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PREFACE 

The present publication is the result of a study which lasted from the end of 1974 until the 
spring of 1980. The earliest ideas, however, occurred in the last part of my period as a student 
at the Technical University of Delft. At that time I was first confronted with the theory of 
S-transformations and criterion matrices as it was presented, during the courses, for use in 
planimetric networks. Then the question arose of how t o  apply these ideas in three- 
dimensional pointfields. Professor Baarda of T.U. - Delft studied this problem in the beginning 
of the seventies, later on I was forced in that direction by difficulties I met when studying the 
precision and reliability of aerotriangulation blocks. When my research was progressing, 
Professor Baarda showed interest and was willing to act as my promotor on this subject. I am 
very much indebted to  him for the many valuable discussions we had during the last six years. 
His criticisms and suggestions were very stimulating for my research. His assistant, Dr. v. Daalen, 
gave valuable suggestions for the part of the thesis concerning the choice of covariance functions 
for the criterion matrices. He was also very helpful in reading the thesis and checking some of 
the derivations. 

Furthermore, thanks are due t o  Miss Hunter who turned my English into real English, and to  
Mr Rogge for editing the text. Last but certainly not least I would like t o  thank Mrs Lefers 
who never lost her good humour during this difficult typing job. 
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CHAPTER I INTRODUCTION 

1.1 Why this study? 

Trained at  the geodetic institute of the technical university of Delft, the author joined the 
International Institute for Aerial Survey and Earth Sciences - ITC Enschede, with a vivid 
interest in the application of mathematical statistics to geodesy. With this attitude a study 
was initiated into which way the 'Delft techniques' [ 4a, 5, 6 l could be applied to photo- 
grammetry. In the initial stage of this research emphasis was put on methods for error- 
detection in aero-triangulation blocks. The problem was twofold: 

- A direct question from photogrammetric practice asked for an error-detection technique, 
which could be applied at  an early stage of aero-triangulation projects e.g.: preadjustment 
error-detection. 

- More theoretical, but nevertheless very important for practice as well, was the question 
about the reliability of photogrammetric data. 

The second question was, and still is, tackled by W. Forstner [ 16, 17 1, Griin [ 26, 27 ] and 
the photogrammetry group of the T.U. Delft [ 39 l .  
A group at ITC took up the challenge of the first question, as experience showed that 'gross 
data errors' prevented the convergence of the solution for block-adjustments. Because the 
mathematical relationships for independent model blocks are relatively simple, a pilot study 
has been done for this method of adjustment. 

A preadjustment error-detection method should be based on a test of the misclosures of 
condition equations for observations. The difficulty is the formulation of such condition 
equations, because independent model blocks require the connection of models, which is in 
fact the connection of coordinate systems [ 1 ,30  1. The transformation elements for these 
connections are found as a result of the adjustment. 

An alternative is the connection of models before adjustment by means of S-transformations 
[ 6 l .  Therefore basepoints should be chosen in the overlap of two models to be connected. 
When both models have been transformed to that base, condition equations can be formu- 
lated for other points in the overlap, similar to ( [ 6 ] Ch. 17). 

This approach is complicated and could be avoided for planimetric independent model (i.m.) 
blocks [ 13, 34, 36 1. For this case, use of complex number algebra according to  [ 3 ] made 
a simple elimination of transformation elements possible. For threedimensional i.m. blocks 
such a simple elimination doesn't seem possible. There the formulation of condition equations 
should be based on the use of S-transformations. Unpublished studies by Baarda and Molenaar 
show that a similar conclusion is valid for a block-adjustment using photobundles. Thus the 
necessity is felt for the use of three-dimensional S-transformations in photogrammetry. 

Besides error-detection techniques, attention was paid to the connection of photogrammetric 
blocks to ground control. When rigorous block-adjustment procedures became available, 
photogrammetrists wanted to  investigate how well their blocks fit to given terrestrial coordi- 
nates. Many research projects and experiments began in this field. A summary and description 
of techniques applied in this research is given in [ 35 1 and its references. 

One of the main problems indicated in that paper was the lack of knowledge about the 
variance-covariance matrices for the photo-block coordinates and for the terrestrial coordi- 
nates. The former matrix can be found by some extra numerical effort as a byproduct of the 
block-adjustment. The latter one is more difficult to obtain, when use is made of old point- 



fields, from which not all data used for the computation of coordinates are available anymore. 
Baarda proposed in [ 6 1 to replace the real matrix for such pointfields by an artificial one. 
This suggestion is not only of importance for use in testfields, but also for ordinary block- 
adjustments. As photogrammetric practice shows a tendency to the use of larger blocks, the 
method should be developed for extensive pointfields. 

So it should be studied how the criterion matrix of Baarda can be generalized to  cover large 
areas. The use of such matrices will require the use of S-bases again. The solution of these 
problems will facilitate the set up of block-adjustments with a proper use of stochastic 
groundcontrol. 

1.2 A sketch of the problem 

Of course, the question arises about the meaning of S-bases. Therefore we shall start with a 
short explanation and a sketch of some related problems which will be treated to  a greater 
extent in the following chapters. 

The geodesist considers it as one of his main tasks to find the relative positioning of points on 
and near the earth's surface. Therefore he measures angles and length ratios. These observations 
are stochastic and in general they are assumed to be normally distributed about an unknown 
expected value. From these observations coordinates will be computed, which are also 
stochastic and have an unknown expected value. To initiate the computations in geodetic 
practice, use is made of approximate values for these variates, which will differ very little from 
the unknown expected values. Using these approximate values, the original relationships 
between observations and coordinates can be expanded in a Taylor series, where second and 
higher order terms are neglegible with respect to  first order terms. Under this assumption cor- 
rections to  the approximate values of the coordinates can be considered as linear functions of 
corrections to  the approximate values for the observations. This means that the normal dis- 
tribution will be conserved. Then, the precision of the coordinates is completely described by 
their variance-covariance matrix, which is a function of the variance-covariance matrix of the 
observations. Tests on the precision of the coordinates should be based on that matrix. 

The problem is that starting from a set of observations, different sets of coordinates can be 
computed, depending on the choice of coordinate system. This choice is made by means of 
some parameters in the relationships, by which the coordinates are computed. Values for these 
parameters can not be obtained by measurements, thus they should be introduced as non- 
stochastic quantities. Of course this is of importance for the precision of the coordinates, as 
different choices will lead to  different values for their variance-covariance matrix. The theory 
of S-transformations describes the relation between such different coordinate systems. 

In general geodetic coordinates should be computed in a three-dimensional Euclidian space R3, 
but in many cases the objective of the geodetic survey is formulated so that it allows the 
processing of data in two subspaces i.e.: the one-dimensional space R1 related to  the direction 
of the local gravity vector for height measurements and,orthogonal to  that, a two-dimensional 
space R2 for horizontal control. This approach makes it possible to  use a simplified mathe- 
matical model, especially when the measurements cover a limited area. Then rectalinear coordi- 
nate systems can be used in R1 and R2. Baarda dealt with this situation in [ 6 1. He studied the 
stochastic consequences of the introduction of coordinate systems for planimetric and for 
levelling networks, and gave criteria for their precision. In his study Baarda formulated the 
concept of 'S-transformations' which proved to  be essential for developing such criteria. 

In this paper we shall investigate the application of Baarda's ideas to  more extensive pointfields. 



These pointfields should be considered as three-dimensional, which implies a more compli- 
cated algebraic structure. Often geodesists prefer an (approximate) description in a curved 
two-dimensional space for 'horizontal' point positioning as an alternative and additional to 
that they use a one-dimensional space for 'height'. The spherical or ellipsoidal shape of the 
earth makes such an approach very attractive. 

None of these solutions allows a direct application of the theory developed in [ 6 1. This 
situation led to  the present study dealing with the following problems: 
The concept of S-transformations needs a more general formulation, from which the specific 
forms for distinct mathematical models describing different types of pointfields can be found. 
The S-bases for three-dimensional networks and spherical triangulation will be derived in this 
way. Baarda demonstrated in [ 6 1 that the use of S-bases is necessary for tests on the precision 
of networks. Based on the generalization in this paper an alternative proof will be given. 

After these preparations it is possible to define 'pointfields with a homogeneous and isotropic 
inner precision', this definition giving a sufficient base for the design of a criterion matrix for 
large pointfields over a sphere. 

We should finally prove that this matrix is consistent with the matrix for the complex plane 
as given in [ 6 l .  

1.3 A guide for the reader 

The problems mentioned are treated in the following chapters. 
Chapter I1 defines S-systems and S-transformations in a general way. In relation to these, 
definitions for K-systems and K-transformations follow. The former give stochastic coordinate 
transformations, whereas the latter give non-stochastic transformations. 
Chapter I11 starts with a definition of 'measurable', 'estimable' and 'non-estimable' quantities. 
Based on these definitions rules are given for the choice of S-bases. This chapter concludes 
with two examples: the choice of an S-base in the complex plane and one for spherical trian- 
gulation. 
Chapter IV makes use of the theory developed in chapter I1 and I11 for finding the S-base in 
R3 and for finding the related S- and K-transformations. The derivations are using quaternion 
algebra to  show the structure of the coordinate computation in R3 clearly. 
Chapter V first demonstrates why S-transformations are necessary for tests on the precision 
of pointfields. Then a proposal follows for the structure of criterion matrices for more extended 
geodetic networks. This proposal is followed by a definition of homogeneous and isotropic inner 
precision for such networks. The relation between S-bases on the sphere and S-bases in R3 and 
R2 will be given. The chapter concludes with the design of a criterion matrix for networks over 
a sphere and with considerations about the semi-positive definiteness of such a matrix. 

At the end of this introduction it is stressed once more that the theory is based on the assump- 
tion formulated in section 1.2: 
Observations in geodesy are normally distributed, and functional relationships can be linearized 
so that the normal distribution is conserved for functions of these observations. 



CHAPTER I1 A GENERALIZED FORMULATION OF S- AND K-TRANSFORMATIONS 

2.1 The basic relationships 

From the discussion in section 1.2, it may be clear that the theory to be developed deals with 
the relationships between three sets of variates: observations or measurable quantities, para- 
meters which define a coordinate system, and coordinates. These variates will be denoted as 
follows: 

1. measurable quantities; values for these are directly or indirectly obtainable by measurements. 
In terrestrial geodesy, these are angles and ratios of length. A definition of the term 'meas- 
urable' will be given in chapter 111, although we shall already use it in this chapter. The 
notation is: 

{ . . . . .  F'. . . . .  ) for expected values 

. . . . .  . . . . .  { - x' ) for stochastic quantities or variates 

{ . . . . .  X ;  . . . .  . l  for approximate values W Ti ; i  = l , . . . . . ,  n  

2. parameters, which define a coordinate system, further on called definition parameters: 

. . . . .  . . . .  { ) for expected values 

. . . .  . . . . .  { - x U .  I for stochastic quantities or variates 

. . . .  . . . . .  ( x: . l  for approximate values X: W F U ; u  = n  + I , . . . . . ,  n + b  

3. coordinates, which will be computed from the measurable quantities by means of a set of 
functional relationships: 

. .  . . . . .  . . .  b) ) = ( yr { .xi xU } ) u = n  + l , .  . , n  + b  (2.1) 

. . . . .  . . .  C) ( Y r ) =  ( y r {  x; x u , . . .  I )  

This set of relationships will be chosen so that inversion is possible: 



For the given variates the following difference quantities will be used: 

If we neglect the second and higher order terms, a Taylor expansion using approximate 
values xo gives for (2.1): 

with (2. l )  and (2.2) this gives: 

In a similar way (2.1') leads to: 

with 
.c 

and (2.3') 
b) ('zi) = (2;) (Ayr)  

A_xU 0 

r 

The unknown variates and in the original relationships are now replaced by the difference 
quantities Ay and A% in the linearized forms. The following study will consider the latter. 
The coefficient matrices obtained by the linearization are related by: 

2.2 Ssystems 

In the relationships (2.1) the variates y r  have been expressed as a function of x i  and X". 

From now on we shall discuss the situation in which there are no observations avaliable for X".  

Thus in real computations only approximate values can be used and Q. 1) will be then: 



Because (2.4) made use of X: , the y-variates on the left side are given the upper index (U). 
We define: 

Def. 2.1 
A set of relationships as given in (2.4) will be called an 'S-system'. In (2.4) the 
parameters (X:) form the 'S-base' of the S-system which can be specified here 
as the (U )system. 

The names 'S-system', 'S-transformation' and 'S-base' are used to follow Baarda, though due 
to the generalizations made here, these names may lose the strict meaning they had in [ 6 1. 
In the applications given later in this publication, they will return, however, to that strict 
meaning. 

The assumption that no observations are available for x U  comes from the practical situation 
where a geodesist has to define a coordinate system e.g.: the origin, direction of coordinate 
axes and length scale should be defined. These parameters cannot be derived from observations. 
Some authors (Grafarend [24 l ,  Meissl [ 32 1 , Bjerhammar [ 11 l )  deal with this problem in 
the so-called free net adjustments. They allow rank deficiencies in the coefficient matrices of 
the unknown coordinates in the least squares adjustment, according to the Gauss-Markov 
model. These rank deficiencies are due to the lack of definition of coordinate systems. The 
adjustment of such networks is solved by means of generalized matrix inverses. This compli- 
cates the interpretation of the final results as the definition of coordinate systems is then not 
so transparent. Baarda found that by the use of S-systems these problems are avoided, because 
their coordinate systems are defined in a simple way. 

Introduction of (y lUj r )  in the inverse relationships (2. l') gives: 

For computation in the (U)-system the difference quantities for y in (2.2) should be replaced 
by: 



The Taylor expansion of (2.4.a) neglecting second and higher order terms leads tp: 

@(U)') = (Vr{. . . X:. . . . .X:. . . } ) + (U;) (ATi)  

and for (2.4.b): 

( r (u ) r )  = b r { .  ..X;. . . . . X:. . . 1)  + (U;) (AAi) 

This with (2. l .c) and (2.5) gives: 

and similar for (2.4'): 

In the S-system formulated in (2.4), the derived quantities b-variates) can be considered as 
a function of the measurable quantities x i  only. Whether it is possible to linearize these 
functional relationships according to (2.6) depends on the choice of the approximate values 
( X: ) and not on ( X: ). This is the importance of using S-systems. In geodesy this means 
that coordinates computed in an S-system are (linearized) functions of only the measured 
angles and ratios of length. So statements about the coordinates concerning precision and 
reliability are in fact statements about the internal geometry of the pointfield under con- 
sideration. 

2.3 S-transformations 

In geodetic practice it may occur that for a pointfield, coordinates have been computed 
in more than one S-system e.g.: besides the (u)-system we could have another system 
defined by the parameters xP. These systems are related by transformations which leave 
the internal geometry of the pointfield invariant. In terms of section 2.1 this means that 
the relationship (2. l ) can be replaced by : 

where the parameters x U  have been replaced by xP . (2.8) makes use of the same variates, 
x i  , as used in (2. l ) ,  so these quantities must be invariant under a transformation from (2.1) 
to  (2.8). 



The inverted relationships of (2.8) are: 

Linearization of (2.8) gives: 

and (2.8') gives: 

In the sequel we assume that the relationships (2.1) and (2.8) have been formulated so that: 

G ? )  m (F'') a) 

m b) (2.10) 
and for approximate values (y: ) = 0:) C) 

The relationships b) just mean that the values of xr and y" obtained from the same set of 
actual values for xi do not differ very much, however the stochastic properties may differ 
considerably. If no observations are available for x P ,  only X $  can be used in (2.8), we will 
assume that these approximate values have been computed in the same system as X : .  Then 
the p-system is defined by: 



Because of (2.4.c), (2 .10.~)  and (2.1 1 .c) the symbol ' can be omitted on the left-hand side of 
expression (2.1 l) ,  this will cause no loss of clarity. 

P )  = (y"{ . . . x;. . . . . X:. . . l )  = (y') c) (Y0 

Here is: 

'(P)' 3 y f j r  = and y f ) '  = (U)' 
Yo v:, Y 0 

Inversion of (2. l l') gives: 

Difference quantities for the y-variates in the @)system are: 

P = ( ~ ( P J '  (P)') = (f (P)' - y; ) - yo  

 ay^ = P - (P)') = QIP)' - y; ) 
Y 0 

If second and higher order terms are neglected, a Taylor expansion of (2.1 l'.a) leads to: 

(?(P)') = (Y"{  . . . X; . . . . . X: . . . } ) + (V:) (A?") 

and for (2.1 l'.b): 

P ' )  = y . . . X:. . . . .X:. . . j )  + (V:) (AJi) 

With (2.8.c), (2.10.~) and (2.12) we get: 



In a similar way we obtain from (2.1 1"): 

(2. 13) and (2.7') show that a transformation from (U) - to  (p )  -system is possible indeed, 
if condition (2.10) is satisfied. This transformation is: 

f '  
a) ( A ~ ( P ) ' ) = ( V ; ) ( A : , )  (AT( ' ) )  

b) @y(p)') = (V:) H:,) (Ay(')") 

The inverse transformation is: 

a) @?lu)') = ( U ; )  B;,) 

Def. 2.11 Transformations given by (2.14) and (2.14') are 
'S-transformations'. 

S-transformations perform a transition from S-base ( U )  t o  S-base (p). This means that 
linearized relationships (2.7) will be replaced by (2.13). That is why S-transformations can 
be considered as transformations of coefficient matrices used in the propagation laws for 
stochastic properties e.g. : deviations and variances and covariances. 

In(2.14)and (2.14') i = I , .  . . ,n and r,r' = I,. . . . , n + b ,  so theprodi~cts(V:)(~:.)  
and (V;) (B:,) give singular matrices. The derivation leading t o  (2.14) and (2.14') made use 
of the fact that x i  should be invariant under S-transformations as required in the first part 
of this section. 

2.4 Another derivation of S-transformations 

The S-transformations (2.14) and (2.14') have been found under the assumption that the 
S-base in the ( U )  - and the (p)-system both are known. This is not a necessary condition. 
To demonstrate that, we first state that because of (2.4), (2.1 1') and X: F i  and 
x i  m X i  , (2.10) can be replaced by: 

The relationships b) have a similar meaning as (2.10.b). 



Introduction of y f u l r  in (2. l l ") will give (see (2.4') ): 

The variates x P  get the superscript (U), because they have been computed from y l u l r ,  that 
is they have been computed in the (u)system. As the relationships (2.1 l ") are the inverse of 
(2.1 1 '), the latter will give: 

To find ylu)', (2.4) can be replaced by (2.16'). According to  (2.9) the linearized equations 
are : 

whereas (2.9') and (2.16) lead to: 

With (2.13) and (2.17) the S-transformation from ( U )  - to  (p)-system is: 

a) ( A ~ ( ~ ) r )  = ( A P ( ~ ) ' )  - (V;) 

b) (AY(p)') = (Ay(")' ) - (v;) ) 

This derivation shows indeed that a transition from the ( U )  - to the (p)-system requires 
no  knowledge of the S-base in the former system. The transformation in this form only 



P 
makes use of X(") or A X ( " ) ~ ,  i.e.: the values of the new base parameters XP expressed in 
the (u)system. This makes it possible to  transform a system where no S-base has been 
specified, to  a new system with a specified S-base: 

Def. 2.111 An S-system where no S-base has been specified is an6(a)-system' 

Equations (2.18) express y(pjr as a fclnction of y(")r and x("lP , whereas (2.14) gives a 
relationship between the y-variates in the old and the new system, without reference to the 
X-variates and not using the base parameters explicity. Starting from (2.18) a similar expression 
can be found. Therefore (2.17') should be used to eliminate X(")' 

Introduction of an (a)-system with: 

in (2.16) will give instead of x ~ ) ~ .  With this, we find in (2.19): 

a) ( A F ( P ) ~ )  = [(h ;,) - (V; (B?,) 1 ( A F ( ~ ) ~ ' )  

b) ( ~ y ( p ) ' )  = [(6 ;,) - (V; ) (By,) l ) 

In (2.19) and (2.19') the left sides of the equations, as well as the coefficient matrices within 
]on the right sides, are identical. Only the variates y r  on the right sides have been 

expressed in different S-systems. This leads to the conclusion that every S-system satisfying 
(2.20) will be transformed to  the (p)-system by this transformation. The coefficient matrix 
on the right side is called an 'S-matrix' and is denoted by: 

The kernal letter S gets a superscript ( p )  to indicate the transformation to  the (p)-system. 
In this notation (2.19') is: 



In a similar way the transformation to  the (U) - system is: 

b ') = (S i") ') (AY ia)" ) 

From (2.19.a), (2.2 1 ) and (2.22' .a) it follows: 

and with (2.22.a): 

) F ( S l ~ l r  ) (S~u) r '  ) 
r '  r" 

and similarly 
) = ) (sLJ!r' ) 

r" r '  

According to  (2.23) the product of two S-matrices always gives the lefthand matrix. There- 
fore the final result of a transformation from the (a)-  t o  the (p) -system via the ( U )  -system 
is equal t o  the result of a direct transformation. From (2.14), (2.19) and (2.2 1) follows: 

) = ( V :  ) ( A : , )  
r '  

the S-matrix is singular (see discussions of (2.14) and (2.14') ). 

2.5 K-transformations 

2.5.1 K-systems and K-transformations 

In this section we will give the relationship between two different coordinate systems which 
both have been based on the variates xi. Let the first system be defined by: 

(PU ) = ( P l  ) j 

and (X:) = ( x U  ) 
(l)', 

then for (2. l .a) and (2. l .c) we get: 

Def. 2.IV I The set of relationships (2.24) forms a K-system (coordinate system) 1 
In (2.24) the K-system will be called the ( 1 )-system because of the parameter values xf:, . 
Here (2.3.a) is: 



whereas (2.l'.a) and (2.l'.c) become: 

and (2.3'.a): 

Let the second svstem be defined bv: 

(X"") = (q,)) 

Now we define: 
U (X";,)) - = ( 9  ( l a )  

Then we get instead of (2.24): 

This is the ( 2 )  -system, where instead of (2.25) 

The inverse of (2.27) is: 

F';,) - .  . . )  

{ . . . . Y'; , )~  . . . . ) 



Here the transition implies 

We write the latter as relationships which express y'(,, as functions of y;,, and a set of 
transformation parameters T T  : 

Def. 2.V The set of relationships (2.29) perform a K-transformation 
(coordinate transformation) 

(2.24) and (2.27) show that y: , ,  and y: , ,  are functions of the same variates x i ,  therefore 
the latter are invariant under the transformation (2.29). In a practical situation this means 
that (2.24) and (2.27) give two different sets of coordinates for one pointfield. These two 
sets are related by a similarity transformation which leaves angles and length ratios invariant. 
The difference equation of (2.29) is: 

where: 

and : 



From (2.28) and (2.25') we obtain: 

From (2.30) and (2.3 1) it is obvious that: 

and also: 

Hence the K-transformation (2.29) is defined by b parameters, which are only dependent 
on (8'fl2) ) from (2.26) and thus on the values of the parameters x U  in the (1)- and the 
(2)-system. 

2.5.2 S-systems and K-transformations 

If the difference between two coordinate systems is only due to  the fact that different approximate 
values have been used for the parameters of the S-base X",  then we find for the (l)-system: 

and for the (2)-system: 

b) (? ;;/j = (yi{ .  . . . xi. . . . . . . 1 

c) ( ~ ( 2  u r  )o ) = (y j . .  . . X:. . . . x" . . . . 1 ) 
(2  )o 

In this case (2.29) becomes: 

b) (Y- ( 2 )  ("15 = (K'{. . . . - y (U)? '  . . . . ?y12) . . . . ) ) 
c) (Y,!:/:) = (K'{. . . . Y ( ~ ) ~  ("lr . . . . 7 7  (12 )  . . . . ) )  

with the difference equations according to  (2.30): 



It follows however from (2.7) and (2.7') that: 

which with (2.32. l ) and (2.35) results in: 

(K' ) (AZ. ,Y ) = ( 0 )  - (Ayr  = ( 0 )  
(12L ,  (12)  (12)  

Thus the transformation parameters T T  are not stochastic in this case. This conclusion 
agrees with the statement under (2.32.2) that TT,,, is only dependent on X:, and X& . 
As only approximate values are available for the parameters of the Sbase, the 
K-transformation can only be performed using T ~ , , , ~  . This can also be formulated as 
follows: 

The transition X" -xU 
(1 )o ( U o  

leads to  a K-transformation 

with 

In relation to the statement in section 2.2, i.e. that values for the parameters x U  cannot be 
obtained by ovservations, we can state now that the definition of K-systems should refer to  
the choice of approximate values for X", and thus for the coordinates. The choice of S-system 
defines the structure of the coefficient matrices for the application of the laws of propagation 
for stochastic properties, and the choice of K-system determines the actual values of the 
elements of these matrices and the values of the coordinates to  be computed. 

2.5.3 S-transformations interpreted as differential K-transformations 

According to  (2.18) two different S-systems for which the approximate values of all 
variates are equal, are related by: 

( A p ( ~ ) r )  = ( A p ( ~ ) r )  - (U;) (A?(P)") (2.36) 

In terms of (2.3 1) and (2.32. l )  this can be read as a differential K-transformation where: 



Matrix (K:,) and vector ( A T "  ) have the superscript ( pu) hereinstead of the index (12). 
to  indicate an S-transformation. This transition seemsto be a differential K-transformation 
for 7' whereas y; is not altered. Therefore (2.29) becomes: 

from which follows: 

As (2.30') is equivalent to  (2.36) the derivation of the S-transformation (2.22) can start from 
(2.30') instead of (2.18) as was done in section 2.4. The transition from the (p) - to  the (U )- 
system then requires the solution of b parameters AT(~") ' ,  using b quantities A Y ~ ) ~ '  

for which the corresponding submatrix (K(pulr' ) is nonsingular. Chapter IV gives a situation 
7 

where such quantities AF("lr follow directly from the choice of the S-base. The S-base in 
the new system only effects the elimination process of A T .  The approach given in this 
section has been used by Baarda in [ 6 ] and it will be used in chapter IV of this paper as well. 

2.6 Epilogue to chapter I1 

The previous sections deal with the description of some physical object (earth's surface) by 
means of a mathematical model. Therefore measurable quantities which have a clear inter- 
pretation in the model, should be defined on the object. For a good link, between the 
measuring procedure and the mathematical model, they should be designed in close relation 
with each other. Under this provision, the measurements will give values for the variates x i  
which, in the mode1,give a complete description of the object. In many cases preference is 
given to a description by means of variates y r  which are functions of the variates X'. These 
functions are given in (2.1) and they require the use of parameters x U  . The S-theory is based 
on the assumption that no observations are available for the latter. Therefore (2. l )  must be 
replaced by (2.4) where the introduction of X: defines an S-system. If one replaces (2.4) 
by (2.1 l'), using the same set of variates X' ,  but different parameters, and if one takes care 
of (2.1 S), then a transition of the ( U  ).-system to  the (p)  -system is possible by means of an 
S-transformation. The variates x i  are invariant to  such transformations. 

In section 2.5 the necessity of K-transformations appeared to be a consequence of the fact 
that various sets of values could be introduced for the parameters x U  . The quantities x i  
are invariant to  these transformations as well. Section 2.5.3 proved the S-transformation to  
be a differential K-transformation. 

A transformation of y(:(r to  y [ z r  has to be made in two steps: First an S-transformation 
is made according to (2.22); this transforms y[:/r to  g[:/r. Then a K-transformation according 
to (2.34') transforms y(:/' to y(p)'. 

( 2 )  

This chapter made clear that if a mathematical model is based on a set of measurable quantities, 
only the existence of S-bases gives rise to  the possibility of S- and K-transformations. The 
measurable quantities should be invariant, by definition, to these transformations. If this is 
not so, the mathematical model is wrong. 



CHAPTER 111 ON THE CHOICE OF S-BASES 

3.1 Estimable quantities 

3.1. l Definitions 

The introduction of an S-base in section 2.2 was necessary because of the fact that no 
observations were available for the variates xU in (2.4). These variables represented para- 
meters which cannot be measured, such as the parameters which define a coordinate system 
in geodesy. So, the values X: had to be used in (2.4). These values can be chosen such that 
they define a coordinate system which best fits the aims of the user. Once this choice has 
been made,the observations for _xi are introduced to compute coordinates. In practice these 
observations follow from one single measurement, but the definition of variates xi should 
enable a repetition of measurements to be possible: 

Def. 3.1.1 

Let p be any positive integer, then a quantity ? ' is said to be 
'measurable', if p repetitions of a measuring process are described 
by the stochastic variates: 

x i  x i  , xi -1 ' - 2  l " " '  - P  

which are identical a i~d  can therefore be denoted by xi which has 
the expectation: 

E { ~ ' }  = ?' 

Note: The word 'measurable' used here should not be mixed up with the similar word used 
in functional analysis for 'measurable sets', etc. In this paper the word is strictly 
related to the experimental behaviour of a variate. 

Now a distinction can be made between functions of only xi and functions which need the 
introduction of extra parameters, xU. 

The former can be written as: 

a) (7") = ( y " {  ..... Zi ..... 1 )  

Then with 

7" - Y: = A 7" y" -y: = A y a  

and 

the linearization of (3. l )  is: 

a) (~7") = (U:) (A?') 

b) (Ay") = (U: ) (A_xi ) 



With these relationships, estimable functions can be defined as follows: 

Def. 3.1.2 

Functions ya are 'unbiasedly estimable' if they can be 
expressed as: 

Fa = y a ( .  . . .Fi.. . .) 
or in linearized form : 

a +A:" = a x i  
Y 0 

y ( .  . . . . . . .} + U " A % ~  

In this publication, the expression 'estimable' will be used as a synonym for 'unbiasedly 
estimable'. 

Rao limits his definition of unbiasedly estimable functions ( [ 4 1 ] p. 137) to linear functions 
of the observations. Def. 3.1.2 has been formulated for non-linear functions as well, but under 
the restriction that good approximate values are available so that second and higher order 
terms in a Taylor expansion of y a  are negligable compared t o  the first order terms. Under 
this assumption 

The definition can be read as follows: 
r------------------------W------------------ 

l 

I All ya which are functions of only the measurable quantities x i  are unbiasedly 
I estimable. This implies of course that the measurable quantities themselves are I 
I 
I unbiasedly estimable. I 

I 
L--------------------------------------------  

Examples will be given in sections 3.3.2 and 3.3.3. 

Besides the measurable and estimable quantities,there is a third group of variates: 

Def. 3.1.3 
All quantities which do not satisfy Def. 3.1.1 or 
Def. 3.1.2 are 'not unbiasedly estimable' or, in short, 
'not estimable'. 

From chapter I1 it is clear that the variates xU and yrfall under this latter definition, so 
these are not estimable. 

3.1.2 S- and K-transformations and their invariants 

Baarda's choice for complex number algebra and quaternion algebra to describe two and 
three dimensional survey systems, has been based on the fact that these (division) algebras 
facilitate network analyses in terms of quantities which are invariant with respect to 
similarity transformations. Hence an inquiry into the reliability and precision of networks 
is made independent of the choice of coordinate systems. Grafarend et al. already demon- 
strated the similarity of estimable quantities and invariants with regard to K-transformations. 
In this section this similarity will be discussed from a different point of view. 

With (3.1) and (2.1') y a  can be expressed as a function of y r  : 



or, in short: 

a) ( F " ) = ( v a {  . . . .  F r  . . . .  1 )  

The variates y r  can only be computed in an S-system, so they are not invariant to S-trans- 
formations and K-transformations. The definition of y", however, implies that they are 
invariant with respect to such transformations, because no S-base is needed for their compu- 
tation. This means with (2.4') and (2.11 "): 

and with (2.33), (2.33'), (2.24') and (2.27') given in (p)-system: 

a) (7")  = ( v"{ . . . . ?  ( p l r . .  . . l  ) = ( v a { .  . . Y ~ P ) ! .  . . ) ) 
(1) ( 2 )  

b) ( 2 " )  = l Pi.. . . E ( : ) : .  . . l = ( v a { .  . . . 1 
( 2 )  

(P)' P ) ) c) ( Y : )  = ( v a l e .  . . Y ( l )  o.... 1 ) = ( v " (  . . .  y (  , , b . . .  

Let: 

then the linearization of (3.5a) is: 

This gives with (2.13.a) and (2.17.a): 

hence 

( A  p )  ( V ; ) ( A ~ X ~ ) + + ( A  ; ) ( V ;  ) ( A + X ( ~ ) ~ ) = ( ~ ~ ) (  V : ) ( A ~ X ~ )  

from which follows: 

( A " ) (  V ' ) ( A " X ( " ) ~ )  = ( 0 )  
P 

The interpretation of (3.8) is: If Y" is invariant to S-transformations, then y" can be 
expressed as a function of only x i  . Then (3.5) and (3.8) together lead to  the conclusion 
that: 



Theorem 
(3.9) 

Estimable quantities are invariant to  S-transformations 
and quantities which are invariant t o  S-transformations 
are estimable 

Starting from (3.6) with: 

= ( A  " (1) r i ancl ( y )  = ( A "  ( z ) r  ) 
a y , ,  ylz,o 

the linearisation of (3.6.a) is: 

With (2.13.a) for (1 )- and for c z  )-system we get: 

From (3.10) i t  is clear that y"  can be expressed as a function of x i  only, thus Def. 3.1.2 
applies to  y". This means that besides (3.9) we have: 

Theorem 
(3.9') 

Estimable quantities are invariant to K-transformations 
and quantities which are invariant to  K-transformations 
are estimable. 

Theorem (3.9) and (3.9') are closely related, which may also be clear from section 2.5.3, 
where S-transformations appeared to be differential K-transformations. 

Compare (3.7) with (3.3.a): 

( A  ) ( v!)=(  ) and also (see (2.7 ) ) ( A  r" ) ( U,:) = ( U: ) (3.1 1 )  

where ( A :  ) ( U ; ) = ( O )  

This relationship has been derived in a general form, so it will be true for any K-system. 
Therefore we find: 

whereas (3.8) leads to: 

The preceding proof of equivalence of estimable and invariant quantities agrees with the 
results found by Grafarend et al. in [ 25 ] theorem (3.1). Our proof seems to be more direct 
because it shows that (3.9) and (3.9') follow directly from Def. 3.1.2. In our approach the 
mathematical model should be developed in relation to the possible measuring procedure. 
The measuring procedure defines the measurable quantities, then estimable functions can be 



defined within the context of the mathematical model. Now transformations are allowed 
for the functions y r ,  but only under the restriction that they leave the estimable quantities 
invariant. In fact these transformations are only made possible by the introduction of non- 
estimable quantities as stated in section 2.6. Grafarend and Schaffrin started their reasoning 
from a different point of view, because in their paper they define first the allowable trans- 
formations, then they prove that invariant quantities are estimable. This is a difference in 
attitude which may have consequences in further research on related items, like the design 
of criterion matrices for geodetic pointfields (see sections 5.2 and 5.6). 

3.2 The procedure for the choice of an S-base 

In the preceding sections the concept 'mathematical model' has been used, without 
definition. In this publication we shall use the term mathematical model for a complete set 
of mutually consistent relationships, based on the use of a set of measurable quantities. 
Within the context of such a mathematical model it can be decided which functions are 
estimable, and also within the context of such a model, S-systems can be defined. The 
geodesist, who has angles and ratios of length as measurable quantities, will have a geometry 
as the mathematical model, e.g.: the Euclid space R3 which in some cases, under extra 
assumptions, may be reduced to  the planimetry of R2 or perhaps the geometry of the spherical 
surface or ellipsoid. In such a geometry, functions of the angles and length ratios can be 
computed. A special set of functions are the coordinates of points which must be computed 
in an S-system. 

From the preceding section it is clear that the base of an S-system consists of non estimable 
parameters; here we can state more exactly: 

The base parameters of an S-system are the non-estimable variates X" ,  

which have to be introduced during the computing process of the variates 
y r  and which cannot be expressed as a function of the variates introduced 
in an earlier stage of the process. 

3.3 Examples 

3.3.1 Measurable quantities in terrestrial geodesy 

As preparation for the following examples we define the measurable quantities in terrestrial 
geodesy. For the relative positioning of points on or near the earth's surface the surveyor 
can make use of theodolite and distance measurements. For these, the following consider- 
ations are valid : 
- Theodolite measurements: 

A right-handed orthonormal i.j.k.-system is connected 
S to the theodolite. The origin is the intersection of 

the horizontal and vertical axes of the theodolite. 
The k-axis is pointing downwards parallel to the 
vertical axis, the i-axis points orthogonal to  the 
vertical axis in the zero direction of the horizontal 
circle. The j-axis completes the system ( [ 2 l ,  [ 40 l ). 

i Measurement from point r t o  point s gives rrs and 
{ , ,  as indicated in the figure. When taking up position 

V 
k in r for the first time, the surveyor observes points 

S,  t and i : 



Index (1) indicates this 
first measurement. 

These observations give: 

~ 0 s ~ : : :  = cos(rj:)-r,(,l))sint,':) s i n t ~ f ) + c o s ~ ~ ~ ) c o s ~ ( ' )  r s  

cos = cos (r:llk r::) 1 sin3 :,!' sin I:' + cos :;)COS t I:) 
cosZ.(" ~ r s  = ~ o s ( r ( ~ L r > ~ ! ' ) s i n ~  rs  ( l '  sin c:'+ COS l (')COS l ( l )  

r s  r S r i  

If the theodolite has been set up in r for a second measurement, the new i, j, k-axes in 
general will be rotated with respect t o  those of the first measurement. The new observations 
are : 

01 ( 2 )  
r s  ( ' )  ' r r  ) sr t 

r,(:) t , ( f )  computation according t o  (3.1 2) gives 6 ::/ 

Because of the difference in i, j, k-system for first and second measurement we find for the 
observed bearings: 

E { ~ J ; ) ) +  E{r::)  ) and E{  (3.13.1) 

but for the angles: 

E1 E S:: I = E {  zS:; I etc. 

(3.13.2) shows that the angles are measurable quantities in the sense of Def. 3.1.1, whereas 
according to  (3.1 3.1) this Is not true for the bearings. 

- Distance measurements: 
An instrument (1) at point r gives for the distance 
measurements to points S, t and i : 

r s  In 1:) 
index cl  ) indicates 

1 )  Or ln l l : )  instrument(1) 



From these we obtain: 

In v(') = In 1") -In 1::) srt rt  

(1) = In l(1.) - ln  / ( l )  
In 'tri rz r t  

In V,!;: = In 1"' rs -In 1:: )  = In V"' t r i  -In V::: 

An instrument (2) will give: 

In 1:;) and according to  (3.14) In v::: 

In l C 2 )  
ri 

In 
irs 

Different instruments may have different length scale-factors. 'That means for the observed 
distances: 

E l In 1:;) \ # E l In 1 2 )  I etc. (3.15. l )  

but for the ratios of length: 

E{ lnv i : i  1 = E{ lnvj;; 1 etc. (3.15.2) 

From (3.15.2) it follows that length ratios are measurable quantities in the sense of 
Def. 3.1.1, whereas observed distances are not. So the geodesist should use the angles Z 
and the ratios of length v as xi-variates, when introducing S-systems. Transformation of 
these S-systems should leave these variates invariant, hence only similarity transformations 
are allowed. 

3.3.2 The S-base in planimetry 

In the first example we suppose that all points are in one plane, so the mathematical model 
involves plane geometry. Then, if the plane is horizontal, the theodolite measurements can 
be simplified if the k-axis of the theodolite is taken perpendicular to the plane. Then 

7 

The triangle is a basic planimetric configuration. 
The measurable elements of a triangle are: three 
angles and three ratios of length. Applying the 
sine and cosine rules t o  these elements gives: 

r S 

COS airs = ?h [ Vrs i  Vris - Virs - Vsr i  l 

Other angles and length ratios can be computed from the measurements without introduc- 
tion of extra parameters, so these are estimable quantities in planimetry. 



For the computation of the coordinates of the points in a network, the algebra of complex 
numbers will be used to demonstrate the structure of these computations clearly. In this 
algebra a point i is denoted by: z i  = x i  + i  . yi (see [ 3,4b, 6 ] ). Let point r be the first 
point: 

z ,  = x , + i .  yr  

No observations are available for X ,  and y,, they are the first non-estimable quantities in 
this computation, so they have to be part of the S-base. Hence we must use : 

The second point follows from (see [4.b] (3.7.b) ) : 

srs is the length of side r, s and Ars is the bearing. These quantities are not estimable, nor 
can they be computed from parameters or other variates introduced sofar. So according to 
section 3.2 they have to  be part of the S-base. The computation will make use of: 

A third point i follows from (see [4.b] (4.1) ) : 

vsri and qri are measurable quantities, so no further extension of the S-base is needed. The 
complete S-base is: 

Computation of other points gives: z i r S ) ,  the indices (r, S )  indicate the S-base. The meaning 
in terms of chapter I1 is: 

and 

(2.6.a) 
m 

+ i  A  u s r i )  = z r i  . AFSri 

and 



An extensive treatment of the S-transformation in planimetry has been given by Baarda 
in [61 . 

3.3.3 The S-base for spherical triangulation 

For the second example the points involved are supposed to be on a spherical surface. The 
length of the radius of the sphere is not known. Theodolite measurements will get a 

simplified interpretation by the assumption that the 
k-axis always points towards the centre of the sphere. 
Measurement in point i gives the angle between large 

&,is 6 circles connecting i respectively with r and S .  

This is: 
- ariS - r .  - r . 

IS Ir 

Here again the triangle is the basic configuration. Suppose 
S the three angles of triangle, r, S,  i, have been observed: 

r f f r s i  f f s i r  

then by means of the cosine rule for spherical triangles we find: 

COS ( X s i r  + COS ( X r s i  . COS ( X i r s  
COS a, ,  = 

sin f f r s i .  sin airs 

a, ,  is the angle between the radius to r and the radius to S . The cosine rule shows that 
a,,, aSi and air are estimable. 

Distance measurements over the sphere can be interpreted as follows : 
Suppose an instrument has been set up at station r 

t r s  - and the distance is observed to S ,  with zenith angle 5,,  
r S rs  

which is supposed to be corrected for refraction. 
Now distance measurements must be linked up with 

h 
c angular measurements. Angles are measured in a plane 

orthogonal to  the vertical at r , therefore distances 
will be projected to  such a plane as well: 
- - 

R S,, - S , ,  (sin 5,,  - cos 5,, tg a,,) 

but we find also: 
- 

S , ,  = A (R  + h )  tg ars 

where R is the radius of the sphere, h the height of r 
with respect to the sphere and X is a scale factor relating 
the length unit of the instrument to R. 



These relationships lead to: 

5, = S,, (sin C,, - cos S,,tg a,,) = X (R  + h )  tg a,, 

and for the side r.i we get: 
- 

= S,, (sin Sr i  - cos C r i  tg ari) = X (R + h )  tg a,, ' r i  

elimination of the factor X ( R  +h)  gives: 

In Vsri = In Sri - In S,, 

= In (tg a,,) - In (tga,,) 

Rewriting this expression we get: 

In vSri = (In (tg a,,) - In (sin 5ri - COS Srifg ari) ) 

- (In (tg a,,) - In (sin C,, - cos C,, tg a,,) ) 

where In vsri = In sri - In S,, 

If the vertical axis of the theodolite is always pointing towards the centre of the sphere, 
then the zenith angles, 5 ,  are measurable. In that case, the given relationship links up the 
distance measurements with the angular measurements. 

In these formulae the lengthscale factor X cannot be separated from the factor ( R  +h) .  
If we write R + h = R . ( 1 + then we see that the effect of the assumption that 
X is unknown is similar to  the e of the assumption that R is unknown. 

The preceding considerations lead to the conclusion that for spherical triangulation the 
estimable quantities are the central angles a,, etc. and the measurable quantities airs and 

vir, etc. Computation of spherical coordinates requires 
the choice of an equatorial plane. The angle between 
radius Ri and this plane will be denoted by q. On the 
large circle (equator) which is the intersection of the 
sphere and the equatorial plane, a point p must be 
chosen which gets the coordinates ( cpp , Xp) = ( 0, 0). 
The angle between RP and the orthogonal projection 
of R, on the equatorial plane will be denoted by Xi, the 
second coordinate of i. cp and X are counted as indicated 
in the figure. The coordinate computation will start from 
point r . The coordinates of this point do not belong to  
the set of estimable quantities nor can they be computed 

from earlier introduced variates, therefore they belong to the S-base. Hence further compu- 
tations make use of: c p z  , X ;  . 
Point s can now be obtained from: 

cot a,, . cos cp, - sin cp, . cos A,, 
X ,  = X ,  +X,, = h, +arc cot 

I 
sin A,, 

]sin A,, . sin a,, 
(D = arc cos 



A,, is the azimuth of side r, S ,  the angle between the meridian of r and the side r, S. This 
angle is not estimable, nor can it be computed from variates introduced before. Therefore 
A,, is an element of the S-base. So point S is given by: 

cot a,, . cos $7 - sin p: . cos A;, 
X : )  = X: +arccot l W sin A: l 

sin A;, sin zrs 
? ! ) = a r c c o s [  sin -(, X ,, 1 

As Ari =A,, + asri, point i will be: 

- l cot T i .  cos pp- sin p; . cos (A;, +Zsri ) 
X ; )  = X: +arccot 

- )  sin (A:, + a ,,i I 
sin ( A:, + ) sin ari 

I = arc cos - 
sin XLi)  - l 

No further extension is needed for the S-base, thus we find for spherical triangulation: 

S-base : p: , A: and A:, 

Computation for point i gives: ( , The upper indices indicate the points of 
the S-base, and they have been separated by a semi-colon, because r and s have a different 
meaning for this base. In terms of chapter I1 we find for spherical coordinates : 

see (2.4.a) {. . . . X: . . . .}-+{A: , p:, A:,} (3.17) 

cot a,, . cos p:-sin p;. cos A:, 
X: + arc cot 1 -  sin A :S 

sin A:, . sin Zrs  
arc cos 

-(,.S) sin X ,; l 
[ cot Zri . cos p; - sin p:. cos ( A  + I Af+arccot 1 

I ' I sin (A:, + Zsri)  J \ arc cos is in(^:, + asr i ) .  sin a ri 

sin K?s' W l 
Linearization with respect to measurable quantities will give relationships like (2.6.a). 

The approach of this section makes apparent some serious setbacks in the spherical compu- 
tational model. The root of these lies in the way the spherical distance a,, is estimated. 
In textbooks on geodesy the computation of spherical coordinates is based on the assumption 



that a good estimate is available for this distance. This is obtained as follows: 
The length of the base in a triangulation network is measured with very high accuracy. From 
this base the length of a side of the network can be derived. With modern equipment the 
length of such a side can be measured directly. The ratio of the computed or measured side 
and the radius of the sphere then gives the spherical length of the side. 

The most critical assumption in this method is that distance measurement will be performed 
using the same length unit as the one in which the radius of the sphere has been expressed, 
hence no unknown lengthscale factor appears in the computations. In this chapter, that 
assumption has not been made, and a length-scale factor appears in the expression relating 
S, , ,  R and a,,. Elimination of the length-scale factor leads to  the expression for In vsri, 
linking up distance and angular measurements. From that expression it becomes clear that 
distance measurements do not lead to  an estimator for a,,. Then, only the cosine rule for 
spherical triangles gives such an estimator. In practice, however, that estimator will have 
very poor precision. A triangle with three sides of l00 km and three angles of 66.6691 grades 
gives for the linearized relationship given by the cosine rule: 

sin arrs 
sin a,, . - - 

A-a" sin aSri sin q,, &aris + ~ ~ o t a ~ , , + c o s a  r s  c o t a  S T Z  . ) A a  - S T Z  . +  

+ (cot qri + COS a,, cot q,,) Asisr  

which is in this case: 

For the case where the angles a have the same precision and if they are not correlated, we 
find : 

if U, = 1 o - ~  gr, then for l,, = R . a,, we get 

This example demonstrates that for the case where there is no better method available to  
estimate a,, , the computation of spherical coordinates will lack precision. One should be 
very careful in using spherical geometry as the mathematical model for the adjustment of 
triangulation networks. It seems to  be more appropriate to  apply a threedimensional model 
as Quee does [ 40 l .  Yet the spherical model is not without meaning as will be demonstrated 
in chapter V, where a criterion variance-covariance matrix is to  be developed for extensive 
three-dimensional pointfields. 

3.4 Epilogue to chapter 111 

The indices in (2.1 ) and (2.4) run over the values : 

In the first example, section 3.3.2, the shape of the planimetric triangle is defined by two 
form elements : V,,,. and a s r i .  So,in that case the index i is i = 1,2. Four base parameters 
were needed therefore : u = 3, 4, 5, 6. Three complex, that is six real functional relation- 
ships have been formulated in (3.16'), thus r is then r = 1,  . . . . . 6. Each new point added 



to  (3.16') requires two more form elements whereas the system (3.16') will be extended by 
two more real relationships. 

In the second example, the definition of the shape of the triangle required three form ele- 
ments, hence in that case i = 1, 2, 3, whereas for computation of coordinates three base 
parameters were necessary : u = 4, 5, 6. In (3.17') six functional relationships were formu- 
lated : r = 1, . . . ., 6. Each new point added to  the system requires two more form elements, 
thus the set of relationships will be extended by two. 

In planimetry the S-base consists of the four coordinates of two points. This allows a simple 
reduction of the S-matrix t o  make it non-singular, Baarda did so in [ 6 1 .  The second example 
shows a different situation, there of course a reduction is also possible, but it doesn't have 
such a simple interpretation. A similar situation occurs in R3 (see chapter IV); therefore 
we prefer to  consider the S-matrix as singular. 

It would be interesting to  apply the line of thought of this chapter to the ellipsoidal model 
in geodesy. This application, however, is complicated by the fact that the formulae of 
ellipsoidic triangulation are not of a closed character (see [ 20 l ),and the fact that interpre- 
tation of measurable quantities in terms of form elements on the ellipsoid is somewhat 
problematic. One method to  solve this problem uses provisional computations on an 
osculating sphere, from which the results are transformed to ellipsoidal coordinates. One 
should be very careful when applying such a transformation, because of the fact that 
according to  section 3.3.3 one is free to adopt any ( p, X )-system on the sphere, whereas 
on an ellipsoid the coordinate system should be related to the rotation axis; therefore the 
definition of the latter system will have less degrees of freedom. Not much attention has 
been paid to this problem in literature as yet, and textbooks on geodesy often assume a 
unique relationship between the two systems. 

TO find out whether a function of the observations is estimable, one should check whether 
it agrees with Def. 3.1.2 or  not. Some authors on this subject check the estirnability of 
functions by investigating the structure of the coefficient matrix in the Gauss-Markov model 
for estimation of parameters [ 1 1 , 2 4 , 4 2  l .  This model is known in geodesy as "Standard 
Problem II", or  the adjustment based on observationequations. If the coefficient matrix in 
this model leads t o  a singular matrix for the normal equations the parameters are said to be 
non-estimable. This approach is dangerous because singularity can be caused by different 
reasons. One reason can be that a coordinate system has not been defined properly. In that 
case it is correct to conclude that the parameters in the observation equations are non- 
estimable because there is no method to avoid this singularity. Another reason for the 
singularity can be a wrong design of the geodetic network, as in the case where pne tries to 
solve a resection using points on the danger circle. In this case i t  would be wrong to  call the 
parameters in the model nonestimable, because the singularity can be avoided'by a better 
net structure. So, it is not sufficient to check the matrix of the normal equations for 
singularity, one should also check why this singularity occurs in order to  avoid wrong 
conclusions. 

It is possible, as for the spherical distance, that no good estimates can be obtained for some 
estimable quantities whatever the structure of the network is. Then the linking up of 
mathematical model and measuring procedure cannot be camed out properly. It may be 
that for practical reasons one tries to get away with this problem by means of a modification 
of the model, as in geodesy, where measured distances are assumed t o  be observed in the 
same length unit as the radius of the sphere. One should be careful, however, when applying 



such a modification, as it will lead to  a conflict between the observations and the 
computing model if it has not been done correctly. In geodesy, for instance, the radius of 
the sphere can be chosen too large or  too small. The effect is not necessarily felt at  once, 
but it may show up when one wants to  extend an existing network, or  when one tries to  
connect a network to neighbouring ones. 

A similar reasoning applies to  the ellipsoidal model in geodesy, which is considered to  be 
a refinement of the spherical model. Geodesists have experienced these problems indeed; 
therefore, different ellipsoids have been used, for which the choice of the parameters mainly 
depends on the geographical position of the network to be computed and the area to be 
covered by it. It is very likely that a further analysis of problems met in geometric geodesy 
will finally lead to  the principal choice of three-dimensional Euclidean geometry as a 
computational model for triangulation purposes. 



CHAPTER IV S-TRANSFORMATIONS IN THREE-DIMENSIONAL EUCLIDIAN SPACE 

4.1 Some principles of quaternion algebra 

In the three-dimensional euclidean space R the measurable quantities for the terrestrial 
geodesist are, according to  section 3.3.1, angles and length ratios. These are to  be used as 
xi-variates in the coordinate computations. The coordinates will be computed in a righthanded 
system, for which the S-base has to be defined. 

To demonstrate in which way that definition follows from the method of coordinate com- 
putation, we should use an algebra which clearly shows the structure of these computations 
and which also describes the measuring procedure very well. Baarda based his choice for 
quaternion-algebra [ 2,6 l on these criteria, Vermaat and Quee worked out his ideas in 
[ 4 0  ] and [ 43  1 .  In this chapter we shall follow this choice. 

A point i  with coordinates 

x i ,  Y i  2 z i  

will be described by a quaternion: 

q i  = 0 + x i . i  + y i . j  + z i . k  

with product rules : 

i . i  = j . j  = k . k  = - 1 
i . j  = - j . i  = k  

j . k =  - k . j =  i 
k . i =  - i . k =  j  

Point j is: 

qi = 0 + x . . i  + y . . j  + z i . k  
I I 

Substraction gives: 

q . .  = q . - q i  = 0 + ( X . - x i ) . i  + ( y . - y i ) . j  + ( z . - z i ) . k  
ZI I I I I 

For qii the conjugate quaternion is : 

and the norm : 

N { q . . )  = q . . .  qT = q T .  q . .  = I ? .  
11 ZI ZI 21 11 21 

The inverse of qii with respect to  multiplication is 

where : 
-1 = 

q i i .  qii q:? . q . .  = l 
11 Zl 



Add point k with q and q ik = q - q i .  The left division by q is then: 

Q . .  = q .  . q:.l ~ r k  rk 11 (4.2.1) 
which can also be written as : 

- 
i  v . .  = v j i k .  ( cosa j ik  + e j i k .  sin".. I Z ~  ) (4.2.2) 

k 

vj ik  is the length ratio of side i , j and side i  , k and Cjik 
jik is the angle between these sides, whereas e j i k  is the unit 

vector in the direction normal to  plane j , i , k. This ex- 
pression demonstrates in which way the measurable quantities can be entered in the coordinate 
computation when using quaternion algebra. 

If Qjik has been computed from observations, then the components of e j ik  are given with 
respect to  the i  , j ,  k -system of the theodolite (see section 3.3.1), whereas if Qj ik  has been 
computed from coordinates, then the components of e .. are given with respect to coordinate 

1zk 
axes. The transformation from the one system to the other can be made by means of an S- 
base. 

4.2 The S-base in R3 

Points r , S ,  t , i  are not all in one plane. According 
to section 3.3.1 the measurable quantities are the 
angles C S r t ,  Csri and Ctri and the ratios of lengths 
In v s r t ,  In vsri  and In v t r i .  

By means of the sine and the cosine rules other angles and length ratios can be found, without 
using extra non-estimable parameters. The angle between the normal vectors of different 
planes e.g.: esri  and esrt  etc., follows from 

- - COS q.rt - COS Esrt . COS C i r ,  
c0sa t r i  = 

sin hsrt . sin C i r s  

Thus the angles E are estimable too. 

Computation of coordinates will start from point r. The coordinates of this point are not 
estimable, nor can they be computed from other variates. Therefore these coordinates belong 
to the S-base. For further computations we have : 

Point s can be obtained by : 

- 
4s  - 4r + qrs 

= q r  + I r ,  . ( i .  COSA,,  . sin{,, + j .sinAr, . sin{, ,  + k. cos5, ,)  



S 
l,, is the length of side r , S ,  A,, is the angle, 
measured clockwise, from the i-axis in the i ,  j-plane 
and t , ,  is the angle measured from the negative 
k-axis (see [ 40 1 ). These quantities d o  not belong 
to  the set of estimable quantities mentioned before, 
nor can they be computed from variates introduced 
earlier. Therefore they belong to  the S-base. Thus 
computations make use of : 

Point t is now : 

- 
4 ,  

- 
Q ,  + q, ,  = 4 ,  + Q,,, . q, ,  

S e,,, is the unit vector normal to plane S ,  r , t and thus 
perpendicular to side r , S ,  so, only one directional com- 
ponent is undetermined. This component is not estimable 

' s r t  " s r t  
and also not expressable as a function of variates intro- r 
duced as yet. So it belongs to the S-base, therefore, we 

t use e:,, . Then point t is : 

q ; )  = 
esr t  

4 ;  + Q!,', - 
(4.4.3) 

= q ;  + v,,, . (cosEsrr  + e:,, . sin hsr , ) .  q;, 

f ) is indicing reserved to indicate the S-base. The S-base has seven elements so far, and we 
might expect that no further extension is necessary in R j  .To verify this, point i will be 
computed : 

4 : )  = 4 ;  + Q!;, 

= q:  + vsri . (coshsri  + e: i .  . sin hsri) . q;, 

esri  is perpendicular to  q, ,  , which means that a rotation on qrS &as to be determined yet. 
This rotation is given by the angle between eSri and e,,, , that is a t r i ,  which is estimable 
according to (4.3).  So the S-base is complete. Then according to (4.4.1-3) : 

(4.5) 

Quantities computed with respect to this base will be denoted by : 



The indices have been separated by a semi-colon because the role of t in this base is 
different from the role of r and S. The latter two have a similar role, therefore: 

4.3 K-transformations in R3 

According to section 2.5, several sets of values can be introduced for the elements of the 
S-base. These sets define different K-systems, which are related by K-transformations (2.29). 
Values for the S-base : 

4Pl) , , e L s r t  

lead to (see (2.24) and (4.4.1-4) ): 

Another set of values : 

leads to: 

The transformation which relates these two systems should leave the measurable angles and 
length ratios invariant, so it must be a similarity transformation. In quaternion-algebra, this 
may be expressed as (see [ 14 ,40 ,43  ] ): 

- 
4(2) i  - . p21  . 4 ( 1 , i . p 1 2  + d 2 1  

In the (r,s;t)-system the transformation is (see section 2.5.2): 



The parameters in this transformation are: 

X,,  = change of length scale 

P , ,  = P-' 1 2  = rotation quatemion, three rotation elements 

d 2 ,  = shift, three elements 

The seven elements have to  be computed from the values of the parameters of the S-base in 
( 1 ) - and ( 2 ) - system. Therefore the upper index, O ,  has been used in (4.7'). The com- 
putation goes as follows :the length scale in system ( 1 ) is determined by the length of q0 
and in system ( 2 ) by q0 , so the change of scale is : ( l ) r s  

( , ) r s  

The unit vectors (see (4.4.3) ): 

and e 0  , e 0  
( l ) s r t  ( , ) s r t  

give the key to  the solution of the rotation elements. The rotation will be solved in two steps: 

p y l ,  transforms e 0  into e 0  , that is a rotation on the vector normal to  e 0  and e 0  , 
( l ) r s  ( 2 )  ( l ) r s  ( 2 ) r s  over the angle between these fko. Here we consider these vectors as having components 

with respect to  the same i, j, k-system. Thus the transformation is not interpreted as a base 
transformation, but as a point transformation. This leads to: 

- 0 a l l ,  is the rotation angle and e y l ,  the rotation unit vector, so: 

Then follows : 

e O  = p:, ,  . e 0  p : l .  
('"srt ( l ) s r t  

and 
e O  . e O - I  - - cos",, + e y , 2  . ~ i n Z : , ~  

( 2 ) s r t  ( l ' ) s r t  

- 0  a , , ,  is the rotation angle from ( 1 ' ) - to  ( 2 )- system and e o l , 2  the according rotation 
vector. hence : 



(4.9.3"') and (4.9.2') substituted in (4.9.1) give py2 . (4.9.1) and (4.8) and (4.7) for q: 
give the shifts: 

Now all seven parameters of the transformation have been expressed as a function of the 
elements of the S-base. This implies that the S-base of (4.5) and the K-transformation (4.7) 
satisfy (2.32.2). The difference equation of (4.7') is now : 

which corresponds to  (2.34'). 

Suppose the coordinates of points in a geodetic network have been computed with respect to  
an S-base (a, b; c) and that they should be transformed to  base (r, S; t). Then we have to find 
the transformation : 

Let : 

In that case the index to indicate the K-system may be omitted : 

In this chapter a simplified notation will be used : 

( r ) replaces ( r, S; t )  

( a ) replaces (a, b;c) 

then (4.12') becomes 

The derivation of the S-transformation will follow the method of section 2.5.3. Due to (4.7) 
we get for (2.29') : 

- ( r )  = ( ra )  F / r a )  ( a )  . p ( a r )  + 2 ( r a )  (2.29'.a) q - 4 ,  a) 
(4.13) 

( r )  ( r a )  . ( ra l  a  ( a l l  + do /"l - ( a )  (2.29l.c) q, = X0 4 ,  . P O  - 4 ,  C) 



The notation will be simplified more for the following derivations : 

from 

p  . p-' = l follows : 

A ( p . p - l )  = A p . p - l  + p .  Ap-' = 0 -Ap-' = -p - ' .  A p . p - l  

(4.13. C) leads t o  : 

h. ( r a j  = fa  rl 
= 1 ,  p O  = l ,  d o  f r o )  = 0 

0 ( 1  - 0 Irl 
4 ,  - 4 ,  = q p  

The difference between (4.13.a) and (4.13. c) is : 

where second and higher order terms in the linearisation have been neglected. In this equation, 
we have : 

This gives for the difference equation : 

A ~ : ' )  = A l n h .  q p -  p - ' .  A p .  q p  + Ay?) + q p .  p - ' .  A p  + A d  

The difference quantities of the transformation parameters have to be eliminated according 
to the method of section 2.5.2. Therefore we use the new S-base, which gives : 

Then (4.15. l ) gives for point r : 

~ ~ ( ' 1  = 0 = A l n h .  q O  - p - ' ~ p q ;  + A q P )  + q ; p - '  A p  + A d  



Subtraction from (4.15. l ) eliminates A d  : 

~ ~ $ 1  = Aq!'i - Aqlrl = Aqj'l - 0 r 
(4.15.2) 

= ~ q j ' )  = A l n h .  q:i - p-'.  A p  . q;i + A ~ L ; )  + q;i. p - ' .  h p  

where 

s ; ~  = sp - 4 ;  A q r i  = A q i  - 4, 

In a similar way : 

Aq,ls') = 0 = A l n h . q : s - p - ' .  A P . ~ ; ~  + ~ q / ; ) + q : ~ . p - ' . A p  

-1 
Premultiplication by Q:ri = qZi . qros in this expression results in : 

Q : ~ ~ .  AqL;) = 0 = A l n h .  q;i-Q:ri. p- ' .  A p .  qys +Q:r i .  As;:)+ q; i .  p-'. A p  

T -1 
Postmultiplication by Qsori = q: . qZi gives : 

from these new expressions we find : 

A l n h .  q;i + qFi. p - 1 .  ~p  = -Q0 . . A In)+ Qyri. p- ' .  A p .  q;s srr qrs 
and 

A l n h .  q:i -P- ' .  A p  . q:i = -Aq::). - q;s . p- ' .  Ap  . 

Substitution in (4.15.2) gives: 

~ ~ [ r )  = - Q 0 . A L ; )  + Q . p  . A . q  - p .  p  . q  + A a) 
(4.15.3) 

T T 
A ~ , ! ' ) = - A ~ ( ~ ) . Q '  r s  sri - q ~ s . p - ' . A p . Q ~ r i + ~ q ~ , " i + q ~ i . p - l . A p  b) 

Write : 

T 
p- ' .  A p .  q;i = p-'.  A p .  q:. Q:ri and qFi. p- ' .  A p  = Q:ri. q;s .p- ' .  A p  

Using this, the addition of (a) and (b) in (4.1 5.3) divided by 2 results in: 

T 
As!.) = A q!,") - % . (Qyri .  Aq(:)+ AqL;). Q:ri) + % . Qyri. [p- ' .  A p .  qFS + qFS. p-'.Ap 1 

T 
- % . [p- ' .  A p .  q:s + qFS. p-'. A p  l .  Q:ri 



in ~ q ! )  the expressions within [ ] are scalars, hence 

(4.15.4) 
A similar expression for point t is : 

T T 
A ~ ( ' ) = A ~ ( ~ ) - % . ( Q ~  rr srr ' A q r s  '")+Aq::). Q:, )+%.(8Prr - Q:?). [p-l.Ap.q: + q z  .p-'. A p ]  

hence : (4.1 5.4') 

[ p - l .  A p .  q,0, + 4;.  p-'. A p  l = 

Substitution in (4.15.4) results in: 

In the righthand side of (4.15.5) the term Aq;) has still to be eliminated from the expression 
within { } . Therefore we use : 

m Lc m 

q p = q; + G:;. q,0, = q; + vsrr . (cos@srr + e$ . sinEsrr ) . q; 

and 

q: = q,0 + QSorr . q,", = q,0 + V> . ( c o s Z : ~ ~  + e Z r .  ~ i n Z : ~ ~ ) .  q,0, 

The difference between these equations is : 

= A Q ( ~ ) .  0 
srr qrs 

- - 4;. Alnvsrr + e; - 4;. AZsr t  

hence 
T 

As:') l e,",, - ~ q ? )  1 (Q:, -Q:, 1 
and 

T T caprt - Q z t  I-'. ~ 4 ; " .  (Q;;, - Q:, ) = - ~ q " '  t 



In (4.15.4') the term within [ ] is a scalar, therefore : 

Hence (4.16) leads to  : 

T T 
?h - [Aqir) -(Q:~, - Q;rt )-l . Aqtr) . (Q;rt - Q;rt 1 l 

T 
= Aqtr) = ?h. { [Aq;:)-%. (Q:rt. Aq;lf)+ Aq;;). ) ] 

T T T 
- (Qs;, -Q;, rl. ~4; ; )  -%. (Q;, - ~4; ; )  + ~4;; ) .  Q E t )  l .  (Q>- Q;, l} 

Substitution in (4.15.5) will lead to  : 

(4.15.6) 
This is the complete S-transformation of a point i from (a)-  to  (r)-system. Write : 
A qlr) = A q('1 S; 'I. Some rewriting of this expression gives the form which Baarda found 
independently in 1974. 

T T 
~ ~ ( ~ 1 ~ )  = A 4, In)-%. (QO rst ' AqP)+ A q r ) .  Q~:, ) -X .  ( Q ; ~ ~  .Aq:)+ Aqf). Q:, ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

A~!'. S; t) = T T 
Aq(") - ?h. (Qrosi . Aq?) + Aq?). Q:si ) - %. ( Q z i .  Aq(") + A q r ) .  Q:, ) 

T T T T 
-(Q:, - Q ~ , > . ( Q ~ , - Q , " , , > - ' . ? ~ .  [ A ~ ~ , ~ ) + ( Q O  rst -,pst ) . A ~ ~ ~ " , . ( Q , " , , - Q ~ , ) - ' I  

The derivation of (4.15.6) has been made without use of any specific knowledge of the S-base 
in the (a)-system. This agrees with what was said in the discussion of (2.18). So any ( a  ) -  

system satisfying (4.12') will be transformed to  (r, s;t)-system by (4.15.6 or 6'). 

Baarda developed, in [ 2 l ,  a matrix algebra which is isomorphic with the algebra of quater- 
nions. So it is possible to translate the quaternion expression in (4.15.6) into a linear algebraic 
expression in which the difference quantities of the coordinates of a point in the new system 
are given as a linear function of the difference quantities of the coordinates in the old system. 

We will use a short notation for (4.15.6) : 

Aq(', S; '1 = S; t )  { Aq!n) ) 
1 J 

The symbol S gets the superscript (r,s;t) to  indicate a transformation to (r,s;t) -system 
(see the discussion of (2.19') and (2.21) ). 



4.5 Invariants to S-transformations in R3 

Estimable quantities should be invariant under S-transformations. So in Rj we should have: 

The cosine rule for plane triangles expresses Z .. as a function of the length ratios, whereas 
Ilk 

(4.3) expresses E as a function of the angles E. Therefore it is sufficient to prove that lnv 
is invariant to S-transformations, then (4.17.b and c) are consequences of (4.17.a). The proof 
will be given for Alnv. 

(4.15.6) gives for coordinate differences between point j and i : 

-1 -1 
Ay?) = A ( )  - A = A - . ( q  . q . ~q!;) + A ~ ( ~ ) .  

B qi U rs q;, 4 ; ) -  
-1 o-l T 

(4.18.1) 

- iql; . q;, - qr, . ql; 1 - (Q;, - Q;r, ,-l . { . . . . . -. I 
The derivation of (4.1 5.4) and (4.15.5) proves that the expression: 

T 
(QS0,, - QSor, )-l . { .  . . . . . . . I 

-1 
is a scalar. Hence (4.18.1) premultiplied by q;. becomes: 

0 -l 0 -l 0 -l (a). 0-I -1 
qij . A = qii . Aq!f) - H .  (q;, . Aqj;) + qg . A q -4;) - 

11 11 

-1 o-l o-l T 
-H.  (42 - qij . qrs . q; - (QSort - Q;rt )-l . { . . . . . - . . I 

and postmultiplication results in: 

-1 -1 

A~!!). r l  q C 1  11 = ~ q ! ~ ) .  40 -M.  (4; . q;il . A~(:) .  q; + A~!:). q;il ) - 
11 11 

-1 o-l -1 T -" . (4;. q;, , qij - q;, ) . (Q;;, - QYr, )-l . { . . . . . . . . 
-1 -1 -1 

1 
as qP . q k  . qi. = qK1 . q;s . qP., the addition of these two expressions gives: 

11 11 

-1 -1 -1 -1 -1 

11 11 11 
'"1 + ~ ~ 1 ; ) .  q;$ ) - q?. . Aq!0 + Aq;). = q; . Aq!f) +Aq!!'). q& -%.  (q: . AqrS 

11 

-1 -1 -1 
-H.(q&. q; . Aq!;). q;.-l + q& . A 4 ;  . 4;) 

(4.18.2) 
The last term on the righthand side is: 

-1 -1 -1 -1 o o-' (a) . o-' 
qii. 4,s . Aqrs 4ij 

with 

q;,' . Aq,, + Aq,, . q;,' = 2 .  Aln lrs 



and similarly : 

q:' . Aqij + Aqij.  q; = 2 .  Aln li, 
11 

hence (4.18.2) becomes : 

In a similar way we obtain : 

0-1 
-1 

. Aq[;) + AV;). q g l  = ql. Aq?) + A$). qQ1 - (q;$ 0-l ) 
4ij .Aq;;) + Aq;;). qrs 

Aln 1;;) = Aln 1;;) - Aln l(') 
r S 

or 

(4.18.3) subtracted from the latter expression : 

(4.18.3) 

hence 

Aln 1;) = Aln l$') - Aln 1;;) 

In v!!) = In v!!') = In v.. 
11 k  Ilk l t k  

This completes the proof for (4.17.a) and implicitly for (4.17.b-c). Consequently length 
ratios and angles do not need a superscript to indicate the S-system. As these variates are 
invariant to  K-transformations, the index for the K-system can be omitted too. 

4.6 Epilogue to  chapter IV 

The S-transformation in R3 is a generalisation of the one found by Baarda for R2 (see [ 6 l ). 
Therefore it  should be possible to  obtain the latter as a special case of (4.15.6) or (4.15.6'). 
Let Rz be the subspace of R3 with : 

V k  { q  } is the k-component of q. Consequently : 

q i  = x i i  + y i j  etc. 

This means that in the last term of (4.15.6) the expression within accolades is : 

{ . . . . . . . . .  } = O  

hence : 

or in this special case : 

AqP) = A qi (') - Q" rsi  . AqlO) - . A q y  



If this expression is premultiplied by -j , then we get a new expression with a scalar- and a 
k-component, which is similar to  the formulation in complex numbers of the S-transformation 
in R2 (see [ 6 l (2.5') ). 

According to  section 2.5.1 any set of values can be introduced for the elements of the S-base. 
For algebraic reasons there is, however, one restriction: 

the distance between point r and s should not be equal to  zero, because in that case the 
ratio of lengths : 

- lri v .  - -  
Irs 

is not defined. As distances define the metric of Rg ([ 44 l 5 2),a distance = 0 implies 
that qr = q s ,  which means that there is no distinction between point r and point S.  A 
similar restriction has t o  be made for the S-base in R2 in section 3.3.2, but not for the S-base 
for spherical coordinates as the computation of the latter does not require any definition of 
scale. There, the metric of the space is defined by the spherical distance, which is an estimable 
quantity, so no distance can be part of the S-base. Yet there is a restriction for the choice of 
the base points r and s : one should not choose two points for which ars = B , because in 
that case the angle between the side r,s and any other side r,i will not be defined. Hence 
Ars ,  the azimuth of side r , s ,  cannot be used to fix the orientation of the coordinate system. 
Restriction (4.19) gives no practical limitations for R2 and Rg as the measuring process 
will never lead to a result lrs = 0. The situation is different in R I ,  for measurements of 
height differences. If the height difference between points r and s is: 

hrs = Hs - Hr 
r i 

one may be apt to  eliminate the unit of length 
by means of the proportion: 

v .  = -  
rs l  hsr 

and use (H:, H:) as an S-base. Then for algebraic reasons we have the restriction: 

This is conflicting with the measuring process, which may give as a result: 

So the above approach cannot be applied, because it does not lead to  a consistent computa- 
tional model. The measuring procedure for height differences requires a different interpre- 
tation, i.e. Baarda [ 8 l . 
Another observation which should be made concerns the difference between photogrammetry 
and terrestrial geodesy. 

The S-transformation (4.15.6) leaves angles and length ratios invariant, because analysis of 
the measuring process in terrestrial geodesy proved these to be measurable. In photogram- 
metry the measuring process is much more complicated. Each photoflight is unique in the 
sense that if a flight is repeated, it will not be possible to  get the camera in the same position 



again for each exposure. When photo coordinates of image points are measured for different 
flights it will not be possible to define measurable quantities in the sense of def. 3.1.1. But 
photogrammetry has traditionally been based on the assumption that the photograph is a 
perfect perspective projection of the terrain. Under this assumption repetition of measure- 
ments of plate coordinates gives angles between light rays as measurable quantities. This 
mathematical model leads to the formation of stereomodels from pairs of photographs, and 
even to block formations.These stereomodels or photogrammetric blocks are then linear con- 
formal mappings of the terrain, to which S-transformations, according to (4.15.6), can be 
applied. Many factors may, however, disturb the perspective projection, e.g.: refraction, 
lens distortion, inner orientation, lack of film flatness, processing of the film etc. Some of 
these effects can be taken care of simply, but others are not so easy to correct for. If the 
perspective projection has been disturbed, then consequently the stereomodels,or the block 
obtained from such photographs, will have a geometry which differs from the geometry of 
the real terrain, i.e.: angles and length ratios observed in the terrain are different from similar 
elements obtained from the block. One should act with special care then if a photogramme- 
trically determined point field has to be connected to one determined terrestrially. If the 
connection is made by means of an S-transformation, then the discrepancies between photo- 
grammetric and terrestrial coordinates, at points not belonging to the S-base, cannot be 
simply considered as the misclosures of condition equations in an adjustment according to 
standard problem I (see [ 37 1 ). Moreover, statistical tests are required to check whether 
these discrepancies are caused by systematic deformations of the photogrammetric block. 
If this is true then the block should be corrected for these deformations before or simulta- 
neously with the final connection to ground control (see [ 35 1 and ref.). 



CHAPTER V CRITERION MATRICES FOR LARGE NETWORKS 

5.1 The comparison of covariance matrices 

5.1.1 The inner precision o f  networks 

In modern geodetic research, rules are formulated for the reconnaissance of geodetic networks, 
These rules are mainly based on requirements for the precision and reliability of the point 
determination. In this chapter we concentrate on the requirements for precision, for which we 
will follow the approach given by Baarda in [ 6 l .  He developed a 'Criterion variance-covariance 
matrix' for coordinates, which is invariant with respect t o  rotations of the coordinate system. 
For cartesian planimetric coordinates this means that the point and relative standard ellipses 
are circles. When designing a network one should check whether the real variance-covariance 
matrix (V.C. matrix) of the coordinates agrees sufficiently with the criterion matrix. Baarda 
performs this test by means of the general eigenvalue problem and he proves in [ 6 ] § 10 that 
such a test is valid only if both matrices have been computed with respect to the same S-base. 
An alternative proof will be given in section 5.1.2. It  is based on the precision of the geometry 
of a network, in which respect we shall use the expression: 'Inner precision'. 

Def. 5.1. 
The 'inner precision' of a point field is the V.C. matrix of all its form 
elements (modulo permutations) 

In large point fields there are many form elements, so the order of their V.C. matrix will be 
large, whereas the rank will be considerably less than the order. As these large matrices are 
difficult to  handle we formulate the auxiliary definition. 

Def. 5.11. 

If (xi) is a necessary and sufficient set of form elements to  describe the 
geometry of a point field, then we say that the inner precision of this 
point field is given by the V.C. matrix: 

(uii) = ( E { ( ?  - - X), (2 - $)* 1 )  
i j =  1,. . . . . ., n = number of elements x i  
(X') * is the transpose of (X' ) 

For a planimetric point field of m points n = 2m - 4, for a spatial point field n = 3m - 7. 
All other form elements of the network can be found as a function of the elements of the set 
(xi)  in def. 5.11. So their V.C. matrix is found by means of the propagation of variances and 
covariances. In networks there are always more sets of form elements like (xi), which describe 
the geometry completely. To each of these sets belongs a V.C. matrix which, like (aii), gives 
the inner precision. 

Of course all these matrices are interrelated, so we formulate: 

Theorem 
(5.1 .) 

If the V.C. matrix (u i i )  of h i )  satisfies Def. 5.11 and if 
(ak1)  of bk ) is related to  it by: 

(uk ' )  = (A:) (ui i )  (A;) * 

k 
with A" =" I 

a 2' and rank (A:) = n 
axl  

i = l  , . . . . . . ,  n 

then (ak1)  gives the same inner precision as (ui i )  



This theorem considers variates x k  which can be written as functions of the variates x i  
alone, e.g.: (X ) can be any sufficient set of form elements. The formulation of the 
theorem allows however also the use of the V.C. matrix of coordinates, computed in 
any S-system, to  give the inner precision of a point field. 

The only restriction for the number of variates X is that there are at least n variates 
which are not interdependent, because rank ( A : ) = n. So there may be more than 
n variates X but then their V.C. matrix will be singular. Here we could think of the 
'inner coordinates with minimum trace' defined by Meissl [ 32 l .  He defines the inner 
precision of a point field by means of the trace of the V.C. matrix of these coordinates, 
which is invariant with respect to similarity transformations. In this way only a part of 
the available information about the precision has been used, whereas def. 5.1. refers to the 
full V.C. matrix of the form elements in the point field. This definition does not refer to  
any particular coordinate system. By means of def. 5.11. and theorem (5.1) it is possible 
however to  use the full V.C. matrix of the coordinates in any S-system to analyse the 
inner precision of a point field. This will be done in the next section. 

5.1.2 The general eigenvalue problem 

Suppose a network has been measured twice. As a result of the first measurement we 
obtain the quantities A:, which form a necessary and sufficient set of angles and length 
ratios to describe the geometry of the network. The second measurement gives x i .  Let : 

~ { x f ]  = E { X >  , or  i?f = 2' 2 

whereas 

X i  C x i  - 

Introduction of S-bases will make the computation of coordinates possible, e.g. (see (2.4) 
and (2.1 1') ) : 

first measurement : 

C) (Y (U)')  = (y'{ . . . . x i .  . . . X: . . . . l )  
d 

Second measurement : 

We choose (X: ) and ( X  : ) so that (see(2.15) ) : 

then ( 7  (U) '  ) C (FP)') and ) C ( y ~ ) '  ) 



Hence the (U)- and the (p)-system have been computed in the same coordinate system 
(K-system). The index 1 or 2 for y r  indicates the measurement and it should not be mixed 
up with the index used in section 2.5, which indicated the K-system. 

The precision of the measurements is given by the V.C. matrix of the variates xi. This is : 

i , j  = l , . . . . . ,  n 

the differences F i  - zi are small. 

This matrix gives the inner precision of the geometry of the network, so we get 

for measurement 1 : ( U: ) 

for measurement 2 : (07 ) 

These matrices will be used to  compare both measurements, using the general eigenvalue 
problem ( [ 6 l 5 8 ; [ 29 l 5 5 - 3): 

For these eigenvalues we can prove that ( [ 29 1 5 5 - 3 ): 

- 1 - 
~ m a x  G 

and hmx = 1 
pmin 

1 Measurement 1 will be considered as good as measurement 2 if (5.4.1) gives h,,, = 1 and I 
I if possible (5.4.2) gives p,,, = 1. The choice of critical values for these eigenva6es will not I 

be discussed here. 

Measurement 1 is better than 2 if: 

(5.4.1) -+hmax < 1 or (5.4.2)-pmin > l (see (5.5) ) and V.V. 

If both measurements have exactly the same precision, (5.4.1) and (5.4.2) should not lead to  
any preference and the results should be: 

In geodetic practice one often prefers t o  make such a comparison by means of the precision 
of computed coordinates. One reason for this is that criterion matrices as developed in [ 6 ] 
can be formulated irrespective of the structure of the network. This means, according t o  
(5.2.1-2) and (5.3), a comparison of: 

and P ) ~ '  P - I ( ~ ) ~ ) , ( j 7 ~ ) '  2 - y;p)')* 

( y S  ) * is the transpose of (yr ) 



according to ( 2 . 6 )  and ( 2 . 1 3 ) :  

o l ; u l r  - 1.1' = ( U : )  ('l -$ ) - t ~ ! u l s - r ( u l s ) *  = (F: -&{ l* ( U ; ) *  l 

(5 .8 .1 )  

( U ;  )* is the transpose of ( US) 

P / p l r  ) = ( v : )  ( 2 '  ) , ( 7 ; ~ ) ~ -  , , l ( ~ ) ' ) *  = ( p j - _ X j ) *  ( V ; ) *  
2 1 2  I 

( .5 .8 .2 )  
( V ; ) *  is the transpose of ( VS) 

Thus instead of ( 5 . 4 . 1 )  we get: 

("I")  - h (ol(P)rs  ) I = 0 1 (01 

Introduce (5 .7 .1 -2)  and (5 .8 .1-2):  

The matrices in (5 .9 .1 )  are of order ( n + b ) X ( n + b ) and have rank n,  therefore we will 
reduce them by taking n X n submatrices so that: 

( u ( p f 1  ) = ( vrl ) ( u i j  ) ( vs1 )* r l  - - l ,........, n 
a 1 g i 

is non-singular. Then (5 .9 .1 )  reduces to: 

( ) is non-singular, hence with ( 8 '  ) = ( ?l ) - l  : 

The comparison was originally based on the inner precision of the network, therefore 
(5 .9 .2  or 3) must not lead to a decision in favour of measurement 1 or 2 if: 

To get results similar to  ( 5 . 6 )  the solution of ( 5 . 9 . 2 )  should be: 



This is oniy true if in (5.9.3): 

This means that the (u)-system should be identical to  the ( p b y s t e m .  Hence to  compare 
different measurements of a network, or to  compare the precision of a network with a 
criterion matrix according to  (5.9.1) and to get results similar to  those of (5.4.3), the V.C. 
matrices of the coordinates should be computed with respect to a common S-base. 
(5.9.1) should be: 

5.2 Pointfields with homogeneous and isotropic inner precision 

The testing of the V.C. matrix of the coordinates in a pointfield requires a criterion matrix, 
which gives an ideal precision. The problem now is how this should be defined. In literature 
we find two examples of such a definition. 

According to  Grafarend [ 19,22 ] the coordinates in a pointfield should have an isotropic 
and homogeneous V.C. matrix, so it is invariant with respect t o  translations and rotations of 
the coordinate system. All points then have circular standard ellipses of the same size, whereas 
the size of the relative standard ellipses depends on the distance between the related points. 
The matrix of Grafarend has the 'Taylor-Karman structure', a special case is the 'chaotic 
structure' where relative standard ellipses are circles as well. 

As the matrix of Grafarend refers to  coordinates in an (a)-system, it is not clear how his 
definition of an ideal precision can be related to  operational S-systems. The latter have a 
specified S-base, whereas the size of the point standard ellipses will increase with the distance 
from the point to  the base. So it is not possible to  realise a homogenous V.C. matrix in practice. 

Baarda knew this problem, that is why his definition of an ideal precision refers to  coordinates 
in an S-system [ 6, 7 l .  He requires that point and relative standard ellipses are circles. The 
radius of such a circle is a function of the relative positioning of the points with respect to  the 
S-base. When formulated for an (a)-system the matrix has the chaotic structure mentioned 
before. Baarda's definition, though referring to  coordinates in an S-system, is valid for the 
complex plane only. It is yet an open question whether it can be extended for large three- 
dimensional pointfields. In that case namely the circular standard ellipses should be replaced 
by spheres, but is that realistic in a purely geometric setting? 

Experience with photogrammetric blocks and geodetic networks shows that the vertical 
relative positioning of points is less precise than their horizontal relative positioning, and is 
to  a great extent stochastically independent of it. For large pointfields, the earth has 
approximately the shape of a sphere, and in that case, the criteria for the precision of the 
positioning of points on the sphere can be developed independently from the criteria for 
the determination of spherical heights. 

If the earth is considered to  have an ellipsoidal shape, then networks can, with some 
approximation, be computed on an osculating sphere with the tangent point in the centre 
of the network. 



For the positioning of a point, i ,  on the sphere we compute the coordinates pi and hi  as in 
section 3.3.3 and for the vertical positioning the radius Ri.  For the computation of spherical 
coordinates, an S-base is required. If the base points are r and S ,  then the length scale for 
computing R i  will be defined by means of R: This S-base on the sphere is equivalent to an 
S-base in R3 which consists of the points m = the centre of the sphere, r = a point on the 
sphere,and s = a point on or near the surface of the sphere. This S-system cannot be used in 
practice, because the point m will never be part of a real network. So we have in fact an ( a ) -  
system which will be used to  design a criterion matrix. The spherical coordinates and the 
coordinate computation in R3 by means of quaternions, are linked by the following definitions: 

centre of the sphere m : q;  = 0 I 
point r : q: = q;  + q i ,  I 

= q; + ~ ; ( O + i c o s p :  cosh: +jcosp:sinh: I 
+ ksin p: ) 

R: is an approximate value of the radius at r 
(5.12.1) 

point s : q ( m v ' ; ~ )  = 
S 

,(m ,,;S) 
rm s 4",+4: (5.12.2) 

R 
where : Q ( ~ , ~ ; ~ )  = L (cosErms + e:ms sinCrms) 

rms 
R: 

with Z r m s  = 
' r s  

because e:ms l plane r,m,s 

Point i in this system is: 

(r,m;sl = ~ ( r , m , ; s )  q o  + q o  = V 4 i rmz m r  m rmi  (cosari + e(::;S) sinari).  q i r  + 4 ;  

- R i  with vrnii - - 
R: 

hence 

m = q(r,m:s) + q;  = m s )  . m s )  + 
m i z m i 40, 

So the vertical positioning in the (r,m ;S )-system is determined by 

R ({ ,m  ; S )  = 
z ' r m i  . R: 

here, point r is the datum point and we will write shortly: 

R?) = 
I ' r m i  . R: , In R? - In R: = In vrmi 



"Horizontal" positioning of i is determined by: 

Differential equations at i are: 

the coefficients of the difference quantities must be computed in a closed system of 
approximate values. In this expression is: 

see Quee [ 40 ] : 

e' = (0, cosX sincp, sin X sincp, -coscp) 

The design of a criterion matrix over the sphere can now refer to the differential variates: 

For "horizontal" positioning: 

and for "vertical" positioning: 

The spherical coordinates can also be written as (see section 3.3.3): 

From the characteristics of the present S-system it becomes clear that we, unlike Baarda in 
[ 6 1, are not able to  construct a criterion matrix which gives circular standard ellipses for our 
horizontal positioning. Hence we cannot construct an isotropic matrix for spherical coordinates 
But this is not necessary, because in the sections 5.1 .l - 2 we saw that the precision of a 
point field is determined by its inner precision. So the construction of a criterion matrix 
should be based on requirements for the precision of the form elements of a network. 
These are: 

Aln prrn for vertical positioning 

Agr i  and Actsri for horizontal positioning 

In an ideal case the precision of these elements should only be dependent on the relative 
positioning of the points to  which they refer and not on their location in the point field. In 



this respect we will talk about a point field with a "homogeneous and isotropic inner" 
precision : 

Def. 5.111 

A geodetic point field over a sphere has a "homogeneous , j and isotropic" inner precision if: 

- for side a,/ 

'a,, a . .  = 2da. = 2d,?i = 2f{a,l = 2f{ajil 
ZI ZI 

i - for angle ajik 
\ 
\ / k '  - 

R,\ ,' / y i k ,  ajik - G.. = Gkij = g(a i j ,  ajk , ski) Ilk 
\ 

\ 

/ R 
- for ratio of lengths v. . 

'l/ 
zm1 

m 
" l n v  . ,  lnvimj = 2kz;. = 2 h { a i j t =  2hiaji} 

rml  

SO according to this definition the functions kz; , dz; and Gjik are independent of the 
location and orientation of triangle j, i, k,  that is, they are independent of e.g. the spherical 
coordinates (vi ,  Xi) of point i and the azimuth Aii of side i, j. 

For testing the V.C. matrix of a network, a criterion matrix will be used which gives a homo- 
geneous and isotropic inner precision. 

For the design of a criterion matrix we will assume that a .. and In v imj  are not correlated, 
Z l  

i.e. the relative horizontal positioning over the sphere is not considered to be correlated to  the 
relative positioning in the vertical sense. So besides def. 5.111 we have: 

'a.., l n v .  . = 0 

5.3 A criterion matrix for point fields over the sphere 

The structure of two matrices will be given in this section, one for spherical coordinates and 
one for spherical heights. These two matrices can be developed independent of each other 
because of assumption (5.13). The fact that a matrix is developed for spherical coordinates 
may seem to be in conflict with the conclusions of section 3.3.3. It was stated there that such 
coordinates could not be defined with sufficient precision. One should keep in mind however 
that the spherical coordinates only serve as an (a)system in which a matrix, which has the 
characteristics of def. 5.111, can easily be generated. In section 5.4 we will see how the two 
matrices can be transformed to an operational S-system. 

5.3.1 A criterion matrix for spherical coordinates 

The design of a criterion matrix for spherical coordinates will be based on the discussion in 
section 5.2 which resulted in def. S .III. Hence from the matrix we should be able to obtain: 



where d:. and Cii, are independent of position and orientation of side a .. and triangle j,i,k. 
21 

We will drst consider m. Definition 5.111 stated: 

with di. = f{ai i )  

Three restrictions will be made for f {a ..) which seem reasonable in the view of modem 
11 

research on the precision of geodetic networks [ 9,12 ] : 

- f ( 0 )  = 0 

- f { a  ) is continuous and monotonous nondecreasing for 0 G a G n b) (5.1 S) 

For the derivation of a matrix which satisfies (5.14.1-2) we make use of the isometric 
coordinates introduced in section 5.2: 

The linearised relationship between side a .. and the 
21 

coordinates of the points i and j is: 

Aa. .  = -sinA ..Aui - - sinA ..Au. -cosA..Av. 
V 11 11 I II I 

(5.16) 

The variance-covariance matrix for the isometric coordinates is constructed of submatrices 
such as: 

If we write: 
/ -sinA ii 

(-sinA ii - cosA ii) ( a ii) say c(Y) \ -cosA i) = 

(-sinAii -cosA ji ) (aii) s m ~  c'!?" 



then we get from (5.14.1), (5.16) and (5.18.1): 

From (5.15.a) follows: 

lim a .  a . .  = 0 
j-i ~ j '  11 

Hence with 

lim c (!,!) = c ({,!) 
j-i I1 I I  

(5.18.2) and (5.19.1) lead to: 

lim c l',!) = 
j-i 11 I1 

Because of (5.1 8.2) and (5.1 9.3): 

The coordinate computation on the sphere implies that only for the points s and r of the 
S-base one finds: 

in general one wants that for points not belonging to the S-base: 

(a i i )  is nonsingular 

( o  ..) is nonsingular 
11 

The following derivations will be based on this nonsingularity. (5.18.2) will satisfy def. 5.111 
if c , c and c(?) are independent of (p i ,  hi)  and (v., X)  and thus independent of 

11 I I 
Aij and Aji. 

- Ad C(i#!) and ,('F!) 

l 1  11 

The precision of the coordinates of a point in an S-system should only depend on its relative 
positioning with respect to  the S-base. In that case, its precision is not effected by points in 
its vicinity, hence (ai i )  should be independent of A .. .This restriction for c(y) would then 

'I 
be satisfied by the choice: 

( a i i )  = (iii :,.)then c(:/) = c i i  
11 

and similarly 

( a )  = ( p, , )  then c(.) II = C ii 

I1 



These matrices give circular standard ellipses, but in section 5.2 we stated that such a solution 
was not possible in an S-system on the sphere. Therefore the introduction of (5.20.1 and 2) 
means that we first develop a matrix in an (a)-system on the sphere. This matrix can be 
transformed later to an S-system on the sphere by means of an S-transformation which will be 
given in section 5.4.  

- Ad c  /',!l 
rl 

For the case where matrix ( a . . )  is nonsingular, the restriction for cl!,!) will be satisfied if: 
11 11 I 

sinA .. cosA ji 
11 ( a . . )  = - (5.21) 

11 -cosA . . sinA ji 
11 

where the elements of the central matrix are independent of Ail and A j i .  
We assume that they are a function of a ... 

11 
We will use (5.14.2) to  work out (5.2 1) in more detail: 

In triangle k, i, j is: 

~ o s ( a . ~ )  - c o s ( a i . ) c o s ( a i k )  
cOscukii = s in(ai i )s in(aik)  

The linearisation of this relationship gives: 

i  Acukij = k l A a i k  + k2Aaki  + k8Aai j  
I 

where k l  , k 2 ,  ka  are functions of a .., aik, ak i  and 
11 

akij only. 

Hence : 

If all the symbolic products a .., aik  are independent of the location and orientation of 
11 

triangle i, j, k then that will be the case for Gkii as well. 

According to (5.1 6 )  and (5.17) is: 

+ (sinA .. cosA ..) ( a j i )  
11 11 

+ (sinAji cosAii ( aik 



With (5.20.1-2) and (5.21) expressed for other sides too we get: 

-cosakij  . c!! -sinakii. c,?: - (cosa. .  c o s a  c ?  -sins.. singkic;;l) 
1 I rlk lkz 1k ~k 

-(sins.. ~ l k  cosa. ~ k z ~ k  .c2' -cosa.. s inykic;)  vk 
and with (5.19.4) 

o..o = cosakii (d:k + db - % ( c k k  + c . . ) ) ~ c o s a . .  cosa. c ? l  -sins.. sina. . c z 2 )  
l ]  l k  I1 yk ]kr ] k  y k  ~ k z  ]k 

+ sin&,, . (c:; - C ? )  -(sinail, o s a  .cz1 - cosaijk sina. c! '  ) 
12 1kz l k  1kz l k  

(5.23) 

The first term on the righthand side of equation (5.23) shows that ai.,aik is dependent on the 
position of point j and k ,  because of the term %(ckk + c ..). This effect will be eliminated by 

I1  
the choice: 

c=' = cos (a  jk ) c;; m 
The second term on the righthand side of (5.23) is then: 

(cosaiik cosa. . - sina .. sin akji cos(a . ))C;; = - cosakij C;: 
1kz 11 k l k  

substitution in (5.23) gives: 

+ sinakfj  (c; - cl' ) - (sinaijk cosa. .c!' - cosa.. sina. . c1 ' )  
11 I ~ Z  ~k 11k ] k z ] k  

G ,, in (5.22) should be independent of position and orientation of triangle k, i, j .  This 
means that it should be independent of the choice of origin and orientation for the 
coordinate system on the sphere. But then Gkii should also be independent of the choice 
for a right- or a lefthanded coordinate system. This can be interpreted as follows: 
Extend triangle k, i, j with a triangle k, i, p such that the figure becomes symmetric with 
respect to side i, k, then: 

skip = 2 lr - c lk i j  

aipk = 2 7r - aijk 

21r - a . .  
1kz 



The invariance of Gkij means for the symmetric figure: 

Gkip = G.. = Gkij 
11k 

Gkip can be developed according to (5.22). Then (5.25. l )  is true if: 

sip, aik = a .  a .  
lj' lk 

Because of the symmetry: 

a . .  = a 4 d2. = d 2  
B ip B IP 

- a = a 4 dip  - di j  
kp ki  

and according to (5.2 1 ): 

C..  = C.,. 
pk ~k 

With these relationships we find in triangle p, i, k 

- sinakij (C: - c;:) + (sina.. cosa. . c? - cosa.. sinajki C;: ) 
l]k ]kl ]k 11 k 

If we compare this expression with (5.23') than it becomes clear that (5.25.2) and hence 
(5.25.1) will be satisfied if: 

(5.25) and (5.26) substituted in (5.2 1) give a solution for (a. .):  
B 

sin A ii cosA .. 
(a,) = - 

-cosA.. sinA.. 
B 

(5.19.2) will be satisfied if: 

Hence: 



and consequently (see (5.19.4) ): 

The combination of (5.27.1 and 2) gives the criterion variance-covariance matrix for the 
points i and j : 

5.3.2 A criterion matrix for vertical positioning over the sphere 

In this section the derivations will refer to  the (r,m;s)- 

f system of (5.12.1-2). The vertical positioning of points is 
then determined by: 

In R!') = In v r m i  + In R:  

The relative positioning of i with respect to  r can also 
be written as: 

m InR(') - Ink: = In v rmi  

For points j and r this is: 

and thus for points j and i : 

According to  def. 5.111 the precision of this relative positioning should be: 

for points j and i : 

for points i and r : 

'In v r m i  , In v r m i  = 2kEi 

and for points j and r : 

'In v r m j ,  In v . = 2k> 
'"'l 



Now, 

- - 
n v i i ,  v "In vrmi,ln vrmi -2.aln v . , in  v rmi  +"ln vrmi,ln v r m i  r m l  

hence 

For the vertical positioning we find then with respect to datum point r the symmetric matrix: 

Here too it seems to be reasonable to state for the covariance function: 

k?. = h { a . . )  
11 11 

- h ( 0 1  = ( 0 )  

- h { a } is continuous and monotonous non decreasing for 0 G a G a 

- h { a }  = h ( 2 a  - a )  1 
According to  the discussion of (5.20.1-2) the matrices (5.27.1-2) have been formulated for 
an (a)-system on the sphere, so an S-transformation is required to  obtain a criterion matrix 
for spherical coordinates computed in a proper S-system. Matrix (5.30) has been formulated, 
however, with respect to the datumpoint r, so if (5.29) is transformed to  base (r ;  S)  then the 
'two matrices can be combined to a three-dimensional criterion matrix in the (r,  m;  s)-system 
of section 5.2. 

The matrices have been developed so that they have a structure which satisfies def. 5.111. This 
characteristic of the matrices will not be effected by S-transformations. The fact that the 
matrices have such a structure is, however, not sufficient to make them useful as criterion 
matrices. 

They should be positive definite as well, and whether that is true depends on the choice of the 
functions d i  and k i .  This problem will be discussed in section 5.5. 

5.4 S-transformations on the sphere 

To transform matrix (5.29) from the ( a  )-system to the (r;s) -system, the S-transformation 
for spherical coordinates should be derived. This is possible, but the problem can also be 
tackled in another way, which seems more elegant in the scope of this publication. 

The relationship between spherical coordinates and quaternions has been given in (5.12.1-2). 
For the case where we are only interested in the spherical coordinates of the points, these 
relationships can be simplified by considering the radius to all points as a constant: Ri = 

R . For a point i in the ( a  )-system of section 5.3.1, this gives: 



If an appropriate choice is made for approximate values of these variates, then we get for 
difference quantities: 

with A u p 1  = cosp l  A h P )  and A V ? )  = A p ? )  I 
In this (a) -system the centre of the sphere is fixed with 

- ( a ) =  0 and AT:) = 0 
4 m 

hence 
~ , ( q /  = A - ( " )  

m I 4 i 

According to section 5.2 the (r;s)-system for spherical coordinates is equivalent to the 
(r, m;s ) -system for quaternions. Therefore the transformation from the ( a  ) -system to the 
(r;s )-system, expressed for quaternions, is (see (4.15.6") ): 

So matrix (5.29) can be transformed to the (r;s )-system by means of (5.3 1.2) and (5.32). 
The variates A  i f ? )  are functions of A  u  7 )  and A  v  only. So, if matrix (5.29) has been 
designed properly, the V.C.matrix for A T ( : )  has a rank equal to 2n for a pointfield of n 
points over the sphere. The matrix for the variates A q ( f ~ " ; ~ )  will then have a rank equal 
to 211-3, because points r and s belong now to the S-base. 

In the ( r ,ma)  -system it is possible to link the criterion matrix for spherical coordinates 
with the matrix (5.30) for spherical heights. For the positioning of points we should use 
then : 

R  f j , m ; S )  is equal to R  (L) in section 5.3.2. With an appropriate choice for approximate 
values for these variates, the following difference equations can be obtained: 

The variates R  (1," and the spherical coordinates are not correlated, according to (5.13), 
hence the criterion matrix will give no correlations between ~ 7 ~ " ; ~ )  and i f ( ~ ~ m " S ) .  In this 
combined criterion matrix the submatrix for the variates R  ( i .k ;S)  has, according to 
section 5.3.2, a rank equal to n-l, for a pointfield of n points over the sphere. The sub- 
matrix for the variates q ( : ~ " ; ~ )  has rank = 211-3, so the rank of the total matrix is 
311-4. The fact that there is only a rank deficiency of four is due to point m, the centre 
of the sphere, being a part of the S-base. As this point can never be part of a real geodetic 
pointfield, the (r,m;s)-system is in fact an ( a )  -system. To be able to test the precision of 



a geodetic network, we have to transform the criterion matrix to an operational S-system, 
from which the base (r,s;t) belongs completely to the network. 

Hence we have to compute: 

The criterion matrix in this new system will have a rank = 3n - 7. 

5.5 On the positive definiteness of the criterion matrices 

5.5.1 Positive definite matrices 

The criterion matrices for spherical coordinates and heights should be positive definite. We 
call the real matrix H of the order n X n, positive definite if: 

forallreal A *  = ( A , ,  A , , .  . . . ,  A,)  + 0 : A* H A > 0 (5.33) 

Whether this is true depends on the choice of the covariance functions for these matrices. For 
the matrix for spherical coordinates this function has two components: a constant part d 2  
and a component d; which depends on the sidelength a i i  However, the constant part d 2  
occurs only when the matrix is formulated in an (a)-system, but as soon as it is transformed 
to  an (r;s)-system, d Z  will disappear. As the criterion matrix will only be used in an (r;s)- 
system, it is, in principle, sufficient to investigate which conditions dyi should fulfil to assure 
that the matrix is positive definite. Matrix (5.30) for heights has been developed in the (r) -  
system. The positive definiteness of this matrix depends only on k:i, so we should also check 
which conditions this function should fulfrl. 

If a real matrix H, of order n X n, is positive definite then there is a real matrix r of rank n 
such that 

H =  r*r 
This property will be used to  establish the conditions to be fulfilled by d; and k:i. 

5.5.2 A decomposition of the criterion matrix for spherical coordinates 

In the (r;s)-system p: , h: and A:s are 
fixed. The other coordinates of the points in 
the figure can be expressed as functions of 
these parameters and the sides in the network. 
Hence the V.C. of the coordinates is a function 
of the V.C. matrix of the sides. Therefore we 
should check under which conditions the latter 

l matrix is positive definite. If we use only a 

i sufficient set of sides to compute the coordinates 
I of the points S, i and j ,  then we get the V.C. 

matrix: 



\ symmetric 

The elements of this matrix are (see (5.16) and (5.27.1) ): 

I (sin"") ( sin"")/ 
+ (sinAir cosAir) (U,,) + (uij)  

cos A si COS A js 

Further elaboration gives with (5.27.1) and (5.28.2): 

cr sj is the angle at the intersection of the large circles containing the sides ar i  and asi 
(see the figure). This is the angle between the planes' m, r, i and m, S, j respectively, m is 
the centre of the sphere. 

Let n z  = (n i i  n:i n:i) be a normal vector of unit length to  plane m, r, i and let nsi 
be a similar normal vector to plane m, S, j. The inproduct of these vectors is n: . nsj = 
cosZ . ., so we can write: 

rl. 

One should notice that if ar i  = n then r, m and i are on a straight line and nri is not 
defined. The covariance G Z s j  can then only be evaluated if a specific direction for side ari  
has been chosen. 

With (5.28.2) DrirSj can be written as: 

The covariance function c;,? is defined as a function of aii 

it can be expanded by the series (see [3  l ]  ): 

(5.37') 



The function cos(n.aii) can be decomposed in trigonometric functions of the spherical 
coordinates of the points i and j :  

cos(n.a ..) = sin (n.cpi) sin ( n . ~  .) + cos(n.cpi) . cos(n.cp .) . cos(n. X i )  . cos (n.X .) 
'l I I I 

+ cos (n. c p i )  . cos (n. cp .) . sin (n. X i )  . sin (n. X i )  
I 

If in (5.37') all P ,  2 0 then we can define a vector: 

P ,  cos(n.cpi) . cos (n. X i )  

P ,  cos(n.cpi) . sin (n. X i )  

With such vectors it is possible t o  write c:: as an inproduct: p T q  
only if all pn 2 0 

In this notation 

- *  - 00 00 

c'.! 11 = C . .  c .  = Z Pncos(n.aii)=,F0 P ,  
1 1 n = o  

* * 
and 11 11 11 2d2. = ( F .  - F i ) .  (5. - F.) = C.. + C.. - 2c.. 

11 I 11 I1 11 

00 W 

= 2 Z pn - 2nzo P ,  cos(n.a..) 
n=o 11 

This is consistent with (5.15) because d i  - 0 for a .. --t 0. 
11 

Now (5.36) can be factorised: 

* * - 
D ~ ~ , ,  = ( e i * - r r ) . ( ~ . - $ )  1 . c N  

and (5.35) can be decomposed according to: 



hence we obtain for (5.34): 

This matrix can be extended for each point added to the system. If the number of points in 
the network is np then the rank of the first and the last matrices in the product is 
2 X np - 3. If in (5.37') an infinite number of On > 0 then the rank of the second and the 

- 
third matrices is 3 X (np - 1) because qi = qi - crs- Consequently the rank of matrix (5.34) 
is then (2 X np - 3). If only a finite number, k ,  of coefficients p,, > 0 ,  then the maximum 
rank of the two central matrices is: 

max. rank = minimum (3 X (np - l) ,  9 X k )  

then there will be a rank deficiency in (5.34) if np is too large, e.g.: if only 0, > 0 then 
the max. rank of (5.34) is 9. This leads to the conclusion that: 

To generate a positive definite criterion matrix which has a full 
rank for any size of network, the expansion (5.37') must have 
an infinite number of coefficients p,, > 0 and no p,, < 0 .  

Only under this condition cl1 can be used as a covariance function. 
21 

5.5.3 A decomposition of the criterion matrix for spherical heights 

The decomposition of the criterion matrix for spherical heights can be tackled in a similar 
way. First we define the function Gii as: 

G .. can be expanded by the series: 
'l 

If we define Ci and Cri similar to  < and qi ,then G . .  can be decomposed according to: 
21 

only if all 7, > 0 

Then the elements of (5.30) are: 

k;s + k;i - ki i  = k2 + G ,  - Gri - Grs = cr; . 4, 



so matrix (5.30) can be decomposed as follows: 

This matrix can be extended for each point added to the system. If np is the number of 
points and k is the number of coefficients 'y,, > 0 then the rank of the matrix is: 

max. rank (5.30) = min. (np - 1 , 3  X k )  

so only if k is infinite a matrix of full rank can always be guaranteed and hence: 

5.5.4 On the choice of a covariance function 

For the criterion matrix in the complex plane Baarda proposes for d2.: 
ZI 

conclusion (5.39) is similarly valid for the coefficients 'yn in the 
series expansion of G. .  

11 

di.  = Z c lP C > 0 0 G p < 2 ( [ 6 ] ( 1 5 , a , 2 5 ) )  
P P 'l P 

p is not necessarily an integer. 

(5.39') 

l.. is the distance between the points i and j in the plane, the coefficients c characterise 
P 

&e precision of the network. The restrictions for p are necessary in order to  obtain a criterion 
matrix which is positive definite. For the sphere a similar choice can be made for d i  and k;i. 
The following developments will only be made for dii, but they are equally valid for kjj. 

For the distance function in d:i we can either use the spherical distance aii or the length of 
the chord lii. For the further developments we will consider the case that one of the terms 
in the series given by Baarda is dominant, so that the function dii, with sufficient approxi- 
mation, can be written as: 

for spherical distance 

for the chord 

b) d2.  = 'y l!. O G a G 2 r  
11 4 11 'yq > 0 

Because of (5.15) for both cases we have q 2 0. In the following sections we will check 
what further restrictions there are for q. 

5.5.4.1 The spherical distance 

If the spherical distance is used, the covariance function ($.37) becomes: 

c { a )  = d 2  - y q  a q  for 0 < a G 71, c{a )  = d 2  - ' y q ( 2 r  - a)4 for 71 < a G 271 

it is now to  be seen for which values of q the expansion (5.37') fulfils (5.39). 



Let: 

t = cosa 

Then the spherical distance is: 

a = a r c c o s t  = E -  ( t + !  . g  1 3 
2 . - 2 3 + i . a :' + . : . . )  3 ' ( l  - S )  

2 

and hence we get: 

s is a power series in t ,  therefore a4 and c { a  I are power series in t  as well, so we can write: 

t n  can be expressed as a binomial series: 

e i ( n - k ) o  e - i k o  = 1 2 e i ( n - z k ) o  
2" k = o  

which means that: 

n l f  t = -  ( C O S ( ~  - 2k). a + i sin (n - 2k). a )  

the imaginary part of this sum vanishes, so: 

So indeed the covariance function can be written as: 

In this expansion all 0 ,  > 0 if all an > 0. From (5.42) it follows that all an > 0 if 
d2 
- 2 ( ) and if all the coefficients of the terms containing S in (5.41) are 0. The 
Iq latter condition is fulfilled if 0 q < 1. Then (5.40.a) satisfies (5.38). The condition 
for q. is a sufficient one, now we will check whether it is necessary. Towards that aim we 
compute 0 ,  : 



Hence: 

with p { a )  = aq + ( n - ~ ) ~  - ( q  + a ) 4  -(: - a ) 4  

if q  < 0  then p { a }  > 0  andhence 0 ,  < 0  

if 0  < q  < 1 then p { a }  G 0  andhence 0 ,  > 0  

if q  > 1 then $ { a }  > 0  and hence 0 ,  < 0  

d 2  So the conclusion is that (5.40.a) satisfies (5.38) only if 0  G q  < 1 and - > (:)4. The 
'Y 

value q  = 0  leads to  the situation where all 8 ,  = 0  for n > 1 in whichease the criterion 
matrix will be singular. The value q  = 1 gives 8 ,  = 0  for all even n > 2. For some 
particular point configurations in the network q  = 1 may lead to  a singular matrix, so it is 
safe to choose q  < 1 .  So if the spherical distance is used, a positive definite matrix will be 
generated by: 

d f .  = 7 a4. 
11 4 11 0  < a..  < n  

11 l 'Yq > O '  O < q < l  
d f .  = 7 ( 2 n - a i j ) q  n  < a.. < 2 r  

11 4 11 

5.5.4.2 The chord 

On a sphere with radius R  the relationship between the chord lij and the spherical distance 
a. .  is: 

11 
12. = 2 R 2  ( 1 - c o s a i j )  

11 

This expression introduced in (5.40.b) gives the covariance function: 

or short: 

c ( a ) = d 2 - f p ( l - t ) P  w i t h t = c o s a ,  5 = ' Y  2'Rq 
P 4 

A binomial expansion gives: 

From the previous section we know that all coefficients of the expansion (3.37') are 
on > 0  if all a,  > 0 .  The latter condition will be satisfied if d 2  > tp  and 0  < p < 1. 
To check whether these conditions are necessary, 0 ,  will be computed: 



The last integral is equivalent to: 

c a 0 2 = - +f~ [ ( l  -cosa)' + (1-COS(R-a))' - ( l  -cos($-a))' -(l - c o s ( ~ - ~ ) ) ~ ] . c o s ~ ~ . ~ ~  = 
O 

Hence: 

on the interval 0  < a < f is cosa > sin a, therefore we find: 

if p < 0  then pia) > 0  andhence p, < 0  

if 0  < p < 1 then p ( a l  < 0  andhence 0, > 0  

if p > 1 then p { a )  > 0  andhence 0, < 0  

Further we find that if p = 0  then all 0, = 0  for n > 1 and if p = 1 then all 0, = 0  
for n > 2, so these values lead t o  a singular criterion matrix. Therefore we should choose 
0  < p < 1 which means 0  < q  < 2. So if the chord is used,a positive definite criterion 
matrix will be generated by: 

d?. = 7 14. 
11 4 2 1  7 q > O  

o < q < 2  

A further discussion of the function d2.  will follow in the last section. 
I1 

5.6 Epilogue to chapter V 

The construction of the criterion matrix in this chapter gave rise t o  several questions, which 
will be mentioned now. These problems will require some more attention in the future. 

The limitations of section 5.5 leave quite a lot of freedom for the choice of a covariance 
function for the criterion matrices. This gives the possibility to classify point fields with 
respect to  their precision. The functions d i  and k;j should be chosen so that they generate 
a matrix which has in some respects similar characteristics as the real V.C. matrix of a point 
field. 
Baarda proposes in [ 6 l that the criterion matrix gives at the same time an upperbound for 
the precision of the point field. This means that variances derived from it should always be 
larger than or equal to  variances derived from the real V.C. matrix. 

If one decides to use a function of the simple form (5.40) then a choice has to  be made 
between (a) and (b). For networks covering small areas there is hardly any difference, but for 
large networks the difference becomes apparent in the conditioning of the matrix. Provisional 
computations showed that the chord gives a better conditioned matrix than the spherical 
distance, which can be understood from sections 5.5.4.1 and 5.5.4.2. 

Another advantage of the chord is that i t  is a distance in three-dimensional space, so it can 
be used in a spherical coordinate system as well as in a three-dimensional coordinate system. 
For the case where it is necessary, it seems a minor step from the chord to  the real distance 



between points. A third point, which is of less importance, is that (5.40.b) automatically 
takes care of the symmetry of d;,  with respect t o  a = n. 

The condition q > 0 ,  found in the previous sections, agrees with the constraint 
. lim . d z .  = 0 .  This means that the function d;i cannot contain a constant term. Yet in 
1-1 11 
photogrammetric blocks the variances of distances consist of a constant term and a term 
depending on the bridging distance between points. This is not a serious conflict if it is not 
required that the coefficients cq  are constant for the whole range of 1 ... Then, it is only in 

11 
the neighbourhood of lii = 0 that q > 0 is necessary, whereas for any region 
l i j  > e ( e > 0 ) one could introduce a term with q = 0. So it should be investigated 
whether, and under which restrictions, it is possible t o  introduce different values for the 
coefficients cq  , for different regions for lii . 
The condition q < 1 in (5.43) means that d i  should be a concave function of aii ,  whereas 
q < 2 in (5.45) means that 4 d ;  should be a concave function of l i i  The latter restriction 
seems to  agree with experience in photogrammetric blocks and planiinetric geodetic networks, 
where such a behaviour of the variances of distances has indeed been found. 

A closer look at (5.27.1) may lead to  a better understanding of the structure of ( p i i ) .  This 
matrix can be written as the symbolic product: 

Aai 
Au . 

I 

the ( U ,  V )  coordinate system can be replaced by 
an (a,  b )  system where for point i : 

Abi 
AU . --I---' 

Aai is counted in the direction of the tangent to  aii at i 

Ab is perpendicular to  Aai 

and in point j : 

Aai is counted in the direction of the tangent to  aii at j 

A bi is perpendicular to  Aa,.. 

The relation between the ( U ,  v )  and the (a,  b )  systems is: 

and 

sin Ail -cosAii ) ('ii) 
cos A ji sin A ji 

so we find for ( o i i ) :  



This expression compared with (5.27.1 ) gives: 

for the components along side ail : a i .  = c?? 
I 11 

for components normal to side aij  : v. = cos(a ..)c;,' I rl 
crosscorrelation: ai,oj = vj = 0 

So the central matrix in (5.27.1) is independent of the choice of the coordinate system. The 
link with the actual system is made by the left- and righthand matrices in the formula for 
((lij). 

An important question is how matrix (5.29) is related to the criterion matrix in the complex 
plane [ 6 ] (1 5.48). In networks covering only small areas the lengths of the sides are small 
compared to the radius R of the sphere. This can be considered as the limiting case R -CO,  

which gives: 

lim Aij = n-Aji 
R-- 

l ima. .  = 0 lim cos(a..)c!? = c?? 
11 11 11 11 

R-- R- 

then with (5.27.1) and (5.28.2): 

d 2  - dij 
lim ( a . . )  = 

U 
R-- i 0 d 2  - d; 

In combination with (5.27.2) this gives for (5.29) a matrix with a structure similar to [ 6 ] 
(1 5.48). So if proper definitions are given for the transitions: 

it will be possible to connect local or regional networks to national or even continental 
networks. 

If the elements of (5.29) are rewritten in a proper way: 

VUi = - (sin A . . . sin A . . + cos A . . . cos A . . . cosa . . ) . c?? 
rl I I 11 I I 11 Y 

= - (cosA .. . cosA .. + sin A .. . sin A ..) . cosa .. . c!? 
11 11 11 I I 11 11 

+ ( - C;? + cosa .. . c!?) . sin A .. . sin A .. 
11 11 11 11 

and similar for other elements and if we write: 
1. 
,$ 

cos(a ..)c!? = \k ( a  .. ) 
11 11 11 

c?? = SZia..)  
11 11 



it appears that the expressions for the elements of (5.29) have a structure which is com- 
parable with the Taylor-Kaman structure as given by Grafarend for cartesian coordinates 
[ 19,22 l . The limit R - then gives the 'chaotic structure': * { a i i  ) - W {aii  J. This 
is a consequence of choice (5.24), an alternative choice for C: is: 

It is not yet known what the characteristics of g { a  J should be, but most likely they should 
be similar to those formulated for f { a  } in (5.15). If g  { a }  does not vanish for R -m 

then this limit will lead to the Taylor-Kaman structure for planimetric networks. For this 
new choice it has to be considered again which conditions C,?; and C: should both fulfil 
to generate a positive definite matrix. It is not clear as yet what advantage the Taylor-Karman 
structure has over the chaotic structure. In planimetric networks the latter appeared to be 
very useful, therefore choice (5.24) seems to  be preferable. 

Earlier in this epilogue we stated that the matrix of section 5.3 made it possible to design a 
consistent system for the analysis of the precision of networks ranging from continental to 
local scale. The question is when to replace the matrix for the complex plane by the matrix 
for the sphere, i.e.: when does the curvature of the earth have a significant effect on the 
precision of the computed coordinates. This has not been investigated yet in detail. Such an 
investigation could be based on the coordinates of points in a conformal mapping. Then two 
matrices can be computed, firstly matrix [ 6 1 (1 5.48) applied directly to  the mapped points 
and secondly the matrix derived from the matrix for spherical coordinates. Comparison of the 
two will show for what size of networks the differences will be significant. Some tentative 
computations gave the impression that for networks up to 500 km by 500 km the difference 
is not large and that it grows slowly with the size for larger networks. But more exact com- 
putations should still be made. 

For very large networks the earth is considered to  have an ellipsoidal shape. Coordinates are 
then computed in an ellipsoidal system which even may be corrected for discrepancies between 
geoid and ellipsoid. It will be interesting therefore to  develop a criterion matrix for such 
coordinates. But what was said about the difference between planimetric and spherical 
coordinates gives rise to the thought that for geodetic practice the difference between the 
matrix for spherical and the matrix for ellipsoidal coordinates will be negligible. This of 
course can only be verified after developing the matrix for the ellipsoid and establishing the 
relation between spherical and ellipsoidal coordinates in a way similar to the relation between 
the sphere and the complex plane. 

The crucial point in the connection of local or regional planimetric coordinate systems with 
national or continental curvilinear systems is the definition of the latter. The difficulties in- 
dicated in sections 3.3 and 3.4 may rise serious problems, so that instead of using two- 
dimensional coordinate systems one should rather restrict oneself to  three-dimensional 
systems. 

The discussion in section 5.2 pointed out that the criterion matrix developed in this paper 
only represents one of the possible solutions. Another pdssibility is a criterion matrix which 
is isotropic and homogeneous throughout R3. Baarda did preliminary studies on this 
approach, but no results have been published as yet. Grafarend proposed the Taylor-Karman 
structure for such matrices [19,22 ],but as he did not refer to  S-systems there is no link yet 
with measured networks. In the future, experience should show what the difference between 
the various solutions means for practice. 



It appears that many questions are still open for future research. This paper took up the line 
pointed out by Baarda in [ 6 1 and tried to  give a key for working out his concepts in some 
new directions, so that a framework could be constructed for further explorations. 

M. Molenaar 
1974 - 1980 
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