THE ASTROMETRIC PROGEDURE OF SATELLITE PLATE REDUCTION AS APPLIED AT THE DELFT GEODETIC INSTITUTE

A description with some results for WEST, NGSP and ISAGEX
by
L. AARDOOM, D. L. F. VAN LOON and T. J. POELSTRA

1975
RIJKSCOMMISSIE VOOR GEODESIE, KANAALWEG 4, DELFT

CONTENTS

Summary 4
1 Introduction 5
2 Some technical details 5
3 Time reduction 7
4 Position reduction 8
5 Conversion to fixed-Earth reference 11
6 Quality assessment by means of curve-fitting 15
7 Results 17
References 20
Table I Observations from Wippolder-site 21
Table II Observations from Ypenburg-site 25

In 1966, following some years of preparation, the Delft Working Group for Satellite Geodesy started photographic observations of satellites. Since then the camera station of the Geodetic Institute of Delft University of Technology has continued participating in internationally coordinated geodetic satellite observation programmes. Contributions were made to the Western European Satellite Triangulation Programme (WEST), the National Geodetic Satellites Programme (NGSP), the International Satellite Geodesy Experiment (ISAGEX), and a Short Arc Observation Programme. Both optically passive and optically active satellites were observed. In 1969 the station was relocated, but still it remained in the vicinity of Delft until definitive re-establishment followed in 1973 at a more suitable site near Apeldoorn [1].

A previous publication [2] dealt in particular with the equipment in use for photographic observation of station-to-satellite directions. The present publication concentrates on the formulas applied for the reduction of observations made with the Delft TA-120 camera in three of the four mentioned programmes. The curve fitting procedure to assess the quality of the observations is also described and finally results of observations and computations are given.

THE ASTROMETRIC PROCEDURE OF SATELLITE PLATE REDUCTION AS APPLIED AT THE DELFT GEODETIC INSTITUTE

1 Introduction

Since 1st August, 1966, the Working Group for Satellite Geodesy has participated in a number of international observation programmes. In this publication special attention will be given to the system of reduction formulas by means of which the initial information of the photographs has been transformed into relevant geodetic data. The photographs referred to are those taken with the equatorially mounted TA- 120 concentric-mirror type camera (Bouwers-Maksutov).

All observations made in the WEST-programme, NGSP and ISAGEX are treated with this same system of reduction formulas, to be discussed here. Observations made in connection with the current European Short Arc Programme are reduced by means of a modified version of the procedure to be described. The authors intend to indicate these modifications in a later publication.

The observations have been made from two different observing-sites:

- DELFT, WIPPOLDER (Fig. 1) until 1st December, 1969, and
- DELFT, YPENBURG (Fig. 2) from 1st December 1969 until 1st December, 1973.

For the correct location data, see [3].

The present publication must be understood as an account of work accomplished during the period 1966-1971. Photographic observations of satellites for geodesy are being continued from a recently established observatory near Apeldoorn [1], partly with new equipment [2]. The material presented can have only marginal scientific interest, because the photographic technique of satellite observations for high precision geodesy has largely lost its importance. Moreover the computing procedures outlined are to a great extent standard.

2 Some technical details

An astrometric (short-Turner) method is applied to reduce stellar oriented photographic satellite plates to fixed-earth station-to-satellite directions. The plates considered are those taken with the TA-120 camera in use by the Delft Geodetic Institute.
The relevant optical features of the TA- 120 camera are:

optics:	Bouwers-Maksutov concentric mirror
focal length:	120 cm
effective aperture:	21 cm
field:	$5^{\circ} \times 5^{\circ}$ spherical.

Fig. 1. The Bouwers-Maksutov camera in the original mount at the Wippolder-site.

Fig. 2. The Bouwers-Maksutov- and the K-50 camera in the Rademakers Minimount at the Ypenburg-site.

The camera operates on 5 inches wide roll-film (currently Kodak 2475 Estar Base), each frame before exposure being pressed to assume a spherical shape with about 240 cm radius of curvature.

The camera is mounted equatorially and driven at the sidereal rate.
With optically passive satellites, timing of satellite images is achieved by means of a focal plane chopper of special design. The essential point here is that during the exposure of the satellite trail two narrow strips of light weight material (about 2 cm wide), mutually seperated by about 0.5 cm between the strips, periodically chop the light beam from the satellite just before it could reach the focal plane. This produces each time a satellite image in the center of a trail interruption. Time control of the chopper is obtained by recording photo-electronically the instants that the twin-strips assume four selected and equally spaced calibration positions, known geometrically with respect to the camera's fiducial marks. Finally numerical interpolation yields for each satellite image the time instant at which the chopper occupied the position in which it produced that image.

Each successful film frame is copied onto a glass plate, which is subsequently measured on a Mann 422F XY-comparator. A plate is measured in two positions, mutually rotated over about 180°. For each satellite image six reference stars are selected, evenly distributed with respect to the satellite image and as close to it as is practical. Throughout the measurements and the subsequent calculations each satellite image with its reference stars is treated individually. However it proved inevitable to assign identical reference stars to adjacent satellite images. The sequence of measurement is as follows: satellite image-reference starsreference stars in reversed order-satellite image. This cycle is repeated once, before the operator proceeds to the next satellite image. When all satellite images have been treated in this way the entire procedure is performed with the plate rotated through about 180°.

Reference star positions are taken from a magnetic tape version of the SAO star catalog by means of a computer search programme.

The computational part of the plate reduction is performed in three computer programmes briefly indicated by:

1. "Time reduction"
2. "Position reduction"
3. "Conversion to fixed-Earth reference".

In the following three sections these programmes are described consecutively, giving details of the formula's used.

3 Time reduction

This programme reduces the chopper-time records to time instants related to the satellite positions recorded on the photographic plate. Corrections are applied for receiver delay, propagation time of the 75 kHz HBG time signal from Neuchâtel to Delft and for the time difference between $U T C$ and the HBG emission.

Suppose the chopper traverses the rectangular coordinate system defined by the fiducial marks in x-direction and specify the calibration positions by $x^{1}, x^{2}, x^{3}, x^{4}$ respectively.

Denote the instants recorded for these positions and for satellite image sub. i (approximate coordinates x_{i}, y_{i}) by respectively:

$$
t_{0}+\Delta t_{i}^{1}, t_{0}+\Delta t_{i}^{2}, t_{0}+\Delta t_{i}^{3}, t_{0}+\Delta t_{i}^{4}
$$

Then, disregarding receiver delay and emission and propagation corrections, a provisional time instant \boldsymbol{Z}_{i} for the recording of image sub. i is obtained from:

$$
\begin{equation*}
\tilde{t}_{i}=t_{0}+\Delta t_{i} \tag{3.1}
\end{equation*}
$$

in which:

$$
\begin{equation*}
\Delta t_{i}=\left(\left(x_{i}\right)^{2}, x_{i}, 1\right) \cdot \underline{a} \tag{3.2}
\end{equation*}
$$

with:

$$
\begin{equation*}
\underline{a}=\left(M^{*} \cdot M\right)^{-1} \cdot M^{*} \cdot \underline{t} \tag{3.3}
\end{equation*}
$$

if:

$$
M=\left(\begin{array}{lll}
\left(x^{1}\right)^{2} & x^{1} & 1 \tag{3.4}\\
\left(x^{2}\right)^{2} & x^{2} & 1 \\
\left(x^{3}\right)^{2} & x^{3} & 1 \\
\left(x^{4}\right)^{2} & x^{4} & 1
\end{array}\right) \quad \text { and } \quad t=\left(\begin{array}{c}
\Delta t_{i}^{2} \\
\Delta t_{i}^{2} \\
\Delta t_{i}^{3} \\
\Delta t_{i}^{4}
\end{array}\right)
$$

Until 1st May 1972 a local time standard was by means of a variable delay brought in temporary synchronism with the received HBG time signals, just before a satellite observation.

Hence until that date, in order to relate the satellite image recording instants to $U T C$, $\tilde{\boldsymbol{t}}_{i}$ had to be corrected as follows:

$$
\begin{equation*}
t_{i}=\tilde{t}_{i}+\Delta_{d}+\Delta_{p}+E \tag{3.5}
\end{equation*}
$$

in which:
$\Delta_{d}=$ receiver delay $=1.5 \mathrm{~ms}$
$\Delta_{p}=$ propagation correction $=2.2 \mathrm{~ms}$
$E=$ "UTC-signal" as published in circular D by BIH.
Since 1st May 1972 a rubidium time and frequency standard (HP 5065 A) is used to keep $U T C$ between periodic flying clock visits. This technique meets the needs of satellite photography to an extent that corrections from \tilde{Z}_{i} to t_{i} could be omitted since that date.

4 Position reduction

This programme reduces plate measurements of satellite and star images to provisional topocentric geometric satellite directions referred to the astrometric system adopted for the SAO catalog (equinox 1950.0, system FK4). The directions are provisional in that no corrections will be applied for annual aberration, diurnal aberration, light travel time, parallactic refraction and satellite phase.

Denote plate measurement positions by I and II respectively.
Denote arithmetric means over all four satellite and star image measurements expressed in mm and after division by the focal length $(1200 \mathrm{~mm})$ as follows:
satellite image sub. i :

$$
\bar{X}_{i}^{\mathrm{I}}, \bar{Y}_{i}^{\mathrm{I}} ; \quad \bar{X}_{i}^{\mathrm{II}}, \bar{Y}_{i}^{\mathrm{II}}
$$

[^0]image star sub. k as related to satellite image sub. i :
$$
\bar{x}_{i, k}^{\mathrm{I}}, \bar{y}_{i, k}^{\mathrm{I}} ; \quad \bar{x}_{i, k}^{\mathrm{II}}, \bar{y}_{i, k}^{\mathrm{II}}
$$

If $M J D$ is the Modified Julian Date of observation (integer number), then stellar positions updated for proper motion are:

$$
\left.\begin{array}{r}
\alpha_{k}=\alpha_{1950, k}+\tau \mu_{k} \tag{4.1}\\
\delta_{k}=\delta_{1950, k}+\tau \mu_{k}^{\prime}
\end{array}\right\}
$$

where (omitting subscript k) $\alpha_{1950}, \delta_{1950}$ and μ, μ^{\prime} are taken from the SAO catalog, and:

$$
\begin{equation*}
\tau=\frac{M J D-33282}{365.24} \tag{4.2}
\end{equation*}
$$

Adopt approximate right ascension A_{i} and approximate declination D_{i} for the direction associated with satellite image sub. i.

Then solve standard coordinates $\xi_{i, k}, \eta_{i, k}$ from:

$$
\left(\begin{array}{l}
\cos \eta_{i, k} \cos \xi_{i, k} \tag{4.3}\\
\cos \eta_{i, k} \sin \xi_{i, k} \\
\sin \eta_{i, k}
\end{array}\right)=T_{i} \cdot\left(\begin{array}{l}
\cos \delta_{k} \cos \alpha_{k} \\
\cos \delta_{k} \sin \alpha_{k} \\
\sin \delta_{k}
\end{array}\right)
$$

with:

$$
T_{i}=\left(\begin{array}{rrc}
\cos D_{i} \cos A_{i} & \cos D_{i} \sin A_{i} & \sin D_{i} \tag{4.4}\\
-\sin A_{i} & \cos A_{i} & 0 \\
-\sin D_{i} \cos A_{i} & -\sin D_{i} \sin A_{i} & \cos D_{i}
\end{array}\right)
$$

Now, for both plate measurement positions, form:

$$
\underline{l}_{i}=\left(\begin{array}{cc}
\vdots & \vdots \tag{4.5}\\
\xi_{i, k}-\bar{x}_{i, k} \\
\vdots & \vdots \\
\eta_{i, k}- & \bar{y}_{i, k} \\
\vdots & \vdots
\end{array}\right)
$$

and:

$$
M_{i}=\left(\begin{array}{ccc:ccc}
\vdots & \vdots & \vdots & & & \tag{4.6}\\
\bar{x}_{i, k} & \bar{y}_{i, k} & 1 & & 0 & \\
\vdots & \vdots & \vdots & & & \\
\hdashline & & & \vdots & \vdots & \vdots \\
& 0 & & & \bar{x}_{i, k} & \bar{y}_{i, k} \\
& & & \vdots & \vdots & \vdots
\end{array}\right)
$$

Then, assuming a Gaussian (normal) probability distribution for the components of \underline{l}_{i}, with correlation freedom and constant variance, the most probable \underline{a}_{i} of linear plate con-
stants is obtained independently for both plate measurement positions:

$$
\begin{equation*}
\underline{a}_{i}=V\left\{\underline{a}_{i}\right\} \cdot M_{i}^{*} \cdot \underline{l}_{i} \tag{4.7}
\end{equation*}
$$

with:

$$
\begin{equation*}
V\left\{\underline{a}_{i}\right\}=\left(M_{i}^{*} \cdot M_{i}\right)^{-1} \tag{4.8}
\end{equation*}
$$

The standard coordinates for the station-to-satellite direction become:

$$
\begin{equation*}
\binom{\xi_{i}}{\eta_{i}}=B_{i} \cdot \underline{a}_{i}+\binom{\bar{X}_{i}}{\bar{Y}_{i}} \tag{4.9}
\end{equation*}
$$

for both plate measurement positions independently, if:

$$
B_{i}=\left(\begin{array}{llllll}
\bar{X}_{i} & \bar{Y}_{i} & 1 & 0 & 0 & 0 \tag{4.10}\\
0 & 0 & 0 & \bar{X}_{i} & \bar{Y}_{i} & 1
\end{array}\right)
$$

Unit weight variance in (seconds of arc) ${ }^{2}$ is estimated from:

$$
\begin{equation*}
\hat{\sigma}_{i}^{2}=\frac{\underline{v}_{i}^{*} \cdot \underline{v}_{i}}{2 s_{i}-6} \cdot(206265)^{2} \tag{4.11}
\end{equation*}
$$

where s_{i} is the number of reference stars used (usually six) and the correction vector \underline{v}_{i} is obtained from:

$$
\begin{equation*}
\underline{v}_{i}=\underline{l}_{i}-M_{i} \cdot \underline{a}_{i} \tag{4.12}
\end{equation*}
$$

Standard coordinates from both plate measurement positions are combined to mean values:

$$
\begin{equation*}
\xi_{i}=\frac{\xi_{i}^{\mathrm{I}}+\xi_{i}^{\mathrm{I}}}{2} ; \quad \eta_{i}=\frac{\eta_{i}^{\mathrm{I}}+\eta_{i}^{\mathrm{II}}}{2} \tag{4.13}
\end{equation*}
$$

These are transformed into right ascension and declination by solving α_{i}, δ_{i} from:

$$
\left(\begin{array}{l}
\cos \delta_{i} \cos \alpha_{i} \tag{4.14}\\
\cos \delta_{i} \sin \alpha_{i} \\
\sin \delta_{i}
\end{array}\right)=T_{i}^{*} \cdot\left(\begin{array}{l}
\cos \eta_{i} \cos \xi_{i} \\
\cos \eta_{i} \sin \xi_{i} \\
\sin \eta_{i}
\end{array}\right)
$$

Now suppose the satellite trail makes an angle ψ with the positive comparator Y-axis and moreover suppose that along trail comparator measurements have a standard deviation g times that of across trail measurements, then the variance-covariance matrix of the mean standard coordinates will be:

$$
V\left\{\begin{array}{l}
\xi_{i} \tag{4.15}\\
\eta_{i}
\end{array}\right\}=\frac{1}{4}\left(\hat{\sigma}_{i}^{\mathrm{I}}\right)^{2} B_{i}^{\mathrm{I}} \cdot V\left\{\underline{a}_{i}^{\mathrm{I}}\right\} \cdot\left(B_{i}^{\mathrm{I}}\right)^{*}+\frac{1}{4}\left(\hat{\sigma}_{i}^{\mathrm{II}}\right)^{2} B_{i}^{\mathrm{II}} \cdot V\left\{\underline{a}_{i}^{\mathrm{II}}\right\} \cdot\left(B_{i}^{\mathrm{II}}\right)^{*}+\frac{1}{2} \sigma^{2} R \cdot\left(\begin{array}{cc}
g^{2} & 0 \\
0 & 1
\end{array}\right) \cdot R^{*}
$$

if:

$$
R=\left(\begin{array}{rr}
\sin \psi & -\cos \psi \tag{4.16}\\
\cos \psi & \sin \psi
\end{array}\right)
$$

and σ is the standard deviation of across trail comparator measurements, expressed in seconds of arc.

Defining

$$
E=\left(\begin{array}{cc}
\sec D_{i} & 0 \tag{4.17}\\
0 & 1
\end{array}\right)
$$

the variance-covariance matrix of α_{i}, δ_{i} becomes:

$$
V\left\{\begin{array}{l}
\alpha_{i} \tag{4.18}\\
\delta_{i}
\end{array}\right\}=\left(\begin{array}{cc}
\sigma_{x_{i}}^{2} & \sigma_{a_{i} \delta_{i}} \\
\sigma_{\delta_{i} \alpha_{i}} & \sigma_{\delta_{i}}^{2}
\end{array}\right)=E \cdot V\left\{\begin{array}{c}
\xi_{i} \\
\eta_{i}
\end{array}\right\} \cdot E
$$

Because of the simplifying assumptions as regards the statistical properties of the components of \underline{l}_{i}, the off-diagonal elements of both

$$
V\left\{\begin{array}{l}
\xi_{i} \\
\eta_{i}
\end{array}\right\} \text { and } V\left\{\begin{array}{l}
\alpha_{i} \\
\delta_{i}
\end{array}\right\}
$$

should be zero.
The essential output of this programme consists of

$$
\alpha_{i}, \delta_{i} \text { and } \sigma_{\alpha_{i}}, \sigma_{\delta_{i}}
$$

α_{i}, δ_{i} should be interpreted as is done in the beginning of this section.

5 Conversion to fixed-Earth reference

This programme transforms the station-to-satellite directions as derived in the previous section to a fixed-Earth reference frame and also applies corrections for annual aberration, diurnal aberration, light travel time, parallactic refraction and satellite phase.

Time instants t_{i} as obtained from programme "time reduction" are converted into MJD, taking the observation date into account. This yields (MJD/station) ${ }_{i}$.

The correction for light travel time is applied to form (MJD/satellite) $)_{i}$:

$$
\begin{equation*}
(M J D / \text { satellite })_{i}=(M J D / \text { station })_{i}-\frac{r_{i}}{2590 \times 10^{7}} \tag{5.1}
\end{equation*}
$$

where r_{i} stands for the estimated station-to-satellite range at t_{i} in km .
($M J D /$ satellite) $)_{i}$ will be abbreviated to $M J D$. For these $M J D$ the Besselian Day Numbers C en D are linearly interpolated from the Astronomical Ephemeris [4].

Annual aberration is corrected for by adding corrections $\Delta_{1} \alpha, \Delta_{1} \delta$ to the α, δ - output of programme "position reduction" (section 4):

$$
\left.\begin{array}{l}
\alpha^{\prime}=\alpha+\Delta_{1} \alpha \tag{5.2}\\
\delta^{\prime}=\delta+\Delta_{1} \delta
\end{array}\right\}
$$

in which:

$$
\left.\begin{array}{l}
\Delta_{1} \alpha=C c+D d \tag{5.3}\\
\Delta_{1} \delta=C c^{\prime}+D d^{\prime}
\end{array}\right\}
$$

with:

$$
\begin{aligned}
c & =\cos \alpha \sec \delta \\
d & =\sin \alpha \sec \delta \\
c^{\prime} & =\tan \varepsilon \cos \delta-\sin \alpha \sin \delta \\
d^{\prime} & =\cos \alpha \sin \delta
\end{aligned}
$$

and $\varepsilon=23^{\circ} .4425$ is the obliquity of the ecliptic.
In unit-vector form:

$$
\underline{z}=\left(\begin{array}{l}
\cos \delta^{\prime} \cos \alpha^{\prime} \tag{5.4}\\
\cos \delta^{\prime} \sin \alpha^{\prime} \\
\sin \delta^{\prime}
\end{array}\right)
$$

$M J D$, which was calculated in terms of $U T C$ is reduced to $M J D 1$ in terms of $U T 1$, by application of differences $U T 1-U T C$ obtained from a linear interpolation in the smoothed values as listed in circular D issued by the BIH.

Next define:

$$
\begin{equation*}
T=M J D 1-33282 \tag{5.5}
\end{equation*}
$$

Precession is taken into account by matrix:

$$
P=\left(\begin{array}{ccc}
-\sin \varkappa \sin \omega+\cos \varkappa \cos \omega \cos v & -\cos \varkappa \sin \omega-\sin x \cos \omega \cos v & -\cos \omega \sin v \tag{5.6}\\
+\sin x \cos \omega+\cos x \sin \omega \cos v & +\cos \varkappa \cos \omega-\sin x \sin \omega \cos v & -\sin \omega \sin v \\
\cos \varkappa \sin v & -\sin x \sin v & +\cos v
\end{array}\right)
$$

in which:

$$
\begin{aligned}
& \kappa=0^{\prime} .063107 T \\
& \omega=0^{\prime \prime} .063107 T \\
& v=0^{\prime \prime} .054875 T
\end{aligned}
$$

Nutation is accounted for by:

$$
N=\left(\begin{array}{ccc}
1 & -\Delta \mu & -\Delta v \tag{5.7}\\
\Delta \mu & 1 & -\Delta \varepsilon \\
\Delta v & \Delta \varepsilon & 1
\end{array}\right)
$$

with:

$$
\begin{array}{rlrrr}
\Delta \mu= & -76.7 \times 10^{-6} \sin \Psi_{1} & \Delta v= & -33.3 \times 10^{-6} \sin \Psi_{1} & \Delta \varepsilon= \\
& +0.9 \times 10^{-6} \sin 2 \Psi_{1} & & +0.4 \times 10^{-6} \sin 2 \Psi_{1} & -0.7 \times 10^{-6} \cos \Psi_{1} \\
& -5.7 \times 10^{-6} \sin 2 \Psi_{2} & & -2.5 \times 10^{-6} \sin 2 \Psi_{2} & +2.7 \times 10^{-6} \cos 2 \Psi_{1} \\
& -0.9 \times 10^{-6} \sin 2 \Psi_{3} & & -0.4 \times 10^{-6} \sin 2 \Psi_{3} & \\
& +0.4 \times 10^{-6} \cos 2 \Psi_{3}
\end{array}
$$

where:

$$
\begin{aligned}
& \Psi_{1}=12^{\circ} .1128-0^{\circ} .052954 T \\
& \Psi_{2}=280^{\circ} .0812+0^{\circ} .985647 T \\
& \Psi_{3}=64^{\circ} .3824+13^{\circ} .176396 T
\end{aligned}
$$

Earth-rotation is expressed by

$$
R=\left(\begin{array}{cll}
\cos \theta & \sin \theta & 0 \tag{5.8}\\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

with:

$$
\begin{aligned}
\theta= & 100^{\circ} .075542+ \\
& +360^{\circ} .985647348 T \\
& +0^{\circ} .2900 \times 10^{-12} T^{2} \\
& -4^{\circ} .392 \times 10^{-3} \sin \Psi_{1} \\
& +0^{\circ} .053 \times 10^{-3} \sin 2 \Psi_{1} \\
& -0^{\circ} .325 \times 10^{-3} \sin 2 \Psi_{2} \\
& -0^{\circ} .050 \times 10^{-3} \sin 2 \Psi_{3}
\end{aligned}
$$

Polar motion components x, y are taken from the smoothed values listed in circular D issued by BIH by means of a linear interpolation.

Polar motion matrix:

$$
S=\left(\begin{array}{rrr}
1 & 0 & +x \tag{5.9}\\
0 & 1 & -y \\
-x & +y & 1
\end{array}\right)
$$

The resultant rotation due to precession, nutation, earth rotation and polar motion is applied to unit vector \underline{z} to give fixed-Earth direction \underline{x} :

$$
\begin{equation*}
\underline{x}=S \cdot R \cdot N \cdot P \cdot \underline{z} \tag{5.10}
\end{equation*}
$$

The procedure contained in formulas (5.5) through (5.10) follows [5].
Solve $\bar{\alpha}, \bar{\delta}$ from:

$$
\left(\begin{array}{l}
\cos \bar{\delta} \cos \bar{\alpha} \tag{5.11}\\
\cos \bar{\delta} \sin \bar{\alpha} \\
\sin \bar{\delta}
\end{array}\right)=\underline{x}
$$

where $\bar{\alpha}$ and $\bar{\delta}$ are the direction components of the directions to the satellite in the fixedEarth (Greenwich) system.

If λ stands for the east-longitude of the station, then a sufficient approximation to the hour angle of the satellite is:

$$
\begin{equation*}
h=\lambda-\bar{\alpha} \tag{5.12}
\end{equation*}
$$

Corrections for diurnal aberration are [4]:

$$
\left.\begin{array}{l}
\Delta_{2} \alpha=0^{\prime \prime} .32 \cos \varphi \cos h \sec \bar{\delta} \\
\Delta_{2} \delta=0^{\prime \prime} .32 \cos \varphi \sin h \sin \bar{\delta} \tag{5.13}
\end{array}\right\}
$$

where φ is the latitude of the station.
The correction for parallactic refraction is calculated as follows (see [6]):

$$
\begin{align*}
& \cos z=\sin \varphi \sin \bar{\delta}+\cos \varphi \cos \bar{\delta} \cos h \\
& \sin z=\sqrt{1-\cos ^{2} z} \\
& \sin q=\frac{\sin h \cos \varphi}{\sin z} \\
& \cos q=\frac{\sin \varphi-\sin \bar{\delta} \cos z}{\cos \bar{\delta} \sin z} \\
& \left.\begin{array}{l}
\Delta R=-435^{\prime \prime} \cdot \frac{\sin z}{\cos ^{2} z} \cdot \frac{1}{r} \\
\left.\begin{array}{l}
\Delta_{3} \alpha= \\
\Delta_{3} \delta
\end{array}\right)=-\Delta R \cdot \sec \bar{\delta} \sin q \\
\cos q
\end{array}\right\} \ldots . \tag{5.14}
\end{align*}
$$

Incidentally, z stands for the zenith-angle of the station-to-satellite direction.
Satellite phase is corrected for as follows:

$$
\left.\begin{array}{l}
\Delta_{4} \alpha=146^{\prime \prime} \frac{\sin \left(\bar{\alpha}+h_{\circ}\right) \cos \delta_{O}}{w \cos \bar{\delta}} \cdot \frac{\varrho}{r} \tag{5.16}\\
\Delta_{4} \delta=\frac{146^{\prime \prime} \sin \delta \cos \delta_{\bigcirc} \cos \left(\bar{\alpha}+h_{\circ}\right)-\cos \delta \sin \delta_{\circ}}{w} \cdot \frac{\varrho}{r}
\end{array}\right\}
$$

with

$$
w=\sqrt{1-\cos \delta \cos \delta_{\circ} \cos \left(\bar{\alpha}+h_{\circ}\right)-\sin \delta \sin \delta_{\circ}}
$$

Here ϱ is the radius of the satellite in metres and h_{\circ} and δ_{\circ} are the Greenwich $(\lambda=0)$ hour angle and the declination of the sun respectively.
h_{O} is obtained from

$$
\begin{equation*}
h_{\circ}=\theta-\alpha_{O} \tag{5.17}
\end{equation*}
$$

and α_{\circ} and δ_{\circ} as solution of

$$
\left(\begin{array}{l}
\cos \delta_{O} \cos \alpha_{O} \tag{5.18}\\
\cos \delta_{O} \sin \alpha_{O} \\
\sin \delta_{O}
\end{array}\right)=\left(\begin{array}{l}
\cos \lambda_{0} \\
\cos \varepsilon \sin \lambda_{O} \\
\sin \varepsilon \sin \lambda_{O}
\end{array}\right)
$$

where $\varepsilon=23^{\circ} .4425$ is the obliquity of the ecliptic and λ_{O} is the sun's longitude.
Finally:

$$
\left.\begin{array}{l}
{[\alpha]=\bar{\alpha}+\Delta_{2} \alpha+\Delta_{3} \alpha+\Delta_{4} \alpha} \\
{[\delta]=\bar{\delta}+\Delta_{2} \delta+\Delta_{3} \delta+\Delta_{4} \delta} \tag{5.19}
\end{array}\right\}
$$

is the main result of programme "Conversion to fixed-Earth reference".
In unit-vector form:

$$
\underline{l}=\left(\begin{array}{l}
\cos [\delta] \cos [\alpha] \tag{5.20}\\
\cos [\delta] \sin [\alpha] \\
\sin [\delta]
\end{array}\right)
$$

The variance-covariance matrix of l is estimated as:

$$
V\{\underline{l}\}=G \cdot V\left\{\begin{array}{l}
\alpha \tag{5.21}\\
\delta
\end{array}\right\} \cdot G^{*}
$$

in which:

$$
G=\left(\begin{array}{cc}
-\cos [\delta] \sin [\alpha] & -\sin [\delta] \cos [\alpha] \tag{5.22}\\
+\cos [\delta] \cos [\alpha] & -\sin [\delta] \sin [\alpha] \\
0 & \cos [\delta]
\end{array}\right)
$$

and where

$$
V\left\{\begin{array}{l}
\alpha \\
\delta
\end{array}\right\}
$$

is taken from the output of programme "position reduction" (see section 4).

6 Quality assessment by means of curve-fitting

The combined "observations" t_{i} from (3.5) and α_{i}, δ_{i} from (4.14) are being checked on their internal precision by means of a curve fitting procedure.

Define:

$$
\underline{v}_{i}=\left(\begin{array}{l}
\cos \delta_{i} \cos \alpha_{i} \tag{6.1}\\
\cos \delta_{i} \sin \alpha_{i} \\
\sin \delta_{i}
\end{array}\right) .
$$

The direction cosines from (6.1) are referenced to a right-handed rectangular Cartesian frame which is defined by the first and the last directions observed on one plate, as follows:

$$
\left.\begin{array}{l}
\underline{x} \equiv \underline{v}_{1} \\
\underline{z}=\frac{\underline{v}_{1} \times \underline{v}_{n}}{\left|\underline{v}_{1} \times \underline{v}_{n}\right|} \tag{6.3}\\
\underline{y}=\underline{z} \times \underline{x}
\end{array}\right\},
$$

Determine spherical coordinates along track and across track ξ_{i} and η_{i} from:

$$
\begin{gather*}
\left(\begin{array}{l}
\cos \eta_{i} \cos \xi_{i} \\
\cos \eta_{i} \sin \xi_{i} \\
\sin \eta_{i}
\end{array}\right)=v_{i}^{\prime} \tag{6.4}\\
0 \leqslant \xi_{i}<360^{\circ} \\
-90^{\circ} \leqslant \eta_{i} \leqslant+90^{\circ}
\end{gather*}
$$

Now, to ξ_{i}, η_{i} together with the t_{i} a curve fitting procedure is applied, as follows:

$$
\begin{equation*}
\tau_{i}=t_{i}-t_{1} \tag{6.5}
\end{equation*}
$$

Define:

$$
T_{k}=\left(\begin{array}{ccccc}
1 & \tau_{1} & \tau_{1}^{2} & \tau_{1}^{3} \ldots \tau_{1}^{k} \tag{6.6}\\
1 & \tau_{2} & \tau_{2}^{2} & \tau_{2}^{3} \ldots \tau_{2}^{k} \\
1 & \tau_{3} & \tau_{3}^{2} & \tau_{3}^{3} \ldots \tau_{3}^{k} \\
\vdots & & & \\
1 & \tau_{i} & \tau_{i}^{2} & \tau_{i}^{3} \ldots \tau_{i}^{k} \\
\vdots & & & \\
1 & \tau_{n} & \tau_{n}^{2} & \tau_{n}^{3} \ldots \tau_{n}^{k}
\end{array}\right)
$$

Then, assuming correlation freedom and unit weight within both observation vectors:

$$
\underline{\xi}=\left(\begin{array}{c}
\xi_{1} \tag{6.7}\\
\xi_{2} \\
\vdots \\
\zeta_{n}
\end{array}\right) ; \quad \eta=\left(\begin{array}{c}
\eta_{1} \\
\eta_{2} \\
\vdots \\
\eta_{n}
\end{array}\right)
$$

least squares solutions for the coefficient-vectors \underline{a} and \underline{b} are obtained from:

$$
\begin{align*}
& \underline{a}=Q_{k} \cdot T_{k}^{*} \cdot \xi \tag{6.8}\\
& \underline{b}=Q_{k} \cdot T_{k}^{*} \cdot \eta
\end{align*}
$$

in which:

$$
\begin{equation*}
Q_{k}=\left(T_{k}^{*} \cdot T_{k}\right)^{-1} \tag{6.9}
\end{equation*}
$$

The correction vectors are:

$$
\left.\begin{array}{l}
\varepsilon_{\xi}=T_{k} \cdot \underline{a}-\xi \tag{6.10}\\
\varepsilon_{\eta}=T_{k} \cdot \underline{b}-\eta
\end{array}\right\}
$$

Here it has been tacitly assumed that the t_{i} are non-stochastic quantities.
Finally

$$
\left.\begin{array}{l}
\hat{\sigma}_{\xi}^{2}=\frac{\dot{\varepsilon}_{\xi}^{*} \cdot \varepsilon_{\xi}}{n-k-1} \tag{6.11}\\
\hat{\sigma}_{\eta}^{2}=\frac{\dot{\varepsilon}_{\eta}^{*} \cdot \underline{\varepsilon}_{\eta}}{n-k-1}
\end{array}\right\} .
$$

where n stands for the number of reduced satellite images and k for the degree of polynomial applied.

The estimates $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}$ are used for judging the "quality" of the photographic observations on each individual plate.

Noticing the small camerafield $k=2$ was adopted invariably.

7 Results

All plates contributed to WEST, NGSP and ISAGEX have been listed in tables I (station WIPPOLDER) and II (station YPENBURG). It should be noted that listed observations of passive satellites Echo-1, Echo-2 and Pageos are essentially simultaneous with at least one other station. In particular do these tables give $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}$ for each individual plate, together with the number n of individual satellite images from which $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{n}$ have been calculated.

With the re-location by 1st December 1969 a new and conceptually better equatorial mount was put into use. Moreover an improved time-recording system was used in conjunction with the majority of observations made at YPENBURG.

Therefore it seems justified to make a break-down of the $\hat{\sigma}_{\xi^{-}}$and $\hat{\sigma}_{n^{\prime}}$-values according the observation site (WIPPOLDER or YPENBURG). Moreover it makes sense to distinguish observations of passive from those of flashing satellites. Thus eight empirical relative frequency distributions are obtained (figs. 3, 4, 5, 6, 7, 8, 9 and 10).
$\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}$ are taken as indicators of gross-errors either in the observations or in their reduction. Experience has suggested that observations with either $\hat{\sigma}_{\xi}$ and $\hat{\sigma}_{\eta}>1^{\prime \prime}$ should be suspected. Adopting this rather arbitrary criterion it is meaningful to consider the percentage of observations (plates) with $\hat{\sigma}_{\xi}$ and $/$ or $\hat{\sigma}_{\eta}<1^{\prime \prime}$. The following conclusions are then to be drawn.

The fraction of observations with $\hat{\sigma}_{\eta}<1^{\prime \prime}$ exceeds that with $\hat{\sigma}_{\xi}<1^{\prime \prime}$. This is a wellknown feature as far as passive satellites are concerned. It is less obvious for flashing satellites, where relative timing errors should not play a significant role.

For the YPENBURG-station the fraction of unsuspected observations ($\hat{\sigma}_{\xi}$ and/or $\hat{\sigma}_{\eta}<1^{\prime \prime}$) exceeds that for the WIPPOLDER-station. This was to be expected when considering the improvements introduced by the re-location.

References

[1] T. J. Poelstra - A new satellite observatory at Kootwijk. Netherlands Geodetic Commission, Delft, 1974.
[2] T. J. Poelstra and F. W. Zeeman - Delft University equipment for photographic satellite observations. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 5, No. 3, Delft, 1974.
[3] NASA directory of observing station locations, third ed., 1973.
[4] Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. London, 1961.
[5] G. Veis - Precise aspects of terrestrial and celestial reference frames. In: The use of artificial satellites for geodesy. (ed. G. Veis). North-Holland Publishing Co., Amsterdam, 1963, pp. 201-216.
[6] G. Veis - Geodetic uses of artificial satellites. Smithsonian Contributions to Astrophysics, Vol. 3, No. 9, 1960.

Table I. Wippolder

plate no.	observation		programme	satellitename	$\begin{aligned} & \hat{\sigma}_{\xi} \\ & \text { in" } \end{aligned}$	$\begin{aligned} & \hat{\sigma}_{\boldsymbol{\eta}} \\ & \text { in }^{\prime \prime} \end{aligned}$	n
	date	time					
24	660119	21h14m	NGSP	Geos-1	2.9	1.6	4
26	660425	2255	NGSP	Geos-1	0.6	0.6	6
49	660716	2346	NGSP	Geos-1	0.5	0.7	4
50	660716	2351	NGSP	Geos-1	0.4	0.9	6
51	660725	2215	NGSP	Geos-1	1.6	0.7	4
52	660725	2221	NGSP	Geos-1	1.1	1.1	7
53	660727	2228	NGSP	Geos-1	0.7	0.5	7
54	660728	0030	NGSP	Geos-1	0.9	0.6	6
57	660903	2059	NGSP	Geos-1	5.2	3.0	6
58	660903	2106	NGSP	Geos-1	1.5	2.2	7
59	660916	2107	WEST	Pageos	1.1	0.6	27
60	660916	2137	WEST	Echo-2	0.7	1.0	5
64	660918	2121	WEST	Pageos	1.6	1.4	35
65	660918	2204	WEST	Echo-2	0.7	0.5	10
67	660920	2043	WEST	Echo-2	1.1	0.6	15
68	660920	2144	WEST	Pageos	1.0	0.8	31
69	660920	2231	WEST	Echo-2	0.9	0.7	11
70	660922	2109	WEST	Echo-2	0.8	0.4	8
73	661010	1943	WEST	Echo-2	0.6	0.9	10
75	661011	1900	WEST	Echo-2	0.7	0.5	11
84	670211	2136	WEST	Pageos	1.2	0.8	14
89	670322	1944	WEST	Pageos	1.7	0.6	26
90	670330	2036	WEST	Pageos	0.9	1.4	22
92	670401	2047	WEST	Pageos	0.8	0.9	28
93	670401	2124	WEST	Echo-2	0.7	0.8	10
95	670413	2017	WEST	Echo-2	1.1	0.5	5
96	670413	2207	WEST	Echo-1	1.0	0.8	9
98	670415	2204	WEST	Echo-1	0.9	0.6	13
100	670423	2131	WEST	Echo-1	1.1	1.1	13
101	670424	2128	WEST	Echo-1	1.5	0.6	10
102	670425	2045	WEST	Echo-2	1.8	1.8	18
103	670425	2120	WEST	Echo-1	1.7	1.1	14
105	670612	2344	WEST	Echo-2	1.4	0.9	17
106	670613	2245	WEST	Echo-2	0.8	0.5	10
107	670616	0035	WEST	Echo-2	0.8	0.4	6
110	670706	2135	WEST	Echo-2	1.3	1.1	15
111	670707	2250	WEST	Echo-1	1.3	1.0	20
112	670709	2222	WEST	Echo-2	0.5	1.2	16
113	670710	2128	WEST	Echo-2	0.4	0.9	14
114	670712	2124	WEST	Echo-2	0.8	0.9	9
116	670820	2320	WEST	Pageos	0.6	0.9	17
117	670828	0030	WEST	Echo-1	1.7	1.0	13
118	670829	0212	WEST	Echo-1	1.4	0.7	10
119	670830	0008	WEST	Echo-1	1.3	0.8	15
120	670906	2049	WEST	Pageos	1.3	1.4	13
121	670909	0132	WEST	Echo-2	1.0	0.5	11
122	670910	1939	WEST	Echo-1	0.6	0.8	15
123	670910	2058	WEST	Pageos	0.6	0.5	13
124	670917	1955	WEST	Echo-1	1.0	0.5	8
129	670924	2125	WEST	Pageos	1.0	1.0	12
131	670927	0202	WEST	Echo-2	0.8	0.7	17
132	670927	1924	WEST	Echo-1	2.0	0.7	15
133	670927	2114	WEST	Echo-1	0.7	0.7	10
134	670928	2058	WEST	Echo-1	1.0	1.3	13

plate no.	observation		programme	satellitename	$\begin{aligned} & \hat{\boldsymbol{\sigma}}_{\xi} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \hat{\sigma}_{\eta} \\ & \text { in } \end{aligned}$	n
	date	time					
135	670929	00h05m	WEST	Echo-2	1.2	0.8	9
136	671001	2010	WEST	Echo-1	1.6	2.9	9
138	671013	1853	WEST	Pageos	1.1	1.0	14
144	671108	1834	WEST	Echo-2	1.5	0.7	12
147	671109	0326	WEST	Echo-1	1.2	0.7	15
153	671113	0209	WEST	Pageos	1.1	1.1	6
155	671117	1817	WEST	Echo-2	1.3	0.7	11
157	671118	0325	WEST	Echo-2	0.7	1.0	8
160	671120	1840	WEST	Echo-2	1.1	1.1	11
161	671121	0219	WEST	Pageos	0.9	1.6	5
165	671220	0004	WEST	Pageos	2.3	0.4	7
166	671220	1718	WEST	Echo-1	0.5	0.7	11
170	680208	1808	WEST	Pageos	0.7	0.7	6
172	680218	1721	WEST	Echo-1	0.8	0.9	8
173	680220	1932	NGSP	Geos-2	0.8	1.5	5
174	680225	1921	NGSP	Geos-2	0.9	0.3	4
175	680226	1937	NGSP	Geos-2	1.6	1.6	7
176	680226	1941	NGSP	Geos-2	1.5	0.4	4
177	680303	1945	NGSP	Geos-2	1.2	1.3	4
178	680304	2001	NGSP	Geos-2	1.9	1.5	6
179	680310	2006	NGSP	Geos-2	2.0	0.6	7
180	680310	2010	NGSP	Geos-2	0.8	0.2	4
182	680320	1942	NGSP	Geos-2	1.2	0.5	4
183	680321	2000	NGSP	Geos-2	1.6	0.5	4
184	680322	2016	NGSP	Geos-2	2.0	3.0	5
185	680322	2019	NGSP	Geos-2	0.9	0.7	4
186	680324	2056	NGSP	Geos-2	0.8	1.8	6
187	680326	1945	NGSP	Geos-2	0.2	0.5	4
188	680326	1949	NGSP	Geos-2	2.0	1.0	6
189	680327	0217	WEST	Echo-2	0.8	1.0	8
191	680327	2010	NGSP	Geos-2	1.4	0.9	7
192	680327	2005	NGSP	Geos-2	1.9	1.3	4
193	680328	0103	WEST	Echo-2	1.0	0.6	11
194	680328	0249	WEST	Echo-2	0.9	0.6	15
195	680328	2024	NGSP	Geos-2	1.8	0.5	4
196	680329	0135	WEST	Echo-2	0.8	0.9	11
197	680405	2106	NGSP	Geos-2	0.9	0.5	6
198	680406	2125	NGSP	Geos-2	0.2	2.0	5
199	680406	2128	NGSP	Geos-2	1.5	0.5	5
200	680407	2145	NGSP	Geos-2	1.0	1.5	6
201	680408	2011	NGSP	Geos-2	2.0	1.4	7
203	680408	2017	NGSP	Geos-2	1.4	0.5	6
204	680409	2034	NGSP	Geos-2	1.6	1.8	4
205	680409	2038	NGSP	Geos-2	1.7	0.4	7
206	680412	2131	NGSP	Geos-2	2.0	0.8	6
210	680413	2149	NGSP	Geos-2	0.7	2.5	6
211	680415	2039	NGSP	Geos-2	2.0	0.6	4
212	680415	2043	NGSP	Geos-2	2.2	1.1	7
213	680420	2131	WEST	Echo-1	1.3	1.3	7
214	680421	0009	WEST	Echo-2	0.7	1.3	10
215	680424	2139	NGSP	Geos-2	0.5	0.9	6
216	680424	2143	NGSP	Geos-2	0.8	0.3	5
217	680425	2202	NGSP	Geos-2	0.8	0.7	6
219	680427	0030	NGSP	Geos-2	1.6	0.9	6
221	680505	2129	NGSP	Geos-2	1.0	0.9	7

plate no.	observation		programme	satellitename	$\begin{aligned} & \hat{\sigma}_{\xi} \\ & \text { in }^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hat{\sigma}_{\eta} \\ & \text { in }^{\prime \prime} \end{aligned}$	n
	date	time					
222	680505	21h31m	NGSP	Geos-2	0.8	0.4	4
223	680505	2133	NGSP	Geos-2	0.8	0.5	5
225	680512	2153	NGSP	Geos-2	1.6	1.4	7
226	680512	2155	NGSP	Geos-2	2.0	1.8	5
227	680512	2159	NGSP	Geos-2	2.0	0.4	6
229	680519	2218	NGSP	Geos-2	0.6	0.5	7
230	680519	2222	NGSP	Geos-2	1.2	0.4	5
231	680520	2241	NGSP	Geos-2	2.3	0.4	5
232	680521	0014	WEST	Pageos	0.8	0.5	9
233	680525	0007	WEST	Pageos	0.6	1.0	7
234	680602	0011	WEST	Pageos	0.5	0.9	10
235	680605	0009	WEST	Pageos	0.8	0.8	12
236	680612	2356	WEST	Pageos	0.7	0.8	9
237	680615	0143	WEST	Echo-2	0.7	0.7	8
238	680622	2353	WEST	Pageos	1.0	0.5	4
241	680704	2345	WEST	Echo-2	0.3	0.2	5
242	680709	2150	WEST	Echo-2	1.0	0.5	6
243	680717	0026	NGSP	Geos-2	1.2	0.7	6
244	680723	2302	NGSP	Geos-2	0.6	0.4	7
245	680728	2249	NGSP	Geos-2	0.8	0.4	6
246	680809	2258	NGSP	Geos-2	1.0	0.5	6
247	680810	2318	NGSP	Geos-2	0.5	0.5	6
248	680822	2328	NGSP	Geos-2	1.0	1.0	5
249	681007	2329	NGSP	Geos-2	0.9	0.5	5
250	681014	2353	NGSP	Geos-2	0.5	0.9	6
252	681021	2316	WEST	Pageos	0.9	0.4	7
253	681022	0016	NGSP	Geos-2	1.9	1.9	6
254	681022	0206	NGSP	Geos-2	0.9	0.3	4
255	681105	1812	NGSP	Geos-2	1.0	0.6	6
257	681109	1740	NGSP	Geos-2	0.8	1.0	5
258	681110	0049	NGSP	Geos-2	1.2	0.9	6
259	681110	0240	NGSP	Geos-2	3.2	1.0	4
260	681113	0147	NGSP	Geos-2	0.7	0.6	4
261	681113	0338	NGSP	Geos-2	1.8	0.5	5
262	681113	1854	NGSP	Geos-2	1.0	0.4	6
263	681114	0018	NGSP	Geos-2	2.0	0.7	6
264	681114	0209	NGSP	Geos-2	2.0	1.0	7
265	681115	1744	NGSP	Geos-2	0.6	1.0	4
266	681121	1745	NGSP	Geos-2	1.8	1.2	6
267	681121	1749	NGSP	Geos-2	1.4	0.4	5
270	681122	0100	NGSP	Geos-2	1.1	0.7	6
271	681219	1924	NGSP	Geos-2	1.0	0.9	7
272	681219	1929	NGSP	Geos-2	0.7	1.0	7
273	681221	2005	NGSP	Geos-2	1.0	0.9	6
274	690103	0136	NGSP	Geos-2	0.9	1.0	7
275	690103	0328	NGSP	Geos-2	1.2	0.8	7
276	690107	0254	NGSP	Geos-2	1.3	0.6	7
277	690109	0333	NGSP	Geos-2	1.6	0.9	7
278	690114	1835	NGSP	Geos-2	0.7	0.9	6
279	690131	2021	NGSP	Geos-2	1.7	1.2	5
280	690223	2020	NGSP	Geos-2	1.4	0.8	7
281	690223	2025	NGSP	Geos-2	1.4	0.6	5
282	690304	1933	NGSP	Geos-2	1.9	1.2	7
283	690304	2125	NGSP	Geos-2	1.9	1.4	6
284	690306	2013	NGSP	Geos-2	0.5	0.6	5

plate no.	observation		programme	satellitename	$\begin{aligned} & \hat{\sigma}_{\xi} \\ & \text { in " } \end{aligned}$	$\begin{aligned} & \hat{\sigma}_{\eta} \\ & \text { in } \end{aligned}$	n
	date	time					
285	690311	19h57m	NGSP	Geos-2	1.2	0.7	7
286	690311	2148	NGSP	Geos-2	1.9	1.4	6
287	690322	1949	NGSP	Geos-2	0.9	1.8	7
288	690325	2047	NGSP	Geos-2	1.5	1.3	6
289	690325	2051	NGSP	Geos-2	0.2	1.0	5
291	690403	2001	NGSP	Geos-2	0.4	0.8	5
292	690403	2325	WEST	Pageos	0.7	0.7	7
293	690404	2019	NGSP	Geos-2	1.0	2.3	5
294	690404	2023	NGSP	Geos-2	0.8	0.7	5
296	690405	2044	NGSP	Geos-2	0.9	1.8	5
297	690405	2227	NGSP	Geos-2	0.7	1.4	7
298	690405	2231	NGSP	Geos-2	1.0	2.4	S
299	690407	2114	NGSP	Geos-2	2.0	0.5	7
300	690407	2119	NGSP	Geos-2	0.7	0.2	4
301	690408	2137	NGSP	Geos-2	0.5	0.1	4
302	690409	2153	NGSP	Geos-2	0.9	1.4	6
303	690409	2158	NGSP	Geos-2	1.3	1.6	4
306	690416	2222	NGSP	Geos-2	0.4	0.4	4
307	690416	2312	WEST	Pageos	0.3	1.0	7
308	690417	2052	NGSP	Geos-2	0.6	0.6	6
309	690417	2238	NGSP	Geos-2	0.3	1.2	5
310	690417	2310	WEST	Pageos	2.2	0.8	5
311	690427	2211	NGSP	Geos-2	0.7	0.3	4
313	690428	2259	WEST	Echo-2	0.7	0.9	8
314	690428	2304	WEST	Pageos	0.8	0.8	9
315	690429	2101	NGSP	Geos-2	1.2	0.5	5
317	690430	2117	NGSP	Geos-2	0.8	0.7	4
318	690430	2121	NGSP	Geos-2	0.8	1.4	5
319	690503	2213	NGSP	Geos-2	1.2	0.2	4
321	690507	2141	NGSP	Geos-2	0.5	0.8	4
322	690508	2158	NGSP	Geos-2	1.1	0.6	6
323	690508	2200	NGSP	Geos-2	1.4	0.2	4
324	690508	2206	NGSP	Geos-2	0.9	1.3	5
325	690504	2224	NGSP	Geos-2	1.9	1.4	5
326	690513	2145	NGSP	Geos-2	1.3	0.9	5
327	690523	2308	NGSP	Geos-2	0.7	0.4	4
328	690527	0004	NGSP	Geos-2	0.5	0.8	6
329	690605	2337	NGSP	Geos-2	1.1	0.4	4
330	690714	2321	NGSP	Geos-2	2.3	1.3	5
331	690715	2339	NGSP	Geos-2	1.5	1.7	4
332	690718	2243	NGSP	Geos-2	0.4	0.5	5
333	690808	0038	WEST	Pageos	1.6	0.6	5
334	690810	0038	WEST	Pageos	0.4	0.7	9
335	690811	0040	WEST	Pageos	0.6	0.4	9

Table II. Ypenburg

plate no.	observation		programme	satellitename	$\begin{aligned} & \hat{\sigma}_{\xi} \\ & \text { in }_{n}^{\prime \prime} \end{aligned}$	$\begin{aligned} & \hat{\sigma}_{\eta} \\ & \text { in } \end{aligned}$	n
	date	time					
336	691217	04h48m	NGSP	Geos-2	1.3	0.3	4
337	691219	0335	NGSP	Geos-2	0.7	0.3	5
338	691219	0339	NGSP	Geos-2	1.1	0.3	6
339	691219	0525	NGSP	Geos-2	0.4	1.3	6
340	700104	0312	NGSP	Geos-2	1.0	0.4	6
341	700104	0501	NGSP	Geos-2	0.8	0.6	6
342	700104	0507	NGSP	Geos-2	1.3	1.1	7
343	700107	0601	NGSP	Geos-2	1.4	0.8	5
345	700110	0317	NGSP	Geos-2	0.4	0.2	4
347	700203	2159	WEST	Pageos	0.7	1.1	8
348	700204	0058	WEST	Pageos	0.8	0.8	9
350	700217	0103	WEST	Pageos	0.1	1.3	5
352	700310	2155	WEST	Pageos	0.5	0.5	8
353	700310	2203	WEST	Pageos	1.0	0.9	12
355	700325	2144	WEST	Pageos	0.7	0.7	10
356	700325	2155	WEST	Pageos	1.0	0.5	11
359	700603	0052	WEST	Pageos	1.2	0.9	8
360	700603	0101	WEST	Pageos	0.5	0.7	7
361	700604	0052	WEST	Pageos	0.4	0.4	7
362	700604	0102	WEST	Pageos	0.8	0.6	10
363	700605	0054	WEST	Pageos	1.2	0.2	6
364	700606	0059	WEST	Pageos	0.4	1.0	10
365	700607	0056	WEST	Pageos	0.6	0.9	9
366	700607	0104	WEST	Pageos	0.6	1.1	11
367	700612	0059	WEST	Pageos	1.0	0.6	6
368	700728	2233	WEST	Pageos	0.8	0.6	6
369	700731	2234	WEST	Pageos	0.5	0.6	6
370	700801	2234	WEST	Pageos	0.5	0.6	9
371	700803	2233	WEST	Pageos	0.6	0.8	10
373	700925	2120	ISAGEX	Geos-2	0.9	0.3	5
374	700928	2031	ISAGEX	Geos-2	0.5	2.0	4
381	701016	0353	WEST	Pageos	1.3	0.4	9
385	701027	0352	WEST	Pageos	0.1	0.7	5
388	700924	1913	ISAGEX	Geos-2	1.0	1.0	4
390	710111	2253	ISAGEX	Geos-2	0.3	0.4	4
391	710114	1955	WEST	Pageos	0.6	0.8	11
392	710121	2305	WEST	Pageos	0.5	1.2	7
394	710125	2003	WEST	Pageos	0.9	0.7	7
398	710129	0038	ISAGEX	Geos-2	0.4	0.5	5
400	710129	2007	WEST	Pageos	0.8	0.7	7
411	710216	2023	WEST	Pageos	0.6	0.4	10
414	710222	0250	WEST	Pageos	0.7	1.0	9
418	710222	2038	WEST	Pageos	0.7	0.6	9
421	710303	2044	WEST	Pageos	0.7	1.0	7
422	710304	0029	ISAGEX	Geos-2	0.6	0.4	6
423	710304	0257	WEST	Pageos	1.0	0.7	9
431	710310	0034	ISAGEX	Geos-2	0.5	1.1	7
432	710310	0312	WEST	Pageos	1.1	1.3	8
437	710316	0315	WEST	Pageos	0.9	0.8	8
440	710316	0329	WEST	Pageos	0.6	0.8	7
441	710323	0104	ISAGEX	Geos-2	0.7	1.4	5
444	710326	0202	ISAGEX	Geos-2	0.5	0.3	4
447	710328	0240	ISAGEX	Geos-2	2.9	0.2	4
450	710329	0259	ISAGEX	Geos-2	0.9	0.1	4

plate no.	observation		programme	satellitename	$\begin{aligned} & \hat{\sigma}_{\xi} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \Omega_{\eta} \\ & \text { in } \end{aligned}$	n
	date	time					
453	710330	03h18m	ISAGEX	Geos-2	1.0	0.8	5
455	710412	0157	ISAGEX	Geos-2	0.9	0.2	4
460	710415	0048	WEST	Pageos	0.3	0.7	10
465	710415	0252	ISAGEX	Geos-2	1.7	0.4	6
467	710419	0219	ISAGEX	Geos-2	1.0	0.9	4
471	710421	0058	WEST	Pageos	0.6	0.6	10
473	710421	0109	ISAGEX	Geos-2	1.1	0.7	6
475	710421	0257	ISAGEX	Geos-2	0.8	0.2	5
480	710422	0057	WEST	Pageos	0.3	0.3	6
489	710428	0321	ISAGEX	Geos-2	1.1	0.1	5
492	710504	0116	WEST	Pageos	0.4	1.0	8
494	710506	0216	ISAGEX	Geos-2	1.9	0.5	5
495	710510	2219	WEST	Pageos	0.9	0.4	8
496	710511	2231	WEST	Pageos	0.6	0.7	7
497	710513	2233	WEST	Pageos	0.6	0.6	7
498	710521	2246	WEST	Pageos	0.7	0.6	8
499	710522	0145	WEST	Pageos	1.2	0.1	5
500	710528	2310	WEST	Pageos	0.6	0.6	6
502	710602	2326	WEST	Pageos	0.6	1.2	7
503	710603	2330	WEST	Pageos	0.7	0.5	11
504	710607	2335	WEST	Pageos	0.7	0.6	8
505	710725	2109	ISAGEX	Geos-2	0.4	1.0	5
506	710726	2130	ISAGEX	Geos-2	0.3	0.4	5
507	710731	2117	ISAGEX	Geos-2	0.6	0.5	6
508	710802	2156	ISAGEX	Geos-2	0.2	1.1	5
509	710808	2157	ISAGEX	Geos-2	0.9	0.5	6
510	710816	2054	ISAGEX	Geos-2	0.9	0.3	7
511	710824	2137	ISAGEX	Geos-2	1.0	0.5	6
512	710825	2005	ISAGEX	Geos-2	0.8	0.5	7

[^0]: * Indicating transposition.

