
4. Implementation aspects

The recursive data processing - estimation and quality control - has been dealt with in

chapter 2, and some essential parts of the underlying theory were reviewed in chapter 1.

In particular, aftention was paid to the least squares estimation of integer parameters. The

mnthematical modelling of GPS surveying was discussed in chapter 3. The cutent chapter

serves as the link benueen theory and practice.

estimation
The various components are implemented in one integrated (prototype) sofi-vvare package,

which has been used for the processing of the campaigns to be discussed in chapter 5. The

step from theory to algorithm calls for a tuning of the various components to the applica-

tiin at hand: kinemntic surveying. We will briefu discuss some implementation aspects of

the recursive estimation by means of the Square Root Information Filter (SPJF) and the

integer ambiguity estitluttion with the Least-squares AMBiguity Decorrelation Adiustment

method (|4MBDA). The first section concludes with a flow diagram of the dnta process-

ing.

qual@ control
The si;econd section is completely devoted to the quality conftoL First the importance of
quality control is stressed. Estimation results should not be provided without a description

of the quatity of the estimntors. The mathematical model, used in the estimation, is to be

validated. The generalized likelihood ratio teststatistic is used for lrypothesis testing in

linear models. We will be concerned with the specification of (relevant) alternative

hypotheses, the strategy for testing on model errors, the setting of the parameters in the

procedure for statistical testing and the implementation of the adaption.

4.1 Estimation

Implementation aspects of the estimation have been dealt with already in chapter 3. In

section 3.4.4 the rankdeficiencies in the functional model were removed to allow for a
proper estimation and in section 3.5 an equivalent model was given in terms of double

differences. Remaining aspects on the implementation of the recursive estimation and the

resolution of the ambiguities will be given here. We will thereby concentrate on the

availability of the quantities of interest, rather than on their actual computation. In section
4.t.4 the flow diagram for processing the GPS data is given.

input
The software has been developed for the processing of GPS observations, that were

collected with a kinematic measurement set up. The input is based on the RINEX

standard [Gurtner et al, 1990] and [Gurtner, 1993]. The observations (code and phase)
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are contained in the Rinex Observation file. The satellite clock and orbit parameters are
provided by the Rinex Navigation file.

Dual frequency phase and code observations are supported (the observation equations in
section 3.4. 1):

L1
w
c1(P1)
P2(C2)

pjttl phase observation on L1 (4.1)
p)(t) phase observation on L2 (4.3)
p:(t) code observation on Ll (4.4)

Fi<t> code observation on L2 (4.5)

It is assumed that all observations, all types to all satellites in view, are made simulta-
neously by/inside the receiver: only one receiver time tag r is assigned. The two receivers
make in addition the observations (nearly) simultaneously. The sampling interval is
usually small, 1,5 or 10 seconds. Note that various measurement techniques exist to
obtain (a subset ofl the above list, see e.g. [Dierendonck, 1994].

The stochastic model for the observables was dealt with in section 3.4.3. The stochastic
properties of the observables may be (slightly) different for a stationary receiver (the
reference) and a moving one (the rover), but with kinematic surveying receiver (antenna)
dynamics are usually (very) low.

output: baseline
Concerning the geometry, processing takes place in terms of Cartesian WGS84
coordinates. As discussed in section 3.3, GPS surveying provides coordinate differences.
Based on the data, an estimator is computed for the coordinates of the antenna. In section
3.4.2 it is assumed that receivers of the same make and type are used together with
identical antennas. The antennas have equal orientation and are put local level (on a
smooth geoid). The baseline vector x, is then defined from phase Centet to phase center
and equals in this case the vector between the geometric centers of the antennas (mm-cm
translation). Antenna phase center effects namely cancel in short distance relative
positioning, [Schupler et al, 1994]. For the highest precision applications there may be a
small additional antenna effect with kinematic surveying over static GPS surveying. The
rover and reference antennas are in general not equally oriented and they may even be
different antennas, e.g. for tle reason of portability of the roving one. Phase center
effects then need to be taken into account (mm-cm effects).

To connect the geometric information obtained with the measurement system again to
reality, the antenna center needs to be related to a discrete point, the survey marker. [n a
static survey the baseline can be defined by the survey markers in/on the ground. The
baseline is consequently transferred to these monuments by the antenna eccentricities. The
antenna has to be centered above the marker (horizontal) and the antenna height has to be
measured (vertical). The height of the tripod set up is measured with some special rod or
an ordinary tape. In a kinematic survey, the centering is carried out by positioning the
range pole with the antenna on top of it, above the marker, or feature, instead of using a
(stable) tripod. It has to be realized that these processes are true potential error sources.
When no marker is available, as with topographical surveying, in addition the idealization
precision comes in: terrain features have to be reduced to geometric primitives. We will
not futher dwell upon this surveying practice, and refer to e.g. [Polman et al, 1996].
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Beside monumentation, site selection and auxillary doings by the surveyor, cf. [Hofmann-
Wellenhof et al, 19971, it should be realized that in practice also several factors concern-
ing the equipment have an impact on the overall quality of the geometric information
finally obtained, cf. section 4.2. One may think of cabling and power supply and for real-
time operation also the telemetry link. The (technical) equipment must operate as it is
supposed to do.

For analysis and interpretation purposes in chapter
5, coordinate differences (estimated minus refer-
ence), expressed in Cartesian XYZ of the global
WGS84, will be transformed into a local ellipsoi-
dal or topocentric system, figure 1.1. This system
has its origin at the reference coordinates of the
point to be positioned, point P. The Cartesian
coordinates P(X,Y,Q are expressed in ellipsoidal
coordinates P(<p,)t,h) latitude, longitude and
height. East and North span the horizontal plane
and the Height or Up-axis coincides with the
ellipsoidal normal (and practically with the local
vertical), see [Seeber, 1993]. Note that it is actual-
ly a East, North, Height system to be a right-
handed triad. Local topocentric coordinateFigure 1. 1:

system

4.1.1 Recursive estimation
The recursive estimation by the Square Root Information Filter is a straightforward imple-
mentation of the theory in chapter 2. The observation equations for epoch k are given by
(1.2) and (1.3), section 2.1.2. The recursion consists of alternatingly a time update,
section 2.2.I, and a measurement update, section2.2.2.

We aim at the computation of the filtered estimate io,o and the variance covariance matrix

Q, , . Vector io,o contains estimates for the unknown parameters one is interested in. As
a r83ult of the nieasurement update we have, see (2.10),

( 1 . 1 ) El|k,'l =S*rl ro

wittr Srll an nyt upper-triangular matrix. This set of equations can be solved for xo by
backward substitution. One can retrieve the estimate from the SRIF information array in
this way any time, provided that it is in upper triangular shape. The transformation to
realize this shape and its application are briefly reviewed in appendix A: the Ilouseholder
transformation.

We concentrated on filtering, but also predicting and smoothing were mentioned in
section 2.1.1. Prediction is made on a regular basis, one epoch ahead (the time-update).
Smoothing with a SRIF is straightforward, but it is not implemented. For smoothing
intermediate results have to be saved for each epoch: the matrices S,rl and S,;t-, togettrer
with zr for i:|,..,k-I in equation (2.5), section2.2, are needed for the computation of
smoothed estimators i.,, with i:I,..,k, see also [Bierman, 19771.

Height
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An example of processing GPS data by means of a Square Root Information Filter for
geodetic purposes can be found in [Blewitt, 1989] and for navigation (flight trajectory
estimation) in IRAJPO, 1997].

partioning of state vector
The model of observation equations for precise relative positioning (per epoch) was given
in section 5 of chapter 3, equations (5.7) and (5.8). The state vector x is partitioned in
time-varying parameters and bias parameters, that are constants. This corresponds to the
partitioning in section 1.4, the real valuedx^ and integer parameters.rr, equation (4.2). x,
is called the constant state space.

(r .2)

The unknown parameters in the model are the double difference ambiguities .r, and the
baseline coordinates x*. If the second receiver is in motion, the ambiguities are constants
(constant state space), but the baseline coordinates are time variant.

In a time-varying measurement system, one can have beside observations )i, also pseudo-
observations d,, section 2.I.2. For the time update on -xR we have the following observa-
tion equation

(1 .3 ) Eld* l  =xnr -Q* , *_{no t  ;  D ld* l  =Qa,

If no knowledge about the motion of the rover is present (full kinematic), the time update
can be skipped; new unknowns rR, are introduced epochwise i:|,..,ft (this corresponds to

Qa,=*).The estimator for x, at epoch k-1 can be directly used in the next measurement
update as these parameters are constants, i.e. xr*-r= xr*; there is actually only one
vector of unknowns x, (without time index).

If the roving receiver is stationary $tatic) with respect to the earth's surface, all parame-
ters are constants, also the baseline coordinates xrr; differential geodynamic effects (earth
tides, motions of tectonic plates) do not play a role in this small scale application. No
time-update is needed; actually a sequential adjustment is made upon the unknown
parameters (this corresponds to Qo*=O).

Dynamic modelling of the time-varying parameters in the measurement system is beyond
the scope of this research. We will restrict ourselves to the two limiting cases: stationary
(coordinates constant) and full kinematic (receiver in permanent arbitrary motion). For
model validation, section 4.2.1, misspecifications concerning the pseudo-observations
(dynamic model) are not considered.

The partioning of vector z and factor S-1 is according to (1.2). After the measurement
update we have

' [ ; J

"'(:iJ, ["'. T,r#J (;)(1 .4)
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4.1.2 Precision

The variance covariance matrix Q describes the random nature of the estimator i under
the null hypothesis Ho, see also section 1.8.1. The diagonal elements give the variances of
the individual estimators ai, i:1,..,n.In the Square Root Information Filter, the variance
covariance matrix of the filtered state estimaio. Q;*r is found by inversion of Sell:

Qr* * 
= s*tosulo'

The variance covariance matrix will be used to evaluate the precision. In GPS surveying
we are primarily interested in the geometric information, i.c. the baseline coordinates x,,r.
The 3 by 3 variance covariance matrix is Q,r. In general x is an n-vector.

(1 .s) ( i - i rQ; ' ( i -x )  =  x2

The ellipsoid (1.5), centered at i, represents locations of equal probability density for the
expectation value -x, see section 1.6, equation (6.5). 12 is some positive constant. The
proUaUitity contained in the ellipsoid under the null hypothesis is easily found by the x2 -

distribution as

G-irQ;'@-x) - f1n,o)

Matrix Q is symmetric and positive definite. The eigenvalue (singular value) decomposi-
tion allows further numerical interpretation of the precision. The n eigenvalues \, satisfy

lQr-Xt1=0. Using the Rayleigh quotient, it can be shown that the variance of every
(normalized) linear function of f, given by ,'i, with norm equal 1, vrv:\, lies in
between the smallest and largest eigenvalue:

l ' t i t <  o " ^ ' L ^ o

with o2r^ = vrQiv and y an n-vector. The lengths of the axes of the ellipsoid (1.5) equal

Xrf)r,. As such the eigenvalues describe the precision for n different normalized linear
functions of the estimator. A rotation of the coordinate axes in .ff implies for the
estimates Ri, where R is the nxn rotation matrix. As R is an orthogonal matrix, such a
transformation does not alter the eigenvalues of the variance covariance matrix.

By considering the eigenvalue problem lQr-f/l =0, the variance covariance matrix is
actually analysed with respect to unit precision, represented by the matrix 1, or in other
words, precision is judged upon based on the unity criterion, see [Teunissen, 1997].

4.1.3 Ambiguity resolution

The implementation of the LAMBDA method for integer ambiguity estimation is
discussed in full detail in [Jonge et al, 1996]. The input is basically .f, and Q,, the vector
of estimates for the ambiguities and the variance covariance matrix froin the float
solution. The consequence of resolving the ambiguities is that they are then treated as
deterministically known quantities, see the discussion in section 1.6. The LAMBDA
method is applied to short GPS baselines in [Teunissen et al, 1997a] and practical results
are given in [Teunissen et al, 1997b].

131
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Figure 1.2: Flow diagram for GPS data processing

4.1.4 Flow diagram

The purpose of the research was to develop prototype software and to investigate the
capabilities of the kinematic GPS surveying measurement technique in providing geomet-
ric information, in particular with respect to the (geodetic) quality of the data.

For the development of the software, several limiting assumptions were made in order to
reduce the programming effort; not because of the mathematical modelling or the
mechanization for the recursive data processing. It was tried to keep administrative
overhead as small as possible; e.g. satellites once chosen for processing have then to be
available for the whole session defined. The implementation was realized in a straightfor-
ward manner in Microsoft FORTRAN version 5.1 on an ordinary PC. Only little effort
was made on the user-interface and on handling in- and output.

In figure 1.2 the flow diagram for processing the data for GPS surveying is given. The
program reads the navigation file and then the observation files, epoch by epoch. The
recursive estimation (filtering), together with the quality control is cycled through every
epoch. The procedure basically provides filtered estimates for the coordinates of the rover
receiver x^ with the ambiguities fixed, whenever possible, thus i*. Once the ambiguities
are fixed (and lock is not lost from then on), the recursive estimation continues, but skips
the integer estimation. The DlA-procedure for quality control is discussed in the next
section.

observation-file
rcceivcr 2; rovcr
code/phase Ll, L2

observation-file
rcccivcr l; rcfcrcncc
code/phase Ll, L2

read epoch k
double difference observations y

LAMBDA: integer
Ir ambiguityestimation

SRIF: recursive 3*i,
estlmatlon xR
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4.2 Model validation

Data processing consists of estimation and quality control [Alberda, 1968]. The purpose
of a geodetic measurement or survey system, like kinematic GPS, is to provide geometric
information. This information usually concerns coordinates (the estimation part), but
should comprise also the quality of the coordinate estimators (the quality control part).

Quality as a measure, describes to what extent the estimation results will/can serve their
use. The coordinates-file, together with the quality description can be further used or
handled and for example be input in a Geographic Information System (GIS).

Quality assurance comprises three steps. They correspond to the stages before, during and
after operation of the (time-varying) measurement system. The following general
discussion is after [Salzmann, 1993].

In the design phase of the system, optimization with respect to quality takes place, by
using measures on precision and reliability. These measures can be computed prior to
operation of the system. In these computations, the null hypothesis usually is the default
mathematical model. In order to meet the specifications on quality in terms of precision
and reliability, the measurement system can be (re-) designed and/or the statistical testing
procedure can be tuned.

In the second step, the operational phase, the statistical testing procedure is carried out
parallel with the estimation. The null hypothesis is opposed to alternative hypotheses.
After carrying out the testing procedure, one can be sure, to a certain degree, about the
validity of the model used. This degree is described by reliability. In a time-varying
measurement system, such as for kinematic GPS surveying, we strive for quality control
in real time. The DIA testing procedure can be executed directly in real time when the
data are actually being processed.

In the design phase, quality was described a-priori, based on the assumed modelling. The
a-posteriori quality description (realization) can be given only after the operational phase.
Specifically it can be checked whether the specifications on quality have been met. Under
the null hypothesis the estimate obtained is a sample from the estimator with the stated
(design) quality (conformance); the quality measures have been computed using the null
hypothesis. The check should be carried out when the null hypothesis has been rejected in
favour of some alternative hypothesis. Besides, an additional validation can be carried out
in this step. This implies comparison of the estimates and accompanying quality descrip-
tion with some ground-truth. This validation (inspection) is made only incidently as a
geodetic ground-truth is usually not available.

Real time kinematic GPS surveying in its measurement scenario and data processing,
quite much resembles a (precise) positioning/navigation system. Therefore three more
aspects of quality may be involved in a high survey production environment. They are
availability, continuity and integrity. Availability describes for what percentage of time,
the system can be used, and for what period it is scheduled out. Availability concerns a
single epoch in time. Continuity concerns an interval in time and describes for what
period the system will be operational without interruption. Integrity deals with the
information of the user by either external report or autonomous detection, that the system
does not meet the operational specifications. Integrity has to do with aspects of precision
and reliability [Salzmann, 1993].

I J J
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Requirements on all these aspects of quality of GPS positioning likely depend on the
application, which may range from precise geodesy through surveying to navigation. In
this research, the attention is restricted to geodetic quality. Measures for the quality are
presented, rather than requirements upon these measures. In our case such requirements
will depend on the purpose that is to be served by the geometric information obtained by
kinematic GPS surveying. Moreover, for a particular application, specifications on
precision may be available, but specifications on reliability are still very rare in practice.

4.2.1 Alternative hypothesis

The null hypothesis, the mathematical model used in the estimation, therefore also called
the working model, may not be (completely) adequate. We have to assess the validity of
this model and detect possible misspecifications, if there are any. The null hypothesis has
to be confronted with alternative hypotheses.

The specification of alternative hypotheses is usually not a trivial task. One has to predict
the signature of possible model error types. It is however, of vital importance and must
therefore be done very carefully. The specification will directly determine the value of the
reliability description.

slippage tests
In this research we will limit ourselves to one-dimensional misspecifications in the
functional model. They are directly related to one specific (sequence of) observation(s).
As compared with the null hypothesis, the alternative hypothesis is extended by one
unknown parameter, e:I. The matrix C,
reduces to a vector. The misspecifications
are additive" This type of model errors is
classified as slips. The identification tests
are also referred to as slippage tests.
Examples of slips are outliers and (cycle)
slips in observations.

An outlier is one erroneous observation in
a sequence (in time) of observations. The
error occurs only once. When a slip
occurs, the observations get biased by a
constant error. The error starts and con-
tinues to occur. In figure 2.1 we represent
both error types. The error is given as
function of time. The outlier is a spike
function, the slip a jump function.

For a sequence from epoch 1 to ft of phase or code observations p,",, made by receiver r
to satellite s, the functional model of the null hypothesis is symbollically given by (2.1).
The alternative hypotheses for an outlier and a slip at epoch / then become respectively
(2.2).

Specifying an outlier hypothesis for each observation available and testing the null
hypothesis against them, is called data-snooping, [Baarda, 1968].

t t

Figure 2.1: Outlier/spike (left) and slip/jump (righr)

t t

Figure 2.2: Periodic error (left) and ramp error (right)
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Slip and outlier as discussed above, are limiting cases of each other. A slip V at epoch /,
followed by a slip -V at epoch /+1 (thus same magnitude, opposite sign), is identical to
an outlier V at epoch l. An outlier V that occurs at epoch / and keeps on occuring until
epoch k (with same size) can be interpreted as a slip V that starts at epoch /.

Slip and outlier are two elementary error types in observations. More complex error types
can be thought of: a periodic error (periodic function) and an error which size V
increases as time proceeds (ramp function), see figure 2.2.

In GPS surveying we have code and phase observations. As alternative hypotheses we
will consider outliers and slips. In particular, the slip in the phase observation (cycle slip)
and the outlier in the code observation (blunder) are well known error types in GPS
positioning. A slip in the code observation may be less realistic. The errors are assumed
to have their cause typically at or inside the receiver where the measurements are made,
not at the satellite.

Note that currently the phase observations will be tested for cycle slips that can be of any
size, VeR. The error is estimated as a real number, see also section 7.3 of chapter 1,
whereas it is known a-priori to amount to an integer number of cycles.

As an example the alternative hypothesis for an outlier at epoch /, and the alternative
hypothesis for a slip at epoch /, were specified in (2.1) and (2.2) for one observation p,".
In principle, the outlier hypothesis has to be specified for each of the code observations at
epoch /, from m satellites and 2 receivers (possibly at two frequencies): pl,..,p{,

i), .p{ and p,l ,..,F{,F;,..,F{ and the slip hypothesis for each of the phase observa-
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t ions P,t  , . . ,P{ ,P;, . . ,P{ and F:,  ,F(,F;, . . ,F{.  In this way an array of cr-vectors is
obtained at a certain epoch /; there is a cy-vector for each one-dimensional model error to
be considered.

separability
In section 8 of chapter 1, separability of alternative hypotheses was discussed. Below we
consider a null hypothesis Ho and two (composite) alternative hypotheses Hu and H..

(2 .3 )  H, :  E ly l  =  Ax  H" :  E{y }  =  Ax+CyY Hu:  E{y }  = ,q r *er i

with V and ? unknown. The hypotheses are specified in terms of observation equations.
The two alternative hypotheses H" and Hu can not be distinguished between in statistical
testing if

(2 .4 )  R(AtCy)  =  R@iey)  o r  R(c )  =  R(c)

when expressed in terms of misclosures. For one-dimensional vectors q, the angle
between them equals 0 or zr.

A special case of the above rule for no separability of alternative hypotheses H" and H,
occurs when nlq:m with rt the number of observations in y, n the number of unknowns
in x and n:Q the number of additional unknowns in the alternative hypotheses. In that
case we have

R ( A i C y ) = R ( A : E . ) = R ^

When m:ry the redundancy equals zero and no model validation is possible at all
R(A)=P^=^.

In the remaining of this section we will show that certain alternative hypotheses concern-
ing outliers and slips in GPS code and phase observations at epoch / can be not be
distinguished between, and therefore not have to be tested for separately.

(2.s) El

^pi
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The conclusions are derived for outliers in the Ll-code observations. but can be carried
over for slips in the phase observations as well as for the observations on the second
frequency. We will use the full rank transformations of section 5.2 of chapter 3 (single
difference, double difference), as they clearly reveal the dependences. The transform-
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ations are now applied to the functional model of the alternative hypotheses, thus
including the 2mx2m full array of cr-vectors.

Similar to model (4.28), chapter 3, for one epoch of data, the model for Ll-code
observations to the satellites 1 through m is given by (2.5). All 2m outlier hypotheses are
considered simultaneously here. Application of the single difference transformation yields

m single differences, together with the m (undifferenced) observations of receiver 1.

^pi

l = -@), 1

c{t

^pi
-@{)' r

The first rz columns of the C,-anay are the alternative hypotheses for an outlier in pt'
through p{. An outlier in pf for i=I;..,m shows up in pf itself, but now also (with
opposite sign) in the single difference pi,.

One can not distinguish between an outlier in pr' and an outlier in pj with i:|,..,m.lf in
one of the two observations (to a certain satellite i) pi or p; an outlier has occured, one
can not decide on whether the outlier concerns receiver I or 2. This can be seen by
consideringthecolumrnforthesatelliteclockerrorsandthoseofthearray Cr:R(Aicr)=R(AtV).
As such it makes no sense to test for both. The m undifferenced observables are left out

-@b, I

(2.6)

-(r{)' r

and one can test for outliers in the n single differences. The Cu-array has reduced to size
mxm.

As a side step we can also see that due to the column with ones for the receiver clock
error, we can not distinguish between an outlier in pi, and one simultaneous outlier in all
plz, j:|,..,ffi, j*i. An outlier in the observation to one specific satellite can not be
distinguished from simultaneous outliers (all of equal size) in all other satellites.

The transformation to double differences, satellite 1 as pivot, yields
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L.eaving out the single difference pl, yields the model with (z-1) double differences:

In terms of double differences, we have to test for an outlier in each of the (rfi-l)
observations pli t:2,..,m (caused by an outlier in the single difference pirl and also for
one simultaneous outlier in all of the (m-I) double differences; the first column with -1's.
The latter is caused by an outlier in the observation pb, to the pivot satellite. With (n-1)
double differences, we have to test thus for m (single dffirence) outlier hypotheses.

From the above model it can also be seen that with only one double difference, m=2, one
can never distinguish between the two single difference outlier hypotheses; at least two
double differences are needed, rt:3.

Considering the above model as a whole, there must be at least m>6 satellites. Statistical
testing is based on (sufficient) redundancy. When only m:4 satellites are observed, there
is no redundancy at all. With la=5 satellites, detection is possible, but identification -
separation between different alternative hypotheses - is not.

4.2.2 Testing strategy

In this section on testing strategy we will elaborate on the implementation of the DIA-
procedure, cf. appendix 2.8. The computations for this testing can be easily embedded in
the Square Root Information Filter, section 3 of chapter 2. Testing is based on the
normalized predicted residuals 14. These residuals have a unit variance covariance matrix.
The DlA-procedure can be run in the operational phase at every epoch in close parallel
with the recursive estimation. Examples of statistical testing applied to GPS positioning
can be found in [Cross et al, 1994f, [Abousalem et al, 1994], [Nikiforov, 1996], [Elema,
19971 and [Powe et al, 19971.

In a time-varying measurement system we have to deal with time-series of observations.
An observation from a certain combination of a satellite and a receiver is available for
every epoch from 1 to k. Such a combination is also referred to as channel. The measure-
ment system consists of a set of channels.
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In a time-varying measurement system, we must specify a series (in time) of alternative
hypotheses per channel and per observation type. Not only the channel is not known, but
also the time of occurrence is unknown. In practice, the number of epochs considered in
the testing procedure at a certain epoch, will be limited by a window. In this respect we
will discuss the detection and identification step of the DIA testing procedure. The
adaptation is deferred to the next section.

In the detection and identification step we use statistical tests that have different degrees
of freedom. A possible link between the overall model tests and the slippage tests is
discussed and some considerations in chosing the parameters of the testing procedure are
given.

detection
In the detection step, the overall model test is carried out. At epoch ft in the recursion,
this test should concern all data from epoch 1 to epoch ft. The dimension of the C-matrix

k

equals Ernr-n. In practice, taking into account all normalized predicted residuals may
i = l

not be feasible, especially when k gets large, [Teunissen et al, 1989]. The test is rigidly
restricted to the epochs I to k. A window is set for the test. The window length equals
N:k-l-tl epochs. The window length is kept fixed and as the recursion proceeds, k

increases and / is incremented as well. The dimension of the C-matrix equals i,m, lfor
i= I

l> 1). The overall model teststatistic is denoted by f* (cf. (B.21) of appendix 2'.8).

identification
In the identification step, slippage tests are carried out. We limit ourselves to one-
dimensional model errors (q:1). The slippage teststatistic is denoted by {'o @t. (8.22\
appendix 2.B). In some observation, a slip or an outlier may occur. But as we are con-
cerned with a time-varying system, the epoch of occurrence can vary from 1 to ft. For the
code observation pj for instance, we should test for all of the following hypotheses in
case of an outlier:

P),- ,

Pi'
P),. ,

l = A x + V ; * V ; . . ; * V ; * V ; * V ; . . ; *

4 u

Only the last few hypotheses will be tested for in practice. This yields then the window
from epoch I to k. The considerations for using a window are given in [Teunissen et al,
19891 and [Salzmann, 1993]. In chapter 5 model validation will be limited to local
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testing, l:k; the windowlength is N:1. If errors are encountered and identified, they are
put out immediately at the same instant.

procedure for data processing
The data processing starts with the estimation under the null hypothesis and the set up of
a collection of relevant alternative hypotheses. The estimation is directly followed by the
DIA procedure. In the detection step, the overall validity of the null hypothesis is
checked.

Rejection of the overall model test TI* at epoch fr makes us decide that the null hypoth-
esis, concerning the epochs I to k, is not valid. A systematic consideration of the slippage
tests /4e, 1t'r*,..,1k'k for all channels and for all types of errors is needed to localize the
model error. The identification is carried out. The null hypothesis is tested against the
alternative hypotheses, one at a time. As all slippage tests have 4:1 degree of freedom,
they can be mutually compared. The alternative hypothesis that corresponds to the
teststatistic with the largest value is most likely, thus time of occurrence, type of
observation and which satellite (channel) are determined. If this slippage test is rejected
indeed, the model error can be considered sufficiently more likely than the null hypothesis
and this alternative hypothesis becomes the new null hypothesis.

The adaptation concludes the model validation. In this step we switch to estimation under
the alternative hypothesis. If after adaptation the overall model test is still rejected
however, yet another identification needs to be carried out. Several model errors can
occur simultaneously at some epoch. The procedure is repeated in order to handle
multiple model errors. In this way the original null hypothesis is stepwise extended. The
number of unknowns thereby increases. The number of observations is fixed and the
redundancy therefore decreases.

The iteration goes on in principle, until detection is not positive anymore. The limit of
this process is the case of zero redundancy. Nor the overall model test, nor the identifica-
tion tests will then be rejected. This does not necessarily imply however, that there are
absolutely no errors left in the observations. The only correct conclusion is that the
observations do fit now the (adapted) model exactly.

Discrepancies between detection and identification may occur in practice. This can be due
to the specification of alternative hypotheses. The correct hypothesis is not included in the
specified set. The overall model test will then be rejected without one of the slippage tests
being rejected. Another cause is of statistic nature and has to do with the linking of
statistical tests with different desrees of freedom.

B-method of testing
The overall model teststatistic and the slippage teststatistic will have different degrees of
freedom. A possible linking of these teststatistics is provided by the B-method of testing
[Baarda, 1968]. This method is briefly reviewed.

The overall model teststatistic -/* has
k

E^,
i=t

degrees of freedom, whereas the slippage

teststatistic 1't has only q:l degree of freedom. Tests with different degrees of freedom
can be linked by requiring equal non-centrality parameter for all dimensions. The inverse
power function gives the non-centrality parameter tr for the generalized likelihood ratio
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teststatistic as function of the level of significance a, the degrees of freedom q and
power 7.

(2.8)

t4L

the

) r (uo,q, \ )  = ) ,o

Power "y is fixed to some reference value, usually 7,:0.80. The power 7, the probability

of correct detection, should be as large as possible; p:l-t is the probability of missed

detection. Together with the level of significance for the one-dimensional test ao=, this
determines the reference value tro for the non-centrality parameter (section 8, chapter 1).

The non-centrality parameter equals the squared norm of the model error in terms of
misclosures (8.1).

The levels of significance for other dimensions an, e> 1., now directly follow from the

inverse power function (1.8). In figure 2.3 after [K6sters, 1992f, the levels of signifi-
cance d.q are given as function of q for five values of power "r (r":0.5, 0.6,0.7,0'8 and
0.9). A'common choice is c,=, =0.001 (in geodetic networks). The level of significance
o, the probability of false alarm, should be small. The default values yield tr,:17.075. In

navigation applications, with safety as a prior condition, a larger "f may be preferred and
a larger a is put up with.

!

3

&tE oa fr...h q

Figure 2.3: B-method of testing, d versus q, ao=, : 0.001 Figure 2.4: B-method of testing, T versus \, ^y,, : 0.80
ao-, : 0.001 and crr=5a : 0.260

The Minimal Detectable Bias gives the size of a model error that can be detected with a
probability of 7o by the appropriate slippage test (4:1), see section 8 of chapter 1. The
idea behind the B-method of testing with slippage tests and more dimensional tests is that
such a model error should be detected by the more dimensional tests with a probability of

7, as well, when these tests also encompass this particular error.

In figure 2.4power 7 is given as function of the non-centrality parameter X for q:1 3tt6

e:50. Both lines pass through (Xo, 7o:0.80). Figure 2.4 shows that if the size of the
model error does not equal the MDB 1)u+)r), the power of the slippage test (4:1) will
differ from the power of the overall model test (4) 1), as the tests have different degrees
of freedom. This may cause discrepancies between detection and identification.

Returning to figure 2.3, we see that o as functionof q is a monotone increasing function:
&o=t< &o,r for some fixed power 7,. This means that the overall model test will be more
cohservdtive than a slippage test, see also [Heus et al, 1994]. The probability of rejecting
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the null hypothesis when in fact it holds true, is larger for the overall model test than for
a slippage test.

A serious handicap of the B-method of testing is that when the redundancy increases, the
level of significance a, for the overall model test may become unacceptable large, e.g.
larger than 50%, see [ibid]. Using a window in the testing procedure will bound the
redundancy.

The B-method can be used to provide a link between detection and identification. In the
reference [ibid] also a strategy is proposed for simultaneous handling alternative hypoth-
eses of different dimensions in the identification step. It is suggested to divide the value
for the teststatistic by the corresponding critical value. As such test-ratios are obtained,
that can be mutually compared.

4.2.3 Adaptation

The estimate i' and the accompanying variance covariance matrix Q, have been
computed using the null hypothesis, the working model. In the detection step, this model
was found to be invalid. The identification was carried out to spot the model error. Based
on the data available, a certain alternative hypothesis turns out to be sufficiently more
likely than the null hypothesis. It is decided to use this alternative hypothesis as the new
null hypothesis.

The estimation results have to be re-computed, now using the new null hypothesis: io
and Q., i.e. we have to account for the model error. In practice, this estimation is not
started over from scratch. The results under the previous null hypothesis are used. This is
the adaptation step.

adaptation

The adaptation in the Square Root Information Filter mechanization has been treated in
section 3 of chapter 2. By additional orthogonal transformations both the estimator fo
and the normalized predicted residuals ]4& were updated. Adaptation strategies for ifl6
standard Kalman filter are discussed in [Salzmann, 1995]. In this section we will outline
the strategy for adaptation for the model errors previously considered: outliers and slips.
We are primarily interested in filtered state estimates i*lr. Adaptation of smoothed
estimates is not considered.

outlier
Adaptation for an outlier in an observation is straightforward. The estimators fl,. and V
are computed and the normalized predicted residuals are updated. As an outlier iir^a model
error that occurs only once, no future observations will be related to the model error V.
The estimator V can therefore be left out from the state vector. After adaptation for an
outlier, one can revert to estimation under the null hypothesis immediately [ibid].

slip
Adaptation for a slip in general is more complicated. The estimators if," and V are
computed and the normalized predicted residuals are updated. A slip is a nidhel error that

i o

H o :

Qi "

i a

Qr.
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starts and continues to occur in principle for ever. Future observations will still be related
to the model error V. This has to be accomodated in the mathematical model.

By adaptation for the slip, the state vector is enlarged by V. After that, this model error
parameter should remain in the state vector for ever (and be propagated along with the

other constant param€ters). In practice one may decide to make an approximation, and
leave the estimator V out from the state vector after a certain number of epochs. The

incoming observations need then to be corrected a-priori with the most recent estimate V.

The stochasticity of V is neglected, see also [ibid].

slip in constant state space
Adaptation for a slip in an observation that is already related to a constant parameter, as
is the GPS phase observation (the ambiguity), is straightforward. This type of slip is also
referred to as slip in the partially constant state space [Teunissen, 1.992], see [Salzmann,
19931. The adaptation is discussed by means of a simple example.

Observable y is, among other parameters in .r, related, via coefficient b, to some constant
parameter denoted by c (not to be confused with the speed of light).

(2.e) Ho: Elyl = arx t bc

A slip V occurs. The adaptation is carried out. The estimators tl,, and V are computed
and the normalized predicted residuals are updated. 

kt.

The state vector now contains two biases both related to the observable y: c and v. As

the slip continues to occur, future observations are still related to both c and V.

(2.10) Ho: Elyl = arx * bc + bY

Note that the bias and the slip have identical coefficients; the slip V can be directly
absorbed by the constant parameter c. We apply the following reparametrization of
unknowns:

14 = l,, ,,1 r")
\c i  lo r l  \c/

where d=V+c denotes the new constant parameter for observable I. Future observations
are related to d only and not to c anymore. As the estimator for this quantlty is of no
interest, the old constant parameter c can be left out. After this adaptation, one can revert
to estimation under the null hypothesis, now with the new constant parameter c instead of
c. The slip in the observation is actually absorbed by the constant parameter c. The size
of this bias is changed.

(2.rr) Hot Elyl = arx * bd

In section 2.3, the adaptation was carried out for a local model error. As it was stated,
the adaptation for a global model error can be carried out similarly in a straightforward
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manner. When many epochs are in between occurrence, epoch /, and detection, epoch ft,
of the model error however, such a rigorous adaptation may become computationally very
demanding.

Detection, identification and adaptation for global model errors inevitably leads to
temporarily biased estimates. The filtered estimates in,,...,i0_r,o_, are computed still
using the null hypothesis. The model error is taken into account not until epoch ft. The
reader is referred again to the considerations in [Salzmann, 1993].

We have discussed the adaptation for an outlier, a slip in general and a slip in the
constant state space. For GPS observations, the outlier in a code observation and the
(cycle) slip in a phase observation are of importance. The adaptation for these model
errors is exact and straightforward. After adaptation one can again use the null hypoth-
esis. As stated in section 2.3 the adaptation can be repeated, if multiple model errors are
present. In this way it is possible to finally have adapted for a composite model error
(q>r ) .

4.2.4 Reliability

Reliability describes the nominal performance of the model validation. The theoretical
background of reliability was discussed in section 1.8.2. In particular we will consider the
Minimal Detectable Bias V and the bias to noise ratio l.r. The formulae for their
computation in the Square Root Information Filter in chapter 2, are (3.13) and (3.16)
respectively.

The Minimal Detectable Bias is a measure for internal reliability. The MDB gives for a
one-dimensional alternative hypothesis, the size of a model error that can be detected with
probability 7 by the corresponding slippage test. As we consider outliers and slips in
observations, the MDB can be directly interpreted. The MDB for an outlier in the code is
expressed in meters, for a slip in the phase in cycles. In the design phase of the system
one should also check the separability of the one-dimensional alternative hypotheses, see
equation (8.4) in chapter 1.

For external reliability we consider the effect on the state estimate of a model error of the
size of the MDB, when it is left undetected. The significance of the effects is given by the
bias to noise ratio 1.r..; the bias is weighted against the precision. Below equation (8.32)
of chapter 2, the foll6wing interpretation was given. ,[, provides an upperbound for
the bias in an individual element of the estimate iklft. Als6'a part of the state vector can
be considered, e.g. the coordinates xn.

The reliability measures are computed for every epoch simultaneously with the DIA-pro-
cedure. As in the adaptation, the matrices C, are updated, the reliability measures
automatically refer to the working hypothesis; i.e. the null hypothesis or after adaptation -
possibly for multiple model errors - the alternative hypothesis.

4.3 Summary

In the chapters 1 through 3, we have discussed the concepts and principles of estimation
and testing, the recursive data processing and the mathematical modelling. In this chapter,
it is briefly shown how these components synergize in the recursive data processing for
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kinematic GPS surveying. A flow diagram was given and several practical aspects of the
implementation were described. The implementation is the basis for the computations and
analyses discussed in chapter 5.

In section 4.2 we were concerned with the DlA-procedure, the statistical testing pro-
cedure that is carried out along with the recursive estimation. The purpose of the
procedure is to find actual model errors. The elementary error types outlier and (cycle)
slip are relevant alternative hypotheses in kinematic GPS surveying. Considerations on
setting the parameters of the statistical testing procedure were given. When a model error
occurs, it must be accounted for. The adaptation for the outlier and slip error type was
outlined.

It must be noted that the occurrence of a (large) model error in itself need not to be
severe. The model error will be detected with high probability, properly identified and
adapted for. The 'repaired' measurement system can then still be of sufficient quality.
The DlA-procedure is the tool to effectively bring the data and mathematical model in
muhral correspondence during the data processing.

Measures for quality refer to precision and reliability. Measures on precision are based on
the variance covariance matrix of the estimator. Precision describes the quality of the
estimator under the original mathematical model, the null hypothesis. Reliability describes
the performance of the statistical testing procedure and concerns 'what if' scenarios. Can
it be detected, when a certain model error occurs and if not, what is the effect on the
desired positioning results. Measures on reliability are primarily the Minimal Detectable
Bias for internal reliability and the bias to noise ratio which expresses the significance
concerning the external reliability.

Appendix 4.A Householder transformation

In the Square Root Information Filter, the Householder transformation is the major tool to
get the data processing done; the orthogonal transformation was applied in appendix 2.A.
It was introduced by [Householder, 1958]. The use of this transformation for solving
linear least-squares problems via QR-factorization was discussed in [Golub, 1965] and the
implementation was given in
[Businger et al, 1965]. Further
references include [Lawson et
al, 19691 and with respect to
recursive estimation [Dyer et
al, 19691and [Bierman, 1977).
A comprehensive treatment
can be found in [Golub et al,
19891 and [Bjdrck, 1996].

In this appendix we will brief-
ly discuss how the orthogonal
Householder transformation is
used to bring the design matrix
into upper-triangular shape.

completed, no longer accessed

currently under operation
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Figure A. 1: Triangularization of matrix ,{
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triangularization of the design matrix
The computation, the properties and the geometric interpretation of the Householder
transformation are discussed in [Bierman, 1977]. The idea is that by means of an
orthogonal transformation, an arbitrary (non-zero) vector has been reflected such that all
elements equal zero except for the first. The vector has been reflected such that it has
only one non-zero component and this non-zero component lies in the er-direction
(1 ,0 , . . ,0 ) r .

This vector can be a column of the mxn design matrix.4 (we have assumed that m>n).
This column is the pivot column. For example the first column is then zeroed, except for
the first element, by the Householder transformation. The first column completely
determines the matrix Ir. The observations y and the remaining columns of z4 are then
transformed using the same Ir: Tt l:Tt Ax, see section 2.A.I. An mxn-matrix .4 can now
be triangularized by a sequence of n elementary Householder transformations:

( A . 1 ) '=l t ' t ]  l t  ' ,1 t t t

where Z, has dimension m, T, dimension n-l and Tn dimension m-nIl. The triangulari-
zation process of the design matrix is illustrated in figure A.1. Matrix Z, operates on the
fullmxn-matrix and zeroes the first column of .4 below element (1,1). Matrix Z, operates
only on the (m-l)x(n-1)-lower part of A.Itzeroes the second column of ,4 below element
(2,2). This process is continued and finally matrix I operates only on the (m-n*l)xl-
lowerpart  of  A. l tzeroes then'h columnof . ,4belowelement(n,n).  Notethatal l  nmxm-
matrices in (A.1) are orthogonal.

As a result of the sequence of transformations, we have the desired upper triangular
shape. The transformation matrix Z is not explicitly computed. As indicated in appendix
2.A, prior to the QR-factorization of designmatrix A, the observables are normalized,
equations (A.7) and (A.8). The Cholesky factors of both Q4 and Qrr ur" thus to be
computed first.

SRIF
The Square Root Information Filter is implemented using the concept of the information-
array [Bierman, I977f. The term 'information' is explained in section 6.8 of [Grewal et
al, 19931. The information matrix is the inverse of the variance covariance matrix, thus
the normal matrix. All information is contained in two arrays (for the measurement
update; equations (2.9) and (2.L0) of chapter 2):

- a two-dimensional array (matrix), basically containing design matrix.,4 on the input
and upper-triangular factor S-r on the output

- a one-dimensional array (vector), containing the vector of observations y on the
input and the transformed state vector z on the output
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5. GPS surveying: experiments and results

The results of the processing of various data sets enables a deeper insight in the quality of
the geometric information, as obtained by kinematic GPS surveying or, in just the quality
of positioning of a moving receiver.

quality: design (Ypenburg 94)
Knowledge of the measurement configuration and scenario allows to examine the quality
of the system in terms of precision and reliability beforehand, thus prior to actual field
operation. The quality is analysed in detail for the benchmark data set, a 2.2 km baseline.

analysis GPS code and phase obsemables (UNAVCO 95)
In the second section of this chapter, a closer analysis is made on the code and phase
observables to check whether the assumed mnthenwtical modelling is adequate and if not,
to explore the shortcomings. Data from zero baselines and a short baseline are used for
this special purpose. We will see that the stochastic model needs refinements.

kinematic GPS sumeying: practice (Flevo 96)
The results will be analysed that are obtained W the measurement set up typical for
kinemntic GPS surveying, thus one stationary reference receiver and a roving one that
visits the points to be surveyed, or is even in permnnent motion. The distance from the
rover to the reference ranges to over 10 kilometers. We will focus on performance
concerning positioning and ambi guity resolution.

The three campaigns, description, results and analysis, are independent and can be read
separately. For each, a summary and conclusions are given at the end of the respective
sections.

5.1 Quality of kinematic GPS surveying

The Ypenbury 94 data set was originally used for testing purposes during the software
development. Extensive design computations were made for this benchmark data set. The
measurement configuration was analysed on quality. An attempt was made to identify a
workable set of parameters that can be used to represent the quality and examples are
given of the DIA procedure for quality control at work.

5.1.1 Experiment description

The Ypenburg 94 campaign was measured by the Department in May 1994 on the former
air force base Ypenburg, near The Hague in the Netherlands. The early-evening session is
used for the analysis. The characteristics of the experiment are listed on the next page.
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s t a t i o n :
coord ina tes  marker ;

in  wGS84

s E a t r o n :
coord ina tes  marker :

in  WGS84

base l ine  -  leng th :

'  
GPS =  UTC + n  [s ]  w i t .h  n=9

7 {a11 B lock  I I  and I IA)
! 1  L 9  2 L  2 2  2 3  3 1  2 8

28 (doub le  d i f fe renc ing)
z  \ - u a u r u r r d r l /

Tr imbLe 4000 ssE (c ross-cor re la t ion)
C L , P 2 , L I , L 2  ( A S  o n )
May 5 th ,  1994 (GPS week 741)

t  hour  (3596 seconds)
1 5 : 4 5 : 0 4  G P S '  ;  4 0 5 9 0 4  s e c o n d s  i n  G P S  w e e k
1 1 . 4 4 - q q  G P . q  4 O g 4 q g  s e c o n d s

1 second

-  t  h ^ r , r  1 ? < q  a h ^ ^ h e l

1 6 : 4 5 : 1 0  G P S  ;  4 0 5 9 1 0  s e c o n d s
1 7 : 4 4 : 5 0  G P S  i  4 0 9 4 9 0  s e c o n d s
10 seconds

YPO 1
X =  3 9 2 0 3 9 7 . 2 4 9 8  m
Y= 298788-2909 m ( re fe rence coord ina tes
Z =  5 O O 5 3 a 9 . 5 1 2 6  m

YPO 9
X =  3 9 1 8 9 8 1 . 3 8 6 0  m  a E  c m - 1 e v e l ,  r e l a t i v e )
Y =  3 O 0 2 i , 2  - 4 7 5 0  m
Z =  5 0 0 6 3 6 4 . 9 7 0 1 -  m

2 2 5 0 . 3 5 1  m

5.1.2 Results and analysis

For the Ypenburg 94 campaign we concentrate
on analysis of the quality of precise relative
positioning on a local scale. We will consider
both the static and the (full) kinematic case.
There can be one set of coordinates for the
roving receiver for the whole session, model
00. or new coordinate unknowns are introduced
epochwise, model 02, see section 4.1.1. Figure 1.1: Skyplot at YP01 for Ypenburg 94

The analysis on quality is made for a variety of measurement scenarios. For three of
them, also an example of the DIA procedure for quality control will be shown. As a side
step, we start with single point positioning.

S.l.2.l Single point positioning

The single point positioning case is analysed first, as, due to the same geometry, the
mathematical model has the same structure as for relative positioning. This may help in
explaining the analysis of quality for relative positioning. We consider the reference
receiver.

Single point positioning with CA-code observations was carried o:ut: m:7 satellites were
available. The standard deviation was taken ar:20.6 meter (all satellites), see [Parkinson
et al, 19961. The SA 6-dither in the satellite'clocks actually hinders the normal distribu-
tion assumption for the CA-code observations in practice. The effective satellite clock
stability is about 10-e s/s and the broadcast satellite clock error coefficients do not account
for the short term (several minutes) varying effects. The mathematical model for one
epoch of data was given in section 3.3, equation (3.2). For single point positioning, as a
limiting case, also model Cl is considered: a stationary receiver, model 00, but with the
coordinates already initially constrained, so that there is only one unknown parameter per
epoch.

S K Y P L O T  ( A z i m u t h  v s  E l e v o t l o n )
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In table 1. 1, the quality of the measurement system is analysed for 4 epochs (out of the
359 epochs processed): k=1, k=100, k:200 and k=300. Given are the standard
deviations of the coordinates North, East and Height (or Up) and of the receiver clock
error (also in meters), and the Minimal Detectable Biases for outliers in the code-observa-
tions (local model validation); per epoch the minimum and maximum values are given
together with the PRN-numbers of the corresponding satellites.

1 5 1

0 2  k i n e m a t i c  p r e c i s i o n  ( d )
Nor th  Eas t  He igh t

epoch [m]  [m]  [m]

1  1 7 . 5  1 5 . 0  3 4 . 3
1 0 0  1 8 . 1  1 4 . 5  4 1 . 5
2 0 0  1 8 . 8  1 4  . 0  4 5 . 4
3 0 0  r - 8 . 6  1 3 . 5  4 0 . 7

clock
lm l

2 9 . r
2 6 . 5

MDB out l ie rs
min PRN max PRN
[m]  [m]

1 0 9 . 3  2 3  1 7 2 . 9  2 L
L O 1  . 4  2 3  1 5 5 . 3  2 r
r u / . 5  z 5  r 6 J . J  2 6

1 0 8 . 1  2 3  1 7 1 . 5  1 9

00 s ta t rc
1  t - 7 . 5  1 5 . 0

1 0 0  1 . 8  1 . 5
2 0 0  l - . 3  1 . 0
3 0 0  r _ . 0  0 . 8

C1 cons t ra ined
1  0 . 0  0 . 0

1 0 0  0 . 0  0 . 0
2 0 0  0 . 0  0 . 0
3 0 0  0 . 0  0 . 0

2 3  1 7 2 . 9  2 r
2 3  9 2 . 2  1 7
2 3  9 2 . L  L 1
2 !  9 2 . r  r 7

? 4  ?

3 . 8

0 . 0
0 . 0
0 . 0
0 - 0

8 . 1
8 . 0
1 . 9

7 . 8

7 . 8

1 0 9 . 3

9 2  - O
9 2 . O

9 1 . 9  a l l
9 1 . 9  a l l
9 r . 9  a l L
9 1 . 9  a l l

Table 1.1: Precision and reliability for single point positioning

precision
For model 02 (in fact single epoch solutions), the precision figures are about the same for
all epochs. The slight variation is caused by the changing satellites-receiver geometry
(long term effect). The PDOP ranges from 2.0 at the start, to 2.5 in the middle and back
to 2.1 at the end. It can also be seen that the precision for the height is about twice as
poor as for the horizontal coordinates.

With model 00, a sequential adjustment upon the coordinates is made. The more epochs
of data are processed, the more precise the coordinate estimators get. From epoch k= 1 to
epoch k:300, the precision improves by approximately a factor y'30,Q*=m =* Qr*,
As compared with model 02, there are less unknowns and therefore also the estifretor for
the clock error gets more precise. It almost reaches the level of model Cl (o:7.8m).

In model Cl, we actually have one unknown per epoch, namely the receiver clock error.
The receiver clock error (expressed in meters) is involved in each observation equation
with same coefficient, namely 1.0,
and therefore the precision of the
estimator as well as the MDBs are
constant over the whole session. The
precision of the receiver clock error
estimator could have been easily
predicted: o,6i: ooltlT =7 .8 m
(averaging).

reliability
The Minimal Detectable Biases were given in table 1.1 (minimum and maximum value).
We will consider reliability in more detail for model 02 (full kinematic), at the first
observation epoch k:1. Table 1.2 concerns internal reliability (MDBs) and external

PRN MDB [M]

r 7  L 4 5 . 7
1 9  L 4 9 . 2
2 L  L 7 2 . 9
2 2  L 2 3 . 4
2 3  1 0 9 - 3
3 1  L 2 0 . 6
2 8  1 1 9 .  r -

y'tr, rAnrr y'A", Jtr"

5 . 7  5 . 1  4 . 8  1 . . 3
5 . 9  5 . 3  3 . 6  3 . 0
7  . 3  6 . 6  5 . 9  4  . 1
4 . 3  3  . 7  2 . r  3 . 0
3 . 3  2 . 7  2 . 6  0 . 4
4 . 1 ,  3 . 5  2 . 9  1 . 3
4 . 0  3 . 4  2 . 4  2 . 9

Table 1.2: Internal and external reliabiliry for model 02
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reliability. For external reliability, the propagation is considered of (undetected) model
errors, outliers, on the estimator for the vector of unknown parameters.

reliability: external
The u/,l.r significance measures are represented
atso graphically in figure 1 .2. {}\ (white; third
column of table 1.2), is a general significance
measure for the effect of an undetected outlier
(of size MDB) on the full vector of unknown
parameters (coordinates and receiver clock
error). For the remaining three columns,gnlyj
part of the unknowns is considered. tf \r_*",
(black) concerns the coordinates in three dimen-
sions, expressed in either XYZ or North, East,
Height, as L*_xyz=Lr_*"". For the horizontal
coordinates and the vertical coordinate we have
respectively ,ry; Gatched) and ,fT-, (gray).

r7 19 2r x2 23 31 28
PRN

The propagation of outliers V on the estimates is given by Vi=XV, where X is an n-
vggtol_!99_equation (8.5) in section 1.8.2. In figure 1.3 the bias in the horizontal position
1fVN2 +VEz (North and East; the length of the 2-vector Vi in standard metric) is plotted
versus the size of the outlier V, for all seven satellites. An outlier of 150 meter in satellite
28 causes the horizontal position to be off by 40 meters. The asterisk represents the value
of the MDB. From the figures I.2 and 1.3, it can be concluded that outliers in the
satellites 17, 19 and 21, when left undetected, have largest impact on the estimator.

n a b l a  [ m ]

Figure 1.3: External reliabiliry: propagation of
outlier V into horizontal position

Figure 1.2: External reliability: significance of
outlier {\., Jtr"u", 1/X"u and {\o

nab la_w

Figure 1.4: External reliabiliry: horizontal posi-
tion error versus bias in teststatistic V/
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Testing for outliers is carried out with the slippage teststatistic, see (7.12) in section
1.7.2. Under the null hypothesis Ho, the slippage teststatistic t has expectation value zero:
E{t}:0. When the model;engr occurs with size V, the teststatistic gets affected. Under
Hu we have E{l} =Vt={c;Qt- 'c, V, with the model error expressed in terms of misclosu-
res: c,V. As we have seen in figure 1.3, the outlier will cause a bias in the horizontal
position.

In figure 1..4, the horizontal position error is given as function of the bias in the teststatis-
tic lVtl, again for all seven satellites. When the model error has the size of the MDB,
equation (8.2): lVtl=l\=4.L3.In practice, the slippage test, for an outlier in a code
observation, is rejected when the (sample) value / for the teststatistic exceeds the critical

0
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value: Vl>n. In this case, the critical value is
k:3.29 and it is indicated by the dotted line. Also
figure 1.4 shows that outliers in the satellites 17, 19
and 2l have large impact on the horizontal position.

Figure 1.5 shows the direct effect on the horizontal
position of an outlier of size MDB (vectors Vi=XV,
with the coordinates expressed in North, East and
Height). The formal precision ellipse, o:0.05, has
been provided for reference. The contour line of the
ellipse corresponds to the value t/lr_""=x:2.4 for
the external reliability (vector). An outlier of
Y:145.7 meter (MDB) in satellite 17, when left
undetected, shifts the receiver position over 93.7
meters towards the (local) South-West.

Figure 1.5: External reliability: bias
horizontal position
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Figure 1.6: External reliability: probability of
outlier detection by slippage test versus horizontal
position error

Leaving out PRN 21, causes the MDB for PRN 23
to switch from being the smallest MDB to being
the largest one. Next, leaving out PRN 31 has a
major effect on the MDBs of PRNs 17 and 19, see
table 1.3. The table clearly shows that as the
redundancy gets less, the internal reliability gets
worse: the MDB values increase. With 4 satellites
there is no redundancy left at all, and model vali-
dation is not possible anymore; the *x denote
infinite MDB values.

An outlier V in one of the seven range observa-
tions, will bias the (horizontal) position. By
means of the slippage test, it can be detected
with a certain probability y. Under t!: f - x'@=t,t")
with i,=VrQ*'v, cf. formula (7.10) in chapter
1. The non-centrality parameter tr can then be
related to probability y. Figure 1.6 gives ^y

versus the horizontal position error; there are 7
curves, one per outlier hypothesis H"' with
i  =1,. . ,7.  The MDBs are related to y:9.3.

reliability: internal
Model 02 (full kinematic) is considered at
epoch k: l  for the cases with 7,6,5 and 4

L

r
I

;

,r,' * /

;Lt,- /,,

t:l'*-</

satellites (realized by successively leaving out PRN 21., 31, and 17). With 4 unknown
parameters, the redundancy then equals 3,2, I, and 0 respectively. The MDBs, in
meters, are given for these cases in table 1.3.

, / ], . l

l
i

PRN

T 7
l-9
2 t

2 3
3 l -
2 8

7 sws 6 svs 5 svs 4 svs

L 4 5 . 7  L 6 2 . 9  3 7 6  . 9
1 4 9  - 2  1 4 9 . 8  4 7 8 . 3

L 2 3 . 4  L 2 8 . O  L 3 8 . 2
1 0 9 . 3  1 8 9 . 0  2 0 5 . 7
t 2 0 - 6  1 3 8 . 4
1 1 9 . 1 -  1 , 3 8 . 0  1 4 0 . 5

Table 1.3: MDBs [m] for model 02

With formula (8.4) in section 1.8.2, the separability between two one-dimensional
alternative hypotheses can be analysed. We will find out how well one can distinguish
between an outlier in satellite i and one in satellite/. In table 1.4, we give the values for
cos2S, where $ is the angle between the two alternative c,-vectors. If 0 equals 0 or zr,
the vectors are parallel and can not be distinguished 1cos2S:1). If $ equals rl2 or -r12,

they are perpendicular and separability is optimal (cos26:6;.
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PRN L'7
t  1  1 . 0 0 0
1 q

2 r

2 3

2 8

L 9  2 1  2 2
. 3 6 4  . 2 0 0  . 0 0 s

1 . 0 0 0  . 0 0 8  . 3 6 1
1 . 0 0 0  . 0 6 9

1 . 0 0 0

1 9  2 2
. 5 1 9  . 0 0 4

1 . 0 0 0  " 4 2 2
L . 0 0 0

Z J  J I  2 6

. >  t L  . 2 5 5  .  U 5 5

. 0 0 0  . 1 5 2  -  0 0 4

.  o o >  .  z l z  . 2 5 5

. 0 3 1  . 0 3 5  . 6 8 9
1 . 0 0 0  . 0 4 0  . 0 0 6

1 . 0 0 0  . 1 5 3
1 . 0 0 0

PRN
T 1
1 q

2 3
3 1
2 8

! 1
1 . 0 0 0

z 5  J I  2 6

.  s 5 8  . 8 t 2  . 3 5 6

. 0 0 8  . 9 0 2  . 0 1 5

. 4 9 2  . 1 4 3  . 7 0 0
1 . 0 0 0  . 1 s 6  . 9 5 5

1 . 0 0 0  . 0 3 5
1 . 0 0 0

1 . 0 0 0
1 . 0 0 0
1 . 0 0 0
1 . 0 0 0
1 . 0 0 0

PRN 17 19  22  23
r 7  1 . 0 0 0  1 . 0 0 0  1 . 0 0 0  1 . 0 0 0
1 9  1 . 0 0 0  1 . 0 0 0  1 . 0 0 0
2 2  1 .  0 0 0  1 . 0 0 0
2 3  1 . 0 0 0
2 8

Table 1.4: Correlation-matrices co.fS, model 02, 7,6 and 5 satellites

The correlation matrices show whether outliers in different observations interfere or not
(they are symmetric; only the upper-triangle is given). The value for cos2Q can range
from 0 to 1. The diagonal elements (satellite i with itself) are equal to 1.0 by definition.
The trend is that with decreasing redundancy, the correlation increases and identification
becomes more difficult. With 7 satellites. the
correlations are small to moderate, see also
figure 1.7. With 6 satellites, in particular an
outlier in satellite 23 and one in satellite 28.
strongly interfere, cos26:9.955. And as we
have seen with the MDBs, satellite 31 interferes
with 17 and 19. With 5 sarellites, the redun-
dancy equals 1. Detection is possible, but iden-
tification is not. As shown in the table, one can
not distinguish between the 5 alternative hypo-
theses. It is possible to notice that the model
and the data do not correspond (something
wrong), but not to point out what.

0,2

0
t7 19 2L 22 23 31 28

Figure 1.7: Correlation-coefficients (cos2@) with
7 satellites

cases with four satellites: precision
For single point (single epoch) positioning, based on the linearized model of observation
equations, two types of rankdeficient receiver-satellites geometries are identified in
[Teunissen, 1990]. we will, as examples, consider four cases A through D, figure 1.9.

(1) When all satellites are on a cone, that has its top at the receiver, the receiver position
can not be determined in the direction of the center-axis of this cone (caused by the fact
that also the receiver clock error has to be estimated; the observables are pseudo-ranges,
not ranges). Case C is a clear example of this configuration and also case A is close to it.
Note that all satellites at equal elevation, is just a special case of this deficiency; the axis
then points towards the local zenith and the height is undetermined.

(2) When all satellites are in a plane, that also passes through the receiver, the receiver
position is not determined in the direction perpendicular to this plane. The configuration
of case B is quite close to this situation.
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The type (2) rankdeficiency is actually a limiting case of type (1), i.e. the top-angle of the

"on" 
li 90o. When the receiver clock error is not to be estimated, the rankdeficiency of

type (2) remains; the deficiency of type (1) disappears.

(l; left) cone

(2; right) plane

Figure 1.8: Rankdeficient geometries

The above rankdeficient geometries are mathematically described by

(1) ,:'b = 1 for i:I,2,3,4 where D is the 3x1 vector along the axis of the cone

(2) ,)'o = 0 for i:I,2,3,4 where a is the 3x1 normal vector of the plane

The rankdeficient geometries ate
sketched in figure 1.8 with four
satellites, but they may occur with
more than four as well. The vectors
e) have unit length and point to the
satellites. Case D finally, is quite
close to the perfect receiver-satel-
lites geometry for the case with four
satellites.

- ' a ^ i  a i  ^ n  r  d )

North East Height
lm l  [m]  [m]

] - 1 7  . 1  3 7 . 0  7 8 5 . 8
2 4 4 . 3  2 1  . 3  1 . 9 1 . 9

9 2 . 7  3 5 7 . 1  L 2 4 8 . 6
2 L . 3  L 7 . 6  3 9 . 5

clock PDoP
lml  [m/ml

4 9 0 . 8  3 9 . 2
1 8 9 . 8  1 5 . 1
6 7 0 . 2  6 3 . 2

2 4 . 4  2 . 3

case

E

Table 1.5: Precision of 4-satellites-cases

case A: 17:15:00 YP01 case B: 17:44:00 YP01 case C: 17:44:00 YP01

A PRN L7 22
a z a m  > 5 .  z  l o + .  )
e l e v  3 2 . A  4 9 . 2

C PRN 19 2L
a z l m  2 > 6  " t  L + z . v
e f e v  f 5 , J  4 5 . +

23 31  B PRN
9 9 . 5  2 8 5 . 8  a z a m
4 4 . 4  3 3 . 0  e l e v

22 23  D PRN
1 8 1 . 3  8 0 . 9  a z r m

3 5 . 6  4 5 . 9  e l e w

SKYPLOT (Azimuth vs Elevot ion)

case D: 17:44:00 YP01

2 8  3 1
3 0 0 . 4  2 9 0 . 6

6 2 - >  * 5 . J

2 2  2 A
1 8 1 . 3  3 0 0 . 4

3 s . 6  8 2 . 5

L 1  2 3
5 0 . 0  8 0 . 9
2 0 . 6  4 5 . 9

I 7  L 9
6 0 . 0  2 9 8 . 9
z u - 6  1 5 . J

S f  r P L O T  ( A z i m u t h  v s  E l e v o t i o n ) SKYPLOT (Azimuth vs Elevot ion) SKYPLOT (Azimuth vs Elevot ion)

Figure 1.9: Skyplots for 4-sv cases
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For the cases A through D in figure 1.9, a single point solution was computed, based on
one epoch of data (instantaneous receiver-satellites geometry). Receiver coordinates and
clock error were estimated from four CA-code observations. There is no redundancy.

In case A, the satellites are all quite close to a cone, with the top at the receiver. The axis
of the cone points mainly towards the zenith-direction. Therefore the Height of the
receiver has poor precision.

In case C, the satellites are close (more than in case A) to a cone. The axis points up to
North-West-West (azimuth284.3o, elevation 73.6). The angles between the unit-direction
vectors to the satellites and the axis (of the best fitting cone) are 58.9o, 58.2", 59.5o and
59.4". The Height has very poor precision and also the East is poorly determined.

In case B, all satellites are almost in the receiver-zenith-West-East plane. This causes that
the North-coordinate of the receiver is poorly determined. Case B is an exaggeration of
the typical mid-latitudes situation, see figure 1.10 middle. Most satellites are in the South
(possibly only one or two at low elevation in the Northern part), and only satellites above
a certain cut-off elevation-angle are used. This causes that they all more or less tend to be
in the aforementioned West-East plane. The East-coordinate has better precision than the
North-coordinate.

In addition we can state that around the equator, the satellites pass over South-North and
the whole sky is covered; North and East coordinate will have (about) equal precision,
figure 1.10 left. As no satellites are available below the horizon (we miss the elevations
0o to -90o), the height will have poorer precision as compared with the horizontal
coordinates. With four satellites, three at zero degree elevation (azimuths 0o, 120o and
24O) and one in the local zenith, thus the limiting configuration of case D, the precision
of the horizontal coordinates is factor ,f1 better than the precision of the height: oN:oE
and or:r2o" (PDOP=1.6). The satellite in zenith is needed to determine the height. The
correlation between the height and the clock error is p:6.5. In practice, an elevation cut-
off is used and zero degree elevation satellites are thus not observed, which makes this
factor increase to typically 2, see also case D: o*=o" and ou=2on. At the higher
latitudes, as the satellites do not reach the local zenith, the precision of the height will be
even poorer, figure 1.10 right. At the poles, the North and East coordinate will again
have (about) equal precision.

c:O" at t}te equator
south of Nigeria

,p:55o at midlatitude
in the middle of the North Sea

o:90" at the North Pole

Figure 1.10: Skyplots for 12 hour period (08:00-20:00 GPS), based on almanac data of June 17th, 1996. The
constellation consists of 25 satellites, all block II and IIA. Three locations were considered, along the tr:4,'
(East) meridian on the WGS84 ellipsoid. The inclination of the satellite orbit is i:55", which implies thar at
p:55' (plot in middle), they just can reach the local zenith. By South in the plot ar right is meanr, the direction
down to the equator along the X:4" meridian.

SKYPIOI (Azimuih vs Erevotion)
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Case D represents the almost perfect geometry. According to chapter 11, table 1 in

[Parkinson et al, 1996] the best precision is found with three satellites equally spaced on
the horizon, at minimum elevation angle (e.g. 5") and one satellite directly overhead. In
case D the total spread of elevation angles is almost at maximum.

known receiver clock error: precision
It was pointed out, that one of the two rankdeficient geometries has its origin in the
presence of the receiver clock error as an unknown in the observation equations. In this
section we will show what happens when an (almost) perfect clock is available at the
receiver. One can think of an atomic clock. It has to be synchronized at the 10-10 s level
with the GPS time.

We will discuss again the cases A through D with 4 satellites. For the purpose of
reference, we also give the precision of model 02, with 7 satellites. The precision of the
coordinate estimators is listed in table 1.6.

The receiver clock error has been constrained (it
is known or even physically zero). There is one
less unknown; the redundancy increases by one.
lrss unknowns yields more precise estimators for
the remaining unknowns. As shown in the previ-
ous two sections, the height is usually less pre-
cise than the horizontal coordinates. As is the
case for model 02, the gain in precision by intro-
ducing a perfect receiver clock, is in general
largest for the height. A similar conclusion is
drawn in [Kuang et al, 1996]. For model 02, the standard deviation for the height is
reduced by more than a factor 2. The improvement in precision of the horizontal
coordinates is marginal.

Removing the receiver clock error from the vector of unknowns, solves the rankdefic-
iency for the cases A and C (all satellites on a cone). The precision largely improves. The
standard deviation of the height is reduced by about a factor 45 and 60, for case A and
case C respectively. The axis of the cone pointed mainly towards the zenith-direction.
With a perfect receiver clock, case C in particular, yields a good and homogeneous
precision for the coordinates.

The precision of the coordinates is improved also for case B. But note, that although the
receiver clock error has been removed, the North-coordinate is still poorly determined.
The rankdeficient geometry remains; the satellites are all close to the West-East plane.

The optimal configuration of case D, shows only a minor improvement in the precision of
the horizontal coordinates and a slightly-over-factor 2 improvement in the height.

Without receiver clock error, the situation concerning precision, seems to be reversed as
compared with the previous sections: the height tends to be more precise than the
horizontal coordinates. This can be explained by the fact that a satellite can be in the local
zenith (optimal for height determination), but not, as a consequence of the cut-off
elevation, on the local horizon (optimal for the horizontal coordinates). Each satellite
(elevation )0") aids the estimation of the height.

h r - ^ i a i ^ h  l d l

Nor th  Eas t  He igh t  c lock
lml  [m]  [m]  [m]

2 5 . 6  L 6  - 6  1 6 . 9  0 . 0
5 3  . 3  1 8 . 4  L 8  . 2  0  . 0
2 2 . 8  2 0 . O  2 0 . 6  0 . 0
1 9  . 1  l 7  . 5  1 6 . 8  0 . 0

L 7  . 5  r 4 . 7  L 2 . a  0 . 0

Table 1.6: Precision with perfect receiver clock

c
D

o 2
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5.1.2.2 Single frequency code

Relative positioning with Cl-code observations was carried out. With n:7 satellites,
there are (m-l):6 double difference observations per epoch. There are no ambiguities,
only three (baseline) coordinates. The standard deviation of the undifferenced code
observable was taken or:0.3 meter (all satellites). The mathematical model for one
epoch of data in terms-of (single frequency phase) single differences was given by
equation (5.5) in section 3.5; the ambiguities can be just left out. The standard deviation
of the single difference observable i. s:y'2*0.3=0.4 m. Note that this model for relative
positioning in its structure, is identical to the model for single point positioning. The
design matrix is identical (apart from the fact that the unit-direction vectors e,' now
concern receiver 2 instead of receiver 1, a very small effect) and the variance covariance
matrix is again a scaled unit matrix; only the scale factor differs. Instead of o:20.6 m,
o= \f2*0.3 m is used. In a qualitative sense, the conclusions concerning_precision and
reliability for single point positioning, will also apply here. The factor (12*0.3)120.6=
1/50 will be frequently encountered. In table 1.7, the quality of the measurement system
is analysed for the 4 epochs.

precision
The behaviour of the precision of the models 02 and 00 is identical to single point
positioning. Only a scale factor of (\2*0.3) /20.6= 1/50 has been applied.

02 k inemaEic  p rec is ion  ( r )
North East Height

epoch [m] [m] [m]

MDB out l ie rs
PRN max PRN

tml

2 3  3 . 4 2  2 L
2 3  3  . 7 8  2 8
2 3  3  . 5 3  1 9

z 5  J . 5 b  Z L

2 3  r . 9 0  L 1
2 3  1 . 9 0  r 7
2 L  1 . 9 0  r ' t

m f n

Im]

1
1 0 0
200
3 0 0

1
1 0 0
200
3 0 0

0 . 3 6
0 . 3 7
0 . 3 9
0 . 3 8

2 . 2 s
2 . 2 L
2 . 2 2
2 . 2 3

2 . 2 5

1 . 9 0
r - . 8 9

0 . 3 1 -  0 . 7 1
0 . 3 0  0 . 8 5
o . 2 9  0 . 9 3
o . 2 8  0 . 8 4

0 0  s t a t i c
0 . 3 6  0 . 3 1  0 . 7 L
0 . 0 4  0 . 0 3  0 . 0 8
0 . 0 3  0 . o 2  0 . 0 6
0 . 0 2  0 . 0 2  0 . 0 5

Table 1.7: Precision and reliability for single frequency code

The precision (standard deviation North, East, Height) of the single epoch solution, model
02, over the full one hour session is given in figure 1.11 (left). The o" and o" are almost
constants. There is some variation in o' as function of time (by slightly changing
receiver-satellite geometry). In figure l.ll (right) the precision of the coordinate
estimators for model 00 is given as function of the number of epochs. The sampling
interval is 10 seconds. The more observations are used in the solution, the better the
precision. Apart from a small effect of the changing receiver-satellites geometry, the
standard deviations op, oB and o, behave as a
l/y'k function, with fr the number of epochs.

The rankdeficient receiver-satellites
geometries discussed for single point posi-
tioning, also hold for relative positioning.
The design matrices are similar. For relative
positioning the geometry concerns the second
receiver 12.

PRN MDB [m]

L 7  3  . 0 0
1 9  3 . 0 7
2 1  3 .  s 6
2 2  2 . 5 4
2 3  2 . 2 5
3 1  2 . 4 8
2 8  2 . 4 5

y'trn 
" 

ran Jtro

q 1  a 9  1 1

5 . 3  3 . 5  3 . 0
o . o  5 . t  4 - r

3 . 7  2 . r  3  . 0

J . >  Z . >  L . 5

3 . 4  2 . 4  2  - 9

Table 1.8: Internal and external reliability model 02
single frequency code
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Figure 1. I I : Precision (standard deviation) of coordinates as function of time
for model 02 (kinematic, left) and model 00 (static, right); single frequency code

reliability
Also the MDB-values can be derived from the single point positioning results (factor
- 1/50). With model 00 (static), a sequential adjustment is made on the coordinates.
When ft becomes large, the coordinate estimators get very precise. In terms of single
differences, there is only one (new) unknown per epoch: the (differential) receiver clock
error cA6r/. It is common to all observations of that epoch, via (the same) coefficient
1.0. When ft gets large, the MDBs all tend towards the value of 1.89 m, see table 1.7.
From this we can trace back that the standard deviation of the clock error, when
estimated with the single difference model, tends to 0"o;:0.L6 rl, or o6,;=0.54x10-e s
(cf. single point positioning, model 00; o"r1 tends towdrds 7.8 m of model Cl). Table
1.8 concerns reliability for model 02, atthe first observation epoch ft:1.

reliability: external
Note that l\:,lT"r* as there are only three coordinate unknowns (in the double
difference implementation). u/l.r_"" and ,f ltr_, are significance measures for the effect of
an undetected outlier (of size MDB) on the horizontal coordinates and the vertical
coordinate respectively. The above scalar measures for external reliability (lr) are
identical to the single point positioning case, cf. figure 1.2; the scale factor cancels.

2

nabla [m]

Figure 1.12: External reliability: propagation of
outlier V into horizontal position

pos .er r .  [m]

Figure 1.14: External reliability: probability of
outlier detection by slippage test versus horizontal
position error
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In figure 1.12, we consider the propagation of outliers V on the estimated horizontal
position. Note that vectolj_i! identical as to single point positioning. The bias in the
horizontal position ,lVN2 *VE2 (North and East) is plotted versus the size of the outlier
V. for all seven satellites. An outlier of 2 meter in satellite 21 causes the horizontal
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position to be off by 1 meter. The asterisk represents the value of the MDB. The graph is
similar to the single point positioning case, figure 1.3; we have actually zoomed in onthe
lower left part. The MDB values were scaled by the factor - 1/50.

Figure 1.13 shows the direct effect on the horizontal *
position of an outlier of size MDB (vectors Vi=XV,
with the coordinates expressed in North, East and
Height). The formal precision ellipse, o:0.05, has ? 

-

been provided for reference. An outlier of V:3.00
meter (MDB) in satellite 17, when left undetected, f 

o

shifts the receiver position over 1.93 meters towards 2 *the (local) South-West. I

Figure 1.14 gives the size of the horizontal position
bias, caused by an outlier in one of the seven Cl-
code observations, versus the probability .y that the
outlier can be detected by the slippage test. The
MDB-values are related to y:0.8.

C\?
I - 2  - 1  0  1  2

East  [m]

Figure 1.13: External reliability: bias in
horizontal position; single frequency code

reliability: internal
Model 02 is not further considered on internal reliability (cases with 7, 6, 5 and 4
satellites for epoch ft:l) as the outcome can be predicted from the single point position-
ing case. The MDB-values are scaled by the factor - 1/50. The correlation matrices will
be identical (the scale factor cancels in the ratio for cos20).

estimation and model validation
The coordinates of receiver 12 arc estimated and differenced with the reference values and
expressed in a local North, East, Height. Model 02 was used; although the receivers were
stationary, single epoch (kinematic) solutions were computed. The horizontal coordinate
differences, North versus East, are plotted in figure 1.15.

- 1  0

East  [m]

A)
I - 1  0

East  [m]

Figure l.15: Coordinate differences, North vs East,
Cl-code at left and P2-code at right

Based on the variance covariance matrix Q, of model 02, the two-dimensional formal
precision ellipse is also plotted, with 12 =5.99, e:0.05 (thus 5 out of 100), see section
4.1.2.lt describes the precision for epoch ft:l (and is approximately valid for the whole
one hour session). The shape and orientation are determined by the receiver-satellites
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geometry. The correlation coefficient is p*:0.44. The ellipse is centered at the origin
(reference coordinates) .

Each of the 359 little dots represents one single epoch solution and they all lie inside the
ellipse;0.05*359=18 samples are formally allowed to lie outside the confidence ellipse.
It seems that for the Cl-code the current stochastic model is a too pessimistic description
of the data; for the P2-code on the contrary, too many dots lie outside the ellipse.

As indicated in section 4.2 we test for outliers in the single difference observations. The
first step is detection. For model 02 with Cl-code there are no rejections at all. The
values of the local overall model test Z, divided by
the critical value k, are given in figure 1.16. The
detection is positive when this ratio exceeds 1.0.
The redundancy equals 3 ((m-I)=6, n=3). The
teststatistic values are rather small on the average;
we expect E{T):3 and with k=12.63 we have
E{Tlk\:0.24. The observed mean is 0.09. The
mathematical model seems to be quite adequate,
but the stochastic model is somewhat too loose. To
obtain the expected mean, we should have used
0,:0.18 m for the standard deviation of the
undifferenced code, instead of 0.30 m.

example DIA procedure
By means of an example it will be shown, how the DlA-procedure for model validation
performs in relative positioning with single frequency code observations. Model 02, full
kinematic (thus single epoch solutions) is used, although the receivers were stationary.

- dataset
The original dataset - the data just as they were collected - was reasonably clean, see e.g.
figure 1.15; quite ordinary stochastic behaviour, no large (systematic) biases. This dataset
was corrupted by each time adding an outlier Y, p:p* V, to a Cl-code observation of
the rover (YP09), at the epochs ft:5, 10, 15,..,355 (in total 71 epochs). The channel
(satellite) was chosen arbitrarily (from a uniform distribution) and the outliers themselves
were samples from a normal distribution V:N(0,1), with o=4 m; the probability that
Ve [-4 m, *4 ml is 68.3%; finally 21 samples out of 71 lie outside this interval.

0  100  200  300

e p o c h  I t 0 s ]

Figure 1.16: Local Overall Modelteststatistic

divided by critical value I/k

epoch k=  15
PRN 1.7
V  [ m ]  2 . 6
e s t .  [ m ]  2 . 9

7 7  4 . 0
1 9  - 1 . 3
2 L  2 . 7
2 2  0 . 5
2 3  - 4  . 0
3 1  0 . 7
2 8  - 0 . 9

Vr'r '  tml - l- .0
V E  t m l  - 1 . 1
Vf l  tm l  -1 .1

k= 45  k=  55
) e  1 q

- 2 . 9  - 4 . 4
- 3 . 3  - 4 . 2

1 . 1  2 . 2
- 0 . 0  - 5 . 7
- 3 . 9  - 0 . 1

4 . 3  - 3 . 4
0 . 4  0  . 1
2 . 2  5 . 3

- 5 . 3  0 . 2

o . 2  ! . 2
- 0 . 6  - 0 . 0

K = I U 5  K = f 5 5

2 3  2 r

6 . 2  3 . 1

- 9 . 5  - O . 2
0 . 3  0 . 4

-
1 1 . 5  - ! . 7

2 . 9  - 7 . 4
- 1  1  4  2

- o . 2  2 . r
. - L . 1  - 0 . 2

0 . 4  3 - 8

K = L  I 5  K = 2 6 5

3 1  2 2
7  . 3  3 . 1
1  . 7  3 . 2

3 . 0  2 . 4
- L 3 . L  - 1 . 3

- I . 2  - 4 . 6
- 3 - 3  4 . . 2 -

2 . 2  - 0 . 4
l - 4 . 0  - 0 . 4
- 8 . 3  0 . 4

2 . 4  0 . 5
- 0 . 8  0 . 8

Table 1.9: Slippage tests for outliers in each ofthe 7 satellites
single frequency code; 7 epochs considered
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This comrpted dataset was processed, once with detection and identification, but
adaptation disabled (thus monitoring only) and once with full detection, identification and
adaptation (monitoring and correcting). The DIA procedure for statistical testing was used
with the default settings, discussed in chapter 4.

- detection and identification
In table 1.9, the testing results are given, as an example, for 7 epochs (one for each
satellite). At these epochs the outlier was detected and the results of the consecutive
identification are given: the values for the slippage teststatistics /. fne critical value for
lrtl is 3.29. The largest slippage teststatistic per epoch is underlined, and indicates the

most likely alternative hypothesis (this identification is correct at the epochs given).

The correlation between the outlier hypotheses, discussed for single point positioning (cf.
table 1.4), shows up in table 1.9, see between satellites PRN 19 and 31 at epochs,t:65
and 175. The value for cos2$ is 0.752 (atk:1; 0 =30"). At epoch k:65 - outlier in 19
- also the test for 31 is quite large (opposite sign) and at epoch k:175, the situation is
reversed. It should be kept in mind that the example concerns statistical testing based on a
single epoch with only single frequency code data.

6
a

f l
^ ,  I

0  100  200  300

e p o c h  [ 1 0 s ]

Figure L17: Difference of outlier and its estimate
for the 7l errors

In the figures I.l7 and 1.18 only the epochs with
the additional errors ( V+0 ) are given (none of the
other epochs, V=0, were rejected). The figure on
the left gives the (artificial) error V put in the
dataset, minus the outlier estimate V; the precision
is at the few decimeter level, at k:I the standard
deviation oe is between 0.55 m for PRN 23 and
0.86 m for PRN 21. The figure at right gives the
size of the error; the symbols show the action of
the DlA-procedure, see also the legend. Note that
the errors of the last two categories (with 19 and
17 errors) are at the I-2 meter level only, and thus
smaller than the MDB values (2-3 m) in table 1.8.

0 100 200 300

epoch I t0s ]

Figure 1.18: Statistical testing, outlier versus
epoch, detection and identification

(71) errors in total
r (35) detected and identified correctly
o (19) not detected, Tlk<1.0: the satellite with the error does however, show the largest value

for lrtl, the channel-wise identification test, but the identification test is not rejected (the
error is 'too small'for the statistical testing procedure to take action)

a (17) not detected, Tlk<|.0; the satellite with the error does not yield the largesr lrtl-value

\a

o 2 4 6 8

Inab la  Im ]

Figure l.l9: Value of teststatistic l/ft
size of outlier V in m; all 359 epochs
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From figure 1.19 the impression arises that the larger the outlier, the larger the value for
the teststatistic; when Tlk>1.0 the detection is positive and the critical value is k:I2.63.
The relation shown between lvl and Tlk seems a
quadratic one and this is not surprisingly as the over-
all model teststatistic has expectationE{T^l = q*}"
with i, = vrQrtv, see also eq. (7.10) in chafiter 1.

- positioning
Also given in table 1.9, are the differences of the
coordinate estimates with the reference values VN,
VE and VIl (adaptation disabled). The position is
obviously biased by the outlier, when it is not cor-
rected for. In general the effects agree with the anal-
ysis of external reliability, cf. table 1.8 and figure
1.13. For example, the outlier in PRN 23 at epoch
,t=105, has a large effect on the East coordinate, but
only a small on the Height and North; the outlier in
PRN 19, epoch k:65, largely effects the Height and
also the North (V(0), but hardly the East.

- c v-

; ^

. o  ^ tz. ':
I

.$
I

- 4 - 2 0

East  [m]

Figure 1.20: Position-scatter for corrupted
dataset (adaptation disabled), I/k€

" 10,v,
+ l l ,2> * 12,-)

Figure 1.20 gives the scatter of all 359 position estimates in North and East. The symbols
used are after the value for the detection teststatistic Tlk. lt can be seen that in general a
larger deviation from the origin for the position corresponds to a larger value for the
teststatistic.

- adaptation
The horizontal coordinate differences, North versus East, are plotted in figure l.2I; the
position scatters are given for the original dataset (actually figure 1.15), the dataset with
the outliers but adaptation disabled (actually figure 1.20) and with adaptation enabled.
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Figure 1.21: Position scatter of all 359 epochs with single frequency code,
left original dataset, middle corrupted dataset,

and right corrupted dataset but with adaptation enabled

For the original (clean) dataset there were no rejections at all. When adaptation was
enabled, one step of correction was sufficient, there were no other errors found. After the
adaptation, the remaining deviation in position is only at the few decimeter level. A few
small outliers were not detected; the graph at right shows some positions that deviate at
the l-2 meter level.
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As in fact single epoch solutions are computed, the graphs are all identical except for the
71 epochs (with each an additional error). In the figure at right, it can not really be
noticed anymore that severe model errors - outliers up to 10 m - have occurred, cf. the
figure at left. The example shows that the DlA-procedure is capable, in a fully automatic
way, of accounting for the model errors.

5.1.2.3 Dual frequency code

In this section we will consider relative positioning with dual frequency code observa-
tions. With m:7 satellites, 7 Cl and 7 P2 observations per receiver per epoch were
available. This yields 2(m-I):12 double difference observations per epoch. For the
undifferenced code observable we took ao= oU:O.3 meter (and opF:0).

In terms of a model with double difference observations there are only three coordinate
unknowns. As compared with the single frequency case, the measurement scenario has
been just doubled, 2(m-l):12 observations per epoch instead of (m-l):$; the (m-I)
observation equations, have been just copied, to yield Z(m-l) observation equations for
the same set of unknown parameters. Under the current mathematical model, the
adjustment for this dual frequency case, could have been done in two steps. First, as
f@i|l =El4:,1 pivot 1, satellite i with i:2,..,m ((m-I) conditions; the double differences
have-to be i:qual on both frequencies), estimators P are determined for the.(double
difference) code observables. The estimate is actually the average of p and F, E=*@*8.
Next, these estimators are used in a single frequency adjusunent to determine the baseline
coordinates. The precision of these 'new' code observables is factor /2 better than of
ordinary single frequency code observables: Qu=IQr: the dual frequency adjustment
virnrally is a single frequency adjustrnent with oL0.21 m instead of o:0.30 m as
standard deviation for the undifferenced code observable.

precision
The behaviour of the precision is identical to the single frequency case. Only a scale
factor of 12 nas been applied. For model 02 (full kinematic), the standard deviations at
epoch fr:1 are o":Q.25, ou:Q./2 and on:0.50 m, compare with table 1.7.

reliability
The Minimal Detectable Biases, for local model validation, concern outliers in the (single
difference) code observations on both frequencies (thus a total of 2m hypotheses). The
MDB-values are smaller than in the single frequency case (by a factor of about 1.1-1.5).

In table 1.10 reliability is considered for
epoch k=L, it concerns internal reliability
(MDBs) and external reliability. Note that

t.- r;--
tlLr:,,lLr_r", as there are only three

coordinate unknowns (in the double differ-
ence implementation). ,lT"* and. ,[T* are
significance measures for the effect of an
undetected outlier (of size MDB) on the
horizontal coordinates and the vertical
coordinate respectively.

PRN MDB [m]

L 7  2 . 2 7
1 q  ,  r a

2 2  2 . L 5
2 3  2 . O 5
3 t  2 . r 3
2 6  z - L z

J\nr" il\nr Jtr"

2 . 7  2 . 6  0 . 7

3 . 1  2 . 4  1 . 9
2 . 2  L . 2  1 . 8
t . 7  L . 7  0 . 2
2 . ) .  1 . 8  0 . 8

Table l.l0: Internal and external reliabiliw for dual
frequency code
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Reliability for (outliers in) code observations is ident-
ical on L1 and on L2; table 1.10 therefore contains
only seven items. As compared with the single fre-
quency case, the vectors X have been halved (due to
the averaging). The orientation is left unchanged. As
the MDB values V were reduced by a factor 1.1-1.5,
the Vi=XV-vectors (length) are smaller by a factor
2.2-3.0, see figure 1.22. Figure 1.22 shows the
direct effect on the horizontal position of an outlier of
size MDB (vectors V*=XV, with the coordinates
expressed in North, East and Height). The formal
precision ellipse, a:0.05, has been provided for
reference. An outlier of Y:2.27 meter (MDB) in
satellite 17 (Ct either P2), when left undetected,
shifts the receiver position over 0.73 meters towards
the (local) South-West. Compare with figure 1.13 of
single frequency code relative positioning.
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V- l3r
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- 2  - 1  0  1

East  [m]

Figure 7.22: External reliability: bias in
horizontal position
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. 0 8 3  . 0 0 0  . 0 r 8  . 1 3 5

1 . 0 0 0  . 0 1 1  . 0 0 5  . 0 1 3
1 . 0 0 0  . 0 3 7  . L 2 9

r - . 0 0 0  . o 2 9
1 . 0 0 0

I 7  1 9  2 L  2 2  2 3
. 1 8 5  . O 0 2  . 0 5 5  . 0 0 8  . 0 2 3
. 0 0 2  . 2 0 2  . O 2 L  . 0 9 1  . 0 1 0
. o 5 7  . O 2 r  . 3 1 1  . 0 0 2  . 0 1 8
. 0 0 8  . 0 9 1  . 0 0 2  . 0 8 2  . 0 0 1
. 0 2 3  . 0 1 0  . 0 1 8  . 0 0 1  . o 2 9
. 0 7 2  . 0 2 6  . 0 0 1  . 0 0 1  . 0 3 3
. 0 0 1 .  . 0 0 8  . 0 6 8  . 0 3 9  . 0 ) , 1

3 1 -  2 8
. o 0 2  . 0 3 5
.  r - 5 1  . 0 1 8
. 0 5 5  . 0 0 1
. 0 3 0  . 1 6 7
. 0 0 1  . 0 0 5

1 . 0 0 0  . 0 6 3
1 . 0 0 0

3 1 ,  2 8
. o 7 2  . 0 0 1
. 0 2 6  . 0 0 8
. 0 0 1  . 0 5 8
. 0 0 1  . 0 3 9
.  o32 .  0 ) ,1
. o 7 0  . 0 0 2
. 0 0 2  . 0 5 4

The precision has improved by ,f2; the scalar measures for external reliability fi are
about 1.6-2.1 smaller than in the single frequency case.

PRN L1
l 7  1  . 0 0 0
1 9
2 L
2 2
2 3

I 7
1 9
2 L

3 1
2 8

1 . 0 0 0  . 0 8 3  . 0 0 0  . 0 1 8  . 1 3 5  . 0 0 2  . 0 3 5
1 . 0 0 0  . 0 1 1  . 0 0 5  . 0 1 3  . 1 s 1  . 0 1 8

1 . 0 0 0  . 0 3 7  . r 2 9  . 0 6 6  . 0 0 1
1 . 0 0 0  . o 2 9  . 0 3 1  . 1 5 8

1 . 0 0 0  . 0 0 0  . 0 0 5
1 . 0 0 0  . 0 6 1

1 . 0 0 0

Table 1.11: Correlation-matrix for dual frequency code

With m:7 satellites, a total of 2m:14 outlier hypotheses are to be considered; first 7
outliers on Cl, next 7 on P2. The correlation matrix cos26 is given in table 1.11 (0 is
the angle between two alternative c,-vectors). The correlation is low; one can discriminate
well between the different hypotheses. Note that the correlation-blocks per observation
type (C1 and P2) are identical (apart from some rounding effects, as the q-vectors were
output at only 3 decimals). The full 6x6 CL-P2 correlation block is symmetric.

The overall conclusion is, that doubling the measurement scenario yields a significant
improvement in the reliability of the measurement system.

example DlA-procedure: multiple model errors
The following example shows the procedure for quality control at work, when multiple
(model) errors occur (nearly) simultaneously, as can be the case in practice. The first
epoch k:1 is considered with 7 satellites dual frequency code (C1 and P2). Three
(artificial) outliers, all of size V:10 m, have been introduced in the P2 code observations
of the rover station YP09; the satellites are PRNs 2I,22 and23.
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The errors are handled by the
detection, identification and
adaptation in a stepwise man-
ner.  The procedure is
recursive. As there are three
model errors, we have four
situations; the initial situation

3 2  . 9
2 4  . 5
1 6  . 3

0 . 3

Table l.12: Overall model

test Tlk and redundancy 4

s tep  q
1 9
2 A
3 1
4 5

| 2 3 4 and the situation after accounting for each model error.
testing step In the table, the redundancy q is given for the four

Figure r 23: overa' moder tesr rlk ['"Hi ,jlill,'"i,,1?j?nil,::f ,fi^J:ti;.f'"jll'" ;:"iill
detection is positive in the first three steps, the value Tlk largLly exceeds the value 1.0.
The value for Tlk decreases as more errors are accounted for, see also figure 1.23.
Finally in step 4, the detection is negative; no model error is suspected to be present
anymore. Originally, without errors, the value was 0.30 (we expect E{Tl:g and with
k= 18.08 we have E{Tlk) =0.50).

Table 1.13 gives the reliability for the four situ-
ations. Given are the MDBs for outliers in the
code observations, in meters. Initially there are
m:IZ observations and n:3 unknowns. The
redundancy equals q:9. By handling the errors,
the redundancy decreases, and this is reflected in
the quality. In the limit, the redundancy becomes
zero and reliability will be infinitely poor. In this
example with only one epoch of data, redundancy
though seems to be still sufficient. The precision
of the coordinates estimators deteriorates. but not
by much. The standard deviations North, East and
Height are 0.25, 0.22 and 0.50 m before (stepl);
0.32, 0.24 and 0.58 m after (step4).

Table 1.13: MDBs code outlier [m] during
iterative adaptation, dual frequency code

s tep l

1 7  C 1  2 . 2 7
l - 9  2  . 2 8
2 1  2  " 3 6
2 2  2 . 1 s
2 3  2 . O 5
3 1  2 . ! 3
2 8  2 . r 2

L 1  P 2  2 . 2 1
1 0  )  a a

2 t  2 . 3 6
2 2  2 . L s
2 3  2 . 0 5
3 1  2 . 1 3
2 8  2 . L 2

s tep2 sEep3 s tep4

2 . 2 7  2 . 3 0  2 . 3 6
2 . 3 9  2 . 4 2  2 . 5 6
2 . 3 1  2 . 3 9  3 . 2 4
2  - 2 4  2  - 2 4  2  - 2 4
2 . O 5  2 . O 8  2 . L 3
2 . L 3  2 . 1 7  2 . L A
2 . L 6  2 . L 1  2 . 2 8

2 . 2 9  2 . 4 9  2 . 3 7

2 . o t  -  -
2 . 1 6  2 . ! 7  2 . 3 2
2 . 3 2  2 . 3 5  2 . 3 7

For each step, the values of the identification teststatistics are given in figure 1.24. The
critical value for the identification teststatistic is 3.29. The largest value (the satellite
indicated by * *) points to the most likely alternative hypothesis and it is consequently
accounted for first. Then testing is repeated. After three iterations, the three artificial
outliers have been correctly detected, identified and adapted for. In the first testing step,
the outlier in P2 of PRN 22 is identified and the error was estimated to be V=6.9 m. In
the second testing step, the outlier in P2 of PRN 23 was found, V:6.3 m. And in the
third testing step, the outlier in P2 of PRN 21 was found, V:10.3 m. The latter estimate
is fairly correct. At the time the other two estimates were computed, there was still at
least one model error left unaccounted for; these estimates were biased. The standard
deviations of the error estimators are about 0.5 to 0.8 m.

In the example, discrepancies between the data and the mathematical model are encoun-
tered. A re-measurement is practically not feasible or possible. The alternative taken, is to
adapt the mathematical model, i.e. to take the occurred error explicitly into account in the
functional model. By the iterative procedure, detection, identification and adaptation, the
multiple errors were stepwise incorporated.
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Figure 1.24: Slippage tests (absolute value) for outliers in the code, hatched Cl, white P2

for iterative procedure of four testing steps. I and 2 (top), 3 and 4 @ottom)

5.L.2.4 Single frequency phase

The phase observable is about a one hunderd times as precise as the code. Coordinates
can be determined at the millimeter level. The phase comparison measuremeht technique
however, causes that the phase observation is inherently ambiguous; an unknown number
of cycles is involved. In order to enable high precision relative positioning, the ambi-
guities have to be resolved. In this section, the integer (double differenced) ambiguity
values are known a-priori and used as such (i.e. constrained). The purpose is to analyse
the quality of the coordinate estimators and the results of the actual data processing, based
on single frequency phase observations (once the ambiguities are resolved).

The mathematical model for one epoch of data in terms of single differences was given by
equation (5.5) in section 3.5. The (m-1) double difference ambiguities are initially
constrained to their reference values (integers; which can be assumed to be correct), see
appendix A for development of the model in terms of single differences. As the ambi-
guities are known, there are only three unknown parameters, the (baseline) coordinates
(per epoch for model 02, full kinematic). With (n-1):6 double difference observations
the redundancy equals 3. Single epoch positioning is possible now, when m>4.

The resulting model has a structure identical to relative positioning with single frequency
code and also to single point positioning. Once the ambiguities are (deterministically)
known, the carrier phase measurements act as code measurements. They are however,
more precise by two orders of magniode (o":6.993 m versus or:0.3 m). In a qualitative
sense, the conclusions for single point positioning and relative postitioning with single
frequency code, concerning precision and reliability will also apply here. The design
matrix is identical and the variance covariance matrix is again taken a scaled unit matrix;
only the scale factor differs. The results on design, precision and reliability, are easily
predicted by the scale factor oplor=1/100.

step 4
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precision
The standard deviations at epoch k=I are o,v:0.004, or:0.003 and on:0.007 m. The
rankdeficient receiver-satellites geometries discussed for single point positioning, also
hold for relative positioning with carrier phases. The design matrices are similar. For
relative positioning the geometry concerns receiver r2.

reliability
The Minimal Detectable
Biases, for local model vali-
dation, concern slips in the
(single difference) phase obser-
vations. When the (cycle) slip
has the size of the MDB. it
can be detected with power

Table l.14: Internal and external reliabiliw for model 02

We consider the propagation of cycle slips on the estimated
position; Vi=XV where X is a 3xl-vector (for the baseline
coordinates; the ambiguities were constrained). Note that
vector X is identical as to code positioning, apart from the
scale factor tr, as the MDBs are expressed here in cycles
r4lhqlb4llin meters. The bias in the horizontal position
,,pn';Vp (North and East) is given in table 1.15 for a
one cycle slip (V:1), for all seven satellites.

PRN

L 7
1 9
2 T

2 3
3 1

MDB [cyc]

0 . 1 5

0 .  1 3
o . 1 2
0 . 1 3
0 . 1 3

MDB [M]

0 . 0 3 0
0  .  0 3 1 -
0 . 0 3 5
0 . 0 2 5
0  . 0 2 2
0 . 0 2 5
0 . 0 2 5

y'tr"" y'At

4 . 4  1 - 3
J . b  3 . U

5 . 9  4 . ) -
2 . L  3 . 0
2 . 6  0 . 4
2 . 9  1 "  3
2 . 1  z . t

5 . 3
6 . 6
3 . 7
2 . 1
3 . 5
3 . 4

?=0.8 probability. The level of significance was set to a:0.001 (q:1). As we do
consider only one epoch of data at a time, there is no difference between a slip and an
outlier. The MDB-values can thus also be derived from the code positioning results
(factor 1/100). Table 1.1.4 concerns internal reliability (MDBs) and external reliability,
for model 02 at the first epoch ft:l. The MDB values are given in (L1) cycles, as well
as in meters.

reliability: external
Note that tf Lr: tf Lr_N", (only three coordinate unknowns). ,f Lr_*" and ,,llr_, are
significance measures for the effect of an undetected slip (of size MDB) on the horizontal
coordinates and the vertical coordinate respectively. The above scalar measures for
external reliability (lr) are identical to the single point positioning case, cf. figure 1.2;
the scale factor cancels.

pos i t ion  b ias  [m]

0 . 1 2 3
0 . 0 7 4
0 . 0 9 7

o . o 7 2
0 . 0 5 1

Table 1.15: Bias in horizontal
position by a one cycle slip

Figure 1.25 shows the direct effect of a slip of size
MDB (thus not a L cycle slip) on the horizontal
position. The formal precision ellipse, a:0.05, has
been provided for reference.

reliability: internal
The MDBs in table l.l4 arc all in the order of 0.1 to
0.2 cycles. When a true cycle slip (1 full cycle)
occurs, it can be found with high probability, y)7".

The slippage teststatistics correlation matrix is ident-
ical to code positioning (only one epoch considered
(outlier=slip); the scale factor cancels in the ratio for
cos26;, see table 1.4 for single point positioning.

- 0 . 0 1  0  0 . 0 1

East  [m]

Figure 1.25: External reliability: bias in
horizontal position
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estimation results and model validation
Reference values for the coordinates are available, they are at the cm-level (stationary
receivers). The estimated coordinates per epoch (full kinematic solution) are differenced
with the reference values. This difference vector is expressed in a local topocentric
system. This system is centered at the reference coordinates of receiver 12. The horizontal
coordinate differences, North versus East, are plotted in figure L.26; a 4x4 cm area is
depicted. The estimation results, figures I.26 and I.27, are also given for the L2 phase.

0 0 3  0 0 4  0 . 0 5  0 0 6 0 . 0 3  0 . 0 4  0 . 0 5  0 . 0 6

n ' r l
L a s r  L m l I last  Iml

Figure 1.26: Coordinate differences North vs East, Ll phase left, L2 phase right

In figure 1.26 also the two-dimensional formal precision ellipse is given with 12:5.99,
o:0.05. The ellipse has been centered at the mean values. Each of the 359 little dots
represents one single epoch solution and they all (but one for the L2 phase) lie inside the
ellipse; It seems that the current stochastic model is a too pessimistic description of the
data.

In figure 1.27 , one can notice some long term trend in the coordinate differences for the
East (a few millimeters over the t hour time span). One can suspect also some depend-
ence over time from the shorter term fluctuations. These effects are not necessarily due to
the receiver (tracking loop, interchannel delays). At this millimeter level, unmodelled
differential atmospheric delays may play a role as well; neither can multipath be
excluded.

r l
f r 1

o  0  100  200  300 0  100  200

e p o c h  [ 1 0 s ]e p o c h  [ 1 0 s ]

Figure 1.27: Coordinate-differences in East, Ll phase left, L2 phase right

The observations were made under Anti-Spoofing; L1 was obtained after true code
correlation on Ll, andL2 by cross correlation of L1 and L2. The L2 observable, seems
to be more noisier than the L1 observable.
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With L1 phase observations there are no rejections
at all in the detection step. The values of the local
overall model test I, divided by the critical value
k, are given in figure 1.28. The teststatistic values
are rather small on the average. For model 02 the
redundancy equals 3; (m-L):6, fl=3. We expect
E{T\:3 and with k: I2.63 we have
E{Tlk\=0.24. The observed mean is smaller,
namely 0.08. The stochastic model is somewhat
too pessimistic. To obtain the expected mean, we
should have used a standard deviation of ar:1.7
mm instead of 3.0 mm.

0 100 200 300

e p o c h  I t 0 s ]

Figure 1.28: Local Overall Model teststatisric
divided by critical value I/t; Ll-phase

example DIA procedure
By means of an example it will be shown, how the testing-procedure performs in relative
positioning with single frequency phase observations, once the ambiguities have been
resolved. At each epoch, all channels will be inspected for cycle slips. Model 02 - single
epoch solutions - is used, but a comrpted observation file was provided. It contains seven
artificial slips at the rover site (a slip for one epoch only, thus actually an outlier; we use
single epoch solutions). The slips, all of one cycle, are
listed in table 1.16. Each satellite, also the pivot, is
tried once.

The MDB values are about 0.1-0.2 cycle, cf. table 1.14.
The slips of one cycle should be easily found. This is
the case indeed. In the identification. the model error is
estimated. The estimates V are also listed in table 1.16.
They are all very close to the value of 1.0 cycle; their
precision is at the level of 0.03-0.04 cycle.

epoch

k= s0
k=100

k=2oo
k=250
k=300
k=350

1 . 0 0
1 . 0 0
1 . 0 0
0 . 9 8
L . 0 2

PRN V
Icyc ]

r 7  t - . 0
1 9  1 . 0
2 L  1 . 0
2 2  1 . 0
2 3  1 . 0
3 1  l - . 0
2 6  I .  U

0l

O

0 100 200 300

e p o c h  [ 1 0 s ]

Figure 1.29: Local Overall Model teststatistic
divided by critical value 7/k

Table 1.16: Validation for cycle slips

The detection test is depicted in figure 1.29; clear-
ly some model error has occurred at the seven res-
pective epochs. The test ratio largely exceeds the
value of 1.0. The detection for cycle slips is very
powerful. There were no other epochs rejected.

All seven artificial cycle slips were detected and
correctly identified, even for this single frequency,
single epoch example. The effect of the cycle
slips, when not corrected for, on the estimated
coordinates, corresponds quite well to the figures
given in table 1.15 concerning the size, and to the
vectors depicted in figure 1.25, concerning the
direction (external reliability).

5.1.2.5 Dual frequency phase

Previously it has been discussed what happens to the quality and data processing results,
when the single frequency system is augmented by a second frequency. It concerned Cl
and P2 code observations. Here we will analyse the quality of the coordinate estimators,
based on dual frequency phase observations (once the ambiguities are resolved).
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Relative positioning with dual frequency phase observations was carried out. With m:7
satellites, 7 LI and 7 L2 observations per receiver per epoch were available. This yields a
total of 2(m-l):12 double difference observations per epoch. The Z(m-I) double
difference ambiguities are initially constrained to their reference values (integers, which
can be assumed to be correct). The variance covariance matrix for the single differences
is a scaled unit matrix. The standard deviation for the undifferenced phase observable is
taken o":  oF:0.003 m (and orF:0).

The model has a structure, identical to relative positioning with dual frequency code, see
section 5.I.2.3. The observables are just more precise by a factor 100. As compared with
the single frequency case (in terms of double differences), the (m-L) observation equa-
tions, have been just copied, to yield 2(m-t) observation equations (instead of (m-1):6;
for the same set of unknown parameters (the three baseline coordinates). The redundancy
equals 12-3:9. According to the same reasoning as in section 5.L.2.3 The dual frequency
adjustment virnrally is a single frequency adjustment with o=Z.L mm instead of o=3.0
rnm as standard deviation for the undifferenced phase observable.

precision
The standard deviations of the coordinates at epoch k:l are o"-0.003, or=0.002 and
oa:0.005 m. The behaviour of the precision is identical to the single frequency case.
Only a scale factor of y'2 has been applied. For comparison with the dual frequency code
case, a scale factor of o/or:1/100 is needed.

reliability
The Minimal Detectable Biases, for local model validation, concern slips in the (single
difference) phase observations on both frequencies (thus a total of 2m hypotheses). As
compared with the single frequency phase case, the MDB-values are smaller by a factor
of about 1"1-1.5.

Reliability is considered for epoch k=l for model 02. Table 1.17 concerns internal
reliability (MDBs) and external reliability. The MDB values are given in (Ll and W)
cycles, as well as in meters. Reliability for (slips in) phase observations is identical on L1
and on L2, when expressed in meters; table 1.17 therefore contains only seven items.

Figure 1.30 shows the direct effect on the horizontal
position, vectors Vf=XV, of a slip of size MDB
(thus not a 1 cycle slip) with the coordinates
expressed in North, East and Height. The vectors are
identical for L1 and L2. Note however, that in prac-
tice, a full 1 cycle slip on L2 corresponds to a larger
range error (0.24 m) than one on L1 (0.19 m). The
formal precision ellipse, o:0.05, has been provided
for reference. Compare with figure 1.25 of single
frequency phase relative positioning.

The scalar measures for external reliability ,,ll+ are
identical to the dual frequency case with codes. For
the correlation matrix cos2$, see also the dual fre-
quency code case.

- 0 . 0 1  0  0 . 0 1
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Figure 1.30: External reliability: bias in
horizontal position, dual frequency phase
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MDB (L2)

0 . 0 9
0 . 0 9
0  . 1 0
0 . 0 9
0 . 0 8
0 . 0 9
0 . 0 9

Table l.17: Internal and external reliability for model 02, dual frequency phase

Doubling the measurement scenario yields a significant improvement in the reliability.

5.1.2.6 Single frequency code and phase

Relative positioning with GPS yields much higher accuracies than single point positioning.
The quality of GPS relative positioning has been analysed in previous sections for
different observation types. Code observations were used as well as phase observations;
the latter with the (double difference) ambiguities constrained (fixed). In this section, the
case is considered with code and phase observations together. The phase difference
measurement is ambiguous; the carrier phase ambiguity is an additional unknown
parameter. The double differenced ambiguity is an integer number and should be
estimated as such. In the following analysis we will distinguish between the cases float
ambiguities (ambiguities treated as real valued quantities) and fixed ambiguities (ambi-
guities constrained, after estimating them as integers).

With m:7 satellites, 7 Cl (code) and 7 Ll (phase) observations per receiver per epoch
are available. In addition to the three coordinates of receiver 12, also carrier phase ambi-
guities, (z-1) double difference ambiguities, are unknown parameters. Two different
mathematical models are used in relative positioning. In model 02 (full kinematic) new
coordinate unknowns are introduced for each epoch, whereas in model 00 (static) receiver
12 is assumed to be stationary, so there are only three coordinate unknowns for the whole
session. In both models, the ambiguities are constants (for the whole session).

The (single frequency) measurement scenarios that will be considered and compared are:

- code only, see also section 5.L2.2
- code and phase, with

- ambiguities float
- ambiguities resolved at epoch /r=3
- ambiguities fixed

- phase only, with ambiguities fixed, see also section 5.1.2.4

For the code and phase case, three scenarios are considered. In the float scenario, no
attempt is made to fix the ambiguities; they are just real valued unknown parameters. In
the fixed scenario, they are (conectly) estimated as integers and consequently constrained
from the first epoch ft:l onwards. The scenario 'resolve at k:3' is in between; at that
epoch, the correct integer estimate does represent sufficient probability; it is considered
non-stochastic. The ambiguities are then constrained and kept fixed from ft=3 onwards.

Note that with code and phase observations, the scenarios 'resolve at k:3' and ambi-
guities fixed, yield identical results, once the ambiguities are fixed, thus from epoch k:3
onwards. We consider only 10 epochs of data (from 16:45:10 on), spaced by 10 seconds.

PRN

L 7

2 \

2 3
l I

2 8

MDB (L ] . )

o . L 2
0 . 1 1
0 . 1 1
0 . 1 1
0  . 1 1

MDB [M]

0 . 0 2 3
0 . 0 2 3
0 . o 2 4
o  . 0 2 2
0 . 0 2 1
0 . 0 2 1 -
0 . 0 2 1

2 . 7
2 . 8
3 . 1

I . 7
2 . r
2 . ) .
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2 . 6  0 . 7
1 . 9  1 . 5
2 . 4  1 . 9
r . 2  1 . 8
7 . 7  0  , 2
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The above five measurement scenarios are combined with the two mathematical models,
kinematic and static. The computations for the scenario phase only with ambiguities fixed,
were carried out however, only for the kinematic case, not for the static case. When
figures (on precision and reliability) are given for the static case, they have been derived
from the scenario code only (scale factor oplo,=1/100).

precision
The precision is described by the standard deviation of the estimator. In table 1.18 we
give the o11, o6 and o' for all scenarios at epoch ft:3. This is the epoch, at which the
ambiguities, after estimating them as integers, can be reliably fixed. From then on, they
are known deterministically; the variance covariance matrix Q" is actually a conditional
variance covariance matrix, see [Teunissen, 1997b].

The most important feature of table 1.18, is the difference in precision between the ambi-
guities fixed and other scenarios (ambiguities float and code-only).

For the code-only scenario, the precision of the coordinate estimators is determined by
the measurement precision (decimeter-level) and the instantaneous geometry. No change
in receiver-satellite geometry is needed. In the kinematic case, actually single epoch
solutions are computed.

o, [ml
o"  [m l
o"  [m)

k i n e m a t i c
code code&Phase Phase

f loa t  k=3 f i xed

0 . 3 5 0  0 . 2 0 6  0 . 0 0 4  0 . 0 0 4  0 . 0 0 4
0 . 3 1 - 0  0 . 1 7 8  0 . 0 0 3  0 . 0 0 3  0 . 0 0 3
0  . 7 1 0  0  . 4 0 4  0 . 0 0 7  0 . 0 0 7  0 .  0 0 7

code

0 . 2 0 8
0 . r 1 9
0 . 4 0 9

s t a t l c
code&phase phase

f loa t  k=3 f i xed

0 . 2 0 s  0 . 0 0 2  0 . 0 0 2  0 . 0 0 2
0 .  L 7 8  0 . 0 0 2  0 . 0 0 2  0 . 0 0 2
0 . 3 9 5  0 . 0 0 4  0  . 0 0 4  0  . 0 0 4

Table l.18: Precision, standard deviation ofcoordinates in meters

When only phase observations are available, the geometry must change, in order not to be
bothered by a rankdeficient nonnal matrix, due to the presence of the additional
unknown, but time constant, ambiguities. In that case the coordinate estimators of the
float solution would have infinitely poor precision. The precision of the (baseline)
coordinate estimators, with the ambiguities float and ambiguities fixed, is studied in detail
in section 3 of [ibid]. For the code&phase scenarios, it can be seen in table 1.18, that the
precision largely improves by fixing the ambiguities.

In figure 1.31 we give for all scenarios, the standard deviation of the North o" as function
of time. The horizontal axis represents 10 epochs of 10 seconds. The standard deviation is
given along the vertical axis with a logarithmic scale, that ranges from 1 millimeter to 1
meter. The kinematic case is at left, the static at right.

We will now discuss the precision of several individual scenarios. With the code-only
scenario, single epoch solutions are computed in the kinematic case. In the static case, a
recursive adjustment is made on the coordinates, and the precision behaves as l/fi, with
k the number of epochs; the number of observations increases as time proceeds. During
the short time span we consider, the geometry at k=l does not differ much from the
geometry at ft:10. As a consequence of the very slow change in geometry, the measure-
ment scenario is actually doubled (or generally multiplied) in time. To a good approx-
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imation the estimated coordinates will be just the cumulative average of the coordinates
obtained epochwise with the kinematic model.

The standard deviations for the code-only scenario, do equal those for the phase-only
scenario with ambiguities fixed, after a scaling by or/oo:1/100, both for the kinematic
and static case, see also figure 1.31. The coordinates variance covariance matrix of the
phase-only fixed case is a downscaled version of the code-only variance covariance matrix
[ibid]. The precision for the phase-only scenario with ambiguities fixed, is determined by
the instantaneous geometry and the measurement precision (millimeter level).

For the kinematic case, the float (code&phase) solution has better precision than the code-
only solution. New coordinate unknowns are introduced epochwise, but the ambiguities
are constant over the epochs. The ambiguities are estimated with the aid of the code
observations. For a short time span, like a few tens of seconds, we can give as a rough
indication, that the precision of the ambiguity estimator improves bv 

-rlE 
with t the

number of epochs. The change in receiver-satellites geometry is small for the time span
considered here. This L//E behaviour can be seen also in figure 1.31. When the time
span is enlarged, also the phase observations will start to contribute to the estimation. For
very long spans, they will even take the lead. In the experiments shown here, the float
solution is determined mainly by the code observations (with only one epoch of data, it is
the presence of the code observations, that enables the coordinate estimation). The (small)
contribution of the phase observations can be seen, by comparison of the code-only and
code&phase float scenario for the static case (figure 1.31 right). On the other hand, once
the ambiguities are fixed, the code observations do not contribute much anymore (ust a
very little bit), compare the code&phase fixed scenarios with the phase-only on"r; th"y
coincide (the lower line in figure 1.31). This is caused by the large iifference in
measurement precision between code and phase, see section 5 of [ibid].
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I

__r__* 
a

u , l  
-  I  I  t  t

0,01 l

I

I

0,1 r

0,01

a a a l +

0,001 '
1 2 3 4

o: code only
r: code&phase, float
r: code&phase, fix at k:3
+: code&phase, fixed
r: phase only, fixed

' I

5 6 7 8 9 1 0
epoch

0,001 r

I 2 3 4
? r r
8  9 1 05 6 7

epoch

Figure l.3l: Precision of North coordinate
(standard deviation in [m]),

left kinematic, right static

The most important finding concerning the precision of the coordinate estimators. is thus
the large improvement by fixing the ambiguities, see table 1.18 and figure 1.31. The gain
in (baseline) precision is treated in section 4 of [ibid].

parameter estimation
Figure 1.32 gives, to get insight in the parameter estimation problem, both the standard
deviation or, (dashed) and the conditional standard deviation oo,,_,,., (solid), with
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i=1,..,n andn=9, as we have n:3-16 unknown parameters (first three coordinates XYZ
and then six double difference ambiguities). The (conditional) standard deviations of the
ambiguities are expressed in meters rather than
in cycles.

The conditional standard deviation or,,,., . giu"t
the standard deviation of the estimatcii"i- with
the other unknown parameters x,*, through xn
constrained (fixed). It can be seen that, for a
baseline, once three parameters (three ambi-
guities in this case) are known (fixed), the
remaining unknowns can be estimated very
precisely (at the millimeter level, i.e. the mea-
surement noise). The conditional standard devi-
ation in relation with the GPS ambiguity resol-
ution problem is discussed in [Teunissen et al,
19941.

ambiguity estimation
Above we have analysed the structure of the overall parameter estimation problem. We
will now detail on the integer estimation of the six ambiguities, for the kinematic
code&phase scenario at k:3. The integer estimate for the vector of ambiguities, results
from a discrete search over the ellipsoidal region
prescribed by the float estimate and the variance
covariance matrix [Teunissen, 1993]. The
eigenvalues 1., with i=1,..,6 of the matrix yield
the lengths of the principal axes of the ellipsoid,
see table 1.19 and figure 1.33. There are 3 large
axes (typically for precise GPS positioning); the
remaining ones are very small (at the mmJevel).
Note that in comparing the lengths of the large and
small axes, the factor 100 (approximately) shows
up, i.e. o,lor.

In addition, the ambiguities are correlated, see the histogram of the (absolute) correlation
coefficients lp;,;,,| with 1<j<i<6 in figure 1.34. With 6 ambiguities there are 15
coefficients. Thb'ambiguity search ellipsoid is thus elongated and rotated with respect to
the grid axes; a straightforward search would be inefficient. The LAMBDA method for
integer ambiguity estimation, first decorrelates the ambiguities prior to the search and is
thereby able to provide the integer estimate in a quick and efficient way.

For the validation of the integer ambiguity estimate, we may consider the volume of the
ambiguity search ellipsoid [Teunissen et al, 1996]. For the kinematic code&phase
scenario it equals Vd:0.29 cyc6 for x2:16.81(a=0.01) and can be interpreted as that the
ellipsoid contains no, one or at maximum only a few candidates, which gives hope for a
positive validation. In [Teunissen, l997cl the ADOP (ambiguity DOP) is proposed. It is,
like the volume. also a function of the determinant of the variance covariance matrix:

- r L
ADOP: ,llQr,l''. For the example at hand ADOP=O.15 cycle. As an approximation (the
transform'ed dmbiguities are assumed to be fully decorrelated and to have all equal
variance) the ADOP is the standard deviation of the transformed (decorrelated) ambiguity;

0,001

Figure 1.32: Precision of estimators, at epoch
k:3 for the kinematic case, code&phase float

dashed: standard deviation
solid: conditional standard deviation

1 2 3 4 5 6 7 8 9
Dalemctcf

1
2
?

5
6

1 . 6 5 E - 4
3 . 3 8 8 - 4

5 . 5 9

/^x J^x
l cyc l  [m]

0 . 0 5  0 . 0 1
0 . 0 5  0 . 0 1
0 . 0 8  0 . 0 1
5 . 2 0  0 . 9 9
5 . 2 7  1 . 0 0
9 . 5 9  1 . 8 4

Table 1. 19: Ambiguity search ellipsoid:
eigenvalues X of variance covariance matrix
and length of the axes 141 with a:0.01

standard dcviation [m]
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it can be referred to as generalized standard deviation. If the ADOP is, as such, much
smaller than 1.0 cycle (e.g. 0.1 cycle), the validation can be expected to be successful.

s,91 l{sp q= fS
1 2 3

Figure 1.33: Eigenvalues of variance Figure 1.34: Histogram of (absolute)
covariance matrix r/A [cyc] correlation coefficients

The ADOP (and the volume) should thus be as small as possible, from the viewpoint of
validation (no other likely candidates). On the other hand, section 4 in [ibid], the
reliability of the integer ambiguity solution (the volume) competes with the gain in
baseline precision. From an economic point of view, we would like to occupy the point to
be surveyed as short as possible, in order to maximize surveying productivity. To meet
the requirements on precision for the surveyed coordinates, we need then a large gain. In
practice, validation has to take priority over the gain in this. It is preferred not to fix the
ambiguities over fixing them possibly incorrectly, which leads to (large) biases in the
coordinate estimates. The surveyor has to be satisfied with a less spectacular gain; he has
to wait until reliability turns the light to green. (For kinematic surveying, with the data
processed in the field, this can be monitored in real time).

internal reliability
For the reliability, we consider the Minimal Detectable Biases for outliers in the code-
observations and slips in the phase observations (local model validation). The observations
of satellite PRN22 will be taken as an example.

The MDBs are given in figure 1.35. On top those for an outlier in the code observation,
the y-axis ranges from 1.6 t9 2.8 meter, at bottom those for a slip in the phase observa-
tion, the y-axis ranges from 1 to 4 centimeter.
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Table 1.20: Correlation matrix, code&phase float kinematic case at /c:3
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The MDBs for outliers in the code remain at (about) the same level for the kinematic
code-only case (top, left). The MDBs (outlier and slip) of the code&phase float scenario
(both kinemdLtic and static), decrease as function of time, like there is an improvement in
precision of the coordinate estimator. Note that with only one epoch of data, a slip in a
phase observation at this first epoch can not be detected (it can not be separated from the
ambiguity); the MDB is infinite.

Once the ambiguities are fixed, the MDBs are constant, for an outlier in the code. The
MDB value equals 1.89 m (for all satellites), both for the kinematic and static case. The
phase observations actually determine the coordinates precisely. In terms of single differ-
ences, the code observations have to determine only one unknown parameter, namely
their clock error per epoch. The constant code MDB value is (practically) independent of
the precision of the phase data (as long as this precision is some orders of magnitude
better than of the code).

With the ambiguities fixed in the kinematic case, the MDBs for a slip in the phase are
constant as well (code&phase and phase-only coincide in figure 1.35, graph bottom at
left). The MDB value equals 2.5 cm. Note that for an outlier in the code, the MDB was
2.5 m in the code-only scenario. For the static case (ambiguities fixed), the MDB
decreases as function of time, as the precision improves, see figure 1.31 right. The MDB
will tend towards the value 1.9 cm (there is a new clock error per epoch).

0,03

og2

5 6 7 8
cpoch

3  4  5  6  7  8  9 1 0
cpoch

3  4  5  6  7 I 9 1 0
epoch

.: code only
r: code&phase, float
r: code&phase, fix at ft:3
+: cade&phase, fixed
x: phase only, fixed

Figure 1.35: Internal reliability, Minimal Detectable Bias in [m],
left kinematic, right static

top outlier code, bottom slip phase
satellire PRN22

As an example of separability between alternative hypotheses, we consider the correlation
matrix of the one-dimensional teststatistics for the code&phase scenario with ambiguities

MDB code [m] MDB code [m]

MDB phase [m] MDB phase [m]
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float for the kinematic case at epoch ft:3. With 7 code and 7 phase (single difference)
observations, the matrix is 14x14, see table 1.20.

Between outlier hypotheses, the correlation is small. Correlation is also minimal between
outliers in the code and slips in the phase. The 7x7 correlation matrix for the slip
hypotheses very much looks like the one for the single frequency phase case, but with the
ambiguities fixed, section 5.1.2.4, given at epoch k:1, cf. table 1.4.

external reliability
External reliability concerns the effect of undetected model errors on the estimators for
the unknown parameters. We will consider the model errors outlier in code and slip in
phase of size MDB. In the analysis below the ambiguity parameters are left out of
consideration, as they are nuisance parameters. Only the three coordinates remain.

k i n e m a t i c
e v u c d P r r a > s

f loa t  k=3 f i xed

2 . O  0 . 0  0 . 0
2 . L  0 . 0  0 . 0
2 . 3  0 . 0  0 . 0
L . 7  0 . 0  0 . 0
1 . 4  0 . 0  0 . 0
1 . 6  0 . 0  0 . 0
1 . 6  0 . 0  0  . 0

phase

.

0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0
0 . 0

code code&phase phase
f loa t  k=3 f i xed

r 7  5 . 1
r - 9  5 . 3
2 1  6 . 6
2 2  3 . 7
2 3  2 . 7
3 1  3 . 5
2 8  3 . 4

2 . r  2 . O  0 . 0
2 . t  2 . L  0 . 0
2  - 3  2 . 2  0 . 0
L . 7  I . 7  0 . 0
) . . 4  1 . 3  0 . 0
r " 7  1 . 5  0 . 0
1 . 6  1 . 6  0  . 0

Table 1.21: External reliability epoch /c:3, scalar measure {\rro for outlier in code observation (kinematic and static)

In the tables 1.21 and I.22, the values for u/1., NEH are given. They are significance
measures for the effect of an undetected outlier 

-or 
slip (of size MDB) on the three-

dimensional coordinates.

The most remarkable feature of the above table is that once the ambiguities are fixed, the
y'l.r_"r"-values are very small. They are about 0.03 for code&phase fixed in the
kinematic case and about 0.02 in the static case. The code observations do not contribute
very much to the coordinate estimators. An interpretation of the scalar measure fi is
given by equation (8.7) in chapter 1. In the fixed solution, the coordinate precisioir is at
the 102-10r m level, implying an upperbound for the bias in this parameter in the order
of 104 m or 0.1 mm. Note that column'ft:3'is redundant; at and after k:3, thus once
the ambiguities are resolved, this scenario equals the fixed scenario.

Although the phase observations contain the additional ambiguity unknown, they link the
successive epochs and thereby help to reduce the MDBs for outliers in the code observa-
tions in the kinematic case. This was also the case for the precision of the coordinates. As
such, they improve, even with float ambiguities, the external reliability of the coordinate
estimators. In the static case the values for the code-only scenario are about equal to those
for code&phase float scenario. Introducing the phase observations in the static case does
not aid much. The 'fT, *u-values are just slightly smaller. There is not much difference
between the kinematic and static case for the code&phase float scenario.

For the code&phase float scenario, in both the kinematic and static case (outliers in the
code), we have ,lLr_ru, = VU., (the significance measure for the full vector of unknowns,
coordinates and ambiguities).
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For the code&phase float scenarios the lT"r* is small for slips in the phase observa-
tion. The phase observations do not contribute much to coordinates (short time spans).
The values are not equal for the kinematic and static case, but they are at the same level
0.2-0.7. When the full vector of unknowns is considered (coordinates and ambiguities),
the fi-values are much larger, in the order of 5 to 7 for the kinematic case and about 3
for the static case.
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k i n e m a t i c
code&phase phase

f loa t  k=3 f i xed
code code&phase phase

f loa t  k=3 f i xed

L 7
1 9
2 I
2 2

Table 1.22: External reliability epochk:3, scalar measure y')rr* for slip inphase observation (kinematic and static)

When fixed, the phase observations, instead of the code observations, do determine the
coordinates. Undetected slips in phase observations have a large impact on the
coordinates: the coordinate estimators are very precise, as compared with the float
solution.

Note that the u/1,, NEr{ values for phase-only fixed equal those for outliers in the code-only
scenario in thti kinematic case. For the static case, they were not computed. The values
will be identical to code-only scenario of the static case. These values have been substi-
tuted in the table above.

5.1.3 Summary

Various measurement scenarios for relative positioning were considered, code and/or
phase observations, single and dual frequency, ambiguities float and fixed. The interre-
lationships between these scenarios were discussed. The chapter started however with the
case of single point positioning.

summary
This study made us acquainted with the quality that can be achieved with kinematic GPS
positioning, or more general with precise relative GPS positioning on a local scale. The
quality was analysed in terms of precision and reliability. The purpose in addition, was to
identify a workable set of parameters to represent the quality of the measurement system.

- precision
Precision describes the quality of the estimator i under the working mathematical model,
the null hypothesis Ho. The dispersion is given by the variance covariance matrix. The
estimators for the coordinate unknowns x2 are of primary interest. The coordinates are
expressed in WGS84 XYZ (geocentric coordinate system) or in local North, East, Height
(Up) (topocentric coordinate system). We considered the standard deviation of each
coordinate estimator individually, as they are easy to interpret. The smaller the value for
the standard deviation, the better the precision of the estimator. The precision ellipse,
section 4.1.2, (in two dimensions) has also been considered; it visualizes the full
information content of the variance covariance matrix.
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- reliability
Parallel to the recursive estimation, the validity of the working mathematical model is
checked. The validation concerned misspecifications in the functional model, namely
outliers in code observations and (cycle) slips in phase observations. Slippage tests are
performed. The nominal performance of the testing procedure is expressed by reliability.

The MDBs V give the error that can be found with a certain probability, equation (8.2) in
chapter 1. The above model errors directly concern one or one sequence of observations
and are expressed in unit meters for outliers in the code and unit cycles for slips in the
phase. For good reliability the MDBs should be small. The size of the V can be judged
with respect to the standard deviation of the observable.

As more than one model error might occur (possibly simultaneously), it is important to
consider also the separability between the various ̂ specified errors. Separability, as
correlation between the teststatistics, is expressed by pi-="o.tQ, equation (8.4) in chapter
1. There is optimal separability between two errors when p|=0.

External reliability is the propagation of the model error, when it remains undetected, into
the estimator for the vector of unknown parameters. Of particular interest for positioning
of course, is the bias caused in the (three) coordinate estimators. The ambiguities are
nuisance parameters (knowing the actual values is of no use; they have no physical
meaning). The significance of the propagation is expressed by the bias to noise ratio ,/[,
equation (8.6) in chapter 1. The smaller fi,th. better reliability. For its interpretaiion,
the value tor fi (when it concerns ttrei three coordinates) can be compared with the
value 1 for the three-dimensional precision ellipsoid.

conclusions
An analysis on quality, the design computations as they were made for the Ypenburg 94
campaign, can be made prior to actual field operation (no real observations are needed).
Evidently, the analysis is based on the assumed modelling; the mathematical model must
be adequate.

- precision
For the precision, it can be concluded that in general, o" is about two times the o for the
horizontal coordinates North and East. Usually the o" is slightly smaller than o". This
holds for GPS positioning at the mid-latitudes on Earth, with code observations only, or
with phase observations (and the ambiguities fixed). The configuration of the Ypenburg
94 experiment turned out to be a representative one.

By fixing the carrier phase ambiguities, the precision of the coordinate estimators
improves. This gain is large, in particular when only short observation time spans are
used, as is the case in kinematic GPS surveying. Using carrier phases and consequently
fixing the ambiguities, are prerequisites for achieving the precision desired in GPS
surveying.

- reliability
Increasing the redundancy of the measurement system by using more satellites and in
particular using dual frequency data over single frequency (doubling the measurements),
is very beneficial for reliability. It results in smaller MDBs, better separability and
smaller y'lr'..
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- estimation results
In the estimation results (small) systematic effects in the measurement system were
encountered several times. For the Trimble 4000 SSE receiver, predecessor of nowadays
4000 SSI, interchannel time varying hardware delays (or multipath) could be suspected to
affect the code measurements. atthe I-2 dm level.

- model validation
The settings for the statistical testing procedure discussed in section 4.2 werc used and
seem to yield satisfying results for kinematic GPS surveying. Due to the recursive
estimation, the redundancy never becomes extremely large (think of 101-102). The testing
procedure performed well. Outliers in the code, and cycle slips in the phase were
detected, correctly identified and estimated.

5.2 Analysis of GPS code and phase observables

In chapter 3, the mathematical model for the GPS observables was developed to comply
also with the Rinex standard. For geodetic purposes, there are however, several different
receivers available and they employ different measurement techniques to provide dual
frequency phase and code observations, see e.g. [Dierendonck, 19941, and this will be
directly reflected in different stochastic properties of their observables. By means of the
data of a zero baseline per receiver pair, we will attempt to reveal these properties. In
this analysis we will try not to digress to a ranking of the receivers in terms of better and
best. We will on the other hand, not refrain from clearly pointing out the differences in
the stochastic properties of the observables of the different receivers. The zero baseline
data are referred to as the UNAVCO 95 campaign.

For the interpretation of the zero baseline data analysis, it is important to realize that the
resulting figures may deviate from those that would have been obtained under operational
(practical) circumstances (two receivers with two antennas). The distinct difference in the
measurement set up is that for the zero baseline orly one antenna and Low Noise
Amplifier (LNA) are used. The LNA may be responsible for a part of the noise of the
observable. In this set up, the same LNA is used for both receivers and the noise may
therefore largely cancel in relative positioning. On the other hand, the signal from the
amplifier is split over two receivers and may therefore suffer from some loss in power,
resulting in a weaker signal (lower signal strength) and thus in more noise for the
observable. With one of the receivers, to anticipate on this, also a short baseline with two
receivers and two antennas was measured in Delft. The experiment is described and the
results are analysed and discussed in section 5.2.2.7.

5.2.1 Experiment description

The data were collected in a GPS equipment test, carried out by the University
NAVSTAR Consortium (UNAVCO). The consortium provides information, technical
support and equipment to investigators using the Global Positioning System satellites for
high-accuracy geosciences research. The test is described in full detail in [UNAVCO,
199s1.

Four sets of equipment, suited for scientific applications, were tested: the 4000 SSI from
Trimble Navigation Ltd, the Z-XII3 from Ashtech, the SR399 from kica Inc and the
SNR-8000 from Allen Osborne Associates Inc, see also table 2.2. These receivers yield



182

dual frequency pseudo-range data and full wavelength carrier phases under both A/S and
non A/S conditions; the so-called Y-buster receivers.

Various aspects of the GPS equipment were tested by UNAVCO. In this study we use the
data from the zero baseline 1 second sampling test. Two receivers of the same make and
type are connected to the one antenna and low-
noise amplifier (LNA). The test was conducted
to examine receiver performance. The measure-
ments with the four receiver pairs have been
carried out simultaneously and at the same site
(Table Mountain, e:40o \:-105o, at Boulder,
Colorado, US), see figtre 2.2. The markers are
Diamond North DN, East DE, West DW and
South DS. The receiver-pairs thus operated
under identical circumstances. During the test
A/S Anti-Spoofing was on. Autumn 1995 was a
period near the solar minimum (ionosphere).

biituei ro5 ,r 55766ru

Figure 2.1: Skyplot at DN, UNAVCO 95,
Table Mountain. Boulder. Colorado. US
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A skyplot for the 30 minutes processing session is given in figure 2.1. Some receivers did
track in addition two or three low elevation satellites. but these did never reach the 15o
elevation. PRN 23 sets (after 23:45 it is below 15") and PRN 20 rises (it is below 15o
before 23:45). These two are nevertheless tracked for the whole observation session.

DNo1 Tr imb le DEo1 Ashtech D W 0 1  L e i c a DS01 Turbo Rogue

S K Y P L O I  ( A z i m u t h  v s  E l e v o t i o n )

x  [m]
Y [m]
z  [m]

-1243327.7 ] .42
- 4 1 L 2 9 7 ! . 7 7 5 3

4 0 9 0 2 4 7  . 3 L r 4

- L 2 8 3 3 2 4 . 2 6 6 9
- 4 1 1 2 9 7 4 . 8 0 2 5

4 0 9 0 2 4 4  . 6 5 0 9

- 1 2 8 3 3 3 1 . 1 0 1 2
- 4 7 1 2 9 7 3 . 2 7 0 9

4 0 9 0 2 4 4 . 5 0 4 8

- L 2 8 3 3 2 A . 2 5 4 0
- 4 7 1 2 9 7 6 . 4 4 4 0

4 0 9 0 2 4 ! . 7 L 7 5

recerwer

Table 2.1: Stations and coordinates of markers in WGS84

The Rinex files were created with the Bernese translator for Trimble and Ashtech, with
kica's own translator for kica and with the JPl-translator for Turbo-Rogue, see [ibid].

Tri-mb1e Asht.ech Turbo Rogue

type
antenna

obs lypes
technique

4 0 0 0  s s r
compacE Lr lLz
gr -p I  removab le
CI  P2 L I  L2
cros  s  -  cor re  La t ion

z-x7I3
^ h ^ L o - , i  n ^

Dorne Margolin
c 1  ( P 1 )  P 2  L L  L 2
P-W Erack ing

s R 3 9 9
external
w i th  g r -p l
CI  P2 L I  L2

s N R - 8 0 0 0
^ h ^ L a  -  r i  r d

Dorne Margo l in
CL P2 LL  L2

P-code a ided squar ing  c ross-cor re la t ion

T able 2.2: Receiver characteristics
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5.2.2 Results and analysis

For a zero baseline, two receivers are both
connected to one antenna. The baseline
coordinates are deterministically known: xu:0,

!n=0 and ztr=O. In principle, the propagation
delays completely cancel and so do the effects
of satellite position and reference receiver
coordinates. Also site-related disturbances are
in principle common. By means of the zero
baselines, the geodetic performance with code
and phase observations will be assessed of four
state of the art receiver-pairs. The data, Cl-
code and Ll-phase, of the zero baselines are
processed in the ordinary way to provide rela-
tive positioning results, which are thus known

Figtre 2.2'. Measurement location at Table
Mountain with 4 stations

dr i f t  (30  min)  d r i f t  ra te
t s 1  [ s / s ]

D N o 2  T r i m b l e  7 . 7  x  1 o - 4  0 . 4  x  1 0 - 6
D E O 2  A s h t e c h  2 . 5  x  L O  1  0 . 1 -  x  1 0 - 6
D w o 2  L e i c a  1 . 9  x  1 0 - ?  0 . 1  x  1 o - e
D S 0 2  T - R o g u e  l - . 0  x  L O - ?  0 . 5  x  1 0 ' 1 0

Table 2.3: Receiver clock behaviour
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DW
Leica

DN

\'e+m
7.37m \

{"'* | ,/
5.09m\ | ,z 5.22m

Trimble

DS
Turbo-Rogue

DE
Ashtech

A
1
N

a-priori to be zero, section I and, 2. Note however, that the performance is assessed here
under favourable conditions; performance may be somewhat less under true operational
conditions (as for instance each receiver then uses its own antenna and may be moving
instead of stationary). Then the observation types, code and phase on both frequencies Ll
and L2, are treated separately; the sections 3 through 6. Introducing the a-priori known
baseline, the coordinates are constrained, yields a very powerful tool for analysing the
(raw) observables, see appendix A.

5.2.2.1 Positioning: Cl-code

Ordinary relative positioning with Ll-code observations was carried out. With tfl:6
satellites, there are (m-l):5 double difference observations per epoch. Although the
baselines are static, kinematic solutions were computed: new coordinate unknowns are
estimated for each epoch (actually processing on single epoch basis). The standard
deviation of the undifferenced code observable was taken oo:0.3 meter.

single point positioning: receiver clock estimates
For all 2x4 receivers, first single point solutions were determined on single epoch basis.
The variance covariance matrix was taken a scaled unit matrix with o:20.6m. Note that
for the Ashtech, Pl-code data were used, not Cl-code.

We will omit the coordinate estimates and
consider, as a side step in the analysis, the
estimates for the receiver clock errors. ln
figure 2.3 for each pair, the estimates are
given for the second receiver, expressed
(using the speed of light) in units of range,
nl. meters (at k:l o:27.4m). The receiver
clock error estimates are different for the
four receivers, note the difference in vertical scales, 3x105 m : 1 ms and 300 m = 1
ps. This shows that different techniques are used by the receivers to keep the receiver
clock (approximately) synchronized with the (transmitted) GPS time (the receiver
computes a navigation solution in real time). In table 2.3 we give the size of the total
drift over the 30 minutes period and the resulting drift rate (as experienced by the user).
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1 0 0

e p o c h  [ 1 0 s ]

vertical axis = 1.7 ms, DN02 Trimble left, DE02 Ashtech risht

verrical axis - 0.7 ps, DW02 l*ica left, DS01 Turbo-Rogue right

Figure 2.3: Clock error estimates cdrl for second receiver

The clock of the Trimble has a typical quartz-oscillator drift rate of 10-6 s/s. The clock is
left running free and kept synchronous to GPS time within 1 ms by clock resets (actually
one such reset occuned for DN02, but it has been undone by the Rinex conversion). The
oscillator of the Ashtech seems to have a somewhat better stability (no clock jumps
occurred).

The kica and Turbo Rogue seem to steer the receiver clock rate continuously during the
measurement session. In this way they keep the clock synchronized without discrete clock
jumps. The resulting drifts are very small. The steering of the Turbo-Rogue seems to be
long-term (the drift rate smoothly varies over time), whereas it of the kica seems to be
very short-term (there is a correlation with the estimated height). From [Sandholzer,
19921 we cite, that for the kica SR299, 'The clock-steering is designed to hold the
receiver clock to within 100 ns (standard deviation) of the transmitted GPS time': 100 ns
is equivalent to 30 m, cf. figure 2.3.

relative positioning: coordinates
The coordinate estimates (for the marker underneath receiver 2), obtained with relative
positioning with single frequency code observations, are differenced with the reference
values and expressed in a local topocentric system. We have a perfect ground truth
available: the estimates for the coordinates of receiver 12 have to be equal to the
coordinate-values we fix the reference receiver to, or in other words, the baseline
coordinate estimators are expected to have zero mean.

Figure 2.4 (right page): Relative positioning (Cl) coordinate-differences in North, East, Height
T Trimble, A Ashtech, L Leica, R Turbo-Rogue and A Ashtech (pl)
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By means of single epoch solutions, we analyse the overall geodetic performance of the
receiver-pair (not antenna). We cite from [UNAVCO, 1995]: 'Each receiver type was
tested on a zeto baseline with their respective antenna. Data were sampled at a 1 second
interval. The resulting observations reflect receiver noise, with minimum phase or code
averaging.'. GPS receivers usually use the carrier phase and averaging to smooth the
pseudo-range observations. 'At one second sampling, the averaging time is minimized for
each receiver, and observations are minimally correlated from epoch to epoch.'

Each receiver provides CA-code observations (Cl obtained by code-conelation). In
addition the Ashtech provides P1-code observations (obtained by P-W tracking). We will
thus consider five cases.

In figure 2.4, the coordinate differences, estimated - reference, are given, in terms of
local North, East and Height. The y-axis ranges from -1 to +1 meter. The precision of
the height is worse than the precision of the horizontal coordinates.

Per coordinate North, East and Height, the 181 estimates for the difference with the
reference value, are assumed to be samples of independent (in time) random variables
with zero mean. Per coordinate, the mean and empirical standard deviation are given in
table2.4 below. Also the formal precision at the first epoch ft:1 is given.

mean
DN DE DW

N o r t h  0 . 0 1  0 . 0 0  0 . 0 1
E a s t  O . O 2  0 . 0 1  - 0 . 0 4
H e i g h t  O .  0 4  0 . 0 0  - 0 . 3 6

standard deviation
DN DE DW DS

0 . 1 1  0 , o 2  0 . 0 7  0 . 1 8
0 . 0 8  0 . o 2  0 . 0 9  0 . 1 3
o  . 2 5  0  . 0 3  0  . 3 9  0 .  s 0

DS DE'
- 0 . 0 3  - 0 . 0 2
- 0 . 0 4  0 . 0 3
- 0 . 1 0  - 0 . 0 5

uts rormal
0 . 3 0  0 . 4 8
0 . 2 0  0 . 3 8
0 . 8 1  0  . 7 9

Table 2.4; Mean and standard deviation per coordinate in meter

For the Trimble (DN) the mean per coordinate does not really deviate from zero. [n
figare 2.4 no severe (long term) fluctuations in the series can be noticed. The noise is
likely to originate from raw code measurements.

The figures of the Ashtech (DE) for the mean (very close to zero) and standard deviation
(a few centimeters only) are very impressive. With single frequency code observations
actually surveying precision is achieved. The receiver probably uses though some
averaging and/or carrier phase to smooth the code observations. When the coordinates are
determined with the Pl-code observations (P-W tracking, instead of code correlation), the
graphs (figure 2.4) arc similar to those of the Trimble. They are however, much noisier
(about three times).

For the kica (DW), the Height does significantly deviate from zero and it is not an error
in the antenna-height. Some bias is also noticed in [UNAVCO, 1995]. The edge-shaped
graphs in figure 2.4 show that severe data processing is carried out inside the receiver.
Probably a Kalman filter is used for the dual frequency phase and code observations
together, per satellite (channel). According to [Euler, 1997], the receiver has run in
compacted data mode (as opposed to sampled data mode). The code observations are
severely smoothed and the phase observations slightly; the latter within one second, so
that sampling at I Hz yields phase observables which practically are not time-correlated.
Another feature is that the (double difference) ambiguities have small values (for this zero
baseline between -10 and f10); other receivers do have here ambiguity values on the
order of lff. and Trimble even 106.
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Although somewhat noisier (almost a factor 2), the graphs of the Turbo-Rogue (DS) are
similar to those of the Trimble"
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relative positioning: model validation
There are no rejections at all, for all receiver
pairs, except for the Ashtech when the Pl obser-
vations are used instead of the C1 (a few outliers
in the low elevation satellites PRNs 20 and 23);
adaptation was disabled. The values of the local
overall model test I, divided by the critical value
k, are given in figure 2.5. The detection is positive
when this ratio exceeds 1.0. The teststatistic

'by 
Pl obsedat j .ons

Table 2.5: Local overall model test

mean T/k

DN Tr imb le  0 .  02
D E  A s h t e c h  0 . 0 0
D W  L e i c a  0 - 0 0
D S  T - R o g u e  0 . 0 6
D E '  A s h t e c h  O . 2 O

o [m]

0 .  1 0
< 0 . 0 5
< 0 . 0 5

0 . 1 8
0 . 3 3

values are rather small on the average. For model 02, the redundancy equals 2, we expect
E{t\:z and with k:t1.73 we have Elt/k\=0.17. The observed means are given
below. We also give the standard deviation of unit weight for the (undifferenced) code
observable to achieve the expected mean of the local overall model test. For CA-code
correlation, they all are much smaller than the a-priori value of 0.30 m.

100

epoch [10s ]

epoch [10s ]

Figure 2.5: Local Overall Model teststatistic divided by critical vafue Tlk
Trimble, Ashtech, Leica

Turbo-Rogue and Ashtech (Pl)

5.2.2.2 Positioning: Ll-phase

Relative positioning with Ll-phase observations was carried out. The double difference
ambiguities have been constrained (fixed) to their integer values. Only three coordinate
unknowns are left. The data have been processed on single epoch basis, new coordinate
unknowns are introduced for each epoch. The standard deviation for the undifferenced
phase observable was taken o":0.003 meter.

r 50
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relative positioning: coordinates
The coordinate estimates obtained with relative positioning with single frequency phase
oLservations (ambiguities fixed), are differenceO wittr the reference values and expressed
in a local topocentric system, see figure 2.6. The y-axis ranges from -3 to +3 millimeter.
The precision of the height is worse than the precision of the horizontal coordinates. The
coordinates were output at 0.1 mm resolution.
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mean
DN DE

N o r l h  - 0 . 1  0 . 0
E a s t  - 0 . 0  - 0 . 0
H e i g h t  0 . 0  - o . 2

standard dewiation
DN DE DW DS fomal
0 . 3  0 . 4  0 . 5  0 . 9  4 . 8
0  . 2  0 . 3  0 . 4  0 . 5  3  . 8
o . 1  0 . 9  0 . 9  L . 4  7 . 9

DW
- 0 . 0
- 0 . 0

0 . 1

DS

0 . 0

Table 2.6: Mean and standard deviation per coordinate in 10-3 m or millimeter

Per coordinate, the mean and empirical standard deviation are given in table 2.6. Also the
formal precision at the first epoch /<=1 is given.

The coordinates do not really deviate from zero, for any receiver-pair. The variations in
the coordinate estimates over about half a centimeter, as were observed for the baseline
with Trimble 4000 SSE receivers, figure 1.27 in section 5.I.2.4, can be a receiver effect
or a differential atrnospheric delay. On a zero baseline, the differential delays are in
principle zero, Ilr=0 and Tir:O. Long term variations are indeed practically absent in
frgare 2.6, except for the Turbo-Rogue.
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epoch [10s ]

1 5 0

Figure 2.7: Local Overall Model teststatistic divided by critical value Tlk
Trirnble Ashtech

Leica Turbo-Rogue

The noise level shown in figure 2.6, is thought to represent the receiver noise in making
the Ll phase observation. For all receiver pairs, it holds that the noise is much smaller
than assumed a priori (o:3mm).
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relative positioning: model validation
For all four receiver pairs, there are no rejections
at all. The values of the local overall model test f,
divided by the critical value k, are given in figure
2.7. The teststatistic values are rather small on the
average. The y-axis ranges up to only 0.05. We
expect E{T\:2 and with k:LI.73 we have

DN Tri-mble
DE Ashtech
uw le tca
DS T-Rogue

mean T/k

0 . 0 0 1 2
0 . 0 0 2 s
0 . 0 0 2 5
0  .  o 0 1 4

o [m]

0 . 0 0 0 3
0 . 0 0 0 4
0 . 0 0 0 4
0 . 0 0 0 5

Table 2.7: Local overall model test

E{tlk\:0.17. The observed means are given in table 2.7. We also give the standard
deviation of unit weight for the (undifferenced) phase observable to achieve the expected
mean for the local overall model test. They all are much smaller, up to ten times, than
the a-priori value of o:0.003 m, see also the considerations in [tangley, 1997].

5.2.2.3 Analysis: Cl-code

The GPS observables will be analysed in detail in the next four sections. This analysis is
made in order to get acquainted with the stochastic properties (and possibly some
unmodelled functional ones as well) of the GPS code and phase observables. By means of
analysing error estimates we will check whether the currently assumed mathematical
modelling is adequate.

The analysis is made per observation type, cl-code, p2-code, Ll-phase and L2-phase,
one observation type at a time. For the Ll and L2 phases, the ambiguities are kept fixed.
The standard deviation of the undifferenced observable is taken 0.30 m for the code, and
0.003 m for the phase. We will use 10 minutes (23:35:00-23:45:00 or in seconds 430500-
431100) of data at l second sampling interval. This yields 601 epochs. The adaptation of
the model validation was disabled; the data were analysed just as they have come in.

We will constrain the baseline coordinates (model C1). As only one antenna is used, it is
known a-priori that these coordinates are zero. When the coordinates are constrained, we
get a better insight in the receiver performance on channel basis. In terms of the model
with single difference observations, there is only one unknown per epoch, namely the
receiver clock and it is common to all channels (satellites) via (the same) coefficient 1.0,
see appendix A for a derivation. In this experiment with 6 satellites, there are m=6
observations and there is one unknown n:1. The redundancy per epoch equals m-n:5.
Per epoch m:6 outlier estimators are computed, based on m-n:5 residuali. Under the
null hypothesis the error estimators have zero mean pnd their mutual correlation is
PEg: -1. The formal standard deviation equals oo=lJ.rlTa"=0.46 m for the code
an[.'4.6 rilm for the phase. I n-t' t

Per observation type and per channel/satellite, a time series of error estimates forms the
basis of the analysis. The following empirical figures will be considered for these series:

- mean
- standard deviation
- mutual correlation (between channels), for Cl-code and for Ll-phase

and in addition the

- cross correlation (between observation types; same channel/satellite), for the
pairs c1-P2-code and Ll-L2-phase, and for the pair cl-code and Ll-phase
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Figure 2.8: Error estimates for Cl-code; Trimble, Ashtech (Pl), Leica and Turbo-Rogue
satellite PRN 2l
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Visual inspection of the data will concern plots of the time series, histograms (distribu-
tion) and correlograms (time correlation). The latter will be given for all satellites, tlre
first two only for one satellite, namely PRN 21; representative for reasonable to high
elevations, in this configuration it has the one but highest elevation.

A

o;

PRN21 ADl

e p o c h  [ 1 s ]

PRN2l  AD1

For the Cl-code, the means are given in table 2.8,
the empirical standard deviations in table 2.9. The
error estimates V are plotted as a time series in
figure 2.8 for the code on the Ll-frequency. Note
that a different scaling is used for the Ashtech Cl-
code (figure 2.8a), its Pl-histogram and the kica
time-series.

The mean of the error estimate-series per satellite is
quite close to zero, for all receivers, except for the
kica SR399 (DW). Further analysis of the stochastic
model can thus be based on 'clean' data; in general
no severe anomalies (concerning the functional
model) were encountered (e.g. a significant deviation
of the mean from zero).

Figure 2.8a: Ashtech Cl-code (Cl)

empirical mean
DN DE DW DS DE'

0 . 0 1  0 . 0 0  - 0 . 1 1  0 . 0 1 .  - 0 . 0 1
- 0 . 0 1  0 . 0 0  - 0 . 0 5  - 0 . 0 1  0 . 0 L

0 . 0 1  0 . 0 1  - 0 . 0 8  - 0 . 0 2  0 . 0 1
- 0 . 0 2  - 0 . 0 1  0 . 1 5  0 . 0 4  - 0 . 0 1

0 . 0 1  0 . 0 0  0 .  0 3  - 0  . 0 2  0 . 0 0
- 0 . 0 0  - 0 . 0 1  0 . 0 7  0 . 0 1  - 0 . 0 0

empirical standard dewiation
DN DE DW DS DE'

o . 2 L  O  . O 2  0 . 1  5  0 . 3 6  0 . 5 3
o . 2 0  0 . 0 2  0  . L 2  0 . 3 3  0 . 6 0
0 . 1 0  0 . 0 2  0 . 1 4  0 . 1 5  0  . 3 2
0 . 0 9  0  . 0 2  0 .  r 8  0 .  t  3  0  . 2 4
0 . 0 9  0 . 0 2  0 . 0 5  0 . 1 . 4  0  . 2 5
0 . 0 9  0 . o 2  0 . 1 1  0 . 1 3  0 . 2 0

The standard deviations are very small (2 cm) for the Ashtech (C1, with CA-code). Those
for the Trimble 4000 ssl (DN) are in the range 10-20 cm, for rhe Turbo-Rogue SNR-
8000 (DS) 15-35 cm and for the Ashtech with Pl-code 20-65 cm. The dependence on the
elevation is clear for all receivers, except for the kica. The figures given and the
dependence may be different when two antennas are used instead of one. In appendix B a
brief description is given of the elevation dependence for the observation precision.

2 3
2 0

2 5
0 1

elewation
k=1 -  k=601

1 R  ?  1 <  2

L 2 . 9  L 5 . 2
3 6 . 4  3 9 . 4
5 5 . 3  5 1 . 6
4 4 . 2  4 9 . !
6 7 . 2  6 3 . 4

by p1 obaeryatlons

Table 2.8: Empirical mean [m] of outlier estimates, Cl-code

PRN

2 0

2 L
2 5
0 1

el-ewation
k=1 k=601

L 6 .  I  1 5 - J

L 2 . 9  L 5 . 2
3 6 . 4  3 9 . 4
5 5 . 3  5 1 . 5
4 4 . 2  4 9 . L
6 7 . 2  6 3 . 4

'by 
P1 obsef lat ions

Table 2.9: Empirical standard deviation [m] of outlier estimares, Cl-code
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Iable 2.10: Mutual channel (satellite) correlation, Cl code

Under the null-hypothesis the error estimator is normally distributed: V-N(O,o2u). In
figure 2.8 also the histograms are given. For all receivers, except for the I-eica, it holds
that a normal distribution for the error estimator is not unlikelv indeed.
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Figure 2.9: Correlograms Cl-code: Trimble, Ashtech, Leica,
Turbo-Rogue and Ashtech (Pl)

For the outlier estimate series (601 samples), the cross-correlation between different
satellites has been determined. This was done for the Cl-code for all four receiver pairs,
table 2.10. Zero mean was assumed. On the average the empirical correlation coefficients
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agree on the formal p=-ll5=-0.200. The spread is however quite large. It is interesting
to note that all receivers, apart from the kica (internal filtering), show identical
behaviour with positive and negative correlation coefficients, e.g. po,-rs)0 and, p,r_rr(0;
there are 6 positive and 9 negative ones. Correlation for pseudo-range (code) observations
between satellites (spatial correlation) is suggested also in [Roberts et al, 19971.

Figure 2.9 gives the correlograms, see e.g. [Chatfield, 1989]: the auto-correlation-
coefficients rr versus lag k for the error estimates (all satelites), cf. figure 2.8. They were
computed under the assumption of zero mean; see table 2.8 for the empirical means.
N:601 samples were used. The epochs are spaced by 1 second.

If a time series is completely random (no time correlation), the coefficientS 11, for k>1,
will all be close to zero, taking into account the standard deviation of o,.=-= =0.04.
The graphs for the Trimble and Turbo-Rogue do show such correlograms. Foy'the other
receivers, Ashtech and Leica, time correlation seems to be present.

For the Cl-code of the Ashtech, the observed (positive) time correlation is thought to be
caused by some averaging and/or carrier aiding to smooth the code observations. For the
reconstructed Pl-code observable, there is some time correlation, but it is less severe.
The graphs for the kica in figure 2.8, already made us suspect the worst. Note that the
zero mean assumption does not hold for the kica.

5.2.2.4 Analysis: P2-code

The data of UNAVCO 95 were collected under Anti-Spoofing. Cl code observations were
obtained by CA-code correlation on L1. Code observations are made on L2, although the
signal contains only the encrypted P-code. The Trimble and Turbo-Rogue use cross-
correlation (the cross-correlation measurement technique is hypothesized in appendix C),
the kica uses P-code aided squaring and the Ashtech uses P-W tracking. The latter yields
two code observations Pl and P2.

For the (reconstructed) code observation on the second frequency, referred to as P2, the
error estimates V are plotted as a time series in figtre 2.10. Note that as compared with
figure 2.8 in the previous section, the range for the y-axis has been doubled: now from
-2.4 to +2.4 meter.

PRN

2 3
2 0

2 L
2 5
0 1

elevat.ion
k = L  k = 5 0 1

I A . 7  1 5 . 3

3 6 . 4  3 9 . 4
5 5 . 3  5 1 . 6
4 4 . 2  4 9 .  t -
6 7  . 2  6 3 . 4

c n n i  r i  a : l  m a : n

DN DE DW DS

- 0 . 1 1  - O . 0 2  0 . 0 1  0 . 5 4
0 . 1 5  - 0  . 0 2  - 0 . 0 1  - 0 . 9 1

- 0 . 0 3  0 - 0 0  - 0 . 0 3  0 . 1 - 1
- o . 0 2  0 . 0 1  0 . 0 0  0 . 1 5
- 0 . 0 1 -  0 . 0 1  0 . 0 1  0 . 0 4

0 . 0 1  0 . o 2  0 . o 2  0 . o 7

Table 2.11: Empirical mean [m] of outlier estimares, P2 code

For the tables 2.11 and 2.l2,beside the mean, also the empirical standard deviation has
been determined for each series of V lper satellite, over 601 samples).

The mean of the error estimate-series per satellite is close to zero, for the Ashtech and
kica. Note that for the kica (DW), the deviations were somewhat larger for the Cl-
code, cf. table 2.8. The means for the Trimble (DN) are small as well; only the low
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Figure 2.10: Error estimates for P2-code, Trimble, Ashtech, Leica and Turbo-Rogue
satellite PRN 21
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PRN

I 5

2 1

0 1

elevation
k= l -  k=501

1 8  . 7  1 5 . 3
1 2 . 9  L 5 . 2
3 6 . 4  3 9 . 4
5 5 . 3  5 1 . 6
4 4 . 2  4 9 . 7

empirical standard deviation
DN DE DW DS

0  . 7 3  0  . 5 3  0 . 1 1  1 . 8 0
0 . 8 5  0 . 5 5  0 . 1 3  2 . L s
o . 2 7  0 . 3 2  0 . L 2  0 . 6 2
o . 2 4  0 . 2 3  0 . 1 3  0 . 5 0
o  . 2 4  0  . 2 5  0 . L 2  0  . 5 2
o  . 2 4  0  . 2 0  0  . L 2  0 . 4  8

Table 2.12 Empirical standard deviation [m] of outlier estimates, P2 code

PRN

2 3

2 L

0 1

elevation
k= l  k=501

1 8 . 7  1 5 . 3
t 2 . 9  L 5 . 2
3 6 . 4  3 9 . 4

4 4 . 2  4 9 . 1

DN

0  . 1 8
o  . 4 2
0  . 3 4
o . 3 2
0 . 3 5

correlation CL-P2 p
DE DW DS

0 . 0 5  - 0 . 0 8  0 . 2 9
0 . 0 9  - 0  . 0 1  0  . 1 9

- 0 . 0 4  0 . 1 9  0 . 2 5
- 0 . 0 4  - o . 2 0  0 . 2 9
- 0 . 0 5  0 . 0 4  0 . 2 L
- 0 . 0 3  0 . 3 4  0 . 3 0

Table 2.13: Empirical correlation outlier estimates Cl and P2
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Figure 2.11: Correlograms P2-code: Trimble, Ashtech,
Leica and Turbo-Rosue

elevation satellites PRNs 23 and 20 do show some larger deviation. The behaviour of the
Turbo-Rogue is like the Trimble, but much worse.

The standard deviations are in the range 10-15 cm for the kica SR 399 (DW); the same
level as for the Cl-observations, cf. table 2.9. Those for the Ashtech (DE) and Trimble
(DN) are larger, in the range 20-65 cm and 25-85 cm respectively. For the Turbo-Rogue
(DS) they are from 50 cm to over 200 cm for low elevation satellites. Note that the
values for the Ashtech Z-12 (DE) look very much like those for Pl in table 2.9, column
DE'. The standard deviations for the P2 of the Trimble 4000 SSI and Turbo-Rogue SNR-
8000 are much larger than for the corresponding Cl; as a rough indication we may give
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a==3o_ for the Trimble and o; =4a. for the Turbo-Rogue. The dependence on the

eloevatiod is clear for all receiv'ers, e'xcept for the kica. For the cross-correlating

receivers, Trimble and Turbo-Rogue, the elevation dependence seem to be somewhat

stronger for the P2-observations than for the Cl. The figures given and the dependence

may be different when two antennas are used instead of one'

The error estimators V for the C1 (P1) code and those for the P2 code are uncorrelated

(null-hypothesis). The empirical correlation is determined. As expected, there is (positive)

correlation between the C1 and P2 observations for the cross-correlation receivers:

Trimble and Turbo-Rogue, see also appendix C. The correlation coefficient is about

" 
-= f for the Trimbl! (DN) and e^;-= I for the Turbo-Rogue (DS). These values do

ndf cofltraAict rhe srochastic model hliioth3sized in appendix C, when the above indica-

t i o n s a r e u s e d a v = 3 a o f o r t h e T r i m b l e a n d a F = 4 q ' p _ ! o r . t h e T u r b o - R o g u e . T h e
correlation is very'small"for the Ashtech (we used Pl and'P2 observations) and it varies

but is not large for most satellites for the kica.

Under the null-hypothesis the error estimator is normally distributed. In figure 2.10 also

the histograms aie given. For all receivers, except for the kica, it holds that a normal

distribution for the error estimator is not unlikely indeed. Note that compared with the

Cl-code histograms in figure 2.8, the range for the horizontal axis has been doubled in

figure 2.10: now from -1.0 to *1'0 meter.

Figure 2.11 gives the correlograms, auto-correlation-coefficients r* versus lag k, for the

error estimatJs, cf. figure 2.10, for all satellites. If a time series is completely random

(no time correlation), the coefficients r*, for ft>1, will all be close to zero, taking into

account the standard deviation of o,. =I=0.04. In figure 2.tI there are no such

correlograms. For all receivers, time iori/dlation seems to be present. For the Ashtech,

the correlation concerns about L0 seconds, some 20 seconds for the Trimble and slightly

larger for the Turbo-Rogue. Note again that for the Ashtech, the behaviour of the P2-

obJervations is very similar to the Pl, cf. figure 2.9, and that the correlation coefficient

po; is very small, table 2.13.

5.2.2.5 Analysis: LL-Phase

For model validation, slips in the (single difference) phase observations are considered.

With local model validation however, a slip can not be distinguished from an outlier yet.

The slip estimate equals the outlier estimate. The error estimates V for the L1-phase are

plotted as a time series in figure 2.12. The y-axis ranges from -0.02 to +0.02 cycles

G-t+q millimeter). The error estimates were output at 0.001 cycle resolution.

The tables 2.14 and2.l5 give the mean and the empirical standard deviation, respective-

ly. They have been determined for each series of V (per satellite, over the full 601

samples). The mean and empirical standard deviation are expressed in milli-cycles (0'001

cycle = 0.2 millimeter).

The mean of the error estimate-series per satellite is close to zero, for the Trimble,

Ashtech and Irica (less than 0.1 mm). The means for the Turbo-Rogue (DS) are

somewhat larger. For the Turbo-Rogue, a long term variation can be observed in figure

2.12. This could be a receiver effect (hardware delay) or caused by multipath.
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PRN

2 3
2 0
1 5
2 T

0 1

elevation
K = L  K = b U l

1 P  a  ] q  ?

L Z . t  L > . 2

1 4  4  ? q  4

4 4 . 2  4 9 . L

empi r i ca l  mean
DN DE DW DS

- 0 . 1  0 . 2  0 . 1  2 . r
0 . 3  - o  . 2  0  . 2  - 0 . 5
0 . 0  - 0 . 4  0 . 0  - 0 . 9
0 . 1  - 0 . 1  0 . 0  - 0 . 1

- 0 . 3  - 0 . 0  - o . 2  - 0 . 8
0 . 0  0 . 4  - 0 . 2  0 . 9

0 - 0 0 1  c y c l e  -  0 . 2  m

Table 2.14: Empirical mean [milli-cycle] of outlier estimates, Ll phase

PRN

2 3
2 0

0 1

2 . r

1 . 5

e leva t ion
k=1 k=601

1 8  . 7  1 5 . 3

3 6 . 4  3 9 . 4

4 4 . 2  4 9 . 7
5 7  . 2  6 3 . 4

3 . 5  3 . 5  6 . 2
3 . 9  3 . 5  5 . 4
1 . 9  2 . 4  2 . 4
L . 1  2 . 3  5 . 5
t - . 8  2 . 2  3  . 9
L . 5  2 . 4  2 . 5

empirical standard deviation
DN DE DW DS

0 . 0 0 1  c y c l e  -  0 . 2  m

Table 2.15: Empirical standard deviation [milli-cycle] outlier estimates, Ll

DN
L 1

DE
L 1

L 1

PRN
0 1

2 3
2 0
2 L

PRN
0 1

2 5
2 3
2 0
2 l

PRN
0 1

2 3
2 0
2 L

PRN
0 1

2 5
2 3
2 0
2 L

0 1  1 5
1 . 0 0 0  -  . 0 3 3

1 . 0 0 0

0 1  1 5
1 . 0 0 0  . l - 3 0

1 . 0 0 0

0 1  1 5
r - . 0 0 0  -  .  s 0 9

1 . 0 0 0

2 5  2 3  2 0  2 L
-  . 0 8 3  -  . 2 8 9  -  . 2 6 0  -  . O 4 4

. o 2 5  - . 3 4 ' 7  - . 1 6 4  - . r 2 5
1 . 0 0 0  - . 2 7 3  - . 2 5 r  - . I 2 r

1 . 0 0 0  - . 3 5 5  - - 1 8 2
1 . 0 0 0  - . 1 9 3

1 . 0 0 0

2 5  2 3  2 0  2 L
. 2 0 3  - . 2 8 r  - . 4 0 0  . 2 I 5
.  1 8 3  -  " 3 2 7  -  . 3 7 0  . L 4 9

1 . 0 0 0  -  . 3 1 3  -  . 3 5 4  . 1 5 1
1 . 0 0 0  - . 3 3 ?  - . 3 1 9

1 - 0 0 0  - . 3 1 5
1 . 0 0 0

DS
L1

0 1  1 5  2 5  2 3  2 0  2 L
1 . 0 0 0  - " 0 5 5  - . 0 5 9  - . 2 6 2  - . 2 8 4  - . 0 8 0

l - . 0 0 0  - . 0 7 3  - . 2 8 0  - . 2 9 0  - . 0 4 5
1 . 0 0 0  - . 2 5 3  - . 2 3 4  - . 0 5 5

1 . 0 0 0  - . 2 9 2  - . 2 7 0
1 . 0 0 0  - . 2 3 5

1 . 0 0 0

2 5  2 3  2 0  2 L
. 1 3 1  . 2 3 4  -  . 2 0 2  -  . 3 9 4

-  . 3 L 2  -  . 5 2 0  . 4 4 2  .  L 8 6
1 . 0 0 0  . 5 6 3  - . 6 4 5  - . 6 2 9

1 . 0 0 0  - . 7 8 5  - . 6 2 7
1 . 0 0 0  . 2 5 1

1 . 0 0 0

Iable 2.16: Mutual channel (satellite correlation), Ll phase

The standard deviations are in the range 0.3-0.7 mm for the Trimble, Ashtech and l€ica;
those for the Turbo-Rogue are larger, up to 1.2 mm. The dependence on the elevation is
clear for all receivers, except the Turbo-Rogue). The figures given and the dependence
may be different when two antennas are used instead of one.

Under the null-hypothesis the error estimator is normally distributed. In figure 2.12 also
the histograms are given. For all receivers, except for the Turbo-Rogue, it holds that a
normal distribution for the error estimator is not unlikely indeed. The range for the
horizontal axis is from -0.01 to +0.01 cycle (=-l+2 mm).
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For the outlier estimate series. the cross-correlation between different satellites has been
determined, table 2.16. This has been done for the Ll-phase observations, for all four
receiver-pairs. Zero mean was assumed.

The pattern found with C1(P1) code observations in section 5.2.2.3, shows up again for
the Ll phase observations for the Ashtech. Also for the Trimble and kica it seems
present, although the positive values have become small negative ones. For these three
receivers holds that the large negative coefficients all belong to the satellites PRN 20 and
23. The formal coefficient is p:-175:-0.200. The agreement of the empirical coefficients
is better (than with the code observations). The spread is small for the kica and Trimble.

The observed behaviour can make one question about the diagonal structure of the
variance covariance matrix of the undifferenced (or single differenced) observables per
observation type. Further investigations are needed.

PRN elevation
k=1 k=601-

2 3  1 . 8 . 7  1 5 . 3
2 0  L 2 . 9  L 5 . 2
1 5  3 6 . 4  3 9 . 4
2 L  5 5 . 3  5 1 . 6
2 5  4 4 . 2  4 9 . L
0 1 .  6 7 . 2  6 3 . 4

' b y  
P 1  o b s e d a t i o n s

Table 2.17: Empirical correlation outlier estimates Cl and Ll

Correlation between code Cl (P1 for Ashtech) and phase Ll has also been considered; it
is practically absent in the data of all four receivers, see also the discussion in [Eissfeller,
19971. The correlation coefficients p, expected to be zero, are given in table 2.t7.

l a s  [ 1 s ]

Figure 2.13: Correlograms Ll-phase: Trimble, Ashtech,
Leica and Turbo-Rogue

cor re la t ion  CL-L1 p
DN DE. DW DS

0 . 0 4  - 0 . 0 3  - 0 . 0 5  0 . 0 3
0 . 0 1  - 0 . 0 3  0 . 0 0  0 . 0 3
0 . 0 3  - 0  . 0 4  0 . 0 6  0 . 0 3
0 . 0 0  0 . 0 1  - 0 . 0 1  0 . 0 3

- 0 . 0 8  - 0 . 0 1  - o . L 2  0 . 0 7
0 . 1 1  - 0 . 0 5  - o  . 0 2  0 . 0 1

q

I

20

l a g  [ l s ]



5. GPS surveying: experiments and results 201

Figure 2.13 gives the correlograms, auto-correlation-coefficients rrr versus lag k, for the
error estimates, cf. figure 2.12, for all satellites. In figure 2.13, the Trimble, Ashtech and
Irica do show 'no time-correlation' correlograms. For the Turbo-Rogue time correlation
could be expected already, due to the long term variation in figure 2.12.

From this analysis on L1 phase observations, it can be concluded that the Trimble 4000
SSI, the Ashtech Z-XII and the Leica SR399 perform equally well. As opposed to the
code observations (sections 5.2.2.3 and 5.2.2.4), the phase observations of the kica
seem to result from raw measurements indeed.

5.2.2.6 Analysis: L2-phase

The UNAVCO 95 data were collected under Anti-Spoofing. Phase observations are made
onL2, although the signal contains only the encrypted P-code. All four receivers provide
full wavelength L2 phase observations: the Trimble and Turbo-Rogue use cross-correla-
tion, the Leica P-code aided squaring (with polarity determination) and the Ashtech P-W
tracking. The reconstructed phase observation on the second frequency is referred to as
L2.

PRN

2 0

2 L

0 1

elevation
k=1 k=601

1 8  . 7  1 5 . 3

3 6 . 4  3 9 . 4

4 4 . 2  4 9  . r
6 7  . 2  6 3  . 4

empirical mean
DN DE DW DS

1 - . 5  0 . 8  - 0 . 0  1 . 5
1 . 9  - 0 . 1  - 0 . 4  - 4 . 8

- 0 . 8  - o . 1  0 . 2  - 0 . 3
- 0 . 8  - o . 2  0 . 2  0 . 8
- 1 . 1  - 0 . 1  - O . 2  0 . 9
- 0 . 8  0 . 2  0 .  l -  2 , o

0 . 0 0 1  c y c l e  -  0 . 2  m

Table 2.18: Empirical mean [milli-cycle] of outlier estimates, L2 phase

PRN elevabion
k=1 k=501

2 3  L 8 . 7  1 5 . 3
2 0  L 2 . 9  r 5 . 2
1 5  3 6 . 4  3 9 . 4
z L  5 f , . J  J f  . b

2 5  4 4 . 2  4 9 . r
0 1  6 7  . 2  6 3 . 4

emplrical standard deviation
DN DE DW DS

9  . 4  5 . 3  9 . 3  7 2  . L
t 0 . 3  5 . 5  1 1 . 4  7 8 . 5

4 . 0  3 . 2  5 . 2  2 3 . 6
3 . 4  2 . 5  4 . 1  2 2 . 9
3 . 4  2 . 5  5 . 8  2 3 . 2

0 .  0 0 1  c y (

Table 2.19: Empirical standard deviation [milli-cycle] outlier estimates, L2

The error (outlier:slip) estimates ? are plotted as a time series in figure 2.14. The y-
axis ranges from -0.04 to +0.04 cycles (=-l+10 millimeter) and -0.4 to *0.4 cycles
(=-l+10 centimeter) for the Turbo-Rogue. The error estimates were output at 0.001
cycle resolution.

The tables 2.I8, 2.19 and 2.20 give the mean, the empirical standard deviation and the
correlation between Ll and L2, respectively. They have been determined for each series
of V (per satellite, over 601 samples). The mean and empirical standard deviation are
expressed in milli-cycles (0.001 cycle = 0.2 millimeter).

The mean of the error estimate-series per satellite is close to zero, for the Ashtech and
Leica (less than 0.2 mm). The deviations are a bit larger for the Trimble, in particular for
the two low elevation satellites. The Turbo-Rozue is much worse.
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PRN

2 3

r 5
2 L

0 1

elevation
k= l  k=501

3 6 . 4  3 9 . 4
5 5 . 3  5 1 . 6
4 4 . 2  4 9 . L
o  t  - z  b J . {

correlation LL-l '2 p
DN DE DW DS

0 .  1 9  0  . 4 4  0  . 2 1  0 . 1 0
o  . 2 L  0 . 5 4  0  . 2 4  0 . 0 6
o  . 2 5  0 . 4 0  0 . 3 5  0 . 0 1
0  . 2 5  0 . 4 8  0 . 3 5  0 . 1 7
0 . 3 0  0 .  s 1  0 . 2 0  0 . 1 5
0 . 1 9  0 . 4 4  0 . 3 8  0 . 1 3

Table 2.20: Empirical correlation of outlier estimates, Ll and L2 phase
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lag  [ 1s ]
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Figure 2' 1 5 : 
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Ashtech'

For the higher elevation satellites, the standard deviation is about 0.6 mm for the
Ashtech, 0.9 mm for the Trimble, 1.3 mm for the l,eica and 5.6 mm for the Turbo-
Rogue. The standard deviations in table 2.I9 are larger than with the L1 phase observa-
tions, cf. table 2.L5. For the Ashtech we have op,=2op, for the Trimble and kica
ap,=3op, and o"=8or for the Turbo-Rogue. The dependence on the elevation is clearly
stronger on L2 than on L1 for all receivers, except for the Ashtech. The figures given
and the dependence may be different when two antennas are used instead of one.

The error estimators V for L1 and L2 are uncorrelated (null-hypothesis). The empirical
correlation has been determined. For all receivers, it holds that there is a positive
correlation between the phase observables L1 and L2. It is largest for the Ashtech, about
0.5 (which indicates that, concerning the L2 phase observation, Ashtech's P-W tracking is
based also on cross-conelation), moderate for the lrica and Trimble and small for the
Turbo-Rogue. With the reconstruction by cross-correlation, hypothesized in appendix C,
and op =3op for the Trimble, we expect p:O.43. The values in table 2.20 are smaller
(between 0.2 and 0.3). Based on oF =8op we expect p:0.16 for the Turbo-Rogue.

In figure 2.I4 the histograms for the error estimates are given. For all receivers, it holds
that a normal distribution for the error estimator is not unlikelv indeed. The ranse for the
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horizontal axis is from -0.02 to +0.02 cycle (=-l*5 mm) and from -0.2 to *0.2 cycle
(=-l+5 cm) for the Turbo-Rogue.

Figure 2.15 gives the correlograms for the error estimates. Time correlation is practically
absent for the l,eica and Turbo-Rogue. For the Ashtech the time correlation concerns
about l0 seconds, and some 20 seconds for the Trimble.

5.2.2.7 Short baseline

In this section, the data measured on a short baseline (3 meter; both receivers static) are
used, for analysis of receiver performance. Usually a zoro baseline is measured for this
purpose: two receivers are connected to one antenna (with one low-noise-amplifier). For a
short baseline. each receiver is connected to its own antenna: thus two receivers and two
antennas (of the same make and type). The
receivers are operated like in a typical high
accuracy (stationary) GPS surveying applica-
tion. This experiment and analysis is meant to
see whether and how, for one of the receiver
pairs, the zero baseline results transfer to a
short baseline.

First a description of the experiment is given,
then the results and analysis, it parallels the one
for the zero baselines of the previous sections.
The section ends with a discussion of the
results.

Figure 2.16: Skyplot at 18, for short baseline,
Delft. The Netherlands

number  o f  sa te l l i tes :
PRNS:
p  j -vo t :
number of receiwers:
rece j.wer tlt)e I
ancenna type:

d a E e :

7  (aL l  B10ck  r rA)
0 1  0 4  0 5  0 6  0 9  2 5  3 0

30 (doub le  d i f fe renc ing)
2 (stationary)

Trimble 4000SSI Geodetic Suffeyor
Trimble Geodetic Compact L1lL2 with groundplane

the antennas were equally oriented (and levelled)
December  19 th ,  1995 (GPS week 884,  day  354)

obseryat.ion sesgion: -1 hour
s t a r t :  1 7 : 3 0 : 0 4  G P S ' ;  4 0 8 6 0 4  s e c o n d s  i n  G P S  w e e k
e n d :  1 8 : 2 9 : 5 9  G P S  ;  4 1 2 1 9 9  s e c o n d s  i n  G P S  w e e k
sanpling inEeryaLr 1 second

process ing  sess ion i  28  minu tes  (1681 epochs)
s t a r t :  L 7 t 4 6 z 0 O  G P S  ;  4 0 9 5 5 0  s e c o n d s
e n d :  1 8 : 1 4 : 0 0  G P S  ;  4 1 1 2 4 0  s e c o n d s
sampling interyal: 1 second GPS - IIIC + n [s] wiLh n=11

coordinates of marker *18 X = 3924689.29L m
( r e f e r e n c e  r e c e i v e r  1 1 ) :  Y  =  3 0 1 1 4 5 . 3 2 2  m
i n  W G S 8 4  Z  =  5 0 0 1 9 0 8 . 6 4 1  m

experiment description
The data were collected on the observation platform on top of the Department's building
in Delft, with the Trimble 4000 receivers, after they had been upgraded to SSIs. They
provide dual frequency pseudo-range data and full wavelength carrier phases under both
A/S and non A/S conditions.

A skyplot for the processing session is given in figure 2.16. One channel of receiver r1
was malfunctioning and did therefore not track satellite PRN24; it has been left out. The
elevation cut-off was 10o. The receivers occupied the markers #18 and #I9; a 3 meter
baseline.

S N Y P L O T  ( A z i m u t h  v s  E l e v o t i o n )
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results and analysis
For the error analysis, the baseline coordinates have been determined very precisely and
are treated as deterministically known. Although the baselinelength is not zero, it is very
short and differential propagation delays will be minimal and so are the effects of satellite
position and reference receiver coordinates. The short baseline, in addition to the zero
baseline, enables us to assess the geodetic performance of the receiver pair. With the
short baseline, the performance of the full system, thus antennas, amplifiers, cables and
receivers, is assessed under true operational conditions.

- reference solution
The coordinates for receiver 12 were obtained from the Ll-phase reference solution over
a 28 minutes period. The ambiguities were constrained. A sequential adjustrnent was
made for the coordinates (stationary receiver). With m:7 satellites, 7 observations per
receiver yields (m-1):6 double difference observations per epoch. 1681 epochs of data
are used at 1 second interval.

The estimated coordinates of marker #19 are:.

i = l3iilll,iil3 n
and this yields a baseline length of 2.982 m between the markers #18 and #19. The
formal precision of the coordinate-estimators (expressed in NEH) is o":6.93, a":0.07,
oa:0.18 mm. This description is probably too optimistic.

PRN elev.
k=3 01

0 4  2 2 . 4
0 6  3 0 . 1
0 9  3 2 . 2
0 1  4 1 . 8
0 5  6 1 . 7
3 0  7 r . 2

empirical mean
c1 P2 L1 r,2

0 . 0 7  0 .  1 2  - 4  . 5  - 0 . 6

0 . 0 6  - 0 . 1 1  4 . 3  - 5 . 0
- 0 . 0 4  - 0 . 3 1  - 9 . 8  1 2 . 5

0 . 0 0  0 .  l - 4  5 . 4  0 . 5
0 . 0 2  - 0 . 0 1  4 . 9  5 . 2

- 0 .  o s  o . L 2  - 0 . 1  - 9 . 8
- 0 . 0 7  0 . 0 s  - o . 2  - 3 . 0

Table 2.21:. Empirical mean of error estimates in [m] for code,
in [millicycle] for phase; I millicycle = 0.2 mm

PRN e1ew.
k=3 01

0 4  2 2 . 4
0 6  3 0 . 1
0 9  3 2 . 2
0 1  4 1 " 8
0 5  6 7 . 7
3 0  7 L . 2

0 .  ? 0  7  . 7  L 4 . 7
0 . 8 3  9  . 7  L r . 1
0 . 5 1  L 2 . 6  L 4 . 9
0 . 3 7  8 . 1  6 . 4
o . 2 8  6 . 4  7 . 4
0 . 3 1  5 . 7  1 0 . 6
o . 2 5  4  . 2  5 . 3

empirical standard deviation
c1 P2 L1  L2

o . 3 2
0 . 3 1
o  . 2 7
o . 2 3
0 . 1 8
0 . 1 7
0 . 1 8

Table 2.22: Empirical standard deviation of error estimates in

[m] for code, in [millicycle] for phase; I millicycle = 0.2 mm

- error analysis
The four observation types (code on Ll and L2 and phase on Ll and L2) arc processed
individually. [n terms of a single difference model, the coordinates are constrained for
this error analysis and, in case of Ll and L2 phase data, the ambiguities too. The
(differential) receiver clock error is free (one new unknown per epoch). The redundancy
per epoch equals m-n=6. Per epoch m:7 error estimators are computed, based on
m-n:6 residuals. For the error analysis we consider on epoch basis, thus local model
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validation, errors in the (single difference) observations (per satellite): outliers in the
code-observations Cl and P2 and slips (:outliers) in the phase observations LI and L2.
Adaptation was disabled. The standard deviation for the undifferenced code observable
was taken a o: or:0.3 meter and for the phase o" = oF:0.003 meter.

For this analysis, again 10 minutes of data were used (601 epochs), to facilitate compari-
son to the previous sections. The period is 17:46:00-17:56:00 (or in seconds 409560-
410160) at one second interval.

For the tables 2.21, 2.22 and2.23, the mean, the^empirical standard deviation and the
correlation have been determined for each series of V (per satellite, over the full session).
The satellites were sorted after increasing elevation (given in 360" degrees for epoch
17:5 I ,  /<=301) .

From table 2.21 it can be seen that the deviations of the mean from zero, are quite large
for the P2 code observations. This was also the case for the low elevation satellites PRNs
23 and 20 in table 2.11. For the C1 code, the deviations are not really significant. The
deviations for the phase observations Ll and L2 are up to 10 times larger than for the
zero baseline, tables 2.I4 and 2.18. The deviations now reach the 0.01 cycle, which
corresponds to about 2 mm.

The (formal) standard deviations (on all channels) are constant (in time) and equal
at=0.46 m for the codes both Cl and P2, oi=24.1 millicycle for Ll and og=18.8
millicycle for L2. The empirical standard deviations for the error estimates are in the
range 15-30 cm for C1, 25-85 cm for P2, 0.8-2.5 mm for Ll and 1.2-3.7 mm for L2.
The standard deviations for the codes C1 and P2 are at the same level as for the zero
baseline. For the phases Ll and L2, the standard deviations are larger, in particular for
the L1.

The Trimble 4000 SSI is a cross-correlating receiver
and as shown in the previous sections, positive correla-
tion is present between the observables on Ll and L2.
The empirical correlation between the error estimatesV
on both frequencies is determined both for code and
phase, see table 2.23. For the codes it holds that the
correlation is slightly larger than found for the zero
baseline. For the phases there are some disturbances
here (e.g. p<0).

Table 2.23: Empirical correlation of
error estimates

PRN

0 4
0 6
0 9
0 1
0 5
3 0

e lev .  emp.  cor re la t ion
k=301 CL-P2 L]--L2

1 9 . 5  0 . 4 0  0 . 1 - 4
2 2 . 4  0 . 2 8  0 . 0 8
3 0 . 1  0 . 4 8  - 0 . 5 2
3 2 . 2  0 . 4 ' t  O . 2 5
4 1 . 8  0 . 6 1  0  . 6 8
6 7  . 7  0 . 2 6  - 0 . 0 0
7 L . 2  0 . 5 0  0 . 3 0

Per observation type, the error estimates V are plotted in figures 2.I7 for one satellite,
PRN01, at reasonable elevation; the estimates as time series are on top and the histograms
at bottom. The estimates for the codes Cl and P2 are expressed in meters. For the Cl-
code the vertical axis ranges from -1.2 m to +1.2 m and the horizontal axis from -0.5 m
to +0.5 m. For the P2-code these scales are doubled. For the Ll-phase, the vertical axis
ranges from -0.02 cycle to +0.02 cycle (thus over -8 mm) and the horizontal axis from
-0.01 cycle to *0.01 cycle. For the L2-phase these scales are doubled. The same scalings
were used for the zero baselines, figures 2.8, 2.I0" 2.I2 and 2.L4.

Under the null-hypothesis V-N1O,"f). figur" 2.17 gives the histograms. In most figures
for the codes Cl andP2, the normal distribution can be recognized. The histograms for
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the L1 phase seem disturbed and some of those for the L2 phase are offset. Some
systematic effect is thought to be present.

- discussion
Compared with the zero baseline, the characteristics of especially the phase observables
are different for this 3 meter baseline: deviations of the mean, larger standard deviations
and time correlation in particular for the phase observations. Noise involved in making
GPS code and phase observations can originate from different sources; there are the
satellite's transmission, the sky, the ground and environment (objects in the vicinity of the
antenna) and the receiving system itself, see the discussion in [Langley, 19971. Beside
'true' noise, also functionally unmodelled effects can be present.

The cause can here be instrumental as well as lie in the fact that now two (antenna)
locations are involved instead of one. On the instrumental side, the amplifier is suspected,
as now two are used instead of one (common), see also [Nolan et al, 1992]. Environ-
mental effects may be different at the two sites, even when they are close together. This
holds in particular for multipath, the principal suspect. The antennas were on top of the
building with no obstruction at positive elevation angle. Signals reflected by the roof and
its sidewalls may however, reach the antenna from below and though affect the measure-
ments. The location is not a favourable one. For multipath by reflection from below
(ground bounce) see the discussion in [Weill, 19971, A second environmental effect is the
atmospheric delay, to be further divided into tropospheric and ionospheric. Concerning
the laffer, it should be remarked that the magnitude of the delay is small ( - 3 meter
zenith delay). Short term (both in space and time) irregularities in the delay (scintillation,
which can also effect the signal) can not be excluded, as the measurements took place in
the early evening, about two hours after sunset.

sigma code s igma phase

I

1

c

ol

40 60

e l e v  [ d e g ]

Figure 2.18: Standard deviation versus elevation angle
left: code o Cl and r P2 right: phase o Ll t L2

The empirical standard deviations in table 2.22 are graphically presented in figure 2.18.
For this figure, they have been normalized to the standard deviation of the undifferenced
observable. The standard deviation in figure 2.18 is given as function of the elevation
angle. In particular the standard deviation of the P2 code observable shows a strong
dependence. The a-priori assumed values ate ap:ot:0.3 m and o":o;=3 mm.

In this experiment (and also for the zero baselines), two identical receivers and antennas
were used (same make and model). All results are obtained with an a-priori stochastic
model, in which it is assumed that the observables of both receivers possess identical
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stochastic behaviour, for instance ap,t=a.,2. The null-hypothesis furthermore prescribes
equal standard deviation (over all epochs) on all channels for the observation type at hand
and no mutual nor time correlation (for the undifferenced observables).

conclusion
We have assessed the performance of the full measurement system, two receivers with
two antennas, under operational conditions, or in other words, the performance in the
field. This short baseline is just one trial. It must be kept in mind that the conditions, e.g.
concerning multipath, may greatly vary from one location to the other, see also the
discussion in [Weill, 1997].

5.2.3 Summary

A rigorous application of the model validation in the processing of the data from a known
short (or zero) baseline, provides the opportunity of a powerful analysis of the GPS code
and phase observables. The different geodetic receivers employ different measurement
techniques to provide dual frequency phase and code observations and this is directly
reflected in different stochastic properties of their observables, which were clearly
revealed. In this summary only main findings will be given. A direct comparison of the
various receivers in respect of GPS surveying, is not made as many more aspects are then
involved.

From the results, it can be concluded that in principle, a geodetic GPS receiver together
with its antenna, is capable of providing raw data, code and phase observables, apparently
normally distributed, with no (or only little) time correlation (the normal-distribution
assumption was 'checked' only by graphical inspection).

Dependent on the measurement technique employed by the receiver, the noise characteris-
tics can be different for the observables on the two frequencies, thus code C1 and P2 and
phase L1 and L2. Apart from the measurement technique, the noise turned out to be a
function of the elevation angle, under which the satellite is observed. The standard
deviation of an observable is small for a zenith satellite, and increases as the elevation
decreases, see appendix B for a discussion of the effect. The dependence may differ for
different observation types.

The default stochastic model, specified by o:0.3 m for the code and o=3 mm for the
phase (both undifferenced), is a conservative one; nowadays receivers can do better.

recommendation: tune stochastic model
For precise relative GPS positioning (surveying/navigation), it is important to get to know
the receivers (and their antennas) before the units are used in the field for production
work (and maybe, even before purchasing the receivers). The mathematical model,
functional and stochastic, to be used in later data processing should be adequate.
Estimation and model validation results are based on this model. The estimates should be
unbiased and the quality description must be realistic.

The data should be examined on systematic effects, not captured by the current functional
model. In particular with the zero baselines, the purpose was to model receiver noise (not
the noise when additional, unmodelled effects are present). The simple stochastic model
(scaled unit matrix for the variance covariance matrix per (undifferenced) observation
type) most likely needs to be refined: it should take into account elevation dependence
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and (if appropriate) cross-correlation. Indications were given for these first steps. Further
refinements, via a more rigorous approach, may be needed, e.g. mutual channel/satellite
correlation.

The mathematical model was developed in chapter 3. Symbolically it reads Elyl =Ax :
Dlyl =Qr. It was thus assumed that both functional and stochastic model were completely
known and hence, could be fully specified. The results in this section indicated that the
current simple stochastic model should be refined. It could be that unknown parameters.rr
are involved ptfl =Q(rJ. These parameters x, should be solved for during the data
processing or may be iecovered from an a-priori calibration. The first approach could be
referred to as in the field calibration (permanent); components of the stochastic model are
estimated directly from the data. Equivalently to functional model validation, alternative
hypotheses could be set up; the data then decide which model to use.

recommendation: receiver calibration
For the second approach it is recommended to 'calibrate' the receiver-pair by both a zero
baseline test and a (known) shon baseline test. These tests should be run at a high
sampling rate (e.g. 1 second).

For a zero baseline only one antenna (with one amplifier) is used. The signal is then split
over two receivers. The baseline is physically (0,0,0). This constraint (deterministically
known) is applied in the subsequent data processing and thereby allows a very powerful
analysis. The zero baseline can be used to check on receiver defects. The functional
model commonly used in relative positioning is applicable and assumes e.g. no inter-
channel biases. The analysis also allows for setting the stochastic model for the receiver
at hand. Different receivers namely use different measurement techniques and each
antenna type has its own gain pattern, which is of direct influence on the relation between
elevation and measurement noise. The observation noise (standard deviation) can be
quantified, the stochastic distribution of the observable can be revealed together with time
correlation and mutual correlation (e.g. between observation types).

For the short baseline, 'short' means a few meters, so that the differential atmospheric
delays are still zero. This test may lead to some tuning of the findings of the zero
baseline test. For both tests it holds that they should be run under representative condi-
tions, thus representative atmosphere and configuration (a satellite geometry with both
high and low elevation satellites) and, for the short baseline, on a representative location
(multipath); the two receivers with two antennas should be set up as under true oper-
ational conditions.

The need for such a calibration stems from the fact that GPS equipment manufacturers
usually do not reveal all details and that the properties may vary with changing circum-
stances. It is suggested to carry out the calibration on a regular basis (circumstances may
change such as atmospheric (ionospheric) conditions and new satellites) and whenever
modifications to the equipment are made (e.g. upgrade; the stochastics may depend for
instance on how the internal receiver software is configured).

In this section, receiver calibration was carried out by means of a zero and a short
receiver baseline. Concerning the zero baseline, it should be noted that it is not necessar-
ily observed with static receivers. A zero baseline can be measured also on a moving
vehicle, in order to infer the impact of kinematics on the receiver noise in code and phase
(kinematic zero baseline). Single receiver analysis is, in principle also possible, when
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more than one channel is assigned simultaneously to the same satellite, possibly to be
referred to a zero satellite baseline.

5.3 Kinematic GPS surveying: results in practice

On December 22, t996, a GPS campaign with 5 geodetic dual frequency receivers was
carried out by the Department. One receiver was located on the Departrnent's building in
Delft, the other four receivers were out in the Flevopolder, an area about 80 krn from
Delft. Two antennas with their receivers on a van provided kinematic GPS measurements.
For this section on kinematic GPS surveying we will use the data from the local network
in the Flevopolder, thus without the station in Delft.

The quality of the measurement system, in terms of precision and reliability will be dis-
cussed. Next attention will be paid to the estimation results, the coordinate estimates that
are obtained with kinematic GPS surveying under operational conditions. Besides, we will
focuss on the integer ambiguity resolution, as it is the key to obtaining precise coordinate
estimators when only a short observation time span is available. Finally it will also be
indicated what the limitations are of the current mathematical model.

number of receivers: 4
re fe rence s ta t ions :  15  and 28 ,  s tac ionary
kinematic stations: 38 and 39, on Ehe roof of ttre wan
rece iver  t . l4 )e :  Tr imb le  4000 SSI  Geodet ic  Surveyor
antenna type: Trimbte compacE L\/L2 vlEh groundplane
obserya t ion  t l4 )es :  c r ,p2 ,LL ,L2  (As  on)
satelrites' 

3H 9'"1!"iirl:"'i.3: 3l3"1lrii'I'll aeq ror tne
whole  process ing  sess ion

note: PRN 24 not available for 38 (malfmctioning
channel )

da te :  December  22 ,  1 .995 Sunday
GPs week 885,  day  o f  year  357

obserya t ion  sess ion :  I  hour  (3596 seconds)
s t a r t :  0 8 : 1 0 : 0 4  G P S ' ;  2 9 4 0 4  s e c o n d s  i - n  G P S  w e e k
e n d :  0 9 : 0 9 : 5 9  G P S  ;  3 2 9 9 9  s e c o n d s  i n  G P S  w e e k
samplj-ng interval: I second

process ing  sess ion :  -  40  minu tes  (2421 epochs)
s t a r t :  0 8 : 2 9 : 3 0  G P S  ; 3 0 5 7 0  s e c o n d s
e n d :  0 9 : 0 9 : 5 0  G P S  ;  3 2 9 9 0  s e c o n d s
sampl ing  in te rva l :  1  second 

'GPS -  UTC + n  [s ]  w ich  n=11
loca1 time = -rlTC 

+ t hour

re fe rence coord ina tes  (ab  cm- leve I ;  re la t i ve)  o f  the  s ta t ions :
x  =  3 8 8 1 3 2 5 . 4 7 1  m  ( m a r k e r  1 5 )  X  =  3 8 7 4 5 8 4 . 1 7 6  m  ( m a r k e r  2 8 )
Y =  3 5 5 4 5 8 . 2 5 5 m  Y =  3 5 5 3 0 3 . 5 3 9 m
Z = 5 0 3 ! 8 5 0 . 7 4 2 m  Z = 5 0 3 5 2 3 3 . 4 0 9 m

b a s e l i n e - I e n g t h  1 5 - 2 8  1 2 5 5 0 . 9 7 6  m
disEance 38-39 2 .553 m (by  measur ing  tape)

rece j .wer  k inemat . i cs  (38  and 39) :  epoch no .  GPs t ime in  sec

s ta t i c  a t  2050 m f rom the  re f  1  30570
1 8 1  3 0 7 5 0  1 8 1  s a m p l e s

k inemat ic  fA2 30751.
LO74 31643 893 samDles

s ta ts ic  a t  12380 m f rom the  re f  1075 3 f644
f258 3L827 184 samDles

k inemat ic  L259 31828
2L4O 32709 882 samDles

s ta t i c  a t  2050 m f rom the  re f  2L4L 32710
242L 32990 281.  samDles
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5.3.1 Experiment description

Four geodetic dual frequency receivers were out in the Flevopolder. The measurements
took place on the Oostvaardersdijk from Almere to I€lystad, along the Markermeer. Two
receivers were placed stationary on parking-lots, about L2.7 lrlin apart, figure 3.1. The

kinematic part of the experiment was carried
out with the Department's VW-van. Two
receivers were inside the van; their antennas
were rigidly mounted on a wooden bar, which
was attached to the roof of the van (in the
middle; lengthwise).

28
+
/ \

38 39
#tsl

1 5

^
't2.7 km

Figure 3.1: Flevo 96 local network; 4 receivers

In this section a major part of the first one-hour
session, at one second sampling rate, is used.
The skyplot is given in figure 3.2. The survey
starts static, then the van is driven on the dike
at about 40 km/h (a two-way trip, with a static
period at the turning point) and finally the
survey ends static.

The circumstances during the experiment con-
cerned typical weather for this season of the Figure 3.2: Skyplot at 15 for Flevo 96
year: temperature -4o C, open sky, pressure
1020 hPa, relative humidity aboat 70% and a strong wind blowing from the North-East.
The Sun Spot Number was low, about 20-30; the (absolute) ionospheric delay was small.

5.3.2 Results and analysis

The purpose of relative positioning is to estimate the coordinates of the second receiver
with respect to those of the first one 11. With kinematic surveying the second receiver can
be in motion. For this kinematic GPS experiment, an analysis on quality of the measure-
ment system is given in the second section. The sections 3 and 4 then concern practical
results on positioning and ambiguity resolution, respectively. The last section discusses
the limitations of the current mathematical model. We start off in the first section with a
brief side step on single point positioning.

5.3.2.1 Single point positioning

For the two stationary receivers we will first have a look at the single point solutions.
They were determined on single epoch basis with the CA-code observations. The standard
deviation was taken o:2O.6 m. For these reference stations 15 and 28, reference
coordinates are available. The coordinate estimates obtained were differenced with these
reference values and then expressed in local North, East and Height. In figure 3.3 the
scatters of the 242I position estimates are given for the horizontal coordinates North and
East. Note that for both stations the signature is very similar, it is the SA-effect.

The receiver clock error estimates axe given in the figure 3.4 (expressed in meters). The
vertical axis represents 7x105 m for station 15 and 2x10s m for station 28. The drift of the
oscillator at 15 is about 0.8x10-6 s/s (the typical drift of a quartz-oscillator).

S k / P L O T  ( A z i m u l h  v s  E l e v o t  o n )
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Figure 3.3: Single point positioning, station 15 left, station 28 right
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Figure 3.4: Receiver clock error cd.r, station 15 left, station 28 right

5.3.2.2 Quality: precision and reliability

The purpose of relative positioning is to estimate the coordinates of the rover with respect
to those of the reference. The rover may be stationary or in (permanent) motion, full
kinematic. There is one coordinate-triplet in the first case and three new coordinate un-
knowns are introduced for each epoch in the second case. If carrier phase observations
are used, the vector of unknowns may additionally contain the (integer) double difference
carrier phase ambiguities. The baselines are typically short ones; the two reference
receivers 15 and 28 are 12.7 krn apart. Differential atmospheric delays are assumed to be
zero (in the model).

Observing z satellites gives (n-1) double differences per epoch, per observation type,
with m:7 in this experiment, unless stated otherwise. Satellite PRN 18 was taken as the
pivot. For the stochastic model the standard deviation for the undifferenced code observ-
able was taken or: aF:0.3 meter and for the phase o": oF:0.003 meter.

In this section we will analyse the quality of the measurement system in terms of
precision and reliability for various scenarios. The baseline from reference station 15 to
rover 39 is taken (about 2 km baseline). At the beginning of the session the rover is in
principle stationary, but the data are processed as if it was kinematic. 31 epochs of data
were considered (08:29:30 - 08:30:00).
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The following three aspects were varied to obtain 16 different measurement scenarios:

- number of satellites
- ambiguities float or fixed

7 / 6 / s / 4

r L / x x
- single or dual frequency data (C1*L1 vs CI&PZ+LI&L?) sgldl

With different numbers of satellites. the confizurations are

PRN 04 10  LG L9 24  27  and 18
PRN 04 10  15  19  27  and 18
PRN 04 10  15  27  and 18
PRN 04 10  15  and 18

(p ivo t )  ?  sa te l l i tes
(p ivo t )  6  sabe l l i tes
(p iwot )  5  sa tse l l i tes
( p i w o t )  4  s a t e L l i t e s

Out of the originally 7, satellites were removed such that the final configuration with 4
satellites was not too bad.

precision
In table 3.1 below is given the precision in terms of standard deviations op, oeand. orat
the two epochs k=l and k:3I. The coordinates (of 28 with respect to 15) were trans-
formed to a local topocentric system (at 15): North, East and Height (or Up).

rL/fx drlsg 
" 

tt*i t' s igma a t  k=31
N E H

0 . 0 5 5 2  0 . 0 5 3 5  0 . 1 - 2 3 0
0 . 0 0 3 1  0 . 0 0 3 0  0 . 0 0 7 1
0 . 0 ? 8 1  0 . 0 7 5 9  0 . 1 7 3 9
0 . 0 0 4 4  0 . 0 0 4 3  0 . 0 r - 0 0

k=1
H

dt
d1
s9
s9

svs

7
7
7
7

f l
f x
f l
fx

0 . 3 0 9 9  0 . 3 0 2 3  0 . 7 0 0 9

0 . 4 3 8 3  0 . 4 2 ? 5  0 . 9 9 r . 3

Table 3. I : Precision, standard deviation of North, East and Height in [m]

In figure 3.5 the precision of the fixed solution is given as function of the number of
satellites, both for the single and dual frequency case. Below we will discuss the precision
of the coordinate estimators for the cases in table 3.1 and figure 3.5 and analyse the
consequences with respect to the three aspects.

- single vs dual frequency
With dual frequency data the measurement scenario has been just doubled as compared
with the single frequency scenario (C1+L1 vs. Cl +LI&P2+L2). The precision of the
coordinate estimators improves by a factor 12 @xactly), compare the two float and the
two fixed solutions in table 3.1 and see also fizure 3.5.

- number of satellites
l€ss satellites yields less precise coordinate estimators (for float and fixed). The differ-
ences are quite marginal. The differences are somewhat larger for the step from 5 back to
the minimum of 4 satellites.

- gain in precision: float vs fixed
For the float solution with 1 epoch of data, the standard deviation is typically several
decimeters to up and over I meter. After 31 epochs it is typically at the 1 dm level. For
the fixed solution it is at the few mm level up to 1 cm. Fixing the ambiguities yields a
large gain in precision (for these short observation time spans) see [Teunissen, 1995]. The
conclusion reads that fixing the ambiguities is a prerequisite for achieving the precision
desired in precise surveying, using only short time spans (by employing a fast surveying
measurement technique) .
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Figure 3.5: Precision of coordinates North, East, Height of fixed solution:
standard deviation in millimeter versus number of satellites.

Further conclusions that can be drawn from table 3.1 concern how the precision behaves
as function of time. First it seems that the (instantaneous) receiver-satellite geometry
determines the precision. In the float solution for ft:l, the phase observations do not
contribute to the coordinate estimates (they determine their own ambiguities). Thus
actually a code-only solution is available that determines the coordinates.

New coordinate unknowns are introduced for each epoch (kinematic receiver), but the
ambiguities are constant. They allow to carry over the information from one epoch to the
next in the recursive adjustment. This causes the precision improvement over time in the
float solution. The standard deviation improves by slightly over a factor lE:
o(k=3I)=11J16-31xo(k:I). For a static receiver and a frozen geometry, this relation
would hold exactly. The change in receiver-satellite geometry over these 30 seconds is
still too small to have the phase observations contribute significantly. The precision of the
coordinate estimators is governed by almost solely the code observables.

For the fixed solution, the precision is about equal for all epochs (kinematic receiver). It
is namely determined by the (instantaneous) satellite-receiver geometry and this does not
change much during the 30 seconds time span. As such we have an epochwise coordinate
estimation. Therefore the standard deviations are given only once in table 3.1, at k:31
(the o's at k:I are about equal to the o's at k=31).

Once the ambiguities are fixed, the code observables do not really contribute much to the
coordinate estimators anymore, due to the difference in measurement precision, o:30 cm
vs. o:3mm. The phase observables (now act as very precise code observables and) deter-
mine the coordinate estimators epochwise. We practically have a phase-only case to
determine the coordinates.
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Finally note the relation in standard deviations between the fixed and float solution (/c:1).
There is a factor 1/100 and this is the difference in measurement precision between code
and phase, 30 cm vs 3 mm.

reliability
In table 3.2 the internal reliability is given in terms of Minimal Detectable Biases at the
two epochs ft=1 and k:3I. We consider, for local model validation, outliers in the code
observations and (cycle) slips in the phase observations. The MDBs outlier code and slip
phase are given per satellite (channel, actually per single difference observation). The
MDBs code are in [m], the MDBs phase in [cyc] (L1). Figures 3.6 through 3.8 concern
internal reliability for one representative satellite, namely PRN04.

We will discuss the internal reliability for the cases in table 3.2 and figures 3.6 through
3.8 and analyse the consequences with respect to the three aspects-

MDBS at k=1, MDBS at k=31
fl/fx dl/sg PRN code phase code phase

lml [cyc] [m] [cyc]

f t o 4
1 0
1 4

2 4
2 7
1 8

o4
10

19

2 7
1 e
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1 . 9 0 3  0  . L 2 4
1  0 1 ?  n  1 ? t

L . 9 0 7  0 . 1 3 8

L . 4 9 4  0 . 1 3 9
=  O . 2 4 4

=  0 . 1 1 0

Table 3.2: Internal reliability, Minimal Detectable Biases
in meters for code and cycles for phase

- single vs dual frequency
With dual frequency data, the.MDBs code are equal on the two frequencies LI and LZ
(and therefore only the C1 code observations are given). The MDBs phase (if expressed
in meters, not in cycles) are also equal on Ll and L2 (and therefore only the Ll phase
observations are given, in cycles).

As is clear from the table, using dual frequency data over single frequency is very
beneficial for (internal) reliability. The MDBs are smaller (note in particular PRN 10).
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single ftequency

PRNO4

217

dual frequency

PRN(X

Figure 3.6: Internal reliability, Minimal Detectable Bias for outlier in code observation in meter, versus number
of satellites; for float solution at first epoch k:l (single frequency left, dual frequency middle) and for fixed
solution (at right; single : dual frequency).

- number of satellites
Using more satellites is beneficial for (internal) reliability. The MDBs code and MDBs
phase get smaller. With m:4 satellites, single frequency, there is no redundancy at the
first epoch k:1. The MDB code is also infinite, figure 3.6. The MDB phase values
remain large (both float and fixed) at later epochs, figure 3.7; for a kinematic receiver 3
new coordinate unknowns are introduced epochwise. An MDB of 10 cycles prohibits
handling cycle slips adequately; this value corresponds to the MDB code ( -2 m).

With dual frequency data and m:4 satellites, the MDBs are equal on all channels; the
receiver-satellite geometry has been set off side (this exactly holds for the MDB code of
the float solution at ft:1).

- float vs fixed
At epoch ft:31 the differences between the float and fixed solution concerning the MDBs
are rather marginal. Note that with only one epoch of data ft=l (float) the MDBs phase
are infinite; a cycle slip can not be distinguished from its ambiguity value.

Further conclusions that can be drawn from table 3.2 concern how the internal reliability
behaves as function of time. If the ambiguities are fixed, the MDBs are about equal for
all epochs (and therefore given only for epoch ft:31). For the MDBs phase, the instan-
taneous receiver satellite geometry is involved (and this does not change much). The
MDBs code are equal on all channels (and epochs). In the fixed solution namely, the
coordinates are determined very precisely. In terms of single differences, the code
observations (per observation type) have to determine only one common unknown, the
differential receiver clock error. They practically do not contribute to the coordinate
estimates. The MDB value can easily be computed using an analytical formula

where X, is the non-centrality parameter and oro the standard deviation of the single
difference code observable. With less satellites n, this value increases (giving less
reliability). The values for the different scenarios are 1.894 m (7 svs), L.920 m (6 svs),
1.960 m (5 svs) and2.024 m (4 svs), figure 3.6 at right.

PRNO4
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singlc ftequency

PRNO4
15.0

10.8

dual ftequency

PRNO4

single frequency, 7 svs

PRNO4

single ftequency

PRN04 10.6

Figure 3.7: Internal reliability, Minimal Detectable Bias for (cycle) slip in phase observation in cycles, versus

number of satellites for float solution; for epochs /c:2 (hatched) and k:31 (white), single frequency (left) and

dual frequency (middle) and (at right) as function of time for single frequency with 7 satellites.

The MDBs for outliers in code observations are typically at the 2 m level, thus quite

large with a precise positioning application in mind. Propagation of a model error when

left undetected, is described by external reliability. In section 5.t.2.6 it was concluded

that, once the ambiguities are fixed, the bias in the (position) coordinates, caused by such

an outlier, was absolutely not significant.

Note that between the MDBs code (ft:1, float) and the MDBs phase (fixed), again the

relation of 1/100 (s:30 cm vs o:3 mm) exists, with the MDBs phase expressed in

meters (not in cycles).

At the first epoch ,t:1 of the float solution the instan-
taneous geometry is involved. The code observations
(solely) determine the coordinate estimates and this is
reflected in the MDBs. The MDBs improve as more
epochs of data are used. With an increasing number of
epochs the MDBs code converge to the above values (of
the fixed solution) 1.894, L.920, 1.960 and 2.024 m.

integer ambiguity estimation
For the various measurement scenarios a qualitative
description of the integer ambiguity estimation problem dual ftequency
will be given. It can be inferred a-priori whether success-
ful ambiguity resolution will be likely or not. PRN04

oB

In table 3.3 we consider the float experiments at epochs
/c:1 and k:3I, for the first epoch see also figure 3.9. 02

The standard deviation of double difference ambiguity
18-10 is given, together with the Ambiguity DOP, see o'r

[Teunissen, I997c], Below we will discuss the integer
ambiguity estimation problem for the cases in table 3.3.

Figure 3.8: Internal reliability, Minimal Detectable Bias for (cycle) slip in phase observation in cycles (Ll),

versus number of satellites for fixed solution (given for epoch ,t:31), single frequency on top and dual

frequency at bottom.
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Table 3.3: Standard deviation of Ll-ambiguity 18-10 and ADOP in [cyc]

- standard deviation of ambiguity
With dual frequency data there are twice as much ambiguities (with rz satellites there are
2(m-l) vs (m-1)). From table 3.3 and figure 3.9 it can be seen that the precision for the
dual frequency case is better than for the single frequency case; again the factortf2
shows up. For this short time span, the code observables (solely) have to (indirectly)
determine the ambiguity estimators. With more satellites, there are also more ambiguities
to estimate. The ambi-
guities however, become
more precise.

Further conclusions that can
be drawn from table 3.3
concern how the precision
behaves as function of time.
The standard deviation
improves by approximately
a factor ,/k. Practically a
recursive adjustment is
made upon the constant
ambiguities with the code
observables. The change in
receiver-satellite geometry
over these 30 seconds is
still too small to have the
phase observables contrib-
ute significantly in this.

single ftequency

Figure 3.9: Precision of ambiguity as function of number of satellites: standard deviation of double difference
ambiguity 18-10 (left) and ADOP (right), both in cycles, at epoch ft:l (float solution), single frequency

@ottom) and dual frequency (top).

. ADOP
The ADOP is (approximately) the average precision of the transformed (decorrelated)
ambiguity. It is computed from the determinant of the variance covariance matrix of the
ambiguities lQ.l . Analytical expressions for this determinant are given in [Teunissen,
l997al. When this measure is at the few tenths of a cycle level (or smaller), ambiguity
resolution can be expected to be successful. This is the case for all dual frequency cases.

1 6 5 4

tul frcqucncy

Lt t8-10 ADOP

Ll 18-10 ADOP
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For the single frequency case with only 5 satellites, the ADOP is almost 1 cycle and with
4 satellites the ADOP is almost 3 cycles. Correct and reliable resolution of the ambi-
guities will be problematic. It should be noted that for the ADOP, to be a true predictive
measure, a realistic, adequate mathematical modelling is a prerequisite.

It can be seen that the ADOPs improve as more epochs are taken into account (by
approximately the factor tlk).Note that the ADOPs are much smaller than the standard
deviation of the (untransformed) ambiguity 18-10. The difference gets less as the redun-
dancy decreases (less satellites and single instead of dual frequency data). For the
scenario with single frequency and 4 satellites, thus only 3 ambiguities, they are about
equal. In this case there is not much to decorrelate, see also [Teunissen et al, 19971.

- elongation
The elongation of the ambiguity search ellipsoid is given by the square root of the ratio of
the largest and smallest eigenvalue of the ambiguity variance covariance matrix. A
(hyper-) spheroid has elongation e:1.

In [ibid] it is explained that there are 3 long axes
and that the remaining ones are very short. The
dual frequency ellipsoid, 2(m-I)-dimensional, is
slightly more elongated than the corresponding
single frequency one, (m-1)-dimensional. With
single frequency and m:4 satellites, all three axes
have about equal length (of a few cycles); there are
no small axes.

5.3.2.3 Positioning

First we will concentrate on the positioning per-
formance that can be achieved with the kinematic
GPS surveying measurement technique under oper-
ational conditions. The next section gives results on
estimating the integer ambiguities.

trajectory
The baseline 15 (reference station) to 39 (rover on
the van) is used. The van starts at about 2 km from
the reference and makes a two-way trip with the
turning point at 12 km distance.

The single frequency (C1+L1) data of 7 satellites
were used to compute the trajectory, consisting of
242I positions (the rover was assumed to be in
permanent motion). The ambiguities could be fixed

,r-:-z
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2 . O

The erongation in these experimenrs is generally on llXi'",3i;"il:lTiT 
or ambiguitv search

the order e:102 and is typically prescribed by the
precision of the code data, o=10-1 m vs <r=10-3 m for the phase data. The elongation
does not change much over the 30 seconds time span (geometry change is very small).
Incorporating more epochs gives mainly a scaling effect on the variance covariance
matrix, see the decrease in standard deviation of the ambiguity in table 3.3.

o  5000 104

East [m]
Figure 3.10: Trajectory ofreceiver 39:
two-way trip from 2 km to over 12 km from
the reference 15 at the oriein
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right away at the first epoch ft:l. The trajectory in the local horizontal plane North-East
(topocentric system at 15) is given in figure 3.10. The reference station 15 is at the origin
(0,0). The return-trip along the dike with 3 static periods, boils down to a simple straight
line. In the inset the turn at the far end is shown; the lower left corner of this plot
corresponds to (10110, 6970).

a

E

The velocity is given in figure 3.11 and com-
puted via the displacement in three dimensions
over the 1 second intervals. There are three
static periods, at the beginning, the end and
halfway just before the turn. The van is driving
at slightly over 40 km/h in 3rd gear.

height profiling
In figure 3.t2 the ellipsoidal height of the
rover-antenna is given, after differencing with
the height of marker 15 (the reference station).
The vertical axis of figure 3.12 corresponds to

only 60 cm. This difference in ellipsoidal heights is given for the full trajectory. The van
drives to the far end, remains stationary from epoch k=1075 to k=I258, turns and uses
the opposite lane of the same road for its return. The graph at left shows a symmetry in
this static period; the same features of the road on the dike can be clearly identified in
going and coming. The driving speed was kept as constant as possible, see figure 3.11.

0 500 1000 1500 2000

e p o c h  [ 1 s ]

Figure 3.11: Velocity of van
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0 500 1000 1500 2000

epoch [1s ]

5ooo 104

sl-dist [m]

lliii,i;i1#'.il,'l;:"tiJ;,ll'Jffi il::Hll?".:f,3
In the graph at right, the height is given as function of the slope distance from rover to
reference. The slope distance ranges from about 2 km to over 12 km. Both ways of the
return-trip are given in this graph and can be compared as the reference receiver and the
trajectory are practically on one line (cf. figure 3.10). The agreement in height generally
is on the 2-3 cm level, sometimes worse (up to 5 cm), sometimes better. Note that due to
other traffic, the van sometimes had to take partly the emergency lane.

With figure 3.12 we would have obtained a kind of height profile of the Oostvaardersdijk.
It shows the (ellipsoidal) height for the rover-antenna on the van (it is between 2.0 and
2.5 meters). This height has to be reduced to the road surface and vehicle suspension (and
attitude) effects have to be taken into account in this. Also note that it is the height above
the WGS84 ellipsoid, thus a geometric height, and not a levelled one (the geoid height
has still to be taken into account for practical interpretation).
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coordinate precision
To get an impression of the empirical precision of the coordinates, the estimates are given
for the three static periods in figure 3.13. On the left are the scatters for the horizontal
coordinates and on the right the vertical component. The vertical axis corresponds to 2
cm in all cases (the full number of meters of the horizontal coordinates has been chopped
off for these plots). The spread in horizontal position is at the level 5-10 mm (and note
that the antenna was on the van with the engine still running, crew inside and cars passing
by; the van may move a little). The height is given as function of time. The spread is
slightly larger than for the horizontal coordinates. Unmodelled effects, like multipath (the
roof of the van is not a benign environment for a GPS antenna) and differential atmos-
pheric delays could be present.

The formal precision is given in terms of standard deviation North, East and Height. tt
does not change dramatically over this 40 minutes span.

epoch
1

12LL
0 . 0 0 4 4  m
0 . 0 0 4 3  m
0 . 0 0 4 5  m

os oH
0 . 0 0 4 3  m  0 . 0 0 9 9  m
0 . 0 0 3 5  m  0 . 0 1 2 4  m
0 . 0 0 3 1  m  0 . 0 1 2 3  m

0 500 1000 1500 2000

epoch [1s ]

Figure 3.14: Overall model testTlk,
single frequency code&phase (fixed)

model validation
The overall model test as function of time is given
in figure 3.14. The value of the teststatistic Z
divided by the critical value ,t never exceeds 1.0.
The mean is 0.206 and with e:9 and k:18,O76,
we expect 0.498; the stochastic model is too pessi-
mistic. In the model validation no outliers in the
Cl-code nor cycle slips in the Ll-phase data were
encountered.

The behaviour of the test can not be really matched with the 3 static and 2 kinematic
periods. A dependence of the noise of the (phase) observables on the receiver dynamics
does not show up in this graph. The overall model teststatistics values do make us suspect
time correlation in the data. This again may be due to unmodelled effects like multipath
and differential atmospheric delays. A clear relation of the overall model test with
baseline length is however not present.

code only
In the above estimation, the ambiguities were fixed right away at the first epoch ft:l.
The Cl-code observations were actually not used for positioning (due to the difference in
weighting). The trajectory is reprocessed with only the Cl-code observations, to get an
indication of the positioning capability with single frequency code. The Cl+Ll ambiguity
fixed solution is thereby treated as a deterministic reference; it can be considered as truth
at the cm-level (there may be differential ionospheric effects). The coordinate estimates
obtained are differenced with Cl+Ll ambiguity fixed solution, see figure 3.15.

Especially in the plot for the North coordinate, one might distinguish some multipath
effects (possibly from the roof of the van) with a period of about L minute. The Height is
more noisy than the horizontal coordinates.
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The values of the overall model
teststatistic T, divided by the
critical value k, are given in
figure 3.16. There are no rejec-
tions at all. The mean is 0.062
and the expected value is 0.237
(q:3, k:I2.634). There seems
to be no difference between sta-
tionary and kinematic periods.
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Figure 3.13: Position coordinates for three static periods

Per coordinate difference North, East and Height, the 242I estimates are sirmples of ran-
dom variables with zero mean. The random variable is assumed to be independent in
time. In table 3.5 we give, per coordinate, the mean and empirical standard deviation.
The deviation from zero is quite large for the Height-component. The empirical standard
deviations are smaller than the formal ones. The stochastic model is too pessimistic.

mean
s t .  d e v

North
- 0 . 0 5 0  m

0 . 2 5 4  m

Bast
0 . 0 3 9  m
0 . 1 7 8  n

Height
- 0 . 3 5 3  m

0 . 6 9 8  m

0 . 9 9 1  m
1 . 2 4 1  m
! . 2 2 6  m

fomal standard deviation
1  0 . 4 3 8  m  0 . 4 2 8  n

L 2 L l  0 . 4 3 1  n  0 . 3 5 6  m
2 4 2 L  0 . 4 5 4  m  0 . 3 0 8  m

Table 3.5: Formal and empirical precision for kinematic, single
frequency code solution



224

d N  c l - L r

500 1000 1500 2000

epoch I l s ]

d E  c 1 - L l

500 1000 1500 ?000

epoch I l s ]

d H  c l  L r

Figure 3.15: Coordinate estimates North, East and Height from code only solution

5.2.3.4 Ambiguity resolution

The integer ambiguities need to be correctly esti-
mated and consequently fixed, in order to obtain
positioning results with highest precision. This
section should answer the question: how well can
the integer ambiguities be estimated?

The full session is considered (2421 epochs) and
40 experiments of half a minute, spaced by
another half minute are defined, they are num-
bered 1 through 40. The ambiguities will be
resolved for each of these 40 experiments individ- Figure 3.16: overall model test Tlk
ually; as if each time a loss of lock (but not a kinematic, code-onlv

physical one) has occured. Only 5 satellites are used; PRNs 04, 10, 16, 27 and 18. The 5
satellites were chosen such, to have a not too bad configuration. The van is driven from
about 2 km to over 12 km from the reference.
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Figure 3.18: Ratio second best - best, orlor,
40 experiments, threshold value 1.2
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Figure 3.17: Overall model tesrTlk,
dual frequency code&phase data

First the full trajectory of the kinematic receiver is recovered from dual frequency data
(rover in permanent motion assumed). The value of the overall model teststatistic f
divided by the critical value k is given in figure 3.17. There are quite some reiections,
but in general it is not severe (Tlk isjust slightly larger than 1.0). Identification usually
points to the L2 phase observation of PRN27. The error is estimated to be 0.1 cycle or
less. Adaptation was disabled; the data were used just as they came in. The mean of Tlk
is 0.596 and with Q:t3 and k:2L.725 we expect 0.598.
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Ambiguity resolution involves two stages: the estimation and the validation. The integer
ambiguities are estimated with the LAMBDA method. Reference values for the integer
ambiguities are available and the ambiguities do not change during the 40 minutes
session; no cycle slips occur. Validation still is an open end at present, cf. section 1.7.3.
In this experiment validation is therefore restricted to the so-called ratio-tests, as used in
for example the Bernese software [Rothacher et al, 1996]. The acceptance test reads
o*, o*<5.0 and the discrimination test op"apy'of""ap1)I.2.If these two tests are passed,
ambiguity resolution is declared to be reliable. We concentrate on the test for discrimin-
ability, see below. The acceptance test is passed in generally all cases.

r ambiguity discrimination test
The ratio 'sigma fixed second best - sigma fixed best' is used here just to get a first
(partial) impression of the reliability associated with the integer estimate for the vector of
ambiguities. This ratio is commonly used to measure the discriminability between integer
vectors. It is described in [Frei, 199U. The theoretical justification for this measure is
questionable.

The best candidate for the ambiguity vector, the integer least-squares estimate ir=x| and
the second best.rr2 at" 

"otnput"d. 
Their squared distances read, cf. equation (4:10) and

appendix I.4.7,

x2 (x;\ = 1*,*,rf q r,t 1*,-x,t7

xz@h = (*r*h'ei,' @,-r?)

The ratio can be computed as

r'@?\ _
;trl)

where Z, is the value of the overall model teststatistic of the float solution. Note that the
degrees of freedom of the fixed solution is equal for both sigmas and therefore cancels in
the ratio. Discriminability is decided to be sufficient if the ratio exceeds a certain
threshold. Here. the value 1.2 was taken. I

dual-frequency
With dual frequency data to 5 satellites a successrate of I007o is achieved. In all
experiments, the integer ambiguities are correctly estimated right away at the first epoch.
Validation may take a few more epochs in some cases (directly at epoch k:I, 90% is
validated). Figure 3.18 gives the values for the discrimination test ratio op"ap1lopa111for
all 40 experiments (at epoch k:1); the dotted line gives the threshold value. There seems
to be some relation with the overall model test in figure 3.17; if the overall model test is
small, the ratio is large and vice versa.

single-frequency
Ambiguity resolution based on single frequency data is less successful. In table 3.6 we
give the epoch at which the ambiguities are reliably fixed; it is indicated whether this fix

,lijA(A
tlF,.x'@5
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(integer vector) is correct or not (Y/N) and the discrimination teststatistic (AloI) is given
for this epoch. Fixing is declared to be reliable, based on the two ratio tests. If the
integer estimate is wrong, it is indicated by how many cycles (in absolute sense), for the
original double difference ambiguities.
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5 satellites (left), 7 satellites (right)Table 3.6: Ambiguity resolution with single frequency data;

For 22 experiments (:55%) the ambiguities are fixed, but not correctly. The overall
impression is that reliably fixing with single frequency data of only 5 satellites is quite
problematic over these baselines (z-Izfun). Though 15 out of 40 experiments (:38%) are
correctly and reliably fixed.

In experiment 2 for instance, reliable fixing can finally take place at epoch ft:19 (to the
correct integer vector indeed). The integer vector is correctly estimated from epoch ft=15
onwards. In the mean time the integer estimation result is swapping between this correct
integer vector and a vector that deviates by 0 1 0 1 (in absolute sense) from the correct
one. Discrimination is negative (values of 1.0-1.1) until epoch ft:19.

For experiment 4 the behaviour of the integer estimation is given in figure 3.19 for the
first ten epochs. The data are accumulated and at k=10, based on the float solution then
available, reliable fixing seems possible. The integer estimates are correct from k:7
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onwards and incidently on k:5. The vertical scales span 5 cycles; the spread in the
ambiguity estimates is at the few cycles level, cf. figure 3.9.

18-  t0 18-  16 r8-2',7

Figure 3.19: Integer estimation in experiment 4; the correct integer ambiguity values
(last two digits only) are 18-04 -72 t8-10 -41 18-16 -75 18-27 -82

Additionally ambiguity resolution was considered for single frequency data with 7
satellites. The results are given in table 3.6 as well. The two more satellites are very
beneficial, cf. figure 3.9, in this single frequency case: 31 out of 40 experiments (:797o1
could be correctly and reliably fixed directly at epoch,t:1. Another l0% was fixed at a
later epoch. One integer vector was validated, but was incorrect. The remaining four
experiments could not be reliably fixed within the 30 seconds period.

5.3.2.5 Limitations of the model
The mathematical model derived in chapter 3 was said to hold for short GPS baselines.
For instance differential atmospheric delays (troposphere and ionosphere) are assumed to
be absent, thus zero. In this section we will explore experimentally the limitations of the
functional part of the current mathematical model. We will encounter differential atmos-
pheric delays and multipath and show their effect on the position estimates.

differential atmospheric delays
On longer baselines differential atmospheric delays must be accounted for. Below it will
be shown that in this experiment the effect amounts to several centimeters over the static
12.7 kfir baseline.

A single frequency phase solution was computed for the baseline 15-28 (the two reference
stations) with 7 satellites, 2421 epochs at 1 second. The integer ambiguities were
constrained a-priori. Baseline coordinates for marker 28 were estimated on epoch-by-
epoch basis (as if the receiver was in permanent motion). Reference coordinates for
marker 28 were available and in figure 3.20, the estimated - reference coordinates are
given, in local North, East and Height. The reference coordinates are believed to be good

at the 1 cm level. The estimated
coordinates however, show a
time-varying behaviour around
these reference values; the vari-
ations amount to several centi-
meters. In table 3.7 the empirical

Table 3.7: Empirical mean and standard deviation of coordinates, mean and standard deviation are

single frequency phase, 12.7 kmbaseline 15-28 given for the coordinates.

I

N

3

North
m e a n  - 0 . 0 0 2 5  m
s t . d e v  0 . 0 0 8 2  m

fomal standard dewiation
l-

East geighE

0 . 0 0 5 2  m  - 0 . 0 0 4 2  m
0 . 0 0 8 5  m  0 . 0 3 2 2  m

0 . 0 0 4 4  m
0 . 0 0 4 5  m

0 . 0 0 4 3  m
0 . 0 0 3 1  m

0 . 0 0 9 9  m
0 . 0 1 2 3  m
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Figure 3.20: Estimated coordinates North, East and Height of marker 28

The deviations of the above coordinate differences from zero are formally significant.
From a practical point of view, they are quite close to zero (only a few mm's). The
empirical standard deviations are larger than formal ones. In figure 3.20 variations in the
coordinate estimates can be clearly observed, especially in the Height, it varies from *6
cm to -4 cm. The cause of the effects probably is the differential atmospheric delay
(ionospheric and tropospheric). In the current implementation no correction at all is
applied for these delays. The effect on the coordinates is a few mm/km (ppm) in this
experiment. Typically the Height is most affected. The variation is long term. The x-axis
corresponds to over 2400 epochs at 1 second rate, or 40 minutes. Multipath is not the
first suspect in this as it generally yields variations on much shorter term (tens of seconds
or a few minutes).

During this experiment, the ionospheric delay (in absolute sense) was rather small and
tropospheric conditions were not rare. The differential delays (ionospheric and/or
tropospheric) turned out however, to be non-negligible (the difference in height between
the two stations 15-28 of this baseline is marginal, a few decimeters only). The effect will
be even larger when significant height-differences are present (e.g. with the kinematic
receiver on an aircraft); the differential tropospheric delay will then play a (even more)
prominent role.

0 500 1000 1500 2000

epoch I ts ]

0  500 1000 1500 2000

epoch [ l s ]

0 500 1000 1500 2000

epoch I ts ]

Figure 3.21: Local overall model test l/ft,
single frequency phase, baseline 15-28

The local overall model test, teststatistic value I
divided by critical value ft, is given in figure 3.21.
The mean of Tlk is 0.62; whereas with q=J s14
k:I2.63, 0.24 is expected. This may point to a
discrepancy between data and model; the math-
ematical model may not be fully adequate for this
experiment. Adaptation was disabled. There
appears to be some correlation between the overall
model test in figure 3.21 and the graph for the
Height in figure 3.20; it the Height differs largely
from zero, the value for the teststatistic is large.

Differential atmospheric delays are most likely the cause, beside possibly multipath. The
effects amounts to several centimeters on this I2.7 l{Jn baseline. High precision applica-
tions require whether accounting for the differential tropospheric and ionospheric delays,
or restricting the baseline length, when though using the simple mathematical model.

For a closer analysis on the mismodelling by the functional part of the model, the
coordinates of the rover, point 28, were constrained to the reference values, and the
(double difference) ambiguities to their integer values, see appendix A. Dual frequency
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phase data were used. Per observation type (L1 and L2) enor estimates were computed

epochwise (locally) per channel. According to the alternative hypothesis, the unknowns

are the (differential) receiver clock error and the model error. The observations are

reduced for the known parameters. The observation equations in terms of single differ-

ences read

Ho,  I  E IE;z l  =  c6r r t+V i :1 , . " ,m

Hu, :  E IEL I=c6 ' , r z r *V

Unmodelled effects, represented by the model errors V and V are supposed to be the

differential tropospheric Z and ionospheric delays /, thus

V i  = T i  - I i

ot  - r i  - f t | i
6

Consequently double difference delays are computed from the error estimates according to

the alternative hypotheses, by inverting the above relation. Two examples of double

difference ionospheric delays are given in figure 3.22 and of tropospheric delays in figure

3.23. These atmospheric delays each clearly show a different behaviour, although the
(magnitudes of the) delays are formally not significant; the formal precision reads

or:0.018 m and or:0.013 m.
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Figve 3.22: Double difference ionospheric delays
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Figure 3.23: Double difference tropospheric delays
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Satellite PRN 18 (high elevation) is taken the pivot for double differencing. Satellite PRN
16 sets (below 30o elevation) and the ionospheric delay increases up to 3 cm. Satellite
PRN 19 is at high elevation and the ionospheric delay is small, between 0 and *1 cm;
also the tropospheric delay is small and nicely constant. For satellite PRN 27 there clearly
is multipath present, both on the computed tropospheric and ionospheric delay; the effect
is several (2-3) centimeters.

float solution
As a side step the behaviour of the float solution is considered for this baseline 15-28.
Single frequency code and phase data were used. New coordinate unknowns were
introduced for each epoch (thus if receiver 28 was in permanent motion). The coordinate
estimates were differenced with the reference values; they are given in figure 3.24, in the
local North, East and Height system. The ambiguities are constants, but are not con-
strained to their inteser values.

1

Al

b o

o.l

I

I

^l

E o
c,l

I

o
I

o.l

A

North

500 1000 r500 ?000

epoch I l s ]

0  500 1000 1500 2000

epoch l l s l

0  500 1000 1500 2000

e p o c h  I l s ]

Figure 3.24: Coordinate estimates North, East and Height of float solution, Cl+Ll

It can be seen that as time passes, the float solution converges to the reference values (at
least at the decimeter scale of figure 3.24),but it takes a long time.

The (formal) precision improves as time passes:

e P o c h  k =  1  :  o r  =  0 . 4 3 8 ,  o "  =  0 . 4 2 9  a n d  d r  =  0 . 9 9 1
e P o c h  k = 2 4 2 f  :  o x  =  0 . 0 0 5 ,  o r  =  0 . 0 0 4  a n d  o r  =  0 . 0 1 3

The (local overall) model validation resulted in one rejection (at epoch k:1.579).

multipath
Multipath could already be suspected in figure 3.23 of the static baseline. To experimen-
tally show the effect of multipath, the short baseline 39-38 on the van is used. During a
period of about 3 minutes (171 epochs at 1 second), prior to the actual processing
session, the van was static. Multipath was expected to occur as the roof of the van is not
a benign environment for a GPS antenna.

Single frequency code and phase data were used (6 satellites). New coordinate unknowns
were introduced epochwise (as if receiver 38 was in permanent motion with respect to
receiver 39). The ambiguities were (reliably) fixed at epoch fr:2 (at epoch ft:2,
oN:0.0051, oE,:0.0030 and orr:0.0079 m).

The coordinate estimates are given in figure 3.25, in the local North, East and Height
system (at 39). The vertical scale represents 2 cm. In particular for the North and Height,
a variation over 5 mm with a period of about 1 minute can be observed.

lml
lml
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Figure 3.25: Coordinate estimates North, East and Height for 39-38

This baseline, rigidly connected to the van, must be quite insensitive to small motions of
the van (crew, wind, traffic). On such a short baseline differential atmospheric delays can
not play a role. What remains as the principal suspect, is multipath from the roof.

The model validation did not result in any rejection. The overall model test, teststatistic
value Zdivided by critical value ft, is given in figure 3.27. Yalue 0.43 was expected for
Tlk: the mean was smaller. nl. 0.16.
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For figure 3.26 we consider one function of the
three coordinate estimates: the baseline leneth.
It is computed from

I = tf alt2+an2+dH2

The vertical axis represents 2 cm. The formal
precision is o,=Q.9639 m (at epoch ft:2) and
followed from applying the error propagation
law on the coordinates variance covariance
matrix using the linearized version of the above
equation. Apart from the - 1 minute variation,
the noise seems to be much smaller.

0  50  100  150

epoch  [ 1s ]

Figtre 3.27: Overall model test T/k,
baseline 39-38, single frequency data

epoch [1s ]

Figure 3.26: Estimated length /, baseline
39-38 on van, single frequency data,
reference length by tape 2.563 m

The variations observed in figure 3.25 are also present in figure 3.26, which practically
rules out motions of the van (both antennas were rigidly mounted on a solid wooden bar).
In a hostile environment, like the highly reflective roof surface, multipath seems to be
clearly present and it currently yields a too large
effect to be not taken into account in processing
the data, see also [Heister et al, 19971.

In this experiment, the antennas were mounted
some 15 centimeters above the roof of the van and
ground planes were used. Physically seen the van,
a large conducting (and reflecting) object, is in the
near-field of the antenna(s). It may get electro-
magnetically coupled and thereby affect the overall
electro-magnetic properties, see [El6segui et al,
19951. The consequences on signal prop-
agatior/reception are hard to predict.
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The length of the baseline was also measured by tape and yields 2.563 m. This value is
indicated in figure 3.26 by the dashed line. The discrepancy is at the few mm level
(possibly a long term bias).

5.3.3 Summary

In this section we will first briefly review the findings of the kinematic GPS surveying
experiment. Then we will give several recommendations for future developments on this
measurement technique.

summary
In this experiment, the measurement set up for kinematic GPS surveying consisted of a
reference station and a roving receiver on a moving van. The van was driven to over 12
kilometers from the reference.

The precision of the fixed solution is at the 1 cm level or better. The precision of the
float solution (with 1 epoch of data) is 100 times poorer. The reliability of the measure-
ment system is generally (more than) sufficient. The MDBs for outliers in the code are
typically atthe2 meter level. They are quite large, but practically harmless to the precise

coordinate estimators. MDBs for slips in the phase (after 31 epochs of data or with
ambiguities fixed) are atthe 2 cm level (or equivalently 0.1 cycle). Cycle slips are thus
likely to be found. The above findings hold for an ordinary configuration with 6 or 7

satellites. It should also be mentioned that the quality of the dual frequency scenario is
better than the corresponding single frequency one.

The spread in position is typically at the 1 cm level. With dual frequency data to only 5
satellites, the integer ambiguities could be instantaneously estimated correctly in all cases.
With single frequency data this was problematic; more satellite redundancy is then
needed.

From a technical point of view, surveying with kinematic GPS is feasible. Once the
carrier phase ambiguities are fixed, the precision is at the millimeter level, even for very
short observation time spans. The overall conclusion reads thus that the measurement
technique can be successfully employed in practice for (high) production surveying.
Kinematic GPS surveying -has the potential for very fast and efficient surveying. One
should however be aware of the limitations of current implementations. They are
summarized below.

recommendations
The mathematical model, functional and stochastic part, was completely specified in
chapter 3: Elyl=Ax i D{y} =Q,.The results of this section indicate that extensions may
be needed. The functional moilel may become E[f] =trv+Api additional unknown
parameters x, could be needed to cover e.g. the differential atmospheric delays. These
delays were found to be currently the main error source and the situation will deteriorate
when the baseline length is extended from 10 kilometer up to for instance 100 km. If they
are not taken into account, they will bias the coordinate estimates, usually the vertical
component more than the horizontal ones. The results really urge for the development of
a method to deal with the differential atmospheric delays in a satisfying way.
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For the highest precision applications, multipath reduction or prevention is required,
probably on the hardware side, as modelling for the data processing is thought to be very
difficult, if not impossible. Currently the effect of phase multipath was found to be
several millimeters and it may reach up to the centimeter level and, as it is currently not
taken into account, it will bias the (coordinate) estimates. It is generally expected that
multipath at a site to be surveyed precisely, will average out to some extent, with several
(e.g. 5-15) minutes of data. Occupying the site (stationary) for such a period will more or
less eliminate the bias in the coordinates. For the time being this may be a practical
solution; one is after isolating the direct-path signal, see the discussion in [Weill, 1997].
Multipath may be further reduced in future by improvements in antenna design, receiver
hard- and software. The current state of the art on multipath reduction or its mitigation is
discussed in [ibid] and [Garin et al, 19971.

Other effects, see table 4.4 in chapter 3, like the satellite orbit.t' and the coordinates of
the reference receiver rl are expected to play not a role. When Selective Availability (SA)
is turned to zero, see e.g. [Sandlin et al, 1995], these effects will be reduced even
further"

The last recommendation, a more fundamental and theoretical one, is that the probability
density of the integer estimator needs to be investigated. This item is closely related to
the statistical validation of the integer ambiguities, that is to be carried out prior to really
fixing the ambiguities to the integer estimates. Currently only a preliminary ad-hoc
validation was carried out.

Appendix 5.A Error estimation for a known baseline

A-priori introduction of geometric information in the mathematical model for data
processing yields a very powerful tool for analysing the data. In particular data from a
zero baseline (two receivers, one antenna) are very well suited for this kind of analysis,
the baseline coordinates are deterministically known to be (0,0,0), as xr=x2, or
xr-xr=0 (physical ly).

In this appendix the mathematical model used for the analysis will be discussed. As an
example, we give the treatment of the Ll-phase observations, denoted by P,". Then it is
shown that the analysis, per observation type, relies on the local error estimates.

mathematical model
We start from the mathematical model for one epoch of data, in terms of single differ-
ences, see equation (5.5) of chapter 3. When both receivers 1 and 2 observe m satellites,
there are n single differences.

In (A.1) PII=P;-P; (in tml) is the single difference observation for receivers 1 and 2 to
satellite s. cA6rt is the differential receiver clock error; actually c(A6rr-A6rt) is
estimated. The satellite clock error is absent. ,,{ri is the single difference amUiguify for
satellite s, exp_ressed in meters. The differential atmospheric delays (ionosphere Ii, and
troposphere Ti) are assumed to be zero. Multipath is not modelled.
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transformation of unknowns. applied to the model of
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The variance covariance matrix for the undifferenced observables is taken a scaled unit
matrix (equal standard deviation for all satellites). It is assumed that both receivers
behave identically (but independently), i.e. o""=o"rs lrnd thereby ar"r=t/Top.

The design matrix of the above model has a rankdeficiency of 1 in the last (rn+l)
columns; the receiver clock error interferes with the n single difference ambiguities. We
will bring ambiguity Ai, into the clock error cA6r/. The other (m-1) single difference
ambiguities become differences with the first ambiguity A;2, and are actually double
difference ambiguities, with pivot satellite 1. The transformation reads:
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The single difference ambiguity Alr, as a separate unknown, has been left out. There are
n single difference observations and 3*I+(m-I) unknown parameters. With only one
epoch of data, it is not possible to estimate the full vector of unknown parameters.

In this analysis, the integer (double differenced) ambiguity values are known a-priori and
used as such (i.e. constrained). The phase observations have actually become very precise
code observations. The (z-1) double difference ambiguities are thus initially constrained
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to their reference values (integers; which can be assumed to be correct). They are brought
to the left hand side. The variance covariance matrix is still left unchanged.

(A.3)

Single epoch positioning is
involved.

knovm baseline
When the coordinates of
Axr=0 and can be left out
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The functional model comprises n corrected single difference observations in vector y,
nxl matrix A and only one unknown parameter in x (per epoch); the redundancy equals
m-I. Tlte variance covariance matrix (A.1) is still left unchanged.

error estimation
The data analysis relies on the error estimates. For each single difference observation
individually (all channels/satellites and the whole series in time), the (local) outlier
hypothesis is considered. For one epoch of data, for the L1-phase observations, the
following set of m alternative hypotheses H", through H* are considered, one at a time:

El

fl 
pn'a,t*tt)

",ff], [l] ,,,
When the single difference observations are corrected a-priori (and deterministically) for
the known baseline coordinates and possibly for the known integer. ambiguities, the
resulting functional model is linear (A.5); the pivot single difference Ai, is not explicitly
denoted.
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Due to the simple structure of the design matrix,
expressed in terms of the (corrected) observables:
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and their variance covariance matrix reads
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Note from (A.7) that the sun of the error estimates equals zero, that i, iVt=O, or, the
last estimator fl is a linear combination of the above-Vr through V'-t,ttf. also section
4.2.I on separability. From (A.8) it can be seen that when m is large, the mutual
correlation between the error estimators is small, pvivi = -l . There is no correlation in
time, if the observables are also not time correlated. 

m-l

Note also, that for model (A.5), there exists a simple relation between the vector of error
estimators (A.7) and the ra-vector of least-squares residuals (section 7.2 of chapter 1),
namely e=+Y.

The error estimates, computed according to the outlier hypotheses, provide a powerful
tool for analysis per observation type on channel (satellite) basis. Under the null hypoth-
esis, the distribution of the estimator (mean and standard deviation) is known.
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The error estimator has thus zero mean. Once a series of error estimates (samples) has
been computed, we can confront it with these known (formal) parameters. Discrepancies
between assumed model and actual data, if present, will show up; the mean primarily
concerns the functional model. the standard deviation the stochastic model.

Appendix 5.8 Elevation dependence in observation precision

In this appendix we will discuss the dependence of the observation precision on elevation.
Starting from a scaled unit variance covariance matrix, equation (A.1) in appendix A (the
example for one epoch of Ll-phase observables), the elevation dependence is generally
the first step to refine the stochastic model:

(8 .1)

2
a p ^

which is a diagonal matrix with varying entries.

observation noise
Noise in GPS code and phase observations may originate from various sources. They can
lie in the whole trajectory from the generation of the signal in the satellite circuits, via
antennas and propagation media, to the processing by the receiver circuitry. It starts with
the satellite's transmission and antenna pattern. Then space loss is caused by the spread-
ing of the signal in space; with GPS, the distance satellite-receiver is shortest when the
satellite is in the zenith. The earth is surrounded by several layers (as shells) containing
particles, that cause atmospheric loss. The longer the path through the atmosphere, the
more the signal gets attenuated, resulting in a lower signal to noise ratio; this is the case
for decreasing elevation. Additional foliage attenuation is possible. Finally, the receiver-
antennas are usually designed to have low gain at low elevation, in order to avoid
multipath to some extent, and again this results in a lower signal to noise ratio for the
signal that enters the receiver. These items are dealt with in chapters 6,3, 12, 13 and 8
of [Parkinson et al, 1996].

elevation dependence
From the above list, the receiver antenna gain is thought, under normal operating
conditions, to be the dominant factor. Measurements taken under low elevation will be
subject to larger noise, as compared with measurements taken at high elevation. Addi-
tionally at low elevations, multipath, a (functionally) unmodelled effect, is more likely.
For this item on antenna gain, the discussion in [El6segui et al, 1995] is summarized.
Preferably the antenna should reject entirely any signal arriving from a negative elevation
angle (as well as any signal with a left-handed circular polarization). On the other hand, it
must receive signals arriving from any positive elevation angle. As a compromise the
antenna gain has had to be gradually reduced towards low positive elevation angles, see
also the amplitude patterns in [Schupler et al, L9941. As a result the antenna gain pattern
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is likely to translate into an elevation dependence for the standard deviation of the phase
and code observable.

modelling
The elevation dependence is discussed in the context of surveying/geodesy, where the
antenna's boresight axis always remains (more or less) directed to the local zenith (local

level) and thereby (approximately) parallel to the Height/Up direction of the local
topocentric system. The elevation e is then the angle between the line of sight to the
satellite and the local horizon (North-East).

An example for the standard deviation of the code observable ao= fG) is given in [Euler
et al, 19911, see also Uin, 19951:

a  = a + a . e - ' - o
p o l

where
o"
€
eo

ao

a1

standard deviation of observable 2
elevation angle under which observation is made [deg]
reference elevation angle [deg]
(approx.) standard deviation [m] at e =90 deg
standard deviation [m] at e :0 deg equals ao+at

As above, the standard deviation is usually taken a monotone decreasing function of the
satellite elevation; in addition, also the relation with the signal strength (signal-to-noise
ratio SNR) is used in [Gerdan, 1995] and [Gianniou, 1996]. The advantage of the latter is
that the actual measurement situation (epoch and location) is taken into account, and the
SNR values are available as the observations come out of the receiver. The value and
interpretation of these ratios however, are in general not clear. The first approach
concerns a fixed relation between standard deviation and satellite elevation (and thereby
assumes azimuthal symmetry and that all satellites transmit equal power). It does not
depend on the actual circumstances (atrnosphere).

consequences
Switching from the simple scaled unit variance covariance matrix to a stochastic model
that incorporates the elevation dependence will effect the quality, in terms of precision
and reliability, of the measurement system. There can be two consequences. When only
short observation time spans are used, as in kinematic GPS surveying, the elevation
dependence has practically no time-varying effect as the elevations of the satellites do
change only slowly. The only purpose of this modelling is then, to weight different
satellites differently.

In general, at least when the overall level of precision is not changed, the effects are not
dramatically. Low elevation satellites will get down-weighted, in favour of high elevation
satellites. The Minimal Detectable Bias for an outlier in a range observation from a low
elevation satellite will typically be larger than for a high elevation one. Because of the
weighting, propagation of this large MDB into the estimators however, will be limited.

Concerning the precision of the coordinate estimators, it is to be expected that in general
the difference in precision between Height on the one hand, and North and East on the
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other, gets less pronounced by introducing the elevation dependence into the stochastic
model. The following example should make this plausible.

r As an example, we consider the optimal receiver-satellites geometry case. The configur-
ation, with four satellites, consists of three at zero degree elevation (azimuths 0o, 120o
and 240) and one in the local zenith. The total spread in elevation angles is at maximum.
For the standard stochastic model (all observables unit standard deviation) the variance
covariance matrix of the coordinate estimators (North, East and Height) is given at left.

Q r = Q * =

The matrix is diagonal and the precision (standard deviation) of the Height is factory'2
poorer than of the North and East.

In the elevation dependent model, the standard deviation of the zenith observable is set to
t/Il3 =Q.$, the others remain unit. The resulting variance covariance matrix (at right) is a
scaled unit matrix! The precision of the Height, w.r.t. the North and East, has improved.
The correlation between the Height and the clock error is p: v-" =0.71.t

a

Appendix 5.C Cross-correlation measurement technique

Originally the Turbo-Rogue came with the cross-correlation measurement capability to
circumvent Anti-Spoofing, see also section 2 in chapter 3. Later models of Trimble
employ it too and Ashtech phase data is likely to result also from cross-correlation.

In this appendix a mathematical description of the measurement technique is hypothesized.
No proof is given for the statements, but the findings of section 2 on the zero baselines
do not contradict them.

measurement technique
Usually the received CA-code is correlated with the receiver generated CA-code. The
correlation yields a difference in time Atcj, which multiplied by the speed of light c, gives
the pseudo-range (or the Cl-code) observationp in meters.

For cross-correlation the receiver uses the incoming Ll-signal and L?-signal, both
containing the P-code (encrypted into Y-code; it is secret, but equal on both Ll and L2).
The two codes are matched and this yields the differential time difference A/"r-"r. This
difference can be multiplied by c and yields the differential pseudo-range observation q in
meters. This observation q can be added directly to p to yield the reconstructed pseudo-
range (or P2-code) observation onL2, f .

Usually the phase of the incoming carrier, after removing the code modulation (by code-
correlation), is compared with the receiver generated carrier. This yields the carrier phase
observation, (after multiplication by \r) P on Ll [meters].

;[",J;[",J
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For cross-correlation the incoming Ll and L2 signal have been mixed, see also [Dieren-
donck, 19941. Two carriers, with frequency f, and fr, lnve been mathematically multi-
plied. This yields a low frequency (az-a) carrier which is used for further processing. It

has frequency f,-fr:347.82 MHz. The phase of this signal is measured (with respect to
the receiver oscillator's), 6z_r=02-01, and it is the differential phase observation (in

cycles). The reconstruction now takes place by a direct addition in terms of cycles

Qr=$,*(02-01) and multiplied by the L2-wavelength Xr, this yields the observation L2
P in meters.

stochastic model
For a cross-correlation receiver one should account for the statistical correlation between
the dual frequency code and phase observables. The two (direct) observables are pand 4:

,'[f)'

where p is the code observable on Ll (C1), and g the cross-correlation observable
(Y2-Y1). The observations are expressed in meters; both result from observing a time
difference (multiplied by c, the speed of light). It is assumed that code correlation and
cross correlation yield uncorrelated observables. The code observation on L2, usually
denoted by P2 (or C2), is reconstructed (in meters) as p+q, thus P2=C1+(Y2-Y1). The
transformation of observables thus reads

where ! denotes the (reconstructed) code observable on the second frequency. The
corresponding stochastic model becomes

(c.1) or@t

where the variance of p shows up also as the two off-diagonal elements. ol- no* denotes
the variance of the code observable onL?.

The two (direct) phase observables are P and Q:

("', I=f '1)

B I l(;)

_('l o', 'l 
_ f"; ";l- 

l4 4.'tr)- l,', "',)

["r .Jor(fi)r

where P is the phase observable on Ll, and Q the cross-correlation observable (L2-LI).
The observations are expressed in meters. It is assumed that phase comparison and cross
correlation yield uncorrelated observables. The phase observation on L2, is reconstructed
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(in cycles) as P4,+QAr, thus L2:LI+(L2-LL). The transformation of observables thus
reads

where P denotes the (reconstructed) phase observable on the second frequency. The
corresponding stochastic model becomes

(c.2) IP'IDtIplt

1\" t
i a r
^ l

, L t , t  2(1)-op+o

where the variance of P shows up also in the two off-diagonal elements. o|- noo.u denotes
the variance of the phase observable on L2. The covariance o"; is a consequence of
measuring the Ll-phase and the LL-LZ (acnrally the wide lane) phase (instead of the L2-
phase itself).

consequences
It has been shown that for a cross-correlating GPS receiver, the observables (dual
frequency phase and code) do have a block diagonal matrix, instead of the traditional
diagonal one. In the data processing, for both estimation and quality control, the correct
stochastic model should be used. Below we will briefly indicate a consequence of using
the cross-correlation stochastic model over the current simple model.

The (linear) model of observation equations (in terms of one double difference, cf.
equations (5.7) in section 3.5 and (6.2) in 3.6) for a short baseline, can be reformulated
by using a square and full rank transformation, into

B [r:J a
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The cross-correlation reconstruction has been undone in (C.3) and the variance covariance
matrix is diagonal. The cross-correlation code observable g has expectation equal zero; it
is not related at all to the geometry contained in the range p. Hence the severe conse-
quence is, that the cross-correlated code observable, P2-P1, is set completely aside in the
estimation; it does not contribute to the estimators (for e.g. the baseline coordinates). The
cross-correlated phase observable Q does contribute by the grace of the wavelengths being
not equal, tr21\r.
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6. Conclusions and recommendations

The research underlying this thesis was initiated by the question: 'Can the kinematic GPS
measurement technique be used for surtteying, and if so, how good is it, or in other
words, what is the quality of the coordinate estimators?'. Directly relnted is the question:
'What shortcomings in modelling and/or processing do show up, when highest demnnds
are put on the quality?'. The answer to the frrst question is positive, as already evidenced
in practice. The second and third item have been extensively dealt with.

6.1 Summary

In the theoretical part of this thesis 'Recursive data processing for kinematic GPS survey-
ing', a procedure for processing the GPS data was developed. The theory on mathemat-
ical geodesy, recursive data processing and mathematical modelling for (kinematic) GPS
surveying were dealt with, the chapters 1 through 3.

measurement set up
The measurement set up of kinematic GPS surveying involves the use of two receivers
(relative positioning). The reference receiver is stationary, the other - the roving receiver
- can be either in motion or stationary. The distance between the receivers lies in the
order of a few kilometers with an upper limit of typically ten kilometer. Both receivers
simultaneously make observations to the same set of satellites. When the data of the
reference receiver is then transferred to the roving receiver by means of a telemetry link,
data processing can take place in real time at the site of the roving receiver. Kinematic
GPS surveying as a measurement technique and the variations therein, together with the
applications, have been briefly discussed in section 3.1. The adjective'kinematic'refers
to the motion of the receiver during the survey and thereby to increased surveying
productivity.

mathematical model
The mathematical model - functional model and stochastic model - for the GPS phase and
code observable has been discussed in section3.4. The restriction of the baseline-length
to ten kilometer is caused mainly by the assumption of equal atmospheric delays at both
receiver sites. For the implementation, an equivalent formulation of the model of
observation equations in terms of double differences is given (section 3.5). The unknown
parameters are baseline coordinates and double difference ambiguities.

recursive data processing
The data processing in kinematic GPS surveying will be recursive. The incoming data are
treated in a sequential manner. At every epoch, based on the data and previous estimation
results, new estimation results are computed according to a certain scheme. In chapter 2
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the Square Root Information Filter (SRIF) implemen8tion has been proposed. Validation
of the mathematical model is carried out with the Detection, Identification and Adaptation
(DIA) procedure; it has been reviewed in appendix B of chapter 2. This testing procedure

is integrated in the recursion. The full data processing is recursive and can therefore be

carried out in (near) real time, parallel to the gathering of the data. Quality control can be
performed already in the field and positioning results are directly available. When quality

turns out to be insufficient, corrective actions can be taken immediately. A re-survey,
caused by insufficient quality, can then be avoided. The quality of the positioning results
is controlled in the field. The principles and concepts of estimation and testing have been
given in chapter 1. The integer double difference ambiguities are handled by the lrast-

squares AMBiguity Decorrelation Adjustment (LAMBDA)-method, section 1.4.

pr(rcess
The purpose of kinematic GPS surveying
is to provide - in an efficient way - high
qualrty geometric information on a local
scale. As a result of the recursive process-
ing of GPS code and phase data, estimates
are available for the unknown parameters
of which the geometric unknowns - the
baseline coordinates - are of primary
interest. The process is summarized in the
concise flow diagram of figure 1.1. This
diagram is run through every epoch. The
qualrty of the (coordinate) estimators
comprises precision and reliability.
Measures of precision and reliability have
been given in chapter 4. This chapter also
dealt with several implementation, compu-
tational and practical aspects of the data Figure l.l: Flow diagram for GPS data processing

processrng.

The experimental part, chapter 5, consisted of the data processing results and the analysis
for three GPS measurement campaigns.

Ypenburg 94
The first campaign Ypenburg 94 - a representative case (configuration) from practice -

was used primarily to analyse the quality of the coordinate estimators. The analysis was
actually a designing process. Quality was described in terms of precision and reliability.
For the set up of kinematic surveying (relative positioning), various measurement
scenarios were analysed: code only, code and phase, single and dual frequency and with
the carrier phase ambiguities float and fixed.

LINAVCO 95
The UNAVCO 95 campaign was used to analyse the stochastic model. The importance of
an adequate stochastic model is evidenced by the fact that beside precision and reliability,
also the estimation results themselves do depend on this model. The analysis revealed that
the stochastic model currently in use, is definitely in-adequate and need to be refined. The
data of four geodetic GPS receivers were extensively analysed; all four observation types
were considered, dual frequency code and phase (under Anti-Spoofing). The results
showed elevation dependence for the measurement precision of the observables, cross-

GPS observations
code / phase

SRIF: recursive estimation
LAMBDA: integer ambiguity estimation
DIA: qualtty control

coordinates
quality description
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correlation between frequencies (as a consequence of the measurement technique under
Anti-Spoofing for some receivers) and also mutual correlation between satellites. The
functional model was found to be adequate for the data of the zero baselines. Clearly the
stochastic model must be further tuned and this research is thought to give a first idea of
what an adequate stochastic model should comprise.

Flevo 96
The Flevo 96 campaign was used to show the kinematic GPS surveying technique at work
in practice. After a design analysis ot quality, the positioning performance was shown,
together with the capability of resolving the ambiguities. The precision of the coordinate
estimators is at the 5-10 mm level, once the ambiguities are resolved. The ambiguities
were demonstrated to be correctly estimated based on data from a very short time span
only, by the computational efficiency of the LAMBDA method and its strict application of
the least-squares estimation criterion to these parameters. Resolution can be realized
instantaneously at a high successrate when dual frequency code and phase data are
available. With single frequency data, sufficient satellite redundancy is indispensable for
this. The capability of spotting errors in the observations, e.g. cycle slips in the phase,
was shown. Reliability, the resistance of the data processing against the errors, was good.
The limitations of the mathematical model for GPS surveying were shown concerning the
functional model. Differential atmospheric delays were neglected (assumed to be zero in
the model), but may play a role, especially for longer baselines (longer than several
kilometers). Multipath may still be a matter of concern for the highest precision applica-
tions at any baseline length.

6.2 Conclusions

The developed prototype implementation of the data processing worked satisfactorily. The
implementation features the recursive estimation with the Square Root Information Filter
(SRIF), the Detection, Identification and Adaptation (DIA) - procedure for quality control
and the integrated LAMBDA method for integer estimation of the ambiguities.

The kinematic GPS surveying measurement technique, combined with the developed
implementation of the data processing, provides relative positions with mm-cm precision,
in principle instantaneously, thus based on one epoch of data only. As the data processing
is recursive, results can be made available in (near) real time in the field, while the
survey is run.

Answering the research question, the conclusion reads that, the kinematic GPS measure-
ment technique, from a technical point of view, is very well suited for use in surveying.
It has the potential of providing geometric information in a fast, easy and efficient way,
thereby enabling a high productivity. The quality of the geometric information obtained
with kinematic GPS surveying, has been described in chapter 5 for various measurement
set ups, configurations and scenarios.

6.3 Recommendations

Recommendations for direct further research concern refinements of the current math-
ematical model for GPS surveying, or positioning in general. The complete negligence of
differential atmospheric delays in the functional model for instance, limits the inter
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receiver distance (the baseline length) to roughly 10 kilometers (sometimes less, some-
times more). Research should be made to finally arrive at a uniform model, adequate for
the whole range of baseline lengths, starting from zero. One may think of a stochastic
modelling of the (differential) delay parameters and using data from a GPS reference
network.

Refinements to the stochastic model have been indicated. Models currently in use are in
general quite simple and seem to give not a proper description of the GPS code and phase
observation noise. The stochastic model will to a cercain degree also depend on circum-
stances outside the receiver, and therefore a regular calibration, also in the field, is
recommended for the highest precision applications.

Further, less urgent, but more fundamental recommendations concern the stochasticity of
quantities, currently assumed deterministic. There are the probability density of the
integer estimator, as mentioned in section 6 of chapter 1 (with a direct impact on the
validation in the ambiguity resolution process) and the stochasticity of satellite position
and reference receiver position, as mentioned in section 3 of chapter 3, or more gen-
erally, the connection of the new measured geometric information to the existing geodetic
infrastructure.




