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Abstract

Ionospheric Modeling for Precise GNSS Applications

The main objective of this thesis is to develop a procedure for modeling and predicting
ionospheric Total Electron Content (TEC) for high precision differential GNSS applications.
As the ionosphere is a highly dynamic medium, we believe that to have a reliable procedure
it is necessary to transfer the high temporal resolution GNSS network data into the spatial
domain. This objective led to the development of a recursive physics-based model for
the regular TEC variations and an algorithm for real-time modeling of the medium-scale
Traveling Ionospheric Disturbances (MS-TID). The research described in this thesis can
roughly be divided into three parts.

The main application of these developments can be found in Network RTK. Network-RTK
is a technique based on a network of reference receivers to provide cm-level positioning
accuracy in real time for users in the field. To get centimeter accuracy after a short
(minutes) initialization period the ionospheric delay for the user’s receiver needs to be
predicted very precisely between the ionospheric pierce points of the reference receivers at
the double difference level. Having the cm-level accuracy in the ionospheric interpolation
is crucial for the carrier phase ambiguity resolution by the user. To achieve high precision
in the ionospheric interpolation, regular and irregular variability of TEC in time and space
should be taken into account. The regular TEC variation, which can reach several hundreds
TEC units, is mainly a function of solar zenith angle. The irregular (or non-repeatable)
variations are mainly wavelike effects associated with Traveling Ionospheric Disturbances
(TID).

Although TID effects on the TEC are of the order of 0.1 TEC unit, MS-TIDs, with a
typical wavelength less than a few hundred kilometers, is one of the main obstacles for
accurate spatial interpolation of ionospheric induced delays in a medium-scale reference
GPS network. Since most of interpolation methods either use spatial linear (or quadratic)
interpolation or fit a lower-order surface, the methods are not capable to model the
phase-offset, caused by MS-TIDs, at distinct ionospheric pierce points. There are two
major complications. Firstly, interpolation must be done at the double-difference level,
which involves taking single differences between ionospheric delays for the same satellite
between two different receivers, followed by differencing single differences for different
satellites. This means that two different patches of the ionosphere are involved, each
related to a different satellite, and each possibly associated with different TIDs. Secondly,
for operational network RTK, a real-time strategy for TID detection and modeling is needed.
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In the first part the performance of several empirical ionosphere models for the regular
TEC variation, such as Klobuchar, NeQuick, and the IGS Global Ionosphere Maps (GIM)
are studied in the mid-latitude region using GPS data. Our results show that the GIM
was able to correct the absolute slant ionospheric delay to better than 80% under
different geomagnetic conditions of the ionosphere. The NeQuick model, which performed
better than the Klobuchar model, could correct about 60% of the slant ionospheric
delay. NeQuick is a real-time ionospheric correction model for the future European Galileo
navigation system. A key input parameter for NeQuick is the effective ionization parameter
(Az), which will be provided as a second order polynomial in the Galileo broadcast message
to single-frequency users. The coefficients of the polynomial will be estimated daily from
at least 20 permanent Galileo monitoring stations. As Galileo is under development, we
propose an alternative approach for estimating Az using Global Ionospheric Maps (GIM).
The main advantages of the alternative approach over the standard approach are: (1) the
alternative approach is more reliable, because, each IGS GIM is based on data of up to 300
GNSS stations world-wide and each IGS GIM is the combination of results of up to four
analysis centers, (2) the coefficients are more representative for all regions on the world
because they are computed from a world-wide grid instead of about 20 distinct locations,
(3) with the alternative procedure it is possible to provide Az in a different representation,
for instance using a higher order polynomial, grid, or other function types, and (4) the
computational effort is much smaller assuming the IGS GIMs have already been computed.

In the second part a normal ionosphere is defined using Chapman’s ion production theory
to approximate the regular variability of the Earth’s ionosphere. The normal ionosphere
consists of lower and upper region. The lower region is formed in a photochemical
equilibrium resulting in a Chapman layer. The upper region is formed in a diffusive
equilibrium, whilst ignoring the geomagnetic field, resulting in a new Chapman like
ionospheric layer. Integration of the continuity equation of the normal ionosphere over
height leads to a Boundary Value Problem (BVP) for the temporal evolution of VTEC.
Solution of the BVP results in a novel recursive model for the regular TEC variation
as a function of solar zenith angle. The main motivation for developing this model
is that the empirical models of the first part were either ill-suited or too complicated
to model and predict the regular variation of TEC for high precision differential GNSS
applications. The performance of the new model is tested at local and global scales
using GIM. In general, despite the geomagnetic field was ignored, the cases analyzed
show that the model gives a good overall representation of the regular variation of
VTEC in the mid-latitude region under a geomagnetically quiet ionosphere. This is an
important result that shows the potential of the model for a number of applications.
Since the model has a recursive form it is ideally suited to use as time update equation
in a dynamic data processing or Kalman filter. Another application is to use it for
removing the geometry-dependent trend from time series of GPS-provided ionospheric
delays to provide a pure TID observation, which is carried out in the third part of this thesis.

In the third part, a new algorithm for the real-time detection and modeling of MS-TID
effects is developed. In order to eliminate effects from large-scale TIDs, the algorithm uses
between-receiver single-difference (SD) ionospheric delays in a medium scale GPS network.
Although single-differencing also eliminates to some extend the geometry-dependent trend,
the remaining part cannot be neglected. In this thesis, we fit the SD data to the recursive
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model which was developed in the second part of the thesis. Any wavelike fluctuations in the
data with respect to the model are assumed to be from MS-TID effects. The detrended SD
data are the main input of the algorithm. The algorithm consists of six steps: initialization,
detection, scraping, cross-correlation, parameter estimation, and ending. A MS-TID is
assumed to be a planar longitudinal traveling wave with spatially independent amplitude
that propagates in an ionospheric patch. All characteristic parameters of the MS-TID wave
(e.g. period, phase velocity, propagation direction, and amplitude) are considered to be
time dependent, while the Doppler-shift caused by the satellite motion is taken into account
in the estimation step. The performance of the algorithm is tested with GPS data from
a network. Although real TIDs are not perfect waves, the algorithm was able to model
(in time and in space) the MS-TID to a large extend. The performance was found to be
comparable with the Kriging interpolation method. This is an important first result, in part
because these two methods are based on different principles, but also because there is still
room for improvement in our algorithm. With our physics based model it is possible to
avoid the planar wave approximation and take the phase-offset of the wave into account,
something which is not possible with Kriging.



Samenvatting

Ionosfeer Modellering voor Nauwkeurige GNSS Toepassingen

De doelstelling van deze thesis is een procedure te ontwikkelen om de ionosferische ”Total
Electron Content” (TEC) te modelleren en te voorspellen voor zeer precisie differentile
GNSS toepassingen. Aangezien de ionosfeer een zeer dynamisch medium is, geloven wij
dat om een betrouwbare procedure te krijgen het noodzakelijk is om de hoge tijd resolutie
van GNSS netwerkgegevens in het ruimtedomein over te brengen. Deze doelstelling leidde
tot de ontwikkeling van een recursief op fysica-gebaseerd model voor de regelmatige TEC
variaties en een algoritme voor real time modellering van de medium-scale ”Travelling
Ionospheric Disturbances” (MS-TID). Het onderzoek dat in deze thesis wordt beschreven
kan ruwweg in drie delen worden verdeeld.

De belangrijkste toepassing van dit onderzoek is te vinden in GNSS RTK-Netwerken. Een
RTK-Netwerk is een netwerk van GNSS referentieontvangers die gebruikers in staat stelt
in real-time centimeternauwkeurigheid in hun plaatsbepaling te bereiken. Om na een korte
initializatie periode (minuten) centimeternauwkeurigheid te bereiken moet de ionosferische
vertraging tussen de referentiestations en de gebruiker zeer nauwkeurig voorspeld worden
op het dubbel-verschilniveau. Dit is essentieel voor de oplossing van geheeltallige fase
meerduidigheden door de ontvanger. Om de hoge precisie in de ionosferische interpolatie
te bereiken moeten regelmatige en onregelmatige variaties van TEC in tijd en ruimte
in acht worden genomen. De regelmatige variatie van TEC, met een bereik tot enkele
honderden TEC-units, is hoofdzakelijk een functie van de zenithoek van de zon. De
onregelmatige (of niet herhaalbare) variaties zijn hoofdzakelijk golfachtige verschijnselen
verbonden aan ”Travelling Ionospheric Disturbances” (TID).

Alhoewel het effect van een MS-TID op de TEC klein is, soms niet meer dan 0.1 TEC-unit
met een typische golflengte minder dan een paar honderd kilometer, is de MS-TEC een
belangrijke hindernis voor nauwkeurige ruimtelijke interpolatie van ionosferische vertragin-
gen voor GPS referentienetwerken. Aangezien de meeste interpolatiemethoden lineaire
(of kwadratische) interpolatie of een andere lage-orde techniek gebruiken zijn deze niet
in staat de fase-offset tussen punten in ionosfeer, welke veroorzaakt wordt door MS-TID,
te modelleren. Er zijn twee belangrijke complicaties. Ten eerste, moet de interpolatie op
het dubbel-verschilniveau (het verschil in ionosferische vertraging tussen twee satellieten
en twee ontvangers) worden gedaan. Dit betekent dat twee verschillende stukken van de
ionosfeer, gerelateerd aan verschillende satellieten, in de verschillen betrokken zijn: de
zogenoemde ionospherische patches, elk met een omvang ongeveer gelijk aan het RTK
netwerk. Iedere patch kan verbonden zijn aan verschillen TIDs. Ten tweede, voor een
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operationeel RTK-Netwerk, is een real-time strategie voor de detectie en modellering van
TIDs een vereiste.

In het eerste deel worden de prestaties van verscheidene empirische ionosfeer modellen,
zoals Klobuchar, NeQuick en de ”Global Ionospheric Maps” (GIM) van IGS, bestudeert op
gemiddelde breedtes gebruik makend van GPS gegevens. De resultaten tonen aan dat de
GIM de fout ten gevolge van de absolute ionosferische vertraging met 80% kan reduceren
onder verschillende geomagnetische omstandigheden. Met NeQuick, dat beter dan het
Klobuchar model presteerde, kon ongeveer 60% van de fout worden verbeterd. NeQuick is
het real-time ionosferisch correctiemodel voor het toekomstige Europese navigatiesysteem
Galileo. Een belangrijke inputparameter voor NeQuick is de effectieve ionisatiegraad, or
”effective ionization parameter” (Az), die als tweede graads polynoom via het Galileo
navigatiebericht aan enkel frequentie gebruikers wordt verzonden. De cofficinten van dit
polynoom zullen dagelijks vanaf minstens 20 Galileo referentiestations worden geschat.
Aangezien Galileo nog in ontwikkeling is en deze parameters nog niet beschikbaar zijn,
stellen wij een alternatieve benadering voor het schatten van Az voor die gebruik maakt
van ”Global Ionospheric Maps” (GIM). De belangrijkste voordelen van de alternatieve
benadering zijn: (1) de alternatieve benadering is betrouwbaarder, omdat, de GIM op
gegevens van 300 wereldwijde GNSS referentiestations gebaseerd is en elke IGS GIM een
combinatie is van de resultaten van vier analysecentra, (2) de cofficinten representatiever
zijn omdat gebruik gemaakt wordt van een wereldwijd netwerk van 300 stations in plaats
van ongeveer 20 stations, (3) met de alternatieve procedure het mogelijk is om Az in
een verschillende representaties te verstrekken, bijvoorbeeld gebruikend een hogere orde
polynoom, een grid, of andere functietypes, en (4) de computerinspanning is veel kleiner
er vanuit gaande dat IGS GIMs reeds zijn berekend.

In het tweede deel wordt een ’normaal ionosfeer’ voor de regelmatige variaties gedefinieerd
gebaseerd op Chapman’s theorie voor ion productie. De normaal ionosfeer bestaat uit een
lager en hoger gebied. Het lagere gebied wordt gevormd in een fotochemisch evenwicht
resulterend in een Chapman laag. Het hogere gebied wordt gevormd in een diffuus
evenwicht hetgeen resulteert in een nieuwe Chapman laag. Invloeden van het geomag-
netische veld zijn hierin niet meegenomen. Integratie van de continuteitsvergelijking van
de normaal ionosfeer over de hoogte resulteed in een grenswaarde probleem (BVP) voor
de tijd evolutie van de vertikale TEC (VTEC). De oplossing van dit BVP resulteert in
een nieuw recursief model voor de regelmatige TEC variatie als functie van de zenithoek
van de zon. De belangrijkste motivatie voor het ontwikkelen van dit model is dat de
empirische modellen uit het eerste deel niet geschikt en onnodig complex waren om
de regelmatige variatie van TEC voor hoge precisie differentile GNSS toepassingen te
modelleren en te voorspellen. Het nieuwe model is getest op lokale en globale schaal met
behulp van GIMs. De geanalyseerde gevallen tonen aan dat het model, ondanks dat het
geomagnetische veld werd genegeerd, de regelmatige variatie van VTEC op gemiddelde
breedtes onder geomagnetisch rustige condities goed gemodelleerd kan worden. Dit is een
belangrijk resultaat dat de mogelijkheden van het model voor een aantal toepassingen
aantoont. Aangezien het model een recursieve vorm heeft is het geschikt om als tijdupdate
vergelijking in een dynamische gegevensverwerking of een Kalman filter te gebruiken. Een
andere toepassing is het verwijderen van de regelmatige geometrie afhankelijke trends uit
TEC tijdreeksen om zodoende TID te kunnen bestuderen of te modelleren. Dit wordt in
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het derde deel van deze thesis beschreven.

In het derde deel, wordt een nieuw algoritme ontwikkeld voor de real-time detectie en mod-
ellering van MS-TID in de TEC. Het algoritme gebruikt de ionosferische vertragingen van de
enkel-verschillen (SD) tussen twee ontvangers in een middel groot GPS netwerk. Alhoewel
een deel van de geometrisch afhankelijke TEC variatie in de SD wordt geelimineert, kan
het resterende deel niet worden veronachtzaamd. Om de resterende trend te verwijderen
wordt de techniek uit het tweede deel van deze thesis toegepast. Wat daarna overblijft
wordt verondersteld gevolgen te zijn van MS-TIDs en ruis. De aldus detrended SD is de
belangrijkse input voor het TID modellering algorithme. Het algoritme bestaat uit zes stap-
pen: initialisering, detectie, pellen, kruiscorrelatie, parameterschatting, en beindiging. Een
MS-TID wordt verondersteld in een ionosferische patch van enkele honderden kilometers
een vlakke reizende golf te zijn met gelijkblijvende amplitude. Alle kenmerkende param-
eters van de MS-TID golf (b.v. periode, fasesnelheid, propagatierichting, en amplitude)
zijn tijdafhankelijk, waarbij de Doppler-verschuiving veroorzaakt door de beweging van de
satellieten in de schattingsstap in acht wordt genomen. De prestaties van het algoritme
zijn getest met GPS gegevens van een netwerk. Hoewel een TID in het echt geen perfecte
golf is, kan het algoritme MS-TID goed detecteren en modelleren in de tijd en ruimte. De
prestaties op het gebied van interpolatie en predictie voor RTK-Netwerk zijn vergelijkbaar
met die van de Kriging interpolatiemethode. Dit is een belangrijk eerste resultaat, niet
alleen omdat beide methodes op verschillende principes gebaseerd zijn, maar ook omdat
het MS-TID detectie en modellering algoritme nog verbeterd kan worden. Dit, op fysica
gebaseerd model, maakt het mogelijk om de vlakke golfbenadering te vermijden en kan
rekening houden met de fase-verschillen van de golf, iets wat met Kriging niet mogelijk is.
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Notation and Symbols

Physics of Ionosphere

h or h′ height (altitude)
A area
p pressure of the Earth’s atmosphere
ρ mass density of the Earth’s atmosphere
Fp pressure force
Fg gravity force
m particle mass
n number of density of molecules by volume

k Boltzmann’s constant = 1.3806 · 10−23 m2kg
s2K

k a correction factor in the relative sunspot number
T absolute temperature
φg descent particle flux of atmosphere from gravity
φp expansion particle flux from vertical gradient of pressure
R the relative sunspot number (Wolf or Zurich number)
R12 12-month smoothed relative sunspot number
g Earth’s gravitational acceleration
g the number of groups of sunspots
f the number of individual of sunspots
dω probability of collision between photons and particles
σ absorption cross-section
φE

S radiative energy flux in unit area from Sun to top of atmosphere
τ optical depth of a gas volume
τE lifetime of electrons in E-region
τF lifetime of electrons in F-region
q ion production rate in ionosphere
L ion disappearance (or recombination) rate in ionosphere
V bulk transport velocity of ions
e electron charge in Coulomb = 1.60218 · 10−19

me electron mass in kg = 9.10939 · 10−31

χ solar zenith angle
η ionization efficiency
Ch(χ, h) Chapman grazing incidence function
q(χ, h) Chapman production function
q0
max Maximum rate of ion production when the sun is overhead χ = 0

n− number density of electron and negative ion
n+ number density of positive ion
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n or ne electron density or number density of electron
ne,E electron density in E-region
ne,F electron density in F-region
α quadratic recombination coefficient
β linear recombination coefficient
�B the geomagnetic induction vector
B total intensity of the geomagnetic field
I magnetic inclination or dip angle
D declination angle of the geomagnetic field
gm

n and hm
n Gauss coefficients of degree n and order m in the geomagnetic field

�F vector of force
�E vector of electric field
�v velocity vector of a charged particle
�F ‖ component parallel to the magnetic field
�F⊥ component perpendicular to the magnetic field
r Larmor radius
ω the angular gyro-frequency of a electric charge
D(h) plasma (ambipolar) diffusion coefficient at height h
w ionospheric plasma velocity along geomagnetic field

vdrift velocity of charged particles by �E × �B drift
ε0 the electric permittivity of vacuum
ωp the angular gyro-frequency of electron
H horizontal intensity of the geomagnetic field
H scale height of atmosphere
HE scale height of atmosphere at heights of E-region
HF scale height of atmosphere at heights of F-region
Hn density scale height of atmosphere
foE peak plasma frequency of the E-region
foF1 peak plasma frequency of the F1-region
foF2 peak plasma frequency of the F2-region
NmE maximum electron density of the E-region
NmF1 maximum electron density of the F1-region
NmF2 maximum electron density of the F2-region
hmE height of maximum electron density of the E-region
hmF1 height of maximum electron density of the F1-region
hmF2 height of maximum electron density of the F2-region

Ȧ Angstrom (10−10m)
nm nanometer (10−9m)
μm micron or micrometer (10−6m)
UV ultraviolet ray
EUV extreme ultraviolet ray
λ wavelength of an electromagnetic signal
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GPS and Ionospheric models

ϕ latitude
λ longitude
fj Lj GPS frequency j = 1, 2
c velocity of light ≈ 299792458 m/s
Re or a the radius of the earth ≈ 6371.2 km
A or a amplitude
N vertical total electron content in the normal ionosphere
NE vertical total electron content in the normal E-region
NF vertical total electron content in the normal F-region
φphoton
∞ photon flux on top of Earth’s atmosphere

φphoton photon flux at a certain height
vE = ne

n0
max,E

rate of electron density w.r.t. maximum electron density (when χ = 0)

in E-region
vF = ne

n0
max,F

rate of electron density w.r.t. maximum electron density (when χ = 0)

in F-region
VE = NE

n0
max,E

rate of NE w.r.t. maximum electron density (when χ = 0) in E-region

VF = NF

n0
max,E

rate of NF w.r.t. maximum electron density (when χ = 0) in F-region

Dip modeled magnetic inclination
Dipl geomagnetic dip latitude (or dip latitude)
μ or Modip modified geomagnetic dip latitude
μ ≈ 1.647 a factor that depends on the frequency ratio
ϑs

r,j code pseudo-range observable between receiver r and satellite s on Lj

ϕs
r,j carrier phase observable between receiver r and satellite s on Lj

τ s
r,j,g signal traveling time between receiver r and satellite s on Lj

for code observation
τ s
r,j,ϕ signal traveling time between receiver r and satellite s on Lj

for phase observation
ps

r,j code observation between receiver r and satellite s on Lj

ps
r,j(ti)

c a priori corrections for code observation
φs

r,j carrier phase observation between receiver r and satellite s on Lj

φs
r,j(ti)

c a priori corrections for carrier phase observation
φr,j(t0) initial phase of Lj in the receiver r
φs

,j(t0) initial phase of Lj in the satellite s
T s

r tropospheric error between receiver r and satellite s
ρs

r geometric distance between receiver r and satellite s
gs

r summation of all frequency independent terms in the GPS observation equation
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Introduction 1
1.1 Background

The Earth’s ionosphere is an important error source for Global Navigation Satellite Systems
(GNSS) signals. Free electrons, in the ionosphere, have a strong impact on the propagation
of radio waves resulting in range errors on the GNSS signals. For single-frequency GNSS
receivers, the range error caused by the ionosphere is currently the largest component in
the error budget affecting the positioning accuracy. The Total Electron Content (TEC)
is an integrated quantity that represents the number of free electrons in a column of 1
m2 cross-section along a path through the ionosphere. The ionospheric delay is almost
proportional to TEC along the signal path and inversely proportional to the frequency
squared. This dispersive property of the ionosphere allows dual frequency GNSS receivers
both to compensate for the ionospheric delay error and to measure TEC. The measured
TEC along the signal path, also known as slant TEC (STEC), is often mapped into vertical
TEC (VTEC) using a mapping function. This mapping is not perfect due to horizontal
variations in electron density in the ionosphere but is a useful approximation assuming all
free electrons are concentrated in a single layer (single-layer ionosphere approximation).

The ionosphere is a highly dynamic medium and the electron density can vary significantly
from minute to minute at a given location resulting in temporal and spatial variations of
TEC. The temporal variation of TEC is a combination of regular and irregular variations .
The regular variation of TEC is associated to the diurnal and seasonal changes in the Earth-
Sun geometry (or in solar zenith angle) and changes in the solar ionizing radiation intensity
over a solar cycle (11 years). The daily regular variation in TEC at a given location more or
less repeats daily because of the earth’s rotation, although there are significant differences
from day to day due to other effects. The irregular (or non-repeatable) variation refers
typically to the effects of the Traveling Ionospheric Disturbances (TID) and ionospheric
or geomagnetic storms. TIDs are wavelike fluctuations in electron density that propagate
through the ionosphere and cause wavelike fluctuations in TEC.

Over the past decade, several numerical and empirical models for the regular variations of
TEC have been developed at regional and global scales. Numerical ionospheric models use
different techniques, such as polynomial expansions, grid-based techniques and spherical
harmonics in latitude and longitude, to model VTEC on one or more ionospheric layers, as
function of time. The parameters for these models are estimated from slant TEC (STEC)
measurements. STEC is converted into VTEC using a mapping function, and vise versa.
An example of such model is the GIM. Another example is the model broadcasted by SBAS
(Satellite Based Augmentation System) systems.
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Empirical models try to model the regular variations in space and time using fewer param-
eters than the numerical models. These empirical models are often build from the analysis
of long time series and some elementary physics of the ionosphere. An example of an
empirical model is the NeQuick model which uses one parameter, the effective ionization
level. The irregular variations in TEC neither numerical nor empirical models are capable
of capturing. Although irregular variations and disturbances in TEC are usually quite small,
they degrade the reliability of modern GNSS techniques.

Dual frequency GNSS user can in single-point (absolute) positioning application eliminate
the ionosphere delay by forming a simple linear combination of the dual-frequency obser-
vations. However, single frequency users must always rely on ionospheric delay models.
The Global Positioning System (GPS) uses the Klobuchar model, which is able to correct
for 50% − 60% RMS (Root Mean Square) error of the total ionospheric delay. The pa-
rameters for the Klobuchar model are broadcasted by the GPS navigation message. The
future European GNSS system Galileo will support single-frequency users using the more
complicated NeQuick model. The effective ionization level will be broadcasted as part of
the Galileo navigation message.

In case single frequency users have a SBAS (WASS, EGNOS) enabled receiver they can also
use the numerical model provided by the SBAS system. For post processing applications
also GIM (Global Ionospheric Maps) can be used.

Absolute positioning with GPS is generally much less accurate than relative positioning.
Many of the errors occurring in GNSS are highly correlated between receivers and these
can be eliminated or reduced by differencing the observations of the two receivers. For high
precision (cm-level) relative GPS positioning, it is also essential to use the very precise,
but ambiguous, carrier phase observables instead of the pseudorange observations. The
ionospheric delay is one of the errors that is reduced by relative positioning. The differential
ionospheric delay error depends on the distance between both receivers. Although on the
one hand the ionospheric delay error is reduced, on the other hand, the increase in accuracy
of relative positioning makes the application also more sensitive to ionosphere delay errors.
Only for very short (< 10 − 30 km) baselines the ionospheric delay errors can be ignored.
For longer baselines (> 50− 100 km) the ionospheric delay must be modeled or estimated
using a dual frequency receiver. Also, relative positioning applications are more sensitive
to irregular variations and disturbances in the ionospheric delay than absolute positioning
applications.

In high precision relative positioning applications the ambiguous carrier phase observations
are used. Therefore, in addition to the receiver position and clock error, also the so-called
double difference carrier phase ambiguity has to be estimated. This requires the receiver
satellite geometry to change significantly which results in a long observation time span (at
least 30-50 minutes), unless the double differenced ambiguities can be resolved by some
other method.

In the fast precise (cm-level) GPS applications, such as engineering surveying, cm-level
precision has to be achieved using very short time span GNSS observations otherwise it
would not be economically usable. This is feasible only when the double-differenced (DD)
ambiguities are fixed on their integer values. This can be achieved through special integer
estimation techniques such as the LAMBDA method developed at TU-Delft. However,
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ambiguity resolution may fail, or result in the wrong integer estimates, in the presence of
biases at the double difference level. It is well known that the ionosphere decorrelates as
function of the baseline length. For a sufficiently short baseline (typically less than 10 km)
the ionosphere becomes fully correlated and results in a very small relative ionospheric delay
at the double difference level. For a larger baseline, due to the ionospheric decorrelation,
the ionospheric delay at the double difference level is increased and may cause ambiguity
resolution to fail. In this case, it is therefore necessary to compute a priori precise (cm-level)
correction, for the DD ionospheric delay.

Modern GNSS applications, such as Network-RTK, provide such precise ionospheric correc-
tions. The corrections at the user site are obtained by spatial interpolation of ionospheric
delay estimates at GNSS reference stations from a regional permanent GPS network in the
vicinity of the user’s receiver (van der Marel, 1998). When the interpolated ionospheric
corrections are sufficiently precise, instantaneous ambiguity resolution becomes feasible for
the user.

In the past, several methods have been developed for spatial ionospheric interpolation.
All of these methods use either a sort of linear interpolation or fit a lower-order surface
approach. There is not any method which is able to provide a spatial prediction of iono-
spheric correction with an acceptable level of accuracy under all ionospheric conditions.
Most methods only work well under quiet ionosphere conditions, up to several 10s of kilo-
meters distance. In order to achieve sufficient accuracy for spatial ionospheric prediction,
and increase the reliability of the Network-RTK systems, under almost all ionospheric con-
ditions either a dense network of reference stations must be deployed or the method for
spatial prediction of ionospheric delays has to be improved.

Medium-Scale TIDs, with a typical wavelength less than a few hundred kilometers, are one
of the main obstacles for accurate spatial interpolation of ionospheric induced delays in a
medium-scale reference GPS network (baseline length less than a few hundred kilometers).
This is due to the fact that the spatial ionospheric prediction methods are not capable of
handling the phase-offset caused by TID, between the different ionospheric pierce points.
To achieve the cm-level level in accuracy, TIDs should be taken into account in the spatial
interpolation. There are two major complications of the TID mitigation for Network-RTK
that should be addressed. Firstly, mitigation must be taken care of at the double-difference
level, which involves taking single differences between ionospheric delays for the same satel-
lite between two different receivers, followed by differencing single differences for different
satellites. This means that two different patches of the ionosphere are involved, each re-
lated to a different satellite, and each possibly associated with different TIDs. Secondly, for
operational Network-RTK, a real-time strategy for TID detection and modeling is needed.

1.2 Research objectives

The main objective of this thesis is to develop an algorithm to model the regular and
irregular variations of the ionospheric total electron content with the goal to predict iono-
spheric total electron content in space and over time. The algorithm should be suitable
for ionospheric delay mitigation in Network-RTK systems. At the onset of this research
we believe that, in order to improve the reliability of the Network-RTK, it is necessary
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to transfer the high temporal resolution of TEC data from GNSS reference stations into
the spatial domain. Furthermore, we believe that the modeling and prediction can be im-
proved by including more information on the ionospheric physics in the algorithms. These
two believes have been important guidelines during the remainder of the research. Other
guidelines were of a more practical nature:

• Concerning to the regular variation, the model should be developed preferably in a
recursive form. Then it can be used for ionospheric forecasting with the Kalman-
filtering technique. The forecasting model should be able to model the regular iono-
sphere variation as a function of the solar zenith angle with high relative accuracy in
the spatial domain.

• Concerning to the irregular variation, which are defined as fluctuations with respect
to the forecast model, the algorithm should be able to detect and model at least
Medium-Scale TIDs in real-time.

Two restrictions were applied during the research:

• The research focused on ionospheric conditions for the mid-latitude regions. The
ionosphere is more active in equatorial and auroral regions and consequently the
ionospheric errors in GPS observations collected in those regions are larger and more
variable, in general. Possible adaptation of the model for these regions have not been
considered, was not the model tested for these regions.

• Another restriction is that the distance between GPS reference stations is not allowed
to be unlimited. The research is restricted to a baseline which is at maximum a few
hundred km long.

1.3 Outline of the thesis

This thesis consists of 8 chapters, Chapter 1 is an introduction.

Chapter 2 gives an overview of the physics related to the Earth’s atmosphere and the Sun.
A brief introduction to the earth’s real magnetic field and its activity indexes are given,
since the magnetic field plays a central role in the transport process in the ionosphere.

In Chapter 3, theory of the Earth’s ionosphere formation is explained based on the Chapman
grazing incidence function. Three principal photochemical processes: production, disap-
pearance and transport of ions and electrons involving in the ionospheric plasma continuity
equation are reviewed. The combination of these three processes explains the temporal
variation of the electron density in the ionosphere. The last part of this chapter also
discusses ionospheric storm and the traveling ionospheric disturbances.

In Chapter 4 the propagation of the GPS signals through the ionosphere is reviewed. The
total electron content plays a central role in the GNSS signal propagation in the ionosphere.
Extracting ionospheric information from GPS data is described as well and different types
of the ionospheric models are addressed.
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Chapter 5 investigates the empirical three dimensional NeQuick model of ionospheric elec-
tron density. The NeQuick model has been proposed as real-time ionospheric correction
model for single-frequency users of the future Galileo navigation system. In this chapter,
the NeQuick’s formulation and its characteristic parameters are described. The only model
parameter of NeQuick is the effective ionization level (called Az parameter) that introduces
the solar daily activity into the model. As the Galileo system is under development, daily
values of the Az parameter are not yet available in the standard approach. Because of this,
we present an alternative approach for estimation of the Az parameter using the Global
Ionospheric Maps (GIM). In order to investigate the validity of the alternative approach,
the performance of NeQuick model is studied using the Az parameter estimated by the
standard and alternative approach. For comparison, the Global Ionospheric Maps (GIM)
and Klobuchar model are included in this investigation.

Chapter 6 focuses on a novel method for modeling of the vertical total electron content
(VTEC) based on ionospheric physics, introduced in chapter 3. A normal ionosphere,
including an ideal E-region (lower ionosphere) and ideal F-region (upper ionosphere), is
defined by considering an isothermal atmosphere with an exponentially density distribution
in height. For simplicity, the geomagnetic field is ignored in definition of the normal
ionosphere. The integration of the continuity equation of each region leads to a differential
equation for VTEC for the corresponding region. The solution of this differential equation
results in VTEC as a function of solar zenith angle. The solutions for each of the ideal
E- and F- regions are discussed separately. Summation of the two solutions leads to a
recursive model as function of the solar zenith angle. The temporal and spatial variations
of the solar zenith angle results in similar VTEC variations. The model consists of three
unknown parameters: the linear recombination coefficient, the solar radiation intensity and
VTEC at t0, these parameters can be estimated by he least-squares fitting the model to
a time series of VTEC observations. The performance of the model is tested locally and
globally using VTEC observations provided from GIM maps. The results show that the
model gives a good overall representation of the regular VTEC variation versus the solar
zenith angle.

In Chapter 7, an algorithm is developed for the irregular variation of the TEC that is par-
ticularly associated with wavelike fluctuations due to Traveling Ionospheric Disturbances
(TID). Time series of TID observations are computed by removing the regular variations
(geometry-dependent trend) from the slant ionospheric delays measurements. The detrend-
ing is carried out using the recursive model that developed in Chapter 6. The algorithm uses
the cross-correlation between many pairs of the time series of single-difference (between-
receiver) TID observations in a GPS network for TID detection and estimation of the TID
wave parameters. In the estimation of the wave parameters, the Doppler-shift due to the
satellite motion is taken into account. The real-time application of the algorithm is dis-
cussed and the performance of the algorithm is tested using real TEC observations for two
different satellites.

Finally in Chapter 8, the conclusions of this thesis are summarized and recommendation
are given for future research.
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1.4 Contributions of this research

The main contributions of this research can be summarized as follows:

• Global Ionospheric Maps (GIM) are used to estimate the effective ionization level of
the NeQuick model. This is an alternative approach, that provided valuable opportu-
nities to investigate temporal and spatial variations of the effective ionization level.
It is shown that a second order polynomial, as proposed for the Galileo program, is
not the best-fitting function to describe spatial distribution of the effective ioniza-
tion level. The correlation between the effective ionization level and solar radiation
intensity index (F10.7) was not very high. In order to use the NeQuick model as an
ionospheric correction model for single-frequency GNSS data, it is possible to use the
predicted GIM to provide daily model parameters.

• A normal ionosphere is defined to express the regular variation of electron density
in the Earth’s ionosphere as a function of the solar zenith angle. Integration of
the electron density in the normal ionosphere over height leads to a novel recursive
model for the regular variation of VTEC as a function of the solar zenith angle. The
model is physic-based and consists of two physical parameters that represent the
solar radiation intensity and the recombination coefficient. The main advantage of
the novel model is that it is physic-based (not an empirical or a numerical model),
in a recursive form, and therefore can be used as a forecasting model. Another
advantage of the model is that the integration term of VTEC is tabulated for grid
points and does not require the use of a numerical integration method and is therefore
computationally efficient.

• The novel recursive model of VTEC can be used to produce time series of TID obser-
vations from GPS slant ionospheric delays. The model parameters are computed us-
ing a least-square estimation. The time series of single-difference (between-receiver)
TID observations has been used to analyse TID wave propagation. Equations for esti-
mation of the TID wave parameters are derived for the case that the single-difference
TID observations are used.

• A real-time algorithm for TID detection and modeling is developed using TID obser-
vations in a reference GPS network. The algorithm is in a form that can be used for
mitigation of TID in Network-RTK. This algorithm can also be applied for real-time
TID monitoring along the satellite tracks belonging to a moving ionospheric patch
associated to the network of ionospheric pierce points for a GNSS satellite.



The Earth’s Atmosphere, Sun, and Geomagnetism

2
This chapter deals with the the physical background of the Earth’s atmosphere, the geo-
magnetism and the Sun. These are the three components that involved in the formation
of an ionized region in the Earth’s atmosphere. Understanding the features of these com-
ponents is essential to an understanding of the formation of the Earth’s ionosphere which
will be discussed in the next chapter.

2.1 The Earth’s Atmosphere

The Earth’s atmosphere is a mixture of different gases and small particles. The atmosphere
can roughly be defined as the region from sea level to about 1000 km altitude around the
Earth, where neutral gases can be detected, although traces of atmospheric gases have
been detected far into space. 99% of the mass of the atmosphere lies below about 30
km altitude. Above 80 km altitude the atmosphere contains ionized molecules and free
electrons.

The Earth’s atmosphere can be coarsely subdivided in several concentric spherical layers
based on different characteristic features such as temperature, ionization, and propagation.
Based on the vertical variation of temperature the Earth’s atmosphere is subdivided into
four layers: troposphere (from sea level to about 10 km), stratosphere (from 10 km to
about 50 km), mesosphere (from 50 km to about 80 km) and thermosphere (from 80 km
to about 400 km). In general, the temperature in the troposphere decrease with height and
increases in the stratosphere, but decreases again in the mesosphere. In the thermosphere
the temperature increases again. Above the thermosphere, the temperature is constant, is
the exosphere which gradually merges into space. The exosphere is the uppermost layer of
the Earth’ atmosphere that the particles can escape to space. The temperature variation
through the atmosphere layers is shown in figure 2.1.

With respect to signal propagation, the atmosphere is subdivided into two main layers of
troposphere (also referred to as neutral atmosphere) and ionosphere. The troposphere,
the lower part of the atmosphere, extends from the see level to about 40 km which is
non-dispersive medium (the propagation delay is not frequency dependent), see figure 2.1.
In the troposphere, signal propagation depends mainly on the water vapor content and
on temperature. The ionosphere, the upper part of Earth’s atmosphere, is a dispersive
medium which starts about 80 km altitude. In the ionosphere, signal propagation is mainly
affected by free charged particles.

The two most abundant atmospheric gases are Nitrogen (78% by volume) and Oxygen
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Figure 2.1: Subdivision of the Earth’s atmosphere

(21% by volume), and together they compose over 99% of the lower atmosphere. The
remaining 1% of the atmospheric gases includes the noble gases (Argon, Neon, Helium,
Krypton and Xenon) and so-called greenhouse gases (Carbon Dioxide, Methane, Nitrous
oxide and Water vapor). Hydrogen is also present in the atmosphere, but because it is so
light, over time much of it has escaped the Earth’s gravity into space.

Below about 85 km, the atmospheric gases are mixed well by turbulence and their relative
proportions remain constant. At greater heights, where turbulence does not play role, each
atmospheric component is in diffusive equilibrium. The height at which turbulent mixing
is replaced by diffusive equilibrium is called the turbopause.

2.1.1 Pressure, temperature and density variations

The atmosphere is not physically uniform and has significant variations in temperature and
pressure with altitude.

Hydrostatic Equation The hydrostatic or aerostatic equation describes the change of
pressure p with height as a function of mass density ρ and Earth’s gravitational acceleration
g. To derive the hydrostatic equation, consider an area A at height h that is subject to the
pressure from the gas below on the bottom side and to the weight of gas column above
on the upper side (see figure 2.2). The pressure force from below at height h is

Fp = A p(h) (2.1)

and the weight of gas column above h is calculated from

Fg(h) = A

∫ ∞

h

ρ(h′) g(h′) dh′ (2.2)

In hydrostatic equilibrium the pressure and gravity forces are equal and of opposite direction,
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Figure 2.2: Deriving the hydrostatic equation

i.e. Fp = Fg. The pressure as a function of height is then

p(h) =

∫ ∞

h

ρ(h′) g(h′) dh′ (2.3)

The differential form of equation 2.3 is known as the hydrostatic equation

dp(h)

dh
= −ρ(h) g(h) (2.4)

The hydrostatic equation is valid for a single gas atmosphere as well as an atmosphere com-
posed of various gases, regardless of whether the atmosphere is well mixed or gravitationally
separated.

Barometric equation The hydrostatic equation expresses the relationship between pres-
sure and mass density, which are both height dependent. To provide individual functions
for pressure and density with respect to height, the vertical temperature profile need to be
known and with help of the ideal (perfect) gas law p = knT , with n is the number density
of molecules by volume, T is absolute temperature and k is, the mass density in a unit
volume is equal to

ρ(h) = m(h) n(h) = m(h)
p(h)

k T (h)
(2.5)

with m is the molecular mass. Inserting equation 2.5 into the hydrostatic equation yields

dp(h)

dh
= −m(h)g(h)

kT (h)
p(h) = − p(h)

H(h)
(2.6)

with

H(h) =
kT (h)

m(h)g(h)
(2.7)

the scale height of the atmosphere (which is height dependent).

Separating p and h in equation 2.6 and integrating over the height interval from h0 to h,
where h0 is an arbitrary height and h is any given height, results in the following relation∫ p(h)

p(h0)

dp(h′)
p(h′)

= ln
p(h)

p(h0)
= −

∫ h

h0

dh′

H(h′)
(2.8)
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or

p(h) = p(h0) exp

{
−
∫ h

h0

dh′

H(h′)

}
(2.9)

Equation 2.9 is the well-known barometric equation for the vertical pressure profile in an
atmosphere. An analogous barometric equation for the number density profile can be given
if equation 2.5 is used to replace the pressure with the number density

n(h) = n(h0)
T (h0)

T (h)
exp

{
−
∫ h

h0

dh′

H(h′)

}
(2.10)

which can be re-written

n(h) = n(h0) exp

{
−
∫ h

h0

dh′

Hn(h′)

}
(2.11)

with Hn the density scale height. The density scale height is defined by

Hn(h) =

( |dn(h)/dh|
n(h)

)−1

(2.12)

similar to the definition of the in equation 2.6. The relationship between the two scale
heights is

1

Hn(h)
=

(
1

H(h)
+

1

T (h)

dT (h)

dh

)
(2.13)

usually at high altitudes (above 200 km) the second term on the right hand side is small
compared to the first term, so that the density scale height corresponds closely to the
pressure scale height. In an isothermal atmosphere, the two scale heights are equal.

2.1.2 Diffusive equilibrium

The Earth gravity field causes a downward acceleration to particles in unit volume of
atmosphere whereas the pressure vertical gradient between lower and upper faces of the
volume accelerates the particles in the direction of decreasing density, i.e. away from the
Earth. A static density distribution can only be maintained when both fluxes, the descent
flux from gravity φg and outward expansion flux φp are equal (see figure 2.3). This condition
is known as transport or diffusive equilibrium. Each volume in atmosphere is in diffusive
equilibrium. Below the turbopause, where the gases are completely mixed, all atmospheric
gases have the same height variation, so that the mixture is distributed based on equation
2.11 with m the average mass of the molecules or atoms. Above the turbopause, the vertical
distribution of each atmospheric gas is considered separately based on its own scale height
(see figure 2.4). In the absence of chemical reactions, the density of each atmospheric
gas diminishes exponentially with height. Since the scale height is inversely proportional
to the mass and proportional to the temperature, the relative vertical distribution of the
atmospheric gases above the turbopause is function of height. The heavy particles (like O2

and N2) dominate the lower altitudes and the lightest particle, hydrogen, dominates the
higher altitudes.
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Figure 2.4: Typical vertical density profile of the
neutral atmospheric gases

2.1.3 Upper atmosphere

Due to solar radiation the molecules in the upper atmosphere are heated and electrons
are released from them. It results in an ionized medium that is called the ionosphere.
Not all the particles in the ionosphere are ionized, but the ionosphere consists of a mix
of uncharged and charged atmospheric particles. Although less than 1% of the mass
of atmosphere lies in the upper Earth’s atmosphere, the free electrons in ionosphere are
sufficiently numerous to influence the propagation of radio waves. Because of this the
ionosphere plays important role in radio communication and satellite navigation systems.
The rate of ionization depends on the density of gas molecules and the intensity of the
radiation (see chapter 3).

2.2 The Sun

The Sun is the largest object in the solar system. The Sun with a radius of 696000 km
contains more than 99.8% of the total mass of the solar system. The Sun is composed
mainly of hydrogen and helium. The Sun emits huge amounts of energy and mass (roughly
4 × 1033 erg/sec) that is produced by nuclear fusion reactions (Hydrogen converted to
Helium + gamma rays) in its interior. The Sun consists of the solar interior (core),
the visible surface (photosphere), the lower solar atmosphere (chromosphere), and outer
solar atmosphere (corona). The upper layers of the Sun rotate with an angular velocity
which depends on the heliocentric latitude. In the photosphere the rotation is faster at
the solar equator. The rotation period at the solar equatorial latitudes is about 27 days.
The temperature at the Sun’s core is about 15 × 106 K and decreases toward the Sun’
surface. Temperature in the photosphere is about 5800 K, but there are regions with lower
temperature (4000 K) which are seen by observers on the Earth as dark sunspots.
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Figure 2.5: Solar cycle 23: Measured and predicted sunspot numbers (Graph courtesy of NOAA Space
Environment Center (SEC), USA)

Sunspots Sunspots are cool regions on the photosphere which emit significantly less radi-
ation than their hot surroundings and therefore appear dark only by comparison with the
surrounding regions (Prolss, 2004). Sunspots can be very large, as much as 40000 km in
diameter. Sunspots are caused by complicated and not very well understood interactions
with the Sun’s magnetic field. Sunspots tend to group together. In order to account for
the statistical appearance of sunspots, the relative sunspot number (also called the Wolf
or Zurich number) is used R = k(10g + f) where g is the number of groups of spots (a
group may include one or more sunspots), f is the number of individual spots, and k is a
correction factor, usually less than unity, which depends on the observer and is intended as
a correction to get the original scale by Wolf (Davies, 1989). The most widely used index
in ionospheric work is the 12-month smoothed relative sunspot number R12(n) defined by

R12(n) =

[
n+5∑

i=n−5

Ri + 0.5(Rn+6 + Rn−6)

]/
12 (2.14)

in which Ri is the mean value of R for month i.

Sunspots appear and disappear over time and R displays systematic variations that provide
useful information on the state of the Sun. The magnitude of R varies between zero and
200, with a period of approximately 11 years; the so-called sunspot cycle or solar cycle. In
figure 2.5 R is plotted for the current solar cycle (no. 23). Solar Minimum refers to the
several years when the sunspot numbers are the lowest and Solar Maximum refers to the
years when sunspots are the most numerous. During Solar Maximum, activity on the sun
and its effects on our terrestrial environment are high. For example, the frequency and
intensity of geomagnetic storms and radiation showers in the earth’s atmosphere increases
during solar maximum.
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Figure 2.6: Energy flux of the solar radiation

2.2.1 The Solar radiation

Huge amounts of energy are continuously released from the Sun by both electromagnetic
radiation (photon) and particle outflow (protons and electrons).

Photon radiation The energy transported from the Sun to Earth by the electromagnetic
radiation is described by the radiative energy flux φE

S as the energy per second and passing
through a unit area perpendicular to the Sun’s rays above the atmosphere (see figure 2.6).

The Sun radiates electromagnetic waves over a wide range of wavelengths, including the X-
ray, ultraviolet, visible, infrared and radio waves. The total radiated energy per second in all
wavelengths is approximately constant. The total energy at top of the Earth’s atmosphere
(at a Sun-Earth separation of 1 astronomical unit) is 1370 watts per meter squared and
is called the solar constant. Table 2.1 shows the contribution of the different wavelengths
to the solar constant. The major energy contributions are from the infrared (52%), visible
(41%), and ultraviolet (<7%) spectral regions. The radio and X-ray wavelengths make
only a minor contribution (<1%) to the solar constant (Schunk and Nagy, 2000; Tascione,
1994).

Table 2.1: The contribution of the solar spectral regions to the solar constant (Note: Ȧ = 10−10m)

Solar spectral region Wavelength range Contribution
Radio 1 mm < λ < 0.1%
Far Infrared 10 μm < λ < 1 mm
Infrared 0.75 μm < λ < 10 μm

52%

Visible 0.3 μm < λ < 0.75 μm 41%

Ultraviolet (UV) 1200Ȧ < λ < 3000Ȧ < 7%

Extreme Ultraviolet (EUV) 100Ȧ < λ < 1200Ȧ 0.1%

X-rays λ < 100Ȧ < 0.1%
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Particle radiation The Sun releases about one billion kilograms of the energetic charged
particles (mainly protons and electrons) every second into space. This is the solar wind.
The velocity of the particles is about 300 km/sec so it takes about 4-5 days to reach the
Earth. The solar wind is mainly sustained by a continuously outflow of plasma from the
Sun’s corona. A portion of the solar particle radiation is related to powerful events in the
Sun’s atmosphere above sunspots, called solar flares. The received total energy from solar
particle radiation at top of the Earth’s atmosphere is only about one-tenth of the solar
photon radiation energy from the X-ray and EUV spectral regions (Ratcliffe, 1972).

2.2.2 Variation of the radiation intensity

The total solar radiation per second in all wavelengths is approximately constant. Within the
spectral range of maximum energy flux (the visible and neighboring infrared and ultraviolet
ranges), the intensity of the solar radiation is practically constant, varying by less than
0.3% (Prolss, 2004). The minor radiation sources (the radio, extreme ultraviolet and X-ray
spectral regions) display large fluctuations depending on solar activity.

Solar flares and rapidly moving plasma clouds in the Sun’s corona are more frequent during
solar maximum, and therefore solar particle radiation showers near the earth are also more
frequent and more intense during the period of solar maximum. There is also a general
increase in solar wind during the solar maximum. Solar activity varies not only during
the solar cycle, but also from day to day. Therefore radiation will also vary from day to
day. The sunspot number is a useful way to describe solar activity in a quantitative sense
and provides an approximate measure of the solar short wavelength (the X-ray and UV)
radiation intensity. Another index that is very useful is the so-called solar radiation index
F10.7.

2.2.3 Solar radiations index (F10.7)

The solar flux on the radio wavelength of 10.7 cm (2800 MHz) is well correlated with
X-ray, EUV, and UV fluxes. The flux on wavelength of 10.7 cm is measured daily with
a reflector of 1.8 m diameter at the Algonquin Radio Observatory, near Ottawa at 17:00
UT in units of 10−22Wm−2Hz−1 (solar flux unit). The 10.7 cm radio flux is known as
F10.7 index or Covington index (CI) and varies from a minimum near 65 (corresponding
to sunspot number zero at solar minimum) to a maximum of about 200 corresponding to
a sunspot number of about 150 to 160 (Davies, 1989). Because of correlation with X-ray,
EUV and UV fluxes the F10.7 is one of the most commonly used indicator for solar activity.

The F10.7 index displays similar variations as the sunspot number (see figure 2.7). An
empirical formula to convert the smoothed relative sunspot number (see equation 2.14)
into monthly averaged F10.7 index is provided by the Radiocommunication sector of the
International Telecommunication Union (ITU-R) as follow (Leitinger et al., 2005):

F10.7 = 63.7 + (0.728 + 0.00089R12)R12 (2.15)

And wise versa

R12 = (167273 + (F10.7 − 63.7)1123.6)0.5 − 408.99. (2.16)
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Figure 2.7: Progression of solar cycle 23: Measured and predicted F10.7 (Graph courtesy of NOAA Space
Environment Center (SEC), USA)

2.3 Geomagnetism

2.3.1 The earth’s magnetic dipole field

Electric currents in the Earth’s core produce a magnetic field around the Earth. In the
absence of any external forces (solar wind), the geomagnetic field near the earth can be
approximated by a simple that located in the earth’s center with an axis tilted about
δ = 11.5◦ degrees from the earth’s rotation axis (see figure 2.8) (Davies, 1965; Prolss,
2004). The geocentric dipole axis intersects the surface of the Earth at the so called north
and south geomagnetic poles.

The geomagnetic field vector, or the geomagnetic induction vector, �B is related to the
so-called magnetic elements B, H , I, D, X, Y , and Z (see figure 2.9). X, Y , and Z
are three field components along orthogonal directions with positive values for geographic
north, east, and down. B and H are the total and horizontal field intensities (unit: Tesla =
V oltSecond/Meter2). The declination angle D is the angle between geographic North

and the geomagnetic North. The angle that �B makes with the horizontal plane is called
the magnetic inclination or dip angle I. The geomagnetic latitude ϕ is given by

ϕ = arctan(
1

2
tan I) (2.17)

The magnetic inclination is independent of the height and is positive in the Northern
Hemisphere. At the geomagnetic poles the inclination is 90◦. The circle on the surface of
the Earth with inclination 0◦ is called the magnetic or dipole equator.
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2.3.2 The real geomagnetic field

The real geomagnetic field departs significantly from the geocentric magnetic dipole field.
The real geomagnetic field is a conservative force-field and can be written as the negative
gradient of a scalar geomagnetic potential field

�B(ϕ, λ, r, t) = −∇V (ϕ, λ, r, t) (2.18)

The geomagnetic potential can be expanded in terms of spherical harmonics (NOAA, 2005)

V (ϕ, λ, r, t) = a

∞∑
n=1

(a

r

)n+1
n∑

m=0

[gm
n (t) cos(mϕ) + hm

n (t) sin(mϕ)]
�

P
m

n (sin(ϕ)) (2.19)

where a = 6371.2km is the standard Earth’s magnetic reference radius and ϕ, λ, and r are

the latitude, longitude and radius in a geocentric spherical reference frame.
�

P
m

n (sin(ϕ)) is
the normalized Associated Legendre function. The gm

n (t) and hm
n (t) are the time-dependent

Gauss coefficients of degree n and order m that from degree 1 to 8 are assumed to have
a quadratic dependence on time

gm
n (t) = gm

n + ġm
n (t − t0) +

1

2
g̈m

n (t − t0)
2 (2.20)

hm
n (t) = hm

n + ḣm
n (t − t0) +

1

2
ḧm

n (t − t0)
2 (2.21)

Where gm
n , hm

n , ġm
n , ḣm

n , g̈m
n , and ḧm

n are constants and time is given in decimal year and
t0 is the reference date of the model. From degree 9 up to 12 a linear dependence on
time of the Gauss coefficients is assumed and for higher degrees, the Gauss coefficients are
assumed to be constant with time.

Spherical harmonics up to degree and order 10 have been fitted by the International As-
sociation of Geomagnetism and Aeronomy (IAGA) to the geomagnetic field observations
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Figure 2.10: The magnetic inclination (dip angle) curves over the world, black dashed curve is geomagnetic
equator and black solid curve is the dip equator

from satellite, land, and marine surveys every five years. These set of spherical harmonics
is known as the International Geomagnetic Reference Field (IGRF).

Using the IGRF, the all seven geomagnetic elements of the geomagnetic field can be
computed at a given location and time. The worldwide variation of the inclination, or
dip angle, computed from IGRF-2005 is shown in figure 2.10. The locus of points where
the geomagnetic inclination is zero is called the dip equator, which is a different from
the geomagnetic equator introduced in the previous section. The difference between the
geomagnetic and dip equators is quite large in the African continental region, but small in
the South American region.

The position on the Earth’s surface where the geomagnetic field line is vertical (I = 90◦)
are called the dip poles. The north and south dip poles are not antipodal. The dip poles
computed from IGRF are called the model dip poles. The model dip poles are also not
antipodal. Due to the pressure of the continuous solar wind on the Earth’s magnetic field,
the actual dip poles move considerable distances over one day, tracing out approximately
oval-shaped loci on a daily basis, with large variation from one day to the next depending
on solar activity.

The geomagnetic dip latitude or dip latitude (denoted by Dipl) is computed from equation
2.17 using the dip angle (Matsushita and Campbell, 1967), i.e.

Dipl = arctan(
1

2
tan(Dip)) (2.22)

where Dip stands for the computed dip latitude from the IGRF.

The geomagnetic latitude and dip latitude of a given point on the Earth generally are
not identical. In 1963, Rawer proposed a new geomagnetic parameter that is close to
the magnetic dip angle at low latitudes, but becomes closer to the geodetic latitude φ as
latitude increases (Bilitza, 1990). This new parameter is called the modified dip latitude
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Figure 2.11: The magnetic dip latitude curves over the world, black dashed curve is geomagnetic equator
and black solid curve is the dip equator
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Figure 2.12: The modified dip latitude curves over the world, black dashed curve is geomagnetic equator
and black solid curve is the dip equator

or modified dip (denoted by Modip or μ) and is defined as follows

tan(μ) =
Dip√
cos(φ)

(2.23)

The dip latitude and modified dip latitude are plotted in figures 2.11 and 2.12 respec-
tively. The modified dip latitude is widely used for description of spatial dependency of the
ionospheric parameters.
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2.3.3 Geomagnetic storm

The geomagnetic field elements are varying in time mainly due to electric currents flowing
above the earth’s surface under influence of the continuous solar wind. A day is geomag-
netically quiet day when the field elements at the earth’s surface are changing gradually
and smoothly due to the daily changing geometrical relationships between the Earth, Sun,
and Moon. Sometimes, due to an suddenly increase in the solar particle radiation over the
earth’s polar upper atmosphere, additional currents circulate in the ionosphere and lead to
irregular and rapid variations of the field elements and causing geomagnetic disturbances
at the Earth’s surface that known as geomagnetic storm. Geomagnetic storms may last
from a few hours to several days. Days with the geomagnetic storms are called geomagnet-
ically disturbed days. Geomagnetic storms especially occur in the northern Polar Regions
(Hunsucker and Hargreaves, 2003), charged particles flow along the geomagnetic field lines
and interact with the neutral atmosphere causing colored displays (the well-known Aurora).
Around solar maximum, the intensity and frequency of geomagnetic storms increases.

2.3.4 Geomagnetic indices

A global picture of the geomagnetic activity is provided by different indices. The most
important measure of the geomagnetic activity level, specifically in the field of ionospheric
research, is called the planetary Kp-index which identifier solar particle radiation by its
magnetic effects. The planetary Kp-index is derived using an average of the horizontal field
intensity H (or D element if it is more disturbed than H) observations from a network
of about 12 geomagnetic observatories distributed around the world between geomagnetic
latitudes 48◦ and 63◦. The planetary Kp-index is computed in three-hourly intervals. It
is a global measure of the magnetic deviations from the regular daily variation during a
3-hour period (Schunk and Nagy, 2000). The Planetary Kp-index is provided through a
semi-logarithmic numerical code that varies between 0 and 9, with the different numbers
corresponding to different geomagnetic activity levels. Table 2.2 gives a classification
of geomagnetic storms by means of the Kp-index in which Kp = 5 and Kp = 9 are
corresponding to minor and extreme geomagnetic storms, respectively. Severe and extreme
geomagnetic storms occur only rarely.

Table 2.2: Classification of the geomagnetic storms [NOAA, 2007]

Scale Kp-index # of storm days per solar cycle (11 years)
G5 (extreme) 9 4
G4 (severe) 8 60
G3 (strong) 7 130
G2 (moderate) 6 360
G1 (minor) 5 900

As an example, figure 2.13 shows the musical Kp-index diagram from October 27 until
October 30, 2003. The horizontal axis is Universal Time (UT) and each bar is a 3-hour
interval. The vertical axis shows the Kp index; the bars are green when the Kp≤ 3,
yellow when Kp = 4, and red when the Kp> 4. The red bars coincide with an extreme
geomagnetic storm that occurred at the end of October 2003.
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Figure 2.13: Kp index from October 27, till October 30, 2003 (Graph courtesy of NOAA Space Environ-
ment Center, USA)

Figure 2.14: Progression of solar cycle 23: Measured and predicted Planetary Ap index (Graph courtesy
of NOAA Space Environment Center (SEC), USA)

Since the Kp index is a semi-logarithmic scale it is not suitable for simple averaging to
obtain a daily index. In order to obtain a daily measure of the geomagnetic activity, the
Kp-index must first be converted into a roughly linear scale before it can be averaged over
the day. This daily value is called the planetary Ap-indexand used as a daily global measure
of the geomagnetic activity for a given day. In figure 2.14 the monthly averaged planetary
Ap-index for the current solar cycle (no. 23) is shown.
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In this chapter the physics of the Earth’s ionosphere is reviewed. Although many books,
such as for example (Prolss, 2004; Schunk and Nagy, 2000; Dieminger et al., 1996; Hall
et al., 1996; Tascione, 1994; Davies, 1989; Ratcliffe, 1972) give a detailed description of the
ionosphere, a condensed description of the physical theory of ionosphere formation and its
variations in time and space is needed. In this chapter first a brief explanation is given for
interaction of solar radiation with the Earth’s upper atmosphere that leads to production
of electrically charged particles. Then the theory of the ionosphere formation based on the
plasma continuity equation and transport process in the ionosphere are described. After that
the formation of the stratified ionosphere is reviewed. Regular variations of the ionosphere,
classical anomalies, ionospheric storm and the traveling ionospheric disturbances are also
addressed.

3.1 Interaction of solar radiation with the Earth’s upper atmo-
sphere

Photons associated to solar UV, EUV, and X radiation collide with particles in the Earth’s
upper atmosphere resulting in the absorption of energy by the particles. The absorbed
energy may lead to three important processes: photodissociation, photoionization, and
the combination of these two, dissociative photoionization (Prolss, 2004). The absorption
processes of interest are

• Photodissociation
O2 + {photon} (λ ≤ 242 nm) → O + O

• Photoionization (λ ≤ 103 nm)
O + {photon} (λ ≤ 91 nm) → O+ + e
N2 + {photon} (λ ≤ 80 nm) → N+

2 + e
O2 + {photon} (λ ≤ 103 nm) → O+

2 + e

• Dissociative Photoionization (λ ≤ 72 nm)
N2 + {photon} (λ ≤ 49 nm) → N+ + N + e

Absorption of solar radiation has a significant influence on the properties of the upper at-
mosphere. For instance, the photodissociation process produces atomic oxygen which not
only changes the chemical composition of the upper atmosphere but also its absorption
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Figure 3.1: A typical representation of the depth of penetration of vertically incident solar radiation into
the atmosphere

characteristics. Photoionization causes the upper atmosphere to transform into a conduct-
ing medium. During absorption processes heat is generated, which raises the temperature
of the upper atmosphere significantly.

The different gas particles are dissociated or ionized only by a certain minimum of amount of
energy from incident photons. Therefore, dissociation and ionization processes of different
gases are performed by different wavelengths. This implies that the depth of penetration
of incident solar radiation into Earth’s atmosphere depends on wavelength. Figure 3.1
shows the depth of vertically incident solar radiation penetration into the atmosphere as
a function of wavelength. For λ > 3100Ȧ the radiation reaches the ground, but for
λ ∈ [2000Ȧ, 3000Ȧ] all radiation is absorbed by photodissociation of ozone at about 40
km, for λ ∈ [1000Ȧ, 1700Ȧ] is absorbed by photodissociation of O2 around 100 km altitude,
and photoionization of the upper atmosphere above 90km is caused by the portion of the
spectrum with λ < 1400Ȧ approximately.

Absorption of radiation in a gas Solar radiation is attenuated while propagating through
atmosphere. The attenuation over a path length ds in a gas is calculated based on the
probability of collision between photons and particles. This probability can be visualized
from figure 3.2. The sum of the gas particle absorption cross section projected onto the
area A is a measure of the probability for a collision over the path length ds. The area
remaining on A after subtracting this sum is a measure of the probability that a photon
traverses this length without a collision. If it is assumed that there is no overlapping
between the projection areas the collision probability dω is then

dω =

∑
σ

A
=

σ n(s)A ds

A
= σ n(s) ds (3.1)

where n is number of particles in volume Ads and σ the absorption cross section. The
absorption cross section is the ability of a particle to absorb a photon of a particular
wavelength.
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Figure 3.2: Probability of an absorption for a photon traversing the path in a gas, adapted from (Prolss,
2004)

Using the above collision probability, the attenuation of a photon flux in a gas volume can
be calculated

dφphoton = −φphoton(s) dω = −φphoton(s) σ n(s) ds (3.2)

where φphoton(s) is photon flux passing at the entrance surface of the gas volume. The
change in photon flux is proportional to the initial photon flux, the size of the absorption
cross section, the density of the absorbing gas particles and length of the propagation path.
Integration of equation 3.2 over path length leads to the Lambert-Beer law

φphoton(s) = φphoton(s0) e−τ(s) (3.3)

with

τ(s) =

∫ s

s0

σ n(s′) ds′ (3.4)

the optical depth of the gas volume. A large value of τ corresponds to a strongly absorbing
and optically thick gas volume, a small value of τ indicates a weakly absorbing and optically
thin gas volume.

The rate of ion production, in the Earth’s ionosphere, depends on the absorption of solar
radiation in the Earth’s upper atmosphere. This topic will be discussed in the next chapter.

3.2 Ionosphere formation theory

The ionosphere is a region of the Earth’s atmosphere where significant numbers of free
electrons and ions are present. The free electrons and ions are produced via ionization
of the neutral particles by solar radiation and by collisions with energetic particles (solar
wind) that penetrate the upper atmosphere. The ionization produced by solar wind is
usually small compared with that produced by photons, and this source of ionization only
plays a role at polar latitudes. In this chapter, we will only consider solar ionizing radiation
(solar extreme ultraviolet and X-ray radiations) in the formation of ionospheric plasma in
the Earth’s atmosphere by photoionization of the neutral atmospheric gases.
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Figure 3.3: Absorption of incident radiation in the vertical direction

Positive ions and electrons in the upper atmosphere are usually well mixed and form a
ionospheric plasma. A plasma contains equal amounts of positive and negative charges in
a volume, such that each volume is electrically neutral (charge neutrality). A plasma is
the fourth state of matter. In many respects it behaves like a gas, but when electric and
magnetic forces are present, it has specific properties, quite unlike those of ordinary gases
(Dendy, 1993).

3.2.1 Plasma continuity equation

The temporal variation of the ionized matter in a unit volume is described by the so-called
density balance or continuity equation, which consists of three principal photochemical
processes: production, disappearance and transport of ions and electrons. Under conditions
of charge neutrality of the ionospheric plasma, the continuity equation may be written as
follows (Ivanov-Kholodny and Mikhailov, 1986)

∂ni

∂t
= qi − Li − div(niVi) (3.5)

In which qi and Li are respectively rates of production and disappearance of ions (per unit
volume and time), ni is the ion concentration, and Vi is the bulk transport velocity of the
ith ionized species. ne =

∑
ni is the electron density. div(niVi) represents the change of

the ion concentration by transport process.

3.2.2 Ion production

The rate of ion production depends completely on absorption of solar radiation in the upper
atmosphere. In order to determine absorption of solar radiation in the upper atmosphere,
an idealized atmosphere with a single gas and horizontal stratification is considered. The
photon flux at hieght h for a parallel beam of monochromatic ionizing radiation entering
the idealized atmosphere at a zenith angle χ (see figure 3.3), can be obtained from the
Lambert-Beer law (see equation 3.3, exchanging the upper and lower integration limits
s = h and s0 = ∞)

φphoton(h) = φphoton
∞ e−τ(h) (3.6)
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Here, φphoton
∞ denotes the solar photon flux at the top of the atmosphere. The optical

depth takes the following form after equation 3.4

τ(h) = sec(χ)

∫ ∞

h

σ n(h′) dh′ (3.7)

with n(h′) the gas particle density and σ the absorption cross section.

Taking the hydrostatic equation (equation 2.6) and the ideal gas law into account, the
optical depth is approximately

τ(h) ≈ sec(χ)
σ p(h)

m g(h)
= sec(χ) σ n(h) H(h) (3.8)

where H(h) is the scale height. To obtain the rate of ion production in a given volume,
first, the number of photons absorbed in the volume should be calculated. For this purpose,
consider a cylinder with base surface area dA and length ds with central axis parallel to
the direction of incident radiation (see figure 3.3). The number of photons entering the
cylinder per time interval dt is (φphoton(h)+dφ) dA dt, and the number of photons leaving
at bottom side per time interval dt is φphoton(h) dA dt. According to equation 3.2, the
number of absorbed photons in the unit volume in the height of h over time interval dt is

dφ

ds

∣∣∣∣
h

= σ n(h) φphoton(h) (3.9)

Substituting equation 3.6 into 3.9 yields

dφ

ds

∣∣∣∣
h

= σ n(h) φphoton
∞ e−τ(h) (3.10)

From figure 3.3 follows that ds (measured towards the earth) is related to dh (measured
upwards) by ds = sec(χ) dh, so that

dφ

dh

∣∣∣∣
h

= σ n(h) φphoton
∞ e−τ(h) sec(χ) (3.11)

Chapman production function Chapman was the first to clearly describe a theory of
formation of ionized regions in an idealized atmosphere. His equation is now known as
Chapman’s formula or Chapman production function for the rate of ion production with
respect to height (Tascione, 1994). To obtain Chapman’s formula, let η be the ionization
efficiency, which gives the number of ion pairs (ion and electron) produced per single
absorbed photon. For an atomic gas and for wavelengths less than the minimum wavelength
of the ionizing radiation of the atom, the ionization efficiency is η ≈ 1. The rate of ion
production is the number of ion pairs produced per unit volume per second at height of
h. It is the product of ionization efficiency and number of absorbed photons, given by
equation 3.10,

q(χ, h) = η
dφ

ds

∣∣∣∣
h

= η σ n(h) φphoton
∞ e−τ(h) (3.12)
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The product of the ionization efficiency and the absorption cross section is known as the
ionization cross-section. By substitution n(h) from equation 3.8 into equation 3.12 yields

q(χ, h) = η
φphoton
∞

H(h) sec(χ)
τ(h) e−τ(h) (3.13)

The maximum rate of ion production is obtained from dq/dh or d(ln(q))/dh which leads
to following equation

dτ

dh

(
1

τ
− 1

)
= 0 (3.14)

Here Chapman assumed that the idealized atmosphere is an isothermal atmosphere. Ne-
glecting the variation of the earth’s gravity with height, the height scale is independent of
height in the isothermal atmosphere. So from now on we write H instead of H(h). In an
isothermal atmosphere the barometric equations (see equations 2.9 and 2.10) for pressure
and density are, respectively,

p(h) = p(h0) exp

(
−h − h0

H

)
(3.15)

n(h) = n(h0) exp

(
−h − h0

H

)
(3.16)

with h0 is an arbitrary reference height. Equations 3.8 and 3.16 can be used to calculate
the vertical gradient of the optical depth

dτ

dh
= sec(χ) σ n(h0) exp

(
−h − h0

H

)
(3.17)

where dτ/dh vanishes only for h → ∞. It follows that τ(hmax) = 1. The maximal rate of
ion production is

qmax = q(χ, hmax) = η
φphoton
∞

H e sec(χ)
(3.18)

with hmax the height at which the maximum occurs. Equation 3.8 at hmax becomes

τ(hmax) = sec(χ) σ n(h0) H exp

{
−hmax − h0

H

}
= 1 (3.19)

where equation 3.19 leads to

exp

{
hmax − h0

H

}
= sec(χ) σ n(h0) H (3.20)

Substituting equation 3.16 into equation 3.7 and taking equation 3.20 into account results
in

τ(h) = − exp

{
−h − hmax

H

}
(3.21)
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It is convenient to transform equation 3.13 by substituting for τ(h) from equation 3.21 to
give

q(χ, h) =
ηφphoton

∞
H e sec(χ)︸ ︷︷ ︸

qmax

exp

{
1 − h − hmax

H
− exp

{
−h − hmax

H

}}
(3.22)

where e is the base of the natural logarithm. Using equation 3.19, the height of maximum
rate of ion production is calculated

hmax = h0 + H ln (σ H n(h0) sec(χ)) (3.23)

Equation 3.22 is known as the Chapman production function. It gives the vertical profile of
the rate of ion production in an idealized isothermal atmosphere with planar stratification
in terms of the maximum rate of ion production qmax and the height of maximum rate of
ion production hmax. It can be seen from equation 3.18 and 3.23 that both the maximum
rate of ion production and the corresponding height hmax are dependent of the solar zenith
angle. Furthermore, qmax depends on solar radiation intensity at top of the atmosphere
φphoton
∞ and the ionization efficiency η while hmax depends on the absorption cross-section

σ, but not on φphoton
∞ and on η. It is usually convenient to express the rate of ion production

in terms of q0
max and h0

max, the corresponding quantities for qmax and hmax when the sun
is overhead χ = 0. For this purpose, from equation 3.18, q0

max is

q0
max = qmax sec(χ) (3.24)

The relation between h0
max and hmax, from equation 3.20, is

exp

{
hmax − h0

H

}
= sec(χ) exp

{
h0

max − h0

H

}
(3.25)

Substituting qmax and hmax from equations 3.24 and 3.25 into equation 3.22 gives

q(χ, h) =
η φphoton

∞
H e︸ ︷︷ ︸
q0
max

exp

{
1 − h − h0

max

H
− sec(χ) exp

{
−h − h0

max

H

}}
(3.26)

Or with z = (h − h0
max)/H as a new parameter to measure heights, in terms of H as a

scale unit, with height h0
max,

q(χ, z) = q0
max exp {1 − z − sec(χ) exp {−z}} (3.27)

Figure 3.4 illustrates the height dependence of the Chapman production function for three
different solar zenith angles. The maximum rate of ion production becomes smaller and
shifts higher altitudes when the solar zenith angle is increased.

Since at large solar zenith angles the upper atmosphere can not be considered as planar (see
figure 3.5), the Chapman production function must be modified by considering a spherical
stratification in the idealized atmosphere. This is much more important in the upper
atmosphere than in the lower atmosphere. Much more effort is required to account properly
for the spherical shell form of the atmosphere. This can be carried out by introducing the
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Figure 3.4: Chapman production function for
three different solar zenith angles. The vertical
axis shows normalized height z = (h − h0

max)/H
in terms of scale height as a unit.

Figure 3.5: Modification of the absorption path
at large zenith angle using the spherical shell for
the upper atmosphere

so-called Chapman grazing incidence function Ch(χ, h) that its detailed derivation is given
in (Chapman, 1931b). The Chapman grazing incidence function is a measure of the depth
of atmosphere (or absorption of ionizing radiation by atmosphere) as a function of the solar
zenith angle and height (Chapman, 1931c)

Ch(χ, h) = sec(χ) −
χ∫

0

exp {r(1 − sin(χ) cos ec(θ)} sec(θ) tan(θ)dθ (3.28)

with r = (Re + h)/H where Re is the radius of the Earth. Note that Ch(χ, h) is a
dimensionless function. It is also understandable that Ch(χ, h) must depend on the height.

It is sufficient to know that for χ ≤ 80◦ the effect of curvature of the Earth can be
ignored and the Chapman grazing function is approximately equal to sec(χ) (Davies,
1989). However, for large zenith angles, the effect of curvature of the Earth is important
and around sunrise and sunset the values of Ch(χ, h) are very different from sec(χ) (see
figure 3.6).

Taking the spherical stratification into account in the idealized atmosphere, the optical
depth in equation 3.7 is modified by replacing sec(χ) by the Chapman grazing incidence
function. The equation 3.26 becomes

q(χ, h) = q0
max exp

{
1 − h − h0

max

H
− Ch(χ, h) exp

{
−h − h0

max

H

}}
(3.29)

Figure 3.7 shows the Chapman production function using the Chapman grazing incidence
function Ch(χ, h) and using secant function sec(χ) for solar zenith angle χ = 88◦. It is
clear that production rate and the height of maximum rate of ion production are changed.

In order to determine the vertical profile of the rate of ion production in the real upper
atmosphere, the Chapman production function must be modified. First, the upper atmo-
sphere consists of several gases rather than a single gas. Therefore, σn(h) in equations
3.8 and 3.12 must be replaced by a sum of the products accounting for the contributions
from the various gas particles. Furthermore, because the incident solar radiation is poly-
chromatic rather than monochromatic, it is necessary to add up the different contributions
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Figure 3.6: Illustration of the Chapman grazing incidence function versus solar elevation angle (H=50
km, h=350 km)

from the individual wavelengths. Accordingly, equation 3.12 becomes the following form
for real upper atmosphere

q(χ, h) ≈
∑

λ

∑
i=O,N2,O2

ηi σi ni(h)φphoton
∞ (λ) exp

⎧⎨
⎩−Ch(χ, h)

∑
j=O,N2,O2

ηj σj nj(h)Hj

⎫⎬
⎭

(3.30)

where
∑
λ

indicates a summation over the different wavelengths of interest and
∑

i=O,N2,O2

and
∑

j=O,N2,O2

are summations over the gas particles of the upper atmosphere (only the

most important gases are considered). Note that the upper atmosphere is surely not
isothermal, but considering non-isothermal condition is too complicated to be considered
in the analytical calculations.

3.2.3 Ion and electron disappearance

Each ion in the ionosphere has a finite lifetime: either it is destroyed by ionic chemical
reactions or after a certain time it is recombined with an electron, returning to the neutral
state. Once electrons are produced by solar radiation in the upper atmosphere, there are
three principal reactions in which electrons may disappear after some time:

• Radiative recombination (an electron combines with an atomic positive ion)
O+ + e → O + {photon}

• Dissociative recombination (an electron combines with a molecular ion)
O+

2 + e → O + O
N+

2 + e → N + N
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Figure 3.7: Chapman production function using the Chapman grazing function (solid) and using se-
cant function (dashed) for solar zenith angle χ = 88◦. The vertical axis shows normalized height
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max)/H in terms of scale height as a unit.

NO+ + e → N + O
Note that neutral nitrogen oxide is only a minor atmospheric gas and is mostly
produced as the final product of the charge exchange process due to ion-molecular
reactions between primary ions (O+, N+

2 and O+
2 ).

• Attachment (an electron attach to a neutral particles and produce negative ion)
O2 + e → O−

2

Since the radiative recombination is a much slower process than dissociative recombination
the greater part of electrons tend to recombine with positive molecular ions (Gran, 1965).
The attachment process only occurs in lower altitudes of the ionosphere, where more
neutral particles are available, to form negative ions (D-region). The negative ions are in
turn rapidly neutralized by further reactions, so that loss of electrons by the attachment
can be neglected.

If only the dissociative recombination is considered the recombination rate of ions and
electrons can be computed as follows. Let the number density of electrons and positive
ions be denoted by n−(h) and n+(h), respectively. If we assume that there is no negative
ion then n(h) = n−(h) = n+(h). The rate of electron loss is considered to be proportional
to the number of possible collision between electrons and ions n2(h) = n−(h)n+(h) in a
unit volume of the ionosphere in a unit time and it is given by

L(h) =
dn(h)

dt
= −α(h) n2(h) (3.31)

where α(h) is known as the quadratic recombination coefficient which varies only weakly
with height via its temperature dependence (Prolss, 2004). Negative sign denotes that the
electron density is decreasing by time. This quadratic form of the recombination rate is



3.2 Ionosphere formation theory 31

only valid for lower part of the ionosphere (E-region). In the higher altitudes (F2 region)
where atomic oxygen ion dominates, the radiative recombination between atomic oxygen
ion and an electron is not the main process. Instead two charge exchange reactions first
produce NO+ and O+

2 from O+

O+ + N2 → NO+ + N (3.32)

O+ + O2 → O+
2 + O (3.33)

which are then recombined with an electron by the rapid process of dissociative recombi-
nation. This implies that the loss rate is proportional to the number of possible collision
between O+ and the neutral molecules (Oxygen and Nitrogen molecules). If n0(h) denotes
the number density of neutral molecules then by assuming charge neutrality (number of
O+ is equal to number of electrons n(h) )

L(h) =
dn(h)

dt
= − k n0(h)︸ ︷︷ ︸

β(h)

n(h) (3.34)

where k is coefficient of proportionality and β(h) the linear recombination coefficient. The
loss rate depends now linearly on the electron density n(h). The linear recombination
coefficient β(h) in equation 3.34 has the same height-dependence as the neutral molecules
(Ratcliffe, 1972). The height at which the recombination coefficient changes from quadratic
(α) to linear β(h) is called the transition level ht.

3.2.4 Chapman layer

Under an idealized atmosphere, a simple model for vertical electron density profile can
be obtained by substitution of the Chapman production function (equation 3.29) into
the plasma continuity equation 3.5. If transport term is neglected and the dissociative
recombination rate is assumed to be proportional to the square of the electron density, the
time variation in the electron density can be written as:

∂ne

∂t
=

ηφphoton
∞
eH

exp {1 − z − Ch(χ) exp(−z)} − α n2
e (3.35)

z =
h − h0

max

H
(3.36)

Solution of equation 3.35 under photochemical equilibrium (rate of ionization equal to
recombination rate, q = L) ∂ne

∂t
= 0 results in an idealized vertical profile of the electron

density called the Chapman layer or Chapman model

ne(z, χ) = n0
max exp

{
1

2
[1 − z − Ch(χ) exp(−z)]

}
(3.37)

In which n0
max is the peak electron density with the Sun overhead (χ = 0)

n0
max =

√
η φphoton∞

eHα
(3.38)
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Figure 3.8: Vertical electron density profile in Chapman layer

The peak electron density for a given solar zenith angle is computed from equation 3.24

nmax =

√
η φphoton∞ cos(χ)

eHα
(3.39)

which is independent of the ionization cross-section. The height of the peak electron
density is obtained by equation 3.23 which it is independent of the solar radiation intensity,
but depends on the absorption cross-section. Considering sec(χ) as an approximation the
Chapman grazing incidence function, the Chapman model can be re-written as follows with
the reference height is replaced by the height of the peak electron density

ne(z, χ) = nmax exp

{
1

2
[1 − z − exp(−z)]

}
(3.40)

z =
h − hmax

H
(3.41)

In practice, any ionized medium in which the recombination rate is proportional to square of
the electron density can be reasonably modeled by the Chapman model (Tascione, 1994).
As an example, a typical form of the electron density profile is illustrated in figure 3.8. The
electron density is almost parabolic around the height of peak electron density.

3.3 Transport process in the ionosphere

The Earth’s external magnetic field plays a key role in the charged particles transport in
the ionosphere. This is because of the fact that the earth’s magnetosphere and ionosphere
are closely linked together via magnetic field lines and strong interactions between the field
lines and the charged particles result in the capture of the particles and impose restrictions
for their motion in the ionosphere. In the ionosphere, charged particles transport are mainly
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related to the process of diffusion in a gravity field, and to thermospheric winds and electric
fields (Davies, 1989).

3.3.1 Charged particle motion in a magnetic field

The motion of a charged particle in magnetic and electric fields is described by the Lorentz
equation (Walt, 1994)

�F = m
d�v

dt
= q

(
�v × �B + �E

)
(3.42)

where �F is the force in Newton, q is the charge in Coulomb, �E is the electric field in
V olt/m, �B is the magnetic field in [Tesla] and �v is the velocity in m/s. Equation 3.42
can be separated into components parallel and perpendicular to the magnetic field giving

�F ‖ = m
d�v‖

dt
= q �E‖ (3.43)

�F⊥ = m
d�v⊥

dt
= q

(
�v⊥ × �B + �E⊥

)
(3.44)

Equation 3.43 is the usual equation for describing the motion of a charged particle in an
electric field. In equation 3.44, the magnitude and direction of the magnetic force is a
function of the velocity, therefore the solution of equation 3.44 is complicated when the
magnetic field is not uniform. For simplicity, we consider only a uniform magnetic field and
the solution of equation 3.44 is described only for following two cases:

• In the absence of an external electric field �E = 0, the velocity �v‖ along the magnetic
filed lines is constant according to equation 3.43, the acceleration d	v⊥

dt
in equation

3.44 must be perpendicular to �v⊥, so that also
∥∥�v⊥∥∥ = constant. Therefore, the

trajectory of the charged particle in a uniform magnetic field with no electric field
is a helix (see figure 3.9). The projection of the helix on to a plane perpendicular
to magnetic filed line is a circle with radius is r = mv⊥/qB, which is the so called

Larmor radius. The angular frequency of this gyration motion is ω = v⊥/r in
radian

s
, which is called the angular gyro-frequency. The direction of the magnetic

force dependence on the charge, therefore direction of circular motion for positively
charged particles is opposite to that for negatively charged particles.

• The presence of an external electric field, �E = 0, results in a drift motion of the
charged particles in the geomagnetic field. If �E‖ = 0 and constant, which the particle
is accelerated along the magnetic field line. The force q �E⊥ which is perpendicular
to �B, results into a drift of charged particles in a direction is perpendicular to both
�B and �E. The drift velocity is obtained by

�v
Drift

=
�E⊥ × �B∥∥∥ �B

∥∥∥2 (3.45)
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The drift velocity is charge independent. Therefore, both ions and electrons move together
(ambipolar) with the same velocity in the same direction perpendicular to both magnetic
and electric fields (see figure 3.10).

3.3.2 Plasma diffusion

The Earth’s gravitational force causes a downward motion of the ions and electrons in the
ionospheric plasma. In the other direction the vertical pressure gradient force induces an
upward motion of the ions and electrons. Since charged particles are only free to move
parallel along the geomagnetic field, the forces must be mapped along the geomagnetic
field lines in order to compute the total flux or diffusion speed of the ions and electrons (see
figure 3.11). The expression for the diffusion speed of ions and electrons along geomagnetic
filed line, under the ambipolar approximation that the ions and electrons move together
with the same velocity, is given by (Davies, 1989)

v = −D(h) sin I(
1

ne

∂ne

∂h
+

Mg

2kT
) (3.46)

where M and T are respectively the ion mass and temperature, D(h) is plasma (or am-
bipolar) diffusion coefficient, ne is electron density, I is the geomagnetic inclination and
k is Boltzmann’s Constant. Since D(h) is inversely proportional to the neutral density,
diffusion increases rapidly at higher altitude. In equation 3.46, the first term in the bracket
relates to the pressure gradient force and second term is due to the gravitational force.
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Figure 3.11: Plasma diffusion along geomagnetic field lines

Since diffusion across the magnetic field is inhibited, the vertical component of diffusion
vanishes at the geomagnetic equator (I = 0◦). Vertical diffusion has a maximum at the
geomagnetic poles where I = 90◦.

3.3.3 Thermospheric wind

A considerable temperature differences exist in the upper ionosphere between day and
night side of the Earth. This creates a pressure difference that drives a horizontal wind in
the upper atmosphere from the dayside toward the nightside, called the neutral wind or
thermospheric wind. Since the horizontal neutral wind can not move the ions and electrons
across the earth’s magnetic field lines, they stick to the magnetic field lines like rings on a
bar; they can slide along the field lines easily but can not move across it. If the horizontal
wind is toward the equator, which occurs mainly at night in mid-latitude, the ionospheric
plasma is lifted and tends to increase the ion density at higher altitudes of the ionosphere.
If the wind is toward the pole, which occurs mainly by day at mid-latitude, the plasma is
lowered and tends to reduce the ion density in the higher altitudes of the ionosphere (see
figure 3.12). These effects depend on the geometry of the magnetic field and vary with
latitude and the geomagnetic inclination. The plasma velocity along geomagnetic filed is
given by

w = V cos I (3.47)

where V is speed of the neutral wind which follows from the equation of motion by taking
the horizontal pressure gradient, the inertia and viscosity of the air, gravity, the Coriolis and
centripetal accelerations due to the Earth’s rotation, and ion-drag into account (Rishbeth,
1972). Note that at the geomagnetic poles (I = 90◦), the thermospheric plasma velocity
is non existent.
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Figure 3.12: Illustration of the vertical plasma transport caused by the neutral wind in the mid-latitude
region

3.3.4 Electromagnetic drift

The conductivity of the ionosphere varies with height and reaches a maximum about 100 km
(E-region). This is known as the central dynamo layer or the conducting plasma layer. This
is due to an increase of the collision frequency of the charged particles with respect to their
angular gyro-frequencies. The conducting plasma layer is moved across the earth’s magnetic
field under the influence of mainly the sun and the moon. The solar EUV radiation, is not
only responsible for the ionization at low-altitudes of the ionosphere, but also heats up
the atmosphere and induces the thermospheric wind and resulting horizontal atmospheric
movements with period of 12 hours. The gravitational attraction of the moon results in an
atmospheric tide with a period of half a lunar day. The motion of the conducting plasma
layer across the geomagnetic field generates an electric field ( �E) and as a result a system
of electric currents is produced in the layer. The pattern of the currents is fixed to the
Sun, with the Earth rotating under it. The electric currents produced by the solar heating
and lunar atmospheric tide are called Sq and L electric currents, respectively (Matsushita
and Campbell, 1967). The idealized, current system is shown in figure 3.13.

At the dip equator, the geomagnetic field lines are horizontal (I = 0◦), and this special
geometry leads to an intense current sheet, known as the equatorial electrojet (see figure
3.13) that flows along the dip equator and is concentrated in a strip only a few degrees wide
in geomagnetic latitude (Tascione, 1994). During day time, the equatorial electrojet flows
toward the east, and during night time toward the west, however the produced electric field
in night time is small because of small electron concentration at night.

The presence of an eastward electric field results in an upward drift motion of the charged
particles (see section 3.3.1) into the high altitudes (F-region). The drift velocity is charge
independent, therefore both ion and electron move together in the direction perpendicular
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Figure 3.13: Idealized Sq electric current system induced by the solar heating (adapted from Tascione,
2004)
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Figure 3.14: Electromagnetic drift caused by the west-to-East electric field

to the magnetic field �B and the electric field �E. This ambipolar movement of the charged
particles in the ionosphere is known the electromagnetic drift or �E × �B drift, with velocity

vdrift =
E

B
cos(I) (3.48)

The electromagnetic drift is the main mechanism that can cause plasma to move across
magnetic field lines at high ionospheric altitudes (see figure 3.14).

3.4 Ionospheric stratification

The above the turbopause, which typically starts at 80 km, in the Earth’s atmosphere
density of each atmospheric component reduces exponentially with height. The reduction
depends on the scale height H . Since scale height is inversely proportional to mass of the
component and proportional to the temperature, the relative concentration of components
is a function of height, and in high altitudes the lightest components become predominant
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(Banks, 1969). Typically profiles are given in figure 2.4. From 80 km to 170 km, the pre-
dominant components are initially N2 and O2. Above 170 km atomic oxygen O, produced
by photodissociation of O2 (O2 + photon → O + O) becomes predominant. Finally, at
very high altitudes, atomic hydrogen becomes predominant.

According to section 3.1, the photoionization and photodissociation of the atmospheric
components are caused by various parts of the solar UV spectrum. The absorption of
the solar incidence energy depends on the absorption cross-sections, or more accurately
on the ionization cross-section (see equation 3.2). Consequently, because of the height
dependency of the composition and the absorption characteristics of the atmosphere, the
Earth’s ionosphere has a tendency to be horizontally stratified at all latitudes, so that
different ionospheric regions are formed. The term regions is preferred rather than layers
because the boundary transitions are not distinct. The ionospheric regions not only differ
from the predominant ion composition point of view, but also their formation mechanisms
are not the same. From the composition point of view, the ionosphere can be divided into
four main ionized regions: the D, E, F and topside regions in order of increasing altitude.
In the following sections these ionospheric regions are explained. Note that the heights
given in the following sections should only be considered as indication only.

3.4.1 The D-Region

The lowermost region of the ionosphere, bellow a height of roughly < 90 km, is called the
D-region. It has comparatively weak electron density that develops shortly after sunrise
and disappears shortly after sunset. In the D-region the primary source of photoionization
is solar X-rays, causing ionization of the major neutral gases N2 and O2, and strong solar
Lyman-α radiation (wavelength λ = 1216Ȧ) causing ionization of the nitric oxide NO.
As can be seen from figure 3.1, the Lyman-α wavelength can penetrate to heights of the
D-region with little absorption at high altitudes. Since most of the X-rays radiation that
could ionize gases in the D region are absorbed at greater heights this relatively strong
radiation plays important role in the ion production in the D-region. However, the vertical
profile of the electron density in the D-region does not have a typical maximum (Hunsucker
and Hargreaves, 2003).

Since the neutral gas density is relatively large in the D-region collision with electrons and
positive ions are more frequent resulting in negative ions (mostly O−

2 ) due to attachment
(see subsection 3.2.3). This O−

2 can react with other particles to produce other kind of
negative ions. The distinguishing feature of the D-region is therefore the predominance
of negative ions. The produced negative ions disappear either by recombination with
a positive ions or by a process in which the electron is detached to become free again
(Ratcliffe, 1972). The attachment and detachment of electrons occur very fast, and the
electrons finally disappear mostly due to recombination with positive ions.

3.4.2 The E-Region

The E-region is an ionospheric region that extends between heights typically from 90 to
170 km. This region of the ionosphere is dominated by O+

2 and NO+ ions. O+
2 is mainly
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produced by photoionization of neutral diatomic oxygen and NO+ produced by a rapid
charge exchange process between primary ions O+, N+

2 and O+
2 (see subsection 3.2.3).

Unlike the D-region, the ionization of the E-region remains at night due to the solar particle
(or proton) radiation, though it is considerably diminished.

The collision frequency of the charge particles increased with respect to their angular gyro-
frequencies in heights of the E-region (Prolss, 2004) and results in a very short lifetimes
of the principal ions NO+ and O+

2 (about 10 second). Because of the high collision
frequency, the transport of the charged particles also becomes quiet difficult, therefore the
transport process is negligible in the E-region as compared with the other two photochemical
processes (Tascione, 1994; Ivanov-Kholodny and Mikhailov, 1986; Schunk and Nagy, 2000;
Titheridge, 2000). The main consequence of this condition is that the conductivity of the
ionosphere is increased in this region and reaches to maximum value in height about 100
km, which leads to possibility of the electric currents and the formation of the central
dynamo layer or the conducting plasma layer.

In the E-region, NO+ and O+
2 disappear principally by dissociative recombination, which

first forms unstable intermediate molecules, then separate into the individual neutral atomic
species (see subsection 3.2.3). In the E-region, the ion loss rate is proportional to squared
electron density n2

e. Because of this, under geomagnetically quiet condition, the vertical
electron density profile of the E-region is reasonably well explained by the Chapman model.
It can be said that the E-region of ionosphere is formed under photochemical equilibrium
(ion production rate is balanced by the ion disappearance rate). The electron density has
a maximum at a height about 110 km and the maximum electron density is typically 105

electrons per cubic centimeters during the day in the mid-latitudes. Because the neu-
tral density is greater than 1011 cm−3 the E-region is only a weakly ionized region with
respect to higher regions (Schunk and Nagy, 2000). The mean coefficient for the disso-
ciative recombination of electrons and molecular ions (O+

2 and NO+) is α ≈ 10−7 cm3/s
(Titheridge, 2000).

3.4.3 The F-Region

The F-region is located between 170 km and 600 km. It is divided into lower F1 (170-200
km) and upper F2 (200-600 km) sub-regions.

The F1-Region In the F1-region, the main primary ions which are produced directly by
photoionization are O+ and N+

2 . The most numerous is the atomic oxygen ion O+. Since
atomic oxygen ion rarely losses its charge by the radiative recombination; it is always first
converted to molecular ion and then the molecular ion losses its charge by the dissociative
recombination process (see section 3.2.3). In other words, indirect dissociative recombi-
nation is carried out in case of the F1-region. While in case of the E-region, dissociative
recombination is carried out directly. This is the distinguishing feature between the E- and
F1-regions.

In the F1-region due to the relatively high density of the neutral molecules (Oxygen and
Nitrogen molecules) the loss rate is proportional to squared electron density n2

e. Thus,
vertical electron density profile of this region is also explained reasonably well by the Chap-
man model. It implies that the formation mechanism of the F1-region is governed by the
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photochemical equilibrium.

The maximum electron density of the F1-region appears as a bulge below the main peak
(F2-peak) of vertical electron density profile of ionosphere when the height of maximum
electron density of the F1-region (h0

max,F1) is smaller than the transition height (ht) (Rat-
cliffe, 1972; Hunsucker and Hargreaves, 2003). The bulge is called the F1-peak and its
appearance depends on the solar cycle and the solar zenith angle. Since ht − h0

max,F1 is
increased for small solar zenith angles the F1-peak is more common near midday and in
summer time (Ratcliffe, 1972).

The F2-Region This is the region between roughly 200 km to 600 km in which has the
greatest concentration of electrons of any region. The F2-region is the most important
region from navigation and space communication point of view. It is also the region which
is the most variable and the most irregular from prediction point of view. The electron
concentration reaches its maximum value in the F2-region (particularly in the F2-peak)
and persists during day and night times. F2-region is dominated by the atomic oxygen ion
O+. The maximum electron density is typically 106 electrons per cubic centimeters, which
is roughly a factor of 10 greater than that of the E-region. The neutral density (108 cm−3)
is still orders of magnitude greater than the ion density (Schunk and Nagy, 2000). Above
the F2-peak, the electron density decreases exponentially with altitude.

In this region, the rate of ion production is maximized. Due to a smaller number of
the neutral particles the recombination rate is proportional to the electron density ne

(see subsection 3.2.3). Furthermore, the collision frequency of the charge particles is less
than their angular gyro-frequencies, which results in an increased lifetime of the charged
particles. Therefore the transport process can not be neglected. In the F2-region, all
three photochemical processes contribute simultaneously to its formation. In the F2-region
a transition from photochemical equilibrium to diffusive equilibrium takes place (Ivanov-
Kholodny and Mikhailov, 1986; Schunk and Nagy, 2000).

3.4.4 The topside region and the protonosphere

The topside ionosphere is the region above the F2-peak extended from about 600 to 1000
km where atomic Oxygen ion is still dominant. In this region, the decrease in the density of
neutral particles does increase the coefficient of diffusion, but also decreases the production
and loss rates. Consequently, the transport process becomes the principal process, while
the processes of ionization and recombination are insignificant in the formation mechanism
of the topside region. In other words, the diffusive equilibrium is dominant. The electron
density decreases exponentially with altitude in the topside region.

Above the topside region, there is a region where the lighter ions (Hydrogen ion H+ and
Helium ion He+) dominate. This region of ionosphere is effectively is fully ionized, is
called the plasmasphere or the protonosphere. The boundary between the topside and
protonosphere regions is defined as the transition from atomic oxygen to atomic hydrogen
as the primary ion constituent. This transition occurs at an altitude roughly 600 to 2000 km.
The protonosphere is often considered as part of the ionosphere for radio and navigation
applications.



3.4 Ionospheric stratification 41

Electron density

H
ei

gh
t [

km
]

F2 Layer

F1 Layer

E Layer

D Layer

H+

O+

O
2
+ ; NO +

O
2
−

Diffusive
Equilibrium

Photochemical
Equilibrium

Figure 3.15: A typical height profile of the ionospheric electron density during day time at the mid-latitude
region (as the summation of the E, F1, and F2)

3.4.5 Vertical electron density profile of the ionosphere

In table 3.1, the main characteristics of the ionospheric regions are outlined. A typical
profile of the vertical electron density during day time at the mid-latitude region is shown
in figure 3.15. The solid curve gives the electron density and dashed curves indicate the
contributions from each regions (D, E, F1, F2, and topside). Vertical structure of the
ionosphere governed by two equilibrium regimes, photochemical and diffusive, which play
an important role in the formation of the ionospheric regions at different heights. The E-
and F1-regions are formed in photochemical equilibrium, the topside region is formed in
diffusive equilibrium, and the F2-region is a transition between these two equilibriums. In
this thesis we will assume that also in the F2-region the diffusive equilibrium regime is the
dominant regime.

Table 3.1: The characteristics of the ionospheric regions

Region D E F1 F2 Topside Protonosphere

Neutral Particles N2, O2, NO N2, O2, NO N2, O2, O N2, O2, O O, H, He H, He
Height range [km] < 90 90-170 170-200 200-600 600-1000 1000 <

Nominal neutral 1011 < 1011 108 < 108 < 108 -

density [m−3 ]

Dominant ions N+
2 , O+

2 , NO+ O+
2 , NO+ O+

2 , NO+, O+ O+ O+ H+, He+

Source of ionization X rays, X rays, charge X rays X rays X rays X rays
Layman-α particle radiation

Dominant photochemical Recombination, Recombination, Recombination, Recombination, Transport Transport
process Photoionization, Photoionization Photoionization Photoionization,

Attachment Transport
Type of recombination - Dissociative Dissociative Dissociative Radiative -

recombination recombination recombination recombination
Recombination coefficient - Quadratic Quadratic Linear Linear -
Chapman Layer No Yes Yes No No No
Appearance duration Daytime Daytime Daytime Daytime Daytime Daytime

Nighttime Nighttime Nighttime Nighttime

Nominal daytime < 109 1011 2 × 1011 1012 1010 109

electron density [m−3 ]
Nominal height of Maximum - 110 km ht 300 km - -
electron density
Equilibrium regime - Photochemical Photochemical - Diffusive Diffusive

equilibrium equilibrium equilibrium equilibrium
Special features Negative ions Maximum - Plasma fountain - Exosphere

(mostly O−
2 ) conductivity
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3.4.6 Characteristic parameters of the ionospheric regions

Every electromagnetic wave is modified during its passage through the ionosphere and its
propagation direction, amplitude and velocity are changed. This is not only needs to be
considered in radio communication, it can be also used to extract information about the
properties of the ionospheric regions for ionospheric research. The interaction between an
electromagnetic wave and the ionosphere results in the oscillation of the charge particles in
the ionosphere, regardless the geomagnetic field. The angular frequency of the oscillation
is given by (Dendy, 1993)

ω =

√
ne2

ε0m
(3.49)

which n is charged particle density per cubic meter, e and m are charge and mass of the
particle and ε0 is the electric permittivity of vacuum (8.85 × 10−12 Farad/m). Since the
mass of an ion is much larger than that of an electron, the ions oscillate at much lower
amplitude than the electrons, and so to a very good approximation the motion of the ions
can be ignored. In other words, only the electrons respond to the wave. Therefore the
angular frequency of electrons is generally known as the plasma frequency. As a handy
rule-of-thumb ωp � 56.4

√
n or fp � 8.98

√
n where ωp is in 1/s and fp is in Hz (Prolss,

2004).

It is well-known that the ionosphere is a dispersive medium and the type of interaction
between a radio wave (from KHz to GHz) and the ionosphere depends on the frequency of
the wave. When frequency of a radio wave is less than the plasma frequency, the ionosphere
behaves like a metallic mirror, if the frequency is larger than the plasma frequency the
wave penetrates into the ionosphere without being reflected. Due to height dependency of
the electron density in the ionosphere a transmitted radio wave from the ground in vertical
direction penetrates into the ionosphere up to that height where the local plasma frequency
reaches the wave frequency. At this point the wave is reflected back toward the Earth (see
figure 3.16). Radio sounding using a ionosonde take advantage of this property of the
ionosphere to measure maximum frequency at which a wave reflects from each ionospheric
region. This is known as the critical frequency or peak plasma frequency or maximum
plasma frequency of the region.

The ionosphere does not reflect radio waves on frequencies above 30 MHz, because the
electrons can not respond fast enough to changes in the electric field of those waves to
reflect them back to the Earth for these high frequencies. Consequently, frequencies above
30 MHz usually penetrate the ionosphere without any reflection and are very useful for
ground to space communications.

Typically, an ionospheric region (E, F1, and F2) is generally described by the peak plasma
frequency (foE, foF1, and foF2) and peak height (hmE, hmF1, and hmF2) for which
the electron density decreases with altitude on both sides of peak height. The maximum
or peak electron density of the ionospheric regions, which is proportional to the squared
peak plasma frequencies, are denoted by NmE, NmF1, and NmF2. Another ionospheric
characteristic parameter, which is usually used in modeling of the ionosphere, is a propa-
gation factor defined as M(3000)F2 = MUF (3000)/foF2 with MUF (3000) the highest
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Figure 3.16: Illustration of the peak plasma frequency and the peak height

frequency refracted by the ionosphere which can be received at a distance of 3000 km from
the transmitter. M(3000)F2 is called the F2 region transfer parameter and is closely cor-
related with the peak height of the F2 region (Dieminger et al., 1996). These parameters,
which are known as ionosonde parameters, are time and space dependent.

3.5 Spatial and temporal variability of the ionosphere

The ionosphere shows a wide range of spatial and temporal variability of the electron
density, ranging from small fluctuations to large changes. In this section we describe the
regular variations of the ionosphere typically under geomagnetically quiet condition.

3.5.1 Regular variations

The most important physical property of ionosphere is the existence of free electrons.
According to equation 3.30, the ion production rate depends on the solar zenith angle and
ionizing radiation intensity. Because of the temporal variation of the Earth-Sun geometry,
which affect the solar zenith angle, and the changing in solar ionizing radiation intensity
during the solar cycle, the number of free electrons per unit volume at a certain point in the
ionosphere depends on time. The temporal variation of the Earth-Sun geometry is related
to the Earth’s daily rotation and yearly revolution. Accordingly, the ionosonde parameters
in the ionospheric regions vary with altitude, latitude, longitude, universal time, season,
solar cycle, and geomagnetic activities.

The spatial dependency of the electron density with respect to height has been explained
in the previous section. The variation of the electron density with geomagnetic longitude is
mainly related to changing in the solar zenith angle. The variation of the electron density
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Figure 3.17: Plasma fountain from the equatorial region to higher latitudes

versus geomagnetic latitude is not only affected by the solar zenith angle, but also due to
effects of the geomagnetic field which plays an important role in the transport process.
Hence, considerable differences exist between the ionospheric conditions at low, middle,
and high latitudes.

Specific features of the ionosphere that departure from expected behavior of the Chap-
man model are described as anomalies. The F2-region has the greatest electron density
compared to other regions and it is also the most variable region. From point of view
of the Chapman theory the F2-region’s behavior is anomalous in several ways. These are
sometimes called the classical anomalies of the F2-region.

Equatorial anomaly During daytime, the eastward electric field near the dip equator
produces a upward �E× �B drift which in conjunction with plasma downward diffusion along
the magnetic field lines due to the influence of gravity and pressure gradient forces, result
in the formation of a plasma fountain (see figure 3.17). The plasma fountain is centered at
the dip equator and transports plasma from the equatorial region to higher latitudes (Bailey
et al., 1997). Because of this, when maximum electron density of F2-region (NmF2) at
noon-time is plotted with respect to dip latitude, the electron density curve has two peaks
north and south of dip equator (Anderson, 1981), as shown in figure 3.18. The peaks are
located in the equatorial region on either side of the dip equator at ±16◦ to ±18◦ dip
latitude (Anderson, 1973). This feature of ionosphere is the most distinctive feature of the
F2-region in low latitude ionosphere and it is called the geomagnetic anomaly, or Appleton
anomaly or the equatorial anomaly.

Diurnal anomaly The ion production rate is mainly governed by the intensity of solar
radiation and the density of atmospheric gases. From theory, it is expected that ion
production reaches its maximum when the solar zenith angle reaches its maximum value at
local noon time. Since maximum temperature of the upper atmosphere occurs at around
14:00 local time (Rishbeth, 1972), and the atmospheric density reaches its maximum value
at the same time, the maximum ion production occurs after the local noon time. This
departure from expected Chapman behavior is termed diurnal anomaly.

Seasonal anomaly The noon values of the peak electron density in the F2-region are
usually greater in winter than they are in summer, whereas the Chapman theory leads us to
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Figure 3.18: Typical equatorial anomaly in midday

expect the opposite. This is known as the seasonal anomaly in the F2-region. The amount
of seasonal anomaly is spatial dependent and also depends on the solar cycle (Ivanov-
Kholodny and Mikhailov, 1986). It is more evident in high middle latitudes than in low
and high latitudes. The main reason for the seasonal anomaly is that the ratio between
the atomic and the molecular components at the altitudes of the F2-region is changed
and results in changes in the rates of ion production and recombination of electrons. This
mechanism leads to increase loss rate of the electrons in the summer hemisphere (Dieminger
et al., 1996).

3.5.2 Geomagnetic regions

The ionospheric electron density has a large dependence on the geomagnetic latitude. The
ionosphere may be divided broadly into three regions that have rather different properties
and features according to their geomagnetic latitudes: the Equatorial, Mid-latitude, and
Polar (or Auroral) regions, see figure 3.19.

Equatorial region This the region spanning about 20◦ either side of the geomagnetic
equator. Due to horizontal geomagnetic field geometry (I = 0◦) at the dip equator, the
electromagnetic drift and associated plasma fountain, results in a large variability of the
electron density in low latitudes which makes it complication to model.

Mid-Latitude region The mid latitude region of the ionosphere includes geomagnetic
latitudes from about 20◦ to about 60◦. It is out of the direct influence from phenom-
ena associated with the plasma fountain. In this region, only solar photon radiation is
responsible for the ionization process and the electron density is generally not affected by
the particle radiation. The mid latitude ionosphere is the best understood of all regions.
The day to day changes in the E, F1, and F2-regions show regular variations and little
irregular variations associated to changes in the neutral atmosphere density and winds.
The peak electron density occurs at the height where three photochemical processes are
of comparable importance.

Polar region The polar region consists of the high latitudes, which are divided in the
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Figure 3.19: Division of the Earth into geomagnetic regions. Plotted are the geomagnetic parallel lines in
the geodetic reference frame.

auroral zone (approximately 60◦-70◦ geomagnetic latitudes) and the polar cap (poleward
of the auroral zone). At high latitudes the geomagnetic field runs nearly vertical, and this
leads to the existence of an ionosphere that is considerably more complex than that in
the middle and low latitudes. This complexity is also because the geomagnetic field lines
connect the high latitudes to the outer part of the magnetosphere which is driven by the
solar wind, whereas the ionosphere at mid latitude is connected to the inner magnetosphere,
which essentially rotates with the Earth and so is less sensitive to external influence. In the
mid and low latitude regions, the primary source of ionization is the solar photon radiation,
but at high latitudes, solar proton radiation produces additional ionization particularly in
the E-region.

3.6 Solar disturbances

A sudden increase in the solar wind energy (the solar disturbance), accompanied by an
increase in the solar photon radiation or an increase in the velocity and concentration of
the solar charge particle radiation in the polar upper atmosphere, leads to not only electric
currents but also heats the polar upper atmosphere. Solar disturbances includes geomag-
netic activity (geomagnetic storm) and ionospheric disturbances (ionospheric storm), which
increase in intensity of the Aurora. Ionospheric disturbances are non-normal and irregular
variation of the ionosphere that are usually observed during geomagnetic activity. Al-
though all ionospheric regions are affected by the solar disturbances, the most significant
perturbations occur in the F-region particularly near the peak electron density. Therefore,
subsequent sections discuss only disturbances in the F2-region.
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Figure 3.20: Changes in vertical electron density profile during a positive (dotted) and a negative (dashed)
ionospheric storms in the F2 region, solid curve is the profile during normal ionosphere

3.6.1 Ionospheric disturbances

Observations show that during geomagnetic activity the density can both increase or de-
crease at mid latitudes. The term of ionospheric storm is used to describe several dis-
turbances that appear in the ionosphere following a geomagnetic storm. The ionosphere
reacts to the geomagnetic activity in a complex way and its behavior varies with latitude,
longitude, time of day and season (Dieminger et al., 1996). The mid latitude F2-region
responses to geomagnetic storm in three phases: 1) an initial or positive phase in which
the peak electron density increases with respect to pre-storm conditions and lasts for a few
hours on the first day of a storm (Hunsucker and Hargreaves, 2003), known as positive
ionospheric storm, 2) a negative phase in which the peak electron density decreases relative
to pre-storm conditions, known as negative ionospheric storm, which can last several days.
3) Finally, the ionosphere gradually returns to normal conditions over a period of one to
several days in the recovery phase. The changes in the vertical electron density profile are
shown in figure 3.20.

A geomagnetic storm can produce thermospheric winds, generate electric currents and
change the composition in the upper atmosphere. These three effects influence the normal
ionosphere structure. Every one of them can make non-normal variation in the photoion-
ization, recombination, and transport processes and cause the irregular changes in electron
concentration of the ionosphere. It should be noted that the morphology and the physics
of the ionospheric storms are not completely understood and a number of open issues
concerning this phenomenon exist.
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3.6.2 Atmospheric gravity waves

In general, atmospheric waves are classified into three main groups that differ in the scale
and origins (Schunk and Nagy, 2000). The largest scale waves which are propagating on a
global scale, include the atmospheric tides. The smallest scale waves are related to acoustic
waves, which do not play a prominent role in the dynamics of the atmosphere. The third
group of atmospheric waves, which are produced by the buoyancy forces in the atmosphere,
is known as the atmospheric gravity waves (AGWs).

AGWs have typically a localized source and propagate vertically as well as horizontally with
a limited range of wavelengths. The amplitude of the AGWs grows exponentially with
height in order to maintain a constant energy flux through an atmosphere whose density
decreases with height (see figure 3.21) (Clark et al., 1971; Matsushita and Campbell,
1967). They can be either generated in the heights below the turbopause (stratosphere
and mesosphere) and then propagate to the ionosphere or generated in the lower ionospheric
heights (D- and E-regions). Presently it is not clear how AGWs with sources in the lower
atmosphere reach the ionosphere (Rieger and Leitinger, 2002). Several sources of AGWs
are known: below the turbopause by the flow of air over mountains, volcanoes, earthquakes,
and above turbopause by ionospheric disturbances mostly due to aurora at the polar region
(Afraimovich et al., 2002).

Typically, AGWs are divided into three groups based on period and wavelength (Hunsucker
and Hargreaves, 2003). The large-scale AGWs have horizontal wavelengths of about 1000
km that wave periods are more than an hour and horizontal velocities of 250-1000 m/s.
The medium-scale AGWs have horizontal wavelengths of several hundred kilometers, wave
periods of about 15-70 minutes, and horizontal velocities of about 90-250 m/s. The
small-scale AGWs have periods of 2-5 minutes with velocities less than 300 m/s and their
wavelengths are less than those of the medium-scale AGWs.

AGWs play an important role in the dynamics of the upper atmosphere because they
interact with the ionospheric plasma. AGWs passing through the upper atmosphere leads
to changes in the ionospheric plasma and causes wavelike fluctuations of electron density
(especially in the F2-region). These wavelike disturbances in the ionosphere are known as
traveling ionospheric disturbances (TIDs).
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3.6.3 Traveling ionospheric disturbances

Usually, AGWs manifest themselves in the ionosphere as traveling ionospheric disturbances
which are due to collisional coupling between neutral and ionized particles. This force acts
in the direction of motion of the neutral particles, but there are some complications in
the ionosphere, as this effect is strongly modified by the geomagnetic field, which limits
charged particles motion only along the magnetic field lines.

TIDs are usually divided into three classes (Rieger and Leitinger, 2002; Velthoven, 1990):

• Large Scale TIDs (LSTIDs) are the signature of AGWs generated in the auroral zone
or are generated from specific geophysical events like geomagnetic sub-storms at
heights of around 100 km, with horizontal phase velocities from 100 to 300 m/s
(exceeding the velocity of sound). The horizontal wavelengths are greater than 1000
km, with periods ranging from 30 minutes to 3 hours. LSTIDs are mostly propagating
in the mid latitude region inthe direction of the equator.

• Medium Scale TIDs (MSTIDs) are generated mostly by AGWs originated in the lower
atmosphere, but some MSTIDs with propagation toward equator in mid latitude could
be signature of AGWs originated in the auroral zone. The wavelengths are between
100 to 1000 km, with periods from about 12 minutes to 1 hour, and horizontal phase
velocities from 100 to 300 m/s.

• Small Scale TIDs (SSTIDs) have their origin only in the lower atmosphere. The
wavelengths, velocities and periods are smaller than those of MSTIDs and nearly
always show interference patterns.

The appearance of LSTIDs are a comparatively rare and correlate clearly with geomagnetic
activity, while MSTIDs are regularly observed at the F2-region heights during the daytime
both in the quiet and in disturbed ionosphere (Kalikhman, 1980). The LSTIDs move
predominantly equatorwards but the movements of MSTIDs, and especially SSTIDs, are
more complex.
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In this chapter the GNSS observation equations are reviewed and the propagation of GNSS
signals through the ionosphere is discussed. The structure of this chapter is the following.
We will start with overview on different GNSS constellations in section 4.1. The funda-
mental GNSS observation equations (for phase and code) are given in section 4.2. The
underlying simplifications will be described. Section 4.3 first describes the geometric effects
of the ionospheric refraction, then reviews the ionospheric error on the GPS signals that
approximated as a sum of error components, referred to as first-order, higher-order and
signal bending terms. In section 4.4 a simple single-layer representation of the ionosphere
is introduced to approximate the higher-order and bending effects. Many models for the
TEC have been developed in the past, among others, GIM maps and well-known Klobuchar
model. A classification of the ionospheric models is described in section 4.5. In section 4.6,
the mathematical model for estimating the ionospheric effect on the GPS data using the
geometry-free linear combination of the code and phase observables is derived. This model
will be used for measurement of slant total electron content (TEC) in the next chapters.
In section 4.7 the concluding remarks of this chapter are summarized.

4.1 Global Navigation Satellite Systems (GNSS)

The Global Positioning System (GPS) as a space-based navigation system has been devel-
oped by the US military to provide real-time and world wide absolute positioning under all
weather conditions. It is the first Global Navigation Satellite System (GNSS) offering the
accuracy nowadays for e.g. surveying, geodesy, navigation, and geophysics. More or less
synchronously to GPS, the former Soviet Union has been developing a similar system under
the name GLONASS. Both of these systems are now undergoing extensive modernization.
Other systems such as the European Galileo system and the Compass from China, that are
still under development, are joining the GNSS club (Hein and Eissfeller, 2007).

GPS The nominal GPS constellation consists of 24 satellites that orbiting over six orbital
planes with 55◦ inclination and with an orbital radius about 26500 km. The present
constellation exceeds the nominal constellation with more than 30 satellites. Since the first
GPS satellite was launched in 1978, there have been 5 generations of GPS satellites, the
so-called Block I, Block II/IIA, Block IIR (Replenishment), Block IIR-M (Replenishment-
Modernization) and Block IIF (Follow-on). The last successful launch was on March 24,
2009 from Block IIR-M generation.

The Block I, Block II/IIA, Block IIR satellites, were launched before December 2005,
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transmit their signals at two frequencies (L1=1575.42 MHz and L2=1227.6 MHz) in the
L-band. The GPS carrier frequencies are derived from the same (atomic) clock driven
oscillator with a frequency of 10.23 MHz. The carriers are modulated by so-called PRN
(Pseudo Random Noise) codes, which are unique for each satellite. In this thesis the GPS
satellites will be referred to by their PRN code. In the Block I, Block II/IIA, Block IIR
satellites, two types of PRN codes: Precision (P) code and Coarse/Acquisition (C/A) code,
are modulated on the carriers. The carrier waves on L1 and L2 are modulated by P-code
and only the L1 carrier is modulated by the C/A-code. The P-code has a 10 times higher
resolution than the C/A-code and thereby the determination of the pseudoranges can be
done more precisely. Although the P-codes are much more precise than C/A-code, the
P-codes are encrypted to the secret Y-code which are only available for military users. The
civilian users can just access the encrypted P-codes, referred to as P(Y)-codes. This is
called Anti-Spoofing (A-S). On the contrary, the C/A-code is available for all GPS users.
The C/A-code defines Standard Positioning Service (SPS) and the P(Y)-code defines the
Precise Positioning Service (PPS). Although these services are of relatively good quality,
the United States planed for modernizing the signals in order to improve the quality and
protection of the both civil and military users.

According to the GPS modernization plan, from December 2005 the L2 carrier wave, like
the L1, was modulated with a civil C/A like code in the GPS satellites. Furthermore, for
military users a Military (M) code were modulated on L1 and L2 carriers. These satellites
are known as the Block IIR-M generation. Block IIF satellites are the latest generation
which will transmit a third frequency (L5=1176.45 MHz) additional to L1 and L2. The
L5 wave will be modulated by two I and Q codes. Table 4.1 gives an overview of the GPS
signals.

Table 4.1: Overview of current and future GPS signals

carrier frequency [MHz] wavelength [cm] civil precise military
L1 154 × 10.23 = 1575.42 19.03 C/A P M
L2 120 × 10.23 = 1227.60 24.42 C/A P M
L5 115 × 10.23 = 1176.45 25.48 I+Q

GLONASS The GLObal NAvigation Satellite System (GLONASS) is the Russian nav-
igation satellite system equivalent to GPS. Its nominal constellation is composed of 24
satellites with an orbital inclination of 64.8◦ and an orbital radius of 25500 km. GLONASS
also transmit on the L1 and L2 frequency band, but each satellite transmits its signal with
a different frequency offset. The GLONASS carriers are often denoted by G1 and G2 to dis-
tinguish them from the GPS carriers. Like GPS, GLONASS is also a dual-use (military and
civilian) system that provides both the SPS and PPS services. The complete GLONASS
constellation of 24 operational satellites has only been available for a short time in 1996.
The current status is far away from its nominal numbers and as of January 18, 2007 only
9 active GLONASS satellites were transmitting from space. It is planned the GLONASS
should become full-operational by the end of 2009 (Hein and Eissfeller, 2007).

Galileo The Galileo is the European global navigation satellite system. Unlike GPS and
GLONASS, Galileo is under civilian control that have international participation and in-
vestment. The Galileo satellite constellation will consist of 30 satellites (27 operational +
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3 non-active spares). The satellites are divided over three orbital planes with orbital radius
29600 km at an inclination of 56◦. Galileo is not yet in operation but two Galileo’s satellite
GIOVE-A and GIOVE-B were successfully launched respectively in December 2005 and in
April 26 2008. Galileo’s satellites transmit on four carrier frequencies that are given in table
4.2.

Table 4.2: Galileo’s signal plan (+: with integrity message, ++: with commercial data) (adopted from
(Verhagen, 2005))

carrier frequency [MHz] wavelength [cm] OS SOL CS PRS
E1 154 × 10.23 = 1575.42 19.0 I/N I/N+ I/N++ G/N
E6 125 × 10.23 = 1278.75 23.4 C/N++ G/N
E5b 118 × 10.23 = 1207.14 24.8 I/N I/N+ I/N
E5 116.5 × 10.23 = 1191.79 25.2
E5a 115 × 10.23 = 1176.45 25.5 F/N F/N F/N

Galileo plans to provide four types of navigation services:

• The Open Service (OS) provides basic navigation service, like GPS SPS, using freely
accessible signals and which are the Open Access Navigation Signals (denoted as
F/N) on E5a and the Integrity Navigation Signals (denoted as I/N) on E5b and
E1 (also denoted as L1 or E2-L1-E1), but without the commercial data or integrity
messages.

• Safety-Of-Life (SOL) provides access to the same signals as OS users, but additionally
SOL users have access to the I/N including the integrity messages transmitted on
the E5b and E1 carriers.

• The Commercial Service (CS) is also available at the same signals at the OS, but
users will have additional access to commercial data (for which they have to pay)
transmitted on the Integrity Navigation Signals on E5b and E1, and to the Controlled
Access Navigation Signals (denoted as C/N) on E6.

• The Public Regulated Service (PRS) will include navigation and timing services
through Restricted Access Navigation Signals (denoted as G/N) on E6 and E1.

Compass A Chinese satellite navigation system called Compass (or Beidou-2) which is
presently under development. As with GPS, GLONASS, and Galileo, the system is a dual-
use system which will provide two navigation services: an open service for (commercial)
users and an authorized positioning, velocity, and timing communications service (Hein and
Eissfeller, 2007). Compass consists of a constellation of 30 non-stationary satellites, five
geostationary (GEO) satellites, and 3 more satellites in geosynchronous orbit (Hofmann-
Wellenhof et al., 2008). The non-stationary satellites which will be in 3 orbital planes
with an inclination of 55◦ and with orbital radius of 27900 km. The geosynchronous orbit
satellites have an altitude of 35785 km with an inclination angle equal to 55◦. China sent
the first non-stationary Compass satellite into orbit on April 13, 2007 and the first GEO
satellite of Compass has been launched on February 3, 2007. Each Compass’s satellite
transmits navigational signals the same for carrier frequencies. Little official information is
publicly available about structure of the Compass’s signals.
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4.2 GNSS observation equations

The GNSS signals, receiver technology and observation equations have been described in
many text books, such as for example (Hofmann-Wellenhof et al., 2001; Parkinson and
Spilker, 1996; Teunissen and Kleusberg, 1998; Seeber, 2003; Leick, 2003). Here, we will
give the GPS observation equation for both code and carrier phase observables.

4.2.1 Code or pseudo-range observation equation

A pseudo-range from code measurements is a measure of the geometric distance between
receiver r and satellite s. The code pseudo-range observable ϑs

r,j on the carrier with
frequency j is

ϑs
r,j = c [tr − ts] + εps

r,j
(4.1)

with c the velocity of light, tr−ts the time difference between signal reception at receiver tr
and signal transmission at satellite ts, and εps

r,j
the measurement error or code observation

noise. It is essential to describe the receiver and satellite times in a reference time frame.
Using the GPS time as a common reference time frame, the reception and transmission
times of signal can be expressed by the following equations

tr(ti) = ti + dtr(ti) (4.2)

ts(ti − τ s
r (ti)) = ti − τ s

r (ti) + dts(ti − τ s
r (ti)) (4.3)

where (ti−τ s
r (ti)) and ti are respectively time of transmission and time of observation in the

GPS time frame (in seconds). Note that the time of transmission is obtained by reducing
the time of observation with the signal travel time τ s

r (ti). The receiver and satellite clocks
errors are respectively dtr(ti) and dts(ti − τ s

r (ti)), which are time dependent. Inserting
equations 4.2 and 4.3 into 4.1, yields

ϑs
r,j(ti) = cτ s

r (ti) + c [dtr(ti) − dts(ti − τ s
r (ti))] + εps

r,j
(ti) (4.4)

To obtain the geometric range, the signal travel time must be corrected for systematic
effect such as atmospheric refraction (Ionospheric and Tropospheric delays), instrumental
delays (in the receiver and satellite) and other non-random effects such as multipath. The
signal travel time for code observation τ s

r,j,g(ti) is

τ s
r,j,g(ti) =

1

c
ρs

r(ti − τ s
r,j,g(ti))︸ ︷︷ ︸

τs
r (ti)

+1
c
Is
r,j,g(ti) + 1

c
T s

r (ti) + 1
c
dms

r,j(ti)

+ds
,j(ti − τ s

r,j,g(ti)) + dr,j(ti) + εps
r,j

(ti)

(4.5)

with:

ρs
r(ti − τ s

r,j,g(ti)) : Geometric distance between satellite and receiver
at the time of transmission [m]

Is
r,j,g(ti) : Ionospheric delay (frequency dependence) [m]

T s
r (ti) : Tropospheric delay [m]

dms
r,j(ti) : Sum of other (non-random) code errors [m]

ds
,j(ti − τ s

r,j,g(ti)) : Instrumental code delay of the satellite at the time of transmission [s]
dr,j(ti) : Instrumental code delay of the receiver [s]
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The travel time for the code is the group travel time of the signal, is different from the
travel time for the carrier, which is why a subscript g is used. Substituting of equation 4.5
for the travel time in equation 4.4, the full code observation equation is obtained:

ϑs
r,j(ti) = ρs

r(ti − τ s
r,j,g(ti)) + Is

r,j,g(ti) + T s
r (ti) + dms

r,j(ti)
+c

[
dtr(ti) − dts(ti − τ s

r,j,g(ti)) + dr,j(ti) + ds
,j(ti − τ s

r,j,g(ti))
]
+ εps

r,j
(ti)

(4.6)

The mathematical expectation of the random error should be zero, i.e. E
{
εps

r,j
(ti)

}
= 0.

4.2.2 Carrier beat phase observation equation

The GPS carrier beat phase or carrier phase observable is obtained by trading the phase
difference between the received signal and a copy in the receiver. The carrier phase ob-
servable is more precise than the code observable, but it is an ambiguous measure of the
geometric distance between a satellite and the receiver. The carrier phase observable [in
cycles] with frequency j can be mathematically written as

ϕs
r,j(ti) = ϕr,j(ti) − ϕs

,j(ti − τ s
r,j(ti)) + N s

r,j + εϕs
r,j

(4.7)

with ϕs the phase of the carrier signal in satellite at transmission time (ti − τ s
r (ti)), and ϕr

the phase of the carrier signal in the receiver at reception time ti, an integer number of full
cycle N s

r is unknown, and εϕs
r,j

measurement error or phase observation noise. The phase
ambiguity is time-constant as long as there is no interruption when tracking the satellite
(no cycle slips are present).

The phase of the receiver and satellite can be written as

ϕr,j(ti) = fjti + ϕr,j(t0) (4.8)

ϕs
,j(ti − τ s

r,j(ti)) = fjt
s(ti − τ s

r,j(ti)) + ϕs
,j(t0) (4.9)

with

fj : carrier frequency [s−1]
ϕr,j(t0) : initial phase in the receiver [cycles]
ϕs

,j(t0) : initial phase in the satellite [cycles]

Substituting equations 4.8 and 4.9 into 4.7 and using equations 4.2 and 4.3 for the reception
and transmission times in the GPS time frame, yields

ϕs
r,j(ti) = fj

[
dtr(ti) + τ s

r,j(ti) − dts(ti − τ s
r,j(ti))

]
+
[
ϕr,j(t0) − ϕs

,j(t0) + N s
r,j

]
+εϕs

r,j
(ti)

(4.10)

Similar to the travel time of the code observable in equation 4.5, the signal travel time of
the phase can be re-written as

τ s
r,j,ϕ(ti) =

1

c
ρs

r(ti − τ s
r,j,ϕ(ti))︸ ︷︷ ︸

τs
r (ti)

−1

c
Is
r,j,ϕ(ti)+

1

c
T s

r (ti)+
1

c
δms

r,j(ti)+δs
,j(ti−τ s

r,j,g(ti))+δr,j(ti)
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(4.11)

where

ρs
r(ti − τ s

r,j,ϕ(ti)) : Geometric distance between satellite and receiver
at the time of transmission [m]

Is
r,j,ϕ(ti) : Ionospheric delay (frequency dependence) [m]

T s
r (ti) : Tropospheric delay [m]

δms
r,j(ti) : Sum of other (non-random) phase error [m]

δs
,j(ti − τ s

r,j,ϕ(ti)) : Instrumental phase delay in satellite at the time of transmission [s]
δr,j(ti) : Instrumental phase delay in receiver [s]

The tropospheric delay is independent of the frequency and equal for both phase and
code observables. Substituting equation (4.11) in equation (4.10) gives the carrier phase
observation equation [in cycles] as follows

ϕs
r,j(ti) = 1

λj

[
ρs

r(ti − τ s
r,j,ϕ(ti)) − Is

r,j,ϕ(ti) + T s
r (ti) + δms

r,j(ti)
]

+fj

[
dtr(ti) + δr,j(ti) − dts(ti − τ s

r,j,ϕ(ti)) + δs
,j(ti − τ s

r,j,ϕ(ti))
]

+
[
ϕr,j(t0) − ϕs

,j(t0) + N s
r,j

]
+ εϕs

r,j
(ti)

(4.12)

where, λj = fj/c is wavelength of the carrier frequency j in vacuum. The mathematical

expectation of the measurement error is zero, i.e. E
{

εϕs
r,j

(ti)
}

= 0.

4.2.3 Simplifications of the observation equations

Although the signal travel time is different for different observation types and different
frequencies, in computation of the transmission time of the signal it is allowed to assume
that the signal travel times of code and phase for all frequencies are equal:

ti − τ s
r,j,g(ti) = ti − τ s

r,j,ϕ(ti) = ti − τ s
r (ti) (4.13)

The difference between the travel times of different observation types and frequencies is
less than 10−7 seconds which corresponds to sub-millimeter satellite position differences.
Furthermore, the clocks errors and instrumental delays are stable during the small sub
microsecond.

The ionospheric delay consist of the first, second, higher orders and bending effects which
will be described in the next section. The first order effect, which contains the main part
of the ionospheric delay, has opposite sign for code and phase observables. By ignoring
very small higher order and bending effects, taking only first-order ionospheric effects into
account, we may write Is

r,j(ti) = Is
r,j,g(ti) = −Is

r,j,ϕ(ti) (without specifying subscript of
observable type). Since the ionosphere is a dispersive medium, the ionospheric delay for
the other frequencies can be computed by the following equation

Is
r,j(ti) = μjI

s
r,1(ti); μj = λ2

j

/
λ2

1 = f 2
1

/
f 2

j (4.14)

with Is
r,1 the ionospheric delay on L1. Hence, the ionospheric delay can be parameterized

as the first-order ionospheric slant delay of code observable on the L1 frequency Is
r (ti) =

Is
r,1(ti) (the frequency subscript 1 for L1 will be omitted) in all observation equations.
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Non-random errors δm and dm respectively for phase and code observations are included
antenna phase center variations and offsets and phase wind-up. The GPS observations
have to be corrected for these errors. The corrected observations are shown in unit of
length as

φs
r,j(ti) = λjϕ

s
r,j(ti) − δms

r,j(ti)

ps
r,j(ti) = ϑs

r,j(ti) − dms
r,j(ti)

(4.15)

Other non-random errors like multipath can not be modeled a priori. For simplicity these
are taken into account in εs

r(ti).

Since the initial phase of the signal and integer phase ambiguity are not computed separately
therefore they are lumped together which results in a non-integer ambiguity term in unit
of length Ms

r,j as follows

Ms
r,j = λj

(
ϕr,j(t0) − ϕs

,j(t0) + N s
r,j

)
(4.16)

When the GPS observables are not used for the positioning purpose a geometry-dependent
term gs

r,j can be introduced by summing all frequency-independent terms as follows (in unit
of length)

gs
r(ti) = ρs

r(ti − τ s
r (ti)) + T s

r (ti) + c [dtr(ti) − dts(ti − τ s
r (ti))] (4.17)

Taking all above mentioned assumptions and simplifications into account and considering
the instrumental code delays in unit of length, the modified observation equations (for code
and phase) are given as follows for epoch ti :

φs
r,j(ti) = gs

r(ti) − μjI
s
r (ti) + δr,j(ti) + δs

,j(ti) + Ms
r,j + εϕs

r,j
(ti)

ps
r,j(ti) = gs

r(ti) + μjI
s
r (ti) + dr,j(ti) + ds

,j(ti) + εps
r,j

(ti)
(4.18)

where the instrumental delays are in meter. Note that for notational convenience we used
ds

,j(ti) instead of ds
,j(ti − τ s

r (ti)) and δs
,j(ti) instead of δs

,j(ti − τ s
r (ti)).

4.2.4 Tropospheric effects

The troposphere, the lower part of the atmosphere, is a non-dispersive medium whereas
the ionosphere is a dispersive medium (the propagation velocity is frequency dependent)
in the upper part of the atmosphere. In contrast to the ionosphere, in the non-ionized
troposphere the phase and group velocities of the electromagnetic wave are exactly equal,
and also independent of the frequency. The tropospheric delay is not constant, but variable
in both space and time. More details on the tropospheric refraction effects can be found
in e.g. (Kleijer, 2004).

4.3 Ionospheric propagation of GNSS signals

When an electromagnetic wave propagates in free space, its velocity is known to be equal
to the velocity of light. When the wave propagates in a medium, its velocity changes due
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Figure 4.1: Bending of a wave through inhomogeneous refractive medium.

to interaction with the particles present in that medium. This is known wave refraction
and the amount of refraction is described by the medium specific refractive index.

Refractive index Refractive index of a medium n is defined as the ratio of the velocity of
light in free space c and the velocity of the wave in a medium v,

n = c/v (4.19)

Since the refractive index is a ratio of two velocities, it is a dimensionless quantity. In free
space the refractive index equals 1. When the refractive index is smaller than 1 we say that
the wave is advanced and when it is larger than 1 it is delayed.

The ionospheric refractive index is unfortunately not a constant. This is because the
ionosphere is an inhomogeneous, anisotropic and dispersive medium. In the following, the
propagation properties of the ionosphere are described in detail.

4.3.1 Inhomogeneity of the ionosphere

When a property of a medium is the same at different points of the medium, the medium
is known as a homogeneous or uniform in that property. The medium is inhomogeneous
when the property changes at different points. A medium can be homogeneous in one
property and inhomogeneous in another. Since electron density within the ionosphere differs
for different locations, the ionosphere is an inhomogeneous medium. As a consequence,
the ionospheric refractive index varies significantly in the spatial domain. Changing the
ionospheric refractive index along propagation path results in bending of the path of a
signal ray, making the path longer than the geometrical straight line path ρ, see figure 4.1.

Geometric refraction effects According to Fermat’s principle, among all possible paths
that the wave might take in an inhomogeneous refractive medium, it takes the path which
requires the shortest time. In figure 4.1, the path length between transmitter and receiver
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denoted as l, is computed as follows

l = c

∫
dt = c

∫
dl/v =

∫
ndl = ρ +

∫
(n − 1)dρ︸ ︷︷ ︸

ι

+ (

∫
ndl −

∫
ndρ)︸ ︷︷ ︸

κ

(4.20)

where ρ denotes the geometric distance between transmitter and receiver. The path length
due to refraction consists of two effects: A propagation effect, denoted as ι, and a bending
effect, denoted as κ. Therefore, the ionospheric delay between a GPS satellite s and a
receiver r can be written as

Is
r = ιsr + κs

r (4.21)

4.3.2 Dispersivity of the ionosphere

If the refractive index of a medium depends upon the frequency of the wave, the medium is
said to be dispersive medium. To describe the propagation of a modulated electromagnetic
wave through a dispersive medium, we should distinguish between the phase velocity,
denoted as vφ, and the group velocity of the signal, denoted as vg. Hence, refractive
indexes for phase and group of the signal differ and are

nφ = c/vφ

ng = c/vg
(4.22)

with vg ≤ vφ. The relation between vg (velocity of the modulation of a wave) and vφ

(velocity of the carrier wave) is given by the Rayleigh equation

vg = vφ + f
∂vφ

∂f
(4.23)

where f is frequency of the carrier wave. Using this equation, the phase and group refractive
indexes are connected as follows

ng = nφ + f
∂nφ

∂f
(4.24)

For electromagnetic waves in the L-band (a portion of the electromagnetic spectrum ranging
roughly from one to two GHz), the ionosphere is dispersive (but the troposphere is not).
Therefore, the ionosphere acts on the GPS carrier frequencies as a dispersive medium. It
means that the phase refractive indexes of the GPS carriers frequencies are different. And
also, the group and phase refractive indexes are different. Since vg < vφ, the time of
the code, denoted as τ s

r,j,g, is larger than the corresponding travel time of phase, denoted
as τ s

r,j,ϕ where j stands for frequency. This phenomenon is referred to as code-carrier
divergence (Misra and Enge, 2006).

So the ionospheric delay for the GNSS phase and code observations at frequency j between
satellite s and receiver r are written as follows

Is
r,j,ϕ = ιsr,j,ϕ + κs

r,j

Is
r,j,g = ιsr,j,g + κs

r,j

(4.25)

The bending effects for the phase and code observations are the same.
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4.3.3 Anisotropy of the ionosphere

A medium is said to be isotropic if the phase refractive index (or the phase velocity)
of a wave is independent of the direction. Since the Earth’s ionosphere is coupled with
the geomagnetic field, the ionospheric refractive index depends on the direction of wave
propagation relative to the geomagnetic field ( �B). Therefore, the ionosphere is not an
isotropic medium for electromagnetic wave propagation. That is why the GNSS waves are
circularly polarized. With a linear polarization, the free electrons in the ionosphere would
interact with the wave and cause its polarization to rotate which is known as Faraday
rotation, which would cause signal fluctuations. However, the Faraday rotation does not
or hardly affect the intensity of the received signal when the waves are circularly polarized
(Hall et al., 1996).

There is also another effect. Under influence of the geomagnetic field a GPS wave is
split up into two approximately parallel wavefronts, which each have an opposite (circular)
polarization. One wave, the ordinary wave, has a right-handed polarization, but the other
one, the extraordinary wave has a left-handed polarization. Both waves show a small
difference in propagation velocity and consequently in refractive index. This effect is known
as double refraction or birefringence. Despite this double refraction, only the ordinary wave
needs to be considered in case of GNSS, because the extraordinary wave contains less than
0.35% of the power (for L1) (Bassiri and Hajj, 1993).

4.3.4 Ionospheric refractive index

The phase refractive index for the electrically neutral ionosphere, with a uniform magnetic
field and neglecting the effect of the positive ions on the wave, is expressed by the complex
Appleton-Hartee (or Appleton-Lassen) formula. Ignoring absorption effects due to collisions
between the electrons, the formula reads, e.g. (Giraud and Petit, 1978)

nj,φ,± =

√√√√√1 − Xj

1 − Y 2
T,j

2(1−Xj )
±
√

Y 4
T,j

4(1−Xj)2
+ Y 2

L,j

(4.26)

with Xj = f 2
p /f 2

j and YT,j and YL,j the transversal respectively longitudinal components of
Yj = fg/fj . So YT,j = Yj| sin θ| and YL,j = Yj| cos θ|, where θ is the angle between Yj and
YL,j. The frequency fp is the electron plasma frequency, which according to equation 3.49,
is computed as fp =

√
Ane with A ≈ 80.6 m3/s2 and ne is the plasma electron density

in m−3. The frequency fg is known as the electron gyro-frequency, which according to
subsection 3.3.1, it is computed as fg = ω

2π
= e

2πme
B where e = 1.60218 ·10−19 is electron

charge in Coulomb and me = 9.10939 · 10−31 is electron mass in kg.

Note that the inhomogeneous, anisotropic and dispersive properties of the ionosphere are all
present in the Appleton-Hartree formula. The inhomogeneity of the ionosphere is reflected
in the free electron density ne, which is not a constant, but a function of place and time.
Moreover, the dispersive ionosphere can be recognized in the dependence on the frequency
of the wave. The anisotropic ionosphere is expressed in the terms depending on B. The
double-refraction is reflected by the ± sign, which means that either a plus or minus sign
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can be used, depending on the polarization of the wave: A ”+” corresponds to the left-
handed circularly polarized wave (the extraordinary wave) and a ”-” to the right-handed
circularly polarized wave (the ordinary wave). Since for GNSS only the ordinary wave is
significant, from now on only the refractive index using the minus sign is considered.

Using some simplifications for the Appleton-Hartree formula, an approximated ionospheric
phase refractive index of the GNSS signals can be given (Hartmann and Leitinger, 1984)

nj,φ = 1 − 1

2

f 2
p

f 2
j

− 1

2

f 2
p fg| cos θ|

f 3
j

− 1

8

f 4
p

f 4
j

(4.27)

and by using equation 4.24, the ionospheric group refractive index reads

nj,g = 1 +
1

2

f 2
p

f 2
j

+
f 2

p fg| cos θ|
f 3

j

+
3

8

f 4
p

f 4
j

(4.28)

It is seen that the phase refractive index is always smaller than 1, while the group refractive
index is larger than 1. This implies that in the ionosphere the phase of the wave is advanced,
while at the same time its group is delayed.

4.3.5 Ionospheric first-, higher-order and bending effects

Substituting ionospheric refractive index in equation 4.20 by the equations 4.27 and 4.28
gives respectively the phase and group propagation effects

ιj,φ = − 1
2f2

j

∫
f 2

p dρ − 1
2f3

j

∫
f 2

p fg| cos θ|dρ − 1
8f4

j

∫
f 4

p dρ

ιj,g = 1
2f2

j

∫
f 2

p dρ + 1
f3

j

∫
f 2

p fg| cos θ|dρ + 3
8f4

j

∫
f 4

p dρ
(4.29)

The electron plasma frequency and the electron gyro frequency are not constant along
the path and therefore remain within the integrals. Equation 4.29 shows that both the
ionospheric phase advance and group delay can be expanded as a function of the same
three effects. These three effects are better known as the ionospheric first-, second- and

third-order delays, denoted as ι
(1)
j,g , ι

(2)
j,g and ι

(3)
j,g respectively. Substituting fp =

√
Ane and

fg = e
2πme

B into equation 4.29, they are given as

ι
(1)
j,g

.
= 1

2f2
j

∫
f 2

p dρ = A
2f2

j

∫
nedρ

ι
(2)
j,g

.
= 1

f3
j

∫
f 2

p fg| cos θ|dρ = eA
f3

j 2πme

∫
B| cos θ|nedρ

ι
(3)
j,g

.
= 3

8f4
j

∫
f 4

p dρ = 3A2

8f4
j

∫
n2

edρ

(4.30)

The second- and third-order delays are often referred to as the ionospheric higher-order
terms. Adding the effects of signal bending, the ionospheric phase advance, denoted by
Ij,φ, and the ionospheric group delay, denoted by Ij,g, can be written as

Ij,φ = −ι
(1)
j,g − 1

2
ι
(2)
j,g − 1

3
ι
(3)
j,g + κj

Ij,g = ι
(1)
j,g + ι

(2)
j,g + ι

(3)
j,g + κj

(4.31)
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From these expressions it can be seen that the first-order phase effect is equal but opposite
of sign to the first-order group effect. The second- and third-order phase effects are also
opposite of sign to their corresponding group counterparts, but they do not have the same
magnitude. The second-order phase effect is half the second-order group effect, while the
third-order phase effect is one third of the third-order group effect.

4.4 Ionospheric Total Electron Content (TEC)

The first-order ionospheric delay is a function of the integral term
∫

nedρ of equation 4.30.
This term is well known as the Total Electron Content (TEC) along the geometric line from
receiver to satellite. TEC is the number of electrons in a slant column with unit-squared
cross-section in the ionosphere along the signal path. It is expressed in TECU (TEC-Unit)
with 1 TECU= 1016 electrons per m2. Using this TECU, the first-order delay may be
rewritten as

ι
(1)
j,g =

A

2f2
j

TEC (4.32)

with A ≈ 80.6 m3/s2. TEC is highly variable in time and in space due to the variable
ionospheric electron density. Moreover, it is important to realize that TEC strongly depends
on the elevation angle of the satellite (receiver-satellite geometry). Since the signal path
length through the ionosphere varies with the satellite position in the sky, as with a lower
elevation, the signal path length gets longer and results in higher TEC.

4.4.1 A single-layer ionosphere approximation

In order to make an (rough) assessment for elevation dependency of the TEC and for the
purpose of simple ionospheric modeling, the ionosphere may be considered as a thin single-
layer surrounding the earth at a fixed height from the earth for which all free electrons in
the ionosphere are assumed to be concentrated in this single-layer (see figure 4.2). If we
assume there is no lateral or horizontal electron density gradients, the vertical TEC can be
simply mapped to the slant TEC (and vice versa)

TEC =
1

cos ξ
V TEC (4.33)

where ξ is satellite zenith angle at the point of intersection of the line of sight with the
spherical single-layer ionosphere and VTEC stands for vertical TEC. This point is referred
to the ionospheric (piercing) point, denoted as IP, and the multiplier 1

cos ξ
is called obliquity

factor. The vertical projection of IP on the ground is referred to the sub-ionospheric point
and denoted as SIP in figure 4.2. Geometrically, relation between the satellite zenith angles
at the receiver location ξ′ and at the ionospheric pierce point ξ is

sin ξ =
Re

Re + hi
sin ξ′ (4.34)

where hi stands for height of the ionospheric single-layer from the Earth. Since this height
is not exactly known, it is often assumed at 350 km. Note that the co-secant mapping
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Figure 4.2: Geometry of the ionospheric single-layer approximation.

function depends on the height of the single-layer. It is shown in (van der Marel, 1993)
that only for large zenith angles (about ξ′ > 70◦) the mapping function is sensitive to hi.
Moreover, It is also shown that for large zenith angles TEC can reach at most three times
the value of VTEC.

It should be emphasized that the sub-ionospheric point can be far away from the receiver
location a few thousand kilometer (for large satellite zenith angles). This means that in the
presence of horizontal electron density gradients, the use of a simple co-secant mapping
function to convert slant TEC to vertical TEC will lead to significant TEC conversion errors
(see (Nava et al., 2007)).

TEC values can range from 1 to several hundreds TECU along the signal path depend
on elevation angle and time and space. In fact, variations of the TEC in time and space
are due to temporal and spatial variation of the ionospheric electron density. To study the
diurnal, seasonal and solar cycle behavior of TEC, it is normal to use single-layer ionosphere
approximation and express slant TEC as an equivalent vertical TEC by the equation 4.33.
Vertical electron conten (VTEC) can more easily be compared or modeled than slant TEC
at various elevation angles.

As example, in figure 4.3 the daily mean global map of VTEC is plotted for day 130 of 2006
at UT time 14:30. The figure clearly shows spatial variation of the VTEC over the world.
Note that the regions of highest VTEC are located, on average, approximately ±15◦ to
±18◦ either side of the Earth’s magnetic equator. To show temporal variation of VTEC,
the daily VTEC time series provided from the GIM maps for 130th day of 2006 are shown
in figure 4.4 for different latitudes in the Greenwich meridian. It is clearly seen that the
VTEC pattern depends on latitudes.
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Figure 4.3: Global map of VTEC at 14:30 UT provided from GIM maps for day 130 of 2004.
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Figure 4.4: Daily VTEC time series (1 hour time interval) provided from GIM maps in day 130 of 2004
for different latitudes in the Greenwich meridian.

4.4.2 Approximation of the higher-order and bending effects

Using the ionospheric single-layer approximation, we may assumed that the product
B| cos θ| is constant along the signal path. As a result, it is allowed to take it outside
the integral and write the second-order group delay in terms of TEC (Brunner and Gu,
1991)

ι
(2)
j,g ≈ eA

f 3
j 2πme

B| cos θ| TEC (4.35)
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In equation 4.30, the third-order group delay is proportional to the integral of the squared
electron density n2

e along signal path. Since the evaluation of this integral is difficult the
integral is written in terms of TEC as follows (Hartmann and Leitinger, 1984),∫

n2
e dρ = Ω ne,max

∫
nedρ = Ω ne,max TEC (4.36)

where ne,max denotes the maximum value of electron density along the signal path and Ω
the so called shape factor. The shape factor Ω is as

Ω =

∫
n2

edρ

ne,max

∫
nedρ

(4.37)

Using equation 4.36, the third-order group delay is obtained in terms of the TEC and ne,max

and the shape factor,

ι
(3)
j,g =

3A2

8f 4
j

Ω ne,max TEC (4.38)

To evaluate the ionospheric bending effect, the following simplified approximated formula
(in terms of the TEC and the same shape factor) is used for the GPS signals

κj ≈ A2

8f 4
j

(tan ξ)2Ω ne,max TEC (4.39)

Now the approximated second-, third- and bending effects have all been written as functions
of the TEC. We can compute the magnitude of these effects. For this, a constant value
Ω = 0.66 can be used as an approximation for the shape factor.

The TEC heavily depends on the satellite zenith angle from receiver to the satellite. In
(Odijk, 2002), the ionospheric effects were evaluated as function of the zenith angle for
a worst case ionospheric condition on different frequencies. It has been shown that the
first-order effect even on L1 frequency reaches several tens of meters. The bending and
the second-order effects could not exceed a few centimeter and the third-order effect is in
a few millimeter level. Furthermore, it is emphasized that the first-order ionospheric delay
is of more importance for relative GNSS positioning than the higher-order and bending
effects. According to (Odijk, 2002) the higher-order effects may be neglected in the case
of relative GPS positioning with inter-receiver distances up to 400 km.

Note that the first-order ionospheric delay is inversely proportional to the square of the
signal frequency. This allows to measure the first-order ionospheric effects using GNSS
observations on different frequencies and accordingly the TEC can be provided from GNSS
data. This is the subject of subsection 4.6.

4.5 Ionospheric models

Because of the complicated nature of the ionosphere, there have been numerous approaches
for ionospheric modeling. In an effort to achieve simplicity, some of the models have been
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restricted to certain altitude or latitude domains, while others have been restricted to
certain ionospheric parameters, such as NmF2, M(3000)F2, and V TEC. These models
describe the characteristic ionospheric features and their variations with time, season, solar
cycle, and geomagnetic activity, as represented by Kp-index or Ap-index. The different
types of the ionospheric models can be categorized as follows

• Empirical models are based on ionospheric measurements. Typically, the data are
collected over an extended period of time and then fitted with simple analytical
and empirical functions. The Klobuchar model is a simple ionospheric model
that gives the vertical ionospheric delay at a given time and location for the GPS
single-frequency users in real-time. Another example is the NeQuick model that
proposed to use as ionospheric correction model for the future European Galileo
positioning system. This model will be discussed in detail in the chapter 5.

• Numerical maps are in the global and regional scales that provide values of a
ionospheric parameter in a grid. As an example, we can refer to the GIM that will
be discussed in the following.

• Analytical models are based on orthogonal function fits to the output obtained from
numerical models. As example, maps of foF2 and M(3000)F2 are presented by
the CCIR (Comite Consultatif International des Radiocommunications) maps using
the orthonormal and spherical forms of the Legendre functions. These maps will be
discussed in chapter 5.

• Physical models are developed based on typically solution of the continuity equation
or the momentum and energy equations for the electrons and ions. The solutions of
equations provide for instance the electron density either as a function of altitude
or along geomagnetic field lines. Such a physical modeling for the VTEC will be
developed in chapter 6.

4.5.1 Klobuchar model

The Klobuchar model is one of the most widely used models due to its computational
simplicity. The model is built on a simple cosine representation of the vertical ionospheric
delay during daytime and a constant offset of 5 nanoseconds (or 1.5 meters) during night-
time. Its daily maximum is at 14:00 h local time at the ionospheric pierce point. The
period and amplitude of the model are represented by third-degree polynomials in local
time and geomagnetic latitude at the ionospheric pierce point. The vertical ionospheric
delay is computed as follows:

Is
v,r(ti) =

{
c
[
5 · 10−9 +

(∑3
l=0 αl

[
ϕs

m,r(ti)
′/π
]l)

cos xs
r(ti)

]
, |xs

r(ti)| < π
2

c · 5 · 10−9 ≈ 1.5 m, |xs
r(ti)| > π

2

(4.40)



4.5 Ionospheric models 67

with xs
r(ti) = 2π(tsr(i)′−14·602)∑3

l=0 βl[ϕs
m,r(i)′/π]

l , and where:

Is
v,r(ti) : vertical ionospheric delay [m]

c : velocity of light [m/s]
ϕs

m,r(ti)
′ : geomagnetic latitude of the ionospheric pierce point

tsr(ti)
′ : local time at the ionospheric pierce point [s]

αl (l = 0, . . . , 3) : Klobuchar coefficients for amplitude
βl (l = 0, . . . , 3) : Klobuchar coefficients for period

Note that the local time at the ionospheric pierce point is computed from the Universal
Time (UT) as:

tsr(ti)
′ = tUT +

24 · 602

2π
λs

r(ti)
′ (4.41)

with tUT the Universal Time in seconds and λs
r(ti)

′ the longitude of the pierce ionospheric
point. The eight Klobuchar coefficients are transmitted in (the header of) the GPS satel-
lite’s navigation message and updated daily. To convert the vertical delay to the slant
delay, the following mapping function is used (ICD-GPS-200C, 2004):

F (e) = 1 + 16 × (0.53 − e)3 (4.42)

where e is the satellite elevation angle in semicircles. The model presents an ideal smooth
behavior of the ionosphere; therefore any significant fluctuations will not be modeled prop-
erly. The accuracy of the model is 50∼60% of the total effect [klobuchar, 1987] and under
severe ionosphere activity at low elevations, the range error could be very large, up to 50
meters.

4.5.2 Global Ionosphere Maps

The International GNSS Service (IGS) of the International Association for Geodesy (IAG)
maintains a global GNSS tracking network of more than 200 receivers. The availability of a
huge number of the IGS permanent dual frequency GPS receivers, which are distributed over
the Earths surface, has made the global monitoring of the ionosphere possible and Global
Ionospheric VTEC Maps (GIM) are produced routinely. Four IGS Ionospheric Analysis
Centers (CODE, ESA, JPL, and UPC) individually produce daily Global Ionosphere Maps
using different techniques (Perez, 2005; Wienia, 2008). The official IGS product is a
combined ionosphere map from all four IGS analysis centers. The GIM files are distributed
on a daily basis; they give a value for the Vertical Total Electron Content (VTEC) every
two hours (0, 2, 4, ..., 24 UTC) at the grid points. The resolution of the maps is 5◦ in
longitude and 2.5◦ in latitude. The GIM are provided in the IONEX (IONosphere map
EXchange) format (Schaer 1999). The maps are provided in two versions: a rapid product
with a latency of 12 hours, and a final product with a latency of 3 days.

The Center for Orbit Determination in Europe (CODE), for example, employs spherical
harmonics functions to model the global VTEC using about 200 worldwide GPS/GLONASS
stations. The spherical harmonics are then developed into Global Ionosphere Maps. The
other analysis centers use different approaches. Only the CODE distributes GIM in three
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versions: Predicted, Rapid and Final GIM. The predicted version contains predictions of
the ionospheric delay for 1-2 days ahead. The VTEC at a certain time and location is
interpolated between two consecutive maps using four surrounding grid points. The VTEC
provided by GIM has a standard deviation of 2∼8 TECU (CODE, 2007) depending on the
epoch in the solar cycle, season, and location and to the best of our knowledge is unbiased
(1 TECU corresponds to an ionospheric delay of 16 cm in L1).

GIM Slant Ionospheric Delay The interpolated VTEC from the GIM is converted to the
vertical ionospheric range delay VGIM as

VGIM =
40.3

f 2
· V TECGIM (4.43)

where f is the frequency of signal [Hz]. The standard deviation of the VTEC provided
by GIM is 2∼8 TECU (CODE, 2007). In order to get slant ionospheric delay along the
line-of-sight between receiver and satellite a mapping function must be used to map the
VTEC to the slant TEC value. Mapping is done based on the single-layer approximation
for the ionosphere and the mapping function is F (ξ) = 1

cos(ξ)
where ξ is the zenith angle

of the satellite at the ionospheric pierce point at the ionospheric height of 350 km.

4.6 Slant ionospheric delay measurements from GNSS

In section 4.2, the mathematical expressions for the code and phase observables, equations
4.6 and 4.12, constitute the basis of a functional model for the processing of the observa-
tions. The slant ionospheric delay can be determined either from least-squares processing
of a GNSS network data or from the geometry-free linear combination (single receiver data
processing). It is noted that the biases induced by the instrumental phase and code delays
are major problems for accurate determination of the ionospheric delay from GNSS data.

4.6.1 Network processing

In a reference GPS network where the coordinates of receivers are known, pseudo ob-
servables for receiver-satellite ranges ρs

r can be computed. Therefore the geometry-free
(Non-positioning) model of observations can be processed for estimating the ionospheric
delays, tropospheric delays, clock parameters and ambiguities. In case the coordinates
of the receivers are unknown, the coordinates of receivers beside other parameters (iono-
spheric delays, clock parameters and ambiguities) should be estimated by processing the
geometry-based (positioning) model of observations. Due to rank deficiencies in the design
matrix (for both the geometry-free and geometry-based models), the estimated ionospheric
delays are biased by the receiver and satellite clocks of the L1 phase observable, see (Odijk,
2002), but the relative accuracy of the estimated ionospheric delay is high. The biases are
eliminated by double-differencing the estimates of ionospheric delays. In order to estimate
unbiased absolute ionospheric delays, one can treat the ionospheric delays as stochastic
variables that result in the ionospheric-weighted model. For this purpose, for each receiver-
satellite combination, an ionospheric pseudo-observable is added to the vector of GNSS
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observables in the models. Besides the extension of the vector of observables, the covari-
ance matrix of the observables is extended to account for the assumed precision of the
ionospheric pseudo-observables. Although the rank deficiency of the design matrix is re-
moved by adding ionospheric pseudo-observables, the absolute accuracy of the ionospheric
estimates depend on the quality of the ionospheric pseudo-observables.

An important advantage of the network processing is that the double-difference (DD)
ambiguities are estimable. It is well-known that DD ambiguities are integer-valued due
to elimination of the initial phases of the signal by the double-differencing. This integer
nature of DD ambiguities can be exploited for the ambiguity fixing. Many approaches
exist for estimating the integer ambiguities, however not all of them are admissible. In
(Teunissen, 2002, 2003, 2004), general definition for the admissible integer estimator is
given and the class of admissible integer estimators are discussed. The integer least-
squares (ILS) estimator is an admissible integer estimator that fully takes the ambiguity
vc-matrix into account. The ILS procedure is mechanized in the LAMBDA (Least-Squares
AMBiguity Decorrelation Adjustment) method for ambiguity resolution; see (Jonge and
Tiberius, 1996). For more detail about the theory of the ambiguity resolution and its
validation, we refer to (Verhagen, 2005). Fixing the DD ambiguities makes the functional
model stronger that result in a more precise estimation of the other non-integer parameters
in both the geometry-free and geometry-based models, see (Teunissen, 1995).

4.6.2 Geometry-free linear combination

The slant ionospheric delay Is
r can be also measured with a so-called geometry-free linear

combination of the dual frequency GNSS code and carrier phase observations of a single
receiver data. This approach is computationally more simple than the network process-
ing. It is noted that the absolute accuracy of the computed ionospheric delays from both
approaches are in the same level, but the relative accuracy (in space) of the computed
ionospheric delay of the network processing is better than that of the Geometry-free linear
combination. In the following the functional model for the Geometry-free linear combi-
nations for phase and code observations at a multiple of frequencies, from receiver r to
satellite s, is derived.

The mathematical model (known as the Gauss-Markov model), for phase and code observ-
ables in equations 4.18, reads for j frequencies at epoch ti

E{y(ti)} =

[
ej −μ Ij Ij Ij 0 0
ej μ 0 0 0 Ij Ij

]
︸ ︷︷ ︸

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(ti)
Is
r (ti)
M

δs(ti)
δr(ti)
ds(ti)
dr(ti)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

; D{y(ti)} = Qy(ti)

(4.44)

where E {} and D {} are respectively the mathematical expectation and dispersion oper-
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ators and y(ti) vector of observations is set up as

y(ti) =

[
Φ(ti)
P (ti)

]
with

⎧⎪⎨
⎪⎩

Φ(ti) =
[
ϕs

r,1(ti) , . . . , ϕs
r,j(ti)

]T
P (ti) =

[
ps

r,1(ti) , . . . , ps
r,j(ti)

]T (4.45)

In the design matrix A, ej = [1, . . . , 1]T is j-vector and Ij stands for j × j identity matrix
and μ = [μ1, . . . , μj]

T . The vector of unknown parameters x includes: g(ti) as defined
in equation 4.17, the slant ionospheric delay of code observable on the L1 frequency, j-
vector of ambiguities M = [Ms

r,1, . . . , M
s
r,j]

T , j-vector of the instrumental phase delays
in satellite δs(ti) = [δs

,1(ti), . . . , δ
s
,j(ti)]

T , j-vector of the instrumental phase delays in
receiver δr(ti) = [δr,1(ti), . . . , δr,j(ti)]

T , j-vector of the instrumental code delays in satellite
ds(ti) = [ds

,1(ti), . . . , d
s
,j(ti)]

T and j-vector of the instrumental code delays in receiver
dr(ti) = [dr,1(ti), . . . , dr,j(ti)]

T .

In the stochastic model of the GNSS observables, Qy(ti) is variance covariance matrix of
the phase and code observables, assuming the phase and code observables are normally
distributed and uncorrelated,

Qy(ti) = blkdiag[Qϕ , Qp] ⊗ Q(ti) (4.46)

where ’blkdiag’ stands for a block-diagonal matrix, Qϕ and Qp denote the parts specific
for respectively the phase and code observables (cofactor matrices) and Q(ti) the part
which is similar for each observable type. For a compact notation, the matrix Kronecker
product (denoted by the symbol ⊗) has been used. Through Q(ti) possible satellite-
elevation dependency can be taken into account. When no elevation-dependent function
is specified, it is assumed to be an identity matrix. In this case, the cofactor matrices Qϕ

and Qp may be referred to as phase and code variance covariance matrices.

Geometry-free observable By subtracting the phase (or code) observable of jth frequency
(j > 1) from that of the first frequency, both expressed in units of length, the geometry-
dependent term g(ti) is eliminated and resulting

E
{
φs

r,1j(ti)
}

= − (1 − μj) Is
r (ti) + DPBs

,1j(ti) + DPBr,1j(ti) + Ms
r,1j

E
{
ps

r,1j(ti)
}

= (1 − μj) Is
r (ti) + DCBs

,1j(ti) + DCBr,1j(ti)
(4.47)

with φs
r,1j(ti) = φs

r,1(ti) − φs
r,j(ti) and ps

r,1j(ti) = ps
r,1(ti) − ps

r,j(ti) respectively the phase
and code geometry-free linear combinations, Ms

r,1j = Ms
r,1 − Ms

r,j ambiguity of the phase
geometry-free linear combination, DPBr,1j(ti) = δr,1(ti) − δr,j(ti) and DPBs

,1j(ti) =
δs
,1(ti) − δs

,j(ti) respectively receiver and satellite differential phase biases, DCBr,1j(ti) =
dr,1(ti) − dr,j(ti) and DCBs

,1j(ti) = ds
,1(ti) − ds

,j(ti) respectively receiver and satellite
differential code biases.

The mathematical model of the phase and code observables, equation 4.44, can be trans-
formed to mathematical model of the geometry-free linear combination with the following
transformation matrix

D = I2 ⊗ Dj−1 with Dj−1 = [ej−1 , − Ij−1] (4.48)
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After transformation, the observable vector of the geometry-free linear combination (spec-
ified by the superscript gf) reads as follows

ygf ′
(ti) = Dy(ti) =

[
Φ

gf
(ti)

P
gf

(ti)

]
with

⎧⎪⎨
⎪⎩

Φ
gf

(ti) =
[
ϕs

r,12(ti) , . . . , ϕs
r,1j(ti)

]T
P

gf
(ti) =

[
ps

r,12(ti) , . . . , ps
r,1j(ti)

]T
(4.49)

The variance covariance (vc-) matrix of ygf ′
(ti) is obtained by applying the propagation

law of variances, i.e. Qygf ′ (ti) = DQy(ti)D
T . When Q(ti) = Ij is an identity j-matrix and

the stochastic model of observables is assumed as Qϕ = σ2
ϕ Ij and Qp = σ2

p Ij with σ2
ϕ and

σ2
p the a priori variance factors of the phase and code observables respectively, the variance

covariance matrix of ygf ′
(ti) reads

Qygf ′ (ti) = blkdiag[σ2
ϕ, σ2

p ] ⊗ C with C =

⎡
⎢⎢⎣

2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2

⎤
⎥⎥⎦

︸ ︷︷ ︸
(j−1)×(j−1)

(4.50)

From this vc-matrix it can be seen that the variances of the geometry-free observables
increase by factor 2 and are correlated.

Rank-defect functional model Due to the transformation the design matrix becomes
Agf ′

= DA and the functional model of geometry-free observables reads as follows (apos-
trophe (′) emphasize the rank deficiency of the functional model)

E{ygf ′
(ti)} =

[ −D
j−1

μ Ij−1 Ij−1 Ij−1 0 0
D

j−1
μ 0 0 0 Ij−1 Ij−1

]
︸ ︷︷ ︸

Agf ′

⎡
⎢⎢⎢⎢⎢⎢⎣

Is
r (ti)

M
gf

DPBs(ti)
DPBr(ti)
DCBs(ti)
DCBr(ti)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x′

(4.51)

with M
gf

= [Ms
r,12, . . . , M

s
r,1j ]

T vector of geometry-free ambiguities, DPBs(ti) =
[DPBs

,12(ti), . . . , DPBs
,1j(ti)]

T vector of the satellite differential phase biases and
DPBr(ti) = [DCBr,12(ti), . . . , DCBr,1j(ti)]

T vector of the receiver differential phase bi-
ases, DCBs(ti) = [DCBs

,12(ti), . . . , DCBs
,1j(ti)]

T vector of the satellite differential code
biases and DCBr(ti) = [DCBr,12(ti), . . . , DCBr,1j(ti)]

T vector of the receiver differential
code biases.

The functional model in equation 4.51 is an underdetermined system of equations (the
number of observation is less than number of unknown parameters) and the design matrix
Agf ′

is rank-defect. It implies that it is not possible to estimate separately all of the
unknowns. To solve the mathematical model uniquely, the rank deficiencies in the columns
of the design matrix must be eliminated. The design matrix Agf ′

has a rank deficiency of
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3j− 2 where j − 1 rank-defects are for the columns associated to the receiver and satellite
differential code biases, 2(j − 1) rank-defects for the columns associated to the receiver
and satellite differential phase biases and ambiguities.

The satellite differential code biases DCBs and the receiver differential code biases DCBr

for some IGS stations are available in IONEX files that can be downloaded from the Center
for Orbit Determination in Europe (CODE). Using these IONEX files, corrections for the
differential code biases of satellites can be applied. However, unless the user’s receiver is
an IGS station, the receiver differential code bias (DCBr) is not in the IONEX files and
needs to be computed by the user. Therefore, using DCBs(ti) from the IONEX files, the
DCBs(ti) can be fixed in the mathematical model that results in the j − 1 columns in
the design matrix, associated to DCBs, are eliminated. It means the code observables are
corrected by replacing the code geometry-free observables P

gf
(ti) with the corrected data

(P
gf

(ti) − DCBs(ti)) in the vector of observables ygf ′
(ti).

The differential phase biases for satellite and receiver, i.e. DPBs and DPBr, are time
dependent. Their absolute values along with their variations in time does not exceed a few
centimeters (Jong, 1998). Since these parameters cannot be separately estimated from the
data, in the subsequent analysis they will be dropped from the model. This will however
introduce a cm-level bias in the estimates of the other parameters.

Then the design matrix will only have one rank deficiency left. The way to circumvent
this rank deficiency is to treat the ionospheric delay Is

r (ti) as a stochastic variable. It
means that an ionospheric pseudo-observable is added to the vector of GPS observables.
Beside the extension of the vector of observables, the vc-matrix of the GNSS observables is
extended to account for the assumed precision of the ionospheric pseudo-observable. The
ionospheric pseudo-observable may originate from different sources. In this thesis, the GIM
is used to compute the ionospheric pseudo-observable (denoted by Is

r,GIM(ti)).

Note that the rank deficiency also can be eliminated by a time differencing of the geometry-
free observables at two consecutive epochs that results in a time-differenced ionospheric
delay. Since the time-differenced ionospheric delay can be estimated only from the phase
geometry-free observables, it is very precise relatively in time. In this thesis, we need to
measure the absolute ionospheric delay from the GPS data because of this it is necessary
to remove the rank deficiency of the model 4.51 without time differencing.

Full-Rank functional model After fixing DCBs, dropping DPBr and DPBs and adding
the ionospheric pseudo-observable, the full-rank functional model of the geometry-free
observables is obtained

E{ygf(ti)} =

⎡
⎣ −D

j−1
μ Ij−1 0

D
j−1

μ 0 Ij−1

1 0 0

⎤
⎦

︸ ︷︷ ︸
A

gf

⎡
⎣ Is

r (ti)

M
gf

DCBr(ti)

⎤
⎦

︸ ︷︷ ︸
x

(4.52)

with

ygf(ti) =

⎡
⎣ Φ

gf
(ti)

P
gf

(ti)
Is
r,GIM(ti)

⎤
⎦ with Q

y
gf

(ti)
=

⎡
⎣ σ2

ϕ · C 0
σ2

p · C
0 σ2

IGIM

⎤
⎦ (4.53)
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where σIGIM
stands for the standard deviation of ionospheric pseudo-observable. The

standard deviation of the ionospheric pseudo-observable can be computed by σIGIM
=

3σVGIM
with σVGIM

as the standard deviation of the VTEC computed from GIM. Since
the variation of the receiver differential code bias (DCB) during several hours does not
change significantly, it is assumed that the vector of DCBr is constant in time. Then

the parameter vector x can be partitioned into two parts (x =
[
xT

1 , xT
2

]T
): a part for

the time-varying or temporal parameters (denoted as x1), a part for parameters which are
assumed to be constant in time (denoted as x2). The temporal part consists only of the
ionospheric delay Is

r (ti). The vector of ambiguities M
gf

(if there is no cycle slip) and
the vector of receiver differential code biases DCBr form the non-temporal part x2. As a
consequence, the design matrix A

gf
is partitioned as follows

A
gf

= [A1 , A2] with A1 =

⎡
⎣ −D

j−1
μ

D
j−1

μ
1

⎤
⎦ ; A2 =

⎡
⎣ Ij−1 0

0 Ij−1

0 0

⎤
⎦ (4.54)

Least squares solution In case of single-epoch processing all parameters are estimated,
but the redundancy of the functional model is zero. Since the vector of parameters includes
the non-temporal parameters x2 adding new epoch data into the vector of observables
increases the redundancy of the functional model for which the least squares solution of
the model is estimated precisely.

When k epochs are involved in the mathematical model (in a time span without cy-
cle slip) then the observable vector becomes Y gf = [ygf(t1), . . . , y

gf(tk)] that as-
sumes the epochs are not correlated. The vc-matrix, for k epochs, reads Q

Y gf =
blkdiag[Qygf (t1), . . . , Qygf (tk)]. The temporal parameter vector is also parameterized for
k epochs, x1 = [Is

r (t1), . . . , I
s
r (tk)]. The design matrix for k epochs is given as

A
gf

= [Ik ⊗ A1 , ek ⊗ A2] (4.55)

which is a full-rank matrix. The least squares solution of the mathematical model is

x̂ =
(
AgfT

Q−1

Y
gf Agf

)−1

AgfT

Q−1

Y
gf Y gf with Qx̂ =

(
AgfT

Q−1

Y
gf Agf

)−1

(4.56)

The redundancy of the model is as a function of the number of observation epochs k and
the number of frequency j (i.e. df = 2(k − 1)(j − 1)) which in the case of a single-epoch
processing df = 0.

Analyzing the (formal) precision In order to evaluate the vc-matrix of the parame-
ters, the model’s normal equations can be partitioned for the temporal and non-temporal
parameters as follows

Qx̂ =

[
Qx̂1 Qx̂1x̂2

Qx̂2x̂1 Qx̂2

]
=

[
Ik ⊗ (AT

1 Q−1
ygf A1) ek ⊗ (AT

1 Q−1
ygf A2)

ek ⊗ (AT
2 Q−1

ygf A1) k (AT
2 Q−1

ygf A2)

]−1

(4.57)

which it is assumed Qygf = Qygf (t1) = · · · = Qygf (tk). Using Full block-partitioning of
an invertible matrix (see (Teunissen et al., 2005)), the vc-matrices for the temporal and
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Figure 4.5: Standard deviation of the estimator of slant ionospheric delay and ambiguity and DCB
of receiver in the model of geometry-free linear combination observables versus number of epochs for
σφ = 3 mm and σp = 300 mm, the bold curves are for the case of σVGIM = 2 [TECU] and the thin
curves are for the case of σVGIM = 8 [TECU].

non-temporal parameters are given

Qx̂1 =
[
Ik ⊗ (AT

1 Q−1
ygf A1) − 1

k
(ek eT

k ) ⊗ (AT
1 Q−1

ygf A2)(A
T
2 Q−1

ygf A2)
−1(AT

2 Q−1
ygf A1)

]−1

Qx̂2 = 1
k

[
(AT

2 Q−1
ygf A2) − (AT

2 Q−1
ygf A1)(A

T
1 Q−1

ygf A1)
−1(AT

1 Q−1
ygf A2)

]−1

(4.58)

where diagonal arrays of k-matrix Qx̂1 are the same and give the variance of the estimated
ionospheric delay σ2

Ĩ
. In this thesis the estimated ionospheric delay is denoted as Ĩ that a

’tilde’ symbol emphasizes the measuring of slant ionospheric delay from the geometry-free
linear combination. The first set of (j − 1) arrays in the diagonal of 2(j − 1)-matrix Qx̂2

give the variances of the estimated ambiguity vector Mgf and the second set of (j − 1)
arrays in the diagonal give the variance of the estimated receiver DCB.

It is possible to evaluate the (formal) vc-matrices of the parameters estimators without the
use of actual GPS observations, since vc-matrices Qx̂1 and Qx̂2 only depend on the design
matrix and vc-matrix of the observations.

In order to quantify the standard deviation of the parameters estimators, in equation 4.53,
the square roots of a priori variance factors for phase and code observables are considered
as σφ,1 = 3 mm, σp,1 = 300 mm and for the standard deviation of the computed VTEC
from GIM, σVGIM

, two different values 2 and 8 TECU (corresponding to 0.32 and 1.28
m) are used. To demonstrate the effect of number of epochs on quality of the vector of
unknown parameters in equation 4.58, for the dual-frequency data (j = 2), the standard
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deviations of the estimated slant ionospheric delay, geometry-free ambiguity and receiver
DCB are plotted as functions of the number of epochs in figure 4.5.

As expected an increase in the number of epochs results in a decrease in the standard
deviations of the parameters estimators. Note that the standard deviations of the estimators
do not seem to go to zero when increasing the number of epochs. In fact it seems that the
standard deviations converge to a non-zero constant value which depends on the standard
deviation of the ionospheric pseudo-observable σIGIM

. It implies that the computed slant
ionospheric delay IGIM from GIM and the estimated Ĩ value from the geometry-free linear
combination are correlated. It can be seen from the graphs that the standard deviation of
the ionospheric delay becomes better than 1 TECU (a few decimeter) when the number of
observation epochs are more than 10, even in the case of σVGIM

= 8 [TECU].

The standard deviations for the parameters estimator are computed for the case of j = 3
and compared with the standard deviations computed for the case of j = 2. The result was
that the standard deviations are comparable for both cases. It is concluded that an increase
in the number of frequencies does not improve significantly the standard deviations of the
estimators in the model of geometry-free observables.

4.7 Summary

This chapter has focused on the ionospheric refraction error in the GNSS observations as
consequence of the signal’s propagation through the Earth’s atmosphere. The ionospheric
error consists of the first-, second- and third-order effects and an effect due to the bending
of the signal. These effects are all function of the ionospheric total electron content
(TEC) along the signal path between receiver and satellite. The mathematical model for
extracting the ionospheric error (or TEC) using the geometry-free linear combinations of
multi-frequency GNSS code and phase data has been set up. Besides the estimation of the
ionospheric error, the receiver differential code bias (DCB) is also estimated from the least
squares solution of the mathematical model. It has been found out that an increase in the
number of GNSS frequencies does not improve significantly the standard deviation of the
estimator of the ionospheric parameter in the model. However, the model will be used to
estimate the ionospheric TEC data from the GNSS observations in the next chapters of
this thesis.





NeQuick 3D Ionospheric Electron Density Pro�ler

5
NeQuick is a semi-empirical model that describes spatial and temporal variations of the
ionospheric electron density. This chapter focus on the formulation of the NeQuick model
and its performances under different ionospheric conditions. For comparison, the perfor-
mance of the Global Ionospheric Maps (GIM), and the well known Klobuchar model will
be included. In real-time application of NeQuick for the future Galileo navigation system,
the solar daily activity needs to be introduced into the model by the effective ionization
level (called Az parameter). As the Galileo system is under development, daily values of
the Az parameter are not yet available, and therefore we present an alternative approach
for estimation of the Az parameter using global ionospheric maps from IGS.

5.1 Ionospheric electron density model NeQuick

A family of semi-empirical 3D ionospheric electron concentration models recently developed
by Abdus Salam ICTP (International Center of Theoretical Physics) in Trieste (Italy) and
the Institute for Meteorology and Geophysics in Graz (Austria) consists of the three models
NeQuick, COSTprof, and NeUoG-plas. These models are not purely empirical because
they have been developed by taking into account the physical properties of the different
ionospheric regions. In all three models, the ionosphere is vertically divided into two parts:
a lower part (below the peak of the F2 region) and an upper part (above the peak of the
F2 region). For the lower part of the ionosphere, the models have the same formulation
based on the original DGR model (Giovanni and Radicella, 1990) that uses a sum of Epstein
layers; the formulation is such that the model and its first derivative are always continuous
(Radicella and Leitinger, 2001). Due to differing usages of the models, their formulations
are different for the upper part of the ionosphere; only COSTprof and NeUoG-plas models
take the plasmasphere into account, and they have different formulations for this uppermost
region of the atmosphere (above 2000 km) (Hochegger et al., 2000).

All of the models are able to create electron density profiles, but among them NeQuick
is a flexible quick-run model that has been proposed for single-frequency operation in the
ESA Galileo project to compute the slant total electron content along arbitrary ground-to-
satellite ray paths (Radicella et al., 2003).

NeQuick model NeQuick is an ionospheric profiler which calculates the electron density
at a given time and location in the Earth’s ionosphere. The NeQuick model uses the peaks
of the three main ionospheric regions (E, F1, and F2 regions) as anchor points (Leitinger
et al., 2005; Radicella and Leitinger, 2001) and the electron density at any location is com-
puted based on the characteristic parameters (peak electron density, peak height) of the



78 Chapter 5. NeQuick 3D Ionospheric Electron Density Profiler
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Figure 5.1: Typical shape of the electron density function of an Epstein layer

anchor points. NeQuick (Fortran 77) source code is only available in its 1994 version at
http://www.itu.int/ITU-R/software/study-groups/rsg3/databanks/ionosph/. In the fol-
lowing, the formulation of the NeQuick model that the available source code uses is ex-
plained. The differences between the NeQuick version of 1994 and an recently improved
version will be addressed. In general, different formulations are used by NeQuick to com-
pute the electron density at a point located on the bottom side (h ≤ hmax,F2) or the
top side (h ≥ hmax,F2) of the F2 peak electron density (Nmax,F2), see figure 5.3. The
formulation of NeQuick is based on Epstein layers; therefore to aid understanding, first the
Epstein layer is explained.

Epstein layer In an Epstein layer, as introduced by (Rawer, 1983), an electron density
function is built on Epstein functions and represented by the following analytical expression
(Radicella and Zhang, 1995)

n(h) =
4 nmax(

1 + exp
(

h−hmax

B

))2 exp

(
h − hmax

B

)
(5.1)

where n(h) is the electron density at height h, nmax is the peak electron density, hmax is
the height of peak electron density, and B is called the thickness of the layer (see figure
5.1). The electron density function of an Epstein layer is a symmetric function and has
a parabolic form around the height of its maximum electron density. Its derivative with
respect to height is a continuous function.
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Figure 5.2: An asymmetric Epstein layer with two different thickness values (Btop and Bbot) for the top
and bottom parts

5.1.1 NeQuick model formulation for the bottom side (h ≤ hmax,F2)

In order to obtain better results from NeQuick, different values were considered for the
thicknesses of the bottom and top parts of the Epstein layer associated to each ionospheric
region (E, F1, and F2). This means that for each region two semi-Epstein layers that
differ in their thickness values are used, and it results in an asymmetric Epstein layer (see
figure 5.2).

Accordingly, the formulation of NeQuick for the bottom side of the ionosphere (h ≤
hmax,F2) is based on five semi-Epstein layers. Two semi-Epstein layers are used for the E
region (top and bottom), two for the F1 region (also top and bottom) and one for the
bottom of the F2 region. It must be noted that NeQuick does not take any characteristic
parameters of the D region into account.

Since the concept of well separated ionospheric regions cannot be maintained and their
overlap must be admitted, the electron density of a given point with height less than the
height of peak electron density of the F2 region (bottom side) is computed by summation
of three semi-Epstein layers (Hochegger et al., 2000):

n(h) =
∑

i=F2,F1,E

ni(h) (5.2)

where

ni(h) =
4 Ai

(1 + exp (zi))
2 exp (zi) (5.3)

The quantities zF2 and AF2, for the semi-Epstein layer associated to the bottom of F2
region, are defined by formulas in Table 5.1.
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Table 5.1: Definitions of the quantities zF2 and AF2

Height interval [km] zF2 AF2

hmax,F1 ≤ h ≤ hmax,F2

hmax,E ≤ h ≤ hmax,F1

100 ≤ h ≤ hmax,E

h ≤ 100

h−hmax,F2

Bbot,F2
nmax,F2

Table 5.2: Definitions of the quantities zF1 and AF1

Height interval [km] B zF1 AF1

hmax,F1 ≤ h ≤ hmax,F2 Btop,F1

hmax,E ≤ h ≤ hmax,F1

100 ≤ h ≤ hmax,E

h ≤ 100
Bbot,F1

h−hmax,F1

B
exp

{
10

1+2|h−hmax,F2|
}

nmax,F1 − nF2(hmax,F1)

Definitions of the quantities zF1 and AF1 are given in Table 5.2. Note that in the definition
of zF1, the thickness parameter takes different values for the bottom side and top side of
the semi-Epstein layers of the F1 region. Table 5.3 gives the definitions of the quantities
zE and AE. In the definition of zE , the thickness parameter takes different values for the
bottom side and top side of the semi-Epstein layers of the E region.

Note that the semi-Epstein layers for the top sides of the E and F1 layers are lowered to
zero at the peak of the F2 region due to the exponential factor in the formulation of zE

and zF1 (see figure 5.3). This is done to avoid secondary maxima in the vertical profile of
electron density.

5.1.2 NeQuick model formulation for the top side (hmax,F2 ≤ h)

In the NeQuick model, the top side F2 region is a semi-Epstein layer but with a height-
dependent thickness parameter. The electron density in the top side of the F2 region is
computed by (Coisson et al., 2006):

ntopside(h) =
4 nmax,F2

(1 + exp (z))2 exp (z) (5.4)

where z is defined by following formulae:

z =
h − hmax,F2

H
[
1 +

rg(h−hmax,F2)

rH+g(hmax,F2)

] (5.5)

The denominator is a height-dependent thickness parameter of the top side of the F2
region and H acts as the scale height that is given by:

H =
Btop,F2

v
(5.6)

v = (0.041163x− 0.183981)x + 1.424472 (5.7)
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Table 5.3: Definitions of the quantities zE and AE

Height interval [km] B zE AE

hmax,F1 ≤ h ≤ hmax,F2

hmax,E ≤ h ≤ hmax,F1
Btop,E

100 ≤ h ≤ hmax,E

h ≤ 100
BbotE

h−hmax,E

B
exp

{
10

1+2|h−hmax,F2|
}

nmax,E − nF1(hmax,E)
−nF2(hmax,E)
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Figure 5.3: Six semi-Epstein layers used in NeQuick for 3 anchor points (peak of F2, F1, and E regions).
The solid curve below the F2 region peak height is the NeQuick electron density profile for h ≤ hmax,F2

x =
Btop,F2 − 150

100
(5.8)

In equations 5.5, the factor r is 100 and g = 0.125 is a height gradient for the scale height
H and rH + g(hmax,F2) restricts the scale height increase in the top side of the F2 region
(Leitinger et al., 2005).

5.2 Characteristic parameters of the anchor points

As seen in previous sections, for computation of the electron density at a given point in the
top side or bottom side of the ionosphere, the characteristic parameters—peak electron
densities and peak heights—of the three anchor points are needed. In NeQuick, the peak
electron densities of the E, F1, and F2 regions are computed in electrons per cubic meter
using the equation nmaxX = 1.24 · 1010 · (foX)2 in which X stands for E, F1, or F2
(the inverse function of fp � 8.98

√
n in section 3.4.6) when foX is in MHz (Rush, 1986).

The peak height of the E region is fixed at hmax,E = 120 [km] but the peak heights of the
F1 and F2 regions depend on the peak electron densities of the regions, will be explained
next.



82 Chapter 5. NeQuick 3D Ionospheric Electron Density Profiler

5.2.1 Peak height of the F2 region

The peak height of the F2 region is determined with the very widely used empirical formu-
lation by Shimazaki 1995 in the form of Dudeney (Dudeney, 1983) based on the ionosonde
parameters foE, foF2 and M(3000)F2 (symbol M)

hmax,F2 =
1490 μ

M + Δ
− 176km (5.9)

where the quantities μ and Δ are defined as follows:

μ = M

√
0.0196 M2 + 1

1.2967 M2 − 1
(5.10)

Δ =

{
0.253

foF2
foE

−1.215
− 0.012 ; if foE = 0

−0.012 ; if foE = 0

}
(5.11)

5.2.2 Thickness parameters of the semi-Epstein layers

The thickness parameters take different values for the bottom and top sides of each anchor
point. The thickness parameter for the bottom-side semi-Epstein layer of the E region is
fixed at Bbot,E = 5 [km]. The semi-Epstein layer of the top side of the E region takes the
fixed value Btop,E = 7 [km] during the night (if F1 not present) but in the daytime (when
F1 present) it is assigned Btop,E = 0.5Btop,F1 in [km].

For the bottom-side semi-Epstein layer of the F1 region, the thickness parameter is
Bbot,F1 = 0.7Btop,F1. The thickness value for the top side of F1 region is determined
by

Btop,F1 =
hmax,F2 − hmax,F1

ln

(
4(nmax,F1−nF2(hmax,F1))

0.1Nmax,F1

) (5.12)

In the semi-Epstein layer of the bottom side F2 region, the thickness parameter depends
on the peak electron density nmax,F2 and the maximum vertical gradient of electron density
max(dn/dh) in the ionosphere. The following equation is used for the thickness parameter
of the bottom side of the F2 region:

Bbot,F2 =
0.385 nmax,F2

max
(

dn
dh

) (5.13)

where the maximum electron density gradient with height is determined from two ionosonde
parameters foF2 and M(3000)F2:

max

(
dn

dh

)
= 0.01 exp

{−3.467 + 0.857 ln
(
foF22

)
+ 2.02 ln (M)

}
(5.14)

The top-side thickness parameter of the F2 region is calculated by Btop,F2 = kBbot,F2

where the parameter k takes different formulations for April to September and for October
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to March, and is always restricted to 2 ≤ k ≤ 8.

k =

{
6.705 − 0.014 R12 − 0.008hmax,F2 (April to September)

−7.77 + 0.097
(

hmax,F2

Bbot,F2

)2

+ 0.153nmax,F2 (October to March)
(5.15)

where R12 is the sunspot number (see section 2.2).

5.3 Providing the ionosonde parameters for NeQuick

Previous sections show that the ionosonde parameters play significant roles in the formu-
lation of NeQuick not only for providing the characteristic parameters of the anchor points
but also for computing the thickness parameters of the semi-Epstein layers. Hence, to com-
pute the NeQuick electron density at a given location and time, the ionosonde parameters
(foE, foF1, foF2 and M(3000)F2) are needed.

In NeQuick, foE is computed from an empirical model developed by John Titheridge that
depends on the solar zenith angle

(foE)2 =
√

F10.7
(
(1.112 − 0.019 ε) cos χ

eff

)2
+ 0.49 (5.16)

with ε = m exp(0.3 φ)−1
exp(0.3 φ)+1

as a seasonal factor where m set to -1 for November, December,

January, and February and set to 1 for May, June, July, and August and elsewhere set
to zero, χ

eff
= χ when χ ≤ 86.23◦ and χ

eff
= 90◦ − 0.24◦ exp (20◦ − 0.2χ) when

χ > 86.23◦.

The F1 region critical transition foF1 is taken to be proportional to foE during daytime
foF1 = 1.4foE and 0 at night. For foF2 and M(3000)F2 the CCIR (Comite Consultatif
International des Radiocommunications) maps of ITU-R (International Telecommunication
Union) in the mode used by the International Reference Ionosphere (IRI) are used. These
maps are explained in the following subsections.

5.3.1 CCIR maps of foF2 and M(3000)F2

The most common set of global maps for both parameters foF2 and M(3000)F2 are
the CCIR maps that have been prepared using the monthly median values of foF2 and
M(3000)F2 from all available ionosondes (about 150 stations) during the years 1954 to
1958, altogether about 10,000 station-months of data (Hanbaba, 1995).

A numerical mapping technique developed by Jones and Gallet (1962, 1965) was used to
represent the diurnal and geographic variations of foF2 and M(3000)F2 in the CCIR maps.
They first used Fourier analysis in the universal time system for monthly median diurnal
variation (one hour time intervals) obtained by observations of each available ionosonde
(Bilitza, 1990). The analysis of the data from each ionosonde station was done month by
month. The least squares method was used to estimate the Fourier coefficients of each
month for each station. Then, in order to provide separately a worldwide description for
each coefficient, the orthonormal and spherical forms of the Legendre functions were applied
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Figure 5.4: Typical daily variations of foF2 (top-left) and M(3000)F2 (top-right) computed from the
CCIR maps at a point (ϕ = 50◦ on the Greenwich meridian) in November when R12 = 60, and the
corresponding values of nmax,F2 (bottom-left) and hmax,F2 (bottom-right) computed by NeQuick

for the expansion of the geographical variation of the each coefficient (Jones and Gallet,
1962a). It should be noted that the classical spherical harmonic functions were not used,
however, since they are not orthogonal relative to the positions of stations. Orthogonality
is essential because an optimum truncation of the series has to be made (Jones and Gallet,
1962b).

The CCIR maps for the foF2 parameter consist of 988 coefficients and for M(3000)F2 they
consist of 441 coefficients for each month. The CCIR provides two sets of coefficients for
each of foF2 and M(3000)F2, one for low and one for high solar activity (R12 = 0 to 100);
coefficients for intermediate levels of solar activity are obtained by linear interpolation
(Bradley, 1990). The complete CCIR maps of foF2 and M(3000)F2 for 12 months in a
year consist of (988 + 441) · 2 · 12 = 34296 coefficients. These coefficients are available in
12 files (each for one month) named CCIRmm.ASC, where mm is month + 10, accessible
from ftp://nssdcftp.gsfc.nasa.gov/models/ionospheric/iri/iri2007/.

Due to the strong magnetic control of the F2 region, the CCIR maps were published in
a special magnetic field coordinate system in terms of geodetic latitude, longitude, and
modified dip latitude that was first introduced by Rawer in 1963 (Bilitza, 1990). The
modified dip latitude is computed using equation 2.23. The time system of the maps is
universal time (UT) and R12 (the 12-months-running mean) defined in equation 2.14 is
used to specify the solar activity level in a given month.

To show typical daily variation of foF2 and M(3000)F2 in November, their values com-
puted from the CCIR maps at a point with ϕ = 50◦ located on the Greenwich meridian
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Figure 5.5: Presentation of NeQuick in a diagram

during a medium level of solar activity R12 = 60 are shown in figure 5.4. This figure also
shows the corresponding values of the peak electron density and the peak height of the F2
region (nmax,F2, hmax,F2) computed using the NeQuick formulation.

5.3.2 Diagrammatic presentation of NeQuick

In order to aid understanding of the NeQuick processing procedure, the connection between
input and output values through all the required processing is shown by a diagram in figure
5.5. The F10.7 index used for solar activity level is converted to R12 using the equation
2.16 in section 2.2.3. figure 5.5 shows all the required input values of NeQuick: location
(geographic coordinates), time (UT and month), level of solar activity (F10.7), and a
geomagnetic field related parameter (dip latitude). The NeQuick calculates dip latitude
at a given point by third-order interpolation in geographic latitude and longitude using
tabulated values in a grid point map that is available in the input file of ’diplats.asc’. This
file was generated from the coefficients for spherical harmonics expansion of the IGRF for
epoch 1977 (see section 2.3.2). The real geomagnetic inclination (Dip) is calculated from
the dip latitude (Dipl) using the equation 2.22.
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Figure 5.6: Galileo single-frequency ionospheric correction algorithm

5.4 NeQuick for the Galileo navigation system

Among all the empirical models that produce the spatial electron density distribution for a
given time and location, the NeQuick model has been proposed as a real-time ionospheric
correction model for single-frequency positioning operations in the future Galileo navigation
system of the European Space Agency (ESA) to compute the slant total electron content
(STEC) along arbitrary ground to satellite or satellite to satellite ray paths (Nava et al.,
2005; Schluter et al., 2004; Radicella and Leitinger, 2001). Although the NeQuick model
only provides electron density, the STEC can be computed by integrating along the signal
path.

As seen so far, to compute the ionosonde parameters of the F2 region (i.e. foF2 and
M(3000)F2) from the CCIR maps and foE from Titheridge’s model, NeQuick was origi-
nally developed to use the 12-months-running mean R12 or monthly averaged F10.7 index
of solar activity. To use the NeQuick model for real-time applications, such as a Galileo
ionospheric correction model, the monthly averaged F10.7 index is replaced by a daily input
parameter to take the daily variation of the solar activity and the user’s local geomagnetic
conditions into account. This daily NeQuick input parameter is the so-called effective ion-
ization level, which denoted by Az in unit of solar flux 10−22Wm−2Hz−1, it characterizes
the physical conditions of the ionosphere (Azpilicueta et al., 2003).



5.4 NeQuick for the Galileo navigation system 87

The Galileo system as a stand-alone navigation system relies on its own global network of
permanent stations to provide the effective ionization level in real-time for single-frequency
users. The algorithm that will be implemented, for correcting the ionospheric effects on
the Galileo single-frequency user’s observations, is shown in figure 5.6. It involves different
operations for the ground, space and user segments. The algorithm consists of 5 steps; step
1 to step 4 are carried out by the Galileo ground and space segments. In the next section
the nominal approach is described that is used by the ground segment for optimizing the
effective ionization level for NeQuick to match observations is described.

5.4.1 Effective Ionization Level (Az parameter)

In the optimization of NeQuick to use for real-time single-frequency point positioning
operations in the Galileo system, the effective ionization level (or Az parameter) plays a
crucial role. Therefore, it can be said that it is an index to introduce daily solar activity
into NeQuick, in which it is not only affected by local geomagnetic conditions but also
by the optimization of the model to minimize model error with respect to the reference
measurements.

The effective ionization level is a key input parameter for the NeQuick model as a Galileo
ionospheric correction model. At a user’s site it will be computed from a second order
polynomial (Schluter et al., 2004) as a function of the user’s modified dip latitude (μ):

Az = a0 + a1 · μ + a2 · μ2 (5.17)

The three coefficients of the polynomial (a0, a1 and a2) act as NeQuick model parameters
and will be broadcast as part of the Galileo navigation message, see figure 5.6, (SIS-ICD,
2006).

5.4.2 Estimation of the effective ionization level (nominal approach)

In standard operation for Galileo, the worldwide coefficients a0, a1 and a2 will be deduced
by least-squares fit of a second-order polynomial to the estimated Az values from at least
20 permanent ground monitoring (or sensor) stations of the Galileo system with a near-
uniform global distribution (Radicella et al., 2003). In this thesis, this is called as nominal
approach for estimation of the coefficients. The Az value at each station will be estimated
from the observations of the previous day. The coefficients will be updated once every 24
hours and broadcast to single-frequency users as a part of Galileo navigation messages.
The Az value at each monitoring station will be estimated by minimizing the squared
model error for a 24-hour period over a range of Az values (Az ≥ 64) using the Brent
optimization method (Brent, 1973):

Âz = arg min
Az ≥Azmin
Az<Azmax

n∑
i=1

|TECMeasured − TECNeQuick(Az)|2i (5.18)

where n is the number of observations from a station for all satellites in a day (Prieto-
Cerdeira et al., 2006). The range of possible Az values is 64 to 193 (same as the range
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of F10.7 index) in the original formulation of this algorithm. However, as it will be shown
later, it is necessary to estimate Az over a much wider range (see subsection 5.5.2).

This method of estimation of the Az parameter has also been used in (Memarzadeh and
van der Marel, 2006a) for estimating Az for individual stations. In Memarzadeh and van der
Marel (2006a) the measured TEC was computed from dual frequency GPS observations,
taking into account satellite differential code biases (DCB) computed by IGS. If the station
is an IGS station the DCB of receiver can be obtained through IGS; if not, the receiver
DCB has to be estimated (see subsection 4.6).

It must be mentioned that the use of NeQuick is not restricted to Galileo; it can also be used
at least in post-processing applications of GPS and GLONASS. However, as Galileo is under
development, values for Az are not yet available and therefore at the moment NeQuick
cannot be used as a real-time ionospheric correction model for GNSS observations. In
post-processing applications, users could estimate the local effective ionization level from
daily permanent GPS station data, but since not all users are prepared or equipped to do
this, this is not a very desirable solution.

In the section 5.5, we will present an alternative approach for estimation of the Az param-
eter using the Global Ionospheric Maps (GIM) from the IGS instead of raw GPS data.

5.4.3 Improved version of NeQuick

According to (Leitinger et al., 2005; Radicella and Zhang, 1995), several modifications
have been applied to improve the 1994 version of NeQuick; they will be addressed in this
section. The modifications in the model implementation and formulation are as follows:

• The upper limit of the Az parameter (Az ≤ 193) is eliminated,

• M(3000)F2 values less than 1 are replaced by 1,

• The input file of dip latitudes (diplats.asc) should be updated every five years from
the IGRF (using the field predicted for the following five years),

• In order to compute the AF2 quantity, the equation AF2 = nmax,F2 − 0.1nmax,F1 is
used instead of AF2 = nmax,F2 (in Table 5.1),

• In Tables 5.2 and 5.3, the following equation is used for computation of the zX

quantity (index X is F1 or E):

zX =
h − hmax,X

B
exp

⎧⎨
⎩ 10

1 + 2
∣∣∣h−hmax,F2

B

∣∣∣
⎫⎬
⎭ (5.19)

• The complicated formulation for the peak height of the F1 region (equation 4.10)
is replaced by the following simple equation:

hmax,F1 =
hmax,F2 − hmax,E

2
(5.20)
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• During daytime under all conditions the peak frequency of the F1 region was originally
foF1 = 1.4foE. In the improved NeQuick model for foE < 2 MHz, the peak
frequency of the F1 region is set to foF1 = 0 and if 0.85foF2 < 1.4foE then
foF1 = 0.85 × 1.4foE,

• The following simplified formulations should be used for the thickness parameters of
the F1 region:

Btop,F1 = 0.3 (hmax,F2 − hmax,F1) (5.21)

Bbot,F1 = 0.5 (hmax,F1 − hmax,E) (5.22)

It is important to know that the version of NeQuick for the Galileo navigation system is not
finalized yet and it may still be modified. A new version of NeQuick has been introduced
recently with major changes in the topside formulation and with important modifications
in the bottom side description (Nava et al., 2008). The computations in this thesis were
carried out before the new version of NeQuick was introduced, using the NeQuick source
code version 1994 after applying the above mentioned modifications, was used in the
computations.

5.5 Estimation of the effective ionization level using GIM

Since Global Ionosphere Maps routinely produced by the IGS are provided from more than
200 globally distributed IGS sites around the world we believe that GIM are robust and
reliable enough (under different ionospheric climates) to employ them for estimation of the
NeQuick model parameters. In this section a new approach is proposed to utilize the Global
Ionospheric Maps for estimation of the NeQuick model parameters. The new approach is
called the alternative approach in this thesis. Note that the proposed approach can be
applied for estimation of the model parameters using the different versions of NeQuick
model.

5.5.1 Estimation of the effective ionization level (alternative approach)

Using the VTEC times series computed from the GIM, the effective ionization level or Az
parameter can be computed in three steps. In the first step, a daily time series of VTEC
is produced for each grid point of the GIM. The time interval for VTEC is 2 hours, so
the time-series for each grid point consists of 13 points (see figure 5.7). In the second
step, the provided VTEC time series of a grid point is substituted into equation 5.18 (as
the measured VTEC) to estimate a daily value of the Az parameter for the grid point by
optimization of the NeQuick model as a function of the Az parameter. Since the NeQuick
model varies smoothly with Az, to economize on computation time the modeled VTEC
was computed at Az intervals of 16. The range over which the optimum Az is estimated
has been increased from 64–193 to 0–209 (see figure 5.8). In figure 5.8, which shows a
typical optimization of NeQuick, the vertical axis is a summation of the norm in equation
5.18 (model error) for which n = 13. As expected, the curve of model error versus the Az
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Figure 5.7: Daily VTEC time series computed by GIM and by NeQuick using the optimum effective
ionization level (Az = 85) at a grid point (ϕ = 45◦ on the Greenwich meridian) for day 105 of 2006

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Az parameter

M
od

el
 e

rr
or

NeQuick model error versus Az parameter (Lat = 45 ; Long = 0 ; 105 day of 2006)

Optimum Az value

Figure 5.8: Typical example of the optimization of NeQuick as a function of the Az parameter at a grid
point (ϕ = 45◦ on the Greenwich meridian) for day 105 of 2006

parameter has a parabola shape with a unique minimum related to the optimum Az value.
This second step results in a daily grid-based map of the Az parameter around the world.

In the third step, a second order polynomial is fit to the Az values with respect to modified
dip latitude, and the coefficients of the polynomial are estimated. The main advantages of
the alternative approach are:

• The VTEC time series produced from GIM is always healthy and available for every
location over the world,

• There is no need to worry about the receiver Differential Code Bias (DCB)
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Figure 5.9: Daily Az grid-map (in unit of solar flux 10−22Wm−2Hz−1) using GIM for day 74 of 2006
(Geomagnetic equator and Dip equator denoted by dashed and solid curves, respectively)

A further advantage of this approach is that it provides a tool to investigate the spatial
dependency of the Az parameter. The spatial variation of Az is studied in subsection 5.6.2.
The alternative approach is validated and compared with the nominal approach in section
5.6.

In the alternative approach daily value of Az in a grid point is estimated using the 13
values of VTEC at the grid point (n = 13 as the size of VTEC time-series). It is also
possible to use equation 5.18, with n = 1, to compute an Az value for each sample value
in the VTEC time-series. This would therefore result in two-hourly Az maps. This could
be used, for instance, to study the daily variability in Az, or to predict the Az for the next
day, instead of using the values of the previous day as specified by the Galileo algorithm.

Another advantage of using two-dimensional Az maps is that the fitting approach of step
3, where a second-order polynomial in modified dip latitude is fitted to the Az data, can
be evaluated and possibly improved.

5.5.2 Daily grid-based map of the effective ionization level

An example of a daily map of the effective ionization level Az, as provided by the second
step of the alternative approach, is given in figure 5.9. Tith map has been produced using
the final CODE GIM map for day 74 of 2006, showing the color coded Az at every grid
point of the GIM.

It should be mentioned that we used 0 instead of 64 for the lower boundary of the Az
parameter in equation 5.18. Since Az is not highly correlated with the F10.7 index (see
subsection 5.6.3), due to local geomagnetic condition effects, the lower boundary of the
Az parameter differs from the F10.7 index and it is reasonable to expect Az values less
than 64 at some of the grid points.
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Figure 5.10: Estimated Az values at the GIM grid points (using GIM) versus latitude, longitude and
modified dip latitude for day 74 of 2006. The solid curve in the bottom sub-figure shows the second-order
polynomial fit to the estimated Az values with Azmin = 0 and the dashed curve shows the fit polynomial
with Azmin = 64

Figure 5.9 gives a strong impression that the Az parameter is highly correlated with the
geomagnetic latitude. To verify this, the estimated values of the Az parameter are plotted
with respect to latitude, longitude and modified dip latitude in figure 5.10. Clearly, we
can observe from figure 5.10 that there is a strong latitudinal dependency, especially with
respect to the modified dip latitude, but that there is no apparent dependence on longi-
tude. The scatter of Az when plotted against the modified dip latitude is smaller than
when plotted against latitude, so clearly the modified dip latitude is a better argument for
function fitting than the latitude. In order to estimate the NeQuick model parameters for
Galileo, a second-order polynomial in modified dip latitude was fitted to the Az values.
To demonstrate the NeQuick model parameters for different choices of the lower boundary
of Az, a second-order polynomial was fitted to the Az values with Az > 0 (solid line in
figure 5.10) and another second-order polynomial was fitted to Az values with Az > 64
(dashed line). The result is that the coefficients of the polynomial (the NeQuick model
parameters) were changed significantly by different choices of the lower boundary of Az.
More examples are given in the next sections.

5.5.3 Az parameter for single point positioning

The NeQuick model parameters, for the real-time single point positioning, will be provided
for the users of the Galileo system in real-time by the Galileo navigation message. For this
purpose, in the nominal approach, the model parameters are estimated every 24 hours using
observations of the previous day in the permanent Galileo monitoring stations. Therefore,
the corrections computed by NeQuick do not actually describe the ionosphere at the time
of single point positioning, if the users apply the corrections in real time.

There are two possibility to estimate the NeQuick model parameters using GIM for the
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Figure 5.11: Az values at the GIM grid points (dots) estimated using the predicted version of GIM and
predicted Az values at 20 IGS stations using observations of the previous day (circles) for days 261, 262
and 263 of 2006. Dashed and solid lines respectively show the fitted 2nd order polynomials for circles and
dots.

single point positioning : 1) estimate using the predicted version of GIM (produced by the
CODE), 2) predict using a time series of the model parameters over the previous days.
Using the predicted model parameters for real-time application of the NeQuick model (or
single point positioning) gives rise to questions about its efficiency and performance. One
might ask: does the predicted model parameters have sufficient accuracy? To provide an
answer to this question, the predicted version of GIM for days 261, 262 and 263 of year
2006 were processed to obtain the predicted version of the daily Az map. The Az values
at the 20 IGS stations were also estimated using the daily GPS observations of days 260,
261, and 262 of 2006. The spatial distribution of Az values from the predicted version of
GIM and the estimated Az values for 20 IGS stations (using data of the previous day) are
depicted for the three days in figure 5.11. Note that in all processing in current and next
sections, Az

min
= 0 is used as the lower boundary of the Az parameter in the equation

5.18. Figure 5.11 clearly shows that there is high consistency between the values of Az
estimated using the predicted version of GIM and Az values estimated for each IGS station
using GPS data of the previous day. The second-order polynomials fit to Az values from
the two approaches don’t differ significantly from each other and we can conclude that
use of the predicted version of GIM for computation of the NeQuick model parameters is
suitable for real time application of NeQuick.
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Figure 5.12: Distribution of the 20 IGS stations (black bold dots) used for estimation of the NeQuick
model parameters and locations of the three IGS stations (red stars) used to test performance of the
NeQuick model

5.6 Validation of the alternative approach

The goal here is to investigate the validity of Az parameter estimation using the GIM.
For this purpose, the consistency of the alternative approach with the nominal approach is
evaluated by comparing the estimated effective ionization level from the two approaches.
The comparison will be done under geomagnetically different conditions of the ionosphere.

Description of data and processing Since the Galileo system is under development
we used actual daily GPS observations from 20 IGS stations with a near-uniform global
distribution (see figure 5.12) to estimate the NeQuick model parameters using the nominal
approach. The daily effective ionization level for each IGS station was estimated using slant
TEC values measured every 10 minutes for each satellite in view above an elevation mask
angle of 40 degree during a 24-hour period. For estimation of the effective ionization level
using the global ionospheric maps, the final version of GIM from the CODE was used.

5.6.1 Consistency of the approaches

To test the consistency of the proposed and the nominal approaches for estimating the
Nequick model parameters under different geomagnetic conditions of the ionosphere, we
processed data from 20 IGS stations on the 74th, 16th, 258th, and 349th days of year
2006 for which the Kp index varied between 0 and 9. For these four days, the effective
ionization level estimated using GIM and the values estimated using GPS data at each IGS
stations are shown versus modified dip latitude in figure 5.13. The estimated Az values
using the GPS data at IGS stations are mostly in the range of the estimated values using
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Figure 5.13: Estimated Az using GIM at the grid points (dots) and the estimated Az at 20 IGS stations
using daily GPS data (circles) under different geomagnetic conditions of the ionosphere in days 74, 166,
258, 349 of 2006 (the solid curve is the fitted 2nd-order polynomial to the dots and the dashed red curve
is the fitted 2nd-order polynomial to the circles)

GIM for the grid points whose modified dip latitudes are nearly the same as the station.
The estimated Az for a few stations are out of the band estimated from the GIM. This has
happened at stations where the quality of the measured slant TEC values were degraded
due to increasing station-dependent errors (such as multipath and cycle-slip) in the GPS
data of the station. However, it is obvious from figure 5.13 that there is a high consistency
between the values of the Az estimated using GIM and the values estimated using daily
GPS data at the IGS stations under different geomagnetic ionospheric conditions. To see
the consistency between the estimated NeQuick model parameters from both approaches,
in figure 5.13 a second-order polynomial was fit to the dots (Az values from the GIM grid
points) and another second-order polynomial was fit to the circles (Az values from the 20
IGS stations). Note that to fit the polynomial to the dots, only Az values of the grid points
located within the range of the maximum and minimum modified dip latitudes of the 20
IGS stations were used. If we compare the fitted polynomials (to the dots and circles), we
can confidently conclude from the subfigures of figure 5.13 that estimation of the NeQuick
model parameters using GIM is highly consistent with estimation by the nominal approach.
This consistency was seen under different geomagnetic ionospheric conditions.

It can also be seen that a second-order polynomial is not necessarily the best-fitting function
to model the behavior of the Az parameter against the modified dip latitude. Therefore it
could be advantageous to use a different function for modeling the Az parameter as a func-
tion of the modified dip latitude. The next section shows more examples and presents more
discussion about the best-fitting function for the spatial dependency of the Az parameter.
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Figure 5.14: Estimated Az using GIM at the grid points (dots) versus modified dip latitude and the fitted
2nd- and 4th-order polynomials (dashed and solid curves, respectively) for days 15, 46, 74, 105, 135 and
166 of 2006 (the meridian mean Az value is indicated by the solid-bold red curve)

5.6.2 Modeling the spatial dependency of the Az parameter

In this subsection, the aim is to demonstrate that a second order polynomial is not the
best-fitting function to model the behavior of the Az parameter versus modified dip latitude
(μ). Employing GIM for estimation of the Az parameter provides a valuable opportunity to
study the spatial variation of the Az parameter over the world. Daily Az maps using GIM
were produced for 12 days in 2006 (the 15th day of every month). Figures 5.14 and 5.15
show the estimated Az parameters (indicated by dots) with respect to modified dip latitude
individually for each of the 12 days. In these figures, the solid-bold (red) curves show the
meridian mean Az value versus modified dip latitude. From the plots in these figures, it
can be seen that when the linear trend is ignored, the behavior of the Az parameter against
modified dip latitude is almost symmetric and a local maximum around the geomagnetic
equatorial region always exists. Consequently, a forth-order polynomial can be used as a
simple function to express the spatial variation of the Az parameter against modified dip
latitude. In polar regions, the fluctuation of the Az parameter is increased, especially during
the summer period of the hemisphere, therefore a trigonometric function is preferable for
higher dip latitudes.

For comparison, a fourth-order and a second-order polynomials are fitted to the estimated
daily Az values in figures 5.14 and 5.15. Since fluctuations in the Az values increased
in the polar regions, the higher latitudes (μ > 65◦) were excluded in the fitting of the
polynomials. In table 5.4, the RMS values (Root-Mean-Squared) of the fitted 2nd- and
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Figure 5.15: Estimated Az using GIM at the grid points (dots) versus modified dip latitude and the fitted
2nd- and 4th-order polynomials (dashed and solid curves, respectively) for days 196, 227, 258, 288, 319,
and 349 of 2006 (the meridian mean Az value is indicated by the solid-bold red curve)

4th-order polynomials are given. The RMS values for the 4th-order polynomial are slightly
smaller. This implies, at least, that the second-order polynomial proposed for the Galileo
system may not be the best function to model the spatial distribution of the Az parameter
with respect to modified dip latitude.

Table 5.4: RMS error of fitting 2nd- and 4th-order polynomials to the daily spatial distribution of the Az
parameter (estimated using GIM) for 12 days of 2006

Day of year 015 046 074 105 135 166 196 227 258 288 319 349

2ndorder polynomial 25 18 14 14 12 17 13 13 13 14 21 29
4thorder polynomial 18 17 13 13 11 15 12 11 13 15 17 25

5.6.3 Correlation between Az and F10.7

As mentioned in section 5.4, for use of the NeQuick model as a Galileo ionospheric cor-
rection model, the monthly averaged F10.7 index is replaced by the daily Az parameter
which takes into account the variable daily solar activity and the user’s local geomagnetic
conditions. It implies that the daily solar radiation intensity is introduced into the NeQuick
model by Az parameter. Therefore, it is expected that Az is correlated to the solar ra-
diation intensity (F10.7 index). This was investigated by the estimated Az values using
GIM. Due to the spatial dependency of the Az parameter we investigated the correlation
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Figure 5.16: Yearly time series of the Az parameter at different latitudes (ϕ = −60 : 30 : +60◦) along
Greenwich’s meridian and yearly time series of the F10.7 index during 2006

between Az and F10.7 at different latitudes (ϕ = −60:10:+60◦) along Greenwich’s merid-
ian (λ = 0◦). Time series of daily Az parameter estimated using GIM were produced for
different years. For illustration of the yearly Az and F10.7 time series, only the time series
of Az for latitudes ϕ = −60:30:+60◦ and the time series of F10.7 during 2006 are plotted
in figure 5.16.

In order to find out how the Az parameter is correlated with the solar radiation intensity,
the correlation coefficient (ρ) between the yearly time series of Az and F10.7 at each point
(ϕ = −60 : 10 : +60◦) was computed as

ρ =
σx,y

σxσy
(5.23)

where σx and σy are the standard deviations and σx,y is the covariance of the yearly time
series of Az and F10.7 that can be computed by (Teunissen, 2007)[

σ2
x σx,y

σx,y σ2
y

]
=

ET E

m − 1
(5.24)

E =
[

x y
]
m×2

(5.25)

where m is the size of the time series. Note that x and y are the detrended time series
(w.r.t. the mean) of the Az parameter and F10.7, respectively.

The correlation coefficient between Az and F10.7 versus latitude is shown in figure 5.17
for 2003, 2004, 2005 and 2006. It is obvious that the correlation between Az and F10.7 is
always positive and increases in the equatorial region. The spatial dependency of the cor-
relation between the Az parameter and F10.7 may be due to local geomagnetic conditions
that Az takes into account. figure 5.17 shows that the correlation coefficient was always
less than 0.65 and the Az parameter was not highly correlated with F10.7. Consequently,
we concluded that limiting the Az parameter with the lower and upper limits for the F10.7
index (respectively 64 and 193) would be unreasonable.
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Figure 5.17: Correlation coefficient between Az and F10.7 versus latitude (estimated from yearly time
series of Az and F10.7 provided for 2003, 2004, 2005, and 2006)

Lower and upper limits of the Az parameter To choose proper limits for the Az
parameter, it is important to know the variations of M(3000)F2 and foF2 versus the
F10.7 index in the CCIR maps. In figure 5.18, typical variations of M(3000)F2 and foF2
are given (top-right and top-left plots) for F10.7 values (from 0 to more than 1000) at
a point located at ϕ = 40◦ and λ = 10◦ at UT = 10 : 00h in July. In the lower plots
of figure 5.18, the variations of hmax,F2 and nmax,F2 versus F10.7 are shown, based on
the NeQuick model formulation (equations 5.2 and 5.9). It can be seen from the plot of
hmax,F2 (bottom-right) that with increasing F10.7 the height of peak electron density of
the F2 region goes to infinity. In reality, it does not occur due to decreasing atmospheric
density with height. If we look at the plot of nmax,F2 (bottom-left), we see that for low
values of F10.7, nmax,F2 goes to zero; this implies that the F2 region disappears for very
low values of F10.7. However, from these plots one can say that it is not reasonable to
choose a negative number for the lower limit of Az or very large values for the upper
limit of Az. Therefore, a proper lower limit of Az can be 0 and a value around a few
hundred would be a proper value for the upper limit. It should be noted that the CCIR
maps were developed for two solar activities, one for low and one for high solar activity
(R12 = 0 to 100), and the coefficients for intermediate levels of solar activity are obtained
by linear interpolation (Bradley, 1990).

5.7 Performance of the NeQuick ionospheric model

In the previous section, the nominal approach and an alternative approach for estimation of
the NeQuick model parameters were compared, and the validity of the alternative approach
and its consistency with the nominal approach have been verified. In this section, we aim to
study the performance of the NeQuick model in providing the correction of slant ionospheric
distance delay for the GPS observations. To compare the NeQuick model with the different
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Figure 5.18: M(3000)F2 and foF2 versus F10.7 in the CCIR maps (top left and right subfigures) and
variation of nmax,F2 and hmax,F2 versus F10.7 based on the NeQuick model formulation (bottom left and
right subfigures)

types of ionospheric models, the performance of the CODE Global Ionospheric Maps (GIM)
and the well-known Klobuchar model are also studied.

5.7.1 Data specifications and processing

Three IGS stations—PIMO (ϕ = 15◦ in Philippines), TEHN (ϕ = 35◦ in Iran), and WSRT
(ϕ = 53◦ in the Netherlands)—that are located in the mid-latitude region (see figure 5.12)
were used to study the performances of the ionospheric models. The slant ionospheric delay
between these three IGS stations and all GPS satellites (in view) were measured, using the
method of subsection 4.6.2, during 24 hours in the four days 74, 166, 258, and 349 of
2006 (one day in each season). The time interval of the measurements was 10 minutes
and a cut-off angle of 15 degree was used for all GPS data. The ionospheric condition
was geomagnetically different during the four days (days 74 and 258 were geomagnetically
quiet, day 166 was moderate, and day 349 was severe). However one should consider that
this analysis was based on a limited number of days and stations and for more reliable
conclusion, it would be necessary to process a larger data set.

The measured slant ionospheric delays and the corresponding delays predicted by GIM,
Klobuchar and NeQuick, and comparisons between them were processed by a package of
Matlab scripts that written by the author.

To compare the performances of the models, the discrepancy between the slant ionospheric
delay provided by each model Imodel (model stands for NeQuick, GIM, or Klobuchar) and
the corresponding delay measured by the GPS phase data Ĩ (see subsection 4.6) was
computed:

δIs
r (t) = Ĩs

r (t) − Is
r,model(t) (5.26)
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where δIs
r (t) denotes the model error (or model residual) for epoch t between receiver r

and satellite s. According to subsection 4.6, the accuracy level of the measured ionospheric
delay Ĩ is 1 TECU. Consequently, Ĩ has been considered as a reference (or true ionospheric
delay) and the daily bias in each model and the RMS (Root-Mean-Squared error) of model
errors were computed by the first and second moments of δI(t):

BIAS = E{δI(t)} (5.27)

RMS =
√

E{δI(t)2} (5.28)

where E{} is the mathematical expectation. The standard deviation (STD) of the model

error is computed by STD =
√

(RMS)2 + BIAS2. To estimate model error in percentage
(relative model error), the daily Average Percentage Model Error (APME) can be computed
as follows (Memarzadeh and van der Marel, 2006a,b):

APME =
1

n

n∑
i=1

δI(i)

Ĩ(i)
× 100 (5.29)

where n is number of measured ionospheric delays from all stations to all satellites in a day.
Note that the APME value increases for quiet ionospheric conditions, because the absolute
ionospheric delay (Ĩ) is smaller during the geomagnetically quiet ionosphere. It implies that
the APME is not a proper criterion to measure the correctness of a ionospheric model. That
is why in the Galileo specification for single-receiver ionospheric correction, it is specified
that the model error should be no more than 20 TEC Units or 30% of the actual slant
TEC, whichever is larger (20 TECUs are equivalent to an execess group delay of 3.25 m
at L1 frequency) (Prieto-Cerdeira et al., 2006). However, to compare the performances of
the different models under the same conditions, the APME values can be a good criterion
for our evaluation in this study.

Estimation of the receiver differential code bias (DCBr) To measure the slant iono-
spheric delay using the geometry-free linear combinations, the satellite and receiver dif-
ferential code biases (DCBs and DCBr) are needed. The DCBs of GPS satellites were
obtained from the CODE’s IONEX files, but in our computations DCBr of the receivers (for
IGS stations: PIMO, TEHN, and WSRT) were estimated by the least squares adjustment
of the functional model of geometry-free linear combinations.

Table 5.5: The monthly averaged differential code bias (DCBr) of the PIMO and WSRT stations provided
by the CODE-IGS center and the corresponding estimated values using daily GPS data; the discrepancies
are given inside the brackets (values are in [ns])

Day of Kp WSRT PIMO TEHN
2006 index IONEX Estimated IONEX Estimated IONEX Estimated
074 0-3 -1.90 -1.78 [-0.12] -8.54 -7.87 [-0.67] - -3.80 [-]
166 1-6 -2.84 -2.69 [-0.15] -7.84 -7.03 [-0.81] - -2.67 [-]
258 0-3 -3.05 -2.93 [-0.12] -7.92 -7.10 [-0.82] - -2.65 [-]
349 2-9 -1.00 -1.12 [ 0.12] -8.03 -7.57 [-0.45] - -3.58 [-]

It should be noticed that only monthly averaged values of DCBr of IGS stations, which
are used in GIM maps production, are available in the IONEX files. For comparison, the
estimated DCBr and corresponding values from the IONEX files are shown in table 5.5.
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Figure 5.19: GIM model errors in percentage at three IGS stations (PIMO, TEHN, WSRT) versus measured
slant ionospheric delay (dots in left subfigures) and histograms of the GIM model errors of all three stations
(right subfigures) for days 74, 166, 258, 349 of 2006.

Note that TEHN station is one of the IGS stations but, since it is not used in producing
GIM maps, the DCBr of this station is not available from the IONEX files.

In Table 5.5, the discrepancies between IONEX and the estimated values for DCBr are
always less than one nanosecond and the standard deviation of the discrepancies is 0.34
nanosecond. According to figure 4.5, the standard deviation of the estimated DCBr should
be a few tenths of a nanosecond, so it is in good agreement.

5.7.2 Comparison between the model errors

In figure 5.19, histograms of the GIM model errors (right subfigures) and the relative model
errors in percentage (left subfigures) at all three stations (PIMO, TEHN, WSRT) are shown
for the four days (74, 166, 258, and 349 of 2006). As expected, the mean model error of
GIM was 0 (for all days) and the RMS values were at levels of a few decimeters, which is
consistent with the 2∼8 [TECU] accuracy of GIM maps.

In figure 5.20, the same plots for the NeQuick model error are shown. The Az parameter
for the NeQuick model was provided using GIM maps (in the alternative approach). In
order to evaluate the performance of the NeQuick model with Az parameter values from
both the nominal approach (using 20 IGS stations) and the alternative approach, the BIAS,
RMS, and APME values for the NeQuick model errors with Az from both approaches were
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Figure 5.20: NeQuick model errors in percentage at three IGS stations (PIMO, TEHN, WSRT) versus
measured slant ionospheric delay (dots in left subfigures) and histograms of the GIM model errors of all
three stations (right subfigures) for days 74, 166, 258, 349 of 2006 (Az estimated from the final version
of GIM maps).

computed. The BIAS, RMS and APME values of the Klobuchar model errors were also
computed in same way.

For comparison between the models, the BIAS, STD, RMS, and APME values of the models
are shown in figure 5.21. A remarkable result of figure 5.21 is obtained by comparing
the RMS of NeQuick model error when Az was estimated from GIM with those when
Az was estimated by the nominal approach. We see that there is only a very slight
difference between the RMS values; it can be concluded that estimation of the NeQuick
model parameters from GIM for application of the NeQuick model as an ionospheric delay
correction model in GNSS is reliable enough. It can be observed that the APME values
for NeQuick with Az provided by both approaches are also nearly the same under different
ionospheric conditions. This shows that the accuracy of the NeQuick model is not degraded
when the model parameters are estimated from GIM, and the NeQuick model parameters
estimated using GIM are reliable enough under all ionospheric conditions.

In figure 5.21, as was expected, the BIAS, RMS, STD, and APME values for the GIM are
less than those for the NeQuick and Klobuchar models. It follows that the GIM is the
best of all. The BIAS, RMS, STD, and APME values for the Klobuchar model are larger
than those for the NeQuick model. In other words, our results show that the NeQuick
model error is always less than the Klobuchar model error. This results in the NeQuick
model performance is better than the Klobuchar model (under geomagnetically different



104 Chapter 5. NeQuick 3D Ionospheric Electron Density Profiler

−1

−0.5

0

0.5

1

Day of year 2006

Bi
as

 [m
]

 

 

0

0.5

1

1.5

2

Day of year 2006

ST
D

 [m
]

 

 

0

0.5

1

1.5

2

2.5

Day of year 2006

RM
S 

[m
]

 

 

0

20

40

60

80

100

Day of year 2006

A
PM

E 
[%

]

 

 

074 166 258 349 074 166 258 349

074 166 258 349 074 166 258 349

Klobuchar
NeQuick(GIM)
NeQuick(GPS)

GIM

Figure 5.21: Comparison between Mean, STD, RMS, and APME of the GIM, Klobuchar and NeQuick
(with the Az parameter provided from both GIM and 20 IGS stations) models errors during 74, 166, 258,
349 days of 2006

ionospheric conditions) in terms of an ionospheric correction model for the GNSS data.

5.8 Concluding remarks

The focus of this chapter was on the NeQuick ionospheric electron density model and es-
timation of the NeQuick model parameters. Formulation of the model based on the 1994
version was described and some differences between the 1994 NeQuick and the improved
version were addressed. In this chapter, it is proposed to employ Global Ionospheric Maps
(GIM) for estimation of the effective ionization level (Az parameter) which is a key input
parameter for the NeQuick model. We believe that GIM routinely produced by the Inter-
national GNSS Service is reliable and accurate enough to utilize for estimation of the daily
NeQuick model parameters. We showed that the NeQuick model parameters provided from
GIM are highly consistent with the nominal approach under all geomagnetic ionospheric
conditions.

The alternative approach provides a valuable opportunity not only to study the spatial
dependency of the Az parameter but also to investigate the correlation between the Az
parameter and the solar radiation intensity. Our results in this chapter show that the
second-order polynomial is only the simplest function to express the spatial distribution of
the Az parameter against modified dip latitude but it is not the best-fitting function. A
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study of the correlation between the Az parameter and F10.7 using their yearly time series
from 2003 to 2006 shows that they are not highly correlated (the maximum correlation is
less than 0.65). Resulting in that use of the same lower limits for Az as for F10.7 (64) is
unreasonable in practice. We also found that the correlation coefficient between Az and
F10.7 is always positive and depends on latitude. The correlation coefficient is higher in
equatorial regions.

By taking advantage of the availability of the predicted version of GIM from the Center
for Orbit Determination in Europe (CODE), one of the IGS analysis centers, predicted
NeQuick model parameters for real-time GNSS applications can be computed. Comparing
the predicted model parameters with the corresponding values from the nominal approach
verified the consistency and validity of the predicted model parameters.

We compared slant ionospheric delays derived from NeQuick, using model parameters com-
puted from both GIM and the nominal approach, with the corresponding delay measured
by GPS phase data in three IGS sites. This demonstrates that the accuracy of the NeQuick
model is the same using the model parameters from GIM as using model parameters from
the nominal approach.





Physics-Based Modeling of TEC 6
In this chapter a physics-based model to describe the regular variation of TEC during a
day as function of solar zenith angle is developed. The model is based on the theory of
ionosphere formation which was presented in chapter 3.

The physics of the ionosphere is used for the definition of the normal ionosphere with an
electron density profile based on the Chapman production function in subsection 3.2.2. In
section 6.2 a recursive model for VTEC in the normal ionosphere is introduced and the
least squares estimation of the model parameters using VTEC measurements is discussed.
The performance of the recursive model is investigated in section 6.3 using GIM maps as
input.

6.1 Normal ionosphere

In order to express ionospheric VTEC as a function of the solar incidence zenith angle,
the earth’s ionosphere is considered as an ideal ionized medium that it is defined based on
(Chapman, 1931a) and (Chapman, 1931b). The idealized ionosphere is simple but similar
representation of the actual ionosphere. It is:

• An atmosphere with only two types of gases (O2 and O). The more heavy gas (O2)
dominates the lower altitudes and the lighter gas (O atomic oxygen) dominates the
higher altitudes.

• An isothermal atmosphere where density varies exponentially with height.

• An atmosphere with a spherical stratification which rotates with the earth, at the
same rotation rate.

• An atmosphere where gases are ionized by absorption of the solar radiation (pho-
toionization process) and the rate of ion production is determined by the Chapman
production function: the ion production rate is proportional to the air-density and
the intensity of the radiation reaching that point.

• The rate of electron loss at the lower altitudes is proportional to the squared elec-
tron density αn2

e(h) (α quadratic recombination coefficient) and proportional to the
electron density βne(h) (β linear recombination coefficient) at higher altitudes.

• The quadratic and linear recombination coefficients are independent of height.
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Figure 6.1: Illustration of the normal ionosphere with E- and F-regions.

• No transport of charged particles (electrons and ions). The charged particles do not
move from the place which they were formed, this implies that the geomagnetic field
plays no role in the formation of the normal ionosphere.

According to above assumptions, the idealized ionosphere consists of two ionized regions:
the idealized E-region (lower ionosphere) and the idealized F-region (upper ionosphere).
The two regions overlap as shown in figure 6.1. The overlapped region is under the altitude
of the peak electron density of the F-region. These two idealized ionized regions define an
ideal ionosphere that it refers to a normal ionosphere in this thesis.

6.1.1 Vertical electron density profile in the normal ionosphere

The electron density at a given point in the normal ionosphere is computed by summation
of the electron densities of the two idealized E- and F-regions

ne(t, h) = ne,E(t, h) + ne,F (t, h) (6.1)

with ne(t, h) the normal electron density at height of h, and with ne,E(t, h) and ne,F (t, h)
the electron densities of the normal E- and F-regions. The electron density varies over
time because of the earth’s rotation. The rotation of the earth results in a changing the
earth-sun geometry at a given point in the normal ionosphere. The temporal variation
of the normal electron density can be expressed as the sum of the variation of electron
densities in the two normal regions

∂ne(t, h)

∂t
=

∂ne,E(t, h)

∂t
+

∂ne,F (t, h)

∂t
(6.2)
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The VTEC in the normal ionosphere is the integral of equation 6.1 over height

N(t) =

∫ ∞

0

ne,E(t, h)dh︸ ︷︷ ︸
NE(t)

+

∫ ∞

0

ne,F (t, h)dh︸ ︷︷ ︸
NF (t)

(6.3)

where N stands for the normal vertical total electron content and NE and NF are respec-
tively the vertical total electron contents for the normal E- and F-regions. The temporal
variation of the VTEC in the normal ionosphere is the integral of equation 6.2 over height

∂N(t)

∂t
=

∫ ∞

0

∂ne(t, h)

∂t
dh =

∫ ∞

0

∂ne,E(t, h)

∂t
dh︸ ︷︷ ︸

∂NE(t)

∂t

+

∫ ∞

0

∂ne,F (t, h)

∂t
dh︸ ︷︷ ︸

∂NF (t)

∂t

(6.4)

The time derivative of the normal VTEC in the E- and F-regions can be obtained by
integration of the electron density continuity equation over height for each layer.

6.1.2 VTEC in the normal E-region

The continuity equation of electron density at a given point in the normal E-region is
written

∂ne,E(χ, h)

∂t
= q(χ, h) − α n2

e,E(χ, h) (6.5)

with α is the quadratic recombination coefficient (constant in time and height) and χ the
solar zenith angle at the point. The charged particles can’t move in the normal ionosphere
consequently the term associated to the transport process is absent in the equation 6.5.
The solar zenith angle at the point depends on the location of point, local time, and season.
Therefore, it can be computed as a function of latitude of the point ϕ, and the local time
t, and the solar declination angle δ, i.e. χ = χ(t, ϕ, δ) as follows

cos χ = sin δ sin ϕ + cos δ cos ϕ cos T (6.6)

where T = (t − 12) π
12

is the longitude of the point (in radians) measured eastward from
the sun meridian (or the noon meridian) at the local time t in hour (T = 0 at local noon
time).

In equation 6.5, q(χ, h) is the ion production rate at solar zenith angle χ(t, ϕ, δ) and at
height h given by the Chapman production function (equation 3.29)

q(χ, h) = q0
max,E a(χ, h) (6.7)

with

a(χ, h) = exp {1 − z − Ch(χ, h) exp {−z}} (6.8)

and with z =
h−h0

max,E

HE
, HE is the scale height of the normal E-region, h0

max,E the height of

the maximum rate of ion production q0
max,E when the sun is overhead (χ = 0). Ch(χ, h)

is the Chapman grazing incidence function (equation 3.28).
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In (Chapman, 1931a), the equation 6.5 has been re-written as follows

σE
∂vE

∂T
+ v2

E = a(χ, h) (6.9)

with vE =
ne,E(χ,h)

n0
max,E

the dimension free ratio of electron density with respect to the maximum

electron density n0
max,E when the sun is overhead χ = 0 and σE is a time constant (in

radians) related to the decay time. The non-linear first order differential equation 6.9
becomes equivalent to equation 6.5 if σE is

σE = 1

ε
√

α q0
max,E

n0
max,E =

√
q0
max,E

α

(6.10)

with ε = 43200
π

conversion factor (radian to second). To have physical interpretation of σE ,
suppose the electron density at t0 = 0 is ne,E(t0) and the electron production is switched
off at t = 0, i.e. q(t0) = 0, the continuity equation 6.5 yields after some re-writing and
integration over∫ ne,E(t)

ne,E(t0)

dne,E

n2
e,E

= −α

∫ t

t0

dt = −α (t − t0) (6.11)

The integration on the left hand side leads to

ne,E(t) − ne,E(t0)

ne,E(t)ne,E(t0)
= −α (t − t0) (6.12)

The decay time for reducing electron density by a factor e = 2.718 . . . is then

τ
E

=
e − 1

ne,E(t0) α
(6.13)

Hence there is no exponential decay in the E-region and the speed of decay depends on
the initial electron density. τ

E
is known lifetime of electrons in the E-region. Substituting

equation 6.10 into 6.13 gives

τ 0
E

= ε(e − 1)σE ≈ 2362.8 σE [in seconds] (6.14)

where τ 0
E

is the lifetime of electrons when χ = 0. This equation shows that σE is propor-
tional to the life time of electrons in the E-region when the sun is overhead. During the day
time, the lifetime in the E-region is about 10 seconds, which corresponds to σE = 4.2e−4
radians. These small values for σE leads to the E-region being formed in photochemical
equilibrium.

Differential equation 6.9 is in form of Riccati differential equation. The general solution of
the Riccati differential equation can be expressed as follows

vE(T ) = vE,0 + g(T )

[
C +

1

σE

∫
g(T )dT

]−1

(6.15)
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with

g(T ) = exp

{−2

σE

∫
vE,0 dT

}
(6.16)

where C is an arbitrary constant and vE,0 is a particular solution of the Riccati differential
equation.

Equation 6.15 represents the variation of vE during the hours of daylight. During the hours
of darkness the right-hand side of differential equation 6.9 must be replaced by zero, this
leads to the following solution for night time

vE(T ) =
σE

T − C
(6.17)

where C is an arbitrary constant. It results in the following condition at sunrise and sunset
(denoted as the suffixes r and s respectively)

1

vE,r
− 1

vE,s
=

Tr − Ts

σE
(6.18)

The solution of the Riccati differential equation 6.15 has to fulfill this condition, which
determines the arbitrary parameter C involved in the general solution 6.15. This bound-
ary value problem (BVP), with [Tr Ts] as boundaries and equation 6.18 as a boundary
condition, is solved using numerical methods.

Solutions of equation 6.15 under boundary condition 6.18 versus local time for various
heights (at distance z above and below h0

max,E), for σE = 1 radians at equator (ϕ = 0) at
equinoxes (δ = 0) are shown in figure 6.2. In this figure, the graphs show that for σE = 1
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radians the maximum value of vE =
ne,E(χ,h)

n0
max,E

occurs after noon for heights close to h0
max,E ,

at greater heights the maximum occurs near sunset. Since sunrise and sunset times are
height dependent, for each line in figure 6.2, sunrise and sunset times on the ground are
indicated by a ’cross’ and those at height of h = zHE + h0

max,E indicated by a ’circle’.
According to equation 6.17, vE is decreasing during night time. This decrease is continued
for a considerable time interval after sunrise for many heights in figure 6.2. In other words,
vE starts to increase only after a considerable time after sunrise.

The solutions of the BVP for various heights at equator ϕ = 0 at equinoxes (δ = 0) have
been used to compute the vertical profile of vE at various local times. Figure 6.3 shows the
vertical profile of vE during two consecutive sunrises at height h0

max,F . The plots on the
left show the vertical profiles from sunrise to the local time which vE reaches its maximum.
The plots on the right show profiles from the time of maximum vE to sunrise on the next
day. For σE = 1, the maximum of vE (at all heights) occurs after noon at about local
time 14:30. Note that maximum vE is less than 1, which implies that ne,E(χ, h) does not
reach n0

max,E .

Integrating over height

Integrating equation 6.9 over the height h yields

σE
∂VE

∂T
+

∫ ∞

0

v2
Edh =

∫ ∞

0

a(χ, h)dh = A(χ, HE , h0
max,E) (6.19)

where VE(t) = NE(t)

n0
max,E

is the ratio between vertical total electron content of the normal

E-region NE and peak electron density of the normal E-region n0
max,E (when the sun is

overhead χ = 0). A(χ, HE, h0
max,E), or is short A(χ), is a function of solar zenith angle

χ, scale height HE and the height of peak electron density h0
max,E (when χ = 0). VE

gives the depth of an idealized E-region which has the same electron content as the normal
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E-region but with an uniform electron density equal to n0
max,E .

Using the definition of the shape factor in equation 4.36 and taking n0
max =

nmax

√
Ch(hmax,E , χ) into account (based on equation 3.39), equation 6.19 can be written

in terms of the shape factor as

σE
∂VE

∂T
+

Ω(χ)√
Ch(hmax,E , χ)

VE = A(χ) (6.20)

where due to time dependency of the shape factor Ω(χ) the differential equation 6.20 is
a non-linear first order differential equation. Since evaluation of

∫∞
0

v2
Edh and Ω(χ) are

difficult, equation 6.19 or 6.20 are solved by numerical methods.

In fact, VE(t) =
∫

vE dh, which implies that VE can be computed numerically from the
graphs in figure 6.3. Note that VE(t) = HE

∫
vE dz, therefore the area computed from the

graphs should be multiplied to the scale height HE. To study the behavior of VE, the BVP
has been solved for various values of σE , namely 1, 0.5, 0.1, 0.04 and 0.01, for different
latitudes (ϕ = 0◦, 20◦, 40◦, 60◦) at equinoxes (δ = 0◦) and solstice (δ = ±23.5◦).

Figure 6.4 shows the temporal variation of VE (divided by HE) versus local time in a day
for different latitudes at the equinoxes and solstices for σE = 1. The total electron content
is equal to VE(t)HE in normal E-region. Note that the normal E-region extends to heights
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Figure 6.5: Nighttime duration in the normal E-region (in the equator plane).

below the height of peak electron density of the F-region hmax,F . Hence, it can be assumed
that sunrise and sunset time of the normal E-region are the same as those for the height
of hmax,F (see figure 6.5). In figure 6.4, sunrise and sunset times at hmax,F are indicated
by a ’circle’ and on the ground (h = 0) indicated by a ’cross’.

The graphs in figure 6.4 show that the daily pattern of VE has minimum and maximum
points (indicated by ’∗’); the minimum occurs before local noon and the maximum occurs
after noon. An increase in latitude causes an increase of solar zenith angle, and as a
consequence the level of VE at day time and night time is decreased when the latitude
increases for both equinoxes and winter solstice. For summer solstice, the level of VE

is increased during day time, but it is decreased during night time when the latitude
increases. According to equation 6.19, ∂VE

∂T
becomes negative after the maximum of VE

and its absolute value increases with increasing latitude. For the summer solstice, the
variation of the slope versus latitude is quite large, which leads to a change in the level of
VE at different latitudes during night time. As expected the level of VE (at all latitudes) is
higher during the summer solstice (dashed curves) and is lower during the winter solstice
(dotted curves) with respect to the level of VE during the equinoxes (solid curves).

It can be seen from the graphs of VE for the equinoxes that the time of the minimum
point is more or less the same for all latitudes for σE = 1 radians. During summer solstice,
the time between the minimum point and local noon is geater for higher latitudes. The
opposite is observed during winter solstic. Note that for σE = 1 for many of the graphs,
the decrease in VE is continued a considerable time interval after sunrise. The time of the
maximum point depends on latitude in the same way as for equinoxes and solstices. The
time between the maximum and local noon is increased by an increase in latitude.

The recombination process in the normal E-region is controlled by σE . A large value for
σE corresponds to a small values for α. The daily pattern of VE (in unit HE) for various
σE values are plotted in figure 6.6. It can be seen that larger values of σE (increasing the
lifetime of electrons) results in degradation of the recombination term, which allows VE

to continue to increase after noon and the maximum of VE occurs after noon. The time
of maximum VE departs more from the local noon time for large value of σE . Since the
recombination term is proportional to squared electron density n2

e, an increase in electron
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density results in an increase in the recombination term. Because of this, level of the
maximum VE is decreased for large values of σE . The minimum of VE also is affected by
σE in a way that, for large values of σE , the time distance between the minimum and local
noon is decreased.

For smaller values of σE , which corresponde to larger values of α, the recombination term
gets large values. As a consequence, the continuity equation tends to the photochemical
equilibrium and the pattern of VE tends to be symmetric around local noon time.

Photochemical equilibrium condition

If it is assumed that the normal E-region is formed in the photochemical equilib-
rium (q(χ, h) = α n2

e,E(χ, h)) then the normal E-region will be a Chapman layer and
the vertical electron density profile is described by equation 3.37. Under photochemical
equilibrium condition, if the earth does not revolve, i.e. dvE

dT
= 0, differential equation 6.20

is reduced to

Ω(χ)√
Ch(hmax,E , χ)

VE = A(χ) (6.21)

Substitution of equation 3.37 into 4.37 gives the shape factor Ω(χ) as follows

Ω(χ) =
A(χ)

√
Ch(hmax,E , χ)

B(χ)
(6.22)

with

B(χ, HE, h0
max,E) =

∫ ∞

0

√
a(χ, h) dh (6.23)
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in a simple Chapman-layer for different solar zenith angles.

where B is function of solar zenith angle χ, scale height HE and the height of peak
electron density h0

max,E (when χ = 0). For convenience, it is denoted as B(χ) in this
chapter. Substituting equation 6.22 into 6.21 yields

VE(T ) = B(χ) (6.24)

It implies that in the normal E-region under the photochemical equilibrium condition, the
vertical total electron content NE as a function of solar zenith angle χ is described by

NE(T ) = n0
max,E B(χ) =

q0
max,E

α
B(χ) (6.25)

Under the condition the earth does not revolve, NE will be constant in time. Due to
the earth rotating there is a daily variation of NE(T ). To plot pattern of VE under the
photochemical equilibrium B(χ) was evaluated by the numerical integration method on
the equator (ϕ = 0) at equinoxes (δ = 0) and the result (divided by HE) is shown in
the right side of figure 6.7. It is clear that under photochemical equilibrium condition the
maximum value of VE , in the normal E-region, occurs at local noon-time (maximum solar
zenith angle) and its pattern is symmetric with respect to the local noon-time. VE is zero
for nighttime which implies that the normal E-region (under photochemical equilibrium
condition) disappeares between sunset and sunrise. Comparing the pattern of VE in the
photochemical equilibrium with the patterns in figure 6.6 shows that for decreasing values
of σE the pattern of VE tends to be similar to photochemical equilibrium. On the left side
of figure 6.7, the vertical profile of vE(h) = ne(h)/n0

max,E (a Chapman-layer) is shown for
different solar zenith angles. It can be seen that, the maximum value of vE(h) is increased
and the height of maximum vE is decreased when the solar zenith angle is increased.
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6.1.3 VTEC in the normal F-region

In this subsection, an expression for the vertical total electron content of the normal F-
region as a function of solar zenith angle is derived. The loss of electrons in the F-region is
proportional to the electron density. Disregarding transport processes, the electron density
continuity equation is written as

∂ne,F (χ, h)

∂t
= q(χ, h) − β ne,F (χ, h) (6.26)

where β is the linear recombination coefficient in [s−1] (constant in time and in height)
and q(χ, h) denotes the ion production rate at time t and at height h from equation 6.7. If
local time in seconds, t is expressed in terms of the longitude measured eastward from the
noon meridian T in radians, t = T/ε + 12 · 3600, the continuity equation can be rewritten
as

ε
∂ne,F (χ, h)

∂T
= q0

max,F a(χ, h) − β ne,F (χ, h) (6.27)

with ε = π/43200 the conversion factor from second to radian. The function a(χ, h) is

a(χ, h) = exp {1 − z − Ch(χ, h) exp {−z}} (6.28)

with z =
h−h0

max,F

HF
, HF is the scale height of the normal F-region and h0

max,F the height

corresponding to the maximum rate of ion production q0
max,F (when χ = 0). If we define

vF =
ne,F (χ,h)

n0
max,F

as the ratio of electron density with n0
max,F =

q0
max,F

β
the maximum electron

density in the normal F-region when the sun is overhead χ = 0, then equation 6.27 can be
written as follows

σF
∂vF

∂T
+ vF = a(χ, h) (6.29)

where σF = ε
β

(in [radians]) is constant in time and in height with τ =
σ

F

ε
= 1

β
known

as the recombination time constant in the F-region. In fact τ is a measure for the lifetime
of electrons in the F-region: It is the time it takes for the electron density ne,F (h) to be

reduced to
ne,F (h)

e
when electron production is swiched off. Hence σF is proportional to

the lifetime of electrons in the F-region.

The general solution of the linear first order differential equation 6.29 in terms of time t
measured from noon meridian (local time minus 12 hours) is obtained as follows

vF (t) = e−βt

(
β

∫ t

0

eβt′ a(χ, h) dt′ + C

)
(6.30)

where C is an arbitrary constant. This solution represents the variation of vF during the
hours of daylight; during the hours of darkness at height h the right-hand side of equation
6.29 must be replaced by zero, which leads to following differential equation

σF
∂vF

∂T
+ vF = 0 (6.31)
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with solution

vF (t) = Ce−βt (6.32)

If the time of sunrise and sunset at height h are denoted by tr and ts, the following condition
is obtained

vr = vs e−β(tr−ts) (6.33)

with vr and vs the function values of vF for sunrise and sunset at height h. This condi-
tion also implies that during night time, the normal F-region does not disappear, but the
ionization process is stopped and only the recombination process is acting. The particular
solution for day time should be found subject to the condition of equation 6.33 which
determines the arbitrary constant C involved in the general solution. This boundary value
problem has been solved for the equator ϕ = 0◦ at equinoxes δ = 0◦ with σF = 1 radians
(corresponding to the lifetime of electrons τ = 3.8 hours). Figure 6.8 shows the solutions
for different heights. In this figure, the sunrise and sunset points for height z are denoted
by a ’circle’ and those of h = 0 (on the ground) denoted by a ’cross’. At the equator, for

σF = 1 the maximum value of vF =
ne,F (χ,h)

n0
max,F

occurs distinctly after noon and is actually

closer to sunset for larger heights.

Vertical profiles of vF , using the solutions of the BVP at different heights, are shown in
figure 6.9 for different local times. It can be seen that for σF = 1 at the equator, ne,F

reaches its maximum at local time about t = 14 : 53 at the level of z = 0.15, which is
about 6 km above height h0

max,F = 250 km.
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Integration over height

Integrating equation 6.29 over height h results in following differential equation

σF
∂VF

∂T
+ VF = A(χ) (6.34)

with VF = NF

n0
max,F

the rate of vertical total electron content in the normal F-region (denoted

as NF ) with respect to the peak electron density n0
max,F . VF gives the depth of an

hypothetical F-region with an uniform electron density equal to n0
max,F .

The general solution for VF in terms of t (local time measured from noon meridian) is
given as

VF (t) = e−βt

(
β

∫ t

0

eβt′ A(χ) dt′ + C

)
(6.35)

which results in a solution of NF (t)

NF (t) = n0
max,F VF (t) = n0

max,F e−βt

(
β

∫ t

0

eβt′ A(χ) dt′ + C

)
(6.36)

Note that A(χ) is shorthand A(χ, HF , h0
max,F ), a function of scale height HF , he height

of peak electron density h0
max,F (when χ = 0) and solar zenith angle χ. To evaluate VF (t)

over a day, it is necessary evaluate A(χ), which is defined as follows

A(χ) =

∫ ∞

0

a(χ, h) dh =

∫ ∞

0

exp {1 − z − Ch(χ, h) exp {−z}} dh (6.37)
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with χ = χ(t, ϕ, δ). In (Feltens, 1998), using sec χ instead of the Chapman grazing
function, which is acceptable for low solar zenith angles χ ≤ 70◦, it is shown that∫

a(χ, h) dh = HF cos χ exp {1 − sec(χ) exp {−z}} (χ ≤ 70◦) (6.38)

Using this equation, integration of a(χ, h) over h in terms of the Chapman grazing function
can be approximated as follows∫

a(χ, h) dh ≈ HF

Ch(χ, h)
exp {1 − Ch(χ, h) exp {−z}} (6.39)

where the height dependency of Ch(χ, h) is considered. Unlike Ch(χ, h), sec χ is not
height dependent, which results in errors in equation 6.38 and 6.39 for high values of χ.
In figure 6.10, A(χ) is computed using numerical integration (NI) of equation 6.37 and
computed with the approximations of equations 6.38 (SF) and 6.39 (CF). As expected, the
difference between SI and NI is large for high solar zenith angles. The differences between
CF and NI are quite small in general except for small excursions around 90◦. Therefore,
equation 6.39 is a good approximation of equation 6.37.

A(χ) is only zero when χ = 180◦. This occurs only at midnight for latitudes in the
equatorial region where the solar zenith angle reaches zero at local noontime in specific
period of the year. For other latitudes the time interval between sunset and sunrise tends
to zero when height goes to infinity. If the height of the upper limit of the F-region is
considered as infinity, then the duration of the night in the F-region will be zero which
results in photoionization during the whole day (daytime and nighttime). However, values
of A(χ) for higher solar zenith angles (χ > 120◦) are very small (less than ∼ 10−8 km),
which results in very low level photoionization. From this follows that differential equation
6.34 is valid for the entire range of T , i.e. from zero to 2π. Disregarding daily variation
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of the VTEC due to changing in the solar declination angle δ (seasonal variation), one can
assume that the temporal variation of VTEC is repeated everyday. This assumption leads
to the condition VF (T = 0) = VF (T = 2π), so that C in equation 6.35 can be obtained
subject to this condition. Solving equation 6.34 under condition VF (T = 0) = VF (T = 2π)
results in a Boundary Value Problem (BVP). In order to study variability of VF in time and
space, the BVP for various values of σF for different latitudes at the equinoxes and the
solstices have been solved using numerical methods.

Figure 6.11 shows the daily pattern of VF for various latitudes at equinoxes (δ = 0) and
solstices (δ = ±23.5) for σF = 1 radians, which corresponds to a lifetime of electrons
τ

F
= 3.8 hours (β = 7.3e − 5). In this figure, sunrise and sunset times at level hmax,F

are denoted by a ’circle’ and on the ground (h = 0) denoted by a ’cross’. The graphs
show that daily pattern of VF has minimum and maximum points (denoted by ’∗’), and
the minimum occurs before local noon and the maximum occurs after noon. As expected,
at all latitudes, the level of VF is higher for the summer solstice and it is lower for the
winter solstice with respect to those for the equinoxes. With increasing latitude, therefore
increasing solar zenith angle, the level of VF is decreased during day time for the equinoxes
and solstices. The descent of VF is faster for large values of VF after the maximum. Hence,
for high latitudes where the level of VF is lower, the slope of the pattern is small for the
equinoxes and solstices. For the summer solstice, the variation of the slope versus latitude



122 Chapter 6. Physics-Based Modeling of TEC

0 5 10 15 20
0

20

40

60

80

100

120

Local time [hour]

      Sunrise and sunset on the ground

o   Sunrise and Sunset at F2 peak height

      Extremum points

 
(

)
[k

m
]

FV
t

 0 0
max,0 (Spring) , 0 (Equator) , 40 km , 250 kmF FH hδ ϕ= = = =�

F 0.10σ =
F 0.01σ =

F 0.50σ =

F 1.0σ =

F 2.5σ =

F 5.0σ =

F 10.0σ =

Figure 6.12: Temporal variation of VF (t) = NF (t)
n0

max,F
in [km] for various σF values at equator (ϕ = 0) at

equinoxes (δ = 0).

is quite large. Because of this, the level of VF is increased for night time the latitude
increases. For the equinoxes and winter solstice, the level of VF is decreased for night time
when latitude is increased.

For σF = 1, at equinoxes, for all latitudes the peak of VF occurs after noon at the same
time 14:43. For the summer and winter solstices, time of the peak depends on the latitude.
For summer solstice, the time distance between local noon and the peak is increased for
large latitudes (due to increasing in sunlight duration). For winter solstice, the duration of
sunlight is decreased with increasing latitude and therefore the oppesit effect is observed. As
can be seen from the graphs, the time of the minimum point of VF is changed considerably
with respect to latitude and season. For σF = 1 at equinoxes, the minimum of VF occurs
before sunrise on the ground. An increase in latitude increases the sunlight duration in the
F-region, consequently electron production is started earlier at higher latitudes.

The daily pattern of VF at the equator at equinoxes is shown in figure 6.12 for various
values of σF . For larger values of σF (corresponding to smaller recombination coefficient
β), the life time of electrons is longer which leads to continuation of the accumulation of
electrons after noon time. Because of this, for large values of σF , the maximum point of
the pattern of VF departs more from local noon time and for small values like σF = 0.01
(or β ≈ 7.3e − 3, corresponding to the lifetime τ

F
= 137 second) the maximum occurs

at local noon time. Although for larger values of σF more electrons are accumulated, also
the recombination βne is increased and hence the level of VF is decreased during day time.
According to equation 6.34, the derivative of VF is proportional to inverse of σF . Hence,
the descent of VF after the maximum, speeds up for small value of σF . As a consequence,
in figure 6.12, the level of VF during night time for large value of σF is higher. Also the
decrease in the slope of VF results in the minimum to be later after sunrise on the ground
for large values of σF .
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6.1.4 Combined VTEC of the normal ionosphere

So far, we achieved vertical total electron content of the normal E- and F-regions individ-
ually. The entire VTEC for the normal ionosphere is obtained by integration equation 6.1
over height

N(t) =

∫ ∞

0

ne(t, h)dh =

∫ ∞

0

ne,E(t, h)dh︸ ︷︷ ︸
NE

+

∫ ∞

0

ne,F (t, h)dh︸ ︷︷ ︸
NF

(6.40)

where N denotes the entire normal VTEC. It is assumed that the normal E-region is formed
under photochemical equilibrium condition. Substituting NE and NF from respectively
equations 6.25 and 6.36 yields

N(t) = n0
max,E B(χ) + β n0

max,F e−βt

∫ t

0

eβt′ A(χ) dt′ + C (6.41)

where C is an arbitrary constant. This is a continuous function that describes the behavior
of the total electron content in the normal ionosphere when the E-region is formed in the
photochemical equilibrium. This function will be used as a basis for derivation of a novel
ionospheric model for temporal variability of the vertical TEC, see section 6.2.

6.1.5 Slant TEC in the normal ionosphere

To complete this section, the slant TEC of the normal F-region is addressed in this sub-
section. In order to derive slant TEC along a signal path ρ between a given receiver P on
the ground and satellite, the continuity equation 6.29 should be integrated along the signal
path. It leads to following differential equation

σF
∂WF

∂T
+ WF =

∫ ρ

0

a(χ(h, ξ
P
, Az), h) dρ = A(χ

P
, ξ

P
, Az) (6.42)

with WF = SF

n0
max,F

the rate of slant total electron content in the normal F-region (denoted

as SF ) and n0
max,F , χ

P
and ξ

P
solar and satellite zenith angles on the ground (h = 0), Az

azimuth of the signal path.

The geometry of the slant signal path between receiver and satellite is depicted in figure
6.13. This figure indicates that the relation between differential increments dρ along slant
direction and dh along vertical direction is dρ = dh

cos ξ(h)
, with ξ(h) computed from equation

4.34 for each point along the signal path. Hence, A(χ
P
, ξ

P
, Az) in equation 6.42 can be

re-written in terms of height h as follows

A(χ
P
, ξ

P
, Az) =

∫ ∞

0

a(χ(h, ξ
P
, Az), h)

dh√
1 −

(
Re

Re+h

)2

sin ξ
P

2

(6.43)

where the solar zenith angle is function of satellite zenith angle and azimuth and height
along the signal path. To show the solar zenith angle as a function of height, the geometry
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Figure 6.14: Geometrical illustration of the solar
zenith angle variation along a slant signal path.

between receiver and satellite and the sun is illustrated in a spherical system in figure 6.14.
In this figure, the arc between receiver P and M indicates vertical projection of the signal
path on the sphere and Q indicates the projection of an arbitrary point with height h in the
signal path. T is the longitude measured eastward from the sun meridian and ψ

Q
denotes

the geocentric angle between P and Q, which as indicated in figure 6.13, can be expressed
as a function of height

ψ
Q
(h) = ξ

P
− ξ

Q
(h) (6.44)

where ξ
Q
(h) is computed by equation 4.34. Using the cosine equation in the spherical

geometry for spherical triangle NPQ, latitude of Q is given as

sin φ
Q

= sin φ
P

cos ψ
Q

+ cos φ
P

sin ψ
Q

cos Az (6.45)

and the spherical sine equation gives ΔT as

sin ΔT
Q

=
cos φ

Q

sin Az
sin ψ

Q
(6.46)

with ΔT
Q

= T
Q
−T

P
. It is clear from equations 6.44, 6.45 and 6.46 that φ

Q
and T

Q
along

the signal path are function of height and azimuth and satellite zenith angle. Resulting
in the solar zenith angle χ

Q
, computed from equation 6.6, is also function of height and

azimuth of satellite zenith angle.

If it is assumed that the satellite is not moving and the signal path is fixed in space the
general solution of the differential equation 6.42 is obtained as

WF (t) = e−βt

(
β

∫ t

0

eβt′ A(χ
P
(t′), ξ

P
, Az) dt′ + C

)
(6.47)
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where t is local time measured from noon meridian and C is an arbitrary constant. In fact,
WF (t) describes temporal evolution of the electron content in the normal F-region in terms
of the azimuth and zenith angle of the signal path.

Equation 6.47 is theoretically of interest because it expresses the slant TEC in an arbitrary
direction without taking into account a mapping function. However, the practical evaluation
of this equation is complicated due to complexity of the integrand. This an expense that
one should pay not to use a mapping function for modeling of the slant TEC. One has to
deal with the same problem in the E-region. Therefore, in the subsequent procedure for
TEC modeling, we derive a novel model for a vertical TEC using equation 6.41.

6.2 Recursive model of VTEC in the normal ionosphere

In this section, the goal is to derive a recursive model for prediction of the temporal variation
of the total electron content in the normal ionosphere. It is assumed that the normal E-
region is formed in the photochemical equilibrium. Therefore, continuous expression for
temporal VTEC variation in the normal ionosphere is given by equation 6.41. For temporal
prediction purposes it is necessary to obtain a discrete expression for the temporal variation
of the VTEC.

Discrete expression of VTEC

The equivalent discrete solution of equation 6.36 between two consecutive epochs ti−1 and
ti can be written as follows

NF (ti) = e−βΔtNF (ti−1) + β e−βΔt n0
max,F

∫ ti

ti−1

eβΔt A(χ) dt (6.48)

where Δt = ti − ti−1 is time interval between the epochs in seconds. For simplicity, we
used the average of zenith angles between two consecutive epochs, so that the function
of A(χ) can be taken out of the integration. The analytical solution of the integration
becomes∫ ti

ti−1

eβ(t−ti−1) dt =
1

β

(
eβ(ti−ti−1) − 1

)
(6.49)

Substituting equation 6.49 into 6.48 yields

NF (ti) = e−βΔtNF (ti−1) + n0
max,F A(χ̄)

(
1 − e−βΔt

)
(6.50)

where χ̄ = χ(ti)+χ(ti−1)
2

. The discrete form of equation 6.41 is obtained by using equation
6.50

N(ti) = n0
max,E B(χ) + e−βΔtNF (ti−1) + n0

max,F A(χ̄)
(
1 − e−βΔt

)
(6.51)

According to equation 6.40, NF (t) = N(t) − NE(t), which allows to write equation 6.51
as follows

N(ti) = e−βΔtN(ti−1) + n0
max,F A(χ̄)

(
1 − e−βΔt

)
+ n0

max,E

[
B (χ(ti)) − e−βΔtB(χ(ti−1))

] (6.52)
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Equation 6.52 is a discrete and recursive expression of the temporal variability of the entire
total electron content in the normal ionosphere. In fact, it is as a function of the solar
zenith angle. The first term on the right side of equation 6.52 shows the electron content
from the previous epoch ti−1 that survived the recombination process, the second and third
terms express the appearance of the new electrons over the time interval Δt = ti − ti−1,
respectively in the normal E-region and normal F-region. The equation is for both daytime
and nighttime. At night, both B(χ) and A(χ) tend to zero and the recombination process
is the dominating process. Note that A(χ) tends to zero later than B(χ), because in the
F-region night is started later than in the E-region.

Equation 6.52 can be used as a physics-based model of the ionosphere, which describes
the temporal variation of VTEC due to the earth’s rotation and revolution around the Sun.

6.2.1 Parametrization of the VTEC model

Several physical parameters are involved in equation 6.52 which need to be specified. The
maximum electron densities at the normal E-region and F-region, when the sun is overhead

χ = 0, are respectively n0
max,E =

√
q0
max,E

α
and n0

max,F =
q0
max,F

β
. According to equation

3.18, when χ = 0, the maximum rate of ion production for the E- and F- regions are
respectively obtained as (in [ electron

s km m2 ])

q0
max,E =

η
E

φphoton
∞

HE e
(6.53)

q0
max,F =

η
F

φphoton
∞

HF e
(6.54)

where e is the Napierian number (2.718 · · · ), η
E

and η
F

are respectively the ionization
efficiencies for O2 and O gases (in [ electron

photon
]), φphoton

∞ denotes the solar photon radiation

flux on top of the atmosphere (in [photon
m2 s

]) and HE and HF are scale height of the E- and F-
regions (in [km]). Since we assumed that the normal ionosphere is formed by an isothermal
atmosphere, HE and HF do not depend on height if the vertical gradient of the earth’s
gravitational acceleration is ignored (see equation 2.7). As mentioned in subsection 3.2.2
for an atomic gas and for wavelengths less than the minimum wavelength of the ionizing
radiation of the atom, the ionization efficiency η

F
≈ η

E
= 1. Using this assumption and

taking equations 6.53 and 6.54 into account, equation 6.52 yields

N(ti) = e−βΔtN(ti−1) + 1
e β HF

A(χ̄)
(
1 − e−βΔt

)
φphoton
∞

+ 1√
e α HE

[
B (χ(ti)) − e−βΔtB(χ(ti−1))

] √
φphoton∞

(6.55)

In equation 6.55, the first term gives the number of electrons in the vertical column which
survive the recombination afte Δt. This term shows the persistent electrons. The second
term, which is proportional to the solar photon radiation flux φphoton

∞ , gives the appearance

of new electrons in the normal F-region. The third term, which is proportional to

√
φphoton
∞ ,

can be interpreted as the appearance of new electrons in the normal E-region. Summation
of the second and third terms gives total number of the produced new electrons.
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In equation 6.55, N or VTEC is computed in [ electron
m2 ] with time t in seconds, the scale

heights in km, A(χ) and B(χ) are in [km]. The unit of β is [1
s
] and α is [ m3

electron s
].

One can consider the solar photon radiation flux φphoton
∞ , the linear recombination coefficient

β and the quadratic recombination coefficient α as unknown parameters in equation 6.55.
The scale heights HF and HE can be considered as known parameters, and two functions
values A(χ) and B(χ) can be computed by numerical integration for solar zenith angle
χ(t, ϕ, δ) for a given time t, season δ and latitude ϕ. Note that for evaluating A(χ) and
B(χ), h0

max,E and h0
max,F are required as additional known parameters.

6.2.2 Providing the model parameters

h0
max,E and h0

max,F

Due to spatial and time dependency of the solar zenith angle the height of the
peak electron density is time and space dependent, i.e. hmax = hmax(χ) with χ(t, ϕ, δ).
In the real earth’s ionosphere, due to laterally variation of the atmospheric density, the
spatial dependency of the height of peak electron density is amplified. Therefore, we
assume h0

max (when χ = 0) is space dependent, but constant over time of a day.

In order to take the spatial dependency of h0
max into account, we assume that h0

max,F =
hmax,F (χ

min
). The height of peak electron density hmax,F2 can be determined as a function

of the F2-region propagation factor M(3000)F2 (denoted as M) (Schmid et al., 1973)

hmax,F2 = 1346.92 − 526.40 M + 59.825 M2 (6.56)

where hmax,F2 is in km. The F2-region propagation factor M is function of UT and location
and the monthly average sunspot number R12, which can be computed from the ITU-R
(International Telecommunication Union) maps in the mode used by the International
Reference Ionosphere (IRI). More details of these maps are given in subsection 5.3.1. Since
the solar zenith angle reaches its minimum at local noon time M should be computed from
CCIR maps for UT corresponding to local noon time at given point. Then hmax,F (χ

min
)

can be determined from 6.56.

For the E-region we assume a fixed height of peak electron density as hmax,E = 110 km.

Scale heights

In order to obtain an appropriate value for the scale height of the normal F2-
region, we assumed that the scale height of the normal F-region is equal to the scale
height at the height of the peak electron density of the F-region when the solar zenith
angle is minimum χ

min
, i.e. HF = HF2(hmax,F2(χmin

)) . According to (Cappellari et al.,
1976), the scale height at the F2-region can be expressed as a function of the height of
maximum electron density as follows

HF2 =
5

3
[30 + 0.2 (hmax,F2 − 200)] =

hmax,F2 − 50

3
(6.57)

where HF2 is in km. So, first tye height of maximum electron density at minimum solar
zenith angle hmax,F2(χmin

) is computed using equation 6.56, and then HF2(hmax,F2 , χmin
)

can be determined from equation 6.57.
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250 km.

According to (Titheridge, 2000), the average scale height of molecular oxygen O2 at latitude
of 40◦N at a height of hmax,E = 110 km during a year under solar flux from F10.7=70
to 210 is equal to HE = 6.44 km. Therefore, we can use this average scale height as a
constant scale height in equation 6.55.

Tabulating A and B functions

To evaluate both particular functions A(χ, H, h0
max) and B(χ, H, h0

max), defined re-
spectively in equations 6.37 and 6.23, numerical integration should be used. Since
the Chapman grazing incidence function Ch(χ, h) is involved in the integrands, i.e.
a(χ, H, h0

max) and
√

a(χ, H, h0
max), the numerical integration will be time consuming.

The graphs in figure 6.15 show the variation of the A function versus scale height H for
different solar zenith angle χ. The variation of the A function versus solar zenith angle χ
is depicted in figure 6.16 for various scale heights H . The graphs in these figures were
drawn for h0

max,F = 250 km. The graphs of the B function versus scale height and solar
zenith angle for h0

max,H = 110 km are depicted respectively in figures 6.17 and 6.18.
Note that for larger solar zenith angles (χ > 150◦) the A and B functions values tend to
zero. From these figures it is clear that both A and B functions are smooth functions.
Therefore, to speed up the computation process, the functions can be tabulated over
different values of their input arguments.

The full range of solar zenith angle is 0 ≤ χ ≤ 180◦ and the range of the scale height H is
from 1 to 100 km. Tests showed that the A and B functions are rather insensitive against
the height of peak electron density h0

max, therefore the functions have only been tabulated
for appropriate intervals along solar zenith angle and along scale height for fixed h0

max. We
used h0

max,E = 110 km and h0
max,F = 250 km as appropriate heights for the normal E-

and F-regions, respectively. The interval for solar zenith angle is 2◦ and for scale height
5 km. Several checks were performed beforehand to ensure that the A and B functions
vary smoothly inside of these intervals. We used the fixed height 250 km as height of the
peak electron density in function A (appropriate peak height for the F-region when χ = 0)
and the fixed height 110 km as height of the peak electron density in function B. Figures
6.19 and 6.20 show the tabulated A and B functions.



6.2 Recursive model of VTEC in the normal ionosphere 129

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

Scale height H [km]

 

 

kapa = 0o

kapa = 20o

kapa = 40o

kapa = 60o

kapa = 80o

χ hmax,E = 110 km0B(    ,H,h            ) versus scale height for different solar zenith angles with 
0

max,E
B(

   
  ,

H
,h

0 m
ax

,E
 ) 

[k
m

]
χ

Figure 6.17: B(χ, H, h0
max) function versus scale

height H for different χ at h0
max,E = 110 km.

0 50 100 150
0

20

40

60

80

100

120

140

 

 

H
E

 = 5 km

H
E

 = 10 km

H
E

 = 15 km

H
E

 = 20 km

H
E

 = 25 km

H
E

 = 30 km

χ hmax,E = 110 km0B(    ,H,h            ) versus solar zenith angle for different scale heights with 
0

max,E

B(
   

  ,
H

,h
0 m

ax
,E

 ) 
[k

m
]

χ

Solar zenith angle       [Deg.]χ

Figure 6.18: B(χ, H, h0
max) function versus so-

lar zenith angle χ for different H at h0
max,E =

110 km.

0

50

100

150

0

20

40

60

80

100
0

100

200

300

Solar znith angle  χ  [D
eg.]

Scale height H [km]

A
 fu

nc
tio

n 
[k

m
]

Figure 6.19: A(χ, H, h0
max) function versus solar

zenith angle χ and scale height H for h0
max,F =

250 km.

0

50

100

150

0

20

40

60

80

100
0

200

400

Scale height H [km]

B 
fu

nc
tio

n 
[k

m
]

Solar zenith
 angle     

  [D
eg.]

χ

Figure 6.20: B(χ, H, h0
max) function versus solar

zenith angle χ and scale height H for h0
max,E =

110 km.

For any given values of solar zenith angle χ and scale height H , the function value of A
and B can be computed by the four nearest grid values using a bilinear interpolation. The
function values of A and B for large solar zenith angles χ > 150◦ are set to zero.

6.2.3 Functional model for estimating the parameters

Three model parameters (φphoton
∞ , β, α) in equation 6.55 should be essentially estimated

by fitting the model to daily VTEC observations at a given point. Due to non-linearity
of the model, the model should be linearized and then the parameters can be estimated
in the least squares iteration process. Since the model has a recursive form, for initial-
ization at first epoch it is necessary to consider N(t0) (denoted as N0) as an additional
unknown parameter. Let x denotes vector of unknown parameters and ỹ denotes vector of
observations (uncorrelated VTEC values) at m > 4 epochs at a given point

x =

⎡
⎢⎢⎣

α
β

φ∞
N0

⎤
⎥⎥⎦ ; ỹ =

⎡
⎢⎢⎣

N1

N2
...

Nm

⎤
⎥⎥⎦ ; Qỹ =

⎡
⎢⎣ σ2

N1
· · · 0

...
. . .

...
0 · · · σ2

Nm

⎤
⎥⎦ (6.58)
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where x is 4×1 vector, ỹ is m-vector, and Qỹ is m×m vc-matrix of the observation vector.
For convenient the solar photon radiation flux is denoted by φ∞ and VTEC observation at
time ti is denoted as Ni.

The functional model of the observation vector and vector of parameters is shown by m-
vector of functions as f(x, y) = 0 where y stands for the true observation vector. When
redundant observations are available (m > 4) the functional model will be inconsistent
(due to observation random error), i.e. f(x, ỹ) ≈ 0, that assuming E{ỹ} = y leads to
f(x, E{ỹ}) = 0. The functional model is given as follows

f(x, ỹ) =

⎡
⎢⎢⎣

f1(x, N0, N1)
f2(x, N1, N2)

...
fm(x, Nm−1, Nm)

⎤
⎥⎥⎦ ≈ 0 (6.59)

with fi(x, Ni−1, Ni) for i = 1, . . . , m as observation equation (base on equation 6.55) is

fi(x,Ni−1, Ni) = Ni − e−βΔtNi−1 − A(χ̄)
(
1 − e−βΔt

)
e β HF

φ∞ −
[
Bi − e−βΔtBi−1

]
√

e α HE

√
φ∞

(6.60)

with Δt = ti − ti−1 , Bi = B(χ(ti)), and χ̄ = χ(ti)+χ(ti−1)
2

. Note that the vector of
parameters is considered constant in time.

The least squares estimator of the vector of parameters x̂ is obtained by minimizing the
squared norm of the vector of residuals ‖ŷ − ỹ‖2

Q
−1
ỹ

subject to the f(x̂, ŷ) = 0 (the ’hat’

symbol indicates the least squares estimator) (Teunissen et al., 2005). This is a constrained
optimization problem with objective function ‖ŷ − ỹ‖2

Q
−1
ỹ

and with constraints f(x̂, ŷ) = 0.

According to the Lagrange’s theorem, if x̂ is the constrained minimizer then the gradient of
the objective function is a linear combination of the gradients of the constraints. This is a
necessary condition (or Lagrange condition) for the constrained minimizer. The Lagrange
theorem states that the constrained minimizer is a stationary point of a linear combination
of the objective function and the constraints

L(x, y, �) = ‖y − ỹ‖2

Q
−1
ỹ

+ �T f(x, y) (6.61)

where L(x, y, �) is the so-called Lagrangian function and � is an m-vector of unknown
Lagrange multipliers. In fact, the necessary condition in Lagrange’s theorem is equivalent to
the necessary condition for unconstrained optimization applied to the Lagrangian function
(see Chong and Zak (2001)). At a stationary point, the gradient of the Lagrangian function
is zero, i.e. ∂L

∂X
(X̂) = 0 with X = [xT , yT , �T ]. Note that a stationary point of the

Lagrangian function is only a candidate for the constrained minimizer of the objective
function. For a stationary point to be indeed the constrained minimizer, the sufficient
condition is that the Hessian matrix of the Lagrangian function is a positive definite matrix.
This implies that the least squares estimator X̂ is a stationary point of the Lagrangian
function, i.e. ∂L

∂X
(X̂) = 0, for which ∂2L

∂X2 (X̂) is a positive definite matrix.

Since the functional model f(x, y) = 0 is non-linear and non-explicit with respect to the
unknown vector x and observation vector y, a stationary point of the Lagrangian function
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can be reached with two approaches: 1) using Newton’s method (see (Teunissen, 1990)),
2) first substituting the linearized objective function (with respect to both x and y) in 6.61
and then Gauss-Newton method (in the least-squares iteration process) gives a stationary
point of the Lagrangian function. Note that Newton’s method is also an iterative approach
and converges to the solution faster than the Gauss-Newton method. Both approaches
converge to a unique solution, but estimating the vc-matrix of the estimator is complicated
in Newton’s method due to the non-explicit objective function. Because of this we use the
second approach in this thesis. The linearized form of the objective function is derived in
the following.

6.2.4 Linearization of the functional model

According to Taylor’s expansion theorem, the linear approximation or linearized version of
the functional model f(x, y) = 0 about given approximate values of the unknown vector
(denoted as x0) and the observation vector (y0 = ỹ)is given as follows

f(x, y) ≈ f(x0, y0) + ∂xT f(x0, y0) (x − x0) + ∂yT f(x0, y0) (y − y0) ≈ 0 (6.62)

where first term on the right-hand side is referred to as the zero-order term and the second
and third terms are referred to the first-order terms. The m × 4 matrix ∂xT f(x0, y0) and
m × m matrix ∂yT f(x0, y0) are partial derivatives of the functional model with respect to
x and y, respectively. These matrices are

∂xT f(x0, y0) =

⎡
⎢⎣

∂
∂α

f1(x
0, y0) ∂

∂β
f1(x

0, y0) ∂
∂φ∞f1(x

0, y0) ∂
∂N0

f1(x
0, y0)

...
...

...
...

∂
∂α

fm(x0, y0) ∂
∂β

fm(x0, y0) ∂
∂φ∞fm(x0, y0) ∂

∂N0
fm(x0, y0)

⎤
⎥⎦
(6.63)

and

∂yT f(x0, y0) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
∂

∂N1
f2(x

0, y0) 1 0 · · · 0

0 ∂
∂N2

f3(x
0, y0) 1 · · · 0

...
...

. . .
...

0 0 · · · ∂
∂Nm−1

fm(x0, y0) 1

⎤
⎥⎥⎥⎥⎥⎦ (6.64)

where

∂

∂α
fi =

[
Bi − e−βΔtBi−1

]
2
√

e α3 HE

√
φ∞ (6.65)

∂

∂β
fi = Δt e−βΔtNi−1 − A(χ̄)

e HF β2

[
e−βΔt(βΔt + 1) − 1

]
φ∞ + Δt Bi−1 e−βΔt

√
φ∞

(6.66)



132 Chapter 6. Physics-Based Modeling of TEC

∂

∂φ∞
fi = (e−βΔt − 1)

A(χ̄)

e HF β
− 1

2

[
Bi − Bi−1 e−βΔt

] 1√
φ∞

(6.67)

∂

∂N0
fi =

⎧⎨
⎩

−e−βΔt if i = 1

0 if i = 1
(6.68)

∂

∂Ni−1
fi = −e−βΔt (6.69)

It is convenient, the linearized functional model in equation 6.62 is rewritten as follows

A0 Δx + B0 Δy + f(x0, y0) ≈ 0 (6.70)

where Δx = x−x0, Δy = y− y0 and m-matrices of A = ∂xT f(x, y) and B = ∂yT f(x, y)
and m-vector of f(x0, y0) are known.

6.2.5 Least-squares solution of the model parameters

Least squares solution of the functional model After replacing the non-linear functional
model by the linearized functional model (from equation 6.70) the Lagrangian function
yields

L(x, y, �) ≈ ‖Δy‖2

Q
−1

y0
+ �T

(
A0 Δx + B0 Δy + f(x0, y0)

)
(6.71)

where is still a non-linear function. The least squares solution of the functional model is
obtained by taking the derivatives of the Lagrangian function with respect to Δx, Δy, and
� and equating them to null vectors. The result is

∂L
∂Δy

= 2 ΔyT Q−1
y0 + �T B0 = 0

∂L
∂�

= A0Δx + B0Δy + f(x0, y0) = 0

∂L
∂Δx

= �T A0 = 0

(6.72)

The transpose of each equation in 6.72 leads to the following hypermatrix⎡
⎢⎢⎢⎢⎣

Q−1
y0 B0T

0

B0 0 A0

0 A0T
0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(2m+4)×(2m+4)

⎡
⎢⎢⎢⎢⎣

Δy

�

Δx

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(2m+4)×1

+

⎡
⎢⎢⎢⎢⎣

0

f(x0, y0)

0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(2m+4)×1

=

⎡
⎢⎢⎢⎢⎣

0

0

0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(2m+4)×1

(6.73)



6.2 Recursive model of VTEC in the normal ionosphere 133

This is the normal equation system in hypermatrix form that can be solved directly for
hypervector

[
ΔyT , �T , ΔxT

]
(as a solution of the linearized functional model) by inverting

the coefficient hypermatrix.

The solution of the non-linear functional model can be estimated from the solution of the
linearized model in an iterative process using Gauss-Newton method. It means that in
iteration cycle j + 1 the solution of the linearized model is estimated using the solution
of the previous iteration cycle j as approximate values of unknown vector. Therefore, the
normal equation system is written for iteration cycle j as follows⎡
⎢⎢⎢⎢⎢⎣

Q−1
y0 Bj

T

0

B
j

0 Aj

0 AjT
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Δy
j+1

�
j+1

Δx
j+1

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

wj

0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0

0

⎤
⎥⎥⎥⎥⎦ (6.74)

where Aj = ∂xT f(xj , yj) and Bj = ∂yT f(xj , yj) are design matrices and m-vector wj is
called the misclosure vector as a known vector

wj = f(xj , yj) + Bj (y0 − yj) (6.75)

In equation 6.74, Δxj+1 and Δyj+1 are unknown vectors. Δxj+1 is called vector of cor-
rections and Δyj+1 is called residual vector. Approximate values of vectors x and y at
iteration cycle (j + 1) yield

xj+1 = xj + Δxj+1 (6.76)

yj+1 = y0 + Δyj+1 (6.77)

Note that approximate observation vector for iteration cycle (j+1) computed by adding the
jth residual vector to the observation vector y0 = ỹ while (j + 1)th approximate unknown
vector is obtained by adding jth vector of corrections to the approximate unknown vector
of jth iteration cycle. To stop the iteration one needs a stop criterion. The iteration is
terminated when the difference between two successive increments, i.e. Δxj and Δxj+1,
is small enough.

The least squares estimators Δŷj+1 and Δŷj+1 can be obtained using the partitioning
technique of the normal equation system as follows

Δx̂j+1 = −
(
AjT

M jAj
)−1 (

AjT
M j wj

)
Δŷj+1 = − Qy0BjT

M j (AjΔx̂j+1 + wj)

(6.78)

where M j =
(
BjQy0BjT

)−1

is a full rank m-matrix. Then subistituting these into 6.76

and 6.77 gives respectively least squares estimator of the unknown vector x̂j+1 and the
estimator of observation vector ŷj+1. The corresponding variance covariance matrices are
obtained as

Qx̂j+1 = Q
Δx̂j+1

=
(
AjT

M jAj
)−1

Q
ŷj+1

= Qy0 − Q
Δŷj+1

(6.79)
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with

Q
Δŷj+1

= Qy0BjT
M j

[
I − Aj(AjT

M jAj)−1AjT
M j

]
BjQy0 (6.80)

It is noticed that application of the variance propagation law to equation 6.75 leads to
Qwj = M j−1

.

Besides the estimation part, the least squares processing should contain a procedure to
validate the obtained solutions. For this purpose, the overall functional model test as a
general test on the validity of the model can be carried out.

6.3 Performance of the VTEC model

In this section, the VTEC model of equation 6.55 is validated and performance of the
model is examined using VTEC data at local and global scales. It should be noted that
the model only describes regular variation of VTEC due to changing in solar zenith angle.
Therefore, the evaluations are carried out using VTEC data under geomagnetically quiet
ionospheric condition (Kp < 4).

During initial testing it was found that the least squares solution of the linearized model
is not convergence to the certain solution of the non-linear model by iterative solutions.
This problem can be overcome by either having good approximate value for the unknown
vector x0 or by reducing the number of estimated parameters. This is due to the fact that
the three model parameters α, β and φ∞ are highly correlated. Therefore, α is fixed to an
appropriate constant value which results in reduction in the size of unknown vector (from
4 to 3).

During day time in the E-region, the mean value of α for the dissociative recombination of
electrons and molecular ions (O+

2 or NO+) is 10−1 [ m3

electron s
] (Titheridge, 2000). There-

fore, in the all processing in this section, we fixed the quadratic recombination coefficient
to α = 10−1 [ m3

electron s
].

The model parameters in equation 6.55 must be essentially estimated by fitting the model
to daily VTEC observations at a given ionospheric point. We used the Global Ionospheric
Maps (GIM) that are routinely produced by the International GNSS Service (IGS). More
information about GIM is given in subsection 4.5.2. Since the maps are produced for every
2 hours in UT time system, a daily VTEC time series with 2 hours time interval in UT time
are used. The generated time series can be used as an observation vector y to estimate
the VTEC model parameters x in the least squares process. A diagonal covariance matrix
is considered as the stochastic model of observation vector. As standard deviation of the
provided VTEC value (from GIM) we used σ

N
= 2 TECU.

6.3.1 Local test of the VTEC model

In this subsection, the goodness of fit is is valuated for daily VTEC time series provided
from the GIM maps at latitude 35◦ and longitude 50◦ (mid-latitude region) for two days
(130 and 210) of 2004 (for both days Kp < 4). For each day, daily VTEC time series at the
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Figure 6.21: Daily VTEC from GIM maps (solid
curve) and the modeled VTEC (dashed curve) in a
ionospheric point (ϕ = 35◦ and λ = 50◦) for day
130 of 2004 (the dotted curve is for forecasting
VTEC at each epoch using the model).
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Figure 6.22: Electron production and reduction
processes and persistent electrons of the VTEC in
a ionospheric point (ϕ = 35◦ and λ = 50◦) for
day 130 of 2004.

point with 2 hours time interval was generated using the GIM maps to estimate the model
parameters in the least squares processing. The size of observation vector was m = 13
(VTEC values of every 2 hours from 0 to 24 in local time) and the size of unknown vector
was 3 (x = [β φ∞ N0]

T ).

For day 130 of 2004, the recombination coefficient of the F-region and the solar photon
radiation intensity were estimated as β = 2.71 × 10−5 in [s−1] and φ∞ = 1.44 × 1013

in [photon
m2 s

], respectively. According to the estimated β, the lifetime of electrons for the

F-region is τ
F

= 10.25 hours. Based on HE = 6.44 kilometer and α = 10−1 in [ m3

electron s
]

and using the estimated φ∞ in equations 6.53 and 6.10 gives σE = 8 × 10−9 in seconds.
Using equation 6.14 gives the lifetime of electrons at the ionospheric point in the E-region
(when the sun is overhead) as τ 0

E
≈ 2 × 10−4 in seconds. Because of the photochemical

equilibrium condition in the model for the E-region, it is reasonable to have such a short
lifetime for electrons in the E-region.

The modeled VTEC, using the estimated daily parameters, are shown in figure 6.21 for day
130 of 2004. In this figure, the solid curve is for the daily VTEC time series provided by
the GIM maps and the dashed curve is for VTEC values computed by the fitted model. It
is clear that the model follows the daily pattern of the VTEC. The mean residual (modeled
VTEC minus VTEC from GIM) is less than one TECU, which is an indicator that the model
is not significantly biased. The Root-Mean-Square value of the residuals was 2.53 TECU.
The model error is increased about sunrise because the photoionization process in the real
ionosphere is stats slightly earlier with respect to that of the model.

The earlier start of ion production in pre-dawn region could partly be due to the conjugate
region heating as a special feature of ionosphere. During the early morning hours, the
energetic photoelectrons created in the conjugate ionosphere in the F-region (by photoion-
ization) are able to travel along the geomagnetic field lines from the conjugate region to
the local region. In passing the energetic photoelectrons downwards into the dark hemi-
sphere, collisions with neutral atmospheric particles occur and produce appreciable heating
and ionization in pre-dawn region ionosphere (Banks, 1969). This phenomena is illustrated
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Figure 6.23: Geomagnetic conjugate region heating by photoelectrons at predawn region (dashed curve
is boundary between day and night sides).

in figure 6.23.

It should be emphasized that ionization by the conjugate region heating phenomena is
not large enough to affect significantly the nighttime ionosphere (Nagy et al., 1973). It is
believed that due to the conjugate region heating and the complicated physics of ionosphere
formation during sunrise, the simple Chapman production function cannot describe to a
sufficient degree the actual rate of ion production during sunrise. Consequently we have to
expect the large model error during predawn and sunrise. The large deviation of the model
from real VTEC during sunrise is known as the Predawn VTEC anomaly.

The model can also be used as a forecasting model. In this case, to compute VTEC value
N(ti) from the model, The VTEC value at previous epoch ti−1 (i.e. N(ti−1)) the observed
VTEC is used. The graph of the forecasting VTEC is shown by dotted curve in figure 6.21.

For day 210 of 2004, the recombination coefficient of the F-region and the solar photon
radiation intensity were estimated as β = 2.21 × 10−5 in [s−1] and φ∞ = 9.50 × 1012 in
[photon

m2 s
], respectively. The lifetime of electrons for the ionospheric point in the F-region

corresponding to the estimated β, is computed as τ
F

= 12.57 hours.

In figure 6.24, the provided VTEC from GIM maps and the modeled VTEC for day 210
of 2004 are shown. The VTEC time series of day 210 of 2004 has two peaks during day
time. This phenomenon is known as daytime double maxima (DDM) which happens often
at the middle latitudes and lower latitudes as twin peak or midday bite-outs in the pattern
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Figure 6.24: Provided daily VTEC from GIM
maps (solid curve) and the modeled VTEC
(dashed curve) in a ionospheric point (ϕ = 35◦

and λ = 50◦) for day 210 of 2004 (the dotted
curve is for forecasting VTEC at each epoch using
the model).
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Figure 6.25: Electron production and reduction
processes and persistence electrons of the VTEC
in a ionospheric point (ϕ = 35◦ and λ = 50◦) for
day 210 of 2004.

of VTEC. The DDM phenomenon is a result of the a combined effect of �E × �B drift and
altitude-dependent F-region recombination coefficient β (Pi et al., 1993). Since the model
of VTEC mathematically consists of only one peak in a day, the DDM can not be captured
by the model and results in an increase of the model error and RMS value.

In figures 6.22 and 6.25, the persistent electrons e−β ΔtN(ti−1) (which survive after the
recombination), the electron production (summation of the second and third terms in
the model), and recombination of electrons (electron reduction) versus time are plotted
separately at the ionospheric point during days 130 and 210 of 2004, respectively. The
amount of electron reduction at each epoch is computed as N(ti−1)−e−β ΔtN(ti−1). It can
be seen that during night time, the ion production is stopped and only the recombination
process is active.

6.3.2 Global test of the VTEC model

In this subsection, the model performance is checked globally and the VTEC model param-
eters are estimated using all GIM grid points. To get an insight of the global performance
of the model, we need first to consider an appropriate strategy for the spatial dependency
of the model parameters. Three strategies can be taken to estimate the model parameters
over the world:

1. β and φ∞ are both spatially dependent and they should be estimated individually for
each grid point (both are local parameters)

2. φ∞ depends on location of grid point and it should be individually estimated for each
grid point (local parameter) but β is constant over the world and estimated as a
global parameter

3. φ∞ is considered as a global parameter and it is not spatial dependent but β should
be estimated for each grid point (local parameter)
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Figure 6.26: Spatial distribution of daily β in
[s−1] over the world for day 130 of 2004 (the black
pixels belong to the grid points that estimation
process was not converged to the acceptable solu-
tion), the solid curve denotes the dip equator and
the dashed curve denotes the geomagnetic equa-
tor.
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Figure 6.27: Spatial distribution of daily φ∞ in
[photon

m2 s ] over the world for day 130 of 2004 (the
black pixels belong to the grid points that estima-
tion process was not converged to the acceptable
solution), the solid curve denotes the dip equa-
tor and the dashed curve denotes the geomagnetic
equator.

It should be mentioned that the initial VTEC value N0 is also spatial dependent and is
considered as a local parameter in all three strategies. In the following the results obtained
by each of these strategies are described. We did not use all GIM grid points but processing
was carried out only for grid points of every 10◦ in latitude and 20◦ in longitude.

First strategy In the first strategy, both β and φ∞ are taken as local parameters and the
parameters were estimated for each selected grid point of the GIM maps independently.
Therefore, the parameter estimation process was carried out exactly same as the local test
processing in the previous subsection. In this strategy, the degree of freedom is independent
of the number of grid points and it is 10. The parameters were estimated for the grid
points (every 10◦ in latitude and 20◦ in longitude) for day 130 of 2004. Note that for
the global test of the model in all three strategies, higher latitudes (φ > 60◦) were not
processed. The total number of the selected grid points was 234. The estimated values
for β and φ∞ for the selected grid points over the world are shown in the figures 6.26 and
6.27, respectively. These figures show spatial dependency of the estimated daily model
parameters over the world. The observation equation 6.60 contains the ratio of φ∞

β
in

the second term, therefore iterations in estimating both of β and φ∞ as local parameters
sometimes becomes unstable and did not converge to a certain solution. This problem
occurred for the grid points associated to the black pixels in the figures. Sometimes the
solution converged to an abnormal solution (for instance the white pixel in figure 6.26).
Because of this, solutions for some grid points differ significantly with the solutions in the
vicinity of those grid points. This is the main disadvantage of the first strategy for model
parameter estimation.

Second strategy It is assumed that β is not spatially dependent and its daily value is the
same for all the grid points. Because of this, the degree of freedom of the estimation process
is increased. This results in iterations always converging quickly to a certain solution. In
second strategy, the observation vector Y and unknown vector x are as follows
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Figure 6.28: Computed RMS values of the model error (computed VTEC by model minus provided
corresponding VTEC from GIM maps) for the selected grid points over the world for day 130 of 2004,
total RMS of the model errors is +4.90 [TECU], the first strategy (β and φ∞ as local parameters) was
adapted in the model parameters estimation.

The estimated value for daily global β for day 130 of 2004 was 5.6×10−5 s−1 with standard
deviation of σβ = ±2.9 × 10−7. The corresponding lifetime of electrons for day 130 of
2004 is computed as τ

F
≈ 5 hours. The spatial distribution of the estimated solar radiation

flux is plotted in figure 6.29. It is clear that φ∞ has a strongly latitudinal dependency or,
to be more specific, it is depends on the modified Dip-latitude. Regardless of a slight
longitudinal dependency, it could be useful to express the spatial dependency of φ∞ by a
simple function like a second order polynomial with respect to modified Dip-latitude.

The root-mean-squared (RMS) values of the model errors (computed VTEC by model
minus provided corresponding VTEC from GIM maps) are given in figure 6.30. In the
middle latitude region and higher latitudes, RMS values are a few TECU, which implies
that the model fits well to the time series of VTEC provided from GIM maps. The average
RMS value is equal to 4.24 in TECU. As expected, the larger RMS values are for the grid
points around geomagnetic equator. In equatorial region, the ionospheric electron density
is strongly suffered by the transport process. Since the transport term is not involved in the
formulation of the model, the model does not fit particularly well in the equatorial region.

Third strategy For parameterization of the model, in the third strategy, β is considered as
a local parameter and φ∞ is as a global parameter. The least squares processing was carried
out for day 130 of 2004 using all 234 selected grid points of the GIM maps. Daily global
value of φ∞ was obtained 3.55 × 1013 in [photon

m2 s
]. The corresponding lifetime of electrons

in the E-region is computed as τ
E

= 1.2 × 10−4 second. The estimated effective β values
for the grid points are shown in figure 6.31. The spatial distribution of β shows that it
significantly depends on geomagnetic latitude for which estimated values of β for equator
region is lower than the values for higher latitudes. It is because of the fact that VTEC
value is higher in the equator and since φ∞ estimated as a global parameter therefore the
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Figure 6.29: Spatial distribution of the effective
daily solar radiation flux φ∞ in [photon

m2 s ] over the
world estimated by the second strategy (β as a
global parameter estimated 5.6 × 10−5 s−1) for
day 130 of 2004, the solid curve denotes the dip
equator and the dashed curve denotes the geo-
magnetic equator.
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Figure 6.30: Computed RMS values of the model
error (computed VTEC by model minus provided
corresponding VTEC from GIM maps) for the se-
lected grid points over the world for day 130 of
2004, total RMS of the model errors is +4.24
[TECU], the second strategy (β as a global and
φ∞ as a local parameters) was adapted in the
model parameter estimation.
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Figure 6.31: Spatial distribution of the effective
daily β in [s−1] over the world estimated by the
third strategy (φ∞ as a global parameter esti-
mated 3.55 × 1013 [photon

m2 s ]) for day 130 of 2004,
the solid curve denotes the dip equator and the
dashed curve denotes the geomagnetic equator.
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Figure 6.32: Computed RMS values of the model
error (computed VTEC by model minus provided
corresponding VTEC from GIM maps) for the se-
lected grid points over the world for day 130 of
2004, total RMS of the model errors is +5.15
[TECU], the third strategy (β as a local and φ∞
as a global parameters) was adapted in the model
parameter estimation.

model can fit itself well to the data only for small value of β. The RMS values of the model
errors computed for the grid points are depicted in figure 6.32. The larger RMS values are
for the low latitudes. The total RMS of model error for the world in day 130 of 2004 was
5.15 [TECU]. Comparing this value to that of obtained for second strategy implies that the
second strategy for model parameterization fits better to the observed data.
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Figure 6.33: Global VTEC grid-map provided by
the model for 14:00 UT in day 103 of 2004.
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Figure 6.34: Global VTEC grid-map provided by
the GIM for 14:00 UT in day 103 of 2004.

6.3.3 Applications of the VTEC model

The recursive model of the VTEC in equation 6.55 gives a good overall representation
of the VTEC as a function of the solar zenith angle χ. The model can be used in many
applications for which temporal interpolation or prediction of VTEC is needed. For instance,
the model can be applied for temporal interpolation between the 2 hourly VTEC maps of
GIM. Since the model has recursive form it can be also applied as the forecasting model
for dynamic ionospheric modeling in the Network-RTK.

The model also can be used as a global ionospheric model that derived based on the
ionospheric physics. The daily model parameters can be estimated from either the daily
GNSS observations or daily VTEC maps of GIM. In figure 6.33,as an example the global
grid-map of the VTEC provided by the model at 14:00 UT for day 103 of 2004 is shown.
For comparison, the corresponding grid-map of VTEC provided from GIM is shown in figure
6.34.

As mentioned VTEC plays crucial role in the satellite communication field that its regular
variation in time and space mostly related to changing in the geometry between the Sun and
the Earth’s ionosphere. The additional temporal and spatial fluctuations in the ionosphere
are strongly related to the space weather. The model can be applied for monitoring response
of the ionosphere to geomagnetic activities using the GNSS data. For this purpose, it is
useful to apply the model to describe regular variations in the VTEC data and then the
residuals could be interpreted as the geomagnetic effects on the ionosphere.

6.4 Summary

In this chapter a recursive model for temporal variation of vertical total electron content
(VTEC) versus the solar zenith angle has been developed. The regular variations in VTEC
by time and space that mostly related to changing in the geometry between the Sun
and the ionosphere are predominantly captured by the model. To derive the model of
VTEC, a normal ionosphere with two ionospheric regions (E- and F-regions) was defined
with respectively quadratic and linear recombination coefficients for the normal E- and F-
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regions. The model was developed based on the ionospheric plasma continuity or balance
equation in absence of the transport processes. Therefore, the model only can describe
regular variation of the VTEC under geomagnetically quiet conditions of the ionosphere.
The Chapman theory was utilized for the rate of ion production during day time in which
the Chapman grazing incidence function was applied for the absorption of ionizing solar
radiation. The model is based on the ionospheric formation physics in which the linear
recombination coefficient of the normal F-region β (in [s−1]) and the solar ionizing radiation
flux φ∞ (in [photon

m2 s
]) are estimated as daily model parameters. These model parameters are

estimated in concept of the least squares adjustment by fitting the model to daily VTEC
observations at a given point.

The performance of the model were checked at local and global scales using VTEC values
from GIM maps. For the local test of the model, the model parameters are estimated for
a given ionospheric point by least squares processing using daily VTEC values at the point
provided from GIM maps. In the our case, the RMS of model error was a few TECU. For the
global test of the model, different parameterization strategies were used. The best strategy
turned out to be to estimate β as a global parameter and φ∞ as a spatially dependent
(local parameter). In general, initial results obtained from the cases analyzed for local
and global tests of the model show that the our recursive model of VTEC gives a good
overall representation of the VTEC in the middle latitude region under geomagnetically
quite ionosphere.

The recursive characteristic of the model allows for application of the model not only for
absolute VTEC computation at a given point and time but also for forecasting VTEC value
for future epochs using a measured VTEC at the current epoch. This feature will be used
in the next chapter for TID modeling in network RTK.



Real-Time Modeling for Medium-Scale TID 7
7.1 Introduction

In the two previous chapters different models for the regular variation of the total electron
content in the ionosphere were discussed. In the current chapter a model for the irregular
variations of the total electron content that particularly associated to the medium-scale
Traveling Ionospheric Disturbances (TID) is given. The medium-scale TID is a wavelike
fluctuation in electron density of ionosphere, accordingly in the TEC, which has wavelength
less than 1000 km. It is the main obstacle for accurate spatial interpolation of ionospheric
induced delays in a medium-scale GPS reference network (baseline length less than a few
hundred kilometers). This is due to the fact that most interpolation methods either use
spatial linear (or quadratic) interpolation or fit a lower-order surface. The result is that
these methods are not capable to model the phase-offset, in the periodic fluctuations caused
by TIDs, at the different ionospheric pierce points of the network.

In order to achieve short initialization times in the Network-RTK (Real-Time Kinematic)
positioning system, it is necessary to have cm-level spatial prediction of the double differ-
enced ionospheric delay. To achieve such a level of accuracy, the TID effects should be
taken into account in the ionospheric spatial prediction. There are two major complications
for the TID mitigation that should be addressed. Firstly, mitigation must be taken place
at the double-difference level, which involves taking single differences between ionospheric
delays for the same satellite between two receivers, followed by differencing their single
differences for different satellites. This means that two different areas of the ionosphere
are involved, each related to a different satellite, and each possibly associated with different
TIDs. Secondly, for the Network-RTK a real-time strategy for TID detection and modeling
is needed.

In the literature already several methods have been developed for TID detection and anal-
ysis. In all these methods the TID propagation parameters, e.g. propagation direction and
phase velocity, are estimated using GPS derived un-differenced ionosphere delays mostly in
post-processing. The main objective of this chapter is to develop an algorithm for estima-
tion of the propagation parameters which can be applied to Network-RTK. A method is
proposed to estimate the TID parameters using single-difference (between-receiver) iono-
spheric data obtained from a GPS network in real-time. The single-difference slant iono-
spheric delays for a baseline and for a satellite are computed epoch by epoch using both
the code and carrier phase geometry-free linear combinations as explained in the chapter
4.

In the section 7.2 the properties of the different types of the TIDs are explained particularly
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the medium scale TID. The mathematical equations for different types of mechanical waves
are given in section 7.3. Although the geometry-dependent trend (associated to the solar
zenith angle) is reduced to a large extent by the differencing, it is still necessary to detrend
the data in order to provide the pure medium-scale TIDs observations. In section 7.4,
the detrending of the single-difference data is explained based on fitting the physics-based
model, developed in chapter 6, to the total electron content. The mathematical equation
of the TID observations is derived in section 7.5 by taking into account the Doppler-
shift due to the satellite motion. The derivation of the observation equation is based on
a monochromatic longitudinal plane wave for TID wavelike oscillations which propagates
horizontally in the thin layer ionosphere. The least-squares estimation of the TID wave
parameters is discussed in section 7.6. In section 7.7 an algorithm for the real-time TID
detection and modeling is developed. The performance of the algorithm is tested using
real TID observations for two different satellites. Finally, section 7.9 ends the chapter with
some concluding remarks.

7.2 Medium-Scale Traveling Ionospheric Disturbances

The Medium-Scale (MS) TIDs are wavelike disturbances in the electron density of the
ionosphere, particularly in the F-region, which have wavelength less than 1000 km and
their period being in range of 12 minutes to 1 hours. This implies that the horizontal phase
velocity of the MS-TIDs are usually smaller than velocity of sound in the ionosphere (about
300 m/s). Despite the small amplitude of the MS-TIDs, typically tenths of TECU , they are
a main obstacle for accurate spatial interpolation of ionospheric induced delays in a medium-
scale reference GPS network (baseline length less than a few hundred kilometers). This
is due to the fact that most interpolation methods either use spatial linear (or quadratic)
interpolation or fit a lower-order surface, which do not model the phase-offset caused by
the MS-TIDs, at the different ionospheric pierce points of the network.

MS-TIDs are mostly a consequence of atmospheric gravity waves (AGW) propagating in
the ionosphere via collisions of the neutral and charged particles (Hernandez-Pajares et al.,
2006a; Afraimovich et al., 2002; Hines, 1960). This is in contrast to Large-scale TIDs that
are generated mostly from specific geophysical events like ionospheric substorms (in the
auroral zone) and are correlated with geomagnetic activity. It follows that the MS-TIDs
have internal sources, because the AGWs are generated by the meteorological phenomena
like neutral winds, eclipses, or solar terminator.

The morphology of the MS-TIDs, such as frequency of occurrence, time and location,
have recently been studied by several authors. According to (Hernandez-Pajares et al.,
2006a) the MS-TIDs are associated with the solar terminator and occur at daytime in local
winter, and nighttime in local summer, and amplitude is correlated with the solar cycle.
In (Candido et al., 2008), the frequency of occurrence of MS-TIDs, originating at high
and mid latitudes, was analyzed statistically revealing an inverse dependency between the
MS-TID occurrence rate and solar activity, with increased rate during the summer solstice.

MS-TIDs introduce wavelike and periodic variations in the TEC which are the result of
changes in the electron density anywhere along the line of sight. In this chapter, the TEC
observations from a network of dual-frequency GPS receivers are used for the MS-TID
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analysis. It is assumed that the changes in TEC (due to the MS-TID) occur within a
two dimensional thin ionosphere layer located at a fixed altitude of 350 km (approximately
the altitude of the peak ionospheric electron density). The TIDs waves are modeled as
mechanical waves. The general definition and mathematical expression for mechanical
waves are presented in the next section.

7.3 Mechanical longitudinal wave equation

A wave is a disturbance or variation that propagates through space and time, which trans-
ferring energy. A mechanical wave is a type of wave that requires a medium for propagation
(does not propagate in the vacuum). The medium itself is at ’rest’ and material within the
medium is not moved from one point to the other. Energy is transfered by local oscillations
of the material only. When an initial energy input is added to the medium, a mechanical
wave is created and travels through the medium until all the energy has been transferred.
When the oscillations or vibrations are perpendicular to the the propagation direction the
wave is called the Transverse wave. In case that the oscillation is in the propagation direc-
tion the wave called the Longitudinal wave. Mechanical longitudinal waves are also referred
to as compressional waves or compression waves. A mechanical wave may take the form
of a variation of pressure (density) or temperature or of an elastic deformation. The locus
of points in the medium which oscillate with the same phase is called wavefront.

Plane wave The simplest form of a wavefront is the plane wave (or planar wave), where
the surfaces of constant phase are infinite parallel planes of constant amplitude normal to
the propagation direction. The term is also used to describe waves that are approximately
plane waves in a localized region of space. For example, when the source of wave is far
from observation region of the wave, then the wave is approximately a plane wave. In the
following subsection, the mathematical expression for a traveling mechanical longitudinal
plane wave is given.

7.3.1 Traveling plane wave

From a mathematical point of view, the most fundamental wave is a harmonic (sinusoidal)
wave which is described in three dimensional space �r and time t by following equation

y(t, �r) = A sin
(
ωt − �K · �r

)
(7.1)

where A is the amplitude of a wave - a measure of the maximum disturbance in the medium
during one wave cycle-, ω = 2πf is the angular frequency and f the wave frequency (the

period of the wave is T = 1
f
) and �K is the wave vector. The amplitude and frequency in

equation 7.1 do not depend on time and on space. In case that the amplitude varies with
time and/or position, the wave is called the envelope of the wave.

The magnitude of the wave vector �K is known as the wave number K = 2π
λ

(λ stands for

the wavelength). The propagation direction of the wave is �K = 2π
λ

	Vph

Vph
where �Vph stands

for the phase velocity vector of the wave and Vph the phase velocity of �Vph. Note that in
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case of the plane wave, the direction of the wave vector is constant in space. The phase
velocity Vph can be associated with the angular frequency ω by the relation Vph = ω

K
.

Superposition Once two (or more) waves travel through the same medium at the same
time (superposition), the net displacement of the medium at any point in space or time, is
simply the sum of the individual wave displacements. This is true of waves which are finite
in length (wave pulses) or which are continuous sine waves. The superposition of waves
leads to either Traveling or Standing waves.

When two mechanical waves (with the same amplitude and frequency) are traveling with
different phase velocities in the same direction in a medium, a new traveling wave is created
with amplitude changing in space but constant in time. When the two waves are in-phase
(phase difference equal to zero), they interfere constructively and the result has twice
the amplitude of the individual waves. When the two waves have opposite-phase (phase
difference equal to π), they interfere destructively and cancel each other out. In case that
two waves of equal amplitude with different phase velocity have different frequency, the
amplitude of the resulting traveling wave not only is time dependent but also is spatial
dependent that leads to an envelope wave.

7.3.2 Standing plane wave

A standing wave, also known as a stationary wave, is a wave that remains in a constant
position. As an example, a standing wave is created when the medium is moving in the
opposite direction to the wave. As another example, in a stationary medium, a standing
wave is formed by interference between two waves of the same amplitude and frequency
traveling in opposite directions with the same velocity. The sum of these two plane waves
is

y(t, �r) = A
[
sin

(
ωt − �K · �r

)
+ sin

(
ωt + �K · �r

)]
= 2A sin

(
�K · �r

)
︸ ︷︷ ︸

amplitude

cos (ωt)
(7.2)

which in the equation for a standing wave, the position and time dependent phases sepa-
rated. The amplitude of the resultant wave is spatial-dependent.

As can be seen from equation 7.2, due to the interference of the two waves, there are
certain points ( �K · �r = 0, λ

2
, 3λ

2
, . . .), called nodes, at which the total wave is zero at all

times. The distance between two consecutive nodes is exactly half the wavelength, i.e.
λ
2
. The points at the middle between consecutive nodes ( �K · �r = λ

4
, 3λ

4
, . . .) are called

anti-nodes. At the anti-nodes the total wave oscillates with maximum amplitude, equal to
twice the amplitude of each wave. Anti-nodes are also half a wavelength apart.
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7.4 GPS-provided TID observation

In this section a method is described to compute TIDs from measured slant ionospheric
delay between a dual frequency receiver on the ground and GPS satellite. The slant
ionospheric delay on the L1 phase observation Ĩs

r (t) between receiver r and satellite s can
be measured epoch by epoch using data of a dual frequency receiver, see section 4.6.

The measured slant ionospheric delay is time dependent because of satellite motion -
changes in elevation angle and ionospheric piercing point - and regular and irregular vari-
ations in the ionospheric total electron density. The regular variation is due to temporal
changes in the Earth-Sun geometry (changing in solar zenith angle χ(t)), the irregular
variations in the slant ionospheric delay are mainly caused by different types of TIDs.

Slant ionospheric delay decomposition The measured slant ionospheric delay
Ĩs
r (t, χ(t), �ρ s

r (t)) (in meter) can be decomposed as follows

Ĩs
r (t, χ(t), �ρ s

r (t)) = G (χ(t), �ρ s
r (t))︸ ︷︷ ︸

Geometry-dependent Trend

+ TID(t) + ε(t)︸︷︷︸
Residual

(7.3)

with �ρ s
r (t) the geometric range vector between receiver r and satellite s, χ(t) is the

solar zenith angle at the ionospheric piercing (IP) point, G
(
χ(t), �ρs

r(t)
)

a function that
expresses geometry-dependent trend of the measured slant ionospheric delay, TID(t) the
effects due to both large- and medium-scale TIDs, and ε(t) effects of the small-scale TID
and measurement (random) error.

To visualize and analyze the ionospheric disturbances, the geometry dependent trend
G
(
χ(t), �ρs

r(t)
)
, which is much larger than the TID, must be removed from the obser-

vation.

7.4.1 Geometry-dependent trend of slant ionospheric delay

The geometry-dependent ionospheric variations can be removed from the measured slant
ionospheric delay in different ways. For instance (Hernandez-Pajares et al., 2006a) makes
this detrending by subtracting from each value an average value of the previous and a
posterior measurements. In Tsugawa et al. (2004), detrending is done by looking for
vertical TEC perturbations from a dense GPS network that it is not applicable for a single-
receiver measurements. Other methods for instance use a high-pass filtering or use a
polynomial fitting to data over a certain period.

In this research, the goal is to analyze the irregular ionospheric variations in real-time for
dynamic MS-TID modeling. Therefore, we will take advantage of the recursive physical
model for VTEC discussed in subsection 6.2.1 to do detrending of the measured time series
of slant ionospheric delay in real-time.

Under a thin layer assumption for the ionosphere, the geometry-dependent trend on the
slant ionospheric delay can be expressed in terms of the vertical total electron content and
a mapping function

Gs
r(t) = G (χ(t), �ρ s

r (t)) = α · m (ξ
IP

(t)) · N (χ
IP

(t), ϕ
IP

(t), λ
IP

(t)) (7.4)
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where Gs
r(t) is in meter,N denotes the vertical total electron content at IP point at time t

in [TECU ] as a function of solar zenith angle χ
IP

(t) and geographic latitude ϕ
IP

(t) and
longitude λ

IP
(t), m (ξ

IP
(t)) is a mapping function converting slant to vertical ionospheric

delay with ξ
IP

(t) as satellite zenith angle at the IP point, and α is a factor that converts
TECU to m (α = 0.1624 m

TECU
for delay on L1).

For the N the following recursive relation was derived in section 6.2 that for simplicity the
third term of equation 6.55 (associated to the E-region) was ignored.

N(ti) = e−βΔtN(ti−1) +
1

e β HF 1016 A(χ̄)
(
1 − e−βΔt

)
φphoton
∞ (7.5)

where N(t) (in TECU) denotes N (χ
IP

(t), ϕ
IP

(t), λ
IP

(t)). For an explanation of the
other symbols see section 6.2.

In the following subsections, equation 7.4 is used as a basic model for detrending a given
time series of measured slant ionospheric delays and the functional model of the observa-
tions and the least-squares solution for the model parameters will be discussed.

7.4.2 TID observation

Equation 7.4 can be fitted to a time series of slant ionospheric delays in order to estimate
the geometric trend. For simplicity in the least-squares fitting, three assumptions are
considered:

• the horizontal gradient of the vertical TEC at previous epoch is equal zero (i.e.
N(ti−1, ϕIP

(ti−1), λIP
(ti−1)) = N(ti−1, ϕIP

(ti), λIP
(ti))),

• the satellite zenith angles at two consecutive IP points are approximately the same
ξ

IP
(ti−1) ≈ ξ

IP
(ti),

• the linear recombination coefficient β is not spatial-dependent.

Although IP point between ground receiver and satellite is moving, and each IP for which
the slant ionospheric delay is measured represents a different area of the ionosphere, the
changes are rather small and these three assumptions do not pose particular practical
problems. Under these assumptions, equation 7.4 and equation 7.5 can be combined to
get the following recursive equation

Gs
r(ti) = e−βΔt Gs

r(ti−1) + α · m (ξ
IP

(ti)) ·
A(χ̄)

(
1 − e−βΔt

)
e β HF 1016 φphoton

∞ (7.6)

This model is fitted to the time series of slant ionospheric delay Ĩs
r (ti) with i = 1, . . . , k

from t1 to tk measured by the geometry-free linear combination, three constant parameters
β, φphoton

∞ and Gs
r(t0) must be estimated. For the least-squares fitting, 3-vector of unknown

model parameters x and k-vector of observation y are considered as follows
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x =

⎡
⎣ β

φ∞
G0

⎤
⎦ ; y =

⎡
⎢⎢⎢⎣

Ĩs
r (t1)

Ĩs
r (t2)
...

Ĩs
r (tk)

⎤
⎥⎥⎥⎦ ; Qy = σ2

Ĩs
r

⎡
⎢⎣ 1 · · · 0

...
. . .

...
0 · · · 1

⎤
⎥⎦ (7.7)

where G0 denotes Gs
r(t0) and Qy stands for k × k uncorrelated diagonal vc-matrix of the

observations with σ2
Ĩs
r

as variance factor (of unit weight) that gives precision of a single

slant ionospheric delay observable.

The functional model of observations for estimating the three model parameters are

f(x, y) =

⎡
⎢⎢⎢⎣

f1(x, Ĩs
r (t0), Ĩ

s
r (t1))

f2(x, Ĩs
r (t1), Ĩ

s
r (t2))

...

fk(x, Ĩs
r (tk−1), Ĩ

s
r (tk))

⎤
⎥⎥⎥⎦ ≈ 0 (7.8)

where E {f(x, y)} = 0 and f(x, y) is a k-vector and fi(x, Ĩs
r (ti−1), Ĩ

s
r (ti)) condition equa-

tion based on equation 7.6 with i = 1, . . . , k,

fi(x, Ĩs
r (ti−1), Ĩs

r (ti)) = Ĩs
r (ti) −e−βΔtĨs

r (ti−1) −α m (ξIP (ti))
A(χ̄)

(
1 − e−βΔt

)
e β HF 1016 φ∞ (7.9)

where Δt = ti − ti−1 and the averaged solar zenith angle is χ̄ = χ(ti)+χ(ti−1)
2

.

Least-square estimation of model parameters The functional model is a non-linear and
non-explicit with respect to x and y. The observation model must be linearized with respect
to both observation and the unknown vectors about given initial values for unknown vector
(denoted as x0) and the observation vector (y0 = y). The linearization can be carried out
as it is explained in subsection 6.2.4 with k × 3 design matrix of ∂xT f(x0, y0) and k × k
design matrix of ∂yT f(x0, y0). The partial derivatives in the design matrices are

∂

∂β
fi = Δt e−βΔtĨs

r (ti−1) − α m (ξ
IP

(ti))
A(χ̄)

e HF β2 1016

[
e−βΔt(βΔt + 1) − 1

]
φ∞

(7.10)

∂

∂φ∞
fi = α m (ξ

IP
(ti))

A(χ̄)

e HF β 1016 (e−βΔt − 1) (7.11)

∂

∂G0

fi =

⎧⎨
⎩

−e−βΔt if i = 1

0 if i = 1
(7.12)

∂

∂Ĩi−1

fi = −e−βΔt (7.13)

where Ĩi−1 stands for Ĩs
r (ti−1). The unknown parameters can be estimated in an iterative

process as it is discussed in subsection 6.2.5.
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Figure 7.1: Measured and modeled time series of ionospheric delay during 2.5 h time span (UT=16:00
- 18:30) for two stations (SPK1 ans RHCL) using PRN 01 (left) and PRN 16 (right). The ’dotted line’
in the first row is for modeled series by fitting 2-order polynomial and ’dashed line’ is the modeled series
by fitting the model of equation 7.6. The graphs in the second row show the detrended series (measured
series minus modeled series). The graphs in third and forth rows are showing normalized auto-correlation
function and corresponding auto-spectral density function of the detrended series, respectively.

TID observation When the model parameters are provided by the least-squares fitting of
equation 7.6 to the time series of slant ionospheric delay Ĩs

r (ti) with i = 1, . . . , k , the
geometry-dependent trend Gs

r(ti) can be computed for all observation epochs ti , i =
1, . . . , k . Subtracting the computed geometry-dependent trend from the time series gives
the TID observation (denoted by DĨs

r (t))

DĨs
r (t) = Ĩs

r (t) − Gs
r(t) = TID(t) + ε(t) (7.14)

As an example, figure 7.1 shows time series of slant ionospheric delay measured from two
permanent GPS stations SPK1 and RHCL in Southern California Integrated GPS Network
(SCIGN) to two satellites PRN 01 and PRN 16 for the time span from UT=16.00 to
18.30 (300 epochs with 30 seconds time interval) dated 2003.10.28. The locations of the
corresponding IP points are shown in figure 7.2 and the associated satellites ionospheric
elevation angles and velocity of the IP points (average of two receivers) are depicted in
figure 7.3.

In figure 7.1, the geometry-dependent trend of each time series is computed in two ways:
1) by least-square fitting a second order polynomial to the series (dotted curve) and 2) by
least-square fitting of the model in equation 7.6 to the series (dashed curve).

The RMS values of the residuals (measured minus computed) of the fit are shown in table
7.1. In case of PRN 01 there is no significant difference between the two fitting methods
but in case of PRN 16 the model of equation 7.6 fitted better to the time series than the
2nd order polynomial.
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Figure 7.2: Ionospheric pierce points (IP) be-
tween receivers SPK1 and RHCL and satellites
PRN 01 and PRN 16 from UT=16:00 to 18:30
in 2003.10.28.
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Figure 7.3: Ionospheric elevation angles from
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01 and PRN 16 from UT=16:00 to 18:30 in
2003.10.28 (top), corresponding velocity of the
ionospheric pierce points (bottom).

Table 7.1: The RMS values of the residuals (measured minus computed) of fitting the model in equation
7.6 and a 2nd order polynomial to the time series of two stations SPK1 and RHCL for two satellites PRN
01 and PRN 16 in [m].

SPK1 RHCL
Equation 7.6 2nd order poly. Equation 7.6 2nd order poly.

PRN 01 0.158 0.153 0.155 0.152
PRN 16 0.090 0.177 0.090 0.184

It can be resulted that a 2nd order polynomial is not always good mathematical function
for detrending a time series of slant ionospheric delay. Because selection of the mathe-
matical function depends on length and time of the time series. The model in equation
7.6 was developed on the basis of the geometry and physics involved in formation of the
ionosphere, therefore it describes the geometry-dependent trend of the time series of slant
ionospheric delay with any size at any time. Furthermore, it has a recursive form that
provide opportunity for forecasting in case of dynamic modeling for the ionosphere.

The detrended slant ionospheric delay, or TID observation DĨs
r (t), is plotted in the 2nd

row of figure 7.1. The auto-correlation and The auto-spectral density functions are shown
in the 3rd and 4th rows. The auto-spectral density function of a time series describes
the general frequency composition of the time series in terms of the spectral density of
its mean square value (Bendat and Piersol, 1971) that, specifically for stationary data, it
is related to the auto-correlation function by Fourier transform. The global maximum of
the auto-spectral density functions correspond a period which is larger than 120 epochs (1
hour). It means that the time series of PRN 01 and PRN 16 are dominated by the LS-TID.

7.4.3 Single-difference TID observation

The un-differenced ionospheric delay contained also residual of the geometric trend, effects
from LS-TID and MS-TID. As we are mainly interested in MS-TID the effects of LS-
TID need to be removed. In a medium scale GPS network (baseline length ≤ 200 km),
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between-receiver single-differencing of the measured slant ionospheric delays is a simple way
to remove the LS-TID. This is because of the fact that wavelength of the LS-TID is large
(≥ 1000 km), compared to the distance between receivers. Consequently, between-receiver
single-differencing leads to data in which the effect of LS-TID is significantly reduced. The
single-difference slant ionospheric delay, between two receivers r1 and r2, for satellite s is
denoted by sdĨs

r1,r2
(t) = Ĩs

r2
(t) − Ĩs

r1
(t).

Although between receiver single-differencing also eliminates to some extend the geometry-
dependent trend, the remaining part is considerable and it is therefore essential to also
detrend the single difference data. This is because of the horizontal VTEC gradient and
the curvature of the Earth. To do, one can either use single-difference of the modeled
geometry-dependent trend (Gs

r2
(t) − Gs

r1
(t)), or form first the single-difference of the

model in equation 7.6, and then fit it to time series of sdĨs
r1,r2

(t).

The latter is more confidence way to make detrending because on the one hand geomag-
netic condition is spatially correlated, the single-differencing cancels out the effects of the
geomagnetic on the data. On the other hand, referring to the chapter 6, the model of VTEC
in equation 6.55 has been developed with disregarding the geomagnetic dependency of the
ionosphere (mis-modeling). Thus, the single-difference model does not have mis-modeling
(missing the geomagnetic field) could describe well the behavior of the single-difference
slant ionospheric delay sdĨs

r1,r2
(t). The single-difference slant ionospheric delay may be

decomposed as follows

sdĨs
r1,r2

(t) = sdGs
r1,r2

(t)︸ ︷︷ ︸
Geometry-dependent Trend

+ sdTID(t) + ε(t)︸︷︷︸
Residual

(7.15)

where sdGs
r1,r2

(t) stands for the single-difference geometry-dependent trend, sdTID de-
notes the single-difference MS-TID and ε denotes both measurement random errors and
single-difference SS-TID with E {ε} = 0. sdGs

r1,r2
(t) is obtained by between-receiver

single-differencing of equation 7.6 as follows

sdGs
r1,r2

(ti) = Gs
r2

(ti) − Gs
r1

(ti)

∼= e−βΔt sdGs
r1,r2

(ti−1) + α · m (
ξ̄

IP
(ti)

) · A(χ̄r1,r2)(1−e−βΔt)
e β HF 1016 φphoton

∞
(7.16)

where sdGs
r1,r2

(ti−1) is the between-receiver single-difference slant ionospheric delay from

the previous epoch, the averaged satellite zenith angle is ξ̄
IP

(ti) = 1
2

(
ξ

IP1
(ti) + ξ

IP2
(ti)

)
and averaged solar zenith angle is χ̄r1,r2 = 1

2
(χ̄1 + χ̄2). Note that for the sake of simplicity

for estimating model parameters, the averaged geometry from two receivers (r1 and r2) to
satellite s and to the Sun are used (see figure 7.4).

Equation 7.16 consists three unknown parameters of sdGs
r1,r2

(t0), β and φphoton
∞ that can

be estimated by fitting the equation to a time series of measured single-difference slant
ionospheric delays sdĨs

r1,r2
(t) for a given baseline and satellite. The functional model of the

least-squares estimation of the three parameters and its linearized version can be obtained
using an approach similar to the previous subsection.
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Figure 7.4: Illustration of the geometry between single baseline and two satellite and the Sun.

Single-difference TID observation Subtracting equation 7.16 from equation 7.15 leads
to detrended single-differenced slant ionospheric delay that it can be known as the single-
difference TID observation (denoted by DsdĨ),

DsdĨs
r1,r2

(t) = sdĨs
r1,r2

(t) − sdGs
r1,r2

(t) = sdTID(t) + ε(t) (7.17)

Figure 7.5 shows time series of the between-receiver single-difference slant ionospheric
delays measured from baseline of SPK1-RHCL to two satellites PRN 01 and PRN 16, using
the same data is in the example of the previous subsection. In first row of the figure,
the solid curve is for the measured single-difference slant ionospheric delay sdĨ(t). The
geometry-dependent trend of the time series sdĨ(t) is computed in two ways: 1) by least-
square fitting a second order polynomial to the series (dotted curve) and 2) by least-square
fitting of the model in equation 7.16 to the series (dashed curve). The RMS values of the
residuals are the same for both fitting methods (0.019 for PRN 01 and 0.036 m for PRN
16).

The second row of figure 7.5 shows the single-difference TID observation DsdĨs
r (t). The

bold-solid curve is corresponding to DsdĨs
r (t) detrended by fitting equation 7.16 and the

dotted curve is for the case that detrending was done at the un-differenced level (taking
difference between two stations in figure 7.1). The RMS values corresponding to the
dotted curve is 0.020 for PRN 01 and 0.037 m for PRN 16 which are slightly larger than
the residuals obtained from fitting equation 7.16. The third and forth rows in figure 7.5
gives the normalized auto-correlation and auto-spectral density functions of DsdĨs

r (t) for
both satellites.

The periods corresponding to the global maximum of the both auto-spectral density func-
tions are in the typical range of period for MS-TID (less than 1 hour). It means that the
MS-TID is dominated in the single-differenced time series for PRN 01 and PRN 16. This
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Figure 7.5: Measured and modeled series of single-difference ionospheric delays during 2.5 h timespan
(UT=16:00 - 18:30) between baseline SPK1-RHCL (54 km) and PRN 01 (left) and PRN 16 (right). The
’dotted line’ in the first row is a 2nd order polynomial fit the ’dashed line’ is the modeled series by fitting
the physical model of equation 7.16. The second row shows the detrended series (measured series minus
modeled series). The third and forth rows show the normalized auto-correlation function and corresponding
auto-spectral density function of the detrended series, respectively.

is an important result that single differencing can be used for detecting and analyzing the
MS-TID.

The single difference is the starting point for this research. For completeness, also the
double difference is discussed, although it will not be used further in this research.

7.4.4 Double-difference TID observation

As with the single-difference slant ionospheric delay decompositions, the double-difference
slant ionospheric delay can be written as follows

ddĨ
s1,s2

r1,r2
(t) = ddG

s1,s2

r1,r2
(t)︸ ︷︷ ︸

Geometry-dependent Trend

+ ddTID(t) + ε(t)︸︷︷︸
Residual

(7.18)

with ddĨ
s1,s2

r1,r2
(t) = sdĨ

s2

r1,r2
(t) − sdĨ

s1

r1,r2
(t) the double-difference slant ionospheric delay

between two receivers r1 and r2 and two satellites s1 and s2 at epoch t, and where ε
denotes both measurement random error and double-difference SS-TID with E {ε} = 0.
The ddTID expresses the combination of two single-difference MS-TIDs for two differ-
ent ionospheric patches. In equation 7.18, ddG

s1,s2

r1,r2
(t) expresses the double-difference

geometry-dependent trend (and horizontal ionospheric gradients in the two ionospheric
patches) that can be obtained from subtracting two associated single-difference geometry-
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dependent trend,

ddG
s1,s2

r1,r2
(ti) = sdG

s2

r1,r2
(ti) − sdG

s1

r1,r2
(ti)

=̇ e−β2Δt G
s2

r1,r2
(ti−1) + α · m (

ξ̄
s2

IP
(ti)

) · A(χ̄ s2
r1,r2

) (1−e−β2Δt)
e β2 HF 1016 φphoton

∞,2

− e−β1Δt G
s1

r1,r2
(ti−1) + α · m (

ξ̄
s1

IP
(ti)

) · A(χ̄ s1
r1,r2

) (1−e−β1Δt)
e β1 HF 1016 φphoton

∞,1

(7.19)

where β and φphoton
∞ for two different ionospheric patches of satellites s1 and s2 are

specified by sub-indexes 1 and 2, respectively. The β and φphoton
∞ are not the same for both

patches because the ionospheric patches associated to two satellites may be located for
apart and their properties can be totally differed. Figure 7.4 shows the geometry between a
baseline and two satellites and the Sun. Since ξ̄

IP
and χ̄r1,r2 are different for two satellites,

unfortunately it is not possible to simplify equation 7.19.

In order to estimate the model parameters x =
[
β1, φ∞,1, G

s1

r1,r2
(t0), β2, φ∞,2, G

s2

r1,r2
(t0)

]T
,

one should apply the least-squares fitting of the single-difference model individually for the
data of the two ionospheric patches.

Subtracting equation 7.19 from 7.18 results in the double-difference TID observation (or
detrended double-difference slant ionospheric delay)

DddĨ
s1,s2

r1,r2
(t) = ddĨ

s1,s2

r1,r2
(t) − ddG

s1,s2

r1,r2
(t) = ddTID(t) + ε(t) (7.20)

where DddĨ stands for the double-difference TID observation.

The time series of the double-difference TID observations, using the same data in the
previous subsection, for baseline SPK1-RHCL and two satellites PRN 01 and PRN 16,
is shown in figure 7.6. In the first row, the measured (solid curve) and modeled val-
ues (dashed and dotted curves) of ddĨ(t) are shown. The second, third, and forth rows
show, respectively, the double-difference TID observations and corresponding normalized
auto-correlation function and auto-spectral density function. As mentioned DddĨ, in fact,
represents the combination of two MS-TIDs that propagating in two different ionospheric
patches. Because of this, the behavior of DddĨ becomes more complicated. In the example,
periods (or frequencies) of the two MS-TIDs are close to each other and consequently the
combined spectrum of their combination looks very much the same as the individually ob-
tained auto-spectral density functions for the two single-difference TID observations. This
is rather a coincidence and it is not always that both MS-TIDs have the same frequencies.

7.5 TID observation equation

In the previous section, the double-, single-, and un-differenced TID observations were
derived using both the code and phase geometry-free linear combinations. In this section,
a mathematical model for the TID observations is derived. For this purpose, it is supposed
that a TID wavelike oscillations of the ionosphere propagates continuously in a horizontal
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Figure 7.6: Measured and modeled series of double-difference ionospheric delays during 2.5 h timespan
(UT=16:00 - 18:30) between baseline SPK1-RHCL (54 km) and PRN 01 and PRN 16. The ’dotted line’
in the top figure is 2nd order polynomial fitted to the data and the ’dashed line’ is the modeled series by
fitting the physical model of equation 7.19. The second plot shows the detrended series (measured minus
modeled). The third and forth plots show the normalized auto-correlation function and corresponding
auto-spectral density function of the detrended series, respectively.

ionospheric patch as a monochromatic and perfect periodic longitudinal plane wave. Taking
satellite motion into account, the spatio-temporal characteristics of the TID wave, in a
patch between receiver r and satellite s, can be modeled by the traveling plane wave
equation 7.1 as follows

DĨs
r (t, �r) = A sin

(
ωt − �K · �r(t)

)
(7.21)

where ω = 2πf and A are respectively the angular frequency and amplitude of the TID

wave and �K = 2π
λ

	Vph

Vph
= ω

	Vph

V 2
ph

is the TID wave vector with λ as wavelength and �Vph is

vector of phase velocity of the TID wave. In this equation, �r(t) is the horizontal position
vector of the IP point in the ionospheric thin layer with origin located at the point of TID
source (see figure 7.7).

7.5.1 Doppler-shift on TID observation

The motion of GPS satellites in space causes the IP point between receiver and satellite to
move as well and therefore the position vector of IP becomes time-dependent. This means
that the observation point of the TID wave is moving with respect to the source of the
TID which results in a ”Doppler-shift ” in the TID observations. If the position vector at
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Figure 7.7: Illustration of the satellite motion and the TID propagation in the ionospheric patch.

each epoch is written as �r(t) = �r(t0) + Δ�r(t) then equation 7.21 yields

DĨs
r (t, �r) = A sin

⎛
⎝ωt − �K · Δ�r(t)︸ ︷︷ ︸

Doppler-shift

− ϕ0

⎞
⎠ (7.22)

where ϕ0 = �K · �r(t0) is initial phase of the TID wave at reference time t0 and �K · Δ�r(t)

stands for the Doppler-shift. If velocity of IP point is denoted as �V
IP

(t) = Δ	r(t)
t−t0

then, using

�K = ω
	Vph

V 2
ph

, the inner product in the Doppler-shift term becomes
V

IP

Vph
ω(t − t0) cos (γ(t))

that leads to (with t0 = 0)

DĨs
r (t, �r) = A sin

((
1 − V

IP
(t) cos (γ(t))

Vph

)
ωt − ϕ0

)
(7.23)

where γ(t) denotes time dependent angle between TID propagation direction and moving
direction of IP point (see figure 7.7). It is seen from equation 7.23, the observed frequency

of the TID wave depends on the projection of �V
IP

on TID wave propagation direction.
There are two special cases: (1) If Vph = V

IP
(t) cos (γ(t)) then TID observations becomes

constant over time (2) in case that Vph = −V
IP

(t) cos (γ(t)) results in a standing wave
form of TID in the observations.

Equation 7.23 can be considered as the observation equation for the least-squares estima-
tion of the TID wave parameters.

7.5.2 Single-difference TID observation equation

Suppose two receivers on the ground are tracking a GPS satellite and a monochromatic
plane wave TID propagates in the associated ionospheric patch (see figure 7.7). The
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position vectors of the two associated IP points, with origin at the TID source, can be
written as follows

�r1(t) = �r1(t0) + Δ�r1(t)

�r2(t) = �r2(t0) + Δ�r2(t) = �r1(t0) +�l12(t0) + Δ�r2(t)

(7.24)

where �l12 is baseline vector between two IP points on the thin ionosphere layer. Then,
using equation 7.21, the TID observation equations for two IP points at time t are (with
t0 = 0)

DĨs
1(t, �r1) = A sin

(
ωt − ϕ0 − �K · Δ�r1(t)

)

DĨs
2(t, �r2) = A sin

⎛
⎝ωt − ϕ0 − �K · Δ�r2(t) − �K ·�l12(t)︸ ︷︷ ︸

Phase-Offset

⎞
⎠ (7.25)

where ϕ0 = �K ·�r1(t0) is an initial phase at the first IP point (as reference IP) and �K ·�l12(t)
an additional phase-offset caused by distance �l12 between two IP points on the ionosphere
thin shell. We may assume for short period of time that Δ�r(t) = Δ�r1(t) ≈ Δ�r2(t) and

accordingly �l12(t) = �l12. Subtracting two TID observation equations in 7.25 gives the
single-difference TID observation equation

DsdĨs
12(t,

�l12) = 2A sin

(
−1

2
�K ·�l12

)
cos

(
ωt − ϕ0 − �K · Δ�r(t) − 1

2
�K ·�l12

)
(7.26)

Substituting �K · Δ�r(t) =
V

IP
(t) cos(γ(t))

Vph
ωt into equation 7.26 yields

DsdĨs
12(t,�l12) = 2A sin

(
−1

2
�K ·�l12

)
cos

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝1 − V

IP
(t) cos(γ(t))

Vph︸ ︷︷ ︸
Doppler-effect

⎞
⎟⎟⎟⎠ωt − ϕ0 − 1

2
�K ·�l12︸ ︷︷ ︸

Phase-Offset

⎞
⎟⎟⎟⎠

(7.27)

The between-receiver differencing of the TID observation produces a new monochromatic
wave. It is clear from equation 7.27 that frequency and propagation direction of the new
wave are the same as those for the original TID wave in equation 7.23. The term of

2A sin
(
−1

2
�K ·�l12

)
in equation 7.27 is the amplitude of the new wave, the amplitude

of the new wave is amplified by factor 2 sin
(
−1

2
�K ·�l12

)
compared to amplitude of TID

observation (A) and it is also a function of baseline vector �l. Another important point is
that the phase-offset for the new wave is halved. This implies that the phase velocity (or
wavelength) is amplified by single differencing by a factor two.

Since the satellite velocity vector �V
PRN

(t) in equation 7.27 is time-dependent, not only the
velocity of the IP point becomes as a function of time V

IP
(t), but also the azimuth of Δ�r

is changing in time by the motion of IP point (the convergence of meridians), resulting in

a time-dependent angle γ(t) between the TID wave vector �K and Δ�r.
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So far, we derived the mathematical equations for the un-differenced and single-differenced
TID observations. The parameters in the observation equation are the TID wave param-
eters, i.e. frequency f , wavelength λ, phase velocity Vph, amplitude A, initial phase ϕ0,
and azimuth of propagation Az. The next section deals with methods for the least-squares
estimation of these TID wave parameters.

7.6 Estimation of TID wave parameters

This section deals with a method for estimating the MS-TID wave parameters using the
single difference observations. The main reason to use the single differenced data is
that between-receiver single-differencing leads to data in which the effect of LS-TID and
geometry-dependent trend in data are significantly reduced therefore the detrending of data
can be done better than the case using un-differenced data. All previously developed meth-
ods for estimation of the TID wave parameters use the un-differenced TID observations,
e.g. (Lejeune and Warnant, 2008; Garrison et al., 2007; Hernandez-Pajares et al., 2006a;
Calais et al., 2003; Afraimovich et al., 2002). In our method for estimating TID wave
parameters, the single-difference TID observations are used and the method takes the high
temporal resolution of GPS data into account. The period of the TID is the first parameter
that should be determined. Once the period has been determined it will be possible to
determine the wave vector and the amplitude of TID.

7.6.1 Period determination

Consider a stationary (ergodic) random process x(t) that it is defined by summation of
a sine wave with circular frequency f

0
and wide-band random noise e(t) with a uniform

auto-spectral density function See over bandwidth fc (cut-off frequency), i.e. See(f) = S
for 0 ≤ f ≤ fc and elsewhere See(f) = 0, as follows (randomness indicated by underscore)

x(t) = a sin(2πf0t + ϕ) + e(t) (7.28)

The auto-correlation function Rxx(τ) of the random process x(t) is the sum of the auto-
correlations for the sine wave and the wide-band random noise

Rxx(τ) = lim
T→∞

1
T

∫ T

0
x(t)x(t − τ)dt

= a2

2
cos(2πf0τ) + Sfc

(
sin(2πfcτ)

2πfcτ

) (7.29)

where the first term is the auto-correlation function of the sine wave and the second term
the auto-correlation function of the wide-band noise. The auto-correlation function of the
sine wave is a cosine with frequency f0 and an amplitude equal to the mean square value
of the original sine wave (a2

2
). Because of the amplification in the amplitude, periodic

fluctuations of the original wave can be recognized more clearly in the pattern of the auto-
correlation function than the original time series. The auto-correlation function of the
wide-band random noise is a Sinc function that decreases very rapidly after a first crossing
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at τ = 1
2fc

. Because of this, Rxx(τ) decays quickly to the cosine term that describes the

sinusoidal portion of the random process (see figure 7.8). This key property suggests that
the auto-correlation function of x(t) (in 7.28) can be used to measure the period of original
sine wave 1

f0
.

Now, suppose x(tk), k = 1, . . . , n is a time series of length T with n equally spaced
measured values from the random process x(t). The sampling interval (time-resolution) is
Δt = T

n
. Because of the limited duration of the series (truncation), it is not possible to see

signature of all lower frequencies in the series. Hence, the minimum frequency-resolution
bandwidth available from the series is 1

T
, also known as the fundamental frequency. Due to

discretization, the maximum frequency that will appear in the series is well-known Nyquist
cutoff frequency fc = 1

2Δt
= n

2 T
. Hence, the sinusoidal portion of random process x(t)

with frequency of f0, can only be recognized in the series if n ≥ 2Tf0 (where f0 is in Hertz
if T is in second).

An unbiased estimate of the auto-correlation function of a stationary ergodic random pro-
cess x(t) based on a single time series x(t) , 0 ≤ t ≤ T , is given by (Bendat and Piersol,
1971)

Rxx(τ) =
1

T − τ

∫ T−τ

0

x(t)x(t − τ)dt (7.30)

If 1
T−τ

is replaced by 1
T

this results in a biased estimate of the auto-correlation function of
Rxx(τ). In figure 7.8, typical biased and unbiased auto-correlation functions together with
the the auto-correlation function of a pure sine function (real one) are shown. The unbiased
auto-correlation function starts to deviate from the real one at about τ = T − 1

f0
, while

the biased auto-correlation function is deviated right from the start. As a consequence,
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Figure 7.9: Biased (dashed curve) and unbiased (dotted curve) auto-correlation functions for series of
single-difference TID observations for a 2.5 h timespan (UT=16:00 - 18:30) between baseline SPK1-RHCL
(54 km) and PRN 01 (left) and PRN 16 (right).

the absolute values of the extermum points for the unbiased auto-correlation function are
larger than those for the biased auto-correlation function. Because of this to measure the
period of the original sine wave ( 1

f0
), the unbiased auto-correlation function is likely to give

the best results.

In this research, the time series of single-difference TID observations, of subsection 7.4.3,
DsdĨs

r1,r2
(t) for k = 1, . . . , n is considered to be a realization of the stationary (ergodic)

random function defined in equation 7.28. In the other words, the single-difference MS-
TID wave is modeled as a sine wave over t1, . . . , tk. The short period TID, residuals
associated to the LS-TID and to the geometry-dependent trend are considered to represent
themselves like a wide-band random noise with a uniform auto-spectral density function
over bandwidth 0 ≤ f ≤ fc. It is supposed that the mean square value of the which in
bandwidth 0 ≤ f ≤ fc is not significant.

As an example, figure 7.9 shows both the biased (dashed curve) and unbiased (dotted
curve) auto-correlation functions for the single-difference TID observations between baseline
SPK1-RHCL and PRN 01 (left subfigure) and PRN 16 (right subfigure) over a 2.5 h
timespan (UT=16:00 - 18:30) in 2003.10.28. We should accept that a TID wave is not
a perfect periodic wave like the sine function. This is why the computed unbiased auto-
correlation functions, in figure 7.9, don’t behave like the cosine function. If the TID behaves
more like as a perfect wave then the auto-correlation function tends to be more like the
cosine function. As observed earlier in figure 7.5 (2nd row), the TID observations for
PRN 16 more close by a sinusoidal perfect wave than those for PRN 01. Consequently the
corresponding auto-correlation function for PRN 16 tends to be more like a cosine function.
The amplitude of the auto-correlation function is in lower for PRN 01 than for PRN 16.

The period of the TID wave is measured by the distance between the two first consecutive
maximum points of the auto-correlation function. In case of PRN 01, the measured period
is T

D
= 44 epochs (22 minutes). The measured TID period for PRN 16 is T

D
= 40 epochs

(20 minutes). It is important to note that the period measured from the auto-correlation
function is, in fact, a period which is affected by the Doppler-shift. This is the so-called
Dopplered-period and indicated by T

D
. Accordingly, the obtained TID frequency f

D
= 1

T
D

is called the Dopplered-frequency (it is in Hertz if T
D

is in seconds).
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7.6.2 TID wave vector determination

The goal here is to estimate propagation parameters of the MS-TID wave such as phase
velocity Vph and azimuth of propagation direction Az

TID
using between-receiver single-

difference TID observations (DsdĨ) provided in subsection 7.4.3. Once these two pa-

rameters are estimated the corresponding TID wavelength is computed by λ
TID

=
Vph

f
.

Accordingly the TID wave vector is determined by �K = 2π
λ

TID

	Vph

Vph
. Based on the time and

spatial resolutions of the TID observations, the propagation parameters can be estimated
by two methods.

• High spatial resolution data When the spatial resolution of the TID observations
is high the spatial gradient of the TID, computed from the network data, can be used
to estimate the propagation parameters (Afraimovich et al., 1998; Mercier, 1986). In
this case the separation between the network stations should be much smaller than
the typical wavelength of MS-TID.

• High time resolution data In case that the spatial resolution of data is low but
the high temporal resolution data is available, the propagation parameters can be
estimated based on the measured time delays by the cross-correlation between data
for the network stations, (Hernandez-Pajares et al., 2006a; Garrison et al., 2007).

The method to be presented in this chapter uses the cross-correlation between many pairs
of time series of the single-difference TID observations provided from receivers in the
network. This is because of the fact that the network of permanent reference stations in
the Network-RTK technique is always a medium-scale network (baseline length less than
a few hundred kilometers) and density of the stations in space is not enough to determine
precisely the spatial gradient of the data.

Single-difference TID wave vector estimation Let us consider a network with n re-
ceivers on the ground that are tracking GPS satellite s during a certain timespan. Suppose
during the tracking the satellite a MS-TID propagates in the ionospheric patch associated
to the IP points of the network. Therefore, n − 1 time series of the single-difference TID
observations between a selected reference receiver and the other receivers can be provided.
The n−1 measured time series are spatially correlated by the traveling TID wave. Then, it
follows that n − 2 time delays can be measured by the cross-correlation between the time
series of a selected reference baseline and other baselines in the network. These time delays
are constrained by the geometry of the network of IP points and the TID wave vector.

In order to estimate the TID propagation parameters, a mathematical equation for a time
delay measured by the cross-correlation is needed. For a simple case, the geometry between
four moving IP points (with velocity of �V

IP
) and phase velocity of a monochromatic plane

wave TID (�V
ph

) is shown in figure 7.10 on the ionospheric thin layer. The first IP point is
considered as a reference point for three baselines (on the thin layer) between pairs of the
IP points. For the sake of simplicity, the origin of the coordinate system is located at the
reference IP point.

A time delay measured by cross-correlation between the first baseline (as a selected reference
baseline) and another baseline in the network is denoted by τ

2i
where subscript 2 is for
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Figure 7.10: Geometry between a monochromatic plane wave TID and a network of IP points moving
over the ionospheric thin layer.

second receiver of the reference baseline �l12 and subscript i = 3, . . . , n indicates the second
receiver of the other baselines in the network (the reference receiver 1 is as the first receiver
for the baselines). In fact, the time delay τ

2i
gives the traveling time of the single-difference

TID wave between the moving IP points 2 and i.

To derive a relationship between the measured time delay τ
2i

and the TID phase velocity, it is
necessary to have the displacement of the wavefront during the time delay τ

2i
. As mentioned

in subsection 7.5.2, between-receiver differencing of the TID wave (with frequency f and
wave number K) results in a new wave with the same frequency but with its wave number
is halved K

2
. The phase velocity of the new wave is therefore amplified by factor 2.

Consequently, by taking motion of the IP points into account, the velocity of the wavefront

with respect to the IP points is obtained by �V = 2�Vph + �V
IP

· 	Vph

Vph
. The time delay is then

τ
2i
(t) = Δ�l

2i
(t) ·

�V (t)

V (t)2
(7.31)

with Δ�l
2i

= �l
1i
−�l12 . The corresponding scalar expression for equation 7.31 can be written

as follows (subscripts E and N denote, respectively, the Easting and Northing of the vectors)

τ
2i
(t) = Δl

2i,E(t) v(t) + Δl
2i,N (t) w(t) (7.32)

where v = VE

V 2 and w = VN

V
2 with V

2
= V

2

E + V
2

N and two components of Δ�l
2i
(t) are

obtained as follows

Δl
2i,E(t) = �l

1i
sin (α

1i
(t)) − �l

12
sin (α

12
(t))

Δl
2i,N (t) = �l

1i
cos (α

1i
(t)) − �l12 cos (α12(t))

(7.33)

where α denotes azimuth of ionospheric baseline which is a function of time.

Equation 7.32 is a linear observation equation for the time delay, measured by cross-
correlation, with two unknown parameters v and w. For each epoch the parameters v and
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w can be estimated by the least-squares using the following functional model⎡
⎢⎢⎣

τ23(t)
τ24(t)

...
τ2n(t)

⎤
⎥⎥⎦

︸ ︷︷ ︸
(n−2)×1

=

⎡
⎢⎢⎣

Δl23,E(t) Δl23,N (t)
Δl24,E(t) Δl24,N (t)

...
...

Δl2n,E(t) Δl2n,N (t)

⎤
⎥⎥⎦ ·

︸ ︷︷ ︸
(n−2)×2

[
v(t)
w(t)

]
︸ ︷︷ ︸

2×1

(7.34)

where at least two time delay measurements (n = 4) are needed to obtain the unknown

vector of [v(t) , w(t)]
T

.

Once v and w are estimated the azimuth of the TID propagation direction can be deter-

mined from Az
TID

(t) = arctan
(

v(t)
w(t)

)
. The E-W and N-S components of the velocity

vector of the wave with respect to the moving IP points �V are given as follows

VE(t) = v(t)
v(t)2+w(t)2

VN(t) = w(t)
v(t)2+w(t)2

(7.35)

It is important to know that the TID propagation direction is invariant with respect to the
motion of the IP points. The E-W and N-S components of �Vph are then

Vph,E(t) = 1
2
( VE(t) − V

IP
(t) cos(γ(t)) sin(Az

TID
(t)) )

Vph,N(t) = 1
2
( VN(t) − V

IP
(t) cos(γ(t)) cos(Az

TID
(t)) )

(7.36)

where γ(t) = α(t)−Az
TID

(t) denotes angle between moving direction of the IP points α(t)

and direction of the TID propagation (see figure 7.10) and Vph(t) =
√

V
2

ph,E(t) + V
2

ph,N(t)

is phase velocity of the TID wave. Now, the actual frequency f
TID

and wavelength λ
TID

of the TID wave can be computed as follows

f
TID

(t) = f
D

(
Vph(t)

Vph(t)−V
IP

(t) cos(γ(t))

)
λ

TID
(t) = T

TID
Vph(t)

(7.37)

where T
TID

= 1
f

TID
is actual period of the TID wave and f

D
is the Dopplered-frequency.

Finally, the TID wave vector is determined by �K = 2π
λ

TID

	Vph

Vph
.

7.6.3 TID wave amplitude determination

Once the period and propagation parameters of the TID wave are estimated then the
amplitude of the TID wave can be computed. For this purpose, the amplitude of the TID
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wave, equation 7.27 is written as follows

DsdĨs
1i(t,

�l1i) = 2A(t) sin

(
−1

2
�K ·�l1i

)
︸ ︷︷ ︸

Asd(t,	l1i)

cos
(
ψ(t,�l1i) − ϕ0(t)

)
(7.38)

with

ψ(t,�l1i) =

(
1 − V

IP
(t) cos(γ(t))

Vph

)
ωt − 1

2
�K ·�l12 (7.39)

where i = 2, . . . , n stands for the different ionospheric baselines in the network (first
receiver is selected as a reference). The single-difference TID wave amplitude is denoted

by Asd(t,�l1i) to emphasize its temporal and spatial dependency. Both the unknown initial
phase ϕ

0
(t) (at reference receiver) and amplitude A(t) of the TID wave are time-dependent.

To estimate these two unknown parameters, equation 7.38 can be re-parameterized as
follows

DsdĨs
1i(t,

�l1i) = a(t)
[
2 cos

(
ψ(t,�l1i)

)
sin

(
−1

2
�K ·�l1i

)]
+ b(t)

[
2 sin

(
ψ(t,�l1i)

)
sin

(
−1

2
�K ·�l1i

)] (7.40)

where this equation is a linear observation equation with respect to new unknown pa-
rameters a(t) = A(t) cos(ϕ0(t)) and b(t) = A(t) sin(ϕ0(t)). These parameters can be
estimated in the normal least-squares adjustment process either in the time domain or in
the space domain. For epoch by epoch estimation of the parameters, it is necessary to set
up (n − 1)-vector of the single-difference TID observations in the space domain

y(t) =

⎡
⎢⎢⎢⎣

DsdĨs
12(t)

DsdĨs
13(t)

...

DsdĨs
1n(t)

⎤
⎥⎥⎥⎦

(n−1)×1

(7.41)

To estimate the parameters in the time domain, the observation vector has to consist
of data from the initial to current epochs. By taking into account the data from earlier
epochs the redundancy is significantly increased. In general, the observation vector for
epochs 1, . . . , k is denoted as follows

Y =

⎡
⎢⎢⎣

y(t1)
y(t2)

...
y(tk)

⎤
⎥⎥⎦

k(n−1)×1

(7.42)

with y(t) from equation 7.41 (for n − 1 baselines in the network with n receivers). Once
the least-squares estimates of a(t) and b(t) are obtained the amplitude and initial phase of
the TID wave are computed by

A(t) =
√

a(t)2 + b(t)2

ϕ
0
(t) = arctan

(
b(t)
a(t)

) (7.43)
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This completes the estimation of the TID wave parameters using the between-receiver
single-difference TID observations in the network. In the next section, we concentrate on
a procedure for the real-time modeling of the MS-TID waves.

7.7 Real-Time Medium-scale TID modeling

Most results on TID analysis in the literatures (e.g. (Hernandez-Pajares et al., 2006a;
Afraimovich et al., 2002; Calais et al., 2003)) have been obtained using post-processing of
data. In Hernandez-Pajares et al. (2006b), a method proposed for the real-time modeling
of the medium-scale TID effect on precise GNSS navigation techniques that takes into
account a climatic model of propagation parameters previously determined in their above
mentioned dedicated study. In this section we will present a new algorithm for the real-time
medium-scale TID modeling that the detection and the parameter estimation of the TID
are implemented in real-time. The algorithm will take advantage of the high temporal
resolution GPS data that is available from a medium-scale network. The single-difference
TID observations time series, which provided by equation 7.17, are the main input for the
algorithm.

The real-time detection and monitoring of MS-TID should essentially consists of three
steps: initialization, TID detection, and TID ending that can be carried out using individual
baseline data. After the detection of TIDs the TID wave parameters have to be estimated.
This can only be done using a network of the local GPS receivers. Therefore between the
TID detection and ending three additional steps are added to estimate the wave parameters:
scraping, cross-correlation and estimation of wave parameters.

Our algorithm for real-time TID monitoring and modeling consists therefore of the six
individual steps: initialization, detection, scraping, cross-correlation, estimation, and ending
which will be explained in detail in the following subsections.

We will consider a medium-scale GPS network with n dual frequency receivers that simul-
taneously track a satellite s over a period of time. Between-receiver single-difference TID
observations (epoch by epoch) are provided with respect to a selected reference receiver
using the procedure of subsection 7.4.3. The minimum number of unique baselines is n−1
and number of all possible baselines is n(n−1)

2
. The algorithm presented here is based on

the use of the minimum number of baselines. As a result, n − 1 time series of the single-
difference TID observations Ǐ1i(tk) are provided for each baseline l1i with i = 2, . . . , n,
’check’ in Ǐ1i(tk) emphasizes the equally spaced time series of the single-difference TID
observations in a time span from t1 to tk.

7.7.1 Initialization step

The initialization step is needed in order to estimate the geometric dependent trend of the
data, and subsequently remove the trend from the data. The MS-TID have typical periods
from 10 to 60 minutes. Because the TID detection step requires a full-period of a wave in
data, the minimum period of the MS-TID (10 minutes) is considered as a minimum length
for the time series. The cycle-slips can extend the duration of the initialization step.
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Figure 7.11: Illustration a single-cycle sine function y(t) with period T = 100 s started at tS and ended
at tD (top) and the corresponding auto-correlation function Ryy(τ) (bottom).

7.7.2 TID detection and scraping steps

After the initialization step a detrended time series DsdĨs
ij(t) is available for t1, . . . , tk,

which is handed over for the TID detection step. Algorithm for TID detection can be
described as follows. Let consider a continuous function y(t) that is defined in a time
domain [t1, tD] as follows

y(t) =

⎧⎨
⎩

0 t1 ≤ t ≤ tS

sin(2πft + ϕ0) tS ≤ t ≤ tD

(7.44)

where tS and tD denote respectively the stating and ending times of the sine function with
t1 ≤ tS ≤ tD and T = 1

f
= tD − tS stands for the period of the sine function. Using

equation 7.30, the normalized unbiased auto-correlation of y(t) for case that ϕ0 = 0 yields

Ryy(τ) =
T − τ

T
cos(2πfτ) (7.45)

where the amplitude of the cosine function is reduced linearly with respect to time delay
τ .

The function in equation 7.44 and the corresponding auto-correlation function of equation
7.45 are depicted in figure 7.11 for the case that T = 100 s. The geometrical properties
of Ryy(τ) are of interest for the TID detection. As can be seen from the plot of Ryy(τ),
in case of ϕ0 = 0, the global-minimum in the auto-correlation is at τ = T

2
, which the

second global-maximum in the auto-correlation occurs at τ = T . Note that the first
global-maximum is always at τ = 0.

The geometrical relationships between the first and second global-maximum points and
the global-minimum point in Ryy(τ) are invariant not only with respect to the initial phase
ϕ0 but also with respect to the length of the prelude associated to the non-sinousidal
portion (from t1 to tS). This is a very useful property. That is important to know that
the geometrical relationships are not sensitive to status that equation 7.44 is contaminated
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by a wide-band random noise if mean squared value of the bandwidth of the noise is not
considerable. Otherwise the geometry of equation 7.45 will be governed by the noise. The
geometrical relationships of the interest are

if the function y(t) is contaminated by a wide-band random noise with non-considerable
mean squared value associated to its bandwidth. The geometrical relationships of the
interest are

τ
Gmin

=
1

2
τ

SGmax
(7.46)

|Ryy (τ
Gmin

)| =
Ryy(0) − Ryy (τ

SGmax
)

2
+ Ryy (τ

SGmax
) (7.47)

where subscripts Gmin, Gmax, and SGmax are indicating the global-minimum, first and sec-
ond global-maximum points, respectively. Two equations 7.46 and 7.47 are the principal
conditions that can be exploited for detecting the MS-TID occurrence in a given time series
of single-difference TID observations.

Once both of the conditions 7.46 and 7.47 are fulfilled by the normalized unbiased auto-
correlation function of a given time series Ǐ1i(tk) at current epoch tk (for baseline l1i in the
network) and τ

SGmax
≥ 10 minutes and also the correlation function is smooth enough (no

other local extremum points before τ
SGmax

), one can say that MS-TID is detected. This
time event is marked as t

D
.

Although a TID wave is usually not a perfect sine wave, once a wavelike TID fluctuation
appears in a given time series with a completed cycle, the associated normalized unbiased
auto-correlation function gets the shape of figure 7.11 and both of the conditions 7.46 and
7.47 will work.

The TID is detected at t
D
, but this does not provide any information in the start time

t
S

yet. The period from t1 tp t
S

is called the prelude. Although the geometry of the
auto-correlation function is not affected by the prelude, but it is essential to remove the
prelude from the series for the cross-correlation step.

Removal of the prelude from a time series in which TID detected should be carried out
epoch by epoch. The scraping starts at the first epoch and completes subsequentially
others epochs until the conditions 7.46 and 7.47 are fulfilled. This will then be t

S
. This

process is known as scraping. The Dopplered-period of TID is then t
D
− t

S
.

In the detection step, it may be occurred that TID is detected in several baselines in the
same time. Each of them can be selected as a reference baseline. Among them, the best
candidate is a baseline which the period of the TID is larger and the conditions in the
equations 7.46 and 7.47 are fulfilled better than those for the others baselines.

7.7.3 Cross correlation step

In this step the time delay between the baselines is computed. It is necessary to exclude at
first the baselines which are totally uncorrelated. Therefore, once the MS-TID is detected
and the scraping step is completed the question arises that if there are some baselines
for which their time series are not spatially correlated to the time series of the reference
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Figure 7.12: Illustration of a simple traveling sine wave y(t, x) with period T = 100 s and wavelength
λ = 100 m (top) started at tS = 0 and ended at tD = 100 s for x = 0 (solid), x = 10 m (dashed),
x = 30 m (dash-dotted), x = 70 m (dotted), the cross-correlation functions between the functions and
the reference function y0(t) are depicted in the bottom for τ ∈ [−T , T ] (’circle’ and ’solid circle’ denote
respectively local and global minimum points and ’solid square’ denotes global maximum point).

baseline. To answer this question, it is necessary to develop an algorithm to check epoch
by epoch for spatial correlation between the time series in the network. For this, we will
take advantage of the following simulation.

Let consider a simple traveling wave that varies both with time t and distance x as follows

y(t, x) = sin(2πft + Kx) (7.48)

where K = 2π
λ

= 2πf
Vph

stands for wave number with wavelength λ and phase velocity Vph.

Lets focus on a particular distance, x, and have a look at the wave yx(t) passing at distance
x. If tS indicates the starting time of the wave, the continuously observed disturbances
(associated to the wave) from tS to tD at any point x ≥ 0 with period T = tD − tS can
be mathematically expressed as follows

yx(t) =

⎧⎨
⎩

0 tS ≤ t ≤ tS + τx

sin (2πf(t + τx)) τx + tS ≤ t ≤ tD

(7.49)

where τx = x
Vph

denotes traveling time of the wave between the origin x = 0 and a given

point and subscript x denotes distance from origin of the wave. This function is depicted in
figure 7.12 (top) for x = 0, x = 10, x = 30 and x = 70 m with T = 100 s and λ = 100 m.
In figure 7.12, in the bottom the normalized unbiased cross-correlation functions between
reference function y

0
(t) and the other functions (i.e. y

0
(t), y

10
(t), y

30
(t), y

70
(t)) are shown

for τ ∈ [−T , T ]. The simulation above does not include all the cases that one may deal
with in the practice. For instance, the cases for x ≤ 0 are not shown in the figure.

In the bottom plots of figure 7.12, general features of the cross-correlation patterns can be
identified. In the patterns, a ’square’ denotes global maximum point and ’circle’ and ’bold
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circle’ denote respectively local and global minimum points. The time delay at the global
maximum point τ

Gmax
gives approximately traveling time of the wave from reference point

to a given point in space domain. As expected, an increase in the distance leads to decrease
in correlation. This is because the contribution of the sine function is get small when x
gets larger. The main common feature for all the patterns, is their smoothness. As second
feature is that if τ

Gmax
≥ T

2
then τ

Gmin
≥ 0. The other features are that τ

Gmax
≤ 2

3
T

results in R (τ
Gmax

) ≥ 0.5 and R (τ
Gmin

) ≤ −0.5 where R stands for the cross-correlation.

There are also some approximate relationships between the global and local extermum
points that are fulfilled for all the patterns. For instance in this simulation, τ

Gmax
−τ

Gmin
≈

T
2
.

If the above properties are not fulfilled anymore the associated baseline can be excluded in
the least-squares estimation of the TID wave parameters at the current epoch. Note that
checking for the cross-correlation is implemented epoch by epoch and it may happens that
in one epoch a baseline is specified as an uncorrelated baseline and in the next epochs it
becomes as a correlated one.

It is important to note that an uncorrelated baseline either indicates that the amplitude of
the TID is damped toward second IP point of the baseline, or the TID wavefront deviates
strongly from the underlying planar assumption.

7.7.4 TID parameter estimation

This step uses as input a the list of spatially correlated baselines and also the vector of
measured time delays between the reference and other correlated baselines from the cross-
correlation step. The increasing length of the time series results in for ever new epoch
the time delays computed with cross-correlation step to become more reliable. The TID
wave parameters are estimated using the algorithms discussed in section 7.6. As mentioned
before, for the wave parameters estimation, it is necessary to have at least three correlated
baselines (two measured time delays). Having more correlated baselines results in more
redundancy in the estimation process.

A weighted least-squares processing is carried out using the weight matrix defined by W =
Q−1

τ with Qτ indicates the dispersion matrix of the measured time delays. The (time delay)
measurements are weighted using the global maximum correlation provided from the cross-
correlation function that leads to the Weighted Least Squares Estimator (WLSE) of the
TID parameters as a Linear Unbiased Estimator (LUE).

7.7.5 TID ending

TID have only a limited life time due to damping of the amplitude of the TID during
propagation. Therefore, it is necessary compute the ending time of the detected TID. In
this subsection, the goal is to develop an algorithm to find the ending time of TID. We
assume that the detected TID decays first in the reference baseline therefore, only data
from the reference baseline is used for computing the ending time of TID.

In order to develop an algorithm to detect the ending of TID, we again take advantage of
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Figure 7.13: Time series includes only a portion of cycle of a sine wave for 5 cases (top) and the
corresponding normalized unbiased auto-correlation functions (bottom), in these functions ’solid circle’
and ’circle’ indicating respectively the global maximum and minimum points.

a simulation. Let consider a simple traveling sine wave in equation 7.48 that is propagated
from t

S
to t

E
(unknown ending time) and detected at t

D
≤ t

E
. The wave equation for the

reference point x = 0 from t
M
− T to t

M
∈ [t

E
, t

E
+ T ] (subscript M indicates stopping

time of the TID modeling) is as follows

y0(t) =

⎧⎨
⎩

sin (2πft) t ≤ t
E

0 t
E
≤ t

(7.50)

Figure 7.13 (top) shows the graphs of equation 7.50 for 5 cases with different values for
t

M
. The cases are for t

M
= t

E
, t

E
+ T

4
, t

E
+ T

2
, t

E
+ 3 T

4
, t

E
+ 8 T

7
where T = 1

f
stands

for the period. In the bottom of figure 7.13, the corresponding auto-correlation functions
are plotted. The global maximum and minimum points are indicated by a ’solid circle’ and
’circle’, respectively. It is clearly seen from the patterns of the auto-correlation functions
that, for T

2
≥ t

M
−t

E
, an increase in t

M
−t

E
leads to not only decreasing in the time distance

between the global minimum and maximum points but also the minimum correlation tends
to zero value. These two geometrical variations in the patterns is continued till when that
the counterpart of the sine wave in the series becomes almost shorter than t

M
− t

E
≥ 7 T

8
.

For the cases that t
M
− t

E
≥ 7 T

8
, the pattern of the auto-correlation function is totally

governed by the counterpart of the series from t
E

to t
M

.

The algorithm for ending detected TID is based on the above mentioned two geometrical
variations in the pattern of the auto-correlation function. In practice, to specify the TID
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Figure 7.14: Schematic illustration of the algorithm for Real-Time Medium-scale TID modeling.

ending time, one can apply the following conditions

τ
Gmax

− τ
Gmin

≤ T

4
(7.51)

|R (τ
Gmin

)| ≤ ε (7.52)

where R stands for the normalized and unbiased auto-correlation function and ε is an
arbitrary value of the smallest correlation for TID termination. According to our experience,
a good value is ε = 0.2. These two conditions should be applied epoch by epoch for the
pattern of the auto-correlation function of a provided time series with length of T

TID
(period

of detected TID) from tk to tk − T
TID

in the data of the reference baseline (tk stands for
current epoch). Once these condition are fulfilled in the pattern of the auto-correlation
function, the time for stopping TID modeling is t

M
= tk.

After the ending of a TID has been detected the algorithm will start again looking for new
TID using the detection algorithm. The reference epoch for the detection algorithm is set
to t1 = t

M
− 10 minutes.

7.7.6 Flowchart of the Real-Time TID modeling algorithm

The flowchart for the algorithm for real-time MS-TID modeling is schematically depicted
in figure 7.14. In this figure, the time series of single-differenced geometry-free GPS
observations from initial epoch t1 to current epoch tk for n baselines in a network are
denoted as I

o

1i (t1 : tk) with i = 2, . . . , n (first receiver as a reference). The superscript o is
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removed when the time series are detrended. TIDindex is set to 1 when a TID is detected
otherwise to 0. At the starting time t1, TIDindex = 0. Duration of the initialization step
is tI − t1 = Tmin where Tmin = 10 minutes is the shortest period of MS-TID. When the
length of the time series exceeds Tmin (i.e. t

I
≤ tk), first the detrended time series are

provided and then the auto-correlation (denoted by R(τ)) for each time series are computed
for the TID detection process. Note that the detrending process is carried out every epoch.

In case a MS-TID is detected, the list of baselines which are candidate reference baselines,
is computed (denoted by RBL). The epoch that a TID detected is t

D
, t

D
− t1 is the

duration of detection. In the scraping process, the best reference baseline and start time
t

S
of the detected TID are computed as well as the Dopplered-period of the TID, denoted

by T
D
. The spatial correlation between the reference baseline and the others baselines is

checked to provide a list of the correlated baselines (denoted by CBL). Then, by excluding
the uncorrelated baselines, the time delays of the correlated baselines with respect to
the reference baseline are computed by cross-correlation. In case there are more than 3
correlated baselines the measured time delays are used to estimate the wave parameters of
the TID. In case that all of the time delays are zero, the TID wave will be a standing wave
and the estimation step is stopped. The check for TID ending is carried out to compute
the end time of TID in the reference baseline (denoted by t

E
) and to specify the time for

stopping estimation of the TID parameters (denoted by t
M

). It should be noted that, the
check for TID ending is done only for time series of the reference baseline with length equal
to T

D
. In case that the detected TID is ended then TIDindex is set to 0 and the initial

epoch t1 is updated for detecting of the next MS-TID.

7.7.7 Dependency on reference baseline

The algorithm for TID modeling utilizes the cross-correlation function for the estimation of
the propagation parameters. In this subsection, it is shown that the least squares estimates
of the propagation parameters is not always invariant against the selected reference point
(or baseline).

Let consider four IP points in an ionospheric patch with a planar TID wave (see figure
7.15). The amplitude of the TID is depends on location. The wave equation at the points
(i = 1, . . . , 4) is

yi(t) = A(t, �ri) sin (ωt − ϕ(t, �ri)) (7.53)

The single-difference wave equation with respect to an arbitrary reference point can be
written as

yji(t) = yi(t) − yj(t) = A(t,�lji) cos
(
ωt − ϕ(t,�lji)

)
(7.54)

with subscript j ∈ [1, . . . , 4] for the reference point and �lji the baseline vector between
reference point and other points (i = 1, . . . , 4). The cross-correlation function of yji(t)
and yjk(t) can be expressed as

Ryji ,yjk
(τ) =

A(t,�lji)A(t,�ljk)

2
cos

(
ωτ + Δϕ(t,�lji,�ljk)

)
(7.55)
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Figure 7.15: Illustration of the phase-offset between two IP points measured from two different reference
points.

with Δϕ(t,�lji,�ljk) = ϕ(t,�lji) − ϕ(t,�ljk) the initial phase of the cross-correlation pattern.
Since the amplitude and the initial phase do not depend on time delay τ , equation 7.55
can be written as follows with τ = 0

Ryji ,yjk
(0) =

A(t,�lji)A(t,�ljk)

2
cos

(
Δϕ(t,�lji,�ljk)

)
(7.56)

It should be noted that the time delay between two given points i and k, measured by
cross-correlation, is related to the initial phase by τ

ik
= Δϕ · Vph, where Vph denotes the

phase velocity of the wave. Using propagation law for the cross-covariance function, it can
be shown that

Ryji ,yjk
(0) = Ryji ,yji

(0) − Ryij ,y
ik

(0) (7.57)

where Ryji ,yji
(0) =

A2(t,	lji)

2
stands for the auto-correlation function of y

ji
(at τ = 0).

Substituting equation 7.57 into 7.56 yields

A2(t,�lji)

2
−A(t,�lij)A(t,�lik)

2
cos

(
Δϕ(t,�lij ,�lik)

)
=

A(t,�lji)A(t,�ljk)

2
cos

(
Δϕ(t,�lji,�ljk)

)
(7.58)

In order to have the same time delays between two points 3 and 4 in figure 7.15, measured
using two different reference points (e.g. j = 1 and j = 2), it is necessary to have the
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following equality fulfilled

A2(t,�l13) − A(t,�l31)A(t,�l34) cos
(
Δϕ(t,�l31,�l34)

)
A2(t,�l23) − A(t,�l32)A(t,�l34) cos

(
Δϕ(t,�l32,�l34)

) =
A(t,�l13)A(t,�l14)

A(t,�l23)A(t,�l24)
(7.59)

It is only guarantied to have equation 7.59 fulfilled if first the amplitude of wave (i.e.
A(t, �ri) = A(t)) is not spatially dependent and secondly the reference points (e.g. j = 1
and j = 2) are in a line perpendicular to the propagation direction of the wave.

Because in the practice, the amplitude of TID is not spatially independent it follows that
the measured time delay from cross-correlation is not always invariant against the reference
baseline. Therefore, TID modeling based on the cross-correlation is the reference point
dependent. It implies that it is necessary either to develop a strategy for selection of
the best reference point or to overcome this problem all possible baselines in the network
at same time is used for estimation of the wave propagation parameters which gives an
averaged solution.

7.7.8 Sensitivity to temporal resolution

The propagation parameters are estimated using time delay measurements from cross-
correlation. The delay measurements are sensitive to the temporal resolution of the time
series. Let consider three IP points (denoted by i, j, and k) in an ionospheric patch over
which a TID moving. The time resolution of TID observations (sampling rate) is Δt then

the time delay measured from cross-correlation between time series of two baselines �lij and
�lik will be zero in the following three cases: (1) �ljk⊥�Vph (�Vph stands for phase velocity) (2)
�Vph tends to infinity (Standing wave) (3) Time delay is smaller than the time resolution
τ

jk
≤ Δt. The first case depends on the propagation direction of the TID with respect to

the baselines and the second case depends on the velocity of the TID.

The last case is the case that is relevant to the time resolution of the data. Because the
resolution of the cross-correlation is the same as the time series, τ

jk
will be obtained zero

if τ
jk

≤ Δt. This occurs in case that the traveling time of TID between the points of the
network is smaller than the time resolution of data. Therefore when a network with short
baselines is used for the TID analysis it needs to have high temporal resolution data.

7.8 Implementation of the Real-Time TID modeling

In this section the performance of the real-time MS-TID modeling is demonstrated for
two test cases. A network including 7 stations of the California SCIGN network simulates
the permanent GPS network. Station SPK1 is selected as a reference to compute single-
differenced ionospheric delays. Four other SCIGN stations inside the reference network and
four stations outside the assigned network are selected for testing purposes. In figure 7.16
the configuration of all 15 stations is depicted. In this figure, the solid lines show baselines
in the assigned permanent network which are used for the TID parameter estimation. The
dashed lines are the baselines that are used to test the TID model. The baseline lengths
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Figure 7.16: Selected 15 stations from SCIGN Network.

are less than 100 km. The shortest baseline length in the assigned permanent network is
20 km (for SPK1-UCLP) and the longest one is 95 km (for SPK1-LLAS).

Dual-frequency GPS phase and code data in July 07, 2000 from 06:00 h to 11:00 h UTC
were used during which a strong TID occurred. The corresponding local time in California
was from 23:00 h on July 06, to 04:00 h on July 07. The goal is here to detect and to
model the TIDs using the algorithm described in the previous sections. The TID will be
analyzed using the network GPS data for two satellites, PRN 02 and PRN 08.

The locations of ionospheric pierce points of the reference network with respect to two
satellites PRN 02 and PRN 08 during the 5 h timespan is shown in figure 7.17. The
ionospheric elevation angles and velocity of the IP points (average over the network) are
depicted in figure 7.18. Note that the coordinates and the velocity of the IP points depend
on the hight of the thin-layer used to model the TID. In the literatures different values are
used, e.g. 200 km in (Hernandez-Pajares et al., 2006a) and 300 km in (Afraimovich et al.,
1998) and 400 km in (Garrison et al., 2007). It has been shown that the estimated TID
wave parameters are not very sensitive to the ionospheric height (Garrison et al., 2007).
We assumed a height of 350 km for the thin-layer ionosphere in this chapter.

Based on the sampling interval of 30 seconds, a total of 5× 120 = 600 epochs the single-
difference TID observations were computed using the procedure described in subsection
7.4.3. To facilitate the drawing of these graphs, detrending was not made epoch by epoch
but only once over the which time span (in a batch using post-processing). In order to
visualize the TID, the time series of the single-difference TID observations of the all 14
baselines of the assigned network are shown in figure 7.19 for PRN 02 (top) and PRN 08
(bottom). In this figure, bold curves are for the permanent network baselines and thin
curves and dashed curves are respectively for baselines with second receivers inside and
outside the network (distance and azimuth between two ends IP points of the baselines are
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Ionospheric pierce points between 15 SCIGN stations  and satellites PRN 02 
                    and PRN 08  over time span from UT = 06:00 to 11:00 
       (’Circles’ are network location on the ground  in South California)
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Figure 7.17: Ionospheric pierce points (IP) for
satellites PRN 02 and PRN 08 from UT=06:00 to
11:00 in 2000.07.07.
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given in the brackets). The signature of the TID can be clearly seen in the graphs for the
both satellites. One can see that magnitude of the TID depends on baseline length and
azimuth.

In the following subsections the TID wave parameters are estimated epoch by epoch for
both satellites.

7.8.1 Case study: PRN 02

The first row of figure 7.20, gives the time series of single-difference TID observations of
the 6 baselines in the assigned permanent network for satellite PRN02 (600 epochs). The
TID detection algorithm was applied to these time series and several medium scale TIDs
were detected. The strongest MS-TID was detected at epoch 145 in the time series of
the baseline SPK1-LINJ. In the 2nd row of figure 7.20, the second receiver numbers of the
baselines associated to each of the detected TIDs are shown, the doted line is the combined
initialization and detection period, the solid line the period from detection time (tD) to
end of modeling (tM).

The wave parameters for a TID were estimated epoch-by-epoch over interval tD to tM .
The period of a TID wave was computed using the algorithm presented in subsection 7.6.1.
The computed Dopplered-period (T

D
) and actual period (T

TID
) are denoted respectively by

’circles’ and ’dots’ in the 3rd row of figure 7.20. The gray parts in the 3rd row refer to epochs
during which either the TID behaves as a standing wave or the estimated phase velocity of
TID tends to infinity. The tendency to infinity is for epochs in which all the measured time
delays in the network, from cross correlation, were smaller than the temporal resolution of
data. As a consequence, it leads to zero values for the time delays. For those epochs which
TID is as a standing wave or the phase velocity tends to infinity, only the Dopplered-period
of TID can be measured and the other wave parameters are not estimated. The reason for
some discontinuity in the measured Dopplered-periods (accordingly in the actual period) is
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Figure 7.19: Time series of the single-difference TID observations for the 14 baselines in the SCIGN
network, for PRN 02 (top) and for PRN 08 (bottom), bold curves are for the network baselines and thin
and dashed curves are for baselines with second receivers, respectively, inside and outside the network
(baseline length and azimuth are given in the brackets).

because of the fact that the Dopplered-period is computed from the distance between the
first and second local maximum points of auto-correlation function, and because of noise
in data, the second local maximum is sometimes replaced by another local maximum.

The 4th row in figure 7.20 gives number of the spatially correlated baselines for each epoch.
The phase velocity and azimuth of the TID can be estimated if at least 2 baselines are
correlated with the reference baseline. In the 5th row of figure 7.20, the estimated azimuth
of detected TIDs (dots) and azimuth of the PRN 02 (red color solid curve) are depicted. In
the 6th row of figure 7.20, the estimated phase velocity (dots) and the (averaged) velocity
of the network IP points (red color solid curve) are shown. The strongest detected TID
propagated in the south-west direction with phase velocity about 280 [m/s]. The 7th
row of figure 7.20 gives the computed wavelengths corresponding to the estimated phase
velocity for each detected TID. In the 8th and 9th rows of the figure 7.20, respectively,
the estimated amplitude and initial phase for each TID are depicted. The estimated initial
phase shows almost a linear behavior with time particularly for period which the estimated
amplitude does not change considerably in time. It is because of the estimating of the
amplitude and initial phase using a single epoch data that results in the estimated initial
phase affected by the phase difference between two consecutive epochs (i.e. 2πfΔt).

Despite detection of a few short-life TIDs in this case study, it can be seen from figure
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Figure 7.20: Estimated TID parameters (epoch-by-epoch) using the single-difference TID observations of
the 6 baselines in the assigned network for satellite PRN 02 from UT=06:00 to 11:00 (600 epochs) on
July 07, 2000 in the first row; second receiver number of the selected reference baselines in the 2nd row;
Dopplered-period (circles) and actual TID period (dots) in the 3rd row; number of the spatially correlated
baselines through TID in the 4th row; azimuth of TID (dots) and azimuth of PRN02 (red color solid curve)
in the 5th row; estimated phase-velocity of TID (dots) and velocity of the network IP points (red color
solid curve) in the 6th row; estimated wavelength and amplitude and initial-phase of TID respectively in
the 7, 8 and 9th rows.

7.20 that the detection of TID and estimation of the parameters were successfully carried
out epoch-by-epoch by the proposed algorithm. This approves preliminary the performance
of the algorithm. Now, we should check how good the TID effects were modeled by the
monochromatic traveling plane wave.

In order to assess the goodness of fit of the TID model, the single-difference TID values
were computed from the model using the estimated parameters for the 6 baselines in the
assigned permanent network. In figure 7.21, the observed time series (dotted curve) and
the computed values (blue color solid curves) are shown for each baseline. The red color
curves show the residuals (observed minus computed). It is clear that the computed TID
values fit well to the TID observations which results in small residuals (comparing to the
observed TID time series). But there is a phase-difference between the observed and the
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Figure 7.21: TID modeling residuals for the 6 baselines in the assigned permanent network for PRN02.

computed time series. This is due to the fact that the planar wave approximation was used
for estimating the phase velocity of the TID which leads to an averaged phase velocity
being estimated. Because of this, in a given epoch, the phase-differences are different for
the different baselines. The large phase-difference is for an epoch that the TID wavefront
considerably deviates from the planar wave.

To test the performance of the TID model for spatial prediction, the single-difference TID
values were computed from the model for the other 8 baselines (’dashed’ lines in figure
7.16). Note that four stations (BRAN, CIT1, CHIL and VNPS) are inside the assigned
permanent network and four stations (LASC, LLAS, CMP9 and CSN1) are outside the
network. The observed and computed single-difference TID time series are depicted in
figure 7.22. The red color curves show the residuals (observed minus computed). The four
rows on the top are for baselines inside the network and the four rows on the bottom are for
the baselines outside the network. For comparison, the Kriging interpolation method was
used to compute interpolated TID values for the four stations inside the network. Kriging
is a linear spatial interpolation method that fully takes the spatial correlation between given
points into account. In figure 7.22, the green curves show the residual from the Kriging
interpolation.
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Figure 7.22: Spatial prediction of TID and the residuals, four rows on the top associated for spatial
interpolation and four rows on the bottom for spatial extrapolation (PRN02).

From figure 7.22 it follows that the algorithm could spatially predict the TID fluctuations
considerably in the assigned network. The interpolation was done with better accuracy than
for the extrapolation. For comparison the performance of the algorithm for interpolation
and for the extrapolation, maximum and Root-Mean-Square (RMS) values of the time
series and the residuals for all the baselines are shown in figure 7.23. The maximum and
RMS values are given for the time series of TID observations and for the residual from the
TID modeling and from the Kriging. Note that the residual from Kriging is given only in
case of interpolation. The maximum and RMS values for each time series was computed
only over the epochs that the residuals were computed. From this figure it is clear that the
maximum and the RMS values of the residuals obtained from the TID modeling are always
significantly smaller than those for the TID observations. It implies that the algorithm
could considerably model TID effects in the data. As it was expected, the RMS values of
the residuals for the interpolation are smaller than those for the extrapolation.

Another result of figure 7.23 is that the RMS values of the residuals from the TID modeling
and from Kriging are comparable. That is an important result because these two methods
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Figure 7.23: Maximum values of the single-difference TID observations for satellite PRN 02, with maxi-
mum values of the corresponding residual from Kriging and the model from the section 7.7 (top). Root-
Mean-Squared (RMS) values for the same cases (bottom).

are developed using totally different principals, but they give similar result. The Kriging is
basically a linear spatial interpolation method that takes spatial correlations into account.
Our algorithm has been developed based on the physics of ionosphere using the planar
wave approximation for the TID wave.

An advantage of the our algorithm is that there is a possibility to improve the algorithm
for the phase-offset modeling by avoiding the planar wave approximation. While there is
no any way to improve the Kriging for the phase-offset modeling between the IP points.

7.8.2 Case study: PRN 08

In this subsection another example of the epoch-by-epoch estimation of the wave param-
eters associated to the TIDs propagating over the network IP points of satellite PRN 08
is given. As in the previous example, the TID detection algorithm was applied for the 6
time series of single-difference TID observations in the assigned permanent network in the
5 h time span for satellite PRN 08. In this case study, the strongest TID was detected at
epoch number 107 with phase velocity about 150 [m/s] toward almost West direction in
the baseline SPK1-RHCL.

The estimated parameters (epoch-by-epoch) of the TID waves are shown in figure 7.24. In
this figure, the first row gives the time series of single-difference TID observations of the 6
baselines in the assigned permanent network for satellite PRN08 (600 epochs) and the 2nd
row shows second receiver number of the reference baseline for each TID. The measured
Dopllered-period (TD) and actual period (TTID) of the TIDs are depicted respectively by
’circles’ and ’dots’ in the 3th row. The gray parts in the 3rd row relates to the epochs
that either the TID behaved as a standing wave or the estimated phase velocity tended to
infinity. The 4th row shows the number of spatially correlated baselines for each epoch.
The estimated azimuth of TIDs (dots) and azimuth of the PRN 08 (solid curve) are shown



7.8 Implementation of the Real-Time TID modeling 183

−0.2

0

0.2

0

10

Se
c.

 R
ec

. N
o.

0
  90

180

270

A
zi

m
ut

h 
[d

eg
.]

0Ve
lo

ci
ty

 [m
/s

]

0

0.5

A
m

pl
itu

de
 [m

]

0 100 200 300 400 500 600
Epoch number (Time interval 30 [sec.])

[d
eg

.]
0

ϕ
[k

m
]

 λ
 

[m
]

Ds
dI�

Satellite PRN08

360

1000

500

0
1

0
  90

180
270
360

2
4
6
8

1000

500

−0.4

0.4

0

5

10

0

30
45
60

Pe
rio

d 
[m

in
.]

15

N
o.

 C
or

r. 
BL

.

Figure 7.24: Estimated TID parameters (epoch-by-epoch) using the single-difference TID observations of
the 6 baselines in the assigned network for satellite PRN 08 from UT=06:00 to 11:00 (600 epochs) on
July 07, 2000 in the first row; second receiver number of the selected reference baselines in the 2nd row;
Dopplered-period (circles) and actual TID period (dots) in the 3rd row; number of the spatially correlated
baselines through TID in the 4th row; azimuth of TID (dots) and azimuth of PRN 08 (red color solid
curve) in the 5th row; estimated phase-velocity of TID (dots) and velocity of the network IP points (red
color solid curve) in the 6th row; estimated wavelength and amplitude and initial-phase of TID respectively
in the 7, 8 and 9th rows.

in the 5th row. In the 6th row, the estimated phase velocity associated to the TIDs
(dots) and the (averaged) velocity of the network IP points (solid curve) are given. The
wavelength of the detected TIDs are shown in the 7th row and the estimated amplitude
and initial phase of TIDs are depicted respectively in the 8th and 9th rows.

Although the TID effects, in this case study, were more complicated (less similar to periodic
fluctuations) it can be seen from figure 7.24 that the algorithm was able to detect TIDs
and estimate epoch-by-epoch the parameters. To show the goodness of fitting of the TID
model, the time series of single-difference TID observations for 6 baselines in the assigned
permanent network and the corresponding computed time series are given in figure 7.25.
From this figure follows that the computed TID are fitted well to the TID observations,
which results in small residuals. As in the previous case study, it is clear that there is a
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Figure 7.25: TID modeling residuals for the 6 baselines in the assigned permanent network for PRN08.

phase-difference between the observed and modeled time series that was caused by the
planar wave approximation.

The modeled TID values are computed for the other 8 baselines, to test the performance of
the algorithm for spatial prediction in the ionosphere. The observed and the computed time
series of single-difference TID observations are shown in figure 7.22. The four sub-figures
on the top are for baselines inside the network and the four sub-figures on the bottom
are for the baselines outside the network. The time series of residuals provided from the
TID modeling and from the Kriging interpolation are depicted for the 4 baselines inside
the network. To compare the residuals, the maximum and RMS values of the residuals for
all baselines are given in figure 7.27. It follows from this figure that the maximum and
the RMS values of the residuals are always significantly smaller than those for the TID
observations. In case of interpolation the RMS values are smaller than those for the case
of extrapolation. It is again clear that the RMS values of the residual for the TID modeling
and for Kriging are comparable.

From the two case studies (PRN 02 and PRN 08) the following results can be obtained:
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Figure 7.26: Spatial prediction of TID and the residuals, four rows on the top associated for spatial
interpolation and four rows on the bottom for spatial extrapolation (PRN08).

• The TID effects on the GPS provided ionospheric time series don’t behaves as a
perfect periodic fluctuation. Due to the Doppler-effect caused by satellite motion, in
special situation, the TID effects behave as a standing wave on data. In this situation
the projected IP velocity along the phase velocity of TID is very close to the phase
velocity but with opposite sign. As a consequence, the phase-offset between the time
series for different ionospheric points becomes zero.

• Despite the TID effects on the time series were not a perfect periodic fluctuation,
the algorithm could detect successfully medium-scale TIDs and estimate epoch-by-
epoch the TID parameters. Although the plane wave approximation is used for TID
modeling but the algorithm could significantly model the TID effects. The residual
(model error) for the interpolation was smaller than those for the extrapolation.

• The spatial prediction of TID in our algorithm and in the Kriging interpolation are
different in principle but the residuals obtained from these two methods are com-
parable. An advantage of our algorithm is that there is possibility to improve the
algorithm in a way that the phase-offset between the IP points is correctly modeled.
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Figure 7.27: Maximum values of the single-difference TID observations for satellite PRN 08, with maxi-
mum values of the corresponding residual from Kriging and the model from the section 7.7 (top). Root-
Mean-Squared (RMS) values for the same cases (bottom).

7.9 Conclusions and remarks

In this chapter an algorithm was developed for the real-time MS-TID detection and mod-
eling in a ionospheric patch using data from a medium scale permanent GPS network.
This algorithm is based on the time series of between-receiver single-difference ionospheric
delays provided by the dual-frequency phase and code GPS observations collected at the
GPS reference stations. The algorithm takes high temporal resolution in the GPS data into
account in the cross-correlation function to model TID effects in the ionospheric data. A
MS-TID wave is modeled as a planar longitudinal traveling wave with spatially indepen-
dent amplitude that propagates on the ionospheric patch of the network of IP (Ionospheric
Pierce) points associated to a given satellite. The characteristic parameters of a TID wave
(e.g. period, phase velocity, propagation direction, amplitude), are considered to be time
dependent and the Doppler shift caused by the satellite motion is taken into account.

The algorithm consists of 6 steps: Initialization, Detection, Scraping, Cross-Correlation,
Parameter Estimation, and Ending. In all these steps, the detrended time series of the iono-
spheric observations is used. The geometry-dependent trend due to the regular ionospheric
variations was removed using the physics-based TEC model developed in the previous
chapter. The performance of the model was tested in a medium scale permanent GPS
network over a time span of 5 hour for two satellites. The tracks of the detected TIDs
show that a TID in the ionosphere is not a perfect planar wave and also its amplitude is
space dependent. Despite this, the algorithm was able to model (in time and in space)
the TID fluctuations well and its performance is comparable with the Kriging interpolation
method. The results obtained from the two case studies show that due to the planar wave
approximation in the estimation of the TID phase velocity, the algorithm is not capable to
model correctly the phase-offset in the space domain. But there is a possibility to improve
the algorithm in such a way that the phase-offset between the IP points can be modeled.
For this purpose one needs to estimate the phase velocity of the TID as a function of the
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azimuth of the baselines in the network. This is the advantage of this algorithm compared
with all other ionospheric interpolation methods such as Kriging.





Conclusions and recommendations 8
The main objective of this thesis is the development of a procedure for modeling and
predicting the Total Electron Content (TEC) of the Earth’s ionosphere for high precision
differential GNSS applications. This objective led to the development of a physics based
model for the regular TEC variations and a procedure for modeling medium scale Traveling
Ionospheric Disturbances (TID). The model for the regular TEC variation is a recursive
model based on ionospheric physics, involving the production and recombination of ions
and free electrons, that can be used in any recursive estimation procedure. The input to
this recursive TEC model consists of the known solar zenith angle, and estimates of the
effective solar radiation intensity and recombination coefficients for one or two ionospheric
stratifications.

The research described in this thesis can roughly be divided into three parts. In the first
part the performance of several empirical ionosphere models, such as the Klobuchar and
NeQuick, and the IGS Global Ionosphere Maps (GIM) is studied. The main focus in this
part is on the estimation and spatial variation of the so-called effective ionization parameter
(Az) which is used by the Nequick model. In this thesis also an alternative method for
estimating Az is proposed. This part corresponds to chapters 4 and 5. In the second
part a novel physic-based recursive model for the regular variation of TEC is developed.
The main motivation for developing this model is that the empirical models of the first
part were either ill–suited or too complicated to model and predict the regular variation
of TEC for high precision differential GNSS applications. The recursive model, described
in chapter 6, is based on the ionospheric physics described in chapters 2 and 3 which are
mainly the result of a literature study. In the third part, which corresponds to chapter 7,
a new algorithm for the real-time modeling of the TID effects on the TEC observations is
developed. The modeling of TIDs is essential to improve the precision and reliability of high
precision GNSS applications such as Network-RTK. The main conclusions are summarized
in the following sections.

8.1 Estimation of effective ionization for NeQuick

NeQuick is a semi-empirical ionospheric model which is proposed as a real-time ionospheric
correction model for single frequency users of the European Galileo navigation system.
The use of NeQuick is not restricted to Galileo and it can be used also – at least in
post-process applications – for GPS and GLONASS. The key input parameter of NeQuick
is called ”the effective ionization level” (Az). This parameter will be provided in the
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Galileo navigation message as a second order polynomial in modified dip-latitude. In
the nominal approach, the three coefficients of the polynomial will be estimated on a
daily basis from at least 20 globally distributed permanent Galileo monitoring stations.
As Galileo is under development the coefficients of Az parameter are not yet available.
Therefore, NeQuick cannot yet be used as ionospheric correction model, unless users
compute Az themselves. The nominal approach, which requires data from the Galileo
monitoring stations, cannot be used directly, but can be emulated using daily RINEX data
of about 20 stations from the International GNNS Network (IGS).

In chapter 5 an alternative approach is proposed. The alternative approach uses Global
Ionospheric Maps (GIM), from the International GNSS service (IGS), to estimate Az. This
approach consists of three steps: (1) compute time series of daily vertical total electron
content (VTEC) for each grid point of the GIM, (2) estimate Az for each grid point from
the VTEC time series, and (3) fit a second order polynomial in modified dip-latitude to
represent the spatial variation in Az similar to the proposed parameterization for Galileo.
The alternative approach has been validated by comparing slant ionospheric delay at three
IGS sites computed from the NeQuick model with Az parameters computed using the
alternative approach and Az computed using the nominal approach. The main advantages
of the alternative approach over the standard approach are: (1) the alternative approach is
more reliable, because, each IGS GIM is based on data of up to 200 GNSS stations world-
wide and each IGS GIM is the combination of results of up to four analysis centers, (2) the
coefficients of the second order polynomial are more representative for all regions on the
world because they are computed from a world-wide 5

◦
and 2.5

◦
grid instead of about 20

distinct locations, (3) with the alternative approach it is possible to provide Az in a different
representation, for instance using a higher order polynomial, grid, or other function types,
and (4) the computational effort is much smaller assuming the IGS GIMs have already
been computed. A further advantage is that the Az can be computed from predicted GIMs
that are made available by the CODE analysis center of the University of Berne. A small
disadvantage of the alternative approach is that it relies on a product computed by another
organization, IGS, and not on raw receiver data, and therefore depends to some extend on
procedures and guideline followed by IGS and outside control of the user. However, this is
more of an disadvantage for a GNSS system provider than for a regular user.

It can therefore be concluded that the alternative estimation approach for the effective
ionization level Az using GIM from IGS is not only accurate and reliable, but also has
many other advantages over the standard procedure. It is therefore recommended to set
up an operational service to compute Az from IGS Global Ionospheric Maps.

8.2 Spatial and temporal variation of effective ionization level

The estimation of the NeQuick model parameter, Az, on a daily basis, on a world-wide
grid, using IGS Global Ionospheric Maps, provides a valuable opportunity to study the
spatial and temporal variability of this parameter, and the correlation between Az and the
solar radiation intensity. The results in chapter 5 showed that a second order polynomial
in modified dip-latitude (as proposed for Galileo) is not the best fitting function to express
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the spatial variation of Az. Az behaves as a symmetric function with respect to the
modified dip-latitude and there is a local maximum around the geomagnetic equatorial
region. Because of this, a fourth-order polynomial would be a better function to express
the spatial variation of Az. The NeQuick model was originally developed for the F10.7
index instead of the Az parameter. The Az serves as a replacement for F10.7, whereby
F10.7 is determined by solar observatories or from the average sun spot index, and Az
is estimated from GNSS data. Therefore, a high correlation between Az and F10.7 is
expected. However, from a study on the correlation between Az and the F10.7 index,
using a time series from 2003 to 2006, it was concluded that the correlation between
Az and F10.7 is not very high: the maximum correlation coefficient was only 0.65. The
correlation coefficient between Az and F10.7 depends also on the latitude, with larger
correlations observed in the equatorial region. In these experiments is was also found that
the lower limit in NeQuick for Az, which was 64 (the same as for F10.7), was exceeded
many times. This lower limit for Az turned out to be very unrealistic and the lower limit
for Az parameter was reset to a value of zero.

Daily maps of the Az parameter do not have a clear physical meaning. What these maps
tell us is the ionospheric activity compared to a model, in this case NeQuick. It helps to
identify regions and times with a relative higher or lower ionospheric activity than what was
assumed by the model. Therefore, the Az maps can be used to characterize ionospheric
activity and provide a local index on ionospheric activity. At the same time, a systematic
analysis of Az maps will help to identify potential model improvements and may assist in
the validation of model improvements. It is therefore recommended to compute Az maps
from IGS Global Ionospheric Maps on a routine basis and to make these available to the
scientific community.

In principle, two-hourly maps of Az and the NeQuick model, could be used as a replacement
for IGS Global Ionospheric Maps (GIM). In this case the GIM would is “only” an intermedi-
ate product in the estimation of the two-hourly Az maps, with the same resolutions as the
GIM, but the user would use the Az maps and the NeQuick model to compute the slant
TEC. Actually, there is a one–to–one relationship (albeit complex) between the GIM and
Az maps. The VTEC that results from both approaches is identical, but not the slant TEC
(STEC). This is because the STEC computation in NeQuick is based on profiling, whereas
for the GIM a very elementary mapping function is assumed. Although this idea was never
tested on real data, we believe this could potentially result in an improved accuracy for
the slant TEC. Another possibility is to use the NeQuick model in the estimation of Global
Ionospheric Maps (or Az maps) as a “sort of” replacement for the ionospheric mapping
function. In this case the best of both worlds would be combined, and would result in the
direct estimation of Az-maps, together with satellite and receiver differential code biases,
using the full IGS network.

8.3 Performance of global TEC models

Continuously operating GPS stations provide an excellent data source to study the perfor-
mance of ionospheric models. The performance of the NeQuick and Klobuchar models,
and the IGS Global Ionosphere Maps (GIM), was investigated under different ionospheric



192 Chapter 8. Conclusions and recommendations

conditions in the mid-latitude region, using slant ionospheric delay measured by three per-
manent GPS stations. The best accuracy was obtained with the GIM model under both
quiet and severe ionospheric conditions. As expected, the bias of GIM was zero. The RMS
value was at the level of a few decimeters, which corresponds to 1− 2 [TECU], which was
better than the officially stated accuracy for the GIM of 2 − 8 [TECU]. The GIM model
was able to correct the absolute slant ionospheric delay to better than 80% under different
geomagetic conditions of the ionosphere. The NeQuick model could correct about 60% of
the absolute slant ionospheric delay. Although the slant ionospheric delay computed from
the NeQuick model was less accurate than the GIM, it was considerably accurate than the
slant delays computed from the Klobuchar model. The performance of the NeQuick model
with Az provided from both standard and alternative procedures was comparable.

These results serve as an illustration of typical performances that can be obtained using
global TEC models. The best performances that we obtained were at the level of 1 − 2
[TECU], or a few decimeters, for the GIM. Although a systematic analysis, using multiple
years of data and many stations, was outside the scope of this thesis, these results provide
enough evidence that improvements in global TEC models to achieve centimeter accuracy
will be very difficult, if not impossible. Certainly, none of the improvements in the estima-
tion of Az that were investigated in this thesis, or the ideas we have on improving Global
Ionospheric or Az maps, will result in substantial improvements to achieve centimeter level
accuracy. This is because there is a fundamental limitation to TEC models: they assume
all electrons are concentrated in a single layer. In reality the electron density varies with
height, as discussed in chapter 3, with as result that it is impossible to map slant paths
through the ionosphere to a single point in a single layer model. Therefore, increasing the
spatial resolution in a single layer model does not result in an substantial improvement, and
because of the limited spatial resolution, increasing the temporal resolution does not help
either. A possible solution to this problem is to introduce a – data driven – multiple layer
model or 3-D electron density model. Actually, the IONEX format, used for the IGS Global
Ionospheric Maps, already have the possibility for using a multi-layer model, and could
even be used to represent a 3-D electron density model, but the IGS products use a single
layer only. The main challenge in estimating 3-D electron density models and multiple layer
models from GNSS slant ionospheric delays is the inversion process. Several groups are cur-
rently investigating these techniques, using either tomography, 4-D variational assimilation
or Kalman filtering, see (Schunk et al., 2004; Hajj et al., 2004; Pi et al., 2003; Kunitsyn
and Tereshchenko, 2003; Lee et al., 2008; Allain and Mitchell, 2008). Especially in 4-D
variational assimilation the physical modeling is complicated. In addition, tomography and
4-D variational assimilation suffer from estimability problems in the vertical direction when
only ground based GNSS data is used. Therefore, most groups add other observations or
space based GNSS measurements to the inversion.

In this thesis a different approach has been chosen, partly for lack of resources to develop
3-D density modeling from scratch, but mainly because we are interested in modeling the
differential ionosphere for differential GNSS applications. It means we are mainly interested
in temporal and spatial variations in the slant ionospheric delay. The main elements in this
approach are the development of a physics based model for the regular TEC variations,
modeling of much smaller regions of the ionosphere, and the development of a procedure
to observe and model Traveling Ionospheric Disturbances (TID).
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8.4 Model of temporal evolution of VTEC

In chapter 6, a normal ionosphere was defined to approximate the Earth’s ionosphere by
considering a spherical stratification for an isothermal atmosphere in which density varies
exponentially with height. The normal ionosphere consists of a lower and upper region,
respectively with quadratic and linear recombination coefficients. The Chapman production
function, with the Chapman grazing incidence function for the absorption of ionizing solar
radiation, is used to model the ion production rate at a given time and height in the
two regions. The lower region is formed in a photochemical equilibrium, resulting in a so
called Chapman layer. The upper region is formed in a diffusive equilibrium, whilst ignoring
the geomagnetic field, resulting in a new Chapman-based ionospheric layer. The lower and
upper region correspond to the E- and F- regions in the Earth’s ionosphere respectively. Two
differential equations are derived for the temporal evolution of the vertical total electron
content (VTEC) by integrating the continuity equation over height, once for the lower,
and once for the upper region. Particular solutions for the two differential equations were
obtained by solving a boundary value problem (BVP) under certain boundary conditions.
The boundary condition is that the VTEC after 24 hours should be the same. The solutions,
each giving the temporal evolution of the VTEC for their region, depend on season, local
time, and latitude of the point of interest. The solutions also take the recombination
coefficient and the solar radiation intensity as input parameters. The diurnal variation in
VTEC from these solutions has a minimum around sun-rise and a maximum just after
local noon, as expected. Also expected, the level of VTEC at all latitudes is higher in
the summer solstice and is lower in the winter solstice w.r.t. the level of VTEC in the
equinoxes. Furthermore, VTEC decreases as latitude increases, but the equatorial anomaly
is not present as the model basically ignores all transportation processes. For the same
reason the model does not feature a second local maximum in the diurnal variation of
VTEC, while this is often present in reality. Similar to the real Earth’s ionosphere, the level
of VTEC associated to the lower region in the model ionosphere is much smaller than the
VTEC associated to the upper region.

The two differential equations and their solutions which have been derived in this thesis
form a useful addition to the existing theory of the Chapman functions. The Chapman
functions already provided, in the photochemical equilibrium, equations for the electron
density as function of height, called Chapman-α and -β layers respectively. The new type
of Chapman-based ionospheric layer is not formed under photochemical equilibrium. This
new layer explains the F-region better than the Chapman-β layer because, instead of the
photochemical equilibrium, the diffusive equilibrium is taken into account. To describe the
evolution of VTEC over time for different locations, seasons, and solar activity two new
functions have been derived. One of them is based on a Chapman-α layer and the other is
based on the new Chapman-based ionospheric layer for respectively E- and F- regions. The
discrete form lof these equations ed to a new recursive model for the temporal evolution
of VTEC with respect to the solar zenith angle at any given point on the ground.

Because the recursive model of VTEC is derived by solving the continuity equation of the
electron density in the ionosphere the model can be considered a physics based ionospheric
model. The model consists of three unknown parameters: the linear recombination coeffi-
cient, the solar radiation intensity and VTEC at t0. These parameters must be essentially
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estimated by fitting the model to a time series of VTEC observations. The performance of
the model is tested at local and global scales using GIM. The model can explain the daily
pattern of the VTEC at a given point. The RMS of the model error was a few TECU. In
the global test, it was found that the best parametrization strategy is a linear recombina-
tion coefficient which is constant in space, while the solar radiation intensity and VTEC
at t0 are spatial dependent. With this strategy the model fits better to the GIM maps
than other strategies. The distribution of the estimated solar radiation intensity at the grid
points revealed a dependency on the geomagnetic latitude. Despite the geomagnetic field
was ignored in the model, all the test cases showed that the recursive model gives a good
overall representation of the regular variation of VTEC in the mid-latitude region under
geomagnetically quiet ionosphere.

This is an important result that shows the potential of the model for a number of appli-
cations. For instance, the model can be used for the computation of VTEC from GIM at
epochs between the grid intervals instead of linear or quadratic interpolation. Although the
potential of these applications is very high the practical use and feasibility of these applica-
tions have not been investigated in this thesis. The reason is that this kind of modeling is
not very important for centimeter precision differential GNSS applications, the main focus
of this thesis. Instead we focused on application of the recursive model for STEC modeling
in small ionospheric patches. Because the model is based on a differential equation, it is
ideally suited to derive a recursive formulation that can be used as time update equation in
a Kalman filter. Two practical applications are discussed in this thesis. One is the modeling
of VTEC, the other is to use the model for removing the geometry-dependent trend from
time series of GPS-provided ionospheric delays in the modeling of traveling ionospheric
disturbances (TID), which is the third part of this thesis.

Ignoring the geomagnetic field in the definition of the normal ionosphere increases the
absolute error of the recursive model of VTEC. Future research will attempt to take the
geomagnetic field into account. One may think of an empirical modeling of the discrepancy
between computed VTEC values from the physic-based model and GIM as a function of
local time and latitude.

8.5 Modeling Medium-Scale Traveling Ionospheric Disturbances

Accurate spatial ionospheric prediction is crucial for modern GNSS applications such as
Network-RTK system that gives centimeter positioning accuracy for users in the field. In
order to get centimeter accuracy after a short (minutes) initialization periods the iono-
spheric delay for the user’s receiver needs to be predicted. This essentially boils down
to very precise spatial interpolation between the IP points of the reference receivers at
the double difference level. Having the cm-level accuracy in the ionospheric interpola-
tion is essential for the carrier phase ambiguity resolution by the user. To achieve such a
level of accuracy, the TID should be taken into account in the ionospheric prediction of
the Network-RTK system. There are two major complications for the TID mitigation for
Network-RTK that should be addressed. Firstly, mitigation must be taken care of at the
double-difference level, which involves taking single differences between ionospheric delays
for the same satellite between two different receivers, followed by differencing single differ-
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ences for different satellites. This means that two different patches of the ionosphere are
involved, each related to a different satellite, and each possibly associated with different
TIDs. Secondly, for the Network-RTK a real-time strategy for TID detection and modeling
is needed.

In the chapter 7, we proposed a real-time algorithm for detection and modeling of TIDs.
The algorithm takes advantage of the high temporal resolution in data from a GPS net-
work and uses the correlation function of time series of the data. A time series of the
un-differenced ionospheric delay, provided from GNSS data, is decomposed in a geometry-
dependent trend (regular variation) and the TID effects (mostly from medium-scale and
large-scale TIDs). As we are mainly interested in medium-scale TID the geometry-
dependent trend and the effect of large-scale TID need to be removed. In a medium
scale GPS network, between-receiver single-differencing of the ionospheric delays is a sim-
ple way to remove the effect of large-scale TID, this is not true for the geometry-dependent
trend, because of the horizontal TEC gradient and the Earth’s curvature. It is therefore
essential to detrend the single-difference data. The detrending can be done in different
ways such as a high-pass filtering or a polynomial fit. In this thesis, as an application of the
recursive model developed in the chapter 6, we fitted the recursive model to the time series
of the single-difference ionospheric delays. Any deviations with respect to the recursive
model is attributed to MS-TID effects. An advantage of this approach is that it can be
used for detrending of the data in real-time.

The detrended time series in a reference network is the main input of the algorithm for MS-
TID modeling. The algorithm consists of the six individual steps: initialization, detection,
scraping, cross-correlation, parameter estimation, and ending. A MS-TID is supposed to be
as a planar longitudinal traveling wave with spatially independent amplitude that propagates
in the ionospheric patch. Characteristic parameters of MS-TID wave (e.g. period, phase
velocity, propagation direction, amplitude) were considered to be time dependent and the
Doppler shift caused by the satellite motion was taken into account in the estimation step.

The performance of the algorithm was tested in a medium scale permanent GPS network
in time span of 5 hour for two satellites. The tracks of the detected TIDs showed that
a TID wavelike fluctuations in the ionosphere not only is not a perfect planar wave but
also its amplitude is spatially dependent. The new algorithm was able to model (in time
and in space) TID effects on data that its performance for Network-RTK was comparable
with the Kriging interpolation method. That is an important result because these two
methods are developed using totally different principles, but give similar result. The Krig-
ing is basically a linear spatial interpolation method that takes spatial correlations into
account. Our algorithm has been developed based on the physics of ionosphere using the
planar wave approximation for the TID. An advantage of our algorithm is that there is a
possibility to improve the algorithm for the phase-offset modeling by avoiding the planar
wave approximation, while is not possible Kriging.

A number of recommendations can be given for improvement of the new algorithm: (1)
Estimating the TID phase velocity as a function of azimuth, and avoid the plane wave
approximation in the estimation of the propagation parameters, (2) The amplitude of the
TID can be considered spatial-dependent.

The quality of the estimated TID parameters still needs to be evaluated. The algorithm
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for TID modeling is not invariant with respect to the reference point in the network. This
implies that for different selection of the reference point the estimates of the propagation
parameters can be differed. Further research should be done either to develop a strategy
for selection of the best reference point in the network or to use all possible baselines in
the network at the same time. The quality of the estimated parameters also depend on the
geometry of the network. Further analysis and development are recommended for these
area.

The real time algorithm for MS-TID modeling can also be employed in an active reference
GPS network as a tool for TID monitoring.
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