NETHERLANDS GEODETIC COMMISSION publications on geodesy
NEW SERIES
NUMBER 1

GEODETIC-ASTRONOMICAL OBSERVATIONS IN THE NETHERLANDS, 1947-1973

by
G. J. HUSTI

CONTENTS

List of symbols 4
1 Introduction 5
2 Instrument set-ups, reductions to centre, polar motion correction. 6
3 Longitude determinations (Leeuwarden, Ameland, Zierikzee, Goedereede) 8
4 Simultaneous latitude, longitude and azimuth determinations 15
(Ubachsberg, Tongeren)
5 Azimuth determinations (Goedereede, Zierikzee) 19
6 Misclosures of the Laplace stations 22
References 26
Appendixes
I Data longitude determinations 27
II Data simultaneous latitude, longitude and azimuth determinations 32
III Data azimuth determinations 36
IV Systematic errors in the circle division of the theodolite DKM 3A No. 134824 39
V Covariance-matrix of the coordinates related to the base Amersfoort-Veluwe 39

LIST OF SYMBOLS

φ, φ_{g}	latitude (astronomic or geodetic)
λ, λ_{B}	longitude (positive west of Greenwich)
A, A_{g}	azimuth of the reference mark
z	zenith distance
a	azimuth
q	parallactic angle
t	local hour angle of the star
t^{G}	Greenwich hour angle
α	apparent right ascension
δ	apparent declination
ψ	horizontal angle R.M.-star
M	Mean value of the level reading: $M=\frac{1}{2}(l+r)$
M_{0}	reference position of the bubble (approximately corresponding with a vertical alidade axis)
p	level value per division
UT	Universal Time
LMT	Local Mean Time
GAST	Greenwich Apparent Sidereal Time
$\hat{\sigma}$	estimate of standard deviation
β	width of the contact strips of the self-recording micrometer
τ	lost motion of the self-recording micrometer
F_{k}	distances of the contacts with respect to their centre point
N	number of contacts ($k=1,2 \ldots N$)
s	number of stars ($i=1,2 \ldots \mathrm{~s}$)
n	number of series

GEODETIC-ASTRONOMICAL OBSERVATIONS IN THE NETHERLANDS, 1947-1973

1 Introduction

At the end of the 19th century astronomical observations were carried out in The Netherlands with the object of establishing a reference ellipsoid for the national triangulation. For this purpose latitude and azimuth were determined in 13 first order points, regularly distributed over the network [1]. The methods applied for these determinations were meridian altitudes of stars (latitude) and Polaris observations (azimuth). Starting from the astronomical data obtained in each of these points and using the geodetic data of the network, 13 values for latitude and azimuth were computed for Amersfoort, the central station of the net. The mean of these 13 values was assumed to be the geodetic latitude of Amersfoort and the azimuth Amersfoort-Utrecht [3].

The longitude of Amersfoort, although less important for the ellipsoid, was derived from the longitude of Leiden and from the longitude difference Amersfoort-Leiden, computed from the geodetic data.

The data of Amersfoort obtained in this way are:

$$
\begin{aligned}
\text { latitude } \varphi & =52^{\circ} 09^{\prime} 22^{\prime \prime} .178 \\
\text { longitude } \lambda & =-55^{\circ} 23^{\prime} 15^{\prime \prime} .500 \\
\text { azimuth Amersfoort-Utrecht } A & =248^{\circ} 35^{\prime} 19^{\prime \prime} .891
\end{aligned}
$$

Laplace stations for azimuth control were not used in the adjustment of the network. In a small country like The Netherlands this is admissible. The need for Laplace stations came much later, namely after the second world war, when it was decided to readjust the European network as a whole. Three twin Laplace stations were planned in The Netherlands for this purpose, i.e. Leeuwarden-Ameland, Zierikzee-Goedereede and UbachsbergTongeren. The measurements were carried out using the following methods:

1. Longitude determination by meridian transit of stars. Leeuwarden (1947), Ameland (1947), Zierikzee (1949) and Goedereede (1950); see section 3.
2. Simultaneous determination of latitude, longitude and azimuth using the Black method. Ubachsberg (1968), Tongeren (1968); see section 4.
3. Azimuth by Polaris. Goedereede (1969), Zierikzee (1973); see section 5.

In addition some results from older measurements are available:
4. Azimuth by Polaris and some circumpolar stars. Ubachsberg (1893) [2].
5. Determination of the longitude difference Leiden-Ubachsberg (1893) [2].
6. Azimuth by Polaris. Leeuwarden (1897), Ameland (1897), Zierikzee (1897) [1].

A summary of the results of the above mentioned measurements is given in table 1.1.
For the Laplace stations Leeuwarden and Ameland the azimuth determinations of 1897 have to be used. The accuracy of these measurements is satisfactory but there is some doubt about the polar motion correction. According to information received from the Director

Table 1.1 Laplace points in The Netherlands

Laplace point (terrestrial direction)	astronomic quantities	$\hat{\boldsymbol{\sigma}}$	year	method/remark
Leeuwarden (C1902) (Hallum, C1897)	$\begin{aligned} & \varphi=53^{\circ} 12^{\prime} 15^{\prime \prime} .283 \\ & \lambda=-\quad 5^{\circ} 47^{\prime} 23^{\prime \prime} .850 \\ & A= \\ & \lambda 58^{\circ} 31^{\prime} 57^{\prime \prime} .632 \end{aligned}$	$\begin{aligned} & \mathbf{0}^{\prime \prime} .075 \\ & \mathbf{0}^{\prime \prime} .090 \\ & \mathbf{0}^{\prime \prime} .35 \end{aligned}$	$\begin{aligned} & 1897 \\ & 1947 \\ & 1897 \end{aligned}$	meridian altitudes (Sterneck) meridian transit (Mayer) Polaris $\hat{\sigma}_{A+\lambda \sin \varphi}=0^{\prime \prime} .36$
Ameland (C1897) (Hallum, C1897)	$\begin{aligned} & \varphi=53^{\circ} 27^{\prime} 30^{\prime \prime} .249 \\ & \lambda=-\quad 5^{\circ} 46^{\prime} 56^{\prime \prime} .550 \\ & A=179^{\circ} 05^{\prime} 52^{\prime \prime} .922 \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .026 \\ & 0^{\prime \prime} .180 \\ & 0^{\prime \prime} .20 \end{aligned}$	$\begin{aligned} & 1897 \\ & 1947 \\ & 1897 \end{aligned}$	meridian altitudes (Sterneck) meridian transit (Mayer) Polaris $\hat{\sigma}_{A+\lambda \sin \varphi}=0^{\prime \prime} .25$
Goedereede (C1896) (Zierikzee, C1896)	$\begin{aligned} & \varphi \approx \quad 51^{\circ} 49^{\prime} 10^{\prime \prime} \\ & \lambda=-\quad 3^{\circ} 58^{\prime} 34^{\prime \prime} .965 \\ & A=\quad 192^{\circ} 43^{\prime} 00^{\prime \prime} .980 \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .090 \\ & 0^{\prime \prime} .10 \end{aligned}$	$\begin{aligned} & 1950 \\ & 1969 \end{aligned}$	meridian transit (Mayer) Polaris $\hat{\sigma}_{A+\lambda} \sin \varphi=0^{\prime \prime} .13$
Zierikzee (C1896) (Goedereede, C1896)	$\begin{aligned} & \varphi=51^{\circ} 39^{\prime} 03^{\prime \prime} .558 \\ & \lambda=-\quad 3^{\circ} 54^{\prime} 53^{\prime \prime} .655 \\ & A=\quad 12^{\circ} 40^{\prime} 07^{\prime \prime} .071 \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .085 \\ & 0^{\prime \prime} .090 \\ & 0^{\prime \prime} .15 \end{aligned}$	$\begin{aligned} & 1897 \\ & 1949 \\ & 1973 \end{aligned}$	meridian altitude (Sterneck) meridian transit (Mayer) Polaris $\hat{\sigma}_{A+\lambda \sin \varphi}=0^{\prime \prime} .17$
Ubachsberg (C1890) (Tongeren, St.A)	$\begin{aligned} & \varphi=50^{\circ} 50^{\prime} 53^{\prime \prime} .432 \\ & \lambda=-\quad 5^{\circ} 57^{\prime} 04^{\prime \prime} .320 \\ & A=r \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .41 \\ & 0^{\prime \prime} .64 \\ & 0^{\prime \prime} .53 \end{aligned}$	1968	Black $\left(z \approx 60^{\circ}\right)$ $\hat{\sigma}_{A+\lambda \sin \varphi}=0^{\prime \prime} .17$
Tongeren (St.A) (Ubachsberg, C1890)	$\begin{aligned} & \varphi=\quad 50^{\circ} 46^{\prime} 55^{\prime \prime} .775 \\ & \lambda=-r \\ & A=r \\ & A 7^{\circ} 52^{\prime} 42^{\prime \prime} .53^{\prime \prime} .958 \end{aligned}$	$\begin{aligned} & 0^{\prime \prime} .48 \\ & 0^{\prime \prime} .78 \\ & 0^{\prime \prime} .64 \end{aligned}$	1968	Black $\left(z \approx 60^{\circ}\right)$ $\hat{\sigma}_{A+\lambda} \sin \varphi=0^{\prime \prime} .20$

of the Polar Motion Service at Mizusawa, Mr. S. Yumi, it is not possible to reduce these old measurements to the Conventional International Origin. This means that the final azimuths of Oudemans [1] have to be used. These azimuths are only corrected for the annual periodical polar movement, but do of course not refer to the C.I.O. to be used. In order to gain an insight into the possible effect of polar motion, the remeasurement of the azimuth Zierikzee-Goedereede (1973) is compared with the old measurement of 1897:

| azimuth 1897: $12^{\circ} 40^{\prime} 07^{\prime \prime} .387$ | $\hat{\sigma}_{A}=0^{\prime \prime} .31$ |
| :--- | ---: | :--- |
| azimuth 1973: $12^{\circ} 40^{\prime} 07^{\prime \prime} .071$ | $\hat{\sigma}_{A}=0^{\prime \prime} .15$ |

In this case the difference is not significant.

2 Instrument set-ups, reduction to the centre, polar motion correction

All the measurements shown in table 1.1 were carried out from a stable observation pillar. The reference marks were measured with the aid of a lamp, placed at a distance of about 10 km from the instrument set-up. The plane rectangular coordinates of the centres, setups and lamps with respect to Amersfoort are given in metres in table 2.1.

Table 2.1

station	X	\boldsymbol{Y}	remarks
Leeuwarden Centre 1902	+26894.377	+116668.837	
Leeuwarden pillar 1947	+26889.663	+116669.740	longitude 1947
Ameland Centre	+26177.206	+144988.000	longitude 1947
Hallum Centre 1897	+26532.521	+128260.440	terrestrial line
			azimuths 1896
Goedereede Centre 1896	-97314.981	-36522.587	
Goedereede pillar 1950	-97309.722	-36527.121	longitude 1950
Goedereede pillar 2 (1969)	-97312.179	-36525.790	azimuth 1969
Goedereede pillar 2 (1973)	-97312.171	-36525.778	lamp 1973
Zierikzee Centre 1896	-101897.967	-55142.050	
Zierikzee pillar 1949	-101891.448	-55148.254	longitude 1949
Zierikzee lamp 1969	-101904.164	-55132.481	lamp 1969
Zierikzee perm. mark 12	-101890.412	-55134.008	azimuth 1973
Ubachsberg Centre 1890	+39845.615	-145477.288	
Ubachsberg pillar 1966	+39774.286	-145558.665	Black, 1968
Tongeren Centre 1892	+5433.487	-152902.284	
Tongeren centre Stat. A	+5433.945	-152907.075	
Tongeren pillar 1966	+5437.230	-152899.507	Black, 1968

The station Leeuwarden is a detached unfinished tower with a flat roof, called Oldenhove. The azimuth from this station to Hallum was determined in 1897 [1]. The longitude determination was carried out on pillar 1947. All results were reduced to centre 1902.

The station Ameland is situated on top of a high dune, north-northeast of the village of Nes, locally known as the "grey-dune". An observation pillar was built at the centre of the station. The azimuth determination (1897) to Hallum and the longitude determination (1949) were executed at this pillar.

The station Ubachsberg is situated in the holiday resort "Vrouweheide" near the village of Ubachsberg. The original centre 1890 proved to be unsuitable for the Black method because of high trees and therefore a new observation pillar (pillar 1966) was erected at a distance of about 100 metres from the old centre. The tower of Schimmert was used as terrestrial reference mark. The 1968 -observations were reduced to the 1890 -centre.

The observations at Tongeren were carried out on the flat roof of the tower of the "Basilique Notre Dame" from an observation pillar built in 1966. The terrestrial reference mark used was a lamp placed on the tower of Herderen. The measurements of 1968 were reduced to centre A.

The station Zierikzee is the "St. Lievens Monster", a detached unfinished tower. The observations for the longitude determination (1949) were carried out on pillar 1949. The azimuth measurement (1973) was done from permanent mark 12. For the measurement of the azimuth from Goedereede a lamp was placed on this tower. The results were reduced to centre 1896.

The station Goedereede is also a detached unfinished tower. The longitude measurement (1949) were performed on pillar 1949, the azimuth determination (1969) from pillar 2. A lamp was placed on pillar 2 for the azimuth determination from Zierikzee. The results were reduced to centre 1896.

The latitude, longitude and azimuth of an excentric set-up were reduced to the centre applying bearing and distance computed from the coordinates of table 2.1. An example of a reduction is given in [7, p. 17].

The polar motion corrections to the final results were applied using the following formulae:

$$
\begin{aligned}
& \Delta \varphi^{\prime \prime}=-(x \cos \lambda+y \sin \lambda) \\
& \Delta \lambda^{\prime \prime}=-(x \sin \lambda-y \cos \lambda) \tan \varphi \\
& \Delta A^{\prime \prime}=(x \sin \lambda-y \cos \lambda) \sec \varphi
\end{aligned}
$$

in which x and y are coordinates of the true pole (in seconds of arc) referring to the Conventional International Origin. The data for x and y have been taken from publications of the Bureau International de l'Heure (Paris) or from publications of the International Polar Motion Service (Mizusawa).

3 Longitude determinations (Leeuwarden, Ameland, Zierikzee, Goedereede)

3.1 Introduction

Longitude determinations were carried out in the stations Leeuwarden (1947), Ameland (1947), Zierikzee (1949) and Goedereede (1950). The results of Goedereede are included in the present report while the measurements of the other stations were already reported in 1950 by Bruins [5]. However, at that time the definite time corrections and polar motion corrections were not available yet. Applying these corrections the longitude changes by about $0^{\text {s }} .040$, an amount which may not be neglected. In this section a brief description of the measurements and the computations will be given.

3.2 The method used

The longitude determination is based on the relation:

$$
\begin{equation*}
\lambda=G M T-L M T \tag{3.1}
\end{equation*}
$$

in which:
$G M T=$ Greenwich Mean Time; to be determined from radio time signals
$L M T=$ Local Mean Time; to be determined from meridian-transits of stars.
In the present terminology $U T$ (Universal Time) is used instead of GMT.
Hence we have:

$$
\begin{equation*}
\lambda=U T 1-L M T 1=(U T 1-T)-(L M T 1-T) \tag{3.2}
\end{equation*}
$$

in which the indices 1 mean that both times are related to the Conventional International Origin (C.I.O.).
In formula (3.2) two chronometer corrections are in fact required. They are determined independently but obviously referring to the same moment (T). The chronometer corrections
($U T 1-T$) were determined by rhythmic time signals of the radio stations Pontoise (FYP) or Rugby (GBR) with an accuracy of about $0^{s} .001$. Applying some corrections we then obtain:

$$
\begin{equation*}
(U T 1-T)=(\text { Signal }-T)+\Delta T_{d}+\left(U T 0_{\text {Paris }}-\text { Signal }\right)+\left(U T 1-U T 0_{\text {Paris }}\right) \tag{3.3}
\end{equation*}
$$

in which:

$$
\begin{aligned}
&(\text { Signal }-T)= \text { chronometer correction determined by the radio time signals; } \\
& \text { usually referring to the moment of receiving the time signals } \\
& \text { before the measurement }\left(\mathrm{FYP} \text { at } G M T=20^{\mathrm{h}} 06^{\mathrm{m}}\right. \text { or GBR at } \\
&\left.G M T=20^{\mathrm{h}} 00^{\mathrm{m}}\right) . \\
&= \text { time correction due to the travel time of the radio signal } \\
&\left(\text { Leeuwarden and Ameland } 0^{s} .005,\right. \text { Goedereede and Zierikzee } \\
&\left.0^{\text {s. }} .004\right) . \\
&\left(U T T_{\text {Paris }}-\text { Signal }\right)= \text { definite time correction according to the Bureau International } \\
& \text { de l'Heure. } \\
&\left(U T 1-U T 0_{\text {Paris }}\right)=\frac{1}{15}\left(x^{\prime \prime} \sin \lambda_{\text {Paris }}+y^{\prime \prime} \cos \lambda_{\text {Paris }}\right) \tan \varphi_{\text {Paris }} \approx-0.076 y^{\prime \prime} .
\end{aligned}
$$

The latter corrections were computed in accordance with a suggestion made by Mr. B. Guinot, Director of the Bureau International de l'Heure in Paris. The polar coordinates x, y with respect to the C.I.O. were taken from the "Publications of the International Latitude Observatory of Misusawa" (Vol. VII, No. 1, 1969).

The other chronometer corrections in formula (3.2), ($L M T 1-T$) were determined by meridian transits of stars using Mayer's formula. In case of upper culmination of stars this formula reads:

$$
\begin{equation*}
\alpha=T+\Delta T+\frac{\sin (\varphi-\delta)}{\cos \delta} a \pm \frac{\cos (\varphi-\delta)}{\cos \delta} b \pm \frac{1}{\cos \delta} c\left(\frac{+ \text { eye piece east }}{\text {-eye piece west }}\right) . \tag{3.4}
\end{equation*}
$$

in which:
$\varphi=$ latitude of the station
$\alpha=$ apparent right ascension of the star
$\delta=$ apparent declination of the star
$T=$ chronometer time observed
$\Delta T=$ chronometer correction ($L M T 0-T$)
$a=$ deviation of the line of sight from the meridian
$b=$ inclination of the rotation axis of the telescope
$c=$ collimation error

From the relation (3.4) the following observation equations are obtained:

$$
\begin{align*}
& \underline{\Delta T}+\frac{\sin \left(\varphi-\delta_{i}\right)}{\cos \delta_{i}} \underline{a} \pm \frac{\cos \left(\varphi-\delta_{i}\right)}{\cos \delta_{i}} \underline{b} \pm \frac{1}{\cos \delta_{i}} \underline{c}=\left(\alpha_{i}-\underline{T}_{i}\right)+\underline{\varepsilon}_{i} \ldots . . . \tag{3.5}\\
& i=1,2, \ldots s(=\text { number of stars })
\end{align*}
$$

from which a number of unknowns ($\underline{\Delta T}, \underline{a}, \underline{b}, \underline{c}$) can be determined by the method of the least squares. It should be noted that for each group of stars observed in the same instru-
ment position, different unknowns for the deviation of the line of sight from the meridian are introduced. In this way we have:
$a_{1}:$ for the first group of stars observed with eye-piece east;
$a_{23}:$ for the second and third group observed with eye-piece west;
$a_{4}:$ for the fourth group of stars observed with eye-piece east.

The observation vector $\left(\alpha_{i}-T_{i}\right)$ in (3.5) is derived from the right ascension of the star and the time observed. Since a mean time chronometer was used, the right ascension was converted into mean time: $\alpha=L A S T \rightarrow L M T$, in which LAST denotes Local Apparent Sidereal Time and LMT Local Mean Time. LMT refers to the momentaneous pole, therefore, similar to $U T 0$, we can write $L M T 0$. In fact, we determine from the adjustment the chronometer correction ($L M T 0-T$). Applying the polar motion correction to the longitude according to section 2 we then obtain:

$$
(L M T 1-T)=(L M T 0-T)+(x \sin \lambda-y \cos \lambda) \tan \varphi
$$

To the observed star's transit time some corrections were applied (omitting the index i):

$$
\begin{equation*}
T=\bar{T}+N+G \tag{3.6}
\end{equation*}
$$

in which \bar{T} is the mean value of contact-times resulting from the self-recording micrometer, N and G are respectively corrections for the inclination of the horizontal axis and for the rate of the chronometer used.

The mean value \bar{T} is obtained from:

$$
\begin{equation*}
\bar{T}=\frac{1}{N}\left[T_{k}+\left(F_{k}+\frac{1}{2} \tau\right) C\right] \quad k=1,2, \ldots N \tag{3.7}
\end{equation*}
$$

in which:
$N=$ number of contacts used ($N=36$)
$T_{k}=$ contact times
$F_{k}=$ wire distances with respect to the centre wire (or collimation point)
$\tau=$ lost motion of the micrometer
$C=7^{\mathrm{s}} .831$ (one revolution of the self-recording micrometer).
It should be noted that the correction for the (different) widths of the 12 contact strips of the micrometer is eliminated by taking the same end of the marks on the chronograph tape.

The correction N in (3.6) was computed from levelling the horizontal axis with the suspension level:

$$
N=\frac{\cos (\varphi-\delta)}{\cos \delta}\left(M_{0}-M\right) p^{s}
$$

in which:
$M_{0}=$ reference position of the bubble ($M_{0}=30$)
$M=\frac{1}{2}(l+r)$: mean value of the level reading
$p^{s}=0^{s} .114$: level value per division

Finally the correction G in (3.6) is computed from:

$$
G=\left(\bar{T}-T_{0}\right) \Delta_{1} T
$$

in which:
$\bar{T}=$ the moment of observation
$T_{0}=$ reference moment (usually $G M T=20^{\mathrm{h}} 00^{\mathrm{m}}$ or $20^{\mathrm{h}} 06^{\mathrm{m}}$ before starting the measurements)
$\Delta_{1} T=$ chronometer rate (sec/hour); determined from time signals for a period of 12^{h} or 14^{h} (see appendix I). Pontoise (FYP): $18^{\mathrm{h}} \rightarrow 8^{\mathrm{h}}$ (next day); Rugby (GBR): $18^{\mathrm{h}} \rightarrow 10^{\mathrm{h}}$ (next day).

Another remark should be made about the method of least square adjustment applied to the observation equations (3.5). In this adjustment different weights were used depending on the declination of the stars, see table 3.2.1. The data of this table were taken from a publication of the U.S. Coast and Geodetic Survey [6].

Table 3.2.1

δ	g
-0°	1
10	1
20	0.98
30	0.91
40	0.82
45	0.76
50	0.69
55	0.61
60	0.51
65	0.40
70	0.29
75	0.18
80	0.09

3.3 Instruments

The observations were made using the following equipment:
a. transit instrument
b. chronograph
c. synchron clocks (2)
d. radio receiver

The meridian transits of stars were observed by a transit instrument of an usual type. This instrument was made in 1869 by Pistor and Martins. The technical data are as follows:
Telescope: magnification $85 \times$
aperture $\quad 67.8 \mathrm{~mm}$
focal length 861 mm
Suspension level: sensitivity $0^{5} .114$ per division

Transit instrument and time recording equipment used for longitude determination. Pictures show set-up at Ameland.

Self-recording micrometer:
graduation per revolution: 100 divisions
value of one revolution: $\quad 7^{\mathrm{s}} .831$
number of contacts: 12
widths of contact strips: variable
lost motion: $\quad 0.26$ div.
The time observations were recorded by an analogue tape chronograph made by the Great Northern Telegraph Cy, Copenhagen. The tape speed of this chronograph is about $24 \mathrm{~mm} /$ sec. One pen recorded the observations, the other pen fixed the time scale kept by a quartz clock of the Radio Laboratory of the Post and Telegraph Office in The Hague. The connection between the astronomical station in question and the quartz clock in The Hague was realised by means of a telegraph line. One synchron clock on the astronomical station displayed the time, the other one produced second pulses for the chronograph.
In order to determine the chronometer corrections before and after the measurements, a radio receiver was used for the time signals of the radio stations Pontoise (FYP) or Rugby (GBR).

3.4 Observations

In order to obtain an optimal accuracy, a theoretical investigation was carried out with various models of star-programmes. One model consisted of 3 north and 3 south stars in meridian transit having different zenith distances. The weight coefficients of the unknowns (ΔT) and (a) were computed and presented in a nomogram [5]. Based on this nomogram the following method of star selection was applied.

One measuring programme consisted in general of 24 stars, observed in 4 groups. The first group of 6 stars was measured with instrument position eye-piece east, the second and the third groups with eye-piece west, and finally the last one with eye-piece east again. In each group 4 north stars were selected with $\delta \approx 68^{\circ}$ and 2 south stars with $\delta \approx 23^{\circ}$, all in upper culmination. Only at the station Zierikzee 4×8 stars were measured, with an equal number of north and south stars.

Each star was tracked over 3 revolutions by the self-recording micrometer of the transit instrument used, while 3×12 contact times were registered on the chronograph.

The observations and different quantities computed are shown in appendix I, in which:

```
column 1: FK4 number of the stars observed
    2: instrument position, eye-piece east or west
    3: mean value of suspension level reading (zero of the level always on the opposite
        side of the eye-piece)
    4: the mean time }\overline{T}\mathrm{ , reduced according to formula (3.7)
    5: estimate of standard deviation of the mean time }\overline{T
    6: observation vector ( }\alpha-T
    7: weights, used in the adjustment.
```


3.5 Results of the longitude determinations

The definite results of the adjustment applying the formulae of section 3.2 are shown in

Table 3.5.1

station: Leeuwarden		
date: 1947	longitude	$\hat{\sigma}_{\lambda}$
May 28-29	$-0^{\text {h }} 23 \mathrm{~m}{ }^{\text {m }} 09^{\text {s }} .568$	$0^{\text {s }} .012$
29-30	98.578	$0^{8 .} 007$
30-31	98.586	$0^{5} .014$
31-1	98.559	$0^{5} .012$
mean value (pillar 1947)	-0h23m 98. 573	$0^{8} .006$
reduction to centre	$-\quad 0^{\text {s }} .017$	
Centre 1896	$0^{\text {h }} 23{ }^{\text {m }} 09{ }^{\text {s }} .590$	$0^{8} .006$

Table 3.5.3
station: Goedereede

date: 1950	longitude	$\hat{\sigma}_{\lambda}$
June 6-7	$-0^{\mathrm{h}} 15^{\mathrm{m}} 54^{\text {s }} .290^{*}$	$0^{5} .020$
15-16	$54^{\text {® }} .352$	$0^{5} .011$
28-29	$54{ }^{\text {s }} .353$	$0^{5} .008$
29-30	$54^{\text {s }} .346$	$0^{\text {s }} .013$
mean value (pillar)	$-0^{\mathrm{h}} 15^{\mathrm{m}} 54^{\mathrm{s}} .350$	$0^{5} .006$
reduction to centre 1896	+ $0^{5} .019$	
Centre 1896	$-0^{\text {h }} 15^{\text {m }} 544^{\text {s }} .331$	$0^{5} .006$

Table 3.5.2

station: Ameland		
date: 1947	longitude	$\hat{\sigma}_{\lambda}$
June 16-17	$-0^{\mathrm{h}} 23^{\mathrm{m}} 07^{\mathrm{s}} .799$	$0^{\mathrm{s}} .017$
$17-18$	$07^{\mathrm{s}} .746$	$0^{\mathrm{s}} .015$
$18-19$	$07^{\mathrm{s}} .766$	$0^{\mathrm{s}} .014$
$24-25$	$07^{\mathrm{s} .743}$	$0^{\mathrm{s}} .019$
$25-26$	$07^{\mathrm{s}} .795$	$0^{\mathrm{s}} .014$
mean value	$-0^{\mathrm{h}} 23^{\mathrm{m}} 07^{\mathrm{s}} .770$	$0^{\mathrm{s}} .012$
(centre 1896)		

Table 3.5.4
station: Zierikzee

date: 1949	longitude	$\hat{\sigma}_{\lambda}$
Sept. 12-13 (I)	$-0^{\text {h }} 15^{\text {m }} 39^{\text {a }} .620$	$0^{5} .010$
19-20 (I)	398.630*	08.017
19-20 (II)	39.582	$0^{8 .} 012$
20-21 (I)	398.607	$0^{08} .008$
20-21 (II)	39.593	$0^{5.008}$
Oct. 4-5 (I)	$39^{\text {s }} .612$	$0^{8 .} 009$
4-5 (II)	$39^{9 .} 587$	05.006
mean value (pillar 1949)	$-0^{\mathrm{h}} 15^{\mathrm{m}} 39 \mathrm{~s} .600$	$0^{3} .006$
reduction to centre	$+\quad 0^{8.023}$	
Centre 1896	$-0^{\mathrm{h}} 15^{\mathrm{m}} 39^{\text {¢ }} .577$	$0^{5} .006$

tables 3.5.1-3.5.4. The small differences, approximately $0^{5} .040$, with the results of Bruins [5] are due to definite time corrections and polar motion corrections now applied (see section 3.1).

The homogeneity of the variances of the different nights was investigated using the Bartletttest [11]. Based on this test all the results of the stations Leeuwarden and Ameland are acceptable. However the measurements of the second night at the station Zierikzee and those of the first night at Goedereede differ considerably from the rest and should be rejected. Rejection of the measurement of the second night at Zierikzee has no serious consequences because of the large number of observations made. At this station namely, two different star programmes were measured, spread over several nights. However a systematic difference between star programmes (I) and (II), is noted. This may be explained by the influence of the different star selection, i.e. the correlation of the time with the other unknowns.

Rejecting the first measurement at Goedereede is also justified by the fact that just before starting these observations troubles were experienced with the optical part of the telescope. However, with great pains the observer succeeded in rectifying this trouble but it might have had a negative effect on the quality of his work that same night.

The mean values of the longitude per station were computed without the observations
rejected. The external accuracy of the mean value is computed from the spread of the adjusted values. An exception is made with the station Goedereede: instead of $0^{\text {s }} .002$ obtained in this way a value of $0^{s} .006$ is taken, derived from the precisions of the longitude.

4 Simultaneous latitude, longitude and azimuth determinations (Ubachsberg, Tongeren)

In the summer of 1968 geodetic-astronomical observations were carried out at the primary stations Ubachsberg (The Netherlands) and Tongeren (Belgium). The latitude, longitude and azimuth were simultaneously determined applying the Black method. The equipment used was an universal theodolite Wild T4 and an Omega timerecorder. The method of computation is briefly described below; more details are given in a previous paper [7].

With the Black method a number of stars are observed in vertical transit. For theoretical and practical reasons the stars are selected at approximately equal zenith distances (in this case $z \approx 60^{\circ}$) and regularly distributed in azimuth. The observation equations of the Black method read:

$$
\begin{equation*}
\underline{\Delta \varphi} \sin a_{i} \cot z_{i}+\underline{\Delta \lambda \cos \varphi_{0}} \cos a_{i} \cot z_{i}-\underline{\left(\Delta A+\Delta \lambda \sin \varphi_{0}\right)}=\underline{l}_{i}+\varepsilon_{i} \tag{4.1}
\end{equation*}
$$

in which the quantities $\Delta \varphi, \Delta \lambda \cos \varphi_{0}$ and $\left(\Delta A+\Delta \lambda \sin \varphi_{0}\right)$ are considered as unknowns. The following relations exist between the approximate values of the latitude, longitude and azimuth and the unknowns:

$$
\left.\begin{array}{l}
\varphi=\varphi_{0}+\Delta \varphi \tag{4.2}\\
\lambda=\lambda_{0}+\Delta \lambda \\
A=A_{0}+\Delta A
\end{array}\right\}
$$

The observation vector l_{i} in equation (4.1) is computed from:

$$
\begin{equation*}
l_{i}=A_{0}+\psi_{i}-a_{i} \tag{4.3}
\end{equation*}
$$

in which ψ_{i} is the horizontal angle measured between the terrestrial reference mark (R.M.) and the star in question, and a_{i} the azimuth of the star computed from the time observed. In case of a number of series per star, observed in face left and face right of the instrument, the mean value of the observation vector and the mean value of the coefficients of the unknowns is used in (4.1).

The horizontal angle ψ_{i} in (4.3) is obtained by applying some corrections:

$$
\begin{equation*}
\psi=\psi^{\prime}-R\left(\psi^{\prime}\right) \pm p\left(M-M_{0}\right) \cot z+\Delta a_{A}+\left(C_{1}^{\prime}+C_{2}^{\prime}\right) \frac{\left[F_{k}^{2}\right]}{2 N \varrho^{\prime \prime}} \cdots \cdots \cdot \cdot . \tag{4.4}
\end{equation*}
$$

in which
$\psi^{\prime} \quad=$ the horizontal angle measured (circle reading: Star - R.M.)
$R\left(\psi^{\prime}\right)=$ periodical horizontal circle error of the angle ψ^{\prime}, computed from the circle readings (φ) according to [7]
$p \quad=$ level value; No. 434: $p=1^{\prime \prime} .03$ (if zero of the level on the eye-piece side, the upper sign refers to face left, the lower sign to face right)
$M \quad=\frac{1}{2}(r+l)$ mean value of the suspension level reading
$M_{0}=$ reference position of bubble
$\Delta a_{A}=-0^{\prime \prime} .32 \cos \varphi \operatorname{cosec} z \cos a$ (= daily aberration)
$\frac{\left[F_{k}^{2}\right]}{2 N \varrho^{\prime \prime}}=0^{\prime \prime} .043$ instrumental constant obtained with $N=27$ contacts of the selfrecording micrometer, in which $F_{k}=$ distances of the contacts with respect to their centre point in seconds of arc ($k=1,2, \ldots N$)
$C_{1}^{\prime}=\left(\cos z \tan q+\cot a \tan ^{2} q\right) \operatorname{cosec}^{2} z$
$C_{2}^{\prime}=-2 \cos z \tan q \operatorname{cosec}^{2} z$
The factors C_{1}^{\prime} and C_{2}^{\prime} were derived at the Geodetic Institute of the Delft University of Technology in a similar way as the factors C_{1} and C_{2} derived by Roelofs [9] for zenith distance measurement. The factor C_{1}^{\prime} corrects the non-linear relation between time and azimuth; C_{2}^{\prime} must be applied because all the vertical wires except the central wire (i.e. contacts) are in fact non-vertical great circles.
Meanwhile these factors were compared with a correction formula given by Jordan-Eggert-Kneissl [8], page 440, which is applied as a time correction to the mean value of the contact-times in the following way:

$$
\bar{T}=\frac{[T]}{N}+C_{t} \frac{\left[F_{k}^{2}\right]}{2 N \varrho^{\prime \prime}}
$$

in which $C_{t}=\frac{1}{15} \tan \delta \sec \delta \tan q \sec ^{2} q$. In order to correct the star's azimuth instead of the time, this time factor was converted into an azimuth factor.
Multiplying with:

$$
\frac{\mathrm{d} a}{\mathrm{~d} t}=15 \cos \delta \cos q \operatorname{cosec} z
$$

gives:

$$
C_{a}=C_{t} \times \frac{\mathrm{d} a}{\mathrm{~d} t}=\tan \delta \tan q \sec q \operatorname{cosec} z
$$

Substituting $\tan \delta=\cot z \cos q-\operatorname{cosec} z \sin q \operatorname{cosec} z$ gives:

$$
C_{a}=\left(\cos z \tan q-\cot a \tan ^{2} q\right) \operatorname{cosec}^{2} z=-\left(C_{1}^{\prime}+C_{2}^{\prime}\right)
$$

Hence it can be concluded that the two corrections are exactly identical (the signs are opposite because the correction with the factors $\left(C_{1}^{\prime}+C_{2}^{\prime}\right)$ must be applied to the horizontal angle measured).

The star's azimuth used in (4.3) is computed from:

$$
\begin{equation*}
\cot a_{i}=\frac{\sin \varphi_{0} \cos \left(t_{i}^{G}-\lambda_{0}\right)-\cos \varphi_{0} \tan \delta_{i}}{\sin \left(t_{i}^{G}-\lambda_{0}\right)} \tag{4.5}
\end{equation*}
$$

in which the Greenwich hour angle t_{i}^{G} of the star is determined from the time measurement. To the mean value \bar{T} of the contact times, obtained by tracking the star with the aid of the vertical wire of the self-recording micrometer, some corrections were applied:

$$
\begin{equation*}
(U T 1)=\bar{T}+(U T C-\bar{T})+(U T 1-U T C)+\frac{\left(\beta^{\prime \prime}+\tau^{\prime \prime}\right)}{2 \times 0.997 \times 15}|\sec \delta \sec q| \tag{4.6}
\end{equation*}
$$

in which:

$$
\begin{aligned}
(U T 1) \quad= & \text { corrected } U T 1 \\
(U T C-\bar{T})= & \text { chronometer correction determined by radio time signals (usually } \\
& \text { MSF/Rugby } 5 \mathrm{MHz}) \\
(U T 1-U T C)= & \text { correction to the time signal according to the Bureau Interna- } \\
& \text { tional de l'Heure } \\
\left(\beta^{\prime \prime}+\tau^{\prime \prime}\right)= & \text { sum of the width of the contact strips and the lost motion of the } \\
& \text { self-recording micrometer. }
\end{aligned}
$$

The (UT1) obtained in (4.6) is then converted into Greenwich apparent sidereal time:

$$
\begin{equation*}
G A S T=(U T 1) \times 1.0027379+G A S T\left(0^{\mathrm{b}} U T\right)+\Delta e \tag{4.7}
\end{equation*}
$$

in which Δe is the change in the equation of equinoxes during the period of $U T$.
Finally from GAST the Greenwich hour angle to be used is obtained from:

$$
\begin{equation*}
t^{G}=G A S T-\alpha \tag{4.8}
\end{equation*}
$$

The determination of the three unknowns according to the observation equations (4.1) was carried out by least square adjustment. From the observation equations (4.1) written in the form:

$$
\begin{equation*}
A X=L+E \tag{4.9}
\end{equation*}
$$

it follows:

$$
X=\left(\begin{array}{l}
\Delta \varphi \tag{4.10}\\
\Delta \lambda \cos \varphi_{0} \\
\Delta A+\Delta \lambda \sin \varphi
\end{array}\right)=\left(A^{*} A\right)^{-1} A^{*} L=Q A^{*} L \ldots
$$

in which Q is approximately a diagonal matrix with elements Q_{11}, Q_{22} and Q_{33}, if the stars are selected at equal zenith distance and regularly distributed in azimuth. The astronomical latitude, longitude and azimuth are then obtained from (4.2).

The estimate of the variance of the observation vector per star follows from:

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{E^{*} E}{s-3} \tag{4.11}
\end{equation*}
$$

in which E is determined by substituting the unknowns into (4.9). The standard deviations of the unknowns are then:

$$
\left.\begin{array}{l}
\hat{\sigma}_{\varphi}=\hat{\sigma} \sqrt{Q_{11}} \tag{4.12}\\
\hat{\sigma}_{\lambda}=\hat{\sigma} \sqrt{Q_{22} \sec ^{2} \varphi} \\
\hat{\sigma}_{A_{g}}=\hat{\sigma} \sqrt{Q_{33}} \\
\hat{\sigma}_{A}=\hat{\sigma} \sqrt{Q_{44}}
\end{array}\right\}
$$

in which A_{g} denotes the geodetic azimuth: $A_{g}=A+\Delta \lambda \sin \varphi_{0}$. The weight coefficient Q_{44} of the astronomical azimuth is computed in the following way:

$$
\begin{equation*}
Q_{44}=Q_{33}+Q_{22} \tan ^{2} \varphi-Q_{23} \tan \varphi . \tag{4.13}
\end{equation*}
$$

In total 36 stars were observed at the station Ubachsberg and 32 stars at Tongeren in different nights. The observation of one star was made in the following sequence:

```
face left: reference mark \(2 \times\)
star \(2 \times\) tracking over 27 contacts
```

face right: star $2 \times$
reference mark $2 \times$
The observations and some additional data are shown in appendix II, in which:
Column 1: date
2: FK4 number of the star observed
3: face: (1) = left; (2) = right
4: horizontal circle reading reference mark
5: horizontal circle reading star
6: mean value of the suspension level reading (zero of the level always on the eyepiece side)
7: chronometer time \bar{T}; the mean value of $N=27$ contact times
8: chronometer correction: ($U T C-\bar{T}$) from radio time signals
A common adjustment of all the stars measured per station gives the following matrices of weight coefficients:

$$
\begin{aligned}
& \text { Ubachsberg: } Q=\left(\begin{array}{rrr}
0.1678 & -0.0009 & 0.0000 \\
0.1655 & 0.0002 \\
& 0.0278
\end{array}\right) \\
& \text { Tongeren: } Q=\left(\begin{array}{rrr}
0.1802 & -0.0019 & -0.0008 \\
0.1957 & -0.0000 \\
& 0.0313
\end{array}\right)
\end{aligned}
$$

The final results, corrected for the polar motion and reduced to the centre, are shown in table 4.1. It shows a favourable standard deviation of the geodetic azimuth due to the negative correlation between the astronomical azimuth and the astronomical longitude.

Table 4.1

station	quantity		$\hat{\sigma}$
Ubachsberg	$\varphi=$	$50^{\circ} 50^{\prime} 53^{\prime \prime} .432$	$0^{\prime \prime} .41$
Centre 1890	$\lambda=-\quad 5^{\circ} 57^{\prime} 04^{\prime \prime} .320$	$0^{\prime \prime} .64$	
	$A=$	$258^{\circ} 15^{\prime} 24^{\prime \prime} .273$	$0^{\prime \prime} .53$
	$A g=$	$258^{\circ} 15^{\prime} 30^{\prime \prime} .558$	$0^{\prime \prime} .17$
Tongeren	$\varphi=$	$50^{\circ} 46^{\prime} 55^{\prime \prime} .775$	$0^{\prime \prime} .48$
Station A	$\lambda=-5^{\circ} 27^{\prime} 48^{\prime \prime} .570$	$0^{\prime \prime} .78$	
	$A=$	$77^{\circ} 52^{\prime} 43^{\prime \prime} .958$	$0^{\prime \prime} .64$
	$A g=$	$77^{\circ} 52^{\prime} 47^{\prime \prime} .306$	$0^{\prime \prime} .20$

5 Azimuth determinations (Goedereede, Zierikzee)

The astronomical azimuths Goedereede-Zierikzee and Zierikzee-Goedereede were determined by Polaris in 1969 and 1973 respectively. The measurements and the computations were carried out in the usual way, a brief description of which is given below.

The horizontal angle between the reference mark and Polaris was measured using a first order universal theodolite (Wild T4 or Kern DKM3A) in the following sequence:
face left: - reference mark: $2 \times$ (pointing and reading the horizontal circle)

- Polaris: $2 \times$ (pointing and reading the horizontal circle including the striding level)
face right: - Polaris: $2 \times$
- reference mark: $2 \times$

Such a group of four single series is called one set of observations. At each station about 24 sets should be measured, spread over several nights, in order to obtain an external accurancy of approximately $0^{\prime \prime} .2$ for the mean azimuth.

For the time keeping an Omega chronograph was used, by which the time of pointing to Polaris was recorded by means of a tap-key. The star's hour angle is computed as follows:

$$
\begin{align*}
& U T C=T+(U T C-T) \tag{5.1}\\
& U T 1=U T C+(U T 1-U T C) \\
& G A S T
\end{align*}=1.0027379 \times U T 1+G A S T\left(0^{\mathrm{h}} U T\right),
$$

in which:

$$
\begin{aligned}
T & =\text { the time recorded by the chronograph } \\
(U T C-T)= & \text { chronometer correction determined by radio time signals of HBG } \\
& \quad \text { (Switzerland) } \\
(U T 1-U T C)= & \text { correction to the time signal according to Bureau International } \\
& \text { de l'Heure } \\
t & \text { local hour angle of the star. }
\end{aligned}
$$

The star's azimuth (counting clockwise from the north) is then computed from:

$$
\begin{equation*}
\tan a=\frac{\sin t}{\sin \varphi \cos t-\cos \varphi \tan \delta} \tag{5.2}
\end{equation*}
$$

The horizontal angle measured between the reference mark and Polaris was corrected in the following way:

$$
\begin{equation*}
\psi=\psi^{\prime}-R\left(\psi^{\prime}\right) \mp p\left(M-M_{0}\right) \cot z+\Delta a_{A} \tag{5.3}
\end{equation*}
$$

in which:
$\psi^{\prime} \quad=$ horizontal angle from the circle reading (Star-R.M.)
$R\left(\psi^{\prime}\right)=$ periodical horizontal circle error of the angle ψ^{\prime}, computed from the circle readings (φ) according to appendix IV and [7], appendix 1.
$p \quad=$ level value: Wild T4: $p=1^{\prime \prime} .11$ per division of 2 mm (level No. 668)
DKM 3A: $p=1^{\prime \prime} .24$ per division of 2 mm (level No. 152002) (if zero of the level on the circle side: upper sign refes to face left, lower sign to face right)
$M \quad=\frac{1}{2}(l+r)$ mean value of the level reading
$M_{0}=$ reference position of the bubble
$\Delta a_{A}=-0^{\prime \prime} .32 \cos \varphi \operatorname{cosec} z \cos a$ (= daily aberration)

Finally the azimuth of the reference mark is computed from (5.2) and (5.3):

$$
\left.\begin{array}{lll}
A_{i j}=a_{i j}-\psi_{i j} & \begin{array}{l}
i=1,2, \ldots n \\
j=1,2
\end{array} & \begin{array}{l}
\text { (number of sets) } \\
\text { (series in face left) } \\
j=3,4
\end{array} \tag{5.4}\\
\text { (series in face right) }
\end{array}\right\}
$$

The mean values of the azimuth obtained with instrument positions left and right are, respectively:

$$
\begin{equation*}
\bar{A}_{L}=\frac{\left[A_{i, 1}+A_{i, 2}\right]}{2 n} \quad \bar{A}_{R}=\frac{\left[A_{i, 3}+A_{i, 4}\right]}{2 n} \tag{5.5}
\end{equation*}
$$

from which follows the mean azimuth per night:

$$
\begin{equation*}
\bar{A}=\frac{1}{2}\left(\bar{A}_{L}+\bar{A}_{R}\right) \tag{5.6}
\end{equation*}
$$

The corrections to the single azimuths were computed as follows:

$$
\left.\begin{array}{ll}
\varepsilon_{i, 1}=\bar{A}_{L}-A_{i, 1} & \varepsilon_{i, 3}=\bar{A}_{R}-A_{i, 3} \tag{5.7}\\
\varepsilon_{i, 2}=\bar{A}_{L}-A_{i, 2} & \varepsilon_{i, 4}=\bar{A}_{R}-A_{i, 4}
\end{array}\right\}
$$

from which the estimate of the variance of the mean azimuth is:

$$
\begin{equation*}
\hat{\sigma}_{A}^{2}=\frac{\left[\varepsilon_{i j}^{2}\right]}{4 n(4 n-2)} \quad(\operatorname{method} A) \tag{5.8}
\end{equation*}
$$

Another method is preferred for the computation of the variance in case the observations are spread over several nights. In order to eliminate the systematic instrumental errors, first the mean values of face left and face right are computed from:

$$
\begin{aligned}
& A_{i, 13}=\frac{1}{2}\left(A_{i, 1}+A_{i, 3}\right) \\
& A_{i, 24}=\frac{1}{2}\left(A_{i, 2}+A_{i, 4}\right)
\end{aligned}
$$

Table 5.1

$\begin{aligned} & \text { Station: Goedereede (pillar 2) } \\ & \varphi=51^{\circ} 49^{\prime} 09^{\prime \prime} .7 \quad \lambda=-0^{\mathrm{h}} 15^{\mathrm{m}} 54^{\mathrm{s}} .35 \\ & \text { reference mark: Zierikzee (lamp 1969) } \end{aligned}$				instr.: Wild T4/1957 observer: Steur		
$\begin{aligned} & \text { date: } \\ & 1969 \end{aligned}$	number of sets	adjusted azimuth A	$\hat{\sigma}$ method A	correction polar motion ΔA	corrected azimuth $A+\Delta A$	$\hat{\boldsymbol{\sigma}}$ method B
May 22	6	$192^{\circ} 45^{\prime} 09^{\prime \prime} .145$	$0^{7} .16$	$-0^{\prime \prime} .590$	$192^{\circ} 45^{\prime} 08^{\prime \prime} .555$	
May 29	6	$08^{\prime \prime} .944$	$0{ }^{\prime \prime} .27$	$-0^{7} .582$	$08^{\prime \prime} .362$	
June 3	6	$08^{\prime \prime} .318$	$0^{\prime \prime} .28$	$-0^{\prime \prime} .575$	07 ". 743	
June 4	6	$08^{\prime \prime} .341$	$0^{\prime \prime} .23$	$-0^{\prime} .572$	07 " 769	
June 5	6	$08^{\prime \prime} .434$	$0^{7} .19$	$-0^{\prime \prime} .570$	$07^{\prime \prime} .864$	
June 11	6	08". 255	$0^{\prime \prime} .27$	$-0^{7} .559$	07 ". 696	
mean		$192^{\circ} 45^{\prime} 08^{\prime \prime} .573$	$0^{\prime \prime} .10$	$-0^{\prime \prime} .575$	$192^{\circ} 45^{\prime} 07^{\prime \prime} .998$	$0^{\prime \prime} .10$
			bearing tra meridian c	rse δ	$\begin{array}{r} -02^{\prime} 06^{\prime \prime} .900 \\ -\quad 0^{\prime \prime} .118 \end{array}$	
			azimuth Go Centre 1896 Centre 1896	dereede - Zierikzee	$192^{\circ} 43^{\prime} 00^{\prime \prime} .980$	$0^{\prime \prime} .10$

Table 5.2

$\begin{aligned} & \text { Station: Zierikzee (perm. mark 12) } \\ & \varphi=51^{\circ} 39^{\prime} 04^{\prime \prime} .6 \quad \lambda=-0^{\mathrm{h}} 15^{\mathrm{m}} 39^{\mathrm{s}} .62 \\ & \text { reference mark: Goedereede (pillar } 2 \text {) } \end{aligned}$				instr.: DKM 3A No. 134824 observer: Steur		
$\begin{aligned} & \text { date: } \\ & 1973 \end{aligned}$	number of sets	adjusted azimuth	$\begin{aligned} & \hat{\sigma} \\ & \text { method A } \end{aligned}$	correction polar motion ΔA	corrected azimuth $A+\Delta A$	$\begin{aligned} & \hat{\sigma} \\ & \text { method B } \end{aligned}$
Aug. 21	6	$12^{\circ} 39^{\prime} 47^{\prime \prime} .850$	$0^{\prime \prime} .31$	$-0^{\prime \prime} .542$	$12^{\circ} 39^{\prime} 47^{\prime \prime} .308$	
Aug. 22	6	$47^{\prime \prime} .110$	$0^{\prime \prime} .29$	$-0^{*} .543$	$46^{\prime \prime} .567$	
Aug. 23	9	$46^{\prime \prime} .777$	$0^{\prime \prime} .26$	$-0^{\prime \prime} .544$	$46^{\prime \prime} .233$	
Aug. 28	3	$47^{\prime \prime} .531$	$0{ }^{\prime \prime} .24$	$-0^{\prime \prime} .547$	$46^{\prime \prime} .984$	
weighted mean		$12^{\circ} 39^{\prime} 47^{\prime \prime} .223$	$0^{\prime \prime} .15$	$-0^{\prime \prime} .544$	$12^{\circ} 39^{\prime} 46^{\prime \prime} .679$	$0^{\prime \prime} .15$
			bearing tra meridian	$\begin{aligned} & \text { erse } \delta \\ & \text { v. } \gamma \end{aligned}$	$\begin{array}{r} +20^{\prime \prime} .694 \\ -\quad 0^{\prime \prime} .302 \end{array}$	
			$\begin{aligned} & \text { azimuth } \mathrm{Zi} \\ & 1896-\mathrm{Go} \\ & 1896 \end{aligned}$	ikzee Centre ereede Centre	$12^{\circ} 40^{\prime} 07^{\prime \prime} .071$	$0^{\prime \prime} .15$

The corrections to these azimuths are:

$$
\begin{aligned}
& \varepsilon_{i, 13}=\bar{A}-A_{i, 13} \\
& \varepsilon_{i, 24}=\bar{A}-A_{i, 24}
\end{aligned}
$$

in which \bar{A} now denotes the mean value of all observations. Hence the variance of the mean azimuth is:

$$
\hat{\sigma}_{A}^{2}=\frac{\left[\varepsilon_{i, 13}^{2}+\varepsilon_{i, 24}^{2}\right]}{2 n(2 n-1)} \quad(\text { method B) }
$$

The observations and some additional data are given in appendix III, in which:
column 1: set number
2: face: (1) = left; (2) = right
3: horizontal circle reading reference mark
4: horizontal circle reading star
5: mean value of the level reading (zero of the level always on the vertical circle side)
6: chronometer time: T
The results of the computation are shown in the tables 5.1 and 5.2. The standard deviation of the mean azimuth per night is computed using method A. Applying the Bartlett-test to these standard deviations indicates that the measurements of the various nights are homogeneous. However, some differences between the mean values have little significance. In addition the standard deviation of the station's mean value was computed applying method B; i.e. taking into account all observations with respect to the station's mean azimuth. Method A and B give the same result:

Goedereede: $\hat{\sigma}_{\bar{A}}=0^{\prime \prime} .10$
Zierikzee: $\quad \hat{\sigma}_{A}=0^{\prime \prime} .15$
The latter values can be considered as the external accuracy.

6 Misclosures of the Laplace stations

6.1 Method of computation

The misclosure of a Laplace point can be computed from:

$$
\begin{equation*}
w=A_{g}-A_{g}^{*} \tag{6.1}
\end{equation*}
$$

in which both A_{g} and A_{g}^{*} indicate geodetic azimuths; A_{g} determined from the geodetic network, and A_{g}^{*} from geodetic-astronomical observations.

To check the primary network of The Netherlands (adjusted without Laplace points) and at the same time gain an insight into the quality of the six Laplace points, the geodetic azimuth is derived in the following way:

$$
\begin{equation*}
A_{g}=\psi-\varepsilon+\gamma . \tag{6.2}
\end{equation*}
$$

in which ψ is the grid bearing, ε is the reduction of the direction to the Bessel ellipsoid and γ is the meridian convergence. These quantities can be computed from the plane rectangular coordinates of the network according to [10] and [4].

The geodetic azimuth $\boldsymbol{A}_{\boldsymbol{g}}^{*}$ in (6.1) follows from the Laplace equation:

$$
\begin{equation*}
A_{g}^{*}=A-\left(\lambda-\lambda_{g}\right) \sin \varphi+\left\{\left(\lambda-\lambda_{g}\right) \cos \varphi \cos A-\left(\varphi-\varphi_{g}\right) \sin A\right\} \tan H \ldots \tag{6.3}
\end{equation*}
$$

in which:

$$
\begin{aligned}
& \varphi, \varphi_{g}=\text { latitude (astronomic or geodetic) } \\
& \lambda, \lambda_{g}=\text { longitude (in this formula: positive east of Greenwich!) } \\
& A \quad=\text { astronomic azimuth } \\
& H \quad=\text { elevation angle }
\end{aligned}
$$

Geodetic latitude and geodetic longitude, also contained in formula (6.3), can be computed from plane rectangular coordinates applying the formulae given in [10]. The geodetic longitudes obtained in this way refer to the Amersfoort meridian, while the astronomic longitude is usually determined with respect to the Greenwich meridian. In order to have the same reference meridian for the longitudes in (6.3) we can:
a. reduce the astronomic longitude to the Amersfoort meridian, or
b. reduce the geodetic longitude to the Greenwich meridian.

In both reductions the astronomic longitude of Amersfoort should be used, so that in (b) in fact a fictious geodetic longitude is obtained. Both methods give, of course, the same result.

Since the longitude of Amersfoort is not determined with high precision (see [3]), it will have a systematic influence on the misclosures. The systematic error, however, will be eliminated by taking the relative misclosure between two Laplace points.

6.2 Misclosures

The misclosures were computed according to the above formulae. The geodetic latitudes and longitudes of the Laplace points are given in table 6.1.

The geodetic azimuths A_{g} and A_{g}^{*} computed by formulae (6.2) and (6.3) are given in table 6.2. It should be noted that the last term in (6.3) has been omitted, because in a flat country like The Netherlands, the elevation angle is practically zero.

Table 6.1

station	φ_{g}	λ_{g} (Greenwich)
Leeuwarden	$53^{\circ} 12^{\prime} 14^{\prime \prime} .750$	$5^{\circ} 47^{\prime} 24^{\prime \prime} .655$
Ameland	$53^{\circ} 27^{\prime} 30^{\prime \prime} .999$	$5^{\circ} 46^{\prime} 54^{\prime \prime} .367$
Goedereede	$51^{\circ} 49^{\prime} 09^{\prime \prime} .697$	$3^{\circ} 58^{\prime} 33^{\prime \prime} .549$
Zierikzee	$51^{\circ} 39^{\prime} 04^{\prime \prime} .346$	$3^{\circ} 54^{\prime} 53^{\prime \prime} .967$
Ubachsberg	$50^{\circ} 50^{\prime} 49^{\prime \prime} .180$	$5^{\circ} 57^{\prime} 12^{\prime \prime} .425$
Tongeren	$50^{\circ} 46^{\prime} 53^{\prime \prime} .616$	$5^{\circ} 27^{\prime} 52^{\prime \prime} .892$

Table 6.2

station	A_{g}	$\sigma_{A_{g}}$	A_{g}^{*}	$\sigma_{A_{g}^{*}}$	$w=A_{g}-A_{g}^{*}$
Leeuwarden	$358^{\circ} 31^{\prime} 56^{\prime \prime} .063$	$0^{7} .42$	$358^{\circ} 31^{\prime} 58^{\prime \prime} .277$	$0^{\prime \prime} .36$	$-2^{\prime \prime} .214$
Ameland	$179^{\circ} 05^{\prime} 49^{\prime \prime} .063$	$00^{\prime \prime} .41$	$179^{\circ} 05^{\prime} 51^{\prime \prime} .168$	$0^{\prime \prime} .25$	$-2^{\prime \prime} .105$
Goedereede	$192^{\circ} 42^{\prime} 58^{\prime \prime} .386$	$0^{\prime \prime} .46$	$192^{\circ} 42^{\prime} 59^{\prime \prime} .867$	$0^{\prime \prime} .13$	$-1^{\prime \prime} .481$
Zierikzee	$12^{\circ} 40^{\prime} 05^{\prime \prime} .980$	$0^{\prime \prime} .46$	$12^{\circ} 40^{\prime} 07^{\prime \prime} .316$	$0^{\prime \prime} .17$	$-1^{\prime \prime} .336$
Ubachsberg	$258^{\circ} 15^{\prime} 26^{\prime \prime} .413$	$0^{\prime \prime} .48$	258 ${ }^{\circ} 15^{\prime} 30^{\prime \prime} .558$	$0^{\prime \prime} .17$	$-4^{\prime \prime} .145$
Tongeren	$77^{\circ} 52^{\prime} 42^{\prime \prime} .590$	$0^{\prime \prime} .48$	$77^{\circ} 52^{\prime} 47^{\prime \prime} .306$	$0^{\prime \prime} .20$	$-4^{\prime \prime} .716$

From the misclosures w obtained in table 6.2 the following conclusions can be drawn:

- all the misclosures are negative, obviously effected by the approximate longitude of Amersfoort; ($\lambda=5^{\circ} 23^{\prime} 15^{\prime \prime} .500$);
- assuming the condition $[w]=0$, the following longitude of Amersfoort is obtained: $\lambda=5^{\circ} 23^{\prime} 12^{\prime \prime} .114 ;$
- the relative misclosures between the different Laplace points are small;
- the largest relative misclosures, average $2^{\prime \prime} .6$, are obtained between the twin Laplace point Ubachsberg-Tongeren and the other points.

6.3 The precision of the geodetic part of the Laplace azimuth

In table 6.2 the precisions of the geodetic azimuths A_{g} are also given. These data were computed in the following way.

Let us consider the geodetic part of the Laplace quantity:

$$
\begin{equation*}
L_{i}=A_{i k}+\lambda_{i} \sin \varphi_{i} \tag{6.4}
\end{equation*}
$$

Expressing $A_{i k}$ and λ_{i} in plane rectangular coordinates, (see(6.2)) and ignoring the quantities ε and γ we obtain:

$$
\begin{equation*}
L_{i}=\arctan \frac{x_{k}-x_{i}}{y_{k}-y_{i}}-2.551 \times 10^{-7} x_{i} \sin \varphi_{i} \tag{6.5}
\end{equation*}
$$

Linearisation of (6.5) gives:
$\Delta L_{i}=\frac{\sin A_{i k}}{s_{i k}} \Delta y_{i}-\frac{\cos A_{i k}}{s_{i k}} \Delta x_{i}-\frac{\sin A_{i k}}{s_{i k}} \Delta y_{k}+\frac{\cos A_{i k}}{s_{i k}} \Delta x_{k}-2.551 \times 10^{-7} \sin \varphi_{i} \Delta x_{i}$
in which $s_{i k}$ is the distance between the Laplace point i and the azimuth point k. Denoting the coefficients of the coordinates by a, b, c, d, we then have:

$$
\begin{equation*}
\Delta L_{i}=a_{i} \Delta y_{i}+b_{i} \Delta x_{i}+c_{i} \Delta y_{k}+d_{i} \Delta x_{k} \tag{6.7}
\end{equation*}
$$

Based on equation (6.7) the matrix of weight coefficients of the six Laplace points were computed, using the covariance matrix of the coordinates related to the base AmersfoortVeluwe (see appendix V). The computations were carried out by Mr. J. J. Kok of the Computing Centre of the Delft Geodetic Institute. The results of this computation, in (sec of arc) ${ }^{2}$, are shown in table 6.3.

Table 6.3 The matrix of weight coefficients of the geodetic part of the Laplace quantity

	L	A		G	Z	U	T
Leeuwarden	+.1736	+.1726		+.0224	+.0225	+.0210	+.0210
Ameland	+.1726	+.1716		+.0223	+.0224	+.0208	+.0209
Goedereede	+.0224	+.0223		+.2100	+.2108	+.0552	+.0557
Zierikzee	+.025	+.0224	+.2108	+.2116	+.0554	+.0558	
Ubachsberg	+.0210	+.0208	+.0552	+.0554	+.2332	+.2336	
Tongeren	+.0210	+.0209	+.0557	+.0558	+.2336	+.2340	

Since the variance of the coordinates of the azimuth point Hallum are not available, the points Ameland and Leeuwarden were used as azimuth points instead of Hallum.
The standard deviations $\sigma_{A_{g}}$ shown in table 6.2 are obtained from the matrix of variance of table 6.3, by taking the square root of the figures in the diagonal. Moreover, the data of tables 6.2 and 6.3 make it possible to compute the standard deviations of the misclosures and those of the relative misclosures. The results of these computations are given in table 6.4.

Table 6.4 Standard deviations of the misclosures and of the relative misclosures

station	L	A		G	Z	U	T
Leeuwarden	$0^{\prime \prime} .55$	$0^{\prime \prime} .44$	$0^{\prime \prime} .70$	$0^{\prime \prime} .71$	$0^{\prime \prime} .72$	$0^{\prime \prime} .73$	
Ameland		$0^{\prime \prime} .48$		$0^{\prime \prime} .65$	$0^{\prime \prime} .66$	$0^{\prime \prime} .67$	$0^{\prime \prime} .68$
Goedereede		$0^{\prime \prime} .48$	$0^{\prime \prime} .21$	$0^{\prime \prime} .62$	$0^{\prime \prime} .62$		
Zierikzee			$0^{\prime \prime} .49$	$0^{\prime \prime} .63$	$0^{\prime \prime} .63$		
Ubachsberg				$0^{\prime \prime} .51$	$0^{\prime \prime} .26$		
Tongeren					$0^{\prime \prime} .52$		

From table 6.4, for example, the standard deviation of the misclosure of the Laplace point Leeuwarden is $0^{\prime \prime} .55$, and the standard deviation of the relative misclosure between Leeuwarden-Ameland is $0^{\prime \prime} .44$. The latter is favourably influenced by the strong correlation between the geodetic data (see table 6.3). It should be noted that the relative misclosures between Leeuwarden-Ameland-Goedereede-Zierikzee are quite in accordance with their theoretical standard deviations, while the relative misclosures of those stations with Ubachsberg and Tongeren are considerably larger.

Acknowledgements

The geodetic-astronomical observations were carried out by the Netherlands Triangulation Service. The organization of the fieldwork of the recent measurements of the Laplace stations Ubachsberg, Tongeren, Zierikzee and Goedereede has, since 1968, been the responsibility of Mr. M. Haarsma, who also assisted in many respects with the preparation of the present report. The author also expresses his gratitude to Prof. G. J. Bruins, in charge of the longitude determinations in 1947-1950, for the helpful information provided. The assistance of Mr. F. Reneman who wrote the computer programmes for the IBM 360/65 is gratefully acknowledged.

References

[1] Déterminations de la latitude et d'un azimut aux stations Oirschot, Utrecht, Sambeek, Wolberg, Harikerberg, Sleen, Schoorl, Zierikzee, Terschelling, Ameland, Leeuwarden, Urk et Groningen. Commission Géodésique Néerlandaise, Delft, 1904.
[2] Déterminations de la difference de longitude Leyde-Ubagsberg, de l'azimut de la direction UbagsbergSittard et de la latitude d'Ubagsberg. Commission Géodésique Néerlandaise, Delft, 1905.
[3] Hk. J. Heuvelink - De stereografische kaartprojectie in hare toepassing bij de Rijksdriehoeksmeting. Netherlands Geodetic Commission, Delft, 1918.
[4] Hk. J. Heuvelink - Triangulation du Royaume des Pays-Bas, Tome second. Commission Geodésique Néerlandaise, Delft, 1921.
[5] G. J. Bruins - Astronomische lengtebepaling in Leeuwarden en op Ameland. Tijdschrift voor Kadaster en Landmeetkunde 1951, pp. 204-224.
[6] W. Bowie - Determination of time, longitude, latitude and azimuth. Special publication No. 14, U.S. Coast and Geodetic Survey.
[7] G. J. Husti - The twin Laplace point Ubachsberg-Tongeren applying the Black Method. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 4, No. 1, Delft, 1971.
[8] Jordan, Eggert and Kneissl - Handbuch der Vermessungskunde. Band IIa. Geodätische Astronomie. J. B. Metzlersche Verlagsbuchhandlung, Stuttgart, 1970.
[9] R. Roelofs - Astronomy Applied to Land Surveying. Ahrend, Amsterdam, 1950.
[10] Handleiding voor de technische werkzaamheden van het Kadaster (Manual for the technical activities of the Castral Service in The Netherlands) The Hague, 1956.
[11] A. Hald - Statistical Theory with Engineering Applications. Chapman en Hall, London, 1951.

STATION : LEEUWARDEN.

DATE : MAY $28-29,1947$.
OBSERVERS.
CHRON. CURRECTION
51 GNAL (FYP)-T AT 20H 6M: $0^{\text {h }} 66^{(m 5.600}$
CHRON. RATE DIT. ..: $-0.055 / 12 \mathrm{H}$
appruximate values:

OBSERVATIONS:

ST		LEVEL	CHRUN: TIME			SIGMA	UEC.			G	(RA-T)		
521	E	28.15		10	$5_{5}{ }^{8} \mathrm{C} 24$	0.010		${ }^{0} 37$	$43^{\prime \prime}$	0.41		2	4:710
522		28.00	21	15	48.167	0.014		20	31	0.94		29	55.670
526		28.10	21	21	02.798	0.011	19	27	27	0.98		29	55.755
1379		27.75	21	35	29.610	0.007	75	55	54	0.16		29	53.506
550		27.30	21	58	38.842	0.011	74	22	20	0.19		29	53.796
554		27.30	22	04	28.926	0.007	66	08	35	0.37		29	54.534
1398	w	33.15	22	12	38.419	0.012	25	04	28	0.94	0	29	55.804
565		33.25	22	21	43.677	0.012	67	32	52	0.34		29	54.655
569		33.20	22	28	3 C .440	0.008	72	01	21	0.25	0	29	54.279
571		33.30	22	31	24.119	0.011	59	09	04	0.53	0	29	55.072
578		33.25	22	40	02.312	0.009°	26	53	31	0.93		29	55.734
587		33.30	22	53	27.441	0.007	62	45	46	0.45		29	54.884
593	W	33.35	23	02	55.522	0.013		01	49	0.93	0	29	55.731
598		33.40	23	08	26.683	0.009	58	42	22	0.54	0	29	55.139
1421		33.35	23	13	1C.524	0.011	17	11	12	0.98	0	29	55.869
606		33.70	23	19	54.661	0.008	76	00	42	0.16	0	29	54.c09
012		33.55	23	26	36.663	0.007	75	52	41	0.16	0	29	53.974
419		31.70	23	35	35.187	0.007	68	52	58	0.31	0	29	54.746
1440	E	26.15	23	56	56.540	0.011	24	44	40	0.95	0	29	55.702
634		20.05	0	05	37.666	0.015	31	00	12	0.90			55.531
639		25.75	0	16	01.218	0.014	65	46	47	0.38	0	29	54.619
659		25.50	0	39	30.676	0.012	68	10	08	0.33	0	29	54.269
664		25.50	0	44	35.136	0.011	68	40	58	0.32	0	29	54.206
670		25.50	0	50	12.402	0.010	72	10	31	0.24		29	53.898

STATIGN.
INSTRUMENT
NT
DA TE . .
OA SERVERS.
CHRON. CURRECTIUN
SIGNAL (FYP) IT AT 2OH OH: $0 \quad 647.416$
CHRON. RAT E DIT. ..: $-0.043 / 12 \mathrm{H}$
appriximate values:
ATITUDE : 531214.75
LUNGITUDE. : - 0239.64

OA SERVATIONS:

STAR		level	CHRON. TIME			SIGMA	DEC.			G	(RA-T)		
521	E	29.85	21	Oó	51. 998	0.012	64		43	0.41	0	29	56.357
522		29.70	21	11	50.220	0.011	25	20	31	0.94	0	29	57.510
526		29.50	21	17	04.907	0.014	19	27	27	0.98	0	29	57.590
1379		29.10	21	11	31.466	0.011	75	55	54	0.16	0	29	55.117
550		28.70	21	54	4 C .767	0.011	74	22	20	0.19	0	29	55.376
554		28.55	22	00	30.849	0.012	66	08	35	0.37	0	29	56.339
1396	\cdots	33.45	22	08	4C.688	0.012	25	04	28	0.94	0	29	57.655
565		31.50	22	17	45.921	0.010	67	32	52	0.34	0	29	56.561
569		33.55	22	24	32.751	0.010	72	01	21	0.25	0	29	56.164
571		33.55	22	27	26.342	0.009	59	09	04	0.53	0	29	56.988
578		33.50	22	36	04.514	0.013	26	53	31	0.	0	29	57.650
587		33.60	22	49	24.645	0.009	62	45	46	0.45	0	29	56.837
593	W	33.55	22	58	57.802	0.015	27	01	49	0.93	0	29	57.566
598		33.60	23	04	28.952	0.011	58	42	22	0.54	0	29	56.983
1421		33.55	23	309	13.152	0.014	17	11	12	0.98	0	29	57.752
606		33.65	23	15	56.980	0.009	76	00	42	0.16	0	29	55.752
612		33.70	23	22	35.025	0.005	75	52	41	0.16	0	29	55.761
619		33.65	23	31	37.597	0.011	68	52	58	0.31	0	29	56.410
1440	E	27.80	23	52	58.565	0.010	24	44	40	0.95	0	29	57.592
634		27.80	0	01	38.625	0.011	31	00	12	0.90	0	29	57.455
639		27.40	0	- 12	03.162	0.009	65	46	47	0.38	0	29	56.329
659		27.30	0	15	32.532	0.006	68	10	08	0.33	0	29	55.984
664		27.10	0	40	36.955	0.008	68	46	58	0.32	0	29	56.009
670		27.10	0	40	14.234	0.006	72	10	31	0.24	-	29	55.614

LONGITLUE BY mEkIUIAN IRANSIT OF STARS.

CHRON. CORRECTIUN
SIGNAL IFYPJ-T AT 20 H 6H: $0 \quad 647.317$
CHRON. RATE DIT. . . $-0.044 / 12 \mathrm{H}$
ap PROXIMATE VALUES:
LATITUDE. : 531214.75
LUNGITUUE. : - 0239.64

DE SERVATIONS:

STAR		Level		HRUN	, tIME	SIGMA	DEC.			G	(RA-T)		
521	E	30.85	21	02	54.282	0.008	64	37	43	0.41	0	29	57.878
522		30.70	21	07	53.678	0.011	25	20	31	0.94	0	29	58.024
526		30.60	21	13	08.351	0.014	19	27	27	0.98	0	29	58.122
1379		30.20	21	27	32.105	0.005	75	55	54	0.16	0	29	58.047
550		29.80	21	50	41.751	0.007	74	22	20	0.19	0	29	58.018
554		29.65	21	50	33.121	0.005	66	08	35	0.37	0	29	57.839
1396	\cdots	31.65					25	04	28	0.94	0	29	
565		31.90	22	13	51.080	0.010	67	32	52	0.34	0	29	55.015
569		31.75	22	20	38.000	0.010	72	01	21	0.25	0	29	54.358
571		31.65	22	23	31.368	0.009	59	09	04	0.53	0	29	55.624
578		31.70	22	32	05.343	0.009	26	53	31	0.93	0	29	56.707
587		32.00	22	45	34.743	0.013	62	45	46	0.45	0	29	55.432
593	H	32.90	22	55	02.531	0.011	27	01	49	0.93		29	56.742
598		32.00	23	00	33.912	0.006	58	42	22	0.54	0	29	55.764
1421		32.00	23	05	17.969	0.012	17	11	12	0.98	0	29	56.882
606		32.30	23	12	02.616	0.007	76	00	42	0.16	0	29	53.611
612		32.25	23	18	44.692	0.007	75	52	41	0.16	0	29	53.552
619		32.25	23	27	42.776	0.007	68	52	58	0.31	0	29	54.895
1440	E	28.85	23	49	02.206	0.010	24	44	40	0.95	0	29	57.934
634		28.70	23	57	43.126	0.014	31	00	12	0.90	0	29	57.943
639		28.45	0	08	05.455	0.010	65	46	47	0.38	0	29	57.855
659		28.20	0	31	34.647	0.008	68	10	08	0.33	0	29	57.714
664		28.30	0	36	39.014	0.007	68	46	58	0.32	0	29	57.695
670		28.15	0	42	15.732	0.008	72	10	31	0.24	0	29	57.861

STATIDN. : LEEUMARDEN.
INSTRUAENT PISTOR AND MARTINS 11869 .
DATE . . . : : : MAY $31-\operatorname{~JUNE~1,~} 1947$.
OB SERVERS. :
ob SERVERS...... BRUINSIDE VRIES.
CHRON. CORRECTIUN
SIGNAL (FYP)-T AT 2OH 6M: $0 \quad 647.219$
CHRON. RATE OLT. ..: $-0.053 / 12 \mathrm{H}$
appruximate values:
LATITUDE : 531214.75

OBSERVAT IONS:

LONGI TUDE BY MERIUIAN TRANSIT OF SIARS.

CHRON. CORRECT 1LN
SIGNALIFYPI-T AT 2OH OH: 09917.076
CHRON. RATE DIT. $\quad .:-0.041 / 12 H$

```
APPROXIMATE VALUES:
LATITUDE . . . . . : 53 27 30.999
```

LONGITUDE.: - $023 \begin{array}{ll}7.624\end{array}$

OS SERVATIONS:

STAR		LEVEL		CHRON	. TIME	SIGNA		DEC		6	(RA-T)		
1396	E	28.35	20	55	28.008	0.011	25	04	28	0.94	0	32	23.677
565		28.15	21	104	26.464	0.008	67	32	58	0.34	0	32	28.714
569		28.05	21	111	10.562	0.008	72	01	28	0.25	0	32	30.446
571		27.90	21	14	09.598	0.009	59	09	09	0.53	0	32	26.767
578		28.00	21	122	51.818	0.009	26	53	31	0.93	0	32	23.751
587		27.65	21	136	12.093	0.008	62	45	50	0.45	0	32	27.461
593	W	30.30	21	145	46.236	0.013	27	01	48	0.93	0	32	22.372
598		30.25	21	151	14.313	0.012	58	42	25	0.54	0	32	24.352
1421		30.00					17	11	09	0.98	6	32	
606		30.05	22	202	36.041	0.013	76	00	45	0.16	0	32	28.277
612		29.95	22	209	18.641	0.011	75	52	44	0.16	0	32	28.324
619		29.95	22	218	20.204	0.012	68	53	00	0.31	0	32	2t. 104
1440	W	29.35	22	239	47.178	0.016	24	44	37	0.95	0	32	22.379
634		29. 20	22	248	27.751	0.011	31	00	09	0.90	0	32	22.677
639		29.35	22	258	46.782	0.008	65	46	46	0.38	0	32	25.456
1454		29.20	23	3 OB	07. 555	0.015	18	06	33	0.98	0	32	22.167
659		29.25	23	322	15.341	0.010	68	10	05	0.33	0	32	25.865
664		29.15	43	327	15.507	0.010	68	46	54	0.32	0	32	26.056
670		29. 20	23	32	55.428	0.007	72	10	28	0.24	0	32	26.870
675	E	28.65	23	341	45.981	0.010	76	58	12	0.14	0	32	33.558
674		28.65	23	345	43.971	0.011	29	15	4	0.92	0	32	23.912
681		28.35	23	355	28.623	0.014	28	45	9	0.92	0	32	23.855
685		28.05	0	003	31.824	0.011	64	22	39	0.41	0	32	27.912
695		27.90		011	54.041	c. 010	12	42	31	0.23	0	32	31.071
700		27.80		022	9.075	0.011	17	30	19	0.13	0	32	34.315


```
SIGONAL CORRECTIUN
SIGNAL(FYP)-T AT 2OH 6M: 0 53 7.682
```

APPRUXIMATE VALUES:
LATITUDE...... : 532730.999
LOMGITUDE. : -0 237.624

OB SER VATIONS:

STAR		Level	chron. time			SIGMA		DEC		G			RA-T)
1396	E	29.35	20	07	41.382	0.008	25	04	28	0.94			14.274
565		28.95	20	16	39.586	0.007	67	32	58	0.34	1	16	19.410
569		28.85	20	23	24.007	0.008	72	01	28	0.25		16	21.162
571		28.95	20	26	22.825	0.007	59	09	09	0.53		16	17.376
578		29.05	20	35	05.157	0.008	26	53	31	0.93	,	16	14.336
587		28.65	20	48	25.193	0.008	62	43	50	0.45	1	16	18.179
593	1	28.90	20	57	55.553	0.012	27	01	48	0.93	1	16	12.942
598		28.95	21	03	27.587	0.013	58	42	25	0.54	1	16	14.865
1421픙		28.70	21	08	15.603	0.010	17	11	09	0.98	1	16	12.578
606		28.90	21	14	49.240	0.010	76	00	45	0.16	1	16	18.615
		28.75	21	21	31.239	0.012	75	52	44	0.16	1	16	18.654
		28.70	21	30	33.684	0.007	68	53	00	0.31	1	16	16.306
1440		28.40	21	52	00.688	0.009	24	44	37	0.95	1	16	12.857
634		28.55	22	00	41.288	0.011	31	00	09	0.90		16	13.151
639		28.65	22	11	00.155	0.011	65	46	46	0.38	1	16	15.928
1454		28.25	22	20	21.515	0.008	18	06	33	0.98	1	16	12.608
659		28.60	22	34	28.796	0.007	68	10	05	0.33	1	16	16.259
664		28.75	22	19	32.972	0.007	68	46	54	0.32	1	16	16.552
670		28.80	22	45	08.807	0.012	72	10	28	0.24		16	17.429
675		28.85	22	53	58.956	0.008	76	58	12	0.14	1	16	24.557
674		28.90	22	57	57.472	0.014	29	15	04	0.92	1	16	14.480
681		28.55	23	07	42.115	0.016	28	45	09.	0.92		16	14.439
685		28.30	23	15	45.254	0.010	64	22	39°	0.41		16	18.511
695		28.05	23	24	07.426	0.009	72	42	31	0.23	1		21.723
700		27	23	34	22	0.	17	30	19	0.	1	6	25.145

LUNGITUDE aY MERIDIAN TRANSIT OF STARS.

```
SI Am ION.........: AMELAND.
INSTKUMENT : : E PISTOR AND MARTINS (1869).
: JUNE 18-19, 1947.
OBSERVERS.......: BRUINSIDE VRIES.
CHRON. CURRECTION
SIGNAL (FYP)-T AT 2OH OM: O 1 55.994
CHRON. RATE DIT. .. . - 0.0550/12H
APPROXIMATE VALUES:
APRITUDE....... : 53 27 30.999
LONGITUWE. . ....: -0 23 7.624
```


OBSERVAT IONS:

STAR		LEVEL	CHRUN. TIME			SIGMA	DEC.			G	(RA-T)		
1396	E	30.55	20	54	55.102	0.014	25	04	28	0.94	0	25	04.499
565		30.20	21	03	57.359	0.010	67	32	58	0.34	0	25	05.321
569		30.10	21	10	43.088	0.007	72	01	28	0.25	0	25	05.681
571		30.00	21	13	38.921	0.010	59	09	09	0.53	0	25	05.110
578		29.95	21	22	19.069	0.008	26	53	31	0.93	0	25	04.443
587		29.65	21	35	42.c21	0.010	62	45	50	0.45	0	25	05.167
593	W	29.45	21	45	13.582	0.011	27	01	48	0.93	0	25	03.098
598		29.45	21	50	44.036	0.010	58	42	25	0.54	0	25	. 02.594
1421		29.30	21	55	25.154	0.013	17	11	09	0.98	0	25	03.172
606							76	00	45	0.16	0	25	
612		29.35	22	08	52.655	0.009	75	52	44	0.16	0	25	01.491
619		29.05	22	17	52.110	0.010	68	53	00	0.31	0	25	02.046
1440	H	28.95	22	39	14.653	0.010	24	44	37	0.95	0	25	03.041
634		28.95	22	47	55.565	0.011	31	00	09	0.90	0	25	03.012
639		29.10	22	58	18.010	0.010	65	46	46	0.38	0	25	02.308
1454		29.00	23	07	35.159	0.014	18	06	33	0.98	0	25	03.132
659		29.05	23	20	47.189	0.010	68	10	05	0.33	0	25	02.118
664		29.05	23	26	51.634	0.010	68	46	54	0.32	0	25	02.054
670		29.05	23	32	28.534	0.007	72	10	28	0.24	0	25	01.865
675	E	29.75	23	41	2C.711	0.007	76	58	12	0.14		25	06.438
674		29.85	23	45	11.393	0.010	29	15	04	0.92	0	25	04.542
681		29.70	23	54	55.956	0.009	28	45	09	0.92	0	25	04.559
685		24.30	O	03	02.244	0.010	64	22	39	0.41	0	25	05.352
695		29.25	0	11	26.707	0.007	72	42	31	0.23	0	25	06.093
700		29.05	0	21	44.030	0.006	77	30	19	0.13	0	25	06.932

STATION. : . . : : AMEL AND.
INSTRUMENT : PISTOR AND MARTINS (1869).
DATE * JUNE 24-25. 1947.
CHRON. LORRECT ILN
SIGNALIFYPI-T AT 2OH OM: $0 \quad 2$ 3.811
CHRON. RATE DIT. . . . : $-0.043 / 12 H$
appruximate values:
ATITUDE • : 532730.999

QU SER VAT IUIVS:

STAR		LEVEL		RUN.	. TIME	SIGMA		DE		G	(RA-T)		
1396	E	29.60	20	31	12.360	0.011	25	04	28	0.94	0	25	11.841
565		29.25	20	40	15.206	0.012	67	32	58	0.34	0	25	12.092
569		29.25	20	47	00.991	0.010	72	01	28	0.25	0	25	12.358
571		29.30	20	49	56.560	0.011	59	09	09	0.53	0	25	12.036
578		29.30	20	58	36.288	0.011	26	53	31	0.93	0	25	11.799
587		29.00	21	11	59.745	0.008	62	45	50	0.45	0	25	12.006
593	\cdots	36.10	21	21	3C. 593	0.012	27	01	48	0.93	0	25	11.192
598		36.10	21	27	01.182	0.008	58	42	25	0.54	0	25	11.336
1421)		35.95	21	31	46.146	0.012	17	11	09	0.98	0	25	11.441
606		30.05	21	38	28.149	0.006	76	00	45	0.16	0	25	11.119
612		30.05	21	45	16.258	0.007	75	52	44	0.16	0	25	11.100
619		36.00	21	54	09.408	0.008	68	53	00	0.31	0	25	11.258
1440	w	35.60	22	15	31.660	0.014	24	44	37	0.95	0	25	11.304
634		35.50	22	24	12.677	0.015	31	00	09	0.90	0	25	11.239
639		35.60	22	34	35.418	0.009	65	46	46	0.38	0	25	11.118
1454		35.50	22	43	52.268	0.012	18	06	33	0.98	0	25	11.277
659		35.65	22	58	04.773	0.009	68	10	05	0.33	0	25	10.960
664		35.65	23	03	05.c23	0.013	68	46	54	0.32	-	25	11.137
670		35.65	23	08	46.062	0.011	72	10	28	0.24	0	25	11.118
675	E	29.30	23	11	38.984	0.008	76	58	12	0.14	0	25	12.872
674		29.40	23	21	24.639	0.009	29	15	04	0.92	-	25	11.917
081		29.20	23	31	13.206	0.013	28	45	09	0.92	9	25	11.943
685		28.95	23	39	19.943	0.008	64	22	39	0.41	-	25	12.279
695		20.80	23	47	44.859	0.006	72	42	31	0.23	0	25	12.615
700		28.70	23	58	02.680	0.006	77	30	19	0.13	0	25	13.051

LONGITUOE GY MERIDIAN TRANSIT OF STARS.

STATION
INSTRUMENT
DATE -
:. .: PISTOR AND HARTINS 118691.

CH GNA. CORRECTIUN
SIGNAL (FYP)-T AT 2OH 6H: $0 \quad 2$ 3.750
CHRON. RATE DIT. .. : $-0.048 / 12 \mathrm{H}$
appruximate values:
LATITUDE
ONGI TUDE. : : : 0

OB SER VATIONS:

ST AR		LEVEL	ChRon. TIME			SIGMA	DEC.			G	(RA-T)		
1396	E	29.70	20		16.689	0.012	25	04	28	0.94	0	25	11.581
565		29.45	20	36	17.544	0.010	67	32	58	0.34	0	25	13.705
569		29.35	20	43	02.801	0.008	72	01	28	0.25	0	25	14.560
571		29.35	20	45	5S. 728	0.010	59	09	09	0.53	0	25	12.927
578		29.35	20	54	40.550	0.010	26	53	31	0.93	0	25	11.614
587		29.25	21	08	02.592	0.005	62	45	50	0.45	0	25	13.166
593	W	30.35	21	17	35.006	0.014	27	01	48	0.93	0	25	10.171
598		30.45	21	23	04.608	0.011	58	42	25	0.54	0	25	10.751
1421		30.25	21	27	5C. 768	0.012	17	11	09	0.98	0	25	10.259
606		30.35	21	34	29.550	0.008	76	00	45	0.16	0	25	11.283
612		30.30	21	41	11.617	0.006	75	52	44	0.16	0	25	11.307
619		30.05	21	50	11. 548	0.006	68	53	00	0.31	0	25	10.972
1440	W	29.85	22	11	36.039	0.011	24	44	37	0.95	0	25	10.384
634		29.75	22	20	16.845	0.009	31	00	09	0.90	0	25	10.456
639		29.80	22	30	37.993	0.010	65	46	46	0.38	0	25	11.049
1454		29.75	22	39	56.782	0.010	18	06	33	0.98	0	25	10.233
659		29.70	22	54	07.012	0.011	68	10	05	0.33	0	25	11.042
064.		29.75	22	59	11.488	0.010	68	46	54	0.32	0	25	10.966
670		29.80	23	04	48.092	0.010	72	10	28	0.24	0	25	11.107
675	E	29.65	23	13	35.748	0.006	76	58	12	0.14	0	25	16.032
674		29.65	23	17	33.018	0.010	29	15	04	0.92	0	25	11.606
681		29.40	23	27	17.556	0.009	28	45	09	0.92	0	25	11.667
685		29.05	23	35	22.879	0.006	64	22	39	0.41	0	25	13.410
695		28.75	23	43	46.817	0.006	72	42	31	0.23	0	25	14.769
700		28.65	23	54	03.422	0.006	77	30	19	0.13	0	25	16.331

STATION. : ZIERIKZEE.
INSTRUMENT PISTOR AND MARTINS (1869).
OATE SEP $12-13,1949$ (1).
OBSERVERS. . : BRUINS/DE VRIES.
CHRON. CORRECTION
SIGNALIGBR1-T AT 2OHOM: 41524.831
CHRON. RATE OIT. . . : $-0.088 / 14 \mathrm{H}$
APPROXIMATE VALUES:

OBSERVATIONS:

LONGITUDE BY MERIDIAN TRANSIT OF STARS.

CHAON. CORRECTION
SIGNALIGBRI-T AT 2OH OM: 41030.052
CHRON. RATE DIT: . . : $-0.091 / 14 \mathrm{H}$
APPROXIMATE VALUES:
LATITUOE * : 51394.346
LONGITUDE. ...: : - 1539.598

OBSERVAT IONS:

STAR		LEVEL	CHRGN. TIME			SIGMA	DEC.			G	(RA-T)		
759	E	29.85	15	50	52.179	0.007	77	33	48	0.13	4	26	13.627
760		29.65	15	54	54.799	0.012	24	30	59	0.95	4	26	9.422
765		29.65	16	0	41.044	0.012	40	5	49	0.82	4	26	9.738
767		29.65	16	8	58.075	0.012	62	49	38	0.45	4	26	10.849
770		29.85	16	12	23. 768	0.009	74	47	6	0.18	4	26	12.715
1539		29.75	16	16	29.981	0.011	21.	1	29	0.97	4	26	9.358
777		29.70	16	19	55.472	0.008	45	6	7	0.76	4	26	9.908
783		29.70	16	24	27.414	0.009	61	38	44	0.47	4	26	10.749
786	N	29.60	16	32	36.490	0.015	27	52	2	0.93	4	26	8.774
1549		29.50	16	36	12.366	0.017	22	7	55	0.96	4	26	8.776
795		29. 50	16	46	41.834	0.014	77	55	30	0.14	4	26	10.843
797		29.70	16	50	56.167	0.011	30	1	17	0.91	4	26	8.862
803		29.60	16	57	30.121	0.010	62	22	27	0.46	4	26	9.539
804		29.90	16	59	52.768	0.017	19	35	23	0.98	4	26	8.708
809		29.60	17	8	6.738	0.012	70	20	31	0.28	4	26	10.097
1570		30.15	17	15	28.844	0.016	19	5	34	0.98	4	26	8.670
817	W	30.15	17	21	14.344	0.025	71	4	54	0.27	4	26	10.621
1572		30. 30	17	24	2.701	0.010	60	53	25	0.49	4	26	9.454
1575		30.35	17	27	39.545	0.013	29	56	27	0.91	4	26	8.868
1578		30.50	17	32	14.034	0.009	73	27	58	0.21	4	26	10.029
826		30.50	17	38	39.2C6	0.015	12	52	46	0.99	4	26	8.658
030		30.40	17	43	28.362	0.008	62	32	30	0.45	4	26	9.545
837		30.45	17	48	49.635	0.006	72	5	42	0.25	4	26	10.051
843		30.50	17	59	0.110	0.013	11	57	9	1.00	4	26	8.664
847	E	28.40	18	7	12.509	0.008	58	9	33	0.55	4	26	10.364
1594		28.60	18	11	16.225	0.013	75	58	7	0.16	4	26	12.887
853		28.55	18	16	44.454	0.008	63	19	28	0.44	4	26	10.785
857		28.65	18	20	31.580	0.016	29	57	34	0.91	4	26	9.537
859		28.85	18	23	59.116	0.014	23	18	7	0.56	4	26	9.352
863		28.80	18	27	73.968	0.008	65	56	14	0.38	4	26	10.996
1600		28.90	18	32	33.074	0.013	36	48	36	0.85	4	26	9.677
870		28.90	18	41	9.798	0.010	27	48	41	0.93	4	26	9.461


```
INTE . : SEP 19 - 20. 1949 (II).
OBSERYERS. . . BRUINS/DE VRIES.
```

CHRON. CGRRECTION
SIGNAL GBR -T AT 20H OM: 41030.052
SIGNAL GBR
CHRGN. RATE DIT.
approximate values:
ATITUDE : 5139 4.346
LONGI TUDE.: -0 15 39.598

OBSERVAT IONS:

STAR		LEVEL	CHRON. TIME			SIGMA	DEC.			G	RA-T)	
875	E	29.45	18	50	36.774	0.012	56	53	31	0.57	426	10.325
880		29.25	18	57	55.788	0.011	23	28	0	0.96	426	9.484
882		29.35	19	2	21.148	0.009	61	60	28	0.47	426	10.675
885		29.40	19	6	22.547	0.010	12	29	5	1.00	426	9.298
1616		29.35	19	11	54.123	0.012	39	57	38	0.82	426	9.762
893		29.40	19	16	58.029	0.010	77	21	9	0.14	426	12.978
895		29.30	19	25	11.189	0.008	67	31	42	0.34	426	10.973
899		29.30	19	31	32.572	0.011	57	13	15	0.57	426	10.283
1629	W	29.15	19	34	53.400	0.016	24	51	49	0.95	426	8.816
2		29.30	19	46	8.695	0.013	58	52	25	0.53	426	9.345
7		29.45	19	50	17.991	0.013	14	54	22	0.99	426	8.751
1005		29.45	19	55	19.923	0.009	36	30	30	0.85	426	8.985
1009		29.50	19	58	5.624	0.017	37	41	30	0.84	426	9.140
1012		29.80	20	5	12.632	0.009	16	10	9	0.99	426	6.741
16		29. 70	20	9	43.182	0.008	62	39	19	0.45	426	9.517
21		29.80	20	17	12.900	0.008	56	15	46	0.58	426	9.310
24	W	29.85	20	21	51.295	0.009	74	42	49	0.19	426	10.175
1020		30.15	20	25	53.305	0.014	16	40	18	0.99	426	8.803
32		30.15	20	33	11.089	0.012	60	26	44	0.50	426	9.432
1028		30.45	20	41	56.639	0.015	14	40	42	0.99	426	8.725
1032		30.45	20	48	14.348	0.012	20	46	11	0.97	426	8.823
45		30.45	20	56	9.947	0.013	26	60		0.93	426	8.921
46		30.40	21	1	47.895	0.008	67	52	6	0.34	426	9.761
1042		30.35	21	6	53.122	0.010	70	0	24	0.29	426	9.887
51	E	27.80	21	13	49.738	0.009	72	47	3	0.23	426	11.599
55		28.15	21	17	57.659	0.011	67	47	22	0.34	426	10.941
1050		28.30	21	24	49.980	0.015	16	42	30	0.99	426	9.244
63		28.40	21	30	5.827	0.010	63	25	24	0.43	426	10.691
70		28.55	21	38	24. 294	0.008	72	10	43	0.24	426	11.660
74		28.55	21	43	39.654	0.014	23	13	40	0.96	426	9.395
1056		28.60	21	47	9.251	0.011	19	15	59	0.98	426	9.307
1059		28.60	21	52	9.497	0.015	24	48	47	0.95	426	9.373

STATION. : ZIERIKZEE.

OATE SEP $20-21$. 1949 III.

- BRUINSIOE VRIES.

CHRON. CORRECTIDN
SIGNAL(GBR)-T AT 2OHDM: 41029.909
CHRON. RATE D1T. . . : $-0.091 / 14 \mathrm{H}$
APPROXIMATE VALUES:

OBSERVATIONS:

StAR		LEVEL	CHRON. TIME			SIGMA		DEC		G
759	E	29.10	15	46	56. 044	0.007	77	33	48	0.13
760		29.05	15	50	59.012	0.012	24	30	59	0.95
765		28.95	15	56	45.155	0.013	40	5	49	0.82
767		29.00	16	5	2.191	0.008	62	49	38	0.45
770		29.20	16		27.938	0.008	74	47	6	0.18
1539		29.15	16	12	34.217	0.008	21	1	29	0.97
777		29.20	16	15	59.651	0.012	45	6	7	0.76
783		29. 25	16	20	31.524	0.008	61	38	44	0.47
786	H	29.35	16	28	40.667	0.011	27	52	2	0.93
1549		29.45	16	32	16.602	0.013	22	7	55	0.96
795		29.55	16	42	45.726	0.009	77	55	30	0.14
797		29.90	16	47	0.419	0.012	30	1	17	0.91
803		29.90	16	53	34.213	0.013	62	22	27	0.46
804		29.90	16	55	56.985	0.017	19	35	23	0.98
809		30.10	17	4	10.788	0.008	70	20	31	0.28
1570		30.35	17	11	32.991	0.011	19	5	34	0.98
817		30.15	17	17	19.015	0.009	71	4	54	0.27
1572		30.70	17	20	6.815	0.012	60	53	25	0.49
1575	W	30.40	17	23	43.794	0.013	29	56	27	0.91
1578		30.45	17	28	17.931	0.012	73	27	58	0.21
826		30.60	17	34	43.436	0.011	12	52	46	0.99
830		30.60	17	39	32.472	0.010	62	32	30	0.45
837		30.70	17	44	53.641	0.007	72	5	42	0.25
843		30.70	17	55	4.326	0.015	11	57	9	1.00
847	E	30.10	18	3	17.215	0.009	58	9	33	0.55
1594		30.35	18	7	21.884	0.009	75	58	7	0.16
853		30.25	18	12	49.349	0.010	63	19	28	0.44
857		30.35	18	16	35.912	0.009	29	57	34	0.91
859		30.45	18	20	3.335	0.009	23	18	7	0.96
863		30.65	18	23	48.831	0.009	65	56	14	0.38
1600		30.75	18	28	37.519	0.009	36	48	36	0.85
870		30.80	18	37	14.057	0.019	27	48	41	0.93

CHRDN. CORRECTION
SIGNAL(GBR)-T AT 2OHOM: 41029.909
CHRON. RATE DIT. ...: $-0.091 / 14 \mathrm{H}$
APPROXIMATE VALUES:
LONGITUDE: : : : 51394.346

OBSERVATIONS:

STAR		LEVEL	CHRON . TIME			SIGMA	DEC.			G
875	E	29.25	18	46	42.994	0.009	56	53	31	0.57
880		29.25	18	54	0.297	0.016	23	28	0	0.96
882		29.45	18	58	25.365	0.009	61	60	28	0.47
885		29.45	19	2	27.062	0.013	12	29	5	1.00
1616		29.45	19	7	58.469	0.009	39	57	38	0.82
893		29.50	19	13	1.884	0.008	77	21	9	0.14
895		29. 50	19	21	15.261	0.008	67	31	42	0.34
899		29.45	19	27	36.808	0.010	57	13	15	0.57
1629	*	28.90	19	30	57.760	0.018	24	51	49	0.95
2		29. 20	19	42	12.731	0.014	58	52	25	0.53
7		29.40	19	46	22.419	0.010	14	54	22	0.99
1005		29.55	19	51	24.205	0.013	36	30	30	0.85
1009		29.50	19	54	10.038	0.008	37	41	30	0.84
1012		29.70	20	1	17.003	0.013	16	10	9	0.99
16		29.70	20	5	47.246	0.014	62	39	19	0.45
21		29.85	20	13	17.059	0.011	56	15	46	0.58
24	W	29.85	20	17	54.997	0.007	74	42	49	0.19
1020		29.95	20	21	57.652	0.019	16	40	18	0.99
32		29.95	20	29	15.185	0.009	60	26	44	0.50
1028		30.05	20	38	1.041	0.012	14	40	42	0.99
1032		30.20	20	44	18.728	0.017	20	46	11	0.97
45		30.40	20	52	14.359	0.011	26	60	8	0.93
46		30.20	20	57	51.865	0.008	67	52	6	0.34
1042		30.45	21	2	57.026	0.008	70	0	24	0.29
51	E	27.70	21	9	53.591	0.010	72	47	3	0.23
55		27.75	21	14	1.502	0.009	67	47	22	0.34
1050		28.00	21	20	54.388	0.011	16	42	30	0.99
63		28.05	21	26	9.835	0.015	63	25	24	0.43
70		28.15	21	34	28.256	0.008	72	10	43	0.24
74		28. 20	21	39	44.078	0.017	23	13	40	0.96
1056		28.20	21	43	13.625	0.009	19	15	59	C. 98
1059		28.30	21	48	13.829	0.013	24	48	47	0.95

LONGITUDE BY MERIDIAN TRANSIT OF STARS.

```
STATION. . . . . . . : ZIERIKZEE.
INSTRUMENT : PISTOR AND MARTINS (1869).
DATE . . . : OKT 4-5. 1949 (I).
OBSERVERS. . . . . . : BRUINS/DE VRIES.
```

CHRON - CORRECTION
SIGNAL GBRI-T AT 2OH OM: 17 5 48.298
CHRON. RATE DIT. . : $-0.090 / 14 \mathrm{H}$
APPROXIMATE VALUES:

OBSERVATIONS:
STAR LEVEL CHRON. TIME SIGMA DEC. G (RA-T)

759	E	30.50	1	56	35.867	0.008	77	33	48	0.13	17	21	30.141
760		30.30	2	0	37.738	0.011	24	30	59	0.95	17	21	27.685
765		30.25	2	6	23.975	0.012	40	5	49	0.82	17	21	27.954
767		30.50	2	14	41.271	0.009	62	49	38	0.45	17	21	28.635
770		30.50	2	18	7.355	0.008	74	47	6	0.18	17	21	29.634
1539		30.40	2	22	12.902	0.010	21	1	29	0.97	17	21	27.666
777		30.50	2	25	38.547	0.009	45	6		0.76	17	21	28.006
783		30.70	2	30	10.626	0.010	61	38	44	0.47	17	21	28.608
786	W	28.90	2	38	19.192	0.011	27	52	2	0.93	17	21	27.309
1549		29.00	2	41	55.065	0.010	22	7	55	0.96	17	21	27.308
795		29.10	2	52	24.387	0.010	77	55	30	0.14	17	21	28.595
797		29.30	2	56	38.829	0.013	30	1	17	0.91	17	21	27.421
803		29.35	3	3	12.769	0.009	62	22	27	0.46	17	21	27.846
804		29.50	3	5	35.390	0.008	19	35	23	0.98	17	21	27.340
809		29.70	3	13	49.466	0.006	70	20	31	0.28	17	21	28.044
1570		29.75	3	21	11.401	0.016	19	5	34	0.98	17	21	27.387
817	4	29.80	3	26	57.781	0.007	71	4	54	0.27	17	21	28.029
1572		29.95	3	29	45.443	0.008	60	53	25	0.49	17	21	27.788
1575		29.95	3	33	22.262	0.013	29	56	27	0.91	17	21	27.425
1578		30.05	3	37	56.727	0.007	73	27	58	0.21	17	21	28.179
826		30.05	3	44	21.825	0.013	12	52	46	0.99	17	21	27.353
830		30.05	3	49	11.145	0.012	62	32	30	0.45	17	21	27.871
837		30.25	3	54	32.359	0.013	72	5	42	0.25	17	21	28.208
843		30.25	4	4	42.731	0.011	11	57	9	1.00	17	21	27.367
847	E	30.25	4	12	56.045	0.010	58	9	33	0.55	17	21	28.373
1594		30.40	4	17	1.195	0.007	75	58	7	0.16	17	21	29.465
853		30.65	4	22	23.392	D. 010	63	19	28	0.44	17	21	28.491
857		30.40	4	26	14.794	0.014	29	57	34	0.91	17	21	27.844
859		30.60	4	29	42.179	0.015	23	18	7	0.96	17	21	27.806
863		30.85	4	33	27.859	0.009	65	56	14	0.38	17	21	28.791
1600		30.85	4	38	16.398	0.010	36	48	36	0.85	17	21	27.934

OBSERVAT IONS:

STAR		LEVEL		HRON	N. TIME	SI GMA	DEC.			G	(RA-T)		
1396	E	31.10	15	24	33.387	0.017	25	3	39	0.94	6		39.533
565		31.45	15	33	28.969	0.016	67	32	10	0.34	6	41	41.622
569		31.50	15	40	12.062	0.012	72	0	42	0.25	6	41	42.355
571		31.45	15	43	12.814	0.013	59	8	24	0.53	6	41	40.787
578		31.65	15	51	56.880	0.018	26	52	48	0.94	6	41	39.609
587		31.45	16	5	14.321	0.011	62	45	10	0.44	6	41	41.012
593	N	29.55	16	14	50.550	0.013	27	1	10	0.93	6	41	38.816
598		29.85	16	20	15.693	0.010	58	41	50	0.55	6	41	39.514
1421		29.90	16	25	6.963	0.010	17	10	34	C. 99	6	41	38.677
606		30.15	16	31	31.348	0.012	76	0	12	0.16	6	41	40.682
612		30.20	16	38	13.193	0.010	75	52	13	0.16	6	41	40.706
619		30.35	16	47	18.805	0.011	68	52	30	0.31	6	41	39.995
1440	W	30.50	17	8	51.364	0.016	24	44	13	0.95	6	41	38.858
634		30.75	17	17	31.546	0.011	30	59	48	0.90	6	41	38.910
639		31.00	17	27	45.611	0.013	65	46	27	0.38	6	41	39.784
1454		30.90	17	37	12.664	0.023	18	6	16	0.98	6	41	38.543
664		31.20	17	56	16.867	0.010	68	46	44	0.32	6	41	39.992
670		31.35	18	1	50.900	0.010	72	10	18	0.25	6	41	40.256
675	E	30.45	18	10	38.625	0.011	76	58	6	0.14	6	41	44. 264
674		29.95	18	14	47.958	0.016	29	14	58	0.92	6	41	39.783
681		30.35	18	24	32.594	0.021	28	45	7	0.92	6	41.	39.765
685		30.55	18	32	31.330	0.013	64	22	39	0.41	6	41	41.493
695		30.60	18	40	50.517	0.007	72	42	32	0.23	6	41	42.725
700		30.70	18	51	1.052	0.010	77	30	24	0.13	6	41	44.207

LONGITUOE BY MERIDIAN TRANSIT OF STARS.

```
STATION. * . . . . . . : GDEDEREEDE.
NSTRUNENT . . . . . : PISTOR ANO MARTINS (1869).
ATE . . . . . . . : JUNE 28 - 29, 1950.
CHRON. CORRECTION
SIGNAL(GBR)-T AT 2OHOM: 4 50 17.444
CHRON. RATE DIT....: +0.105/14H
APPROXIMATE VALUES:
```


OBSERVATIONS:

STAR		LEVEL	CHRON. TIME			SIGMA	DEC.			G	(RA-T)		
1396	E	30.15	15	33	30.855	0.011	25	3	39	0.94	5	6	11.790
565		30.45	15	42	26.640	0.009	67	32	10	0.34	5	6	12.928
569		30.75	15	49	9.849	0.009	12	0	42	0.25	5	6	13.366
571		30.75	15	52	10.425	0.016	59	8	24	0.53	5	6	12.553
578		30.55	15	60	54.473	0.012	26	52	48	0.94	5	6	11.755
587		30.90	16	14	12.084	0.010	62	45	10	0.44	5	6	12.634
593	W	29.85	16	23	48.045	0.012	27	1	10	0.93	5	6	11.194
598		28.95	16	29	13.493	0.010	58	41	50	0.55	5	6	11.558
1421		29.90	16	34	4.488	0.008	17	10	34	0.99	5	6	11.114
606		29.85	16	40	29.563	0.007	76	0	12	0.16	5	6	11.657
612		30.00	16	47	11.477	0.009	75	52	13	0.16	5	6	11.627
619		29.70	16	56	16.934	0.008	68	52	30	0.31	5	6	11.578
1440	ω	30.35	17	17	49.058	0.019	24	44	13	0.95	5	6	11.205
634		30.20	17	26	29.311	0.008	30	59	48	0.90	5	6	11.236
639		30.25	17	36	43.870	0.009	65	46	27	0.38	5	6	11.516
1454		30.35	17	46	10.208	0.010	18	6	16	0.98	5	6	11.158
664		30.05	18	5	15.506	0.010	68	46	44	0.32	5	6	11.581
670		30.00	18	10	49.812	0.008	72	10	18	0.25	5	6	11.667
675	E	30.25	18	15	38.295	0.008	76	58	6	0.14	5	6	14.305
674		29.80	18	23	46.083	0.012	29	14	58	0.92	5	6	11.797
681		30.40	18	33	30.715	0.013	28	45	7	0.92	5	6	11.833
685		30.55	18	41	30.260	0.010	64	22	39	0.41	5	6	12.679
655		30.60	18	49	49.911	0.010	72	42	32	0.23	5	6	13.442
700		30.75	18	60	1.127	0.008	77	30	24	0.13	5	6	14.334

```
STATION.
INSTRUMENT . . . . . : PISTOR AND MARTINS (1869).
OATE © VERS*: *: #. JUNE 15 - 16% 1950.
OBSERVERS. : ....: BRUINS/OE VRIES.
```

CHRON. CORRECTION
SIGNAL (GBR)-T AT 20HOM: 42926.100
CHRON. RATE OIT. ..: $+0.106 / 14 \mathrm{H}$
APPROXIMATE VALUES:

| LATITUDE | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LOMGITUDE. | 51 | 49 | 9.70 |

OBSERVATIONS:

STAR		LEVEL		HRO	N. TIME	SIGMA	DEC.			G
1396	E	29.60	16	45	29.262	0.016	25	3	39	0.94
565		30.00	16	54	24.392	0.009	67	32	10	0.34
569		29.95	17	1	7.391	0.009	72	0	42	0.25
571		29.95	17	4	8.449	0.007	59	8	24	0.53
578		29. 70	17	12	52.822	0.012	26	52	48	0.94
587		30.25	17	26	9.958	0.011	62	45	10	0.44
593	N	30.25	17	35	46.453	0.015	27	1	10	0.93
598		30.15	17	41	11.904	0.010	58	41	50	0.55
1421		30.30	17	46	2.936	0.012	17	10	34	0.99
606		30.40	17	52	27.887	0.010	76	0	12	0.16
612		30.35	17	59	9.848	0.009	75	52	13	0.16
619		30.50	18	8	15.253	0.009	68	52	30	0.31
1440	W	30.55	18	29	47.392	0.011	24	44	13	0.95
634		30.50	18	38	27.638	0.013	30	59	48	0.90
639		30.40	18	48	42.109	0.009	65	46	27	0.38
1454		30.55	18	58	8. 501	0.010	18	6	16	0.98
664		30.40	19	17	13.634	0.009	68	46	44	0.32
670		30.45	19	22	47.866	0.009	72	10	18	0.25
675	E	29.95	19	31	36.933	0.010	76	58	6	0.14
674		30.20	19	35	43.909	0.018	29	14	58	0.92
681		30.45	19	45	28.553	0.021	28	45	7	0.92
685		30.90	19	53	28.372	0.007	64	22	39	0.41
695		30.95	20	1	48.318	0.006	72	42	32	0.23
700		31.00	20	11	59.759	0.006	77	30	24	0.13

STATION. : GDEDEREEOE.
INSTRUMENT PISTOR AND MARTINS 118691.

CHRON. CORRECTION
SIGNAL(GBR)-T AT 2OH OM: 45017.600
CHRON. RATE DIT...: $+0.110 / 14 \mathrm{H}$
APPROXIMATE VALUES:

OBSERVATIONS:

STAR		level	Chron. time			SIGMA	DEC.			G	(RA) T)		
1396	E	29.60	15	29	34.208	0.014	25	3	39	0.94		6	12.452
565		29.75	15	38	30.284	0.009	67	32	10	0.34	5	6	13.125
569		29.80	15	45	13.560	0.010	72	0	42	0.25	5	6	13.350
571		29.90	15	48	14.003	0.009	59	8	24	0.53	5	6	12.846
578		29.85	15	56	57.741	0.012	26	52	48	0.94	5	6	12.484
587		30.05	16	10	15.786	0.021	62	45	10	0.44	5	6	12.778
593	W	30.40	16	19	51.822	0.012	27	1	10	0.93	5	6	11.431
598		30.35	16	25	17.767	0.008	58	41	50	0. 55	5	6	11.040
1421		30.55	16	30	8. 142	0.011	17	10	34	0.99	5	6	11.477
606		30.60	16	36	34.768	0.009	76	0	12	0.16	5	6	10.149
612		30.70	16	43	16.710	0.009	75	52	13	0.16	5	6	10.114
619		30.65	16	52	21.609	0.010	68	52	30	0.31	5	6	10.663
1440	W	31.75	17	13	52.788	0.010	24	44	13	0.95	5	6	11.400
634		31.85	17	22	33.013	0.015	30	59	48	0.90	5	6	11.410
639		31.60	17	32	48.237	0.008	65	46	27	0.38	5	6	10.843
1454		31. 70	17	42	13.852	0.012	18	6	16	0.98	5	6	11.465
664		31.90	18	1	19.823	0.006	68	46	44	0.32	5	6	10.768
670		32.00	18	6	54.245	0.009	72	10	18	0.25	5	6	10.591
675	E	30.00	18	15	42.616	0.010	76	58	6	0.14	5	6	13.915
674		30.55	18	19	49.582	0.016	29	14	58	0.92	5	6	12.476
681		30.60	18	29	34.158	0.013	28	45	7	0.92	5	6	12.499
685		30.95	18	37	33.988	0.015	64	22	39	0.41	5	6	13.127
655		31.20	18	45	53.920	0.007	72	42	32	0.23	5	6	13.715
700		31.30		56	5.402	0.008	77	30	24	0.13	5	6	14.37

Appendix II

LATITUDE, LUNGITUDE AND ALIMUTH
oe termination by the black methico.

```
STATION. * * . . . . . . . . T TONGEREN.
```



```
appruximate values:
```

LATITUDE $50^{\circ} 46^{\prime} 56^{\prime \prime} 100$ UNNGITUDE. $-0_{0}^{\mathrm{h}} 21^{\text {a }} 51_{10}^{160}$ AZIMUTH. 3000

08 SER VATI ONS:

DATE	STAR	FACE	HOR.CIRCLE R.M.			HOR.CIRCLE STAR				CHRON.		1 ME	CHR.CCRR. (UTC-T)		
V. 14	182	1	68°	46°	27"320	330°	43^{\prime}	4.280	46.8	$2^{\text {h }}$	21^{11}	11.194	18^{h}	53°	12.345
		1	68	46	27.380	330	59	13.740	46.7	2	23	34.766	18	53	12.346
		2	248	46	20.960	151	41	30.020	51.6	2	29	50.064	18	53	12.348
		2	248	46	2C. 920	151	57	19.180	51.5	2	32	8.912	18	53	12.343
	740	1	113	46	27.30 C	109	56	24.020	47.0	3	1	18.689	18	53	13.539
		1	113	46	27.320	110	15	9.540	46.6	3	3	17.69C	18	53	13.539
		2	293	46	2C.88C	251	30	48.160	51.2	3	11	18.238	18	53	13.540
		2	293	46	2 C .850	291	51	51.680	50.8	3	13	31.771	18	53	13.541
	418	1	158	46	27.040	329	42	12.030	51.0	3	29	39.563	18	53	13.544
		1	158	46	26.980	330	5	22.120	51.0	3	31	15.158	18	53	13.544
		2	338	46	20.340	152	4	. 080	47.0	3	39	21.252	18	53	13.545
		2	338	46	20.280	152	27	39.830	47.0	3	41	11.248	18	53	13.546
	1445	1	203	46	27.320	279	28	24.120	53.0	4	10	58.111	18	53	13.551
		1	203	46	27.280	279	51	36.190	52.7	4	12	23. 223	18	53	13.551
		2	23	46	2C.680	102	10	36.100	46.2	4	21	. 635	18	53	13.552
		2	23	46	20.650	102	32	6.500	46.1	4	22	19.845	18	53	13.552
	525	1	90	46	26.940	225	58	6.080	54.5	4	50	28.355	18	53	13.557
		1	90	46	26.920	226	18	22.660	54.1	4	51	40.788	18	53	13.557
		2	270	46	2C.180	48	43	12.060	45.6	5	0	22.741	18	53	13.599
		2	270	46	20.320	49	4	39.580	45.2	5	1	40.542	18	53	13.559
\%. 15	412	1	135	46	27.290	354	16	54.030	48.3	5	27	55.199	18	53	13.564
		1	135	46	27.300	354	35	45.300	48.0	5	29	49.239	18	53	13.564
		2	315	46	2 C .680	176	4	58.600	51.7	5	38	51.342	13	53	13.565
		2	315	46	2C. 740	176	22	19.900	51.7	5	40	36.975	18	53	13.566
	63	1	180	46	26.880	132	56	18.100	43.5	6	2	40.764	18	53	13.570
		1	180	46	26.820	133	14	16.440	43.3	6	5	23.119	18	53	13.570
		2	0	46	20.180	314	1	42.090	53.5	6	12	36.361	18	53	13.571
		2	0	46	20.280	314	15	36.080	53.0	6	14	43.660	18	53	13.571
V. 23	741	1	203	46	27.580	244	39	54.020	48.3	1	42	44.209	21	44	22.450
		1	203	46	27.780	245	0	23.340	48.1	1	44	15.810	21	44	22.450
		2	23	46	21.000	66	56	36.100	48.7	1	52	50.168	21	44	22.451
		2	23	46	21.320	67	17	37.220	48.8	1	54	21.914	21	44	22.451
V. 24	17	1	68	46	28.030	38	53	24.140	48.0	2	54	36.797	21	44	22.461
		$\frac{1}{2}$	68	46	27.900	39	9	59.680	47.9	2	56	48.757	21	44	22.461
		2	248	46	21.300	220	7	48.080	48.7	3	4	33.ce 3	21	44	22.463
		2	248	40	21.200	220	23	48.150	48.4	3	6	41.869	21	44	22.463
	585	1	113	46	27.380	257	53	24.040	47.5	3	26	16.839	21	44	22.466
		1	113	46	27.500	258	15	55.830	47.6	3	27	39.238	21	44	22.466
		2	293	46	$2 C .880$	80	34	6.080	47.2	3	36	10.030	21	44	22.468
		2	293	46	2 C .830	80	57	58.600	47.2	3	31	38.934	21	44	22.468
	441	1	158	46	27.380	39	7	36.080	47.4	4	2	21.659	21	44	22.472
		1	158	46	27.480	39	25	13.920	47.5	4	4	33.405	21	44	22.472
		2	338	46	20.680	220	28	8.050	48.2	4	12	22.865	21	44	22.474
		2	338	46	2 C .700	220	49	15.780	48.0	4	14	59.266	21	44	22.474
	1157	1	68	46	27.980	322	2	42.040	48.3	1	32	51.118	19	9	54.825
		1	60	46	27.920	322	21	36.600	48.2	1	35	29.293	19	9	54. 625
		2	248	46	21.320	143	15	6.080	50.6	1	42	55.131	19	9	54.827
		2	248	46	21.280	143	32	40.640	50.8	1	45	20.167	19	9	54.828

DA TE	SJAR	face	HUR.CIRCLE R.M.			HOR.CIRCLE STAR			Level	CHRON.		time	CHR.CORR-(UTC-T)		
V. 24	603	1	113	46	27.020	187	38	12.020	51.6	2	22	20.556	19	9	54.834
		1	113	46	27.300	188	0	11.200	51.6	2	23	43.626	19	9	54.834
		2	293	46	20.300	10	19	24.100	47.3	2	32	25.12 C	19	9	54.835
		2	293	46	20.540	10	43	13.340	46.9	2	33	63.37 C	19	9	54.836
	792	1	158	46	27.040	144	45	48.080	47.5	2	53	39.005	19	9	54.839
		1	158	46	27.030	145	2	45.830	47.5	2	55	36.651	19	9	54.840
		2	338	46	2C.360	326	11	30.060	47.8	3	3	36.372	19	9	54.841
		2	338	46	20.300	326	30	14.310	47.6	3	5	47.085	19	9	54.841
	1317	1	203	46	28.040	5	56	36.060	48.5	3	23	29.558	19	9	54.844
		1	203	46	27.78 C	6	17	46.480	48.4	3	24	52.856	19	9	54.844
		2	23	46	21.320	188	25	24.030	49.5	3	33	21.23C	19	9	54.846
		2	23.	46	21.020	188	48	13.620	49.4	3	34	53.256	19	9	54.846
	525	1	91	46	27.64 C	226	58	6.100	50.0	3	54	27.848	19	9	54.850
		1	91	46	27.620	227	24	34.680	50.2	3	56	2.444	19	9	54.850
		2	271	46	21.050	49	43	12.020	47.5	4	4	22.252	19	9	54.852
		2	271	46	21.020	50	7	14.130	47.6	4	5	49.364	19	9	54.852
	412	1	136	46	27.730	355	16	54.100	46.5	4	31	54.754	19	9	54.856
		1	130	46	27.620	355	37	23.420	46.6	4	33	58.763	19	9	54.857
		2	316	46	2C.960	176	55	24.030	51.7	4	41	52.520	19	9	54.858
		2	316	46	20.990	177	15	20.180	51.5	4	43	53. 752	19	9	54.858
V. 25	63	1	181	46	27.700	133	56	18.070	47.8	5	6	40.998	19	9	54.862
		1	181	46	27.630	134	12	16.840	47.8	5	9	5.551	19	9	54.863
		2	1	46	21.020	315	1	42.020	48.3	5	16	36.627	19	9	54.864
		2	1	46	2 C .990	315	17.	17.700	48.1	5	18	59.412	19	9	54.864
	1555	1	226	46	27.700	268	41	36.080	48.9	5	40	2.329	19	9	54.868
		1	226	46	27.680	269	8	54.810	48.9	5	42	3.723	19	9	54.868
		2	46	46	21.000	90	59	12.040	49.9	5	50	8.295	19	9	54.870
		2	46	46	21.110	91	24	32.480	49.9	5	51	58.195	19	9	54.870
V. 30	740	1	68	46	28.250	64	56	24.000	48.7	1	37	38.3Ce	19	14	. 455
		1	68	46	28.160	65	16	20.590	48.6	1	39	44.771	19	14	. 455
		2	248	46	21.630	246	30	48.020	48.7	1	47	37.764	19	14	. 457
		2	248	45	21.320	246	50	18.110	48.7	1	49	41.204	19	14	. 457
	418	1	113	46	27.420	284	42	12.040	48.9	2	5	57.711	19	14	.460
		1	113	46	27.300	285	5	48.040	49.2	2	7	35.075	19	14	. 460
		2	293	46	2C. 700	107	4	.030	48.2	2	15	49.157	19	14	. 462
		2	293	4.	20.680	107	33	6.830	47.9	2	17	52.294	19	14	. 462
	1445	1	158	46	26.400	234	28	24.050	52.6	2	47	15.187	19	14	. 468
		1	158	46	27.540	234	52	45.370	52.7	2	48	46.524	19	14	. 468
		2	338	46	18.280	57	10	36.050	44.0	2	57	19.534	19	14	. 469
		2	338	46	19.230	57	33	8.120	43.9	2	58	42.492	19	14	- 469
	292	1	203	46	28.320	102	33	6.030	42.6	3	19	27.127	19	14	.473
		1	203	46	27.630	102	49	14.740	42.6	3	21	47. 849	19	14	. 473
		2	23	46	21.850	283	42	36.060	52.7	3	29	31.476	19	14	. 475
		2	23	46	21.100	283	58	57.800	52.4	3	31	52.227	19	14	. 475
	899	1	91	46	28.020	55	46	.030	48.6	3	47	13.354	19	14	. 478
		1	91	46	28.350	56	2	23.330	48.6	3	49	30.371	19	14	. 478
		2	271	. 46	21.550	236	56	48.010	46.6	3	57	9.002	19	14	. 480
		2	271	46	21.680	237	12	57.200	46.6	3	59	25.872	19	14	-480
	749	1	136	46	27.960	186	1	30.030	49.4	4	18	50.043	19	14	. 484
		1	136	46	27.640	186	28	44.520	49.4	4	20	45.718	19	14	.484
		2	316	46	21.300	8	25	30.010	49.5	4	28	56.3C5	19	14	. 487
		2	316	46	21.080	8	49	55.310	49.3	4	30	37.638	19	14	. 487
V. 31	1276	1	181	46	27.800	59	33	24.040	49.0	4	53	44.C83	19	14	. 490
		1	181	46	27.820	59	52	41.610	48.8	4	56	4.717	19	14	.490
		2	1	46	21.210	240	55	54.010	48.6	5	3	44.954	19	14	.492
		2	1	46	21.120	241	13	5.940	48.6	5	5	49.541	19	14	-492
	585	1	226	46	27.830	10	53	24.020	47.2	5	29	7.663	19	14	.496
		1	226	46	27.900	11	15	55.080	47.2	5	30	30.046	19	14	.496
		2	46	46	21.380	193	34	6.000	49.5	5	39	. 643	19	14	-498
		2	46	46	21.190	193	58	25.560	49.2	5	40	31.288	19	14	.498
VI. 5	525	1	90	46	27.690	226	10	15.720	48.1	9	32	34.698	12	45	20.387
		1	90	46	27.720	226	46	35.600	48.9	9	34	44.829	12	45	20.387
		2	270	46	21.120	48	43	12.040	49.5	9	41	45.481	12	45	20.388
		2	270	46	21.090	49	8	38.490	49.2	9	43	17.758	12	45	20.388
	412	1	135	46	28.040	354	16	54.040	49.1	10	9	18.042	12	45	20.393
		1.	135	46	28.040	354	35	5.780	49.2	10	11	8.191	12	45	20.393
		2	315	46	21.380	175	55	24.080	50.4	10	19	15.727	12	45	20.394
		2	315	46	21.460	176	13	50.980	50.1	10	21	7.933	12	45	20.395
	63	1	180	46	28.020	133	11	44.310	48.3	10	46	24.371	12	45	20.399
		1	180	46	28.140	133	29	29.630	48.3	10	49	5.503	12	45	20.399
		2	0	46	21.420	314	1	42.060	50.1	10	53	59.958	12	45	20.400
		2	0	46	21.500	314	16	19.250	49.8	10	56	13.834	12	45	20.400
V1. 6	768	1	225	46	27.900	265	25	12.030	49.0	3	7	. 369	20	8	20.076
		1	225	46	28.090	265	45	45.960	48.9	3	8	33.096	20	8	20.076
		2	45	46	21.280	87	40	42.040	50.5	3	17	5.914	20	8	20.077
		2	45	46	21.440	88	6	21.230	50.3	3	18	58.838	20	8	20.077
	1531	1	203	46	27.910	255	18	42.050	47.8	3	31	31.719	20	8	20.080
		1	203	46	28.120	フ--	38	24.290	47.9	3	32	54.469	20	9	20.080
		2	23	46	21.300		44	30.020	50.7	3	41	27.633	20	g	20.082
		2	23	46	21.480	78	8	29.880	50.4	3.	43	15.918	20	8	20.082

CHRON. TIME
CHR-CORR-(UTC-T)

Appendix III

ALIMUTH EY POLARIS.

OB SERVATIONS:

LATITUOE
LONGI TUDE
CHRONOMETER CORRECTION $(U T C-T$:
REFERENC MOMENT $\begin{array}{rrr}51 & 49 & 9.700 \\ -0 & 15 & 54.350 \\ 9 & 35 & 33.825 \\ 18 & 51 & .000 \\ & .009 & \end{array}$

QBSERYATIONS:
SET FACE HOR.CIRCLE R.M. HOR.CIRCLE STAR LEVEL

1	1	237	45	13.670	44	20	11.820	48.5	9	47	8.490
	1	237	45	14.670	44	20	24.990	48.5	9	47	51.720
	2	57	45	4.180	224	20	43.020	53.6	9	49	39.600
$\mathbf{2}$	2	57	45	4.750	224	20	58.600	53.7	9	50	28.180
	1	245	15	8.060	51	54	58.980	46.8	10	1	54.640
	1	245	15	9.120	51	55	16.320	46.8	10	2	47.440
	2	65	14	59.230	231	55	43.080	55.6	10	4	56.420
3	2	65	14	59.760	231	55	58.310	55.5	10	5	40.910
	1	252	45	11.090	59	28	34.650	45.9	10	12	26.380
	1	252	45	11.190	59	28	48.650	45.7	10	13	6.390
	2	72	45	.420	239	29	20.330	54.8	10	15	25.390
	2	72	45	1.180	239	29	33.010	54.8	10	16	7.300
4	1	260	15	3.780	67	9	7.720	49.8	10	43	16.360
	1	260	15	4.320	67	9	24.880	49.6	10	44	6.070
	2	80	14	53.220	247	9	44.310	50.4	10	45	48.840
	2	80	14	53.800	247	9	59.300	50.2	10	46	32.100
5	1	268	15	5.020	75	12	39.800	49.2	10	53	8.150
	1	268	15	5.150	75	12	52.620	49.0	10	53	44.350
	2	88	14	53.270	255	13	13.490	51.4	10	55	31.640
	2	88	14	53.690	255	13	30.720	51.4	10	56	17.350
6	1	275	16	55.710	82	19	37.110	47.9	11	7	10.240
	1	275	16	56.110	82	19	52.080	47.9	11	7	51.010
	2	95	16	44.500	262	20	9.600	51.9	11	9	28.240
	2	95	16	45.280	262	20	25.250	51.6	11	10	8.810

CHRON. TIME ${ }^{\text {h }} 41^{\text {" }} 16.410$

AZIMUTH BY POLARIS.

OBSERVER STEUR.

latituoe	51	49	9.700
LONGITUDE.	-0	15	54.350
CHRONOMETER CORRECTION (UTC-T):	9	59	4.365
REFERENCE MOMENT	8	8	55.635
CHRONQMETER RATE (SEC/HOUR). .:		008	

OBSERVATIONS:
SET FACE HOR.CIRCLE R.M. HOR.CIRCLE STAR LEVEL CHRDN. TIME $\begin{array}{lll}290 & 15 & 5 \\ 290 & 15 & 5 \\ 110 & 15 & 5 \\ 110 & 15 & 5 \\ 298 & 15 & 5 \\ 298 & 15 & 5 \\ 118 & 15 & 5 \\ 118 & 15 & 5 \\ 305 & 15 & 5 \\ 305 & 15 & 5 \\ 125 & 16 & \\ 125 & 16 & \\ 312 & 45 & 5 \\ 312 & 45 & 5 \\ 132 & 46 & \\ 132 & 46 & \\ 320 & 15 & 5 \\ 320 & 15 & 5 \\ 140 & 16 & \\ 140 & 16 & \\ 327 & 45 & 5 \\ 327 & 45 & 5 \\ 147 & 46 & \\ 147 & 46 & \end{array}$

$$
\begin{aligned}
& 46.3
\end{aligned}
$$

$$
\text { : GOECEREEDE IPILLAR } 2
$$

$$
\begin{aligned}
& \text { STATI ON. } \\
& \text { REFERENCE MARK : : GOECEREEDE (PILLAR 2) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KEFEKENLE TAKK HILD T4 } / 1957 \\
& \text { INSTRUHENT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DA TE } 4-6 \text {. } 1969 . \\
& \text { OBSERVR . }
\end{aligned}
$$

OBS ERVATIONS:
SET face hor.circle r.m. mor.circle star level
CHRON - TIME

\cdots	N	m	\pm	4	\bigcirc

 45
2
56
10
38
56
44
57
26
59
39
57
28
48
32
50
57
20
5
34
49
16
17 5.570
2.280
6.280
0.920
8.190
6.280
4.480
7.970
6.820
39.850
7.620
8.380
8.380
2.220
0.930
7.040
5.390
34.2200
49.320
16.000
17.090
34.720

5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6

AZIMUTH by polaris.
STATION. • • GOEDEREEDE (PILLAR 2) INSTRUMENT .
INSTRUMENT WILD T4 /1957

latituot	5149	9.700
LONGITUDE.	-0 15	54.350
CHRONOMETER CORRECTION (UTC-T) :	1619	. 863
REFERENCE MOMENT	211	59.131
CHRONDMETER RATE (SEC/HDUR).	. 008	

OBSERVATIONS:
SET face hor. CIRCLE R.M. HOR.CIRCLE STAR LEVEL

1	1	20	15	12.030	186	56	54.900	47.6	2	56	54.220
	1	20	15	12.900	186	57	8.100	47.6	2	57	32.810
	2	200	15	17.430	6	57	42.000	50.5	2	59	9.500
	2	200	15	17.810	6	57	56.320	50.5	2	59	52.170
2	1	27	45	12.480	194	29	49.280	47.8	3	5	25.040
	1	27	45	12.720	194	30	2.280	47.7	3	6	6.130
	2	207	45	18.810	14	30	37.080	51.2	3	7	33.200
	2	207	45	18.180	14	30	49.380	51.1	3	8	13.650
3	1	35	15	12.750	202	2	22.920	47.6	3	12	56.750
	1	35	15	12.490	202	2	38.050	47.4	3	13	37.980
	2	215	15	17.780	22	3	8.320	51.6	3	14	55.890
	2	215	15	17.190	22	3	21.380	51.5	3	15	32.160
4	1	42	45	14.330	209	35	34.280	47.7	3	21	53.830
	1	42	45	14.600	209	35	47.830	47.5	3	22	31.860
	2	222	45	18.920	29	36	17.650	51.6	3	23	45.760
	2	222	45	19.080	29	36	30.780	51.8	3	24	25.310
5	1	50	15	13.800	217	10	28.890	47.4	3	35	41.710
	1	50	15	13.280	217	10	40.410	47.4	3	36	20.500
	2	230	15	19.320	37	11	10.420	52.2	3	37	28.840
	2	230	15	18.600	37	11	25.180	52.3	3	38	9.420
6	1	57	45	14.580	224	54	7. 500	46.0	4	13	24.520
	1	57	45	15.220	224	54	25.870	45.9	4	14	14.510
	2	237	45	18.270	44	55	28.590	53.5	4	16	55.680
	2	237	45	18.920	44	55	48.210	53.6	4	17	47.120

AZIMUTH BY POLARIS.
STATION.
REFERENCE MARK
INSTRUMENT
DATE
OSSERVER
LATITUNE

OBS ERVAT IONS:

SET	face	HOR.CIRCLE R.M.			HOR.CIRCLE STAR			LEvel	CHRON. TIME		
1	1	12	37	39.500	1	20	46.400	21.4	1	39	21.950
	1	12	37	38.900	1	20	46.100	21.4	1	40	34.140
	2	192	37	39.900	181	20	51.300	20.9	1	45	31.360
	2	192	37	39.400	181	20	54.800	21.0	1	46	50.360
2	1	72	37	9.4 CC	61	19	44.100	18.5	2	30	12.290
	1	72	37	9.600	61	19	37.400	18.4	2	31	14.290
	2	252	37	8.500	241	19	22.400	20.4	2	34	$3 E .490$
	2	252	37	9.500	241	19	11.600	21.2	2	38	12.390
3	1	132	36	44.600	121	17	44.100	18.0	2	52	19.E2C
	,	132	36	45.000	121	17	39.800	18.0	2	53	22.430
	2	312	36	42.50 C	301	17	17.600	22.1	2	56	35.510
	2	312	36	41.400	301	17	11.600	22.2	2	57	48.500
4	1	192	36	35.3 CC	181	14	36.700	17.8	3	19	56.040
	1	192	36	35.200	181	14	26.600	17.8	3	20	56.820
	2	12	36	34.800	1	14	8.400	22.4	3	23	9.980
	2	12	36	36.400	1	13	59.600	22.6	3	24	14.360
5	1	252	36	35.000	241	12	49.900	17.0	3	32	43.870
	1	252	36	35.800	241	12	24.900	17.0	3	35	45.030
	2	72	36	38.4 CC	61	12	4.600	23.1	3	37	52.560
	2	72	36	37.500	61	11	50.500	23.3	3	39	15.62C
6	1	312	36	41.760	301	11	4.000	17.0	3	44	54.980
	1	312	36	41.60C	301	10	53.900	17.0	3	45	51.390
	2	132	36	46.000	121	10	26.000	23.6	3	48	41.680
	2	132	36	45.400	121	10	15.700	23.8	3	49	37.040

LATITUDE	51	39	4.610
LONGITUOE	-0	15	39.620
CHRONOMETER CORRECTION (UTC-T):	17	0	59.935
REFERENCE MOMENT	0	10	. 000
CHRONOHETER RATE (SEC/HOUR).		01	

OBSERVATIONS:

SET face hor.circle r.m. hor.tircle star level chron. time
CHRON. TIME
$7 \quad 19 \quad 52.070$
$\begin{array}{lll}7 & 19 & 52.070 \\ 7 & 20 & 37.490\end{array}$
$\begin{array}{lll}7 & 20 & 37.490 \\ 7 & 22 & 9.080\end{array}$ 30.450
36.940 36.940
44.580 49.380
29.350 $\begin{array}{rr}32 & 29.3 \\ 40 & .740\end{array}$

1	1	27	38	9.600	16	1	58.600	19.3	2	9	43.810
	1	27	38	5.400	16	2	9.200	19.2	2	10	34.730
	2	207	38	3.600	196	2	32.400	22.0	2	12	32.430
	2	207	38	4.700	196	2	40.600	22.0	2	13	15.060
2	1	87	38	.200	76	7	24.200	18.5	2	35	10.780
	1	87	38	.800	76	7	34.200	18.5	2	36	2.870
	2	267	38	.400	256	7	48.600	21.2	2	37	32.150
	2	267	38	1.000	256	7	57.400	21.4	2	38	16.730
3	1	147	38	2.300	136	9	15.100	17.9	2	44	33.980
	1	147	38	1.900	136	9	22.000	17.9	2	45	19.660
	2	327	38	.600	316	9	37.000	21.2	2	47	5.910
	2	327	38	.400	316	9	44.800	21.4	2	47	45.5400
4	1	207	37	56.600	196	10	43.300	17.2	2	53	18.5990
	1	207	37	56.000	196	10	54.000	17.1	2	54	14.570
	2	27	37	53.700	16	11	7.900	21.2	2	55	58.410
	2	27	37	53.500	16	11	14.600	21.2	2	56	40.610
5	1	267	37	55.700	256	12	14.600	17.0	3	2	6.890
	1	267	37	55.900	256	12	22.400	17.0	3	2	55.240
	2	87	37	55.100	76	12	33.400	21.2	3	4	27.820
	2	87	37	56.100	76	12	40.300	21.3	3	5	10.710
6	1	327	37	56.200	316	13	55.900	17.0	3	12	58.950
	1	327	37	55.900	316	14	1.600	17.0	3	13	40.580
	2	147	37	54.700	136	14	9.100	21.0	3	14	57.940
	2	147	37	53.900	136	14	21.300	21.3	3	16	17.700

```
AZIMUTH BY POLARIS.
```

```
STATION- * - . . . . . . ZIERIKZEE (PERM. MARK 12)
REFERENCE MARK .......: GOEDEREEDE (PILLAR 2)
INSTRUHENT . . . . . . . . . DKM3A NR. 134824
OATE & . . . . . . . . . 23-8 1973.
OB SER VER . . . . . STEUR.
```


OBSERVATIONS:

SET	F ACE	HOR.CIRCLE R.M.			HOR.CIRCLE STAR			LEVEL	CHRON. TIME		
1	1	42	37	56.600	31	14	23. 200	19.4	1	13	25.560
	1	42	37	55.500	31	14	33.400	19.4	1	14	30.210
	2	222	37	56.40 C	211	14	41.700	18.2	1	16	25.370
	2	222	37	55.400	211	14	50.200	18.6	1	17	20.150
2	1	102	37	55.900	91	15	50.400	19.0		24	18.080
	1	102	37	57.600	91	15	58.300	18.9	1	25	13.000
	2	282	37	53.900	271	16	6.000	18.2	1	27	8.930
	2	282	37	52.000	271	16	14.600	18.4		28	S. 630
3	1	162	37	52.1 CO	151	17	10.400	18.6	1	36	. 600
	1	162	37	51.300	151	17	15.600	18.6	1	36	57.820
	2	342	37	46.800	331	17	22.600	18.4	1	38	55.150
	2	342	37	46.700	331	17	27.400	18.4		39	36.110
4	1	222	37	47.400	211	18	9.900	18.0	1	46	18.660
	1	222	37	46.000	211	18	15.700	18.0	1	47	3.540
	2	42	37	44.900	31	18	15.800	17.9	1	48	34.660
	2	42	37	44.600	31	18	23.300	18.0	1	49	37.560
5	1	282	37	44.40 C	271	20	23.900	19.1	2	18	28.580
	1	282	37	44.800	271	20	27.400	19.0	2	19	19.780
	2	102	37	40.4 CC	91	20	26.400	18.3	2	20	5C. 550
	2	102	37	41.4 CO	91	20	27.800	18.4	2	21	39.440
6	1	342	37	40.400	331	20	44.600	18.2	2	28	4.810
	1	342	37	40.200	331	20	45.600	18.2	2	28	47.870
	2	162	37	38.9 CC	151	20	44.400	18.0	2	30	30.400
	2	162	37	39.000	151	20	43.800	18.1	2	31	12.760
7	1	57	37	39.500	46	20	25.600	18.0	3	16	6.590
	1	57	37	40.700	46	20	24.400	18.1	3	16	57.320
	2	237	37	38.100	226	20	11.600	18.0	3	18	45.570
	2	237	37	37.200	226	20	6.900	18.2	3	19	27.590
8	1	117	37	5.900	106	18	44.700	18.6	3	33	49.150
	1	117	37	6.400	106.	18	41.900	18.5	3	34	31.700
	2	297	37	4.7 CC	286	18	28.200	19.0	3	36	19.810
	2	297	37	4.500	286	18	26.100	19.1	3	37	2.420
9	1	177	37	. 800	166	17	30.300	18.4	3	47	47.130
	1	177	37	1.600	166	17	26.600	18.4	3	48	29.910
	2	357	36	56.800	346	17	10.000	19.2	3	50	24.480
	2	357	36	56.300	346	17	5.400	19.3	3	51	6.960

STATION. Z ZIERIKZEE (PERM. MARK 12)
REFERENCE MARK ••••••: GOEDEREEDE (PILLAR 2)
INSTRUMENT DKM3A NR. 134824

OBSERVER : STEUR.

OBSERVATIONS:

SET.		HOR.CIRCLE R.M.			HOR.CIRCLE STAR			LEVEL	CHRON.		TIME
1	1	192	37	13.400	181	4	16.200	19.6	0	43	50.279
	1	192	37	12.500	181	4	25.400	19.5	0	44	36.449
	2	12	37	10.200	1	5	13.500	20.2	0	48	45.697
	2	12	37	9.600	1	5	30.200	20.2	0	50	7.915
2	1	207	37	1.600	196	7	22.200	19.2	0	59	57.050
	1	207	37	2.600	196	7	32.300	19.3	1	0	45.010
	2	27	37	1.800	16	7	42.500	20.2	1	2	6.490
	2	27	37	. 700	16	7	55.900	20.4	1	3	13.900
3	1	222	37	5.100	211	9	18.400	18.6	1	9	52.860
	1	222	37	5.200	211	9	25.900	18.6	1	10	41.480
	2	42	37	4.300	31	9	35.400	20.0	1	12	8.810
	2	42	37	2.900	31	9	44.400	20.0	1	13	2.190

Appendix IV

SYSTEMATIC ERRORS IN THE HORIZONTAL CIRCLE DIVISION OF THE THEODOLITE DKM 3A No. 134824

Appendix V Covariance matrix of the coordinates

			41	42	+3	+4	+5	+6	+7	+8	+9	$+10$	+11	+12
	\mathbf{Y}	+1	+. 2036	+. 0183	+. 2558	+.0149	-. 0493	-. 1096	-. 0671	-. 1114	$-.1394$	+.0036	-. 1396	-. 0215
LEDUWARDEN														
	X	42	+.0183	+. 1697	+.0259	+-2140	+. 0703	-. 0707	+. 0659	-. 0862	-. 0569	-. 1074	-. 0336	-. 1188
AMELAND	Y	+3	+. 2558	+.0259	+.3422	+.0225	-. 0612	-. 1345	-. 0827	-. 1366	-. 1709	-.0009	-. 1697	-. 0308
	X	44	4.0149	+.2140	+.0225	+. 2868	+. 0850	- 0873	+. 0792	-. 105	-. 0638	-. 129	-. 0365	-. 1415
	Y	+5	-. 0493	+.0703	-. 0612	+.0850	+. 1857	+.0153	+. 1989	-. 0199	-. 0213	-. 1588	+.0173	-. 1763
GOEDEREEDE														
	x	+6	-. 1096	-. 0707	-. 1345	-. 0873	+. 0153	+. 2575	+. 0638	+. 2786	+. 2368	-. 0144	+. 2485	+. 0351
CIERTKZEE	\boldsymbol{Y}	$+7$	-. 0671	+.0659	-. 0827	+. 0792	+.1989	+. 0638	+. 2382	+.0339	+.0079	-. 1843	+.0542	-. 1981
	x	+8	-. 1114	-. 0862	-. 1366	-. 1057	-. 0199	+. 2786	+. 0339	+.3171	+.2702	+.0059	+. 2779	+. 0647
UBACHSBERG	Y	+9	-. 1394	-. 0569	-. 1709	-. 0638	-. 0213	+.2368	+.0079	$+.2702$	+.4978	+.0307	+.4903	+. 1733
		+10	+.0036	-. 1074	-. 0009	-. 1290	-. 1588	. 0.0144	$-.1843$	+.0059	+.0307	+.3316	-. 0700	+.3267
TOMGEREM	Y	+11	-. 1396	-. 0336	-. 1697	-. 0365	+. 0173	+.2485	+. 0542	+. 2779	+.4903	-. 0700	+.5403	+. 0791
	X	+12	-. 0215	-. 1188	-. 0308	-. 1415	-. 1763	+. 0351	-. 1981	$+.0647$	+.1733	+.3267	+.0791	+.4212

