NETHERLANDS GEODETIC COMMISSION
PUBLICATIONS ON GEODESY
NEW SERIES
NUMBER 3

THE PRECISION OF PHOTOGRAMMETRIC MODELS

by
G. H. LIGTERINK

1972

CONTENTS

page
Summary 4
I Introduction 5
II Errors due to measuring of a model point 7
1 General description 7
2 Experiments I and II 9
III Errors due to relative orientation 22
1 General description 22
2 Experiments III, IV and V 24
IV Errors due to inner orientation 44
1 General description 44
2 Experiments VI, VII and VIII 45
V Recapitulation and conclusions 64
Appendix 1 67
Appendix 2 70
Appendix 3 78
References 86

SUMMARY

The influence of random observation errors on the machine coordinates of model points can be represented by a covariance matrix. In this investigation the covariance matrix of a limited number of model points has been determined in two different ways:

1. by executing repeated measurements of points in photogrammetric models; in some cases these repeated measurements are combined with repeated relative orientations or with repeated relative and inner orientations; from the series of these measurements the estimated covariance matrices ($\hat{\sigma}^{2}$) have been determined.
2. by writing the machine coordinates as functions of the initial observations, e.g. x - and y-parallaxes; by means of the standard deviations of these initial observations, and applying the law of propagation of errors, the covariance matrices (σ^{2}) have been computed.
3. Eight experiments have been executed to determine the $\left(\hat{\sigma}^{2}\right)$. The following observations were repeated 20 times:
for 2 models: the measuring of the coordinates of 8 model points (after the inner and relative orientation was done once).
for 3 models: the relative orientation and the measuring of the coordinates of 8 model points (after inner orientation was done once).
for 3 models: the inner orientation, the relative orientation and the measuring of the coordinates of 8 model points.
The estimated covariance matrix ($\hat{\sigma}^{2}$) is computed from the 20 repeated observations per experiment. This makes 8 full-matrices of 24×24 elements for the 8×3 coordinates of the 8 model points.
4. The 8 covariance matrices $\left(\sigma^{2}\right)$ were computed from the standard deviations by applying the law of propagation of errors. The observations are divided into three groups:

- the measuring of the coordinates of a model point
- the relative orientation
- the inner orientation

Sub-matrices of ($\hat{\sigma}^{2}$) and (σ^{2}) represent point standard ellipsoids and relative standard ellipsoids. The shape and position of these ellipsoids are represented and compared in a large number of diagrams showing the projections of the ellipsoids on three perpendicular planes. These projections are standard ellipses and relative standard ellipses.

Interesting correlations are demonstrated, both between coordinates of a single point and between coordinates of different points.

In order to be able to extrapolate these results further investigations will be necessary for better information about the factors which influence the standard deviations of the individual observations.

The structure of the covariance matrix of the coordinates of model points is essential for studies of precision and accuracy in all procedures which use the photogrammetric model as basic unit.

I INTRODUCTION

Photogrammetric models, reconstructions of terrain models by means of stereophotographs, are often used as basic units for measurements. Data taken from a photogrammetric model are used in different procedures e.g.:

- strip- and block-triangulation
- determination of profiles
- digital terrain models
etc.
The object of this investigation is to study and analyse the influence of random observation errors on the coordinates of model points. The publication of R. Roelofs, "Theory of errors of photogrammetric mapping, The Ohio State University, Columbus" [2] has been a stimulus and guide for the design and execution of this investigation.

The observations are partly stereoscopical and partly monocular. Needless to say that these errors are only part of the total group of errors which influence the accuracy of photogrammetric models. No attempt will be made to sum up all these errors.

The observation errors can be divided into three groups; errors due to:

1. the measuring of a model point
2. the relative orientation
3. the inner orientation

They can briefly be described as follows.
The first group: for measuring a model point, the measuring mark is set at the proper elevation and in the proper planimetric position.

The second group: for the relative orientation, the observer has to eliminate y-parallaxes in order to get an intersection of corresponding rays of the two bundles.

The third group: the inner orientation, is the positioning of the photo in the plate holder of the instrument and the setting of the proper principal distance to reconstruct the bundle of rays.

It is known that the observation errors depend on various characteristics: the instrument, the photographs, the observer, size and shape of model points, etc. Therefore this analysis will be restricted to:

- stereophotogrammetry with analogue instruments which have the possibility to produce data in the form of machine coordinates.
- only pricked points and signalized points are concerned in the investigation.
- the experiments are only made with a Wild A7 and a Wild A8.
- aerial photographs of "normal" quality and taken from nearly flat or hilly terrain are used.
- the measurements are done by two trained operators.

Special attention is paid to pricked points and signalized points because these points are often connection points in triangulations. In addition these points are symmetrical as distinct from many terrain points, such as corners of houses, intersections of roads, etc. The symmetry of points makes the observation data more or less homogeneous which simplifies the statistical description.

The precision of model points will be represented by the covariance matrix of the coordinates of model points. So the correlation between the coordinates of different points will also be implicated in the study. For the present only points of one model will be considered.

The covariance matrix of a limited number of points will be determined in two different ways:

1. from series of repeated measurements which can be considered as a probablility distribution of the same quantity: the coordinates of model points. The covariance matrix determined in this way will be called an estimate of the covariance matrix or the estimated covariance matrix ($\hat{\sigma}^{2}$).
2. by writing the machine coordinates as functions of the observations, the three groups of observations as described before, and applying the law of propagation of errors. This covariance matrix has no special adjective and will be indicated as (σ^{2}).
In this investigation these two covariance matrices will be studied and compared in order to come to a more general description of the precision of model points.

II ERRORS DUE TO THE MEASURING OF A MODEL POINT

1 General description

For measuring the machine coordinates of a point in a model, the floating mark is set in the proper elevation and in the proper planimetric position. The error in elevation influences the error in planimetric position and reverse.

In appendix 1 the differential formula is derived which gives the relation between the differentials of the machine coordinates of a point, $\Delta x, \Delta y$ and Δh and the differentials of the observations, which are:
the horizontal parallax: Δp_{x}
the x-setting:
the y-setting:

$$
\left(\begin{array}{l}
\Delta x_{M} \tag{2.1}\\
\Delta x_{M L} \\
\Delta x_{M R} \\
\Delta y_{M} \\
\Delta h_{M}
\end{array}\right)=\left(\begin{array}{lll}
-\frac{x}{b} & 1 & 0 \\
-\frac{1}{2 b}(2 x+b) & 1 & 0 \\
-\frac{1}{2 b}(2 x-b) & 1 & 0 \\
-\frac{y}{b} & 0 & 1 \\
+\frac{z}{b} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\Delta p_{x} \\
\Delta x^{\prime} \\
\Delta y^{\prime}
\end{array}\right)
$$

x and y are the coordinates of the model point; the origin of the coordinates is chosen in the middle, O, of the instrumental base b of the instrument which coincides with the x-axes; see figure 2.1.

In this figure two systems of coordinates are introduced:
$x y z$: the origin of the coordinates is chosen in O;
$x y h$: the system of machine coordinates with - in principle - any position of the origin.

We distinguish three cases for the x-coordinate in formula (2.1):
Δx_{M} : signalized points.
$\Delta x_{M L}$ and $\Delta x_{M R}$: pricked points on left and right photograph respectively.

The differentials for the y - and h-coordinate are the same for signalized and pricked points. The index M is introduced here for the differentials referring to measuring of a model point.

Fig. 2.1. Systems of coordinates in a photogrammetric model.
In (2.1) we replace:

$$
\left(\begin{array}{l}
\Delta x_{M} \\
\Delta x_{M L} \\
\Delta x_{M R} \\
\Delta y_{M} \\
\Delta h_{M}
\end{array}\right) \equiv\left(\Delta x_{M}^{i}\right)\left(\begin{array}{lll}
-\frac{x}{b} & 1 & 0 \\
-\frac{1}{2 b}(2 x+b) & 1 & 0 \\
-\frac{1}{2 b}(2 x-b) & 1 & 0 \\
-\frac{y}{b} & 0 & 1 \\
+\frac{x}{b} & 0 & 0
\end{array}\right) \equiv\left(A_{M}^{i}\right) \quad\left(\begin{array}{c}
\Delta p_{x} \\
\Delta x^{\prime} \\
\Delta y^{\prime}
\end{array}\right) \equiv(\Delta M)(2.2)
$$

then:

$$
\begin{equation*}
\left(\Delta x_{M}^{i}\right)=\left(A_{M}^{i}\right)(\Delta M) \tag{2.3}
\end{equation*}
$$

The covariance matrix of the machine coordinates can be computed by application of the law of propagation of errors to (2.3).

$$
\begin{equation*}
\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)=\left(A_{M}^{i}\right)\left(\sigma_{M}^{2}\right)\left(A_{M}^{j}\right)^{T} \tag{2.4}
\end{equation*}
$$

$\left(\sigma_{M}^{2}\right)$ is the covariance matrix of the observations.
$\sigma_{\Delta p_{x}}, \sigma_{x^{\prime}}$ and $\sigma_{y^{\prime}}$ are the standard deviations of these observations respectively:

- the horizontal parallax: Δp_{x}
- the x-setting: Δx^{\prime}
- the y-setting: Δy^{\prime}

The observations are assumed to be free of correlation and for that the covariance matrix $\left(\sigma_{M}^{2}\right)$ is a diagonal matrix. The elements of the diagonal are made up by the square of the standard deviations.

The three standard deviations, expressed in microns in photo scale, are:

	$\sigma_{\Delta p_{x}}$	$\sigma_{x^{\prime}}$	$\sigma_{y^{\prime}}$
signalized points	4.9	4.7	6.0
pricked points	6.5	4.2	6.5

These values are determined from a large number of redundant observations obtained by repeated measurements in an orientated model.

The following two remarks have to be made here:

- In both cases the error in y-setting is larger than the error in x-setting, $\sigma_{y^{\prime}}>\sigma_{x^{\prime}}$; this may have a physiological cause.
- For the pricked points we see furthermore:
$\sigma_{\Delta p_{x}}>\sigma_{x^{\prime}}, \sqrt{2}$
This may be caused by the fact that the points are only pricked on one plate, which partly disturbs the stereoscopy.

Introduction of (2.5) into (2.4) makes it possible to compute the covariance matrix of the machine coordinates of all points concerned.

2 The experiments

In order to evaluate the covariance matrix $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$, as described in the previous section, two experiments I and II have been executed.

Experiment I

Stereopair: 1888-1887
Photo scale: 1:15000
Camera: Wild RC 5, $c=152.47 \mathrm{~mm}$
Size: $23 \times 23 \mathrm{~cm}$
Distance model - projection centres: $z \simeq 250 \mathrm{~mm}$
Instrumental base: $b=148 \mathrm{~mm}$

After an empirical relative orientation of this pair in a Wild A8, the machine coordinates of 8 pricked points were measured 20 times.

Figure 2.2 gives the position of the 8 pricked points on the two photographs. Points 2, 4,6 and 8 are pricked on the left photo 1888 and points $1,3,5$ and 7 on photo 1887. The position of the points in the model is given in figure 2.3.

Fig. 2.2. The position of the 8 pricked points on the photographs.

Fig. 2.3. The position of the points in the model.

The observations were made in a random sequence and automatically registered to the nearest 0.01 mm . The 20 observations of each point can be considered as a sample from the probability distribution of the coordinate-variates.

The observations are:

$$
\begin{equation*}
x_{k}^{n}, y_{k}^{n} \text { and } h_{k}^{n} \tag{2.6}
\end{equation*}
$$

$n: 1$ to 8 , number of points
$k: 1$ to 20 , number of repetitions.
The mean values are:

$$
\begin{equation*}
x^{n}=\frac{1}{k}\left[x_{k}^{n}\right]_{1}^{k} \quad y^{n}=\frac{1}{k}\left[y_{k}^{n}\right]_{1}^{k} \quad h^{n}=\frac{1}{k}\left[h_{k}^{n}\right]_{1}^{k} \tag{2.7}
\end{equation*}
$$

From the differences with respect to the mean values, $x^{n}-x_{k}^{n}, y^{n}-y_{k}^{n}$ and $h^{n}-h_{k}^{n}$, an estimate for the covariance matrix can be computed:

$$
\begin{equation*}
\left(\hat{\sigma}_{x_{M}^{i} x_{M}^{j}}\right), \quad i=1, \ldots, 24 \tag{2.8}
\end{equation*}
$$

The elements of this matrix are (page 11):

Table 2.1. The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x_{M}^{i} x_{M}^{j}}\right)$ of experiment I.

	$\hat{\sigma}_{x_{M}^{n} x_{M}^{n}}$	$\hat{\sigma}_{y_{M}^{n} y_{M}^{n}}$	$\hat{\sigma}_{h_{M}^{n} h_{M}^{n}}$	$\hat{\sigma}_{x_{M}^{n} y_{M}^{n}}$	$\hat{\sigma}_{x_{M}^{n} h_{M}^{n}}$	$\hat{\sigma}_{y_{M}^{n} h_{M}^{n}}$
1	54	98	487	+1	-48	-50
2	22	66	158	-5	0	0
3	66	283	226	+56	-44	-221
4	51	188	174	-33	+18	-171
5	131	150	620	-106	-232	+259
6	62	73	352	+18	+9	+95
7	33	105	203	+10	-6	-84
8	31	136	213	-22	-38	+93

$$
\begin{align*}
& \hat{\sigma}_{x_{M}^{n} x_{M}^{n}}=\frac{\left[\left(x^{n}-x_{k}^{n}\right)^{2}\right]_{1}^{k}}{k-1} \\
& \hat{\sigma}_{y_{M}^{n} y_{M}^{n}}=\frac{\left[\left(y^{n}-y_{k}^{n}\right)^{2}\right]_{1}^{k}}{k-1} \\
& \hat{\sigma}_{h_{M}^{n} h_{M}^{n}}=\frac{\left[\left(h^{n}-h_{k}^{n}\right)^{2}\right]_{1}^{k}}{k-1} \tag{2.9a}\\
& \hat{\sigma}_{x_{M}^{n} y_{M}^{n}}=\frac{\left[\left(x^{n}-x_{k}^{n}\right)\left(y^{n}-y_{k}^{n}\right)\right]_{1}^{k}}{k-1} \\
& \hat{\sigma}_{x_{M}^{n} h_{M}^{n}}=\frac{\left[\left(x^{n}-x_{k}^{n}\right)\left(h^{n}-h_{k}^{n}\right]_{1}^{k}\right.}{k-1} \\
& \hat{\sigma}_{y_{M}^{n} h_{M}^{n}}=\frac{\left[\left(y^{n}-y_{k}^{n}\right)\left(h^{n}-h_{k}^{n}\right)\right]_{1}^{k}}{k-1}
\end{align*}
$$

From (2.4) should follow that:

$$
\begin{equation*}
\sigma_{x^{n} x^{m}}=0, \quad \sigma_{x^{n} y^{m}}=0 \quad \text { etc. } \tag{2.9b}
\end{equation*}
$$

and therefore the elements of $\left(\hat{\sigma}_{x_{M}^{i} x_{M}^{j}}\right)$, referring to different model points, are assumed to be zero.
Table 2.1 gives the elements of $\left(\hat{\sigma}_{x_{M}^{i}} x_{M}^{j}\right)$ of experiment I in square microns for the points
to 8 as far as they are not zero. 1 to 8 as far as they are not zero.
On the other hand the covariance matrix $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$ can be computed according to formula (2.4) introducing the predeterminated standard deviations of (2.5). The elements of this covariance matrix are given in table 2.2, leaving out the zero-elements.
The covariance matrix $\left(\hat{\sigma}_{x_{M}^{i} x_{M}^{j}}\right)$ is an estimate of $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$.
Sub-matrices of $\left(\hat{\sigma}^{2} x_{M}^{i} x_{M}^{j}\right)$ and $\left(\sigma^{2} x_{M}^{i}{ }_{M}^{j}\right)$ represent point standard ellipsoids. The shape and position of these ellipsoids can be presented and easily compared in diagrams showing their projections on planes parallel to:

Table 2.2. The elements of the covariance matrix $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$ of the points used in experiment I.

	$\sigma_{x_{M}^{n} x_{M}^{n}}$	$\sigma_{y_{M}^{n} y_{M}^{n}}$	$\sigma_{h_{M}^{n} h_{M}^{n}}$	$\sigma_{x_{M}^{n} y_{M}^{n}}$	$\sigma_{x_{M}^{n} h_{M}^{n}}$	$\sigma_{y_{M}^{n} h_{M}^{n}}$
$\mathbf{1}$	52	114	327	+1	+41	+6
2	47	115	325	0	-2	+19
3	49	256	323	-18	+27	-214
4	47	232	324	+6	-11	-196
5	47	215	328	+1	+1	+181
6	47	263	327	-2	-2	+220
7	70	252	325	-56	+85	-211
8	78	249	327	-65	-101	+210

$$
z=0 \quad y=0 \quad x=0
$$

These projections are ellipses. The three elements of these ellipses, the semi major axis a, the semi minor axis b and the direction ψ of the former, are given in table 2.3 respectively in table 2.4; a and b are expressed in microns and ψ in grades.
These ellipses are drawn in figures $2.4,2.5$ and 2.6 respectively. The thin lines refer to $\left(\hat{\sigma}_{x_{M}^{i}} x_{M}^{j}\right)$ of table 2.3 and the thick lines refer to $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$ of table 2.4.

Table 2.3. The elements of the ellipses computed from $\left(\hat{\sigma}_{x_{M}^{i}} x_{M}^{j}\right)$ pertaining to experiment I.

	$z=0$			$y=0$			$x=0$		
	a	b	ψ	a	b	ψ	a	b	ψ
1	10	7	1	22	7	193	22	10	192
2	8	5	193	13	5	0	13	8	0
3	17	7	15	15	7	184	22	6	146
4	14	7	186	13	7	9	19	3	149
5	16	6	153	27	6	176	27	6	27
6	9	7	41	19	8	2	20	7	19
7	10	6	9	14	6	198	16	8	167
8	12	5	187	15	5	187	17	9	37

Table 2.4. The elements of the ellipses computed from $\left(\sigma_{x_{M}^{i}} x_{M}^{j}\right)$ pertaining to the points used in experiment I.

	$z=\mathbf{0}$				$y=0$				$x=0$		
	a	b	ψ	a	b	ψ	a	b	ψ		
1	11	7	199	17	6	188	17	11	1		
2	11	8	5	18	6	20	17	11	7		
3	16	6	12	17	6	185	21	9	153		
4	15	7	184	18	6	18	21	9	156		
5	15	7	182	18	6	189	20	9	42		
6	16	7	17	18	6	20	21	9	47		
7	16	6	2	17	6	198	21	9	154		
8	15	6	199	17	6	199	21	9	46		

Fig. 2.4. Standard ellipses in the $x y$-plane of experiment \mathbf{I}.

SCALE OF ELLIPSE5
$0 \quad 15 \quad 30 \quad 45 \quad 60$ MICRON
Fig. 2.5. Standard ellipses in the $x z$-plane of experiment I .

SCALE DF ELLIPSES | 0 | 15 | 30 | 45 | 60 |
| :--- | :--- | :--- | :--- | :--- |
| MICRON | | | | |

Fig. 2.6. Standard ellipses in the $y z$-plane of experiment I.

Experiment II

Stereopair: 147-149
Photo scale: 1:5000
Camera: Wild RC 5, $c=152.15 \mathrm{~mm}$
Size: $23 \times 23 \mathrm{~cm}$
Distance model - projection centres: $z \simeq 250 \mathrm{~mm}$
Instrumental base: $b=172 \mathrm{~mm}$
This experiment is just the same as the previous one. After an empirical relative orientation of this pair in a Wild A8 the machine coordinates, x, y and h, of 8 pricked points are measured 20 times in a random sequence. Figure 2.7 gives the position of the 8 pricked points on two photographs and figure 2.8 shows the position in the model.

Fig. 2.7. The position of the 8 pricked points on the photographs.

Fig. 2.8. The position of the points in the model.

Points $1,3,5$ and 7 are pricked on the right photo 147 and points $2,4,6$ and 8 on photo 149.

The elements of the estimated covariance matrix $\left(\sigma_{x_{M}^{i}} x_{M}^{j}\right)$ are computed from the 20 observations of each point according to formula (2.9). Table 2.5 gives these elements in square microns.
Analogous to experiment I the covariance matrix $\left(\sigma_{x_{M}^{i}} x_{M}^{j}\right)$ can be computed according to formula (2.4) introducing the standard deviations of (2.5).

The elements of this covariance matrix are given in table 2.6.
Sub-matrices of $\left(\hat{\sigma}_{x_{M}^{i}} x_{M}^{j}\right)$, the estimated covariance matrix, and $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$, the covariance matrix, represent point standard ellipsoids. As in the preceding part the form of the ellipsoids can easily be presented in diagrams by projections, which are ellipses, on planes parallel to:

$$
z=0 \quad y=0 \quad x=0
$$

The elements of these ellipses a, b and ψ are given in tables 2.7 and 2.8 respectively for $\left(\hat{\sigma}_{x_{M}^{i} x_{M}^{j}}\right)$ and $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$.
The ellipses of $\left(\hat{\sigma}_{x_{M}^{i} x_{M}^{j}}\right)$ in table 2.7 and the ellipses of $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$ in table 2.8 are drawn in
three diagrams, figures $2.9,2.10$ and 2.11 respectively for:

$$
z=0 \quad y=0 \quad x=0
$$

The thin lines refer to the estimated covariance matrix $\left(\hat{\sigma}^{2} x_{M}^{i} x_{M}^{j}\right)$ and the thick lines refer to the covariance matrix $\left(\sigma^{2} x_{M}^{i} x_{M}^{j}\right)$.

Table 2.5. The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x_{M}^{i}} x_{M}^{j}\right)$ of experiment II.

	$\hat{\sigma}_{x_{M}^{n} x_{M}^{n}}$	$\hat{\sigma}_{y_{M}^{n}} y_{M}^{n}$	$\hat{\sigma}_{h_{M}^{n} h_{M}^{n}}$	$\hat{\sigma}_{x_{M}^{n} y_{M}^{n}}$	$\hat{\sigma}_{x_{M}^{n} h_{M}^{n}}$	$\hat{\sigma}_{y_{M}^{n}} h_{M}^{n}$
1	27	59	66	+9	-8	-33
2	68	179	79	+11	+42	+16
3	25	88	85	+4	-8	-50
4	51	127	163	+34	-9	-112
5	36	48	119	+18	+6	+29
6	11	108	109	+5	0	+83
7	88	136	79	-5	+29	-54
8	69	173	99	-9	-35	+76

Table 2.6. The elements of the covariance matrix $\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right)$ of the points used in experiment II.

	$\sigma_{x_{M}^{n} x_{M}^{n}}$	$\sigma_{y_{M}^{n} y_{M}^{n}}$	$\sigma_{h_{M}^{n} h_{M}^{n}}$	$\sigma_{x_{M}^{n} y_{M}^{n}}$	$\sigma_{x_{M}^{n} h_{M}^{n}}$	$\sigma_{y_{M}^{n} h_{M}^{n}}$
1	48	114	241	0	+10	-7
2	48	114	241	0	+2	0
3	58	215	241	-32	+49	-157
4	48	224	241	+6	-9	-163
5	48	186	241	+2	+4	+132
6	48	207	241	-3	-5	+150
7	77	218	241	-55	+83	-159
8	77	215	241	-54	-83	+155

Table 2.7. The elements of the ellipses computed from $\left(\hat{\sigma}_{x_{M}^{i}} x_{M}^{j}\right)$ pertaining to experiment II.

	$z=0$				$y=0$				$x=0$		
	a	b	ψ	a	b	ψ	a	b	ψ		
1	8	5	17	8	5	187	10	5	153		
2	13	8	6	11	6	46	13	9	90		
3	9	5	4	9	5	191	12	6	149		
4	12	6	23	13	7	195	16	6	155		
5	8	5	39	11	6	5	11	6	22		
6	10	3	3	10	3	0	14	5	50		
7	12	9	194	10	7	50	13	7	135		
8	13	8	194	11	7	163	15	7	65		

Table 2.8. The elements of the ellipses computed from $\left(\sigma_{x_{M}^{i}} x_{M}^{j}\right)$ pertaining to the points used in experiment II.

	$z=\mathbf{y}$				$y=0$				$x=0$		
	a	b	ψ	a	b	ψ	a	b	ψ		
1	11	7	2	15	6	178	15	11	195		
2	11	8	0	16	6	25	15	11	0		
3	15	6	7	15	6	190	19	9	150		
4	15	7	184	15	6	22	19	8	149		
5	14	7	183	15	6	177	18	9	46		
6	15	7	17	15	6	23	18	9	49		
7	15	6	0	15	6	0	19	9	150		
8	14	6	0	15	6	0	19	9	50		

Fig. 2.9. Standard ellipses in the $x y$-plane of experiment II.

$\frac{\text { SCALE OF ELLIPSES }}{\frac{15}{0} \quad 15 \quad 30 \quad 60}$

Fig. 2.10. Standard ellipses in the $x z$-plane of experiment II.

$\frac{\text { SCALE }}{\text { OF ELLIPSES }} \begin{array}{lllll}0 & 15 & 30 & 45 & 60 \text { MICRON }\end{array}$
Fig. 2.11. Standard ellipses in the $y z$-plane of experiment II.

III ERRORS DUE TO RELATIVE ORIENTATION

1 General description

In order to perform a relative orientation with two perspective bundles of rays y-parallaxes have to be measured or eliminated. The influence of the observation errors in y-parallaxes on the orientation elements is a known problem of which the mathematical description is given in several photogrammetric text-books. In addition the relation between the orientation elements and the machine coordinates of model points can be found in some of these text-books.

The combination of these formulae gives the influence of the error in y-parallax observations on the machine coordinates.

In appendix 2 a general description of these formulae is given. In that description pricked points and signalized points are distinghuished and the signs in the formulae are chosen in such a way that they can be applied to measurements made with the autograph A7 and A8.

The formulae referring to the A7 can be summarized as follows. Starting from the wellknown parallax formula:

$$
\begin{equation*}
\Delta p_{y}=+\frac{y^{2}+z^{2}}{z} \Delta \omega_{2}-\frac{(2 x-b) y}{2 z} \Delta \varphi_{2}+\frac{2 x-b}{2} \Delta \chi_{2}-\frac{y}{z} \Delta b z_{2}-\Delta b y_{2} \tag{3.1}
\end{equation*}
$$

the matrix of weight-coefficients of the orientation elements $\overline{(\Delta O),(\Delta O)^{T}}$ can be determined, see appendix 2 :

$$
\overline{(\Delta O),(\Delta O)^{T}}=\left(\begin{array}{l}
\Delta \omega_{2} \tag{3.2}\\
\Delta \varphi_{2} \\
\Delta \varkappa_{2} \\
\Delta b z_{2} \\
\Delta b y_{2}
\end{array}\right),\left(\begin{array}{l}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta \varkappa_{2} \\
\Delta b z_{2} \\
\Delta b y_{2}
\end{array}\right)^{T} .
$$

If we write for the square of the standard deviation of the y-parallax observations:

$$
\begin{equation*}
\sigma_{p_{y}}^{2} \tag{3.3}
\end{equation*}
$$

the covariance matrix of the orientation elements is:

$$
\begin{equation*}
\left(\sigma_{o o}\right)=\sigma_{p_{y}}^{2} \overline{(\Delta O),(\Delta O)^{T}} \tag{3.4}
\end{equation*}
$$

The differential formula which gives the relation between the machine coordinates and the orientation elements is derived in appendix 2 and reads as follows:

$$
\left(\begin{array}{l}
\Delta x_{o} \tag{3.5}\\
\Delta y_{o} \\
\Delta y_{o L} \\
\Delta y_{o R} \\
\Delta h_{o}
\end{array}\right)=\left(A_{o}^{i}\right)\left(\begin{array}{l}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta x_{2} \\
\Delta b z_{2} \\
\Delta b y_{2}
\end{array}\right) .
$$

The elements of matrix $\left(A_{o}^{i}\right)$ are made up by, see appendix 2:
x, y and z : the coordinates of the point P concerned, the origin of the axis being in the middle of the base, see figure 2.1.
b : the instrumental base.
We distinguish 3 cases for the y-coordinate in formula (3.5):
Δy_{o} : signalized points
$\Delta y_{o L}:$ pricked points on left photograph
$\Delta y_{O R}$: pricked points on right photograph
The differentials of the x - and h-coordinates are the same for signalized and pricked points.

With the following denotations:

$$
\left(\begin{array}{l}
\Delta x_{o} \tag{3.6}\\
\Delta y_{o} \\
\Delta y_{o L} \\
\Delta y_{o R} \\
\Delta h_{O}
\end{array}\right) \equiv\left(\Delta x_{O}^{i}\right) \quad\left(\begin{array}{l}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta \varkappa_{2} \\
\Delta b z_{2} \\
\Delta b y_{2}
\end{array}\right) \equiv(\Delta O)
$$

(3.5) becomes:

$$
\begin{equation*}
\left(\Delta x_{O}^{i}\right)=\left(A_{O}^{i}\right)(\Delta O) \tag{3.7}
\end{equation*}
$$

The covariance matrix of the machine coordinates can be computed by application of the law of propagation of errors to (3.7):

$$
\begin{equation*}
\left(\sigma_{x_{O}^{i} x_{O}^{j}}\right)=\left(A_{O}^{i}\right)\left(\sigma_{o o}\right)\left(A_{O}^{j}\right)^{T} \tag{3.8}
\end{equation*}
$$

in which according to (3.4):

$$
\left(\sigma_{o o}\right)=\sigma_{p_{y}}^{2} \overline{(\Delta O),(\Delta O)^{T}}
$$

The standard deviation of the y-parallax observations, p_{y}, is influenced by:

- the quality of the photo's
- the instrument
- the observer
etc.

From the experiments, described in the next part, the following values, given in photo scale, were derived:

$$
\text { Wild A7: } \sigma_{p_{\nu}}=9 \text { micron }
$$

$$
\begin{equation*}
\text { Wild A8: } \sigma_{p_{y}}=11 \text { micron } \tag{3.9}
\end{equation*}
$$

Probably these differences are not caused by the type of instrument but mainly by the method of orientation, for numerical relative orientation is applied to the Wild A7 measurements and empirical relative orientation to the Wild A8 measurements.

In order to gain a better insight into the relation between the standard deviation of y parallax and the photographs, the instruments, the observer, etc., a more extensive investigation would be necessary.

The covariance of the machine coordinates can be computed with (3.8). This covariance matrix describes the influence of the errors in the y-parallax observations for relative orientation.

In appendix 2 formulae for both A7 and A8 measurements are derived.
In the next part three experiments will be described to evaluate these formulae by practical examples.

2 The experiments

In order to evaluate the covariance matrix $\left(\sigma_{x_{O}^{i} x_{o}^{j}}\right)$, as described in the previous section, three experiments were executed, experiment III, IV and V.

Experiment III

Stereopair: 147-149
Photo scale: 1:5000
Camera: Wild RC5, $c=152.15 \mathrm{~mm}$
Size: $23 \times 23 \mathrm{~cm}$
Distance model - projection centres: $z \simeq 430 \mathrm{~mm}$
Instrumental base: $b=290 \mathrm{~mm}$

The relative orientation of this stereopair in a Wild A7 was made numerically by measuring the y-parallaxes in the well-known six points and the orientation was repeated 20 times. After each orientation the machine coordinates of 8 pricked points are measured in forward and backward sequence. Figure 3.1 gives the position of the 8 pricked points on the two photographs. Points $1,3,5$ and 7 are pricked on the left photo 147 and 2, 4, 6 and 8 on photo 149 . The position of the points in the model is given in figure 3.2.

The mean of forward and backward is called an observation. The 20 observations of each point can be considered as a sample from the probability distribution of the coordinatevariates. These variates are the three coordinates of each model point. The observations are:

$$
\begin{align*}
& x_{k}^{n}, y_{k}^{n} \text { and } h_{k}^{n} \ldots \ldots \tag{3.10}\\
& n=1 \text { to } 8, \text { number of points } \\
& k=1 \text { to } 20, \text { number of repetitions. }
\end{align*}
$$

5		
7	1	
7	3	147

Fig. 3.1. The position of the 8 pricked points on the photographs.

Fig. 3.2. The position of the points in the model.

The means are:

$$
\begin{equation*}
x^{n}=\frac{1}{k}\left[x_{k}^{n}\right]_{1}^{k} \quad y^{n}=\frac{1}{k}\left[y_{k}^{n}\right]_{1}^{k} \quad h^{n}=\frac{1}{k}\left[h_{k}^{n}\right]_{1}^{k} \tag{3.11}
\end{equation*}
$$

From the differences with respect to the means an estimate for the covariance matrix of the 8 points can be computed:

$$
\left(\hat{\sigma}_{x_{O+M}^{i} x_{O+M}^{j}}\right) \quad i, j=1, \ldots, 24
$$

The index $O+M$ is introduced here because this covariance matrix is caused by observation errors in both relative orientation and measuring of a model point.

The elements of this matrix are:

$$
\begin{aligned}
& \hat{\sigma}_{x_{O+M}^{n} x_{O+M}^{m}}=\frac{\left[\left(x^{n}-x_{k}^{n}\right)\left(x^{m}-x_{k}^{m}\right)\right]_{1}^{k}}{k-1} \\
& \hat{\sigma}_{y_{O+M}^{n} y_{O+M}^{m}}=\frac{\left[\left(y^{n}-y_{k}^{n}\right)\left(y^{m}-y_{k}^{m}\right)\right]_{1}^{k}}{k-1} \\
& \hat{\sigma}_{h_{O+M}^{n}} h_{O+M}^{m}=\frac{\left[\left(h^{n}-h_{k}^{n}\right)\left(h^{m}-h_{k}^{m}\right)\right]_{1}^{k}}{k-1} \\
& \hat{\sigma}_{x_{O+M}^{n} y_{O+M}^{m}}=\frac{\left[\left(x^{n}-x_{k}^{n}\right)\left(y^{m}-y_{k}^{m}\right)\right]_{1}^{k}}{k-1} \\
& \hat{\sigma}_{x_{O+M}^{n}} h_{O+M}^{m}=\frac{\left[\left(x^{n}-x_{k}^{n}\right)\left(h^{m}-h_{k}^{m}\right)\right]_{1}^{k}}{k-1} \\
& \hat{\sigma}_{y_{O+M}^{n} h_{O+M}^{m}}=\frac{\left[\left(y^{n}-y_{k}^{n}\right)\left(h^{m}-h_{k}^{m}\right)\right]_{1}^{k}}{k-1}
\end{aligned}
$$

These elements, computed for $n=m$ and $n \neq m$, are given in table 3.1 in square microns. This matrix, an estimate for the covariance matrix, contains 24×24 elements. As it is symmetrical, only the diagonal elements and the elements below the diagonal are given for simplicity's sake.

The covariance matrix can be computed by addition of the covariance matrix of the relative orientation, (3.8), and the covariance matrix of a model point, (2.4), the observations referring to these two covariance matrices being correlation free.

$$
\begin{equation*}
\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)=\left(\sigma_{x_{O}^{i} x_{O}^{j}}\right)+\frac{1}{2}\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right) \tag{3.13}
\end{equation*}
$$

Introduction of (3.8) and (2.4) in (3.13) gives:

$$
\begin{equation*}
\left(\sigma_{x_{O+M}^{i} x_{O+M}^{j}}\right)=\left(A_{O}^{i}\right)\left(\sigma_{O O}\right)\left(A_{O}^{j}\right)^{T}+\frac{1}{2}\left(A_{M}^{i}\right)\left(\sigma_{M}^{2}\right)\left(A_{M}^{j}\right)^{T} \tag{3.14}
\end{equation*}
$$

The factor $\frac{1}{2}$ in (3.13) refers to the fact that an observation is the mean of measurements in forward and backward sequence.

The elements of $\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ are given in table 3.2.
Sub-matrices of

$$
\left(\hat{\sigma}_{x_{O+M}^{i} x_{O+M}^{j}}\right) \text { and }\left(\sigma_{x_{O+M}^{i} x_{O+M}^{j}}\right)
$$

represent point standard ellipsoids and relative ellipsoids of which shape and position can easily be represented and compared by their projections on planes parallel to:

$$
z=0 \quad y=0 \quad x=0
$$

The three elements of these projections, the ellipses, are given in tables 3.3 and 3.4; a, the semi major axis, and b, the semi minor axis, in microns and ψ the direction of a in grades. The standard ellipses of the points 1 to 8 are given in the upper part of the tables and in the lower part the 28 relative standard ellipses are mentioned.
The standard ellipses and some relative standard ellipses are drawn in figures 3.3, 3.4 and 3.5 referring to:

$$
z=0 \quad y=0 \quad x=0
$$

respectively.
The thin lines are the ellipses of the estimated covariance, table 3.3, and the thick lines are the ellipses of the covariance matrix, table 3.4.

Table 3.1. The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ of experiment III.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	y_{4}
x_{1}	103										
y_{1}	-1	51									
h_{1}	-835	210	12897								
x_{2}	394	-106	- 6745	3876							
y_{2}	- 87	2	299	72	784						
h_{2}	-665	173	10471	--5633	201	8801					
x_{3}	152	- 29	- 1991	1024	-120	- 1647	371				
y_{3}	-304	129	5979	-3294	- 63	4946	- 889	3083			
h_{3}	-592	187	10248	-5523	188	8467	-1635	5051	8735		
x_{4}	398	-103	- 6527	3593	76	- 5271	982	-3139	- 5290	3619	
y_{4}	-587	142	8518	-4433	244	6750	-1291	3891	6706	-4482	6317
h_{4}	-653	214	10375	-5716	-79	8394	-1620	5042	8683	-5707	7498
x_{5}	39	1	- 145	82	- 38	- 129	46	- 19	- 79	64	- 56
y_{5}	546	--112	- 7600	3863	--309	- 6200	1170	-3384	- 5801	3651	-4842
h_{5}	-926	215	13498	-6950	391	11068	-2030	6117	10325	-6672	8585
x_{6}	428	- 77	- 6962	3881	- 90	- 5779	1054	-3270	- 5476	3617	-4459
y_{6}	367	13	- 6628	3869	173	- 5689	1043	-3236	- 5514	3525	-4284
h_{6}	-651	52	9441	-4960	446	7910	-1519	4206	7414	-4543	5929
x_{7}	254	-58	-3610	1911	-153	- 2965	599	-1699	- 2991	1858	--2408
y_{7}	-328	121	5955	-3287	-105	4922	- 900	3009	5055	-3174	3887
h_{7}	-588	210	10347	-5629	- 22	8532	-1604	5103	8721	-5388	6758
x_{8}	256	-60	- 3947	2183	-70	- 3215	594	-1851	-3057	2074	-2541
y_{8}	413	4	-- 6782	3821	124	- 5782	1063	-3198	- 5490	3455	-4155
h_{8}	-802	124	11097	--5660	429	9139	-1760	4825	8338	-5312	-6987

Table 3.2. The elements of the covariance matrix $\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ of the points used in experiment III.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	y_{4}
x_{1}	73.3										
y_{1}	- 3.3	172.4									
h_{1}	-186.0	187.3	10458.6								
x_{2}	96.4	- 97.0	-5417.9	3073.8							
y_{2}	3.2	- 3.2	- 180.4	100.2	578.7						
h_{2}	-147.9	148.9	8317.0	-4604.9	-161.1	7457.5					
x_{3}	29.9	- 30.1	-1682.8	901.5	25.6	-1383.8	404.9				
y_{3}	-100.7	101.4	5661.7	-3033.0	-86.1	4655.9	-1126.7	3959.8			
h_{3}	-162.2	163.2	9117.0	-4884.0	-138.6	7497.3	-1814.3	6104.3	9829.7		
x_{4}	90.6	- 91.2	-5094.7	2798.1	255.5	-4295.3	949.3	-3193.8	-5143.0	3030.9	
y_{4}	-107.8	108.5	6061.4	-3463.0	-179.3	5316.0	-1054.2	3546.8	5711.4	-3403.0	4688.8
h_{4}	-148.8	149.8	8367.2	-4595.3	-419.6	7054.3	-1559.0	5245.3	8446.5	-4839.6	5854.0
x_{5}	- 2.2	2.2	124.1	- 67.0	- 4.0	102.8	- 17.8	59.8	96.3	- 56.7	72.9
y_{5}	101.1	-101.7	--5681.9	3068.1	182.1	--4709.8	814.0	-2738.8	-4410.2	2595.1	-3339.0
h_{5}	-181.2	182.4	10188.2	-5501.4	-326.5	8445.2	-1459.7	4910.9	7908.0	-4653.4	5987.3
x_{6}	89.5	-90.1	-5030.3	2801.0	- 56.8	-4299.8	742.8	-2498.9	-4024.1	2284.3	-3039.2
y_{6}	103.9	-104.6	-5841.6	3356.5	98.7	-5152.6	945.9	-3182.4	-5124.7	2965.0	-3783.1
h_{6}	-144.0	145.0	8096.0	-4508.0	91.5	6920.2	-1195.4	4021.9	6476.5	-3676.5	4891.3
x_{7}	48.5	- 48.8	-2728.2	1470.8	69.6	-2257.8	520.7	-1751.9	-2821.1	1557.7	-1744.2
y_{7}	- 95.0	95.6	5340.9	-2879.3	-136.3	4420.0	-1019.4	3429.8	5522.9	-3049.6	3414.6
h_{7}	-152.1	153.1	8550.9	-4609.8	-218.2	7076.5	-1632.1	5491.1	8842.3	-4882.4	5466.8
$x_{\text {B }}$	45.8	-46.1	-2575.2	1409.3	33.4	-2163.4	361.0	- 1214.4	-1955.6	1140.7	--1515.6
y_{8}	90.7	-91.3	-5096.7	2906.7	94.1	-4462.1	729.0	-2452.8	-3949.8	2328.7	-3119.6
h_{8}	-147.5	148.4	8290.4	-4536.9	-107.6	6964.6	-1162.0	3909.6	6295.7	-3672.2	4879.3

| h_{4} | x_{5} | y_{5} | h_{5} | x_{6} | y_{6} | h_{6} | x_{7} | y_{7} | h_{7} | x_{8} | y_{8} | h_{8} |
| :--- |

9868												
- 107	41											
- 5753	137	4961										
10259	-222	-8694	15570									
- 5491	104	4205	- 7596	4159								
- 5553	43	3792	- 6792	3950	4474							
7001	-121	-5825	10220	-5327	--5386	7904						
- 3062	58	2096	- 3695	1928	1873	-2616	1090					
5209	- 43	-3350	6023	-3183	-3215	4167	-1748	3131				
8850	- 81	-5879	10482	-5537	-5521	7330	-3017	5232	8940			
- 3115	76	2439	- 4441	2368	2091	-2916	1083	-1757	-3065	1432		
- 5331	104	4099	- 7281	4015	4241	--5392	1903	-3206	-5577	2158	4377	
8277	-206	-7114	12490	-6163	-5719	8698	-3067	4844	8626	-3485	-6213	10606

h_{4}	x_{5}	y_{5}	h_{5}	x_{6}	y_{6}	h_{6}	x_{7}	y_{7}	h_{7}	x_{8}

```
    8366.2
    93.1 71.8
-4262.1 - 81.9 3921.9
7642.3 146.9 -6729.3 12066.4
-3751.6 - 68.0 3115.9 -5587.2 2983.3
-4869.4 - 73.8 3379.4 - -6059.6
    6037.9 109.5 --5014.9 8992.2 
-2558.3 - 29.1 1rrrrer 1332.1 -2388.7 1202.3 
    5008.4
8018.6 
-3824.5 - 71.0 
    lllllllllllllll
```

Table 3.3. The elements of the ellipses computed from $\left(\hat{\sigma}_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ pertaining to experiment III.

		$z=0$			$\boldsymbol{y}=0$			$x=0$		
		a	b	ψ	a	b	ψ	a	b	ψ
	1	10	7	102	114	7	196	114	7	1
	2	62	28	99	112	14	163	94	28	2
	3	58	10	182	95	8	188	108	11	34
	4	98	17	159	115	15	166	126	20	43
	5	70	6	2	125	6	199	143	9	167
	6	91	19	49	108	20	161	109	23	160
	7	64	9	167	100	8	179	110	7	34
	8	74	17	31	109	16	179	120	23	165
1	2	57	28	93	59	21	79	29	27	133
1	3	55	8	188	34	13	7	57	27	126
1	4	93	20	163	57	41	70	80	42	115
1	5	73	6	195	38	8	1	74	34	117
1	6	87	16	45	66	32	65	72	36	74
1	7	60	7	172	36	22	31	57	30	122
1	8	72	16	26	40	27	40	67	34	87
2	3	76	19	39	47	24	104	63	24	98
2	4	81	18	199	44	15	187	83	41	87
2	5	94	35	161	67	39	68	88	30	129
2	6	70	16	3	31	14	180	70	30	99
2	7	70	18	28	34	26	108	65	24	90
2	8	74	21	179	36	28	162	71	32	111
3	4	53	29	143	47	32	126	47	25	57
3	5	123	9	192	61	17	5	127	49	120
3	6	127	19	24	49	43	97	119	42	95
3	7	17	13	128	18	14	143	18	9	45
3	8	119	17	10	48	24	189	118	47	103
4	5	155	21	176	73	56	28	148	63	115
4	6	139	23	,	64	16	182	140	60	93
4	7	45	25	165	36	28	157	47	24	61
4	8	140	18	189	64	27	185	138	63	102
5	6	63	43	105	76	36	57	63	29	162
5	7	125	10	184	60	30	13	126	50	118
5	8	39	31	139	47	18	52	41	26	152
6	7	122	22	16	47	37	186	119	45	94
6	8	29	19	100	36	26	36	37	11	171
7	8	118	19	1	49	17	188	118	48	101

Table 3.4. The elements of the ellipses computed from $\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ pertaining to the points used in experiment III.

		$z=0$			$y=0$			$x=0$		
		a	b	ψ	a	b	ψ	a	b	ψ
	1	13	9	198	102	8	199	102	13	1
	2	55	24	97	102	13	164	86	24	199
	3	65	9	182	101	8	188	117	11	36
	4	86	19	158	106	13	166	113	20	40
	5	63	8	199	110	8	1	126	11	167
	6	84	19	43	104	13	165	109	20	160
	7	66	9	171	98	8	180	110	11	36
	8	66	17	26	95	15	182	109	18	164
1	2	55	27	95	57	31	76	36	27	7
1	3	65	12	184	45	20	194	64	44	85
1	4	84	22	158	55	45	85	68	46	104
1	5	66	12	197	46	12	1	69	42	125
1	6	85	21	41	55	45	76	69	46	91
1	7	65	13	172	45	30	196	60	45	95
1	8	68	18	23	48	29	8	64	48	103
2	3	75	26	29	48	41	185	73	40	72
2	4	75	23	199	44	17	176	76	39	88
2	5	82	25	154	63	44	61	73	37	138
2	6	69	21	1	41	17	177	70	38	111
2	7	69	27	20	47	29	173	69	40	77
2	8	68	25	176	45	33	181	66	41	121
3	4	43	36	151	39	36	88	49	20	54
3	5	117	14	190	78	22	197	116	77	110
3	6	125	30	17	73	38	177	122	67	89
3	7	26	17	185	29	17	185	35	15	45
3	8	112	23	4	77	19	187	113	74	92
4	5	134	25	175	72	57	196	126	67	115
4	6	129	38	200	73	18	169	129	65	98
4	7	40	27	172	33	28	162	45	20	58
4	8	123	33	187	74	30	174	121	69	103
5	6	57	39	95	61	38	68	54	25	156
5	7	116	16	184	76	33	196	115	73	115
5		36	29	156	42	22	45	44	20	152
6	7	120	33	11	73	27	172	119	66	94
6	8	31	29	49	33	30	34	40	18	152
7	8	109	26	198	75	17	182	109	72	98

Fig. 3.3. Standard ellipses and relative standard ellipses in the $x y$-plane of experiment III.

$\circlearrowleft 3-1$

0^{2-6}

$$
\begin{aligned}
& \text { SCALE OF ELLIPSES } \\
& \begin{array}{lllll}
0 & 60 & 120 & 100 & 240 \\
\text { MICRON }
\end{array}
\end{aligned}
$$

Fig. 3.4. Standard ellipses and relative standard ellipses in the $x z$-plane of experiment III.

$\sqrt{3-1}$

SCALE OF ELLIPSES $\begin{array}{lllll}0 & 60 & 120 & 180 & 240 \\ \text { MICRON }\end{array}$

Fig. 3.5. Standard ellipses and relative standard ellipses in the $y z$-plane of experiment III.

Experiment IV

Stereopair: 1887-1888
Photo scale: 1:15000
Camera: Wild RC5, $c=152.47$
Size: $23 \times 23 \mathrm{~cm}$
Distance model - projection centres: $z \simeq 307 \mathrm{~mm}$
Instrumental base: $b=178 \mathrm{~mm}$
This experiment is similar to the previous one, experiment III. The only difference is the use of a different stereopair and a different instrument. The relative orientation of this pair was repeated 20 times in a Wild A8 and after each orientation the machine coordinates of 8 pricked points were measured in forward and backward sequence. It is evident that with this instrument the relative orientations had to be made empirically.

The position of the 8 pricked points on the photographs is given in figure 3.6 ; for the position in the model see figure 3.7.

Points 2, 4, 6 and 8 are pricked on photo 1888 and $1,3,5$, and 7 on photo 1887.
The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ are computed from the 20 observations of the 8 points according to (3.12) and given in table 3.5 in square microns.

Just as in experiment III the covariance matrix $\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ can be computed by means of (3.14) taking into account that these measurements were made with an A8 and not with an A7. The elements of this matrix are given in table 3.6.

As in the preceding experiment the shape and position of the ellipsoids are represented by their projections: ellipses. The elements of these ellipses are given in table 3.7 and table 3.8 for:

$$
\left(\hat{\sigma}_{x_{O+M}^{i} x_{O+M}^{j}}\right) \text { and }\left(\sigma_{x_{O+M}^{i} x_{O+M}^{j}}\right)
$$

The graphical representation is in figures 3.8,3.9 and 3.10; thin lines refer to ($\hat{\sigma}_{x_{O+M}^{i}} x^{x_{O+M}}$) and thick lines refer to $\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)$.

Table 3.5. The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ of experiment IV.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{1}	y_{4}	h_{4}
x_{1}	2162											
y_{1}	408	530										
h_{1}	3853	1253	15194									
x_{2}	73	- 99	- 3315	1512								
y_{2}	- 389	- 280	- 1702	267	658							
h_{2}	4521	1548	13758	-2176	-1512	14624						
x_{3}	1209	- 373	112	675	589	1331	2624					
y_{3}	2605	1034	10150	-2163	-1029	9771	259	7851				
h_{3}	4248	1518	15451	-2970	-2036	14929	283	11134	17001			
x_{4}	- 531	- 890	- 5339	1582	1127	- 4343	1862	- 3690	- 5713	3550		
y_{4}	2847	482	8073	-1362	- 292	8254	1962	5837	8392	-1428	6074	
h_{4}	5082	1409	15145	-2273	-1820	15251	1568	10660	16539	-4532	9169	17188
x_{5}	2213	1169	4532	106	-1093	5903	- 120	3247	5639	-2080	2105	5866
y_{5}	-1967	- 586	- 7281	1557	759	- 7057	- 332	-- 4625	- 7283	2287	-4034	- 7337
h_{5}	3435	1240	13086	-2901	-1163	12801	473	8761	13042	-4213	7379	12990
x_{6}	353	595	- 1680	1294	- 593	- 516	- 703	- 1145	- 844	- 264	-1592	- 672
y_{6}	-2903	-1252	-10672	1990	1679	-10557	613	- 7241	-11506	4396	-4942	-10983
h_{6}	4270	1652	14024	-2497	-1578	14577	523	9517	14641	-4710	7711	14702
x_{7}	716	- 563	- 1756	1042	862	- 573	2538	- 1042	- 1809	2610	987	- 442
y_{7}	2086	536	8076	-1791	- 619	7558	765	6099	8658	-2523	5029	8506
h_{7}	4098	1256	14303	-2632	-1890	13957	656	10121	15743	-5097	7858	15506
x_{8}	1421	962	1865	654	- 923	3113	- 512	1499	3004	-1439	442	3115
y_{8}	-2237	-818	- 7878	1526	1076	- 7679	226	- 5102	- 8098	2953	-3920	- 7946
h_{8}	3544	1393	12906	-2653	-1291	12705	107	8754	13119	-4459	6939	12870

Table 3.6. The elements of the covariance matrix $\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ of the points used in experiment IV.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	y_{4}	h_{4}
x_{1}	1707.3											
y_{1}	121.6	112.1										
h_{1}	2856.0	594.0	13682.4									
x_{2}	- 58.6	-161.2	- 3780.7	1689.1								
y_{2}	9.3	- 53.3	- 650.7	- 57.5	1977.4							
h_{2}	3793.1	553.4	12752.0	-2815.5	- 603.0	13492.8						
x_{3}	1632.0	23.2	1449.8	24.0	2738.3	2509.3	5718.8					
y_{3}	1757.0	359.0	8240.5	-2239.9	- 659.4	7735.0	671.5	5853.1				
h_{3}	2676.0	547.3	12380.1	-3234.0	-1556.1	11711.8	200.1	8667.8	13219.7			
x_{4}	302.6	-186.8	- 3524.9	1271.4	2649.4	- 2400.8	4287.7	-2675.9	- 4702.3	5109.0		
y_{4}	2488.9	291.5	7503.2	-1889.8	2042.5	7793.1	5288.1	4720.8	6361.6	1648.1	8297.6	
h_{4}	3635.3	532.5	12331.5	-2696.6	- 608.0	12611.9	2557.0	8289.8	12449.4	-2676.4	8250.8	13415.3
x_{5}	1390.5	148.0	2686.0	259.2	-2377.8	3588.6	-2197.8	1778.5	3477.0	-2898.1	-886.7	3202.6
y_{5}	-1563.2	-301.5	- 7056.9	2050.2	- 134.6	- 6812.8	-1400.4	-3870.9	- 5722.5	1058.2	-4269.6	- 6012.0
h_{5}	3013.9	573.9	13472.1	-3915.0	378.1	13025.5	2884.9	7386.8	10882.2	-1843.2	8330.5	11511.5
x_{6}	- 300.5	-125.5	- 3727.3	1943.1	-2550.8	- 2895.5	-3816.9	-1642.9	- 1592.1	-2272.0	-4931.6	- 2393.3
y_{6}	-2226.6	-407.1	- 8509.9	1625.4	3064.2	- 8801.3	2584.0	-5046.0	- 8507.5	5060.7	-1303.7	- 7734.6
h_{6}	3874.6	571.0	13084.5	-2938.0	- 621.6	13724.5	2329.3	7165.8	10959.4	-2219.2	7363.0	11961.7
x_{7}	1193.9	-58.6	- 438.7	515.9	2861.8	704.6	5445.0	- 618.0	- 1732.4	4843.5	4138.0	609.1
y_{7}	1760.0	307.4	7371.4	-2044.5	372.8	7023.6	2242.1	5040.7	7275.4	-1034.3	5626.9	7653.4
h_{7}	2901.1	517.6	11809.9	-2890.6	-1163.8	11503.1	1040.1	8100.7	12288.5	-3807.5	6720.0	12218.5
x_{8}	624.1	20.8	- 390.4	1152.5	-2747.3	548.1	-3347.2	156.7	1170.7	-2921.6	-3169.2	558.4
y_{8}	-1818.8	-315.9	- 6928.1	1551.5	1324.9	- 7121.7	426.6	-3788.4	- 6093.3	2533.1	-2387.4	- 6003.3
h_{8}	3202.9	532.2	12379.3	-3230.2	21.1	12469.4	2591.1	6677.3	9990.1	-1698.2	7409.0	10814.4

| x_{5} | y_{5} | h_{5} | x_{6} | y_{6} | h_{6} | x_{7} | y_{7} | h_{7} | x_{8} | y_{8} | h_{8} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4384

-2462	3964	
4419	-6975	12888
1979	833	-1696

-5974

6255	-7553
-830	584
1878	3576

5228
3431
-3305
4967

Table 3.7. The elements of the ellipses computed from $\left(\hat{\sigma}_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ pertaining to experiment IV.

		$z=0$			$y=0$			$x=0$		
		a	b	ψ	a	b	ψ	a	b	ψ
	1	48	21	85	127	33	17	124	21	5
	2	40	24	82	122	34	190	122	22	193
	3	89	51	3	130	51	1	156	20	38
	4	82	54	173	136	47	181	150	30	33
	5	82	41	147	122	50	26	129	12	168
	6	97	52	199	126	52	197	156	27	159
	7	73	52	192	123	51	193	140	24	33
	8	78	46	164	115	52	15	132	19	165
1	2	64	34	71	61	46	79	48	42	188
1	3	83	43	179	49	35	113	80	35	91
1	4	96	56	144	83	45	106	77	43	85
1	5	78	41	180	48	41	61	75	43	95
1	6	115	59	18	67	51	72	112	53	108
1	7	75	51	163	59	40	96	69	40	97
1	8	84	51	198	57	38	59	85	46	98
2	3	105	47	16	53	41	115	105	37	87
2	4	86	42	190	44	36	110	87	33	88
2	5	86	38	136	76	42	112	56	43	113
2	6	83	37	185	43	34	66	82	35	109
2	7	85	45	11	49	40	132	86	40	88
2	8	75	36	150	59	44	109	59	44	104
3	4	54	42	56	50	33	105	55	17	64
3	5	151	75	180	88	57	122	147	58	90
3	6	178	82	2	82	60	99	178	59	96
3	7	31	16	22	24	18	14	36	12	60
3	8	154	79	188	83	59	108	153	55	91
4	5	155	79	161	112	61	113	136	61	91
4	6	162	76	186	83	60	94	159	60	97
4	7	37	31	162	39	28	155	47	15	51
4	8	150	79	169	99	64	109	139	61	89
5	6	66	33	59	58	29	118	53	21	132
5	7	138	78	170	95	63	114	128	63	93
5	8	28	24	106	29	20	74	29	16	144
6	7	158	82	197	82	63	97	158	63	99
6	8	46	20	46	37	21	131	40	20	129
7	8	138	81	179	89	63	105	133	61	93

Table 3.8. The elements of the ellipses computed from $\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ pertaining to the points used in experiment IV.

Fig. 3.8. Standard ellipses and relative standard ellipses in the $x y$-plane of experiment IV.

SLALE OF ELLIPSES
$\begin{array}{lllll}\text { O } & 60 & 120 & 180 & 240 \\ \text { MICRON }\end{array}$

Fig. 3.9. Standard ellipses and relative standard ellipses in the $x z$-plane of experiment IV.

SCALE OF ELLIPSES
$0 \quad \begin{array}{lllll}60 & 120 & 180 & 240 & \text { MICRON }\end{array}$

Fig. 3.10. Standard ellipses and relative standard ellipses in the $y z$-plane of experiment IV.

Experiment V

Stereopair: 116-118
Photo scale: 1:12000
Camera: RC5, $c=210.38 \mathrm{~mm}$
Size: $18 \times 18 \mathrm{~cm}$
Distance model - projection centres: $z \simeq 325 \mathrm{~mm}$
Instrumental base: $b=118 \mathrm{~mm}$

The relative orientation of this stereopair of normal angle photographs was repeated 20 times in a Wild A8 and after each relative orientation the machine coordinates of 8 signalized points were measured in forward and backward sequence. Thus the most important differences in comparison with experiment IV are: firstly normal angle instead of wide angle photo's and secondly signalized points instead of pricked points.

Figure 3.11 gives schematically the position of the eight points on the photographs and figure 3.12 the position of the points in the model.

Fig. 3.11. The position of the 8 signalized points on the photographs.

Fig. 3.12. The position of the points in the model.

The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ are computed from the 20 observations of each point; as in the previous experiments an observation is the mean of forward and backward. The result of the computation according to formula (3.12) is given in table 3.9. The covariance matrix $\left(\sigma_{x_{O+M}^{i} x_{O+M}^{j}}\right)$ given in table 3.10 is determined by means of formula (3.14).

The shape and position of the ellipsoids, defined by the covariance matrices, are again represented by ellipses, see figures 3.13, 3.14 and 3.15 ; thin lines refer to $\left(\hat{\sigma}_{x_{O+M}^{i} x_{O+M}^{j}}\right)$ and thick lines refer to $\left(\sigma_{x_{O+M}^{i} x_{O+M}^{j}}\right)$.

The elements of the ellipses are given in table 3.11 and table 3.12 respectively.

Table 3.9. The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x_{O+M}}^{i} x_{O+M}^{j}\right)$ of experiment V.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	y_{4}	h_{4}
\boldsymbol{x}_{1}	8396											
y_{1}	- 614	474										
h_{1}	17410	- 2029	97884									
x_{2}	2201	83	-15231	6998								
y_{2}	1436	606	801	1168	2791							
h_{2}	20402	-2223	97204	-12250	1665	98514						
x_{3}	10837	- 325	22255	3011	4335	26329	16851					
y_{3}	5571	- 468	39891	- 7643	243	38721	7257	17084				
h_{3}	15342	-2106	102827	-18857	- 128	100581	19866	43204	112362			
x_{4}	4334	326	-12060	7999	3361	- 8085	7693	- 6760	-16690	11029		
y_{4}	6799	73	29092	- 2976	3157	29977	11294	11807	29816	268	11927	
h_{4}	17568	-1819	87777	-11916	1754	88484	23430	35486	92590	- 8087	27594	80583
x_{5}	7205	-1040	20726	- 20	-1049	22559	6867	7230	19358	98	5024	18975
y_{5}	- 6365	916	-30199	3730	- 226	-30617	- 7970	-11695	-30838	2535	- 8921	-27206
h_{5}	15854	-1875	85801	-12680	991	85571	20134	34390	88226	- 9549	25520	76275
x_{6}	699	- 324	-11467	4236	-1410	- 9858	-1196	- 5549	-13351	3142	- 4598	- 9775
y_{6}	- 5656	1516	- 33211	5448	2535	-32717	- 4382	-13105	-34711	6423	- 6786	-28643
h_{6}	20553	-2210	93396	-10814	1429	94981	25661	36595	94251	- 6830	28322	84039
x_{7}	8018	33	4224	6219	4151	8605	12991	- 260	272	10301	5847	7112
y_{7}	6551	- 129	35848	- 5392	2211	35813	10317	15042	38083	- 2894	12817	33086
h_{7}	16866	-1917	96259	-15327	1244	95707	22616	39709	103540	-11941	29555	87882
x_{8}	3439	- 557	69	3077	-1058	1995	2343	- 1052	-1831	2629	- 879	742
y_{8}	- 6105	1322	-31178	4417	1670	-31206	- 5635	-12089	-32010	4663	- 7206	-27345
h_{8}	19288	-2216	91479	-11318	1073	92566	23876	35970	92506	- 7732	27236	81806

Table 3.10. The elements of the covariance matrix $\left(\begin{array}{c}\sigma_{O+M}^{i} x_{O+M}^{j}\end{array}\right)$ of the points used in experiment V.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	y_{4}	h_{4}
x_{1}	7776											
y_{1}	- 367	121										
h_{1}	21739	-2418	139571									
x_{2}	- 9	382	- 24219	7623								
y_{2}	- 112	-418	2891	224	11121							
h_{2}	23923	-2329	135186	-21040	2669	133290						
x_{3}	8156	- 913	28857	- 443	12957	30700	24175					
y_{3}	8678	- 738	53385	-9308	- 1815	52060	8126	21799				
h_{3}	22137	-2152	142739	-25463	-1761	138513	24266	57014	150655			
x_{4}	285	- 98	- 17804	6967	10300	- 15065	11806	- 9675	-23492	15718		
y_{4}	6311	- 982	40050	- 5807	10795	39164	20118	13001	37287	4893	20822	
h_{4}	20634	-1897	117077	-18323	2059	115306	26395	45822	121515	-13673	34135	101087
x_{5}	8689	- 107	25815	-1567	-10086	27890	- 2516	12831	30478	-10125	-1683	24167
y_{5}	- 6757	909	- 43445	7250	- 3523	- 42135	-11981	-15599	- 42639	2758	-14676	- 35935
h_{5}	19251	-2453	127837	-22354	6300	123529	29896	47252	127846	-12895	39558	105851
x_{6}	1304	768	- 20546	6254	-11757	-17158	-13035	-4465	- 16080	-5173	-15512	- 14415
y_{6}	- 8431	486	- 45899	8028	9788	-45101	1886	-20190	- 50970	15538	- 3419	- 38885
h_{6}	23467	-2457	133954	-20956	2799	131535	30134	50659	135332	-14608	38421	112729
x_{7}	4171	-516	4041	3789	12577	6514	18987	-1622	- 1640	15086	12990	5191
y_{7}	7799	- 895	48564	- 7837	4773	47425	14806	18034	48950	- 2371	17650	41549
h_{7}	21805	-2060	132440	-22307	264	129396	25944	52392	138671	-18834	36501	113447
x_{8}	4111	475	- 4330	3669	-11585	- 1262	- 9617	1704	367	-7136	-11021	- 794
y_{8}	-7815	627	-- 44820	7726	5254	- 43850	- 2785	-18526	- 47872	11152	-7185	- 37665
h_{8}	22107	-2472	132473	-21543	4079	129379	30243	49687	133323	-14032	39035	110849

| h_{4} | \bar{x}_{5} | \bar{y}_{6} | h_{5} | x_{6} | y_{6} | h_{6} | x_{7} | y_{7} | h_{7} | x_{8} | y_{8} | h_{8} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```
80583
18975 8865
-27206 - 7281 9958
76275 18886 -27090 76600
-9775 1223 2935 - 9889 450
-28643 - 9358 10684 -29430 1795 14649
84039 [-23153 --29897 
7112 
```

| | | y_{5} | y_{5} | h_{5} | x_{6} | y_{6} | h_{6} | x_{7} | y_{7} | h_{7} | x_{8} | y_{8} | h_{8} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

101087
$24167 \quad 19015$
$\begin{array}{rrrr}-35935 & -5716 & 14506 & \\ 105851 & 19917 & -41322 & 119906\end{array}$
$\begin{array}{rrrrrr}105851 & 19917 & -41322 & 119906 & & \\ -14415 & 10824 & 9142 & -23328 & 18358 & \\ -38885 & -19611 & 11983 & -38911 & -4814 & 25950\end{array}$
$\begin{array}{rrrrrrr}112729 & 27436 & -42422 & 123851 & -17769 & -45093 & 131882\end{array}$
$\begin{array}{rrrrrrr}5191 & -7317 & -4403 & 7468 & -9692 & 10106 & 6509 \\ 5703 & 18356\end{array}$
$\begin{array}{rr}41549 & 5703 \\ 113447 & 27746\end{array}$
$\begin{array}{r}113447 \\ -\quad 794 \\ \hline\end{array}$

-37665	-14816

$110849 \quad 24890 \quad-42244$

Table 3.11. The elements of the ellipses computed from $\left(\hat{\sigma}_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ pertaining to experiment V.

Table 3.12. The elements of the ellipses computed from $\left(\sigma_{x_{O+M}^{i}} x_{O+M}^{j}\right)$ pertaining to the points used in
experiment V .

		$z=0$			$y=0$			$x=0$		
		a	b	ψ	a	b	ψ	a	b	ψ
	1	88	10	103	378	65	10	374	9	199
	2	106	87	4	370	65	190	365	105	1
	3	177	122	55	394	140	12	415	14	23
	4	154	113	35	321	117	190	337	91	22
	5	151	103	138	352	123	12	366	15	179
	6	168	127	171	367	125	190	385	97	178
	7	157	112	49	359	135	1	382	42	22
	8	151	108	156	358	127	198	378	60	179
1	2	124	110	108	124	49	95	110	50	102
1	3	153	125	200	133	53	124	155	64	89
1	4	157	146	150	156	71	82	159	65	121
1	5	114	96	14	105	47	128	115	58	86
1	6	164	147	40	154	59	97	159	59	98
1	7	146	131	173	135	56	109	145	56	109
1	8	134	122	37	126	53	101	132	50	90
2	3	199	172	38	181	82	105	198	65	82
2	4	103	95	29	99	59	114	112	39	130
2	5	185	168	166	178	66	116	182	76	107
2	6	133	115	187	116	45	104	132	46	101
2	7	145	132	33	138	51	113	143	57	95
2	8	140	126	172	130	48	111	137	52	101
3	4	138	118	48	145	63	65	147	61	65
3	5	260	219	5	234	91	125	264	112	87
3	6	300	259	17	264	104	108	300	100	90
3	7	74	59	52	75	33	68	74	31	67
3	8	279	243	13	249	100	113	282	99	88
4	5	255	234	188	236	94	107	258	85	112
4	6	232	211	0	211	86	104	236	72	114
4	7	66	61	36	74	39	57	78	34	58
4	8	231	215	194	216	86	105	235	75	113
5	6	128	125	195	127	61	110	135	48	122
5	7	254	228	195	236	81	118	254	103	100
5	8	87	80	167	83	44	110	90	35	123
6	7	263	236	8	239	84	109	263	89	99
6	8	47	42	45	45	28	116	49	22	129
7	8	252	230	2	234	81	112	252	91	99

SCALE OF ELLIPSES
$0 \quad 180 \quad 360 \quad 540 \quad 720$ MICRON

Fig. 3.13. Standard ellipses and relative standard ellipses in the $x y$-plane of experiment V.

GD2-6

SCALE OF ELLIPSES
$\begin{array}{lllll}180 & 360 & 540 & 720 \\ \text { MICRON }\end{array}$

Fig. 3.14. Standard ellipses and relative standard ellipses in the $x z$-plane of experiment V .

$\sum^{-1}-2$ $04-2$

$$
\Omega_{2-6}
$$

$$
\begin{aligned}
& \text { SCALE OF ELLIPSES } \\
& \begin{array}{lllll}
\hline 0 & 180 & 360 & 540 & 720 \mathrm{MICRON}
\end{array}
\end{aligned}
$$

Fig. 3.15. Standard ellipses and relative standard ellipses in the $y z$-plane of experiment V.

IV ERRORS DUE TO THE INNER ORIENTATION

1 General description

The third group of observation errors which influence the accuracy of the machine coordinates are the errors in inner orientation. The problem of inner orientation has three variables for each camera; the translations of the projection centre in three mutually perpendicular directions, the elements of inner orientation:

$$
\left.\begin{array}{l}
\text { left camera : } \Delta x^{\prime}, \Delta y^{\prime} \text { and } \Delta c^{\prime} \tag{4.1}\\
\text { right camera: } \Delta x^{\prime \prime}, \Delta y^{\prime \prime} \text { and } \Delta c^{\prime \prime}
\end{array}\right\}
$$

In appendix 3 the differential formulae are derived which give the relation between the differentials of the machine coordinates of a model point, $\Delta x, \Delta y$ and Δh, and the elements of inner orientation, as given in (4.1).

Pricked points and signalized points have been distinguished and the formulae are also here fitting to measurements with a Wild A7 and A8, in order to be able to compare the practical experiments with the mathematical description.

The formulae of appendix 3 can be summarized as follows:

$$
\left(\begin{array}{l}
\Delta x_{I} \tag{4.2}\\
\Delta y_{I} \\
\Delta y_{I L} \\
\Delta y_{I R} \\
\Delta h_{I}
\end{array}\right)=\left(A_{I}^{i}\right)\left(\begin{array}{l}
\Delta x^{\prime} \\
\Delta x^{\prime \prime} \\
\Delta y^{\prime} \\
\Delta y^{\prime \prime} \\
\Delta c^{\prime} \\
\Delta c^{\prime \prime}
\end{array}\right) .
$$

The elements of matrix $\left(A_{I}^{i}\right)$ are functions of:
x, y, z : the coordinates of the concerning model point with the origin in the middle of the base; see figure 3.1.
b : the instrumental base
z_{0} : the mean z of the model
c : the principal distance
In formula (4.2) three cases are to be distinguished for the y-coordinate:

- signalized points
- pricked points on left photo
- pricked points on right photo

The differentials of the x - and h-coordinate are the same for the different cases.
With simpler denotations:

$$
\left(\begin{array}{l}
\Delta x_{I} \tag{4.3}\\
\Delta y_{I} \\
\Delta y_{I L} \\
\Delta y_{I R} \\
\Delta h_{I}
\end{array}\right) \equiv\left(\Delta x_{I}^{i}\right) \quad\left(\begin{array}{l}
\Delta x^{\prime} \\
\Delta x^{\prime \prime} \\
\Delta y^{\prime} \\
\Delta y^{\prime \prime} \\
\Delta c^{\prime} \\
\Delta c^{\prime \prime}
\end{array}\right) \equiv(\Delta I)
$$

(4.2) can be written:

$$
\begin{equation*}
\left(\Delta x_{I}^{i}\right)=\left(A_{I}^{i}\right)(\Delta I) \tag{4.4}
\end{equation*}
$$

Application of the law of the propagation of errors to (4.4) gives:

$$
\begin{equation*}
\left(\sigma_{x_{I}^{i} x_{I}^{j}}\right)=\left(A_{I}^{i}\right)\left(\sigma_{I}\right)^{2}\left(A_{I}^{j}\right)^{T} \tag{4.5}
\end{equation*}
$$

$\left(\sigma_{I}^{2}\right)$, the covariance matrix of the observations is under the assumption that there is no correlation:

$$
\left(\sigma_{I}\right)^{2}=\left(\begin{array}{cccccc}
\sigma_{x^{\prime}}^{2} & & & & & \tag{4.6}\\
& \sigma_{x^{\prime \prime}}^{2} & & & 0 & \\
& & \sigma_{y^{\prime}}^{2} & & & \\
& & & \sigma_{y^{\prime \prime}}^{2} & & \\
0 & & & & & \sigma_{c^{\prime}}^{2} \\
\\
& & & & \sigma_{c^{\prime \prime}}^{2}
\end{array}\right)
$$

From the investigation made by Zorn 1954-1955 [4] the following standard deviations of the inner orientation were determined for fiducial marks of Wild camera's and plate carriers of Wild instruments:

$$
\left.\begin{array}{l}
\sigma_{x^{\prime}}=\sigma_{x^{\prime \prime}}=\sigma_{y^{\prime}}=\sigma_{y^{\prime \prime}}=0.020 \mathrm{~mm} \tag{4.7}\\
\sigma_{c^{\prime}}=\sigma_{c^{\prime \prime}}=0.003 \mathrm{~mm}
\end{array}\right\}
$$

The covariance matrix of the machine coordinates (4.5) can be computed with (4.7).

2 The experiments

Three experiments were executed, experiments VI, VII and VIII, in order to evaluate the covariance matrix $\left(\sigma_{x^{i} x^{j}}\right)$ of (4.5).

Experiment VI

Stereopair: 1887-1888
Photo scale: 1:15000
Camera: Wild RC5, $c=152.47 \mathrm{~mm}$
Size: $23 \times 23 \mathrm{~cm}$
Distance model - projection centres: $z \simeq \mathbf{4 3 0} \mathrm{~mm}$
Instrumental base: $b=250 \mathrm{~mm}$

Fig. 4.1. The position of the 8 pricked points on the photographs.

Fig. 4.2. The position of the points in the model.

Both the inner orientation and the relative orientation of this stereopair in the Wild A7 were repeated 20 times. The relative orientation is done numerically by measuring the parallaxes in six points. After each orientation the machine coordinates of 8 pricked points are measured in forward and backward sequence. Figure 4.1 gives the position of the 8 pricked points on the two photographs and figure 4.2 gives the position in the model. Points 1, 3, 5 and 7 are pricked on the left photo 1887 and points $2,4,6$ and 8 on photo 1888 .

Similar to the previous experiments an estimate for the covariance matrix $\left(\hat{\sigma}_{x^{i} x^{j}}\right)$ is computed according to formulae (3.10) to (3.12). The elements of this matrix are given in table 4.1 in square microns.

The covariance matrix of these machine coordinates can be computed by addition of the inner orientation (4.5), the relative orientation (3.8), and the measuring of a model point (2.4). The latter has to be multiplied by $\frac{1}{2}$ because of the measurements being made in forward and backward sequence. Simple addition can be applied indeed as the three groups of observations referring to the inner orientation, the relative orientation and the measuring of a point are mutually correlation free.

$$
\begin{equation*}
\left(\sigma_{x^{i} x^{j}}\right)=\left(\sigma_{x_{I}^{i} x_{I}^{j}}\right)+\left(\sigma_{x_{O}^{i} x_{O}^{j}}\right)+\frac{1}{2}\left(\sigma_{x_{M}^{i} x_{M}^{j}}\right) \tag{4.8}
\end{equation*}
$$

It follows from (4.5), (3.8) and (2.4) that:

$$
\begin{equation*}
\left(\sigma_{x^{i} x^{j}}\right)=\left(A_{I}^{i}\right)\left(\sigma_{I}^{2}\right)\left(A_{I}^{j}\right)^{T}+\left(A_{O}^{i}\right)\left(\sigma_{O O}\right)\left(A_{o}^{j}\right)^{T}+\frac{1}{2}\left(A_{M}^{i}\right)\left(\sigma_{M}^{2}\right)\left(A_{M}^{j}\right)^{T} \ldots \ldots \tag{4.9}
\end{equation*}
$$

This covariance matrix $\left(\sigma_{x^{i} x^{j}}\right)$ is given in table 4.2 in square microns.
Sub-matrices of

$$
\left(\hat{\sigma}_{x^{i} x^{j}}\right) \text { and }\left(\sigma_{x^{i} x^{j}}\right)
$$

represent point standard ellipsoids and relative ellipsoids. As in the preceding chapters, the shape and position of the ellipsoids are represented by projections, ellipses. The elements of these ellipses are given in tables 4.3 and 4.4. The graphical presentation is in figures 4.3, 4.4 and 4.5 ; thin lines refer to $\left(\hat{\sigma}_{x^{i} x^{j}}\right)$ and thick lines refer to $\left(\sigma_{x^{i} x^{j}}\right)$.

Table 4.1. The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x^{i} x^{j}}\right)$ of experiment VI.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	\boldsymbol{x}_{3}	y_{3}	h_{3}	x_{4}	y_{4}	h_{4}
x_{1}	3205											
y_{1}	- 551	2484										
h_{1}	6000	16	44341									
x_{2}	783	- 642	- 12196	6073								
y_{2}	- 394	2840	673	- 669	4156							
h_{2}	6029	63	43716	-12103	831	43767						
x_{3}	4055	207	10250	87	1236	10036	6962					
y_{3}	3727	3019	29142	- 8061	4354	28737	8135	24530				
h_{3}	6050	1040	41336	-10737	2401	40718	11066	30184	40990			
x_{4}	1274	- 407	- 8914	5215	- 15	-8801	1752	- 5698	- 7641	5609		
y_{4}	3111	3383	26366	- 7675	5357	26243	7711	22363	27055	- 5184	22191	
h_{4}	5695	1011	40102	-10607	2245	39490	10490	28619	38943	- 7597	26228	37574
χ_{5}	3869	- 873	10398	- 508	-1317	10550	4032	5902	9647	- 447	4577	9229
y_{5}	-3301	2570	-23800	6707	2873	-23752	- 4401	-11642	-20183	4922	-10177	-19856
h_{5}	5157	- 385	45364	-13970	- 398	45393	8321	27919	40499	-10327	25308	39690
x_{6}	374	- 780	-15854	7125	-1209	-15756	- 1408	-10612	-14135	5251	-10357	-13953
y_{6}	-4414	2896	-28025	7479	4268	-28010	- 4612	-13812	-23750	6175	-10857	- 23040
h_{6}	6073	- 261	47581	-14039	- 352	47787	9376	29649	42822	-10450	26717	41793
x_{7}	3010	- 2	3608	1784	841	3463	5110	3254	4515	3101	3230	4154
y_{7}	3690	3421	27211	- 7335	5074	26657	8463	23682	28619	- 4879	22067	27198
h_{7}	5699	1079	38820	-10110	2625	38118	10672	28385	38490	- 7206	25906	36756
x_{8}	2205	-836	- 2292	3215	-1217	- 2178	1510	- 1947	- 1684	2323	- 2538	- 1893
y_{8}	-3950	3039	-26624	7346	4327	--26526	- 4262	-12565	-22136	5887	- 9875	-21674
h_{8}	5512	-474	45420	-13692	--578	45553	8446	27920	40601	-10411	25163	39745

Table 4.2. The elements of the covariance matrix $\left(\sigma_{x^{i} x^{j}}\right)$ of the points used in experiment VI.

	x_{1}	y_{1}	h_{1}	χ_{2}	y_{2}	h_{2}	χ_{3}	y_{3}	h_{3}	x_{4}	y_{4}	h_{4}
x_{1}	2500.3											
y_{1}	23.7	3330.6										
h_{1}	2144.7	374.5	33990.5									
\boldsymbol{x}_{2}	1344.2	- 133.9	-12129.6	6551.6								
y_{2}	- 29.5	3164.9	- 453.2	164.0	3765.9							
h_{2}	2351.9	351.8	31939.0	-11435.3	-438.0	31218.7						
x_{3}	2516.1	47.6	4312.4	527.0	- 60.9	4371.6	2814.6					
y_{3}	1403.2	3337.3	22800.8	- 8309.7	2849.5	21636.2	2788.7	20201.4				
h_{3}	2013.6	361.2	32789.8	-11924.8	- 354.9	31118.4	4001.8	24424.2	35119.4			
x_{4}	1437.8	- 113.4	-10267.7	5748.7	287.4	- 9625.1	765.3	- 7644.2	-10969.8	5600.7		
y_{4}	1403.4	3400.5	20880.0	- 7683.8	2810.7	20161.4	2709.8	17742.5	21016.5	- 6798.5	17419.7	
h_{4}	2280.0	339.3	30802.5	--10989.1	- 708.4	29554.5	4176.9	22047.4	31707.6	- 9982.2	20384.5	30464.1
x_{5}	2684.5	62.3	5644.5	121.8	- 76.7	5647.0	2993.4	3750.3	5381.9	410.4	3558.0	5451.7
y_{5}	-1119.6	3001.2	-18385.8	6751.1	3505.9	-17515.6	-2320.1	- 8657.3	-16915.4	5353.0	- 7976.5	-16155.9
h_{5}	2157.3	391.1	35499.8	-13008.7	- 558.8	33822.8	4470.4	22714.8	32666.5	-10314.8	21565.8	31201.9
x_{6}	1314.6	- 145.1	-13142.8	6907.5	- 13.4	-12457.0	406.8	- 8405.2	-12061.9	5691.1	- 7969.1	-11122.3
y_{6}	-1371.4	2934.2	-21351.4	7936.4	3404.9	-20646.1	-2740.5	-11135.1	-20424.1	6441.7	-10241.0	-19344.6
h_{6}	2434.5	365.3	33158.4	-11930.9	-108.5	31959.5	4576.2	21410.5	70395.7	- 9280.8	20301.3	29264.2
x_{7}	2123.3	-14.5	- 1316.3	2549.0	31.1	- 1000.4	2006.5	- 1310.2	- 1880.4	2625.1	- 935.9	- 1302.0
y_{7}	1511.0	3335.8	21658.5	- 7772.7	2771.5	20656.4	2837.6	18851.5	22712.1	-7146.3	17118.3	21061.4
h_{7}	2185.2	345.8	31393.3	-11241.2	- 486.5	29943.8	4103.7	22889.8	32917.0	-10335.3	20261.6	30528.5
x_{8}	2036.8	- 37.9	- 3430.5	3392.8	16.5	- 3060.0	1754.7	- 2050.8	- 2942.9	2957.4	- 1970.7	- 2519.3
y_{8}	-1446.1	2955.6	-19409.7	7024.8	3437.8	-18786.0	-2708.0	- 9328.6	-17831.4	5446.0	- 8740.9	-17164.0
h_{8}	2401.3	366.8	33298.4	-11949.2	-338.2	31957.0	4564.6	21241.1	30552.1	- 9298.0	20242.8	29260.1

h_{4}	x_{5}	y_{5}	h_{5}	x_{6}	y_{6}	h_{6}	x_{7}	y_{7}	h_{7}	x_{8}	y_{8}	h_{8}

```
30464.1
    5451.7 3370.3
-16155.9 - 3022.5 14159.6
31201.9 5824.1 -20696.4 39952.1
-11122.3 - 15.0 7679.0 -14796.0 7889.6
-19344.6 -3577.5 15133.1 -22963.9 8896.3 17961.1
29264.2 5860.5 -18840.1 36376.4 -13773.6 -22288.0
-1302.0 2020.4 600.8 -- 1157.8 2444.8 7l7.1 - 727.5 2373.4
21061.4 3743.5 - 8092.2 21647.1 - 7840.0 -10425.4 20403.6 -1131.4 
30528.5 5413.9
-2519.3 1712.7 2199.4 - 4237.9 3753.9 
-17164.0
29260.1 5843.2 -19111.0
```

Table 4.3 The elements of the ellipses computed from $\left(\hat{\sigma}_{x^{i} x^{j}}\right)$ pertaining to experiment VI.

Table 4.4. The elements of the ellipses computed from $\left(\sigma_{x^{i} x^{j}}\right)$ pertaining to the points used in experi-
ment VI. ment VI.

		$z=0$			$y=0$			$x=0$		
		a	b	ψ	a	b	ψ	a	b	ψ
	1	58	50	2	185	49	4	184	58	1
	2	81	61	96	189	45	176	177	61	199
	3	144	49	10	189	48	8	231	46	41
	4	143	50	173	184	46	178	213	50	40
	5	122	51	184	202	50	10	227	52	168
	6	152	52	34	202	46	175	225	52	162
	7	136	48	196	179	48	196	220	46	41
	8	127	50	10	189	50	193	220	51	164
1	2	80	27	96	80	36	94	37	28	4
1	3	130	13	5	59	17	196	131	58	92
1	4	137	20	166	72	53	96	118	53	103
1	5	109	13	189	54	22	4	110	48	116
1	6	151	22	39	89	52	111	124	53	105
1	7	125	13	189	56	24	191	123	56	98
1	8	119	17	17	53	35	187	115	51	108
2	3	160	30	37	91	64	98	137	60	88
2	4	125	25	3	54	19	178	125	51	98
2	5	141	27	152	101	55	84	110	49	122
2	6	123	23	5	53	18	177	123	47	110
2	7	140	30	26	67	52	140	130	56	93
2	8	121	25	175	52	51	31	114	48	112
3	4	84	44	88	84	45	89	62	20	50
3	5	227	12	198	99	14	200	228	98	103
3	6	263	33	23	108	83	142	246	93	99
3	7	35	30	74	37	32	45	44	15	45
3	8	237	21	11	98	44	190	234	97	100
4	5	235	26	176	94	86	53	220	85	109
4	6	237	43	4	94	21	170	237	83	104
4	7	52	40	91	52	37	99	51	19	54
4	8	228	34	189	89	45	181	226	84	105
5	6	108	39	89	107	48	93	58	30	157
5	7	224	15	189	96	41	199	222	93	106
5	8	53	34	90	56	35	73	47	23	157
6	7	247	38	17	101	55	162	239	89	101
6	8	57	32	88	57	37	98	45	20	154
7	8	228	26	3	94	19	186	228	92	103

Fig. 4.3. Standard ellipses and relative standard ellipses in the $x y$-plane of experiment VI.

SCALE OF ELLIPSES
$0 \quad 100 \quad 200 \quad 300 \quad 400$ MICRON

Fig. 4.4. Standard ellipses and relative standard ellipses in the $x z$-plane of experiment VI.

SCALE OF ELLIPSES
$0 \begin{array}{lllll}\text { S } & 100 & 200 & 300 & 400\end{array}$

Fig. 4.5. Standard ellipses and relative standard ellipses in the $y z$-plane of experiment VI.

Experiment VII

Stereopair: 147-149
Photo scale: 1:5000
Camera: Wild RC $5, c=152.15 \mathrm{~mm}$
Size: $23 \times 23 \mathrm{~cm}$
Distance model - projection centres: $z \simeq 290 \mathrm{~mm}$
Instrumental base: $b=200 \mathrm{~mm}$
This experiment is similar to the previous one, with two differences, firstly a different stereopair and secondly the Wild A8 is used instead of the Wild A7. After each inner orientation and empirical relative orientation, the coordinates of 8 pricked points are measured in forward and backward sequence. The position of the 8 points is given in figures 4.6 and 4.7.

Fig. 4.6. The position of the 8 pricked points on the photograph.

Fig. 4.7. The position of the points in the model.

The elements of the estimated covariance matrix $\left({ }^{(} x^{i} x^{j}\right)$ are computed from the 20 observations of each model point according to (3.12) and given in table 4.5.
The covariance matrix $\left(\sigma_{x^{i} x^{j}}\right)$, computed according to (4.9), is given in table 4.6.
The form of the ellipsoids, given by the covariance matrices, are again presented by ellipses, see figure 4.8, 4.9 and 4.10 ; thin lines refer to $\left(\hat{\sigma}_{x^{i} x^{j}}\right)$ and thick lines refer to $\left(\sigma_{x^{i} x^{j}}\right)$. The elements of the ellipses are given in tables 4.7 and 4.8 respectively.

Table 4.5. The elements of the estimated covariance matrix $\left(\hat{\sigma}^{x^{i} x^{j}}\right)$ of experiment VII.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	y_{4}	h_{4}
x_{1}	8675											
y_{1}	3376	8087										
h_{1}	7049	2809	30672									
x_{2}	2999	1847	-10967	8568								
y_{2}	1170	162	36	1353	3691							
h_{2}	12259	4193	29593	- 6761	- 79	34783						
x_{3}	5797	- 4266	990	3820	4713	4904	14451					
y_{3}	6039	7495	17303	- 4088	194	17064	- 2651	15396				
h_{3}	6314	2645	26509	- 9578	-1292	25682	- 352	16374	25125			
x_{4}	2634	- 5779	- 8925	6868	5384	- 5302	14459	- 9387	-10070	18510		
y_{4}	8335	3109	13701	- 3405	3197	20989	6550	12155	16136	149	16563	
h_{4}	9936	3488	26281	- 6905	- 574	29578	3223	16516	24748	- 6771	18922	27604
x_{5}	10604	10333	9794	3311	-1986	16351	-- 2333	12266	9641	- 7296	8154	13352
y_{5}	- 1234	7084	-15513	8120	- 371	-13877	- 6284	- 1892	-12436	- 2281	-8290	-11787
h_{5}	8205	2818	33733	-11708	415	33397	2004	17788	27823	- 8204	20514	28138
x_{6}	4493	8947	- 9646	9116	-2663	- 4275	- 5570	2351	- 6282	- 4586	- 4643	- 3683
y_{6}	- 6022	- 1987	-20316	6936	3718	-23117	1933	-10307	-17985	9009	-10160	-19317
h_{7}	12879	4321	33179	- 8083	608	38760	5700	17691	27156	- 4756	23081	31455
x_{7}	5155	-- 4439	- 1378	4701	5047	2603	14551	- 4268	- 2902	15625	5138	708
y_{7}	5753	5946	16694	- 4121	830	16435	- 843	13930	15575	- 7201	12317	15958
h_{7}	7092	2579	25870	- 8808	-1382	26217	374	15882	24543	- 9291	16321	25086
x_{8}	8210	10478	0	6720	-2628	6693	- 4347	7865	1811	- 6504	1860	5356
y_{8}	- 5102	2107	-19492	7278	1421	-21147	- 3357	- 6838	-16180	2559	-10663	-17219
h_{8}	11229	3646	33340	- 9321	662	36282	4678	17860	27469	- 5662	22020	29927

Table 4.6. The elements of the covariance matrix $\left(\sigma_{x^{i} x^{j}}\right)$ of the points used in experiment VII.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	y_{4}	h_{4}
x_{1}	2478.3											
y_{1}	38.2	1412.3										
h_{1}	3186.7	328.8	13289.1									
${ }_{2}$	288.1	- 98.7	- 4385.1	2689.9								
y_{2}	113.9	187.7	- 119.7	- 10.8	3307.4							
h_{2}	4012.9	316.4	12700.8	-3601.7	- 81.4	13420.2						
x_{3}	2151.1	-1036.3	1160.2	899.4	3645.6	2081.9	7366.5					
y_{3}	1999.4	1229.2	7921.6	-2606.4	517.9	7704.8	470.1	6132.2				
h_{3}	3296.2	274.5	12752.4	-4095.1	-891.6	12524.9	392.0	8134.6	13462.4			
x_{4}	689.2	-1219.2	- 3884.4	2452.6	3714.0	- 3009.2	6686.0	-2792.9	- 4763.4	8210.2		
y_{4}	2779.7	536.0	8378.0	-2474.1	3686.3	8743.0	5641.2	6065.3	7603.1	2112.5	10681.3	
h_{4}	3961.6	323.1	12756.4	-3661.1	-162.3	13212.1	1997.7	8145.1	13152.7	-3346.8	9130.9	13939.8
x_{5}	2321.7	1011.0	3527.5	223.7	-3039.3	4293.7	-2690.4	2403.2	4305.0	-4268.0	- 790.3	4163.2
y_{5}	-1836.0	1147.9	- 7212.3	2432.5	- 441.2	- 6993.7	-2594.7	-3185.6	- 6511.7	12.5	- 5005.9	- 6715.3
h_{5}	3179.8	379.6	13024.3	-4401.5	895.2	12609.7	2358.2	7601.7	11735.1	-2442.7	9323.1	12112.9
x_{6}	208.4	952.7	- 3918.0	2577.5	-3415.8	- 3182.8	-4238.1	-1865.2	- 2567.9	-3004.4	- 6011.0	- 2974.4
y_{6}	-2276.3	94.7	- 7863.3	2215.9	3766.4	- 8141.7	3050.1	-3864.7	- 8446.2	6062.8	- 716.2	- 7872.4
h_{6}	3897.6	303.1	12424.2	-3557.1	- 29.2	12961.2	1998.4	7170.3	11728.7	-2753.7	8240.8	12375.1
x_{7}	1726.0	-1087.3	- 407.7	1399.9	3734.1	530.8	7240.9	- 521.5	- 1210.5	7254.7	4654.2	361.11
y_{7}	2061.7	1000.8	7724.2	-2530.9	1411.9	7577.0	1871.8	5851.5	7644.6	-1370.4	7073.8	8039.4
h_{7}	3446.6	283.6	12519.6	-3892.6	- 667.1	12503.6	885.5	7931.6	13032.7	-4272.6	7886.2	13114.0
x_{8}	1277.2	1073.2	- 283.1	1482.6	-3750.7	532.6	-4170.3	231.1	962.2	-4324.9	- 4060.3	575.2
y_{8}	-2189.8	624.6	-7474.7	2241.1	1724.6	- 7646.2	163.1	-3413.6	- 7346.9	2946.7	- 2720.5	- 7206.7
h_{8}	3398.1	330.9	12124.5	-3808.5	519.7	12187.8	2218.2	7014.5	11078.3	-2329.9	8466.5	11595.0

h_{4}	x_{5}	y_{5}	h_{5}	x_{6}	y_{6}	h_{6}	x_{7}	y_{7}	h_{7}	x_{8}	y_{8}	h_{8}

```
13939.8
    4163.2 6480.7
- 6715.3-351.0 5788.0
    12112.9 2553.6 -7787.9 14091.4
-2974.4 4630.5 4140.7 - 5276.7 7473.1
-7872.4 --6191.6 3885.3 - 6770.8 -1880.5 9746.7
    12375.1 4272.7 -7113.4 12821.9 -3355.7 -8313.7 
    361.11 -3224.4 --1802.1 
    8039.4 1289.8
    13114.0 4203.3 -6444.3 11616.5 -2630.1 
        575.2 
:-7206.7 - 3489.6 4790.5 - - 7269.3 1052.5 
    11595.0
```

Table 4.7. The elements of the ellipses computed from $\left(\hat{\sigma}_{x^{i} x^{j}}\right)$ pertaining to experiment VII.

		$z=0$			$y=z$			$x=0$		
		a	b	ψ	a	b	ψ	a	b	ψ
	1	108	71	53	181	81	18	176	88	8
	2	94	58	84	191	83	185	187	61	200
	3	133	111	156	159	120	198	193	56	41
	4	136	129	95	177	122	169	204	49	41
	5	158	119	63	209	127	29	221	85	167
	6	151	135	58	216	138	183	248	59	164
	7	129	107	137	158	120	186	187	49	39
	8	149	129	75	202	145	10	235	50	164
1	2	114	98	48	107	78	112	109	77	117
1	3	109	90	119	108	52	104	93	52	108
1	4	149	135	84	148	75	103	136	75	102
1	5	108	95	181	96	39	100	110	31	115
1	6	180	142	14	147	91	116	185	84	118
1	7	116	96	105	116	57	105	97	56	113
1	8	146	117	200	117	65	107	151	54	117
2	3	140	120	173	127	88	120	137	92	97
2	4	119	114	166	116	55	108	119	55	109
2	5	154	148	93	154	80	101	152	71	117
2	6	128	106	190	108	43	109	131	34	115
2	7	129	112	157	123	77	120	123	82	99
2	8	138	126	168	129	50	104	138	44	113
3	4	88	63	6	64	56	119	94	45	72
3	5	207	186	164	202	88	102	196	79	114
3	6	241	211	174	219	119	113	241	116	114
3	7	23	18	20	21	18	196	26	18	57
3	8	225	201	156	212	101	107	221	92	115
4	5	234	225	111	234	98	101	228	91	112
4	6	239	220	185	222	94	108	243	84	114
4	7	70	47	196	50	40	134	76	31	72
4	8	238	227	165	231	89	105	239	79	112
5	6	137	109	33	118	76	112	136	67	122
5	7	210	191	120	208	89	102	198	78	116
5	8	77	58	16	60	46	101	81	36	126
6	7	232	210	168	219	111	113	232	107	115
6	8	66	57	42	62	40	116	65	38	122
7	8	222	203	145	215	97	107	217	86	116

Table 4.8. The elements of the ellipses computed from $\left(\sigma_{x^{i} x^{j}}\right)$ pertaining to the points used in experiment VII.

5CALE OF ELLIPSES
$0 \quad 100 \quad 200 \quad 300 \quad 400$ MICRON

Fig. 4.8. Standard ellipses and relative standard ellipses in the $x y$-plane of experiment VII.

5CALE OF ELLIPSES
$0 \quad 100 \quad 200 \quad 300 \quad 400$ MICRON

Fig. 4.9. Standard ellipses and relative standard ellipses in the $x z$-plane of experiment VII.

SCALE OF ELLIPSES
$0 \quad 100 \quad 200 \quad 300 \quad 400 \mathrm{MICRON}$
Fig. 4.10. Standard ellipses and relative standard ellipses in the $y z$-plane of experiment VII.

Experiment VIII

Stereopair: 116-118
Photo scale: 1:12000
Camera: Wild RC5, $c=210.38 \mathrm{~mm}$
Size: $18 \times 18 \mathrm{~cm}$
Distance model - projection centres: $z \simeq 460 \mathrm{~mm}$
Instrumental base: $b=170 \mathrm{~mm}$
This experiment differs from the previous ones by the following items:

- normal angle photographs
- signalized points
- numerical relative orientation with the Wild A7.

Both inner and relative orientation are repeated 20 times and after each orientation the coordinates of the 8 signalized points are measured in forward and backward sequence. Figures 4.11 and 4.12 give schematically the position of the points.

Fig. 4.11. The position of the 8 signalized points on the photographs.

Fig. 4.12. The position of the points in the model.

The estimated covariance matrix and the covariance matrix,

$$
\left(\hat{\sigma}_{x^{i} x^{j}}\right) \text { and }\left(\sigma_{x^{i} x^{j}}\right)
$$

computed according to (3.12) and (4.9) are given in table 4.9 respectively in table 4.10 . As in the preceding experiments the shape and position of the ellipsoids are represented by ellipses, see figures 4.13, 4.14 and 4.15 ; thin lines refer to $\left(\hat{\sigma}_{x^{i} x^{j}}\right)$ thick lines refer to $\left(\sigma_{x^{i} x^{j}}\right)$.

The elements of the ellipses are given in tables 4.11 and 4.12 respectively.

Table 4.9. The elements of the estimated covariance matrix $\left(\hat{\sigma}_{x^{i} x^{j}}\right)$ of experiment VIII.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	y_{4}	h_{4}
x_{1}	843											
y_{1}	463	1638										
h_{1}	-6009	-7684	141259									
x_{2}	2660	2782	-48976	17625								
y_{2}	589	1106	- 1624	1120	1480							
h_{2}	-5450	-6901	126467	-44112	-1693	114138						
x_{3}	930	96	- 2857	1820	858	- 2676	1602					
y_{3}	-1869	-1119	43376	-15159	379	39096	-1131	14933				
h_{3}	-6136	-7480	133041	-46810	-2118	119729	-3079	41592	128709			
x_{4}	2331	1893	-34312	12860	1305	-31051	2183	-10908	-33372	9985		
y_{4}	-1181	- 693	34124	-11618	887	30628	- 256	11788	32424	- 7944	9768	
h_{4}	-4819	-5597	105588	-37171	-1371	95268	-2372	33342	101985	-26481	26111	81207
x_{5}	112	46	1517	- 354	- 70	1334	- 132	564	1168	- 350	259	897
y_{5}	2595	4613	-60751	20979	1656	-54203	997	-17016	--56557	14427	-13276	-44558
h_{5}	-5845	-7945	141305	-48651	-1754	126135	-2806	42462	130884	-33806	33352	103932
x_{6}	2282	3052	-52956	18309	455	-47219	804	-15896	-49422	12552	-12760	-39159
y_{6}	2791	4128	-57082	20105	1951	-51014	1831	-16494	-53627	14457	-12430	-42165
h_{6}	-5221	-7149	132976	-45591	--1216	118831	-2305	40556	123592	-31609	31995	98085
x_{7}	1775	1069	-19277	7672	1209	-17473	2069	- 6290	-19120	6434	- 4190	-15047
y_{7}	-1600	- 868	40807	-14111	717	36654	- 779	14139	38898	- 9971	11406	31345
h_{7}	-5728	-6471	122494	-43162	-1659	110219	-2972	38720	118437	-30844	30221	94048
x_{8}	1640	2134	-34603	12109	387	-30782	585	-10270	-32100	8310	-8276	-25665
y_{8}	2632	4168	-56595	19789	1768	-50515	1438	-16147	-53023	13976	-12386	-41705
h_{8}	-5321	-7453	134975	-46201	-1283	120435	-2174	40731	125149	-31326	32300	99237

Table 4.10. The elements of the covariance matrix $\left(\sigma_{x^{i} x^{j}}\right)$ of the points used in experiment VIII.

	x_{1}	y_{1}	h_{1}	x_{2}	y_{2}	h_{2}	x_{3}	y_{3}	h_{3}	x_{4}	\boldsymbol{y}_{4}	h_{4}
x_{1}	1934											
y_{1}	- 36	2139										
h_{1}	2310	-3203	208082									
x_{2}	1040	951	- 61737	20090								
y_{2}	33	1912	2954	- 881	2271							
h_{2}	2401	-2937	190786	-56650	2729	176286						
x_{3}	1937	- 83	5421	137	77	5256	2093					
y_{3}	836	861	75700	-22549	3104	69632	1966	30326				
h_{3}	2357	--3285	213392	-63550	3168	196291	5542	79449	223959			
x_{4}	1139	678	-- 44024	14662	- 580	- 40353	501	-16302	-45945	10986		
y_{4}	727	1020	60906	-18196	2867	56329	1638	24477	63403	-13057	20349	
h_{4}	2119	-2559	166244	-49351	2208	153272	4605	61420	173146	-35523	49563	135354
x_{5}	1904	- 219	14224	- 2597	193	13307	2137	5110	14401	- 1451	4176	11530
y_{5}	--776	3066	- 76156	22662	851	- 69806	-1915	-25271	- 76621	15948	-20138	- 60058
h_{5}	1961	--2964	192531	-57281	2525	176483	4840	68715	193707	-40311	55576	151480
x_{6}	1062	917	- 59534	19354	- 959	- 54560	191	-21451	- 60456	13996	-17371	- 46923
y_{6}	- 887	3158	- 77992	23313	702	- 72043	-2054	-26388	- 79952	16499	-21124	- 62355
h_{6}	2391	-2920	189678	-56256	3027	174651	5231	68371	192738	-39547	55493	150458
x_{7}	1588	304	- 19724	7568	- 278	- 17907	1314	-7361	- 20745	5857	- 5842	- 15822
y_{7}	874	876	71691	-21301	2949	66022	1946	28600	74958	-15380	23258	58227
h_{7}	2381	-3007	195317	-58019	2762	179874	5300	72444	204216	-41893	58081	158640
x_{8}	1391	529	- 34360	11880	- 519	- 31331	898	-12320	- 34722	8738	- 9949	- 26891
y_{8}	- 937	3116	- 75226	22378	767	- 69407	-2063	-25185	- 76561	15742	-20153	- 59817
h_{8}	2414	-2958	192129	-56909	2878	176675	5291	68994	194493	-39977	55945	152103

```
\begin{tabular}{lllllllllllll}
\(h_{4}\) & \(x_{5}\) & \(y_{5}\) & \(h_{5}\) & \(x_{6}\) & \(y_{6}\) & \(h_{8}\) & \(x_{7}\) & \(y_{7}\) & \(h_{7}\) & \(x_{8}\) & \(y_{8}\) & \(h_{8}\) \\
\hline
\end{tabular}
```


h_{4}	x_{5}	y_{5}	h_{5}	x_{8}	y_{8}	h_{6}	x_{7}	y_{7}	h_{7}	x_{8}	y_{8}	h_{8}

135354												
11530	2678											
- 60058	- 5233	30535										
151480	13227	-72438	183134									
- 46923	- 2484	22153	- 55993	19027								
- 62355	- 5359	30459	- 72311	22642	31945							
150458	13335	-70268	177650	-54974	-72274	176230						
- 15822	369	7131	- 18025	7252	7372	- 17498	3747					
58227	4923	-23922	65196	-20245	-24938	64781	- 6906	27277				
158640	13408	-70258	177625	-55143	-73198	176496	-18810	68731	187254			
- 26891	- 711	12896	- 32596	11672	13012	- 31610	4926	-11603	- 31603	7559		
- 59817	- 5272	29662	- 70297	21846	30698	- 69792	6971	-23815	- 70137	12522	29886	
152103	13540	-71518	180810	-55637	-72742	177889	-17662	65418	178229	-31996	-70701	180793

Table 4.11. The elements of the ellipses computed from $\left(\hat{\sigma}^{i} x^{i} x^{j}\right)$ pertaining to experiment VIII.

Table 4.12. The elements of the ellipses computed from $\left(\sigma_{x^{i} x^{j}}\right)$ pertaining to the points used in experi-
ment VIII.

		$z=0$			$y=0$			$x=0$		
		a	b	ψ	a	b	ψ	a	b	ψ
	1	46	44	189	456	44	1	456	46	199
	2	142	47	103	441	41	180	420	47	1
	3	175	44	4	473	44	2	502	44	22
	4	172	42	161	381	39	183	392	44	23
	5	177	42	189	429	41	5	460	40	176
	6	221	44	41	440	41	181	454	44	175
	7	171	43	183	435	43	194	461	42	23
	8	188	44	27	432	43	189	457	44	176
1	2	142	20	106	146	38	83	54	22	187
1	3	175	10	2	73	12	1	177	69	91
1	4	176	16	160	140	46	49	169	53	138
1	5	165	11	190	79	27	192	165	75	90
1	6	215	17	44	142	60	82	170	61	86
1	7	173	11	182	71	47	21	168	65	109
1	8	180	15	30	90	56	64	163	62	88
2	3	219	22	47	158	68	75	174	61	75
2	4	135	18	18	80	21	169	140	49	126
2	5	242	23	152	167	80	98	177	79	106
2	6	181	20	199	59	14	183	181	57	101
2	7	179	22	34	94	61	94	155	59	92
2	8	185	21	179	65	58	144	175	60	103
3	4	115	25	81	155	34	49	120	18	20
3	5	334	11	196	140	22	198	337	132	90
3	6	368	23	25	156	106	65	344	106	89
3	7	57	18	90	72	28	53	55	13	18
3	8	344	17	16	129	83	21	337	114	89
4	5	328	18	175	149	96	54	309	103	114
4	6	309	29	7	111	21	176	312	88	112
4	7	60	22	71	88	24	40	78	18	24
4	8	302	25	196	109	32	196	307	91	113
5	6	163	39	98	163	63	97	73	18	167
5	7	333	12	186	123	75	194	325	123	99
5	8	108	33	102	108	48	98	56	16	164
6	7	342	27	16	105	88	175	331	101	97
6	8	57	20	93	57	35	91	38	16	174
7	8	325	21	6	109	35	191	324	107	98

SLALE OF ELLIPSES

0	180	360	540	720	MICRON

Fig. 4.13. Standard ellipses and relative standard ellipses in the $x y$-plane of experiment VIII.

13-1
O1-7

N_{4-2}

(1)-6

Fig. 4.14. Standard ellipses and relative standard ellipses in the $x z$-plane of experiment VIII.

$$
\hat{S}_{7-2} \theta_{4-2}
$$

$$
\sum_{3-1} \bigcap_{1-7}
$$

SCALE OF ELLIPSES

0	180	360	540	720

Fig. 4.15. Standard ellipses and relative standard ellipses in the $y z$-plane of experiment VIII.

v RECAPITULATION AND CONCLUSIONS

The influence of the random observation errors on the coordinates of model points has been represented by the covariance matrix of the coordinates determined in two different ways:

1. by executing repeated measurements of points in photogrammetric models; in some cases these repeated measurements are combined with repeated relative orientations or with repeated relative and inner orientations; from the series of these measurements the estimated covariance matrices ($\hat{\sigma}^{2}$) have been determined.
2. by writing the machine coordinates as functions of the initial observations, e.g. x - and y-parallaxes; by means of the standard deviations of the initial observations and applying the law of propagation of errors the covariance matrices $\left(\sigma^{2}\right)$ have been computed.

The eight experiments, I to VIII, executed to compare ($\hat{\sigma}^{2}$) and (σ^{2}) can be divided into three groups, group a, b and c. Per group a single type or a combination of different types of observation errors is studied:
group a : the measuring of the coordinates of a model point; experiment I and II.
group b : the measuring of the coordinates of a model point together with the relative orientation; experiment III, IV and V.
group c : the measuring of the coordinates of a model point, the relative orientation and the inner orientation; experiment VI, VII and VIII.

In each group the experiments can be distinguished by:

- pricked points or signalized points
- wide angle (W.A.) or normal angle (N.A.)-photographs
- numerical or empirical relative orientation
- the autograph Wild A7 or Wild A8

In table 5.1 the experiments are conveniently arranged.
The estimated covariance matrix ($\hat{\sigma}^{2}$) is computed from the 20 repeated measurements of the coordinates of model points per experiment. This makes 8 full-matrices of 24×24 elements for the 8×3 coordinates of the 8 model points.
The eight covariance matrices $\left(\sigma^{2}\right)$ are computed from the standard observation of the individual observations such as x - and y-parallaxes by applying the law of propagation of errors. A recapitulation of the standard deviations of the individual observations can be given as follows:
The standard deviations of the observations for measuring a model point, given in photo scale, are according (2.5):

	$\sigma_{\Delta \boldsymbol{p}_{x}}$	$\sigma_{x^{\prime}}$	$\sigma_{y^{\prime}}$
signalized points	4.9	4.7	6.0
pricked points	6.5	4.2	6.5

Table 5.1. A survey of the experiments.

$\begin{aligned} & \text { 号 } \\ & \text { 品 } \end{aligned}$		observations errors studied										$$
a	$\begin{aligned} & \text { I } \\ & \text { II } \end{aligned}$	\times \times \times			\times \times \times		\times \times \times \times					\times \times \times
b	$\begin{aligned} & \text { III } \\ & \text { IV } \\ & \text { V } \end{aligned}$	\times \times \times \times \times 	\times \times \times \times \times		\times \times \times \times	\times	\times \times \times \times	\times	\times	\times \times \times	\times	\times \times \times
c	$\begin{aligned} & \text { VI } \\ & \text { VII } \\ & \text { VIII } \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	\times \times \times \times \times	$\begin{aligned} & x \\ & \times \\ & \times \\ & x \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	\times	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	\times	\times \times	\times	\times \times \times	\times

The standard deviation of the observation for relative orientation, the y-parallax, given in photo scale, is, see (3.9):

Wild A7: $\sigma_{p_{y}}=9$ micron
Wild A8: $\sigma_{p_{y}}=11$ micron
The standard deviations of the observations for the elements of inner orientation of both camera's are, see (4.7):

$$
\begin{aligned}
& \sigma_{x^{\prime}}=\sigma_{x^{\prime \prime}}=\sigma_{y^{\prime}}=\sigma_{y^{\prime \prime}}=20 \text { micron } \\
& \sigma_{c^{\prime}}=\sigma_{c^{\prime \prime}}=3 \text { micron }
\end{aligned}
$$

These standard deviations are introduced for the computation of covariance matrix (σ^{2}) of the 8 experiments. In all experiments the same values are used. More practical experience will however be necessary in order to gain a better insight into the variance of the observations, the factors influencing these values, etc.

The standard ellipsoids and relative standard ellipsoids, represented by sub-matrices of $\left(\hat{\sigma}^{2}\right)$ and (σ^{2}), are given in a large number of diagrams showing the projections of the ellipsoids. The projections are standard ellipses and relative standard ellipses. Some general remarks and conclusions will be made now on the basis of the drawn ellipses.

The observation errors in group a, the measuring of a model point, are relatively small and for that the ellipses of experiment I and II are drawn on a larger scale than those of the following experiments. The observations are assumed to be correlation free and therefore the relative standard ellipses are left out of consideration.

The coordinates z and x and the coordinates x and y of a model point are undoubtedly correlated. This correlation determined from the repeated measurements, the ($\hat{\sigma}^{2}$), agrees with the correlation computed from the initial observations, the (σ^{2}). Compare the thin
line ellipses of $\left(\hat{\sigma}^{2}\right)$ with the thick line ellipses of $\left(\sigma^{2}\right)$ in figures $2.4,2.5$ and 2.6 and in figures 2.9, 2.10 and 2.11.

The experiments III, IV and V in group b refer to the observation errors: measuring a model point, and relative orientation. For these three experiments the following remarks hold good; see figures 3.3, 3.4 and 3.5 of experiment III, figures $3.8,3.9$ and 3.10 of experiment IV and figures 3.13, 3.14 and 3.15 of experiment V .

- the coordinates of a single point are strongly correlated.
- the coordinates of different points are strongly correlated, especially for those at shorter distances.
- the ellipses of experiment V are larger than those of III and IV because normal angle photographs are used in this experiment; in experiments III and IV wide angle photographs have been used.
- it can be proved that the scale of the ellipses is mainly determined by the standard deviation of the y-parallax, $\sigma_{P y}$; here only two groups are distinguished: Wild A7 and Wild A8, or probably better said: numerical relative orientation and empirical relative orientation; more detailed study will be necessary to study how far this standard deviation is influenced by observer, instrument, photographs, etc.

The experiments VI, VII and VIII of group c refer to the observation errors: measuring a model point, relative orientation and inner orientation. The results are given in respectively figures $4.3,4.4$ and 4.5 , figures $4.8,4.9$ and 4.10 and figures $4.13,4.14$ and 4.15.
For these three experiments broadly the same remarks can be made as for the experiments of group b. The ellipses in group c are in general slightly larger in consequence of the influence of the inner orientation.
It can be noticed for both groups b and c that the ellipses of the covariance matrix ($\hat{\sigma}^{2}$) of an experiment are sometimes smaller and sometimes larger than those of (σ^{2}). This could not be explained by this small number of experiments; possibly different observation errors must be applied for these experiments or it is mainly due to the small number of observations, only 20 repeated measurements per experiment. Furthermore it is matter of course that these scale differences of the ellipses are greater for the Wild A8 measurements, due to the method of relative orientation, the empirical method; see experiment VII. But the important property of correlation between the coordinates of one point and the coordinates of different points corresponds very well between the two matrices $\left(\hat{\sigma}^{2}\right)$ and $\left(\sigma^{2}\right)$.

This investigation shows that the covariance matrix (σ^{2}) gives a good description of the influence of random observation errors on the coordinates of model points. This holds only when the measurements and observations are carried out as has been described here. More detailed studies will be needed to verify how far generalization or differentiation is necessary if more models are jointed to a strip or a block.

The structure of the covariance matrix (σ^{2}) is essential for studies of precision and accuracy where photogrammetric models are used as a basic unit.

APPENDIX 1

The machine coordinates of a model point, x, y and h, are influenced by observation errors. In this appendix a formula will be derived which gives the relation between the machine coordinates of a point and the quantities which are observed when setting the floating mark onto a model point.

The observations are the setting of the mark in the proper elevation and in the proper planimetric position. These observations can further be defined as:
the horizontal parallax: Δp_{x}
the x-setting $\quad: \Delta x^{\prime}$
the y-setting $\quad: \Delta y^{\prime}$
The error in elevation setting influences the planimetric position. This relation is demonstrated in figure 1. Point P is a model point, an intersection point of corresponding rays, whose coordinates are to be measured. Point O, the middle of the base $O_{L} O_{R}=b$, is the origin of the $x y z$-system.

We assume that, in the presence of an error in elevation, the floating mark is set in (see figure 1):
M_{L} : if point P is marked on the left photo
M_{R} : if point P is marked on the right photo
M : if P is a natural point or a signalized point

Fig. 1. The influence of the error in elevation on the planimetric position.

The following principle underlies this assumption. If point P is a marked point, the floating mark is set in such a way that its projection on the photograph coincides with that marked point. That is to say if P is marked on the left respectively on the right photo, the mark will be set on the line $P O_{L}$ respectively $P O_{R}$. In case P is a natural or signalized point the mark is assumed to be set in x - and y-direction in such a way that its projections on the photographs are symmetrical with respect to the images of point P. In this case the mark is actually set on the line $P O$, which connects point P and the middle of the base O.

The following coordinate differences are introduced:

$$
\begin{align*}
& \Delta \bar{x}_{M L}=x^{\mathrm{ML}}-x \quad \text {. (1) } \tag{1}\\
& \Delta \bar{x}_{M R}=x^{M_{R}}-x \tag{2}\\
& \Delta \bar{x}_{M}=x^{M}-x \tag{3}\\
& \Delta \bar{y}_{M}=y^{\mathrm{ML}}-y=y^{\mathrm{MR}}-y=y^{\mathrm{M}}-y \tag{4}\\
& \Delta h_{M}=z-z^{\mathrm{ML}}=z-z^{\mathrm{Mr}}=z-z^{\mathrm{M}}
\end{align*}
$$

where:
$x, y, z \quad$ are the coordinates of P,
$x^{\mathrm{ML}}, y^{\mathrm{ML}}, z^{\mathrm{ML}}$ are the coordinates of M_{L},
$x^{\mathrm{MR}}, y^{\mathrm{MR}}, z^{\mathrm{MR}}$ are the coordinates of M_{R} and
$x^{\mathrm{M}}, y^{\mathrm{M}}, z^{\mathrm{M}}$ are the coordinates of M.

$$
\begin{equation*}
\Delta p_{x}=x^{\mathrm{MR}}-x^{\mathrm{ML}} \tag{6}
\end{equation*}
$$

We read from figure 1:

$$
\begin{align*}
& \Delta \bar{x}_{M L}=-\frac{x+\frac{1}{2} b}{z} \Delta h_{M} \tag{7}\\
& \Delta \bar{x}_{M R}=-\frac{x-\frac{1}{2} b}{z} \Delta h_{M} \tag{8}\\
& \Delta \bar{x}_{M}=-\frac{x}{z} \Delta h_{M} \ldots \tag{9}\\
& \Delta \bar{y}_{M}=-\frac{y}{z} \Delta h_{M} \ldots \tag{10}\\
& \Delta h_{M}=\frac{z}{b} \Delta p_{x} \ldots . \tag{11}
\end{align*}
$$

These formulae give only the relation between the differentials of the machine coordinates and the differential of height, or the differential of the horizontal parallax.

Adding the differentials Δx^{\prime} and Δy^{\prime} of the proper x - and y-setting of the floating mark we have:

$$
\begin{align*}
& \Delta x_{M L}=\Delta \bar{x}_{M L}+\Delta x^{\prime} \tag{12}\\
& \Delta x_{M R}=\Delta \bar{x}_{M R}+\Delta x^{\prime} \\
& \Delta x_{M}=\Delta \bar{x}_{M}+\Delta x^{\prime} \tag{14}\\
& \Delta y_{M}=\Delta \bar{y}_{M}+\Delta y^{\prime} \tag{15}
\end{align*}
$$

Introducing (7), (8), (9) and (10) in respectively (12), (13), (14) and (15) and applying (11) makes in matrix-notation:

$$
\left[\begin{array}{l}
\Delta x_{M L} \tag{16}\\
\Delta x_{M R} \\
\Delta x_{M} \\
\Delta y_{M} \\
\Delta h_{M}
\end{array}\right]=\left[\begin{array}{lll}
-\frac{1}{2 b}(2 x+b) & 1 & 0 \\
-\frac{1}{2 b}(2 x-b) & 1 & 0 \\
-\frac{x}{b} & 1 & 0 \\
\frac{y}{b} & 0 & 1 \\
\frac{z}{b} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\Delta p_{x} \\
\Delta x^{\prime} \\
\Delta y^{\prime}
\end{array}\right)
$$

This formula gives the relation between the differentials of the machine coordinates of the model point P and the differentials of the observed quantities:
the horizontal parallax: Δp_{x}
the x-setting
: Δx^{\prime} the y-setting
: Δy^{\prime}
For the differentials in the x-coordinate we have distinghuished 3 cases:
index ML: point P pricked on left photo
index $M R$: point P pricked on right photo
index M : natural or signalized point
The differentials of the y - and h-coordinate are the same for the 3 cases.

APPENDIX 2

In order to perform a relative orientation with two perspective bundles of rays y-parallaxes have to be measured or eliminated. The influence of the observation errors in y-parallaxes on the orientation elements is a known problem.

Starting from the well-known parallax formula (the signs applying to a Wild A7):

$$
\begin{equation*}
\Delta p_{y}=+\frac{y^{2}+z^{2}}{z} \Delta \omega_{2}-\frac{(2 x-b) y}{2 z} \Delta \varphi_{2}+\frac{2 x-b}{2} \Delta x_{2}-\frac{y}{z} \Delta b z_{2}-\Delta b y_{2} \tag{1}
\end{equation*}
$$

the matrix of weight coefficients of the orientation elements can be found by the formulae of least square adjustment; standard problem II. Assuming numerical relative orientation and parallax measurements in the 6 points 1 to 6 , see figure 1 , the result is:

$$
\begin{align*}
& \overline{(\Delta O),(\Delta O)^{T}}=\left(\begin{array}{c}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta x_{2} \\
\Delta b z_{2} \\
\Delta b y_{2}
\end{array}\right) \cdot\left(\begin{array}{l}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta x_{2} \\
\Delta b z_{2} \\
\Delta b y_{2}
\end{array}\right)^{T}= \\
& =\left(\begin{array}{ccccc}
+\frac{3 z^{2}}{4 a^{4}} & 0 & 0 & 0 & +\frac{z\left(2 a^{2}+3 z^{2}\right)}{4 a^{4}} \\
0 & +\frac{z^{2}}{a^{2} b^{2}} & 0 & +\frac{z^{2}}{2 a^{2} b} & 0 \\
0 & 0 & +\frac{2}{3 b} & 0 & -\frac{1}{3 b} \\
0 & +\frac{z^{2}}{2 a^{2} b} & 0 & +\frac{z^{2}}{2 a^{2}} & 0 \\
+\frac{z\left(2 a^{2}+3 z^{2}\right)}{4 a^{4}} & 0 & -\frac{1}{3 b} & 0 & +\frac{8 a^{4}+12 a^{2} z^{2}+9 z^{4}}{12 a^{4}}
\end{array}\right) \tag{2}
\end{align*}
$$

In figure 1 the quantities a and b are indicated.
The covariance matrix of the orientation elements is:

$$
\begin{equation*}
\left(\sigma_{O O}\right)=\sigma_{p_{y}}^{2} \overline{(\Delta O),(\Delta O)^{T}} \tag{3}
\end{equation*}
$$

$\sigma_{p_{y}}$ is the standard deviation of the y-parallax observation.

In order to find the matrix of weight coefficients of machine coordinates in relation to the y-parallax observations, first the differential formula of machine coordinates and orientation elements must be known.

Fig. 1. A photogrammetric model with the quantities a and b.
Figures 2 and 3 show the differential change in position of the model point, i.e. the intersection of two corresponding rays, P to P^{\prime} in consequence of a small variation in the orientation of the two bundles.
Figure 2 gives the projection in the $x z$-plane and in figure 3 the projection in the $y z$-plane.
The small variations of the orientation of the bundles bring about small displacements of the intersection of the ray with the horizontal plane through P or P^{\prime}; see figures 2 and 3.
for the left bundle:

$$
\begin{equation*}
\Delta x_{1} \text { and } \Delta y_{1} \tag{4}
\end{equation*}
$$

for the right bundle:

$$
\begin{equation*}
\Delta x_{2} \text { and } \Delta y_{2} \tag{4b}
\end{equation*}
$$

Besides that figure 3 shows a height difference Δz_{o} corresponding with a difference in y coordinate:

$$
\begin{equation*}
\Delta \bar{y} \tag{4c}
\end{equation*}
$$

Fig. 2. The differential change P to P^{\prime} in the $x z$-plane.
In case corresponding rays intersect only approximately we define the model point according to the usual principal of symmetry in the theory of stereoscopic vision: the model point is the middle of the line connecting the two corresponding rays in y-direction, P^{\prime} in figures 2 and 3 ; in figure 3 is $P^{\prime} P^{\prime}=P^{\prime} P^{\prime}{ }_{R}$; in case of assymmetrical points, for example points pricked on one photograph, the model point is the end of the horizontal connection line in y-direction, P_{L}^{\prime} for points pricked on the left photograph and P_{R}^{\prime} for points pricked on the right photograph; see figure 3.

The small variations of the coordinates of model point P are:

$$
\begin{equation*}
\Delta x_{O}, \Delta y_{O}, \Delta y_{O L}, \Delta y_{O R} \text { and } \Delta z_{o} \tag{5}
\end{equation*}
$$

Three cases are distinguished for the y-coordinate:
Δy_{o} : natural or signalized points
$\Delta y_{o_{L}}$: point P is pricked on left photo
$\Delta y_{o R}:$ point P is pricked on right photo
The differentials of the x-and z-coordinate are the same for the three cases. The index O is introduced here as these variations are caused by variations in the orientation elements.

The differentials of the machine coordinates of model point P in (5) can easily be expressed in:

$$
\Delta x_{1}, \Delta x_{2}, \Delta y_{1}, \Delta y_{2} \quad \text { and } \quad \Delta \bar{y}
$$

as defined in (4).
The coordinates of P are: x, y and z; the origin of the axes is chosen in the middle of the base, O; see figure 3 .

Fig. 3. The differential change of P to $P^{\prime} L, P^{\prime}$ and $P^{\prime}{ }_{R}$ in the $y z$-plane.

The auxiliary line $R P P^{\prime}$ and $P \bar{P}$ in figure 2 shows:

$$
\begin{align*}
& \frac{\Delta z_{O}}{\Delta x_{O}}=\frac{z}{\frac{1}{2} b+x-O_{L} R} \tag{6}\\
& \frac{-\Delta x_{1}}{\Delta x_{2}}=\frac{O_{L} R}{b-O_{L} R} \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\Delta z_{O}}{\Delta x_{2}-\Delta x_{1}}=\frac{z}{b} \tag{8}
\end{equation*}
$$

From figure 3 we read:

$$
\begin{align*}
& \frac{\Delta \bar{y}}{\Delta z_{o}}=\frac{y}{z} \ldots \ldots \tag{9}\\
& \Delta y_{o}=\Delta \bar{y}+\frac{1}{2}\left(\Delta y_{1}+\Delta y_{2}\right) \tag{10}
\end{align*}
$$

$$
\begin{align*}
& \Delta y_{o L}=\Delta \bar{y}+\Delta y_{1} \tag{11}\\
& \Delta y_{O R}=\Delta \bar{y}+\Delta y_{2} \tag{12}
\end{align*}
$$

It follows from (6), (7) and (8) that:

$$
\begin{align*}
& \Delta x_{O}=\frac{2 x+b}{2 b}\left(\Delta x_{2}-\Delta x_{1}\right)+\Delta x_{1} \tag{13}\\
& \Delta z_{o}=\frac{z}{b}\left(\Delta x_{2}-\Delta x_{1}\right) \ldots \ldots \tag{14}
\end{align*}
$$

and from (8), (9), (10), (11) and (12) it follows that:

$$
\begin{align*}
& \Delta y_{O}=\frac{y}{b}\left(\Delta x_{2}-\Delta x_{1}\right)+\frac{1}{2}\left(\Delta y_{1}+\Delta y_{2}\right) \tag{15}\\
& \Delta y_{O L}=\frac{y}{b}\left(\Delta x_{2}-\Delta x_{1}\right)+\Delta y_{1} \quad \ldots \tag{16}\\
& \Delta y_{O R}=\frac{y}{b}\left(\Delta x_{2}-\Delta x_{1}\right)+\Delta y_{2} \quad \ldots \tag{17}
\end{align*}
$$

The differential formulae of $\Delta x_{1}, \Delta x_{2}, \Delta y_{1}$ and Δy_{2} as defined in (4) and the orientation elements of the left and the right camera and suitable for A7 and A8 measurements, are the well-known formulae:

$$
\begin{align*}
& \Delta x_{1}=+\frac{(2 x+b) y}{2 z} \Delta \omega_{1}-\frac{(2 x+b)^{2}+4 z^{2}}{4 z} \Delta \varphi_{1}-y \Delta x_{1}-\frac{2 x+b}{2 z} \Delta b z_{1} \tag{18}\\
& \Delta x_{2}=+\frac{(2 x-b) y}{2 z} \Delta \omega_{2}-\frac{(2 x-b)^{2}+4 z^{2}}{4 z} \Delta \varphi_{2}-y \Delta x_{2}-\frac{2 x-b}{2 z} \Delta b z_{2} \tag{19}\\
& \Delta y_{1}=+\frac{y^{2}+z^{2}}{z} \Delta \omega_{1}-\frac{(2 x+b) y}{2 z} \Delta \varphi_{1}+\frac{2 x+b}{2} \Delta x_{1}-\frac{y}{z} \Delta b z_{1}-\Delta b y_{1} \tag{20}\\
& \Delta y_{2}=+\frac{y^{2}+z^{2}}{z} \Delta \omega_{2}-\frac{(2 x-b) y}{2 z} \Delta \varphi_{2}+\frac{2 x-b}{2} \Delta x_{2}-\frac{y}{z} \Delta b z_{2}-\Delta b y_{2} \tag{21}
\end{align*}
$$

Further it is evident that:

$$
\begin{equation*}
\Delta z_{o}=-\Delta h_{o} \tag{22}
\end{equation*}
$$

For the relative orientation with an A7 the following orientation elements are supposed to be used:

$$
\begin{equation*}
\Delta \omega_{2}, \Delta \varphi_{2}, \Delta \chi_{2}, \Delta b z_{2} \quad \text { and } \quad \Delta b y_{2} \tag{23}
\end{equation*}
$$

then:

$$
\begin{equation*}
\Delta \omega_{1}=\Delta \varphi_{1}=\Delta x_{1}=\Delta b z_{1}=\Delta b y_{1}=0 \tag{24}
\end{equation*}
$$

We obtain by substitution of (18), (19) and (24) in (13):

$$
\begin{align*}
\Delta x_{o} & =+\frac{(2 x+b)(2 x-b) y}{4 b z} \Delta \omega_{2}-\frac{2 x+b}{b} \cdot \frac{(2 x-b)+4 z^{2}}{4 z} \Delta \varphi_{2}+ \\
& -\frac{(2 x+b) y}{2 b} \Delta x_{2}-\frac{(2 x+b)(2 x-b)}{4 b z} \Delta b z_{2} \ldots . . . \tag{25}
\end{align*}
$$

Substitution of (18), (19), (20), (21) and (24) in (15) gives:

$$
\begin{align*}
& \Delta y_{o}=+\frac{2 x y^{2}+b z^{2}}{2 b z} \Delta \omega_{2}-\frac{(2 x-b) x y+2 y z^{2}}{2 b z} \Delta \varphi_{2}+\left(\frac{2 x-b}{4}-\frac{y^{2}}{b}\right) \Delta x_{2}+ \\
& -\frac{x y}{b z} \Delta b z_{2}-\frac{1}{2} \Delta b y_{2} \tag{26}
\end{align*}
$$

Similarly (18), (19), (20) and (24) in (16):
$\Delta y_{O L}=+\frac{(2 x-b) y^{2}}{2 b z} \Delta \omega_{2}-\frac{(2 x-b)^{2} y+4 z^{2} y}{4 b z} \Delta \varphi_{2}-\frac{y^{2}}{b} \Delta x_{2}-\frac{(2 x-b) y}{2 b z} \Delta b z_{2}$
and (18), (19), (21) and (24) in (17):

$$
\begin{align*}
\Delta y_{O R}= & +\frac{(2 x+b) y+2 b z^{2}}{2 b z} \Delta \omega_{2}-\frac{(2 x+b)(2 x-b) y+4 y z^{2}}{4 b z} \Delta \varphi_{2}+ \\
& +\left(\frac{2 x-b}{2}-\frac{y^{2}}{b}\right) \Delta x_{2}-\frac{(2 x+b) y}{2 b z} \Delta b z_{2}-\Delta b y_{2} \quad \ldots \tag{28}
\end{align*}
$$

and finally (18), (19), (22) and (24) in (14):

$$
\begin{equation*}
\Delta h_{o}=-\frac{(2 x-b) y}{2 b} \Delta \omega_{2}+\frac{(2 x-b)^{2}+4 z^{2}}{4 b} \Delta \varphi_{2}+\frac{y z}{b} \Delta x_{2}+\frac{2 x-b}{2 b} \Delta b z_{2} \tag{29}
\end{equation*}
$$

In general matrix notation (25) to (29) is:
with:

$$
\left(\begin{array}{l}
\Delta x_{o} \tag{30a}\\
\Delta y_{o} \\
\Delta y_{o L} \\
\Delta y_{o R} \\
\Delta h_{o}
\end{array}\right)=\left(A_{o}^{i}\right)\left(\begin{array}{l}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta x_{2} \\
\Delta b z_{2} \\
\Delta b y_{2}
\end{array}\right) .
$$

$$
\left(A_{o}^{i}\right) \equiv\left[\begin{array}{lllll}
+\frac{(2 x+b)(2 x-b) y}{4 b z} & -\frac{2 x+b}{b} \cdot \frac{(2 x-b)^{2}+4 z^{2}}{4 z} & -\frac{(2 x+b) y}{2 b} & -\frac{(2 x+b)(2 x-b)}{4 b z} & 0 \tag{30b}\\
+\frac{2 x y^{2}+b z^{2}}{2 b z} & -\frac{(2 x-b) x y+2 y z^{2}}{2 b z} & +\left(\frac{2 x-b}{4}-\frac{y^{2}}{b}\right) & -\frac{x y}{b z} & -\frac{1}{2} \\
+\frac{(2 x-b) y^{2}}{2 b z} & -\frac{(2 x-b)^{2} y+4 z^{2} y}{4 b z} & -\frac{y^{2}}{b} & -\frac{(2 x-b) y}{2 b z} & 0 \\
+\frac{(2 x+b) y^{2}+2 b z^{2}}{2 b z} & -\frac{(2 x+b)(2 x-b) y+4 y z^{2}}{4 b z} & +\left(\frac{2 x-b}{2}-\frac{y^{2}}{b}\right) & -\frac{(2 x+b) y}{2 b z} & -1 \\
-\frac{(2 x-b) y}{2 b} & +\frac{(2 x-b)^{2}+4 z^{2}}{4 b} & +\frac{y z}{b} & +\frac{2 x-b}{2 b} & 0
\end{array}\right)
$$

In the same way formulae suited to A8 measurements can be derived. The parallax formula is:
$\Delta p_{y}=+\frac{y^{2}+z^{2}}{z} \Delta \omega_{2}-\frac{(2 x-b) y}{2 z} \Delta \varphi_{2}+\frac{(2 x+b) y}{2 z} \Delta \varphi_{1}+\frac{2 x-b}{2} \Delta \varkappa_{2}-\frac{2 x+b}{2} \Delta k_{1}$
and from this formula the weight coefficients of the orientation elements can be derived:

$$
\begin{gather*}
\overline{(\Delta O),(\Delta O)^{T}}=\overline{\left(\begin{array}{c}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta \varphi_{1} \\
\Delta x_{2} \\
\Delta x_{1}
\end{array}\right),\left(\begin{array}{c}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta \varphi_{1} \\
\Delta x_{2} \\
\Delta x_{1}
\end{array}\right)^{T}=} \\
=\left(\begin{array}{ccccc}
+\frac{3 z^{2}}{4 a^{4}} & 0 & 0 & +\frac{z\left(3 z^{2}+2 a^{2}\right)}{4 a^{4} b} & +\frac{z\left(3 z^{2}+2 a^{2}\right)}{4 a^{4} b} \\
0 & +\frac{z^{2}}{2 a^{2} b^{2}} & 0 & 0 & 0 \\
0 & 0 & +\frac{z^{2}}{2 a^{2} b^{2}} & 0 & 0 \\
+\frac{z\left(3 z^{2}+2 a^{2}\right)}{4 a^{4} b} & 0 & 0 & +\frac{8 a^{4}+12 a^{2} z^{2}+9 z^{4}}{12 a^{4} b^{2}} & +\frac{4 a^{4}+12 a^{2} z^{2}+9 z^{2}}{12 a^{4} b^{2}} \\
+\frac{z\left(3 z^{2}+2 a^{2}\right)}{4 a^{4} b} & 0 & 0 & +\frac{4 a^{4}+12 a^{2} z^{2}+9 z^{4}}{12 a^{4} b^{2}} & +\frac{8 a^{4}+12 a^{2} z^{2}+9 z^{4}}{12 a^{4} b^{2}}
\end{array}\right) \tag{32}
\end{gather*}
$$

The relative orientation with a Wild A8 is mostly done empirically. We assume here for the empirical method of relative orientation the same propagation of errors as for the numerical method. Although this is an approximation, experiments showed that this approximation satisfied very well.

The covariance matrix of the orientation elements is:

$$
\begin{equation*}
\left(\sigma_{O O}\right)=\sigma_{p_{y}}^{2} \overline{(\Delta O),(\Delta O)^{T}} \tag{33}
\end{equation*}
$$

$\sigma_{p_{y}}$ is the standard deviation of the y-parallax observation.
The differential formulae which give the relation between the machine coordinates and the orientation elements can be derived in the same way as those for a Wild A7 in the previous part.

The orientation elements to be used are:

$$
\begin{equation*}
\Delta \omega_{2}, \Delta \varphi_{2}, \Delta \varphi_{1}, \Delta \varkappa_{2} \quad \text { and } \quad \Delta \varkappa_{1} \tag{34}
\end{equation*}
$$

and for that we get instead of (24):

$$
\begin{equation*}
\Delta \omega_{1}=\Delta b y_{2}=\Delta b y_{1}=\Delta b z_{2}=\Delta b z_{1}=0 \tag{35}
\end{equation*}
$$

From (13) to (22) and (35) we obtain by substitution:

$$
\left(\begin{array}{l}
\Delta x_{o} \tag{36a}\\
\Delta y_{o} \\
\Delta y_{O L} \\
\Delta y_{o R} \\
\Delta h_{o}
\end{array}\right)=\left(A_{o}^{i}\right)\left[\begin{array}{l}
\Delta \omega_{2} \\
\Delta \varphi_{2} \\
\Delta \varphi_{1} \\
\Delta \varkappa_{2} \\
\Delta x_{1}
\end{array}\right]
$$

with:

$$
\left[\begin{array}{lll}
+\frac{(2 x+b)(2 x-b) y}{4 b z} & -\frac{(2 x+b)}{2 b} \cdot \frac{(2 x-b)^{2}+4 z^{2}}{4 z} & +\frac{(2 x-b)}{2 b} \cdot \frac{(2 x+b)^{2}+4 z^{2}}{4 z} \\
+\frac{2 x y^{2}+b z^{2}}{2 b z} & -\frac{(2 x-b) x y+2 y z^{2}}{2 b z} & +\frac{(2 x+b) x y+2 y z^{2}}{2 b z} \\
+\frac{(2 x-b) y^{2}}{2 b z} & -\frac{(2 x-b)^{2} y+4 y z^{2}}{4 b z} & +\frac{(2 x+b)(2 x-b) y+4 y z^{2}}{4 b z} \\
+\frac{(2 x+b) y^{2}+2 b z^{2}}{2 b z} & -\frac{(2 x+b)(2 x-b) y+4 y z^{2}}{4 b z} & +\frac{(2 x+b)^{2} y+4 y z^{2}}{4 b z} \\
-\frac{(2 x-b) y}{2 b} & +\frac{(2 x-b)^{2}+4 z^{2}}{4 b} & -\frac{(2 x+b)^{2}+4 z^{2}}{4 b} \\
& & -\frac{(2 x+b) y}{2 b}+\frac{(2 x-b) y}{2 b} \\
& & +\left(\frac{2 x-b}{4}-\frac{y^{2}}{b}\right)+\left(\frac{2 x+b}{4}+\frac{y^{2}}{b}\right) \\
& & +\left(\frac{y^{2}}{b}+\left(\frac{2 x+b}{2}+\frac{y^{2}}{b}\right)\right. \\
& & \left.+\frac{y^{2}}{b}\right)+\frac{y^{2}}{b} \tag{36b}
\end{array}\right) \equiv\left(A_{o}^{i}\right)
$$

APPENDIX 3

The problem of the inner orientation has three variables for each camera, the translations of the projection centre in three mutually perpendicular directions, the elements of the inner orientation:

$$
\begin{align*}
& \text { left camera: } \Delta x^{\prime}, \Delta y^{\prime} \text { and } \Delta c^{\prime} \text {. } \tag{1}\\
& \text { right camera: } \Delta x^{\prime \prime}, \Delta y^{\prime \prime} \text { and } \Delta c^{\prime \prime} \tag{2}
\end{align*}
$$

Small variations of the elements of inner orientation correspond with small displacements of the intersection of a ray with a horizontal plane:
for the left bundle, see figure 1:

$$
\begin{equation*}
\Delta x_{1} \text { and } \Delta y_{1} \tag{3}
\end{equation*}
$$

likewise for the right bundle:

$$
\begin{equation*}
\Delta x_{2} \text { and } \Delta y_{2} \tag{4}
\end{equation*}
$$

From figure 1 follows the relation between (1) and (3):

$$
\begin{align*}
& \Delta x_{1}=-\frac{z}{c} \Delta x^{\prime}-\frac{2 x+b}{2 c} \Delta c^{\prime} \tag{5}\\
& \Delta y_{1}=-\frac{z}{c} \Delta y^{\prime}-\frac{y}{c} \Delta c^{\prime} . . \tag{6}
\end{align*}
$$

In the same way we find for the right camera:

$$
\begin{align*}
& \Delta x_{2}=-\frac{z}{c} \Delta x^{\prime \prime}-\frac{2 x-b}{2 c} \Delta c^{\prime \prime} \tag{7}\\
& \Delta y_{2}=-\frac{z}{c} \Delta y^{\prime \prime}-\frac{y}{c} \Delta c^{\prime \prime} . . \tag{8}
\end{align*}
$$

The relations between the small displacements of the intersection of a ray, as defined in (3) and (4), and the machine coordinates are already mentioned in appendix 2 formulae (13) to (17):

Fig. 1. The differential changes of the elements of inner orientation.

$$
\begin{align*}
& \Delta x_{I}=\frac{2 x+b}{2 b}\left(\Delta x_{2}-\Delta x_{1}\right)+\Delta x_{1} \tag{9}\\
& \Delta y_{I}=\frac{y}{b}\left(\Delta x_{2}-\Delta x_{1}\right)+\frac{1}{2}\left(\Delta y_{1}+\Delta y_{2}\right) \tag{10}\\
& \Delta y_{I L}=\frac{y}{b}\left(\Delta x_{2}-\Delta x_{1}\right)+\Delta y_{1} \ldots \tag{11}\\
& \Delta y_{I R}=\frac{y}{b}\left(\Delta x_{2}-\Delta x_{1}\right)+\Delta y_{2} \ldots \tag{12}\\
& \Delta z_{I}=\frac{z}{b}\left(\Delta x_{2}-\Delta x_{1}\right) \ldots \tag{13}
\end{align*}
$$

The index I, used here, indicates that these variations of the machine coordinates are caused by variations of the inner orientation. Substitution of (5) to (8) in (9) to (13) gives:

$$
\begin{align*}
\Delta x_{I}= & \frac{z(2 x-b)}{2 b c} \Delta x^{\prime}-\frac{z(2 x+b)}{2 b c} \Delta x^{\prime \prime}+ \\
& +\frac{(2 x+b)(2 x-b)}{4 b c} \Delta c^{\prime}-\frac{(2 x+b)(2 x-b)}{4 b c} \Delta c^{\prime \prime} \tag{14}
\end{align*}
$$

$$
\begin{align*}
& \Delta y_{I}=+\frac{y z}{b c} \Delta x^{\prime}-\frac{y z}{b c} \Delta x^{\prime \prime}-\frac{z}{2 c} \Delta y^{\prime}-\frac{z}{2 c} \Delta y^{\prime \prime}+\frac{x y}{b c} \Delta c^{\prime}-\frac{x y}{b c} \Delta c^{\prime \prime} . \tag{15}\\
& \Delta y_{I L}=+\frac{y z}{b c} \Delta x^{\prime}-\frac{y z}{b c} \Delta x^{\prime \prime}-\frac{z}{c} \Delta y^{\prime}+\frac{y(2 x-b)}{2 b c} \Delta c^{\prime}-\frac{y(2 x-b)}{2 b c} \Delta c^{\prime \prime} . \tag{16}\\
& \Delta y_{I R}=+\frac{y z}{b c} \Delta x^{\prime}-\frac{y z}{b c} \Delta x^{\prime \prime}-\frac{z}{c} \Delta y^{\prime \prime}+\frac{y(2 x+b)}{2 b c} \Delta c^{\prime}-\frac{y(2 x+b)}{2 b c} \Delta c^{\prime \prime} . \tag{17}\\
& \Delta z_{I}=+\frac{z^{2}}{b c} \Delta x^{\prime}-\frac{z^{2}}{b c} \Delta x^{\prime \prime}+\frac{z(2 x+b)}{2 b c} \Delta c^{\prime}-\frac{z(2 x-b)}{2 b c} \Delta c^{\prime \prime} \ldots . . \tag{18}
\end{align*}
$$

The variations of the inner orientation elements generate a y-parallax, Δp_{y}. In accordance with (3) and (4) we can write:

$$
\begin{equation*}
\Delta p_{y}=\Delta y_{1}-\Delta y_{2} \tag{19}
\end{equation*}
$$

whence by introducing (6) and (8):

$$
\begin{equation*}
\Delta p_{y}=-\frac{z}{c} \Delta y^{\prime}+\frac{z}{c} \Delta y^{\prime \prime}-\frac{y}{c} \Delta c^{\prime}+\frac{y}{c} \Delta c^{\prime \prime} \tag{20}
\end{equation*}
$$

Comparing (20) with formula (1) of appendix 2 which gives the relation between y-parallax and orientation elements of an A7:

$$
\begin{equation*}
\Delta p_{y}=-\frac{y}{z} \Delta b z_{2}-\Delta b y_{2} \tag{21}
\end{equation*}
$$

it is evident that the y-parallax caused by variations of the inner orientation can be eliminated in one horizontal plane, for example mean level $z=z_{0}$, by changing $b y_{2}$ and $b z_{2}$. From (20) and (21) follows:

$$
\begin{align*}
& \Delta b y_{2}=\frac{z_{0}}{c} \Delta y^{\prime}-\frac{z_{0}}{c} \Delta y^{\prime \prime} \tag{22}\\
& \Delta b z_{2}=\frac{z_{0}}{c} \Delta c^{\prime}-\frac{z_{0}}{c} \Delta c^{\prime \prime} \tag{23}
\end{align*}
$$

As a consequence of these corrections of the orientation elements the coordinates of model points change, see (25) to (29) of appendix 2 :

$$
\begin{equation*}
\Delta x_{I}=-\frac{(2 x+b)(2 x-b)}{4 b z} \Delta b z_{2} \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& \Delta y_{I}=-\frac{x y}{b z} \Delta b z_{2}-\frac{1}{2} \Delta b y_{2} \tag{25}\\
& \Delta y_{I L}=-\frac{(2 x-b) y}{2 b z} \Delta b z_{2} \ldots \tag{26}\\
& \Delta y_{I R}=-\frac{(2 x+b) y}{2 b z} \Delta b z_{2}-\Delta b y_{2} \tag{27}\\
& \Delta z_{I}=-\frac{2 x-b}{2 b} \Delta b z_{2} \ldots \tag{28}
\end{align*}
$$

introducing (22) and (23):

$$
\begin{align*}
& \Delta x_{I}=-\frac{(2 x+b)(2 x-b) z_{0}}{4 b c z} \Delta c^{\prime}+\frac{(2 x+b)(2 x-b) z_{0}}{4 b c z} \Delta c^{\prime \prime} \ldots \tag{29}\\
& \Delta y_{I}=-\frac{z_{0}}{2 c} \Delta y^{\prime}+\frac{z_{0}}{2 c} \Delta y^{\prime \prime}-\frac{x y z_{0}}{b z c} \Delta c^{\prime}+\frac{x y z_{0}}{b c z} \Delta c^{\prime \prime} \ldots \ldots \tag{30}\\
& \Delta y_{I L}=-\frac{(2 x-b) y z_{0}}{2 b c z} \Delta c^{\prime}+\frac{(2 x-b) y z_{0}}{2 b c z} \Delta c^{\prime \prime} \ldots \ldots . \tag{31}\\
& \Delta y_{I R}=-\frac{(2 x+b) y z_{0}}{2 b c z} \Delta c^{\prime}+\frac{(2 x+b) y z_{0}}{2 b c z} \Delta c^{\prime \prime}-\frac{z_{0}}{c} \Delta y^{\prime}+\frac{z_{0}}{c} \Delta y^{\prime \prime} \tag{32}\\
& \Delta z_{I}=-\frac{(2 x-b) z_{0}}{2 b c} \Delta c^{\prime}+\frac{(2 x-b) z_{0}}{2 b c} \Delta c^{\prime \prime} \ldots \ldots . . . \tag{33}
\end{align*}
$$

The remaining errors of the machine coordinates are found by adding the expressions (14) to (18) and (29) to (33):
(14) and (29):

$$
\begin{align*}
\Delta x_{I}= & +\frac{(2 x-b) z}{2 b c} \Delta x^{\prime}-\frac{(2 x+b) z}{2 b c} \Delta x^{\prime \prime}+ \\
& +\frac{\left(z-z_{0}\right)(2 x+b)(2 x-b)}{4 b c z} \Delta c^{\prime}-\frac{\left(z-z_{0}\right)(2 x+b)(2 x-b)}{4 b c z} \Delta c^{\prime \prime} . \tag{34}
\end{align*}
$$

(15) and (30):

$$
\begin{align*}
\Delta y_{I}= & +\frac{y z}{b c} \Delta x^{\prime}-\frac{y z}{b c} \Delta x^{\prime \prime}-\frac{z_{0}+z}{2 c} \Delta y^{\prime}+\frac{z_{0}-z}{2 c} \Delta y^{\prime \prime}+ \\
& +\frac{x y\left(z-z_{0}\right)}{b c z} \Delta c^{\prime}-\frac{x y\left(z-z_{0}\right)}{b c z} \Delta c^{\prime \prime} \ldots \ldots \tag{35}
\end{align*}
$$

(16) and (31):

$$
\begin{equation*}
\Delta y_{I L}=+\frac{y z}{b c} \Delta x^{\prime}-\frac{y z}{b c} \Delta x^{\prime \prime}-\frac{z}{c} \Delta y^{\prime}+\frac{y\left(z-z_{0}\right)(2 x-b)}{2 b c z} \Delta c^{\prime}-\frac{y\left(z-z_{0}\right)(2 x-b)}{2 b c z} \Delta c^{\prime \prime} \tag{36}
\end{equation*}
$$

(17) and (32):

$$
\begin{align*}
\Delta y_{I R}= & +\frac{y z}{b c} \Delta x^{\prime}-\frac{y z}{b c} \Delta x^{\prime \prime}-\frac{z_{0}}{c} \Delta y^{\prime}+\frac{z_{0}-z}{c} \Delta y^{\prime \prime}+ \\
& +\frac{y\left(z-z_{0}\right)(2 x+b)}{2 b c z} \Delta c^{\prime}-\frac{y\left(z-z_{0}\right)(2 x+b)}{2 b c z} \Delta c^{\prime \prime} \tag{37}
\end{align*}
$$

(18) and (33):

$$
\begin{equation*}
\Delta z_{I}=+\frac{z^{2}}{b c} \Delta x^{\prime}-\frac{z^{2}}{b c} \Delta x^{\prime \prime}+\frac{z(2 x+b)-z_{0}(2 x-b)}{2 b c} \Delta c^{\prime}+\frac{\left(z_{0}-z\right)(2 x-b)}{2 b c} \Delta c^{\prime \prime} \tag{38}
\end{equation*}
$$

Taking account of:

$$
\begin{equation*}
\Delta z_{I}=-\Delta h_{I} \tag{39}
\end{equation*}
$$

in general matrix notation (34) to (38) is:

$$
\left(\begin{array}{l}
\Delta x_{I} \tag{40}\\
\Delta y_{I} \\
\Delta y_{I L} \\
\Delta y_{I R} \\
\Delta h_{I}
\end{array}\right)=\left(A_{I}^{i}\right)\left(\begin{array}{l}
\Delta x^{\prime} \\
\Delta x^{\prime \prime} \\
\Delta y^{\prime} \\
\Delta y^{\prime \prime} \\
\Delta c^{\prime} \\
\Delta c^{\prime \prime}
\end{array}\right)
$$

with:

$$
\left[\begin{array}{cccccc}
+\frac{(2 x-b) z}{2 b c}-\frac{(2 x+b) z}{2 b c} & 0 & 0 & +\frac{\left(z-z_{0}\right)(2 x+b)(2 x-b)}{4 b c z} & -\frac{\left(z-z_{0}\right)(2 x+b)(2 x-b)}{4 b c z} \tag{41}\\
+\frac{y z}{b c} & -\frac{y z}{b c} & -\frac{z_{0}+z}{2 c}+\frac{z_{0}-z}{2 c}+\frac{x y\left(z-z_{0}\right)}{b c z} & -\frac{x y\left(z-z_{0}\right)}{b c z} \\
+\frac{y z}{b c} & -\frac{y z}{b c} & -\frac{z}{c} & 0 & +\frac{y\left(z-z_{0}\right)(2 x-b)}{2 b c z} & -\frac{y\left(z-z_{0}\right)(2 x-b)}{2 b c z} \\
+\frac{y z}{b c} & -\frac{y z}{b c} & -\frac{z_{0}}{c} & +\frac{z_{0}-z}{c}+\frac{y\left(z-z_{0}\right)(2 x+b)}{2 b c z} & -\frac{y\left(z-z_{0}\right)(2 x+b)}{2 b c z} \\
-\frac{z^{2}}{b c} & +\frac{z^{2}}{b c} & 0 & 0 & -\frac{z(2 x+b)-z_{0}(2 x-b)}{2 b c} & +\frac{\left(z-z_{0}\right)(2 x-b)}{2 b c}
\end{array}\right) \equiv\left(A_{I}^{i}\right)
$$

Formulae suited to A8 measurements can be derived in the same way as to A7 measurements. The differential formulae which give the relation between machine coordinates and inner orientation elements are the same for both instruments, see (14) to (18).

The parallax caused by errors in inner orientation elements can be eliminated by the orientation elements $\varphi_{2}, \varphi_{1}, \kappa_{2}$ and κ_{1}. The parallax is in accordance with (20):

$$
\begin{equation*}
\Delta p_{y}=-\frac{z}{c} \Delta y^{\prime}+\frac{z}{c} \Delta y^{\prime \prime}-\frac{y}{c} \Delta c^{\prime}+\frac{y}{c} \Delta c^{\prime \prime} \tag{42}
\end{equation*}
$$

Comparing this formula with (31) of appendix 2 which gives the relation between y-parallax and the orientation elements of an A8:

$$
\begin{equation*}
\Delta p_{y}=-\frac{(2 x-b) y}{2 z} \Delta \varphi_{2}+\frac{(2 x+b) y}{2 z} \Delta \varphi_{1}+\frac{2 x-b}{2} \Delta \chi_{2}-\frac{2 x+b}{2} \Delta \chi_{1} \ldots \tag{43}
\end{equation*}
$$

From (42) and (43) we obtain for the mean level z_{0} :

$$
\begin{align*}
& \Delta x_{2}=\frac{z_{0}}{b c}\left(\Delta y^{\prime}-\Delta y^{\prime \prime}\right) \tag{44}\\
& \Delta x_{1}=\frac{z_{0}}{b c}\left(\Delta y^{\prime}-\Delta y^{\prime \prime}\right) \tag{45}\\
& \Delta \varphi_{2}=-\frac{z_{0}}{b c}\left(\Delta c^{\prime}-\Delta c^{\prime \prime}\right) \tag{46}\\
& \Delta \varphi_{1}=-\frac{z_{0}}{b c}\left(\Delta c^{\prime}-\Delta c^{\prime \prime}\right) \tag{47}
\end{align*}
$$

In consequence of these corrections of the orientation elements the coordinates of the model points change, see (36) of appendix 2 :

$$
\begin{align*}
\Delta x_{I}= & -\frac{2 x+b}{2 b} \cdot \frac{(2 x-b)^{2}+4 z^{2}}{4 z} \Delta \varphi_{2}-\frac{(2 x+b) y}{2 b} \Delta x_{2}+ \\
& +\frac{2 x-b}{2 b} \cdot \frac{(2 x+b)^{2}+4 z^{2}}{4 z} \Delta \varphi_{1}-\frac{(2 x-b) y}{2 b} \Delta x_{1} \ldots . \tag{48}\\
\Delta y_{I}= & -\frac{x y(2 x-b)+2 y z^{2}}{2 b z} \Delta \varphi_{2}+\left(\frac{2 x-b}{4}-\frac{y^{2}}{b}\right) \Delta x_{2} \\
& +\frac{x y(2 x+b)+2 y z^{2}}{2 b z} \Delta \varphi_{1}+\left(\frac{2 x+b}{4}+\frac{y^{2}}{b}\right) \Delta x_{1} \ldots . \tag{49}\\
\Delta y_{I L}= & -\frac{(2 x-b)^{2} y+4 y z^{2}}{4 b z} \Delta \varphi_{2}-\frac{y^{2}}{b} \Delta x_{2}+ \\
& +\frac{(2 x+b)(2 x-b) y+4 y z^{2}}{4 b z} \Delta \varphi_{1}+\left(\frac{2 x+b}{2}+\frac{y^{2}}{b}\right) \Delta x_{1} \tag{50}
\end{align*}
$$

$$
\begin{align*}
\Delta y_{I R}= & -\frac{(2 x+b)(2 x-b) y+4 y z^{2}}{4 b z} \Delta \varphi_{2}+\left(\frac{2 x-b}{2}-\frac{y^{2}}{b}\right) \Delta x_{2}+ \\
& +\frac{(2 x+b)^{2} y+4 y z^{2}}{4 b z} \Delta \varphi_{2}+\frac{y^{2}}{b} \Delta x_{1} \ldots \ldots . \tag{51}\\
\Delta z_{I}= & -\frac{(2 x-b)^{2}+4 z^{2}}{4 b} \Delta \varphi_{2}-\frac{y z}{b} \Delta x_{2}+ \\
& +\frac{(2 x+b)^{2}+4 z^{2}}{4 b} \Delta \varphi_{1}+\frac{y z}{b} \Delta x_{1} \ldots \ldots . \tag{52}
\end{align*}
$$

introducing (44) to (47):

$$
\begin{align*}
\Delta x_{I}= & -\frac{y z_{0}}{b c} \Delta y^{\prime}+\frac{y z_{0}}{b c} \Delta y^{\prime \prime}+\frac{\left(4 z^{2}-4 x^{2}+b^{2}\right) z_{0}}{4 b c z} \Delta c^{\prime}+ \\
& -\frac{\left(4 z^{2}-4 x^{2}+b^{2}\right) z_{0}}{4 b c z} \Delta c^{\prime \prime} \ldots \ldots \tag{53}\\
\Delta y_{I}= & +\frac{x z_{0}}{b c} \Delta y^{\prime}-\frac{x z_{0}}{b c} \Delta y^{\prime \prime}-\frac{x y z_{0}}{b c z} \Delta c^{\prime}+\frac{x y z_{0}}{b c z} \Delta c^{\prime \prime} \tag{54}\\
\Delta y_{I L}= & \frac{(2 x+b) z_{0}}{2 b c} \Delta y^{\prime}-\frac{(2 x+b) z_{0}}{2 b c} \Delta y^{\prime \prime}+ \\
& -\frac{(2 x-b) y z_{0}}{2 b c z} \Delta c^{\prime}+\frac{(2 x-b) y z_{0}}{2 b c z} \Delta c^{\prime \prime} \ldots \ldots \tag{55}\\
\Delta y_{I R}= & \frac{(2 x-b) z_{0}}{2 b c} \Delta y^{\prime}-\frac{(2 x-b) z_{0}}{2 b c} \Delta y^{\prime \prime}+ \\
& -\frac{(2 x+b) y z_{0}}{2 b c z} \Delta c^{\prime}+\frac{(2 x+b) y z_{0}}{2 b c z} \Delta c^{\prime \prime} \ldots \ldots \tag{56}\\
\Delta z_{I}= & -\frac{2 x z_{0}}{b c} \Delta c^{\prime}+\frac{2 x z_{0}}{b c} \Delta c^{\prime \prime} \ldots \ldots \tag{57}
\end{align*}
$$

From (14) to (18) and (53) to (57) we obtain by adding and taking account of (39):

$$
\left(\begin{array}{l}
\Delta x_{I} \tag{58}\\
\Delta y_{I} \\
\Delta y_{I L} \\
\Delta y_{I R} \\
\Delta h_{I}
\end{array}\right) \equiv\left(A_{I}^{i}\right)\left(\begin{array}{l}
\Delta x^{\prime} \\
\Delta x^{\prime \prime} \\
\Delta y^{\prime} \\
\Delta y^{\prime \prime} \\
\Delta c^{\prime} \\
\Delta c^{\prime \prime}
\end{array}\right)
$$

with:
$\underset{\text { III }}{\overparen{4}}$
$+\frac{\left(z-z_{0}\right)(2 x+b)(2 x-b)+4 z_{0} z^{2}}{4 b c z}$
$4 b c z$
$+\frac{x y\left(z-z_{0}\right)}{b c z}$
$+\frac{y\left(z-z_{0}\right)(2 x-b)}{2 b c z}$
$+\frac{y\left(z-z_{0}\right)(2 x+b)}{2 b c z}$
$-\frac{(2 x+b) z-4 x z_{0}}{2 b c}$

$-\underline{(2 x+b) z}$
~

REFERENCES

[1] W. Barda - Lecture notes. Geodetic Institute, Delft University of Technology.
[2] R. Roelofs - Theory of photogrammetric mapping. Department of Geodetic Science, The Ohio State University, Columbus, 1952-1953.
[3] M. Zeller - Lehrbuch der Photogrammetrie. Orell Füssli Verlag, Zurich, 1947.
[4] H. C. ZORN - The accuracy of inner orientation in a plotting instrument. Photogrammetria, 1954-1955, pp. 142-144.

