ellipsoidal
heights of MSL and the separations of these tidal datums relative to MSL. The latter
were derived by hydrodynamic modeling, for which the Global Environmental Mod-
eling Solutions tide model was used. A comparison of the model-derived tidal datums
with their realizations derived from 16 tide gauge records reveals average differences
of 0.22, −0.15, and −0.02 m and standard deviations of 0.32, 0.22, and 0.21 m for
the HAT, LAT, and MHWS datums, respectively.

1.2.4 France: BATHYELLI (2005–)

The BATHYmetry referenced to the ELLIpsoid (BATHYELLI) project, commenced
in 2005 and led by the Service Hydrographique et Océanographique de la Marine
(SHOM), aims to derive the offshore vertical reference surfaces (including MSL,
LAT, and CD) for the entire French coastline relative to the GRS80 ellipsoid of réseau
géodésique français 1993 (RGF93).

Offshore, the MSL is derived from satellite altimetry, while along the coast it is de-
rived from tide gauges. To fill the gap between the open sea and the coast left by the
radar altimeter data (see Section 1.3.1 for the reasons of this gap), a series of GPS
survey campaigns were conducted by SHOM at 20 sites (Pineau-Guillou & Dorst
2011). Here, the MSL is obtained by correcting the observed ellipsoidal heights of
the instantaneous water levels along the tracks of the ship for the contributions of tide
and surge. In a final step, the data from these sources are merged using a least-squares
collocation interpolation.

The separations MSL–LAT and MSL–CD are derived by tidal modeling. Unfortu-
nately, no further details about this part of the procedure are available to the author.

A second phase of the project was initiated in mid-2011. The goals for this phase
include validation and improvement of the VDs by including additional GPS mea-
surements and the development of a transformation software.
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1.2.5 UK: Vertical Offshore Reference Frame project (2005–)

One of the most recent efforts to the realization of models that describe the ellipsoidal
heights of CD is the UK Vertical Offshore Reference Frame (VORF) project. This
project aimed to integrate all VDs and reference surfaces used in the UK and Ireland
(Ziebart et al. 2007); particularly the datums used in marine charting (CD, LAT, mean
low water springs, MSL, mean high water springs, and HAT), the land datums used
for expressing height above sea level (e.g., Newlyn), and the reference frame used for
GNSS positioning. All reference surfaces are modeled as a grid of heights above the
GRS80 ellipsoid referenced to both ETRF89 and ITRF2000, and estimated at epoch
2000.0. Besides the reference surfaces, VORF is also a software package that enables
transformation of data sets between the modeled reference surfaces.

A grid of LAT values was computed by adding the heights of LAT relative to MSL to
the ellipsoidal heights of MSL. The MSL grid was computed by merging point val-
ues of MSL at tide gauge stations with the Danish National Space Center mean sea
surface 2006 (DNSC06-MSS) grid (Andersen & Knudsen 2007) from which all grid
points within 14 km of the coastline were excluded. Prior to the actual merging, the
geoid heights were subtracted from the MSL heights. The reason is that the resulting
MDT is smoother and hence better suited to perform the merging step. For this merg-
ing, a least-squares collocation interpolation was applied. Note that this interpolation
only affected the MSL model in the zone 14–30 km from the coast; beyond 30 km it
is solely determined by DNSC06-MSS. Another feature of the computational strat-
egy used to derive the MSL model is that separations between points were computed
as “sea-distances”; the distance between two points is not the straight-line distance,
but the shortest distance that it would be necessary to travel between the points by
sea. For more details, we refer to Iliffe et al. (2007a).

LAT relative to MSL was computed using three different data sets (Turner et al.
2010). Beyond 30 km from the coast, LAT is solely derived from the Center for
Space Research version 4.0 (CSR4.0) satellite altimetry ocean tide model. Within
30 km of the coast, the LAT values derived from CSR4.0 were supplemented by
those derived from the North and Irish Sea and English Channel (NISE10) hydrody-
namic tide-surge model and LAT values derived from observed water levels at tide
gauge stations. The NISE10 model is a 2D, depth-averaged numerical model with
a horizontal resolution of 3.5 km. To derive LAT relative to MSL, it is forced by
tidal input only, realized by prescribing the 26 largest tidal constituents to the open
sea boundaries of NISE10. The final LAT surface is obtained by merging all data
using a thin plate spline interpolation method. As in the computation of the MSL
model, distances between points were computed as “sea-distances”. After merging,
the root mean square (rms) agreement between the observation-derived LAT values at
approximately 700 onshore tide gauges sourced from the Admiralty Tide Tables and
the obtained LAT surface is 5.81 cm. All these data, however, have been used in the
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Figure 1.1: Model grids of the Dutch Continental Shelf Model (a), the “Kuststrook-Fijn”
model (b), and the “Kustzuid” model (c). The green boxes in Figs. (a) and (b) indicate the
geographical extent of the model plotted next to it.

computation of the LAT surface. By some kind of cross-validation, it was shown that
the rms agreement between observation-derived and predicted LAT values in areas
where no in-situ tidal data were available is 20 cm (Turner et al. 2010).

1.2.6 The Netherlands (2006)

Dutch waters lack a 3D description of LAT. Available, however, is a model of the sep-
aration between MSL and LAT as the procedure to reduce observed water depths to
LAT currently applied by the RNLN involves a reduction of MSL to LAT. This model
is referred to as the “LAT reduction matrix”. It should be noted that in the coastal
areas, the Wadden Sea, and the Eastern and Western Scheldt estuaries, this matrix
provide the separation between LAT and the Normaal Amsterdams Peil (NAP), i.e.,
the Dutch height datum.

The LAT reduction matrix is computed as a blend of separations between MSL/NAP
and LAT derived with three nested shallow water hydrodynamic models (Kwan-
ten 2007): (i) the Dutch Continental Shelf Model (DCSM) (Gerritsen et al. 1995,
Verlaan et al. 2005); (ii) the “Kuststrook-Fijn” model (Rijkswaterstaat-Waterdienst
& Deltares 2009a); and (iii) the “Kustzuid” model (Rijkswaterstaat-Waterdienst &
Deltares 2009b). We refer to Figs. 1.1a–1.1c for the model grids.

DCSM (Fig. 1.1a) is the largest and coarsest model; it covers the area of the northwest
European continental shelf to at least the 200 m depth contour, i.e., 12◦W to 13◦E
and 48◦N to 62.3◦N. It has a horizontal resolution of 1/8◦× 1/12◦ (approximately
8× 9 km) in east-west and north-south directions, respectively. For each grid point,
LAT is computed as the lowest modeled tidal water level (astronomical tide is the
only driving force) that occurred during the period 1999 to 2018. The astronomical
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tide is prescribed at the open sea boundaries of DCSM in the form of water levels
computed from a harmonic expansion using a set of 11 tidal constituents.

The domain of the “Kuststrook-Fijn” model (Fig. 1.1b) comprises the entire Dutch
coast and the main inland waters. In seaward direction, the grid extends to approxi-
mately 60–70 km from the coast. While the model has a curvilinear grid, its spatial
resolution varies strongly; along the open sea boundary the resolution is 300–800 m
by 2.5 km, which reduces to a few hundred meters along the coast and in the inland
waters. For each grid point, LAT is computed as the lowest modeled tidal water level
that occurred during the first six months of 2005, the period in which DCSM pre-
dicted the LAT event to occur. The open sea boundary conditions are derived from
the “Zuidelijke Noordzee” model (Roelvink et al. 2001), whose open sea boundary
conditions are, in turn, derived from DCSM. Along the coast, the model provided the
separation between LAT and NAP, while west of the 20 m depth contour line, LAT is
provided relative to MSL.

The “Kustzuid” model (Fig. 1.1c), which is a cut-out of the Kuststrook-Fijn model, is,
compared to the latter model, extended by one additional cell at the land-sea boundary
and it has a three times higher resolution in the Nauw van Bath. LAT was derived
similarly as with the Kuststrook-Fijn model.

After computing the three separate LAT surfaces, they were merged. In regions where
the model domains overlap, the LAT values were used from the model that best fit
to the LAT values computed at nearby tide gauge stations. Besides some cosmetical
changes, at some locations the merged grid was adjusted to the LAT values derived
from tide gauge records.

A validation of the obtained LAT reduction matrix is carried out by comparing model-
derived LAT values with observation-derived ones (the same as used in the manual
adjustment step). The estimated precision is ∼7 cm (95% confidence level), while
the mean of the residuals is close to zero. On the Netherlands continental shelf and
in the Belgian waters, the expected precision is approximately 10 cm. Our study,
however, suggests that the accuracy is much lower (Slobbe et al. 2013b).

1.3 Motivation

In this section, we provide the motivation for this research from a hydrographic,
geodetic, and hydrodynamic modeling perspective. The overview of previous work
shows that in all recent projects more or less the same procedure is applied to derive
a separation model of CD; all combine the ellipsoidal heights of CD at tide gauges
with those derived as the sum of model-derived separations between MSL and CD
and the ellipsoidal heights of MSL. Here, we motivate why this approach is not ad-
equate for the Netherlands. In short the reason is that this approach relies on the
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MSL, which is not available with sufficient accuracy in the Dutch coastal waters, the
Wadden Sea, and the Eastern and Western Scheldt estuaries. An alternative approach
is proposed in which the ellipsoidal heights of CD (LAT) are derived as the sum of
quasi-geoid heights and model-derived separations between the quasi-geoid and LAT.
Next, we motivate why we chose to estimate a new quasi-geoid model rather than us-
ing a state-of-the-art, publicly available quasi-geoid, which is the research motivation
from a geodetic perspective. Finally, we show that a hydrodynamic model that pro-
vides water levels relative to a particular (quasi-)geoid also serves the needs of the
hydrodynamic community, which is the research motivation from a hydrodynamic
modeling perspective.

1.3.1 A hydrographic perspective

In the North Sea, no coastal-waters-inclusive continuous (CWIC) 3D description of
LAT can be derived purely from observations. Doing so requires time series of the
instantaneous water levels relative to a reference ellipsoid over a sufficiently long
time period and the measurement locations should have sufficient spatial coverage.
Moreover, these time series also should have sufficient temporal resolution to resolve
all relevant tidal constituents needed to reconstruct the tidal water levels from which
LAT is derived, especially in the shallow parts of the North Sea. From the exist-
ing measurement techniques that provide time series of instantaneous water levels:
radar altimetry, tide gauges, and GNSS buoys, the first provides time series over a
sufficiently long period and, in open sea, with sufficient spatial resolution. The data
lack, however, the required temporal resolution. Tide gauges and GNSS buoys, on
the other hand, provide time series that are sufficiently long and do have sufficient
temporal resolution, but their spatial coverage is poor. Therefore, the current prac-
tice to obtain a CWIC model of the ellipsoidal heights of LAT in shallow waters is
to derive them as the sum of LAT values derived from a global/regional ocean tide
model and an altimeter-derived MSL model, complemented by LAT values derived
from tide gauge records plus GNSS measurements. Schematically, this approach is
illustrated in Fig. 1.2.

However, due to a degrading accuracy of radar altimeter data in coastal regions (e.g.,
Andersen & Knudsen 2000, Deng et al. 2002), coastal waters lack information about
the MSL. Even when using the most advanced retracking schemes (Deng 2003, Gom-
menginger et al. 2011), the data gap along the coastline will still be a few kilometers
(Gommenginger et al. 2011). Therefore, in these waters the ellipsoidal heights of
LAT can be solely derived from tide gauge records in combination with GNSS mea-
surements. To obtain a CWIC surface from these point data, strong interpolation
is required, unless the data gap is closed by GNSS surveys as in the BATHYELLI
project (Section 1.2.4). The latter, however, is expensive and hence not preferable.
The interpolation, on the other hand, is not trivial. Remember that the tidal behavior
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Figure 1.2: Schematic representation of cur-
rent practice in deriving separation models of
CD (LAT), where ζ MSL

LAT is the model-derived
separation between the MSL and LAT, and
hMSL, hLAT the ellipsoidal heights of MSL and
LAT, respectively. The abbreviations HM,
RA, and TG, stand for hydrodynamic model,
radar altimetry, and tide gauges, respectively.

at a particular tide gauge location, and hence the LAT value, is not necessarily rep-
resentative for nearby locations. Furthermore, the distance between neighboring tide
gauge locations may be tens of kilometers.

To derive an accurate and continuous 3D description of LAT in Dutch waters includ-
ing the coastal areas, the Wadden Sea, and the Eastern and Western Scheldt estuaries,
avoiding interpolation, two alternative approaches are possible. Schematically, these
approaches are illustrated in Fig. 1.3. Both approaches differ from each other by
the reference surface used as intermediate surface to which the model-derived LAT
values refer and, related to that, by the way the average meteorological conditions,
under which the LAT events are supposed to occur (International Hydrographic Or-
ganization 2011a, Technical Resolution 3/1919), are accounted for.

The first approach (Fig. 1.3a) determines the ellipsoidal heights of LAT as the sum
of the ellipsoidal heights of MSL and the heights of LAT relative to MSL. The ellip-
soidal heights of MSL are derived by adding the quasi-geoid heights to the hydrody-
namic model-derived MDT expressed relative to that quasi-geoid, while LAT relative
to MSL is derived from modeled tidal water levels.

In the second approach (Fig. 1.3b), the ellipsoidal heights of LAT are computed as the
sum of the quasi-geoid heights and the heights of LAT relative to this quasi-geoid.
The latter can be derived from modeled water levels which comprise the tide and
the time-averaged meteorological and steric contributions, provided that the modeled
water levels refer to the quasi-geoid.

In this study, the second approach is preferred. The reason for this is twofold: (i) this
approach is conceptually clearer since the model’s reference surface, as well as the
quasi-geoid, is an equipotential surface of the Earth’s gravity field (Hughes & Bing-
ham 2008) (indeed, in a strict sense the quasi-geoid is not an equipotential surface, but
at sea the differences between the geoid and quasi-geoid are negligible) and (ii) this
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(a) (b)

Figure 1.3: Schematic representations of two alternative approaches to derive a separation
model of CD (LAT). Both alternatives differ from each other by the reference surface used
as intermediate surface to which the model-derived LAT values refer and, related to that, by
the way the average meteorological conditions, under which the LAT events are supposed
to occur (International Hydrographic Organization 2011a, Technical Resolution 3/1919), are
accounted for. In the first alternative (a) the MSL is used as intermediate surface, while in the
second alternative (b) the quasi-geoid is used. In the schemes, we use ζ MSL

LAT for the model-
derived separation between the MSL and LAT, ζMDT for the model-derived MDT, N for the
quasi-geoid heights, hMSL, hLAT for the ellipsoidal heights of MSL and LAT, respectively, and
ζ N

LAT for the model-derived separation between the quasi-geoid and LAT. The abbreviations
HM, Grav, RA, and TG, stand for hydrodynamic model, gravimetry, radar altimetry, and tide
gauges, respectively.

approach allows to include the average dominating variations (i.e., seasonal) of the
meteorological and steric conditions/MSL in the realization of LAT. The error intro-
duced by not taking into account that the model’s reference surface is an equipotential
surface, is illustrated by the results of Prandle (1978); the contribution of the M2 tide
to MSL in the southern North Sea varies from −1 to 8 cm, with maximum values
along the Dutch coast. The latter reason follows from a more precise interpretation
of the LAT definition as the lowest water level to occur under average meteorological
conditions and under any combination of astronomical conditions. Indeed, since the
average meteorological conditions in, e.g., spring differ from those in, e.g., fall, it
makes sense to include the average seasonal variations into the definition of the LAT.

Anyway, regardless of which approach we use, both for the first and the second ap-
proach a method needs to be developed to vertically reference a hydrodynamic model
to a particular quasi-geoid. As such a method is not available, its development is part
of this research. Thereafter, LAT relative to the quasi-geoid needs to be realized and
its accuracy should be assessed. This realization and assessment is also part of this
research.
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1.3.2 A geodetic perspective

Another motivation for this research arises when we ask whether we do have a quasi-
geoid model available that is adequate for our purpose. To be considered as adequate,
such a quasi-geoid model should at least cover our domain of interest; the Nether-
lands Continental Shelf and the Dutch mainland. Based on this criterion, several
“candidates” drop out. In particular, the EDIN2000 geoid (Hipkin et al. 2004) as this
geoid does not cover the Dutch mainland. As noted by Hipkin et al. (2004): “the
EDIN2000 model was primarily developed to estimate the MDT, so that, onshore,
the computation only has to estimate the geoid reliably enough for comparison with
coastal tide gauges, and for errors on land not to leak into marine areas”. We have
three other candidates: (i) the GEONZ97 North Sea geoid (De Bruijne et al. 1997),
(ii) the quasi-geoid synthesized from the Earth Gravitational Model 2008 (EGM2008)
spherical harmonic coefficients (Pavlis et al. 2012), and (iii) the European Gravimet-
ric Geoid 2008 (EGG08) (Denker et al. 2008).

The GEONZ97 North Sea geoid was computed as a preliminary geoid model in 1997,
but is still in use in the Netherlands. There are two main reasons why this geoid
is not adequate for our purpose. Starting with a gravimetric geoid, corrections to
this geoid were derived on land from differences at GPS/leveling points and at sea
from differences with TOPEX along-track mean sea surface heights. In this way,
they tried to correct the gravimetric geoid for long-wavelength errors. Hence, at sea
GEONZ97 is closer to the MSL than to a geoid. This is the first reason why this
“geoid” is not adequate for our purpose. The second reason is that this geoid was
just a preliminary model (originally, the revision of GEONZ97 was even one of the
primary motivations to start this research). As recommended by De Bruijne et al.
(1997), a revision of GEONZ97 should include among others: (i) improved gravity
data from the British Geological Service and new shipboard gravity data in the Ger-
man Bight; (ii) improved processing of the radar altimeter data (e.g., improved orbits
and ocean tide corrections); (iii) radar altimeter data from other altimetry missions
than TOPEX/POSEIDON; and (iv) improved modeling of the MDT.

Of the two remaining candidates, EGG08 has the best performance. Although not
specifically computed for the North Sea area, it is currently the best, publicly avail-
able quasi-geoid model covering the whole North Sea and Dutch mainland. It makes
use of an extensive database of terrestrial, airborne, and shipboard gravity data (most
of these data are classified) combined with satellite gravity data (CHAMP + GRACE)
and radar altimeter data (the Danish National Space Center altimeter-derived gravity
anomaly grid 2008 (Andersen et al. 2010)). The older shipboard gravity data were
edited and crossover adjusted (Denker & Roland 2005). The model is made available
on a 1′×1′ grid, though the real spatial resolution maybe somehow less. A validation
of EGG08 using independent GPS and leveling data suggests a sub-decimeter accu-
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racy at continental scales to an accuracy of a few centimeters over distances of a few
hundred kilometers.

There are two reasons why the accuracy of EGG08 can be further improved. The first
reason is that EGG08 does not include data acquired by the GOCE (Gravity field and
steady-state Ocean Circulation Explorer) satellite (Journal of Geodesy 2011) as these
data are just publicly available from May 2010. Undoubtedly, including these data
will further improve the quality of the quasi-geoid. The use of satellite gravity data
in (regional) (quasi-)geoid computations is a topic of ongoing research.

The second reason is that in the estimation of EGG08 one did not exploit the full
potential of satellite radar altimeter data. This data set is considered as a key data
set to obtain an accurate, high-resolution quasi-geoid. Indeed, most existing ship-
board gravity data sets are old and have varying accuracies, which are often hard to
assess. According to Wessel & Watts (1988), errors up to a few tens of mGal occur
that mainly originate from the incorrect computation of the Eötvös effect, a direct
consequence of the poor ship positioning quality in the pre-GNSS era. Depending on
the used measurement technology, other error sources mentioned by Wessel & Watts
(1988) are: off-leveling, cross-coupling, non-linear drift, and a mechanical “tare” or
“jar” of the gravity sensor. All these sources give rise to mostly systematic errors
that can be partially removed by, e.g., a crossover analysis (e.g., Wessel & Watts
1988, Denker & Roland 2005). Since surveying is time consuming and expensive, no
systematic gravity re-survey of the whole North Sea is foreseen. Although airborne
data are less expensive to acquire, existing data sets lack complete coverage over the
whole North Sea. Moreover, they are not always publicly available. Radar altime-
ter data, however, are not classified and provide accurate information with a uniform
coverage. The use of radar altimeter data requires, among others, a correction of the
observed SSHs for the dynamic sea surface topography. The latter consists of three
components: tides, surge, and steric water level variations. Astronomical tide cor-
rections are commonly derived from global ocean tide models. Several authors (e.g.,
Andersen & Knudsen 2000, Hwang et al. 2006, Sandwell & Smith 2009) have sug-
gested that these corrections lack accuracy in shallow waters. Much better corrections
can be obtained by using dedicated shallow water tide models. In the computation
of EGG08, 951,251 anomalies from the KMS2002 global marine gravity field were
used (Andersen et al. 2005), for which a slightly modified version of the GOT00.2
global ocean tide model (Ray 1999) was used to correct for the astronomical tide.
Therefore, applying astronomical tide corrections derived from a shallow water tide
model is the second expected improvement that can be achieved compared to EGG08.
The real added value of using a shallow water tide model for the astronomical tide
corrections needs to be investigated. The assessment is part of this research.

From a conceptual point of view, also the surge and steric contributions to the in-
stantaneous water levels need to be removed, before the corrected SSHs can be
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identified with (quasi-)geoid heights, referred to as geometric (quasi-)geoid heights.
While in most (quasi-)geoid computations, however, the gradients of the geometric
(quasi-)geoid heights (i.e., the DoV) rather than the geometric (quasi-)geoid heights
themselves are used, these contributions are assumed to be negligible, except for
the slopes associated with eddies and mesoscale variability, and western boundary
currents (Sandwell & Smith 2009). This assumption is motivated by comparing the
magnitude of the gradients associated with non-tidal water level variations to the pre-
cision with which the DoV can be derived. The outcome of this comparison is, how-
ever, explicitly dependent on the distance between the two geometric (quasi-)geoid
heights used to compute the DoV, i.e., it is dependent on the wavelength. Indeed,
application of the error propagation law shows that the propagated standard devia-
tion of the DoV is inversely proportional to this distance (Hwang et al. 2002, Eq. 5).
We agree that over 7 km (1 s of flight along the satellite track) the contribution of
non-tidal water level variations to the DoV might be negligible, i.e., for these wave-
lengths the signal-to-noise-ratio (SNR) is less than one. However, over wavelengths
of tens to hundreds of kilometers, the SNR may be more favorable, meaning that
these contributions are not negligible anymore. Sandwell & Smith (2009) found that
the measured noise for wavelengths >80 km is less than the estimated errors in the
sea surface slope. Therefore, we conclude that as long as it is allowed that radar
altimeter data contribute to determine the (quasi-)geoid’s medium-wavelengths, the
added value of proper corrections for the non-tidal water level variations should not
be limited to the very short-wavelengths.

Several authors (e.g., Brennecke & Groten 1977, Rapp & Yi 1997) have shown that
applying a MDT correction to the observed SSHs has a limited impact on the esti-
mated gravity anomalies and the (quasi-)geoid. Rapp & Yi (1997), who carried out
a number of experiments in the Gulf Stream region, provide two reasons to explain
this lack of improvement. First, their computations were carried out after removing
the mean difference between the SSHs and the reference geoid from the observations.
While this removal was not restored to the computed anomalies and the MDT is al-
most constant in the region they considered, this “data centering” effectively removed
the MDT effect. The second reason is that they did not account for the seasonal MDT
variations that exist in the non-repeat ERS-1 geodetic mission (GM) data used in their
study. Our study, however, differs from the study of Rapp & Yi (1997) in that we will
evaluate the impact of the instantaneous dynamic topography corrections rather than
those of the mean dynamic topography. In the North Sea, which is known for its fre-
quent storm surges, the gradients associated with the MDT are somewhat small com-
pared to the gradients that can show up during a surge event. During such an event,
sea level can be raised or lowered by several meters over a period ranging from a few
hours to 2–3 days (Pugh 1996, Flather 2000). The argument that this contribution
averages out and, therefore, is of little importance for (quasi-)geoid computations, is
not valid. It might be true for the exact repeat mission (ERM) data, but not for the
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GM data. In fact, the GM data are of utmost importance for gravity field recovery
due to their spatially dense ground tracks (Sandwell & Smith 2009). For these data,
we cannot compute average values.

Sandwell & Smith (2009) removed the long-wavelength SSH gradient iteratively: in
each iteration, the long-wavelength components are removed from the observations
by subtracting the low-pass filtered differences (0.5 gain at 180 km) between the ob-
served SSH gradients and the gradients of the geoid obtained in the previous iteration.
In the initial run they used a geoid computed from the EGM96 spherical harmonic
coefficients. Although they showed that this method provides good results, it is not
very practical for the semi-enclosed North Sea basin. Indeed, while there are no data
on land, the performance of this filter operation decreases in coastal waters. In addi-
tion, low-pass filtering also removes signal, i.e., after filtering radar altimeter data in
fact only contribute to the determination of the (quasi-)geoid’s short-wavelengths.

Therefore, in this study we also consider the importance of the time-varying non-
tidal water level variation corrections for the computation of the quasi-geoid. The
inverted barometer correction, as for example applied by Hwang et al. (2006), lacks
accuracy in shallow water to properly remove the sea level signal induced by atmo-
spheric wind and pressure forcing. The reason is that the dominating acceleration
term related to wind stress is ignored in the inverted barometer correction. This
also holds for the quasi-stationary corrections for the water level variations induced
by water density variations derived from the Levitus climatological data set (e.g.,
Hwang 1997); according to Wunsch & Stammer (1998) their accuracy is limited to
the 10–25 cm level. Both correction terms can be improved by using a shallow wa-
ter hydrodynamic model. Here, we will use the same model as used to improve the
astronomical tide corrections, which has the additional advantage that any non-linear
interaction between the separate contributions (e.g., between tide and surge (Prandle
& Wolf 1978)) will be included as well. This means that just one correction is applied
instead of three separate ones.

So, the hydrodynamic model used to derive the separation between the quasi-geoid
and LAT, will also be used to estimate the quasi-geoid. This requires a small, but
important change of the schematic representation of our approach to derive a sepa-
ration model of LAT as given in Fig. 1.3b; instead of a one-way link between the
quasi-geoid and the hydrodynamic model, a two-way link exists (cf. Fig. 1.4, which
is an update of Fig. 1.3b). This two-way link results in a chicken-and-egg problem;
on the one hand, we aim to use a hydrodynamic model to derive a proper quasi-geoid,
while on the other hand this quasi-geoid needs to be the model’s reference surface.
The development of a methodology that solves this problem is a part of this research.
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Figure 1.4: Schematic representation of the
approach used in this study to derive a sep-
aration model. Compared to Fig. 1.3b, we
included an arrow from the hydrodynamic
model to the quasi-geoid, as the hydrodynamic
model will also be used to estimate the quasi-
geoid. In the scheme, we use ζ N

LAT for the
model-derived separation between the quasi-
geoid and LAT, N for the quasi-geoid heights,
and hLAT for the ellipsoidal heights of LAT.
The abbreviations HM, Grav, RA, and TG,
stand for hydrodynamic model, gravimetry,
radar altimetry, and tide gauges, respectively.

1.3.3 A hydrodynamic modeling perspective

A hydrodynamic model that provides proper estimates of the instantaneous water
levels expressed relative to a (quasi-)geoid does not only serve hydrographic and
geodetic needs. The increasing accuracy requirements demanded from hydrody-
namic models expose the need to abandon modeling practice that leaves the model’s
reference surface undefined and use some work-arounds if modeled water levels need
a proper reference. Indeed, the reference surface of a model that enables to reduce ob-
served SSHs to the (quasi-)geoid is the (quasi-)geoid. Hence, such a model perfectly
matches the need of the hydrodynamic community.

Finally, the properly referenced hydrodynamic model we aim to develop in this study
paves the way to new applications. One of them is a probabilistic approach to realize
CD, i.e., an approach where CD is defined as the level below which the water falls
with a given probability. Such an approach to realize CD may be preferred above LAT
if the probability that the instantaneous water level drops below LAT is significantly
higher than once per 18.6 years. Indeed, if this is the case, mariners might take more
risk than they realize. In this study, these probabilities will be assessed.

1.4 Research objectives

The overall goal of this study is the realization of the offshore vertical reference sur-
face LAT in the ETRS89/GRS80 system and linked to the onshore height system. As
seen above, a shallow water hydrodynamic model takes a key role in the realization
of this surface. First, it is needed to correct radar altimeter SSHs for the contribu-
tion of the dynamic sea surface topography, which is needed to realize an accurate
high-resolution quasi-geoid. Second, it is needed to realize LAT expressed relative
to this estimated quasi-geoid. We have identified a chicken-and-egg problem; on the
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one hand, we aim to use a hydrodynamic model to derive a proper quasi-geoid, while
on the other hand this quasi-geoid needs to be the model’s reference surface. Hence,
the main objective of this study is to develop a procedure that enables to derive a
consistent set of offshore vertical reference surfaces; a quasi-geoid based on, among
others, radar altimeter data combined with a shallow water hydrodynamic model
and LAT relative to this quasi-geoid, obtained using a shallow water hydrodynamic
model.

From this objective, four specific research questions are derived.

1. How can a shallow water model be vertically referenced to a given (quasi-)
geoid and to which extent does such a model benefit from an improved (quasi-)
geoid? What accuracy can be expected of the modeled instantaneous and mean
dynamic topography?

Vertical referencing of a shallow water hydrodynamic model comprises all tasks
needed to refer the modeled instantaneous water levels to a particular equipotential
surface of the Earth’s gravity field. Once known how to reference such a model, we
can assess the impact of quasi-geoid errors on the modeled water levels. This, in turn,
will answer the question to which extent a more accurate quasi-geoid improves the
quality of modeled water levels. In this study, we use the Dutch Continental Shelf
Model version 5 (DCSM), which is a 2D storm surge model. This model will be
extended to include the effect of horizontal water density variations on the modeled
water levels.

2. What is the added value of using a shallow-water hydrodynamic model for the
reduction of radar altimeter SSHs to quasi-geoid heights when estimating a
quasi-geoid for the Netherlands Continental Shelf?

The reduction of SSHs to quasi-geoid heights implies the removal of the full dynamic
topography signal, i.e., the contributions associated with tides, surge, and steric wa-
ter level variations. While the last two contributions are in most areas assumed to be
negligible (at least for the short wavelengths), in our analysis we will quantify the
impact of including them into the dynamic topography corrections separately. For
an unambiguous interpretation, the analysis will be split into two parts. First, we
perform a spectral analysis of the residual along-track DoV and the associated noise,
obtained after applying different sets of dynamic topography corrections. Second,
we quantify the impact of different sets of dynamic topography corrections on the
estimated quasi-geoid. To estimate the quasi-geoid, we use a radial basis function
parameterization of the disturbing potential. This parameterization was used suc-
cessfully for the most recent realization of the Dutch land quasi-geoid NLGEO2007
(Klees et al. 2008). Note that in this thesis, we do not distinguish between the geoid
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and the quasi-geoid as they are nearly identical in the Dutch coastal regions and at
the open sea.

3. How, and to which level of accuracy, can we derive the separation between the
quasi-geoid and LAT from a shallow water hydrodynamic model?

To obtain the highest accuracy of the LAT surface, LAT values at the tide gauges need
to be integrated in the model-derived LAT surface (cf. Turner et al. 2010). This can
be achieved in several ways. Turner et al. (2010) merged LAT values derived from
observed water levels and hydrodynamic models in a post-processing step. Alterna-
tively, one might consider an online assimilation of tidal water levels into the model.
In this study, we rely on the model calibration that has been carried out using both
tide gauge and radar altimeter data. Furthermore, to reduce the numerical complexity,
we exclude a detailed modeling of the LAT surface in the estuaries and the Wadden
Sea as was done to obtain the current “LAT reduction matrix” (Section 1.2.6). This
will be done in the future once a refined DCSM model has become available. For op-
erational use of the LAT surface, a number of practical issues need to be addressed.
First, the issue of how to achieve a continuous transition from those waters where
LAT is used as the vertical reference surface to the rivers where a non-tidal datum is
used. Second, the issue of impounded waters, i.e., waters that are not dynamically
connected to the open sea. Both issues are out of the scope of this thesis. Regarding
the first one, it is worth to mention that in the Netherlands the vertical datum used in
the rivers that are connected to the waters where LAT is used, is defined (i) relative
to NAP (i.e., the quasi-geoid) and (ii) such that it smoothly transits to LAT. Hence,
the first issue does not seem to be a concern.

4. Does the use of a Slepian basis representation provides a solution of the spec-
tral inconsistency between a high- (e.g., MSL) and low-resolution (e.g., geoid)
data set?

One facet of the aim to obtain a consistent set of vertical reference frames is that the
frames are consistent in terms of spectral resolution. While, in general, this is not
the case, we have to enforce “spectral consistency” by, e.g., the application of a suit-
able low-pass filter. Here, conventional low-pass filters are inadequate since we have
to deal with signals that are not defined on land (MSL, MDT, and LAT). A recent
study of Albertella et al. (1999) suggests that the use of a Slepian basis representa-
tion may solve this problem. While so far this has not been proven, in this study we
will elaborate the Slepian basis representation solution and demonstrate (by numeri-
cal experiments) that it does not solve the spectral consistency problem. Because this
“spectral consistency problem” recently emerged in computing the MDT by subtract-
ing a gravimetric geoid from an altimeter-derived MSL model, our experiments are
presented in the same context.
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1.5 Outline

This thesis is organized as follows.

In Chapter 2, we present the flowchart of the overall procedure developed and im-
plemented in this study to estimate, on the one hand, a quasi-geoid and to obtain,
on the other hand, a hydrodynamic model that provides water levels relative to this
quasi-geoid. This chapter will guide the reader through the remaining chapters of the
thesis.

In Chapter 3, we describe the approach developed to obtain a 2D storm surge model
that provides estimates of the instantaneous water level relative to a particular quasi-
geoid.

In Chapter 4, we assess the added value of the use of this model in computing the
dynamic topography corrections needed to reduce the altimeter-derived SSHs to ge-
ometric quasi-geoid heights. Furthermore, we present and validate the estimated
quasi-geoid.

Chapter 5 treats two closely related but distinct topics. The first topic is the derivation
of LAT in the North Sea from a vertically referenced shallow water model. The
second topic is the assessment of the suggested sense of safety of the use of LAT as
CD.

In Chapter 6, we treat the question whether a spherical Slepian basis representation
enables to obtain spectral consistency in the context of MDT estimation using the
so-called “geodetic approach”, i.e., by computing the difference between a mean sea
surface model obtained from satellite altimetry and a gravimetric geoid.

Chapter 7 comprises the conclusions and recommendations for future research.





Chapter 2

Overall approach to offshore
vertical reference frame
realization

In Chapter 1, we showed that to obtain a coastal-waters-inclusive continuous (CWIC)
surface of the ellipsoidal heights of LAT, LAT needs to be derived relative to the
quasi-geoid. Moreover, it was shown that in the North Sea an accurate realization
of both the quasi-geoid and the LAT surface requires the use of a shallow water hy-
drodynamic model: (i) to correct the altimeter sea surface heights (SSHs) for the
contribution of the dynamic sea surface topography and (ii) to obtain the separations
between the quasi-geoid and the LAT surface. Obviously, the computation of the el-
lipsoidal heights of LAT as the sum of the quasi-geoid heights and the model-derived
separation between the quasi-geoid and LAT can only be applied if the hydrody-
namic model’s reference surface can be identified with the quasi-geoid. The quasi-
geoid, however, is not known, and the hydrodynamic model is needed to estimate the
quasi-geoid. In this chapter, we present the flowchart of the procedure developed and
implemented in this study to estimate, on the one hand, a quasi-geoid and to obtain,
on the other hand, a hydrodynamic model that provides water levels relative to this
quasi-geoid. The hydrodynamic model, in turn, can be used to realize the commonly
used offshore vertical reference surfaces LAT and MSL, or separations between these
surfaces such as the mean dynamic topography (MDT). The overall procedure can be
divided in three steps: (i) the data preprocessing; (ii) the estimation of the quasi-geoid
and the realization of a hydrodynamic model that provides water levels relative to this
quasi-geoid; and (iii) the realization of the LAT and MDT surfaces (spectrally con-
sistent with the quasi-geoid) once the final quasi-geoid and the vertically referenced
hydrodynamic model are available. In the remainder of this chapter, these three steps
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are briefly discussed. References are included to the corresponding sections of this
thesis that provide more detailed information about the individual sub-steps.

2.1 Step 1: data preprocessing

The first step comprises the preprocessing of the various data sets required to estimate
the quasi-geoid (satellite, airborne, shipboard, and terrestrial gravity data and radar
altimeter data (Section 4.3)) and/or required as input for the hydrodynamic model
(mean sea level pressure fields, wind speed fields, salinity and temperature fields,
radar altimeter data, and tide gauge data (Sections 3.5.2, 3.5.3, 3.5.4, and 5.2)). The
preprocessing aims to harmonize the data and prepare them for further processing.
In general, this includes a harmonization of the horizontal and vertical datums to
which the various data refer. The horizontal datum used in this study is the European
Terrestrial Reference System 1989 (ETRS89) that is based on the GRS80 ellipsoid.
Any height data (e.g., observed water levels at tide gauges, SSHs from radar altimetry,
and heights of the terrestrial/airborne gravity observation points) are transformed to
ellipsoidal heights in ETRS89 as well. In the remainder of this section, we provide
for each data set a concise overview of the applied preprocessing.

As shown in the flowchart, the way used to transform tide gauge water levels to
ellipsoidal heights depends on the available information (Section 5.2). If GNSS mea-
surements at a tide gauge are available, the transformation is straightforward. If not,
but the tide gauge station is connected to the national height datum, we add the na-
tional (quasi-)geoid height or we transform the heights to the European Vertical Ref-
erence Frame 2007 (EVRF2007) after which we add the height of the quasi-geoid
EVRF2007 refers to, which is the European Gravimetric Geoid (EGG08). If the tide
gauge station is not connected to the national height datum, which applies to most
offshore stations, the data are usually provided relative to MSL. Hence, ellipsoidal
heights can be obtained by adding the ellipsoidal height of the MSL. In this study,
they are derived from the mean sea surface computed by the Danish National Space

Figure 2.1 (following page): Flowchart of the procedure developed and implemented in this
study to obtain ellipsoidal heights of LAT and to establish the connection with the onshore
height system. The different colors of the blocks refer to the different steps in the overall
procedure: (i) green refers to the data preprocessing step, (ii) yellow refers to the step where
we estimate the quasi-geoid and realize a hydrodynamic model that provides water levels
relative to this quasi-geoid, and (iii) the light coral color refers to the step where we realize
the LAT and MDT surfaces. The different colors of the arrows refer to the different data
flows: tide gauge data (blue); radar altimeter data (green); gravity data (red); and salinity,
temperature, and meteorological data (black). Grey is used if the arrow refers to a non-data
flow or when two or more data groups are involved.
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Center in 2008 (DNSC08-MSS) (Andersen & Knudsen 2009). The preprocessing of
the tide gauge data is concluded by extracting the astronomical tide signal from the
observed water levels, which is realized by a harmonic analysis (see Eq. (5.1)).

Harmonizing the airborne, shipboard, and terrestrial gravity data (Sections 4.3.4,
4.3.3, and 4.3.2, respectively), furthermore involves harmonizing the gravity datums
and, for shipboard gravity data in particular, a removal of systematic errors (Sec-
tion 4.3.3.2). Note that, when specific information is missing, the gravity data are
supposed to be in the zero-tide system. For the satellite gravity data (Section 4.3.1),
we need to adjust the low-degree coefficients (C20, C30, C40, C21, and S21) for secular
variations introduced by differences in the reference epoch adopted in the estimation
of the geopotential model and the one adopted in our study (January 1, 1999).

In those continental areas of the computational domain where we do not have terres-
trial/airborne gravity data or which are characterized by strong variations in topog-
raphy (note that we do not apply terrain corrections (Section 4.3.2)), we use DoV in
north and east direction derived from the EGG08 quasi-geoid (Section 1.3.2). These
data do not need any preprocessing.

Besides gravity data, radar altimeter data are used to estimate the quasi-geoid. The
preprocessing of these data involves applying all instrument and propagation correc-
tions (e.g., corrections for dry and wet troposphere refraction). In addition, we need
to remove the geophysical corrections for solid earth tide, loading tide, and pole tide
and the surface correction for the electromagnetic bias. Reference frame differences
among the various altimeters are accounted for by applying reference frame offsets
to the data, using TOPEX as reference. Finally, outliers in SSHs have to be removed.

The meteorological forcing input to DCSM comprises the (time-varying) mean sea
level pressure and wind speed fields in north and east direction (Section 3.5.2). Af-
ter interpolation to the DCSM model grid (GRS80 ellipsoid in the ETRS89 (Sec-
tion 3.2)), the wind speeds need to be converted to wind stresses for which we make
use of Charnock’s relation (see Eq. (3.4)). For the computation of the LAT surface,
we also need to compute the average monthly variations in mean sea level pressure
and wind stress (Section 5.3.3). These variations represent the “average meteoro-
logical conditions” referred to in the definition of LAT (International Hydrographic
Organization 2011a, Technical Resolution 3/1919).

The preprocessing of the 4D salinity and temperature fields (Section 3.5.3) starts with
the computation of 4D water density fields for which we use the international ther-
modynamic equation of seawater 2010 (TEOS-10) (IOC, SCOR and IAPSO 2010).
After interpolating the water densities to the DCSM model grid, we compute the
associated pressure gradients for each depth layer and integrate over depth to ob-
tain the depth-averaged horizontal pressure gradient fields (see Eq. (3.5)). Finally,
the computation of the LAT surface requires average monthly fields to be computed
(Section 5.3.3).
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2.2 Step 2: iterative estimation of the quasi-geoid and ver-
tical referencing of the hydrodynamic model

After preprocessing all data, the procedure continues with the iterative estimation
of the quasi-geoid (see Chapter 4) and the subsequent vertical referencing of the
extended DCSM model (Section 3.3 for the extension we made to the DCSM model).
Here, vertical referencing refers to all steps needed to obtain a hydrodynamic model
that provides instantaneous water levels relative to a (quasi-)geoid (Section 3.4).

First, the full dynamic topography signal needs to be removed from the altimeter
SSHs (Section 4.3.5). In the initial run, these corrections are derived as the sum
of the ocean tide (GOT4.7), dynamic atmosphere (MOG2D), and the time-averaged
steric (difference between the DTU10-MSS mean sea surface and the EGG08 quasi-
geoid) contributions. In all subsequent iterations, these corrections are replaced by
instantaneous water levels relative to the estimated quasi-geoid of the previous itera-
tion obtained from the extended and vertically referenced DCSM model.

Next, we estimate and remove secular and remaining seasonal variations in the radar
altimeter sea level data (Section 4.3.5). In general, the secular variations induced by,
e.g., eustatic and steric sea level changes, self-gravitation, and glacial isostatic adjust-
ment, are not included in the modeled water levels. The remaining seasonal variations
are mainly associated with the net steric expansion/contraction of the global oceans
that cannot be represented by the extended DCSM model since it makes use of the
Boussinesq approximation (Section 3.3). After removing these variations, we obtain
“geometric” quasi-geoid heights up to some long-wavelength errors, which are likely
dominated by radial orbit errors.

To suppress the long-wavelength errors, we compute the along-track derivatives of
the obtained geometric quasi-geoid heights, i.e., the along-track deflections of the
vertical (DoV) (see Eq. (4.54)). After removing the outliers, for the exact repeat
mission (ERM) data we continue to compute the time-averaged along-track DoV.
Next, we remove the reference quasi-geoid (in the mean-tide system) and apply to the
geodetic mission GM data an along-track low-pass filter to suppress high-frequency
noise (Section 4.3.5).

The quasi-geoid is estimated using the classical remove-compute-restore technique
(RCR); the quasi-geoid is obtained by the sum of the global field contribution (spheri-
cal harmonic expansion of the satellite-only geopotential model) and the contribution
of the residual gravity field (Section 4.2.1). The latter contribution is estimated from
the residual terrestrial, shipboard, and airborne gravity data, the EGG08-derived DoV
in north and east direction, and the altimeter-derived residual along-track DoV. The
residual gravity field is parameterized using a linear representation of radial basis
functions (Section 4.2.2).
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In the initial run, we continue with the vertical referencing of the extended DCSM
model, after which we start the first iteration. In all iterations, it will be evaluated
whether the root mean square (rms) difference relative to the last solution is lower
than a certain threshold. If not, the extended DCSM model will be vertically refer-
enced to the latest quasi-geoid and a new iteration is started. Otherwise, the extended
DCSM model will be vertically referenced to the latest quasi-geoid and the iteration
stops.

2.3 Step 3: computation of vertical reference surfaces

In the final step of the procedure, we compute the LAT (Section 5.3.3) and MDT
(Section 3.6.1) surfaces relative to the estimated quasi-geoid using the extended and
vertically referenced DCSM model. The MDT at each model grid point is computed
as the time-averaged modeled water level over the entire simulation period (1984–
2004), where the model is forced by astronomical tides, atmospheric wind and pres-
sure forcing, and baroclinic forcing.

The LAT at each model grid point is derived as the minimum water level over the
entire time series of modeled water levels (1984–2004). Here, the time-varying wind
stress and water density pressure gradient fields are replaced by their average monthly
values. The model-derived LAT values are validated using LAT values at tide gauges.
They are derived from the observed water levels as the minimum water level over the
reconstructed astronomical tide signal, after reducing them to the estimated quasi-
geoid.

Finally, the obtained surfaces are made spectrally consistent with the quasi-geoid, for
which we will try the use of a Slepian basis representation (see Chapter 6).



Chapter 3

Vertical referencing of a shallow
water hydrodynamic model

An earlier version of this chapter is published in Continental Shelf Research under
the title “Obtaining instantaneous water levels relative to a geoid with a 2D storm
surge model” (Slobbe et al. 2013a). In this chapter, we present an approach to ob-
tain a 2D storm surge model that provides estimates of the instantaneous water level
relative to a particular quasi-geoid (the European Gravimetric Geoid 2008 model
(EGG08)), i.e., an approach to vertically reference a 2D storm surge model. Using
different numerical experiments, we investigate the effects on the (mean) water levels
of several approximations we made during the implementation. The ability of the
model to reproduce both the mean dynamic topography (MDT) and instantaneous
water levels is assessed by a comparison with the MDT derived from the Atlantic-
European North West Shelf- Ocean Physics Hindcast, as well as with instantaneous
water levels acquired by various radar altimeter satellites. Furthermore, the chap-
ter includes an experiment where we assess the impact of quasi-geoid errors on the
model-derived MDT, which in turn answers the question to which extent expected
quasi-geoid improvements improve the model.

3.1 Introduction

In this chapter, we aim to obtain proper estimates of the instantaneous water levels
in a uniquely defined 3D coordinate system (e.g., the European Terrestrial Reference
System ETRS89 in combination with the GRS80 ellipsoid) from a 2D storm surge
model. In the North Sea, characterized by strong tides and storm surges, such models
are often used for real-time prediction of tides and surges. The models typically
solve the depth-integrated shallow water equations, assuming that the water density

29



30 CHAPTER 3. VERTICAL REFERENCING OF A HYDRODYN. MODEL

is uniform in both space and time (Heaps 1983, Engedahl 1995, Vested et al. 1995,
Flather 2000). Ignoring this so-called baroclinic forcing is motivated by the fact that
both the magnitude and temporal variability of the associated steric sea level changes
in the North Sea are much lower than the dominant tide and surge signals. Hence,
these variations are not relevant to short-term storm surge predictions, though some
pragmatic approaches exist which attempt to account for them (see Section 3.3 for an
example).

A further “limitation” is that storm surge models, usually, do not provide absolute
water levels, i.e., water levels in a 3D coordinate system. Such water levels can
be easily obtained as soon as the model’s reference surface is uniquely described in
a 3D coordinate system. Often, this surface is identified with the mean sea level
(MSL) (e.g., Mouthaan et al. 1994, Heemink et al. 2002, Iliffe et al. 2007b, Dodd
et al. 2010). MSL can be described in a 3D coordinate system by making use of
radar altimeter data. However, while the dynamics of the models usually assume
zero horizontal gravity components, this interpretation is strictly spoken not correct.
Indeed, vanishing horizontal gravity components imply the model’s vertical reference
surface is an equipotential surface of the Earth’s gravity field (a so-called geop). This
has already been noticed by Hughes & Bingham (2008). Geops close to MSL (so-
called geoids) are often used as natural reference surface for onshore height systems,
see Hofmann-Wellenhof & Moritz (2005) for a thorough introduction or Meyer et al.
(2006) for a brief summary. Like the MSL, a geoid is an observable reference surface
that can be uniquely described in a 3D coordinate system. Since both the model’s
reference surface and a geoid are geops, the most natural way to obtain a model that
provides absolute water levels is when the model is adjusted such that its reference
surface can be identified with a geoid.

Until now, one dealt with this issue in a pragmatic way if properly referenced water
levels are required. For example, to assess the predicted height of the water level in-
duced by a predicted storm surge to decide whether or not storm surge barriers need to
be closed, absolute water levels relative with respect to the onshore height system ref-
erence surface are necessary. These are obtained by adding, at the locations of nearby
tide gauges, the predicted surge to the tide predicted by a harmonic synthesis using
tidal constituents, including the zero-frequency one, estimated from observed water
levels that refer to the onshore height system. Here, the predicted surge is computed
as the difference between two model runs with as driving forces (i) astronomical tide
and meteorology (wind and mean sea level pressure variations) and (ii) astronomical
tide. Indeed, since the constituents are estimated from observed water levels (that
contain the sum of all effects including steric), the estimated zero-frequency con-
stituent represents the total MSL expressed relative to the vertical reference surface
of the observed water levels. Moreover, this approach even accounts for a part of the
time-varying steric sea level changes, since this variability has energy at the same
frequencies of some tidal constituents used in the harmonic analysis.
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Although such pragmatic approaches to account for steric water level variations and
to obtain absolute water levels suffice for storm surge applications, they are not ade-
quate or accurate enough for some applications in coastal engineering, hydrography,
and geodesy. For example, one major drawback of the above described workaround
to obtain absolute water levels is that it can only be applied at those tide gauge stations
whose benchmarks are fixed in a 3D coordinate system. For some applications this
is not sufficient; they need estimates of the instantaneous water levels expressed rel-
ative to a well-defined (quasi-)geoid everywhere. Of course, other workarounds can
be found (see below for one example), but from a conceptual point of view this is not
satisfactory. It is much clearer if any workaround can be avoided and the definition of
the model’s vertical datum becomes an intrinsic feature of the model itself. Moreover,
avoiding workarounds is needed to satisfy the higher and ever increasing accuracy re-
quirements. The following examples of applications require sub-decimeter accuracy
for instantaneous and mean water levels.

One hydrographic application, thoroughly treated in Chapter 5, is the derivation of
the separation between the chart datum (CD) and a reference ellipsoid in coastal wa-
ters and estuaries. In deep water, the ellipsoidal heights of CD are obtained by adding
to the ellipsoidal heights of MSL the separation between MSL and CD derived from
a global ocean tide model. Along the coast and in estuaries, however, no ellipsoidal
heights of MSL are available due to a lack of reliable radar data. Since the (quasi-)
geoid is globally defined, the most straightforward approach to obtain the ellipsoidal
heights of CD is by “modeling” CD directly relative to the (quasi-)geoid and add
this separation to the (quasi-)geoid heights. In Chapter 5, it is also shown that in
the North Sea the low water levels frequently deviate from the adopted CD. As sug-
gested by technical resolution 3/1919 of the International Hydrographic Organization
(IHO) (International Hydrographic Organization 2011a), in such a case another sur-
face might be used as CD. In Chapter 5, a CD is proposed that is defined as a level
which is exceeded with a prescribed probability. To compute the ellipsoidal heights
of this surface, a model is required that provides instantaneous water levels expressed
relative to a (quasi-)geoid. Another application, relevant to a broader community, is
to reference water levels at offshore locations properly. Currently, these water levels
refer to MSL, which is realized by adjusting them to the mean computed over the
measurement period. This period, however, needs to be sufficiently long before the
initial mean can be computed and the data can be used. Furthermore, while only by
averaging over longer time spans the mean gets closer to the actual MSL, the datum
is commonly recalculated over time, resulting in discontinuities in the time series. By
using a properly referenced model that includes steric effects, the water levels can be
expressed relative to the (quasi-)geoid from the first measurement day.

To a first approximation, instantaneous water levels relative to a particular (quasi-)
geoid can be obtained in a post-processing step by adding to the modeled water lev-
els the time-averaged steric water levels expressed relative to that (quasi-)geoid (the
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dominant time-variable steric water level variations can be added using conventional
workarounds (Section 3.3)). This contribution needs to be derived from an ocean
circulation model (hydrodynamic model developed to simulate the large scale move-
ments of waters (spatial scales of 50–500 km, time scales of 10–100 days)) whose
model domain comprises that of the 2D storm surge model being used (it cannot be
derived from radar altimeter data as no reliable radar data are available in coastal
zones and estuaries). However, irrespective of whether observations or a model are
used, the main problem is that all contributions to the MDT other than steric (mainly
astronomical tide and the contribution induced by atmospheric wind and pressure
forcing) need to be excluded. This is straightforward as long as the contributions
of the astronomical tide and the atmospheric wind and pressure forcing, on the one
hand, and the steric contribution, on the other hand, are linearly additive. However,
this is not the case. Anyway, unless we have access to the model used to derive the
full MDT, we cannot obtain the contributions induced by tide and atmospheric wind
and pressure forcing only. Deriving them using our 2D storm surge model reduces
to a replacement of its mean water levels by those obtained from the ocean circu-
lation model. As a consequence, any contribution of the 2D storm surge model to
an improved representation of the MDT is ignored, which is undesirable. Besides
that, another important disadvantage of this approach is that the steric contribution
is assumed to be static. This means not only that the modeled water levels lack the
time-varying contribution of the water density gradients, but also that the modeled
water levels become dependent on the time span used to compute the time-mean
steric water levels.

In this chapter, we present an alternative approach to obtain a 2D storm surge model
that provides estimates of the instantaneous water level relative to a particular (quasi-)
geoid. Essentially, the approach involves two steps. First, we explicitly add to the
model the baroclinic forcing by adding the depth-averaged baroclinic pressure gra-
dient terms as diagnostic variables. They are computed from 4D temperature and
salinity fields obtained from a 3D hydrodynamic model. Second, we adjust the model
parameters that depend on the choice of the reference surface (e.g., bathymetry) and
also refer the water levels along the open sea boundaries to the (quasi-)geoid. The
most attractive aspect of this approach is that, in a relatively simple manner, more
physics is added to the model so that the model becomes conceptually clearer and
workarounds can be avoided. This will, among others, increase the transparency if
observed water levels are assimilated into the model. Indeed, no additional correc-
tions are needed to exclude a part of the observed signals in an attempt to make the
observed water levels consistent with the modeled ones. Also the interoperability of
modeled water levels will be improved. This is useful, e.g., in flood studies where
water level simulations are integrated with digital elevation models that usually refer
to the (quasi-)geoid, or in support of off-shore works and shipping, since the provided
forecasts can be properly transformed to any height that is needed (e.g., ellipsoidal
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heights). Besides a description of the applied procedure, this chapter investigates the
effect on the modeled water levels of several approximations we make during the
implementation. The procedure is described for the Dutch Continental Shelf Model
version 5 (DCSM). This is a 2D storm surge model used operationally at the Royal
Netherlands Meteorological Institute KNMI (De Vries 2011) to predict the water lev-
els along the Dutch coast.

In this chapter, we first introduce the DCSM. Second, we describe the extension of
this model to account for the horizontal variations in water density. Following this,
we address the issue of how to define the model’s vertical datum. Next, we describe
the data sets used in our numerical experiments, which were designed to investigate
the ability of the referenced model to represent the MSL and instantaneous water
levels. Thereafter, we present and discuss the results of the numerical experiments.
Finally, we provide a brief summary of the work that has been done and we conclude
by emphasizing the main findings.

3.2 The Dutch Continental Shelf Model

The numerical model used in this study is the Dutch Continental Shelf Model ver-
sion 5 (DCSM) described by Gerritsen et al. (1995) and Verlaan et al. (2005). It was
developed to make tide and surge forecasts over the full tidal cycle to support the
operational management of the Eastern Scheldt storm surge barrier. The model is
based on the WAQUA software package (Leendertse 1967, Stelling 1984) for depth-
integrated flow. WAQUA includes the non-linear surge-tide interaction and is based
on the depth-integrated shallow water equations. DCSM covers the area of the north-
west European continental shelf to at least the 200 m depth contour, i.e., 12◦W to
13◦E and 48◦N to 62.3◦N, and has a horizontal resolution of 1/8◦×1/12◦ (approxi-
mately 8×9 km) in east-west and north-south directions, respectively. For a graphical
outline of the model domain we refer to Fig. 1.1a.

To obtain a unique solution of the depth-integrated shallow water equations, a set of
boundary conditions is prescribed. Through closed boundaries, where neither inflow
nor outflow can occur, the flow velocity normal to the boundary is set equal to zero.
At the open sea boundaries, water levels are prescribed as discussed in detail in Sec-
tion 3.4. Note that if water enters the model domain, prescription of water levels is
supplemented by the condition that the velocity parallel to the open sea boundary is
zero.

Although spherical coordinates are used to solve the equations, during the develop-
ment of the model the horizontal coordinates were assumed to be ellipsoidal latitude
and longitude referring to the GRS80 ellipsoid (Moritz 2000) in the European Terres-
trial Reference System 1989 (ETRS89). This implies that all features of the model,
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e.g., coastlines, openings, and bathymetry, are expressed in ellipsoidal geographic
coordinates, which in turn are treated as spherical geographic coordinates. In addi-
tion, distances between the model grid points are computed on the surface of a sphere
rather than on the surface of the ellipsoid. The errors introduced in this way are neg-
ligible compared to the model uncertainties (H. Gerritsen, personal communication,
2012). To remain consistent, we assume that the model output is geo-referenced in
ellipsoidal geographic coordinates as well.

To limit the propagation of uncertainty of the used model parameters and parameter-
izations to the model output, extensive calibrations of the model have been carried
out; both by off- and on-line data assimilation of observed water levels (Verboom
et al. 1992, Mouthaan et al. 1994, Gerritsen et al. 1995, Philippart et al. 1998). Here,
by changing the bathymetry, bottom friction coefficients, open boundary conditions,
and the Charnock coefficient the differences between modeled and observed water
levels over a certain time period are minimized. The length of this period varies for
the different calibrations that have been conducted. For instance, Philippart et al.
(1998) used a period of 2.5 months.

Note that the internal tide generation can be neglected, because the model domain
mainly consists of shelf seas.

3.3 The extension of the Dutch Continental Shelf Model

In the original model formulation, the water density was assumed to be uniform. One
only accounts for the seasonal variations by including a seasonal term in the formula-
tion of the water levels prescribed at the open sea boundaries, about which more is to
follow in Section 3.4. The amplitude and phase of these seasonal terms are calibrated
such that the model properly reproduces the spatially averaged remaining seasonal
variations in the water level, i.e., the signal not captured by seasonal mean sea level
pressure/wind variations. Obviously, it cannot be expected that such a pragmatic ap-
proach fully accounts for a missing forcing term; the time-mean contribution is not
included at all, while also the inter- and intra-annual variations are ignored (although
the latter can be accounted for by repeating the calibration from time to time, at least
approximately).

In this study, the baroclinic forcing is explicitly added to the model. This is realized
by treating the water density as a diagnostic variable computed from temperature and
salinity values derived from a 3D hydrodynamic model using the international ther-
modynamic equation of seawater 2010 (TEOS-10) (IOC, SCOR and IAPSO 2010).
The reason why we treat the water density as a diagnostic variable is that in the North
Sea the horizontal variations in water density induce a 3D flow structure that can-
not be handled by a 2D shallow water model. In the extended model equations, this
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contribution shows up as the depth-averaged baroclinic pressure gradient terms in
x (east-west) and y (north-south) directions; Γx and Γy, respectively. Following the
Boussinesq hypothesis the influence of variable density appears only in these terms,
while in the other terms a constant reference density ρ0 is assumed. In Cartesian
coordinates, used here for simplicity, the three model equations become
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y , τy = ρaCdWy

√
W 2

x +W 2
y , (3.4)

and represent the wind stresses in x (east-west) and y (north-south) directions, respec-
tively. Γx and Γy are defined as
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The description of the other variables is provided in the list below.

x,y Cartesian coordinates in horizontal plane
u,v depth-averaged currents in x, y direction
t time
R Earth radius (6371 km)
ζ water elevation above reference surface
d depth below reference surface
H total water depth (d +ζ )
g gravity acceleration (9.813 m/s2)
C Chézy bottom friction coefficient
f parameter of Coriolis
Wx,Wy 10 m wind velocity components in x, y direction
Cd wind drag coefficient
ρa density of air (1.205 kg/m3)
ρ0 constant reference density of water (1023 kg/m3)
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P surface atmospheric pressure
L number of depth layers in 3D model from which temperature and salinity

fields are derived
j, l layer indices
h j,hl thickness of layers j and l
ρ j,ρl mean water density of layers j and l

Since the model currently only features a static depth-averaged baroclinic pressure
field, the baroclinic forcing is added to the model as if it was wind forcing. This can
be done by converting the depth-averaged baroclinic pressure gradients to “pseudo-
wind stresses” using Eq. (3.4) after replacing Wx and Wy by Γx and Γy, respectively.
Then we scale these “pseudo-wind stresses” by ρ0d and add them to the actual wind
stresses. The scaling by ρ0d is needed to account for the fact that in the model
equations the wind stresses are divided by ρ0H. The errors in ζ introduced by using
d rather than H appear to be on the order of sub-millimeters and hence are negligible.

It should be noted that models that make use of the Boussinesq approximation (as
most models do), and therefore conserve volume and not mass, can never represent
the steric effect properly (Greatbatch 1994). In a global model, at least two contri-
butions are lacking: a contribution mainly attributed to the so-called Goldsbrough
Stommel gyres that is unknown and ignored as a small error and a spatially uniform
but time-varying contribution that accounts for the net expansion/contraction of the
global oceans. Mellor & Ezer (1995) showed that in case of a regional model there is
an additional contribution that accounts for either the Boussinesq or non-Boussinesq
transport through the open boundaries of the model. Practically, the correction for
the net expansion/contraction can be treated in the water levels prescribed at the open
boundaries. The approach followed in this chapter will be discussed in Section 3.4.3.

Note that in the model the gravity acceleration (g) is treated as a constant value,
although in reality it varies with location (mainly due to the Earth’s meridional flat-
tening). Hughes & Bingham (2008) pointed out that the effect of the meridional
flattening gives rise to errors in water levels of about 0.5%. Hence, we conclude that
for the domain of the DCSM model the errors introduced by using this assumption
are negligible as well.

3.4 Vertical referencing of the DCSM

To ensure that water levels of the extended DCSM model refers to the quasi-geoid,
we need to (i) express the bathymetry used in the model relative with respect to the
quasi-geoid and (ii) prescribe water levels along the open sea boundaries referring to
the quasi-geoid. The two steps are referred to as “vertical referencing” of DSCM.
Note that the latter of the two steps can be unambiguously realized only if all of
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the relevant physics is included. Furthermore, it should be noted that in principle
also the water levels within the model’s domain at initial epoch should be referenced,
but in our model setup the influence of the initial water levels on the water levels at
later epochs vanishes after a few days of spin-up and, therefore, this step is skipped.
Moreover, for models that do include special hydrodynamic features such as barriers,
weirs, and sluices (not included in DCSM), also the overflow-heights need to be
expressed relative to the quasi-geoid.

In the past, bathymetry was interpreted as given relative with respect to MSL. Hence,
referring bathymetric data to the quasi-geoid reduces to apply a correction for the
separation between MSL and the quasi-geoid (i.e., the MDT). For DCSM this is
not possible because the original bathymetric data set is no longer available, only
the adjusted bathymetry obtained after applying subsequent model calibrations (Sec-
tion 3.2). Moreover, even if it was available, after applying the reduction we would
need to recalibrate DCSM again, which is a very elaborate procedure and out of the
scope of this study. By still applying the reduction from MSL to the quasi-geoid to
the current bathymetry we can, however, get an idea of the impact of such a correction
on the modeled water levels (see Experiment III in Section 3.6.3).

Direct observations of the instantaneous water level in the neighborhood of the open
sea boundaries are provided by radar altimetry. However, the spatial-temporal res-
olution of radar altimetry is not sufficient to derive the open boundary conditions
entirely. Alternatively, the water levels along the open sea boundaries can be derived
from a larger hydrodynamic model that includes all the required contributions in the
modeled water levels, i.e., astronomical tide, surge, and steric effects. Although em-
bedding DCSM into such a model is foreseen in the future, this is not implemented
yet. Hence, we still use the current approach where the open boundary conditions are
derived as the sum of the separate contributions that make up the full instantaneous
water levels expressed relative to the quasi-geoid: the astronomical tide (ζa), surge
(ζu), and steric height (ζs). In the following, we discuss how these three contributors
are quantified for DCSM. In particular, we discuss how the steric contribution has
been computed along the open sea boundaries.

3.4.1 Astronomical tide

ζa is derived by a harmonic expansion using 12 constituents, namely M2, S2, N2, K2,
O1, K1, Q1, P1, NU2, L2, Mf , and Mm

ζa(ϑ ,λ , t) =
12

∑
i=1

fiHi cos(ωit +(V0 +u)i−Gi), (3.6)

where ϑ is the latitude, λ is the longitude, fiHi, ωi, and Gi are the amplitude, angular
velocity, and phase of harmonic constituent i, respectively, and (V0 + u)i links the
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local time basis to the orbital positions of the Sun, Moon, and Earth. Except for Mf
and Mm, the amplitudes and phases of the other constituents are the same as used in
the operational version of DCSM. These were originally derived from a global ocean
tide model, but modified during the subsequent tidal model calibrations. The ampli-
tudes and phases of the lunar fortnightly Mf and lunar monthly Mm are taken from
the FES2004 tidal atlas solution (Lyard et al. 2006). The 18.6 year nodal tide cycle
is approximated by the nodal coefficients fi(t) and ui(t). The remaining long-period
constituents, e.g., the solar annual (SA), the solar semi-annual (Ssa), and the 14-month
pole tide, are believed to be negligible (H. Gerritsen, personal communication, 2012).

3.4.2 Surge

Water level variations induced by atmospheric wind and pressure forcing (ζu) are
approximated by the inverted barometer (IB) equation given as (Wunsch & Stammer
1997)

ζu(ϑ ,λ , t) =− 1
ρ0g

(P(ϑ ,λ , t)− P̄Ωo(t)) , (3.7)

where P̄Ωo(t) is the spatial average of P(ϑ ,λ , t) over the global oceans Ωo at epoch t.

In many studies, time dependencies in P̄Ωo(t) are neglected (e.g., De Vries et al. 1995,
Heemink et al. 2002) and P̄Ωo(t) is replaced by the global mean pressure P̄Ω. Then,
however, one needs to correct for the bias in the modeled water levels introduced by
the fact that the time-mean spatially averaged pressure over the global oceans is not
equal to the global mean pressure P̄Ω.

3.4.3 Steric heights

In this study, we consider two possibilities of how to compute the steric contribution
to instantaneous water levels along the open sea boundaries of DCSM: (i) we use
available monthly mean water levels from a larger ocean circulation model, with a
domain that comprises the model domain of DCSM and subtract the astronomical
tide and the surge components; (ii) we interpolate in space and time instantaneous
water level observations provided by radar altimeter satellites after subtracting the
astronomical tide and the surge components (see Section 3.5.4 for more details).

If the first approach is used, we need to account for a different vertical reference
of the larger ocean circulation model compared to the one we aim at, i.e., the used
ocean circulation model needs to be vertically referenced as well. While usually the
vertical datum of the model is unknown, the only feasible way to obtain the datum
shift δWG,P between the quasi-geoid and the model’s equipotential reference surface
is by comparing observed and modeled water levels. In absence of errors, δWG,P
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can be obtained by comparing the observed and modeled water levels at a particular
location for a certain epoch. Obviously, however, there will be errors and the question
is how to limit their impact in the computation of δWG,P. In this study, we applied four
measures:

1. We use the time-averaged water levels (MDT) rather than the water levels at
one particular epoch.

2. δWG,P is computed as a spatially integrated difference rather than using the
water levels at one particular location.

3. To suppress high-frequency noise in both the observation- and model-derived
MDT’s, the MDT’s are smoothed with a Gaussian filter (W G).

4. Regions prone to errors both in the observation- and model-derived MDT’s
(coastal regions and regions along the open boundaries of the used ocean cir-
culation model) are excluded.

So, the equation used to compute δWG,P is

δWG,P =
1

ΩδW

∫∫
ΩδW

W G(ψ)
(

ζO(ϑ ,λ )−ζM(ϑ ,λ )
)

dΩ, (3.8)

where ΩδW is the actual region used to compute δWG,P, ψ is the distance between
the computation point and the data point, and ζO and ζM are the observation- and
model-derived MDT, respectively. It should be noted that the reference epoch of the
observation-derived MDT should correspond to that of the model-derived one. The
reason is that the radar altimeter data used to derive the observation-derived MDT
include the spatially varying secular changes due to e.g., melting of the ice sheets.
Hence, any discrepancy between the reference epochs causes spatially varying dif-
ferences between the observation- and model-derived MDT that contribute to δWG,P.

In addition, we need to account for the fact that the steric contribution to the in-
stantaneous water levels derived from an ocean circulation model, in general, is not
the full steric signal. Indeed, since most ocean circulation models make use of the
Boussinesq approximation, the net steric expansion/contraction of the global oceans
is lacking. If we use observed water levels (e.g., from radar altimeter data) to validate
DCSM’s output, we need to add this correction to the observed water levels before
the validation is done. Note that for the approach (ii) such a correction is not needed;
the net expansion/contraction signal is contained in the observed water levels used to
derive the steric contribution and hence becomes a part of the water levels prescribed
at the open sea boundaries. The corrections (δζs) are computed using (Bouffard et al.
2008)

δζs(t) =
1

ΩD

∫∫
ΩD

(
ζs̃(ϑ ,λ , t)−ζs̃(ϑ ,λ )

)
dΩ, (3.9)
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where ΩD is DCSM’s model domain and ζs̃(ϑ ,λ , t) and ζs̃(ϑ ,λ ) the steric height
and its time average, estimated by integrating the density anomalies, computed from
the salinity (S) and temperature (T ), over the whole water column (Tomczak & Stuart
1994):

ζs̃(ϑ ,λ , t) =
0∫
−d

ρ(ϑ ,λ ,z,35,0)−ρ(ϑ ,λ ,z, t,S,T )
ρ(ϑ ,λ ,z,35,0)

dz, (3.10)

with ρ(ϑ ,λ ,z,35,0) is the water density at the standard salinity S = 35.0 and tem-
perature T = 0◦C.

3.5 Experimental setup

To demonstrate the vertical referencing procedure developed in this study, we refer-
enced the extended DCSM model to the European Gravimetric Geoid 2008 model
(EGG08) (Denker et al. 2008), which is the state-of-the-art quasi-geoid model for
Europe. In this section, we briefly introduce the data sets used, and the applied pre-
processing required to carry out the experiments presented in Section 3.6.

3.5.1 The European Gravimetric Geoid 2008 (EGG08)

The EGG08, briefly introduced in Section 1.3.2, is a zero-tide quasi-geoid model.
This means that the potential value assigned to the quasi-geoid does not include the
tide-generating potential but still includes the potential of the permanent deformation
of the Earth due to the tides (e.g., Ekman 1989, Hughes & Bingham 2008, Mäkinen
& Ihde 2008). While the tide generating forces in the hydrodynamic model do not
include any contribution at the zero frequency, the quasi-geoid must be expressed
in the mean-tide system for consistency. This implies that the time-averaged tide-
generating potential has to be restored, for which we use the approximation given by
Ekman (1989)

Nm = Nz +9.9−29.6sin2 B [cm], (3.11)

where B is the ellipsoidal geographic latitude and Nm and Nz are the quasi-geoid
heights in the mean- and zero-tide system, respectively.

3.5.2 Wind and mean sea level pressure

For operational storm surge forecasting, DCSM uses forecasts of the wind and air
pressure fields provided by the meteorological high-resolution limited area model
(HiRLAM) (Cats & Wolters 1996). HiRLAM has a spatial resolution of 5–15 km.
Unfortunately, we cannot make use of these data as our simulation period is January
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1, 2000 to January 1, 2003, while the HiRLAM data are not continuously available
prior to 2007. Hence, we need to derive the wind and air pressure data from other
sources. In this study, we use the publicly available data of the interim reanalysis
project ERA-Interim provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF). ERA-Interim covers the period from January 1, 1979 onwards
and provides three-hourly grids with a spatial resolution of 1.5◦× 1.5◦. The data
are available from the ECMWF data server. For a description of the model, the data
assimilation method, and the input data sets used in ERA-Interim, we refer to Dee
et al. (2011).

The wind and air pressure fields are interpolated to the DCSM grid using the Generic
Mapping Tools (GMT) greenspline routine (Wessel 2009) with a tension factor of
0. To account for the differences between on- and offshore wind regimes, we only
use the grid cells that are flagged as sea in the ERA-Interim land/sea mask.

3.5.3 Monthly mean salinity, temperature, and water levels

Salinity and temperature fields used in computing the depth-averaged baroclinic pres-
sure gradients are obtained from the Atlantic — European North West Shelf — Ocean
Physics Hindcast provided by the Proudman Oceanographic Laboratory (POL), here-
after referred to as POL’s hindcast (Holt et al. 2005). This hindcast over 45 years
(1960–2004) was carried out with a coupled hydrodynamic-ecosystem model. The
hydrodynamics are provided by the POL 3D baroclinic model (POL3DB) (Holt &
James 2001, Holt et al. 2001), which is part of the POL Coastal Ocean Modeling
System. The model fully covers the northwest European continental shelf; its do-
main ranges from 20◦W to 13◦E and 40◦N to 65◦N. The horizontal resolution is
comparable to that of DCSM; 1/6◦× 1/9◦ in east-west and north-south directions,
respectively. The model has 42 terrain-following coordinate levels in the vertical.
The output, provided as monthly mean fields, include the sea surface height, poten-
tial temperature, and salinity of the sea water. All products are interpolated onto
24 standard vertical levels distributed over the range of 0 to 5000 m such that the
resolution decreases with increasing depth. In the remainder of this chapter, we refer
to these products by, e.g., POL’s monthly mean water levels.

Since the model does not include the formation of sea ice, water temperatures below
zero degrees Celsius have been masked out. Hence, for these grid points, no water
density can be computed. Since this only affects the upper layers and occurs in small
subregions of the model domain, the empty values are filled using the non-empty
grid points of the same depth level during the interpolation to the DCSM grid. This
interpolation is performed using GMT’s surface routine (Wessel & Smith 1995)
with the default tension factor. As discussed in Section 3.3, the depth-averaged pres-
sure gradients induced by the spatial variations in water density are converted into
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“pseudo-wind stresses” and added to the actual wind stress fields. Since the latter
are updated every three hours, we interpolate the monthly fields to three-hourly val-
ues using a cubic spline interpolation, for which we assign the monthly means to the
mid-epochs of each month.

The steric contribution to the instantaneous water levels along the open sea bound-
aries is derived after subtracting the monthly mean water levels induced by astronom-
ical tide and meteorological forcing from POL’s monthly mean water levels. Note that
this steric contribution does not include the net expansion/contraction of the oceans
since the POL3DB model makes use of the Boussinesq hypothesis. Ideally, the as-
tronomical tide and meteorological forcing contributions have to be derived using the
POL3DB model as well. However, while we do not have access to this model to run
it, we subtracted the monthly mean astronomical tide and IB correction computed
using Eqs. (3.6)–(3.7). As discussed in Section 3.1, this implies that “our” monthly
mean water levels at the open sea boundaries are replaced by those from POL. To ref-
erence these water levels to EGG08, we add the datum shift (δWG,P) between EGG08
and the zero water level surface of POL3DB that is empirically derived using the
approach outlined in Section 3.4.3 (see Eq. (3.8)). Here, ζO is the DNSC08 mean
sea surface (DNSC08-MSS) not corrected for the inverted barometer effect (Ander-
sen & Knudsen 2009) expressed relative to EGG08, and ζP is the MDT derived from
POL’s monthly mean water levels computed over the same time span as DNSC08-
MSS (1993–2004). The reference epoch of DNSC08-MSS is January 1, 1999, i.e.,
the mid-epoch of the time span over which the mean sea surface is computed. For
the filter operation applied to suppress possible noise in ζO and ζP, we use a Gaussian
filter with a half-width of 29.4 km. This is about three times the half-wavelength data
resolution. Here, the actual choice of the filter half-width hardly affects the computed
datum shift; doubling the half-width decreases δWG,P by only 1.2 mm. Fig. 3.1 shows
a geographical map of the smoothed differences. Since the MDT signal is not defined
on land, this filter operation fails in coastal regions and hence all grid points closer
than 150 km from the coastline were excluded from the computation of δWG,P. In
this way, we also eliminate remaining errors in the coastal region in both ζO and ζP.
Furthermore, we excluded those grid points that were within 3◦ from the open bound-
aries of the POL3DB model. We refer to Fig. 3.1 for an outline of the regions used
to compute δWG,P (ΩδW ). We can neglect the spatial variability of gravity over ΩδW
and obtain for the datum difference δWG,P a value of 3.837 m2/s2, which is equivalent
to 0.391 in metric units.

3.5.4 Radar altimeter data

Radar altimeter data are used to derive time series of the steric heights at the open
boundaries, as well as to validate the modeled water levels obtained with the ex-
tended, vertically referenced DCSM model. The data acquired by the ERS-2, Envisat,
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Figure 3.1: Differences between the
smoothed DNSC08-MSS not corrected for
the inverted barometer effect expressed
relative to EGG08 and the smoothed
MDT derived from POL’s monthly mean
modeled water levels over the same time
span for which DNSC08-MSS is computed
(1993–2004). The data inside the regions
bounded by the thick black line are used to
compute δWG,P.

GFO-1, Jason-1, and TOPEX/POSEIDON (T/P) satellites are taken from the Radar
Altimeter Database System (Scharroo 2013). Table 3.1 shows the main characteris-
tics of those missions together with an overview of the used orbits and background
models used to compute the ellipsoidal heights of the instantaneous sea surface. They
are computed by correcting the observed sea surface heights (SSHs) for dry and wet
tropospheric refraction, ionospheric refraction, and the sea state bias. In addition,
we applied corrections for solid earth tide, loading tide, and pole tide, since none
of these signals are included in WAQUA. Reference frame differences among the
various altimeters are accounted for by applying reference frame offsets to the data
using TOPEX as reference (see Andersen & Scharroo (2011) for details about the
computation).

Outliers in the observed SSHs are removed using the iterative procedure described
in Hwang & Hsu (2008). Smoothing of the along-track height differences with a
1D Gaussian filter using a filter half-width of 5.5 km is repeated until the largest
residual between observed and smoothed height differences is smaller than three
times the residual standard deviation. Errors in the water levels derived from radar
altimeter data are caused by measurement noise and systematic errors introduced by
mismodeling in all applied corrections. Moreover, secular changes in sea level due
to, e.g., eustatic and steric sea level changes, self gravitation, and glacial isostatic
adjustment also contribute to the error budget. In general, they are not included in the
modeled water levels (Boussinesq approximation!) unless they are explicitly added
to the open boundary conditions. Here, we remove the secular changes by detrend-
ing the observed water levels. We estimate a trend in observed water levels per grid
point from T/P, Jason-1, and Jason-2 data over the entire measurement period (1992–
2011). The corrections are centered at the mid-epoch of the period over which the
observation- and model-derived MDT are computed when deriving the datum shift
(δWG,P), i.e., the reference epoch of DNSC08-MSS.
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Table 3.1: Main characteristics of the radar altimeter missions from which data are used in
this study together with an overview of the orbits and background models used to compute
the ellipsoidal heights of the instantaneous sea surface and an overview of the number of data
points derived over the whole DCSM domain (ΩD) and North Sea (ΩNS) only. Note that the
data of the Envisat and ERS-2 missions, as well as the data of the Jason-1 and T/P missions,
are combined.

Envisat ERS-2 GFO-1 Jason-1 POSEIDON TOPEX

ID n1 e2 g1 j1 pn tx
Start 9/2002 4/1995 1/2000 1/2002 10/1992 10/1992
End 4/2012 7/2011 9/2008 7/2013 1/2006 1/2006
Inclination 98.5◦ 98.5◦ 108◦ 66◦ 66◦ 66◦

Cycle [days] 35 35 17 10 10 10
Orbit EIGEN-GL04S DGM-E04 GDR-C Prime idem n1 idem g1 idem g1
Dry Tropo. ECMWF idem n1 NCEP idem n1 idem n1 idem n1
Wet Tropo. MWR (NN) idem n1 MWR enhanced JMR TMR TMR
Ionosphere smth. dual-freq. JPL GIM JPL GIM idem n1 NIC09 idem n1
Sea State Bias CLS BM3 hybrid CLS BM4 CLS
Load tide GOT4.7 idem n1 idem n1 idem n1 idem n1 idem n1

Nr. pnts ΩD 12,720 182,093 258,853 82,136 10,833 204,338
Nr. pnts ΩNS 5,735 79,330 105,435 33,481 4,669 88,602
Mode nr. of 31 31 60 122 122 122
cycles per pass

Finally, the detrended ellipsoidal heights of the observed instantaneous water levels
are reduced to EGG08 by subtracting the EGG08 quasi-geoid heights. Note that
errors in the EGG08 quasi-geoid become part of the error budget.

3.5.4.1 Time series of steric heights along the open sea boundaries

A time series of steric heights along the open sea boundaries is derived as the dif-
ference between observed water levels expressed relative to EGG08, computed as-
tronomical tides, and water levels due to atmospheric pressure variations. Note that
contrary to the time series of steric heights derived from POL’s hindcast, these in-
clude the net expansion/contraction signal of the oceans. The values along the open
sea boundaries have been interpolated using this information at the data points. The
time series of astronomical tides is taken from the GOT4.7 global ocean tide model
(Ray 1999), which includes the major eight diurnal and semi-diurnal constituents (K1,
O1, P1, Q1, M2, S2, K2, N2), long-period tides, and the largest quarter diurnal shallow
water constituent M4 (Andersen & Scharroo 2011). The time series of water levels
caused by atmospheric pressure variations is taken from the MOG2D model (Car-
rère & Lyard 2003). Besides the low-frequency periods (>20 days), the barotropic,
non-linear and time-stepping MOG2D model provides also the high-frequency pe-
riods (< 20 days) response to atmospheric wind and pressure forcing, which is not
accounted for when using the standard IB correction (Eq. (3.7)).
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To remain consistent with POL’s salinity and temperature fields, only a monthly res-
olution is required. The weighted average steric height for month m (ζ m

s ) is computed
on a 1◦×1◦ grid by computing (i) the arithmetic mean (ζ p

s ) of all measurements in-
side the grid cell belonging to the same pass p of a particular satellite and (ii) the
weighted mean steric height ζ m

s by

ζ m
s =

N

∑
p=1

wpζ
p

s , (3.12)

where the weighting factors wp account for the inhomogeneous distribution of satel-
lite passes over time

wp =


1
2 (tp+1−tp)−ts

Tm
if p = 1,

tp+1−tp−1
2Tm

if 1 < p < N,
te− 1

2 (tp−tp−1)
Tm

if p = N,

(3.13)

with N the total number of satellite passes over a grid cell, ts and te the start and end
time of month m, tp the measurement time of the pth pass, and Tm the time interval of
one month. Finally, these monthly grids are interpolated to the locations of the open
sea boundaries using GMT’s greenspline routine (Wessel 2009) with a tension
factor of 0.

3.5.4.2 Observed dynamic topography used for validation

The last preprocessing step required to enable a proper validation of the modeled
water levels is only required if the steric contribution to the instantaneous water levels
prescribed along the open sea boundaries of DCSM is derived from POL’s hindcast.
Indeed, since the POL3DB model makes use of the Boussinesq approximation, the
net expansion/contraction of the global oceans signal should be removed from the
observed water levels to maintain consistency. The corrections (δζs(t)) are computed
using Eq. (3.9).

When validating the modeled instantaneous water levels and the derived MDT, we
compute the time-averaged differences over all exact repeat mission (ERM) mea-
surements. Here, we combined the data of all missions that share the same orbit, i.e.,
we combined the data of the T/P and Jason-1 missions and the data of the ERS-2
and Envisat missions. See Table 3.1 for an overview of the derived number of data
points and the mode number of cycles per pass (a cycle is one full completion of
the repeat period and a pass spans half an orbital revolution and is either ascending
(South-North) or descending (North-South)).
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Table 3.2: Summary of the experiments. Column OBC (open boundary conditions) provides
information of how the water levels along the open boundaries of DCSM have been computed
in the model run.

Exp. Objective Bathymetry OBC Source ζs Wind

Ia Reference case remaining exp. d ζa(ϑ ,λ , t)+ζu(ϑ ,λ , t)+ζs(ϑ ,λ , t)+δWG,P POL ERA-Int.
Ib ERA-40 versus ERA-Interim d ζa(ϑ ,λ , t)+ζu(ϑ ,λ , t)+ζs(ϑ ,λ , t)+δWG,P POL ERA-40

II Comparison with original DCSM model d ζa(ϑ ,λ , t)+ζu(ϑ ,λ , t)+ζ SA
s (t) n/a ERA-Int.

III Influence errors in bathymetry d−ζO ζa(ϑ ,λ , t)+ζu(ϑ ,λ , t)+ζs(ϑ ,λ , t)+δWG,P POL ERA-Int.
IV Influence steric from altimeter d ζa(ϑ ,λ , t)+ζu(ϑ ,λ , t)+ζs(ϑ ,λ , t) radar alt. ERA-Int.

3.6 Results and Discussion

In this section, we present and discuss the quality of the extended, vertically ref-
erenced model by validation of the modeled (time-averaged) water levels using (i)
water levels of POL’s hindcast and (ii) observed water levels from radar altimetry.
In all our experiments, summarized in Table 3.2, we model the instantaneous wa-
ter levels with a time step of 10 min over the period January 1, 2000 to January 1,
2003. To distinguish the results of the various experiments, they are labeled with
Roman numerals, e.g., the modeled dynamic topography (ζD(t)) for Experiment Ia
is ζDIa(t), where the capital letter D refers to the source from which the water level
is derived; the DCSM model. Besides D, we use O and P referring to observed and
POL’s modeled water levels, respectively.

3.6.1 Experiment Ia: reference case

In Experiment Ia, which serves as a reference case for the other experiments, the
mean and instantaneous water levels are modeled using POL’s time-varying salinity
and temperature fields. The steric contribution in the water levels prescribed at the
open sea boundaries are also derived from POL’s hindcast. Since for POL’s hindcast
ERA-40 wind fields were used, Experiment Ia is repeated using these wind fields as
well. This experiment, labeled as Experiment Ib, enables a fair comparison between
our model-derived MDT and the one derived from POL’s hindcast. Before we present
the validation results, we first provide a brief overview of the main features in the
model-derived MDT and depth-averaged flow velocities. The latter helps to interpret
the obtained MDT and the differences between observed and modeled water levels
presented in Section 3.6.1.3.

3.6.1.1 Model-derived MDT and depth-averaged flow velocities

The model-derived MDT and flow velocities over the entire simulation period are
shown in Figs. 3.2 and 3.3, respectively. Many of the features shown in these maps
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Figure 3.2: Model-derived MDT relative to
EGG08 computed over the entire simulation
period January 1, 2000 to January 1, 2003.
The grey lines show the contour lines of the
bathymetry.

are consistent with oceanographic expectations. For example, the polewards flow of
the Atlantic Ocean along the shelf break is clearly visible, as well as a part of the
Scottish Coastal Current which comes from the Irish Sea and flows to the north on
both sides of the Western Isles of Scotland, although this is less pronounced. We
also observe the inflow of mixed coastal and oceanic water through the Fair Isle
Channel most of which is guided eastwards to the Norwegian Trench by the ∼100 m
depth contour (the Fair Isle Current). The remaining part flows southwards along the
Scottish and English coasts and anti-clockwise back in the southern North Sea where
it finally joins the Norwegian Coastal Current in the Skagerrak. The Norwegian
Coastal Current is fed by inflow of the Atlantic Ocean, which gives a flow along
the western slope of the Norwegian Trench. The water re-circulates in the Skagerrak
where it is joined by the water flow from the southern North Sea and fresh water from
the Baltic, and flows out along the eastern side of the Norwegian Trench forming the
major transport out of the North Sea. For a recent overview of these currents, we
refer to (Huthnance et al. 2009, United Kingdom Marine Monitoring and Assessment
Strategy (UKMMAS) 2010, and cited studies).

The MDT field (Fig. 3.2) also shows well-known features, such as the piling up
against the Danish and German coasts as a response to the prevailing wind direc-
tion and the abrupt rise of the MDT in the Kattegat. The latter reflects the salinity
front there, separating the brackish Baltic Sea water from the saline North Sea wa-
ter, and the associated Baltic current (Ekman & Mäkinen 1996). The causes of both
features are nicely illustrated by Figs. 3.4a and 3.4b, which show the separate con-
tributions of wind and astronomical tide to ζDIa and that of horizontal variations in
water density, respectively. The map shown in Fig. 3.4b is computed by subtracting
from ζDIa the MDT obtained by a simulation using astronomical tide and atmospheric
wind and pressure forcing only, i.e., ζDII (Section 3.6.2), which is shown in Fig. 3.4a.
Fig. 3.4b also gives an idea about the order of magnitude of the time-mean signal so
far ignored in DCSM. The sea level increases more than 10 cm from north to south
over the North Sea.
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Figure 3.3: Time-averaged flow velocities computed over the entire simulation period Jan-
uary 1, 2000 to January 1, 2003. The grey lines show the contour lines of the model-derived
MDT (Fig. 3.2). For clarity only velocity vectors at every second grid points are shown.

3.6.1.2 Comparison with POL’s MDT

Fig. 3.5 shows a map of the spatial differences between POL’s MDT computed over
our simulation period (ζP) and the MDT derived in Experiment Ia (ζDIa), while Ta-
ble 3.3 provides the statistics of these differences computed over the whole DCSM
domain (ΩD) and over the North Sea (ΩNS). Compared to ζP, in general ζDIa tends
to overestimate the MDT, mostly on the shelf. This is also reflected by the mean
difference over ΩD and ΩNS: −2.24 cm and −3.02 cm, respectively. The most prob-
able explanation for these biases is that in the computation of the datum shift (δWG,P)
between EGG08 and the zero water level surface of POL3DB we use also data over
a region outside the DCSM domain. Hence, any difference between this shift and the
shift that we would obtain if we only use data inside the DCSM model domain shows
up as a bias between ζP and ζDIa . The variability of the differences in the spatial do-
main is small; the standard deviations of the differences taken over ΩD and ΩNS are
both <2 cm. The large minimum deviation (−48.85 cm) comes from a grid point in
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Figure 3.4: Time-averaged water level induced by astronomical tide and surge (a) and the
time-averaged water level induced by horizontal variations in water density expressed relative
to EGG08 (b). Both are computed over the entire simulation period January 1, 2000 to
January 1, 2003.

the Wadden Sea right next to a non-computational point. Detailed analysis showed
that this point represents a small channel and is surrounded by grid points that are dry
most of the time. Most likely, this “outlier” is caused by the applied drying/flooding
procedure. Also along the open sea boundaries larger deviations are observed, which
are attributed to boundary effects. Remaining differences should be attributed to the
fact that different models are used (e.g., bathymetry, open boundary conditions) and
to differences in the used wind fields.

Although the differences between the two model-derived MDT fields are small (i.e.,
on the order of a few centimeters), the differences between POL’s monthly mean wa-
ter levels and monthly mean water levels from DCSM are much larger, especially in
the central North Sea. This follows directly from Fig. 3.6a, which shows the stan-
dard deviation of the differences between POL’s and DCSM’s monthly mean water
levels per grid point. Except for some spots near the open boundaries, away from
the shelf, the standard deviation of these differences is on the order of 1.0 cm, while
in the North Sea they increase from ∼2.0 cm in the northern part to 2.5–3.5 cm in
the southern part with extreme values along the Belgian/French coast (> 5 cm). A
detailed analysis of the differences per month reveals that the maximum differences
in the central and southern part reach∼10 cm for the months January 2000, February
2000, November 2000, and January 2002, while for other months the differences are
on the order of centimeters (not shown).

The main explanation for these differences is the difference in atmospheric wind and
pressure forcing; ERA-40 (POL) versus ERA-Interim (DCSM). This follows directly
from Fig. 3.6b that shows the result of Experiment Ib. Experiment Ib differs from
Experiment Ia in that the ERA-Interim wind fields were replaced by ERA-40 wind
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Figure 3.5: Difference between the model-
derived MDT derived from POL’s monthly
mean water levels (ζP) and the MDT derived
in Experiment Ia, both computed over the
entire simulation period January 1, 2000 to
January 1, 2003.
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Figure 3.6: Standard deviations of the differences between POL’s monthly mean water lev-
els and the ones obtained in: Experiment Ia (a); Experiment Ib (computed over the first
32 months of our simulation period, ERA-40 atmospheric wind and pressure forcing) (b);
and Experiment IV (c).

fields. Note that since ERA-40 is only available till September 2002 (from Octo-
ber 2002 operational analyses of ECMWF were used in POL’s hindcast), Fig. 3.6b
is computed over the first 32 months of our simulation period (this period include
all 4 months for which extreme deviations were observed). Indeed, the standard de-
viations of the differences between POL’s and DCSM’s monthly mean water levels
per grid point are significantly smaller; about 1.5 cm. Hence, we conclude that our
model setup (2D) is able to reproduce within a few centimeters standard deviation
the (monthly) mean water levels derived by POL’s hindcast (3D).

3.6.1.3 Validation with observation-derived MDT

The comparison with POL’s (monthly) mean water levels is not really independent
since we used the same water levels to extract the steric signal prescribed at the
open boundaries, as well as POL’s monthly mean salinity and temperature fields to
carry out this experiment. Therefore, we compare the model-derived MDT with an
independent MDT derived from radar altimeter data and the EGG08 quasi-geoid. In
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Table 3.3: Experiment Ia: statistics of the differences between POL’s MDT and the one
derived in Experiment Ia, as well as the aggregate and satellite-specific statistics of the (time-
averaged) differences between the observed and modeled dynamic topography computed over
both the whole model domain (ΩD) and North Sea (ΩNS). All values are provided in cm.

differences domain satellite rms min max mean std

ζP−ζDIa ΩD n/a 2.84 -48.85 11.29 -2.24 1.75
ΩNS n/a 3.32 -48.85 1.39 -3.02 1.38

ζO(t)−ζDIa (t) ΩD all 5.77 -89.21 226.54 -0.86 5.71
ΩNS 4.18 -89.21 101.20 -1.28 3.98

ζO(t)−ζDIa (t) ΩD all 10.45 -186.60 268.88 -1.01 10.40
ΩNS 9.31 -186.60 101.20 -1.13 9.24

ΩD ERS-2 11.03 -61.52 103.51 -0.45 11.02
GFO-1 11.27 -186.60 268.88 -2.49 10.99
Jason-1 9.72 -65.87 92.74 -0.14 9.72
Envisat 9.93 -29.93 48.49 2.07 9.71
POSEIDON 9.78 -105.23 68.64 -0.16 9.78
TOPEX 9.09 -164.89 81.68 -0.22 9.09

ΩNS ERS-2 10.17 -61.52 50.63 -1.05 10.11
GFO-1 9.78 -186.60 101.20 -2.86 9.35
Jason-1 8.50 -65.87 67.13 -0.08 8.50
Envisat 9.34 -29.84 40.88 2.73 8.94
POSEIDON 9.30 -93.47 68.64 -0.24 9.30
TOPEX 8.13 -76.18 49.21 0.17 8.13

ζO(t)−ζDIa (t)−δζ p ΩNS ERS-2 6.83 -34.62 41.06 0.17 6.83
GFO-1 7.32 -177.67 101.04 -0.13 7.32
Jason-1 7.14 -55.39 58.17 -0.18 7.13
Envisat 7.15 -30.66 49.53 0.00 7.15
POSEIDON 7.44 -93.29 61.45 0.30 7.44
TOPEX 6.03 -73.90 47.85 0.31 6.02

Fig. 3.7a, we show the pointwise differences computed as ζO(t)−ζDIa(t). To improve
the readability of this map, we interpolated the differences at the grid points of the
DCSM grid (using GMT’s surface routine (Wessel & Smith 1995) with the default
tension factor) and applied a moderate smoothing using a Gaussian filter with a filter
half-width of 29.4 km. The obtained map is shown in Fig. 3.7b.

Besides some spurious behavior along the coasts, likely caused by unreliable radar
data and interpolation errors, Fig. 3.7b shows also clear spatial patterns where sig-
nificant differences occur. Along the western open boundary the sign is more or less
opposite to the pattern shown in Fig. 3.5. Note that the spurious spots near 60◦ lat-
itude and at the southern open boundary near −10◦ longitude show up here as well.
Besides these, deviations up to 5 cm are observed in the Celtic Sea, the English
Channel, and the northern North Sea (see Fig. 3.7b that includes the bounding boxes
around the features of interest in the Celtic Sea and in the northern North Sea). Since
these patterns did not show up in the comparison with POL’s MDT (Fig. 3.5), which
model’s open sea boundaries are both further to the east and north, these cannot be at-
tributed to boundary effects. The fact that both the POL3DB model and DCSM make
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use of the Boussinesq approximation provides one possible explanation for these dif-
ferences. For instance, Greatbatch et al. (2001) has shown that on longer time scales
the difference field between non-Boussinesq and Boussinesq models shows spatial
variability of several centimeters, which is not accounted for by the applied globally
uniform correction of Eq. (3.9). In the remainder, we show that here other explana-
tions are more likely.

We obtain some insight into these discrepancies by analyzing the associated flow field
implied by the differences. Such an analysis would be rather straightforward if the
geostrophic assumption could be used to describe this flow. However, since we are
in shallow water this cannot be expected, which is further proved by a comparison
of the geostrophic velocities computed from the model-derived MDT (Fig. 3.2) with
the model-derived time-averaged depth-mean flow velocities (Fig. 3.3). For some
regions, the geostrophic assumption appears to be reasonable, while for others it is
clearly not. On the other hand, we observe a reasonable match between the direc-
tion of the geostrophic water flow and the actual time-averaged flow field shown in
Fig. 3.3. This follows already from the fact that the currents shown in Fig. 3.3 almost
flow along the contours of the MDT such that the slope in the MDT perpendicular
to the flow direction is positive towards the right (northern hemisphere), which is
expected if the flow is geostrophic. Hence, although we cannot perform a quantita-
tive assessment, we use this fact to interpret the differences shown in Fig. 3.7b. So,
we assume that the associated water flow implied by the differences, flows along the
contours of equal height such that the slope in the differences perpendicular to the
flow direction is positive towards the right.

Using this assumption the pattern in the Celtic Sea would imply the existence of a
clockwise flowing eddy, which should be added to the model results to match the ob-
servations. From Pingree & Lecann (1989) and Huthnance et al. (2009), we conclude
that the low-frequency circulation in the Celtic Sea is generally weak, except along
the shelf edge and where the flow is channeled or accelerated around promontories.
This is in line with the model-derived time-averaged flow velocities (Fig. 3.3) that
hardly exceed a few cm/s. From this, we believe the observed patterns originate from
errors in the observation-derived MDT, i.e., errors in the observation-derived MSL
and/or quasi-geoid. Here, the latter is likely to dominate since the eddy is located far
enough from the continents to be associated with the degraded performance of radar
altimetry in coastal regions.

The latter is probably the explanation for the observed patterns in the English Chan-
nel, where the altimeter satellites provide only a few samples when they cross from
the UK to France or vice versa. Probably, the degraded performance of the radar
altimeters biases the computed mean differences. In addition, the observed discrep-
ancies might be introduced by errors in the interpolated wind speeds and mean sea
level pressure values. First of all, the resolution of the ERA-Interim fields is only
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Figure 3.7: Time-averaged differences between the observed and modeled dynamic topogra-
phy (ζO(t)−ζDIa(t)) at the locations of the radar altimeter data points (a) and interpolated to
the DCSM grid (b). Here, a moderate Gaussian smoothing is applied using a filter half-width
of 29.4 km (sigma is 25 km). On top of this map, we added in gray the contour lines of the
differences for each centimeter in the range −0.08 to 0.08. The bounding boxes (bold black
lines) indicate the geographic extent of the features discussed in the text. Fig. (c) shows the
histogram of all differences, while Fig. (d) provides the standard deviations of the differences
computed for each bin.
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1.5◦× 1.5◦, which is not sufficient to represent the actual wind and mean sea level
pressure in this “small” channel. Moreover, we excluded all grid points masked as
land in the interpolation to the DCSM grid, which implies that almost no grid points
remain in this region. Consequently, the values at the grid points inside the English
Channel (this holds for some other regions as well) are almost exclusively interpo-
lated from values inside the Celtic Sea and North Sea.

When looking at Fig. 3.7b, we notice correlation between the spatial pattern of the
differences ζO(t)−ζDIa(t) and the currents in the northern North Sea. First, we expect
a flow that counteracts the Fair Isle Current and the inflow from the Atlantic Ocean
along Shetland. Second, we expect a southwards flow on both sides of the Norwegian
Trench in line with the inflow of the Atlantic Ocean (western side) and the Norwe-
gian Coastal Current (eastern side). From this, we conclude that these differences are
dominated by errors in the model-derived MDT. In particular, these results suggest
that the model overestimates the inflow via the Fair Isle Current and the inflow from
the Atlantic Ocean along Shetland, but underestimates the inflow along the western
side of the Norwegian Trench. The first two observations support the suggestion of
Holt & Proctor (2008) who conclude from a comparison of the modeled and ob-
served volume fluxes that the North Sea inflows are overestimated in their model. In
addition, we conclude that the outflow by the Norwegian Coastal Current is overes-
timated. A comparison of Fig. 3.4a and Fig. 3.4b indicates that the differences can
mainly be explained by errors in the steric water levels. They have to come from
(i) errors in the used salinity and temperature fields and (ii) errors in the steric water
levels prescribed at the open boundaries.

3.6.1.4 Validation of the modeled dynamic topography

In this study, we assess the model’s ability in representing the full dynamic topogra-
phy over the whole model domain by differencing the modeled instantaneous water
levels and the ones computed from SSHs acquired by radar altimeter satellites and
the EGG08 quasi-geoid.

The results are summarized by a histogram of these differences (Fig. 3.7c) and a
map that shows the standard deviation of these differences for each bin (Fig. 3.7d).
Furthermore, Table 3.3 provides the aggregate and satellite-specific statistics, com-
puted over both the whole model domain (ΩD) and North Sea (ΩNS). In general,
these statistics should be interpreted with care. First, they represent the performance
away from the coast, since we almost do not have radar altimeter observations in the
first 25 km off the coast. Second, the statistics are biased toward the errors in the
northern part of the domain. The reason is that due to the orbital inclination of the
satellites the measurement density increases towards the poles. Therefore, we also
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provided Fig. 3.7d from which we gain insight in the spatial behavior of the model
performance.

The histogram in Fig. 3.7c shows that the differences are normally distributed with
a mean and standard deviation of −1.01 cm and 10.40 cm, respectively. The over-
all quality over ΩD in terms of the root mean square (rms) error is 10.45 cm, which
decreases to 9.31 over ΩNS. Fig. 3.7d, however, reveals that these latter numbers
have little practical implication, since the standard deviation of the differences for
each bin varies significantly over the model domain; compared to the North Sea,
we observe a degraded performance in the St. George’s Channel, Irish Sea, English
Channel, German Bight, and Kattegat. The discrepancies can be partly attributed to
the degraded performance of altimetry in coastal regions. Moreover, according to
Holt et al. (2001) an accurate simulation of the processes in the St. George’s Channel
and the Irish Sea as a whole requires not only a finer resolution model but a model
coupled to a wider area than considered here. The differences may also be partially
attributed to the, already mentioned, inability of DCSM to reproduce the surge com-
ponent to the instantaneous water level in these waters. This is a consequence of
the limited spatial resolution of the ERA-Interim data in combination with the ap-
plied interpolation method (Section 3.6.1.3). Except for the Western Ireland Shelf, a
small region around 57◦N, and the area northwest to Shetland we do not observe a
significant increase of the standard deviations along the open sea boundaries. This
is attributed to the fact that the dominating astronomical tide signal prescribed at the
open boundaries, via data assimilation into a global ocean tide model, is derived from
radar altimeter data as well. There are two more regions that show degraded accu-
racies. One is in the southern North Sea, north of the city Norwich (around (1.5◦E,
53.5◦N)), where the water inflow starts to recirculate towards the North. Most likely,
the strong tidal currents are not well represented by the model. The other is in the
Norwegian Trench, west to Norway. This might be related to the fact that the Nor-
wegian Coastal Current is unstable and forms large eddies (Huthnance et al. 2009),
which are not resolved here.

Note that the agreement between modeled and observed dynamic topography varies
significantly for the various altimeters. Table 3.3 provides the satellite-specific statis-
tics, again both for the whole model domain and the North Sea. The observed dy-
namic topography derived from the TOPEX data shows the best agreement with the
modeled one; the rms values are 9.09 cm over ΩD and 8.13 cm over ΩNS. Compared
to the rms values obtained for the ERS-2 and GFO-1 missions, the rms for TOPEX
is smaller by about ∼2 cm over ΩD and 1.5–2 cm over ΩNS. Probably, the reduced
ability of the GFO-1 mission is related to the problems with the orbit determination
(Lemoine et al. 2006), which is also suggested by the relatively large mean error
(orbit errors have long wavelengths) in the differences between the modeled and ob-
served dynamic topography for this satellite (∼−3 cm). The large minimum and
maximum deviations (especially those from GFO-1) come from a few isolated data
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points close to the coast. Because these are isolated, they are not detected by the
data editing method applied to remove outliers (Section 3.5.4). Since the accuracy
of the TOPEX SSHs is ∼4 cm (Chelton et al. 2001), we conclude that even in those
regions where the model performs best the accuracy of the modeled water levels is
about two times lower than that of the observed ones. This suggests that there is still
space to improve the model by, e.g., assimilation of water levels from radar altimetry
and better input data.

A significant part of the spread between observed and modeled dynamic topogra-
phy can be explained by a bias in each single satellite pass (δζ p). This is based on
Fig. 3.8, which shows a time series of this bias and its mean value over each succes-
sive week. Here, we excluded all satellite passes that have less than 10 data points
(the mean number of data points per satellite pass is 94). For all missions together,
the standard deviation of the computed biases is∼7 cm. However, among the various
altimeters significant differences exist; for ERS-2 and GFO-1 the standard deviations
are 8.3 and 7.4 cm, while for TOPEX and Jason-1 these are ∼6 cm. The “outliers”
visible in Fig. 3.8 are mainly from the ERS-2 and GFO-1 data. To illustrate the im-
pact of δζ p on the statistics, we recomputed the satellite-specific statistics over ΩNS

after removing the bias. From Table 3.3, we observe that the rms values, compared
to the values before subtraction of the bias, decreased by 1.36–3.34 cm, which is
about 25%. Roblou et al. (2011) interpreted the bias as errors in the applied cor-
rections for the net steric expansion/contraction of the global oceans. This could be
one possible explanation of the observed signal, although the actual source of error
should differ in our case. The correction applied by Roblou et al. (2011) contains a
term that represents the model-derived mean sea surface elevation computed over the
measurement epochs. Hence, these corrections are directly dependent on the water
levels prescribed at the open sea boundaries of their model. Any mean error in these
water levels propagates into the modeled water levels and consequently to the com-
puted corrections. In our formulation of this correction (Eq. (3.9)), we do not have
this dependency. So, the errors should be in the steric heights computed from the
temperature and salinity fields derived from POL’s hindcast. In addition, a Fourier
analysis of the time series (not shown here) reveals peaks at some tidal frequencies,
as well as peaks at monthly, semi-annual, and even intra-annual frequencies. These
latter peaks indeed point to the applied corrections, but might also be caused by er-
rors in (i) the used wind fields, (ii) pressure gradients induced by spatial variations
in water density, and (iii) the prescribed water levels along the open sea boundaries.
Finally, while significant differences among the various altimeters exist, a part of
the biases can be explained by errors in the radar data that do not average out when
computing the biases.
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Figure 3.8: Time series of the bias between
observed and modeled dynamic topography
computed over the differences belonging to
a single satellite pass. In green we plotted
the weekly mean bias.

3.6.2 Experiment II: the extended versus the original DCSM model

In this study, we aim to obtain instantaneous water levels expressed relative to EGG08
from the 2D storm surge model DCSM. In Experiment Ia, the approach used to realize
this involves (i) adding to DCSM the baroclinic forcing by adding the depth-averaged
baroclinic pressure gradient terms as diagnostic variables computed from 4D temper-
ature and salinity fields obtained from POL’s hindcast and (ii) an adjustment of the
water levels prescribed at the open sea boundaries such that they refer to EGG08. The
purpose of Experiment II is to quantify the improvements in representing the (time-
mean) water levels of the extended, vertically referenced DCSM model compared to
the original DCSM model.

Therefore, Experiment Ia is repeated without adding the baroclinic forcing, where
also the steric contribution to the prescribed water levels at the open sea boundaries
(ζs(ϑ ,λ , t)) disappears accordingly. We apply, however, the pragmatic approach de-
scribed in Section 3.3 to account for the dominant time-variable part of the steric
water level variations. That is, the time-variable steric contribution to the modeled
water levels is approximated by adding the annual steric signal averaged over the
model domain (ζ SA

s (t)) to the prescribed water levels at the open sea boundaries.
This signal is derived as the spatially averaged remaining annual signal estimated
from the differences between observed and modeled water levels, where the latter are
taken from a model run without any annual signal. So, in Experiment II the water
levels are modeled both with and without including the remaining annual signal in
the prescribed water levels along the open sea boundaries.

To assess whether the extended model provides any improvement compared to the
original model, we apply a similar analysis as presented in Sections 3.6.1.3 and
3.6.1.4. That is, we compare the modeled (time-mean) water levels obtained in Ex-
periment II with observed ones. The obtained statistics will be compared with those
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Figure 3.9: Time-averaged differ-
ences between ζO(t) and ζDII(t) at
the locations of the radar altimeter
data points.
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obtained in Experiment Ia. Since, however, the observed water levels (ζO(t)) are ex-
pressed relative to EGG08 while in Experiment II the modeled water levels (ζDII(t))
are expressed relative to the ill-defined model’s reference surface, we first remove
the mean difference computed using all differences between ζO(t) and ζDII(t)) over
the whole model domain. Furthermore, it should be noted that the corrections for the
net expansion/contraction of the global oceans to the observed water levels are not
applied (Section 3.5.4.2). Indeed, these corrections are required if the baroclinic forc-
ing is included and the steric contribution to the prescribed water levels at the open
sea boundaries is derived from a ocean circulation model (Section 3.4.3). In Exper-
iment II, the baroclinic forcing is not included and the signal becomes, to a large
extent, part of ζ SA

s (t). Table 3.4 provides the aggregate and satellite-specific statis-
tics of the (time-averaged) differences computed over both the whole model domain
(ΩD) and North Sea (ΩNS). We gain understanding in interpreting these statistics by
Fig. 3.9, which shows, similar to Fig. 3.7a, the time-averaged differences between
the observed and modeled dynamic topography (ζO(t)−ζDII(t)). This signal mainly
represents the spatially varying contribution of horizontal water density variations to
the time-mean water levels. Over ΩD, this signal is 0.68 cm ±8.10 cm. Over ΩNS,
the signal is 1.20 cm ±4.40 cm. The lower standard deviation is explained by the
fact that in the domain ΩNS the off-shelf region is excluded where the steric signal is
largest (Fig. 3.9). This is also the reason why in Experiment Ia the standard deviation
of the time-averaged differences between the observed and modeled dynamic topog-
raphy (ζO(t)−ζDIa(t)) over ΩD is significantly lower (5.71 cm), while over ΩNS the
standard deviation decreases only by 0.42 cm to 3.98 cm. In any case, while both for
ΩD and ΩNS the standard deviations obtained in Experiment Ia are lower, we conclude
that adding the baroclinic forcing results in an improved representation of the MDT.

One could argue, however, that the applied comparison is not fair; the modeled wa-
ter levels induced by tide and atmospheric wind and pressure forcing are compared
to observed water levels that also include the steric contribution. Indeed, to carry
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Table 3.4: Experiment II: aggregate and satellite-specific statistics of the (time-averaged)
differences between the observed and modeled dynamic topography computed over both the
whole model domain (ΩD) and North Sea (ΩNS). All values are provided in cm.

differences domain satellite rms min max mean std

ζO(t)−ζDII (t) ΩD all 8.13 -74.97 239.20 0.68 8.10
ΩNS 4.56 -74.97 115.19 1.20 4.40

ζO(t)−ζDII (t) ΩD all 11.69 -186.50 275.12 -0.00 11.69
ΩNS 9.29 -186.50 115.19 1.06 9.22

ΩD ERS-2 11.89 -62.25 107.98 0.32 11.89
GFO-1 12.13 -186.50 275.12 -1.11 12.08
Jason-1 11.79 -60.14 103.22 2.89 11.43
Envisat 12.20 -49.80 54.92 2.40 11.96
POSEIDON 11.41 -102.68 67.27 -0.96 11.37
TOPEX 10.84 -164.34 86.73 -0.14 10.84

ΩNS ERS-2 9.74 -60.22 53.52 0.94 9.69
GFO-1 9.44 -186.50 115.19 -0.63 9.42
Jason-1 9.83 -60.14 75.38 4.18 8.90
Envisat 10.72 -25.56 47.32 5.14 9.40
POSEIDON 9.04 -92.38 67.27 0.83 9.00
TOPEX 8.34 -70.27 51.96 1.73 8.15

out a fair comparison, the time-mean steric contribution to the observed water levels
should be removed. However, as discussed in Section 3.1, this is not straightforward.
The bottom-line of the difficulty is that to obtain such “steric corrections” we need to
use DCSM to exclude the tide and atmospheric wind and pressure forcing contribu-
tions to the MDT. Irrespective of whether the MDT is derived from observations or a
model, the consequence is that DCSM will not contribute anymore to the representa-
tion of the MDT. Note that if the MDT is derived from observations, the differences
in Fig. 3.9 disappear.

From Table 3.4 it also turns out that the overall ability of DCSM in the simulation
of the dynamic topography in terms of the rms decreases from 10.45 cm in Experi-
ment Ia to 11.67 cm in Experiment II. Over the North Sea, the ability improved by
only 0.2 mm to 9.29 cm. Evaluated for each satellite mission, the statistics over ΩD

show a similar picture; compared to those in Experiment Ia, for all missions the rms
values increase by 0.86–2.27 cm. Over ΩNS, a mixed picture is observed; for ERS-2,
GFO-1, and POSEIDON, we observe a decrease of 0.26–0.43 cm, while for Envisat,
Jason-1, and TOPEX the rms values increase by 0.21–1.42 cm. By comparing the
standard deviations, we conclude that for Envisat and Jason-1 these increased rms
values are mainly caused by rather large mean errors; 5.14 cm and 4.18 cm. While
over ΩNS the differences are only in the order of millimeters, we conclude that the
improvements in the modeled water levels by adding the time-variable baroclinic
forcing are within the level of remaining model errors, and have a negligible effect
on these bulk statistics.
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Figure 3.10: Amplitudes of the remaining annual cycle estimated using Eq. (3.14) on a
1◦×1◦ grid for Experiment Ia (a), Experiment II (b), and Experiment IV (c).

A better picture of the difference in performance to represent the dynamic topogra-
phy between Experiment Ia and Experiment II is obtained by comparing Fig. 3.10a
with Fig. 3.10b. These figures show the amplitudes of the remaining annual signal
estimated from the differences on all data points inside grid cells of 1◦×1◦ using

ζO(t)−ζD(t) = x1 + x2 sin
(

2πt
T

)
+ x3 cos

(
2πt
T

)
, (3.14)

where T is one year. In Fig. 3.10b, the amplitudes are ∼1.5 cm, except in the Irish
Sea, Celtic Sea, German Bight, Skagerrak, English Channel, and along the open
sea boundaries. In Fig. 3.10a, however, much larger values are observed, mainly
in the North Sea. The improved description of the annual signal for Experiment II
is attributed to the fact that in this experiment the entire signal that is not captured
by the correction for the net expansion/contraction of the global oceans leaks to the
open boundary conditions. Indeed, what still shows up as an error in Experiment Ia
is accounted for in Experiment II.

3.6.3 Experiment III: influence of errors in the bathymetry

In this experiment, we want to get a rough estimate of the errors in modeled water
levels introduced when bathymetry data are used which do not refer to the quasi-geoid
but to MSL. Although the original bathymetry is no longer available, we can assess
the impact by subtracting the MDT signal from the current bathymetry and compare
the model-derived MDT (ζDIII) with the one derived in Experiment Ia (ζDIa). In this
experiment, we use DNSC08-MSS (Andersen & Knudsen 2009) expressed relative
to EGG08 as the MDT signal for which the current bathymetry will be corrected.

From the statistics of the pointwise differences between ζDIa and ζDIII provided in
Table 3.5, we conclude that the impact on the water level of a correction of this order
of magnitude is at most 6.65 cm. These extreme differences show up only in the
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Table 3.5: Experiment III: statistics of the differences between the MDT’s derived in Exper-
iment Ia and Experiment III, as well as the aggregate and satellite-specific statistics of the
differences between the observed and modeled dynamic topography computed over both the
whole model domain (ΩD) and North Sea (ΩNS). All values are provided in cm.

differences domain satellite rms min max mean std

ζDIa −ζDIII ΩD n/a 0.10 -6.65 0.26 0.01 0.10
ΩNS n/a 0.16 -6.65 0.26 0.01 0.16

ζO(t)−ζDIII (t) ΩD all 10.45 -186.67 268.83 -1.00 10.40
ΩNS 9.30 -186.67 101.22 -1.11 9.24

ΩD ERS-2 11.04 -61.37 104.73 -0.43 11.03
GFO-1 11.27 -186.67 268.83 -2.48 10.99
Jason-1 9.73 -65.90 92.97 -0.14 9.73
Envisat 9.93 -30.08 48.50 2.09 9.71
POSEIDON 9.79 -105.50 68.50 -0.17 9.79
TOPEX 9.10 -164.87 82.08 -0.21 9.09

ΩNS ERS-2 10.17 -61.37 50.61 -1.03 10.12
GFO-1 9.77 -186.67 101.22 -2.85 9.35
Jason-1 8.49 -65.90 67.55 -0.07 8.49
Envisat 9.35 -29.71 40.95 2.76 8.94
POSEIDON 9.30 -93.55 68.50 -0.24 9.30
TOPEX 8.13 -76.17 49.20 0.19 8.12

Wadden Sea, which is a very small region compared to the whole model domain. This
is already reflected by the rms error that is only 0.10 cm. As noted in Section 3.6.1.2,
the Wadden Sea is a complicated area partly located in the intertidal zone. Changing
the bathymetry means that computational cells inside this region for a shorter or
longer time are wet (depending on the sign of the correction applied to the depth).

Because we have hardly any radar altimeter data inside the Wadden Sea, we can-
not assess the impact of this correction on the simulation of the dynamic topography
there. Over the whole model domain and North Sea, the comparison with the statis-
tics of Experiment Ia and those provided in Table 3.5 suggest the impact is negligible
compared to other errors in model and data.

3.6.4 Experiment IV: influence of deriving the steric contribution to the
open sea boundary conditions from altimeter data

Steric heights expressed relative to the quasi-geoid at the open boundaries can also
be obtained from radar altimeter data (see Section 3.4.3). This has the advantage that
no correction is needed for the net expansion/compaction of the global oceans, since
this signal becomes part of the prescribed water levels at the open sea boundaries.
In Experiment IV, we evaluate whether this provides any model improvement. In
addition, this experiment enables to assess the impact of quasi-geoid errors on the
model-derived MDT. This, in turn, answers the question to which extent expected
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quasi-geoid improvements, achieved when data provided by the Gravity field and
steady-state Ocean Circulation Explorer (GOCE) mission (Drinkwater et al. 2003)
are included in future updates of EGG08, improve the model. Indeed, to obtain
the time series of steric heights expressed relative to EGG08, we need to subtract
the quasi-geoid heights from the SSHs (Section 3.5.4). Hence, quasi-geoid errors
become part of the derived steric signal. A proxy for these errors is given in Fig. 3.1,
which shows a spatial rendition of the differences between ζO and ζP. While these
differences also contain errors in the MSL, which can be estimated with a standard
deviation of 4–10 cm (Andersen & Knudsen 2009), and errors introduced by using the
Boussinesq approximation (Greatbatch et al. 2001), this interpretation is somewhat
pessimistic. On the other hand, it is the upper bound; although it might be that part
of the actual errors cancelled out when computing the differences between ζO and ζP.

Table 3.6 provides the statistics of the pointwise differences between ζDIa and ζDIV ,
while Fig. 3.11 shows a spatial rendition of these differences. From this map, we
observe that the largest differences are off the shelf; ∼5 cm northwest to Ireland. In
the Celtic Sea, Irish Sea, and English Channel the differences are > 2 cm, while for
the whole North Sea they are∼1 cm. Therefore, we conclude that quasi-geoid errors
along the open sea boundaries hardly propagate into the model domain. This also
implies that any improvement in the quasi-geoid will have a limited impact on the
MDT inside the model domain. Note that this result does not mean that an improved
quasi-geoid does not provide any advantage. Indeed, the calibration of DCSM using
radar altimeter data and quasi-geoid data would benefit directly from an improved
quasi-geoid. Furthermore, the conclusion only applies to the approach of vertical ref-
erencing followed in this study (prescribing water levels relative to the quasi-geoid
at the open sea boundaries). To better constrain the quasi-geoid, we could examine
the possibility to also assimilate observed (radar altimetry) instantaneous water lev-
els in the model domain (referring to the quasi-geoid) into the hydrodynamic model.
The assimilation could be realized using an Ensemble Kalman Filter (Evensen 1994,
2003); model parameters to be constrained could be identified by a sensitivity analy-
sis.

The impact of using steric heights derived from radar altimetry rather than from
the POL3DB model can be nicely observed in Fig. 3.6c that shows, for each grid
point, the standard deviation of the differences between the monthly mean water lev-
els computed in this experiment and those derived from POL’s hindcast. Compared
to Fig. 3.6a, we observe that everywhere, but mainly along the open sea boundaries
and inside the Celtic Sea, Irish Sea, and the English Channel, the standard deviations
of the differences between POL’s and DCSM’s monthly mean water levels increase
from ∼1.0 cm to >3.0 cm. This can be understood by the fact that in Experiment Ia
both the pressure gradients induced by water density variations and the steric contri-
bution to the water levels at the open sea boundaries are derived from POL’s hindcast,
which are fully consistent with each other. In Experiment IV, there is no consistency



3.6. Results and Discussion 63

Table 3.6: Experiment IV: statistics of the differences between the MDT’s derived in Exper-
iment Ia and Experiment IV, as well as the aggregate and satellite-specific statistics of the
differences between the observed and modeled dynamic topography computed over both the
whole model domain (ΩD) and North Sea (ΩNS). All values are provided in cm.

differences domain satellite rms min max mean std

ζDIa −ζDIV ΩD n/a 2.23 -4.57 17.42 -0.42 2.19
ΩNS n/a 0.88 -2.15 0.55 -0.77 0.43

ζO(t)−ζDIV (t) ΩD all 10.57 -183.57 267.46 -0.22 10.57
ΩNS 9.26 -183.57 103.79 -1.13 9.19

ΩD ERS-2 10.95 -67.75 107.32 0.33 10.95
GFO-1 11.43 -183.57 267.46 -2.05 11.25
Jason-1 9.78 -64.78 89.29 1.07 9.72
Envisat 10.26 -38.76 54.32 0.25 10.26
POSEIDON 10.14 -104.39 66.98 1.12 10.08
TOPEX 9.37 -159.57 82.82 0.97 9.32

ΩNS ERS-2 9.76 -67.75 46.96 -1.10 9.70
GFO-1 9.92 -183.57 103.79 -3.09 9.43
Jason-1 8.65 -64.78 68.19 0.77 8.62
Envisat 9.22 -33.23 41.45 -0.02 9.22
POSEIDON 9.22 -89.45 66.98 0.04 9.22
TOPEX 8.14 -74.37 50.97 0.32 8.13
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between those fields. Apparently, a part of these inconsistencies propagates into the
model domain. This results in increased differences compared to POL’s monthly
mean water levels.

No significant differences are observed between the statistics obtained in Experi-
ment IV compared to those of Experiment Ia. Over ΩD, we obtain 10.45 cm (Ex-
periment Ia) and 10.57 cm (Experiment IV), Over ΩNS, 9.31 cm (Experiment Ia) and
9.26 cm (Experiment IV). On the other hand, compared to Experiment Ia, we obtain
an improved representation of the annual signal as shown in Fig. 3.10c. Indeed, com-
pared to Fig. 3.10a, the amplitudes of the remaining annual cycle are significantly
reduced. The latter could be expected since any error in the applied corrections for
the net expansion/contraction of the oceans is avoided in Experiment IV. Compared
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to the representation obtained in Experiment II (Fg. 3.10b), we observe an improve-
ment in the region off the shelf and Celtic Sea, but a slightly degraded performance
in the southern North Sea.

3.7 Summary and conclusions

We developed a methodology to extend the two-dimensional DCSM such that it pro-
vides estimates of the instantaneous water levels relative to a particular (quasi-)geoid.
This opens a wide range of new applications of such a model in coastal engineering,
hydrography, and geodesy. The overall procedure can be applied to other 2D storm
surge models as well. The method involved two steps. First, we added to DCSM the
baroclinic forcing. This has been done by adding the depth-averaged baroclinic pres-
sure gradient terms as diagnostic variables. They are computed from temperature
and salinity values derived from the Atlantic- European North West Shelf- Ocean
Physics Hindcast (POL’s hindcast) carried out with the POL 3D baroclinic model.
The steric contribution that needs to be added to the water levels prescribed at the
open sea boundaries can be derived from either an ocean circulation model, as well
as from radar altimeter data. In the latter case, we immediately account for the net
steric expansion/contraction signal of the global oceans, which is not possible when
using Boussinesq ocean circulation models. Second, we adjusted the model parame-
ters that depend on the choice of the reference surface (e.g., bathymetry) and referred
the water levels along the open boundaries to the quasi-geoid. Besides the fact that
the model becomes conceptually clearer, a proper vertical reference has some benefits
and is even required for some (new) applications. The benefits are, among others, that
it becomes possible to link off-shore observations to an absolute reference without ig-
noring biases, that it enables to provide absolute referencing for off-shore locations,
and that it enables to provide properly referenced off-shore forecasts. In addition,
proper referencing is required to link model, tide-gauges, and altimeter data beyond
current practice of ignoring biases.

In a number of numerical simulations with the extended, vertically referenced model,
we quantified and analyzed the errors in the derived (mean) dynamic topography us-
ing as reference (i) (monthly) mean water levels from POL’s hindcast and (ii) differ-
ences between ellipsoidal heights of the instantaneous sea surface from radar altime-
ter satellites and EGG08 quasi-geoid heights. We showed that the 2D model was able
to reproduce POL’s MDT and monthly mean water levels. The time-averaged differ-
ences between the observed and modeled dynamic topography likely reveal quasi-
geoid errors in the Celtic Sea and an overestimation of the inflow from the Atlantic
Ocean along Shetland, the Fair Isle Current, and of the Norwegian Coastal Current,
but an underestimation of the inflow from the Atlantic Ocean along the western side
of the Norwegian Trench.
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Compared to the original DCSM model, the extended DCSM model provides an
improved representation of the MDT. Over the whole model domain, the standard
deviation of the differences between the observation- and model-derived MDT de-
creases from 8.10 cm to 5.71 cm, while over the North Sea it decreases from 4.40 cm
to 3.98 cm. In the representation of the dynamic topography over the North Sea, no
significant differences between the original and extended DCSM model are observed
in the statistics; 9.29 cm (original DCSM) and 9.31 cm (extended DCSM). Appar-
ently, the improvements are within the level of remaining model errors and have a
negligible effect on the computed bulk statistics.

In addition, we showed that the order of magnitude of errors in the used bathymetry,
introduced by using MSL rather than the quasi-geoid as the vertical datum, have no
significant impact on the modeled instantaneous water levels and the model-derived
MDT.

From the experiments, we also conclude that the quasi-geoid is only weakly con-
strained by prescribed water levels along the open sea boundaries. Hence, if another
quasi-geoid is chosen as reference surface, the water levels along the open sea bound-
aries change accordingly, but this change will not propagate much into the model do-
main. Therefore, a better approach to vertically reference a hydrodynamic model is
to assimilate instantaneous water levels in the model domain into the hydrodynamic
model. These instantaneous water levels can be computed as differences between sea
surface data from radar altimetry and a quasi-geoid model. The assimilation could
be realized using an Ensemble Kalman Filter (Evensen 1994, 2003); model param-
eters to be constrained could be identified by a sensitivity analysis. Whether this
improves the quality of the modeled water levels needs to be investigated. Moreover,
whether it is feasible to implement such an approach needs to be investigated due to
the numerical complexity of the model and the amount of input data.

The overall skill of the extended DCSM to model the dynamic topography is 9–11 cm
rms, which improves to 8–10 cm on the North Sea. About 25% of these errors can be
explained by a bias between the modeled water levels and the observed water levels
acquired during a single satellite pass. No statistically significant differences were
observed if the steric heights expressed relative to the quasi-geoid are derived from
radar altimeter data. Compared to the original approach described in Section 3.3 of
implicitly representing the steric signal via the open sea boundary conditions (applied
in Experiment II), we observe no significant changes in the bulk statistics. We do,
however, observe a worse representation of the seasonal water level cycle, in partic-
ular, in the North Sea. When using steric heights derived from radar altimeter data,
the seasonal water level cycle is better represented. Nevertheless, on the North Sea
the original approach still provides better results.





Chapter 4

Estimation of the quasi-geoid

4.1 Introduction

The second part of the flowchart presented in Chapter 2 is the actual estimation of
the quasi-geoid. Here, our main research objective is to quantify in terms of quasi-
geoid height differences the added value of the use of a shallow water hydrodynamic
model for the dynamic topography (DT) corrections needed to reduce the altimeter-
derived sea surface heights (SSHs) to geometric quasi-geoid heights up to some long-
wavelength errors likely dominated by radial orbit errors. Since in particular the
contribution of the astronomical tide to these corrections computed with such a model
is expected to improve the quasi-geoid (Section 1.3.2), the analysis is carried out
with and without the surge and steric contributions in the applied DT corrections.
As a reference if we do not include the surge and steric contributions, we use the
ocean tide corrections computed with the global ocean tide model GOT4.7 (see Ray
(1999) and Section 3.5.4). If we do include them, the GOT4.7 tide corrections in
the reference set are supplemented by surge corrections computed using the MOG2D
model (see Carrère & Lyard (2003) and Section 3.5.4) and corrections for the time-
averaged steric contribution computed as differences between the DTU10 mean sea
surface model (DTU10-MSS) (Andersen 2010) and the EGG08 quasi-geoid (Denker
et al. 2008).

Prior to the estimation of the different quasi-geoids, we will compare for nine passes
the mean signal and noise power spectral densities (PSDs) of the residual along-track
deflections of the vertical (DoV) obtained after applying different sets of DT correc-
tions to the SSHs. Doing so helps to assess observed differences among the estimated
quasi-geoids. Indeed, since the quasi-geoids need to be estimated based on a com-
bination of heterogeneous data, differences can, for instance, also be introduced by
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different estimates of the weights assigned to the observation groups. Here, we use
variance component estimation (VCE) techniques to determine the weights.

Before we continue, we first need to evaluate what the implications are of our find-
ings in obtaining a proper vertically referenced model (Chapter 3) for the proposed
iterative approach (Chapter 2) to the simultaneous realization of such a model and a
proper quasi-geoid. One of the most important findings is that the actual procedure
to vertically reference DCSM hardly benefits from an improved quasi-geoid (Sec-
tion 3.6.4). Consequently, no iterations are required. Furthermore, this implies that
for the numerical experiments carried out to assess the impact of the various contrib-
utors to the DT corrections we do not need to estimate the quasi-geoid over DCSM’s
whole model domain. This strongly reduces the computational load. Only as a fi-
nal step we estimate the quasi-geoid over the whole model domain, since we need
it to compute the ellipsoidal heights of LAT and MSL. We would like to stress that
this simplification is only justified for the applied vertical referencing procedure; if
observed water levels expressed relative to the quasi-geoid are assimilated into the
model, as proposed in Section 3.7, iterations are likely necessary. It should also be
noted that since we use radar altimeter data in the form of along-track DoV, we get
rid of the identified biases between the modeled and observed water levels of a single
satellite pass (Section 3.6.1.4). Finally, no attempt is made to reduce the propagation
of the identified errors in DCSM’s DT corrections to the quasi-geoid associated with
the used salinity and temperature fields (Section 3.6.1.3).

In this chapter, we first describe our computational strategy. In particular, we focus
on (i) the used radial basis function (RBF) parameterization and (ii) the procedure we
apply to obtain proper weight factors for the various observation groups. Next, we
introduce the various data sets used in the estimation/validation of the quasi-geoid,
and we describe the applied preprocessing steps. After that, we present and discuss
for nine passes of TOPEX data the comparison of the mean signal and noise PSDs of
the residual along-track DoV obtained after applying various sets of DT corrections.
Thereafter, we use the various sets of DoV together with the other data to quantify
the impact of the various DT corrections on the estimated quasi-geoid. Finally, we
present and validate the quasi-geoid needed to compute the ellipsoidal heights of LAT
and MSL over DCSM’s model domain.

4.2 Computational strategy

4.2.1 Remove-compute-restore

In this study, the classical remove-compute-restore technique (RCR) (Sjöberg 2005,
and cited studies) is used to estimate the quasi-geoid; the quasi-geoid is obtained by
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the sum of the global field contribution (spherical harmonic expansion of a satellite-
only geopotential model) and the contribution estimated from the residual gravity
and radar altimeter data. Note that if a terrain correction was applied to the free-air
gravity anomalies (FAA), a third contribution would have shown up that represents
some short-wavelength components of the quasi-geoid.

We agree that the classical RCR technique is suboptimal as the variance-covariance
matrix of the satellite-only geopotential model is not used in the estimation process.
As shown by Wittwer (2009, Chapter 7), a joint inversion of both terrestrial and
satellite data yields combined solutions that are significantly better than a solution
obtained using the classical RCR technique. However, in his experiments only sim-
ulated data sets were used, and the noise in the terrestrial data was approximately
white. As was concluded, the presence of colored noise could lead to a significantly
lower quality of the combined solution unless a more accurate stochastic model is
used. Colored noise is expected in particular for airborne and shipboard gravity
data, EGG08-derived DoV, and altimeter-derived along-track DoV. While deriving
a proper description of the noise model for each observation group is out of the scope
of this thesis, we stick to the well-known classical RCR technique.

4.2.2 Parameterization

4.2.2.1 Background

Spherical radial basis functions, or simply radial basis functions (RBFs), are radially
symmetric functions that have most of their energy confined to a spherical cap of
limited size. The function depends only on the spherical distance between two points
on the sphere. RBFs are often used in regional gravity field modeling (Schmidt et al.
2007, Klees et al. 2008, and cited studies). According to Klees et al. (2008), their
popularity is due to the following properties:

1. When located inside the masses, the harmonicity outside the masses is guaran-
teed.

2. They lead to simple functional models for all relevant gravity field functionals.

3. They are suited both for global and local gravity field modeling.

4. They allow for local refinements of a global spherical harmonic representation
of the gravity field.

5. They can be easily adapted to the data distribution and the signal variation.



70 CHAPTER 4. ESTIMATION OF THE QUASI-GEOID

4.2.2.2 Preliminaries

Following Wittwer (2009), we denote by σR the surface of the sphere of radius R,
which is located completely inside the topographic masses (Bjerhammar sphere),
σR =

{
(x1,x2,x3) : x2

1 + x2
2 + x2

3 = R2
}

. Int σR denotes the interior and Ext σR de-
notes the exterior of the Bjerhammar sphere. Two points x, y ∈ R3, y 6= 0, with
x = (x1,x2,x3)

T ∈ Ext σR and y = (y1,y2,y3)
T ∈ Int σR with unit vectors x̂ = x

|x| ,
ŷ = y

|y| are considered. The exterior RBF centered at yi and evaluated at x is

Ψi (x,yi) =
∞

∑
l=0

ψl

(
R
|x|

)l+1

Pl (x̂TŷT
i ) , (4.1)

where Pl is the Legendre polynomial of degree l and ψl are the Legendre coefficients.
The exterior RBF is a harmonic function in Ext σR. It is a zonal function, i.e., it is
rotationally symmetric around the axis ŷi.

4.2.2.3 Functional and stochastic models

The residual disturbing potential T is expressed as a linear combination of K RBFs

T (x) =
K

∑
i=1

αiΨi(x,yi), (4.2)

where the coefficients αi need to be estimated from the data using least-squares tech-
niques. The data are residual gravity anomalies (∆g), residual gravity disturbances
(δg), and residual DoV (ε) in direction τ . After linearization and/or spherical ap-
proximation they are related to the disturbing potential as

∆g(x) =−∂T (x)
∂ |x|

− 2
|x|

T (x), (4.3)

δg(x) =−∂T (x)
∂ |x|

, (4.4)

ε(x) =−∂ζ (x)
∂ s

=− 1
γ(x′)

∂T (x)
∂ s

= ξ (x)cosτ +η(x)sinτ, (4.5)

where ζ (x) is the residual height anomaly, s is the incremental distance along the
satellite’s ground track, γ is the normal gravity, x′ is the point on the telluroid associ-
ated with the surface point x by a telluroid mapping, τ is the azimuth of the gradient
(if Eq. (4.5) is applied to radar data, τ is the azimuth of the radar satellite ground
track), ξ (x) is the residual DoV in north direction, which is in spherical approxima-
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tion

ξ (x) =− 1
|x|γ(x′)

∂T (x)
∂ϕx

, (4.6)

and η(x) is the residual DoV in east direction, which is in spherical approximation

η(x) =− 1
|x|γ(x′)cosϕx

∂T (x)
∂λx

. (4.7)

ϕx, λx, and |x| are the spherical coordinates of x. Note that the minus sign in Eq. (4.5)
is a convention (pp. 116–119 Hofmann-Wellenhof & Moritz 2005). To compute the
quasi-geoid heights from the estimated RBF coefficients, we also need the functional
model for height anomalies, which reads to the same level of approximation

ζ (x) =
T (x)
γ(x′)

. (4.8)

Note that it does not matter whether the quantities T , ξ , and η are evaluated at the
surface point (x) or the telluroid point (x′).

Combining Eq. (4.2) with Eq. (4.3) provides the observation equation for (residual)
gravity anomalies

∆g(x) =
K

∑
i=1

(
− ∂

∂ |x|
Ψi(x,yi)−

2
|x|

Ψi(x,yi)
)

αi. (4.9)

For (residual) gravity disturbances the observation equation is (combining Eq. (4.2)
with Eq. (4.4))

δg(x) =
K

∑
i=1
− ∂

∂ |x|
Ψi(x,yi)αi. (4.10)

For the (residual) DoV in north (Eq. (4.2) and Eq. (4.6)) and east (Eq. (4.2) and
Eq. (4.7)) direction the observation equations are

ξ (x) =
K

∑
i=1
− 1
|x|γ(x′)

∂

∂ϕx
Ψi(x,yi)αi, (4.11)

η(x) =
K

∑
i=1
− 1
|x|γ(x′)cosϕx

∂

∂λx
Ψi(x,yi)αi. (4.12)

Substituting both Eq. (4.11) and Eq. (4.12) into Eq. (4.5) provides the observation
equation for DoV in an arbitrary direction τ .

These functional models can be written as general Gauss-Markov models

yk = Akx+ ek, (4.13)



72 CHAPTER 4. ESTIMATION OF THE QUASI-GEOID

where yk is the mk×1 vector of observations of observation group k, Ak is the mk×n
design matrix of observation group k, x is the n×1 vector of unknown coefficients αi,
and ek is the mk×1 vector of residuals of observation group k. For the p observation
groups together, the Gauss-Markov model reads

y = Ax+ e, (4.14)

where

y =


y1

...

yp

 , A =


A1

...

Ap

 , and e =


e1

...

ep

 . (4.15)

The stochastic properties of the residuals are described by the stochastic model

E {e}= 0, E {eeT}= D{e}= Qy, (4.16)

where E {·} denotes the expectation operator, D{·} the dispersion operator, and Qy

is the variance-covariance matrix of the observations.

4.2.2.4 Choices to be made

When using RBFs in gravity field modeling, a number of choices have to be made
(Klees et al. 2008):

1. The type of the RBF.

2. The location of the basis function centers, referred to as the network design.

3. The bandwidth (depth) of the RBFs.

4. The number of RBFs.

In the remainder of this subsection, the choices made in this study are described
and motivated. The choices 3 and 4 are closely related, and are therefore discussed
simultaneously.

Type of the RBF In practice, many different RBFs are used. For some of them,
an analytical expression is available. This is attractive, since then the computational
load is significantly reduced. Tenzer & Klees (2008) showed by a numerical study
that for different types of RBFs comparable accuracies are obtained provided the
bandwidth is chosen properly. In their study, they considered the point-mass kernel,



4.2. Computational strategy 73

radial multipoles (Marchenko 1998), Poisson wavelets (Holschneider et al. 2003),
and the Poisson kernel. For all these kernels, analytical expressions exist. Following
Wittwer (2009), we use the Poisson wavelets of order n = 3, for which the analytical
expression is (Klees et al. 2007)

Ψn(x,y) =
1

4πR2 (2χn+1 + χn) , (4.17)

with

χn(x,y) =
(
|y| ∂

∂ |y|

)n 1
|x−y|

. (4.18)

Note that to simplify the notation, we omitted the index i. The operator
(
|y| ∂

∂ |y|

)
takes the partial derivative of 1

|x−y| with respect to |y| and multiplies the result by |y|.
n indicates how often the operator has to be applied. So,

χ0(x,y) =
1

|x−y|
, (4.19)

χ1(x,y) = |y|
(

∂

∂ |y|
χ0(x,y)

)
, (4.20)

χ2(x,y) = |y|
(

∂

∂ |y|
χ1(x,y)

)
. (4.21)

Klees et al. (2007) provide a recurrence relation for Ψn(x,y) that makes use of the
recurrence relation derived for radial multipoles (Marchenko 1998) defined as

bn(x,y) =
(

∂

∂ |y|

)n 1
|x−y|

. (4.22)

For n≥ 2,
bn(x,y) = (2n−1)|x−y|b1 bn−1− (n−1)2b2

0 bn−2, (4.23)

with
b0(x,y) =

1
|x−y|

, (4.24)

and

b1(x,y) =
|y|− |x|cosθ

|x−y|3
, (4.25)

with cosθ = x̂Tŷ. After establishing the relation between χn(x,y) and bn(x,y), which
is

χn(x,y) =
n

∑
j=1

ρn, j|y| jb j, (4.26)



74 CHAPTER 4. ESTIMATION OF THE QUASI-GEOID

the recurrence relation for Ψn(x,y) is given by

4πR2
Ψn(x,y) =

2|y|n+1bn+1 +
n
∑
j=1

βn, j|y| jb j for n≥ 1,

2|y|b1 +b0 for n = 0,
(4.27)

where βn, j = 2ρn+1, j +ρn, j and the real coefficients ρn,i fulfill the relations

ρn,1 = 1, for all n,

ρn,2 = ρn−1,1 +2ρn−1,2,

ρn,3 = ρn−1,2 +3ρn−1,3,

...

ρn, j = ρn−1, j−1 + jρn−1, j, for j = 2,3, . . . ,n−1.

The factors β3, j, j = 1,2,3 needed to construct the Poisson wavelets of order three
are β3,1 = 3, β3,2 = 17, and β3,3 = 13.

To build the design matrix, we need to derive ∂

∂ |x|Ψn(x,y) for the gravity anomalies

and gravity disturbances, ∂

∂ϕx
Ψn(x,y) for the DoV in north direction, and ∂

∂λx
Ψn(x,y)

for the DoV in east direction. Making use of the recurrence relation for Ψn(x,y),
Klees et al. (2007) derived for ∂

∂ |x|Ψn(x,y)

∂Ψn(x,y)
∂ |x|

= 2|y|n+1 ∂bn+1

∂ |x|
+

n

∑
j=1

βn, j |y| j
∂b j

∂ |x|
, (4.28)

where for n≥ 2

∂bn

∂ |x|
= (2n−1)b1 bn−1

∂ |x−y|
∂ |x|

+(2n−1)|x−y|
[

∂b1

∂ |x|
bn−1 +b1

∂bn−1

∂ |x|

]
− (n−1)2

[
2b0

∂b0

∂ |x|
bn−2 +b2

0
∂bn−2

∂ |x|

]
, (4.29)

with

∂ |x−y|
∂ |x|

=
|x|− |y|cosθ

|x−y|
, (4.30)

∂b0

∂ |x|
=−|x|− |y|cosθ

|x−y|3
, (4.31)

∂b1

∂ |x|
=

cosθ

|x−y|3
+

3
|x−y|5

(
|x||y|(1+ cosθ)− (|x|2 + |y|2)cosθ

)
. (4.32)
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The equations for ∂

∂ϕx
Ψn(x,y), ∂

∂λx
Ψn(x,y), and also ∂bn

∂ϕx
and ∂bn

∂λx
, are similar to those

given in Eq. (4.28) and Eq. (4.29) after replacing ∂ |x| by ∂ϕx and ∂λx, respectively.
Omitting all intermediate steps, we obtain for ∂ |x−y|

∂ϕx
, ∂

∂ϕx
b0(x,y), and ∂

∂ϕx
b1(x,y)

∂ |x−y|
∂ϕx

=
x3 y2 sinλx−|x|y3 cosϕx + x3 y1 cosλx

|x−y|
, (4.33)

∂b0

∂ϕx
=−x3 y2 sinλx−|x|y3 cosϕx + x3 y1 cosλx

|x−y|3
, (4.34)

∂b1

∂ϕx
=

1
|y|

∂b0

∂ϕx
+

(3 |y|−3|x|cosθ) (x3 y2 sinλx−|x|y3 cosϕx + x3 y1 cosλx)
|x−y|5

,

(4.35)

where x1, x2, and x3 are related to the spherical coordinates ϕx, λx, and |x| by

x1 = |x|cosϕx cosλx, (4.36)

x2 = |x|cosϕx sinλx, (4.37)

x3 = |x|sinϕx, (4.38)

and y1, y2, and y3 are related to the spherical coordinates ϕy, λy, and |y| by similar
relations as provided for x1, x2, and x3, respectively. For ∂ |x−y|

∂λx
, ∂

∂λx
b0(x,y), and

∂

∂λx
b1(x,y), we obtain

∂ |x−y|
∂λx

=
x2 y1− x1 y2

|x−y|
, (4.39)

∂b0

∂λx
=−x2 y1− x1 y2

|x−y|3
, (4.40)

∂b1

∂λx
=

1
|y|

∂b0

∂λx
+

(3x2 y1−3x1 y2) (|y|− |x|cosθ)
|x−y|5

. (4.41)

RBF network design The locations of the RBF centers should be determined by
the data distribution; for a regular data distribution (without gaps), the RBFs can
be on an equal-angular/equal-area grid, for data with gaps, this is not appropriate.
In practice, several implementations exist that treat the positioning of the RBFs as
an optimization problem (e.g., Barthelmes 1986, Lehmann 1993, Marchenko 1998,
Marchenko et al. 2001). However, these approaches are complex and time consum-
ing. Alternatively, one can first place the RBFs on a grid and eventually refine this
grid in a second step (Klees et al. 2008).

In this study, we use the data-adaptive approach used by Wittwer (2009); all RBFs are
placed on a grid where individual grid points are omitted if there are no observations
available within a distance less than the correlation length of the basis functions.
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Application of this criterion ensures a stable solution provided the grid spacing is
chosen properly. Note that we omit the “local refinement” step proposed by Klees
et al. (2008). To obtain an as homogeneously as possible distributed set of grid points
(as advocated by Eicker 2008), we use a Fibonacci grid (González 2010) of which
the number of grid points, i.e., the grid resolution, can be easily adapted.

Contrary to Wittwer (2009), the RBFs are placed on a surface parallel to the topog-
raphy (offshore this is the bathymetry). As shown by Tenzer et al. (2012), this is
superior to the approach of placing them on a constant depth beneath the Bjerham-
mar sphere. The heights are linearly interpolated from the GEBCO_08 grid (Gen-
eral Bathymetric Chart of the Oceans (GEBCO) 2012); a global 30′′ grid generated
by combining quality-controlled bathymetric survey data with interpolation between
sounding points guided by altimeter-derived bathymetry and, on land, mainly data
acquired by the Shuttle Radar Topography Mission. In generating the GEBCO_08
grid, it was assumed that all data refer to the MSL (General Bathymetric Chart of the
Oceans 2012). Since the MSL is not defined on land, ellipsoidal heights are obtained
after adding quasi-geoid heights computed using the Earth Gravitational Model 2008
(EGM2008) (Pavlis et al. 2012). As a consequence, the RBFs are not placed ex-
actly on a surface parallel to the topography. This is, however, not significant as the
differences between the quasi-geoid and MSL do not exceed 3 meters.

The bandwidth and number of RBFs Following Wittwer (2009), the bandwidth
of the RBFs is defined as the correlation length, i.e., the spherical angle where the
function decreases to half of its maximum value. It determines their approximation
characteristics; the smaller this value, the higher the frequencies it can approximate.
For the type of RBFs used in this study (Poisson wavelets of order n = 3), the band-
width is determined by the radial distance |y| (having fixed the order, the radial dis-
tance is the only free parameter) and thus by the depth (the depth equals the height
of the topography minus |y|). The challenge is to find a proper value for the band-
width/depth of the RBFs. This choice is always a trade-off between fit to the data and
smoothness of the solution.

Besides the bandwidth, we also need to determine the number of RBFs. This num-
ber is controlled by the number of Fibonacci grid points within our computational
domain before any grid point is omitted using the criterion specified on page 76
(Section 4.2.2.4). Together with the bandwidth, this number determines the stability
and quality of the solution. Indeed, from a numerical point of view it is the number
of RBFs that determines whether a bandwidth is too small or too large.

Numerical experiments (not presented here) have shown that it is hard to obtain a
proper solution everywhere if we use the same bandwidth for all RBFs and we fix
the grid resolution. In itself, this is no surprise; in mountainous areas the signal
variance is higher compared to areas without topography. Hence, in these areas we
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need to use more RBFs with a smaller bandwidth than elsewhere. By trial-and-error
we fixed the depth (bandwidth) to 22.5 km and the grid resolution to 4.08 km. To find
proper values for the bandwidth and number of RBFs outside the mountainous areas,
we again exploit the fact that a proper quasi-geoid exists that comprises our whole
computational region; EGG08. The combination of bandwidth and number of RBFs
that provides a solution that best fits EGG08 is used in further computations. The
number of Fibonacci grid points over the whole computational region (see Fig. 4.1
for an outline of this region) varies in increments of 5.000 from 60.000 to 90.000 and
the depth (bandwidth) varies in increments of 5 km from 20 to 40 km. The quality of
the fit is represented by the pointwise root mean square (rms) differences between the
computed height anomalies and those obtained from EGG08, both evaluated on a 3′×
3′ equal-angular grid. To avoid a contamination of the rms differences by boundary
effects, all grid points within 0.5◦ from the edges of the computational domain are
excluded. To reduce the computational load, the rms differences are computed for
two subregions of 7.5◦× 7.5◦ of which the one comprises a predominantly flat part
of the computational domain (the Netherlands and southern North Sea, referred to as
ΩA) and the other a predominantly mountainous part (Scotland and its surrounding
waters, referred to as ΩB). See Fig. 4.1 for a geographical outline of both subregions.
The results of this procedure are presented in Section 4.5.1.

4.2.3 Data weighting

As different disjunctive observation groups are used (terrestrial, airborne, shipboard,
EGG08-derived DoV, and altimeter-derived along-track DoV), proper weight factors
need to be derived to prevent over/underweighting of particular observation group(s).
In this study, variance component estimation (VCE) is used; for the cofactor matrices
of each disjunctive observation group (Qk) a scale factor (σk) is estimated so that the
variance-covariance matrix of all observations (Qy) is given by

Qy =
p

∑
k=1

σ
2
k Ck =


σ2

1 Q1 0 · · · 0
0 σ2

2 Q2 · · · 0
...

...
. . .

...
0 0 · · · σ2

pQp

 , (4.42)

with

C1 =


Q1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 · · · Ck =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · Qk

 . (4.43)
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Figure 4.1: Outline of the two subregions used to obtain proper values for the bandwidth and
number of RBFs on top of the GEBCO_08 grid (General Bathymetric Chart of the Oceans
(GEBCO) 2012). The subregion comprising the Netherlands and southern North Sea is re-
ferred to as ΩA, while the region comprising Scotland and its surrounding waters is referred
to as ΩB. The subregion indicated by the dashed line is the domain used to quantify the added
value of “improved” DT corrections on the quasi-geoid (Section 4.5) and is referred to as ΩI.
The region shown in this map is the whole computational domain (Ω).

The variance factor for observation group k is estimated by (Kusche 2003)

σ̂
2
k =

êT
k Q−1

k êk

rk
, (4.44)

with the residuals
êk = Akx̂−yk, k = 1, . . . , p, (4.45)

and the partial redundancies

rk = mk−
1

σ2
k

tr
(
AT

k Q−1
k AkN−1) , k = 1, . . . , p, (4.46)
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where mk is the number of observations in observation group k and N is the normal
matrix computed as

N =
p

∑
k=1

1
σ2

k
AT

k Q−1
k Ak. (4.47)

Because the explicit evaluation of Eq. (4.46) involves a repeated inversion of N, its
use is not feasible for large-scale problems such as the one we have at hand. There-
fore, we use the Monte-Carlo technique proposed by Kusche (2003). This technique,
referred to as Monte-Carlo variance component estimation (MCVCE), is based on
stochastic trace estimation (Girard 1989, Hutchinson 1990); the trace operator in
Eq. (4.46) is replaced by a pre-multiplication and post-multiplication of a random
vector, i.e.,

E(zTBz) = trB, (4.48)

where B is a symmetric n×n matrix and z an n×1 vector of n independent samples
from a random variable Z with E(Z) = 0 and D(Z) = I. The entries of z are samples of
a binary distribution, since then zTBz is an unbiased estimator of trB and the variance
of the approximation errors is minimum (Hutchinson 1990). As numerically shown
by Kusche & Klees (2002), for large-scale problems only one sample of the random
vector is needed to obtain an accurate estimate of the trace.

Applying Eq.(4.48) to Eq. (4.46) gives an estimate r̂k of the partial redundancy rk,

r̂k = mk−
1

σ2
k

zTAT
k Q−1

k AkN−1z, k = 1, . . . , p. (4.49)

The evaluation of Eq. (4.49) for all p observation groups is formulated as a two-step
procedure:

1. Solve
Nqk = z (4.50)

to obtain the “random parameter solutions” qk, k = 1...p.

2. Compute an estimate of rk,

r̂k = mk−
1

σ2
k

zTAT
k Q−1

k Akqk. (4.51)

In general, several iterations are required till the variance factors convergence. Note
that in Eq. (4.47) and Eq. (4.51) for the ith iteration

σ
2
k =

{
σ2

k for i = 0,

σ̂2
k,i−1 for i≥ 1.

(4.52)

In the experiments, no more than five iterations were necessary.
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4.3 Data sets and preprocessing

This section provides an overview of the data used to estimate and validate the quasi-
geoid. Besides a description of the data sources, the content, and the expected preci-
sion, an overview is provided of the data preprocessing.

4.3.1 DGM-1S — a combined GRACE/GOCE gravity model

As reference field we use the optimally combined GRACE/GOCE Delft Gravity
Model (DGM-1S) complete to spherical harmonic degree 250 (Hashemi Farahani
et al. 2013a,b). It has been computed based on (i) seven years of GRACE K-band
ranging data, (ii) four years of GRACE satellites’ kinematic orbit data, (iii) fourteen
months of GOCE kinematic orbit data, and (iv) ten months of GOCE satellite gravity
gradiometry data.

4.3.2 Terrestrial gravity anomalies

The surface gravity anomaly, which is used as data type in the functional model
of the gravity data (Eq. (4.3)), is defined as the difference between the observed
gravity taken on the Earth’s surface and the normal gravity on the telluroid. Terrestrial
gravity data sets are commonly provided as free-air gravity anomalies (FAA). The
FAA is defined as the difference between the observed gravity taken on the Earth’s
surface, corrected for the height effect in free air, and the normal gravity taken on the
computation point on the level ellipsoid. In Appendix A, we show that the differences
between the needed surface gravity anomalies and the FAA are far below the noise
level of the FAA data sets used in this study.

Investigations into the application of terrain corrections were outside the scope of
this thesis. Therefore, the available terrestrial gravity anomalies are not used in the
mountainous areas such as Norway and the UK (instead we use DoV in north and east
directions derived from EGG08 (Section 4.3.6)), but confined to the non-mountainous
areas comprised by the computational domain; Belgium, Denmark, the Netherlands,
and parts of France and Germany. Here, the Belgian data set includes the data points
in the Ardennes, since the entire data set was also used to estimate the recent Dutch
quasi-geoids NLGEO2004 (Crombaghs & de Bruijne 2004) and NLGEO2007 (Klees
et al. 2008). Besides these 14,517 terrestrial pointwise FAA, the data sets used to
estimate NLGEO2004 and NLGEO2007 also include 7,815 pointwise FAA in the
Netherlands (De Min 1996) and 5,465 block-mean FAA in western Germany. These
“in-house” data sets were complemented by pointwise FAA in Belgium, Denmark,
France, and Germany. We refer to Table 4.1 for an overview of the meta-information
and Fig. 4.2 for a map of the data locations per data provider.
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Table 4.1: Meta-information of the terrestrial gravity data sets used in this study.

Provider Nr. Nr. pnts Grav. Point/block Obs. date Height Precision
subsets datum (mGal)

BGI 48 117,730 IGSN71 point 1935–1995 normal/orth. 2.0

BKG 3 2,247 IGSN71 point 1948–2008 DHHN92 2.0

NKG 2 230 - point - orth. 2.0

in-house 3 27,797 IGSN71 point/block - SRTM 0.6–2.5

total 56 148,004

BGI: Bureau Gravimétrique International
BKG: Bundesamt für Kartographie und Geodäsie
NKG: Nordic Geodetic Commission

Building the design matrix requires for each observation point the 3D position of
the corresponding telluroid point, where the vertical position of the telluroid point
corresponds to the normal height of the observation point. Because the “in-house”
data sets do not include height information, the normal heights are obtained from
a digital elevation model derived from Shuttle Radar Topography Mission (SRTM)
data (Farr et al. 2007, US Geological Survey’s EROS Data Center 2009).

As we combine data obtained from different sources, the data need to be harmonized
to account for systematic errors introduced by inconsistencies in the gravity, vertical,
and horizontal datums being used, as well as by the application of simplified free-air
reduction procedures (Heck 1990). Therefore, for each individual survey, which we
were able to identify using the provided meta-information, the functional model used
to parameterize the data is extended by a bias parameter provided that the survey
comprises at least five data points.

Except for the data sets used in the estimation of NLGEO2007 (Klees et al. 2008),
no information about the data accuracy is available. Here, we assume an a-priori pre-
cision of 2.0 mGal for all other terrestrial data. A-posteriori variances are estimated
using MCVCE (Section 4.2.3).

4.3.3 Shipboard gravity data

Shipboard gravity data in the form of FAA are obtained from different global and
regional databases. These databases partly contain the same data sets, although dif-
ferences exist among these “duplicate” data sets in terms of along-track resolution,
available meta-information, and/or provided FAA values. The latter points to differ-
ences in the post-processing applied to the data (e.g., crossover adjustment). To build
a database that contains unique and mutually consistent data sets, from all duplicates
of a particular data set the one was selected that provides the highest along-track
resolution and/or the most complete data set in terms of available meta-information.



82 CHAPTER 4. ESTIMATION OF THE QUASI-GEOID

Figure 4.2: Terrestrial gravity data used in the estimation of the quasi-geoid per provider;
BGI (cyan), BKG (green), NKG (magenta), and in-house database (blue). Note that the NKG
gravity data are hardly visible.

Obviously, the data sets we obtained directly from the principal data owners are pre-
ferred over the same data sets extracted from global databases. Table 4.2 provides an
overview of the meta-information, while Fig. 4.3 shows a map of the data per data
provider. In the remainder of this subsection, we first describe for each data provider
the extracted data and, if information is available, the applied preprocessing steps
and estimated precision. Second, we describe how systematic errors in the available
shipboard gravity data are removed. Note that if no information about the precision is
available, we assume a precision of 2.0 mGal. As for the terrestrial data, a-posteriori
variances are estimated using MCVCE (Section 4.2.3). In addition, we want to men-
tion that the design matrix related to shipboard data has been computed using zero
normal heights.
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Table 4.2: Meta-information of the shipboard gravity data sets used in this study.

Provider Nr. subsets Nr. cruise Nr. pnts Grav. Crossover Obs. date Precision
lines datum adj. (mGal)

BGI 18 277 43,979 IGSN71 ? 1973–1990 2.0

BGS 2,299 2,299 463,673 IGSN71 y 1962–1992 2.0

IFE 4 87 10,575 IGSN71 y 1983–1993 2.0

NGDC 1 64 26,467 IGSN71 y 1979 2.0

NKG 27 343 21,115 ? ? ? 2.0

in-house 2 - 2,358 IGSN71 ? 1992 0.36–1.48

total 2,351 3,070 568,167

4.3.3.1 Overview of the data

From our in-house database, we extracted the data acquired by Rijkswaterstaat (the
Dutch Department of Public Works) and Shell in the Dutch IJssel Lake and Wadden
Sea, respectively. Both data sets have been used to estimate the recent Dutch quasi-
geoids NLGEO2004 (Crombaghs & de Bruijne 2004) and NLGEO2007 (Klees et al.
2008). The data set acquired by Rijkswaterstaat is labeled as the WADGRAV data
set and described by De Min (1996). Klees et al. (2008) estimated the precisions of
the WADGRAV and Shell data to be 1.48 mGal and 0.36 mGal, respectively.

Shipboard gravity data obtained from the Bureau Gravimétrique International
(BGI) include the publicly available data acquired by Ifremer (French research insti-
tute for exploitation of the sea) in the period 1987–1990 (eight cruises), the Deutsches
Hydrographisches Institut in the period 1970–1975 (four cruises), Delft University of
Technology in 1986 during the “navigation and gravimetric experiment” at the North
Sea (Haagmans et al. 1988) (one cruise), the Russian Institute of Physics of the Earth
in the period 1973–1979 (three cruises), a, to the author, unknown institute during
a cruise in the western Baltic Sea (Plaumann 1979), and another, to the author, un-
known institute during a cruise in Danish waters in the period 1970–1975. Since
no information about the precision of these data is available, we assume an a-priori
precision of 2.0 mGal for all cruises.

The data set obtained from the British Geological Service (BGS) contains corrected
and smoothed ship gravity measurements acquired by BGS as part of its offshore
reconnaissance mapping programme. This programme, funded mainly by the UK’s
Department of Energy, commenced in 1967. Apart from the data acquired by the
BGS, the data set also includes measurements acquired during various commercial
and academic cruises between 1965 and 1994. The data were, among others, used
(in gridded form) for the computation of the Ordnance Survey Geoid Model 2002
(Forsberg et al. 2003). Note that, in the database, all cruise lines are stored as separate
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Figure 4.3: Shipboard gravity data used in the estimation of the quasi-geoid per provider;
BGI (cyan), BGS (yellow), IFE (black), NGDC (red), NKG (magenta), and in-house database
(blue).

cruises, i.e., it is not possible to identify which lines were acquired during the same
cruise. No information about the precision of the data is available.

The data have undergone basic processing (“base-tie”, Eötvös corrections, etc.) and
the corrected data are crossover adjusted (C. P. Royles, personal communication,
July 16, 2009). This adjustment involved two separate steps in which errors were
treated as either constant or random along the cruise lines. Constant errors were dealt
with by an iterative process. In each iteration, the cruise line with the set of largest
crossover errors was corrected by a constant value after which the errors throughout
the network were re-assessed and the process started again. This process continued
until it produced no further improvement of the overall mean crossover error within
the cruise grid. The remaining crossover errors were assumed to be random and
were corrected for by applying to either line of two intersecting lines a correction
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equal to half the crossover error. Between the crossovers, corrections were linearly
interpolated.

The Institut für Erdmessung (IFE) provided shipboard gravity data acquired during
four different cruises, labeled as pg0033, pg0119, pg0131, and pg0132. pg0033 con-
sists of 39 crossover adjusted cruise lines acquired in 1983. The along-track spacing
between the data points is about 1 km. The rms of the differences at the crossover
locations was originally 2.85 mGal. After the crossover adjustment it reduced to
1.88 mGal. pg0119 contains 180 observations acquired at scattered locations in
the shallow water area of the North Sea between Borkum and Sylt from 1992 to
1993. pg0131 contains 23 crossover adjusted cruise lines acquired during the “Victor
Hensen” cruise (September 26, 1992 – October 5, 1992) carried out by the Insti-
tute of Geophysics of Hamburg University. The along-track data spacing is 0.5 km.
Before the crossover adjustment, the data were corrected for a bias of −1.50 mGal.
pg0132 is acquired slightly before pg0131; from September 1, 1992 – September 11,
1992 by the Bundesamt für Seeschifffahrt und Hydrographie. This data set consists
of 25 crossover adjusted cruise lines, which were corrected for a bias of −3.00 mGal
before the adjustment. The precision of all these data is roughly estimated as 1–
3 mGal. Here, the a-priori precision is set to 2 mGal. The finally used precision is
estimated using MCVCE (Section 4.2.3).

The data set extracted from the US National Geophysical Data Center’s (NGDC)
GEODAS Marine Trackline Geophysics database is acquired during the gravity sur-
vey of the Dutch North Sea in 1979. We refer to Strang van Hees (1983) for a detailed
documentation of this cruise. He showed that the precision of the crossover adjusted
data estimated from the differences at the crossover locations is 1.22 mGal.

The data extracted from the Nordic Geodetic Commission (NKG) gravity database,
a collection of gravity data used to model the Scandinavian and Baltic geoid, mainly
include data in Norwegian waters and around the Shetland Islands. In 2000, this
database has undergone a major cleanup; old, erroneous, and inaccurate data were
deleted or replaced by new measurements (G. Strykowski, personal communication,
November 17, 2008). No information about the precision of the data is available.

4.3.3.2 Removal of systematic errors in shipboard gravity data

Shipboard gravity data are subject to systematic errors introduced by, e.g., gravimeter
drift and direct current (DC) offset (Wessel & Watts 1988). Although for the data of
many cruises these errors are (partly) removed during the post-processing of the ob-
served data, among the cruises inconsistencies remain, especially since we combine
data obtained from different data providers. An estimate of these inconsistencies is
shown in Fig. 4.4, where we computed for each cruise the average difference between
the shipboard FAA and altimeter-derived FAA obtained from the DTU10 global (on
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Figure 4.4: Average difference per cruise between the shipboard FAA and altimeter-derived
FAA obtained from the DTU10 global gravity field model.

land EGM2008 is used) gravity field model (DTU10-GRA) (Andersen et al. 2010,
Andersen 2010). From this map, we conclude that there is an offset of about 1 mGal
between the BGS data and the data obtained from BGI, NKG, and NGDC. Also the
IFE data is offsetted by about −1 to −2 mGal compared to the data obtained from
BGI, NKG, and NGDC. Furthermore, we observe large mean differences between
the WADGRAV and Shell data sets in the IJssel Lake and Wadden Sea (obtained
from our in-house database) and DTU10-GRA; for both data sets the average differ-
ence is about −3.5 mGal. Finally, we conclude that the network adjustment applied
by the BGS did not remove all mutual inconsistencies; especially in the data around
Scotland we observe large biases of several mGal.

Before a proper quasi-geoid can be estimated, these mutual inconsistencies need to
be removed. The most obvious method to do so is to apply a crossover adjustment.
In this study, we used the Generic Mapping Tools (GMT) x2sys routines (Wessel
2010). A bias is estimated for the data of each cruise; for the BGS data we estimate
a bias for each cruise line. Note that since we observed in Fig. 4.4 in some regions
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Figure 4.5: Map (a) and histogram (b) of the differences at the crossover locations.

systematic deviations between the BGS data and DTU10-GRA, the adjusted FAA are
replaced by the unadjusted ones. Furthermore, it should be noted that all cruise lines
that consist of less than five data points are excluded from the crossover adjustment
and that there should be at least two crossovers between a particular cruise and all
other cruises. The crossover differences are computed by interpolating the values of
nearby observations at the crossovers locations using an Akima spline interpolator
(Akima 1972).

In Fig. 4.5a and Fig. 4.5b, we show a map and a histogram of the derived crossover
differences, respectively. The histogram shows that the differences are normally dis-
tributed with a mean of −0.02 mGal and standard deviation of 2.66 mGal. The
16,333 crossovers are used to estimate 2,224 biases, see Fig. 4.6. To eliminate the
rank deficiency in the design matrix, we assumed a zero bias for the data obtained
from the NGDC database, i.e., the data acquired during the gravity survey of the
Dutch North Sea in 1979 (Section 4.3.3.1). We assumed a zero bias for this data
set because no systematic error showed up in the data when they were used in the
estimation of the recent Dutch quasi-geoids NLGEO2004 (Crombaghs & de Bruijne
2004) and NLGEO2007 (Klees et al. 2008).

To evaluate whether the inconsistencies among the data acquired during different
cruises have been successfully removed, we computed for each cruise the average
difference between the shipboard and DTU10-GRA FAA before (Fig. 4.7a) and af-
ter (Fig. 4.7b) applying the crossover adjustment. Note that the difference between
Fig. 4.4 and Fig. 4.7a is that in Fig. 4.7a the unadjusted BGS data are used while in
Fig. 4.4 the data are used as adjusted by the BGS. Overall, we conclude that for the
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Figure 4.6: Map of the estimated biases in the data of each cruise. The biases are estimated
by a crossover analysis. The total number of estimated biases is 2,224, while the number of
crossovers is 16,333.

data of many cruises in the North Sea and Skagerrak the mean (per cruise) differ-
ences between the shipboard and DTU10-GRA FAA are reduced, while for the data
in the Celtic Sea, Irish Sea, St. George’s Channel, and English Channel the differ-
ences significantly increased. The poor performance of the crossover adjustment in
these waters is explained by the fact that the “connection” of the cruises in these wa-
ters with the remaining cruises is weak; in the English Channel the connection with
the cruises in the North Sea is established by only one cruise line, while in the north
of the Irish Sea it is established by the data (two cruise lines) of one BGI cruise.
From a comparison of Fig. 4.6 with Fig. 4.7a, we conclude that the estimated bias
for this BGI cruise is likely too large, which biases all data in the Celtic Sea, Irish
Sea, St. George’s Channel, and English Channel. The shift in the estimated biases
between the cruises in the English Channel east and west of the −6◦ meridian (see
Fig. 4.6) is caused by the fact that there are almost no connections between these
cruises. Note that this cannot be seen from Fig. 4.5a. We also observe a small dif-
ference of ∼1 mGal between the data in the south-eastern North Sea, Skagerrak, and
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(a) (b)

Figure 4.7: Average difference per cruise between the shipboard FAA and altimeter-derived
FAA obtained from the DTU10 global gravity field model before (a) and after (b) applying
the crossover adjustment. Note that compared to Fig. 4.4, for these figures the adjusted BGS
data were replaced by the unadjusted values.

Kattegat compared to the remaining data in the North Sea. This again shows that after
applying the crossover adjustment not all systematic errors in the data are removed.

A better removal of the systematic errors can be obtained by applying a separate
crossover adjustment for the data in different regions. However, besides the fact that
this is a labor-intensive solution, the main drawback is that not all mutual inconsis-
tencies will be removed. Indeed, among the data of the different regions the incon-
sistencies remain. As a consequence, post-processing is required or additional bias
parameters need to be included into the functional model used to parameterize the
data. Mainly restrained by the labor-intensive aspect, in this study, we decided to ad-
just all shipboard gravity cruises to the altimeter-derived FAA model DTU10-GRA
by adding the average differences shown in Fig. 4.7a to the observed FAA. Note
that in this way we also “remove” the systematic errors in the data of all “uncon-
nected” cruises, i.e., cruises that have no crossovers with any other cruise. Of course,
DTU10-GRA is not error-free. Andersen (2010) showed that the mean and standard
deviation of the differences between DTU10-GRA and 321,400 unclassified ship-
board gravity observations in the Gulf Stream region with an accuracy of 2–3 mGal
are 0.39 and 3.82 mGal, respectively. As discussed by Andersen et al. (2010), the
Gulf Stream region introduces an error of 2–3 mGal because of increased sea surface
height variability and hence the comparison should not be considered as representa-
tive for the general accuracy of DTU10-GRA. Furthermore, one could object that
for the data in coastal waters (where we do have many data points) no reliable bias
corrections can be computed due to the problems with radar altimeter data (Sec-
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Table 4.3: Meta-information of the airborne gravity data used in this study.

Provider Nr. Nr. Grav. Along-track Crossover Obs. date Height Precision
subsets pnts datum spacing (km) adj. (mGal)

BKG 2 6,699 IGSN71 0.6–1.1 n 2006/2007 ellips. 2.0

NKG 1 1,661 IGSN71 1.2–1.4 n 1996 orth. 2.0

total 3 8,360

tion 1.3.1). We agree that this is indeed a problem, but want to stress that these
problems have been strongly reduced by the fact that DTU10-GRA is computed us-
ing retracked radar altimeter data. In addition, for the data sets in the Dutch IJssel
Lake and Wadden Sea, where hardly any radar data are available, no adjustment is
carried out. Instead, the functional model is extended by a bias term for each of these
data sets.

After removing the systematic errors, we used the pointwise differences between the
shipboard and DTU10-GRA FAA to remove outliers in the data set. The outliers are
identified by using subsequently the 10-sigma and 3-sigma rules, i.e., observations
are identified as outliers if the differences between the shipboard and DTU10-GRA
FAA are larger than ten/three times the standard deviation of all differences. Here,
we first apply the 10-sigma rule to avoid a contamination of the standard deviation
by extremely large outliers. By applying these rules, 32 and 9,025 observations,
respectively, were identified and removed.

4.3.4 Airborne gravity data

Airborne gravity data, in the form of gravity disturbances, are obtained from the Bun-
desamt für Kartographie und Geodäsie (BKG) and the NKG. From the BKG, we ob-
tained the data acquired from 2006–2008 during the BalGRACE and NorthGRACE
campaigns (Schäfer et al. 2008). The NKG provided the data acquired as part of the
“airborne geoid mapping system for coastal oceanography” project (Forsberg et al.
1997). The latter data set is also used by Alberts (2009, Section 6.1). While origi-
nally our computational domain was smaller, we only obtained both from the BKG
and NKG the data west to 9◦ longitude. See Fig. 4.8 for a map of the data loca-
tions per data provider and Table 4.3 for an overview of some main features. For a
description of the applied data processing, we refer to Olesen (2002).

A comparison of the BalGRACE and NorthGRACE data sets (both in the form of
FAA) with independent surface data (terrestrial, shipboard, and altimeter-derived
FAA) reveals that the rms and bias values of the differences range between 1.8 to
2.1 mGal and 1.2 to 1.6 mGal, respectively (Schäfer et al. 2008).
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Figure 4.8: Airborne gravity data used
in the estimation of the quasi-geoid per
provider; BKG (green) and NKG (ma-
genta).

To suppress the high-frequency signals in the data, the data of all tracks are smoothed
by a Gaussian filter with a half-width of 3 km. Systematic errors in the data are
accounted for by extending the functional model with a single bias parameter per
cruise. Remaining errors in the data are assumed to be white Gaussian noise with a
standard deviation of 2.0 mGal. As for the terrestrial data, the a-posteriori variances
are estimated using MCVCE.

4.3.5 Along-track DoV from radar altimeter data

In this section, we describe the procedure used to derive the along-track deflections
of the vertical (DoV) that make up the contribution of satellite altimetry to the quasi-
geoid. An outline of this procedure is provided by the flowchart presented in Fig. 4.9,
which is a detailed crop of the flowchart presented in Chapter 2 (Fig. 2.1). To struc-
ture our description, in the remainder of this section we follow the flowchart.

Figure 4.9 (following page): Flowchart of the procedure used to derive along-track DoV
from observed SSHs. The different colors of the blocks refer to the different phases in the
overall procedure: (i) green refers to a preprocessing step and (ii) yellow to a step of the
iterative phase. The different colors of the arrows refer to the different data flows: RADS
data (yellow), EAPRS-ERS1 data (blue), combined (green), and meteorological data (black).
The bold capital letters between the brackets refer to Tables 4.6 and 4.7, where we provide
an overview of the (removed) number of SSHs/DoV after applying the particular step.
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Table 4.4: Main characteristics of the radar altimeter missions from which data are used to
estimate the quasi-geoid together with an overview of the orbit and background models used
to compute the ellipsoidal heights of the instantaneous sea surface. Note that the data of the
Envisat and ERS-1/2 missions, as well as the data of the Jason-1/2 and T/P (except the data
acquired during the tandem mission phase) missions, are combined.

Envisat ERS-1∗1 ERS-2 GEOSAT∗2 GFO-1 Jason-1 Jason-2 POSEIDON TOPEX

ID n1 e1 e2 gs g1 j1 j2 pn tx
Start 9/2002 7/1991 4/1995 3/1985 1/2000 1/2002 6/2008 10/1992 10/1992
End 4/2012 3/2000 7/2011 1/1990 9/2008 7/2013 - 1/2006 1/2006
Inclination 98.5◦ 98.5◦ 98.5◦ 108◦ 108◦ 66◦ 66◦ 66◦ 66◦

Cycle [days] 35 3/35/336 35 17 17 10 10 10 10
Orbit EIGEN-GL04S REAPER DGM-E04 GDR-C Prime idem gs idem n1 idem n1 idem g1 idem g1
Dry Tropo. ECMWF idem n1 idem n1 NCEP NCEP idem n1 idem n1 idem n1 idem n1
Wet Tropo. MWR (NN) idem n1 idem n1 NCEP MWR enhanced enhanced TMR TMR

JMR AMR
Ionosphere smth. dual-freq. NIC09 JPL GIM NIC09 JPL GIM idem n1 idem n1 NIC09 idem n1
Sea State Bias CLS BM3 BM3 hybrid idem gs idem n1 idem n1 BM4 CLS
Load tide GOT4.7 idem n1 idem n1 idem n1 idem n1 idem n1 idem n1 idem n1 idem n1
∗1 This data set includes data retracked by the EAPRS laboratory.
∗2 Retracked by NOAA.

Data sources 1 Hz radar data acquired by the GEOSAT (geodetic mission (GM)
phase), ERS-1 (exact repeat mission (ERM) + GM phases), ERS-2, Envisat, GFO-1,
Jason-1/2, and TOPEX/POSEIDON (T/P) satellites during the period March 1985 to
September 2011 are extracted from the Radar Altimeter Database System (RADS)
(Scharroo 2013). For a part of our computational domain (comprising the whole
North Sea), the ERS-1 GM data are replaced by retracked data kindly provided by
Prof. P. A. M. Berry from the Earth and Planetary Remote Sensing (EAPRS) Lab-
oratory of the De Montford University (note that the actual replacement is carried
out almost at the end of the procedure). These retracked 20 Hz data represent the
uncorrected ellipsoidal heights of the instantaneous sea surface, i.e., except for in-
strumental corrections no other corrections are applied. We refer to these data as the
EAPRS-ERS1 data set. Table 4.4 shows the main characteristics of the satellite mis-
sions together with an overview of the orbit and background models used to compute
the ellipsoidal heights of the instantaneous sea surface.

Computing heights of the instantaneous sea surface (RADS) For the RADS
data, ellipsoidal heights of the instantaneous sea surface are computed by correcting
the observed SSHs for dry and wet tropospheric refraction, ionospheric refraction,
the sea state bias, solid earth tide, loading tide, and pole tide. Reference frame dif-
ferences among the various altimeters are accounted for by applying reference frame
offsets to the data using TOPEX as reference (Andersen & Scharroo 2011).

Remove outliers in observed SSHs Outliers in the 1 Hz RADS and 20 Hz EAPRS-
ERS1 data sets are removed using the iterative procedure described in Hwang & Hsu
(2008) (see also Section 3.5.4); smoothing of the along-track height differences with
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Table 4.5: Overview of the different sets of DT corrections applied to the instantaneous SSHs
to obtain geometric quasi-geoid heights.

Set tide surge steric
GOT4.7 DCSM MOG2D DCSM DTU10-MSS-EGG08 DCSM

ζ
(1)
DT x

ζ
(2)
DT
∗1 x

ζ
(3)
DT
∗2 x x x

ζ
(4)
DT x x x
∗1 Outside DCSM’s model domain we use ζ

(1)
DT.

∗2 Outside DCSM’s model domain we use ζ
(4)
DT.

a 1D Gaussian filter using a filter half-width of 5.5 km is repeated until the largest
residual between observed and smoothed height differences satisfies the three-sigma
criterion, where sigma is the standard deviation of the residuals. Note that contrary
to what is done by Hwang & Hsu (2008), we use a filter half-width of 5.5 km for
both the ERM and GM data sets instead of using a half-width of 3.5 km for the GM
data. Empirically, we found that more outliers in the GM data are removed if we use
a filter half-width of 5.5 km.

From SSHs to (biased) geometric quasi-geoid heights (RADS) For the RADS
data, geometric quasi-geoid heights are obtained as the differences between the el-
lipsoidal heights of the instantaneous sea surface and the dynamic topography (DT).
Four different approximations to the real DT are used, resulting in four sets of DT cor-
rections that are briefly summarized in Table 4.5. In the first set, referred to as ζ

(1)
DT ,

the DT comprises only the ocean tides derived from the GOT4.7 global ocean tide
model (see Ray (1999) and Section 3.5.4). In ζ

(2)
DT , the DT comprises the ocean tides

from DCSM. Outside the DCSM model domain we use ζ
(1)
DT . In ζ

(3)
DT , the DT com-

prises ocean tides, surge, and steric effects taken from DCSM using the experimental
setup presented in Section 3.6.1. ζ

(4)
DT , that is also used outside the DCSM model do-

main, comprises the GOT4.7 ocean tides, the surge obtained from the MOG2D model
(see Carrère & Lyard (2003) and Section 3.5.4), and water level variations induced
by time-averaged spatial variations in water density. The latter are computed as the
differences between the DTU10 mean sea surface model (DTU10-MSS) (Andersen
2010) and the EGG08 quasi-geoid (Denker et al. 2008).

Computing 1 Hz geometric quasi-geoid heights for the EAPRS-ERS1 data To
reduce the uncorrected EAPRS-ERS1 SSHs to geometric quasi-geoid heights that
are consistent with those derived from the RADS data, we need to apply corrections
for the tropospheric and ionospheric propagation delays, sea state bias, solid earth
tide, loading tide, pole tide, reference frame offset, DT, and differences between the
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DGM-E04 (Scharroo & Visser 1998) and REAPER (Rudenko et al. 2012) orbits used
for the RADS ERS-1 and EAPRS-ERS1 data, respectively. Except for the sea state
bias and the DT corrections derived from DCSM (ζ (2)

DT and ζ
(3)
DT), all corrections are

only available at the locations of the RADS data points. The sea state bias corrections
(only applied to the SSHs which are obtained making use of a waveform conforming
to Brown’s model of ocean return (Brown 1977)) are computed using a hybrid sea
state bias model for which the parameters are derived using the method presented by
Scharroo & Lillibridge (2005). This method uses “SSH residuals” as input, which
are computed by removing all corrections including the quasi-geoid heights (here
derived from EGG08) from the uncorrected SSHs. Note that in computing the SSH
residuals, the full DT corrections are applied; ζ

(1)
DT and ζ

(2)
DT are supplemented by the

MOG2D surge and the DTU10-MSS-EGG08 steric corrections (these are restored af-
ter the estimation and removal of the secular and remaining seasonal variations (next
step)). The sum of the corrections that are only available at the RADS data points
is interpolated using a cubic spline interpolation to the EAPRS-ERS1 data locations.
After applying the sea state bias corrections, the EGG08 quasi-geoid heights are re-
stored and the EAPRS-ERS1 data are down-sampled to 1 Hz to suppress some noise
and to make the EAPRS-ERS1 data fully consistent with the RADS data. The down-
sampling is performed by estimating from all SSHs (maximum 20) inside a particular
bin j the average SSH (h1Hz

Nj
) using the observation equation

h20Hz
Ni

= a ·∆di j +h1Hz
Nj

, (4.53)

where h20Hz
Ni

is a 20 Hz retracked SSH, a is the slope, and ∆di j is the distance of h20Hz
Ni

relative to the center of the bin.

Estimate and remove secular and remaining seasonal variations The geomet-
ric quasi-geoid heights computed this way still contain the effect of secular changes
in sea level due to, e.g., eustatic and steric sea level changes, self gravitation, and
glacial isostatic adjustment. Moreover, if we apply the DT corrections ζ

(1)
DT , ζ

(2)
DT ,

or ζ
(4)
DT (for this step, ζ

(1)
DT and ζ

(2)
DT are supplemented by the MOG2D surge and the

DTU10-MSS-EGG08 steric corrections), they also contain the signal associated with
temporal variations in the steric sea level, while if we apply the DT corrections ζ

(3)
DT ,

they also contain the signal induced by the net steric expansion/contraction of the
global oceans. In the next step, these signals are estimated and removed. In the
North Sea, the non-secular variations in both the steric sea level and the net steric
expansion/contraction signal are mainly seasonal. Therefore, we use the functional
model given in Eq. (3.14). The spatially varying trends and seasonal variations are
estimated from the T/P and Jason-1/2 geometric quasi-geoid heights over the entire
measurement period (1992–2011) in bins of ∼6.5 km along the satellite passes and
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interpolated to the locations of all data points using GMT’s surface routine with a
tension factor of 1. The corrections are centered to the adopted reference epoch.

If we apply the DT corrections ζ
(1)
DT or ζ

(2)
DT , after the estimation and removal of the sec-

ular and remaining seasonal variations, the surge and steric contributions are restored
to the geometric quasi-geoid heights.

Exclude data acquired after January 1, 2004 The DT corrections ζ
(3)
DT cannot be

computed after the end of 2004 as the salinity and temperature fields of POL’s hind-
cast are only available up to that time. Therefore, all data acquired after January
2004 are excluded before we compute the along-track DoV. To remain consistent,
these data are also excluded if we apply the other sets of DT corrections. Note that
we do not exclude any GM phase data.

Compute along-track DoV The along-track DoV (ε) are approximated using

ε =−
hN2−hN1

d12

, (4.54)

where hN1 and hN2 are two successive geometric quasi-geoid heights and d12 is the dis-
tance between them (about 6.5 km for 1 Hz data). This simple two-point finite differ-
ence scheme is applied to each successive pair of geometric quasi-geoid heights. Ob-
viously, this introduces correlations between two successive DoV (correlation coeffi-
cient is 0.5), which need to be included in the variance-covariance matrix. Here, we
neglect these correlations as the software cannot deal with full variance-covariance
matrices. From the obtained set of DoV, we exclude those for which holds that:

1. d12 > 10 km, i.e., if there is a data gap between two successive points of a track.

2. hN1 and/or hN2 was/were rejected during the stacking operation. During this op-
eration it is evaluated whether (i) the across-track distance between the ground
track of a particular satellite fly-over and the average ground track is smaller
than half the along-track sampling distance and (ii) the observation is not re-
jected as an outlier in the computation of the average geometric quasi-geoid
heights. As in Hwang et al. (2002), Pope’s tau-test (Pope 1976) is used to
detect outliers.

3. hN1 and hN2 are retracked by a different retracker.

Remove remaining outliers Remaining outliers in the observation-derived DoV
are detected and removed using the method suggested by Sandwell & Smith (2009);
DoV are removed as outliers if the differences between the observation-derived and
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Table 4.6: Bookkeeping of the number of SSHs/DoV for each (group of) satellite mission(s)
(phases) obtained/removed by applying the various data processing steps if we apply the
DT corrections ζ

(3)
DT . The labels in the first column refer to Fig. 4.9.

Step e1/b + e1/c + e1/g + e1/a e1/e e1/f g1 gs tx/a + pn + tx/b tx/n e1/e∗1 e1/f∗1

e1/d e2 + n1 j1 + j2

Init. # SSHs 22,096 3,110,522 47,913 56,442 57,557 1,185,013 249,047 4,287,814 545,896 17,597 441,967 468,128
A -125 -24,207 -344 -361 -448 -10,326 -3,044 -40,583 -5,200 -175 -18,315 -17,605
B 19,436 21,066
C 21,971 1,420,575 47,569 56,081 57,109 656,003 246,003 2,281,926 237,437 17,422 19,436 21,066

D 21,755 1,409,710 47,209 55,630 56,649 650,896 244,120 2,264,230 235,452 17,272 19,238 20,863
E -1,088 -34,739 -2,409 -1,538 -1,530 -22,784 -5,218 -48,140 -4,807 -373 -445 -390
F -315 -25,514 -414 -0 -0 -7,057 -0 -17,917 -2,085 -0 -0 -0
G -103 -85
H -0 -10 -1 -1 -0 -105 -47 -49 -0 -0 -8 -7
I -584 -23,085 -748 -323 -1,493 -6,848 -1,815 -15,340 -846 -44 -120 -333
J 1,141 14,056 1,272 37,115 35,403 9,277 237,040 6,596 5,552 16,855 18,457 19,344
∗1 Data retracked by the EAPRS laboratory.

reference values exceed the three-sigma criterion, where sigma is the standard de-
viation of the differences. As reference values we use the along-track DoV derived
from EGG08 quasi-geoid heights. Just as for the removal of outliers in the ship-
board gravity data (Section 4.3.3.2), we use a two-step procedure. First, we remove
all observation-derived DoV for which the differences exceed 10 times the standard
deviation of the differences. Second, we recompute the standard deviation and re-
move all observation-derived DoV for which the differences exceed three times the
standard deviation.

Final steps In the next step, the DoV for the ERM mission(s) (phases) are averaged.
Thereafter we replace the RADS ERS-1 GM data by the EAPRS-ERS1 data. After
that, we remove the along-track DoV computed using the DGM-1S GRACE/GOCE
model (Section 4.3.1) in the mean-tide system. Finally, we suppress high-frequency
noise in the residual along-track DoV derived from GM data by smoothing all passes
of the GEOSAT and ERS-1 GM data sets using a Gaussian filter with a half-width
that equals the nominal along-track data spacing (6.5 km).

In Table 4.6, we summarize for the case we apply the DT corrections ζ
(3)
DT , for all

(groups of) satellite missions (phases), the number of SSHs/DoV obtained/removed
in each step of the processing. In Table 4.7, we provide the total numbers for all
sets of DT corrections. Figures 4.10a and 4.10b provide a map of the residual along-
track DoV obtained after applying the DT corrections ζ

(3)
DT for the north-south and

south-north passes, respectively.

4.3.6 DoV from EGG08

In the mountainous areas of the computational domain, we use DoV in north and east
directions derived from EGG08. This is because investigations into the application
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Table 4.7: Bookkeeping of the total number of SSHs/DoV obtained/removed by applying
the various data processing steps if we apply the four sets of DT corrections summarized in
Table 4.5. The labels in the first column refer to Fig. 4.9.

Step ζ
(1)
DT ζ

(2)
DT ζ

(3)
DT ζ

(4)
DT

Org. # SSHs 10,489,992 10,489,992 10,489,992 10,489,992
A (remove outliers in observed SSHs (Hwang & Hsu 2008)) -120,733 -120,733 -120,733 -120,733
B (down-sample to 1 Hz) 9,535,139 9,535,585 9,535,586 9,535,139
C (exclude data acquired after January 1, 2004) 5,082,151 5,082,597 5,082,598 5,082,151

D (compute along-track DoV) 5,042,579 5,043,023 5,043,024 5,042,579
E (exclude DoV if d12 > 10 km) -123,378 -123,460 -123,461 -123,378
F (exclude DoV if hN1 and/or hN2 were rejected during stacking) -54,623 -54,005 -53,302 -54,623
G (exclude DoV if hN1 and hN2 were retracked using different retracker) -164 -188 -188 -164
H (remove outliers by using 10-sigma editing criterion) -71 -254 -228 -43
I (remove outliers by using 3-sigma editing criterion) -50,328 -50,977 -51,579 -50,125
J (exclude ERS-1 GM data RADS in domain we have EAPRS data) 401,767 401,942 402,108 402,005

(a) (b)

Figure 4.10: Residual along-track DoV obtained after applying the DT corrections ζ
(3)
DT for

the “north-south” going tracks (a) and “south-north” going tracks (b).

of terrain corrections were outside the scope of this thesis (Section 4.3.2) and RBF’s
are not appropriate basis functions to parameterize the uncorrected terrestrial FAA in
mountainous areas. In addition, we use these EGG08-derived DoV to fill some data
gaps in the continental regions of our computational domain.

The EGG08-derived DoV are sampled at the grid nodes of a tailored Fibonacci grid
(the same type of grid we used in the RBF network design (Section 4.2.2.4)). The
point of departure is to choose the grid resolution such that it reflects the actual reso-
lution of EGG08, i.e., it should be chosen such that we use the minimum number of
“pseudo-observations” from which we still can obtain a reasonable reconstruction of
EGG08. Empirically, we found a grid resolution of∼3.8 km for the northern UK and
the western part of Norway and∼5.8 km elsewhere. We refer to Figs. 4.11a and 4.11b
for maps of the data.
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(a) (b)

Figure 4.11: Residual DoV in north (a) and east (b) directions derived from EGG08 at the
locations of a tailored Fibonacci grid with a resolution of ∼3.8 km in the northern UK and
Norway and ∼5.8 km elsewhere.

4.3.7 GPS/leveling data

In the framework of this thesis, the GPS/leveling data are exclusively used to vali-
date the quasi-geoid. The data are provided by the Rijkswaterstaat Data-ICT-Dienst
and were also used by Klees et al. (2008). The data set contains geometric height
anomalies at 81 points covering the Netherlands (see Fig. 4.12). According to Crom-
baghs & de Bruijne (2004), the quality of these geometric height anomalies is about
0.010−0.015 m.
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(a) (b)

Figure 4.13: The analyzed passes on top of the GEBCO_08 bathymetry (a) and on top of the
modeled MDT (b). The figures indicate the pass numbers. The model-derived MDT is the
same as the one shown in Fig. 3.2. The grey colored parts of the passes are excluded from
the estimation of the PSDs.

4.4 Spectral analysis of the residual along-track DoV

In this section, we present and discuss the first part of the analysis performed to as-
sess the added value of “improved” DT corrections for quasi-geoid determination.
The analysis comprises nine case studies. For each case study, we compare the ra-
tios of the mean signal and noise power spectral densities (PSDs) of the residual
along-track DoV obtained after applying the four sets of DT corrections to the SSHs
(Section 4.3.5).

4.4.1 Case study setup

The PSDs of the residual along-track DoV are computed for data acquired by the
TOPEX satellite before cycle 365 when the T/P orbit was changed to the interleave
orbit (December 1992 – August 2002). Besides the high accuracy and high tem-
poral resolution (10-day repeat cycle), these data are entirely acquired in the pe-
riod over which we are able to compute the DT corrections ζ

(3)
DT (Section 4.3.5).

Of the 12 TOPEX passes that cross the North Sea, we selected nine representa-
tive ones. They are shown on top of the bathymetry and model-derived MDT in
Fig. 4.13a and 4.13b, respectively. Both maps give an idea about the locations where
larger DoV can be expected.
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For each pass, the noise realizations are obtained by differencing the data belonging
to different cycles. For P repeated cycles, we can compute 1

2 P(P− 1) noise real-
izations. Assuming there is no noise cancellation, the differences obtained this way
represent the differences between the noise in the data of the two cycles. To obtain
the PSD of the noise, we need to divide the PSD of these differences by two.

Due to the presence of data gaps, we use a periodogram-based method to estimate
the PSDs. Here, we use a Blackman-Tukey periodogram estimator (Stoica & Moses
2005). As the lag-window, we use a Gaussian. The half-width Q of the Gaussian is
derived empirically as the maximum half-width which guarantees a positive PSD at
all frequencies for all computed PSDs. This approach was also successfully used by
Ditmar et al. (2007). In summary, the procedure applied for each pass and for each
set of DT corrections is as follows:

1. Obtain the TOPEX-derived residual along-track DoV (cycle 10–365).

2. Compute the differences between the residual along-track DoV of repeated
cycles.

3. Compute for each repeated cycle the signal auto-covariance function. Here, all
repeated cycles are excluded for which the distance between the first and last
point is less than three-quarters of the pass’s arc length (see Table 4.8 for the
maximum lag distances (Na∆d)). This criterion is a compromise between the
need to have a sufficiently large maximum lag distance on the one hand, and a
sufficiently large number of realizations when averaging on the other hand.

4. Compute for all 1
2 P(P−1) differences the empirical auto-covariance function

and divide it by two to obtain what we call the noise empirical auto-covariance
function. Again, all realizations are excluded for which the distance between
the first and last point is less than three-quarters of the pass’s arc length.

5. Select a sufficiently large value for the half-width of the Gaussian lag-window
function (Qi).

6. Apply the Gaussian lag-window function with half-width Qi to all empirical
signal and noise auto-covariance functions.

7. Estimate the signal and noise PSDs.

8. As long as any PSD is negative at some frequencies, decrease Qi and repeat
steps 6 and 7.

9. Compute the average signal and noise PSDs.
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Table 4.8: Overview of the maximum lag (Na), maximum lag distance (Na∆d), used/total
number of cycles, and maximum possible half-width (Q) of the applied lag-window function.

Pass number Na Max lag distance
Na∆d (km)

Used/total # of
cycles

Q

11 68 417 193/423 22
163 73 448 234/416 20
239 79 485 230/426 21
61 124 766 205/418 22
137 79 485 178/417 19
196 142 877 161/418 29
18 164 1015 188/425 32
94 167 1034 213/423 43
170 148 915 191/418 25

4.4.2 Results

Fig. 4.14 shows the estimated signal and noise PSDs for all passes together with the
signal-to-noise ratio (SNR). As can be seen, the shape of all signal PSDs is more or
less similar; the signal PSDs peak at a wavelength of about 200 km after which they
decrease down to a wavelength of 50–30 km whereafter they stabilize. The decrease
for wavelengths > 200 km is caused by the removal of the DGM-1S reference field
(Section 4.3.1). Suppose this global model exactly represents the radar altimeter data,
than we would not expect any signal at wavelengths above 100–150 km. The fact that
we do see signal for larger wavelengths (Fig. 4.14) can be seen as an indication that
the global model is not perfect or can be attributed to residual long-wavelength orbit
errors, which do not cancel out when taking the difference between two passes. It
should be noted that differences among the PSDs that belong to various passes are
also introduced by applying different lag-window functions (different half-widths
Q) to the empirical auto-covariance functions. As shown in Table 4.8, the derived
maximal half-widths vary between 19 (pass 137) to 43 (pass 94), where the smaller
Q becomes, the more the PSD is smoothed.

Since we are analyzing the PSDs of the residual along-track DoV, we expect the noise
PSDs to increase for higher frequencies. This is what we observe in Fig. 4.14 (note
the logarithmic scale); an increase down to a wavelength of ∼20 km. The increase
is in line with what could be expected based on the observation of Sandwell & Smith
(2009) that the SSHs do have a nearly white spectrum; taking the derivative of a white
noise signal increases the noise proportional to the frequency.

In general, the SNRs are above 1 down to wavelengths of 30–20 km and far above 1
for longer wavelengths. We also observe for wavelengths around ∼200 km slightly
higher SNRs for the descending passes (even pass numbers) compared to those for
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Figure 4.14: The signal (solid line) and noise (dashed line) PSDs (left panels) and the SNR
as a function of wavelength (right panels) obtained after applying the DT corrections ζ

(1)
DT

(green), ζ
(2)
DT (blue), ζ

(3)
DT (red), and ζ

(4)
DT (grey) for the passes 11 (top), 163 (middle), and 239

(bottom).
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Figure 4.14 (continued): The signal (solid line) and noise (dashed line) PSDs (left panels)
and the SNR as a function of wavelength (right panels) obtained after applying the DT correc-
tions ζ

(1)
DT (green), ζ

(2)
DT (blue), ζ

(3)
DT (red), and ζ

(4)
DT (grey) for the passes 61 (top), 137 (middle),

and 196 (bottom).
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Figure 4.14 (continued): The signal (solid line) and noise (dashed line) PSDs (left panels)
and the SNR as a function of wavelength (right panels) obtained after applying the DT cor-
rections ζ
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(3)
DT (red), and ζ

(4)
DT (grey) for the passes 18 (top), 94 (middle),

and 170 (bottom).
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the ascending passes (odd pass numbers). This increased signal variation is explained
by the fact that the descending passes cross the shelf edge (steep gradient in the
bathymetry (Fig. 4.13a)) and are approximately aligned with the direction of the gen-
eral trend in the MDT (Fig. 4.13b).

4.4.3 Discussion and conclusions

After these introductory remarks, we turn to the actual analysis that aims to evaluate
the impact “improved” DT corrections to the SSHs have on the PSDs/SNRs. Indeed,
any improvement is expected to show up by a decrease of the noise level, which
in turn improves the SNR in a particular bandwidth. The analysis consists of three
parts. First, we assess the impact of deriving the astronomical tide contribution to the
DT corrections from the shallow water hydrodynamic model DCSM, compared to de-
riving this contribution from the global ocean tide model GOT4.7. Second, we assess
the added value of including the surge and steric contributions to the DT corrections.
Finally, we assess the added value of using DCSM to correct the altimeter-derived
SSHs for the full DT signal, compared to using corrections obtained as the sum of
the three main contributions to the DT (astronomical tide (GOT4.7), surge (MOG2D),
and steric height (DTU10-MSS/EGG08)).

4.4.3.1 Added value of astronomical tide corrections derived from a shallow
water hydrodynamic model

First, we assess the impact of deriving the astronomical tide contribution to the
DT corrections from the shallow water hydrodynamic model DCSM, compared to de-
riving this contribution from the global ocean tide model GOT4.7. This assessment is
carried out by comparing the PSDs/SNRs obtained after applying the DT corrections
ζ

(1)
DT on the one hand, and ζ

(2)
DT on the other hand.

In Fig. 4.14, we observe that for the northerly passes 11, 94, and 170 the SNRs at
the long wavelengths (for wavelengths larger than 300 km for pass 170) are more
favorable to the DT corrections ζ

(1)
DT . At shorter wavelengths, we do not observe (for

these three passes) significant differences between both SNR curves. For all other
passes, except pass 239, we observe in some parts of the spectrum higher SNRs if
we apply the DT corrections ζ

(2)
DT . For pass 163, these higher SNRs show up in the

wavelength range 200–140 km. For the passes 61 and 18, they are visible in two
parts of the spectrum; for wavelengths 150–80 and 55–40 km (pass 61), and 120–70
and 45–36 km (pass 18). The largest relative differences between both SNR curves
are observed for the southerly passes 137 and 196 (ranked according to the degree of
improvements). For the ascending pass 137, that crosses the southern North Sea just
north to the entrance to the English Channel up to the Danish coast (Fig. 4.13), we
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observe higher SNRs in the bandwidth ∼500–37 km. For the descending pass 196,
this bandwidth is ∼500–65 km.

Based on these results, we conclude that the added value of using DCSM instead of
GOT4.7, i.e., using a shallow water hydrodynamic model instead of a global ocean
tide model, is increasing towards the southern North Sea. In addition, we conclude
that in the southern North Sea the improvements show up over almost the entire
spectrum. The fact that the added value increases towards the southern North Sea
could be expected, since in this region the tidal behavior is more complex. Water
depths become shallower and the tidal wave through the English Channel joins the
tidal wave that has traveled around Scotland.

4.4.3.2 Added value of including the surge and steric contributions

Next, we assess the added value of including the surge and steric contributions to
the DT corrections. This assessment is limited to the surge and steric contributions
obtained using DCSM as these are expected to be better than those obtained from the
MOG2D model and DTU10-MSS/EGG08. So, we compare the PSDs/SNRs obtained
after applying the DT corrections ζ

(2)
DT on the one hand, and ζ

(3)
DT on the other hand.

In Fig. 4.14, we observe that for all passes, except pass 61, at longer wavelengths
(500–100 km) the SNRs obtained after applying the DT corrections ζ

(3)
DT are higher

compared to those obtained after applying the DT corrections ζ
(2)
DT . For the passes 163,

239, 18, 94, and 170, these higher SNRs are observed down to wavelengths between
300 and 200 km. For the other passes (11, 137, and 196), the higher SNRs are
observed down to wavelengths in the bandwidth 200–100 km. Note that for the
passes 163 and 170 the SNRs in the bandwidths 280–80 and 200–80, respectively,
are lower if the DT corrections ζ

(3)
DT are applied compared to the ones obtained af-

ter applying ζ
(2)
DT . The most likely explanation for this decreased performance of the

DT corrections ζ
(3)
DT are the errors in these corrections associated with the errors in

the used salinity and temperature fields (Section 3.6.1.3). Indeed, by comparing
Fig. 3.7b and Fig. 4.13b we conclude that both passes cross that part of the model
domain where these errors are visible. We agree that this also applies to pass 11. The
reason why we do not see a similar degradation of the SNRs obtained if we apply the
DT corrections ζ

(3)
DT is not clear. The degraded performance of the DT corrections ζ

(3)
DT

is also observed at wavelengths around 80 km for pass 11, 100 and 70 km for pass 18,
and 55 km for pass 94, although here the degradation is small.

So, we conclude that including both the steric and surge parts improves the SNRs at
mainly longer wavelengths; down to 140–100 km for pass 11, 137, and 196. The
fact that the southerly passes 137 and 196 are among the three passes for which we
observe higher SNRs over the largest wavelength range supports the conclusion that
also here the added value is more significant towards the southern North Sea. We
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admit, however, that this increase is marginal. At shorter wavelengths, no significant
differences are observed between the PSDs obtained after applying DT corrections
that include the surge and steric contributions and those that do not include them.
This lack of improvements at shorter wavelengths can be explained as follows. The
used ERA-Interim wind and mean sea level pressure fields have a spatial resolution
of only 1.5◦×1.5◦ (nowadays the full resolution data set (0.75◦×0.75◦) is available
free of charge). Except for a mapping of these low-resolution data to the shorter
wavelengths (physics of the model does not necessarily imply that the low-resolution
atmospheric wind and pressure forcing leads to only long-wavelength spatial water
level fluctuations), the ERA-Interim data are not expected to produce high-resolution
surge corrections. Hence, to assess the impact of the surge in the DT corrections at
shorter wavelengths, we need to use high-resolution wind and mean sea level pres-
sure fields, e.g., the ones provided by the meteorological high-resolution limited area
model (HiRLAM) (Cats & Wolters 1996) (for operational storm surge forecasting
with DCSM, HiRLAM data are used with a spatial resolution of 5–15km). Cats &
Wolters (1996) showed the strong local variability of wind fields over the North Sea,
while Verlaan et al. (2005) reported an improved modeling of the surge when using
high-resolution wind and mean sea level pressure fields. Verlaan et al. (2005) re-
ferred to numerical experiments where HiRLAM data with a 55 km resolution were
replaced by HiRLAM data with a 22 km resolution. Because the ERA-Interim data
have a resolution of 1.5◦×1.5◦ (∼107× ∼167 km in east-west and north-south di-
rections, respectively), it is reasonable to expect some improvements as well if the
ERA-Interim data are replaced by HiRLAM data.

4.4.3.3 Added value of using DCSM to correct for the full DT signal

Finally, we assess the added value of using DCSM to correct the altimeter-derived
SSHs for the full DT signal, compared to using corrections obtained as the sum of
the three main contributions to the DT (astronomical tide (GOT4.7), surge (MOG2D),
and steric height (DTU10-MSS/EGG08)). In fact, this is the comparison of applying
the “best” available corrections when we do and do not have access to a shallow water
hydrodynamic model. The assessment is carried out by comparing the PSDs/SNRs
obtained after applying the DT corrections ζ

(3)
DT (DCSM) on the one hand, and ζ

(4)
DT

(GOT4.7, MOG2D, and DTU10-MSS/EGG08) on the other hand.

At the longer wavelengths (500–100 km), we see a mixed picture. For the passes 11,
61, 137, 196, and 18, we observe predominantly higher SNRs if we apply the DT cor-
rections ζ

(3)
DT . For the passes 239 and 170, the SNRs after applying the DT corrections

ζ
(3)
DT are first higher compared to the ones obtained after applying the DT corrections

ζ
(4)
DT (down to 220 km for pass 239 and down to 400 km for pass 170), but lower for

the shorter wavelengths in the 500–100 km bandwidth. The degraded performance
of the DT corrections ζ

(3)
DT compared to ζ

(4)
DT is observed over the entire bandwidth
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500–100 km for the passes 163 and 94. For the passes 163, 94, and 170 (in the
bandwidth 200–80 km), we explain this by the, already mentioned, errors in the
DT corrections ζ

(3)
DT associated with the errors in the used salinity and temperature

fields (Section 3.6.1.3). For the passes 94 and 170, we can additionally add the better
representation of the astronomical tide by the GOT4.7 global ocean tide model.

We also find for all passes, except the passes 11 and 170, a somehow higher noise
level for wavelengths < 45 km if the DT corrections ζ

(4)
DT are applied. A detailed

analysis shows that this increase is caused by the surge corrections as obtained from
the MOG2D model which were used in the DT corrections ζ

(4)
DT .

We conclude that the added value of obtaining corrections for the full DT signal from
DCSM compared to obtaining them as the sum of the three main contributions to the
DT is, at the longer wavelengths, more significant towards the southern North Sea.
Based on the first two parts of the analysis presented in this section, we conclude that
this should be mainly attributed to the improved representation of the astronomical
tide in this region by DCSM. Furthermore, we conclude that at shorter wavelengths
the surge corrections provided by the MOG2D model turns out to increase the noise
level. Apparently, this model is not appropriate to derive proper surge corrections in
shallow waters.

It should be noted that in this analysis we compared PSDs obtained by averaging over
161–234 cycles (see Table 4.8). To assess the impact the various signal contributors
to a DT correction and the DT correction model have on the GM data, we need to
compare the PSDs estimated using the data of a single satellite pass. However, the
uncertainty these estimated PSDs will have does not allow to draw any conclusion.
Whether improved methods to estimate PSDs in the presence of data gaps compared
to the one considered here (e.g., Broersen 2008) allow to carry out such an analysis
needs to be investigated.

4.5 Impact of the dynamic topography corrections on the
quasi-geoid

The spectral analysis presented in the previous section has shown that improvements
due to “improved” DT corrections mainly show up at longer wavelengths and that
they are more significant towards the southern North Sea. Here, we investigate the
added value of “improved” DT corrections to the altimeter-derived SSHs for quasi-
geoid estimation. For the assessment, various quasi-geoid solutions are computed
that differ from each other by the set of DT corrections applied to the altimeter SSHs
(Section 4.3.5). To exclude the effect different parameterizations of the gravity field
may have, the number and bandwidth of the RBFs are fixed to the ones found when
using the DT corrections ζ

(3)
DT (Section 4.2.2). This is justified because there are no
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indications that the applied set of DT corrections has a significant impact on the
parameterization, given the magnitude of the gradients of the corrections compared
to the gradients of the residual height anomalies. Furthermore, while it is possible
that the contribution of radar altimeter data, and also the contribution of “improved”
DT corrections, to the estimated quasi-geoid is suppressed by that of shipboard grav-
ity data, the experiments are repeated without shipboard gravity data. This not only
places our findings in a broader context (in other shallow waters less or even no ship-
board data might be available), but also makes sense if we consider that the weight
of each data set is determined by MCVCE (Section 4.2.3). The outcomes of this
estimation cannot be taken for granted since they strongly rely on the underlying as-
sumptions (e.g., the adopted noise model for each observation group). The scenario
without shipboard gravity data provides an upper bound on the impact of “improved”
DT corrections on the quasi-geoid.

As noted in the introduction of this chapter, we do not need to estimate the quasi-
geoid over DCSM’s whole model domain. Therefore, to quantify the added value of
“improved” DT corrections on the quasi-geoid, the computational domain is defined
as the geographic region between 6◦W to 10◦E and 49◦N to 63◦N. We refer to this
domain as ΩI (Fig. 4.1).

Before we present and discuss the differences among the various quasi-geoid solu-
tions, we first present and discuss the derived values for the bandwidth and number of
RBFs as obtained after applying the DT corrections ζ

(3)
DT . Note that in deriving these

values, shipboard gravity data are included. Furthermore, it should be noted that in
this section we only present the differences among the various quasi-geoid solutions;
the estimated quasi-geoid itself and its validation are addressed in the next section.

4.5.1 Choice of the parameterization of the residual gravity field

The choice of the parameterization is determined using two different subdomains
ΩA and ΩB, which are shown in Fig. 4.1. Figures 4.15a and 4.15b show the rms
differences between the estimated quasi-geoid and EGG08 as a function of (i) the
depth (bandwidth) and (ii) the number of selected RBFs (see Section 4.2.2.4 page 76
for the criterion applied to determine whether a particular RBF is used or not) for ΩA

and ΩB. The fact that the number of selected RBFs is higher for ΩB than for ΩA is
due to the fact that for the parameterization of the data in the mountainous areas of
Great Britain (ΩB) and Norway more RBFs are used (Section 4.2.2.4). Furthermore,
since we fixed the grid resolution in these areas, the number of RBFs that are added
by increasing the number over Ω with 5,000 is less for ΩB than it is for ΩA.

Compared to the rms differences obtained for ΩB (Fig. 4.15b), the rms differences
for ΩA (Fig. 4.15a) are lower; for ΩA the values range between 1.6 and 9.6 cm, while
for ΩB the values range between 2.6 and 19.2 cm. The smallest rms difference for
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Figure 4.15: The rms differences between the estimated quasi-geoid and EGG08 as a func-
tion of the depth (bandwidth) and the number of RBFs over ΩA (a) and ΩB (b). The data sets
used to estimate the quasi-geoid include shipboard gravity data and altimeter-derived DoV
obtained after applying the DT corrections ζ

(3)
DT .

ΩA (1.6 cm) is obtained when the depth is 35 km and the number of RBFs equals
7,644, though other choices provide rms differences which are just a few mm larger
than this value. In itself this is positive; it shows the solution is quite robust for small
changes in the parameterization.

For ΩB, no clear “optimal” values for the depth and number of RBFs can be identified.
We observe that the lowest rms differences are obtained for a depth of 40 km. As
40 km is the maximum depth, this suggest that the “optimum” is somewhere outside
the search space. However, another aspect which has to be considered when choosing
the depth and number of RBFs is the convergence of the MCVCE (Section 4.2.3).
In Figs. 4.16a–4.16h, we show the estimated precisions for each observation group
as a function of (i) the depth and (ii) the number of RBFs for ΩA and ΩB. In the
plots, we masked out all values obtained for a particular combination of depth and
number of RBFs if “no convergence” of the estimated variance factors is achieved for
one or more observation groups. Here, “no convergence” means that the estimated
variance factor in the last iteration differs by more than 20% from the value obtained
in the previous iteration. Note that inside ΩB no airborne and terrestrial data are
available. Also note that in Figs. 4.16e–4.16h we show the standard deviations of the
EGG08 quasi-geoid heights and the altimeter-derived geometric quasi-geoid heights,
and not of the finite difference approximations of the DoV (Eq. 4.54). In this way,
the numbers are independent of the distance between the two points involved in the
computation of these DoV.

As Figs. 4.16c, 4.16f, and 4.16h show, none of the solutions satisfies our “conver-
gence” criterion for a depth of 40 km. Over ΩA (Figs. 4.16a, 4.16b, 4.16d, 4.16e, and
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Figure 4.16: Continued on next page.
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Figure 4.16 (continued): Estimated standard deviations of the terrestrial gravity observa-
tion group over ΩA (a), the shipboard gravity observation group over ΩA (b) and ΩB (c),
the airborne gravity observation group over ΩA (d), the EGG08-derived DoV expressed as
the standard deviations of the EGG08 quasi-geoid heights over ΩA (e) and ΩB (f), and the
altimeter-derived along-track DoV expressed as the standard deviations of the geometric
quasi-geoid heights over ΩA (g) and ΩB (h). The grey color means that “no convergence”
of the estimated variance factors is achieved for one or more observation groups. That is,
the estimated variance factor in the last iteration differs by more than 20% from the value
obtained in the previous iteration. Note that the shown estimated standard deviations for the
terrestrial and shipboard gravity observation groups refer to the data sets for which the a-priori
standard deviation was set to 2.0 mGal (see Tables 4.1 and 4.2). For the Belgian and Nether-
lands terrestrial gravity data sets obtained from the in-house database, the estimated standard
deviations are a factor 1.25 larger and 3.33 smaller, respectively. For the WADGRAV and
Shell shipboard gravity data sets, the estimated standard deviations are a factor 1.35 and 5.56
smaller, respectively.

4.16g) we observe the same, except if the number of RBFs equals 6,641. Since it is
not reasonable to expect that for depths >40 km the estimated weights will converge,
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we conclude that the “optimal” values for the depth and number of RBFs should be
within our search space. The reason why for ΩB we obtain the best agreement with
EGG08 if the depth equals 40 km is that for this depth especially the EGG08-derived
DoV observation group obtains a large weight (note that the obtained solution is de-
termined by the assigned weights estimated in the last iteration before the break).
As a consequence, it is no surprise that the rms differences between the estimated
quasi-geoid and EGG08 become smaller. In any case, the solution seems to become
unstable when the weight of one observation group becomes disproportionately large.
This also happens if the depth is 25 km and the number of RBFs >10,249. No spe-
cific reason was found for the other “no convergence” cases obtained when the depth
was fixed to 20 and 25 km.

Based on these results, we tried various values for the depth and number of RBFs
(where the depth was fixed to 30 and 35 km and the number of RBFs over Ω was se-
lected over the range 70,000 (average distance between the RBF centers is∼7.6 km)
to 85,000 (average distance between the RBF centers is ∼ 6.9 km)) in estimating
a quasi-geoid over ΩI (not shown here). By comparing the solutions, we conclude
that no optimal choice can be made; for some regions a depth of 30 km is most
appropriate, while in other regions 35 km provides more reasonable results. Ulti-
mately, we chose a depth of 30 km and a number of 80,000 RBFs over Ω (8,147
and 10,249 RBFs over ΩA and ΩB, respectively). For this choice, the mean distance
between the RBF centers is ∼7.1 km. This is a compromise as it provides in most
cases convergence of the MCVCE if we apply other sets of DT corrections and/or
exclude shipboard gravity data.

Regarding the estimated standard deviations themselves it is worth to note that, within
the investigated ranges of depths and number of RBFs, there is a slight tendency that
they decrease when both the depth and number of RBFs increase.

4.5.2 Effect on the quasi-geoid

Having fixed the bandwidth and number of RBFs, we continue to estimate the var-
ious residual quasi-geoid solutions over ΩI using, among others, altimeter-derived
residual along-track DoV obtained after applying the various sets of DT correc-
tions. The quasi-geoids are estimated with and without shipboard gravity data. The
differences among the various solutions obtained with shipboard gravity data are
shown in Figs. 4.17a–4.17f, while the differences obtained without them are shown
in Figs. 4.18a–4.18f.

When comparing Figs. 4.17a–4.17f with Figs. 4.18a–4.18f, we observe that adding
shipboard gravity data suppresses the added value of “improved” DT corrections.
The reason is that then radar altimeter data contribute much less to the quasi-geoid
solution than if shipboard data are excluded. Hence, the DT corrections become less
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Figure 4.17: Differences among the quasi-geoids estimated with shipboard gravity data and
after applying the various sets of DT corrections to the observed SSHs. The first row shows
the differences between the quasi-geoid obtained after applying the DT corrections ζ

(1)
DT and

the ones obtained after applying ζ
(2)
DT (a), ζ

(3)
DT (b), and ζ

(4)
DT (c). The second row shows the

differences between the quasi-geoid obtained after applying the DT corrections ζ
(2)
DT and the

ones obtained after applying ζ
(3)
DT (d) and ζ

(4)
DT (e)). The last row shows the differences between

the quasi-geoids obtained after applying the DT corrections ζ
(3)
DT and ζ

(4)
DT (f).
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Figure 4.18: Differences among the quasi-geoids estimated without shipboard gravity data
and after applying the various sets of DT corrections to the observed SSHs. The first row
shows the differences between the quasi-geoid obtained after applying the DT corrections
ζ

(1)
DT and the ones obtained after applying ζ

(2)
DT (a), ζ

(3)
DT (b), and ζ

(4)
DT (c). The second row shows

the differences between the quasi-geoid obtained after applying the DT corrections ζ
(2)
DT and

the ones obtained after applying ζ
(3)
DT (d) and ζ

(4)
DT (e)). The last row shows the differences

between the quasi-geoids obtained after applying the DT corrections ζ
(3)
DT and ζ

(4)
DT (f).
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important. Indeed, the differences among the solutions obtained including shipboard
gravity data are within±1 cm (even in the southern North Sea), while in Figs. 4.18a–
4.18f systematic patterns are observed that reach several centimeters. Exceptions are
some isolated spots along the coasts of Belgium, Denmark, France, Great Britain,
and the Shetland Islands, and a feature along the Norwegian coast aligned with the
Norwegian Trench (Figs. 4.17b, 4.17d, and 4.17f) where larger differences (>1 cm)
are observed.

The apparent suppression of the altimeter-derived DoV with respect to the shipboard
gravity data poses the question whether the observation groups have been weighted
properly. Table 4.9 provides the estimated standard deviations for the solutions with
and without shipboard gravity data. From these values, we first notice that when in-
cluding shipboard data the estimated standard deviations of the Dutch terrestrial grav-
ity data set (0.56 mGal) and the Shell shipboard gravity data set (0.21 mGal) are in
good agreement with the ones estimated by Klees et al. (2008): 0.60 and 0.36 mGal,
respectively. For the WADGRAV shipboard data set we obtain 0.85 mGal, which is
significantly smaller than the one estimated by Klees et al. (2008) (1.48 mGal). For
the other terrestrial gravity data sets, we obtain standard deviations in the range of
1.87 to 2.34 mGal. It is difficult to judge whether this estimate is realistic as we lack
any information about the accuracy of the other terrestrial gravity data sets.

On the other hand, the estimated standard deviations of all other observation groups
are low to very low. A standard deviation of 1.15–1.17 mGal for the shipboard data
sets is feasible nowadays (Nabighian et al. 2005), but not a few decades ago when
most of our available data were acquired (often without GNSS navigation). Accord-
ing to Wessel & Watts (1988), the most reliable technique to evaluate the accuracy
of shipboard gravity data is to analyze the discrepancies in FAA values at crossover
locations. For our edited shipboard gravity data set, this analysis reveals a standard
deviation of 2.01 mGal over 17,316 crossovers (mean is < 0.01 mGal). When as-
suming that the crossover adjustment removed the systematic errors in the shipboard
data and that the random errors are statistically uncorrelated, we obtain a standard
deviation of a single shipboard gravity measurement of 1.4 mGal. This is close to the
MCVCE values of 1.15–1.17 mGal. Nevertheless, it is much lower than the values re-
ported by Wessel & Watts (1988) who assessed the accuracy of the Lamont-Doherty
Geological Observatory’s global marine gravity data bank. After removing linear
drifts and DC shifts, they obtained a standard deviation of 13.96 mGal. Our main
explanation for this huge difference is the fact that our data are acquired relatively
close to land, while Wessel & Watts (1988) assessed a global data set including data
acquired in the middle of the oceans. The estimated standard deviation of the air-
borne gravity observation group is lower than the reported values for the BalGRACE
and NorthGRACE data sets (Schäfer et al. 2008) (rms is 1.8 to 2.1 mGal, see Sec-
tion 4.3.4). The estimated standard deviations for the EGG08- and altimeter-derived
DoV imply a standard deviation of ∼0.3 cm for the EGG08 quasi-geoid heights and
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Table 4.9: Estimated standard deviations for the various observation groups obtained after
applying the different sets of DT corrections and with and without shipboard gravity data.
For an unambiguous interpretation of the estimated precisions of the EGG08- and altimeter-
derived DoV observation groups, the estimated standard deviations are transformed to values
that express the standard deviation of the associated (i) EGG08 quasi-geoid heights and (ii)
altimeter-derived geometric quasi-geoid heights.

Applied DT Shipboard data Estimated standard deviations
corrections included Terr. Ship. Airb. hN (EGG08) hN (radar alt.)

(mGal) (mGal) (mGal) (cm) (cm)

ζ
(1)
DT y 1.88∗1 1.15∗2 1.37 0.26 1.41

ζ
(2)
DT y 1.88∗1 1.17∗2 1.14 0.22 1.35

ζ
(3)
DT y 1.88∗1 1.14∗2 1.17 0.29 1.32

ζ
(4)
DT y 1.89∗1 1.15∗2 1.20 0.27 1.41

ζ
(1)
DT n 1.85∗1 0.80 0.28 1.28

ζ
(2)
DT n 1.85∗1 0.73 0.28 1.21

ζ
(3)
DT n 1.86∗1 0.99 0.29 1.14

ζ
(4)
DT n 1.86∗1 0.75 0.27 1.27
∗1 For the in-house data sets the estimated standard deviation is between ∼0.56 (Dutch data set)
and ∼2.34 mGal (Belgian data set).
∗2 ∼0.21 and ∼0.85 mGal for the Shell and WADGRAV data (Section 4.3.3.1).

1.2–1.4 cm for the altimeter-derived geometric quasi-geoid heights. Both are not
realistic. As discussed in Section 1.3.2, the precision of EGG08 is sub-decimeter
at continental scales and a few centimeters over a few hundred kilometers. For the
data provided by GEOSAT, ERS-1, and TOPEX, the typical accuracies are 3–4 cm
(Sandwell & Smith 2009).

However, rather than focusing on the estimated standard deviations for the individ-
ual observation groups we should look at their mutual ratios. Indeed, as long as the
estimated precisions are too high for all observation groups the fact that they are un-
realistic is not a problem. Looking at the ratios, we notice that the standard deviation
of the shipboard data (except for the Shell and WADGRAV data sets) is about twice
the standard deviation of the Dutch terrestrial gravity data set and 0.5–0.6 times the
standard deviation of the other terrestrial gravity data sets. At first glance, the latter
is quite unrealistic. On the other hand, we have to consider that the other terres-
trial gravity data include high-frequency signals associated with topography (e.g.,
the Ardennes). They are not modeled well by the chosen RBF parameterization and
therefore contribute to the residuals and, in turn, to the estimated standard deviations.

The ratios of the estimated standard deviations of the shipboard to airborne obser-
vation groups vary between 1 : 0.97 and 1 : 1.19 depending on the DT corrections
applied to the altimeter-derived SSHs (see Table 4.9). Based on the standard devia-
tions of the crossover differences (2.0 mGal shipboard data, 1.69–2.13 mGal for the
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BKG airborne data set (Schäfer et al. (2008, Table 2))), we believe that these ratios
are reasonable.

If we assume that the resolution of EGG08 in the regions where we use the EGG08-
derived DoV is 5 km (half-wavelength), than the standard deviation of the derived
DoV is ∼ 0.74 mGal (

√
2 ·0.00262/50002, note that 1.0 µrad ≈ 1.0 mGal (Smith

2010)). This is slightly higher than the standard deviation of the Dutch terrestrial
gravity data set (∼0.56 mGal) but much lower than that of the other terrestrial data
sets (1.88–2.34 mGal). Compared to the latter, we believe that our estimate is too
optimistic. In particular, if we consider that the EGG08-derived DoV are mainly
located in the mountainous areas.

Over 7 km, the standard deviation of the altimeter-derived geometric quasi-geoid
heights gives a standard deviation of the DoV of 2.77 µrad (

√
2 ·0.01372/70002).

Again using the rule of thumb 1.0 µrad ≈ 1.0 mGal (Smith 2010), we obtain a ratio
of the weight factor of shipboard gravity data over altimeter-derived DoV of 5.8 : 1.
To validate this ratio, we use the standard deviation of the shipboard gravity data de-
rived from the crossover analysis (1.4 mGal) and the results of Section 4.4. That is,
the differences between along-track DoV of different cycles are interpreted as the dif-
ference of two noise realizations, from which we can compute the noise variance per
pass and DT correction assuming noise is time-stationary. Note that to remain con-
sistent with the GM data used in the quasi-geoid computations, the along-track DoV
are first smoothed using a Gaussian with a half-width of 6.5 km. This analysis pro-
vides estimates of the noise standard deviation in along-track DoV between 1.7 µrad
and 2.4 µrad depending on the pass and the DT correction. A value of 2.0 µrad is
representative for most passes. For the DT corrections ζ

(2)
DT and ζ

(3)
DT , the noise stan-

dard deviations are ≤2.0 mGal for all passes except the passes 18, 94, and 170. For
the DT corrections ζ

(1)
DT and ζ

(4)
DT , the noise standard deviations are also > 2.0 mGal

for pass 137. From the analysis of the standard deviations of altimeter-derived DoV
and the crossover analysis of the shipboard gravity data, we obtain a weight ratio of
2.0 : 1 for most passes. The MCVCE estimate of 5.8 : 1 (for all altimeter-derived
along-track DoV) is far beyond this range. From an a-posteriori comparison with the
“V18 gravity model”, Sandwell & Smith (2009) report rms differences for (retracked)
GEOSAT (GM + ERM), retracked ERS-1 (GM + ERM), and TOPEX (interleave +
ERM) data after smoothing with a Gaussian with a halfwidth of 18 km between 1.17
(TOPEX) and 3.57 µrad (retracked ERS-1). The latter values correspond to 1.17 and
3.57 mGal, respectively when using the rule-of-thumb of (Smith 2010). Assuming
again that a std. dev. of 1.40 mGal for shipboard gravity data is realistic, we obtain
weight factor ratios of 0.68 : 1–6.37 : 1. The MCVCE weight ratio of 5.8 : 1 is within
this range. Nevertheless, the values in Sandwell & Smith (2009) are likely not be
representative for our study, as they refer to a bandpass filtered data set, whereas in
this study we applied no smoothing to the repeat-mission data and only a moderate
smoothing to the GM data using a Gaussian with a half-width of 6.5 km. Sandwell &
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Smith (2009) apply various low- and high-pass filters, which are difficult to reproduce
based on the published material.

The estimated standard deviations obtained without the shipboard gravity data are
only significantly changed for the observation groups that contain measurements at
sea: the airborne gravity data sets and the altimeter-derived DoV data sets. For both
observation groups, the estimated standard deviations are smaller compared to the
ones obtained when including shipboard gravity data. This improvement can be un-
derstood by the fact that the absence of shipboard data allows a better fit of these data
sets. That is, the post-fit residuals are smaller and hence the estimated standard devi-
ations decrease. Note that the estimated standard deviation for the altimeter-derived
DoV observation group is lowest if we apply the DT corrections ζ

(3)
DT .

We conclude that, in an absolute sense, the estimated standard deviations are too
optimistic (except for the terrestrial data set) but that with a few exceptions their mu-
tual ratios are reasonable, although we tend to believe that the altimeter-derived DoV
observation group is underweighted. Anyway, we have to keep in mind that the esti-
mated standard deviations strongly rely upon the assumed noise models. For all ob-
servation groups, we assumed white noise. This was mainly driven by practical con-
straints as our software cannot handle full variance-covariance matrices. As shown
by the noise PSDs in Section 4.4, however, this assumption is not realistic for the
altimeter-derived DoV observation group. Remember also the fact that we neglected
the correlations between the successive DoV associated with the applied two-point
finite difference scheme (see Section 4.3.5). Also for the other observation groups the
assumption of white noise is questionable. For the EGG08-derived DoV observation
group, this is obvious. For the terrestrial, shipboard, and airborne gravity observation
groups, the noise is colored by unremoved systematic errors (e.g., instrumental drift)
and/or by the background models used to compute the FAA and gravity disturbances.
In a future research, more realistic noise models should be used and their signifi-
cance should be analyzed. We also should note that we only applied a very moderate
smoothing (Gaussian filter with a half-width of 6.5 km) to the altimeter-derived resid-
ual along-track DoV and then only to the GM data of GEOSAT and ERS-1. Compare
this to the smoothing applied by Sandwell & Smith (2009). They first applied a ded-
icated low-pass filter (designed in Matlab using the Parks-McClellan algorithm) to
the profiles with SSHs with a cut that begins at 26.8 km wavelength, has 0.5 gain at
14.6 km, and is zero at 10 km. Finally, the obtained grids with residual DoV in north
and east directions are low-pass filtered using a filter with a 0.5 gain at 16 km. As
noted by Sandwell & Smith (2009), the combination of the two filters has a cutoff
wavelength of about 20 km. Obviously, increasing the smoothing further suppresses
the high-frequency noise, which in turn might improve the relative weight of the
altimeter-derived DoV observation group compared to that of shipboard gravity data.
This, however, cannot be achieved with the “simple” Gaussian filter we exploited,
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but requires a careful filter design, e.g., as the one exploited by Sandwell & Smith
(2009).

By comparing the differences among the various quasi-geoids obtained without ship-
board gravity data (Figs. 4.18a–4.18f) with the differences between observation-
derived and model-derived MDT values (Fig. 3.7b) and the contribution of astro-
nomical tide to MDT (Fig. 5.1b), most features in Figs. 4.18a, 4.18b, 4.18d, 4.18e,
4.18f can be interpreted and hence do not need further discussion. We only want to
mention the differences in the English Channel between the solutions obtained after
applying the DT corrections that include the DCSM tide corrections on the one hand,
and those that include the GOT4.7 tide corrections on the other hand (Figs. 4.18a,
4.18b, 4.18e, and 4.18f). By analyzing the post-fit residuals for the altimeter-derived
DoV observation group (not shown here) we conclude these point to errors in the
GOT4.7 tide corrections.

Although it turns out that if shipboard gravity data are included the altimeter-derived
DoV hardly contribute to the estimated quasi-geoid, we can still show that after ap-
plying “improved” DT corrections the systematic errors between both observation
groups decrease. In doing so, we computed the differences between the quasi-geoids
obtained with and without shipboard gravity data and after applying the same set
of DT corrections (see Figs. 4.19a–4.19d). Indeed, since the altimeter-derived DoV
hardly contribute if shipboard data are included, the differences shown in Figs. 4.19a–
4.19d primarily reflect the differences between the quasi-geoids obtained without
radar altimeter data and the ones obtained without shipboard gravity data. Ideally, in
both cases the estimated quasi-geoid is the same. However, as shown in Figs. 4.19a–
4.19d this is not the case; the differences reach several centimeters. Still, we observe
some significant improvements if we apply the sets of DT corrections derived from
DCSM (ζ (2)

DT and ζ
(3)
DT) compared to the cases where we apply the other sets (ζ (1)

DT and
ζ

(4)
DT). Most pronounced are the systematic differences along the Dutch coast (that

even cause a bias over the Netherlands and Belgium) shown in Fig. 4.19a and 4.19d,
which are gone in Fig. 4.19b and 4.19c. We also observe improvements along the
east coast of Great Britain and in the English Channel. If we compare Fig. 4.19b
with Fig. 4.19c, we hardly observe any difference in the southern North Sea. Again,
we conclude that the obtained improvements in this area should be attributed to an
improved representation of the tide by DCSM. Along the shelf edge, the differences
are slightly smaller if we apply the DT corrections ζ

(3)
DT . West of Scotland, we again

observe in Fig. 4.19c the feature associated with the errors in POL’s salinity and tem-
perature fields (Section 3.6.1.3). Furthermore, it is striking that the obtained differ-
ences (Fig. 4.19c) are larger if we apply the DT corrections ζ

(4)
DT than those obtained

if we apply the DT corrections ζ
(1)
DT . Apparently, it is better not to correct for the

surge and steric contributions if no proper shallow water hydrodynamic models are
available.
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(c) (d)
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Figure 4.19: Differences between the quasi-geoids estimated with and without shipboard
gravity data, where the altimeter-derived SSHs are corrected using the DT corrections ζ

(1)
DT (a),

ζ
(2)
DT (b), ζ

(3)
DT (c), and ζ

(4)
DT (d).
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Figure 4.20: NLGEO2013 in the
ETRS89/GRS80 reference system (zero-
tide system). Note that, in the map, we
excluded a strip of 1.5◦ around the boundaries
of the computational domain as this is the
region that is mostly affected by boundary
effects.

4.6 NLGEO2013

In this last section, we present and validate the quasi-geoid estimated over the whole
computational domain (Ω). This quasi-geoid, referred to as NLGEO2013, will be
used to compute the ellipsoidal heights of the LAT and MSL surfaces over DCSM’s
model domain.

To ensure consistency with the model-derived LAT and MDT surfaces, we apply the
DT corrections ζ

(3)
DT . Indeed, the errors in the representation of the MDT by DCSM

(Section 3.6.1.3) affect both the DT corrections and the LAT surface. While, however,
their sign is opposite, in the computation of the ellipsoidal heights of LAT they partly
cancel out. Note that this also applies to the computation of the ellipsoidal heights
of MSL. As can be deduced from the results presented in section 4.5.2, this partial
cancellation is best achieved if shipboard gravity data are excluded. Unfortunately,
however, we cannot exclude these data entirely; in some parts of Ω we do lack suf-
ficient reliable radar altimeter data (e.g., Irish Sea, English Channel, and Skagerrak).
Therefore, shipboard gravity data are included.

In the estimation, we adopt the earlier derived values for the depth and number of
RBFs (Section 4.5.1). Based on these, the number of selected RBFs over Ω equals
86,569. The total number of biases, estimated to account for any mutual inconsis-
tencies among the various data sets (Section 4.3), is 64. For performance reasons, an
estimation of the variance components by MCVCE is not feasible for this large-scale
problem. Therefore, we adopt the weights estimated over ΩI (Table 4.9). The normal
equations are solved with an out-of-core solver (Gunter 2004, Gunter & van de Geijn
2005). An out-of-core solver holds the matrix factors in files and may also hold the
matrix data and some work arrays in files.

The estimated quasi-geoid NLGEO2013 is shown in Fig. 4.20. To assess its quality,
we computed the differences between NLGEO2013 and (i) EGG08, (ii) EGM2008
(Pavlis et al. 2012), and (iii) the gravimetric quasi-geoid solution underlying NL-
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Figure 4.21: Differences between NLGEO2013 and (i) EGG08 (a), (ii) EGM2008 (b), and
(iii) NLGEO2004-grav (c). Note that the mean differences are removed. In addition, in the
maps (a) and (b), we excluded a strip of 1.5◦ around the boundaries of the computational
domain as this is the region that is mostly affected by boundary effects.

GEO2004 (NLGEO2004-grav) (Crombaghs & de Bruijne 2004). Maps of these dif-
ferences are shown in Fig. 4.21; the statistics are given in Table 4.10.

Based on these maps and the statistics, we observe that NLGEO2013 agrees best with
EGG08. Indeed, this is not entirely a surprise as NLGEO2013 relies on EGG08 in
the sense that EGG08-derived DoV are used as data in the continental regions where
we lack gravity data and in the mountainous regions comprised by the computational
domain (see Fig. 4.11 for a map of the EGG08-derived DoV used to estimate NL-
GEO2013). Here, one might wonder why in these regions the differences between
NLGEO2013 and EGG08 are not equal to zero. The answer is twofold. First, the
high-frequency signals in the EGG08-derived DoV are not modeled well by the cho-
sen RBF parameterization. Hence, we cannot reproduce EGG08 exactly. Second,
data at sea contribute to the estimated quasi-geoid on land.

We do not attempt to explain all the remaining differences shown in Fig. 4.21 as they
may have many causes, for instance:

1. The use of different gravity data sets and the applied preprocessing. This
includes the way how systematic errors in the shipboard gravity data are re-
moved. For example, in this study we “removed” them by adjusting all ship-
board gravity data to the altimeter-derived FAA model DTU10-GRA (Sec-
tion 4.3.3.2). In the estimation of EGG08, a crossover adjustment was applied
(Denker & Roland 2005).
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Table 4.10: Statistics of the differences between NLGEO2013 and (i) EGG08, (ii)
EGM2008, and (iii) NLGEO2004-grav). Note that, in computing the statistics, we excluded
a strip of 1.5◦ around the boundaries of the computational domain as this is the region that is
mostly affected by boundary effects. All values are provided in cm.

Model Area rms min max mean std

EGG08 oceans+land 2.73 -19.03 28.09 -0.01 2.73
oceans 2.73 -19.03 28.09 -0.12 2.73
land 2.74 -13.93 19.75 0.16 2.73

EGM2008∗1 oceans+land 3.63 -32.02 32.69 0.16 3.63
oceans 3.29 -22.19 32.69 1.02 3.13
land 4.10 -32.02 19.61 -1.15 3.94

NLGEO2004-grav∗2 oceans+land 4.22 -12.98 23.18 0.45 4.19
∗1 We accounted for the differences between the quasi-geoid’s potential values adopted for NL-
GEO2013 and EGM2008.
∗2 We accounted for the differences between the quasi-geoid’s potential values adopted for NL-
GEO2013 and NLGEO2004-grav. For the latter, the value is obtained from Ihde & Augath (2002).

2. The use of a different reference field in the RCR procedure. Note that only
for NLGEO2013 the reference field includes both GRACE and GOCE data
(Section 4.3.1).

3. Differences in the applied RCR technique. In this study, we applied the clas-
sical RCR technique (Section 4.2.1). That is, we did not account for uncer-
tainties in the satellite-based geopotential model. In the estimation of EGG08,
the combination of terrestrial gravity data and the EIGEN-GL04C geopoten-
tial model (Förste et al. 2008) was done by means of spectral weights, which
depend on the accuracy of the input data sets (Denker et al. 2008).

4. Differences in the applied data weighting. In this study, MCVCE was used to
estimate the variance factors of the different observation groups (Section 4.2.3).
In the estimation of EGG08, a correlated noise model with an error standard
deviation of 1 mGal was used for the terrestrial gravity data in the derivation
of the spectral weights (Denker et al. 2008).

5. Differences in the used parameterization. This includes the extension of the
functional model by extra bias parameters to account for systematic errors in
the gravity data sets. In this study, we used a RBF parameterization and added
64 bias parameters. In the estimation of EGG08, the already mentioned spec-
tral combination technique was used (Denker et al. 2008).

6. The use of different altimeter-derived data sets. This includes the form in which
radar altimeter data are used when computing the quasi-geoid and the correc-
tions applied for the DT.

Note that the differences along the Norwegian Trench observed in Figs. 4.21a and
4.21b cannot be solely attributed to the errors in the applied DT corrections ζ

(3)
DT as-
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Table 4.11: Residual differences of NLGEO2013, EGG08, EGM2008, and NLGEO2004-
grav, respectively, at the 81 GPS/leveling points. All values are provided in cm.

Model rms min max mean std

NLGEO2013 1.34 -0.61 5.43 0.92 0.98
EGG08 2.29 -0.80 5.53 2.03 1.08
EGM2008∗1 4.15 -10.90 5.90 2.73 3.14
NLGEO2004-grav∗2 7.34 -10.20 -3.04 -7.23 1.32
∗1 Here, we accounted for the difference between the quasi-geoid’s potential value and the normal
potential value.
∗2 Here, we corrected for the average difference of −68 cm mentioned by Crombaghs & de Bruijne
(2004).

sociated with the errors in POL’s salinity and temperature fields (Section 3.6.1.3).
Indeed, the observed differences in Figs. 4.21a and 4.21b are much larger than the
ones observed in Fig. 4.17. Furthermore, the differences observed along the shelf
edge in the west and north-west parts of the computational domain are most likely
explained by differences in the applied DT corrections. The reason is that, in this
region, the coverage of shipboard gravity data is poor. We hardly have any shipboard
gravity data beyond the shelf edge (Fig. 4.3), and also the map that shows the gravity
data used in the estimation of EGG08 shows white spots in this region (Denker et al.
2008, (Fig. 1)). So, there the estimated quasi-geoid should rely on the available radar
altimeter data.

We also validated the estimated quasi-geoid over the Netherlands using geometric
height anomalies at 81 GPS/leveling points (Section 4.3.7). Maps of the differences
between the geometric height anomalies on the one hand, and NLGEO2013, EGG08,
EGM2008, and NLGEO2004-grav on the other hand are shown in Fig. 4.22. The
statistics of these differences are provided in Table 4.11. From the statistics, we
observe that NLGEO2013 has the best performance. Only for this model, the stan-
dard deviation is below 1 cm, which is within the uncertainty of the 81 geometric
height anomalies (0.010− 0.015 m according to Crombaghs & de Bruijne (2004)).
The two outliers in the south of Limburg are probably caused by local errors in the
leveling network (Broekman, personal communication, 2013). After removing these
two points, the standard deviation between the geometric height anomalies and NL-
GEO2013 reduces to 0.79 cm. The reduction of the differences for NLGEO2013
observed at the points around the IJssel Lake and Wadden Sea, compared to those ob-
served for EGM2008, NLGEO2004-grav, and to a lesser extent EGG08 is most likely
due to incorporating additional bias parameters for the WADGRAV and Shell ship-
board gravity data sets. For these data sets, the estimated biases equal −0.45 mGal
and −1.18 mGal, respectively.
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Figure 4.22: Residual differences of NLGEO2013 (a), EGG08 (b), EGM2008 (c), and
NLGEO2004-grav (d), respectively, at the 81 GPS/leveling points. Note that the mean differ-
ences (Table 4.11) have been removed.





Chapter 5

LAT reference surface

This chapter is based on Slobbe et al. (2013b). The paper treats two closely related,
but distinct, topics. The first topic is the derivation of lowest astronomical tide (LAT)
in the North Sea from a vertically referenced shallow water model. The second topic
is the assessment of the suggested sense of safety of the use of LAT as chart datum.

5.1 Introduction

The first topic (derivation of lowest astronomical tide (LAT) in the North Sea from
a vertically referenced shallow water model) attracted the attention of hydrographic
surveyors when they realized that the increasing accuracy of 3D positioning with
Global Navigation Satellite Systems (GNSS), such as GPS, GALILEO, GLONASS,
and/or COMPASS, offers a cost-effective, real-time alternative to the traditional pro-
cedures of water level reduction, i.e., the reduction of observed water depths to chart
datum (CD). For an explanation of this so-called “water level reduction with GNSS
procedure” we refer to Wöppelmann et al. (1999), FIG Commission 4 Working Group
4.2 (2006), and Dodd & Mills (2011). Note that CD is usually a tidal datum, i.e., a
particular phase of the tide (Gill & Schultz 2001). As explained in Section 1.1, apply-
ing water level reduction with GNSS requires knowledge of the ellipsoidal heights of
CD. The bathymetry expressed relative to CD is obtained by subtracting these heights
from the ellipsoidal heights of the echo sounder instrument minus the observed water
depths, i.e., the ellipsoidal heights of the bottom topography.

Ideally, the ellipsoidal heights of CD are derived from time series of observed water
levels by tide gauge instruments, GNSS buoys, and/or radar altimeter satellites. Radar
altimeter data are crucial if one aims to derive a coastal-waters-inclusive continuous
(CWIC) surface. Indeed, only this data set provides a homogeneous spatial coverage,
although at the expense of reduced temporal resolution (sub-hourly sampling at tide
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gauges versus 10 days for the TOPEX/POSEIDON and Jason missions). This implies
that, especially in shallow shelf waters, not all tidal constituents required to obtain a
proper realization of CD, can be derived from radar altimeter data. Consequently, the
only data source to derive CD in tidal shelf seas are tide gauges and GNSS buoys,
except when the mean sea level (MSL) is defined to be CD.

However, where tides have an appreciable effect on the water level, not MSL but LAT
was adopted as CD by the International Hydrographic Organization (IHO). LAT is
defined as “the lowest tide level that can be predicted to occur under average meteoro-
logical conditions and under any combination of astronomical conditions” (Interna-
tional Hydrographic Organization 2011a, Technical Resolution 3/1919). Therefore,
in shelf seas, LAT values derived from tide gauge records are combined with LAT
values computed by a hydrodynamic model (e.g., Simon 2001, Turner et al. 2010).
Here, the model-derived LAT value for each grid point is computed as the minimum
modeled water level induced by astronomical tide only over a time span of at least
the full nodal cycle (i.e., 18.6 years). As MSL represents the water level under av-
erage meteorological conditions, these model-derived LAT values are added to the
ellipsoidal heights of MSL, providing ellipsoidal heights of LAT (Wöppelmann et al.
2006).

This last step implies that water levels computed with the hydrodynamic model are
identified as water levels relative to MSL, i.e., that the hydrodynamic model’s ref-
erence surface is MSL (Ballay et al. 2002, Iliffe et al. 2007b, Dodd & Mills 2011).
However, as the dynamics of a hydrodynamic model usually assumes zero horizontal
gravity components, the model’s vertical reference surface is an equipotential surface
of the Earth’s gravity field (a so-called geop) (Hughes & Bingham 2008). Conse-
quently, modeled water levels refer to a geop and so does model-derived LAT. The
latter should be added to the ellipsoidal heights of the model’s geop surface, unless
the impact on the modeled tides of the MSL slope relative with respect to the geop
is negligible. Prandle (1978) has shown that the contribution of the M2 tide to MSL
in the southern North Sea varies from −1 to 8 cm, with maximum values along the
Dutch coast. Indeed, if we aim to achieve an accuracy of a few centimeters, this
contribution cannot be neglected.

Using MSL to derive ellipsoidal heights of LAT is only possible where MSL is
known. However, the standard waveform tracking systems onboard the radar al-
timeter satellites do not provide reliable information about MSL within a distance
of 20–25 km off the coastline. Even when using the most advanced retracking
schemes, the gap in data coverage may still be a few kilometers (e.g., Deng et al.
2002, Sandwell & Smith 2005, Deng & Featherstone 2006). Bridging this gap is a
topic of ongoing research; see Gommenginger et al. (2011) for a recent review. The
only other data source from which MSL can be derived are tide gauge data equipped
with GNSS and GNSS buoys. For instance, Iliffe et al. (2007a) used the data from
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385 tide gauges together with radar altimeter data to construct a new model of the
mean dynamic topography (MDT) around the British Isles. Nevertheless, tide gauge
data (and GNSS buoys) provide pointwise information about MSL. Hence, advanced
inter-/extrapolation schemes are required to obtain a continuous MSL surface (see,
e.g., Turner et al. (2010) who proposed such a scheme). To reduce the need for in-
terpolation, Pineau-Guillou & Dorst (2011) realized the MSL in the coastal zone by
measuring the instantaneous water levels along the tracks of a ship equipped with
differential GPS, and correct these heights for tide and surge to obtain the MSL. One
major drawback of this method, however, are the costs to carry out such surveys.

Finally, we might question whether the concept of MSL defined over a long period
serves practical needs. Indeed, the MSL is subjected to temporal variations on many
time scales. Thompson (1980) showed, by means of a multiple regression analysis
of 29 tide gauges around the British Isles, that over 80% of the monthly mean sea
level variance can be related to seasonal changes, the static pressure effect and the
influence of winds over the continental shelf. Seasonal variations cause a lower MSL
in spring than in fall; in the North Sea, the difference can be up to a few decimeters.
Hence, it makes sense to include these variations into the definition of what is referred
to as “average meteorological conditions”.

In this study, we propose to derive LAT from a hydrodynamic model directly rel-
ative to a geop, which solves the weaknesses of the conventional approach. When
following such an approach, we need to explicitly model “average meteorological”
(and steric) conditions in combination with the astronomical tide. We suggest using
a quasi-geoid as the reference surface. A quasi-geoid is a particular geop, which
in some sense is close to MSL. We reference the water levels of the hydrodynamic
model to this quasi-geoid following the procedure presented in Chapter 3, where the
extended Dutch Continental Shelf Model has been referenced to the European Gravi-
metric Geoid 2008 (EGG08) in the mean-tide system (Denker et al. 2008). Another
advantage of this approach is that the explicit modeling of the average meteorolog-
ical conditions allows the inclusion of seasonal variations into the definition of the
average meteorological conditions.

As for the second topic, nautical charts are not only supposed to be up-to-date and ac-
curate (International Hydrographic Organization 2011b, FIG Commission 4 Working
Group 4.4 2011), they are also supposed to present depths with respect to a reference
that is sufficiently low to support safe navigation. This particularly applies to the
southern North Sea as the approach routes to the Ports of Rotterdam and Antwerp run
through them. Its sea bed is characterized by sandy sediments with dynamic rhythmic
patterns at different scales (Dorst 2009), the water column shows large tidal motions,
and there are several severe storms a year. In this environment, ship owners are look-
ing for profit optimization by approximating the safety limits for ship draught, even
when carrying harmful substances such as crude oil. It is, for instance, common for
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the larger ships to use the incoming tidal wave through the English Channel to cre-
ate sufficient under keel clearance; when those ships miss the tidal wave they will
ground.

The annual review of maritime accidents (European Maritime Safety Agency 2010,
Section 5.1) documents that this happens frequently. More than 80% of the accidents
in 2010 (411 in total) in the region including the Atlantic Coast, North Sea, and En-
glish Channel occurred in the waters around Germany, the Netherlands, Norway, and
the UK. From the 411 accidents, there were 88 groundings, which make grounding
the second most abundant source of accidents after collision/contact. Though there
are many causes for ship grounding, Amrozowicz et al. (1997) concluded that most
of the grounding events with oil tankers that were able to follow a safe track (pow-
ered groundings) were introduced by fundamental failures in the process of passage
planning and piloting. Since nautical charts are the starting point for the planning,
the conclusion of Amrozowicz et al. (1997) underlines the importance of accurate
and unambiguously interpretable nautical charts. Here, the fact that LAT is used as
CD helps the pilots; not only all predicted tidal water levels become positive in sign,
but it also provides them with the minimal water depth that can be expected under
average meteorological conditions. Since it is recommended by the IHO to compute
LAT over a minimum period of 19 years (International Hydrographic Organization
2011a, Technical Resolution 3/1919), it provides a sense of safety. Of course, nav-
igators always use an additional safety margin, because they know that in shallow
waters surges might generate water levels significantly below LAT. However, a quan-
tification of the amount is not available. Therefore, it would be desirable that the
probability of the instantaneous water level to drop below LAT is small. Otherwise,
mariners might take more risk than they realize.

Besides the issue of obtaining an accurate representation of the ellipsoidal heights of
the LAT surface using hydrodynamic models, obtaining insight into the probability
of a lower water level than LAT is the other major topic of this chapter. The model-
derived LAT surface is validated by LAT values computed at onshore and offshore
tide gauges.

The highest accuracy of the LAT surface is obtained when LAT values at the tide
gauges are integrated in the model-derived LAT surface (cf. Turner et al. 2010). As
noted in Section 1.4, this can be achieved in several ways. In this study, we rely
on the model calibration that has been carried out using both tide gauge and radar
altimeter data (Section 3.2). Furthermore, to reduce the numerical complexity, in our
experiments we exclude a detailed modeling of the LAT surface in the estuaries and
the Wadden Sea.

First, we introduce the tide gauge data set that will be used to validate the obtained
LAT surface. Next, we present the results of our numerical experiments. In the
first experiment, we quantify the contribution of the astronomical tide to the time-
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averaged water levels, which shows up as an error in the ellipsoidal heights of the
LAT surface computed following the conventional approach if not accounted for.
Thereafter, we present and discuss the results of two experiments designed to inves-
tigate the model skill to represent LAT relative to the quasi-geoid both by including
the time-averaged meteorological and steric conditions and by including the average
month-to-month variations. Next, we present maps that show the probabilities that
the instantaneous water level is below LAT and propose a probabilistic method to
realize CD. Finally, we conclude by providing a brief summary of the work that has
been done, emphasizing the main findings, and adding some concluding remarks.

5.2 Tide gauge data

Tide gauge data are used to validate the model-derived LAT values. From our internal
database, we obtained all available data from 92 onshore and 10 offshore gauges
covering the time span over which we derive LAT (1984–2004). Note that, except
for the French gauges, our database does not contain data prior to 1985. We refer to
Table B.1 for an overview of the selected gauges and the main characteristics of the
data.

The height transformations required to obtain all observed water levels relative to
EGG08 in the mean-tide system were carried out by four different methods, referred
to as MI , MII , MIII , and MIV , respectively:

1. Method MI uses GNSS observations to obtain observed water levels relative
to the reference ellipsoid. Then the EGG08 quasi-geoid height is subtracted,
which provides water levels relative to the EGG08 quasi-geoid. This method
is limited to tide gauges observed with GPS.

2. In method MII , we add the difference between the national (quasi-)geoid height
and the EGG08 quasi-geoid height to the observed water levels. Differences
between the geoid and the quasi-geoid are assumed to be negligible (Sec-
tion 1.4).

3. In method MIII , observed water levels relative to EGG08 are obtained after a
transformation from the national height system to the European Vertical Ref-
erence Frame 2007 (EVRF2007) using the EVRF2007 transformation param-
eters.

4. Method MIV is used for the Dutch offshore tide gauges for which the vertical
datum of the data is a local realization of MSL, i.e., the mean water level over
a certain measurement period. Here, we first add the ellipsoidal MSL height at
the mid-epoch of the time span over which LAT will be derived. Subtracting
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the EGG08 quasi-geoid height provides water levels relative to the EGG08
quasi-geoid.

The EVRF2007 transformation parameters are provided by the Bundesamt für Kar-
tographie und Geodäsie. The EVRF2007 heights can be interpreted as heights rel-
ative to the EGG08 zero-tide quasi-geoid. Hence, we need to add the difference
between the mean and zero-tide quasi-geoid as computed using Eq. (3.11). The
MSL heights and the corrections to bring these heights to our reference epoch as
used in method MIV are derived from the DNSC08 mean sea surface model (An-
dersen & Knudsen 2009). If no GNSS data are available and the data refer to the
national (quasi-)geoid, we compare for each country the observation- and model-
derived MDT values obtained by method MII and MIII . For each particular country,
we select the method with the smallest root mean square (rms) fit to the model-
derived MDT heights. The performance of each method depends on the accuracy
of the transformation parameters, the national (quasi-)geoid, and the EGG08 quasi-
geoid, and the way systematic errors in the leveling network are accounted for. For
instance, the leveling heights in the UK are suspected to contain systematic errors
(e.g., Iliffe et al. 2003, Hipkin et al. 2004). To derive orthometric heights (heights
relative to the geoid) from GPS measurements, consistent to what would have been
achieved through leveling, a correction surface is added to the gravimetric geoid that
mainly represents these errors (Iliffe et al. 2003). Hence, in method MII this error
cancels out while it remains in method MIII .

The procedure to derive LAT at a tide gauge consists of two steps. First, the tidal
constituents and a linear trend are estimated from the observed water levels by a
harmonic analysis using the functional model

ζO(∆t) = ζO +a∆t +
n

∑
i=1

fiHi cos(ωi∆t +(V0 +u)i−Gi)+ r(∆t), (5.1)

where ζO(∆t) is the observed water level relative to EGG08 at time t − t0, t0 is the
reference time (mid-epoch of the period over which ζO and ζP are computed used to
derive δWG,P (Section 3.5.3); January 1, 1999), ζO the MDT relative to EGG08, a the
linear trend in the observed water levels, n the number of constituents estimated from
the data, and r(∆t) is the non-tidal residual. Second, the tide signal is reconstructed
over the entire computation period (1984–2004) with a sampling rate of 10 minutes
(similar to the time step used in the model). From these time series, LAT (ζ L

O ) is
derived as the minimum tidal water level that occurs.

Obviously, the derived LAT value depends on the set of constituents included in the
harmonic analysis. In principle, this set should be derived for each tide gauge since
bathymetry and coastal morphology vary from tide gauge to tide gauge. While such
an analysis is not feasible in the course of this project, we apply the analysis for each
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tide gauge using both a set of 95 constituents commonly used in the Netherlands and
a set of 103 constituents commonly used in the UK. The differences between the
two LAT values serve as an indication of the significance of choosing the right set
of constituents. In the validation, we use the LAT value derived from the time series
generated by the set of constituents that best explains the observed water levels, i.e.,
for which the rms of the non-tidal residuals (r) is lowest. Both sets of constituents
include the SA constituent (representing the seasonal variation in water level), which
is also included in the reconstruction of the astronomical tide. The latter is consistent
with the experimental setup of Experiment III used to derive the LAT surface which
we use in the validation (Section 5.3.5). In Experiment III, the monthly signal in the
average meteorological and steric contributions is included. Since the seasonal signal
dominates, this is approximately what is represented by the SA constituent.

Although for almost all gauges we have time series covering more than 18.6 years,
we still use the so-called nodal corrections rather than including the nodal modula-
tion terms into the estimation process. According to Foreman et al. (2009), the latter
would be more accurate for such long time series, since the nodal corrections to am-
plitude and phase are time variable rather than constant as is assumed when applying
nodal corrections. However, since these nodal corrections are also used to derive the
contribution of the astronomical tide to the water levels prescribed at the open sea
boundaries (Section 3.4.1), we prefer to remain consistent with the model. The latter
ensures a fair comparison between model- and observation-derived LAT values. For
the same reason, we ignore the fact that the assumption of stationarity is often invalid
in shallow water, i.e., we assume the amplitudes and phases of the tidal constituents
are constant over time. Non-stationarity is introduced by, e.g., non-linear interac-
tions between the tide and storm surges or variable river discharge (Foreman et al.
2009), but also by changing ocean bottom topography. Indeed, these processes are
not included in the model. On the other hand, Foreman et al. (2009) consider the first
two, in general, not to be a serious problem as the effects are often small or of short
duration.

5.3 Deriving LAT

In this section, we present and discuss the model-derived LAT surfaces that are de-
rived using various strategies. Although we ultimately aim to derive the ellipsoidal
heights of the LAT surface, we present the results with respect to the MSL and quasi-
geoid respectively, to enhance visibility. Validation is carried out using LAT values
derived from tide gauge records. In all our experiments, summarized in Table 5.1, we
model the water levels with a time step of 10 minutes over the period January 1, 1984
to January 1, 2004. The LAT value per grid point is derived as the minimum water
level over the entire time series. To distinguish the results of the various experiments,
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Table 5.1: Summary of the experiments. Column OBC (open boundary conditions) provides
information of how the water levels along the open sea boundaries of the extended DCSM
have been computed in the model run. Here, ζa is the astronomical tide, ζu is the surge, ζs

is the steric height, and δWG,P is the datum shift between the EGG08 quasi-geoid and the
model’s equipotential reference surface. The overbar is used to denote time averaged values.

Exp. Objective OBC Source ζs Wind and pressure forcing

I Reference case remaining exp. ζa(ϑ ,λ , t) n/a n/a
II Incl. time-avg. wind, pressure, and baroclinic

forcings
ζa(ϑ ,λ , t)+ζu(ϑ ,λ )+ζs(ϑ ,λ )+δWG,P POL ERA-Interim

III Incl. avg. monthly variations in wind, pressure, and
baroclinic forcings

ζa(ϑ ,λ , t)+ζu(ϑ ,λ , t)+ζs(ϑ ,λ , t)+δWG,P POL ERA-Interim

IV Modeling of instantaneous water levels ζa(ϑ ,λ , t)+ζu(ϑ ,λ , t)+ζs(ϑ ,λ , t)+δWG,P POL ERA-Interim

they are labeled with Roman numerals. For example, the model-derived LAT for Ex-
periment I is ζ L

DI
, where the capital letter D refers to the source from which the water

level is derived: the extended DCSM model. The mean water levels derived in Exper-
iment IV will be used to validate the mean water levels derived in Experiment II and
Experiment III. The instantaneous water levels will be used in Section 5.4 to compute
the probability that the instantaneous water level is below LAT. In Experiment IV, we
used POL’s time-varying salinity and temperature fields (Section 3.5.3). The steric
contribution to the water levels prescribed at the open boundaries is derived from
POL’s hindcast as well.

5.3.1 Experiment I: LAT relative to MSL

Experiment I serves as a reference case for the remaining experiments. The ellip-
soidal heights of the LAT surface are derived using the traditional approach: the
model-derived minimum water levels induced by only astronomical tides are added
to the ellipsoidal heights of MSL. Note that here we used the original DCSM model,
i.e., the model’s reference surface is implicitly identified with MSL, though it may
be different in reality. We also quantify the contribution of the astronomical tide to
the MSL. Unless the model-derived LAT surface is corrected for this contribution,
this contribution shows up as an error in the derived ellipsoidal heights of the LAT
surface.

The model-derived LAT surface is shown in Fig. 5.1a. Many of the features shown in
this map are consistent with oceanographic expectations such as coincidence of the
locations where the model-derived LAT values approach zero with the well-known
amphidromic system in the northwest European continental shelf. In the North Sea,
there are two complete amphidromic systems; one near the center of the southern
North Sea at a latitude of 52.5◦ and one further to the east near 56◦ latitude. There
is also a degenerate system, which has its center in southern Norway (Pugh 1996).
All of them can be identified in Fig. 5.1a. We also observe that in the North Sea the
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Figure 5.1: Lowest astronomical tide (a) and time-averaged water levels (b) computed over
the entire computation period January 1, 1984 – January 1, 2004. The grey lines in both maps
show the contour lines of the bathymetry.

magnitude of the LAT values is largest along the British coast, i.e., there where the
tidal wave travels southwards. Indeed, along the British coast the shelf is steeper than
along the eastern side of the North Sea giving rise to less energy loss due to bottom
friction. The large values in the Strait of Dover are due to the confluence of the
incoming wave from the Celtic Sea and the wave which has traveled around Scotland
and through the North Sea, giving rise to an anti-amphidrome (Pugh 1996). In the
English Channel, we observe large magnitudes along the French coast (< −3.5 m)
and a degenerate amphidrome off the English coast. Both features agree with the
expectations. Following Pugh (1996), the large amplitudes along the French coast
are due to Kelvin-wave dynamics and local standing wave resonance. Resonance
effects also cause large tidal amplitudes and hence LAT values in the Bristol Channel.
Finally, we observe the degenerate amphidrome along the eastern side of the Irish
coast (southwest of the Isle of Man) and one between Ireland and the Scottish island
of Islay.

One condition that must be satisfied before a straightforward addition of ζ L
DI

to the
ellipsoidal heights of the MSL surface is allowed, is that for all grid points the mean
water level over the entire model run (ζDI) is zero. Or, at least, this contribution
should be subtracted from ζ L

DI
. Any time-averaged contribution of the astronomical

tide, generated by the non-linear interactions associated with tidal propagation, is part
of the observation-derived MSL and shows up as a systematic error in the ellipsoidal
heights of the LAT surface.

The time-averaged water levels obtained in Experiment I are shown in Fig. 5.1b. In
large parts of the model domain, these mean water levels do not significantly differ
from zero (< 1 cm) especially away from the continental shelf. There are, however,
a few exceptions. In the Irish Sea and the English Channel, some spots are visible



138 CHAPTER 5. LAT REFERENCE SURFACE

where the mean water levels range from −2 to −10 cm. Along the south and eastern
side of the North Sea, the values are positive. Largest values are observed along the
Dutch coast (4.5 cm). Our values are less than those reported by Prandle (1978),
which range from −1 to 8 cm when moving from the English to the Dutch coast.
Besides differences between the models used (e.g., bathymetry, resolution, and open
boundary conditions) and the time span over which the mean water levels are com-
puted (eight complete tidal cycles in Prandle (1978) versus 20 years in this study),
there are two other fundamental differences between both studies. While Prandle
(1978) only considers the MSL generated by the M2 constituent, the mean water
levels in Fig. 5.1b represent the contribution of the full tidal signal to the MSL. Fur-
thermore, the open boundaries of DCSM are located away from the continental shelf
where it is reasonable to assume that the amplitudes of the zero-frequency constituent
are zero. For the model used by Prandle (1978), this was not the case. Hence, the
variations in MSL due to the M2 tide are directly dependent on the values prescribed
at the open sea boundaries.

5.3.2 Experiment II: LAT relative to the EGG08 quasi-geoid (including
the time-averaged meteorological conditions)

In Experiment II, the LAT surface is computed relative to EGG08. Here, we need
to include the average meteorological and steric contributions in the modeling of
the tidal water levels. In addition, the extended DCSM needs to be vertically refer-
enced, which is realized by prescribing water levels relative to EGG08 at the open
sea boundaries. In this experiment, the inclusion of average meteorological and steric
conditions means that we include the time-averaged (over 1984–2004) fields of wind
stress, mean sea level pressure, and depth-averaged horizontal pressure gradients in-
duced by horizontal variations in water density. Before averaging, the wind speeds
are transformed to wind stresses (using Eq. (3.4)). The reason for doing this before
the averaging is that the wind drag coefficient (Cd) in Eq. (3.4) depends on the wind
speed itself. Hence, the time-averaged wind stress field is not equal to the field ob-
tained by transforming the time-averaged wind speeds to wind stresses. For a similar
reason, the time-averaged steric contribution is computed by averaging over the water
density fields rather than over the salinity and temperature fields. The time-averaged
meteorological and steric contributions to the tidal water levels prescribed at the open
sea boundaries, are derived from POL’s monthly mean water levels (Section 3.5.3).

We only obtain a proper representation of LAT relative to EGG08 if the inclusion
of the time-averaged processes provides a proper representation of the MDT. While
in Section 3.6.1 we carried out an extensive validation of the model-derived MDT
obtained by using time-variable meteorological and steric contributions (similar ex-
perimental setup as in Experiment IV of this chapter), in this part of the study we
only need to quantify any degraded performance in the representation of the MDT
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Figure 5.2: Difference in model-derived MDT computed over the entire computation period
January 1, 1984 to January 1, 2004 as derived from Experiment II and Experiment IV (a)
and the difference between model-derived LAT as derived from Experiment I and Experi-
ment II (b).

Table 5.2: Experiment II: statistics of the differences between the MDT derived in Exper-
iment II and Experiment IV, as well as of the differences between the model-derived LAT
of Experiment I and Experiment II, both computed over the whole model domain (ΩD) and
North Sea (ΩNS). Boundaries of the North Sea are taken from International Hydrographic
Organization (1953). All values are provided in cm.

differences dom. rms min max mean std

ζDIV −ζDII ΩD 0.57 -3.31 3.78 0.34 0.46
ΩNS 0.65 -1.33 3.19 0.55 0.34

(ζ L
DII
−ζDII )− (ζ L

DI
−ζDI ) ΩD 0.80 -7.72 3.91 -0.06 0.79

ΩNS 0.83 -4.43 2.62 -0.33 0.76

compared to the MDT obtained in Experiment IV. Differences are, among others, in-
troduced by a non-linear interaction of the tide with meteorological and steric effects
that does not average out. Fig. 5.2a shows a spatial rendition of these differences,
while Table 5.2 provides a summary of their statistics.

The mean difference over the whole DCSM domain (ΩD) equals 0.34 cm while the
rms is 0.57 cm. Both values slightly increase when they are computed over the North
Sea (ΩNS); to 0.55 cm and 0.65 cm, respectively. The increase of the rms is ex-
plained by the increase in the mean as follows from the standard deviations that de-
crease when we go from ΩD to ΩNS. From Fig. 5.2a, we observe an irregular pattern
of positive and negative differences along the open sea boundaries, which points to
boundary effects. On the shelf, the differences are more homogeneous; in the Celtic
Sea, Irish Sea, and the English Channel they are nearly zero, while in the North Sea
they increase from 0.5 to 1.0 cm with an abrupt decrease in the Skagerrak (−0.5 to
−1.0 cm). In general, the differences are small; much smaller than the time-averaged
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differences between observed and modeled water levels reported in Section 3.6.1.3.
In this section, the same experimental setup was used as in Experiment IV (Sec-
tion 5.4) to compute the instantaneous water levels over the period January 1, 2000 to
January 1, 2003. The time-averaged differences showed spatially correlated patterns
up to 6 cm along the open boundaries, 5 cm in the Celtic Sea, and 6 cm in the northern
North Sea. They were attributed to boundary effects, quasi-geoid errors, and errors
in both the used salinity and temperature fields and the steric water levels prescribed
at the open sea boundaries. We conclude that, though the errors shown in Fig. 5.2a
are systematic, they are small compared to other errors in the MDT.

The traditional method to compute the ellipsoidal heights of the LAT surface by
adding the separation between LAT and MSL to the ellipsoidal heights of MSL as-
sumes that tide and the average meteorological and steric conditions are linearly ad-
ditive. That is, that there is no non-linear interaction. For tide and surge this is,
especially in shallow water, not the case (e.g., Prandle & Wolf 1978, Wolf 1981,
Horsburgh & Wilson 2007). In Experiment II, the meteorological conditions are ex-
plicitly added to the model, and any interaction becomes part of the model-derived
LAT. Indeed, if no interaction occurs, Experiment I and Experiment II should provide
identical results. What of the two methods considered in Experiment I and Experi-
ment II is to be preferred depends on the quality of the available MSL/quasi-geoid
surfaces and the ability of the model to represent the MDT. The interaction of tide
with the average meteorological and steric conditions is quantified by comparing
the difference between model-derived LAT and MDT in Experiment I with the corre-
sponding difference obtained in Experiment II, i.e., ζ L

DI
−ζDI with ζ L

DII
−ζDII . Fig. 5.2b

shows a spatial rendition of these differences, while Table 5.2 provides a summary
of their statistics. From the latter, we conclude that the maximum absolute differ-
ences away from the open boundaries (ΩNS) are < 5 cm. The rms is only 0.83 cm.
Fig. 5.2b shows a systematic pattern along the English coast where the differences
reach −2.5 cm north of the city Norwich. In the Skagerrak and Kattegat, the sign
of the differences changes, but away from the coastal zone they do not exceed 3 cm.
Indeed, the order of magnitude of the tide-surge interaction is below the accuracy
with which MSL can be derived. For instance, Andersen & Knudsen (2009) report a
standard deviation of 4–10 cm for the DNSC08 mean sea surface.

5.3.3 Experiment III: LAT relative to the EGG08 quasi-geoid (includ-
ing average monthly variations in MSL)

So far, the MSL was defined as the mean water level over a several-year period. In
Experiment I, this period is the entire time span of the radar altimeter data that are
used, e.g., 17 years for DTU10 (Andersen 2010). In Experiment II, it is the period
over which we averaged the wind stress fields, mean sea level pressure fields, and
depth-averaged horizontal pressure gradients induced by horizontal variations in wa-
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Table 5.3: Experiment III: statistics of the differences between the MDT’s derived in Exper-
iment III and Experiment IV, as well as of the differences between the model-derived LAT
surfaces of Experiment I and Experiment III, both computed over the whole model domain
(ΩD) and North Sea (ΩNS). All values are provided in cm.

differences dom. rms min max mean std

ζDIV −ζDIII ΩD 0.50 -3.45 2.83 0.30 0.41
ΩNS 0.61 -1.23 2.83 0.53 0.31

(ζ L
DIII
−ζDIII )− (ζ L

DI
−ζDI ) ΩD 5.49 -15.81 5.86 -4.97 2.33

ΩNS 6.43 -15.81 -0.52 -6.04 2.20

ter density fields (1984–2004). However, it is well known that the MSL is subject to
temporal variations on all time scales (Pugh 1996). On time scales > 1 month, the
seasonal signal is most pronounced; from an analysis of 29 tide gauges sited around
the British Isles, Thompson (1980) derived an average amplitude of 7 cm. Together
with the static pressure effect and the influence of winds over the continental shelf,
the seasonal variations account for 80% of the monthly mean sea level variance.
Therefore, in Experiment III LAT relative to EGG08 will be recomputed, but now the
hydrodynamic model is forced by astronomical tides and the average monthly wind
stress, mean sea level pressure, and depth-averaged horizontal pressure gradients in-
duced by horizontal variations in water density.

These average monthly forcing fields are computed by averaging for each calendar
month all available forcing fields over a period of 20 years (1984–2004). The ob-
tained yearly time series have been used for the twenty-year model run. To avoid
jumps in the modeled water levels in the transition from month to month, the ob-
tained time series are interpolated to three-hourly values (the original temporal res-
olution of the wind speed and mean sea level pressure data) using a cubic spline.
Here, we assigned the monthly means to the mid-epochs of each month. The me-
teorological and baroclinic contributions to the tidal water levels prescribed at the
open sea boundaries are obtained in the same way as the average monthly forcing
fields. Again, we use POL’s monthly mean water levels. Since both the extended
DCSM and the POL3DB model make use of the Boussinesq hypothesis, the average
monthly net steric expansion/contraction signal of the global oceans is lacking. Here,
we applied a post-processing correction (Section 3.4.3) to the modeled water levels
that is derived in a similar way as discussed above.

The statistics of the differences between ζDIV and ζDIII (Table 5.3), and those of the
differences between ζDIV and ζDII (Table 5.2) do not differ much. Therefore, we con-
clude that the mean water level in both experiments is equally well represented; al-
lowing time variations in the wind stress, mean sea level pressure, and depth-averaged
horizontal pressure gradients induced by horizontal variations in water density forc-
ings does not impact the mean. As could be expected, the differences between
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Figure 5.3: Difference between model-
derived LAT as derived from Experiment I and
Experiment III.
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the LAT surfaces of Experiment III and Experiment I, both corrected for the MDT
((ζ L

DIII
− ζDIII)− (ζ L

DI
− ζDI)), are much larger. Fig. 5.3 shows a map of these differ-

ences while the statistics are provided in Table 5.3. Indeed, besides the tide-surge
interaction, these differences include the deviation of the MSL at the LAT event (we
use time-varying atmospheric wind, pressure, and baroclinic forcing fields) from the
MSL defined as the average water level over the entire modeling period. Compared
to Fig. 5.2b and the statistics in Table 5.2, the latter contribution dominates. Over the
whole model domain (ΩD), the rms and mean of the differences between (ζ L

DIII
−ζDIII)

and (ζ L
DI
− ζDI) compared to the corresponding differences shown in Table 5.2 in-

creased from respectively 0.80 cm to 5.49 cm and −0.06 cm to 4.97 cm. Over the
North Sea (ΩNS), the rms and mean increase from respectively 0.83 cm to 6.43 and
−0.33 cm to −6.04 cm. The largest differences are observed west to Denmark; al-
most −15 cm.

5.3.4 LAT and sea level rise

Besides periodic variations, sea level is subjected to secular changes induced by, e.g.,
eustatic and steric sea level changes, self-gravitation, and glacial isostatic adjustment
(GIA). Since the estimated ellipsoidal heights of the LAT surface will be used for
several years before it is revised (a decade in the Netherlands) while it refers to a MSL
in the past, a correction for these changes is required that is quantified in this section.
Here, the time difference between the reference epoch of the model-derived MDT
(January 1, 1999) and the mid-epoch of the period the obtained LAT will be used
(2012–2022), is 18 years. The secular changes in MSL, estimated from multi-mission
radar altimeter data over the period October 1992 – December 2010, are obtained
from the publicly available AVISO mean sea level products (CNES/LEGOS/CLS
2011). These trends are not corrected for GIA. The radar altimeter data used to
compute the trends are corrected for the inverse barometer effect. Fig. 5.4 shows the
changes in MSL over the 18 years that should be added to the model-derived LAT
surfaces derived in Experiments I, II, and III. From Fig. 5.4, we conclude that in most
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the period October 1992 – December 2010
(CNES/LEGOS/CLS 2011).

regions the corrections are < 5 cm. Away from the continental shelf (mostly outside
the model domain of DCSM), along the western and northern Dutch coast, in the
German Bight, and in the Kattegat, however, the corrections attain values up to 8 cm.

5.3.5 Validation of the model-derived LAT surface

The model-derived LAT surface of Experiment III (ζ L
DIII

) is validated using LAT val-
ues derived from 102 tide gauge records (Section 5.2). A summary of the result is
given in Table 5.4 while Table C.1 provides the results for each tide gauge.

We start the presentation and interpretation of the results with a comparison of the
observation- and model-derived MDT values. These differences reveal problems in
either the model skill to represent the MDT, as well as in the vertical referencing
of the tide gauges. Indeed, the latter errors show up in the differences between the
observation- and model-derived LAT values and hence they hamper the interpreta-
tion. From Table 5.4, we conclude that the average error in the representation of
the MDT is 3.45 cm while the minimum and maximum errors are −9.49 cm and
19.56 cm, respectively. The errors comprise representation errors in the model-
derived MDT values introduced by, e.g., errors in the used salinity and temperature
fields (Section 3.6.1.3), but also errors introduced by the applied height transforma-
tion. For instance, if method MII is used (Section 5.2), any (quasi-)geoid error in
either the national (quasi-)geoid or EGG08 propagates into the observation-derived
MDT value. In addition, we should bear in mind that the observation-derived MDT
values are point measurements while the model-derived ones represent spatial aver-
ages. That is, the model-derived values lack the high-frequency components of the
actual MDT signal.



144 CHAPTER 5. LAT REFERENCE SURFACE

Ta
bl

e
5.

4:
E

xp
er

im
en

tI
II

:S
um

m
ar

y
of

di
ff

er
en

ce
s

be
tw

ee
n

ob
se

rv
at

io
n-

an
d

m
od

el
-d

er
iv

ed
M

D
T

an
d

L
A

T
va

lu
es

pe
r

co
un

tr
y

(C
nt

.),
w

he
re

co
lu

m
n

L
oc

.
(L

oc
at

io
n)

pr
ov

id
es

in
fo

rm
at

io
n

on
th

e
lo

ca
tio

n
of

th
e

tid
e

ga
ug

es
(o

ns
ho

re
/o

ff
sh

or
e)

;
co

lu
m

n
ε

M
D

T
pr

ov
id

es
th

e
av

er
ag

e,
m

in
,

an
d

m
ax

di
ff

er
en

ce
s

be
tw

ee
n

th
e

ob
se

rv
at

io
n-

de
riv

ed
(ζ

O
)a

nd
m

od
el

-d
er

iv
ed

(ζ
D

II
I)

M
D

T
va

lu
es

;c
ol

um
n

ε
L

A
T

pr
ov

id
es

th
e

av
er

ag
e,

m
in

,a
nd

m
ax

di
ff

er
en

ce
s

be
tw

ee
n

th
e

ob
se

rv
at

io
n-

de
riv

ed
(ζ

L O
)

an
d

m
od

el
-d

er
iv

ed
(ζ

L D
II

I)
L

A
T

va
lu

es
;

co
lu

m
n

rm
s

1
pr

ov
id

es
th

e
m

in
an

d
m

ax
rm

s
di

ff
er

en
ce

s
be

tw
ee

n
th

e
ob

se
rv

at
io

n-
an

d
m

od
el

-d
er

iv
ed

tid
al

m
in

im
a;

co
lu

m
n

ε
A

m
p
−

ε
M

D
T

pr
ov

id
es

th
e

av
er

ag
e,

m
in

,
an

d
m

ax
di

ff
er

en
ce

s
be

tw
ee

n
th

e
ob

se
rv

at
io

n-
an

d
m

od
el

-d
er

iv
ed

tid
al

m
in

im
a

af
te

ra
pp

ly
in

g
th

e
co

rr
ec

tio
n

fo
rt

he
M

D
T

er
ro

r;
co

lu
m

n
st

d
1

pr
ov

id
es

th
e

m
in

an
d

m
ax

st
an

da
rd

de
vi

at
io

ns
of

th
e

di
ff

er
en

ce
s

be
tw

ee
n

th
e

ob
se

rv
at

io
n-

an
d

m
od

el
-d

er
iv

ed
tid

al
m

in
im

a.
A

ll
va

lu
es

ar
e

pr
ov

id
ed

in
cm

.

C
nt

.
L

oc
.

N
r.

tid
e

ga
ug

es
ε

M
D

T
ε

L
A

T
ε

L
A

T
−

ε
M

D
T

rm
s

1
ε

A
m

p
−

ε
M

D
T

st
d

1
ε

L
A

T
−

ε
A

m
p

m
ea

n
m

in
m

ax
m

ea
n

m
in

m
ax

m
ea

n
m

in
m

ax
m

in
m

ax
m

ea
n

m
in

m
ax

m
in

m
ax

m
ea

n
m

in
m

ax

B
E

on
3

2.
02

0.
18

3.
32

6.
76

-0
.8

2
18

.3
7

4.
74

-3
.3

8
15

.0
5

19
.4

9
26

.8
8

17
.9

7
14

.5
3

22
.1

6
8.

57
9.

47
-1

3.
23

-1
7.

91
-7

.1
1

of
f

5
2.

12
-9

.4
7

11
.3

6
-1

.7
3

-9
.7

4
6.

22
-3

.8
5

-1
2.

31
4.

38
8.

28
17

.1
8

5.
35

1.
24

11
.0

8
8.

12
10

.7
7

-9
.2

1
-1

3.
56

-6
.7

0
D

K
on

9
5.

17
1.

76
10

.3
1

19
.9

7
3.

59
67

.0
2

14
.8

0
-5

.1
3

56
.7

1
6.

43
58

.2
7

10
.9

8
-2

.0
0

46
.7

3
4.

36
11

.9
2

3.
83

-8
.8

9
10

.4
3

FR
on

8
2.

45
-2

.7
0

11
.1

5
-1

9.
07

-3
6.

73
23

.5
7

-2
1.

53
-4

0.
26

16
.0

9
11

.9
0

25
.0

3
1.

36
-8

.0
0

15
.9

2
8.

86
16

.9
1

-2
2.

89
-3

5.
91

0.
17

D
E

on
2

-3
.8

5
-9

.0
4

1.
33

-1
7.

72
-2

1.
39

-1
4.

04
-1

3.
86

-1
5.

38
-1

2.
35

10
.4

6
11

.0
4

0.
61

-1
.3

8
2.

60
8.

23
11

.0
4

-1
4.

47
-1

4.
94

-1
4.

00
N

L
on

23
6.

40
-0

.6
8

16
.6

6
1.

76
-3

8.
93

19
.9

0
-4

.6
4

-5
4.

70
17

.1
7

6.
70

22
.1

4
2.

37
-2

7.
25

17
.4

6
5.

65
12

.3
6

-7
.0

1
-2

7.
45

6.
16

of
f

5
0.

05
-2

.4
6

1.
73

1.
38

-1
5.

13
13

.7
8

1.
33

-1
2.

66
13

.5
7

3.
95

12
.2

3
3.

37
-1

.9
3

9.
23

3.
94

7.
77

-2
.0

4
-1

0.
73

4.
34

N
O

on
4

-3
.5

8
-8

.1
0

-0
.0

6
11

.7
5

5.
10

24
.0

3
15

.3
3

7.
56

27
.7

2
4.

68
11

.3
5

8.
89

7.
04

12
.6

2
3.

89
7.

01
6.

44
0.

52
15

.1
1

SE
on

5
-2

.2
0

-7
.9

4
2.

74
9.

18
-8

.5
5

22
.3

6
11

.3
8

-5
.1

3
26

.1
0

6.
93

14
.3

6
6.

61
-8

.7
8

21
.6

1
3.

93
7.

60
4.

77
-2

.2
3

12
.8

7
U

K
on

38
4.

07
-9

.4
9

19
.5

6
-2

.6
5

-6
6.

21
58

.9
1

-6
.7

3
-7

4.
53

49
.5

0
5.

57
63

.3
0

7.
64

-3
4.

73
52

.7
2

5.
37

24
.2

2
-1

4.
37

-5
3.

64
3.

95

A
ll

10
2

3.
45

-9
.4

9
19

.5
6

0.
42

-6
6.

21
67

.0
2

-3
.0

3
-7

4.
53

56
.7

1
3.

95
63

.3
0

6.
10

-3
4.

73
52

.7
2

3.
89

24
.2

2
-9

.1
3

-5
3.

64
15

.1
1



5.3. Deriving LAT 145

To gain more insight into the differences between the observation- and model-derived
LAT values, these are corrected for the misfit between the observation- and model-
derived MDT values. On average, the results become worse. Before correction, the
average misfit between the observation- and model-derived LAT values is 0.42 cm.
After correction, this average misfit increases to −3.03 cm. On the other hand, the
range of the differences remains more or less the same; −66.21 cm to 67.02 cm and
−74.53 cm to 56.71 cm before and after correction, respectively.

To assess the statistical significance of the observed differences, they are compared to
the model’s ability to represent the tidal minima. The observation-derived tidal min-
ima for a particular tide gauge are derived from the reconstructed tidal water levels
obtained by a harmonic synthesis using the estimated amplitudes and phases of the set
of constituents that explains the observed water levels best (Section 5.2). Similarly
to the time series of the modeled astronomical tide, we use a 10 minutes sampling
interval. The tidal minima are derived as the minimum water levels that occur around
the epochs the tidal minima are expected. Since we use a sampling of 10 minutes
to reconstruct the time series, the error introduced by the fact that we do not sample
the exact tidal minima is on the order of a few millimeters and therefore negligible.
Before applying the correction for the mismatch in the MDT, the rms differences
between observation- and model-derived tidal minima range between 3.95 cm and
63.30 cm. Note that the maximum values are outliers; for 90% of all tide gauges
the rms is below 26 cm. A significant contributor to these rms differences is an im-
proper representation of the tidal amplitudes by the model; the average misfit after
applying the correction for the MDT error is 6.10 cm with minimum and maximum
deviations of −34.73 cm and 52.72 cm, respectively. This also follows from the
standard deviations of the differences between observation- and model-derived tidal
minima; for all tide gauges they range from 3.89 cm to 24.22 cm, while for 90% of
all tide gauges the standard deviation is below 12.41 cm. If we correct the differences
between observation- and model-derived LAT also for the average error in the rep-
resentation of the tidal minima, the average difference over all tide gauges increases
to −9.13 cm, while the minimum and maximum deviations decrease to −53.64 cm
and 15.11 cm, respectively. These deviations are considered to be statistically sig-
nificant if their absolute magnitude exceeds three times the standard deviation of the
differences between observation- and model-derived tidal minima. Applying this test
results in a rejection of only three model-derived LAT values at tide gauges from the
UK; Liverpool, Llandudno, and Port Erin. All these tide gauges are located in the
Irish Sea where the model performance is known to be less than in the North Sea for
which the model was primarily developed. So, we conclude that, though at almost
all tide gauges (99 out of 102) the observed differences between observation- and
model-derived tidal minima after correction for systematic errors are in agreement
within error, the systematic errors have a significant contribution to the overall error
budget. Indeed, errors in the representation of the MDT, height transformation, etc.,
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as well as errors in the representation of the tidal amplitude, affect the model skill to
represent the LAT value relative to EGG08.

In most cases, errors in the representation of the tidal amplitude are attributed to the
model’s limited spatial resolution (approximately 8× 9 km in east-west and north-
south directions, respectively) to resolve the tidal behavior in shallow water and com-
plex geometry such as harbors. This is, for instance, the case at the UK tide gauges
Hinkley Point (Bristol Channel), Immingham (Humber Estuary), and Millport (Firth
of Clyde); the rms differences are 31.98 cm, 36.42 cm, and 54.10 cm, respectively.

The used set of constituents has a significant influence on the obtained results. To
illustrate this, we consider the Belgian onshore tide gauges Nieuwpoort, Oostende,
and Zeebrugge. Using our criterion defined in Section 5.2, the set of 103 constituents
is to be preferred over the set of 95 constituents for all 3 tide gauges. The obtained rms
differences between the observation- and model-derived tidal minima after applying
the correction for the MDT error are 17.35 cm, 19.33 cm, and 23.76 cm, respectively
(Table C.1). Using the set of 95 constituents, these values decrease to 11.07 cm,
12.59 cm, and 18.01 cm, respectively. Though the data are best explained by the
set of 103 constituents, the set of 95 constituents is a better choice. Indeed, this
illustrates the need for a detailed analysis of each tide gauge to derive the optimal set
of constituents to be used. Such an analysis is out of the scope of this study, but needs
to be done.

In addition, it should be noted that to derive the observation-derived LAT values,
the amplitudes and phases of the tidal constituents are estimated by a least-squares
adjustment using all available data over the model period (1984–2004). Hence, they
represent the average tidal cycle over the data period. For most tide gauges, we
have data from 1985 to 2004, but there are some exceptions. For example, for all
Belgian offshore tide gauges we have no data prior to February 2000. Furthermore,
because the amplitudes and phases are subject to seasonal variations (Leeuwenburgh
et al. 1999) and changes due to changes in bottom topography, coastal morphology,
etc., they only match the modeled tidal cycle if the average circumstances match
the model. Another discrepancy between modeled and “observed” astronomical tide
is that in the latter the average seasonal variations are described by including the
SA constituent in the harmonic synthesis used to reconstruct the tidal water levels. In
the modeled tidal water levels, these are induced by the prescribed average monthly
forcing fields.

The discrepancy between model-derived LAT and observation-derived LAT is also
visible in the timing of the LAT event. Although for almost all tide gauges (97 out
of 102) the LAT event occurs within a 3 month bracket, the years in which the event
occurs differ up to 18 years. Favorable exceptions are most of the French (6 out
of 8) and UK (19 out of 38) tide gauges, for which the timing of the LAT event
is on the same day. The tide gauges for which we observe large differences in the
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timing of the LAT event are Højer/Vidåslusen, Aukfield platform (offshore), Euro
platform (offshore), North Cormorant (offshore), and Port Ellen. The modeling of the
astronomical tide at Højer/Vidåslusen is known to be difficult due to tidal flats, which
is also reflected by the large rms of the differences between observation- and model-
derived tidal minima. At the Aukfield and Euro platforms the modeled tidal water
levels at the epoch of the observation-derived LAT event differs only by ∼1 cm from
the model-derived LAT value. This is far below the achievable accuracy of the model-
derived LAT and observation-derived LAT. For North Comorant, this difference is
8.4 cm. Here, a possible explanation might be the poor data coverage; we only have
four months data in 1990 followed by a gap of almost four years, than almost two
years of data, again followed by a gap of more than one year after which no more
serious data gaps occur. For Port Ellen (Isle of Islay), the expected tidal variations
are low since it is close to an amphidromic point. Probably, this is the explanation for
the observed mismatch in the timing of the LAT event.

5.3.6 Comparison with literature

In this section, we compare our statistics with those reported by Turner et al. (2010).
Their study includes a comparison of the LAT values derived from the North and
Irish Sea and English Channel (NISE10) hydrodynamic tide-surge model, as well
as several global ocean tide models, with the LAT values derived at 392 onshore
and 187 offshore Admiralty Tide Tables gauges. At the onshore tide gauges, the
NISE10 model performed best; the mean and standard deviation of the differences
are −16.9 cm and 44.9 cm, respectively. At the offshore tide gauges, the FES2004
model shows the best agreement; the mean and standard deviation of the differences
are −3.6 cm and 26.7 cm, respectively. For NISE10, these values are respectively
−10.2 cm and 35.8 cm. Note that these numbers do not represent the accuracy of
the final LAT surface as they are computed prior to the merging of observation- and
model-derived LAT values (see Section 1.2.5). For the onshore tide gauges, we ob-
tain a mean difference between observation- and model-derived LAT of 0.5 cm; the
standard deviation is 21.5 cm. Note that both measures are not corrected for the mis-
match between the observation- and model-derived MDT’s and tidal minima. Since
we only have 10 offshore tide gauges, the computation of the mean and standard
deviation is too uncertain.

It is tempting to attribute these significant lower values to an improved modeling of
LAT by the method suggested in this thesis. There are, however, some significant dif-
ferences between both studies that make this conclusion difficult to support. Besides
the number and locations of the tide gauges, in (Turner et al. 2010) LAT is not de-
rived at all tide gauges, as the available data time span was too short. Instead, a level
defined as CD has been used as a proxy of LAT, which was obtained by scaling the
available lowest level from the shorter time series through a comparison with identi-
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cal time series at nearby primary tide gauges. The rms of the differences between CD
and LAT at tide gauges where both are known is already 12 cm. Finally, it should be
noted that none of the work carried out by Turner et al. (2010) was aimed at improv-
ing the hydrodynamic models. The entire focus was on producing LAT models that
are the best possible operational models to be used by mariners and chart developers.

5.4 Assessment of the safety of LAT as a chart datum

Besides the fact that all predicted tidal water levels become positive in sign, another
main motivation to use LAT as CD is that LAT provides an indication of the minimal
water depth that can be expected under average meteorological conditions and hence
provides a sense of safety. Indeed, any surface above LAT results in charted depths
that are occasionally greater than the true depth, which might lead to a false sense of
safety. However, it is well known that meteorological conditions can result in water
levels below LAT, especially in shallow waters. Hence, the sense of safety evoked by
the use of LAT as CD is only justified if the probability that the instantaneous water
level drops below LAT is low. In Experiment IV, these probabilities are computed.

5.4.1 Method

We model the instantaneous water levels using the setup described in Section 3.6.1.
For each grid point, an extreme value analysis is performed on the minimum instanta-
neous water levels that occur during periods of tidal minima over the entire modeling
period of 20 years (with a semi-diurnal tide we have ∼14,600 tidal minima). Fol-
lowing Sobey (2005), appropriate probability distributions to apply such an analysis
must have a probability density function (PDF) that is asymptotic to a tail at the low
end. Since the histograms in Fig. 5.5 suggest that the distribution differs for each
location, we use a non-parametric way to estimate the PDFs and cumulative density
functions (CDFs). That is, no formal parametric structure is specified. Instead, the
model used here consists of a linear combination of kernel functions characterized
by a certain bandwidth centered at the original data (Izenman 1991). Here, we used
Matlab’s ksdensity (MATLAB 7.10.0.499, R2010a) with a normal kernel function
and the default bandwidth that is optimal for estimating normal densities. Visual
inspection of the goodness-of-fit shows that the PDFs provide a good fit over the en-
tire range of observed data, see Fig. 5.5 for some representative examples at typical
locations distributed over the whole model domain.
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Figure 5.5: Normalized histograms of the model-derived, minimum instantaneous water
levels in periods of tidal minima in meters, at eight locations distributed over the model
domain. The histograms are fitted by non-parametric probability density functions that are
estimated by Matlab’s ksdensity with a normal kernel function and a bandwidth that is
optimal for estimating normal densities.

5.4.2 Results

Using the estimated CDFs, we computed the probabilities that the minimum instan-
taneous water level in the periods of tidal minima drops below LAT plus a certain
threshold. Various thresholds are selected: −1.00 m, −0.50 m, −0.25 m, 0.00 m,
and 0.25 m. The probability maps are shown in Figs. 5.6a–5.6e. Except for some
grid points in the German Bight, the probabilities that the minimum instantaneous
water level in the periods of tidal minima drops 1.00 m below LAT are less than 10−4

(i.e., less than once per 5,000 days). The probabilities increase to 1.5 · 10−3 off the
Dutch coast and to 6 · 10−3 in the German Bight for a threshold of −0.5 m, i.e., be-
tween once per 350–80 days. For a threshold of −0.25 m, the probabilities increase
further to values of 0.02 (once per 25 days). A further increase of the probabilities of
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almost one order of magnitude is observed if the threshold is set equal to zero (0.18).
The probabilities that the minimum instantaneous water levels drop below LAT +
0.25 m are between 0.1 to 1.
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Figure 5.6: Probability that the minimum instantaneous water level in periods of tidal
minima drops below: LAT−1.0 m (a), LAT−0.5 m (b), LAT−0.25 m (c), LAT (d), and
LAT+0.25 m (e).

So, rather than once per 18.6 years, in the eastern side of the North Sea the probabil-
ities that the minimum instantaneous water level drops below LAT are on the order
of once per month to once per week. In comparison with Fig. 5.1a, we observe that
the magnitude of LAT is low in this part of the North Sea due to the existence of two
complete amphidromic systems and one degenerating one. Indeed, in this region the
contribution of the surge dominates the water level variations. Hence, it is reasonable
to expect a high probability that the instantaneous water level drops below LAT.
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Because storm surge events are not equally distributed over the year (they occur more
often in winter than in summer), it is expected that the event that the water level drops
below LAT is more likely in winter than in summer. The maps with the probabilities
that the minimum instantaneous water level drops below LAT computed over the
different seasons are shown in Figs. 5.7a–5.7d. They are computed by repeating the
procedure described above for subsets of the entire time series. From Fig. 5.7a and
Fig. 5.7c, we conclude that, indeed, the probabilities in winter are much higher than in
summer; approximately by a factor of five. In addition, we observe that in spring the
probabilities are higher than in fall. This can be explained by the steric contribution
to the water level: the water level in spring is lower because the water is colder, while
in fall the level is higher due to warmer water.

This experiment has shown that the probability that the instantaneous water level
drops below LAT is, at least in the eastern North Sea, a once per month/once per week
event, much higher than one may expect from the definition of LAT. As suggested
by the IHO resolution (International Hydrographic Organization 2011a, Technical
Resolution 3/1919), in such a case not LAT but another surface might be used as CD:
“If low water levels in a specific area frequently deviate from LAT, chart datum may
be adapted accordingly”. Here, we propose to use a probabilistic approach to realize
CD. That is, CD is defined as a level which is exceeded with a given fixed probability.
Such a level can be computed using the inverse cumulative density functions (ICDF)
of the time series of minimal instantaneous water levels. We computed the levels that
are only exceeded once per 18.6 years, once per 10 years, and once per year, and
compared these levels with the LAT surface obtained in Experiment III (Figs. 5.8a–
5.8c). In all cases, the obtained levels are below LAT. A likelihood of once per
18.6 years (Fig. 5.8a), provide differences up to −1.0 m in the German Bight (at
some grid points in this area the differences even reach −1.2 m). For a likelihood of
once a year, the differences reduce to −0.6 m to −0.7 m (Fig. 5.8c).

5.4.3 Discussion

Another advantage of using a probabilistic approach to realize CD is that this surface
is more easily validated than LAT (cf. Section 5.3.5). Indeed, the same procedure
used to compute the probabilities and levels shown in this experiment can be applied
to tide gauge records, without the need to make assumptions, e.g, about the set of
constituents to be used. Moreover, such an approach might help to reduce the differ-
ences in the realizations of CD for the various countries surrounding the North Sea
as described by Dorst et al. (2010). The differences are introduced by different views
and methods of how to realize LAT from both observations and models. For example,
different views exist on the set of constituents to be used and on the time span over
which constituents should be estimated. It should be noted that in this study we only
considered meteorological and steric effects, because these are recurring phenomena
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Figure 5.7: Probability that the minimum instantaneous water level in periods of tidal minima
drops below LAT in: winter (a), spring (b), summer (c), and fall (d).

on the time scale we consider (a few decades). However, there are other phenomena
that may cause that sea level drops below LAT such as tsunamis. This increases the
uncertainty of the computed probabilities depending on the likelihood of the event.
Conceptually we could include these phenomena in the realization of the probabilis-
tic CD provided that some information about their probability is available. One issue
that needs to be discussed in the hydrographic community is the probability level.
On the one hand, this should not be too large to avoid a false sense of safety. From
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Figure 5.8: CD realized using a probabilistic approach relative to the LAT obtained in Ex-
periment III. In the probabilistic approach, CD is defined as the level below which the in-
stantaneous water level will drop by a specified fixed probability, This probability is once per
18.6 years in (a), once per 10 years in (b), and once per year in (c).

a commercial point of view, it should not be too small to allow for shorter routes of
ships with deeper draughts.

5.5 Summary and conclusions

In this chapter, we evaluated computational strategies to derive the ellipsoidal heights
of the LAT surface using a shallow water hydrodynamic model in combination with
either ellipsoidal heights of MSL or heights relative to a quasi-geoid. In addition,
we conducted an assessment of the suggested sense of safety of LAT as CD. We
finish this chapter by giving a brief summary of the work that has been done, by
emphasizing the main findings, and by providing some concluding remarks.

5.5.1 LAT derived from a shallow water model

Modeling LAT relative to the quasi-geoid is realized by (i) the explicit modeling of
the average meteorological and steric conditions as required by the definition of LAT
and (ii) referencing the hydrodynamic model to the quasi-geoid. This approach is
conceptually clearer; unlike MSL, both the quasi-geoid and the model’s reference
surface are equipotential surfaces (indeed, in a strict sense the quasi-geoid is not an
equipotential surface, but at sea the differences between the geoid and quasi-geoid
are negligible). Moreover, such an approach allows for the inclusion of temporal
variations in the definition of the average meteorological conditions and is applica-
ble everywhere (approaches based on the MSL are applicable only where MSL is
available).

In a number of numerical experiments using both the original and extended 2D Dutch
Continental Shelf Model (DCSM), we first derived LAT relative to MSL and quan-
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tified the contribution of the astronomical tide to the MDT. This contribution shows
up as an error if not corrected for when the ellipsoidal heights of the LAT surface are
computed. Besides some outliers, systematic errors up to 5 cm are observed off the
Dutch coast.

In a second experiment, we derived LAT relative to the quasi-geoid by including
the time-averaged meteorological and steric contributions. Compared to the model-
derived MDT obtained by time-varying meteorological and steric contributions, the
obtained MDT is hardly affected; the mean of the differences over the whole DCSM
domain (ΩD) equals 0.34 cm while the rms is 0.57 cm.

Explicit modeling of the average meteorological and steric conditions also implies
that the obtained LAT surface includes the interaction of the tide with the average
wind field. On average, this effect appears to be small; minimum and maximum de-
viations range between −7.72 cm and 3.91 cm over the whole model domain, while
the rms is only 0.80 cm. Hence, after applying a correction to the model-derived
LAT surface obtained with the original DCSM model for the contribution of the as-
tronomical tide to the MDT (Experiment I), we conclude that the traditional approach
to compute the ellipsoidal heights of the LAT surface is the preferred method outside
coastal waters. Indeed, if LAT is derived relative to the quasi-geoid, errors in the
model-derived MDT become also part of the total error budget.

If, however, monthly variations in average meteorological and steric conditions are
included, the extreme differences between the derived LAT surface and the one ob-
tained using the traditional approach increase to −15.81 cm and 5.86 cm. The rms
difference is 5.49 cm. These values are significantly larger than the errors in the
model-derived MDT. The largest differences are observed west to Denmark, while
the largest errors in the representation of the MDT show up elsewhere.

The LAT surface obtained in Experiment III is validated using LAT values derived
from at least 2.5 years and at most 20 years of observed water levels at 92 onshore
and 10 offshore tide gauges. The set of constituents used to derive the observation-
derived LAT values is that set for which the rms difference between the observed
water levels and the reconstructed astronomical tidal water levels is lowest. Two
sets were considered; one comprising 103 constituents, the other comprising 95 con-
stituents. For the 92 onshore stations, we found a mean of 0.5 cm and a standard
deviation of 21.5 cm. The obtained differences between the observation- and model-
derived LAT values reveal a mixture of errors in both model and observations. We
found that systematic errors in the representation of the tidal amplitude by DCSM
dominate. Using the standard deviation of the differences between observation- and
model-derived tidal minima, we conducted a test to evaluate the statistical signif-
icance of the differences between the observation-derived LAT values and model-
derived LAT values corrected for the mismodeling of the MDT and tidal amplitude.
For three tide gauges, the observed differences are larger than three times the stan-
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dard deviation and, therefore, are considered statistically significant. All three tide
gauges are located in the Irish Sea where DCSM is known to perform less. The hy-
drodynamic model is considered to be the primary error source for the observed dif-
ferences between the observation- and model-derived LAT values. In a future work,
the hydrodynamic model will be improved in terms of spatial resolution and physics.
We also showed that the choice of the set of tidal constituents for each tide gauge has
a significant influence on the derived LAT value at this tide gauge. In this study, two
sets of tidal constituents were used, but whether those sets are a good choice needs to
be investigated.

5.5.2 The safety of LAT as chart datum

In a final experiment, we investigated whether the sense of safety evoked by using
LAT as CD is justified. Indeed, since LAT is computed as a once per 18.6 years event
under average meteorological conditions, the use of LAT suggests that the instanta-
neous water level rarely drops below LAT. On the other hand, it is well known that
meteorological conditions have a significant influence on the water level in shallow
waters. In this study, the probabilities that the minimum instantaneous water level
in periods of tidal minima is below LAT are computed using time series of modeled
instantaneous water levels. In the eastern North Sea, these probabilities appear to be
on the order of once per month to once per week. As could be expected, these proba-
bilities are largest in winter, followed by spring, fall, and summer. The probabilities
in winter and summer differ, approximately, by a factor of five. The high probability
that the water level is below LAT motivated us to propose a probabilistic approach to
realize CD, where CD is defined as the level below which the water falls with a given
probability. Without attempting to prescribe how large the probability should be, we
realized CD using this approach for different probabilities and quantified the differ-
ences to LAT. Even for a probability of once per year, the probabilistic CD would be
below LAT by several decimeters. Additional advantages of the proposed method are
that it offers an opportunity to realize CD unambiguously and that the obtained CD
is much easier to validate.





Chapter 6

The spherical Slepian basis as a
means to obtain spectral
consistency

This chapter is based on Slobbe et al. (2012). In this paper, we treat the question
whether a spherical Slepian basis representation provides spectral consistency in the
context of mean dynamic topography (MDT) estimation using the so-called “geodetic
approach”. That is, by computing the difference between a mean sea surface model
obtained from satellite altimetry and a gravimetric geoid. However, as noticed in
the paper, the problem of ensuring spectral consistency between two signals before
combining them is more general in nature than the specific context in which we pre-
sented it. Hence, our conclusions also apply to the problem we have at hand; making
the LAT and MDT surfaces spectrally consistent with the geoid. This is needed to
compute the ellipsoidal heights of the LAT and MSL surfaces.

6.1 Introduction

Since ocean currents are nearly in geostrophic balance on time scales longer than a
few days and spatial scales longer than a few tens of kilometers, the velocity of the
surface geostrophic current is proportional to the gradient in the average height of
the sea surface expressed relative to the geoid (Wunsch & Gaposchkin 1980). This
so-called mean dynamic topography (MDT) can be computed by subtracting a gravi-
metric geoid from an altimetric mean sea level (MSL) model, provided that both are
expressed relative to the same reference ellipsoid and in the same permanent tide sys-
tem. However, especially in the open ocean, the altimetric MSL has a much higher
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spatial resolution than the gravimetric geoid. Consequently, the apparently straight-
forward computation of the MDT becomes problematic since the high-frequency part
that is lacking from the geoid cannot be subtracted from the MSL. This causes a non-
random error that can be misinterpreted as a part of the MDT (Losch et al. 2002,
Albertella & Rummel 2009). Before the MDT is computed by taking the differ-
ence between altimetric MSL and gravimetric geoid, the latter two have to be made
“spectrally consistent”: they have to cover the same spectral range. Hence, a suitable
low-pass filter has to be applied to the altimetric MSL.

The problem of ensuring spectral consistency between two signals before combin-
ing them is more general in nature than the specific context in which it appeared
above. Indeed, it arises whenever different data sets and/or models with various spa-
tial or temporal resolutions are to be merged for interpretation, e.g., in seismology
and geomagnetic studies (Trampert & Snieder 1996, Boschi & Dziewonski 1999,
Schachtschneider et al. 2010, Schott & Thébault 2011).

To derive the MDT of the North Atlantic Ocean, Jayne (2006) applied a Hamming
window smoother in the spatial domain on both geoid and the MSL. However, since
low-pass filtering results in the replacement of the original signal by its weighted
spatial average, this operation fails in coastal regions, because the MSL is not defined
on land. Alternatively, adaptive filters based on principal component analysis (PCA)
over the domain of interest might be used. For example, Vianna et al. (2007) used a
singular spectrum analysis (SSA) expansion to filter noise in a GRACE-based MDT
for the South Atlantic region. SSA could also be used to obtain spectral consistency
of altimetric MSL and gravimetric geoid.

On the other hand, we might make use of the fact that geoid models are bandlimited,
i.e., they are expressed as a set of spherical harmonic expansion coefficients, com-
plete to some degree Lg. Likewise, the altimetric MSL could be expanded in spherical
harmonics complete to some degree Lr, typically with Lr > Lg. Spectral consistency
could then be obtained by truncating the MSL expansion at degree Lg. Two problems
are inherent in this approach. First, since the spherical harmonics are not an orthogo-
nal basis over incomplete spherical domains such as the oceans, the estimation of the
expansion coefficients from radar altimeter data is ill-conditioned (Simons & Dahlen
2006). Second, truncation of the spherical harmonic expansion beyond degree Lg

gives rise to Gibbs phenomena that can only be suppressed with appropriate spectral
windows.

The first problem, ill-conditioning, is traditionally addressed by regularized least-
squares or truncated singular value decomposition (SVD) approaches (e.g., Xu 1998).
More recently, truncated Slepian basis representations have been proposed (Simons
& Dahlen 2006), about which more is to follow below. Alternatively, as advocated
by, e.g., Tapley et al. (2003), missing MSL data on land and in uncovered ocean
regions such as the polar gaps can be replaced by geoid information. Rather than es-
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timating the spherical harmonic coefficients from a signal defined over a subdomain
of the sphere, the estimation is then carried out using the combined whole-sphere
signal. The geoid is used to extend the MSL since the two do not differ more than
by about 3 m. Despite this small difference, discontinuities persist at the coastlines,
introducing Gibbs phenomena. Bingham et al. (2008) suggest to further reduce the
Gibbs effects in the MDT by using the same geoid on land as is used to compute the
MDT. In an elaboration of the method (Tapley et al. 2003) discussed by Albertella
et al. (2008), the transition from land to sea is smoothed by iteratively estimating
the spherical harmonic coefficients of MSL up to degree Lr from the combined land-
ocean data set. In each iteration, the values over land are replaced by those obtained
from a spherical harmonic synthesis of the last derived set of coefficients. This pro-
cess is repeated until some pre-defined stopping criterion has been satisfied. Finally,
low-pass filtering is applied to obliterate the signal above Lg and to reduce Gibbs ef-
fects. Albertella et al. (2008) and Albertella & Rummel (2009) use a Gaussian filter,
but other (low-pass) filters may be used as well (for more details about the Gaussian
filter and alternatives, we refer to, e.g., Jekeli 1981). Generally, however, the low-
pass filtered MSL signal still contains energy above degree Lg and will thus not be
spectrally consistent with the geoid to which it is compared.

In summary, we might say that no ideal approach currently exists to obtain low-
resolution approximations to MSL that are spectrally consistent with the geoid. In
studying a one-dimensional version of this problem, Albertella & Rummel (2009)
came to the conclusion that extending MSL to the entire globe using, e.g., geoid in-
formation unavoidably results in a distortion of its spectral content, even if utmost
care is taken to derive smooth transitions from ocean to land. In contrast, they con-
clude that representing MSL in a basis of Slepian functions, which are suitable for
signals of limited bandwidth living on limited intervals (Simons 2010), holds much
promise in solving both problems above. Somewhat pessimistically, though, they
wrote that “it may prove difficult to apply it to the real world case with the compli-
cated shapes of ocean basins”.

Since the efficient generation of Slepian functions on domains of arbitrary geome-
try, whether in spherical (Simons et al. 2006) or Cartesian (Simons & Wang 2011)
coordinates, presents no intrinsic difficulties, we are here able to consider their use
in the context of the work by Albertella & Rummel (2009), on which we build. Our
main goal is to design a bandlimited Slepian basis for the ocean basins in spheri-
cal geometry and to evaluate the utility of this basis in solving the problem stated
above, which is to derive suitable representations of altimetric MSL while maintain-
ing spectral consistency with the gravimetric geoid. Hwang (1991), see also Hwang
(1993) for a shorter version, used another set of orthogonal functions on the oceans
to represent the sea surface topography derived from radar altimeter data. This set
of orthogonal basis functions has been generated from spherical harmonics using the
Gram-Schmidt process, see Golub & Van Loan (1996).
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In this chapter, we first summarize some basics about spherical Slepian functions
(Section 6.2). Following this, we address the problem of spectral consistency and
bandwidth for functions given on a part of the spherical domain (Section 6.3). Next,
we describe the setup of several numerical experiments, which were designed to in-
vestigate the performance of a Slepian basis representation of the MSL signal which
is spectrally consistent with a given gravimetric geoid (Section 6.4). This includes a
discussion about the choice of the optimal number of Slepian basis functions. There-
after, we present and discuss the results of the numerical experiments (Section 6.5).
The main result is that all methods discussed in Section 6.5 fail to provide a low-
resolution MSL signal with an adequate accuracy. Therefore, in Section 6.6, we
reformulate the problem, provide a mathematical solution, and discuss its applicabil-
ity to high-resolution data. Finally, we conclude by emphasizing the main findings
and identifying topics for future research.

6.2 The spherical Slepian basis

The functions now named after David Slepian grew out of the work by Slepian & Pol-
lak (1961) and Landau & Pollak (1961, 1962), who solved a long-standing problem in
information theory, namely, that of optimally concentrating a given signal in both the
time and frequency domains. Since timelimited functions cannot be simultaneously
bandlimited in the frequency domain, nor vice versa, the optimally concentrated sig-
nal is considered to be the one with the least energy outside the interval of interest.
The concentration problem has been extended and generalized for the purpose of sig-
nal estimation, representation, and analysis on geographical domains by Albertella
et al. (1999), Pail et al. (2001), and Simons & Dahlen (2006) in geodesy, and by
Wieczorek & Simons (2007) and Dahlen & Simons (2008) in more general settings.
The quadratic maximization of the spatial energy of bandlimited functions is one way
to achieve localization in one domain while curbing leakage in the other. Other con-
structions may have similarly desirable properties, but even those are often judged
on how closely they satisfy quadratic optimality constraints (e.g. Freeden & Michel
1999, Guilloux et al. 2009). We therefore remain faithful to the original approach of
Slepian, as transformed into spherical geometry by Simons et al. (2006).

Following the notation of Simons (2010), we use (in this chapter) bold, serifed fonts
(e.g., f, D) for vectors or matrices that are entirely composed of spectral quantities,
and bold, sans-serif fonts (e.g., f, Y) for those that depend on at least one spatial vari-
able. The colatitude of a geographical point x̂ on the surface Ω of the unit sphere is
denoted by ϑ and the longitude by λ , with 0≤ ϑ ≤ π and 0≤ λ < 2π . We use Ω0 to
denote a region of Ω, of area |Ω0|, within we seek to concentrate a bandlimited func-
tion of position x̂. Using orthonormalized real surface spherical harmonics Ŷlm(x̂),
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whereby ∫
Ω

Ŷlm(x̂)Ŷl′m′(x̂)dΩ = δll′δmm′ , (6.1)

we can express a square-integrable real function f (x̂) on the surface of the unit
sphere as

f (x̂) =
∞

∑
l=0

l

∑
m=−l

flm Ŷlm(x̂), flm =
∫

Ω

f (x̂)Ŷlm(x̂)dΩ. (6.2)

The bandlimited Slepian basis (bandwidth L) that is spatially concentrated to the re-
gion Ω0 is the collection of functions that have no power outside the spectral interval
0≤ l ≤ L but as much of their power as possible concentrated within Ω0:

g(x̂) =
L

∑
l=0

l

∑
m=−l

glm Ŷlm(x̂), glm =
∫

Ω

g(x̂)Ŷlm(x̂)dΩ, (6.3)

for which the spatial concentration factor

λ =

∫
Ω0

g2(x̂)dΩ∫
Ω

g2(x̂)dΩ

= maximum. (6.4)

Note that by convention, λ is also used to indicate the longitude. Its exact meaning
will be clear from the context. Maximizing Eq. (6.4) can be achieved in the spectral
domain by solving the algebraic eigenvalue problem:

Dg = λg, (6.5)

where g is a (L +1)2-dimensional vector that represents a Slepian eigenfunction ex-
pressed in spherical harmonics, i.e. g = (g00 · · ·glm · · ·gLL)T and D is the (L + 1)2×
(L+1)2-dimensional spectral-basis projection operator or localization kernel:

D =

 D00,00 . . . D00,LL
...

...
DLL,00 . . . DLL,LL

 , (6.6)

whose elements Dlm,l′m′ are given by

Dlm,l′m′ =
∫

Ω0

Ŷlm(x̂)Ŷl′m′(x̂)dΩ. (6.7)
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As a consequence of the symmetry DT = D, the eigenvectors {gα : α = 1, . . . ,(L +
1)2} are mutually orthogonal. When choosing them to be orthonormal, we have

gT
αgβ = δαβ and gT

αDgβ = λαδαβ , (6.8)

where δαβ is the Kronecker delta defined as

δαβ =

{
1 if α = β ,
0 otherwise.

(6.9)

The corresponding spatial Slepian functions,

gα(x̂) =
L

∑
l=0

l

∑
m=−l

glm αŶlm(x̂), α = 1, . . . ,(L+1)2, (6.10)

are orthonormal over the whole sphere Ω and orthogonal over the region Ω0.

Rather than determining bandlimited functions that are concentrated in a spatial re-
gion of interest Ω0 we may also find spacelimited functions h(x̂) that are concentrated
in a spectral interval 0 ≤ l ≤ L. Instead of Eq. (6.5), the h(x̂) satisfy the spatial-
domain eigenvalue equation∫

Ω0

D(x̂, x̂′)h(x̂′)dΩ
′ = λh(x̂), for x̂ ∈Ω0, (6.11)

whose kernel is given by the bandlimited delta function

D(x̂, x̂′) =
L

∑
l=0

(
2l +1

4π

)
Pl(x̂ · x̂′), (6.12)

and where Pl is the Legendre function of degree l. Eqs. (6.5) and (6.11) have identical
eigenvalues λ . In both cases, the eigenvalues are a measure of the quality of the
spatiospectral concentration. In the latter case, λ expresses the spectral concentration

λ =

L

∑
l=0

l

∑
m=−l

h2
lm

∞

∑
l=0

l

∑
m=−l

h2
lm

= maximum. (6.13)
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The sum of the eigenvalues, which is known as the Shannon number, K, is given by

K =
(L+1)2

∑
α=1

λα =
L

∑
l=0

l

∑
m=−l

Dlm,lm =
∫

Ω0

D(x̂, x̂)dΩ

= (L+1)2 |Ω0|
4π

. (6.14)

From Eq. (6.4), it follows that the closer an eigenvalue λ is to 1 the better the corre-
sponding Slepian function g(x̂) is concentrated within Ω0. If an eigenvalue is small,
i.e., λ � 1, the corresponding Slepian function is mostly concentrated in the domain
Ω̄0 = Ω−Ω0. Hence, the Shannon number K, Eq. (6.14), is roughly equivalent to
the number of well concentrated (λ ≈ 1) eigenfunctions.

If the first K eigenfunctions g1, g2, ... , gK are well concentrated in the region Ω0,
the remaining eigenfunctions gK+1, gK+2, ... , g(L+1)2 are well concentrated in the
complementary region Ω̄0. From Eq. (6.14) it then follows that when the area of
region Ω0 is a small fraction of the sphere, K� (L +1)2 holds true. By implication
there are many more eigenfunctions with insignificant eigenvalues (λ ≈ 0) than well-
concentrated eigenfunctions with significant eigenvalues (λ ≈ 1). If on the other
hand the area |Ω0| approximates the area of the sphere, K ≈ (L +1)2, i.e., there will
be many more well concentrated than well-excluded eigenfunctions.

Bandlimited spatially concentrated Slepian functions designed for a given domain Ω0
form a basis for bandlimited signals anywhere on the sphere. When ranked by de-
creasing eigenvalue λ , the first J members of such a Slepian basis provide efficient
constructive approximations to bandlimited functions s(x̂) that are themselves spa-
tially concentrated inside the same region Ω0:

s(x̂) =
L

∑
l=0

l

∑
m=−l

slm Ŷlm(x̂) =
(L+1)2

∑
α=1

tαgα(x̂)

≈
J

∑
α=1

tαgα(x̂), x̂ ∈Ω0, (6.15)

where tα are the Slepian expansion coefficients. Due to the characteristic flat, and
then rapidly declining, shape of the eigenvalue spectrum, taking J = K will provide
very reasonable approximations to s(x̂) within the region Ω0. Equality prevails glob-
ally when J = (L + 1)2. From an inverse modeling standpoint, the optimal (in the
mean-squared error sense) truncation level J in estimating a localized signal from
noisy data over the region is determined by the signal-to-noise ratio. In the noiseless
case, J = (L+1)2 holds true, while in the special case of white noise contaminating a
white signal, the optimal value for J is when the corresponding eigenvalue λJ = N/S,
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with N the noise variance and S the signal variance. For more details, see Simons &
Dahlen (2006).

In geodetic practice we are likely to have M samples of a certain signal s(x̂), which,
collected in a vector s, allows us to rewrite Eq. (6.15) as:

s = YT
Ls = YT

LGt = GTt, (6.16)

where s = (s(x̂1) · · ·s(x̂ j) · · ·s(x̂M))T, s = (s00 · · ·slm · · ·sLL)T, t = (t1 · · · tα · · · t(L+1)2)T,
and, following Simons (2010),

YL =


Ŷ00(x̂1) . . . Ŷ00(x̂ j) . . . Ŷ00(x̂M)

... Ŷlm(x̂ j)
...

ŶLL(x̂1) . . . ŶLL(x̂ j) . . . ŶLL(x̂M)

 , (6.17)

G =


g1(x̂1) . . . g1(x̂ j) . . . g1(x̂M)

... gα(x̂ j)
...

g(L+1)2(x̂1) . . . g(L+1)2(x̂ j) . . . g(L+1)2(x̂M)

 , (6.18)

G =


g00 1 . . . g00 α . . . g00 (L+1)2

... glm α

...

gLL 1 . . . gLL α . . . gLL (L+1)2

 . (6.19)

In this notation, Eq. (6.3) is rewritten as G = GTYL, and the left-hand side of Eq. (6.8)
becomes GTG = I, the identity matrix.

6.3 Spectral consistency and the choice of the bandwidth

Suppose we have access to a high-resolution MSL model and a low-resolution geoid
model for the oceans or a part of the oceans, e.g., an ocean basin. Then, spectral
consistency between MSL and geoid is obtained when both are represented in a ban-
dlimited, spatially concentrated Slepian basis involving the same set of Slepian basis
functions. The choice of the bandwidth should be dictated by the signal that has the
lowest resolution, in our case the geoid, since this is the resolution at which we need
to describe the MSL to compute the MDT reliably. Geoid information is typically
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provided in terms of a spherical harmonic expansion complete to some maximum
degree, say Lg. This maximum degree describes solely the spatial resolution of the
geoid, and, therefore, is also used as a descriptor of the bandwidth.

According to Eq. (6.15), we can transform any given spherical harmonic expansion
of the geoid complete to degree Lg into a bandlimited, spatially concentrated Slepian
basis invoving (Lg + 1)2 Slepian basis functions. Therefore, a natural choice of the
bandwidth of the Slepian functions would be Lg. This is definitely correct as long as
the geoid is considered as a function on the whole domain Ω. However, when the
geoid signal is confined to a part of the domain such as the oceans or an ocean basin,
this definition of the bandwidth of the geoid becomes meaningless as we show below.
Therefore, the choice of the correct bandwidth of the Slepian basis functions is still
open and not necessarily given by the maximum degree of the spherical harmonic
expansion of the geoid.

To investigate the choice of the bandwidth for a signal given in a region Ω0 of the
sphere Ω, we design the following experiment. We assume that a certain signal is
given in terms of a spherical harmonic expansion complete to degree Lg = 48. We
try to reconstruct this bandlimited signal from data inside various regions Ω0 of dif-
ferent size using spherical harmonic expansions complete to degree L ≤ Lg. In our
experiment, the region Ω0 is always a spherical cap; the radius of the cap varies in
increments of 10◦ between 10◦ and 180◦. The latter case corresponds to the choice
Ω0 = Ω, the entire sphere. Despite its simplistic geometry, the simple spherical cap
is an appropriate choice for a trial region. Its advantage is that the Slepian functions
for this particular geometry can be calculated via the painless procedure devised by
Grünbaum et al. (1982), as shown by Simons et al. (2006). Furthermore, for com-
plete generality with respect to where we position the cap in the analysis we consider
a bandlimited white Gaussian stationary process defined on the region Ω0, i.e.,

w(x̂) =

{
∑

Lg
l=0 ∑

l
m=−l wlm Ŷlm(x̂) if x̂ ∈Ω0,

unknown if x̂ ∈Ω−Ω0,
(6.20)

where
E{wlm}= 0, Cov{wlmwl′m′}= δll′δmm′ , 0≤ l, l′ ≤ Lg, (6.21)

and E{·} denotes expectation and Cov{·} denotes covariance. The signal w(x̂) is
approximated by a function ŵ(x̂), which is given by

ŵ(x̂) =
L

∑
l=0

l

∑
m=−l

ŵlm Ŷlm(x̂), (6.22)

for some maximum degree L ≤ Lg. For continuous data, and using the notation es-
tablished in Eqs. (6.16)–(6.19), the least-squares estimate of the spherical harmonic
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coefficients ŵlm is
ŵL = D−1

L DLg wLg , (6.23)

where ŵL = (ŵlm : l,m ≤ L)T, wLg = (wlm : l,m ≤ Lg)T, and DL and DLg are the
matrices with entries Dlm,l′m′ as in Eq. (6.7) for degrees l = 0, . . . ,L and l = 0, . . . ,Lg,
in both dimensions or in one of each dimension: DL is square, DLg is rectangular
respectively.

If the signal is known at M points, collected in a vector w, we write Eq. (6.20) as

w = YT
Lg

wLg , (6.24)

using the notation established in Eqs. (6.16)–(6.19). The least-squares estimate ŵL is
given by

ŵL = (YLY
T
L )
−1YLw, (6.25)

= (YLY
T
L )
−1(YLY

T
Lg

)wLg , (6.26)

which is the analogue to Eq. (6.23) for discrete data. Irrespectively of the radius Θ of
the spherical cap, when L = Lg, we thus in principle recover the input without bias,
i.e.,

ŵLg = wLg , (6.27)

although the condition number of the normal matrix YLgY
T
Lg

in that case will deter-
mine how close we can get. The numerical integration error (i.e., the number and
spatial distribution of the samples and the chosen weights) determines how well ŵL

as defined in Eq. (6.25) matches the elements ŵlm as defined in Eq. (6.23). Assuming
that the function of interest w(x̂) is densely sampled inside Ω0, e.g. on the M nodes

of a Fibonacci grid (González 2010), where M � |Ω0|
(

Lg
π

)2
, and the weights are

equal to ∆Ω = 4π/M, the normal matrix should be well approximated by (Simons
2010)

YLY
T
L ≈ ∆Ω

−1DL. (6.28)

We also note via Eqs. (6.1) and (6.7) that

DL→ I for Θ→ 180◦ or Ω0→Ω, (6.29)

where I is the (L+1)2× (L+1)2 unit matrix. When L < Lg, the estimate (6.26) con-
tains broadband leakage (Simons & Dahlen 2006): high-degree signal contributions
to the estimated low-degree coefficients. The broadband leakage is ŵL−wL, which
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Figure 6.1: Reconstruction, via Eq. (6.33), of a Lg = 48 bandlimited white signal, as defined
in Eqs. (6.20)–(6.21), from a set of observations made on a Fibonacci grid inside north-polar
spherical caps of various radii Θ, for various spherical harmonic reconstruction bandwidths L.
Fig. (a) shows the root mean square (rms) error normalized by the rms strength of the signal
inside the cap. Note that the rms values are computed at points confined to the cap that are
different from the data points. Fig. (b) shows the inverse of the condition number of the
matrix YL in Eq. (6.25). The black curves and the markings on the right axes represent the
fractional area of the spherical caps, |Ω0|/(4π).

follows from

ŵL = (YLY
T
L )
−1YL(Y

T
Lg

wLg),

= (YLY
T
L )
−1YL(Y

T
L wL +YT

→Lg
w→Lg),

= wL +(YLY
T
L )
−1YLY

T
→Lg

w→Lg , (6.30)

where Y→Lg is the lower subblock of the matrix YLg that complements YL, and w→Lg is
the lower subportion of wLg , covering the degrees L+1→ Lg. Hence, the broadband
leakage is

ŵL−wL = (YLY
T
L )
−1YLY

T
→Lg

w→Lg . (6.31)

Via Eqs. (6.28)–(6.29) we deduce from (6.31) that

ŵL−wL ≈

{
∆Ω(YLY

T
→Lg

)w→Lg for Θ = 180◦,
∆ΩD−1

L (YLY
T
→Lg

)w→Lg for Θ < 180◦.
(6.32)

Since the least-squares estimate ŵL for the case Θ < 180◦ depends on the inverse
of the localization kernel DL, the broadband leakage directly depends on the size
and shape of the region of missing data, as well as on the bandwidth L < Lg of
the estimate. In the spatial domain, the broadband leakage generates a bias, which
Simons & Dahlen (2006) refer to as broadband bias.



168 CHAPTER 6. SPECTRAL CONSISTENCY AND THE SLEPIAN BASIS

In practice, it is hard to find a stable inverse of DL, since for Ω0 ⊂ Ω, the matrix
DL tends to be poorly conditioned. This problem can be solved either by utilizing a
regularized least-squares approach or by using a truncated Slepian basis. The latter
refers to a Slepian basis with less than (L + 1)2 basis functions, which improves the
condition number of the normal matrix. The former may be obtained by a truncated
singular value decomposition (SVD) of the matrix YT

L (Xu 1998, Simons 2010). Here,
we solve Eq. (6.25) as

ŵL =
(

YT
L

)+
w, (6.33)

where (
YT

L

)+
= VΣΣΣ

+UT, (6.34)

and the truncation is accomplished via

Σ
+
ii =

{
Σ
−1
ii for |Σii|> δ ,

0 otherwise.
(6.35)

The singular value decomposition of matrix YT
L = UΣΣΣVT, δ = ε M max(Σii), and ε is

the machine epsilon. This is in fact implemented in Matlab’s pinv routine (MATLAB
7.10.0.499, R2010a). Both the regularized least-squares approach and the truncated
Slepian approach introduce a bias in the solution, but lower its variance if there is
noise (Simons & Dahlen 2006). This so-called truncation bias is the third source of
misfit in the approximation.

The propagation of errors in ŵL to the spatial domain for each combination of band-
width L and cap size Θ is expressed in terms of the rms error (rmse), which is com-
puted as the rms difference between the original signal and its least-squares estimate
at a set of points inside Ω0 that are different from the points used in the inversion. This
metric, normalized by the rms signal, is shown as a function of Θ and L in Fig. 6.1a.
For all spherical cap radii Θ the rmse decreases if the bandwidth L increases to meet
the original Lg, to relative values on the order of 10−5 for radii Θ� 180◦ and 10−14

for radii Θ ≈ 180◦. This decrease is in line with what we could expect, since in-
creasing the bandwidth means that more basis functions are used to approximate the
signal.

We derive insight into the behavior of the rmse shown in Fig. 6.1a via Fig. 6.1b which
shows the inverse of the condition number (an estimate of the ratio of the largest to
the smallest singular value) of YL as a function of Θ and L. For radii Θ� 180◦ the
condition number is very large and strong truncation (i.e., regularization) is required
to solve Eq. (6.25). This explains why the normalized rmse does not drop below a
value of about 10−5 for spherical cap radii significantly smaller than 180◦ even if
a bandwidth L = 48 is chosen. It is the truncation bias that prevents a significantly



6.3. Spectral consistency and the choice of the bandwidth 169

smaller rmse. Vice versa, for spherical cap radii close to 180◦, the truncation bias is
negligible, and the rmse is at the level of numerical round-off errors.

Fig. 6.1a also reveals that the rmse as a function of the bandwidth L drops more
rapidly for smaller values of the spherical cap radius Θ ( i.e. for smaller regions Ω0).
For example, when Θ = 10◦ and L = 22, we achieve already a very small normalized
rmse of 10−4. For larger spherical cap radii, say, Θ > 90◦, a similar reduction of the
rmse can only be observed if L = 48 is chosen. In general, for large regions Ω0, the
rmse decreases very little if the bandwidth is increased, with an abrupt drop at the
transition to full bandwidth.

Counter-intuitive is the behavior of the rmse as function of the spherical cap radius
Θ for fixed degree L (cf. Fig. 6.1a). The smaller the spherical cap radius, the smaller
the rmse. That is, the bandlimited signal (bandwidth L = 48) can be approximated
very well by a low-degree (L < 48) spherical harmonic expansion provided that the
data area is sufficiently small. For fixed degree L, the rmse increases with increasing
size of the region Ω0. This suggests that we have a considerable degree of freedom
in fitting data from a high-bandwidth model, sampled inside a small region Ω0, with
a low-bandwidth approximation. The smaller the area is, the more freedom we have.
This counter-intuitive result is further illustrated in Fig. 6.2. We observe that the
least-squares approximation complete to degree and order L is closer to the original
signal (complete to degree and order Lg) than the original signal truncated at degree
L.

From this experiment, we conclude that if a spherical harmonic expansion is fitted to
data given on a part of the sphere, the optimal bandwidth to carry out this procedure
is no longer a measure for the spatial resolution of the data set. The smaller the area
covered with data is, the larger the difference between the optimal bandwidth and the
“true” bandwidth. In general, we can expect that the optimal bandwidth is always
smaller than the “true” one.

Note that we would come to the same conclusion if we used an actual signal rather
than white noise, data with much higher spatial resolution, a different data distri-
bution rather than a Fibonacci grid or a different region rather than a spherical cap
centred at the North Pole. The conclusion also does not change if we repeat the
experiment on the circle using series expansions in Legendre polynomials.

The major implication for the main objective of this study (i.e., to get a MSL that is
spectrally consistent with a given geoid) is that depending on how closely we want to
represent the geoid within a region Ω0 ⊂Ω, a bandwidth L smaller than the nominal
value Lg may be appropriate, depending on the size of the region. Hence, the band-
width of the Slepian basis functions should be set equal to this optimal bandwidth L
instead of the nominal bandwidth Lg. This is contrary to the approach of Albertella &
Rummel (2009), who maintained Lg as the bandwidth. In practical applications, the
choice of the optimal bandwidth L will also depend on the commission error. That is,
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there is no need to obtain an “exact” representation of the given geoid in the presence
of noise; any approximation will do as long as the approximation error is smaller than
the commission error. This further reduces the optimal bandwidth L to the benefit of
a reduced numerical complexity for the computation of the Slepian basis functions
and the least-squares estimation of the Slepian basis function coefficients.
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Figure 6.2: The original, bandlimited signal complete to degree 48 (black), the original signal
truncated at degree L (red), and the least-squares estimate complete to degree L (blue) for a
meridional arc crossing a spherical cap of radius Ψ. From top to bottom: L = 2,Ψ = 10◦,
L = 22,Ψ = 20◦, L = 40,Ψ = 50◦, and L = 48,Ψ = 100◦. The thin black lines indicate the
boundary of the spherical cap. Note that within the spherical cap no differences between the
original signal and the least-squares approximation are visible for degrees L≥ 22. The labels
indicate the rms error of the differences between the original, bandlimited signal complete
to degree 48 on the one hand and the original signal truncated at degree L (left) or the least-
squares approximation complete to degree L (right) on the other hand, normalized by the rms
strength of the signal inside the cap.
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Another implication of this experiment is that it will be very difficult, if not impos-
sible, to extract a low-resolution signal from high-resolution data given on a part of
the sphere. As pointed out before, if a low-resolution spherical harmonic expansion
is fitted to data given on a part of the sphere by least-squares, the fit of the model to
the data is optimized according to the least-squares principle. Hence, the coefficients
representing the low-resolution approximation will explain as much of the signal as
possible at the complete set of frequencies to minimize the residual sum of squares,
and therefore will not provide a good representation of the true low-resolution sig-
nal. In Section 6.5, we investigate whether Slepian functions offer a solution to this
problem and, if not, what the alternatives are.

6.4 Experimental setup

In this section, we discuss the setup of the numerical experiments related to the use
of a Slepian basis to extract a low-resolution signal from high-resolution data given
on a part of the sphere. This comprises the choice of the concentration region and
the construction of the Slepian functions, the generation of the sampled geoid, the
truncation level in the inversion, and the criteria we use to assess the quality of the
results, which are to be presented in Section 6.5.

6.4.1 Concentration region

In the numerical experiments, we consider two concentration regions: (i) a spherical
cap with radius 40◦ centred in the Pacific Ocean and (ii) the union of the world’s
ocean basins as defined next. Due to the non-polar orbits of all radar altimeter satel-
lites, caps centered on both poles are left without data coverage and therefore are
not part of the concentration region. For the TOPEX/POSEIDON (T/P) satellite, the
radii of these polar gaps are approximately 24◦. For other radar altimetry missions
this radius may be smaller, but in our experiments we define Ω0 as the part of the
oceans covered by T/P, i.e:

Ω0 = Ω− Ω̄0, (6.36)

where Ω̄0 is the union of Eurasia, Africa, North and South America, Antarctica,
Greenland, and Australia as defined and shown individually by Simons et al. (2006),
Simons et al. (2009), and Simons (2010), with the subsequent addition of the islands
New Guinea, Borneo, Madagascar, Sumatra, Honshu, the United Kingdom, and the
further exclusion of the two polar gaps. The fractional area of this region on the unit
sphere is |Ω0|/(4π)≈ 0.67. Because the bandwidths that we will use to construct the
“true” MSL signal and its approximation are relatively small, all islands smaller than
200,000 km2 are in fact neglected in the localization kernel D. The latter is computed
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as the difference of the localization kernel for the latitudinal belt exclusive those
continents that are partly located inside the latitudinal belt minus the localization
kernels for individual continental regions completely located inside the latitudinal
belt.

Spatial expansions of some of the eigenfunctions of D that result from this procedure,
for a bandwidth L = 36, are shown with their eigenvalues λ in Fig. 6.3. These are
the Slepian functions that we will use as a spatiospectrally localized basis in the
forthcoming analysis.

6.4.2 Construction of the sampled geoid and MSL signals

Samples of the geoid and MSL signals are derived from available spherical harmonic
models. They are evaluated at a set of M points of a Fibonacci grid, which provides
a homogeneous sampling of the region of interest, Ω0. To avoid sampling errors,
M is chosen sufficiently large so that the distance between the sample points does
not exceed half of the shortest wavelength contained in the signal. The global geoid
signal is derived from the Earth gravitational model EGM2008 (Pavlis et al. 2008,
2012) truncated at degree Lg. The MSL signal is defined as the sum of the MDT
model DOT2008A (U.S. National Geospatial-Intelligence Agency EGM Develop-
ment Team 2010) and the geoid model EGM2008, both truncated at degree Lr, where
Lr > Lg. In the experiments of Section 6.5, we choose Lr = 48, Lg = 36, M ≈ 10,000
(if no land data are used), and M ≈ 13,000 (otherwise). The number of control
points which are used to assess the quality of the various solutions is about 55,000
randomly distributed over the target area Ω0. The MSL that is spectrally consistent
with the geoid is referred to as the “true” low-resolution MSL. It is defined as the sum
of the DOT2008A MDT and the EGM2008 geoid both truncated at degree Lg = 36,
as displayed in Fig. 6.4.

6.4.3 Optimal truncation level

To compute the MDT as the difference between the MSL (bandwidth Lr) and the
geoid (bandwidth Lg) given on Ω0, where Lr > Lg, we need to find a suitable repre-
sentation of the MSL, which is spectrally consistent with the geoid signal. A Slepian
basis with bandwidth Lg comprising (Lg +1)2 basis functions provides such a repre-
sentation. However, as mentioned in Section 6.2, the number of Slepian basis func-
tions required to obtain a faithful approximation of a given signal on a subdomain
of the sphere may be smaller than (Lg + 1)2. Simons & Dahlen (2006) have shown
that in the presence of noise the optimal number of Slepian basis functions is deter-
mined by the signal-to-noise ratio of the data from which the expansion coefficients
are derived by inversion, provided this is numerically feasible. In our experiments,
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Figure 6.3: Slepian functions that are bandlimited to L = 36 but optimally concentrated
within the oceanic concentration region Ω0 as computed via Eqs. (6.4)–(6.7). We integrated
Eq. (6.7) using Gauss-Legendre quadrature over the colatitudes and analytically over lon-
gitudes. A selection of eigenfunctions gα is shown with their concentration factors λα , as
labeled. The rounded Shannon number, from Eq. (6.14), is K = 918. Every function was
normalized to max(abs(function)). Values smaller than 0.01 on this scale are rendered white.
The sign of an eigenfunction is arbitrary since the concentration is quadratic. Altogether the
Slepian functions form a complete basis for bandlimited processes anywhere on the sphere.
The first K functions provide an approximate basis for bandlimited signals concentrated in
the oceanic region Ω0, as discussed in the text.
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Figure 6.4: The “true” low-resolution MSL signal used in the experiments to be presented
in Section 6.5. It is the sum of the EGM2008 geoid and the DOT2008A mean dynamic
topography both truncated at degree 36.

however, the sampled geoid and MSL signals are assumed to be noise-free and nu-
merical considerations do come into play. Therefore, we follow another strategy to
determine the optimal truncation level Jo. We evaluate the spherical harmonic expan-
sion of the “true” low-resolution MSL signal at the M points of the Fibonacci grid
(these samples serve as data) and at a set of different control points which, however,
both cover the target area Ω0. Then, we fit a Slepian basis function representation
comprising J basis functions to the data by least-squares. J is varied between the
Shannon number K, defined in Eq. (6.14), and the maximum number of Slepian basis
functions, (Lg +1)2. The optimal number Jo is found to be the one which minimizes
the rms difference between the least-squares solution and the “true” low-resolution
MSL signal evaluated at the control points. In the following, the above is referred
to as “the Slepian approach”, whether data are used on the entire globe Ω or on a
subregion Ω0 will be clear from the context.

6.4.4 Quality assessment

To assess the quality of the Slepian approach we first compute statistics of the dif-
ferences with respect to the “true” low-resolution MSL as defined in Section 6.4.2.
We also compare the estimated Slepian representation of the low-resolution MSL
with a low-resolution MSL model obtained using the iterated spherical harmonic and
Gaussian smoothing approach. The latter is reported by Albertella et al. (2008) as
providing the best results in their experiments. This iterative spherical harmonic ap-
proach consists of five steps:
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1. A global data set is formed using samples of the high-resolution MSL signal
inside the region Ω0 and samples of the low-resolution geoid in the comple-
mentary domain Ω̄0.

2. A spherical harmonic analysis using the data from step 1 is performed complete
to degree Lr.

3. The solution of step 2 is synthesized at the data points in the domain Ω̄0 and a
new data vector is formed.

4. Steps 2 and 3 are repeated until convergence to within error.

5. A Gaussian low-pass filter with half-width Ψo is applied to the final set of
spherical harmonic coefficients to remove the contributions from the degrees
Lg + 1→ Lr and to reduce ringing effects. In the experiments, we use an op-
timal half-width, Ψo, of the Gaussian filter, which is empirically derived by
minimizing the rms difference between the “true" low-resolution MSL signal
and the smoothed MSL signal inside the domain Ω0.

6.5 Experimental results and discussion

We refer to Table 6.1 for an overview of the statistics of the differences between the
“true” and the “approximated” low-resolution MSL signal. The computations in the
Slepian basis have been done using open source software provided by F. J. Simons;
see http://www.frederik.net.

6.5.1 Experiment I: the default case

In Experiment I, the concentration region Ω0 is identical to the oceans as defined
in Section 6.4.1. Fig. 6.5a shows the MSL in the band 37 ≤ l ≤ 48, i.e., the differ-
ence between the “high-resolution” MSL signal and the “low-resolution” MSL sig-
nal. This is exactly the signal that we want to eliminate before computing a reliable
MDT.
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Using the iterative spherical harmonic approach (with geoid data on land in the first
iteration at step 1), 10,303 iterations are required to reduce the maximum absolute
residue to 0.01 m. To extract the low-resolution MSL signal, we apply a Gaussian
filter with Ψo = 170 km (cf. Section 6.4.4). Evaluated at a set of random locations,
the rms approximation error equals 0.660 m; pointwise errors attain extreme values
of several meters (see Table 6.1 for more statistics). Hence, the iterative spherical
harmonic approach fails to provide a representation of the low-resolution MSL signal
with an accuracy of a few centimeters. Fig. 6.5b shows a geographic map of the
approximation errors. They strongly correlate with the MSL signal in the band 37≤
l ≤ 48, Fig. 6.5a. This is mainly due to the weak performance of the Gaussian filter,
which is unable to extract the low-resolution MSL signal from the high-resolution
(bandwidth 48) least-squares solution. Too much signal from the band 37 ≤ l ≤
48 is left after filtering. This is confirmed by the rms difference between data and
the approximated low-resolution MSL signal (last column of Table 6.1): the rms
difference is 0.499 m, which is not close to the 0.874 m rms MSL signal in the band
37 ≤ l ≤ 48, which indicates a leakage from the band 37 ≤ l ≤ 48 into the low-
resolution MSL solution.

Using the iterative spherical harmonic approach with geoid data on land but replac-
ing the Gaussian filter with a boxcar low-pass filter in the frequency domain (i.e.,
hard truncation at degree Lg = 36) provides a much better approximation of the low-
resolution MSL signal: the rms approximation error improves from 0.660 m to 0.071
m (cf. Table 6.1). A look at the rms difference between the data and the approximated
low-resolution MSL signal confirms this result: it is 0.859 m, close to the 0.87 m rms
MSL signal in the band 37≤ l ≤ 48. Hence, almost no signal in the band 37≤ l ≤ 48
leaks into the estimated coefficients. This is explained by the fact that Ω0 covers
about 67% of the whole sphere. The main error contributors are the geoid data on
land, which are used to initially allow for a global spherical harmonic analysis. Al-
though the rms approximation error is only 0.071 m, the maximum pointwise error
is about 1 m, which is far above the target accuracy of a few centimeters. Finally, we
will show in Section 6.5.3 that hard truncation performs very poorly if the size of Ω0
is a much smaller fraction of the whole sphere than the entirety of the ocean basins.
Therefore, an ideal low-pass filter cannot generally be the method of choice.

For the Slepian approach that uses only MSL data over the oceans, the rms approx-
imation error of the low-resolution MSL signal is 0.508 m. A spatial rendition of
the approximation errors is shown in Fig. 6.5c. This figure represents the optimal
solution in the sense explained in Section 6.4.3 whereby Jo = 1,180 Slepian basis
functions. The optimal bandwidth in the sense in which it appeared in Section 6.3 for
the oceans is found to be L = 36 (i.e., identical to the maximum degree of the global
geoid model), which corresponds to 1,369 basis functions and an rmse of 0.596 m
(see Table 6.1). We explain the fact that less than the total number of Slepian basis
functions provides the smallest rms approximation error by invoking the partial can-
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Table 6.1: Experiment I: statistics of the differences between “true” and approximated low-
resolution MSL signal, evaluated at a set of control points in the target area Ω0 (columns 2–5)
and the rms difference between data and approximated low-resolution MSL signal in the tar-
get area Ω0 (column 6). Lr = 48, Lg = 36. The “true” low resolution MSL signal is the sum of
the EGM2008 geoid and the DOT2008A mean dynamic topography both truncated at degree
36 (cf. Fig. 6.4). The domain Ω0 comprises the world’s oceans defined in Section 6.4.1. All
values are provided in m.

control points data points
Method rms min max mean rms difference

Iterative SH, L = Lr ,
geoid data outside, Gaussian filter 0.660 -4.76 3.79 -0.017 0.499
Iterative SH, L = Lr ,
geoid data outside, ideal low-pass filter 0.071 -0.963 0.526 0.000 0.859
Direct SH, L = Lr ,
no data outside Ω0, Gaussian filter 0.660 -4.76 3.79 -0.017 0.499
Direct SH, L = Lr ,
no data outside Ω0, ideal low-pass filter 2.71 ·10−5 −1.06 ·10−4 7.27 ·10−5 −2.27 ·10−6 0.872
Direct SH, L = Lg,
geoid data outside Ω0 0.230 -1.50 2.96 0.016 0.773
Direct SH, L = Lg,
no data outside Ω0 0.596 -5.38 7.78 0.030 0.610
Slepian functions (bandwidth Lg),
no data outside Ω0, Jo = 1,180 0.508 -4.40 6.04 0.025 0.685
Slepian functions (bandwidth Lg),
geoid data outside Ω0, Jo = 1,322 0.230 -1.50 2.96 0.016 0.772

MSL signal in the band 37≤ l≤ 48 0.874 -7.15 6.46 -0.040

cellation of truncation error and broadband bias. At 0.596 m the rms approximation
error for 1,369 Slepian basis functions is only slightly higher than the 0.508 m ob-
tained for Jo = 1,180 Slepian basis functions. A positive effect of using fewer Slepian
basis functions is a significant improvement of the condition number of the normal
matrix: from 108 (with 1,369 terms) to only 10 (with 1,180 terms).

The performance of the Slepian approach is not much better than for the iterative
spherical harmonic approach (rms error of 0.508 m compared to 0.660 m). The
reason for the poor performance of the Slepian approach is the presence of broadband
leakage (frequency domain) and broadband bias (spatial domain). Though Slepian
functions with the same bandwidth are orthogonal on Ω0, this does not apply to
Slepian functions of different bandwidths. The similarities between the error pattern
shown in Fig. 6.5c (Slepian approach) and Fig. 6.5a (MSL signal in the band 37 ≤
l ≤ 48) are evidence for the presence of broadband bias and leakage, as they were for
the iterative spherical harmonic approach shown in Fig. 6.5b.

The quality of the Slepian approach improves if MSL data on the oceans are comple-
mented by geoid data on land. Then, the solution with minimum rms approximation
error is obtained with 1,322 Slepian basis functions. Fig. 6.5d shows a geographic
map of the approximation errors in that case, whose rms approximation error has
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been reduced from 0.508 m to 0.230 m. Note, however, that this approach is almost
identical to a direct least-squares fit to the global data of a spherical harmonic model
complete to degree 36 (rms error 0.230 m), which can be understood from the fact
that almost all Slepian basis functions are used.

A simple alternative to the approaches discussed so far is a direct least-squares fit of a
spherical harmonic expansion complete to degree Lr = 48 to the data (no data are used
outside Ω0) followed by a hard truncation at degree Lg = 36. The extreme values of
the low-resolution MSL approximation error are −1.06 · 10−4 m and 7.27 · 10−5 m,
respectively, i.e., at the sub-millimeter level and the rmse is 2.71 · 10−5 m (cf. Ta-
ble 6.1). This approach performs by far the best for the current test setup. However,
extensive simulations with different target areas Ω0 and different bandwidths Lr (not
shown here) reveal that the performance of this straightforward approach depends
critically on (i) the size of the domain and (ii) the bandwidth of the signal. The
smaller the domain, the larger the approximation error. Moreover, the larger the
bandwidth and the smaller the target area, the larger the condition number of the
normal matrix. Then, regularization is indispensable, which introduces an additional
bias and reduces the quality of the solution. Therefore, this simple approach works
for the oceans in combination with low-resolution MSL data as used here (Lr = 48),
but fails for smaller target areas and/or MSL data with a higher resolution.

From the results shown in Table 6.1, we can also conclude that the iterative spherical
harmonic approach does not depend on the data used on land provided that enough
iterations are performed. This has been verified in several numerical simulations. In
the limit, it is equivalent to a direct least-squares fit of a high-resolution spherical
harmonic model (i.e., complete to degree Lr = 48) to the ocean data followed by
Gaussian filtering in reaching an rmse of 0.660 m. Expressed differently, neither
iteration nor information on land is needed to match the performance of the iterative
spherical harmonic approach proposed by Albertella et al. (2008). From Table 6.1,
we also conclude that the quality of the iterative spherical harmonic approach and
the direct spherical harmonic approach that estimates coefficients complete to degree
Lr = 48 is solely determined by the performance of the filter. A Gaussian filter is
definitely not the preferred choice; we expect that the use of other filters may reduce
the errors but will not reduce them down to the level of several centimeters.

6.5.2 Experiment II: a different cost function

Experiment I has demonstrated that the Slepian approach fails to recover the low-
resolution MSL with adequate accuracy. This has been explained by broadband leak-
age and truncation bias. Trampert & Snieder (1996) have proposed a method to
suppress leakage, which in fact uses a different cost function than the one being used
in the classical least-squares solution. We start with Eq. (6.24), which we split into a
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low-degree and a high-degree portion as

w = YT
Lg

wLg = YT
L wL +YT

→Lg
w→Lg . (6.37)

Instead of using the functional model

w = YT
L wL (6.38)

in combination with the classical least-squares cost function

Φ(w) = (w−YT
L wL)TCw

−1(w−YT
L wL), (6.39)

where Cw is the data noise variance-covariance matrix, we use the cost function

Φ̃(w) = vTCw
−1v+wT

L CL
−1wL +wT

→Lg
C→Lg

−1w→Lg , (6.40)

where
v := w−YT

L wL−YT
→Lg

w→Lg . (6.41)

Here, CL
−1 and C→Lg

−1 define weight matrices in model (spectral) space. Minimizing
Φ̃(w) gives

ŵL =
(

YLC−1YT
L +CL

−1
)−1

YLC−1 w, (6.42)

with the data-space anti-leakage operator

C = Y→LgC→LgY
T
→Lg

+Cw. (6.43)

The advantage of the least-squares solution Eq. (6.42) is that it is not biased by w→Lg

(Trampert & Snieder 1996).

To investigate the performance of the estimator Eq. (6.42), we use the same data as in
Experiment I. We define diagonal covariance matrices in the spherical harmonic do-
main using Kaula’s rule for degrees l ≥ 2 and the mean variance per coefficient com-
puted from the data for degrees 0 and 1. The diagonal covariance matrix CL is prop-
agated into the Slepian domain providing a full covariance matrix (cf. Eq. (6.40)).
Numerical instabilities did not allow the computation of a solution for noiseless data.
Therefore, zero-mean white noise with a standard deviation of 0.04 m was added
to the data (0.04 is the accuracy we expect for MSL from radar altimetry, see e.g.,
Andersen & Knudsen 2009), and the correct noise-covariance matrix Cw was used.

Scaling factors for all three matrices were computed using variance component esti-
mation (VCE). For the spherical harmonic approach, the estimated variance compo-
nents are 0.99 for the data, 103.1 for the spherical harmonic coefficients complete to
degree 36, and 201.6 for the spherical harmonic coefficients from degree 37≤ l ≤ 48.
For the Slepian approach, 1,346 basis functions gave the best solution. The corre-
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sponding variance components are 0.99 for the data, 2.33 · 104 for the first 1,346
Slepian functions, 3.47 · 107 for the neglected, 23 Slepian functions, and 185.3 for
the spherical harmonic coefficients from degree 37 ≤ l ≤ 48. Nevertheless, the esti-
mation of the parameters turned out to be very unstable, and the approximation errors
are quite large. This can be explained by the fact that we were forced to ignore the
correlations among the used and neglected basis functions.

For the direct spherical harmonic approach with geoid data on land this can be ex-
plained by the Gibbs effects along the boundary of the domain Ω0. Note that for this
particular experiment the total number of observations was reduced from 13,000 to
10,000 to be able to solve the system of equations. For the direct spherical harmonic
approach with only MSL data, there is no straightforward explanation for the poor
performance. It is not caused by leakage from the signal in the band 37≤ l ≤ 48 into
the low-resolution MSL solution as shown in the last column of Table 6.2: the rms of
the residuals is close to the MSL signal in the bandwidth 37≤ l ≤ 48. This is not in
line with the findings of Trampert & Snieder (1996). We explain the discrepancy by
the different set-up of our experiment compared with the experiment considered by
Trampert & Snieder (1996). The latter is based on a (moderately) non-homogeneous,
but global data distribution. The lack of data on land and in the polar regions as con-
sidered in our experiment is an example of an extremely non-homogeneous, global
data distribution. Our experiment indicates that the method of Trampert & Snieder
(1996) is not well suited for this type of data distribution. We conjecture that the
method of Trampert & Snieder (1996) will always fail if the diameter of the area
without data is large compared to the spatial resolution we aim at. A more precise
analysis of the relation between approximation error, spatial resolution, and size of
the data gaps requires further research and is beyond the scope of this study. We also
tested different power laws to describe the signal behavior in the basis of spherical
harmonics, but the quality of the results did not change significantly. We do wish to
mention that when we repeated this experiment with Lr = 18 and Lg = 12, the method
of Trampert & Snieder (1996) allowed us to perfectly recover the low-resolution MSL
signal. No instabilities have been observed and we could also compute without prob-
lems a solution with noiseless data. This is in line with the results obtained with the
experiment described in Section 6.3 (cf Fig. 6.1b): the condition number depends
on the size of the domain Ω0 and on the bandwidth. For a given domain Ω0, the
condition number increases exponentially with increasing bandwidth.

6.5.3 Experiment III: a smaller target domain

In Section 6.5.1, we found that a direct least-squares fit to data over all of the oceans
of a spherical harmonic expansion complete to degree Lr = 48 allows an almost per-
fect recovery of the low-resolution (degree Lg = 36) MSL signal if an ideal low-pass
filter in the frequency domain is applied. The question is whether this also applies
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Table 6.2: Experiment II: statistics of the differences between “true” and approximated low-
resolution MSL, evaluated at a set of control points and the rms of residuals. All solutions
minimize the cost function Eq. (6.40). The “true” low resolution MSL signal is the sum of
the EGM2008 geoid and the DOT2008A mean dynamic topography both truncated at degree
36 (cf. Fig. 6.4). The domain Ω0 comprises the world’s oceans defined in Section 6.4.1. All
values are provided in m.

control points data points
Method rms min max mean rms difference

direct SH approach, cost function Eq. (6.40),
noisy MSL data, no data on land 0.175 -1.26 1.05 -0.002 0.856
direct SH approach, cost function Eq. (6.40),
noisy MSL data, geoid data on land 0.080 -0.671 0.446 0.003 0.875
Slepian approach, cost function Eq. (6.40),
noisy MSL data, no data on land 0.262 -2.23 3.52 0.003 0.831

MSL signal in the band 37≤ l≤ 48 0.874 -7.15 6.46 -0.040

to smaller areas. Furthermore, we found that for the oceans as target area, almost all
Slepian basis functions are needed to obtain a good fit to the data. Using all (Lg +1)2

Slepian functions, however, is equivalent with a spherical harmonic expansion com-
plete to degree Lg. In that case, however, using a Slepian basis does not offer any
advantage compared to spherical harmonics. Moreover, the condition number of the
normal matrix increases exponentially with increasing bandwidth Lg both for Slepian
functions and spherical harmonics, which makes regularization indispensable, at the
cost of additional bias. If significantly less than (Lg + 1)2 Slepian functions allow
a good least-squares fit to the data, this would reduce the computational costs com-
pared to spherical harmonics and would also reduce the condition number, thus mak-
ing regularization superfluous. To answer these questions, we repeat Experiment I
with a smaller target domain Ω0, which is now a spherical cap of radius 40◦ in the
Pacific Ocean centered at 210◦ longitude and 5◦ southern latitude.

Table 6.3 summarizes the main results. First of all, we observe that a direct least-
squares fit of a spherical harmonic expansion complete to degree Lr = 48 followed by
a truncation at degree Lg = 36 now has an rms of 0.369 m and thus fails to recover the
low-resolution MSL signal with an accuracy of a few centimeters. This is completely
different from the results of Experiment I, but in line with what could be expected
based on the experiment in Section 6.3. If the size of the domain Ω0 decreases,
the distribution of the energy over the spherical harmonic coefficients is no longer
preserved because the spherical harmonics are not orthogonal over Ω0. Therefore, a
hard truncation of the expansion at degree Lg does not allow to recover the original
spectrum at degrees l ≤ Lg, which explains the poor performance of this approach
for domains significantly smaller than the whole sphere. The fact that this method
still performs better than the iterative spherical harmonic approach and the Slepian
approach is due to the fact that a spherical cap of radius 40◦ is large enough to allow
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Table 6.3: Experiment III: statistics of the differences between “true” and approximated
low-resolution MSL signal, evaluated at a set of control points (columns 2–5) and the rms
difference between the data and the approximated low-resolution MSL signal (column 6).
Lr = 48, Lg = 36. The “true” low resolution MSL signal is the sum of the EGM2008 geoid
and the DOT2008A mean dynamic topography both truncated at degree 36 (cf. Fig. 6.4). The
domain Ω0 is a spherical cap with radius 40◦. All values are provided in m.

control points data points
Method rms min max mean rms difference

Iterative SH, L = Lr ,
geoid data outside, Gaussian filter 0.462 -1.66 2.14 0.006 0.317
Iterative SH, L = Lr ,
geoid data outside, ideal low-pass filter 0.153 -0.572 0.589 -0.001 0.525
Direct SH, L = Lr ,
no data outside Ω0, Gaussian filter 0.462 -1.67 2.14 0.006 0.316
Direct SH, L = Lr ,
no data outside Ω0, ideal low-pass filter 0.369 -1.37 1.35 0.000 0.637
Direct SH, L = Lg,
no data outside Ω0 0.342 -3.91 1.90 0.000 0.430
Slepian functions (bandwidth Lg),
no data outside Ω0, Jo = 289 0.499 -3.83 4.31 0.000 0.311
Slepian functions (bandwidth Lg),
geoid data outside Ω0, Jo = 1,179 0.342 -3.91 1.90 0.000 0.430

MSL signal in the band 37≤ l≤ 48 0.874 -7.15 6.46 -0.040

for this. However, the performance of this approach will further decrease if the size
of Ω0 decreases.

When using Slepian functions, we obtain the lowest rms approximation error if sig-
nificantly less than the total number of basis functions, which is 1,369 for Lg = 36,
are used. The optimal number of Slepian functions turned out to be 289 if only MSL
data inside Ω0 are used and 1,179 if the MSL data are complemented by geoid data
outside Ω0. Note that the Shannon number of the 40◦ spherical cap is K = 161.

The attempted recovery of a signal complete to degree Lg = 36 on a spherical cap of
radius 40◦ from data complete to degree Lr = 48 is an unstable problem no matter
what basis functions are used and what approach is followed. Strong regularization
was necessary in all cases to obtain a solution. We always used a truncated SVD for
regularization, which may not be the optimal choice due to its global character. A
better choice could be a regularization scheme which constrains the MSL variance
over land as used by Kusche & Schrama (2005). The condition number will further
increase if higher resolutions are aimed at, with the risk of a larger regularization
bias, and, therefore, a reduced accuracy of the recovered low-resolution MSL signal.
For completeness, we want to remark that also Experiment II has been executed for
the spherical cap of 40◦ radius. However, the main conclusions are the same as for
the world’s oceans.
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6.6 Reformulation and solution of the problem

So far we defined the MSL data on the domain Ω0 in terms of a spherical harmonic
expansion complete to degree Lr. The “true” low-resolution MSL signal on the do-
main Ω0 has been identified with the same spherical harmonic expansion, but now
truncated at degree Lg < Lr, where Lg is the maximum degree of the expansion of
the global geoid in spherical harmonics. Several statistics of the differences between
the methods designed to recover the low-resolution MSL signal from the MSL data
inside Ω0 were used to assess the quality of the solutions. We found that more or
less all methods fail in the sense that pointwise errors exceed the level of several me-
ters, whereas in practice we would like to recover the low-resolution MSL with errors
comparable to the errors in the MSL data and the geoid model, which are at the level
of a few centimeters.

This definition of the “true” low-resolution MSL signal is in line with what other
authors also used in similar studies (e.g., Tapley et al. 2003, Albertella et al. 2008,
Bingham et al. 2008). From the viewpoint of a “globalized” MSL signal (using geoid
information on land) this may be justified. If, however, the MSL is considered to
be signal which is only defined on a part of the sphere, this definition needs to be
reconsidered as the results presented in Section 6.3 have shown. The reason is that
on a domain smaller than the whole sphere, the degree of the spherical harmonic
representation of a global signal is no longer a measure of its resolution. Usually, a
spherical harmonic representation of a lower maximum degree is adequate to repro-
duce the data within acceptable error bounds. The smaller the size of Ω0, the lower
the maximum degree needed to represent a given signal.

Moreover, when we want to extract a low-resolution signal from high-resolution data
given on a domain Ω0 ⊂ Ω, we need to represent the data in a basis orthogonal on
Ω0. We also showed that not every orthogonal basis is equally well suited for this.
In particular Slepian functions, which are designed to maximize the concentration of
bandlimited functions in a spatial domain Ω0, are not appropriate here, because every
Slepian basis function depends on all spherical harmonics. According to Eq. (6.10),
the transformation of a spherical harmonic basis (collected in a vector ŷ) into the
Slepian basis (collected in a vector g) is given by

g = QS ŷ, (6.44)

where the matrix QS is a full unitary matrix. Hence, every Slepian basis function
is a linear combination of all spherical harmonics up to the bandwidth L, and all
basis functions have the same bandwidth, which is equal to the maximum degree
of the spherical harmonic basis. This is why we cannot obtain a low-resolution ap-
proximation of a signal represented in a Slepian basis simply by a truncation of the
Slepian representation. To obtain such an approximation requires the use of a Slepian
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basis with a smaller bandwidth, which involves spherical harmonics of a lower max-
imum degree. These low-bandwidth Slepian functions are, however, not orthogonal
to the Slepian functions representing the full signal. Moreover, the approximation
of a high-resolution signal using a low-resolution (i.e., low bandwidth) Slepian basis
always causes broadband leakage, which is another consequence of the fact that the
Slepian transform matrix QS is a full matrix.

A suitable orthogonal basis on Ω0 is found if the well-known Gram-Schmidt orthog-
onalization procedure is applied to spherical harmonics (e.g., Golub & Van Loan
1996). Let L be the maximum degree of the spherical harmonic expansion. Then,
the new basis functions, which are orthogonal on Ω0, are related to the spherical
harmonics as

qα(x̂) =
L

∑
l=0

l

∑
m=−l

qlmα Ŷlm(x̂), α = 1, . . . ,(L+1)2, (6.45)

where
qlmα = 0 for all l ≥ α. (6.46)

In matrix-vector notation, this is written as

q = QGS ŷ, (6.47)

where, due to Eq. (6.46), QGS is a lower triangular matrix. To compute the coefficients
{qlmα}, we only need to compute the Cholesky decomposition of the Gram matrix of
the basis functions {Ŷlm}, which is proportional to the matrix D from Eqs. (6.6)–(6.7),
namely

1
|Ω0|

D = RRT. (6.48)

Then,
QGS = R−1, (6.49)

where R is the lower triangular Cholesky factor. A lower triangular matrix QGS im-
plies that a basis function qα depends only on spherical harmonics of degree 0≤ l ≤
α−1. This is a property Slepian basis functions do not possess (cf. Eq. (6.10)). It has
an important practical implication for the problem at hand. Suppose the restriction
of the geoid to Ω0 is represented in terms of spherical harmonics complete to degree
L (note that commonly L < Lg as shown in Section 6.3, where Lg is the maximum
degree of the global representation of the geoid in spherical harmonics). Then,

s(g)(x̂) =
Lg

∑
l=0

l

∑
m=−l

s(g)
lm Ŷlm(x̂) =

N

∑
α=1

s(g)
α qα(x̂), x̂ ∈Ω0, N = (Lg +1)2. (6.50)
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In the same way, the MSL data can be written as

s(MSL)(x̂) =
Lr

∑
l=0

l

∑
m=−l

s(MSL)
lm Ŷlm(x̂) =

M

∑
α=1

s(MSL)
α qα(x̂), x̂ ∈Ω0, M = (Lr +1)2. (6.51)

Due to property (6.46), the low-resolution MSL signal that is spectrally consistent
with the restriction of the geoid to Ω0 is

s(MSL)
lr (x̂) :=

N

∑
α=1

s(MSL)
α qα(x̂), x̂ ∈Ω0. (6.52)

Hence, the MDT can be computed as

s(MDT)(x̂) = s(MSL)
lr (x̂)− s(g)(x̂) =

N

∑
α=1

(
s(MSL)

α − s(g)
α

)
qα(x̂), x̂ ∈Ω0. (6.53)

Note that the coefficients {s(MSL)
α } can be computed from the given MSL data by least-

squares. Compared to a least-squares fit of a Slepian representation, the least-squares
fit of a representation in the basis {qα} does not suffer from broadband leakage,
which is a direct consequence of Eq. (6.46).

Table 6.4 shows the result of Experiment I (cf. Table 6.1) with the difference that
now the “true” low-resolution MSL is defined in the basis {qα} with N = 1,369. A
geographical plot of the differences between the “true” low-resolution MSL signal of
Fig. 6.4, which is used as reference in Table 6.1, and the “true” low-resolution MSL
signal in the orthogonal basis {qα}, which is used as reference in Table 6.4, is shown
in Fig. 6.6. Note that if Ω0 is identical to the oceans as defined in Section 6.4.1, the
restriction to Ω0 of a global geoid model complete to degree 36 requires (36+1)2 =
1,396 basis functions. That is why N = 1,369.

For most methods, the fit to the new low-resolution MSL signal s(MSL)
lr , Eq. (6.52), is

not better than to the low-resolution MSL signal used in Section 6.5 (compare Ta-
ble 6.1 with Table 6.4). However, a direct least-squares fit of a spherical harmonic
expansion complete to degree Lg = 36 to the MSL data provides an almost perfect
fit to s(MSL)

lr . The same is valid for a least-squares fit of 1,369 Slepian functions of
bandwidth L = 36, because both solutions are equivalent. This surprising result im-
plies that the unavoidable broadband leakage in the spherical harmonic solution and
the Slepian solution, respectively, is negligible for the chosen experimental setup.
That is, almost no signal from bandwidth 37≤ l ≤ 48 leaks into the solution, though
spherical harmonics are not orthogonal over Ω0, and the Slepian solution suffers
from broadband leakage as shown in Section 6.2. We suppose that this is due to
the fact that in our experiment the “true” low-resolution MSL signal has a moderate
maximum degree (Lg = 36) and, at the same time, the target area Ω0 constitutes a sig-
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nificant part of the whole sphere. We expect, however, that broadband leakage will
become significant for higher spherical harmonic degrees Lg. The latter is relevant
for practical applications, because state-of-the-art global geoid models based on data
of the dedicated gravity missions CHAMP, GRACE, and GOCE will be complete to
degree 200–250. Therefore, we expect that the direct least-squares fit of a spherical
harmonic expansion complete to degree Lg and the equivalent Slepian approach us-
ing all (Lg + 1)2 basis functions do not provide an accurate enough approximation
to the low-resolution MSL signal s(MSL)

lr , Eq. (6.52), for spatial resolutions relevant in
practical applications. Instead, the correct solution to the problem at hand needs to be
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Figure 6.6: Difference between the “true” low-resolution MSL signal used in the experiments
of Section 6.5 (cf. Fig. 6.4) and the “true” low-resolution MSL signal in the orthogonal basis
{qα }.

found as follows: suppose (i) a global geoid model is given in terms of an expansion
in spherical harmonics complete to degree Lg; (ii) MSL data are given on a region
Ω0; (iii) the resolution of the MSL data is higher than that of the geoid model. Then,

1. Synthesize geoid data on Ω0 and compute a least-squares fit of a spherical har-
monic expansion complete to degree L. The corresponding spherical harmonic
coefficients are denoted s(g)

lm . Usually, L < Lg, in particular for regions with
|Ω0| � 4π as found in Section 6.3. The choice of the maximum degree L de-
pends on how well the model should fit the data. In practical applications this
depends on the target accuracy of the MDT and/or the accuracy of geoid and
MSL data. If the geoid is not given in terms of a spherical harmonic expan-
sion, but as a set of scattered or gridded data, the spherical harmonic synthesis
is dropped.

2. Compute the Gram matrix for the spherical harmonics complete to degree L,
Eq. (6.48).

3. Compute the Cholesky decomposition of the Gram matrix: RRT.
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4. Invert the lower triangular Cholesky factor: QGS = R−1.

5. Compute the N = (L+1)2 orthogonal basis functions according to Eqs. (6.47)
and (6.49).

6. Compute the N coefficients s(MSL)
α by a least-squares fit to the given MSL data

or by numerical integration.

The representation of the MDT is then given as

s(MDT)(x̂) =
N

∑
α=1

s(MSL)
α qα(x̂)−

L

∑
l=0

l

∑
m=−l

s(g)
lm Ŷlm(x̂), x̂ ∈Ω0. (6.54)

Though the correct solution to the problem at hand has been found, the question is
whether it is useful in practice. The latter means that it must be possible to construct
the orthogonal basis {qα} using Gram-Schmidt for practically relevant target regions
Ω0 and spatial resolutions. Unfortunately, several test computations reveal that the
construction of the orthogonal basis fails already for moderate spatial resolutions
and/or medium-size target regions Ω0. For instance, for the oceans as defined in Sec-
tion 6.4.1 we were able to construct the orthogonal basis {qα} for a maximum degree
36. However, the Cholesky factorization could not be performed anymore for a max-
imum degree 48. Test computations for a spherical cap of radius 40◦ failed already
for much lower maximum degrees. These problems related to the computation of the
orthogonal basis are caused by the ill-conditioning of the Gram matrix, Eq. (6.48).
The condition number of the Gram matrix grows exponentially with (i) the maximum
degree L and (ii) the size of the target region Ω0. The higher L and the smaller Ω0,
the larger the condition number. Therefore, for all practically relevant situations, we
need to apply regularization to compute the Cholesky factor R and its inverse. We
found, however, that even minimal regularization already destroys the orthogonality
of the basis, and the approximation errors attain values of several meters or become
even meaningless. Note that Hwang (1991) did extensive numerical experiments for
the construction of an orthogonal basis for the oceans using Gram-Schmidt orthog-
onalization for spherical harmonics. However, successful computations of the basis
functions are documented only up to a maximum degree 28.

6.7 Summary and conclusions

In this chapter, we investigated whether the use of bandlimited, spatially concentrated
Slepian functions provide a low-resolution MSL signal that is spectrally consistent
with a given geoid restricted to an incomplete part of the sphere. The recovered low-
resolution MSL signal should have an accuracy that is comparable to the accuracy
of the geoid and/or the MSL data, typically on the order of a few centimeters. In a
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Table 6.4: Experiment I (repeated): statistics of the differences between “true” and approx-
imated low-resolution MSL signal, evaluated at a set of control points (columns 2–5) and
the rms difference between data and approximated low-resolution MSL signal (column 6).
Lr = 48, Lg = 36. The “true” low-resolution MSL is defined in Eq. (6.52). The domain Ω0
comprises the world’s oceans defined in Section 6.4.1. All values are provided in m.

control points data points
Method rms min max mean rms difference

Iterative SH, L = Lr ,
geoid data outside, Gaussian filter 0.537 -7.23 4.08 -0.047 0.499
Iterative SH, L = Lr ,
geoid data outside, ideal low-pass filter 0.577 -7.67 5.34 -0.030 0.859
Direct SH, L = Lr ,
no data outside Ω0, Gaussian filter 0.537 -7.14 4.10 -0.047 0.499
Direct SH, L = Lr ,
no data outside Ω0, ideal low-pass filter 0.596 -7.78 5.38 -0.030 0.872
Direct SH, L = Lg,
no data outside Ω0 1.40 ·10−8 −5.29 ·10−8 5.77 ·10−8 1.57 ·10−9 0.610
Slepian functions (bandwidth Lg),
no data outside Ω0, Jo = 1,369 1.20 ·10−9 −7.87 ·10−9 1.19 ·10−8 2.94 ·10−11 0.685
Slepian functions (bandwidth Lg),
geoid data outside Ω0, Jo = 1,322 0.457 -6.49 4.48 -0.014 0.772

MSL signal in the band 37≤ l≤ 48 0.874 -7.15 6.46 -0.040

number of numerical simulations, we quantified the errors of the Slepian approach
and compared them with errors of alternative approaches suggested in the literature.

We showed that Slepian functions are not suited to provide a MSL signal that is spec-
trally consistent with a given geoid. Though they are orthogonal on the target do-
main, they lack the important property that the matrix, which transforms a spherical
harmonic basis into the Slepian basis, is lower-triangular. Therefore, a least-squares
fit of a truncated Slepian basis to given MSL data suffers from broadband leakage,
hence, is unable to extract the low-resolution MSL signal with sufficient accuracy.

The iterative spherical harmonic approach proposed by Albertella et al. (2008) per-
forms slightly worse than the Slepian approach, though the differences are not sig-
nificant for practical applications. Moreover, we could show that this rather time
consuming method is equivalent to a direct least-squares fit of a spherical harmonic
representation to the given MSL data, which is numerically much easier to implement
and less time-consuming.

Several variants of the iterative spherical harmonic approach and the Slepian ap-
proach do not provide significantly better results for the world’s oceans.

We also showed that the definition of the “true” low-resolution MSL signal on a do-
main Ω0 ⊂ Ω requires some care. A reasonable definition requires an orthogonal
basis on Ω0, which is linked to the spherical harmonic basis by a lower-triangular
matrix. Then, the “true” low-resolution MSL signal is a truncated version of the
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series expansion of the MSL data in the orthogonal basis. This orthogonal basis
can be constructed using Gram-Schmidt orthogonalization. In this study, we applied
Gram-Schmidt to the spherical harmonics. We showed that the construction of the
basis from spherical harmonics is a highly unstable problem in particular for small
target areas and/or high-resolution geoid data. Consequently, the Gram-Schmidt or-
thogonalization for spherical harmonics breaks down already for geoid models of
maximum degree, say, 48. The orthogonality of the constructed basis is very sen-
sitive to any regularization, which implies that regularization is not a solution to
the instability problem. Using 128 bit arithmetic may allow the Cholesky factor-
ization for somehow higher maximum degrees, but will not be enough for the more
recent high-resolution GRACE/GOCE-based geoid models. Whether the application
of Gram-Schmidt to other basis functions allows the construction of an orthogonal
basis for high-resolution geoid data remains to be investigated.



Chapter 7

Conclusions and recommendations

In this chapter, we answer the four research questions defined in Section 1.4, and we
provide some recommendations for future research. Thereafter, we evaluate whether
the main research objective defined in Section 1.4 has been achieved.

7.1 Vertical referencing of a shallow water model

The first research question defined in Section 1.4 was: How can a shallow water
model be vertically referenced to a given (quasi-)geoid and to which extent does such
a model benefit from an improved (quasi-)geoid? What accuracy can be expected
of the modeled instantaneous and mean dynamic topography? This question is ad-
dressed in Chapter 3.

7.1.1 Conclusions

In this study, the vertical referencing of a shallow water hydrodynamic model (here
we used the 2D Dutch Continental Shelf Model version 5 (DCSM)) is realized by
prescribing water levels along the open sea boundaries referring to the quasi-geoid,
which can be unambiguously realized only if all the relevant physics (astronomical
tide, surge, and steric effects) is included. While in DCSM, so far, the forcing asso-
ciated with horizontal variations in water density was neglected, DCSM is extended
such that it includes this so-called “baroclinic forcing”. This is done by adding the
depth-averaged baroclinic pressure gradient terms in east-west and north-south direc-
tions as diagnostic variables. In this study, these are computed from temperature and
salinity values derived from the Atlantic- European North West Shelf- Ocean Physics
Hindcast obtained using the Proudman Oceanographic Laboratory (POL) 3D baro-
clinic model (POL’s hindcast). The reason why we treat it as a diagnostic variable is

191



192 CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

that in the North Sea the spatial variations in water density induce a 3D flow structure
that cannot be handled by a 2D hydrodynamic model.

Theoretically, also the bathymetry used in the hydrodynamic model should be ex-
pressed relative with respect to the quasi-geoid. In the past, bathymetry was in-
terpreted as given relative with respect to mean sea level (MSL). Hence, referring
bathymetric data to the quasi-geoid reduces to the application of a correction for the
separation between MSL and the quasi-geoid (i.e., the mean dynamic topography
(MDT)). However, by a numerical experiment we showed that the errors in the used
bathymetry introduced when using MSL rather than the quasi-geoid as the vertical
datum have no significant impact on the modeled instantaneous water levels and the
model-derived MDT.

The ability of the hydrodynamic model to reproduce both the MDT and the instan-
taneous water levels is assessed by a comparison with the MDT derived from POL’s
hindcast, as well as with instantaneous water levels acquired by various radar altime-
ter satellites. From this comparison, we conclude that our model-derived MDT is in
good agreement with the MDT derived from POL’s hindcast; the standard deviation
of the differences is < 2 cm. Somehow, larger differences are observed when compar-
ing the model-derived MDT with the MDT derived from radar altimeter data. They
are attributed to either quasi-geoid errors or errors in the used salinity and tempera-
ture fields. The root mean square (rms) differences between observed and modeled
instantaneous water levels over the whole model domain vary from 9–11 cm for data
acquired by the TOPEX and GFO-1 satellites, respectively. Over the North Sea these
numbers improve to 8–10 cm for data acquired by the TOPEX and ERS-2 satellites,
respectively. These numbers are a factor two to three larger than the expected ac-
curacy of water levels derived from radar altimeter data ∼4 cm, (cf. Chelton et al.
2001, Sandwell & Smith 2009). About 25% of these differences can be explained by
a bias between the modeled water levels and the observed water levels acquired dur-
ing a single satellite pass. These biases are, among others, attributed to errors in the
applied correction for the net steric expansion/contraction of the global oceans. This
effect is not captured by DCSM that makes use of the Boussinesq approximation.

From the experiments, we conclude that the quasi-geoid is only weakly constrained
by prescribed water levels along the open sea boundaries. Hence, if another quasi-
geoid is chosen as reference surface, the water levels along the open sea boundaries
change accordingly, but this change will not propagate much into the model domain.
This suggests that from a model quality perspective the hydrodynamic model hardly
benefits from an improved quasi-geoid. Note, however, that from this result we can-
not conclude that an improved quasi-geoid does not provide any advantage. Indeed,
the calibration of the extended DCSM using radar altimeter and quasi-geoid data
over the model domain would benefit directly from an improved quasi-geoid. Fur-
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thermore, the conclusion only applies to the current procedure used to vertically ref-
erence a shallow water hydrodynamic model.

7.1.2 Recommendations

Using the developed procedure to vertically reference a shallow water hydrodynamic
model, the model hardly benefits from an improved quasi-geoid. Therefore, we rec-
ommend to study whether the assimilation of instantaneous water levels into the
hydrodynamic model improves the vertical referencing. In this way, we might
also be able to suppress errors in the modeled water levels associated with errors in
the used salinity and temperature fields. The instantaneous water levels can be com-
puted as differences between sea surface data from radar altimetry and a quasi-geoid
model over the model domain and can directly be observed at the locations of the tide
gauge stations. The assimilation could be realized using an ensemble Kalman filter
(Evensen 1994, 2003); model parameters to be constrained could be identified by a
sensitivity analysis.

To achieve further improvements in the representation of the instantaneous and mean
dynamic topography by a hydrodynamic model, such as DCSM, we recommend to:

• Use version 6 of DCSM (DCSMv6), which will become available soon. Be-
sides an increased spatial (especially in coastal waters) and temporal resolu-
tion, DCSMv6 includes more physics (e.g., internal tide) and covers a larger
domain. Compared to DCSM version 5, Zijl & Gerritsen (2012) reported im-
provements of 60% for the tide, 24% for the surge, and 40% for the combined
signal.

• Use wind and mean sea level pressure fields of improved spatial resolution.
In this study, we used the fields provided by the reanalysis ERA-Interim that
were originally publicly available with a spatial resolution of 1.5◦× 1.5◦. At
this resolution, however, some significant variability of the wind fields in the
North Sea (Cats & Wolters 1996) is not captured. An improved representation
of the surge after increasing the spatial resolution of HiRLAM wind and mean
sea level pressure fields from 55 to 22 km is reported by Verlaan et al. (2005).
Hence, it is reasonable to expect improvements by replacing the ERA-Interim
data with HiRLAM data (for operational storm surge forecasting, HiRLAM
data are used that have a spatial resolution of 5–15 km).

• Embed the DCSM model into a larger hydrodynamic model that includes
the astronomical tide, atmospheric wind and pressure forcing, and baro-
clinic forcing. An example of such a model is the POL 3D baroclinic model
(Holt & James 2001, Holt et al. 2001), which is part of the POL Coastal Ocean
Modeling System. Doing so will improve the current approach where the open
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boundary conditions (instantaneous water levels expressed relative to the quasi-
geoid) are derived as the sum of three separately derived contributions.

After realizing the above mentioned recommendations, it is worth to investigate the
feasibility to use the shallow water hydrodynamic model to connect the Wad-
den islands and offshore platforms to the terrestrial height system (NAP). Since
the facilities to apply hydrostatic leveling are no longer available in the Netherlands,
“2D-hydrodynamic leveling” might be used to transfer heights. Essentially, the idea
is to use the hydrodynamic model to derive the slope of the MSL with respect to
the quasi-geoid between (one or more) mainland tidal stations and island/platform
tidal stations. After adding this slope to the NAP height of MSL at the mainland
tidal station, we obtain the NAP height of the MSL at the island/platform tidal sta-
tion(s). Here, for some “transects” a high accuracy can be expected due to foreseeable
spatial error correlations of the model-derived MSL. This method might be used to
validate results obtained with GPS/leveling or might be used in combination with
GPS/leveling to increase the redundancy/accuracy.

7.2 Added value of a shallow water hydrodynamic model in
quasi-geoid computations

The second research question defined in Section 1.4 was: what is the added value of
using a shallow-water hydrodynamic model for the reduction of radar altimeter SSHs
to quasi-geoid heights when estimating a quasi-geoid for the Netherlands Continental
Shelf? This question is addressed in Chapter 4.

7.2.1 Conclusions

Based on the obtained differences among various quasi-geoids estimated after ap-
plying different sets of DT corrections to the observed SSHs, we conclude that if
shipboard gravity data are included in the estimation, the added value of using a shal-
low water hydrodynamic model for the reduction of SSHs to quasi-geoid heights is
negligible. This is explained by the fact that radar altimeter data hardly contribute
at all to the estimated quasi-geoid. Except at some isolated spots along the coasts
of Belgium, Denmark, France, Great Britain, and the Shetland Islands, and a fea-
ture along the Norwegian coast aligned with the Norwegian Trench, the differences
are below ±1 cm. Without shipboard gravity data the impact of DT corrections on
the quasi-geoid is much larger. By a comparison of the quasi-geoids obtained with
and without shipboard gravity data but after applying the same set of DT correc-
tions, we conclude that systematic differences between the various quasi-geoids are
reduced if we use a shallow water hydrodynamic model; especially along the coasts
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of the Netherlands and Great Britain, and in the English Channel. This indicates that
the consistency between the shipboard gravity and the altimeter-derived DoV data
sets increases if the DT corrections are obtained from a shallow water hydrodynamic
model. The improvements are mainly attributed to an improved representation of the
tide by the shallow water hydrodynamic model; surge and steric components of the
DT corrections have a negligible impact on the quasi-geoid.

7.2.2 Recommendations

To achieve a more accurate quasi-geoid, we recommend to:

• Apply terrain corrections to the gravity data. Investigations into the applica-
tion of terrain corrections were outside the scope of this thesis. Therefore, the
available terrestrial gravity anomalies were not used in the mountainous areas
such as Norway and the UK. Instead, we used deflections of the vertical (DoV)
in north and east directions derived from the European Gravimetric Geoid 2008
model (EGG08) (Section 4.3.6). Besides the fact that the use of these “pseudo-
observations” is conceptually unsatisfactory, the radial basis functions (RBFs)
still have problems in modeling the high-frequency signals in these data. Ap-
plying accurate, high-resolution terrain corrections will smooth the input data
and hence improve their approximation by RBFs. This will also have an im-
pact on the weights assigned to the various data sets, which are estimated using
Monte-Carlo variance component estimation (MCVCE).

• Combine the GRACE/GOCE satellite gravity data and the other data sets
(airborne gravity, shipboard gravity, terrestrial gravity, and radar altime-
ter data) in a joint inversion. In this study, we applied the classical remove-
compute-restore technique, which is suboptimal from a statistical point of view
as the available variance-covariance matrix of the satellite-only geopotential
model is not used in the estimation process. A joint inversion of all data sets
taking into account all available stochastic information is expected to provide
more realistic weights of the data sets and help suppressing long-wavelength
errors in some data sets.

• Use more realistic noise models. In this study, the variance-covariance ma-
trices of all data sets used in the estimation of the quasi-geoid were assumed
to be diagonal (except the GRACE/GOCE global geopotential model). For
most data sets, however, the assumption of white noise is not realistic. For
the altimeter-derived DoV, a better noise model can be derived using the noise
power spectral densities (PSDs) estimated in this study. For the remaining data
sets this will be more difficult. Probably the best we can do is to estimate a
variance factor for each individual survey, instead of estimating one variance
factor for the entire observation group.
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• Include the correlations between the successive DoV along the satellite’s
ground track. Application of the two-point finite difference scheme to the
profiles with geometric quasi-geoid heights causes correlations between the
successive DoV. In this study, we neglected these correlations as the software
cannot deal with full variance-covariance matrices. In a future work, they need
to be included. To reduce the numerical complexity introduced when including
the correlations, we can make use of the ideas in (Ditmar & Sluijs 2004).

• Change the functional model of radar altimeter data. In this study, we used
DoV as the altimeter-derived data type. However, since the radar altimeters
only provide discrete samples of the quasi-geoid, the DoV can only be approx-
imately computed. Differenced geometric quasi-geoid heights are free from
approximation. Hwang & Hsu (2008) have numerically shown that in deriving
gravity anomalies from altimeter data the use of this data type compared to
DoV and “height slopes” produces the best agreement with shipboard gravity
anomalies.

• Include CryoSat-2 and Jason-1 GM data. The CryoSat-2 satellite, collecting
data since July 2010, has a 369-day repeat cycle resulting in an average ground
track spacing of 3.5 km at the equator (Wingham et al. 2006). In April 2012,
the Jason-1 satellite was moved to a geodetic orbit (repeat cycle is 406 days). In
a future work, these new GM data should be included, because their precision
is better than the precision of the GEOSAT and ERS-1 GM data used in this
study.

• Use retracked radar altimeter data in the coastal waters. In this study,
we only had access to retracked GEOSAT GM data and retracked ERS-1 GM
data over a part of the computational domain. To further reduce the data gaps
along all coastlines and to enhance the quality of radar data in coastal waters,
all available radar data in coastal waters need to be retracked using a coastal
waveform retracking system (Gommenginger et al. 2011, and the studies cited
therein).

• Improve the reduction of noise in the altimeter-derived residual along-
track DoV. In this study, we applied a very moderate smoothing to the GM-
derived residual along-track DoV using a simple Gaussian filter. The use
of a more advanced filter is expected to further reduce the high-frequency
noise in the altimeter-derived DoV, which in turn might increase the estimated
(MCVCE) relative weight of this observation group compared to that of ship-
board gravity data.

• Include DoV derived from kinematic GNSS surveys in coastal regions.
Within a range of 20–25 km off the Dutch coast (and 5–10 km where re-
tracked radar altimeter data are available), the missing radar altimeter data can
be replaced by data from the regular kinematic GNSS surveys that are part



7.3. Deriving LAT relative to the quasi-geoid 197

of the bathymetric surveys of the Hydrographic Service of the Royal Nether-
lands Navy, as well as a program of Rijkswaterstaat to monitor bathymetry
and sediment transport in Dutch coastal waters. After correction for ship mo-
tions and the instantaneous dynamic topography, these data provide geometric
quasi-geoid heights along the survey lines. Foster et al. (2009) have shown that
instantaneous water levels can be measured with sub-decimeter precision for
distances up to 200 km to the coast. Pineau-Guillou & Dorst (2011) showed
that under optimal conditions and for shorter distances even 2 cm precision
is achievable. This new data set, has not been utilized before in quasi-geoid
computations. Therefore, it needs to be investigated whether this data set is
consistent with the available shipboard gravity data in this area and whether
inclusion of this data set improves the quasi-geoid.

7.3 Deriving LAT relative to the quasi-geoid

The third research question defined in Section 1.4 was: how, and to which level of
accuracy, can we derive the separation between the quasi-geoid and LAT from a
shallow water hydrodynamic model? This question is addressed in Chapter 5.

7.3.1 Conclusions

In this study, modeling the lowest astronomical tide (LAT) relative to the quasi-geoid
is realized by (i) the explicit modeling of the average meteorological and steric condi-
tions to which reference is made in the definition of LAT (International Hydrographic
Organization 2011a, Technical Resolution 3/1919) and (ii) referencing the hydrody-
namic model to the quasi-geoid. The explicit modeling of the average meteorological
and steric conditions allows for the inclusion of temporal variations in the definition
of the average meteorological conditions. In this study, we included seasonal varia-
tions, which are the most pronounced variations in MSL on time scales > 1 month in
the North Sea.

The obtained LAT surface is validated using LAT values at 92 onshore and 10 off-
shore tide gauges. For the 92 onshore stations, we found a mean of 0.5 cm and a
standard deviation of 21.5 cm. The obtained differences between observation- and
model-derived LAT reveal a mixture of errors in both model and control data. We
found that systematic errors in the representation of the tidal amplitude dominate.
Using the standard deviation of the differences between observation- and model-
derived tidal minima, we conducted a test to evaluate the statistical significance of
the differences between the observation-derived LAT values and model-derived LAT
values corrected for the mismodeling of the MDT and tidal amplitude. For three
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stations, the observed differences are statistically significant at the 99% confidence
level. These are located in the Irish Sea where DCSM is known to perform less.

7.3.2 Recommendations

To improve the accuracy of the model-derived LAT surface, besides the recommenda-
tions that follow from our work related to the first research question (Section 7.1.2),
it is recommended to:

• Assimilate tidal water levels at tide gauges and radar altimeter crossovers
into the hydrodynamic model. Current practice is to combine observation-
and model-derived LAT values in a post-processing step using some kind of
weighted interpolation scheme (e.g., Turner et al. 2010). In doing so, one needs
to take care that this weighting scheme accounts for the fact that the measure of
representativeness of observation-derived LAT values is strongly anisotropic;
the weight assigned to these values is not only a function of the distance (even
not if you make use of the concept of “sea distances” as in Turner et al. (2010)).
In fact, the representativeness of observation-derived LAT values is determined
by the tidal behavior in a particular area, which in turn depends on, e.g., the
bathymetry and the bottom friction. By the assimilation of tidal water levels
into the hydrodynamic model, this is implicitly taken into account.

• Improve the reconstruction of tidal water levels from observed ones. In
this study, we did not an attempt to derive an optimal set of tidal constituents
per tide gauge. Instead, we used two sets; one commonly used in the Nether-
lands, the other one commonly used in the UK. We found that, the use of these
sets resulted in significant differences between the derived LAT values. In
fact, however, a proper set of tidal constituents should be derived for each tide
gauge.

• Use a probabilistic approach to realize CD in the North Sea. Besides the
fact that such an approach contributes to the safety of navigation (if used, nau-
tical maps provide more realistic estimates of the minimal water depths that
can be expected), the obtained surface is much easier to validate since the val-
idation becomes independent of, e.g., the used set of tidal constituents in the
method to derive LAT values from observed water levels.

• Use, simultaneously with the GNSS water level reduction method (Sec-
tion 1.1), a vertically referenced shallow water hydrodynamic model to
apply water level reduction. Apart from using the vertically referenced shal-
low water hydrodynamic model to realize CD, it can be used as an indepen-
dent method to obtain water depths relative to CD. Indeed, by subtracting the
modeled instantaneous water levels from the observed water depths we obtain
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water depths relative to the quasi-geoid. These depths can be reduced to CD as
in the water level reduction with GNSS method. As such, it provides a backup
system if GNSS fails or is not available. On the other hand, combining both ap-
proaches may further increase the accuracy of bathymetric surveys. Note that
both methods are complementary; the accuracy of the water level reduction
with GNSS is expected to increase towards the coast due to shorter distances
to the reference stations, the model performance is likely to be reduced and
vice versa.

7.4 Solving spectral inconsistencies using a Slepian basis

The fourth research question defined in Section 1.4 was: does the use of a Slepian
basis representation provides a solution of the spectral inconsistency between a high-
(e.g., MSL) and low-resolution (e.g., geoid) data set? This question is addressed in
Chapter 6.

7.4.1 Conclusions

We conclude that a Slepian basis is not suited to make a high-resolution data set
spectrally consistent with a given low-resolution data set. Though Slepian functions
are orthogonal on the target domain, they lack the important property that the ma-
trix, which transforms a spherical harmonic basis into the Slepian basis, is lower-
triangular. Hence, every Slepian basis function depends on all spherical harmonics.
Therefore, we cannot obtain a low-resolution approximation of a signal represented
in a Slepian basis by a simple truncation of the Slepian representation. To obtain
such an approximation, the use of a Slepian basis with a smaller bandwidth is re-
quired, which involves spherical harmonics of a lower maximum degree. These low-
bandwidth Slepian functions are, however, not orthogonal to the Slepian functions
representing the full signal. Moreover, the approximation of a high-resolution signal
using a low-resolution (i.e., low bandwidth) Slepian basis always causes broadband
leakage, which is another consequence of the fact that the Slepian transform matrix
is a full matrix.

A suitable orthogonal basis on the target domain is found if the well-known Gram-
Schmidt orthogonalization procedure is applied to spherical harmonics. However,
its practical applicability is limited. Numerical experiments demonstrated that the
construction of this basis from spherical harmonics is a highly unstable process in
particular for small target areas and/or high-resolution data. Consequently, the Gram-
Schmidt orthogonalization applied to spherical harmonics breaks down already for
models of maximum degree, say, 48, which is far below the maximum degree needed
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in today’s applications. The orthogonality of the constructed basis is very sensitive to
any regularization, which implies that regularization is not a solution to the instability
problem.

7.4.2 Recommendations

So far, no proper solution to the spectral inconsistency problem is available that can
be implemented in practice. Based on our findings with the Gram-Schmidt orthogo-
nalization applied to spherical harmonics, we recommend to investigate whether the
application of Gram-Schmidt to other basis functions (e.g., piecewise polynomi-
als) allows the construction of an orthogonal basis for high-resolution data.

7.5 Did we achieve the research objective?

After answering the four research questions, we evaluate to which extent we achieved
the main specific research objective defined in Section 1.4 as: develop a procedure
that enables to derive a consistent set of offshore vertical reference surfaces; a quasi-
geoid based on, among others, radar altimeter data combined with a shallow water
hydrodynamic model and LAT relative to this quasi-geoid, obtained using a shallow
water hydrodynamic model.

Bases on the work presented in this thesis, in particular our conclusion that the
quasi-geoid is only weakly constrained by prescribed water levels along the open sea
boundaries (Section 7.1.1), we conclude that the developed procedure only partly en-
ables to achieve consistency among the target set of vertical reference frames (VRFs):
the quasi-geoid and the LAT surface. In the remainder, we first consider what has
been achieved, after which we will show in which respects no full consistency is
achieved.

The main achievement is that the developed procedure allows to derive the separa-
tion between the LAT surface and the estimated quasi-geoid, which is achieved by the
vertical referencing of the hydrodynamic model used to derive this separation. Fur-
thermore, consistency is achieved by the fact that both in the estimation of the quasi-
geoid and in the computation of the LAT surface the same hydrodynamic model is
used. This implies that all signals introduced by different model representations of
the tide, surge, and steric water level variations are avoided.

However, and here we come to the part where we will show in which respects no full
consistency is achieved, the contribution of the hydrodynamic model to the realiza-
tion of the various VRFs, and hence the propagation of model errors to the VRFs,
differs. As we have seen, the contribution of the altimeter-derived along-track DoV
to the quasi-geoid (the data which establishes a dependency between hydrodynamic
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model and quasi-geoid) relies on the weight assigned to this observation group rel-
ative to, in particular, the one assigned to the shipboard gravity observation group.
Consequently, any error in the representation of the MDT by DCSM that is propa-
gated one-to-one to the model-derived LAT surface does not do this to the estimated
quasi-geoid. The one-to-one propagation of errors in the representation of the MDT
to the LAT surface is experimentally addressed in Section 5.3.2, where we showed
that the non-linear interaction between tide and the average surge is small. This im-
plies that the tidal and non-tidal contributions to the model-derived LAT values can
be considered as approximately linearly additive. Expressed differently, the model-
derived LAT values obtained without modeling the average meteorological and steric
contributions (Section 5.3.1) can be approximated as the sum of the MDT values
with the LAT values obtained when incorporating the average meteorological and
steric contributions (Section 5.3.2). If the errors in the representation of the MDT by
DCSM would also have been propagated one-to-one to the quasi-geoid, they would
have canceled out in the computation of the ellipsoidal heights of LAT. This also
applies if we compute the ellipsoidal heights of MSL as the sum of the estimated
quasi-geoid and model-derived MDT. Indeed, if the errors propagated one-to-one to
the quasi-geoid and we apply dynamic topography corrections to the observed SSHs
that are too large, the resulting geometric quasi-geoid heights will be below the true
quasi-geoid heights and vice versa. On the other hand, if the model-derived MDT
is too large, the separation between the quasi-geoid and the LAT surface becomes
too small and vice versa. Note that since in the estimation of the quasi-geoid radar
altimeter data are used in the form of along-track DoV, a bias in the representation
of the MDT does not cancel out in the computation of the ellipsoidal heights of LAT.
However, as shown by the validation of the model-derived MDT (Section 3.6.1.3),
the bias is small (< 1 cm over DCSM’s model domain).

Another aspect of consistency not achieved in this study, is the requirement that the
quasi-geoid and the model-derived LAT and MDT surfaces should cover the same
spectral range before the ellipsoidal heights of LAT and MSL, respectively, can be
computed. To enforce this “spectral consistency”, we tried the use of a Slepian basis
representation as was recently proposed by Albertella & Rummel (2009). As shown
in Chapter 6, the use of such a representation turns out to fail. Since the found
solution cannot be implemented in practice for the data spatial resolutions at hand,
no spectral consistency can be enforced. Nevertheless, although we lack numerical
evidence, the errors associated with this inconsistency are expected to be low. The
reason why we expect this is that the along-track resolution of radar altimeter data (∼
7 km) is more or less similar to the spatial resolution of DCSM version 5 (8×9 km).





Appendix A

On the use of free-air gravity
anomalies

The free-air gravity anomaly (FAA), which is obtained from the various databases, is
defined as the difference between the observed gravity taken on the Earth’s surface
(P), corrected for the height effect in free air, and the normal gravity taken on the
computation point on the level ellipsoid (Q′)

∆gFAA = g(P)−αH− γ(Q′), (A.1)

where H is the orthometric height of point P and

α =−0.3086 mGal/m (A.2)

is a representative value of the free-air gravity gradient.

The surface gravity anomaly, which is used as data type in the functional model of
the gravity data (Eq. (4.9)), is defined as

∆g = g(P)− γ(Q), (A.3)

where Q is a point on the telluroid. The relationship between ∆gFAA and ∆g can easily
be established:

γ(Q) = γ(Q′)+
∂γ

∂h

∣∣∣∣
Q′

HN +O(HN
2), (A.4)
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where HN is the normal height of point P. Let β := ∂γ

∂h

∣∣
Q′ . Then,

∆g = g(P)− γ(Q′)−βHN +O(HN
2), (A.5)

= ∆gFAA +αH−βHN +O(HN
2), (A.6)

= ∆gFAA +αH−βH +βH−βHN +O(HN
2), (A.7)

= ∆gFAA +(α−β )H +β (H−HN)+O(HN
2). (A.8)

The term (α−β )H is at most 1.6911 ·10−9 mGal for H = 2000 m; the term β (H−
HN) depends on the difference between the orthometric H and the normal height HN,
i.e., the separation between geoid and quasi-geoid. At sea, these differences can be
neglected (Section 1.4). In the Alps, the differences between the geoid and quasi-
geoid are only 30 cm at the highest summit (Flury & Rummel 2009). Hence, in this
study β (H−HN) does not exceed 0.1 mGal, which is far below the accuracy of the
FAA for the data sets used in this study.



Appendix B

Overview tide gauge data

Table B.1: Main characteristics of the tide gauge data used in this study.

Station Cntry Source Data from/to Sampl. Vert. datum Offshore GPS

Nieuwpoort BE VH Jan 1989–Jan 2004 01:00 TAW
Oostende
Zeebrugge
A2 Feb 2000–Jan 2004 00:05 x
Bol van Heist x
Scheur Wielingen x
Wandelaar x
Westhinder x

Havneby DK DCA Jan 1985–Jan 2004 01:00 DVR90
Hvide Sande
Thorsminde
Thyborøn

Frederikshavn DMI Dec 1991–Jan 2004 01:00 DNN
Hirtshals Jan 1992–Jan 2004
Højer/Vidåslusen Oct 1989–Jan 2004

Grenå DMSA Jan 1991–Jan 2004 00:15 DNN/DVR90
Skagen Dec 1991–Jan 2004

Boulogne-sur-Mer FR SHOM Jan 1984–Jan 2004 01:00 NGF-IGN69 x
Calais May 1985–Jan 2004 x
Cherbourg Jan 1984–Jan 2004 x
Dunkerque x
Le Conquet x
Le Havre Jun 1984–Jan 2004 x
Roscoff Jan 1984–Jan 2004 x
Saint-Malo May 1986–Jan 2004 x

Borkum DE BSH Jan 1985–Jan 2004 01:00 TGZ x
Cuxhaven x

Brouwershavense Gat 8 Jan 1985–Jan 2004 00:10 NAP
Cadzand
Delfzijl

Continued on next page
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Table B.1 – continued from previous page
Station Cntry Source Data from/to Sampl. Vert. datum Offshore GPS

Den Helder Jan 1985–Jan 2004
Harlingen
Haringvliet 10
Hoek van Holland
Huibertgat
IJmuiden buitenhaven x
Lauwersoog
Nes
Oudeschild
Petten zuid
Roompot buiten Jan 1987–Jan 2004
Scheveningen Jan 1985–Jan 2004
Schiermonnikoog
Terschelling Noordzee Mar 1989–Jan 2004
Texel Noordzee Jun 1989–Jan 2004
Vlieland haven Jan 1985–Jan 2004
Vlissingen x
Westkapelle
West-Terschelling x
Wierumergronden
Aukfield platform NL RWS May 1985–Jan 2004 MSL x
Euro platform Jan 1985–Jul 2001 x
K13a platform Jan 1985–Jan 2004 x
Lichteiland Goeree Jan 1984–Jul 2001 x
North Cormorant Mar 1990–Nov 2001 x

Helgeroa NO NHS Dec 1987–Jan 2004 00:10 NN2000
Oscarsborg Sep 1990–Jan 2004
Tregde Dec 1987–Jan 2004
Viker Nov 1990–Jan 2004

Göteborg-Torshamnen SE SMHI Jan 1985–Jan 2004 01:00 RH 2000
Kungsvik
Ringhals
Smögen x
Viken

Aberdeen UK NTSLF Jan 1985–Jan 2004 00:15 OD (Newl.) x
Barmouth Oct 1991–May 2003
Bournemouth Jul 1996–Jan 2004
Cromer Mar 1988–Jan 2004
Devonport Sep 1987–Jan 2004
Dover Jan 1985–Jan 2004 x
Felixstowe Apr 1986–Jan 2004
Fishguard Jul 1988–Jan 2004
Heysham Nov 1998–Jan 2004
Hinkley Point Jun 1990–Jan 2004
Holyhead Jan 1985–Jan 2004
Ilfracombe
Immingham Nov 1996–Jan 2004
Kinlochbervie Jul 1991–Jan 2004
Leith Jan 1989–Jan 2004
Lerwick (Shetland) Jan 1985–Jan 2004 x
Liverpool, Gladst. Dock Dec 1991–Jan 2004
Llandudno Jun 1994–Jan 2004
Lowestoft Jan 1985–Jan 2004 x
Milford Haven Dec 1989–Jan 2004

Continued on next page
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Table B.1 – continued from previous page
Station Cntry Source Data from/to Sampl. Vert. datum Offshore GPS

Millport Jan 1985–Jan 2004
Mumbles Nov 1988–Jan 2004
Newhaven Jan 1985–Jan 2004
Newlyn x
Newport Apr 1993–Jan 2004
North Shields Jan 1985–Jan 2004 x
Port Ellen Jun 1991–Jan 2004
Port Erin Jun 1992–Jan 2004 OD (local)
Portpatrick Jan 1985–Jan 2004 OD (Newl.)
Portsmouth Feb 1991–Jan 2004 x
Sheerness Jan 1985–Jan 2004 x
Stornoway May 1985–Jan 2004 x
Tobermory Jan 1990–Jun 2003
Ullapool Jan 1985–Jan 2004
Weymouth Feb 1991–Jan 2004
Whitby Jan 1985–Jan 2004
Wick
Workington Feb 1992–Jan 2004

VH: Vlaamse Hydrografie, Agentschap Maritieme Dienstverlening en Kust
DCA: Danish Coastal Authority
DMI: Danish Meteorological Institute
DMSA: Danish Maritime Safety Administration
SHOM: Service Hydrographique et Océanographique de la Marine
BSH: Bundesamt für Seeschifffahrt und Hydrographie
RWS: Rijkswaterstaat
NHS: Norwegian Hydrographic Service
SMHI: Swedish Meteorological and Hydrological Institute
NTSLF: National Tidal and Sea Level Facility





Appendix C

Validation of LAT using tide gauge
data
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