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Abstract

Automatic reconstruction of industrial installations
using point clouds and images

Tahir Rabbani Shah

Up to date and accurate 3D models of industrial sites are required for different
applications like planning, documentation and training. Traditional methods for
acquiring as-built information like manual measurements by tape and tacheometry
are not only slow and cumbersome but most of the time they also fail to provide the
amount of detail required. Many industrial facilities provide a limited personnel
access because of the presence of radioactive, toxic or hazardous materials together
with an unsafe working environment, which necessitates the use of non-contact
measurement methods.

Traditional photogrammetry depends on point or line measurements from which
it is very hard to get complete CAD models without extensive manual editing
and refinement. Compared to photogrammetry laser scanning provides explicit
and dense 3D measurements. There has been a rapid increase in the speed and
accuracy of the laser scanners in the last decade, while their costs and sizes have
been continuously shrinking. All modeling tools available on the market depend
on heavy operator intervention for most of the modeling tasks. Although there are
some semi-automatic tools like plane or cylinder growing even there the operator
has to start the growing process for each primitive. Furthermore, the fitted surfaces
must be manually edited by the operator to convert them to a CAD description.

This thesis presents new methods and techniques which can be used for automatic
or efficient semiautomatic 3D modeling of existing industrial installations from
point clouds and images. The goal is to use explicit 3D information from the point
clouds to automatically detect the objects and structure present in the scene. The
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detected objects are then used as targets for model based registration, which can
be automated by searching for object correspondences. To avoid manual editing
the presented techniques use models from a catalogue of commonly found CAD
objects as templates for model fitting. In the final fitting phase images are also
included to improve the quality of parameter estimation.

Segmentation is a very important step that needs to be carried out as a pre cursor
to object recognition and model fitting. We present a method for the segmentation
of the point clouds, which avoids over-segmentation while partitioning the input
data into mutually disjoint, smoothly connected regions. It uses a criterion based
on a combination of surface normal similarity and spatial connectivity, which we
call smoothness constraint. As we do not use surface curvature our algorithm is
less sensitive to noise. Moreover, there are only a few parameters which can be
adjusted to get a desired trade-off between under- and over-segmentation.

Segmentation is followed by a stage of object recognition based on a variation
of the Hough transform for automatic plane and cylinder detection in the point
clouds. For plane detection the Hough transform is three dimensional. For the
cylinder detection the direct application of the Hough transform requires a 5D
Hough space, which is quite impractical because of its space and computational
complexity. To resolve this problem we present a two-step approach requiring a
2D and 3D Hough space. In the first step we detect strong hypotheses for the
cylinder orientation. The second step estimates the remaining three parameters of
the cylinder i.e. radius and position.

The problem of fitting models like planes, cylinders, spheres, cones, tori and CSG
models to point clouds is very important for data reduction. For the fitting of
CSG models this thesis presents three different methods for approximating the
orthogonal distance, which are compared based on speed and accuracy.

We also present methods for using modeled objects in individual scans as targets
for registration. As the available geometric structure is used, there is no need
to place artificial targets. We present two different methods for this purpose
called Indirect and Direct method. The Indirect method is a quick way to
get approximate values while the Direct method is then used to refine the
approximate solution. We also present techniques for automatically finding the
corresponding objects for registration of scans. The presented techniques are based
on constraint propagation which use the geometric information available from the
previously made correspondence decision to filter out the possibilities for future
correspondences.

Although point clouds are very important for the automation because of their
explicit 3D information, images provide a complementary source of information
as they contain well-defined edges of the bounded objects. We present methods
for the fitting of CSG models to a combination of point clouds and images. We also
present techniques for the specification of geometric constraints between sub-parts
of a CSG tree and their inclusion in the model estimation process. A taxonomy of
commonly encountered geometric constraints and their mathematical formulation
is also given.



We hope that the techniques presented in this thesis will lead to an improvement in
efficiency and quality of the models obtained for industrial installations from point
clouds and images.





Samenvatting

Automatische reconstructie van industriële
installaties uit puntenwolken en beelden

Tahir Rabbani Shah

Actuele en precieze 3D modellen van industriële installaties zijn nodig voor
een verscheidenheid aan toepassingen zoals planning, documentatie en training.
Traditionele methoden voor de inwinning van as-built informatie - bijvoorbeeld
met behulp van een meetband en tachymetrie - zijn niet alleen tijdrovend en
moeizaam, maar zijn meestal ook niet in staat om de benodigde hoeveelheid
detail te leveren. Veel industriële complexen zijn beperkt toegankelijk als
gevolg van radioactieve, toxische of anderszins gevaarlijke stoffen. Een onveilige
werkomgeving maakt het gebruik van contactloze meetmethoden noodzakelijk.

Traditionele fotogrammetrie is afhankelijk van punt- of lijnmetingen waarmee het
erg moeilijk is om complete CAD-modellen te vervaardigen zonder veel handmatig
werk. In tegenstelling tot fotogrammetrie levert laserscanning expliciete 3D
metingen met een hoge dichtheid. In de laatste tien jaar zijn de laserscanners
aanzienlijk sneller en preciezer geworden, terwijl de kosten en de grootte steeds
afnemen. Alle op de markt beschikbare modelleersoftware vraagt veel interactie
van een operateur. Wel zijn er enkele semi-automatische hulpmiddelen beschikbaar
zoals voor het automatisch ”laten groeien” van vlakken of cilinders, maar zelfs daar
moet de operateur het groeiproces voor ieder object starten. Bovendien moeten de
gevonden oppervlakken handmatig bewerkt worden om ze te converteren naar een
CAD-beschrijving.

Dit proefschrift presenteert nieuwe methoden en technieken die gebruikt kunnen
worden voor automatische of efficiënte semi-automatische 3D-modellering van
bestaande industriële installaties met behulp van puntenwolken en beelden.
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Het doel is om de expliciete 3D-informatie van de puntenwolken te gebruiken
om automatisch objecten en structuur in de scne te vinden. De gevonden
objecten worden vervolgens gebruikt als referentieobjecten voor modelgebaseerde
registratie, die geautomatiseerd kan worden door te zoeken naar corresponderende
objecten. Om handwerk te vermijden gebruiken de gepresenteerde technieken
modellen uit een catalogus met veel voorkomende CAD-objecten als mallen voor
modelfitting. In de laatste fase van de fitting worden ook beelden gebruikt om de
kwaliteit van de parameterschatting te verbeteren.

Segmentatie is een zeer belangrijke stap die moet worden uitgevoerd als
voorbereiding voor objectherkenning en modelfitting. We presenteren een
methode voor segmentatie van puntenwolken die oversegmentatie voorkomt,
terwijl de invoer wordt gepartitioneerd in niet-overlappende, gladde en
samenhangende oppervlakken. Er wordt een criterium gebruikt dat gebaseerd
is op een combinatie van overeenkomst in oppervlaktenormalen en ruimtelijke
verbondenheid, wat we de gladheidsvoorwaarde noemen. Omdat we geen
oppervlaktekromming gebruiken is ons algoritme minder gevoelig voor ruis. Verder
zijn er maar een paar parameters die aangepast kunnen worden om een balans
tussen onder- en oversegmentatie te vinden.

Segmentatie wordt gevolgd door een fase van objectherkenning die gebaseerd is op
een vorm van Hough-transformatie voor automatische vlak- en cilinderdetectie in
de puntenwolken. Voor vlakdetectie is de Hough-transformatie driedimensionaal.
Voor de cilinderdetectie zou directe toepassing van de Hough-transformatie een
5D Hough-ruimte nodig hebben wat zeer onpraktisch is vanwege de hoeveelheid
benodigd computergeheugen en rekencapaciteit. Om dit op te lossen presenteren
we een benadering in twee stappen die een 2D en een 3D Hough-ruimte nodig
heeft. In de eerste stap detecteren we sterke hypothesen voor de oriëntatie van de
cilinder. De tweede stap schat de overige drie parameters van de cilinder, namelijk
de straal en de positie.

Het fitten van vlakken, cilinders, bollen, tori en CSG-modellen is erg belangrijk
voor datareductie. Voor het fitten van CSG-modellen presenteert dit proefschrift
drie verschillende methoden voor het benaderen van de loodrechte afstand. Deze
methoden worden vergeleken op basis van snelheid en precisie.

Ook presenteren we methoden voor de registratie van laserscans die gebruik
maken van gemodelleerde objecten in de individuele scans. Omdat de beschikbare
geometrische structuur wordt gebruikt, is het niet nodig om meetmerken te
plaatsen. We presenteren hiervoor twee methoden, de indirecte en de directe
genoemd. De indirecte methode is een snelle manier om benaderde waarden
te verkrijgen, terwijl de directe methode vervolgens wordt gebruikt om de
benaderde oplossing te verfijnen. Ook presenteren we technieken voor het
automatisch vinden van corresponderende objecten voor het registreren van scans.
De gepresenteerde technieken zijn gebaseerd op voorwaarde-voortplanting en
gebruiken de geometrische informatie, die beschikbaar is uit eerder vastgestelde
correspondenties, om zo de mogelijkheden voor nieuwe correspondenties uit te
filteren.



Hoewel puntenwolken belangrijk zijn voor de automatisering vanwege hun
expliciete 3D informatie, bieden beelden een aanvullende informatiebron omdat
deze goed gedefinieerde randen van de objecten bevatten. We presenteren
methoden voor fitten van CSG-modellen op een combinatie van puntenwolken en
beelden. Ook presenteren we technieken voor de specificatie van geometrische
voorwaarden tussen onderdelen van een CSG-boom en het gebruik van deze
voorwaarden in het schattingsproces. Een classificatie van veel voorkomende
geometrische voorwaarden en hun wiskundige formulering wordt eveneens
gegeven.

We hopen dat de technieken, die in dit proefschrift gepresenteerd worden, zullen
leiden tot een verbetering van de efficiëntie van de reconstructie en de kwaliteit
van uit puntenwolken en beelden verkregen modellen van industriële installaties.
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Chapter 1
Introduction

In science men have discovered an activity of the very highest value in
which they are no longer, as in art, dependent for progress upon the
appearance of continually greater genius, for in science the successors
stand upon the shoulders of their predecessors.

Bertrand Russell (1872 - 1970)

A dwarf sees farther than the giant when he has the giant’s shoulders
to mount on.

S. T. Coleridge

The objective of this thesis is to present new methods and techniques which can
be used for automatic or more efficient semiautomatic 3D modeling of existing
industrial installations from point clouds and images. The goal is to use explicit 3D
information from the point clouds to automatically detect the objects and structure
present in the scene. The detected objects are then used as targets for model based
registration, which can be automated by searching for object correspondences.
To avoid manual editing the presented techniques use models from a catalog of
commonly found CAD objects as templates for model fitting. In the final fitting
phase images are also included to improve the quality of parameter estimation.
To lay the ground work in this chapter we will review the application areas of
industrial reconstruction and present a survey of the previous work. Finally, we
will give an outline of the thesis.

There is an increasing demand for accurate, as-built, 3D models of existing
industrial sites in many sectors. The following are some of the application areas
which either require or can benefit from the availability of such models:

• Planning (clash detection, decommissioning, design changes)

• Revamping and retrofitting of old sites

• Implementation of services based on Virtual and Augmented reality.
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• Off-site training

• Safety analysis

• Change detection.

Although most of the new industrial sites are designed using 3D CAD techniques,
in most cases the initial model represents a functional design rather than the
final as-built situation. Moreover, industrial facilities are often very dynamic
environments, where constant changes are required to improve health and safety,
to increase efficiency, and to reduce hazardous emissions in accordance with the
environmental regulations. As a result after a few years there is a big gap between
the documented model and the as-built situation. In most cases it is not cost-
effective or practical to update these models at the end of construction or after
each and every change. For old and legacy sites the situation is even worse, as
most of them were initially designed using old 2D CAD techniques and there is no
3D model available. Consequently, in both cases, when new changes are planned
up-to-date as-built 3D information is required.

Traditional methods for acquiring as-built information consist of manual
measurements by tape and tacheometry. As-built modeling using measuring-
tape is accurate only up to 25–75 mm (Sanders, 2001) which is not acceptable
for most planning scenarios where measurement accuracy of ± 2mm is usually
required. Tacheometry provides high accuracy, but due to its slow speed combined
with the limitations of the measurement technique, the density of the measured
points is very low. As a result, the sparse 3D measurements have to be manually
extrapolated to make an approximate 3D model which, except on the points
explicitly measured, does not provide a true and accurate picture of the as-built
situation. Moreover, as most industrial sites contain many curved faces like
cylinders and bends, the sparse point clouds from tacheometry become even more
inadequate.

For the cost-effective management of complex industrial facilities such as nuclear
power plants, offshore oil production platforms, and petrochemical refineries it
is imperative that they constantly operate near their peak productivity level. As
profits are affected by down time, each and every change and refurbishment
activity should be carefully planned to reduce costs arising from unanticipated
delays. Without detailed planning the projects cannot be completed within agreed
schedules and budgets. The retrofits planned using inaccurate as-built models will
result in higher shutdown time, and ultimately higher costs. Moreover, due to the
continuous inflow of material there are maximum limits on the available shut down
time, which cannot be violated without incurring extra costs. For example in the
case of the retrofit project of a Chevron plant the shut-down time was limited to
72 hours (Sanders, 2001).

Many industrial facilities provide a limited personnel access because of the
presence of radioactive, toxic or hazardous materials together with an unsafe
working environment (Mensi, 2002a; Pot et al., 1997). In such situations, the use
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of traditional contact-based measurement methods is not possible and non-contact
measurement methods have to be used.

Different solutions based on traditional photogrammetry have been proposed
in literature, which provide rapid, accurate, and relatively dense 3D
measurements. Photogrammetry provides a set of techniques for accurate
2D and 3D measurements from photographs (Atkinson, 1996). Some
photogrammetric solutions currently available for industrial reconstruction
are Shape capture & Shape quest (www.shapecapture.com), Photomodeler
(www.photomodeler.com/), RolleiMetric CDW (www.rollei.de), Invers
PHAUST(www.invers-essen.de), and Hazmap (www.absl.co.uk)
(Chapman et al., 2004).

Traditional photogrammetry depends on point or line measurements from which
it is very hard to get complete CAD models without extensive manual editing and
refinement. To address this problem CAD based photogrammetric techniques have
been developed at the section of Photogrammetry and Remote sensing at TU Delft.
This has resulted in a software package called Piper (Ermes et al., 1999; Tangelder
et al., 1999, 2003). Piper allows the user to select a model from a catalog of CAD
model templates, drop it on the set of oriented images, and by aligning the back-
projected contours of the model to the edges visible in the images, the shape and
pose parameters of the model can be calculated. Moreover, various geometrical
and topological constraints for the model can be specified, which decrease the
degrees of freedom resulting in a better estimation of parameters with less manual
work. Using the user-supplied constraints and initial pose as a starting point, the
software calculates the best-fit solution using non-linear least squares techniques.
In spite of these improvements, the manual manipulation of the selected model to
give a good initial alignment can be quite labor-intensive. The complexity of the
industrial environments, which results in a high degree of occlusions and clutter,
makes the situation even worse. Furthermore, as photographs do not contain any
explicit 3D information, the prospects of automation are very dim.

Compared to photogrammetry laser scanning provides explicit and dense 3D
measurements. There has been a rapid increase in the speed and accuracy of the
laser scanners in the last decade, while their costs and sizes has been continuously
shrinking (Blais, 2004; Laser scanner survey, 2005). As a result, the use of laser
scanning technologies for 3D data capture for industrial reconstruction has grown
considerably over the last few years (Sanins, 2004).

1.0.1 Motivation for using laser scanning

Some of the reasons leading to a rapid acceptance and usage of laser scanning for
industrial reconstruction are as follows:

Explicit 3D information Laser scanning is an active measurement technique
(Jahne et al., 1999, chap. 7), which makes it ‘almost’ independent of
the lighting conditions and surface texture. In contrast photogrammetry

www.shapecapture.com
www.photomodeler.com/
www.rollei.de
www.invers-essen.de
www.absl.co.uk
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requires either the presence of good surface texture or its introduction
through placement of stickers and targets or by using structured light. Even
for CAD based photogrammetric techniques which fit image gradients to
the back-projected model contours good contrast on the image-edges is
required(Ermes et al., 1999; Tangelder et al., 1999). Due to the complexity
of the industrial sites the explicit 3D information available from the point
clouds is very attractive because this enables the rapid and accurate capture
of the geometry of a complex scene.

High density As mentioned before the density of 3d measurements from
traditional survey methods and photogrammetry is very low, which can
be converted to a CAD model only after extensive manual editing and
extrapolation. In contrast the current generation of laser scanners provide
high density 3D measurements. One point every 5mm is quite typical (Blais,
2004; Laser scanner survey, 2005). This high density provides enough raw
data from which accurate and detailed 3D models can be obtained.

Non-contact measurement Similar to photogrammetry, laser scanning is a non-
contact measurement method. Typical working distance of laser scanners
is 50-200m, which makes them suitable for inaccessible and hostile
environments. Additionally, as most scanner use eye-safe lasers, the scanning
can be done without disturbing the usual operation of the industrial facility,
which reduces the down-time required for data capture.

High speed The measurement speed of laser scanners has been increasing
continuously during last few years. A typical scan takes 10-15 minutes, while
providing a few million 3D points.

Large FOV Although the previous generation of laser scanners provided a limited
field of view (FOV), panoramic scanning is rapidly becoming a norm
(iQvolution, 2005; Laser scanner survey, 2005; Mensi, 2005; Riegl, 2005).
The large FOV reduces overall acquisition time by decreasing the manual
shifting of the equipment. Additionally, it provides better registration by
ensuring high overlap and stronger geometry.

Varying level of detail Most laser scanners provide scanning abilities with
different levels of detail. This enables scanning of the interesting parts with
high point density, while still keeping the surrounding information for global
registration.

Integrated imagery Most scanners of the current generation are coming with
inbuilt high resolution cameras, which provide registered images. For
example Mensi GS200 (Figure 1.1(a)) provides a 9 mega pixel image with
live video (Mensi, 2005). Similarly Riegl LMS-360i (Figure 1.1(b)) provides
a registered panoramic image(Riegl, 2005). Other scanners are coming with
similar facilities. The registered imagery makes possible the simultaneous use
of measurement techniques from photogrammetry. Moreover, images provide
color and texture information which can be useful for human interpretation
and photo-realistic visualization.
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(a) (b)

Figure 1.1: New generation of
laser scanners provide better speed,
high accuracy, big FOV, and come
with inbuilt image acquisition
capabilities (a) Mensi GS200
(source Mensi, 2005)(b) Riegl
LMS-360i (source Riegl, 2005)

1.0.2 The need for modeling

The 3D measurements from the laser scanner come in the form of a point
cloud. Due to occlusions and a limited FOV of the scanner, the whole installation
cannot be covered from one location, and data has to be acquired from multiple
different viewpoints. To bring different scans in a consistent coordinate system,
they are registered by calculating inter-scan rigid body transformations. After
registration we have one point cloud representing the complete measured data
in one consistent coordinate system.

For converting the point cloud to a CAD representation we need the step of
modeling, where different types of surfaces are fitted to a selected subset of the
point cloud. The resulting surfaces are edited, extended, and intersected to get a
full 3D model. Modeling is one of the most time consuming and costly processes
during the reconstruction of any industrial installation. This cost arises due to
the high amount of manual input required from the human operator. Although
the situation has improved a lot compared to the approaches based on traditional
photogrammetry, still most of the current point cloud processing softwares provide
minimal if any automatic modeling facilities (Böhler et al., 2002).

A question is often raised about the need for modeling. If it is fast and cheap to
acquire dense point clouds using the current generation of laser scanners, why not
use the point cloud directly instead of deriving a model from it? It is argued that a
dense point cloud should be as good as a CAD model. There are certain weaknesses
with this argument. In any typical industrial site it is practically impossible to
get a complete coverage of all areas by point clouds. Even if issues of time and
effort involved are ignored, a high degree of occlusions arising from the clutter and
complexity often makes placement of the scanner at arbitrary positions impossible.
The resultant incomplete point cloud, although good for simple visualization,
cannot be directly employed for tasks like planning and clash detection, which
require a complete as-built picture of the environment. For example compare the
point cloud of a typical industrial site in Figure 1.2(a) with its 3D model in 1.2(c).
There are many holes in the point cloud data due to occlusions and most of the
pipes are not completely covered. However, by fitting models the missing data
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(a) (b) (c)

(d) (e)

Figure 1.2: A comparison of point cloud, image and CAD model (a) Point cloud provides explicit
3D information but contains incomplete information (b) images provide color and texture (c)
by fitting models to point clouds a CAD description can be obtained that provides directly usable,
complete, and compact 3D information of as-built situation (d-e) point clouds are generally of
low quality near the object edges where images provide better information (Point cloud and
model provided by (Fugro, 2006))

has been estimated along with a high degree of compression in the amount of
information from millions of points to a few parameters for each object in the
fitted model.

The engineering work flow in most industries is based on working with standard
2D and 3D CAD models which means that introduction of the point cloud as a new
geometry representation has inherent integration problems. The space and time
complexity of manipulating, storing and sharing huge amounts of data produced
by laser scanners adds another dimension to this problem.

Although the quality of point cloud data has improved a lot due to the development
of better measurement and processing techniques of the past decade, it is still worse
by a factor of 5 or more compared to traditional surveying instruments like total
station. For example whereas the accuracy of Leica HDS2500 laser scanner is 5mm
at 100m (Leica HDS, 2005), for Leica TC2003 total station the accuracy is 1 mm
over the range of 2.5 to 3.5 km (Leica TPS, 2005). However, the effects of noise
in the measured point cloud can be averaged by fitting models. When a model is
fitted to thousands of points, the errors in the estimated parameters are reduced
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Table 1.1: Comparison of different
techniques for as-built modeling of a
Shell off-shore plant. (source Mensi,
2002b)

significantly. Additionally the stage of fitting, if based on least squares, provides
measures about the quality of the estimated parameters which can prove valuable
for decision making.

To summarize, modeling is necessary because it provides a complete picture by
filling in the gaps left by occlusions, averages the effects of noise providing better
accuracy, reduces the amount of data and the resulting CAD models fits nicely in
the engineering work flow of daily industrial practice.

Almost all modeling tools available on the market depend on heavy operator
intervention for most of the modeling tasks. Although there are some semi-
automatic tools like plane or cylinder growing but even there the operator has
to start the growing process for each primitive. Furthermore, the fitted surfaces
must be manually edited by the operator to convert them to a CAD description.

To look at some example scenarios reported in literature, during the revamp of a
Chevron installation, which was done using laser scanning, 40% of the costs came
from data-processing labor (Sanders, 2001). In Table 1.1 , reproduced from Mensi
(2002b), the time estimates for as-built modeling of an off-shore of Shell using
different modeling techniques are given. Compared to photogrammetry there is
a substantial improvement for laser scanning in terms of time and labor required.
However, modeling still remains the major bottleneck. The estimated time for data
acquisition using laser scanning was 2 days, but the modeling was estimated to
take 4 weeks, which is more by a factor of 10.

Although the processes required for 3D reconstruction from point clouds (range
data) and images have extensive literature available, the problem as applied to the
automation of modeling, especially for industrial reconstruction, is far from solved,
and needs further research efforts. The presence of well-defined CAD objects on
industrial sites, along with their inherent geometric and topological constraints,
provides rich source of a priori information which can be used for the development
of automatic or semiautomatic solutions for industrial reconstruction.

The rest of the chapter is structured as follows. In Section 1.1 we present a
literature survey of the different reported methods and techniques for processing
range data and 2D images for 3D reconstruction. This includes a discussion of
the problems of segmentation, model fitting, registration and object recognition.
Section 1.2 contains our framework for the reconstruction of industrial facilities.
An outline of the thesis is presented in Section 1.3.
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1.1 Literature survey

As noted before, the commercial laser scanners available today are capable of
providing highly accurate, dense point clouds of big installations at high speeds.
They can be employed in daylight or at night and the eye-safe lasers further
facilitate their use. The state of the art of point cloud data processing lags far
behind that of the data acquisition. The situation is further complicated by often
conflicting requirements of different user-communities that work with the range
data. This makes the emergence of commonly useful techniques quite unlikely.

Computer graphics, computer vision and reverse engineering are three important
fields that have been using range data for different applications. Traditional close-
range photogrammetry has concentrated more on using 2D images and has started
using the range data only recently. While computer graphics community strives
for visual realism, computer vision needs the models as an input for various
automation processes like vehicle guidance and robot navigation; there high speed
is the main requirement, even if it is at the cost of data quality. The users
from reverse engineering community require the final model to be a high fidelity
representation of the true object geometry. In contrast, the computer graphics
community gives more stress to visual realism at low computational cost.

The types of surfaces which are modeled in each field also vary. Computer graphics
aims for free form or sculptured surfaces like human models for games; computer
vision focuses on modeling the inside geometry of buildings which mostly consist
of planar faces, and reverse engineering has to work with B-splines or NURBS as
they are commonly used CAD primitives for mechanical objects.

These differences in requirements have led to the development of very application-
specific data processing methods. Due to the conflicting trade-offs involved, the
techniques developed by one user community cannot be directly used by another.
However, the basic ideas are still similar and thus can be mutually useful.

It is worthwhile to survey the research efforts that have been put into various
range data processing techniques, though it cannot be expected that the reported
methods can be directly applied for the task of industrial reconstruction.
Reconstruction of industrial installations is expected to have many similarities to
reverse engineering because the final model must be similar to a CAD design and
must have high fidelity. However, the CAD primitives for industrial installations are
quite different from the ones used for reverse-engineered parts. Furthermore, the
constraints between different primitives in industrial facilities can be more easily
specified, and thus should prove more useful during modeling.

In the following sections we survey the literature related to the following processes:

I. Segmentation

II. Surface fitting

III. Registration
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IV. Object recognition

1.1.1 Segmentation

Segmentation is the process of dividing a given point cloud or range image into
a number of disjoint subsets each of which is spatially connected. Ideally each
surface should result in a separate segment. If a surface is divided into more than
one segments, it is called over-segmentation. Similarly, if more than one surfaces
are combined together in one segment the resulting situation is called under-
segmentation. The problem of segmentation is quite similar to that of clustering in
pattern recognition which tries to partition a given dataset into mutually disjoint
groups such that a chosen criterion is optimized (Fukunaga, 1990; Webb, 1999).
Clustering usually works in a feature space rather than working on the raw data.
Due to this similarity many segmentation methods have borrowed or adapted ideas
from clustering.

Various approaches for segmentation differ mainly in the method or criterion used
to measure the similarity between a given set of points and hence for making the
grouping decisions. Once such a similarity measure has been defined, segments can
be obtained by grouping together the points whose similarity measure is within
given thresholds and which are spatially connected. Most of the segmentation
methods presented in the literature are for depth-maps as due to their 2 1

2D nature
operations from traditional image processing can be directly applied.

There are mainly three varieties of range segmentation algorithms:

(a) Edge-based segmentation

(b) Surface-based segmentation

(c) Scan-line based segmentation

Edge-based segmentation

Edge based segmentation algorithms have two main stages: edge detection which
outlines the borders of different regions, followed by the grouping of the points
inside the boundaries giving the final segments. Edges in a given depth map are
defined by the points where changes in the local surface properties exceed a given
threshold. The local surface properties mostly used are surface normals, gradients,
principal curvatures, or higher order derivatives. As edge detection methods look
for abrupt changes, they are very sensitive to the noise in the range data. Moreover,
as only the measurements near the edges are used to make major decisions, the
available information is not optimally utilized. In many situations the edges do
not form closed boundary curves and it can be difficult to make correct grouping
decisions resulting in over- or under-segmentation. Some of the typical variations
on the edge-based segmentation techniques are reported by Bellon et al. (1999);
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Bhanu et al. (1986); Jiang et al. (1995); Sappa and Devy (2001); Wani and Arabnia
(2003); Wani and Batchelor (1994).

Surface-based segmentation

The surface based segmentation methods use local surface properties as a similarity
measure and merge together the points which are spatially close and have similar
surface properties. These methods are relatively less sensitive to the noise in the
data, and usually perform better when compared to edge based methods (Várady
et al., 1997). The measure of similarity is usually based on local surface properties.
For surface-based segmentation methods each point is directly assigned to one
segment; unlike edge based methods there is no need to identify the surface
boundaries.

One common problem faced by all range segmentation algorithms is the estimation
of local surface properties like gradient, surface normal, principal curvatures and
higher-order derivatives from the noisy data. Robust estimation techniques must
be used to counter the effects of outliers and noise (Flynn and Jain, 1988; Stewart,
1999; Tang and Medioni, 1999).

For surface based segmentation methods two approaches are possible: bottom-up
and top-down. Bottom up approaches start from some seed-pixels and grow the
segments from there based on the given similarity criterion. The selection of the
seed points is important because the final segmentation results are dependent on
it. Top-down methods start by assigning all the pixels to one group and fitting a
single surface to it. Then as long as a chosen figure of merit for fitting is higher
than a threshold they keep on subdividing the region (Parvin and Medioni, 1986;
Xiang and Wang, 2004). Most of the reported methods for range segmentation use
bottom-up strategy.

It is important to have a sufficient number of different surface classes available
during the segmentation process, because failing to do so can lead to either over-
segmentation or under-segmentation. For example if only planar patches are used
and the scene contains curved objects like cylinders or spheres, the range data
would be highly over-segmented.

The inclusion of complex surfaces as possible candidates is accompanied with
a caveat. The estimation of the parameters describing a complex surface from
the noisy range data is usually poor, and so is the resulting segmentation. The
situation here is similar to what is referred to as ‘curse of dimensionality’ in pattern
recognition (Bellman, 1961; Bishop, 1996). As the number of allowed shapes
and their complexity increases, the estimation of the required parameters from
the noisy data becomes more and more difficult.

Although segmentation techniques incorporating general quadrics (Besl and Jain,
1988a) and super-quadrics (Gupta and Bajcsy, 1993)) have been developed, the
results on actual data are not very satisfactory. As observed by Várady et al.
(1997) better results can be obtained by considering only natural quadrics, as they
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need small number of parameters which have geometrical rather than algebraic
significance. A method for faithful recovery of quadrics from range data is
presented by Werghi et al. (1999a). A survey of recovering quadric surfaces in
triangulated meshes is given by Petitjean (2002).

A superquadric defines a closed surface, whose parameters can be varied to
change the resulting shape from a cube to a diamond to a pyramid and many
intermediate forms. It is also possible to specify the scale along each axis,
bending along two axes and tapering along one of the axis. This gives a compact
representation that can cover the shape of many geometrical primitives. However,
the fitting of superquadrics requires the estimation of many non-linear parameters
from the range data, which becomes problematic in the presence of noise. Still
assuming dense range data with low noise, their extraction has been used by many
researchers. For example see Krivic and Solina (2004); Leonardis et al. (1997);
Zhang (2003).

Scanline-based segmentation

The third category of range segmentation methods is based on scan-line grouping.
In the case of range images each row can be considered a scan-line, which can be
treated independently of other scan-lines in the first stage. A scan-line grouping
based segmentation method is presented by Jiang et al. (1996) for the extraction
of planar segments from the range image. It uses the fact that a scan line on
any 3D plane makes a 3D line. It detects the line segments in the first stage,
followed by the grouping of the adjacent lines with similar properties to form
planar segments. Some typical variations on this method are presented by Natonek
(1998) and Khalifa et al. (2003). As in a point clouds there are no inherent scan-
lines, Sithole and Vosselman (2003) have used profiles in different directions for
the segmentation of air-borne laser scanner data. These profiles are generated by
collecting points within a cylindrical volume around a given direction.

Other approaches

A hybrid approach combining both edge cues and surface information for range
segmentation is presented by Zhao and Zhang (1997). Edge and critical point
detection, triangulation, and region growing are three main steps of the reported
technique. Good segmentation of the range images, consisting of only polyhedral
objects, are reported.

A range segmentation algorithm based on graph partitioning using normalized cut
framework has been presented by Yu et al. (2001). The normalized cut criterion
was defined by Shi and Malik (1997) for image segmentation; it measures both
the total dissimilarity between the different groups as well as the total similarity
within the groups. Yu et al. (2001) first detects connected clusters in the range
image, and then uses average position, surface normal and average intensity of
these clusters to group them together using normalized cuts. This algorithm results
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in over-segmentation which needs to be corrected by manual editing and merging.

Hoover et al. (1995) presented a methodology for the automatic comparison of
different range segmentation algorithms, based on which four range segmentation
methods for planar surfaces were compared by Hoover et al. (1996). Powell et al.
(1998) extends this comparison to two methods for segmentation of the curved
objects. The methods compared were by Besl and Jain (1988b) and Jiang et al.
(1996).

Point cloud vs range image

The methods tested by Hoover et al. (1996) and by Powell et al. (1998) assume
that the input consists of range images sampled on a regular two-dimensional grid,
resulting in 2 1

2D data. This requirement, although satisfied by most structured-light
based scanners, does not apply to most of the laser range scanners which provide
data in the form of an unstructured point clouds. There are two solutions to this
problem:

1. The point cloud can be resampled to convert it to the data defined on
a regular 2D or 3D grid. This resampling can use either splatting or
interpolation. Splatting (Schroeder et al., 1998) converts an unstructured
point cloud to a structured grid by replacing each point by an influence
function which is usually a Gaussian. Moreover, the splats can be made
to change shape in accordance with the local surface properties, leading
to a more faithful surface representation after resampling. Alternatively,
resampling based on linear, quadratic, or cubic interpolation of the point
cloud can be used.

2. The second option is to build a topology directly from the point cloud
by using triangulation. A triangulation consists of n-dimensional simplices
that completely bound the points and their convex hull (Goodman and
O’Rourke, 1997). The result of triangulation is a set of triangles in case of
2D and 2 1

2D data and a set of tetrahedra in the case of 3D data. Delaunay
triangulation is a special case requiring the circumsphere of each simplex
in the final result to contain no points other than the ones defining it
(O’Rourke, 1998). For 2D data Delaunay triangulation has been shown to
be the optimal triangulation in terms of producing the triangles with the
best interior angles (by maximizing the minimum angle). Furthermore, the
Delaunay triangulation and Voronoi diagram in R2 are dual to each other.

For processing unstructured 3D data, without performing any of the above
mentioned conversions, it is necessary to build neighborhood relationships to
estimate local surface properties. The approach to select k-nearest neighbors
is computationally expensive but can be optimized by using space-partitioning
methods like k-d trees for efficient localized searches (Arya et al., 1998; Goodman
and O’Rourke, 1997).
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1.1.2 Surface Fitting

The problem of fitting CAD models to point clouds arises in many applications like
model-based object recognition, surface reconstruction, reverse engineering and
quality control. Recent advances in laser scanning technologies have also added to
their importance, as acquisition of dense point clouds has become both faster and
cost-effective.

As pointed by Várady et al. (1997) segmentation and surface fitting can be
regarded as a ‘chicken and egg’ problem, because if a priori information about
the surfaces and their location is available we can just pick the points which are
within a small distance of the surface. Similarly, if we know that a certain group
of pixels belong to one surface, we can easily find the type of the surface they
represent.

There are different methods of representing surfaces for fitting. The choice of
representation is important as it influences the complexity of the resulting method
and can limit the types of models that can be faithfully fitted. The following are
some of the available choices for representing surfaces (Foley et al., 1990):

Explicit function For 3D surfaces this representation expresses one of the
coordinates as a function of the remaining two coordinates and their bounds.
Mathematically it can be given as:

z = f(x, y) x1 ≤ x ≤ x2 y1 ≤ y ≤ y2 (1.1)

Explicit functions can be used only for those surfaces which have a single
z value for each (x, y) pair. This condition is not satisfied by most of the
common objects found on industrial facilities. For example, a cylinder or a
sphere cannot be represented in this form.

Explicit function can be used for plane fitting using the following equation:

z = ax + by + c (1.2)

The expression in Equation 1.2 can faithfully represent only non-vertical
planes. Moreover, least squares fitting based on this formulation minimizes
only the differences in z instead of the orthogonal distance of the point
from the plane which is justified if only the measurement of z-coordinate
contains noise, and x and y are without measurement errors (Press et al.,
1988, chap. 15.3). As this assumption is not valid, the fitting based on the
explicit function formulation, even when possible, results in poor estimation.

Implicit function In this representation the surface is defined as the zero-set of a
three-dimensional function of x, y and z.

f(x, y, z) = 0 (1.3)

For example using this representation a sphere is defined as follows:

(x− cx)2 + (y − cy)2 + (z − cz)2 − r2 = 0 (1.4)

Where c =
(
cx cy cz

)
is the center of the sphere and r is its radius.
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Similar implicit functions exist for planes (linear), cylinders (quadric), cones
(quadric) and tori (quartic).

Parametric surface A parametric representation consists of a separate function for
each of the x, y, and z coordinates. Each of these functions is parametrized
in terms of two new variables u and v (hence the name parametric). The
domains of u and v are also given.

x = f(u, v) y = g(u, v) z = h(u, v) (1.5)

For example the parametric representation of the sphere is as follows:

x = r cos θ sinφ + cx y = r sin θ sinϕ + cy z = r cos φ + cz (1.6)

Where θ with 0 ≤ θ < 2π is the azimuthal coordinate , ϕ with 0 ≤ ϕ < π is
the polar coordinate

B-splines and NURBS are two of the most commonly used parametric surfaces
in CAD applications. B-splines are a generalization of the Bézier curve, and
use control points and basis function to represent smooth surface patches
(Farin, 2002). NURBS are an extension of B-Splines and can also represent
conics faithfully. The fitting procedure for both of them are highly non-linear.
As the automatic selection of knots and control points is very difficult, usually
it has to be done manually. B-splines and NURBS are necessary for reverse
engineering of mechanical or other industrial parts, but do not find much use
in the design of industrial facilities. Some typical techniques for their fitting
to point clouds, often requiring manual specification of knots and good initial
values, are reported by Forsey and Bartels (1995); Ma and Kruth (1995);
Pottmann et al. (2002); Wang et al. (2004).

A survey of surface fitting methods is given by Söderkvist (1999).

Choice of distance measures

All methods of surface fitting require a criterion that gives the degree of agreement
or disagreement between the estimated surface and the measured point cloud.
A distance measure is usually employed for this purpose. Two commonly used
distance measures for fitting surfaces to point clouds are the algebraic and the
orthogonal or geometric distances.

The algebraic distance is defined only for those surfaces which can be expressed
as an implicit function. Surface fitting based on the algebraic distance can be
expressed as a linear least squares problem, which has a closed form solution
and can be readily solved by linear equation solvers. In contrast, for orthogonal
distance fitting it is necessary to use iterative non-linear least squares techniques.
Taubin (1993) has proposed a first order approximation from algebraic to the
orthogonal distance that can be used to avoid iterative procedures, but the
approximation is reported to be biased and results produced are usually inferior to
those from the orthogonal distance fitting. A comparison of algebraic, orthogonal,



1.1. LITERATURE SURVEY 15

and approximate-orthogonal distance for conic fitting to 2D data is given by Faber
and Fisher (2001a,b).

Orthogonal distance of a point to a given surface is defined by its distance to
the closest point on the surface. It is sometimes also called geometric distance.
It provides a better measure of similarity compared to the algebraic distance.
However, the fitting methods based on the orthogonal distance must use a non-
linear least squares estimation procedure. Helfrich and Zwick (1993) and Ahn et
al. (2002) give two different methods for the fitting of implicit surfaces using the
orthogonal distance.

There has been a lot of work, mainly in the Computer Graphics community, on
using the zero set of the signed distance field for the recovery of a smooth manifold
from a given point cloud (Curless and Levoy, 1996; Hoppe et al., 1992; Masuda,
2002). Such a manifold is essentially a free-form surface, and thus cannot be easily
represented by a CAD model. Moreover, the surface should be completely covered
with the point cloud of uniform density. Because of these requirements combined
with the types of models produced, these methods are not useful for industrial
reconstruction.

Estimation methods

Estimation methods are required to find the best value of parameters for the model
being fitted. The ‘best’ value is defined in terms of the chosen distance measure.
Least squares fitting, M-estimators, least median of squares, simulated annealing
and genetic algorithms like Tabu search (Srinivas and Patnaik, 1994) are some of
the available techniques.

The most commonly used estimation method is that of the linear least squares. As
noted by Press et al. (1988) least-squares fitting is a maximum likelihood estimator
of the fitted parameters if the measurement errors are independent and normally
distributed with fixed standard deviations. However, the probability of outliers in
the Gaussian distribution is so small that their occurrence is not handled robustly;
most of the time a few outliers can influence the resulting fit away from the
required result. To counter the sensitivity of least squares to outliers, the use
of robust estimation techniques is necessary. A survey of the robust parameter
estimation techniques, as applied to the problems faced in computer vision, is given
by Stewart (1999). It compares various parameter estimation methods on the basis
of their breakdown point, influence function and efficiency. It is reported there that
different robust estimators provide different trade-offs and none of them solves all
problems. An alternative robust approach for the estimation of parameters based
on random sampling and called Random Sample Consensus (RANSAC) has been
presented by Fischler and Bolles (1981, 1987).

A study of the different estimation methods using different distance measures
for conic fitting is presented in Zhang (1997). They report that the orthogonal
distance based fitting works much better compared to the algebraic distance fitting,
especially in the presence of outliers and noise. They obtained the best results by
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using the least median of squares estimator with the orthogonal distance. However,
as noted by (Stewart, 1999), least median of squares has low statistical efficiency,
and the obtained data must be dense for adequate performance.

Conversion to a CAD representation

The results of surface fitting usually do not present a complete picture because they
are based on incomplete point clouds and thus cannot be directly used as a CAD
model. Moreover, most industries use CAD standards based either on Boundary
representation (B-rep) or Constructive Solid Geometry (CSG) (Mortenson, 1985;
Requicha and Voelcker, 1982). A manual or semi-automatic stage of editing is
necessary to convert the fitted surface patches to a full CAD model. This stage,
called by Várady et al. (1997) ‘global surface fairing’, usually involves extending,
clipping, and intersecting the fitted surfaces to get a full B-rep or CSG model.

Geometric constraints encodes a priori information about the geometry of the
model and their incorporation into fitting can lead to a significant reduction in the
degrees of freedom resulting in better estimation. Some techniques for recovering
quadric surface based models by using constraints have been presented by Werghi
et al. (1999a). They first extract planar and quadric patches from the segmented
range data, analyze them to infer the geometrical constraints like perpendicularity,
equality of radius etc. These constraints are then used to improve the fitting results.

As most modeling procedures consist of two separate processes of surface fitting
and conversion to CAD model, it is difficult to simultaneously enforce the geometric
constraints. Compared to B-rep, CSG provides a powerful, though less general,
method to specify both the surface geometry and associated constraints in one
package. Based on this observation, techniques for fitting CSG models with
constraints to images have been developed by (Ermes et al., 1999; Tangelder et
al., 1999, 2003). Currently, there are no reported methods for fitting of the CSG
models to point clouds.

Sequeira et al. (1999) and Stamos and Allen (2002) present methods for
reconstruction of buildings and cultural heritage sites using range data and images.
They use images mainly for texture mapping and visualization.

1.1.3 Registration

For successful reconstruction it is necessary to combine range data taken from
different viewpoints. Registration is the process where scans are transformed from
their local coordinate system to one global coordinate system. The following are
some of the reasons which necessitate registration:

• For most objects of interest it is not possible to capture full details of their 3D
shape from one scan. Limited FOV of the laser scanner, occlusions from the
neighboring objects, and self occlusion are some of the possible reasons. As
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a result scans from different viewpoints must be combined to get a true and
complete picture.

• Even when all the parameters of a surface can be estimated from one scan,
combining more scans gives more dense data with better coverage, and thus
leads to a better estimation of the object parameters during model fitting.

A problem related to registration is that of view-planning. For faithful
reconstruction of any object from the range data it is necessary to take sufficient
scans. But how many are sufficient and from where should they be acquired?
Certainly, it is desirable to have as detailed a picture as possible, but each scan has
an associated price in terms of time and labor involved. Thus it is important to
optimize the data acquisition so that a sufficient detail is captured with minimum
cost using minimum scans. This problem is addressed by the task of view planning
or network design.

The simplest way, which is mostly used for reverse engineering, is to put the object
on a turntable and then capture its range data by rotating the setup. Such a solution
is practically impossible for any outdoor environment including that of industrial
installations. This makes it necessary to do view-planning in advance, using a
priori information about the site to be modeled. An occlusion based view-planning
approach is described by Maver and Bajcsy (1993). Another possibility is to use
multiple sensors which view an object from different sides simultaneously (Eggert
et al., 1998a). Such a setup, though effective for industrial inspection and reverse
engineering of mechanical parts, is not a good choice for industrial reconstruction.

Effective view planning must ensure that there is a sufficient overlap between
different scans so that they can be used for registration. In the absence of sufficient
overlap, the resulting registration will be erroneous or in some cases may not be
possible at all. Some reference objects can be installed at the site which can be later
used as 3D fiducials or control points. However, such methods are cumbersome
and may not be feasible for each situation. A comprehensive set of rules for
planning the acquisition of laser scans and images for modeling of industrial sites
is given by Heuvel (2003). A survey and comparison of different view planning
techniques for automated 3D object reconstruction and inspection by means of
active, triangulation-based range sensors is given by Scott et al. (2003).

For registration of two scans with at least three known point correspondences
closed-form solutions have been given by Horn (1987). However, it is quite difficult
to give reliable point correspondences in the point clouds because of their limited
sampling density, measurement noise and occlusions. To solve this problem Besl
and McKay (1992) proposed the Iterative Closest Point (ICP) method. Starting
from a good initial alignment ICP iteratively finds the correspondences by getting
the closest points in one scan to the points in the other. Many variations on ICP
have been proposed in the literature which differ mainly in the type of distance
metric used for finding the closest point. A comparison of these methods was done
by Rusinkiewicz and Levoy (2001), where the distance to closest tangent plane was
found to give the best performance.
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Johnson and Hebert (1997) propose a different method for range registration
based on a pose-invariant local neighborhood representation for each point called
Spin image. The spin image encodes the spatial relationship of a point with its
neighbors. An initial list of correspondences is generated by matching spin images
of the scans being registered. This list is later refined by ICP.

Lucchese et al. (2002) has presented a method for range registration that operates
in the frequency domain through the Fourier transform. As the Fourier transform
decouples the rotation and the translation parameters, the presented algorithm
exploits this property by doing registration through sequential estimation. The
presented results are inferior to ICP, but the method can be used to provide
automatic approximate values.

Pottmann et al. (2004) has given a method for registration based on instantaneous
kinematics and on the geometry of the squared distance function of the point cloud.
The algorithm is shown to have better convergence properties than the ICP.

If both range data and colored images of a site are available, various data fusion
methods can be used to improve the registration results. A multi-feature ICP
matching algorithm that includes the surface color and the surface orientation
information has been proposed in (Schutz et al., 1998). Other approaches for
registration making simultaneous use of images and point clouds are reported by
El-Hakim et al. (2004); Sequeira et al. (1999); Stamos and Allen (2002).

1.1.4 Object recognition

The problem that object-recognition tries to solve can be defined as follows:

• R is a representation of the object in some n-dimensional space Rn . It can
consist of raw range measurements and/or some features extracted from it.

• T is a set of transformations which can be applied to R to generate
a transformed and noise-free representation T(R) in the feature space.
This transformation can be affine, projective or some other non-linear
transformation.

• D consists of the representation of the observed data is the same n-D space
as T(R). It will be most probably noisy and will contain occlusions.

• E is a function that gives the similarity between D and T(R).

Object recognition tries to estimate the optimal value of T, and the best set R such
that E(D,T(R)) is maximized.

This problem is far from trivial because of the following reasons:

• It is not known in advance which of Ri’s are present in the image. There
might be multiple instances of one type and/or multiple objects of different
types.
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• The transformation Ti for each object is not known. Moreover, it is not
necessary that T(Ri)’s are unique, as two different objects in combination
with different T’s may produce similar data in the observation space.

• Some part of the object may be occluded by other objects, leading to
incomplete observations.

• The presence of noise, missing data and outliers due to the imperfection of
the data collection and/or data processing further complicates the process.

• There might be new types of objects present in the scene, which are
previously unobserved and thus are not recognizable.

The various approaches in the literature for solving the problem of object
recognition and pose-estimation can be categorized into two main categories:
Object-based recognition and View-based recognition.

Object-based recognition

In object based recognition different features are identified in some CAD like
representation of the object model and are used for matching. Different features
like silhouettes, edges, surface curvatures, local shape, point features etc. can be
used for this purpose. The ultimate goal is to come up with a collection of features
that are invariant to pose and scale differences and can be robustly estimated from
the noisy data, with outliers and incomplete information due to occlusions.

Most systems employing object-based recognition operate in three different
stages: training, matching and verification. In the training stage all objects are
represented as a collection of the selected features in the form of a database. The
implementation of this database depends on the types of features selected and the
degree of invariance they possess. The second step of the matching stage consists
of extracting the same features from the captured data and using them to index the
database to get a set of strong hypotheses. The best hypothesis is selected as the
one that best satisfies a user-defined similarity function. A verification stage may
follow, which tries to reject false positives. The final performance depends on the
selection and extraction of features and how they are used to index the database
to get strong hypotheses.

Local features of the surface as given by classical differential geometry (Carmo,
1976) are a natural choice for object recognition, due to their invariance to pose,
and robustness in the presence of occlusion. Many approaches have used principal
curvatures of 3D data and its derivatives like Gaussian and mean curvature for
object recognition.

Another strategy sometimes called object recognition by model alignment
(Huttenlocher and Ullman, 1990) tries to detect the points of high-curvature on
the surface, uses it to select a set of possible hypotheses from the object database,
and calculates the pose for each of them. Each of these pose-corrected models is
then matched to full range data to select the best representative object.
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The type of object-based recognition methods described above have been labeled
as generate-and-test methods by Olson (2001b), because they select a minimal
representation in terms of invariant features which is used to generate hypotheses.
Each hypothesis is then tested and validated according to some figure-of-merit.
The biggest problem with these approaches is their sensitivity to noise and outliers,
because the generation of the hypotheses depends on the successful detection of
distinguished features, and a failure to do so means the testing stage is going to
fail as well. Even small errors in the localization of the distinguishing features can
lead to large errors in the estimated models. To counter these problems, techniques
employing error-bounds have been developed. The basic idea is not to require the
distinguished features to be fully aligned, but to accept each alignment with its
error bound (Alter and Jacobs, 1998; Grimson et al., 1994). By propagating this
error bound to the testing stage the probability of miss can be decreased, but at the
same time false-positives also increase.

An alternative to generate-and-test paradigm is to use Hough-based method for
model extraction.. These parameter space analysis methods originated from the
patent of Hough (1962), which was initially meant for the detection of the curves
produced by bubble-paths from the images of bubble-chambers.

The basic idea behind the Hough transform is to map each data or feature
point to a manifold in the parameter space. This parameter space manifold is
usually represented in a quantized manner where each cell acts as an accumulator,
collecting votes. The procedure consists of mapping data points to this parameter
space and then finding the cells with maximum number of votes. Initial work on the
Hough transform was done by Duda and Hart (1972); Rosenfeld (1969). Ballard
(1981) extended the Hough transform for the detection of arbitrary shapes giving
what he called the Generalized Hough transform. He also used the orientation
information to speed up the process of localizing the best match in the parameter
space.

The Generalized Hough transform technique when applied to the task of object
recognition is usually called pose-clustering. It consists of initializing an array
of bins, indexed by the parameters of object pose, as empty. For each possible
match between one image feature and one model feature, poses consistent with
that match are determined and votes are cast in the bins corresponding to those
poses. Finally, the array is scanned to identify and verify those poses that have
received the most votes. The identification of best hypothesis is done by looking
for the biggest clusters in the parameter-space, hence the name pose-clustering. The
cluster analysis usually adopted for this purpose is as simple as multidimensional
histogramming.

One weak-point of the Hough transform based methods for object recognition is
their prohibitively large computational and memory requirements. These become
even more important when the database of models to be matched grows big.
Randomization has been used by many researchers as a solution to the problem
of computational and space complexity (Bergen and Schweitzer, 1991; Kalviainen
et al., 1994).
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A hybrid approach for object-recognition that combines both generate-and-test and
Hough-transform-based methods is reported by Olson (2001a). The first stage
generates possible hypotheses using distinguished-features but the final testing
stage uses randomized Hough transform. This method is called RUDR (Recognition
Using Decomposition and Randomization).

Another technique similar to the Hough Transform is template matching, its main
limitations being the computational complexity and the sensitivity to noise and
occlusions. The brute-force approach of template matching consists of translating
each possible transformation of the object on the acquired data, calculating a
similarity metric, and finding the points where this metric exceeds a certain
threshold. The computational requirements of such an implementation are
unacceptably high. As a result, most of the literature concerned with this method
focuses on efficiency improvements. Various pyramid like multi-resolution methods
have been suggested. A hierarchical representation of templates in the form of
a tree has been proposed by Ramapriyan (1976). Each parent node of the tree
consists of a union of all child nodes, making it a representative node. The
success of such an approach depends on the effective tree-like representation of
the templates. The parent nodes on each level should be sufficiently different
from each other. Similar tree based template matching method has been used
by Greenspan (1998); Greenspan and Boulanger (1999) for object recognition.
Moreover, hierarchical tree and pyramidal techniques can be combined to get
further computational efficiency.

View-based recognition

The view-based techniques take a completely different approach to the problem of
object recognition. They aim to bypass the pose-estimation stage altogether. This
is achieved by presenting a pattern recognition system with a set of views captured
from all viewpoints during the training stage. Once such a system has been trained,
the recognition just consists of presenting the observed data to the system which
gives the object corresponding to the best possible match as the result.

Due to the computational complexity of direct matching of incoming samples to
each of the training objects, most approaches suggest different ways of compressing
the training set so that it can be represented with a minimum number of
coefficients. One of the most popular approaches for this dimension reduction is
eigen-space representation based on principal component analysis (PCA) (Webb,
1999). Due to the high correlation of the range data of an object captured
from different viewpoints, PCA can produce effective dimension reduction. Once
trained, the recognition step consists of projecting the observed data onto the
eigen-space of each model in the database, and selecting the model that gives the
maximum similarity.

Another approach used for object recognition is based on aspect graphs, which are
data structures which efficiently store information about the views of an object
or collection of objects in a given scene. Given a view of an unknown object,
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Figure 1.3: Flowchart of the
presented modeling pipeline. Initially
the point clouds is used as main
data source due to better automation
possibilities. Images are included
at the end to improve estimation of
parameters. Fitting of CSG models
along with their constraints removes
the manual extrapolation and editing
stage.

its identity is established by finding the closest match in a given set of aspect
graphs (Bowyer et al., 1993; Cyr and Kimia, 2004; Eggert et al., 1993; Fischer
and Steinhage, 1997; Gigus and Malik, 1988). Aspects graphs have also been used
for object detection in range images (Morita, 1999).

Campbell and Flynn (1999) coin the term Eigen surfaces for the use of PCA
for 3D object recognition, thus extending the scope of Eigen faces used for
face recognition. They implemented a system that could recognize objects from
different viewpoints having different rotation parameters. They reported the
results on an object database of manufactured parts.

View-based object recognition approaches require the object to be completely
visible and without many outliers. This means that for a scene consisting of
multiple objects, a reliable segmentation of the data has to be done as a pre-
processing step. Many approaches have been presented to address the problems
of missing pixels and occlusions, for example see Amano et al. (1996); Skocaj
and Leonardis (2001). Most of these methods replace the step of data-projection
onto eigen space basis-vectors by a solution of an over-constrained system of linear
equation formed only from the visible pixels. This process is much slower than
simple projection but is more robust to the effects of missing information.

Various data fusion approaches combining range data, color images, and a priori
information have been suggested in the literature. Strat and Fischler (1991) use
monochrome, color, stereo, or 3D range images along with contextual knowledge,
making the process of recognition robust to various inconsistencies in the acquired
data.

For a survey of different representation schemes, systems and approaches used for
3D object recognition see Jain and Dorai (2000), Besl and Jain (1985), Arman and
Aggarwal (1993) and Bennamoun and Mamic (2002).
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1.2 Objectives and modeling pipeline

From the survey of the previous work presented in the last section we see that
although there has been a lot of work done on general 3D reconstruction, there
has been little effort made to use the domain specific information from the
industrial environments to automate the detection and estimation of the present
models. Similarly, the scan registration problem which currently uses point
correspondences can be automated for industrial scenes by using corresponding
objects for registration. As most industrial environments consist of a small number
of well defined objects (planes, cylinders, spheres, tori, and cones) and their
combinations, the detection of these objects in each scan followed by an efficient
search for correspondences provides an opportunity to automate the process of
registration. The combination of simple objects can be flexibly represented as CSG
objects whose direct fitting avoids the manual editing stage which is commonly
employed for conversion of fitted surfaces to complete B-rep models. Additionally,
most of the current modeling approaches use images only for texture mapping
or visualization. We show in Chapter 7, that the inclusion of images in fitting
can result in superior estimation quality and present methods for this purpose.
Similarly, the use of geometric constraints which is quite popular in CAD design
has not been fully realized in the domain of 3D reconstruction from point clouds.
We present a taxonomy of commonly encountered geometric relationships in CSG
models and methods for including nonlinear equality and inequality constraints
in the model estimation. Although, the presented methods are limited in the
sense that they address a very narrow domain of industrial reconstruction, at
the same time this narrow domain allows us to make assumptions about the
expected structure which is then exploited for the automation of different steps
of 3D reconstruction.

The objectives of this thesis are as follows:

• Development of a segmentation method that does not use curvature or higher
order derivatives, and has a small number of configuration parameters which
have an intuitive meaning. The tuning of those parameters should result
in different trade-offs between under and over-segmentation. Most of the
current methods use higher order derivatives whose estimation from noisy
point clouds is error prone. Additionally, incorporation of a large number of
configuration parameters makes their fine tuning very difficult.

• Development of efficient Hough transform based methods for automatic
detection of planes and cylinders in the point clouds. Although the Hough
transform is widely used for line detection in images, it is not computationally
feasible to directly apply it to higher dimensional detection problems. This
necessitates development of efficient and sequential processing methods.

• Development of algorithms for fitting simple models to the point clouds and
for the calculation of their approximate values. A comparison of the different
approximation schemes for calculating point to body distance for the fitting
of CSG objects. As most industrial objects can be efficiently represented as
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CSG the fitting methods based on CSG have more potential to decrease the
amount of manual editing.

• Development of techniques and methods which allow the use of the detected
objects as targets for inter scan registration. As industrial scenes contain lot
of well-defined structure, it should be exploited to automate the task of point
cloud registration.

• Development of techniques for specifying and including geometric
constraints in the model estimation procedure for CSG models. As constraints
are used during designing of industrial parts, their inclusion in the fitting
procedure results in better estimation quality and makes sure that design
intent is enforced during modeling.

• Inclusion of images in the fitting process and an analysis of the resulting
improvements in parameter estimation. Images provide a complementary
source of information, as they capture the object edges where point clouds
are mostly very noisy. The inclusion of images in model fitting should result
in better estimation quality.

To achieve the above outlined objectives we developed a modeling strategy which
can be best represented as a pipeline, shown in the form of a flowchart in Figure
1.3. We start from the point cloud as the main data source because due to the
explicit 3D information it provides a richer source for automatic detection and
modeling. The first step in our processing pipeline is segmentation of the point
cloud, which divides the point cloud into a set of disjoint groups or segments.
Our segmentation method is based on “smoothness constraint”, which detects
smoothly connected areas without over-segmentation. Each segment is processed
through the Hough transform for plane and cylinder detection. The segmentation
is necessary because the size and resolution of the Hough transform depends
on the extent of the data. By sub-dividing a given point cloud into a set of
mutually disjoint regions we ensure that a good resolution is obtained at moderate
computational cost. To refine the parameters of the objects detected through
the Hough transform, a fitting stage based on non linear least squares follows.
Each scan individually passes through these stages of segmentation and object
recognition.

The scans are registered automatically by searching for the correspondences of the
objects detected in the previous stage, which are used as targets for model based
registration. This automatic search is optimized by the propagation of geometric
constraints. The approximate registration is followed by a stage of integrated
adjustment, which extends the concept of bundle adjustment from traditional
photogrammetry (Atkinson, 1996) to the domain of point cloud processing. In this
stage registration parameters of the scans, and the shape and the pose parameters
of the models are simultaneously estimated.

Once the scans have been registered, we fit models from a catalog consisting
of CSG model templates. This fitting also utilizes registered imagery if it is
available. The inclusion of images gives better estimation results, especially as
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the information from well-defined edges in the images helps to better resolve the
geometry of bounded objects. In this regard images provide a complementary
source of information (see Figure 1.2 (d-e)).

1.3 Outline of the thesis

In Chapter 2 we present a method for the segmentation of the point clouds, which
avoids over-segmentation while partitioning the input data into mutually disjoint,
smoothly connected regions. It uses a criterion based on a combination of surface
normal similarity and spatial connectivity, which we call smoothness constraint. As
we do not use surface curvature our algorithm is less sensitive to noise. Moreover,
there are only a few parameters which can be adjusted to get a desired trade off
between under- and over-segmentation.

Chapter 3 provides details of the extensions of the Hough transform for automatic
plane and cylinder detection in the point clouds. For plane detection the Hough
transform is three dimensional. For the cylinder detection the direct application
of the Hough transform requires a 5D Hough space, which is quite impractical
because of its space and computational complexity. To resolve this problem we
present a two-step approach requiring a 2D and 3D Hough space. In the first
step we detect strong hypotheses for the cylinder orientation. The second step
estimates the remaining three parameters of the cylinder i.e. radius and position.
The results of applying the presented techniques to some industrial point clouds
are also presented.

The problem of fitting models like planes, cylinders, spheres, cones, tori and CSG
models to point clouds is addressed in Chapter 4. The methods for the calculation
of approximate values for these models are also given. For the fitting of CSG models
we present three different methods for approximating the orthogonal distance,
which are compared based on speed and accuracy. The fitting approach presented
in this chapter uses only linear constraints whose solution is incorporated into an
unconstrained least squares approach. This provides an easy, though less general,
approach of solving for constraints.

Chapter 5 presents methods for using modeled objects in scans as targets for
registration. As the available geometric structure is used, there is no need to place
artificial targets. We present two different methods for this purpose called Indirect
and Direct methods. The Indirect methods is a quick way to get approximate values
while the Direct method is then used to refine the approximate solution. The final
stage is called Integrated Adjustment which leads to simultaneous least squares
estimation of model shape and scan registration parameters. This is an extension
of the standard bundle adjustment to the domain of point cloud processing. The
presented methods are compared to ICP and show superior performance in terms
of the quality of parameter estimation.

In Chapter 6 we present techniques for automatically finding the corresponding
objects for registration of scans. The presented techniques are based on
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constraint propagation which use the geometric information available from the
previously made correspondence decision to filter out the possibilities for future
correspondences. We compare the improvements obtained by incorporating the
presented constraints with the direct application of exhaustive and RANSAC based
search.

As discussed above, images provide a complementary source of information as
they contain well-defined edges of the bounded objects. Although the point clouds
capture the surface information very accurately on smooth areas, the measurement
quality deteriorates in the areas where the surface normal changes rapidly. This
is especially true for the object edges. We present methods for the fitting of
CSG models to a combination of point clouds and images in Chapter 7. We
also present techniques for the specification of geometric constraints between
sub-parts of a CSG tree and their inclusion in the model estimation process. A
taxonomy of commonly encountered geometric constraints and their mathematical
formulation is also given. In contrast to Chapter 4 here we use constrained
optimization methods which make the fitting approach more general and flexible.
Fitting experiments are presented to highlight the improvements obtained in the
estimation quality by using images and point clouds simultaneously.

Finally, we present a summary of the achievements with some directions for future
research in Chapter 8.



Chapter 2
Segmentation using smoothness

constraint

But what is classification but the perceiving that these objects are not
chaotic, and are not foreign, but have a law which is also the law of the
human mind?

Ralph Waldo Emerson (1803-1882)

... you must acquire and beget a temperance that may give it
smoothness.

William Shakespeare (1564-1616)

2.1 Introduction

2.1.1 Problem statement

Segmentation is the process of labeling each measurement in a point cloud, so that
the points belonging to the same surface or region are given the same label. For
the problem of industrial reconstruction the point cloud is usually acquired using a
laser scanner. Unlike structured light based instruments which provide 2 1

2D data,
most of the laser scanners provide an unstructured point cloud. Even in the case
of 2 1

2D range images, once two or more such images have been registered, the
resulting data loses its 2 1

2D character and has to be represented as an unstructured
3D point cloud. Based on these observations the presented method would work
only with unstructured point clouds, and other data representations can be easily
converted to this format if required.

We follow the formal definition of segmentation as given in Hoover et al. (1996),
which is as follows:
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Let R represent the entire point cloud. Segmentation can be viewed as a process
that partitions R into sub-regions Ri such that:

1. ∪n
i=1Ri = R

2. Ri is a connected region, i = 1, 2, · · ·n

3. Ri ∩Rj = Φ for all i and j and i 6= j , where Φ is the null set

4. P (Ri) = TRUE for i = 1, 2, · · · , n and

5. P (Ri ∪ Rj) = FALSE for i 6= j and Ri and Rj are adjacent where P (Ri) is a
logical predicate over the points in set Ri.

The predicate P (Ri) defines the measure of similarity that groups the points in
one region and separates them from the points in other regions. In the presented
method the predicate is based on smoothness constraint, requiring that the normals
of the points in one region do not change too rapidly and that the points are
spatially connected.

2.1.2 Previous work

A literature survey of different segmentation methods has been presented in
Chapter 1. Here we will discuss the limitations of these methods and outline the
motivation for developing a new approach.

A comparison of methods for finding planar segments in range images was done
by Hoover et al. (1996). Although planar surfaces are quite frequently found on
industrial sites, any segmentation strategy that uses planes as the only available
model will result in extreme over-segmentation in curved areas like pipes, spheres
and bends.

Based on the comparison framework of Hoover et al. (1996), two methods for
segmentation of range images into curved regions were compared by Powell et
al. (1998). The first segmentation method of Besl and Jain (1988b) (BJ method)
has two stages. The first stage of coarse segmentation is based on estimating the
mean and Gaussian curvature for each point and using their signs for classification
into 8 different surface types. This rough segmentation is refined by the second
step of region growing, which is based on fitting bivariate polynomial surfaces.
The comparison found the BJ method to result in severe over-segmentation even
on very simple scenes with low noise. The major reason for this failure was the
error in the estimation of principal curvatures from the noisy range data. The BJ
segmentation method has 38 different parameters, 10 of which were iteratively
optimized to get the best possible results. The speed of this method was very
slow, and even on range images which do not have a high cost for searching the
neighborhood points, it took more than 6 hours.

The second segmentation method used for the comparison was by Jiang et al.
(1996) (UB method). This method also consists of two stages. In the first stage
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the scan lines of the range image are segmented into a set of curves by using a
splitting method. In the second stage these edges are grouped together to make
surfaces. This method has 10 parameters and the comparison found it to perform
much better than the BJ method, both in terms of time (30 seconds compared to 6
hours of the BJ method) and the quality of results.

Looking at the comparison, the UB method would be a good choice for the
segmentation of industrial scenes, but there are some serious limitations. First
of all, the method is based on the grouping of scan lines which do not exist
for unstructured point clouds. For airborne laser scanner data similar scan lines
created by collecting and joining points in a tubular volume have been used
by Sithole and Vosselman (2003) for segmentation, but there the data is 2 1

2D
. Extensions of this idea for 3D point clouds would require choosing a few
preferred directions for scan-lines, making the results of segmentation orientation
dependent.

2.1.3 Problems with existing methods

We observed the following problems with existing segmentation techniques as
applied to our problem of processing industrial point clouds:

1. Many approaches are tailored only for planar surfaces, which are too limiting
for industrial scenarios.

2. Although principal curvature based approaches can handle curved objects,
the unreliable estimation of the curvature from noisy point clouds leads to
high rates of over-segmentation. Furthermore, the objects like torus and
sphere are always over-segmented because they are not one of the 8 different
surface classes identifiable based on the signs of the principal curvatures.
The sensitivity of curvature estimates from range data has been analyzed
in (Trucco and Fisher, 1995), where it is suggested that at least for planar
segmentation of range data principal curvatures should not be used.

3. Many segmentation methods have a large number of parameters, whose
meaning and effects on final segmentation are not always clear. Most of the
comparisons used separate iterative optimization methods to find the best set
of parameters.

4. Most of the methods are tailored for application to 2 1
2D range images.

Sometimes their extension to 3D unstructured point clouds is quite simple
like replacement of 8-neighbors with k-nearest neighbors. But in other cases,
like defining scan lines for 3D point clouds, there is no straight forward
extension, and most approaches introduce new limitations.

5. There are some model-based approaches to segmentation which segment and
recognize surface types at the same time (Marshall et al., 2001). These
approaches do not fit in our pipeline of separate segmentation and object
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Figure 2.1: Flowchart of
the segmentation algorithm.
For a given point cloud
surface normals are
estimated through plane
fitting to the neighborhood
of each point. The residual
of plane fitting is used as
approximation to local
curvature. The region
growing uses both normal
and their residuals for
enforcing smoothness
constraint

recognition through Hough transform and thus cannot be applied to our
problem.

2.1.4 Objectives and motivation

Noting these weaknesses we decided to develop a simple segmentation strategy
that follows the following guidelines:

1. We will assume a raw unstructured 3D point cloud as the input to the
algorithm. Although the assumptions about structure of data (range image,
TIN etc) can make the job of neighbor search faster, they at the same time
make the algorithm less general purpose.

2. We will use only surface normals as they can be reliably estimated even in the
presence of noise (provided the neighborhood is sufficiently big to average
out effects of noise).

3. While deciding between over and under-segmentation, we will prefer under-
segmentation. In our modeling pipeline the segmentation is followed by the
stage of object recognition, which processes each segment separately. That
stage can detect multiple objects in one segment (under segmentation), but
if an object is split into multiple segments (over-segmentation), its detection
and correction would be more difficult.

4. The algorithm should have a low time and space complexity. Furthermore,
there should be a few parameters having a physically intuitive meaning.

2.2 Segmentation algorithm

As stated earlier the basic purpose of the presented segmentation algorithm is
to subdivide the input point cloud into meaningful subsets, while avoiding both
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Algorithm 1 Segment a given point cloud using smoothness constraint
Inputs: Point cloud = {P}, point normals {N}, residuals {r}, neighbor finding
function Ω(.), residual threshold rth, angle threshold θth

Initialize Region List {R} ← Φ, Available points list {A} ← {1 · · ·Pcount}
while {A} is not empty do

Current region {Rc} ← ∅, Current seeds{Sc} ← Φ
Point with minimum residual in {A} → Pmin

Pmin
insert→ {Sc}&{Rc}

Pmin
remove→ {A}

for i = 0 to size({Sc}) do
Find nearest neighbors of current seed point {Bc} ← Ω(Sc{i})
for j = 0 to size({Bc}) do

Current neighbor point Pj ← Bc{j}
if {A} contains Pj and cos−1 (|〈N{Sc{i}},N{Pj}〉|) < θth then

Pj
insert→ {Rc}

Pj
remove→ {A}

if r{Pj} < rth then

Pj
insert→ {Sc}

end if
end if

end for
end for
Add current region to global segment list {Rc}

insert→ {R}
end while
Sort {Rc} according to the size of the region.
Return {Rc}

under and over-segmentation with a preference for under-segmentation in case of
a dilemma.

The segmentation method has the following stages:

• Normal and residual estimation

• Region growing

The details of these steps are given in Algorithm 1 and further explained below.
See also Figure 2.1.

2.2.1 Normal estimation

The normal for each point is estimated by fitting a plane to some neighboring points
(Figure 2.2(c)). This neighborhood can be specified in two different methods.
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K nearest neighbors (KNN) In this method for a given point we select the k
points from the point cloud having the minimum distance. The distance
metric used can be Euclidean, Manhattan, or any other distance metric
obeying the triangle inequality.

As the number of points k is fixed, the method adapts the area of interest
(AOI) according to the point density. Assuming that the point density is an
indicator of the measurement noise (which is usually the case as for a given
laser scanner the density falls down inversely with the distance and the angle
of incidence), this results in overall better estimation of the normals as a
bigger AOI is used in the areas of lower point density (Figure 2.2(a) and
2.2(b)). Moreover, this method always uses the given number of points and
avoids degenerate cases (e.g. a point having no neighbors).

Search for KNN can be optimized using different space partitioning strategies
like k-d trees (Arya et al., 1998; Goodman and O’Rourke, 1997).

Fixed distance neighbors (FDN) This method uses a given fixed AOI, and for
each query point, selects all the points within this area. The distance metric
used is usually Euclidean but can be changed similar to KNN. For FDN search
the number of points changes according to the density of the point cloud. As
the number of points is directly proportional to the density of the points in
the neighborhood, this method does not have the adaptive behavior of KNN.

Compared to KNN, here the number of points is less in the areas of low
density (high noise) and as a result the estimation of the normals is on the
whole contains more noise.

This method is more suitable if the density of the points does not change a lot
through out the data. Similar to KNN there are optimized methods for doing
FDN searching (Goodman and O’Rourke, 1997; Willard, 1985)

One of the above described methods for neighborhood search are also used during
the stage of region growing (Section 2.2.2).

Plane fitting

To fit any surface to a set of given points, in a least squares sense, we want to
find that set of parameters that minimizes the sum of squares of the orthogonal
distances of the points from the estimated surface. In general this is a nonlinear
least squares problem, but as shown below, in case of planes this can be reduced
to an eigenvalue problem.

The plane can be parameterized with its normal n =
(
nx ny nz

)
, and its

distance from the origin ρ. This is also called Hesse normal form of the plane. The
distance of any given point p =

(
px py pz

)
from the plane is given by n · p − ρ

provided n ·n = 1. This is a constrained problem and can be solved using Lagrange
multipliers.
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(a) (b) (c)

(d)

Figure 2.2: (a-b)Adaptive change in selection area for k-neighbors for different point densities
(a) hight density, 50 KNN (b) low density, 50 KNN (c) Normal estimation by fitting a plane to
the points in the neighborhood (d)Residual of the plane fitting gives an approximation to the
local surface curvature

Given a set of k points in 3D {P} belonging to the plane the Lagrangian function
is given by:

Φ = (n · p− ρ)2 − λ(n · n− 1) = 0 (2.1)

(nxpx + nypy + nzpz − ρ)2 − λ(n2
x + n2

y + n2
z − 1) = 0 (2.2)

As the unknowns are nx, ny, nz and ρ, the solution can be found by solving the
system of equations given by ∂Φ

∂nx
= 0, ∂Φ

∂ny
= 0, ∂Φ

∂nz
= 0 and ∂Φ

∂ρ
= 0. This gives

us a direct solution for ρ in terms of n. i.e.

ρ = −n · p̄ (2.3)

Where
p̄ =

1
k

∑
k

(
px py pz

)
(2.4)

Substituting Equation 2.3 in the partial derivatives gives us the following system of
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equations.

∑
k

 (px − p̄x)2 (px − p̄x)(py − p̄y) (px − p̄x)(pz − p̄z)
(px − p̄x)(py − p̄y) (py − p̄y)2 (py − p̄y)(pz − p̄z)
(px − p̄x)(pz − p̄z) (py − p̄y)(pz − p̄z) (pz − p̄z)2

  nx

ny

nz

 = λ

 nx

ny

nz


(2.5)

k∑
i=0

(pi − p̄)T (pi − p̄)

 nx

ny

nz

 = λ

 nx

ny

nz

 (2.6)

An = λn (2.7)

The problem in Equation 2.7 is an eigenvalue problem, with the minimum solution
given by the eigenvector of A corresponding to its minimum eigenvalue. The
eigenvalue gives the residual of the plane fitting. Given a solution for n of the
plane ρ can be calculated using Equation 2.3.

Residual as approximate curvature

The residual in the plane fitting can arise either from noise or from nonconformity
of the neighborhood of a point to the planar model. The second case hints that
the residual can be used to find areas of high curvature. Of course we do not get
the principal curvatures and their direction from this approximation, but still the
edges and the areas of high surface normal variation can be detected based on high
residual values of plane fitting.

To check the relationship between curvature and residual of plane fitting we
generated data consisting of cylinders of different radii. The normals for these
cylinders were estimated by fitting planes to 40 k-nearest neighbors, and then
plotted against 1

r2 (Figure 2.2(d)). There we see that for the case of no noise
the residuals are quite similar to 1

r2 except a difference of scale. In the presence
of noise the trend remains the same but in addition to a scale factor there is also
a shift related to the amount of noise. This supports our idea of using residuals of
plane fitting as indicator of areas of high curvature. The regions of high curvature
are detected by introduction of rth in Algorithm 1.

In Figure 2.4(a), 2.4(e), 2.4(g) we show the residual of plane fitting as color. As
expected the areas on edges and points of high curvature have higher residuals.

2.2.2 Region growing

The next step in the segmentation process is region growing. This stage uses the
point normals and their residuals, in accordance with user specified parameters
to group points belonging to the smooth surfaces. This grouping tries to avoid
over-segmentation at the cost of under-segmentation.

This stage is based on the enforcement of these two constraints.
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Local connectivity The points in a segment should be locally connected. This
constraint would be enforced by using only the neighboring points (through
KNN or FDN) during region growing.

Surface smoothness The points in a segment should locally make a smooth
surface, whose normals do not vary “too much” from each other. This
constraint would be enforced by having a threshold (θth) on the angles
between the current seed point and the points added to the region.
Additionally, a threshold on residual values rth makes sure that smooth areas
are broken on the edges.

The process of region growing proceeds in the following steps.

1. Specify a residual threshold rth. Alternatively, calculate this threshold
automatically using a specified percentile of the sorted residuals (95+% can
be a representative number).

2. Define a smoothness threshold in terms of the angle between the normals
of the current seed and its neighbors. If the smoothness angle threshold
is expressed in radians it can be enforced through dot product as follows
‖np · ns‖ > cos(θth). As the direction of normal vector has a 180o ambiguity
we have to take the absolute value of the dot product.

3. If all the points have been already segmented go to step 7. Otherwise select
the point with the minimum residual as the current seed.

4. Select the neighboring points of the current seed. Use KNN or FDN with the
specified parameters for this purpose. The points that satisfy condition 2 add
them to current region. The points whose residuals are less than rth add
them to the list of potential seed points.

5. If the potential seed point list is not empty, set the current seed to the next
available seed, and go to step 4.

6. Add the current region to the segmentation and go to step 3.

7. Return the segmentation result

Region growing tries to group points belonging to smooth surface patches together.
Although, we want to avoid over-segmentation but still we do not want the whole
point cloud coming out as one segment. The inclusion of residual threshold (rth)
makes sure, that we can strike a balance between the above mentioned extremes.
As rth → 0 we go towards more segments with the extreme case being each point
belonging to one segment. Similarly as rth → ∞ we have less segments and the
extreme case of the whole point belonging to one segment.

We can differentiate between the following cases which may lead to the start of a
new segment during the process of region growing.
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(a) (b) (c)

Figure 2.3: Comparison of segmentation for a toroidal surface (a) point cloud (b)
segmentation using presented approach (c)curvature based segmentation

Step edge A step edge is defined by two planes which have the same orientation
but different offset from the origin. The segmentation algorithm leads to
their separation provided the offset between planes is greater than the AOI
for the neighborhood search. For KNN this depends both on the value k and
point density, while for FDN it is equal to the fixed distance specified by the
user.

Curvature edge A curvature edge is defined by the intersection of two surfaces,
whose surface normal at the intersection line make an angle greater than the
given threshold (cos−1 n1 · n2 > θcurv). An example of such an edge would
be the edge coming from the intersection of the two planar sides of a box.

The surfaces on both side of the edge would be segmented because of the
smoothness constraint (θth). Additionally the points on the edge would be
marked unsuitable for inclusion in the next generation seeds, as they will
have residuals greater than rth.

The effectiveness of the method to detect smoothly varying surface patches is
shown best in Figure 2.3. While the method of curvature based segmentation leads
to high over-segmentation (Figure 2.3(c)), our method divides the data in only one
segment (Figure 2.3(b).

2.3 Results

The presented algorithm was applied to a set of point clouds acquired from four
industrial sites. The results are shown in Figure 2.4. For these results the θth was
set to 15o and 30 nearest neighbors were used (k = 30); rth was automatically
calculated by the 98th percentile of the plane fitting residuals. In the results we see
both goals of grouping smooth areas and avoiding over-segmentation have been
successfully achieved. There are areas where large under-segmentation occurred,
but it can be explained based on the values the parameters θth and rth.

For example in Figure 2.4(d) a whole U-section of pipe is segmented as one region,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.4: Results of segmentation (a) residuals of data set 1 (b) segmentation 1 (c) data
set 2 (d) segmentation 2 (e) residuals of data set 3 (d) segmentation 3 (e) residuals 4 (f)
segmentation 4
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Figure 2.5: Effects of changing rth on the final segmentation. Two segments are re-segmented
but with lower rth resulting in more segments

because it is smoothly connected. Similarly in Figure 2.4(h) the L-junctions of
pipes have been grouped as one region rather than being split into two pipes and
one curve.

As for the presented results the residual threshold rth was calculated using the
percentile method, it leads to data dependent values. In Figure 2.5 we took two
segments from the results of Figure 2.4(f) and segmented them again. As now
the data is more limited the threshold rth is lower and more strict. This leads
to segmentation having more regions along with some over-segmentation. Thus
by choosing a proper value for rth the required balance between under and over-
segmentation can be achieved.

2.4 Conclusions

A segmentation algorithm for dividing a given unstructured 3D point cloud into a
set of smooth surface patches has been presented. The algorithm uses only surface
normals as a measure of local geometry, which are estimated by fitting a plane to
the neighborhood of the point. As fitting of higher order surfaces to noisy point
clouds is quite error prone, we approximate the local curvature by the residual
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of plane fitting. The presented method is a region growing based approach using
connectivity and surface smoothness as the guiding principles. The method has two
parameters (θth and rth), which have intuitively clear meaning. Both k nearest
neighbor and fixed distance neighbor variations of the algorithm are possible,
although we prefer KNN as it adapts its area of interest based on point density.
The results on point clouds acquired from industrial sites were presented that show
the effectiveness of the method and its tendency to prefer under-segmentation to
over-segmentation.

In the next chapter we will use the results of segmentation from the presented
method. Each segment will be processed by the Hough transform for the detection
of planes and cylinders. Processing each segment separately rather than the full
point cloud will provide better speed. Moreover, the quality of the object detection
will improve due to a better localization resulting from a reduction in the search
area.
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Chapter 3
Object recognition

In order to begin an analysis, there must already be a synthesis present
in the mind.

Johan Huizinga (1872-1945)

Art is the imposing of a pattern on experience, and our aesthetic
enjoyment is recognition of the pattern.

Alfred North Whitehead (1861-1947)

3.1 Introduction

Recent advances in 3D scanning technologies have made possible high-speed
acquisition of dense and accurate point clouds at moderate costs (Blais, 2004;
Laser scanner survey, 2005). The explicit geometric information available from
these point clouds can be used to automate the 3D reconstruction process, which
has been largely manual till now. This is especially true for the reconstruction of the
industrial sites as due to their man-made origin the presence of well-defined CAD
primitives can be expected. As-built modeling of the industrial sites is required for
documentation, planning, training, and for various emerging technologies that use
Virtual and Augmented reality for different services (STAR, 2004). A high degree
of automation in 3D reconstruction should benefit all of these application areas.

Planes and cylinders are two of the most important geometric primitives found on
industrial sites. 85% of objects found in industrial scenes can be approximated by
planes, spheres, cones and cylinders (Nourse et al., 1980; Petitjean, 2002). This
percentage rises to 95% if toroidal surfaces are also included in the set of available
primitives (Requicha and Voelcker, 1982).

In this chapter we will present extensions of the Hough transform for the automatic
detection of planes and cylinders in point clouds. Although for plane detection this
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extension is quite straight forward, for cylinder detection the direct application of
the Hough transform has prohibitively high computational and space complexity.
This complexity arises due to the five parameters of a cylinder that necessitate the
use of a five dimensional Hough space. We attack this problem by the methodology
of divide and conquer and split the detection process in two separate stages. The
first stage requires a 2D and the second stage a 3D Hough space. This breakdown
solves the space complexity problem while retaining the advantages of the Hough
transform like robustness to outliers and the ability to detect multiple instances.

The rest of the chapter is structured as follows. The details of the Hough transform
for plane detection are given in Section 2. The Hough transform for cylinder
detection is presented in Section 3. Section 4 gives details of the stage of hypothesis
verification and ambiguity resolution needed for differentiating between the planes
and the cylinders when both are being detected at the same time. Some results on
point clouds of industrial sites are presented in Section 5. We give some concluding
thoughts in Section 6.

Both Hough transforms require an efficient method for an unbiased and uniform
area sampling of the orientation space in R3 . We present an approximate method
for solving this problem in appendix A.

3.2 Plane detection

The classical Hough transform for line detection in images is based on the slope-
intercept formulation of a line i.e. y = mx+c, where (x, y) is a point on the line, m
is the slope and c is the y-intercept (Hough, 1962). The Hough transform proceeds
by discretizing m and c and for each image point p = (xp, yp) incrementing all
cells i and j which satisfy ci = yp − mjxp. A big accumulator value in the
Hough space gives the hypotheses for lines. There is one major weakness with
this parametrization. As the valid range of m is from −∞ to +∞, which cannot be
properly discretized, the detection gets poorer as lines become vertical.

This problem for line detection can be solved by parameterizing the line by its
perpendicular distance from the origin expressed in the polar coordinates i.e.
x cos θ+y sin θ = r, where θ is the angle of normal direction with the x-axis and r is
the perpendicular distance. Using this formulation, the Hough space is still 2D but
as 0 ≤ θ < π, we do not have the discretization problem of the classical method
described above. Consequently, this formulation enables the unbiased detection of
vertical lines.

The extension of classical Hough transform from 2D to 3D for plane detection
is quite straight forward. A plane is represented by its explicit equation z =
axx + ayy + d. Here, we have a 3D Hough space corresponding to ax, ay and
d. This extension suffers from the same problems as its 2D counter part i.e., near-
horizontal planes can be reliably detected, while the performance deteriorates as
planar direction becomes vertical (big values of ax and ay amplify the noise in the
data). This formulation of the plane has been used for the detection of planes in the
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(a) (b)

(c)

Figure 3.1: Voting in the Hough space for plane detection (a) Input point cloud (b) The Hough
space for one point (c) The Hough space for three points, with the intersection of the three
voting manifolds giving the parameters of the plane.

point clouds acquired from airborne laser scanning (Vosselman, 1999; Vosselman
and Dijkman, 2001). As there the data is 2 1

2D and most of the planes are non-
vertical this scheme works quite well.

For industrial scenes we cannot make the assumption of only non-vertical planes.
The solution for unbiased planar detection in 3D is quite similar to the one for
2D. We parametrize the plane by its normal direction n̂ =

(
nx ny nz

)
and its

perpendicular distance form of the origin ρ. This is also called Hesse form of the
plane. As there is a constraint on the magnitude of the normal of the plane i.e.
‖n‖ = 1, there are only three degrees of freedom left.

As an unconstrained representation with the minimum number of parameters is
more efficient for the Hough transform we will use spherical coordinates of a unit
sphere (θ, φ) for representing the unit normal n̂.

n̂ =
(
cos θ sinφ sin θ sinφ cos φ

)
0 ≤ θ < 2π 0 ≤ φ ≤ π (3.1)

Here we have a 3D Hough space consisting of θ, φ and ρ. Each given point
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(a) (b)

Figure 3.2: Discretized Hough space for the points in a plane (a) Input point cloud (b) 2D
slices through the 3D Hough space for three different ρ values. The slice in the middle has the
highest accumulator value that corresponds to the correct parameters of the detected plane.

(xp, yp, zp) in the input point cloud votes for all bins θi, φj and ρk which satisfy

ρk = xp cos θi sinφj + yp sin θi sinφj + zp cos φj (3.2)

In Figure 3.1(b) we show the shape resulting in the Hough space from the voting of
a single point. In Figure 3.1(c) three such shapes resulting from three input points
intersect, and the intersection gives the parameters of the plane. As each plane
(n̂, ρ) can be equivalently represented by (−n̂,−ρ), we get two such intersections.
This problem arises due to the ambiguity in the normal direction, and can be solved
by considering the normal directions from a half unit sphere (nz > 0 or nz < 0).

In practice, due to efficiency reasons, the Hough space does not consist of
parametric shapes whose intersection points are calculated. Instead, a discretized
version of the parameter space is used. In Figure 3.2 we show three 2D slices
through the discretized 3D Hough space for a given input point cloud coming from
a plane. The three slices correspond to three different ρ values. As we approach
the correct value of ρ ( the slice in the middle) we get a high accumulator value
giving us all three parameters of the plane i.e. θ, φ, and ρ. As we use half sphere
(corresponding to nz > 0) the problem from normal ambiguity, mentioned above,
does not arise.

3.3 Cylinder detection

Cylinders are one of the most frequently used primitives for industrial design. This
is especially true for processing industries like petrochemical plants, refineries,
nuclear plants etc. As a result automatic and robust methods for their detection
and fitting are essential for the 3D reconstruction of such sites.

Various methods have been proposed in the literature to fit cylinders to point clouds
(Chaperon and Goulette, 2001; Fischler and Bolles, 1981; Lukács et al., 1998;
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Figure 3.3: The five parameters
of a cylinder. (θ, φ) gives the
axis direction in the spherical
coordinates, r is the radius.
P (u, v) gives the position in
terms of u and v which along
with the axial direction n =
(cos θ sin φ sin θ sin φ cos φ)
form the local coordinate system
of the cylinder.

Marshall et al., 2001).These methods can be divided into two main categories:
those requiring a prior segmentation and those processing raw point clouds without
segmentation.

The methods belonging to the first category fit a cylindrical surface to the
segmented point cloud. Most of them use non-linear least squares to minimize
the orthogonal distance of the points from the fitted cylinder (Lukács et al., 1998;
Marshall et al., 2001). These methods assume that the segmentation method used
is able to assign correct labels and there are only a few outliers or segmentation
errors. As is shown in the comparison of segmentation algorithms for planar
surfaces in (Hoover et al., 1996) and for curved surfaces in (Min et al., 2000)
these requirements are not met in most cases. The sensitivity of least squares
based geometric fitting to outliers is well known (Björck, 1996; Press et al., 1988).
Furthermore, non-linear least squares is an iterative process, and to avoid local
minima it requires good initial values of the parameters being estimated. In the
case of over-segmentation the estimated initial values are poor and the method can
get trapped in one of the local minima. In contrast, under-segmentation results in
a high percentage of outliers, resulting in an unfaithful reconstruction.

The methods belonging to the second category try to avoid these problems by
processing raw point clouds by using robust fitting methods like RANSAC (Bolles
and Fischler, 1981; Chaperon and Goulette, 2001; Fischler and Bolles, 1987). For
example in (Chaperon and Goulette, 2001) RANSAC is used for cylinder detection
and fitting.

The Hough transform based methods have long been used to tackle problems of
outliers and multiple instances (Hough, 1962). In noisy and cluttered images they
have no parallel in finding lines and curves like circles (Kimme et al., 1975). A
major drawback of the Hough transform is its time and space complexity. For
geometric fitting problems the space and time complexity can be approximated by
O(sp) and O(sp−1n) respectively, where n is the number of points, s is the number
of samples along one Hough dimension, and p is the dimension of the Hough
space. Furthermore, in most of the modeling projects employing laser scanning the
number of points can be in the order of millions. Due to these reason the use of the
Hough transform becomes impractical for the fitting of objects having more than
three parameters.
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(a) (b)

Figure 3.4: Orientation estimation by the detection of great circles on the Gaussian sphere of
the point cloud (a) Input point cloud (b) Gaussian sphere resulting from plotting normals of
the point cloud, two great circles corresponding to two cylinder orientations are visible.

Although a cylinder has five degrees of freedom, different parameterizations to
represent it have been proposed in the literature. For example Lukács et al. (1998)
uses seven parameters with two constraints. The parameterization we propose is
shown in Figure 3.3 and is the best suited for the Hough transform as it uses a
minimum number of free parameters with no constraints. Using the previously
stated formulas for the space complexity of the Hough transform, for the case of
cylinders p = 5. This means if we use a small number of 100 samples along each
parameter, i.e. s = 100, with each cell represented as a 4 byte integer, the required
Hough space is 36.3 Giga Bytes (GB). Similarly for a more typical value of s = 200,
this figure rises to 1164 GB. In practice the value of s may be much larger than
200 resulting in even higher numbers. Thus the use of a 5D Hough space is not
practical.

One effective way to reduce the space and time complexity of the Hough transform
is to use sequential processing by break down the problem into a set of manageable
sub-problems. That is the approach we employ here by dividing the problem of
cylinder fitting into two separate steps. The first step uses the Gaussian sphere of
the point cloud as its input and consists of a 2D Hough transform. It finds strong
hypothesis for the direction of the cylinder axes. In the second step a 3D Hough
transform is performed for a few neighboring directions found in step 1, leading
to the determination of position and radius of the cylinder. Thus the sequential
processing allows us to reduce the effective dimension of the Hough space required
for cylinder detection from five to three.

3.3.1 Orientation Estimation

The first step in our sequential Hough transform finds strong hypotheses for the
cylinder orientation. This orientation estimation is based on the observation that
for cylinders the normals make a great circle on the Gaussian sphere (Carmo,
1976). This great circle results from the intersection of the unit sphere with a
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Figure 3.5: How a point P in the input
Gaussian sphere votes for a circle in the Hough
space (a) Point P on the input Gaussian sphere,
votes for a great circle on the Hough Gaussian
sphere in (b). This great circle C results from
the intersection of the Gaussian sphere with a
plane whose normal n equals P.

plane passing through the origin. The normal of this plane is given by the cylinder
axis (Figure 3.4).

The standard Hough transform to find planes in 3D uses a three dimensional Hough
space (Section 3.2). In the current case we have two constraints that will enable us
to reduce the dimension of the Hough space from three to two. Furthermore, we
will exploit these constraints to formulate a rapid update method for the Hough
space.

The first constraint comes from the requirement that the plane must pass through
the origin, meaning ρ = 0. This enables us to remove the third parameter
corresponding to the perpendicular distance from the origin, leaving us with a
2D Hough space. Secondly, the plane must intersect the unit sphere, which means
that each input point votes for one circular region in the Hough space (Figure 3.5).

Since the Hough transform for this step uses the Gaussian sphere as its input,
we need to estimate the normal for each point in the input point cloud. As we
do not require the triangulation of the data to be available, the normal estimation
methods specific to triangulated data (Petitjean, 2002) cannot be used. Instead, we
use a method more suited to unstructured point clouds. This method searches for
k nearest neighbors of each point, and then estimates its normal by eigen-analysis
of its covariance matrix. For more details see Chapter 2.

As explained above, the constraints in our problem allow us to remove the
third parameter, corresponding to the distance of the plane from the origin,
from the standard plane-fitting Hough transform. This leaves us with quite a
unique situation, because on the input we have the Gaussian sphere of the point
cloud, while the Hough space consists of only orientation of the plane normal
(representing the great circle and hence the cylinder orientation), which can be
interpreted as another Gaussian sphere. To distinguish between these two separate
entities we have named the Gaussian sphere resulting from the normals of the
input point cloud as Input Gaussian sphere, while the one in the Hough space is
named the Hough Gaussian sphere (Figure 3.6).

Each point in the input Gaussian sphere represents an orientation and it votes for
all planes on the Hough Gaussian sphere whose normals are orthogonal to this
point. The set of all points in R3 orthogonal to a given direction forms a plane,
but in this case the plane must intersect the Hough Gaussian sphere giving a great
circle. Thus each point in the input Gaussian sphere votes for a great circle on the
Hough Gaussian sphere. The normal of this great circle is given by the orientation
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Figure 3.6: Step 1: Orientation estimation. (a) Input cylinder. (b) Input Gaussian sphere
with the great circle corresponding to the input cylinder. (c) The Hough Gaussian sphere where
each point in the input Gaussian sphere votes for a great circle; their intersection estimates the
orientation by giving a big value in the Hough space.

represented by the current point. This voting scheme for a single point is shown in
Figure 3.5, while Figure 3.6 shows how individual points belonging to a cylinder
(a great circle on the input Gaussian sphere) vote for their corresponding great
circles on the Hough Gaussian sphere, whose intersection gives an estimate for the
cylinder orientation.

The rapid update method described above requires a parametric equation of
the great circle with a given normal expressed in the spherical coordinates.
Given this parametric equation each point from the Input Gaussian sphere can
directly calculate the respective cells in the Hough Gaussian sphere and vote by
incrementing them. The parametric equation for the great circle in the xy-plane
with the z-axis as its normal is given by:

x = cos t y = sin t z = 0 0 ≤ t ≤ 2π (3.3)

To get the points for a great circle with a given normal we need to apply an
orthonormal transformation (either a rotation or a reflection) to each point given
by Equation 3.3. This transformation matrix must transform the z-axis to the
normal of the required circle. Such a reflection matrix can be derived using
Householder reflection (Golub and Loan, 1991) as follows:

z =
(
0 0 1

)T
(3.4)

n =
(
cos θ sinφ sin θ sinφ cos φ

)T
(3.5)

R = I− 2bbT (3.6)

Where b = z− n
‖z− n‖

Using these expressions for a point P(θ, φ) the resulting reflection matrix is given
by:

R =

 sin2 φ− cos φ cos2 θ −(1 + cos φ) cos θ sin θ sinφ cos θ
−(1 + cos φ) cos θ sin θ cos φ cos2 θ − cos φ + cos2 θ sinφ sin θ

sinφ cos θ sinφ sin θ cos φ

 (3.7)

Where (θ, φ) are the spherical coordinates of the point on the input Gaussian
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sphere. In the Figure 3.5 and Figure 3.6 we see this voting by the points on the
input Gaussian sphere to the cells in the Hough Gaussian sphere.

The algorithm for step 1 of our procedure is as follows:

(a) Calculate the normals for all points in a given point cloud using plane fitting
on their k nearest neighbors.

(b) Make a sampled Hough space to represent the Hough Gaussian sphere for
the orientation of the cylinder axis using the approximate uniform sampling
outlined in appendix A.

(c) For each point in the input data, use the spherical coordinates of its normal
calculated in step (a) to derive the matrix R using Equation 3.7.

(d) Increment the cells in the Hough space given by the rotated parametric form
of the circle (Equation 3.3 and 3.7).

(e) Find the points in the Hough Gaussian sphere whose accumulator values are
greater than a threshold. These are the hypotheses for the cylinder directions.
A filtering step might be necessary to counter the effects of many local maxima.

3.3.2 Position and Radius Estimation

As explained in Section 3.3.1 a cylinder can be represented by five parameters. Step
1 gives us strong hypotheses of the cylinder orientation. Still there remain three
unknown parameters corresponding to the position in the plane perpendicular to
the estimated axis and the radius of the cylinder.

We begin step 2 by projecting all the points to the plane perpendicular to the
cylinder axis estimated in step 1. For this purpose we need an orthonormal
coordinate system with cylinder orientation as one of its axes. There are two
possibilities to calculate such a set of orthonormal basis from a given vector, either
we can use Gramm-Schmidt orthogonalization (Fraleigh and Beauregard, 1995;
Press et al., 1988) or singular value decomposition can be used (Golub and Loan,
1991). Both of these options produce an orthonormal coordinate frame for the
projection consisting of three basis vectors,

(
u v n

)
where n equals the cylinder

axis (from step 1), and u and v are the other two orthonormal basis vectors.

After the projection to the plane, we proceed to calculate the position and the
radius of the cylinder using circle fitting on the projected points. The Hough
transform for circle fitting is based on the formulation given by Kimme et al.
(1975). For a given radius r, each projected point votes for the bins in a circular
region in the Hough space with the current point as their center. If the projected
coordinates of a point are given by (up, vp), it votes for the cells in the Hough space
given by:

(r cos ω + up r sinω + vp) 0 ≤ ω < 2π (3.8)
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(a) (b)

Figure 3.7: Step 2: position and radius estimation (a) Points are projected along the
estimated orientation or one of its neighbors (b) A 2D slice through the 3D Hough space
corresponding to the correct radius. Each projected point votes for a circle that represents the
locus of the possible circle centers. For the correct radius all these circles intersect, thus giving
the highest count in the Hough space.

The peak in the Hough space estimates the radius of the cylinder directly. However,
the position is still in the projection coordinate system calculated above. It must be
transformed back to the world coordinate system to get a 3D point on the axis of
the cylinder. This coordinate transformation is given by the following matrix T:

T =

ux uy uz

vx vy vz

nx ny nz

 (3.9)

The above described process is performed for each orientation found in step 1
along with some of its neighbors on the uniform sampling of the Gaussian sphere
(See appendix A). The inclusion of these neighbors results in the refinement of the
orientation estimate in addition to the determination of the position and radius of
the cylinder.

The algorithm for step 2 of our procedure can be summarized as follows:

(a) For each orientation found in step 1, find its N nearest neighbors. For this
neighbor search use approximate uniform sampling (see appendix A).

(b) For each orientation n derive an orthonormal coordinate system consisting
of three basis vectors given by

(
u v n

)
using Gramm-Schmidt

orthogonalization or singular value decomposition. Project all the points to
this new coordinate system.

(c) For each value of radius r in a user-specified radius range, increment cells
in the Hough space given by Equation 3.8 for each projected point given by(
up vp

)
.
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(d) Find the peak in the 3D Hough space. This gives the cylinder radius directly.
Transform the position by the transformation matrix T (Equation 3.9) to the
world coordinate system

(e) Remove the points corresponding to the found cylinder from the data. If
enough points remain, proceed with the step 1 for the detection of next
cylinder.

Figure 3.7(a) shows the results of the projection, while Figure 3.7(b) shows a
2D slice through the three-dimensional Hough space corresponding to the correct
radius.

3.3.3 Example

To explain the above described steps, in Figure 3.8 we show the step-by-step
process for a point cloud captured from an L-junction. In 3.8(a) we show the
original point cloud, 3.8(b) shows the estimated normals as arrows. 3.8(c) and
3.8(d) illustrates the step 1 of orientation estimation, with 3.8(c) showing the
input Gaussian sphere with two great circles corresponding to the two different
cylinder orientations. In Figure 3.8(d) the Hough Gaussian sphere has two distinct
peaks detecting the two strong hypotheses for cylinder orientations. In Figure
3.8(e) we illustrate the process of neighboring orientation selection on uniformly
sampled Gaussian sphere, which is necessary for the refinement of the orientation
estimation coming from step 1. Figure 3.8(f) shows the 2D slice through the 3D
Hough space for position and radius estimation (step 2). The slice corresponds to
the correct radius where the peak gives the position of the cylinder. 3.8(h) shows
the final result, where both cylinders are successfully detected. For the results
shown in Figure 3.8 the Hough space for step 1 consisted of 250, 000 cells, whereas
Step 2 used a 3D Hough space having 512× 512× 100 ∼= 26× 106 cells. In contrast
a straight forward 5D Hough space for equivalent results would have required
512×512×100×512×512 ∼= 7×1012 cells, which even for today’s ever expanding
standards is quite impractical. However, the presented sequential Hough transform
reduces the space complexity, making the problem manageable.

3.3.4 Results of cylinder detection

Figure 3.9 shows the results of the presented algorithm on two data sets from two
industrial sites. During their processing it was found that during the step 1 of
orientation estimation the large clusters on the input Gaussian sphere, resulting
from big planar areas, interfered with the step 1 of cylinder axis estimation. To
resolve this problem, the data sets were preprocessed with a plane-fitting Hough
transform (Section 3.2 to remove planar areas. A technique for simultaneous
detection of planes and cylinders based on hypothesis verification is presented in
the next section.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.8: Step-by-step processing of the point cloud of an L-junction (a) Input data (b)
Estimated normals, notice the ambiguity in outward pointing direction, justifying the use of
the half sphere (c) Input Gaussian sphere. There are two great circles one corresponding to
each cylinder direction (d) Hough Gaussian sphere. We get two distinct peaks; the highest peak
carrying the red arrow is for the longer cylinder (e) Selection of the neighboring orientations
using approximate uniform sampling of the unit sphere. The orientation predicted by Step 1 is
in the center. (f) Step 2 of the position and radius estimation shown for the correct orientation
and radius (a 2D slice through 3D Hough space). The peak gives the position of the cylinder.
(g) The points belonging to one cylinder selected automatically based on distance threshold and
normal similarity (h) Final result, both cylinders have been automatically found.
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(a) (b)

(c) (d)

Figure 3.9: Results of the Hough transform for cylinder detection. (a and c) Input point cloud
(b and d) Results of cylinder detection.

Figure 3.9(a) shows point cloud 1, while Figure 3.9(b) shows the detected
cylinders. The sequential Hough transform has been able to detect cylinders not
only in different orientation, but also multiple radii along one orientation have
been successfully found.

This success can be explained by the sequential nature of our algorithm, because
for each orientation found in step 1, we look for positions and radii within a user-
specified bound in step 2. The peak corresponds to one cylinder. Next, we select
the points belonging to this cylinder, based on a distance and normal similarity
threshold. The selected points are removed from the input point cloud, and if
sufficient points remain we proceed with the next iteration.

Figure 3.9(c) and Figure 3.9(d) show another dataset from an industrial plant
along with the found cylinders. As for this dataset wider radius bounds were
specified, cylinders of both small and big radii were successfully detected.

3.4 Ambiguity resolution by hypothesis testing

The Hough transform is an automatic model detection technique through voting
in a discretized parameter space which is robust to outliers and can also detect
multiple instances of a given type of object. A big value in the Hough space
indicates that there is a high probability that one or more instances of the object
represented by this cell in the parameter space does exist in the input data.
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Figure 3.10: Ambiguity between
the cylinder and the plane (a)
Multiple planar patches can be fitted
to a cylinder (b) multiple cylinders
fitted to a plane

However, without verification of this hypothesis, there is no guarantee that the
detection is correct and valid. Consequently, the Hough transform must be followed
by a verification and validation stage.

The simplest verification scheme is to select the points within a certain distance dth

from the detected object, and if the number of the selected points exceeds a given
threshold nth, the hypothesis is said to be verified. This scheme works quite well in
2D problem and is used almost exclusively for line and circle detection in images.

In 3D the data has more degrees of freedom, and as a next refinement we can add
normal similarity to distance thresholding. For a given point cloud the normals are
estimated using the techniques from Chapter 2. Only those points whose normal
makes an angle less than θth with the predicted ideal normal of the detected object
are deemed suitable for verification.

An additional problem arises when two or more different types of objects are
being simultaneously detected, but their domains are not mutually exclusive.
This results in an inherent ambiguity which must be resolved by providing some
extra information in terms of distinguishing characteristics of the ambiguous
models. Such an ambiguity arises for example when planes and cylinders are being
simultaneously detected. A cylinder can be locally represented by a planar strip
(Figure 3.10(a)). Similarly a plane can be represented by a cylinder of infinitely
big radius. Just putting a threshold on the radius of acceptable cylinders does not
solve the problem, because a big plane is now divided into a series of cylinders
each of which fits a long sub-strip of the plane(Figure 3.10(b)). All these solutions
are mathematically valid, but not desirable, as they do not match the response of
a human operator.

This implies that just distance and normal based hypothesis verification does not
possess enough discriminating power to resolve this ambiguity. Such a simple
verification scheme will either split all cylinders into narrow planar strips or all
planes will be divided into a series of cylinders. What is needed is a set of
constraints expressed in terms of some quantitative measure that summarizes the
user’s notion of what is an acceptable cylinder or an acceptable plane. Next we
present such measures for the ambiguity resolution between planes and cylinders.
We call them Planarity and Cylindricality test.
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Figure 3.11: Planarity test (a) Distance of
the points from the detected plane and the
local point normals vs ideal plane normal
(b) histogram of the distances from the
plane and histogram of the angle between
point normals and the normal of the
plane. For a planar region both of these
histograms should look like a very peaked
distribution (c) Aspect ratio can help avoid
fitting of long strips of planes to cylinders.

Figure 3.12: Cylindricality test. For
accepting a cylinder a histogram of the
angular coverage of points is used. For
example 25% or higher coverage could be
required.

3.4.1 Planarity test

The intuitive notion of a plane that distinguishes it from a cylinder can be described
by a combination of following measures (Figure 3.11).

1. The histogram of the distances of the points from the detected plane (or
residuals of plane fitting) should look like a peaked distribution (Figure
3.11(a)). One measure of peakedness is the sum of the squares of the
histogram entries divided by the squares of the number of points. This
measure can have a maximum value of 1. Another measure of peakedness,
often used in statistics, is kurtosis which is based on the 4-th moment of the
histogram (Weisstein, 2005).

2. The histogram of the angles of the points with the plane normals should be
peaked as well (Figure 3.11(a)). For measuring the peakedness one of the
techniques suggested above can be used.

3. To avoid the splitting of cylinders into multiple thin planar slices, we require
the aspect ratio of the region to be close to 1 (Figure 3.11(b)). The aspect
ratio is defined as the ratio of the maximum to minimum extent of the points,
after they have been projected to the detected plane. For this projection
techniques similar to Section 3.3.2 can be used. A very high aspect ratio
means a very thin slice, which might be coming from a cylinder, and can thus
be rejected.

Note that this planarity measure is calculated after the initial selection of the points,
based on the distance and the normal similarity threshold described above.
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3.4.2 Cylindricality test

For accepting a cylinder we use the measure consisting of following quantities.

1. We assume that a significant portion of the cylinder is visible to the scanner. A
typical significant portion can be 25% or more of the cylindrical surface. This
notion can be quantified by counting the number of points whose normals
make a certain angle with a reference direction. We can also put it in terms of
the great circle, which if divided into n bins, should result in at least 25% the
bins containing points more than a given threshold (Figure 3.12). This test
takes care of a cylinder being partially fitted to a plane, as there the coverage
can never be more than 5-10% (provided the radius limits are realistic).

2. The length of the cylinder should be greater than a given threshold. It is
not desirable to have a lot of tiny cylinders. The length is measured by
projecting the points along the axial direction and creating a its discretized
image. All the bins in this discretized image with a count greater than a
threshold are kept, and the linear segments are found through connected
component analysis. All linear segments (representing connected points on
the cylinder) having a length greater than a threshold lth are kept.

3. There should be a minimum and maximum limit on the radius of cylinders.
These limits will speed up the second step of cylinder detection (Section
3.3.2). Additionally, in combination with measure 1 above it solves the
problem of infinite cylinders or multiple stacked cylinders being fitted to
planar surfaces.

3.5 Results

The simultaneous method of plane and cylinder detection through the presented
Hough transforms combined with the stage of ambiguity resolution was applied to
a data set from a petrochemical industrial plant. The point cloud consisted of 20
million points, which were first segmented using the methods presented in Chapter
2. Each segment was then processed through the presented Hough transforms
for plane and cylinder detection. As the segmentation based on the smoothness
constraint avoids over-segmentation, processing each segment separately provides
a better result by localizing the parameter space for the Hough transform. For
ambiguity resolution the following parameter settings were used for planarity
and cylindricality tests. The distance threshold dth was set at 20mm, the angle
threshold θth at 15◦ and the minimum number of points threshold nth at 2000.
For a cylinder a minimum surface coverage by measured points of 25% or 90◦ was
required, the acceptable radius limits were 50mm < rcyl < 1m and the minimum
cylinder length was set at 200mm. For planarity test the maximum acceptable
aspect ratio was set at 5 and the histogram peakedness measures was required to
be more than 0.75. This resulted in a fully automatic detection of 946 planar and
1392 cylindrical patches. The results are shown in Figure 3.13.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Results on the point cloud from a petrochemical plant (a-b) input point cloud (c)
results of segmentation (d-e) detected planes and cylinders (f) histogram of the distance to the
closest model

To analyze the results of this automatic detection the histogram of the distance
of all points in the input point cloud to the closest model detected through the
Hough transform is shown in Figure 3.13(f). We see the first peak at 8mm, which
is close to the point accuracy of Cyrax scanner (6mm) which was used for the data
acquisition. From the plot we see that more than 50% of the points have a distance
of less than 1cm to the closest modeled surface. The distances of 2cm to 10cm
are caused by un-modeled surfaces like elbows, screws, valves and other structure
present on the site, which cannot be represented by planes and cylinders. About
55-60 % of the points have been used for the automatically detected objects.
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3.6 Conclusions

We have presented extensions of the Hough transform for the automatic detection
of planes and cylinders in the point clouds of industrial facilities. Although the
extension for plane detection is quite straight-forward, the space-complexity for
cylinder detection arising from its 5 parameters, required a two-step approach.
This enabled us to employ a combination of a 2D and a 3D Hough transform,
making the problem manageable. The results showed this sequential breakdown
still maintains the advantage of robustness against outliers and multiple instances
that necessitated the use of the Hough transform in the first place.

As the domains of the planar and the cylindrical models overlap, the resulting
ambiguity was solved through imposition of extra constraints. These constraints
were summarized in terms of a planarity and a cylindricality test that allowed us
to select the appropriate model in the same manner as a human operator would
do. As the planes and the cylinders are two of most commonly found objects on
industrial installations, their automatic detection can decrease the manual effort
required for reverse engineering. We presented results on some data-sets from
industrial installations, which show the strength and success of the presented
approach.



Chapter 4
Model fitting to point clouds

Pursuit of the approximate can conclude. Not so pursuit of the
absolute.

Mason Cooley (b. 1927)

Nature knows nothing but solid bodies; your science deals only with
combinations of surfaces.

Honor De Balzac (1799-1850)

4.1 Introduction

In this chapter we address the problem of fitting a given model to a set of 3D points.
As argued in Chapter 1, modeling is a necessary process for converting the point
cloud to a useful CAD representation. It provides a complete picture of the as-built
situation by filling the gaps coming from occlusions, by averaging the effects of
noise and by providing the quality measures about the final results.

In the previous chapter we presented methods based on the Hough transform for
the automatic detection of planes and cylinders in a segmented point cloud. The
Hough transform must be followed by a fitting stage because the quality of the
parameters estimated there depends on the granularity of the Hough space. By
fitting a model to the points selected through the Hough transform, the side-effects
arising from the quantization of the Hough space are eliminated. Furthermore,
the parameters of other categories of simple objects like spheres, cones and tori,
which have not been automatically detected, must be estimated through model
fitting. The estimation process also provides a tool to check and measure the
deformations in the model by statistical analysis of resulting residuals. For this
purpose we present methods for fitting simple objects through least squares.

In the traditional modeling pipeline, the fitting of the simple objects is followed
by a manual editing stage to produce a final Boundary representation (B-rep)
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model. This is a labor-intensive process and the quality of the results are usually
poor as they are solely based on human interpretation without using either the
acquired data or the a priori information. We present an automatic method
for this conversion by fitting a complex model represented as Constructive Solid
Geometry (CSG) tree to the selected subset of points. CSG is frequently used
as a representation scheme for industrial design in many sectors. For example
in petrochemical industries most of the CAD packages use object libraries based
on CSG (AVEVA PDMS, 2005; Intergraph PDS, 2005). As the initial design
of many sites is carried out using these CAD libraries, the use of CSG during
reconstruction comes naturally and is justified. Moreover, CSG encodes the a
priori shape knowledge in the form of geometric constraints, whose enforcement
further reduces the degrees of freedom and thus leads to a better estimation of the
parameters of the model.

The rest of the chapter is organized as follows. In Section 4.2 we give a
mathematical definition of the general model fitting problem and present the
details of its nonlinear least squares counterpart, which is used exclusively in the
next sections. Section 4.3 presents methods for fitting of simple objects like planes,
spheres, cylinders, cones, and tori to the point cloud. The techniques for getting
good approximate values, which are essential for the convergence of the iterative
nonlinear least squares methods, are also presented. In Section 4.4 we present
methods for fitting of models represented as CSG trees to given point clouds.
Section 4.5 contains some results and comparisons, and finally we conclude in
Section 4.6.

4.2 Problem definition

Model fitting can be posed as an optimization problem, where we search for those
parameters of a given type of model which lead to the best agreement between the
selected points and the resultant model. This degree of agreement for one point
can be assessed by its distance from the model surface, while for the point cloud it
can be measured by the sum of a function of the distances for all points. A lower
value of this sum indicates a higher degree of match and vice versa. Two distance
measures typically used are the algebraic and the geometric distance.

Mathematically the model fitting problem can be formulated as follows:

min
τ1,τ2,···τm

N∑
i=1

z(Ψ[pi,Γ(τ1, τ2, . . . , τm)]) (4.1)

In Equation 4.1 Γ(τ1, τ2, . . . , τm) is the model being fitted to the given point cloud
consisting of n points p1, p2, · · · , pn. The model is parametrized by m shape and
pose parameters τ1, τ2, . . . , τm. Ψ is a function giving the distance (algebraic,
orthogonal or some other distance measure) of the i− th point pi from the model,
and z is a function of this distance ((.)2 for least squares, |.| for M-estimator etc). z
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should be even i.e. z(−x) = z(x), so that the negative and the positive distances
do not cancel each other.

In this chapter we will look at the problem of fitting different types of surfaces (Γ in
Equation 4.1) like planes, spheres, cylinders, cones, tori and CSG models to a given
point cloud. We will use the orthogonal distance for Ψ as the comparison with the
algebraic distance in Section 4.2.2 will show the orthogonal distance to give a
superior performance. For z we will use the square of orthogonal distance i.e.
(.)2, converting the above problem to the following general least squares problem:

min
τ1,τ2,···τm

N∑
i=1

Ψ2[pi,Γ(τ1, τ2, . . . , τm)] (4.2)

4.2.1 Fitting method

The problem in Equation 4.2 can be solved by one of the standard non-linear least
squares methods. We decided to use Levenberg-Marquardt method as it provides
better convergence properties by adaptively combining the step given by Newton’s
method and that of the steepest descent (Bertsekas, 1995; Björck, 1996; Dennis
and Schnabel, 1996; Press et al., 1988).

Starting from an initial estimate of the model parameters Γ0, at each iteration we
get an adjustment ∆Γ given by:

∆Γ = (JT WJ + λI)−1(JT WD) (4.3)

Γ1 = Γ0 −∆Γ (4.4)

Here J is the Jacobian matrix and D is the distance vector given by:

Jik =
∂Ψi

∂τk
=

∂Ψ(pi,Γ0)
∂τk

(4.5)

Di = Ψ(pi,Γ0) (4.6)

W is the weight matrix giving the quality of each point measurement and λ is the
Levenberg-Marquardt parameter. For λ = 0 Newton step is taken. As λ → ∞ the
iteration leans towards steepest descent step. A typical procedure for the adaptive
selection of λ is given by Press et al. (1988, chap. 15.5).

The covariance matrix C of the estimated parameters can be computed by:

C = (JT WJ)−1 (4.7)

For more details see Bertsekas (1995); Björck (1996); Dennis and Schnabel (1996).
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4.2.2 Different distance measures

In Equation 4.1 and 4.2 different distance measures Ψ between a 3D point and
the model being fitted can be used. Two such frequently used measures are the
Algebraic distance and the Geometric or Orthogonal distance.

Algebraic distance This distance measure is defined only for those surfaces which
can be expressed as an implicit function (Chapter 1). The zero set of
the implicit function gives the model surface i.e. f(x, y, z) = 0. For any
point on the model surface the implicit function equals zero. For any point
po =

(
pox poy poz

)
off the surface the value of the implicit function

f(pox, poy, poz) is related to the distance, though this relation depends on
the type of the surface. For example in the case of a sphere of radius r and
centered at c =

(
cx cy cz

)
, the algebraic distance which equals the value

of the implicit function is given by dalgebraic = (pox−cx)2+(poy−cy)2+(poz−
cz)2 − r2 while the orthogonal or geometric distance of the point from this
sphere would be dgeometric =

√
(pox − cx)2 + (poy − cy)2 + (poz − cz)2 − r.

Which means that there is a nonlinear relationship between the algebraic
and the geometric distance and it can be said that the algebraic distance for
the sphere approximately equals the square of the geometric distance. This
square relationship results in a higher sensitivity to the outliers and noise for
the algebraic distance compared to the geometric distance.

There are two attractive features of the algebraic distance. Firstly, its
calculation is very simple provided an implicit functional form for the given
model exists. Secondly, the implicit function formulation results in a linear
least squares problem which has a non-iterative closed-form solution. As
a result the algebraic distance based fitting can be used as a quick way to
calculate approximate values.

Geometric distance The smallest distance of a point from the model surface, so
that the local surface normal and the line joining the closest point to the
given point are collinear, is called the Geometric or the Orthogonal distance.
In most cases the calculation of the orthogonal distance is more complicated
than the corresponding calculation of the algebraic distance. In contrast
to the algebraic distance which is defined only for those surfaces which
can be expressed as an implicit function, the geometric distance is defined
for all surfaces. When using the least squares estimation, the geometric
distance always results in a nonlinear (some times constrained nonlinear)
least squares fitting problem and thus necessitates the use of an iterative
method for its solution. In general the use of the geometric distance results
in a better solution compared to the algebraic distance. This is especially true
in the presence of noise and small outliers.
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(a) (b) (c)

(d)

Figure 4.1: The algebraic vs the geometric
distance fitting for a sphere (a) Full sphere
(b) Half sphere (c) Quarter sphere (d) The
noise level vs the ratio of the mean squared
error of the least squares fitting based on
the algebraic distance to the one based on
the geometric distance εalgebraic

εgeometric
− 1.

Noise level εalgebraic
εgeometric

− 1
(m) Full sphere Half sphere Quarter sphere

0.001 2.62e-7 1.05e-6 7.2e-4
0.003 1.52e-6 5.42e-6 1.27e-5
0.005 6.78e-6 7.94e-5 2.2e-4
0.010 2.53e-5 2.54e-4 0.0012
0.025 1.62e-4 1.75e-3 7.36e-3
0.050 6.39e-3 6.48e-3 0.0255
0.100 2.51e-3 0.027 0.087
0.125 3.9e-3 0.032 0.119
0.150 5.7e-3 0.041 0.166
0.200 8.9e-3 0.077 0.143

Table 4.1:
Comparison of
fitting based on the
algebraic and the
geometric distance for
a sphere with different
point coverages and
noise levels.

Comparison of distance measures for sphere fitting

To compare the performance of the geometric distance with the algebraic distance
we generated points from a unit sphere with different amounts of Gaussian noise.
Three different versions of the sphere were used, a full sphere, a half sphere and a
quarter sphere to test the sensitivity of the method to partial coverage (Figure 4.1).
The results of εalgebraic

εgeometric
− 1, are given in Table 4.1 and plotted in Figure 4.1(d).

ε measures the mean squared error after least squares fitting. From Table 4.1 we
see that compared to the geometric distance, the algebraic distance based fitting
always results in a higher mean squared error. The relative performance of the
algebraic distance deteriorates as more noise is added. Moreover, the error of the
algebraic distance based fitting is strongly influenced by the area coverage as the
results for the full sphere are better than those for the half sphere. The results for
the quarter sphere are the worst. The final dip in the graph for the quater sphere
is due to some numerical effect that leads to a fall in the relative error.
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This comparison shows that in general the use of the geometric distance results in
a better estimation of the model, which is less sensitive to noise and area coverage.
Nevertheless, because of the closed form solution the algebraic distance based
fitting can be used for getting good approximate values. For more details about
the comparison of the accuracy and speed of algebraic vs. the orthogonal distance
for different types of surfaces see Ahn et al. (2002); Helfrich and Zwick (1993);
Tucker and Kurfess (2003)

In the following sections we will address the problem of model fitting through
the least squares estimation based on the geometric distance. For getting the
approximate values the algebraic distance based quadric fitting will be used.

4.3 Fitting of simple geometric objects

In this section we will give methods for fitting planes, spheres, cylinders, cones
and tori to a set of 3D points. We will start with quadric fitting based on the
algebraic distance, which will be used for calculating good approximate values for
the sphere, the cylinder and the cone.

4.3.1 Quadric fitting for approximate values

A quadric is a second degree surface expressed by the following implicit equation:

ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0 (4.8)

As for fitting any other model, here also we have to choose between the geometric
and the algebraic distance (Section 4.2.2). A method for the calculation of the
geometric distance of a point from a quadric surface is given by Eberly (2001),
which requires finding the roots of a 6-th degree polynomial. As we are interested
in an approximate solution, the algebraic distance can be safely used. Next we will
present the linear least squares problem which arises for quadric fitting based on
the algebraic distance.

From Equation 4.8 we see that a quadric has only 9 degrees of freedom but we
have ten coefficients. This over-parametrization can be taken care of by putting a
constraint on the parameters of the quadric. If we choose the following constraint:

a2 + b2 + c2 + f2 + g2 + h2 + p2 + q2 + r2 + d2 = 1 (4.9)

the resulting problem can be solved through the use of Lagrange multipliers. By
following a derivation similar to the one given for plane fitting in Chapter 2, the
problem can be reduced to an eigenvalue problem.

If we define the following matrices for a point cloud having n points, where n >= 9.
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Table 4.2: The subset of the quadric surfaces
used for getting approximate values for the
sphere (row 1), the cylinder (row 2), and the
cone (rows 3-5) and their standard equations.
The quadric is estimated through linear least
squares based on the algebraic distance.

:

A =


x2

1 y2
1 z2

1 2y1z1 2z1x1 2x1y1 2x1 2y1 2z1 1
x2

2 y2
2 z2

2 2y2z2 2z2x2 2x2y2 2x2 2y2 2z2 1
...

...
...

...
...

...
...

...
... 1

x2
n y2

n z2
n 2ynzn 2znxn 2xnyn 2xn 2yn 2zn 1

(4.10)

n =
(
a b c f g h p q r d

)T
(4.11)

M = AT A = EΛET (4.12)

It can be shown that the constrained least squares solution for n is given by that
eigenvector of M (ith column of matrix E) which corresponds to its minimum
eigenvalue (ith diagonal element λi of matrix Λ above).

The quadric given by the vector of parameters n estimated above is not yet in the
standard form and contains a residual rotation and shift. Next we will present a
method for their calculation so that the estimated quadric can be transformed to
its standard equation (Table 4.2).

Canonical analysis of the quadratic form

Canonical analysis is a method to reduce a given quadratic form to one of the
standard forms (Table 4.2) by an appropriate rotation and translation of variables.
The rotation removes the cross product terms and the translation takes care
of the linear terms (Box and Draper, 1986, chap. 10.3);(Borg and Bielajew,
1995);(Fraleigh and Beauregard, 1995, chap. 8).

As we are going to use canonical analysis only on the quadric surfaces, henceforth
we will derive the method only for that case. Equation 4.8 can be written in the
matrix form as follows:

vTQv + vTb + d (4.13)

where Q =

a h g
h b f
g f c

, b =

2p
2q
2r

 and v =

x
y
z


Let λ1, λ2, λ3 be the eigen values of the symmetric matrix Q and e1, e2, e3 be the
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corresponding eigen vectors. We require that all eigen vectors are of a unit length
i.e. ‖ei‖ = 1. Let E be a 3 × 3 orthogonal matrix whose columns consists of
these eigen vectors, and Λ be a diagonal matrix with corresponding eigen values
as diagonal entries, then by definition we have

QE = EΛ (4.14)

Pre-multiplying both sides by ET and using the fact E−1 = ET gives

ET QE = Λ (4.15)

Using EET = I Equation 4.13 can be written as:

(vT E)ET QE(ET v) + (vT E)(ET b) (4.16)

Lets now define va = ET v and ba = ET b. Substituting these in Equation 4.16 we
get

vT
a Λva + vT

a ba + d (4.17)

As the matrix Λ in the above expression is diagonal the cross terms are removed
and we are left with an equation having only linear terms and a constant. The
linear terms are due to a remaining shift which we will calculate next.

To find the translation we take the derivative of Equation 4.17 w.r.t va giving:

2Λva + ba (4.18)

If the unknown translation is t the Equation 4.18 will vanish at the origin (i.e. at
va = 0 ) after this translation.

2Λ(va + t) + ba = 0 (4.19)

va = 0⇒ 2Λt = −ba (4.20)

⇒ t = −1
2
Λ−1ba (4.21)

Now, by replacing va by vb = (va + t) in Equation 4.17 we can get rid of the
linear terms. As a result of this substitution, the final constant term d is changed to
db = d + tT ba.

The final equation of the quadric in canonical form is given by:

vT
b Λvb + db = 0 (4.22)

This gives an excellent method to get approximate values for the orthogonal
distance based non linear least squares method. The rotation matrix equals ET

and the translation is given by t.

The canonical analysis of the fitted quadric (Equation 4.12) leads to approximate
values for rotation, translation and other shape parameters. We will use this
technique of approximate value calculation for spheres, cylinders, and cones.
For approximate value calculation of the torus the fitting of a quartic surface is
very noise-sensitive and a piece-wise cylinder fitting based procedure will be used
instead. The details of this method will be given in Section 4.3.5.
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(a) (b) (c)

(d) (e)

Figure 4.2: Parameters of the object models (a) The plane Π is parametrized by its normal
vector n =

(
nx ny nz

)
and perpendicular distance from the origin ρ (b) A sphere S is

parametrized by its center c =
(
cx cy cz

)
and its radius r (c) The cylinder is represented

by its axis a =
(
ax ay ay

)
, the point on axis closest to origin c =

(
cx cy cz

)
, and the

radius r (d) A torus is given by a =
(
ax ay az

)
for the axis direction, c =

(
cx cy cz

)
for the central point, the major radius r1 and the minor radius r2. (e) A cone is given by its
apex t, axis direction a and the angle with the vertical θ.

4.3.2 Plane fitting

We described a method for fitting planes based on the eigen analysis in Chapter 2.
Here we present another method for fitting planes through non-linear least squares.
This method can use the covariance matrix of the input data and propagate it to
the variance of the final estimated parameters through Equation 4.7. As a result,
along with the plane parameters their covariances are also estimated. The method
from Chapter 2 can still be used for getting the approximate values.

A plane Π is parametrized by its normal vector n =
(
nx ny nz

)
and the

perpendicular distance from the origin ρ (Figure 4.2(a)). As there are only
three degrees of freedom for a plane, there is a constraint on the length of the
normal vector which must be one i.e. ‖n‖ = 1. The distance of a given point
p =

(
px py pz

)
from the plane is given by:

dΠ = 〈n,p〉 − ρ (4.23)

As stated earlier, the minimization of the sum of the squares of these distances
i.e.

∑
d2
Π, requires the partial derivatives of d with respect to all the shape
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(a) (b) (c)

(d) (e)

Figure 4.3: Approximate values through quadric fitting (a) sphere (b) cylinder (c) cone (d)
torus approximation through quartic fitting is sensitive to noise (e) torus through piecewise
quadric fitting.

parameters of the object under consideration (Section 4.2). The expressions for
these derivatives ∂d

∂nx
, ∂d
∂ny

, ∂d
∂nz

, ∂d
∂ρ

in a more general form (including a rigid

transformation) are derived in a later chapter on registration (Chapter 5).

4.3.3 Sphere fitting

A sphere S is parametrized by its center c =
(
cx cy cz

)
and its radius r (Figure

4.2(b)). The distance of a point p from the sphere is given by

dS = ‖p− c‖ − r =
√

(p− c)T (p− c)− r (4.24)

The partial derivatives required for minimizing this orthogonal distance are derived
in Chapter 5.

For the calculation of the approximate values, we can use quadric fitting followed
by canonical analysis (Section 4.3.1). Another approximation based on the implicit
equation of the sphere is given by Bookstein (1979).
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4.3.4 Cylinder fitting

Cylinders are one of the most commonly encountered geometric objects on
industrial sites. We have presented an extension of the Hough transform for
their automatic detection in Chapter 3. Once a cylinder has been detected and
the points belonging to it have been selected through the Hough transform, the
final estimation of the parameters is done through the least squares method of this
section.

The cylinder is one of the quadric surfaces (Table 4.2). Its equation in standard
position (centered at the origin, axis along the z-axis) is given by

x2 + y2 − r2 = 0 (4.25)

If cylinder fitting is being done as a separate step and not as a follow up to
the Hough transform, we need good approximate values. One such method for
approximating the parameters of the cylinder is through quadric fitting. The
estimated quadric is then converted to the standard form of Equation 4.25 through
the method of Section 4.3.1. An example is shown in Figure 4.3.

Another method for the approximate estimation is based on using the behavior
of the normals belonging to the cylindrical objects. As shown in Chapter 3 the
normals of a cylinder make a great circle on the Gaussian sphere. We can estimate
the orientation by fitting a plane to the estimated normals of the given cylindrical
point cloud. The normal direction of the fitted plane approximates the cylinder
axial direction.

For fitting a cylinder to the points in the least squares sense, the orthogonal distance
of the point from the cylinder surface is required. For this purpose we use an over-
parametrized formulation as it leads to more compact expressions for the partial
derivatives. The cylinder is represented by its axis a =

(
ax ay ay

)
, the point on

axis closest to the origin c =
(
cx cy cz

)
, and the radius r (Figure 4.2(c)). As

there are only five degrees of freedom for the cylinder, we have two constraints.
Firstly, the length of the axial direction vector must be one i.e. ‖a‖ = 1. Secondly,
the point c must be closest to the origin, which means that c and a should be
perpendicular (a ⊥ c ⇒ 〈a, c〉 = 0). The geometric distance of a point from the
surface of the cylinder is given by

d = ‖(p− c)× a)‖ − r (4.26)

The partial derivatives of d w.r.t cylinder parameters are derived in Chapter 5

4.3.5 Torus fitting

A torus is usually not found in a complete form on industrial sites. Usually it
appears as a bend or some other subpart of a more complex object.

In its standard form (centered on the origin with its axis along z-axis) a torus can
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be represented by the following quartic surface.

(x2 + y2 + z2 − (r2
1 + r2))2 − 4r2

1(r
2
2 − z2) = 0 (4.27)

where r1 is the major axis and r2 the minor axis. When the torus has under-
gone a general rigid body transformation Equation 4.27 changes to a full quartic
equation with 35 terms. A quartic can be fitted to a given set of points using
linear least squares in a way similar to the one presented in Section 4.3.1 for the
quadric fitting. However, with 34 degrees of freedom the solution of quartic fitting
is extremely sensitive to noise. An example of this sensitivity is shown in Figure
4.3(d). Additionally, the approximation of the geometric distance by the algebraic
distance for a quartic polynomial is much worse than for a quadric. Keeping these
reasons in view we do not use quartic fitting for torus approximation.

For approximating the parameters of a torus we fit piecewise cylinders to the point
cloud. Provided there are enough axial lines to determine a plane (whose normal
approximates torus orientation) we can approximate the parameters of the torus.
An example of this procedure is shown in Figure 4.3(e).

For least squares fitting we use an over-parametrized representation consisting of
a =

(
ax ay az

)
for the axis direction, c =

(
cx cy cz

)
for the central point,

r1 for the major radius and r2 the minor radius (Figure 4.2(d)). If the length of
the axis direction is constrained to unity (‖a‖ = 1), the orthogonal distance d of a
point p =

(
px py pz

)
from the surface of the torus is given by:

d =
√

(‖(p− c)× a‖ − r1)2 + 〈(p− c),a〉 − r2 (4.28)

The partial derivatives of d w.r.t torus parameters are derived in Chapter 5

4.3.6 Cone fitting

A cone is given by the coordinates of its top t =
(
tx ty tz

)
, direction of axis

a =
(
ax ay az

)
and the slope of the radius change, measured as an angle in

radians from the central line given by θ (Figure 4.2(e)).

To find the distance of a given point p from the cone, we have to operate on
the triangle formed by p, t and the closest point pc. The location of the closest
point pc is not known, but according to the definition of the orthogonal distance
(p−pc) ⊥ (t−pc). Through simple trigonometry it can be proved that the distance
of p from the cone is given by

d = ‖h‖ sin (cos−1 〈 h
‖h‖

,a〉 − θ) (4.29)

where h = p− t.

For getting approximate values for cone fitting we use quadric fitting followed by
canonical analysis(Section 4.3.1). An example of this procedure is shown in Figure
4.3(c).
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Figure 4.4: Comparison of CSG and B-
rep fitting. While the conversion from
the surface patches to a B-rep requires
extensive manual editing, there is no
such editing stage for CSG fitting.

Figure 4.5: Constructive solid
geometry (CSG) represents
industrial models through
boolean operations on simple
geometric primitives like boxes,
cylinder, spheres and cones. Here
a flanged T-junction is represented
by the union of 5 cylinders

4.4 CSG Fitting

In this section we present methods for fitting CAD models represented as
constructive solid geometry trees to the point clouds. Most of the previously
reported methods for CAD model fitting (Ahn et al., 2002; Fisher, 2002; Várady
et al., 1997; Werghi et al., 1999b) have focused on recovering patches of simple
geometric surfaces, which are then connected together to make a B-rep model.
These patches are recovered using segmentation (Hoover et al., 1996; Jiang et al.,
2000) followed by fitting of simple surface models (Petitjean, 2002). Alternatively
B-Splines and NURBS based surface patches can be fitted (Ko et al., 2003). As
all the patches necessary for the recovery of the complete model are seldom fully
visible in the captured data, this fitting must be followed by an editing stage, where
the remaining gaps at the edges and the joints are filled (Figure 4.4). This editing is
mostly manual and its quality depends on the skill of the operator. Furthermore, as
this final stage does not involve any parameters estimation, the final B-rep model
does not contain any associated quality measures.

Constructive solid geometry (CSG) is a way to represent CAD models through
boolean operations on simple primitives like spheres, cones, cylinders, tori and
boxes (Mortenson, 1985; Requicha and Voelcker, 1982). Some examples of the
boolean operations are union, intersection, and difference. As an example a
flanged T-junction can be represented as a CSG object by using the union operation
on five cylinders (Figure 4.5).
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4.4.1 Motivation for using CSG

The approach for fitting CSG models for industrial reconstruction is motivated by
the following observations:

Compact representation Although CSG is not as general purpose as B-rep,
whenever applicable it is more compact in terms of the information required
for designing the same model. Moreover, when fitting a model non
compactness of B-rep leads to an explosion in the number of parameters, all
of which need to be estimated. To take a simple example a box in B-rep needs
6 bounding planes, each with its enclosing bounding rectangle along with the
constraints that the faces should be orthogonal and must intersect. Encoding
of all this information in the form of a nonlinear least squares problem is
quite involved. In contrast, a box is one of the standard primitives in CSG
and can be represented by 9 parameters, 3 for the position, 3 for the rotation
(quaternion with one constraint), and three for the sizes of the box along x, y,
and z directions. Compared to B-rep this is more compact and its conversion
to a nonlinear least squares problem is quite direct.

Natural encoding of constraints In B-rep the basic building block is a surface
with its associated boundary, and all constraints must be specified between
the surface patches. In contrast in CSG the whole primitive (e.g. a box or
a cylinder) is the basic building block, and the specification of constraints is
also in terms of these primitives which is more natural for industrial parts.
For example the relationships among the sub-parts of a flanged T-junction in
Figure 4.5 can be specified in terms of the collinearity and the orthogonality
of the constituent cylinders. Similarly the relationships between the relative
positions and the radii can be easily encoded as a constraints. Specifying the
same geometric information in a B-rep structure would be more difficult.

No manual editing Due to the complexity of formulating B-rep fitting problem
in a least squares framework, most approaches in the literature consist of
segmentation, followed by fitting of simple primitives to the segmented point
cloud and a final editing and refinement stage. This editing is usually done
manually by a human operator. In contrast in our presented approach of CSG
fitting no final editing is necessary. If some information is missing then the
required results can be obtained by specifying more constraints that provide
the missing information, and repeating the fitting procedure. A comparison
of the work flow for CSG vs B-rep based modeling is shown in Figure 4.4.
There we see that the B-rep based approaches involve a manual editing stage
while CSG based methods estimate the complete model through fitting using
the measured data and a priori information coded as constraints.

Quality measures for fitting As CSG fitting is based on a nonlinear least squares
framework, without any manual editing involved, the final result contains the
covariance matrix of the estimated parameters (Equation 4.7). In contrast,
because of the manual editing stage, B-rep fitting does not provide any
quality measures of the estimated parameters of the final models.
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Use of engineering libraries In many industries the CAD libraries used during
site design are based on CSG. For example in the petrochemical industries
most of the available CAD design packages use CSG as an internal
representation format (AVEVA PDMS, 2005; Intergraph PDS, 2005). These
libraries also contain information about the geometric and parameter
constraints on the constituent sub-parts of the CAD model. By using CSG
for fitting we ensure that the resultant model can be easily converted to one
of the industry standard formats and thus provide a directly usable as-built
CAD model.

Extensible to images As noted in Chapter 1 images provide a complementary
source of information to the point clouds. The use of CAD models for fitting
to images was pioneered by Lowe (1991). He estimated the pose and shape
parameters by minimizing the distance of the visible edges from the hidden-
line projection of the estimated model. An extension of this approach for
fitting CSG objects to image gradients and point measurements for industrial
reconstruction has been reported by Ermes et al. (1999); Tangelder et al.
(1999, 2003), where geometric constraints are also used. An advantage of
using CSG fitting to the point clouds is its extensibility to include images
when they are available. In Chapter 7 we extend the CSG fitting techniques
presented here to include image measurements and show that it leads to
better estimation quality. Additionally, we provide a taxonomy of constraints
along with the details of their enforcement through constrained least squares.
In the traditional way of B-rep fitting the final stage of the conversion from
surface patches to the B-rep model does not involve any estimation and thus
images cannot be easily included there.

4.4.2 Distance Approximation Algorithms

The key problem in fitting a given point cloud to a selected CSG model is to
calculate the orthogonal distance of a point from the model surface (Ψ in Equation
4.2). Moreover, the partial derivatives of the distance with respect to the shape and
the pose parameters of the CSG model are needed for the non-linear least squares.

We present three different methods to solve this problem. We name these methods
ICS (Iterative Closest Surface-point), ICT (Iterative Closest Triangle-point), and
ICP2 (Iterative Closest Point-cloud-point). These methods convert a given CSG
model to a B-Rep, a triangle mesh, and a point cloud respectively to calculate
the orthogonal distance of a given point from the model surface. These methods
provide different trade-offs between speed and accuracy and are compared in
Section 4.5.

For many unbounded objects like infinite planes, infinite cylinders, spheres etc. it
is possible to get closed-form expressions for the orthogonal distance as well as its
partial derivatives. As the CSG uses bounded objects and also employs boolean
operations among them, it is very difficult to derive an analytical expression for
the distance of a point from an arbitrary CSG object. As a result we have to use
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(b)

(c)

(a) (d)

Figure 4.6: Three approximation
methods for calculating orthogonal
distance from a CSG tree (a)
A CSG object and three different
approximation methods (b) ICS -
Iterative closest surface point (c) ICT
- Iterative closest triangle point (d)
ICP2 - Iterative closest point-cloud
point

numerical methods to calculate the distance as well as its partial derivatives. We
present the following three methods to solve this problem (Figure 4.6(a)):

Iterative Closest Surface-point (ICS) In this method the CSG model is converted
to a B-rep and the distance of a given point to the closest surface in the
B-rep is calculated (Figure 4.6(b)). We call this method Iterative Closest
Surface-point (ICS). For this method we use ACIS (A commercial geometric
modeling package (Spatial, 2004)) for converting a CSG object to its B-rep
as well as for calculating the distance of the points from the closest boundary
surface. This method is geometrically most accurate as it uses the exact
mathematical formulation of the surface and its boundaries which is limited
only by the numerical precision of the computer. However, this comes at a
high computational cost making it the slowest method.

Iterative Closest Triangle-point (ICT) This method approximates the CSG model
with a triangulated mesh and calculates the distance of a given point from
the closest triangle (Figure 4.6(c)). We name this method Iterative Closest
Triangle-point (ICT). For the conversion of the CSG to the triangular mesh
ACIS is used. After this conversion, the distance of the given point from
the CSG object is approximated by its distance to the closest triangle in
this mesh. In 2D ICT can be compared to approximating a general curve
by a set of linear segments. When the points are very close to the surface
the relative difference between the distances approximated by ICT and ICS
can be significant but this difference rapidly falls as we move away from
the surface. The difference also depends on the type of the surface and
the number of triangles used in the mesh. For the objects made of planar
faces (e.g. a box) the results of ICT are as accurate as those of ICS. But for
curved surfaces like spheres and cylinders the performance of ICT depends
the number of triangles used to approximate the object.

Iterative Closest Pointcloud-point ( ICP2 ) This method approximates a given
CSG model by a point cloud and returns the distance of a given point to the
closest point contained therein (Figure 4.6(d)). We call this method Iterative
Closest Point-cloud-point ( ICP2 ). For ICP2 the CSG object is converted to a
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(a) (b) (c)

Figure 4.7: Errors in ICP2 and ICT (a) The relative error in ICT and ICP2 as a function of the
distance from the center of the object (b) ICP2 has errors even for planar faces (c) For curved
surfaces ICP2 becomes even worse.

point cloud, and the distance of the closest point therein to a given data point
is used to approximate the distance to the CSG object. The accuracy of this
approximation depends on the point density used as well as on the type of
the surface. Compared to ICT, which is a first order approximation, ICP2 is a
zeroth order approximation. As a result, even for planar surfaces the distance
has residual errors. In terms of speed this method is found to be the fastest
as a kd-tree is used for searching the nearest neighbor (Arya et al., 1998).
The ICP2 we present here has some similarities to Iterative Closest Point
(Besl and McKay, 1992; Rusinkiewicz and Levoy, 2001) which is widely used
for the registration of point clouds. However, the problem of fitting is more
complex than that of registration, as it involves the simultaneous estimation
of the rigid body transformation as well as the shape parameters of the sub-
parts of the CSG tree.

These methods decrease in computational complexity as well as accuracy from top
to bottom.

To compare the numerical accuracy of ICT and ICP2 against ICS, we define the
average relative error as follows:

EICX
r =

1
N

N∑
i=1

∣∣∣∣ΨICX
i −ΨICS

i

ΨICS
i

∣∣∣∣ (4.30)

A plot of the average relative error for ICT and ICP2 with respect to the distances
between the centroids of the point cloud and that of the CSG object is shown in
Figure 4.7(a). The plot uses cylinder-box-union (Figure 4.6) as a test object. We
see that the relative error for both methods is inversely proportional to the distance
between the centroids of the measured point cloud and the current estimated CSG
object. This difference becomes significant only when points are very close to the
CSG surface. This means that ICS is necessary only for the final iterations. For
the initial iterations, when the estimated solution is far from the minimum, ICT or
ICP2 can be used. Furthermore, as expected, for a given point density the average
relative error of ICP2 is higher than that of ICT.
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(a) (b)

(c) (d)

Figure 4.8: Importance of constraints for
CSG fitting (a) Before fitting (b) without
constraints the geometric relationships of
the box and the cylinder are not ensured
(c) L-junction before fitting (d) without
constraints the relationship of boxes is easily
violated

4.4.3 Internal Constraints

One of the attractive features of CSG is its ability to compactly represent a
large number of complex objects by applying boolean operations to a few simple
geometric primitives. This powerful feature has its downside for an iterative
optimization process, as in the absence of extra geometric information it is very
easy to get trapped in the local minima. In most of the CAD models this extra
geometric information is implicit and is not encoded as a part of the design. But
for fitting this geometric information must be encoded explicitly as it can reduce the
degrees of freedom, and thus can avoid the local minima arising from unwanted
configurations.

In Figure 4.8 we show two fitting scenarios without employing the internal
constraints. As is clear from Figure 4.8(a) and 4.8(c) initial values are not very
good. Consequently, in the absence of any geometric constraints, the least squares
fitting procedure assigns all the points to one of the primitives, and the other
primitive remains almost fixed in the initial position. Thus, we find a solution
coming from one of the many local minima. However, this is not the desired
solution, as we would like to enforce the geometric and topological relations at
all stages of the fitting process. We can avoid this situation by enforcing Internal
constraints (Tangelder et al., 2003), which encode the geometric relationships
between the constituent primitives of a CSG tree. For example in the case of
cylinder-box-union (Figure 4.8(a)) we would like the diameter of the cylinder to
equal one of the sizes of the box. Furthermore, the axis of the cylinder and the box
must be parallel and the cylinder must always intersect the box.

Similarly for a flanged T-junction consisting of the union of five cylinders, by
enforcing all the geometric relationships explicitly the number of free parameters
is reduced from 40 to 13 1 (Figure 4.9). The reduction in the number of the
free parameters for different CSG models due to the enforcement of constraints is

1 This includes the over-parametrization for the quaternion as the constraint q2
0 + q2

1 + q2
2 + q2

3 = 1
cannot be enforced.
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(a) (b)

Figure 4.9: The reduction in
the parameters of the CSG object
by using constraints (a) without
constraints the flanged T-junction
needs 40 parameters (b) with
constraints the parameters are
reduced to 13. Additionally, the
use of constraints ensures that the
final result conforms to the design
intent.

shown in Table 4.3.

The same argument can be applied to the valid ranges for the values of different
shape parameters, also called bound constraints. When there is some a priori
information available about the lower and upper limits it should be used during
the fitting stage. Furthermore, these bound constraints can be utilized to avoid
geometrically meaningless values. For example, the radius of a cylinder and the
sizes of a box can be enforced to be always positive.

The standard solution for implementing the constraints is to use Constrained
optimization. In this chapter we use explicit constraint enforcement, and solve
the resulting unconstrained optimization problem. The concept of explicit Internal
constraints can be explained by an example. A box is represented by ten parameters
in our primitive library, four parameter are for the quaternion representation of the
rotation, three for the translation, and three for the x, y, and z sizes. If we do not
enforce any constraints for the box-minus-box case we have twenty parameters
giving us many erroneous solutions like the one shown in Figure 4.8(d). By
looking closely at the design intent, the second box can be represented just by
the width of the resulting L-shaped hollow frame. The rest of the parameters can
be deduced from the first box. This reduces the number of parameters from 20 in
the unconstrained case to 11 in the constrained case. In addition we can enforce
the maximum and the minimum bounds on the sizes of the boxes as well as on the
values of the other parameters if we have a priori information about them. Table
4.3 gives a comparison of the number of parameters for different CSG objects for
both constrained and unconstrained cases.

Although, the concept of explicit constraint enforcement enables us to use
unconstrained least squares for solving constrained problems, it has some serious
limitations. It can only deal with linear constraints which have to be explicitly
solved for each new object. This requires a new function that takes the minimal
number of parameters and converts them to an expanded set of parameters needed
to instantiate a CSG object. Furthermore, the external constraints which relate one
CSG tree to another (for example the connection of one of the cylinders from one
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(a) (b) (c) (d)

Figure 4.10: Results of fitting an L-junction (a) before fitting (b) after ICS (c) after ICT (d)
after ICP2 . Note the remaining error

CSG object to the cylinder from another CSG object) cannot be specified. Similarly,
only those constraints which can be explicitly solved can be incorporated. This
means that nonlinear constraints like the one on the quaternion length cannot be
included in the estimation process. These problems are addressed in Chapter 7
where we use constrained optimization techniques to fit CSG models to both point
clouds and images.

4.4.4 Fitting Algorithm

The algorithm for CSG fitting is quite similar to the one given in Section 4.2.1.
To estimate the partial derivatives ∂ΨICX

∂τi
we used finite differences. As noted

by Dennis and Schnabel (1996) for a sufficiently small step-size the results
obtained from the finite difference approximation of the partial derivatives for the
least squares problem are indistinguishable from the ones obtained by using the
analytical derivatives. Of course the errors inherent in the distance calculation for
ICP2 and ICT are also propagated to the partial derivative estimation.

We use quaternions to specify the rotation parameters (Shoemake, 1985), which
have an extra constraint that the sum of the squares of their four elements should
equal one. This cannot be enforced due to our use of unconstrained optimization.
This often results in an ill-conditioned or sometimes a singular system. To tackle
such conditions we solve Equation 4.3 using singular value decomposition (Golub
and Loan, 1991) which identifies the linearly dependent columns and removes
them from the system.

To enforce the bound constraints explicit enforcement is used. At the end of each
iteration all bound constraints are checked, and in case of a violation the value of
the violating parameter is clipped to the specified bound.

4.5 Results

We tested the three methods outlined above on a few CSG objects, and compared
the results on the basis of rms error of fit, iterations required, and time taken. The
results are presented in Table 4.3.
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The fitting tests were conducted for three different data sets for each object; the
first one was with no noise, the second one contained zero mean Gaussian noise
with standard deviation of 2mm added to each of x, y and z coordinates of the
point cloud. The noise level in the third set had a standard deviation of 5mm. For
each dataset we show the rms error between the final estimated model and the
input point cloud. This error is calculated using ICS.

Comparing on the basis of speed, we find that on average ICS is 20 to 200 times
slower than ICT. ICP2 is usually faster than ICT, but the final error as well as the
number of iterations required is higher. This can be explained by the erroneous
estimation of the partial derivatives. Even though the number of points used for
ICP2 is greater than the number of triangles for ICT, small perturbations required
by the finite differences combined with the non-smooth nature of ICP2 results in
noisy partial derivatives. Due to the same reason sometimes ICP2 gets trapped in
a local minimum resulting in a higher rms error compared to ICS and ICT (Figure
4.10(d)).

As noted earlier, the error in the distance approximation by ICT depends on the
type of the surface as well as on the number of the triangles used. For objects (a)
and (f) in Table 4.3, the results obtained by ICT and ICS have the same amount of
error because they are composed of planar faces. In contrast, for objects (d) and
(e) the error of ICT is significantly higher compared to ICS, because the objects are
composed of curved surfaces.

The higher speed of ICT compared to ICS and the better and smooth performance
compared to ICP2 makes it the method of choice, giving the best trade-off between
the speed and the accuracy. Additionally, as seen from the plot of the average
relative error in Figure 4.7(a), for the initial iterations ICT can be safely used, as
its average relative error is very small. For the final iterations either ICS or ICT
with a higher number of triangles should be employed.

The Table 4.3 also shows that the explicit enforcement of the internal geometric
and bound constraints leads to a significant reduction in the number of parameters.
Moreover, erroneous configurations are also successfully avoided, because at the
end of each iteration only valid solutions are accepted.

The speed comparison of ICT with ICP2 does not reflect the true situation; as for
ICP2 we use kd-trees while for ICT an exhaustive search is used. By employing a
faster search methods along with multi-resolution techniques we expect the speed
performance of ICT to come much closer to that of ICP2 .

4.6 Conclusions

In this chapter we have presented methods for fitting both simple and CSG models
to point clouds. The fitting was posed as an optimization problem and solved
through a nonlinear least squares method. Methods to get good approximate
values were presented based on quadric fitting and its canonical analysis. We
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Table 4.3: Comparison of ICS, ICT and ICP2

showed that CSG is a powerful and compact way for representing and fitting
of complex models. The importance of constraints for getting reliable results by
decreasing the degrees of freedom was shown through examples. Three different
approximation methods for calculating the distance of a point from a CSG model
and its partial derivatives with respect to the shape parameters were presented and
compared based on speed and accuracy.

In Chapter 7 we will extend the CSG fitting to include images, and generalize the
constraint enforcement by using constrained optimization.



Chapter 5
Model-based registration

Don’t reinvent the wheel, just realign it.

Anthony J. D’Angelo

Point cloud acquisition by using laser scanners provides an efficient way for 3D
as-built modeling of industrial installations. Covering such an installation with
point cloud data often requires data acquisition from multiple standpoints. Before
the actual modeling can start the transformation parameters of all of these scans
need to be determined. In this chapter we present two methods to register point
clouds of industrial scenes with different coordinate definitions. Rather than using
corresponding points whose determination is very error-prone, corresponding
object models in different scans are used to determine the translation and rotation
parameters of the scans. The first method, named Indirect Method, is a two-step
approach as there object fitting and registration of the scenes is done separately.
The second method, called Direct Method, simultaneously determines the shape
and pose parameters of the objects as well as the registration parameters of all
the scans. Both methods are designed such that optimal use can be made of
the information available from the shapes present in industrial environments.
Compared to Iterative Closest Point (ICP) the presented approach combines
registration and modeling in one step and thus leads to better overall estimation of
registration parameters. Furthermore, the simultaneous registration of multiple
scans is possible which takes care of the problems arising from pair-wise scan
registration. As the presented approaches are based on non-linear least squares,
they provide quality measures in the form of a covariance matrix of the estimated
parameters, which can be used to make decisions about the quality of registration.
Results and comparison with ICP are presented on some point cloud data-sets from
actual industrial sites.
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5.1 Introduction

To model big industrial sites the first problem that occurs is defining one coordinate
system for all point clouds. This means that for each point cloud in the project the
relative orientation and position have to be found and possibly connected to the
factory coordinate system. When a scene can be represented as two point sets
with known correspondences, the rigid transformation consisting of six parameters
(three rotation angles and three translation parameters) in a least square sense can
be calculated using a closed form solution(Horn et al., 1988). As finding accurate
corresponding points in point clouds is highly error-prone, that straightforward
approach is usually not applicable.

The iterative closest point (ICP) algorithm (Besl and McKay, 1992) works without
any pre-knowledge about the point-to-point correspondences. It establishes point-
to-point correspondence iteratively based on the minimum Euclidean distance. If
the initial values are good enough, this procedure usually converges. ICP is a pair-
wise registration procedure, and cannot reliably handle simultaneous registration
of multiple scans. This results in the propagation of registration errors as more
scans are acquired and added to a project. Secondly a large overlap area is required
for proper functioning of these algorithms. Typically an overlap area of 25–30 %
is recommended for acceptable results. Furthermore, dealing with occlusions can
be problematic, as ICP uses points without any consideration for the underlying
geometry.

Various attempts have been made to make ICP more robust by filtering the
correspondences for effective handling of occlusions (Guehring, 2001; Zhang,
1994). The wrong correspondences are detected by comparing with a dynamic
distance threshold, leading to a better behavior in the presence of noise and
occlusions.

ICP in its original form provides no measure about the precision and reliability
of the estimated parameters. Some attempts have been made to remove this
limitation. For example in (Guehring, 2001) statistical properties of the registration
parameters are estimated during registration through ICP.

To improve the convergence properties of ICP many variations on Euclidean
distance function have been proposed in the literature. Most of these algorithms
do not establish point-to-point relationships, but instead look for the relationship
between points in one set to the local surface-approximations of the points of the
other data set (Chen and Medioni, 1992; Dorai et al., 1994). A variation of ICP
for the simultaneous registration of more than two scans is presented in (Eggert
et al., 1998b). To speed up closest point-on-surface search they use k-d trees. A
comparison of different ICP variations is given in (Rusinkiewicz and Levoy, 2001).
There they found point to the tangent plane distance to perform better than other
distance variations of distance calculation.

A method for automatic registration of point clouds and images for the
reconstruction of buildings is presented in (Stamos and Leordeanu, 2003). There



5.1. INTRODUCTION 83

Figure 5.1: Objects used as targets for registration

planar faces are detected through segmentation of the point cloud. The intersection
of these planes gives lines in 3D, which are used in a RANSAC-based (Fischler
and Bolles, 1987) framework for range registration. Similarly, vanishing point
detection in images and its relation with parallel lines in the point clouds is
used for range-to-image registration. This framework exploits the domain specific
knowledge to infer appropriate constraints, which results in high degree of
automation for modeling of architectural scenes.

Many different approaches have been presented for the segmentation of a point
cloud into planar and curved surfaces. A survey of such methods was presented in
Chapter 1. Similarly Hough transform based techniques for automatic detection of
planes and cylinders in point clouds were presented in Chapter 3. Using these
methods detection and fitting of simple object models to point clouds can be
automated with a great degree of success.

5.1.1 Presented approach

The approach we present here is based on the assumption that dense and accurate
3D point clouds of the industrial sites contain enough geometric information for
the automatic detection and fitting of simple objects like planes, spheres, cylinders
and tori. Rather than registering first and then modeling, we model first in each
scan and then use the corresponding models to register the scans (Figure 5.1). We
present two methods for this purpose:

Indirect Method This method minimizes the sum of squares of differences in the
parameters of the corresponding models. This approach is geometrically
approximate but much faster than the Direct method. This method has been
previously described for planes and cylinders in (Dijkman and Heuvel, 2000).
The second stage of the Direct method requires good approximate values,
which can be obtained by using this method (Figure 5.2(a)).

Direct Method The Direct method leads to the simultaneous estimation of
registration parameters of all scans and shape parameters of all objects used
as targets. This is a non-linear least squares problem and the merit function
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Figure 5.2: Two methods for
registration (a) Indirect Method.
For approximate registration through
minimization of sum of squares
of differences in parameters of
corresponding models in different scans
(b) Direct Method. For simultaneous
registration of multiple scans by
minimizing the sum of square distances
of the points from the corresponding
model surface.

used is the orthogonal distance of the points coming from different scans
from the surface of the object they belong to. This method consists of two
sub-processes. The first one estimates only the registration parameters while
the second sub-process named Integrated Adjustment results in simultaneous
estimation of both registration and shape parameters. (Figure 5.2(b)). This
can be seen as an extension of the concept of traditional Bundle Adjustment
from the domain of images to that of point clouds.

5.1.2 Motivation

Our approach is motivated by the following observations:

Consistent framework The standard procedure of registration followed by
modeling propagates the errors of the registration to the modeling step.
Additionally there is no way to improve once the errors are more than some
acceptable value as modeling and registration are based on two different
paradigms. Our approach combines the model-fitting with the registration
process, and uses one paradigm for both steps.

Global registration Standard registration approaches can only handle a pair of
scans at a time. This means that information from only two overlaps can
be used simultaneously. This leads to accumulation of errors and sub-
optimal use of the available information. In contrast using our strategy global
registration is possible, leading to better accuracy and optimal use of available
data.

Estimation of quality measures As noted in (Bennamoun and Mamic, 2002) ICP
just produces registration without giving any information about reliability
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and confidence of the estimated registration parameters. In contrast our
approach is a direct application of least-square fitting and gives a full
covariance matrix of the fitted parameters, which can be used to calculate
the confidence region for all or a sub-set of the scan/object parameters.

Less stringent overlap requirements ICP requires overlap of up to 25–30 % to
function properly, while the presented approach works even in cases where
there is very small or no overlap between scans. The only requirement is
that some part of corresponding object is visible in both scans. The reason
is that compared to ICP which measures overlap in terms of overlapping
points we measure overlap in terms of overlapping objects, and the resulting
requirements are much more lenient especially for industrial sites. For
example, consider the worst case scenario of a cylinder scanned from two
opposite sides, ICP would not be able to proceed as there is no overlap
in terms of points, while our algorithm can use the information from the
geometry of the corresponding object for registration.

Potential for automation The presented approach can be automated by
combining it with automatic correspondence search which can be based
either on exhaustive search or on RANSAC (Fischler and Bolles, 1987).
Automation of the registration process from ICP using RANSAC or similar
techniques is bound to fail due to huge number of points involved. In
the next chapter we present some strategies for doing such an automatic
correspondence search through constraint propagation.

Extensible to scan-to-image registration ICP is a scan-to-scan registration
method. As it uses point to point distance as a merit function it cannot
work for registering images to scans. Although due to rapid progress in laser
scanning the use of images for 3D measurement is going out of fashion, the
fact remains that images are a complementary source of information. Images
provide a better source of information on objects edges where point-clouds
are highly unreliable and noisy. As shown in (Rabbani and Heuvel, 2004a)
a combination of images and point clouds can result in better estimation
accuracy. In contrast to ICP the presented object based registration method
can be easily extended to image-to-scan registration through fitting of back-
projected contours of the corresponding models to image edges(Ermes et al.,
1999).

Approximate values for complex models The presented techniques can be used
not only for the inter-scan registration, but also for the registration of a given
model with an acquired point cloud during fitting. This provides a quick
way to get approximate values for the fitting of complex models that can be
carried out for example by the methods presented in (Rabbani and Heuvel,
2004b)

The rest of the chapter is structured as follows. In Section 5.2 we overview the
used notation and give some commonly used mathematical expressions. Section
5.3 provides the details of the indirect method. The direct method is presented in
Section 5.4. The last section presents the main results and conclusions.
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5.2 Notation

Matrices are represented by bold capital letters e.g. M. Vectors and points in
R3 are represented by bold small letters e.g. v. Small letters in normal font are
used for scalars e.g. s. Normal font capital letters are used for objects e.g S1 and
P1. For scans we will use Θ with appropriate subscripts.

For representing rotation parameters of the registration we use quaternion
representation (Horn et al., 1988). Given a quaternion q = [ q0 q1 q2 q3 ]T ,
the rotation matrix R can be formed as follows:

R =


2 q0

2 + 2 q1
2 − 1 2 q1 q2 − 2 q0 q3 2 q1 q3 + 2 q0 q2

2 q1 q2 + 2 q0 q3 2 q0
2 + 2 q2

2 − 1 2 q2 q3 − 2 q0 q1

2 q1 q3 − 2 q0 q2 2 q2 q3 + 2 q0 q1 2 q0
2 + 2 q3

2 − 1

 (5.1)

As rotation in R3 h̃as only 3 degrees of freedom, the elements of quaternion vector
q must be constrained by the following condition.

‖q‖ =
√

q0
2 + q1

2 + q2
2 + q3

2 = 1 (5.2)

The translation is represented by a vector t:

t =
[

tx ty tz
]T

(5.3)

In the following derivations we will often use ∂R
∂qi

and ∂t
∂ti

, which can be evaluated

by element-wise differentiation of Equation 5.1 and Equation 5.3 respectively.

5.3 Indirect Method

Because the industrial environments consist mainly of well-defined objects, the
transformation parameters of different scans can be determined by aligning
objects.

In this chapter we presents two methods to find the transformation parameters
between different scans, using corresponding objects. The first method, Indirect
Method, works toward the solution in the following three steps: (Figure 5.2):

1. Points are labeled as belonging to a certain object. This is done for
several objects in different scans. This step can be automated by using a
segmentation and object recognition algorithms (Chapter 2 & 3).

2. A least-squares based fitting algorithm calculates the object parameters for
every object in each scan (Chapter 4).

3. The final transformation parameters are calculated by a least squares
algorithm that has the object parameters as input. This step minimizes the
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sum of square of the differences in object parameters as a function of scan
transformation parameters.

This is a quick and computationally cheap method to get good approximate values.
Mathematically it can be expressed as follows:

min
{R},{t}

c∑
i=1

mi∑
j=1

∆2
uij

(5.4)

Where
∆uij

= ΨRa
i ta

i
(ua

ij
)−ΨRb

it
b
i
(ub

ij
)

In the Equation 5.4, we have c correspondences, each of which consists of two
objects a and b. The model for i−th correspondence has mi parameters. ΨRa

i ta
i

is
an operator that applies the transformation of the scan, the object a was modeled
from, to its parameters ua

ij
. We want to minimize the sum of squares of the

differences in parameters of the corresponding object-pair ∆2
uij

. For this purpose
we can adjust the values of transformation parameters of the scans {R}, {t}. Note
the set notation, which means we might be dealing simultaneously with N number
of scans and hence their transformation parameters. The Equation 5.4 gives the
expression for pair-wise registration. Although its extension to registration of
multiple scans is straightforward we do not develop it in this paper, because the
pair-wise formulation suffices for getting the approximate values.

The correlations between parameters of the model can have negative effects on
the convergence of this procedure. This can be taken care of by weighting the
equations by the inverse of the covariance matrix of model fitting.

To solve the non-linear least-squares problem in Equation 5.4 we will use
Levenberg-Marquardt method (Björck, 1996; Press et al., 1988) as it gives the best
convergence properties. For this purpose we will need partial derivatives of ∆uij

w.r.t parameters of scan rotation R and translation t i.e.

∂∆uij

∂q0
,
∂∆uij

∂q1
,
∂∆uij

∂q2
,
∂∆uij

∂q3
,
∂∆uij

∂t1
,
∂∆uij

∂t2
,
∂∆uij

∂t3

Using these expression the iteration goes as follows:

Γ1 = Γ0 − (JTJ + λI)−1J∆0 (5.5)

Jij =
∂∆i

∂Γj
(5.6)

Γ = {{R}, {t}} (5.7)

Where J is the Jacobian matrix, λ is the Levenberg-Marquardt parameter, Γ0 is the
initial value at iteration 0 and Γ1 is the corrected value after the first iteration.
The better convergence of Levenberg-Marquardt method results from an adaptive
mixing of Gauss-Newton and Steepest descent step. This mixing depends on the
value of λ. For more details see (Björck, 1996; Press et al., 1988).

The expressions for these partial derivatives will be derived in the following
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(a) (b)

(c) (d)

Figure 5.3: Objects used for registration
and their parameters (a) Parameters of
the plane, normal n and distance from
the origin ρ (b) Parameters of the sphere,
center c and the radius r (c) Cylinder is
parameterized by axial direction a, point
closest to the origin c and the radius
r. Note a ⊥ c. (d) Parameters of the
Torus are its center c, normal direction of
its plane a, major radius r1 and minor
radius r2

sections.

5.3.1 Spheres

A sphere is defined by its center point c =
(
cx cy cz

)T
and its radius r (Figure

5.3(a)). Only the center point of the sphere c is affected by the transformations of
its originating scan. This makes a sphere-correspondence analogous to specifying
a 3D corresponding point. This combined with the fact that a sphere has optimal
fitting accuracy in all directions are the main reasons for the use of spheres of
known radii as artificial registration targets.

If a sphere S1 modeled in scan Θ1, corresponds to the sphere S2 in scan Θ2, and
we want to estimate the rotation R21 = R and translation t21 = t; using the
framework of Equation 5.4 we have to minimize the difference in center points cδ.

cδ = c2 − c1 (5.8)

= Rc2 + t− c1 (5.9)

The partial derivatives with respect to the registration parameters are as follows:

∂cδ

∂qi
=

∂R
∂qi

c1i
(5.10)

∂cδ

∂ti
=

∂t
∂ti

(5.11)

Each pair of corresponding spheres will give 3 equations corresponding to 3
components of difference vector cδ. Although the radius of the sphere-pair contains
no geometrical information about the registration parameters, radius similarity can
be used as a constraint for checking the validity of the correspondence especially



5.3. INDIRECT METHOD 89

when spheres with multiple radii are present in the scene i.e.

|r2 − r1| ≤ rδ (5.12)

Where rδ is a threshold

5.3.2 Planes

In industrial environments many objects consist of one or more planar faces that
can be used for registration. Describing a plane by the normal vector n =(
nx ny nz

)T
and the perpendicular distance from the origin ρ (Figure 5.3(b))

provides a singularity free representation (Heuvel, 1999). This representation is
also known as Hesse form of the plane. As there can be only three degrees of
freedom for a plane, we have a constraint on the length of the normal vector n

‖n‖ =
√

n2
x + n2

y + n2
z = 1 (5.13)

The given formulation is for infinite planes. As point cloud data is usually very
noisy on edges, accurate determination of bounding curves for planar faces is quite
difficult, and we have to use infinite planes.

For the indirect method each plane provides three equations for the difference in
normal vector nδ and one equation for the difference in the distance from the origin
ρδ which are given by:

nδ = n1 − (Rn2) (5.14)

ρδ = ρ2 − ρ1 + (Rn2) · t (5.15)

From Equation 5.14 we see that the normal is only affected by the rotation, whereas
Equation 5.15 shows that the change in ρ is a function of both translation and
rotation of the scan. The partial derivatives w.r.t rotation are as follows:

∂nδ

∂qi
= −∂R

∂qi
n2 (5.16)

∂ρδ

∂qi
= (

∂R
∂qi

n2) · t (5.17)

For translation t we have the following expressions:

∂nδ

∂ti
= 0 (5.18)

∂ρδ

∂ti
= (Rn2) ·

∂t
∂ti

(5.19)

5.3.3 Cylinder

Cylinders are quite frequently encountered on industrial sites, either as pipes or as
parts of more complex objects. It can be quite difficult to accurately determine the
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start and end point of cylinders from point clouds in many cases due to occlusions
and point spacing. For this reason we employ a parametrization for the infinite
cylinder.

We represent a cylinder by 7 parameters, 3 for the axis of cylinder a, 3 for the
point closest to the origin c and one for radius r (Figure 5.3(c)). As there are only
5 degrees of freedom for cylinder we have two constraints:

‖a‖ = 1 (5.20)

a ⊥ c ⇒ a · c = 0 (5.21)

As the use of unbounded objects increases the degrees of freedom, we need
more correspondences to calculate the registration parameters. For example one
correspondence pair of a bounded cylinders is enough to calculate the registration
up to a cylindrical rotation, while for unbounded cylinders one correspondence
leaves a cylindrical rotation along with a linear shift undetermined. The condition
of non-degeneracy is important because in a degenerate case the solution can
either be numerically ill-determined or some of the parameters can be completely
undetermined. For example correspondences of multiple parallel cylinders do not
provide enough information for the determination of translation along their axial
direction.

Each cylinder correspondence gives us 6 equations but only 4 of them are
independent. Radius for cylinders behaves in a manner similar to that of spheres
(Section 5.3.1).

The axial direction of cylinder a is similar to normal direction for plane a, and its
partial derivatives have exactly the same expressions. (Section 5.3.2).

The point closest to origin depends on both translation and rotation of the scan
the cylinder comes from. Additionally the constraint a ⊥ c requires that we
subtract the projection of c along cylinder axis a. If a cylinder C1 from scan Θ1

corresponds to the cylinder C2 from scan Θ2, the difference in their closest points
after transformation of the second scan are given by:

cδ = −c1 + (Rc2 + t− (Rn2 · t)(Rn2)) (5.22)

= −c1 + (Rc2 + t− (nR · t)nR) (5.23)

Where nR = Rn2 Its partial derivatives w.r.t rotation and translation parameters
are as follows:

∂cδ

∂qi
=

∂R
∂qi

c2 − ((nR · t)
∂nR

∂qi
+ (

∂nR

∂qi
· t)nR) (5.24)

∂cδ

∂ti
=

∂t
∂ti
− ∂(nR · t)

∂ti
nR (5.25)

=
∂t
∂ti
− nRinR (5.26)
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Where ∂nR
∂qi

= ∂R
∂qi

n2.

5.3.4 Torus

A full torus is seldom used for the design of industrial sites, but partial tori
especially in the form of bends and elbows between orthogonal pipes are quite
common. Similar to the case of cylinders (Section 5.3.3) we would not use
bounded tori as it is quite difficult to estimate the start and end-angle accurately
from point clouds.

A torus is given by 8 parameters, 3 for the axis a, 3 for the central point c, two for
the radii; r1 for the outer radius and r2 for the radius of the cross section (Figure
5.3(d)). There is one constraint namely ‖a‖ = 1.

We do not need to formulate any separate equations for torus, and its axis direction
can be treated similar to the normal of the plane (Section 5.3.2). Similarly, the
center point of the torus can be treated similar to that of the sphere (Section 5.3.1).
The radii can be used for checking the validity of correspondences but they do not
have any useful geometric information for registration for the Indirect method.

5.4 Direct Method

As it was noted in the introduction the Indirect Method is geometrically
approximate. The second method, called Direct method, takes the geometrically
exact approach. In this method the sum of the squares of the orthogonal distance
of points from their model surfaces are minimized with respect to the registration
parameters of the scan and the shape parameters of the object the points come
from.

The direct method can be slower than the indirect method as the number of
observations depends on the number of points which can be in the order of millions
for most industrial modeling projects. In contrast the number of observations in
Indirect method was just a function of the objects modeled

Additionally, the convergence of the direct method requires good approximate
values which can be obtained from the indirect method. This way both methods
complement each other, and can be used in a serial fashion.

Direct Method consists of two steps:

1. Registration Estimation, resulting in estimation of only the registration
parameters of the scan

2. Integrated Adjustment, where both registration parameters and shape
parameters are simultaneously estimated.
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The first step of Registration estimation is necessary to refine the approximate
values coming from the Indirect method. Based on this better estimate of the
transformation more corresponding object pairs are automatically added to the
correspondence list. This augmented list is then used during Integrated adjustment
to estimate both scan transformation parameters and object shape parameters.

The merit function for the first step can be given as:

min
{R},{t}

o∑
i=1

pi∑
j=1

Ω2
i (Ripj + ti) (5.27)

In Equation 5.27, o is the total number of objects, and pi are the number of points
from all un-registered point clouds which have been used to model i−th object.
Function Ωi calculates the orthogonal distance of a given point from i−th object’s
surface. We want to minimize Ω2

i , by changing the transformation parameters {R}
and {t}.

The second step in the process of object based registration extends the idea of
Bundle adjustment from traditional Photogrammetry (Atkinson, 1996). In this step
we minimize the sum of squares of orthogonal distance of the points from their
respective model surfaces with respect to shape and pose parameters of the object
in addition to the registration parameters of the scan. We name this stage Integrated
Adjustment, as it integrates the estimation of all unknowns together. As we show
in the final section this leads to better estimation accuracies and does not result in
the propagation of registration errors to the modeling stage, instead it combines
both steps together and provides simultaneous use of the available information.

min
{R},{t},{u}

o∑
i=1

pi∑
j=1

Ω2
i (Ripj + ti,ui) (5.28)

In Equation 5.28 all variables are similar to Equation 5.27, except now we add the
model parameters ({u}) to the set of minimization parameters.

Now we will derive partial derivatives required for both stages of the Direct Method.

In the following discussion most expressions will be derived in terms of a measured
point p:

p =
[

px py pz

]
(5.29)
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5.4.1 Plane

Using the parametrization from Section 5.3.2 the distance d of a transformed point
vp from the plane is given as:

vp = Rp + t (5.30)

d = vp · n− ρ (5.31)

= vpx
nx + vpy

ny + vpz
nz − ρ (5.32)

Here we will derive partial derivatives for vp only, the full expressions for ∂d
∂x

can
be evaluated by using the chain rule.

∂vp

∂qi
=

∂R
∂qi

p (5.33)

∂vp

∂ti
=

∂t
∂ti

(5.34)

For plane parameters we have to use full expression for d (Equation 5.32) but the
resulting expressions are as follows:

∂d

∂ni
= vpi (5.35)

∂d

∂ρ
= −1 (5.36)

5.4.2 Sphere

We use the parametrization of sphere given in Section 5.3.1. As for the case
of plane we will define a subexpression vs that will be used for simplifying the
expressions.

vs = (Rp + t)− c (5.37)

The distance d of a transformed point from this sphere can be expressed as:

d = ‖vs‖ − r (5.38)

=
√

vs · vs − r (5.39)

=
√

vsxvsx + vsyvsy + vszvsz − r (5.40)

The expressions for ∂vs
∂qi

and ∂vs
∂ti

are same as ∂vp

∂qi
and ∂vp

∂ti
respectively (Section

5.4.1).

For ∂vs
∂ci

the expressions are:
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∂vs

∂ci
= −ci (5.41)

The chain rule can be used for calculating ∂d
∂x

where x is any parameter:

∂d

∂x
=

1
‖vs‖

(vsx

∂vsx

∂x
+ vsy

∂vsy

∂x
+ vsz

∂vsz

∂x
)− ∂r

∂x
(5.42)

5.4.3 Cylinder

The distance of a transformed point from the cylinder is given by:

d = ‖(Rp + t− c)× a‖ − r (5.43)

= ‖vc‖ − r (5.44)

Where vc is defined as:
vc = (Rp + t− c)× a (5.45)

Using the definition of vs from Section 5.4.2, we can rewrite it as:

vc = vs × a (5.46)

∂vc

∂x
=

∂

∂x

 azvsy − ayvsz

axvsz − azvsx

ayvsx − axvsy

 (5.47)

Using Equation 5.47, with expressions ∂vs
∂x

from Section 5.4.2, and applying chain

rule ∂vc
∂x

can be calculated.

5.4.4 Torus

The parametrization of the torus used here is the same as the one given in Section
5.3.4. To calculate the distance of a transformed point from the torus surface we
define two auxiliary variables vtl that is the distance from the line passing through
the center, and vtp distance of the point from the plane passing through the center
and with normal equal to a.

vtl = (Rp + t− c)× a (5.48)

vtp = (Rp + t− c) · a (5.49)

Using these definitions the distance d of a point from the torus surface can be
formulated as:

d =
√

(‖vtl‖ − r1)2 + vtp · vtp − r2 (5.50)

Now vtl can be treated similar to cylindrical vc from Section 5.4.3,while vtp can be
treated as planar vp from Section 5.4.1. Those expressions along with application
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: (a–d) Scan 1,2,3, and 4 used for registration experiment (e–h) objects modeled
from the scans and used for registration through Indirect and Direct methods

of chain rule gives us the partial derivatives for torus.

5.5 Results and discussion

We implemented the presented methods of Indirect and Direct registration in C++.
The results of their application to some point clouds from an industrial site are
presented in this section. These point clouds were acquired using a Cyrax HDS2500
(Leica HDS, 2005) laser scanner. Each scan consisted of one million points, and
four scans were used for the presented experiment. The individual scans are shown
in Figure 5.4(a–d).

We will compare the presented methods with industry standard implementations
of ICP and show that our approach performs better in two aspects. Firstly, the
presented methods do not need placement of artificial targets for calculation of
approximate values, which is needed most of the time for ICP. Secondly, our
approach combines both registration and fitting in one estimation procedure and
as a result the final fitting error as measured by the average residual and standard
deviation of parameter estimates is less for our approach compared to that of the
ICP.

First we will give details of the presented methods, and the comparison with
ICP will follow. The scans were segmented and planes and cylinders were semi-
automatically recovered using methods presented in (Rabbani and Heuvel, 2004a;
Vosselman et al., 2004). The fitted models are shown in Figure 5.4(e–h). The
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(a) (b)

Figure 5.5: Results of Indirect method of registration (a) Combined transformed point cloud
(b) Combined transformed objects. Scan 1–4 are shown in red, green, blue and yellow colors
respectively.

number of recovered objects in scan 1–4 were 28, 44, 46 and 19 respectively.

After modeling the scans were registered pair-wise using the Indirect method. As
pointed out earlier, this is a quick way to get approximate values for the second
step of the Direct registration. This step of Indirect method was applied for
pair-wise registration. Although theoretically it is possible to do simultaneous
registration of multiple scans good approximate values can be obtained from pair-
wise registration. The coordinate system of scan 1 was defined as the world
coordinate system. The pair wise registration parameters of the rest of the scans
were calculated through appropriate transformation concatenations. In contrast to
ICP no artificial targets were used for this step.

The results of this step are shown in Figure 5.5, where visually the registration
looks acceptable as approximate values for the next step. The remaining errors in
the registration can be visually seen for example in the big cylinders of scan 1 and
2, which still do not fit perfectly. The values of estimated parameters are shown in
Table 5.1.

Although the correspondence specification in the step of Indirect registration is
done manually this process can be automated using either exhaustive search or
RANSAC (Fischler and Bolles, 1987) based random search through the parameter
space. In case of only planes and spheres a minimum of three correspondences are
required for registration, whereas for cylinders and tori this number is two.

Before proceeding with the next stage of the direct method, the corresponding
objects must be combined so that they can be used for estimating the registration
parameters of the scans along with their own shape parameters. This process
is automated by doing a distance based search, and all objects within a certain
distance from one model are combined together. This step also combines multiple
objects in one scan which are close together. For example if there are multiple
planar patches in one scan that can be explained by one bigger planar patch, they
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Table 5.1: Registration parameters from Indirect method
Scan q0 q1 q2 q3 tx ty tz

(m) (m) (m)
2 0.9776 0.00023 -0.2046 -0.009 0.0041 0.0069 0.0228
3 -0.4992 -0.0082 0.8738 0.0112 -1.0868 0.1435 -3.735
4 0.9549 0.0123 0.2964 0.0224 0.9942 -0.0084 0.5436

Table 5.2: Registration parameters from Direct method
Scan q0 q1 q2 q3 tx ty tz

(m) (m) (m)
2 0.9776 0.00040 -0.2101 -0.0045 -0.0475 -0.0199 0.0108
3 -0.4861 -0.0078 0.8738 0.0084 -1.0855 0.1183 -3.785
4 0.9549 0.0109 0.2958 0.0229 0.9851 0.0086 0.5411

(a) (b)

Figure 5.6: Results of combining objects after Indirect method, for proceeding with the Direct
method. Note the objects in the overlap area are merged and given one color (a) Combined
objects (b) Objects with points

are combined into one object. At the end of this combining step for the given
example there are 2 objects which have points from three scans, 14 objects have
points from two scans and the rest of 72 objects have points from only one scan.
The last category of objects does not contribute any information for improving the
registration parameters. But by including them in Direct method, we make sure
that any changes in the registration from the overlapping objects is also reflected
in the parameters of the non-overlapping ones.

For the direct method the number of the parameters and the observations can
be very large and this can slow down the estimation process. In the presented
example we had 88 objects, and four scans. The registration parameters of scan 1
were kept fixed to define the world coordinate system. In total we had to estimate
538 parameters. Although all all parameters were estimated, we show only the
ones for scan registration in Table 5.2.

At the start of the Direct method the rms error using the approximate solution from
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Figure 5.7: Distance of the point cloud resulting from Indirect method from the one from
Direct method

Table 5.3: Standard deviations from Direct method
Scan q0 q1 q2 q3 tx ty tz

(m) (m) (m)
2 3.221e-5 2.118e-5 1.306e-5 4.363e-5 1.607e-4 2.491e-4 7.984e-5
3 6.105e-4 2.835e-4 3.356e-4 6.730e-3 2.266e-3 1.609e-3 2.283e-3
4 3.003e-4 1.893e-4 1.627e-4 5.030e-3 1.576e-3 4.435e-4 1.031e-3

Indirect method was 5.12 mm. After the Direct method this was reduced to 4.09
mm. This is the rms value of distances of the points from their originating models.
Ideally this error should go down to zero but even in man-made environments
the objects only approximately conform to mathematical models. For example not
many objects modeled as planes are perfectly planar. Additionally, there can be
big discrepancies like bent or squashed pipes, pipe insulations etc. These errors
combined with the measurement noise of laser scanner explain this non-zero total
squared error. Furthermore, as the values are less than the stated measurement
noise we can assume there are no serious deformations present.

To evaluate the relative improvements obtained by the Direct method we calculated
the distance of the point cloud resulting from the Direct method from the one from
Indirect method. This distance (calculated as the closest point in the result of Direct
method to the one from Indirect method) is shown as a color coded point cloud
in Figure 5.7. There we see the biggest difference in the points of scan 3. This
is because there is very little overlap in terms of objects, and the approximation
of Indirect method for this scan was more erroneous compared to the other scans
where we had comparatively better overlap.

The standard deviations of the transformation parameters were obtained by
propagating the standard deviations of the point measurements to the object
parameters. For the point cloud acquisition the covariance matrix 52In was chosen
based on the data provided by scanner manufacturer (Leica HDS, 2005), which
states a standard deviation of 5 mm. The resulting standard deviations for the scan
registration parameters are shown in Table 5.3. Again we see the higher values for
scan 3, explained by comparably lower overlap.
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Figure 5.8: (a)Targets used for ICP-based registration in Cyclone (b) histogram of distance
between the result of Direct method and ICP.

Compared to ICP this is quite a unique and useful feature of the presented
method. By providing a full covariance matrix for registration parameters of
the scan and the shape parameters of the object, the quality of the results
can be judged mathematically. This also provides a way to identify the cases
where more measurements/scans should be added for improvement of the results.
The standard deviation values for translations have a direct interpretation, but
for quaternions the conversion from quaternions to the standard Euler angles
(Shoemake, 1985) is useful. For example for Scan 2 the standard deviations in
Euler angles are

(
0.0033 0.0023 0.0044

)
degrees.

To register the same set of point clouds using ICP artificial targets were placed to
get enough corresponding points for initial values. Some of these targets are shown
in the Figure 5.8(a). This highlights one of the main strengths of the presented
approach as for industrial and man-made environments, like buildings etc, our
method uses the available geometric information for the calculation of approximate
values and thus does not require artificial targets. For example in the presented
scenario the geometric information from corresponding planes and cylinders was
sufficient for initial value calculation.

For the registration through ICP point cloud processing software from Leica Geo
System called Cyclone was used (Leica HDS, 2005). For comparing the registration
from Direct method with the results of ICP we first calculated the distance of the
closest points between the resultant point clouds of the two methods. A histogram
of these distances is shown in Figure 5.8(b). The mean distance was 2.9 mm while
the standard deviation was 2.1 mm.

As we said in the introduction the traditional approach leads to accumulation
of errors as registration and modeling are two separate steps without any error
propagation. Moreover, the implementation of ICP in Cyclone as well as in most
commercial modeling programs can handle only pair-wise registration, which leads
to non optimal use of the available information.
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Figure 5.9: Cylinders used for comparing ICP with Direct method. (Table 5.4 & 5.5)

Table 5.4: Comparison of ICP and Direct method. Parameter values and average residuals
No. Method ax ay az tx ty tz r avg. res

(m) (m) (m) (m) (m2)

1
Direct -0.0026 0.9984 0.0561 0.7754 0.2423 -4.2784 0.0949 6.06e-06
ICP -0.0052 0.9984 0.0563 0.7755 0.2452 -4.2787 0.0947 9.56e-06

2
Direct 0.0021 0.9991 0.0431 0.7802 0.1822 -4.2601 0.4462 2.18e-05
ICP -0.0008 0.9991 0.0432 0.7804 0.1849 -4.2608 0.4461 2.26e-05

3
Direct -0.0131 0.9990 0.0436 -1.0600 0.1282 -3.2529 0.1227 1.93e-05
ICP -0.0121 0.9990 0.0429 -1.0574 0.1268 -3.2526 0.1214 2.11e-05

4
Direct -0.0195 0.9992 0.0343 1.9565 0.1265 -2.5709 0.1247 8.95e-06
ICP -0.0244 0.9991 0.0346 1.9538 0.1368 -2.5697 0.1219 1.01e-05

Table 5.5: Comparison of ICP and Direct method. Parameter standard deviations.
No. Method ax ay az tx ty tz r

(m) (m) (m) (m)

1
Direct ×10−3 0.3780 0.0130 0.3445 0.0570 0.0075 0.1325 0.1095
ICP ×10−3 0.4005 0.0160 0.3865 0.0590 0.0080 0.1365 0.1135

2
Direct ×10−3 0.2140 0.0067 0.1750 0.0365 0.0045 0.1075 0.0835
ICP ×10−3 0.2270 0.0070 0.1665 0.0390 0.0045 0.1050 0.0850

3
Direct ×10−4 0.360 0.0150 0.3000 0.4450 0.0250 0.6750 0.6300
ICP ×10−4 0.3850 0.0150 0.340 0.5300 0.0250 0.7250 0.7200

4
Direct ×10−4 0.2750 0.0150 0.3400 0.4650 0.0150 0.2050 0.3700
ICP ×10−4 0.3200 0.0150 0.3850 0.5250 0.0100 0.2250 0.4000
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We compared the results of the Direct method with those of ICP for accuracy of
model estimation. For this purpose four cylinders in different areas of the scans
were selected (Figure 5.9). Cylinders were fitted to the resultant point cloud from
ICP and the one from the Direct method, and the fitting results were compared
based on the standard deviations of the estimated parameters as well as the average
residual error. The results of this comparison are given in Table (5.4 & 5.5). For
the case of all four cylinders the average residual decreased for our approach, in
some cases up to a factor of 1.5. Similarly the standard deviation of the estimated
parameters is in general lower for our approach. This shows the importance of
simultaneous registration as well as the integrated estimation of registration and
model parameters.

As noted before, our approach has one serious assumption regarding the
conformance of the captured data to the mathematical models used for fitting.
Although in most cases the difference between an ideal model like a cylinder and
the data captured from say a piping installation can be considered small, in some
cases we can expect big discrepancies. In such cases the presented approach can
run into problems and can only give an approximate solution. In general a model
accuracy based comparison, similar to the one we did in this section, is a good
indicator for how far the model conformance assumption is being violated. In
such situations if there is sufficient overlap, this solution can be improved upon by
ICP. Whether such improvement can actually be obtained can be checked by the
increase/decrease in the standard deviation of parameter estimates for models. But
using our approach, we still get the benefits of good approximate values without
using artificial targets, which can lead to a big reduction in time and manual labor
required. Additionally, the potential for the automation of the correspondence
search can further decrease the amount of manual input required.

5.6 Conclusions

Two methods for registration of the point clouds taken from different viewpoints
have been presented. Both methods make use of automatic/manual segmentation
that labels the points as belonging to a certain object. Both strategies can be used
for the simultaneous registration of multiple point clouds. The Indirect method,
though geometrically flawed, provides a quick way to get approximate values based
on manual specification of correspondences. These approximate values are latter
used by the Direct method.

The Direct method extends the idea of bundle adjustment from traditional
photogrammetry. It estimates the registration parameters of the scan and the shape
parameters of the objects by minimizing the orthogonal distances of the points from
the object surface. This is a nonlinear estimation process and the partial derivatives
required for its implementation were derived.

The presented methods were applied to a test data-set from an industrial site,
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and although artificial targets were required for ICP, our method was able to
register the point clouds using only the modeled objects. Additionally, quality
estimates in terms of standard deviations of all scan and object parameters were
computed. The presented approach performs simultaneous registration and thus
avoids accumulation of errors resulting from pair-wise registration, using all
available information for every step of the process. We compared the presented
approach with the industry standard implementations of ICP and showed that our
approach performed better in terms of achieving a lower average residual for model
fitting, and giving a better estimation accuracy of model parameters.

In the next chapter we will present efficient strategies for implementing automatic
search for finding corresponding objects for model based registration.



Chapter 6
Automatic correspondence search

Study the past if you would define the future.

Confucius
Look to the past for guidance into the future.

Robert Jacob Goodkin
Those who cannot remember the past are condemned to repeat it.

George Santayana

In this chapter we present a set of constraints that can be used to efficiently
search for corresponding objects in a given set of scans. These constraints result
in a considerable reduction in the computational complexity of the required
combinatorial search for corresponding objects. Depending on the type of
the object there is a minimum number of correspondence pairs which are
necessary to determine the complete rigid transformation. Each match provides
partial information towards the calculation of this transformation which can be
interpreted as a constraint. These constraints can be used to reduce the number
of possibilities for each new match based on the information from the previous
matches. In this chapter we give a mathematical formulation of such constraints
and details of their implementation. Once a minimal set of corresponding objects
have been found, the scans are approximately aligned, and can be searched for
other overlapping objects. These corresponding objects can be used in an Integrated
adjustment (Chapter 5) for final registration. We compare the performance of
RANSAC based correspondence search using the presented constraints with the
blind RANSAC search, which shows that the presented method leads to significant
improvements in reducing the computational complexity of the problem.
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6.1 Introduction

As noted in the last chapter most of the commonly used registration algorithms
make minimal assumptions about the types of objects present in the scans. This
makes them very general-purpose but at the same the domain specific information
that could have been used for automation is thrown away. We have taken the
opposite approach as we restrict our domain to the industrial scenarios and we
assume that well-defined objects are present in the point-clouds, which can be
used as targets for registration. In the last chapter the corresponding objects were
specified manually, but we mentioned that this search can be automated by solving
the problem of finding best set of corresponding objects. In this chapter we address
how to efficiently implement such a search.

The correspondence search can be implemented in two ways: either by using a tree
search that explores all/selected possibilities using different tree search methods
like depth-first, breadth-first and A* (Russell and Norvig, 2003; Vosselman, 1995).
Alternatively we can use a randomized search for example based on RANSAC
(Fischler and Bolles, 1987). As we have different number of minimum matches
required for each type of objects for the determination of complete rigid body
transformation (e.g. 3 corresponding planes or 2 corresponding cylinders), we
have a sequential process where one match is selected followed by the next
one. Each match provides partial information towards the final solution of the
registration problem. This partial information can be interpreted as a constraint
that narrows down the number of options for the next match. These constraints
allow us to use the available information fully at every step, and allows the future
decisions to be guided by ones made in the past.

6.1.1 Outline

The rest of the chapter is organized as follows. We give an outline of our
algorithm in Section 6.2. In Section 6.3 we give the details of geometric
constraint propagation that can be used to implement an efficient search for the
corresponding objects. Section 6.4 provides a comparison of two search methods
using the presented constraints with the ones not using them; both RANSAC and
tree search methods are compared. We present some results on industrial point
clouds in Section 6.5. Finally we conclude in Section 6.6 with some directions for
the future work.
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6.2 Algorithm outline

6.2.1 Naming conventions

For referring to scans and corresponding objects we will follow the following
notation. The correspondence search is presented for a pair of scans, the one being
used as the reference is called Θf ( f is for fixed ) and the one being registered is
called Θr. The n-th match of corresponding objects in the two scans will be labeled
as Ofn and Orn, where O can be P , C, S or T for the case of a plane, cylinder,
sphere and torus respectively. For transformations we will use capital TO

n , where
the subscripts that its the transformation for n-th step and for type of object O.

6.2.2 Algorithm steps

The overall process of object based automatic registration consists of the following
steps:

1. Given two scans Θf and Θr, detect the set of points that belong to
simple objects like planes, cylinder and tori automatically using for example
segmentation (Chapter 2) and Hough transform (Chapter 3).

2. Fit models to each detected point-set above using least-squares both in Θf

and Θr (Chapter 4).

3. Find minimal set of object correspondences in Θr and Θf and through them
the approximate transformation Tapprox using the techniques of Section 6.3.

4. The approximate registration of the previous step are used to search for more
corresponding objects based on proximity and similarity of geometry.

5. Keep the object parameters fixed, and adjust only for scan parameters using
Direct method (Chapter 5). The adjustment would minimize the square of
orthogonal distance of the points to corresponding object surfaces.

6. Do simultaneous adjustment for both scan and object parameters using
techniques of Integrated adjustment (Chapter 5).

6.3 Constrained Search for Correspondences

The search for finding the best set of corresponding objects is a combinatorial
optimization problem. The simplest solution is through an exhaustive search,
but this soon becomes computationally infeasible. For example, if the two scans,
Θr and Θf , contain nr and nf models and the minimum number of matches
required is m, the number of possibilities for correspondences is nrPm ×nf

Pm
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where nPk = n!
(n−k)! . For larger n’s and smaller m the number of possibilities can

be approximated by ≈ nr
m × nf

m.

Although different search tree optimization methods exist in Artificial Intelligence
literature (Russell and Norvig, 2003) and they have been successfully applied in
Photogrammetric applications (Vosselman, 1995), most of them (e.g. A*) require
a heuristic function that gives the approximate cost function given the current state
of the search. This can be quite difficult to provide for the case of the point cloud
registration problem, as due to multiple local minima the current state of the search
does not provide enough information for calculation of an approximate distance
from the final goal. As a result we have selected the technique of constraint
propagation for pruning the search tree.

In this pruning approach we apply the geometric constraints resulting from
the previous matches to narrow down the possibilities for the current match.
Additionally, instead of trying to reach the global minimum we assume a certain
overlap between the set of scans being registered (the overlap can be either in
terms of objects or that of points) and as soon as we successfully achieve that
overlap (as measured by a given distance criterion) the search process is stopped.

The presented constraints are quite general and can be used by both tree-based
search and RANSAC like random methods. We will show the improvements in
search efficiency using the presented constraints in Section 6.4. Details of these
constraints for correspondences of different types of objects are provided in the
following sections.

6.3.1 Planar matches

Planar objects are one of the most commonly found primitives both on industrial
sites and buildings. A planar surface is represented by its normal n and the distance
of the plane from the origin given by ρ. This representation is also called the Hesse
form of the plane.

P =
(
n ρ

)
(6.1)

Although infinite planes do not exist in reality, it is convenient to work with them as
they can be compactly represented without requiring the specification of boundary
curves. As the final stage of Integrated adjustment uses original point-cloud, this
implicitly brings in the information about the object boundaries.

For calculating the transformation between two coordinate frames we need at least
3 corresponding planes. To make the resulting combinatorial problem manageable
we constrain each successive match by the geometric conditions imposed by the
previous matches, a process detailed in the following paragraphs.
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Constrained correspondence search for planes (a) Parameters of a plane (b) before
registration (c) after first match, a cylindrical rotation and a planar shift remains (d) search for
planes which satisfy constraint of cylindrical rotation as seen on Gaussian sphere. The normals
of the planes are represented as balls. (e) after second match, only a linear shift remains to be
determined (f) after third match, all parameters are determined.

First match

For the first match of the planar objects we do not have any constraints. This means
that all possibilities are equally valid and if we have nfp and nrp planes in the two
scans, the number of possibilities is nfp × nrp. The situation can be improved by
using some heuristics that can prioritize matches based on criteria like number of
points, error of fit etc. Additionally, if RANSAC is being used then any plane-pair
at random can be picked.

If two planes Pf1 and Pr1 are found to be in correspondence with each other, then
the rotation part of the transformation must align their normals i.e. nr1 with nf1.
This can be accomplished by having a rotation of θ radians around axis ar, both of
which are given by:

θ = cos−1(nr1 · nf1) (6.2)

a = nr1 × nf1 (6.3)

Similarly, the translation should take care of the differences in ρ values.

t1 = (ρf1 − ρr1)nf1 (6.4)

Once this transformation TP
1 has been applied to the set of all planes we have:

{P 1
r } = TP

1 · {Pr} (6.5)
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Second match

The second match for planes is constrained by the first match. There are two
constraints (Figure 6.1(c)):

1. The rotation must be cylindrical around the axis given by nf1. This constraint
ensures that the normals aligned during the first match (Section 6.3.1)
remain undisturbed by the transformation of the second match.

2. The translation is constrained to only planar movements in the plane Pf1.
There cannot be any movement along the normals which have been aligned
by the first match, i.e. nf1.

To illustrate the first constraint lets plot the normals of all planes on a Gaussian
sphere. Each normal will map to a point which are shown as balls in Figure 6.1(d).
The red balls represent the normal directions of reference planes i.e. {Pf} and the
yellow balls representing the planes in the scan being registered i.e. {P 1

r }. The
blue arrow shows the direction of cylindrical rotation which is the same as nf1 i.e
the corresponding ball-pair aligned by the first match. Now if we cut the Gaussian
sphere in planar slices along nf1, then only the yellow balls which are in the same
slice as some red ball can be mapped to each other by the cylindrical rotation. This
narrows down the number of possible combinations drastically and speeds up the
search process. Mathematically, this constraint can be given as:

cos−1 nf1 · nf2 ≈ cos−1 nf1 · nr2 (6.6)

If we look closely at the planar slices on the Gaussian sphere perpendicular to
nf1 in Figure 6.1(d), we observe that as the planar slice moves away from the
origin the circle resulting from planar slice (the blue rings in the figure) shrinks in
diameter. This is a measure of the degeneracy of the match. The match on the great
circle (the slice passing through origin) is orthogonal to the first match and will be
geometrically the strongest. The situation worsens as the planar slice moves away
from the origin, reaching the full degenerate case when the slice passes through
the normals of the first match. This suggests a sub-clause to the first constraint,
namely the angle between the plane-normals of the first match and this second one
should be greater than zero i.e.

cos−1(nf1 · nf2) > 0 (6.7)

This condition suggests that the matches from the slices closest to the origin (Figure
6.1(d)) should be tried first to get a geometrically well-determined solution.

The second constraint is not helpful in narrowing down the possible planar
matches. This is because it can only affect translation, i.e. the value of ρ, but
unless the rotation is fully determined, any value of ρ can be attained through an
appropriate translation in the plane Pf1.

At this stage if Pf2 is matched to Pr2, we have two correspondences for normal
direction that fix the rotation. Translation is fully determined in the plane spanned
by the normals of the corresponding planes, but there is still one degree of freedom
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left in the translation i.e. in the direction orthogonal to nf1 and nf2.

After the application of transformation matrix TP
2 we have the following situation:

{P 2
r } = TP

2 · {P 1
r } (6.8)

Third match

After the first two matches the rotation is fully determined. The third match is
constrained by a linear motion in the direction of l3 which is perpendicular to both
nf1 and nf2. i.e.

l3 ⊥ nf1 & l3 ⊥ nf2 ⇒ l3 = nf1 × nf2 (6.9)

The above condition ensures that the ρ’s of the two plane-pairs aligned by the first
two matches are not affected by the third match. Due to this condition, along with
the fact that rotation is fixed, we have two conditions that must be satisfied for the
third match:

1. As the rotation is fixed the normal directions of the plane-pair of this third
match should be quite similar, meaning their dot product should be close to
one (ts ≈ 1).

nf3 · nr3 ≥ ts (6.10)

2. As the translation is only along the direction l, the normal direction of the
third match should have a component along this direction i.e. their dot
product should be greater than a given threshold (tp > 0).

nr3 · l3 ≥ tp (6.11)

The enforcement of these two constraints narrows down the search for possible
matches, reducing the final computational cost. As rotation is already fixed, the
only unknown is translation which is determined by the difference in ρ’s.

t3 = (ρf3 − ρr3)nf3 (6.12)

After applying this translation we get the final transformed set of planes.

{P 3
r } = TP

3 · {P 2
r } (6.13)

After the third planar match the rigid body transformation is fully determined
(Figure 6.1(f)) and we have an approximate registration solution.

6.3.2 Spherical matches

Spheres are often used as artificial targets, though they may occasionally be found
as parts of industrial models. A sphere is given by its center c and radius r.
Although r does not contain any geometric information for registration (Chapter
5) it can used for filtering the matches based on the radius similarity constraint.
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(a) (b)

(c) (d)

Figure 6.2: Constrained
correspondence search for spheres
(a) Before registration (b) after first
match, translation is fixed but rotation
is totally undetermined (c) after 2nd
match, only a cylindrical rotation
remains (d) after 3rd match, rigid
transformation is fully determined

The minimum number of sphere correspondences required to calculate registration
is 3. Of course they must form a geometrically non-degenerate configuration. In
the following sections we will formulate the constraints for each match.

First match

For the first match we have only the constraint on the radius. i.e. |rf1 − rr1| < rth,
where rth is a threshold close to zero. For the following sections we will refer to
this constraint as the radius similarity constraint and we will use it for cylindrical
and toroidal matches too.

If in the first match the sphere Sf1 matches the sphere Sr1, the translation is
completely determined given by t = cf1 − cr1. Rotation is fully undetermined
after the first match (Figure 6.2 (b)).

Second match

For the second match we have two constraints:

1. Radius similarity constraint.

2. Distance similarity constraint. If the second match consists of spheres Sf2

and Sr2, then the distance of both from the center of Sf1 should be similar:

‖cf2 − cf1‖ ≈ |cr2 − cr1‖ (6.14)

As the translation was fixed by the first match, the second match gives us one
corresponding vector direction, that can be used to calculate the rotation. The axis
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a and angle θ of this rotation are given as follows:

a = (cf2 − cf1)× (cr2 − cr1) (6.15)

θ = cos−1 ((cf2 − cf1) · (cr2 − cr1)) (6.16)

After the application of this transformation we have the situation as shown in
Figure 6.2 (c).

Third match

After the first two matches the translation is fully determined while a cylindrical
rotation still remains to be determined. The third spherical match is constrained
by the following constraints:

1. Radius similarity constraint (See 6.3.2).

2. Cylindrical rotation around the axis (cf2 − cf1).

3. Distance similarity constraint as defined before for the second match. (‖cf3−
cf1‖ ≈ |cr3 − cr1‖)

The second constraint can be enforced using the Gaussian sphere based technique
described above (Section 6.3.1). The third match gives us a fully resolved solution
of the registration problem (Figure 6.2 (d)).

6.3.3 Cylindrical matches

A cylinder in our system in represented by 7 parameters, 3 for the axis direction ac,
three for the point closest to the origin pc, and one for the radius of the cylinder,
rc (Figure 6.3(a)).

C =
(
ac pc rc

)
(6.17)

For a cylinder the degrees of freedom are 5, therefore we have two conditions on
this over-parameterized representation

‖ac‖ = 1 & ac · pc = 0 (6.18)

The first condition requires the magnitude of the axis to be unity while the second
condition ensures that pcis a point on cylinder closet to origin. The minimum
number of cylindrical matches required for determination of all registration
parameters is 2.

First match

For the first match we have only radius similarity condition for cylinders i.e.
|rf1 − rr1| ≤ tr (Figure 6.3 (b) ).
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(a) (b)

(c) (d)

Figure 6.3: Constrained
correspondence search for cylinder
(a) Parameters of the cylinder, we use
7 parameters with two constraints (b)
before registration (c) after first match,
a cylindrical rotation and linear shift
remains (d) after second match, all
parameters are determined.

Once we have one pair of matching cylinders Cf1 and Cr1, we can determine the
required transformation up to a cylindrical rotation and a linear shift. The rotation
of this transformation is around the axis of af1×ar1, with an angle of cos−1af1 ·ar1.
The shift is given by

t1 = (pf1 − pr1)− ((pf1 − pr1) · af1)af1 (6.19)

Once the transformation obtained by combining this rotation and translation has
been applied to the cylinder, we have:

{C1
r} = TC

1 · {C0
r} (6.20)

Second match

The second match has to satisfy three constraints (Figure 6.3 (c) ):

1. The radius difference should be smaller than a certain threshold i.e.
|rf2 − rc2| ≤ tr.

2. The rotation between Cr2
1 and Cf2 should be a cylindrical rotation around

af1. For enforcing this constraint we can use the same technique as
Section 6.3.1.

3. Once we have rotated C1
r to C1

f there is still a translation t2 that needs to be
determined. It is constrained to be a linear shift along af1. i.e. t2 = λaf1

where λ is a parameter to be determined. For deriving an expression for λ
we proceed as follows.

pf2 = pr2 = pr1 + λaf1 − (ar2 · (pr1 + λaf1))ar2 (6.21)

pr1 ⊥ ar2 ⇒ ar2 · pr1 = 0 (6.22)
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(a) (b)

(c) (d)

Figure 6.4: Constrained
correspondence search for torus
(a) Parameters of the torus, we use
8 parameters with one constraint (b)
before registration (c) after first match,
only a cylindrical rotation remains (d)
after 2nd match, all parameters are
determined.

λ =
pf2 − pr1

af1 − (af1 · af2)af2
(6.23)

From the above equation we will get three different values for λ, and if they
are approximately equal λx ≈ λy ≈ λz we have a unique solution and its
possible to align the cylinders while satisfying the constraints. Otherwise we
will discard this match and try another one.

After the 2nd match we have two axial directions which fully determine the
rotation and two positions on these axes can be used to calculate the translation.
By combining the rotation with the translation we get the full transformation TC

2 .

Infinite cylinders can be treated as infinite lines in 3D with a finite radius. For
transforming such lines Plücker coordinates with dual-quaternions have been
extensively used. It is possible to use that representation for our problem too.
Although we do not see any special advantage in that, expect may be compactness
of the derived results as the rotation and the translation can be treated together
in Plücker coordinates using dual quaternion (Daniilidis and Bayro-Corrochano,
1996).

6.3.4 Toroidal matches

Each torus T is represented by 8 parameters, 3 for normal direction of the plane
containing the torus at, the central point pt, minor radius rtand major radius Rt

(Figure 6.4(a)).
T =

(
at pt Rt rt

)
(6.24)

There is only one constraint namely ‖at‖ = 1.
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First match

For the first match we have only two constraints:

1. |rf1 − rr1| ≤ tr where tr is a threshold for minor-radius similarity

2. |Rf1 −Rr1| ≤ tR where tR is a threshold for major-radius similarity.

Once we have a match between a pair of tori, the rotation is determined up to a
cylinderical ambiguity around the axis af1 while the translation is fully determined.
For this purpose the torus may be considered as a combination of a sphere placed
at pt, and a cylinder in the direction of at.

Second match

For the second match we are looking for information to fix a cylindrical rotation
with the axis of rotation being equal to af1. To do the search we use the Gaussian
sphere based method that was used for finding planes in Section 6.3.1.

6.3.5 Mixed objects.

In real scenarios we cannot expect that only one type of objects will be present in
a given scene. It would always be a combination of objects. In such scenarios it
is necessary to use the most constraining matches first, so that we can come to a
solution without doing a lengthy search. Here are some rules of thumb for guiding
the search in the case of mixed objects.

• Sort objects according to their constraint strength, this will result in the
following order: torus, cylinder, plane and sphere.

• Within each object class sort the objects based on some confidence measure.
For example number of points used to fit an object, the average residual for
least square fitting, or the quality of the parameter estimation coming from
the stage of model fitting (Chapter 4).

6.4 Comparison

We implemented RANSAC based correspondence search. Two versions of
the methods were implemented: one using standard RANSAC and the other
incorporating the presented set of constraints. A detailed algorithm for
incorporating constraints in the search for planar corresponding objects is given
in Algorithm 2.
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Algorithm 2 RANSAC based correspondence search for planes
1: Inputs: Point clouds = Θr and Θf point normals = Πr and Πf modeled

planes = {P}r and {P}f number of maximum iterations = itermax %age
overlap = ηrf distance threshold = dth angle threshold = θth

2: Initialize counter c = 0
3: while c < itermax do
4: First match
5: Pick first plane-pair at random. Pf1 = {P}f [rand] and Pr1 = {P}0r[rand].
6: Apply the transformation of the first pair to all planes being registered

{P}1r = T1 · {P}0r
7: Second match
8: Pick a fixed plane at random Pf2 = {P}f [rand] so that its normal has some

angle with the first match cos−1 (nPf1 · nPf2) > 0
9: The plane from the registered set Pr2 must satisfy the cylindrical rotation

constraint cos−1 (nPf1 · nPf2) = cos−1 (nPf1 · nPr2)
10: Apply the transform from the 2nd match to all planes in the registered set

{P}2r = T2 · {P}1r
11: Third match
12: Pick fixed plane at random Pf3 = {P}f [rand] so that it has a

component perpendicular to the plane spanned by first two matches
cos−1 ((nPf1 × nPf2) · nPf3) > 0 and

13: Pick the plane from registered set Pr3 so that it has a normal in the same
direction as Pf3 i.e. cos−1 ((nPf3 · nPr3) ≈ 0

14: Apply the transform from the 3rd match to all planes in the registered set.
{P}3r = T3 · {P}2r

15: Verify
16: Transform Θr using the calculated values.
17: Calculate the overlap between Θr and Θf by counting the number of points

which have distances less than dth and whose normals from Πr and Πf have
angles less than θth.

18: if Calculated overlap >= ηrf then
19: Return the calculated transform T
20: else
21: Not a valid match. Continue with the next iteration.
22: end if
23: end while
24: Return Failure. Number of specified iterations exceeded before we could find

a transform with specified overlap.
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To compare the theoretical improvements we generated synthetic data sets with
different number of planes and cylinders. Each dataset was processed using both
search strategies. As RANSAC is a random sampling procedure each search was
repeated 50 times to get an average number of iterations required to find the
solution. The results are presented in Table 6.1. There we see for cylinders an
improvement of an order of 50. While for planes it varies between a factor of 100
to 1000. Of course this improvement is highly dependent on the site and type
and number of geometric primitives found there, but on average we can expect
significant improvements in search performance.

Table 6.1: Comparison of the number of iterations required for different methods of
correspondence search

Method
Number of objects

5 10 30 50 70 100

For Cylinders
Brute force search 400 8100 7×105 6.×106 2×107 9.8×107

RANSAC without constraints 28.7 138.9 1062 1887 3228 5028
RANSAC with constraints 1.12 3.68 16.5 21.3 48.8 75
RANSAC without

with
25.6 37.7 64.3 88.6 66.0 67.04

For Planes
Brute force search 3600 5×105 6×108 1010 1011 1012

RANSAC without constraints 164 1463 5×104 8.6×104 9.1×104 > 105

RANSAC with constraints 4.6 7.5 21.2 67.4 92.7 122
RANSAC without

with
35.6 195 2358 1275 981 819

6.5 Results

We applied the presented method to some industrial data sets. In Figure 6.5 we see
the situation before and after the first step of automatic approximate registration.
For this scenario we used only cylinder based automatic search. We had 17
cylinders in the first scan and 26 in the second scan. As only two matches are
required for an approximate alignment, a brute force search would have required
17 × 26 × 16 × 25 = 176800 matches. In contrast our search algorithm was able
to find the solution in 20 matches. This reduction was possible by exploiting the
geometric constraints and by breaking the search once a good enough solution was
found. The transformation parameters from this procedure are only approximate.
This is clear from Figure 6.5, and is emphasized in Figure 6.6, where a zoom on
the point-clouds after the step of approximate alignment shows remaining errors.
In Figure 6.6(b) we see a significant improvement after the Integrated adjustment.

6.6 Conclusions

We have presented a method for automatic registration of point clouds using
an efficient search for corresponding objects. Although this methodology is not
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Results of processing an industrial data-set (a), (b), (c), point-clouds, cylinders,
and cylinders+planes before automatic approximate registration. (d), (e), (f) after automatic
approximate registration. In all figures Θf is in red and Θr is in yellow.

(a) (b)

Figure 6.6: The improvements obtained by integrated adjustment (a) after approximate
alignment through constrained correspondence search (b) after least square Integrated
adjustment
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general and cannot be applied to all scenes, it can reduce the manual labor
for registration of industrial point clouds. This procedure can be extended
to the registration of images with point-clouds of industrial scenes by finding
correspondences between the back-projected model contours and image edges.



Chapter 7
Constrained CSG fitting to

point clouds & images

A picture is worth a thousand words.

Napoleon Bonaparte

The ability to simplify means to eliminate the unnecessary so that the
necessary may speak.

Hans Hofmann

In this chapter we present a method for the 3D reconstruction of industrial sites
using a combination of images and point clouds with a motivation of achieving
higher levels of estimation accuracy and model completeness. As discussed in the
previous chapters dense point clouds for 3D reconstruction can be easily acquired
using a laser scanner. Compared to images the point clouds contain explicit 3D
information, as a result they have a much higher potential for the automation
of 3d reconstruction. This was demonstrated in Chapter 3 for automatic plane
and cylinder detection through the Hough transform. However, due to the
measurement principle employed by the laser scanners and their limited point
density, the information on the sharp edges is not very reliable. As images
have better information content on the edges of the objects, it makes them
a complementary source of data. In addition images are required for visual
interpretation, texture mapping, and modeling parts not visible in the point clouds.
Furthermore, the acquisition of images is more flexible, and the cost and time
required for it is much lower than that of laser scanning, making their combined
use essential for a cost-effective solution. As many new laser scanners are coming
with integrated cameras, it provides another motivation for using images for
modeling. These reasons led us to develop a modeling strategy that uses both
images and point clouds in combination with a library of CAD primitives commonly
found in industrial scenes. The primitives in this library are represented as CSG
(Constructive Solid Geometry) models.
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For the fitting of CSG objects to the images we expect their exterior orientations to
be known. The CSG objects are fitted in a least squares adjustment that minimizes
the distance between the projected contours of the model to the measurements
on the visible edges in the images. These measurements increase the estimation
quality of the modeling, especially for those portions where the information in the
point cloud is either noisy or is missing. This will be shown in the two fitting
experiments performed on relatively simple scenarios.

The approach of explicit specification of constraints, that was presented in Chapter
4, had some serious limitations. It could only handle linear constraints. Moreover,
there was no easy way to specify external constraints (linking the parameters of
one CSG tree to those of another). To overcome these limitations in this chapter
we present a fitting method that uses constraints through Lagrange multipliers.
This enables us to handle both nonlinear equality and inequality constraints.
Additionally, the specification of external constraints can be easily handled. We
present the mathematical formulation of some of the commonly encountered
constraints and give the details of their implementation.

The results of applying this method to data-sets from industrial sites are presented
showing the complementary nature of the point cloud and the image data. An
analysis of the improvements in the quality of the 3D reconstruction shows the
benefits of the presented approach.

7.1 Introduction

We discussed the advantages of using point clouds for modeling in Chapter 1.
Although, the advent and rapid developments in the field of high speed 3D data
capture might give an impression that the images are now outdated, in reality
images still provide a complementary source of information. Here we outline the
reasons that motivated us to make a combined use of images and point clouds.

Accurate edge information Laser scanners and cameras employ two different
physical measurement principles which lead to different strengths and
weaknesses. A camera focuses the backscattered light using a lens on a
photosensitive sensor (CCD or CMOS). In this arrangement the resolution
of the system is limited by the distance of the object from the camera, the
number of pixels on the sensor, and the Modulation Transfer Function (MTF)
of the lens. In contrast, the laser scanners are based on a point measurement
device, which emits a laser pulse with a finite beam-width. The time of
flight or phase-shift of the reflected beam is measured and converted to
distance. This point measurement “head” is scanned in two directions using
mechanical devices to achieve an area-scan instrument. As pointed out by
Lichti (2004), in addition to the internal measurement errors, the beam-
width of the emitted laser limits the spatial resolution of the laser scanners.
The typical beam-widths of terrestrial laser scanners varies from a few mm to
tens of mm. This is not a serious problem for the measurement of smooth
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surfaces (e.g. insides of a cylindrical surface) but it results in a serious
degradation of the measurements on those areas of the surface which have
rapidly varying details like the edges of the objects. This is a direct result
of a bigger beam-width and can be compared to a blurred image from an
out of focus camera. Furthermore, the quality of the range measurement
obtained from the laser scanners is affected by the reflectivity, the color and
the roughness of the surface being measured (Böehler et al., 2003; Clark and
Robson, 2004). As images have a better information content on the edges of
the objects, they provide a complementary data source and their inclusion in
model fitting should give better results.

Easy and fast capture Although the laser scanners are improving in speed with
each new generation of instruments, they will remain for foreseeable future
far behind the cheap, fast and flexible data capture of the cameras. The
combined use of images and point clouds provides an economical solution
for complete as built modeling. The fact that most new laser scanners are
coming with integrated cameras provides another opportunity to use this
readily available data for modeling.

Visualization Most applications of as-built modeling require or can benefit from
a realistic rendering of the 3D world, which requires registered imagery for
texture mapping. Additionally, compared to the raw point clouds colored
images are more intuitive for human interpretation and can be used for this
purpose during manual or semiautomatic processing.

Validation of modeling Images provide a way to check the validity and
completeness of the final model. Superimposition of the back-projected
contours of the modeled surfaces on the images provide a convenient tool for
this purpose. For a user it can be easier to identify the un-modeled surfaces
in the images compared to doing the same job with the point clouds.

Improved estimation As will be shown in Section 7.5, the inclusion of images
can provide additional information which is not available from the point
clouds and this can result in a better quality of estimation during model
fitting. This is especially true for the bounded objects, because the parameters
determining the bounds are estimated better when the edges belonging to the
faces not covered by the point cloud are included in the estimation procedure.
For example, the sizes of a box or the length of a cylinder are poorly estimated
from the points cloud, as in most cases not all the faces are fully captured. In
such cases the situation improves significantly if the edge measurements from
the images are used in combination with the surface measurements from the
point cloud.

Based on the above observations of the complementary nature of the images and
the point clouds we decided to use both data sources simultaneously.
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7.2 Model Fitting

In Chapter 4 we presented an approach for the fitting of CSG models to the point
clouds with explicit constraints. This enabled us to use standard unconstrained
least squares optimization methods for solving a constrained problem. But, as
we noted there, this had some serious limitations. Only linear constraints could
be included. The inclusion of nonlinear constraints like the one on the length of
a quaternion or axis of the cylinder being unity were handled outside the least
squares method. Similarly, inequality constraints were limited to only simple
bounds. Moreover, specification of external constraints was not possible.

Based on all of the above limitations we decided to move to the constrained
optimization methods. This enables us to specify both linear and non-linear
constraints. The possibility to include inequalities provides a way to specify the
feasible parameter domains in a more flexible way. For example, the angle between
two cylinders can be constrained to be more than 85 and less than 95 degrees.
External constraints, which link the parameters of one CSG tree to those of another,
can be directly specified. Overall, the use of constrained optimization provides a
better and more flexible approach.

7.2.1 Observation equations with constraints

In this section, we will discuss the constrained least squares method for linear
equations and linear equality constraints. The extension of this method to the non-
linear models is based on the linearization of the involved equations through Taylor
series expansion.

Consider a mathematical model with n observations, p unknown parameters, and
m constraints. The observation equations are given by:

A x = b (7.1)

(n× p) (p× 1) (n× 1)

where A is the design matrix, x are the unknown parameters being estimated,
and b are the values of the observations. If a weight matrix W is given the above
system changes to WAx = Wb.

The constraints which express the relationships between the different elements of
x are given by:

C x = d (7.2)

(m× p) (p× 1) (m× 1)

where C is the design matrix for the constraints and d are their values.

The above system can be solved by introducing a set of m new variables λi called
Lagrange multipliers. Their inclusion converts the above system to the following:

(WAx−Wb) + ΛT (Cx− d) = 0 (7.3)



7.2. MODEL FITTING 123

where ΛT is a diagonal matrix whose diagonal entries are given by m Lagrange
multiplier.

The estimated solution x̂, obtained by solving Equation 7.3, is given by the
following equations (Wong, 1980):

x̂ = x̂o − x̂c (7.4)

x̂o =
(
ATWA

)−1
AWb (7.5)

x̂c =
(
ATWA

)−1
CT

(
C

(
ATWA

)−1
CT

)−1

(Cx̂o − d) (7.6)

The above equations show that the solution of a constrained system of equations
consists of two parts: the first part x̂o is determined by the observations. The
second part x̂c just introduces a shift to x̂o, so that the final solution obeys all the
constraints.

A similar behavior is shown by the covariance matrix of the estimated parameters
Σx̂ which is given by:

Σx̂ = Σx̂o
(I−Σx̂c

) (7.7)

Σx̂o
=

(
ATWA

)−1
(7.8)

Σx̂c
= CT

(
C

(
ATWA

)−1
CT

)−1

C
(
ATWA

)−1
(7.9)

From the above equations we see that the constraints add a multiplicative term
(I−Σx̂c

) to the covariance matrix Σx̂o
that would have resulted if the constraints

were ignored. For a constrained system the variance of those parameters decreases
whose estimation has improved because of the additional information provided by
the constraints.

For solving non-linear observation equations with non-linear constraints, both
need to be linearized and then solved by the machinery outlined above. This
is an iterative procedure and replaces A and C by the Jacobian matrices of the
observations and the constraints (JA and JC) respectively. The direct linearization
does not have good convergence properties. Different methods have been proposed
in the literature of constrained nonlinear optimization (some times called nonlinear
programming) to get better global convergence properties (Bertsekas, 1995;
Dennis and Schnabel, 1996; Luenberger, 1984). We have decided to use a Gauss-
Newton based method for solving constrained nonlinear optimization problem,
which uses an active set strategy for the inequality constraints. For more details
see Eriksson and Wedin (2004); Lindström (1983, 1984); Lindström and Wedin
(1986).

Due to the active-set strategy the inequality constraints are also treated as equality
constraints when they are active, otherwise they are ignored. Once the final
solution is reached the covariance matrix is estimated using Equation 7.7, but with
the Jacobian matrices JA and JC replacing A and C respectively.
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(a) (b)

Figure 7.1: (a) Fitting of a model to the point cloud, the sum of squares of the orthogonal
distances of the points to the estimated model surface is minimized (b) Fitting to the images
minimizes the sum of squares of the distances of the measured points (the green spheres) from
the back-projected contours (shown as yellow outline) of the model being fitted.

7.2.2 Fitting of a CSG model

For fitting of a CSG model to a given point cloud, the problem formulation is quite
similar to the one given in Chapter 4. We minimize the sum of the squares of the
orthogonal distances of the points from the surface of the model being fitted, while
enforcing the equality and the inequality constraints between the parameters of
the CSG model:

min
N∑

i=1

Ω2 [pi,Γ (τ1, τ2, . . . , τm)] i = 1, 2, . . . , n (7.10)

gj(τ1, τ2, . . . , τM ) = 0 j = 1, 2, . . . , r (7.11)

hk(τ1, τ2, . . . , τM ) > 0 k = 1, 2, . . . , s (7.12)

Ω defines the shortest distance of a given point pi from the surface of the CSG
model Γ if the point comes from a 3D point cloud or the distance to the closest
back projected edge if the point is measured in an image (Figure 7.1). The CSG
object has m shape and pose parameters given by τ1, τ2, . . . , τm. There are r
equality constraints given by gj ’s and s inequlity constraints given by hk ’s. These
constraints are enforced using the Lagrange multiplier based method discussed in
the last section.

For the calculation of Ω (the orthogonal distance of a point from CSG object’s
surface), we have already presented a comparison of different numerical methods
in Chapter 4.
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(a) (b)

Figure 7.2: Examples of the geometric
constraints for CSG objects (a) Flanged
T junction (b) Flanged curve

For fitting a CSG model to the images we follow the technique presented by
Ermes et al. (1999); Tangelder et al. (2003). There is one exception in our
approach, because we do not know a priori the correspondences between the
image measurements and the back projected contours of the CSG model. Due to
this missing information we follow an iterative procedure, where before each new
iteration the measurements are assigned to the closest back-projected contour.

Each point measurement in an image gives us a ray in 3D. Given a set of images
with measured points we want to estimate those values for the CSG parameters
that result in the minimum distance (in a least squares sense) between all these
rays and the estimated CSG model. Alternatively, the ray to the body distance
can be calculated in the image space. There the distance in pixels between an
image measurement and the closest back-projected contour of the CSG model is
calculated. The back projection must have a mechanism for hidden-line removal,
so that the effects of self and external occlusions are taken into account. We use
ACIS (Spatial, 2004) to compute the hidden line projection of the model in the
images. For an example see Figure 7.1(b).

7.3 Types of constraints

A constraint is a geometric or topological relationship that limits the permissible
values for the parameters and other properties of the objects in a design. It is
a powerful way to encode a priori information and to specify the design intent
and limitations both during the designing of a new model as well as during the
reconstruction/modeling of an existing object. As each constraint decreases the
degrees of freedom, it narrows down the search space by shrinking the feasible set
of parameter values. As a result it can lead to better estimation and convergence
properties during fitting.

In the following paragraphs we will present some of the commonly encountered
constraints for the CSG objects found in the industrial environments.
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7.3.1 Parameter constraint

This constraint can be used to specify the relationship between two parameters,
either of the same primitive or of two different primitives. If these primitives
comprise sub-parts of a single CSG tree then the resulting constraint is an Internal
constraint; otherwise if both the primitives belong to two different CSG trees then
the constraint is an External constraint.

The general form of the parameter constraint can be given by:

p1 = c2p2 + d (7.13)

Where p1 and p2 are the parameters, c2 is a constant scaling factor and d is a
constant offset. Some simple variations of this constraint are:

1. p1 = p2 (both parameters have the same value)

2. p1 = d (parameter 1 is given a fixed value)

3. By including inequalities this constraint can be used to specify bounds. For
example dl < p1 < dh.

For example, for a flanged T-junction the radii of the cylinders 1 & 2 are related
by this constraint (Figure 7.2(a)). Similarly, by using an inequality parameter
constraint it can be enforced that the radius of the external cylinders (3, 4, &
5) is always greater than the radius of the internal cylinders (1 & 2).

7.3.2 Rotation constraint

This constraint is used to specify the angle between two coordinate axes a1 and a2,
where both of them can be one of the three axes of the local coordinate systems of
the primitives 1 and 2.

Mathematically this constraint can be expressed as follows:

cos−1(a1.a2) + c1p1 = c2p2 + θ (7.14)

The simplest form just gives the angle (in radians) between the two axes:

cos−1(a1.a2) = θ (7.15)

The above equation says that a1 can rotate around a2 in a cylindrical way, keeping
a fixed angle of θ. By specifying two such constraints, the coordinate system of both
entities are fixed in rotation relative to each other, which can be used for example
for fixing the orientation of a box with respect to another box.

By including inequalities this constraint can be extended for specifying angle
bounds:

θl < cos−1(a1.a2) < θh (7.16)
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Figure 7.3: Connection
constraint for CSG fitting.
The red pipe is to be
connected with the yellow
curve.

This constraint always results in one equation or two inequalities (one each for
upper and lower bounds). For example the orthogonality of the cylinders 1 and 2
for a flanged T junction can be specified using this constraint (Figure 7.2(a)).

7.3.3 Translation constraint

The translation constraint gives the relationship between the translations of two
primitives. Mathematically it is given as follows:

t1 + c1a1 = t2 + c2a2 (7.17)

Where t1 and t2 are the translations of the primitives and a1 and a2 are the
directions for translation.

We can have the following three cases with different number of effective degrees
of freedom (DOF):

• t1 = t2 (DOF = 0, active constraints = 3)

• t1 = t2 + c1a1 (primitive 1 can move along a1, DOF = 1, active constraints
= 2)

• t1 = t2 + c1a1 + c2a2 (primitive 1 can move in the plane spanned by a1 and
a2, DOF = 2, active constraints = 1)

When one of the primitives is a torus, then additionally an angle α can be specified,
which ties the position of the object to lie along one of the ends of the torus. In
that case the equation becomes:

t1 = t2 + Rt

r1 cos α
r1 sinα

0

 (7.18)

Where Rt is the rotation matrix for the torus and r1 is its major radius. This
variation of the translation constraint is used to place cylinders 1 and 2 at the two
ends of a curve in Figure 7.2(b).
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(a) (b)

Figure 7.4: Bounded translation constraint
(a) The lower limit for the translation
of cylinder 2 (b) The upper limit of the
translation

7.3.4 Connection constraint

A connection constraint is a combination of the following sub-constraints to specify
the connection of two cylinders or the connection of one cylinder and one torus:

1. A parameter constraint (radii should be equal).

2. A translation constraint which can be one of the following:

• If both the primitives being connected are cylinders, translate along the
axis of the first cylinder equal to its length to find the position of the
second cylinder).

• If one of the primitives is a torus, translate along the curve of the torus
equal to its angle to find the position of the cylinder (Figure 7.3).

3. A direction constraint (both axial directions should be the same, as given by
the axial direction of the cylinder or the tangential direction of the toroidal
curve).

An example of a situation where the connection constraint can be useful is shown
in Figure 7.3. The red cylinder is to be connected to the yellow curve, and this
relationship can be enforced by using a connection constraint.

7.3.5 Bounded translation constraint

This is an inequality constraint which is an extension of the translation constraint.
The position of one primitive is constrained to lie between two limits which depend
on the parameters of another primitive. For example in a flanged T-junction the
middle cylinder (number 2 in Figure 7.2(a) ) is constrained to lie between the
limits defined by the positions of the top two cylinders (4 & 5) . The extreme
positions possible are shown in Figure 7.4. The middle cylinder should not go out
of the bounds set by these two extreme positions. This constraint can be enforced
by using the following inequalities:

(t1 + r2a1) < t2 < (t1 + (l1 − r2)a1) (7.19)

Where l1 is the length of cylinder 1, a1 is its axial direction and r2 is the radius of
cylinder 2.
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7.4 Examples of constraints

The set of constraints presented in the last section can be used to specify the
relationship between different CSG primitives. Here, we will outline the details
of constraint specification for a flanged T junction and a flanged curve (Figure
7.2).

7.4.1 Flanged T-Junction

This CSG object consists of a union of 5 cylinders. It has the following geometric
constraints:

• Parameter constraints

1. The radii of cylinders 1 and 2 are the same (r1 = r2).

2. The radii of cylinders 3, 4, & 5 are equal and always greater than those
of cylinder 1 and 2 (r3 = r4 = r5 & r3 > r1)

3. The length of cylinder 2 is half that of cylinder 1. (l2 = 1
2 l1).

4. The lengths of cylinders 3, 4, & 5 are equal and are less than the lengths
of cylinders 1 and 2 (l3 = l4 = l5 & l3 < l2 < l1).

5. All the radii and the lengths are within given limits which should be
positive (rmin < r < rmax & lmin < l < lmax).

• Direction constraints

1. Cylinders 1 & 2 are perpendicular (a1 ⊥ a2 ⇒ cos−1(a1 · a2) = π
2 ).

2. Cylinders 2 and 3 have the same direction (cos−1(a2 · a3) = 0).

3. Cylinders 1, 4 & 5 have the same direction (cos−1(a1 · a4) = cos−1(a1 ·
a5) = 0).

• Translation constraints

1. Cylinder 2 can slide along cylinder 1. t2 = t1 + c1a1

2. Cylinders 4 & 5 are placed on the two ends of cylinder 1 (t4 =
t1 & t5 = t1 + l1a1).

3. Cylinder 3 is placed at the end of cylinder 2 (t3 = t2 + l2a2).

4. Cylinder 2 has bounded translation constraint with cylinder 1 (t1 +r2 <
t2 < t1 + l1 − r2).

7.4.2 Flanged curved pipe

• Parameter Constraints
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1. The radii and the lengths of cylinders 2 and 3 are equal (r2 =
r3 & l2 = l3).

2. The radius of the curve is less than the radii of the cylinders (r1 < r2)

3. The major radius of the curve is at least twice that of the minor radius
(2r1 < R1).

4. All the radii and the lengths are within given positive limits (rmin < r <
rmax & lmin < l < lmax).

• Rotation constraints: The tangential direction of the curve and the axial
directions of cylinders 2 and 3 should be the same. That gives us the
following two equations:

1. cos−1 (a2 ·Rt

(
− sinαa cos αa 0

)T ) = 0

2. cos−1 (a3 ·Rt

(
− sinαb cos αb 0

)T ) = 0 Where αa is the starting angle
and αb is the ending angle of the curve and Rt is its rotation matrix.

• Translation Constraints

1. The position of cylinder 2 is at the start of the curve (t2 = t1).

2. The position of cylinder 3 is at the end of the curve i.e. t3 = t1 +
R1Rt

(
cos α sinα 0

)
T. Rt is the rotation matrix, R1 is the major

radius of the torus and α is the angular extent of the toroidal curve
(α = π

2 in Figure 7.2(b)).

7.5 Fitting Experiments

As it was said in the introduction, images and point clouds provide complementary
sources of information, and by their combination we can expect better estimation
accuracy. Edges of the object, where point clouds are usually noisy, are captured
with better quality in the images. Additionally, for the fitting of bounded objects
point clouds do not contain enough information for the estimation of the bounds.
In contrast, by providing the full edge outline images fix the bounds. For example in
the case of a cylinder usually the closing lids on both sides are not scanned either
because they are not visible due to the connections with the other surrounding
objects, or because it is not convenient to place the scanner in a position where
the lids are visible. As a result we expect the length of the cylinder to be poorly
determined by such a point cloud. In contrast the measurements in the image
provide points on the edges and their inclusion improves the quality of the length
estimation.

To demonstrate the complementary nature of the images and the point clouds we
will do some fitting experiments on two test objects. Each object will be fitted three
times, first using only the point cloud, then using only the image measurements
and finally using both data sources simultaneously. The point clouds we will use
were captured using a Cyrax HDS 2500 scanner. As suggested by Leica (Leica
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(a) (b) (c) (d)

Figure 7.5: Experiment for cylinder fitting (a) The point cloud (b-d) Images used for
reconstruction

HDS, 2005), we assume a standard deviation of 5mm for each point. The images
were captured using a Nikon CoolPix camera having a resolution of 5 mega pixels
and using a fixed focal length of 7.34 mm. The standard deviation for image
measurements is taken to be 1 pixel.

Parameter
Image

Point Cloud Both1 2 3
1 X (mm) 52.269 10.326 9.923 0.838 0.762
2 Y (mm) 163.45 14.168 13.629 1.335 0.862
3 Z (mm) 12.740 3.489 3.467 119.90 1.654
4 t0 0.056 1.0E-2 1.0E-2 2.28E-3 2.0E-3
5 t1 0.065 2.1E-2 2.1E-2 3.96E-3 2.9E-3
6 t2 5.283 2.538 2.534 0.359 0.237
7 Length (mm) 10.591 3.121 3.120 ∞ 3.120
8 Radius (mm) 169.57 16.166 15.522 0.634 0.565

Table 7.1: Standard deviations for Cylinder fitting experiment

7.5.1 Cylinder fitting

The arrangement we used for the first experiment is shown in Figure 7.5. A cylinder
is scanned from the front, and images are taken from three different positions. A
cylinder is represented by 8 parameters, 3 for the position, 3 for the axis, one for
the radius and one for the length. In Table 7.1 we see the standard deviations
obtained for different parameters by doing fitting to the point clouds, the images
and to a combination of both. For images we did fitting three times using one,
two and three images. When doing the combined fitting the point cloud was used
along with all of the three images. As expected, in the case of using only the point
cloud the length of cylinder is not well-determined because in the absence of points
on upper and lower lids there is not enough information in the point cloud for its
determination. This results in a standard deviation of∞ for the length, meaning it
is yet undetermined (Table 7.1).
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(a) (b) (c) (d)

Figure 7.6: Experiment for box fitting (a) The point cloud (b-d) Images used for reconstruction

As the z-axis of the global coordinate system is aligned with the axial direction of
the cylinder there is a very high correlation between the length and the position in
z. This results in a weak estimation of the z-position compared to the estimation
of x and y position. But if we combine the point cloud with the measurements
from the images (Table 7.1, column “Both”) the situation improves dramatically
as the edges in the images provide enough information for the estimation of the
length and the resulting standard deviations are much lower, indicating much
better estimation quality.

As expected as we use more images the standard deviation of parameter estimation
goes down and the estimation quality improves. It also shows that even a single
image in combination with a good scan can lead to a significant improvement in
the estimation of those parameters which are not well-determined from the point
cloud.

7.5.2 Box Fitting

Parameter
Images

Point Cloud Both1 2 3
1 X (mm) 2.106 1.179 0.685 3.079 0.649
2 Y (mm) 2.243 1.129 0.261 0.550 0.161
3 Z (mm) 1.669 0.760 0.338 389.84 0.314
4 q0 7.8e-1 2.6e-1 5.3e-2 3.97e-2 3.0e-2
5 q1 1.4e-3 5.0e-4 1.3e-4 2.40e-4 1.0e-4
6 q2 7.8e-4 3.0e-4 6.0e-5 5.20E-4 5.0e-5
7 q3 4.3e-3 1.6e-3 3.4e-4 3.40E-4 2.0e-4
8 X size (mm) 2.855 1.023 0.689 2.890 0.661
9 Y size (mm) 9.836 2.696 0.627 ∞ 0.627
10 Z size (mm) 2.309 1.161 0.349 ∞ 0.348

Table 7.2: Standard deviations for Box fitting experiment

The second example is that of a box, with only two of its faces fully scanned.
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Figure 7.7: Catalog of CSG
objects used for modeling. Each
objects contains the CSG tree
along with the internal equality
and inequality constraints.net

Additionally, three images are taken from different positions (Figure 7.6). The box
has 10 parameters, 3 for the position, 4 for the rotation, and 3 for the sizes.

In the absence of points on all faces of the box, it is not possible to reliably
determine the size parameters of the box. This is what we see in the standard
deviations resulting from fitting using only point clouds (Table 7.2). The standard
deviation for y and z sizes are ∞ meaning that they could not be estimated.1 The
standard deviation for x size is low only because of the coordinate system chosen
for the box, which has its origin in the left corner. This fixes the position of the right
side and thus the x size is also determined. Due to the high correlation between
the position and the size along the z-axis, its estimation is also bad.

The results of fitting the box to images and the points cloud are given in Table 7.2.
Once again we see from the last column that the inclusion of image measurements
leads to a much better estimation of the size and the position parameters.

Both of these examples prove our thesis, that although point clouds contain direct
3D information, which is very useful for automatic object recognition, the final
estimation should use a combination of both data sources. The inclusion of
images compensates for the missing or noisy information from the point clouds
and produces parameter estimates with better quality.

7.6 Results

We applied the presented methodology for 3D reconstruction to an industrial site
shown in Figure 7.8. Seven scans were made using a Cyrax laser scanner. Each scan
consisted of one million points with a standard deviation of 5mm. Additionally 15
images were taken from different positions and used during fitting.

The process of combining automatically detected cylinders and planes to full
CSG objects as well as the process of adding measurements to images was done
manually. Once we have image measurements as well as segmented points clouds,
we proceed with the CSG fitting using constraints. Commonly found CSG objects
were kept in a catalog, that contained the CSG tree as well as the internal equality
and inequality constraints (Figure 7.7). The use of such a catalog provides a
flexible way to encode domain specific information in the form of geometry with

1It should be noted that it is only our choice of the coordinate system that leads to this effects arising
only for z. In a rotated coordinate system all three x, y and z sizes will have very poor estimation quality
(high standard deviation).
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constraints.

By comparing the point cloud in Figure 7.8(a) with the corresponding images
in Figure 7.8(b–d) we see that although the point cloud captures the geometry
of objects quite well, the information about their bounds is either absent or is
very weak. In comparison, the images provide excellent complementary source as
they contain information about the bounds in the form of object edges. Thus, by
combining both sources of data a better estimation quality was obtained.

The CSG fitting procedure minimizes the sum of square of the distances of point
cloud from the model surface and sum of square of the image measurement
distance from the back projected edges of the model, while estimating the pose
and shape parameters of the CSG objects. This process uses both point cloud and
image measurements in one combined estimation procedure and gives final results
as a CSG model. The final model is shown in Figure 7.8(d).

(a) (b) (c) (d)

Figure 7.8: Modeling of an industrial installation (a) The registered point cloud (b-c) Images
with back-projected model and measured points on the edges (d) The final 3D model

7.7 Conclusions

We have presented a modeling technique for fitting CAD models described as
CSG trees to point clouds and the measurements in images. While the point
clouds are excellent for automatic object recognition, the improvement in the
standard deviation of the estimated parameters clearly shows that images have
a complementary role because they provide better information on the edges and
help fix the bounds of the models; a job point clouds cannot do very well. We
presented a set of constraints which can be used to specify and enforce geometric
relationships between sub-parts of one or more CSG trees. The constrained
problem was solved using Lagrange multipliers, and compared to the previously
presented method of explicit constraints in Chapter 4 this provided a more flexible
and general solution. The presented methods were applied to data sets from
an industrial site and the results show the improvements obtained by including
constraints and image information.



Chapter 8
Conclusions

Reasoning draws a conclusion, but does not make the conclusion
certain, unless the mind discovers it by the path of experience.

Roger Bacon (1214-1294)

The power of generalizing ideas, of drawing comprehensive conclusions
from individual observations, is the only acquirement, for an immortal
being, that really deserves the name of knowledge.

Mary Wollstonecraft (1759-1797)

In this thesis we have addressed different aspects of 3d reconstruction using
point clouds and images. By restricting our focus to only industrial installations
we were able to exploit the domain specific constraints and apriori information
for formulating automatic and semiautomatic methods for segmentation, object
recognition, registration and model fitting. The following are some of the
achievements of our work:

8.1 Achievements

Segmentation We developed a fast point cloud segmentation method that uses
only the surface normals which can be reliably estimated from often noisy
point clouds by fitting planes to the neighbors of each point. The algorithm
is based on region growing and groups together the points belonging to
smooth regions. The smoothness constraint is controlled with only two
thresholds, which have intuitive and predictable effects. The thresholds
can be easily changed to get different trade-offs between under- and over-
segmentation. The segmentation is a pre-processing step for the next stage of
object recognition. As a result under-segmentation is not a serious problem
because the stage of object recognition based on the Hough transform can
easily recover from its effects.
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Object recognition In industrial environments planes and cylinders are two of the
most commonly found objects. By using a combination of segmentation and
the Hough transform we were able to get a high success rate for the detection
of planar and cylindrical objects in the cluttered industrial environments. An
efficient two step approach was formulated to tackle the problems of space
and computational complexity arising from a direct application of the Hough
transform for cylinder detection in point clouds. This two step approach
estimates cylinder orientation in the first step by using a 2D Hough space.
The second step of position and radius estimation requires a 3D Hough space.
This sequential approach makes the complexity of the problem manageable.
Moreover, by localizing the serach through segmentation we were able to
combine the efficiency of local processing with the advantages of global
search obtained from the Hough transform.

Model fitting through least squares To estimate the parameters of the objects
detected through the Hough transform and to get quality measures for each
parameter, fitting methods based on nonlinear least squares were developed.
Moreover, to avoid the stage of manual editing, commonly used for B-rep
based fitting approaches, we developed the CSG fitting techniques. Three
different methods for calculating the distance of a point from a given CSG
object were developed and compared. Initially the internal constraints,
which specify the relationships between the subparts of a CSG tree, were
implemented by parameter elimination. This made possible the use of
unconstrained least squares methods for solving this constrained problem.

Registration and integrated adjustment A new paradigm of object based
registration was presented that made use of the available structure present
in the industrial scenes to estimate the inter-scan transformation parameters.
The corresponding objects in two or more scans were used to register
them in one coordinate system. We presented constraints for an efficient
and automatic search for the corresponding objects in a given pair of
scans. These constraints expoited the partial information from the match
decisions of the past to filter the possiblities for the future matches. By
first detecting the planes and the cylinders in each scans and then searching
for the corresponding objects the whole process of registration can be
automated. Moreover, the model-based registration framework allows global
registration through integrated adjustment, that simultaneously estimates
the transformation parameters of the scans and the shape parameters of the
corresponding objects. We compared the results of our approach with ICP
and showed that our approach leads to better estimation quality because of
the global registration.

Constrained CSG fitting including images To make the process of constraint
specification and enforcement between sub-parts of different CSG objects
more flexible, we presented fitting techniques based on Lagrange multipliers.
Mathematical formulation of different commonly found equality and
inequality constraints for CSG models were given. We showed by examples
that for high accuracy as-built reconstruction images still provide very
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valuable information especially on the edges where point clouds are usually
quite noisy. We extended the procedure of CSG fitting for simultaneous
use of the point clouds and the images. This CSG fitting to the images
minimizes the sum of the distances between the measurements on the edges
in the captured images from the back projected contours of the model being
fitted. By combining both the point clouds and the images in one estimation
procedure we were able to get higher estimation quality.

8.2 Directions for future work

Although in this thesis we have tried to address most of the steps involved in 3d
industrial reconstruction, many problems still remain unsolved and can benefit
from future research. The following are some of the directions for future work:

• Recently the use of off the shelf GPS and digital compass have been
proposed and tested for getting good approximate values for automatic
registration, see for example Böhm and Haala (2005); Schuhmacher and
Böhm (2005). GPS can only provide information about the position of
the scans and getting reliable information about their orientation is still
quite problemetic. The quality of the positional information would become
even better with the next generation of global navigation satellite systems
(GALILEO, 2005). By combining this approximate information about the
position in a constraint based fromework for correspondence search the
process of automatic registration can be made more robust. As planes make
more than 80% of the urban scenes this strategy can also be very useful for
mobile mapping.

• With the amount of data the new generation of laser scanners are producing
it is becoming challenging to store and process it. Techniques need to
be developed that exploit the local information to compress the data.
For example real-time segmentation into planar areas and their use in
a predictive-coding framework can both result in better compression and
extraction of information that can later be used by other processing stages.

• The CSG fitting methods we presented made point-wise decisions. Each point
was iteratively assigned to one of the surfaces making the CSG model. As
segmentation provides grouped information, its combination with CSG fitting
can result in better and robust fitting methods. The same reasoning applies
to the use of images. By doing edge based decisions on a segmented edge
map, the process of using image measurements can be improved.

• Currently the step of specifying the relationships between simple surfaces
and CSG models is done manually. More research is needed to develop
a process of ‘automatic refinement’ which can make a sensible model by
grouping the fitted pieces together, and assign them to the best possible
CSG model for fitting. Different approaches can be possible to address this
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problem. By including more domain specific information the performance
of such systems can be improved. A heuristic or rule-based search on the
automatically detected simple objects like planes and cylinders is one of the
possible ways to develop an automatic or semi-automatic method for this
step. Such a method if combined with a catalog of commonly found objects
in the industrial environment under consideration should lead to an even
higher level of automation.

• There is a need to combine the 3d reconstruction methods with the 3d design
software packages. By using the same CSG representation during both the
design and the reconstruction the user gets two main advantages. Firstly, the
set of constraints used during design are also enforced during reconstruction.
Secondly, the CAD model resulting from the CSG fitting is directly useable
without any conversion or human interpretation because the same format is
used for both processes.

• Most of the new laser scanner are coming with the option of acquiring
registered imagery from the same viewpoint. This should provide a strong
possibility to use complementary image information automatically. The
objects which are fitted in the point cloud can be automatically back-
projected in the registered images, and by doing rule-based analysis on
the image edges, the image measurements can be automatically or semi-
automatically added. This will remove the laborious process of adding
image measurments manually and should lead to a more wide-spread use
of the readily available image information for improving the quality of 3d
reconstruction.



Appendix A
Uniform sampling of the orientation

space

The shape that results from plotting all possible unit vectors in R3 is called the
Gaussian sphere (Carmo, 1976). It is a map of all orientations possible in 3D.
As the Hough transform works on a discrete representation of the parameter
space, we need a sampling method that places points on the sphere, so that each
point represents an equal area on the surface. This is essential for an unbiased
Hough transform, otherwise the results will be biased for the samples whose cells
represent bigger areas, and thus collect more votes.

(a) (b) (c)

Figure A.1: Comparison of different methods for sampling the orientation space in R3 (a)
Spherical sampling (b) Cartesian sampling (c) Approximate uniform sampling

As noted in (Hoppe et al., 1992) linear sampling of θ and φ spherical coordinates,
which we will call Spherical sampling, results in non-uniform area cells. This makes
the cells near the Z-axis much smaller than the ones close to the xy plane (Figure
A.1(a)).

Another option is to uniformly sample x and y, and then use explicit equation of
the unit sphere for calculating z :

z = ±
√

1− x2 − y2 (A.1)

We name this sampling scheme Cartesian sampling. As is clear from Figure A.1(b)
the cartesian sampling is better than the spherical sampling, but here also the cells
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get bigger as we reach the xy plane.

The exact solution for uniform sampling of the sphere with equal area cells
has no closed-form solution but requires an iterative refinement of some initial
approximate distribution (Rusin, 2004). For the Hough transform an approximate
solution that is also able to map back and forth from the accumulator indices to
the original parameter values is desirable. An iterative procedure would not allow
us to do this mapping efficiently and will slow down the Hough transform. Next,
we present such an approximate sampling scheme using the concepts from (Lutton
et al., 1994; Rusin, 2004).

The basic idea for getting a uniform sampling of the Gaussian sphere is to sample
φ uniformly and change the sampling density along θ adaptively. A constant value
of φ on the sphere results in a circular curve, whose radius is a function of φ.
Consequently, for a uniform sampling the number of samples along θ becomes a
function of φ.

Let the number of samples in φ be nφ, then for a given value of φi the number of
samples in θ, nθi, is given by:

nθi = f(sinφi) = 2nφ sinφi + 1 (A.2)

The factor of 2 in Equation A.2 appears because θrange = 2φrange. We name
this sampling method Approximate uniform sampling, and its results are shown
in Figure A.1(c).

Approximate uniform sampling has the attractive property, that knowing θindex

and φindex in the Hough space, we can easily recover the values of θo and φo in the
parameter space using the following formulas:

φo = φindexφstep (A.3)

θstep =
π

2sinφo
(A.4)

θo = θstepθindex (A.5)

This sampling method is used for discretization of the orientation space for the
plane normals in the plane detection (Section 3.2) and for the cylinder axes during
the cylinder detection (Section 3.3).



Bibliography

Ahn, S. J., Rauh, W., Cho, H. S. and Warnecke, H.-J., 2002. Orthogonal distance
fitting of implicit curves and surfaces. PAMI 24(5), pp. 620–638.

Alter, T. D. and Jacobs, D. W., 1998. Uncertainty propagation in model-based
recognition. IJCV 27(2), pp. 127–159.

Amano, T., Hiura, S., Yamaguchi, A. and Inokuchi, S., 1996. Eigen space approach
for a pose detection with range images. In: ICPR ’96, Vol. 1, IEEE Computer
Society, Washington, DC, USA, p. 622.

Arman, F. and Aggarwal, J. K., 1993. Model-based object recognition in dense-
range images - a review. ACM Computing Surveys 25(1), pp. 5–43.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R. and Wu, A. Y., 1998. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions.
Journal of ACM 45(6), pp. 891–923.

Atkinson, K. B. (ed.), 1996. Close Range Photogrammetry and Machine Vision.
Engineering and Science, Whittles Publishing, Scotland, UK. 12 chapters, 371
pages.

AVEVA PDMS, 2005. PDMS–Plant Design and Management System (AVEVA
Engineering IT). http://www.aveva.com/library/datasheets/pdf/
vpd pdms.pdf.

Ballard, D., 1981. Generalizing the hough transform to detect arbitrary shapes.
Pattern Recognition 13(2), pp. 111–122.

Bellman, R., 1961. Adaptive control processes: A guided tour. Princeton University
Press., Princeton, PA.

Bellon, O. R. P., Direne, A. I. and Silva, L., 1999. Edge detection to guide range
image segmentation by clustering techniques. In: International Conference on
Image Processing (ICIP ’99), Kobe, Japan, pp. 725–729.

http://www.aveva.com/library/datasheets/pdf/vpd_pdms.pdf
http://www.aveva.com/library/datasheets/pdf/vpd_pdms.pdf


142 BIBLIOGRAPHY

Bennamoun, M. and Mamic, G. J., 2002. Object recognition: fundamentals and
case studies. Springer-Verlag New York, Inc.

Bergen, J. R. and Schweitzer, H., 1991. A probabilistic algorithm for computing
hough transforms. Journal of Algorithms 12(4), pp. 639–656.

Bertsekas, D. P., 1995. Nonlinear Programming. Athena Scientific, Belmont, MA.

Besl, P. J. and Jain, R. C., 1985. Three-dimensional object recognition. ACM
Computing Surveys 17(1), pp. 75–145.

Besl, P. J. and Jain, R. C., 1988a. Segmentation through variable-order surface
fitting. PAMI 10(2), pp. 167–192.

Besl, P. J. and Jain, R. C., 1988b. Segmentation through variable-order surface
fitting. PAMI 10(2), pp. 167–192.

Besl, P. J. and McKay, N. D., 1992. A method for registration of 3-d shapes. PAMI
14(2), pp. 239–256.

Bhanu, B., Lee, S., Ho, C. C. and Henderson, T., 1986. Range data processing:
representation of surfaces by edges. In: Proceedings of the Eighth International
Conference on Pattern Recognition, pp. 236–238.

Bishop, C. M., 1996. Neural networks for pattern recognition. Oxford University
Press, Oxford, UK, UK.

Björck, Å., 1996. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia.

Blais, F., 2004. A review of 20 years of range sensor development. Journal of
Electronic Imaging 13(1), pp. 231–240.
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